
ABSTRACT

Title of dissertation: AGE OF INFORMATION OPTIMIZATION
FOR TIMELINESS IN COMMUNICATION
NETWORKS

Melih Bastopcu, Doctor of Philosophy, 2021

Dissertation directed by: Professor Sennur Ulukus
Department of Electrical and Computer Engineering

With the emergence of technologies such as autonomous vehicular systems,

holographic communications, remote surgery and high frequency automated trading,

timeliness of information has become more important than ever. Most traditional

performance metrics, such as delay or throughput, are not sufficient to measure

timeliness. For that, age of information (AoI) has been introduced recently as a

new performance metric to quantify the timeliness in communication networks. In

this dissertation, we consider timely update delivery problems in communication

networks under various system settings.

First, we introduce the concept of soft updates, where different from the ex-

isting literature, here, updates are soft and begin reducing the age immediately but

drop it gradually over time. Our setting models human interactions where updates

are soft, and also social media interactions where an update consists of viewing and

digesting many small pieces of information posted, that are of varying importance,

relevance and interest to the receiver. For given total system duration, the number

of updates, and the total allowed update duration, we find the optimum start times

of the soft updates and their optimum durations to minimize the overall age.

Then, we consider an information updating system where not only the timeli-

ness but also the quality of the updates is important. Here, we use distortion as a

proxy for quality, and model distortion as a decreasing function of processing time

spent while generating the updates. Processing longer at the transmitter results in

a better quality (lower distortion) update, but it causes the update to age in the

process. We determine age-optimal policies by characterizing the update request

times at the receiver and the update processing times at the transmitter subject to

constant or age-dependent distortion constraints on each update.

Next, different from most of the existing literature on AoI where the trans-

mission times are based on a given distribution, by assigning codeword lengths for

each status update, we design transmission times through source coding schemes.

In order to further improve timeliness, we propose selective encoding schemes where

only the most probable updates are transmitted. For the remaining least probable

updates, we consider schemes where these updates are never sent, randomly sent,

or sent by an empty symbol. For all these encoding schemes, we determine the op-

timal number of encoded updates and their corresponding age-optimal real-valued

codeword lengths to minimize the average age at the receiver.

Then, we study the concept of generating partial updates which carry less

information compared to the original updates, but their transmission times are

shorter. Our aim is to find the age-optimal partial update generation process and

the corresponding age-optimal real-valued codeword lengths for the partial updates

while maintaining a desired level of fidelity between the original and partial updates.

Next, we consider information freshness in a cache updating system consisting

of a source, cache(s) and a user. Here, the user may receive an outdated file de-

pending on the freshness status of the file at the cache. We characterize the binary

freshness metric at the end user and propose an alternating maximization based

method to optimize the overall freshness at the end user subject to total update

rate constraints at the cache(s) and the user.

Then, we study a caching system with a limited storage capacity for the cache.

Here, the user either gets the files from the cache, but the received files can be

sometimes outdated, or gets fresh files directly from the source at the expense of ad-

ditional transmission times which inherently decrease the freshness. We show that

when the total update rate and the storage capacity at the cache are limited, it is op-

timal to get the frequently changing files and files with relatively small transmission

times directly from the source, and store the remaining files at the cache.

Next, we focus on information freshness in structured gossip networks where

in addition to the updates obtained from the source, the end nodes share their

local versions of the updates via gossiping to further improve freshness. By using a

stochastic hybrid systems (SHS) approach, we determine the information freshness

in arbitrarily connected gossip networks. When the number of nodes gets large, we

find the scaling of information freshness in disconnected, ring and fully connected

network topologies. Further, we consider clustered gossip networks where multiple

clusters of structured gossip networks are connected to the source through cluster

heads, and find the optimal cluster sizes numerically.

Then, we consider the problem of timely tracking of multiple counting random

processes via exponential (Poisson) inter-sampling times, subject to a total sampling

rate constraint. A specific example is how a citation index such as Google Scholar

should update citation counts of individual researchers to keep the entire citation

index as up-to-date as possible. We model citation arrival profile of each researcher

as a counting process with a different mean, and consider the long-term average

difference between the actual citation numbers and the citation numbers according

to the latest updates as a measure of timeliness. We show that, in order to minimize

this difference metric, Google Scholar should allocate its total update capacity to

researchers proportional to the square roots of their mean citation arrival rates.

Next, we consider the problem of timely tracking of multiple binary random

processes via sampling rate limited Poisson sampling. As a specific example, we

consider the problem of timely tracking of infection status (e.g., covid-19) of indi-

viduals in a population. Here, a health care provider wants to detect infected and

recovered people as quickly as possible. We measure the timeliness of the tracking

process as the long term average difference between the actual infection status of

people and their real-time estimate at the health care provider which is based on

the most recent test results. For given infection and recovery rates of individuals,

we find the exponentially applied testing rates for individuals to minimize this dif-

ference. We observe that when the total test rate is limited, instead of applying

tests to everyone, only a portion of the population should be tested.

Finally, we consider a communication system with multiple information sources

that generate binary status updates, which in practical application may indicate

an anomaly (e.g., fire) or infection status (e.g., covid-19). Each node exhibits an

anomaly or infection with probability p. In order to send the updates generated by

these sources as timely as possible, we propose a group updating method inspired

by group testing, but with the goal of minimizing the overall average age, as op-

posed to the average number of tests (updates). We show that when the probability

p is small, group updating method achieves lower average age than the sequential

updating methods.

Age of Information Optimization for Timeliness in Communication
Networks

by

Melih Bastopcu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Professor Sennur Ulukus, Chair/Advisor
Professor Adrian Papamarcou
Professor Prakash Narayan
Professor Nuno Martins
Professor Radu Balan

© Copyright by
Melih Bastopcu

2021

Dedication

To my mother Sakire Bastopcu for her endless support.

ii

Acknowledgments

I gratefully thank my advisor Professor Sennur Ulukus for her all help and

support during my Ph.D. studies. With her invaluable feedback on my papers,

presentations, and teaching styles, I can confidently say that I owe everything related

to my professional and academic development to her. I am very impressed with

her personal involvement in our research problems and her endless passion on new

research directions. She is always open to new ideas and provides freedom for us to

come up with new research directions. Before covid-19, her door used to be always

open for our research meetings which I enjoyed a lot. Even with covid-19, she

was always accessible via Zoom for late hours. My personal record was our Zoom

meeting that ended around 11:20 pm. Even though Ph.D. program can be sometimes

stressful with the challenging classes, qualification exams, obtaining results in our

research problems, I inherently knew that she was going to support me which made

me feel always comfortable. I am also thankful for her genuine supports during my

academic position applications.

I would like to thank Professors Adrian Papamarcou, Prakash Narayan, Nuno

Martins, Radu Balan, for being in my dissertation committee and offering their

valuable feedback. I would like to also thank Professor Antony Ephremides for

his valuable comments on my proposal. I am thankful to all the professors I have

interacted with over the past years at UMD. I especially want to thank Professors

Prakash Narayan and Nuno Martins whom I enjoyed their classes and I was honored

to be their teaching assistant over the years.

iii

I am thankful to all my lab mates at UMD. I would like to specifically thank

Baturalp Buyukates, Batuhan Arasli, Brian Kim, Priyanka Kaswan, Matin Morta-

heb, Cemil Vahapoglu, Sajani Vithana, Zhusheng Wang, Purbesh Mitra, Mustafa

Doger, Dr. Yi-Peng Wei, Dr. Karim Banawan, Dr. Abdulrahman Baknina, Dr.

Ahmed Arafa, Dr. Pritam Mukherjee, Dr. Berk Gurakan, Ajaykrishnan Nageswaran,

Sagnik Bhattacharya, Dr. Vinay Praneeth Boda.

I personally thank my dearest friend, lab-mate, and (then became) a room-

mate, Baturalp Buyukates, who was always with me for the hardest and as well as

the happiest moments of this long journey. I feel very lucky that we started this

program together and we bear all the challenges of Ph.D. studies together. I always

relied on his honest views in every part of my academic and personal life. He was

very thoughtful to me and I will always miss his knocking on my door during a day.

I am also very thankful to my other roommates, Batuhan Arasli and Ozde Ozkaya,

for making our house feel like home. They were like an extended family to me. I am

specially thankful for my friends at UMD, Semih Kara, Ece Yegane, Hulya Biler,

Gamze Yavuzer, Siddharth Tyagi, Deepayan Bhadra, and my friends from college,

Burak Bartan, and Umitcan Sahin, and my friends from high school, Harun Avci,

Nurullah Ishak Isik, and Mustafa Bugrahan Gurbuz.

My deepest gratitude goes to my family for all their support throughout my

life. I would like to specially thank my mother Sakire Bastopcu who always sup-

ported me in any possible direction, my sister Gozde Bezirgan, who always tried

to convince me to go back to Turkey, my brother-in-law Selman Bezirgan, my little

lovely nephew Ekin Yagmur, my grandmother Muruvvet Ezerel, who has recently

iv

passed away, my aunt Meral Ezerel Temel, and her husband Ishak Temel, my lovely

cousins Yigit and Elif Naz.

Finally, I would like to thank the ECE staff members, who are always dedicated

to help all graduate students with their sincere efforts. In particular, I would like

to specially thank to Melanie Prange who is very helpful and knowledgeable, and

always has answers to any of my concerns throughout my studies, Emily Irwin,

Maria Hoo, and Vivian Lu.

v

Table of Contents

List of Figures x

List of Tables xvi

1 Introduction 1

2 Age of Information with Soft Updates 12
2.1 Introduction . 12
2.2 System Model and the Problem . 15
2.3 Exponentially Decaying Age Model 17

2.3.1 The Optimal Solution Structure When x1 > 0 20
2.3.1.1 Case A: xi > yi and xi+1 > yi for all i 21
2.3.1.2 Case B: xi = yi for some i and xj+1 > yj for all j . . 25
2.3.1.3 Case C: xi > yi for all i and xj+1 = yj for some j . . 25
2.3.1.4 Case D: xi = yi for some i and xj+1 = yj for some j . 25

2.3.2 The Optimal Solution Structure When x1 = 0 26
2.4 Linearly Decaying Age Model . 29
2.5 Numerical Results . 37
2.6 Conclusion . 40

3 Age of Information with Distortion 41
3.1 Introduction . 41

3.1.1 Related Work . 45
3.2 System Model and Problem Formulation 48
3.3 Constant Allowable Distortion . 51
3.4 Age-Dependent Allowable Distortion 55

3.4.1 Allowable Distortion is Inversely Proportional to the Instan-
taneous Age . 56

3.4.2 Allowable Distortion is Proportional to the Instantaneous Age 62
3.5 Numerical Results . 69

3.5.1 Simulation Results for Constant Allowable Distortion 69
3.5.2 Simulation Results for Age-Dependent Allowable Distortion . 72

3.6 Conclusion . 78

vi

4 Source Coding for Age of Information 80
4.1 Introduction . 80
4.2 System Model and Problem Formulation 85

4.2.1 Policy 1: Highest k Selective Encoding 85
4.2.2 Policy 2: Randomized Selective Encoding 86
4.2.3 Policy 3: Highest k Selective Encoding with an Empty Symbol 87
4.2.4 Problem Formulation . 88

4.3 Average Age Analysis . 89
4.4 Optimal Codeword Design Under Selective Encoding 91
4.5 Optimal Codeword Design under Randomized Selective Encoding . . 97
4.6 Optimal Codeword Design Under Selective Encoding with an Empty

Symbol . 99
4.6.1 When the Empty Symbol Does Not Reset the Age 100
4.6.2 When the Empty Symbol Resets the Age 105

4.7 Numerical Results . 106
4.8 On The Optimality of the Highest k Selective Encoding 114
4.9 Conclusion . 117

5 Lossy Source Coding with Partial Updates: Losing Information for Freshness119
5.1 Introduction . 119
5.2 System Model and Problem Formulation 121
5.3 The Optimal Solution . 125

5.3.1 Age-Optimal Codeword Lengths for a Given PMF 129
5.3.2 Age-Optimal PMF for Given Codeword Lengths 131
5.3.3 The Overall Solution . 131

5.4 Numerical Results . 132
5.5 Conclusion . 136

6 Freshness in Cache Updating Systems 137
6.1 Introduction . 137
6.2 System Model, Freshness Function and Problem Formulation 141
6.3 Average Freshness Analysis for a Single Cache 145
6.4 Average Freshness Analysis for M Caches 149
6.5 Freshness Maximization for a System with a Single Cache 152
6.6 Freshness Maximization for the General System 159
6.7 Freshness Maximization for a System with Multiple Users 163
6.8 Numerical Results . 167
6.9 Conclusion . 174

7 Freshness in Cache Updating Systems with Limited Storage Capacity 175
7.1 Introduction . 175
7.2 System Model . 177
7.3 Average Freshness Analysis . 181
7.4 Freshness Maximization . 184
7.5 Numerical Results . 188

vii

7.6 Conclusion . 191

8 Freshness in Gossiping Networks 192
8.1 Introduction . 192
8.2 Freshness in Arbitrarily Connected Networks 194
8.3 Sample Freshness Evaluations . 197
8.4 Freshness in Structured Gossip Networks 199

8.4.1 Disconnected Networks . 200
8.4.2 Ring Networks . 200
8.4.3 Fully Connected Networks . 201

8.5 Freshness in Clustered Gossip Networks 204
8.5.1 Disconnected Clusters . 205
8.5.2 Ring Clusters . 206
8.5.3 Fully Connected Clusters . 207

8.6 Numerical Results . 207
8.6.1 Numerical Results for Large Gossip Networks 207
8.6.2 Numerical Results for Clustered Gossip Networks 209

8.7 Conclusion . 211

9 Timely Tracking of Multiple Counting Random Processes: Tracking Citation
Indices of Researchers 212
9.1 Introduction . 212
9.2 System Model and Problem Formulation 215

9.2.1 Model 1: Poisson Updater . 217
9.2.2 Model 2: Deterministic Updater 218
9.2.3 Model 3: Common Synchronized Probabilistic Updater 219
9.2.4 Problem Formulation . 220

9.3 The Optimal Solution . 221
9.4 Numerical Results . 223
9.5 Conclusion . 227

10 Timely Tracking of Multiple Binary Random Processes: Tracking Infection
Status of Individuals in a Population 229
10.1 Introduction . 229
10.2 System Model . 232
10.3 Average Difference Analysis . 236
10.4 Optimization of Average Difference 239
10.5 Numerical Results . 244
10.6 Conclusion . 249

11 Age-Efficient Scheduling for Binary-Valued Information Sources: Group Up-
dating 250
11.1 Introduction . 250
11.2 System Model . 253
11.3 Average Age Analysis . 256

viii

11.4 Group Updating versus Group Testing 260
11.5 Numerical Results . 263
11.6 Conclusion . 268

12 Conclusions 269

Bibliography 273

ix

List of Figures

1.1 Sample evolution of (a) the traditional AoI, (b) the binary freshness,
(c) the age of version, and (d) the age of synchronization (special case
of AoII) metrics are provided. Here, red circles represent the update
arrivals at the source, blue squares represent the updates received by
the receiver. For simplicity, we assume that the transmission times
are equal to 0. 3

2.1 Update models: Hard updates (instantaneous decay) and soft updates
(exponential and linear decay). 13

2.2 A general example evolution of age in the case of exponentially de-
caying age. 17

2.3 Depiction of the cases for the exponentially decaying age model with
x1 > 0 (a) where xi > yi and xj+1 > yj for all i and j, (b) where
xi = yi for some i, (c) where xj+1 = yj for some j, (d) where xi = yi
and xj+1 = yj for some i and j. 23

2.4 Minimum age as a function of N in the exponentially decaying age
case for T = 5, Tc = 2, and α = 1. 24

2.5 Optimal solution for the exponentially decaying age case: (a) When
Tc < T − 1

α
(relatively small update duration). (b) When Tc > T − 1

α

(relatively large update duration). 28
2.6 A general example evolution of age in the case of linearly decaying age. 29
2.7 Optimal policy structure for the linearly decaying age case: (a) When

Tc <
NT

(α+1)(N+1)
and α = 1. (b) When Tc ≥ NT

(α+1)(N+1)
and α = 1. . . 35

2.8 Minimum age as a function of N in the linearly decaying age case for
T = 5, Tc = 2 α = 1. 36

2.9 Evolution of the optimal age when α→∞. 37
2.10 Evolution of a(t) in the exponentially decaying age model (a) when

N = 2, T = 5, Tc = 3, and α = 1, (b) when N = 2, T = 6, Tc = 5,
and α = 1. 38

2.11 Evolution of a(t) in the linearly decaying age model, for α = 1, N = 2,
T = 3, and (a) Tc = 1, (b) Tc = 1.6, (c) Tc = 0.8. 39

2.12 Evolution of a(t) in the linearly decaying age model (a) α = 2, N = 2,
T = 3, and Tc = 0.8, and (b) α = 0.5, N = 2, T = 3.6, and Tc = 1.6. . 39

x

3.1 An information updating system which consists of an information
provider which collects/processes data and an information receiver. . 42

3.2 Age evolution at the receiver. 43
3.3 Evolution of a(t) with optimal update policies when the distortion

function does not depend on the current age in the case of (a) c = 0,
(b) c > 0 and (N + 2)c < T , (c) Nc < T ≤ (N + 2)c, (d) T = Nc. . . 56

3.4 Age evolution at the receiver when f(yi) is inversely proportional to
the current age for (a) α ≤ 1 and (b) α > 1. 60

3.5 Age evolution at the receiver when the distortion function is propor-
tional to the current age for (a) T ≤

(
N+2−α

1+α

)
c, (b)

(
N+2−α

1+α

)
c < T <(

N+1−α
α

)
c, (c) (N+1−α)c

α
≤ T < (N+1)c

α
, (d) (N+1)c

α
≤ T 66

3.6 Evolution of a(t) with optimal update policies for T = 10, N = 3, (a)
c = 0, (b) c = 1, (c) c = 2.5, (d) c = 10

3
, when the maximum allowed

distortion function is a constant. 70
3.7 Age versus distortion of the updates for a = 8

1−e−3 , b = 1.2, and
d = e−3 in (3.1) when the maximum allowed distortion is a constant.
We vary β and find the minimum age for each β. 72

3.8 Evolution of a(t) with optimal update policies for T = 10, N = 3, (a)
α = 0.5, (b) α = 1.5, when the maximum allowed distortion function
is inversely proportional to the current age, i.e., ci ≥ αyi. 73

3.9 Average age versus α for T = 10 and N = 3 when the maximum
allowed distortion function is inversely proportional to the current
age, i.e., ci ≥ αyi. We vary α in between 0 and 2 and find the
corresponding minimum age for each α. 74

3.10 Evolution of a(t) with optimal update policies for c = 1, N = 3,
α = 0.4, (a) T = 3, (b) T = 6, (c) T = 9.5, (d) T = 12, when the
maximum allowed distortion function is an increasing function of the
current age, i.e., ci ≥ c− αyi. 76

3.11 Average age versus α for T = 4 and N = 3 when the maximum
allowed distortion function is proportional to age, i.e., ci ≥ c − αyi.
We vary α ∈ [0, 0.49] and find the corresponding minimum age for
each α. 78

4.1 An information source generates i.i.d. status updates from a random
variableX. Only a portion of the realizations (shown with a square) is
encoded into codewords. Update packets that come from the selected
portion of the realizations that find the transmitter node idle are sent
to the receiver node. Non-selected realizations (shown with a triangle)
are always discarded at the transmitter node even if the transmitter
node is idle. 81

4.2 Update packets that come from the selected portion of the realizations
(shown with a square) that find the transmitter idle are sent to the
receiver. Non-selected realizations (shown with a triangle) that find
the transmitter idle are mapped into an empty symbol. 83

xi

4.3 Sample age evolution ∆(t) at the receiver node. Successful updates
are indexed by j. The jth successful update arrives at the server node
at Tj−1. Update cycle at the server node is the time in between two
successive arrivals and is equal to Yj = Sj +Wj = Tj − Tj−1. 91

4.4 The average age values with the age-optimal codeword lengths for
λ ∈ {0.3, 0.5, 1} for the pmf provided in (4.45) with the parameters
n = 100, s = 0.4. We apply the highest k selective encoding scheme
and vary k from 1 to n and indicate k that minimizes the average age
for each λ with an arrow. 107

4.5 The average age values with the age-optimal codeword lengths for λ ∈
{2, 10} for the pmf provided in (4.45) with the parameters n = 100,
s = 0.4. We apply the highest k selective encoding scheme and vary
k from 1 to n and observe that choosing k = 1 under the relatively
high arrival rates (λ = 10) minimizes the average age. 108

4.6 The average age values with the age-optimal codeword lengths for
different α values with the pmf provided in (4.45) with n = 100,
s = 0.2 for k = 70 and λ = 0.6, 1.2 when randomized highest k
selective encoding is implemented. 109

4.7 Average age with the age-optimal codeword lengths with respect to
`(xe) with the pmf in (4.46) for n = 10 and λ = 5 when the empty
symbol does not reset the age. Arrows indicate the age-optimal `(xe)
values. We also provide the optimal age without sending the empty
symbol for k = 2 and k = 8. 111

4.8 Average age with the age-optimal codeword lengths for varying k
with the pmf in (4.46) for n = 20 and λ = 0.5, 1, 1.5 when the empty
symbol resets the age. 112

4.9 The average age under Huffman code, Shannon∗ code and the age-
optimal code for λ = 1 and the pmf in (4.45) with the parameters
n = 10, (a) s = 0, (b) s = 3 and (c) s = 4. We vary k from 2 to n. . . 113

5.1 An information updating system which consists of a source, a trans-
mitter and a receiver. 120

5.2 Sample age evolution at the receiver. 124
5.3 The optimum average age with real-valued codeword lengths when X

is distributed with Zipf(0.5, 8) for k ∈ {3, 4, 5, 6}. 133
5.4 We find (a) the age-optimal pmf and (b) the corresponding age-

optimal real-valued codeword lengths for k = 3 with respect to the
entropy constraints β ∈ {0.82, 1.43, 1.58} for an X with Zipf(0.5, 8)
distribution. 134

5.5 We use the proposed alternating minimization method to find the
age-optimal pmf and the corresponding age-optimal real-valued code-
word lengths for k = 10 with respect to the entropy constraints
β ∈ {1.6, 2.4, 3.2} starting from the same arbitrary pmf which has
initial entropy close to 2. We show (a) the age evolution, and (b)
entropy evolution, versus iteration index. 135

xii

6.1 A cache updating system consisting of a cloud (the source), a macro
base station (the first cache), a small-cell base station (the second
cache), and users. The files at the source are updated with known
rates. The first cache always obtains fresh files from the source. How-
ever, depending on the file status at the first cache, the second cache
may not be able to obtain a fresh file all the time; the same is true
for the users as well. We consider end-to-end freshness at the users. . 138

6.2 A cache updating system which consists of a source, a cache and a
user. The ith file at the source is updated with rate λi, the cache
requests updates for the ith file from the source with rate ci, and the
user requests updates for the ith file from the cache with rate ui. . . . 140

6.3 Sample evolution of freshness of the ith file (a) at the cache and (b)
at the user. Red circles represent the update arrivals at the source,
blue squares represent the update requests from the cache, and green
filled squares represent the update requests from the user. 142

6.4 Generalized system model where there arem serially connected caches
in between the source and the user. 149

6.5 For given uis, we show φis calculated in (6.35) for n = 8. 158
6.6 A cache updating system with a source, a single cache and d users. . 164
6.7 (a) Update rate allocation for the cache and the user for each file, and

(b) the corresponding freshness Fu(i), when U = 10 and C = 5 with
the file update rates at the source λi given in (6.63), with a = 10 and
q = 0.7 for n = 15. 168

6.8 We compare the proposed update policy with the λ-proportional and
the λ-inverse updating policies when C = 15, U = 10. We use λi in
(6.63) for n = 20, (a) a = 10, and 0 < q ≤ 1 and (b) q = 0.7 and
a = 1, . . . , 20. 170

6.9 Total freshness of the user Fu with respect to C, when λi are given
in (6.63), with a = 2 and q = 0.5, 0.75, 1 for n = 15. 171

6.10 The update rates of the caches and the user when the total update
rate constraint for the user is U = 20 and, for the second cache is
C2 = 10. Total update rate constraint for the first cache is (a) C1 = 4,
and (b) C1 = 8. The freshness of the files at the user is shown in (c). 172

6.11 A system with a source, a single cache and two users: (a) The update
rates of the cache and of the users, (b) the freshness of each file at
the users. 173

7.1 A cache updating system with a source, a cache and a user. 176
7.2 Sample evolution of the freshness of the ith file at the user when

the ith file is (a) not cached and (b) cached. Red circles represent
the update arrivals at the source, blue squares represent the update
requests from the cache, and green filled squares represent the update
requests from the user. 179

7.3 Total freshness of the user Fu with respect to the cache capacity K
when the total cache update rate is C = 1, 4, 8. 189

xiii

7.4 (a) Update rate allocation at the cache for each file, and (b) the
corresponding freshness Fu(i, ki), when C = 1, 4, 8. 191

8.1 Gossip network model consisting of a source represented by the blue
node, and the users represented by the green nodes. Here, users form
a ring network. Other network topologies are shown in Fig. 8.2. . . . 193

8.2 (a) Disconnected, (b) ring, and (c) fully connected network topologies
with n = 6 end-nodes. 194

8.3 Freshness of information in (a) a serially connected network, (b) a
parallel connected network, and (c) an arbitrarily connected network. 198

8.4 Scaling of inverse freshness of a node (a) in disconnected and ring
networks when ρ = 2 (λe = 2 and λ = 1), (b) in a fully connected
network when ρ = 2 (λe = 2 and λ = 1), ρ = 1 (λe = 1 and λ = 1),
and ρ = 0.5 (λe = 0.5 and λ = 1). 208

8.5 Binary freshness of a node with disconnected, ring and fully connected
clusters with n = 120, λe = 1, (a) λs = 1, λc = 1, λ = 1, (b) λs = 10,
λc = 1, λ = 1, (c) λs = 10, λc = 10, λ = 1, (d) λs = 10, λc = 1, λ = 2. 210

9.1 Web crawler finds and indexes scientific documents, from which cita-
tion counts are extracted upon examining their contents. Scheduler
schedules updating citation counts of individual researchers based on
their mean citations, and optionally, importance factors, subject to a
total update rate. 213

9.2 The number of citations, Ni(t), and the estimated number of cita-
tions, N̂i(t), for researcher i. Aj denotes the total estimation error in
[ti,j−1, ti,j). 216

9.3 Poisson updater: Inter-update times are exponential with rate ρi. . . 218
9.4 Deterministic updater: Inter-update times are equal with di = 1

ρi
. . . 219

9.5 Common synchronized updater: Common synchronized inter-update
times are exponential with rate ρ. At each common update opportu-
nity, researcher i is updated with probability pi 220

9.6 (a) Optimal update rate allocation for each researcher, and (b) the
corresponding optimal long term average difference ∆i, when we use
uniform importance coefficients µi = 1, with λi given in (9.18), with
a = 10 and r = 0.75 for n = 20. 224

9.7 (a) Optimal update rate allocation for each researcher, and (b) the
corresponding optimal long term average difference ∆i, when we use
λ-proportional and uniform importance coefficients, with λi given in
(9.18), with a = 10 and r = 0.75 for n = 10. 225

9.8 Total long term average difference ∆ with respect to c, when uniform
importance coefficients are used and λi are given in (9.20), with a = 1
and r = 0.5, 0.75, 1 for n = 10. 226

xiv

10.1 System model. There are n people whose infection status are given
by xi(t). The health care provider applies tests on these people.
Based on the test results, estimations for the infection status x̂i(t)
are generated. Infected people are shown in red color and healthy
people are shown in green color. 230

10.2 (a) A sample evolution of xi(t) and x̂i(t), and (b) the corresponding
∆i(t) in (10.5). Green areas correspond to the error caused by ∆i1(t)
in (10.3). Orange areas correspond to the error caused by ∆i2(t) in
(10.4). 234

10.3 A sample evolution of (a) ∆i1(t), and (b) ∆i2(t) in a typical cycle. . . 236
10.4 (a) Test rates si and ci, (b) corresponding average difference ∆i. . . 245
10.5 The average difference ∆ with respect to total test rate C. 246
10.6 The average difference ∆ with respect to number of people n. We

use uniform infection and healing rates, i.e., λi = 6
n

and µi = 4
n

for
all i, and also λi in (10.30) and µi in (10.31) with

∑n
i=1 λi = 6 and∑n

i=1 µi = 4. 247
10.7 (a) ∆ in (10.7), ∆̄1 which is 1

n

∑n
i=1 ∆i1, and ∆̄2 which is 1

n

∑n
i=1 ∆i2,

(b) corresponding total test rates
∑n

i=1 si and
∑n

i=1 ci. 248

11.1 System models considered in this chapter. 251
11.2 A sample update generation and update delivery timeline. Lines 1

through n denote the nodes. Lines 1 through k denote the nodes
in group 1. Green and red balls represent the anomaly/no anomaly
status of each node. In update cycle 1, the yellow strip shows the time
where the status of all nodes in group 1 is updated, the blue strip
shows the time where the status of all nodes in group 2 is updated,
and the pink strip shows the time where the status of all nodes in
group m is updated. The process repeats itself in update cycle 2.
Delivery times are marked by the downward arrows. 256

11.3 A sample age evolution aij(t) at the central location. 258
11.4 Average age versus group size with the proposed group updating

method and the round robin method when p = 0.01, 0.1, 0.2, 0.4. . . . 264
11.5 Average age versus population size with the proposed group updating

method and the round robin method when p = 0.01, 0.1, 0.2, 0.4. . . . 265
11.6 Average age for the group updating method and average number of

updates for the group testing method with respect to k for n = 48
when (a) p = 0.05 and (b) p = 0.15. 266

11.7 Optimum group sizes k∗gu in the group updating problem and k∗gt in
the group testing problem for n = 120, for p from 0.01 to 0.25. 267

xv

List of Tables

4.1 Age-optimal update selection for fixed k = 5 with different arrival
rates, λ. 116

xvi

CHAPTER 1

Introduction

Timely information delivery in communication networks has been recognized to be

important, especially in light of emerging applications, such as autonomous ve-

hicular systems, holographic communications, remote surgery, and high frequency

automated trading. Common to all these applications is the fact that informa-

tion is most useful when it is freshest. Traditional network design metrics, such

as delay and throughput, do not capture information timeliness. Information time-

liness requires a careful combination of sufficiently low delay and sufficiently high

throughput. For example, even though the updates can be delivered with low delay,

if the inter update generation times are large (i.e., if the throughput is low), critical

changes in the status of the system may be missed between two status updates.

Similarly, even though a large throughput can be achieved by sending a large num-

ber of status updates, due to possible waiting times and transmission delays as a

result of congestion, the received updates may already be outdated. Thus, we need

a different performance metric that is capable of measuring information timeliness

in communication systems.

1

Although various concepts of timeliness have appeared in the literature be-

fore, such as in the context of web freshness in [1], recent literature on timeliness

in communication networks has started with the age of information (AoI) metric

defined in [2]. This, now conventional, timeliness metric is defined as the time

elapsed since the generation of the most recently received status update at the

receiver. As shown in Fig. 1.1(a), with this metric, age at the receiver increases

linearly over time when no updates are delivered; and decreases down to the age

of the most recently received status update upon a status update delivery. Age of

information has been studied in queueing systems [2–14], multi-hop and multi-cast

networks [15–25], social networks [26], content freshness in the web [1,27–29], timely

remote estimation of random processes [30–36], energy harvesting systems [37–55],

wireless fading channels [56, 57], scheduling in networks [58–76], lossless and lossy

source and channel coding [77–87], vehicular, IoT and UAV systems [88–91], caching

systems [92–103], computation-intensive systems [104–113], learning and Markov de-

cision process settings [114–128], and so on. A more detailed review of the age of

information literature can be found in references [129,130].

The conventional age metric defined in [2] is useful in characterizing informa-

tion timeliness in many systems, but may have limitations in some other applica-

tions. With the conventional age metric, information at the receiver becomes stale

when there are no update deliveries (as the age increases linearly over time). How-

ever, if the information at the source has not changed, even though the receiver

did not receive any updates for some time, the information at the receiver may still

be the freshest (e.g., see in Fig. 1.1(b) that the receiver has the highest freshness

2

t

update
received

a
g
e
o
f
in
fo
rm

a
ti
o
n

information

at source
updates

(a)

t

b
in
a
ry

fr
es
h
n
es
s

(b)

t

a
g
e
o
f
v
er
si
o
n

(c)

t

a
g
e
o
f
sy
n
ch
ro
n
iz
a
ti
o
n

(d)

Figure 1.1: Sample evolution of (a) the traditional AoI, (b) the binary freshness, (c)
the age of version, and (d) the age of synchronization (special case of AoII) metrics
are provided. Here, red circles represent the update arrivals at the source, blue
squares represent the updates received by the receiver. For simplicity, we assume
that the transmission times are equal to 0.

until the first information update at the source, represented by a red circle, arrives

as opposed to Fig. 1.1(a) where age continues to increase until a blue square ar-

rives). Since the conventional age metric does not incorporate information variation

rates at the source, it does not capture this modified sense of information freshness.

For that, recently, several variations of the conventional age metric have been in-

troduced. One of such metrics is the binary freshness metric (BFM), which takes

the value 1 when the information is fresh, i.e., the receiver has the same version as

the source, and the value 0, when the information at the receiver is different from

the source [1, 27, 28, 99, 101, 102]. Another such metric is the age of version (AoV)

metric. If we view each information change at the source as a new version, age of

version, shown in Fig. 1.1(c), increases by 1 whenever the version changes at the

3

source and decreases down to 0 when the receiver gets the current version at the

source. In other words, AoV measures how many versions an information receiver

is behind compared to the currently prevailing version at the source [131–133]. A

more general metric that considers information variations at the source and also

has a time component is the age of incorrect information (AoII) which stays as 0

as long as information at the receiver is fresh and may increase over time when the

information at the receiver is stale [34, 70, 134]. With that, age of synchronization

(AoS) introduced in [97] and shown in Fig. 1.1(d) can be considered as a special

case of AoII.

In this dissertation, different from most of the works in the AoI literature which

consider the conventional age as the only performance metric, we consider timeliness

metrics that incorporate information change statistics at the source, along with the

concepts of soft updates, quality of updates, and partial updates, to develop funda-

mental solutions for timely update delivery problems in communication networks, by

utilizing tools from optimization, wireless communication, and information theory.

In the remainder of this introduction, we describe each chapter of the dissertation

in more detail.

In Chapter 2, different from the existing literature where updates are countable

(hard) and take effect either immediately or after a delay, but instantaneously in

both cases, we consider an information updating system where updates start taking

effect right away but gradually over time. We coin this setting soft updates. When

the updating process starts, the age decreases until the soft update period ends.

We consider two models for the decrease of age during an update period: In the

4

first model, the rate of decrease of age is proportional to the current age, and in

the second model, the rate of decrease of age is constant. The first model results in

an exponentially decaying age, and the second model results in a linearly decaying

age. In both cases, we determine the optimum updating schemes, by determining

the optimum start times and optimum durations of the updates, subject to the

constraints on the number of update periods and the total update duration. For

both models, in the optimal policy, we show that total update duration should be

utilized by allocating equal amount of time for each update.

In Chapter 3, we study the timeliness of an information updating system along

with the distortion on each update. Here, the updates are generated at the informa-

tion provider (transmitter) as a result of completing a set of tasks such as collecting

data and performing computations on them. We refer to this as the update gen-

eration process. We model distortion on the updates as a decreasing function of

processing time spent while generating the updates at the transmitter. Processing

longer at the transmitter results in a better quality (lower distortion) update, but

it causes the update to age in the process. We determine the age-optimal policies

for the update request times at the receiver and the update processing times at the

transmitter subject to a minimum required quality (maximum allowed distortion)

constraint on the updates. For the required quality constraint, we consider the cases

of constant maximum allowed distortion constraints, as well as age-dependent max-

imum allowed distortion constraints. For all these distortion constraints, we show

that the processing times are equal to the minimum required processing duration

that meets the distortion constraint.

5

In Chapter 4, we consider a system where the information source generates

independent and identically distributed status update messages from an observed

random phenomenon which takes n distinct values based on a given probability

mass function (pmf). These update packets are encoded at the transmitter node

to be sent to a receiver node which wants to track the observed random variable

as timely as possible. In order to further improve the timeliness of the system,

the transmitter node implements a selective k encoding policy such that rather than

encoding all possible n realizations, the transmitter node encodes the most probable

k realizations. We consider three different policies regarding the remaining n − k

less probable realizations: highest k selective encoding which disregards whenever a

realization from the remaining n − k values occurs; randomized selective encoding

which encodes and sends the remaining n−k realizations with a certain probability to

further inform the receiver node at the expense of longer codewords for the selected

k realizations; and highest k selective encoding with an empty symbol which sends

a designated empty symbol when one of the remaining n − k realizations occurs.

For all of these three encoding schemes, we find the average age and determine the

age-optimal real codeword lengths, including the codeword length for the empty

symbol in the case of the latter scheme, such that the average age at the receiver

node is minimized. Through numerical evaluations for arbitrary pmfs, we show that

these selective encoding policies result in a lower average age than encoding every

realization, and find the corresponding age-optimal k values.

In Chapter 5, we study an information updating system where the transmitter

further processes the updates obtained from the source in order to generate partial

6

updates, which have smaller information compared to the original updates, to be sent

to a receiver. We study the problem of generating partial updates, and finding their

corresponding real-valued codeword lengths, in order to minimize the average age

experienced by the receiver, while maintaining a desired level of mutual information

between the original and partial updates. Since the original problem is NP hard, we

relax the problem and develop an alternating minimization based iterative algorithm

that generates a pmf for the partial updates, and the corresponding age-optimal

real-valued codeword length for each update. We observe that there is a trade-off

between the attained average age and the mutual information between the original

and partial updates.

In Chapter 6, we consider the binary freshness metric in a cache updating

system with a source, a cache and a user. The source keeps the freshest version of

n files which are updated with known rates. The cache downloads and keeps the

freshest version of the files from the source. The user gets updates from the cache.

When the user gets an update, it either gets a fresh update from the cache or the file

at the cache becomes outdated by a file update at the source in which case the user

gets an outdated update. We find an analytical expression for the average binary

freshness of the files at the user in terms of the file update rates at the source, at the

cache, and at the user. Next, we generalize our setting to the case where there are

multiple caches in between the source and the user, and find the average freshness

at the user. We provide an alternating maximization based method to find the

update rates for the cache(s), and for the user to maximize the freshness of the files

at the user. We observe that for a given set of update rates for the user (resp. for

7

the cache), the optimal rate allocation policy for the cache (resp. for the user) is

a threshold policy, where the optimal update rates for rapidly changing files at the

source may be equal to zero. In addition, in Chapter 6, we consider the case where

multiple users are connected to a single cache and find update rates for the cache

and the users to maximize the total freshness over all users.

In Chapter 7, different from the previous chapter, we study a cache updating

system with a source, a cache with limited storage capacity and a user. Here, the

cache gets fresh files from the source, but it can only store the latest downloaded

versions of a subset of the files. The user gets the files either from the cache or

from the source. If the user gets the files from the cache, the received files might be

outdated depending on the file status at the source. If the user gets the files directly

from the source, then the received files are always fresh, but the extra transmission

times between the source and the user decreases the freshness at the user. Thus,

in this chapter, we study the trade-off between storing the files at the cache and

directly obtaining the files from the source at the expense of additional transmission

times. We find analytical expressions for the average freshness of the files at the user

for both of these scenarios. Then, we find the optimal caching status for each file

(i.e., whether to store the file at the cache or not) and the corresponding file update

rates at the cache to maximize the overall freshness at the user. We observe that

when the total update rate of the cache is high, caching files improves the freshness

at the user. However, when the total update rate of the cache is low, the optimal

policy for the user is to obtain the frequently changing files and the files that have

relatively small transmission times directly from the source.

8

In Chapter 8, we consider the binary freshness metric for gossip networks that

consist of a single source and end-nodes, where the nodes are allowed to share their

stored versions of the source information with the other nodes. First, we develop

recursive equations that characterize the binary freshness in arbitrarily connected

gossip networks by using a stochastic hybrid systems (SHS) approach. Next, we

study the binary freshness in structured gossip networks and show that when the

number of nodes becomes large, the binary freshness of a node decreases down to 0

as n−1 for the disconnected network topology (where the nodes are only connected

to the source) and for the ring network topology (where the nodes are connected to

two neighbor nodes) but with a strictly higher freshness for the ring network. The

rate of decrease to 0 is slower for the fully connected networks (where each node

is connected to every other node) when the update rates of the source as well as

the end-nodes are sufficiently high. In addition, we study the binary freshness for

clustered gossip networks, where multiple clusters of structured gossip networks are

connected to the source through designated access nodes, i.e., cluster heads. We

characterize the binary freshness in such networks and numerically observe how the

optimal cluster sizes change with respect to the update rates of the source, cluster

heads, and end-nodes.

In Chapter 9, we study the problem of real-time timely tracking of multiple

counting processes via a resource-constrained Poisson updater, i.e., inter-sampling

times are exponentially distributed. As a particular case, we consider Google

Scholar, which wishes to update the citation records of a group of researchers, who

have different mean citation rates (and optionally, different importance coefficients),

9

in such a way to keep the overall citation index as up to date as possible. The up-

dater is subject to a total update rate constraint that it needs to distribute among

individual researchers. For this problem, we use a metric similar to the age of infor-

mation: the long-term average difference between the actual citation numbers and

the citation numbers according to the latest updates. We show that, in order to

minimize this difference metric, the updater should allocate its total update capacity

to researchers proportional to the square roots of their mean citation rates. That is,

more prolific researchers should be updated more often, but there are diminishing

returns due to the concavity of the square root function.

In Chapter 10, we consider the problem of real-time timely tracking of multiple

independent binary random processes again via a Poisson updater with the limited

total update rate constraint. As a particular example, we study the problem of

timely tracking of infection status (e.g., covid-19) of individuals in a population.

Here, a health care provider wants to detect infected people as well as people who

recovered from the disease as quickly as possible. In order to measure the timeliness

of the tracking process, we use the long-term average difference between the actual

infection status of the people and their real-time estimate by the health care provider

based on the most recent test results. We first find an analytical expression for this

average difference for given test rates, and given infection and recovery rates of

people. Then, we propose an alternating minimization based algorithm to minimize

this average difference. We observe that if the total test rate is limited, instead of

testing all members of the population equally, only a portion of the population is

tested based on their infection and recovery rates. We also observe that increasing

10

the total test rate helps track the infection status better. In addition, an increased

population size increases diversity of people with different infection and recovery

rates, which may be exploited to spend testing capacity more efficiently, thereby

improving the system performance. Further, here, depending on the health care

provider’s preferences, test rate allocation can be altered to detect either the infected

people or the recovered people more quickly.

In Chapter 11, we study two closely related problems: anomaly detection in

sensor networks and testing for infections in human populations. In both problems,

we have many nodes (sensors, humans), and each node exhibits an event of inter-

est (anomaly, infection) with a certain probability. We want to keep track of the

anomaly/infection status of all nodes at a central location. We develop a group

updating scheme, akin to group testing, which updates a central location about the

status of each member of the population by appropriately grouping their individual

status. Unlike group testing, which uses the expected number of tests as a metric,

in group updating, we use the expected age of information at the central location as

a metric. We determine the optimal group size to minimize the age of information.

We show that, when the probability of anomaly/infection is small, the proposed

group updating policy yields smaller age compared to a sequential updating policy.

In Chapter 12, we present conclusions of this dissertation.

11

CHAPTER 2

Age of Information with Soft Updates

2.1 Introduction

In this chapter, we consider a typical information update system as shown in Fig. 2.1.

Starting from time zero, information at the receiver gets stale over time, i.e., the

age increases linearly. A time comes when the information source decides to update

the information receiver. In the existing literature, this is a hard update, which

is contained in an information packet. This hard update takes effect and reduces

the age instantaneously to the age of the packet itself at the time of its arrival

at the receiver. This is denoted as instantaneous decay in Fig. 2.1. The time for

the update to take effect (denoted by c1 for the first update) is either random

[2, 4, 8, 9, 17, 31, 61, 93, 135–139], or fixed and deterministic [50, 51], or zero [37–48].

Essentially, this is the time for the update packet to travel from the transmitter

to the receiver, and when it arrives, it drops the age instantaneously. This travel

time is random if the update goes through a queue, it is fixed if the update goes

through a wireless channel with a non-negligible distance between the transmitter

and the receiver, and it is zero if the update goes through a channel with a negligible

12

s1 c1 s2 c2

a(t)

t

s3

decide to
update

instantaneous
decay

exponential
decay

linear
decay

Figure 2.1: Update models: Hard updates (instantaneous decay) and soft updates
(exponential and linear decay).

distance. In contrast, in this work, the soft update begins reducing the age at the

time of information source making a decision to update. However, the drop in age

is not instantaneous, rather it is gradual over time.

We consider two models for the soft update process: In the first model, the

rate of decrease in age is proportional to the current age; see (2.1). This is motivated

by the fact that new information is most valuable when the current information is

most aged, i.e., when the new information is most innovative. This model leads to

an exponential decay in the age (denoted by exponential decay in Fig. 2.1). Note also

that, the exponential decay in the age is consistent with information dissemination

in human interactions as well as in social media feeds, where the most important

information is conveyed/displayed first, reducing the age faster initially, and less

important information is conveyed/displayed next, reducing the age slower subse-

quently. In the second model, the rate of decrease in age is not a function of the

13

current age, rather it is constant; see (2.2). In this case, the age decreases linearly

(denoted by linear decay in Fig. 2.1).

In this chapter, we determine the optimum updating schemes for soft update

systems. We are given the total system duration over which the average age is

calculated T , the number of update periods (i.e., the number of times information

provider and information receiver are allowed to meet) N , and the total allowed

update duration Tc. We solve for the optimum start times of the soft updates and

their optimum durations in order to minimize the overall age.

We show that for both exponentially and linearly decaying age models, the

optimal policy is to have exactly N soft updates, completely utilize the given total

update duration Tc, and divide the total update duration Tc equally among N

updates. We note that when Tc is large compared to T , we may have multiple

optimal solutions. In order to generalize the solution for both models and for any

Tc, we choose the optimal policy which allocates equal amount of time for each soft

update. For the exponentially decaying age model, if Tc is small compared to T ,

the optimal policy schedules the updates regularly; if Tc is large enough, the system

starts updating at time zero, proceeds to update continually until Tc is completely

utilized, and lets age grow then on until the end. For the linearly decaying age model,

if Tc is small compared to T, the optimal policy schedules the updates regularly and

the age after each soft update goes down exactly to zero; if Tc is large enough, age

not only goes down to zero after each soft update, but also stays at zero for some

time after each soft update. In addition, for the exponentially decaying age model

with small Tc and for the linearly decaying age model for all Tc, we show that the

14

resulting age decreases with N .

2.2 System Model and the Problem

Let a(t) be the instantaneous age at time t. Without loss of generality, let a(0) = 0.

When there is no update, the age increases linearly with time. We consider two

different soft update models. In the first model, the rate of decrease in age is

proportional to the current age:

da(t)

dt
= −αa(t) (2.1)

where α is a fixed constant. In this model, the age decreases exponentially during a

soft update period. In the second model, the rate of decrease in age does not depend

on the current age, instead it remains constant:

da(t)

dt
= −α (2.2)

where α is a fixed constant. In this model, the age decreases linearly during a soft

update period.

Let us denote the beginning of the ith soft update period by ti and the end of

the ith soft update period by t′i. Then, the age evolves as:

a(t) ,


a(t′i−1) + t− t′i−1, t′i−1 < t < ti

f(a(ti), α, t), ti < t < t′i

(2.3)

15

where f(a(ti), α, t) = a(ti)e
−α(t−ti) for the exponentially decaying age model, and

f(a(ti), α, t) = (a(ti)−α(t−ti))+ for the linearly decaying age model, where (x)+ = x

for x > 0 and (x)+ = 0 for x ≤ 0. For both models, if the current age is larger than

zero, age decreases during an update period. For the linearly decaying age model,

depending on the update duration and the age at the beginning of the update,

the age can go down to zero. Here, we consider the most general case where the

age can stay at zero if the duration of the update period is large enough.1 For

the exponentially decaying age model, age stays at zero only if we have an update

starting at time t = 0. Otherwise, age never goes down to zero in a finite update

duration.

Our objective is to minimize the average age of information (AoI) of the system

subject to a total of N soft update periods, a total update duration of Tc, over a

total session duration of T . We formulate the problem as:

min
{ti,t′i}

1

T

∫ T

0

a(t)dt

s.t.
N∑
i=1

(t′i − ti) ≤ Tc (2.4)

We define the duration of the ith update period as ci = t′i−ti, and the ith aging

period as si = ti − t′i−1. For convention, we let t′0 = 0, and tN+1 = T . Additionally,

we denote the age at the beginning of the ith soft update period by xi, and the age

at the end of the ith soft update period by yi. Therefore, we obtain three equivalent

1In [62], for the linearly decaying age model, we consider the case where we terminate an update
process if the current age goes down to zero. In this chapter, we assume that an update process
can continue after the current age becomes zero. During this period, since the update process is
on, the system does not age, i.e., the age stays at zero.

16

s1 c1 s2 c2 s3

a(t)

t

s1

s1e
−αc1

s1e
−αc1 + s2

x1

y2

y1

x2

x3

t0
0

t1 t0
1

t2 t0
2

t3 = T

Figure 2.2: A general example evolution of age in the case of exponentially decaying
age.

sets of variables to describe the system: {ti, t′i}Ni=1, {si, ci}Ni=1, and {xi, yi}Ni=1. We

retain these three sets of equivalent variables throughout this chapter; we find it

more convenient to express AT in terms of xi and yi for the exponentially decreasing

age model, and in terms of si and ci for the linearly decreasing age model. The

relationship between (ti, t
′
i), (si, ci), and (xi, yi) is shown in Fig. 2.2.

Let AT ,
∫ T

0
a(t)dt be the total age. Note that minimizing AT

T
is equivalent

to minimizing AT since T is a known constant. In the following sections, we provide

the optimal policies that minimize the age for the cases of exponentially and linearly

decaying age models.

2.3 Exponentially Decaying Age Model

In the case of exponentially decaying age, the age function evolves as in Fig. 2.2.

Age, in this case, is given in terms of xi and yi as:

AT =
N∑
i=1

x2
i

2
− y2

i

2
+

1

α
(xi − yi) +

x2
N+1

2
(2.5)

17

We minimize AT in (2.5) by choosing xi and yi, equivalently, by choosing ti and t′i,

and si and ci, for all i. In the following lemma, we show that the total update time,

Tc, should be fully utilized.

Lemma 2.1 For the exponentially decaying age model, in the optimal policy, we

must have
∑N

i=1 ci = Tc.

Proof: We prove this by contradiction. Assume that there exists an optimal policy

such that
∑N

i=1 ci < Tc. Then, we can simply obtain another feasible policy by

increasing one of the ci and decreasing one of the sj. Note that this new policy

yields a smaller age. Thus, we reached a contradiction, and
∑N

i=1 ci = Tc must be

satisfied. �

Thus, from Lemma 2.1, the total update time should be fully used. Then, we

need to determine when to start a soft update and the duration of each soft update.

In the case of Tc = T , the optimal policy is to start updating at t = 0 and continue

to update until t = T . The optimal age in this case is AT = 0. Thus, for the rest

of this section, we consider the case where Tc < T . We formulate the optimization

problem as:

min
{xi,yi}

N∑
i=1

x2
i

2
− y2

i

2
+

1

α
(xi − yi) +

x2
N+1

2

s.t.
N∑
i=1

1

α
log

(
xi
yi

)
≤ Tc

N∑
i=1

(
xi − yi +

1

α
log

(
xi
yi

))
+ xN+1 = T

yi ≤ xi, yi ≤ xi+1, xi ≥ 0, yi ≥ 0 (2.6)

18

where the cost function is the age expression in (2.5); the first constraint is the

constraint on the total soft update duration which is obtained by noting that the

ith update duration ci is expressed in terms of xi and yi as yi = xie
−αci therefore,

ci = 1
α

log
(
xi
yi

)
; the second constraint is the total session duration constraint which

is the sum of aging durations si and update durations ci where si is given in terms

of xi and yi as si = xi − yi−1 with the convention of y0 = 0; and the third (last)

set of constraints state that age in the update period decreases (yi ≤ xi), age in

the aging period increases (yi ≤ xi+1), and age at all times is non-negative (xi ≥ 0,

yi ≥ 0).

We write the Lagrangian for the problem in (2.6) as:

L =
N∑
i=1

x2
i

2
− y2

i

2
+

1

α
(xi − yi) +

x2
N+1

2
+ λ

(
N∑
i=1

1

α
log

(
xi
yi

)
− Tc

)

+ β

(
T −

(
N∑
i=1

(
xi − yi +

1

α
log

(
xi
yi

))
+ xN+1

))

+
N∑
i=1

γi(yi − xi) +
N∑
i=1

θi(yi − xi+1)−
N+1∑
i=1

µixi −
N∑
i=1

νiyi (2.7)

where λ ≥ 0, γi ≥ 0, θi ≥ 0, µi ≥ 0, νi ≥ 0, and β can be anything. Note that the

problem given in (2.6) is not convex. Thus, KKT conditions are necessary but not

sufficient for the optimal solution. The KKT conditions are:

∂L
∂x1

=x1 +
1

α
+

λ

αx1

− β
(

1 +
1

αx1

)
− γ1 − µ1 = 0 (2.8)

∂L
∂xi

=xi +
1

α
+

λ

αxi
− β

(
1 +

1

αxi

)
− γi − θi−1 − µi = 0, i = 2, . . . , N (2.9)

∂L
∂xN+1

=xN+1 − β − θN − µN+1 = 0 (2.10)

19

∂L
∂yi

=− yi −
1

α
− λ

αyi
+ β

(
1 +

1

αyi

)
+ γi + θi − νi = 0, i = 1, . . . , N (2.11)

The complementary slackness conditions are:

λ

(
N∑
i=1

1

α
log

(
xi
yi

)
− Tc

)
= 0 (2.12)

β

(
T −

(
N∑
i=1

(
xi − yi +

1

α
log

(
xi
yi

))
+ xN+1

))
= 0 (2.13)

γi(yi − xi) = 0 (2.14)

θi(yi − xi+1) = 0 (2.15)

µixi = 0 (2.16)

νiyi = 0 (2.17)

In the following, we consider two cases separately: x1 > 0 and x1 = 0 in the optimal

solution. First, we investigate the case when x1 > 0.

2.3.1 The Optimal Solution Structure When x1 > 0

Since x1 > 0, from the complementary slackness conditions, we have µ1 = 0. Since

y1 = x1e
−αc1 , we have y1 > 0. Due to x2 ≥ y1, we have x2 > 0. Continuing similarly,

we have yi > 0 and xi > 0 for all i. Thus, µi = 0 and νi = 0 for all i. In addition,

due to Lemma 2.1, there exists at least one i such that xi > yi. For these cases,

γi = 0. Since T > Tc, we have at least one j such that xj+1 > yj and corresponding

θj = 0. Then, we have four possible cases. Next, we investigate them separately.

20

2.3.1.1 Case A: xi > yi and xi+1 > yi for all i

In this case, we have N strict updating and correspondingly N + 1 strict aging

periods. This case is shown in Fig. 2.3(a). Since xi > yi and xi+1 > yi for all i, from

the complementary slackness conditions, we have γi = 0 and θi = 0 for all i. Thus,

(2.8)-(2.11) become:

∂L
∂xi

=xi +
1

α
+

λ

αxi
− β

(
1 +

1

αxi

)
= 0, i = 1, . . . , N (2.18)

∂L
∂xN+1

=xN+1 − β = 0 (2.19)

∂L
∂yi

=− yi −
1

α
− λ

αyi
+ β

(
1 +

1

αyi

)
= 0, i = 1, . . . , N (2.20)

Note that the right hand sides of ∂L
∂xi

and ∂L
∂yi

in (2.18) and (2.20) are the same second

degree equalities. Since we consider the case where xi > yi for all i, the larger root

of this equality gives xi and the smaller root gives yi. Rewriting (2.18) in terms of

a single variable z, we have,

z +
1

α
+

λ

αz
− β

(
1 +

1

αz

)
= 0 (2.21)

which is equivalent to,

αz2 + z(1− βα) + (λ− β) = 0 (2.22)

21

The roots of this equation are,

z1 =
−(1− βα) +

√
(1− αβ)2 − 4α(λ− β)

2α
(2.23)

z2 =
−(1− βα)−

√
(1− αβ)2 − 4α(λ− β)

2α
(2.24)

and we have xi = z1 and yi = z2, for all i. Note that in order to have two positive

roots, we need 1− βα < 0. Thus, we have:

xN+1 = β >
1

α
(2.25)

where we also used (2.19). Since ci = 1
α

log
(
xi
yi

)
and

∑N
i=1 ci = Tc and since all xi

are equal among themselves and all yi are equal among themselves, we have all ci

equal and ci = Tc
N

.

Next, we note from (2.22) that,

xN+1 = xi + yi +
1

α
(2.26)

Further, by using (2.12), (2.13) and Lemma 2.1, we obtain,

N(xi − yi) + xN+1 = T − Tc (2.27)

Substituting (2.26) into (2.27), and noting that 1
α

log
(
xi
yi

)
= ci = Tc

N
, we solve for

22

x1

y1

x2 x3

x5

y2 y3

x(t)

t

y4

x4

(a)

x1

y1

x2 x4

x5

y2 y4

x3
y3

x(t)

t

(b)

x1

y1

x2 x4

x5

y2
y4

x3

y3

x(t)

t

(c)

x1

y1
x2

x4

x5

y2 y4

x3
y3

x(t)

t

(d)

Figure 2.3: Depiction of the cases for the exponentially decaying age model with
x1 > 0 (a) where xi > yi and xj+1 > yj for all i and j, (b) where xi = yi for some i,
(c) where xj+1 = yj for some j, (d) where xi = yi and xj+1 = yj for some i and j.

xi as,

xi =
T − Tc − 1

α

(N + 1)− (N − 1)e−
αTc
N

, i = 1, . . . , N (2.28)

and

xN+1 =
(T − Tc)

(
1 + e−

αTc
N

)
+ N

α

(N + 1)− (N − 1)e−
αTc
N

(2.29)

With this solution, the minimum age, AT , is:

AT =
1

2

(
T − Tc −

1

α

)2
1 + e−

αTc
N

(N + 1)− (N − 1)e−
αTc
N

+
1

α
(T − Tc)−

1

2α2
(2.30)

23

0 2 4 6 8 10 12 14 16 18 20

3.5

3.52

3.54

3.56

3.58

3.6

3.62

3.64

Figure 2.4: Minimum age as a function of N in the exponentially decaying age case
for T = 5, Tc = 2, and α = 1.

We note that AT is monotonically decreasing with respect to N in Case A. To see

this, we note that the derivative of AT in (2.30) with respect to N is equal to,

∂AT
∂N

= C
2
(
αTc
N

)
e−

αTc
N + e−

2αTc
N − 1(

(N + 1)− (N − 1)e−
αTc
N

)2 (2.31)

where C = 1
2

(
T − Tc − 1

α

)2
. Note that C and the denominator in (2.31) are always

positive.

Next, letting a = αTc
N

, the numerator of (2.31) becomes 2ae−a
(

1− sinh(a)
a

)
.

Since sinh(a) ≥ a for all a ≥ 0, and therefore, sinh(a)
a
≥ 1 for all a ≥ 0, this implies

that the numerator of (2.31) is always negative, implying that dAT
dN
≤ 0. As an aside,

we plot AT versus N for T = 5, Tc = 2, and α = 1 in Fig. 2.4. Note that AT is a

24

decreasing function with respect to N with a limit:

lim
N→∞

AT =
1

2

(
T − Tc −

1

α

)2
2

2 + αTc
+

1

α
(T − Tc)−

1

2α2
(2.32)

2.3.1.2 Case B: xi = yi for some i and xj+1 > yj for all j

This case is shown in Fig. 2.3(b). This is equivalent to Case A with N ′ = N − n,

where n is the total number of update processes with xi = yi. We know from Case

A that AT decreases with N . Thus, Case B cannot be optimal.

2.3.1.3 Case C: xi > yi for all i and xj+1 = yj for some j

This case is shown in Fig. 2.3(c). Similar to Case B, this case is equivalent to Case

A with N ′ = N−m, where m is the total number of aging processes with xj+1 = yj.

Thus, Case C cannot be optimal.

2.3.1.4 Case D: xi = yi for some i and xj+1 = yj for some j

This case is shown in Fig. 2.3(d). This is equivalent to Case A with N ′ = N − k,

where k is the total number of update and aging processes with xi = yi and xj+1 = yj

subtracting i = j cases. Thus, Case D cannot be optimal.

Thus, we see that if we have x1 > 0, the optimal solution only comes from

Case A. In addition, from (2.25) and (2.27), in order to have x1 > 0, we need:

1

α
< xN+1 < T − Tc (2.33)

25

Therefore, in the optimal solution, if we have x1 > 0, then T > Tc + 1
α

should be

satisfied.

As a result, if x1 > 0 in the optimal solution, this should happen for T and

Tc that satisfy T > Tc + 1
α

, i.e., Tc is relatively small in relation to T , and in this

case, the optimal solution is to update N times with equal update durations, i.e.,

ci = Tc
N

, for all i as shown in Fig. 2.3(a).

Next, we study the optimal solution structure when x1 = 0.

2.3.2 The Optimal Solution Structure When x1 = 0

So far, we studied the optimal solution structure when x1 > 0. We see that this case

requires T > Tc + 1
α

. Thus, when T ≤ Tc + 1
α

, we have x1 = 0. Since y1 = x1e
−αc1 ,

we have y1 = 0. In the following, we show that if T ≤ Tc + 1
α

, then the optimal

policy is to keep the age equal to zero starting from t = 0 till t = Tc, and let the

age grow from t = Tc till t = T .

We see that if T ≤ Tc + 1
α

, then x1 = y1 = 0. Also, 0 ≤ c1 ≤ Tc. If c1 = Tc,

then the optimal policy is exactly as descibed above, i.e., start the update policy

at t = 0 and continue updating until t = c1 = Tc, and stop updating then, i.e.,

let the age grow until t = T . If c1 < Tc, we need to first show that x2 = 0, and

therefore, y2 = 0. We prove this by contradiction. Assume that there exists an

optimal policy such that T ≤ Tc + 1
α

, x1 = y1 = 0, and x2 > 0. Since the age stays

at zero during c1, we can formulate a new age minimization problem starting from

t = c1. For the new problem, T ′ = T − c1, T ′c = Tc − c1, and N ′ = N − 1. Since

26

T ′ = T − c1 ≤ Tc − c1 + 1
α

= T ′c + 1
α

, we have T ′ ≤ T ′c + 1
α

. Thus, for the new

problem, we reach a contradiction and we must have x2 = 0 as well as y2 = 0. At

this point, we have 0 ≤ c2 ≤ Tc − c1. If c2 = Tc − c1, we have the desired policy

described above. If not, we repeat the same steps to argue that x3 = 0, and thus,

y3 = 0. Then, we select c3 ∈ [0, Tc − c1 − c2]. Thus, for the remaining terms, we

can either argue that ci = Tc −
∑i−1

j=1 cj or show that xi+1 = yi+1 = 0 and select

ci+1 accordingly. At the end, the optimal policy is to update starting from t = 0,

proceed to update continually until t = Tc, and then let the age grow until T .

Here, we may view the optimal solution in multiple ways: We may view it as a

single update that lasts c1 = Tc second, or we may view it N updates that altogether

last c1 + · · ·+ cN = Tc seconds, or N ′ updates where 1 < N ′ < N with appropriate

selection of corresponding ci to sum up to Tc. Even though we have such multiple

optimal solutions, we choose the one with N updates with equal update durations

(to be consistent with the solution in the previous sub-section), i.e., ci = Tc
N

, for all

i. Thus, we have xi = yi = 0 for i = 1, . . . , N and xN+1 = T − Tc.

With this solution, the minimum age, AT , is:

AT =
(T − Tc)2

2
(2.34)

We note that AT in (2.34) does not decrease with N unlike AT in (2.30).

Finally, we summarize the optimal policy for the exponentially decaying age

case combining the results in Sub-sections 2.3.1 and 2.3.2. If Tc < T − 1
α

, i.e., the

allowed update duration is relatively small with respect to the total session duration,

27

x1

y1

x2 x3

x4

y2 y3

x(t)

t

(a)

x(t)

t

x4

(b)

Figure 2.5: Optimal solution for the exponentially decaying age case: (a) When
Tc < T − 1

α
(relatively small update duration). (b) When Tc > T − 1

α
(relatively

large update duration).

then the optimal policy is to update N times with equal update durations ci = Tc
N
.

Also, in this case, all xi for i = 1, . . . , N should be equal as given in (2.28), and all yi

for i = 1, . . . , N should be equal as well. An example age evolution curve for this case

for N = 3 is shown in Fig. 2.5(a). If Tc > T − 1
α

, i.e., the allowed update duration

is relatively large compared to the total session duration, then the optimal policy is

to update starting from t = 0 till t = Tc, and then let the age grow afterwards until

t = T . There are multiple optimal assignments of total update duration Tc to ci in

this case; we choose ci = Tc
N

again for symmetry with the previous case. Also, in this

case, all xi for i = 1, . . . , N are equal and equal to zero, and all yi for i = 1, . . . , N

are equal and equal to zero as well. An example age evolution curve for this case is

shown in Fig. 2.5(b).

28

s1 c1 s2 c2 s3

a(t)

t

s1

(s1 − αc1)
+

(s1 − αc1)
+ + s2

Figure 2.6: A general example evolution of age in the case of linearly decaying age.

2.4 Linearly Decaying Age Model

In this section, we consider the linearly decaying age model where the aging process

can be slower or faster than the updating process. We consider the most general

case by allowing the slope in the soft update policy, α, to be arbitrary. In additional,

when the duration of soft update process is sufficiently large, the instantaneous age

can be reduced to zero. In this case, we can further continue the soft update process,

and as a result, keep the age at the level of zero, i.e., not allow it to grow. A general

example evolution of age for the linearly decaying age model is shown in Fig. 2.6.

Age, in this case, is given as:

AT =
α + 1

2α

N∑
i=1

(si +
i−1∑
j=0

(sj − αcj)+

)2

−

(
i∑

j=1

(sj − αcj)+

)2


+
(sN+1 +

∑N
j=1 (sj − αcj)+)2

2
(2.35)

where c0 = 0, s0 = 0, and sN+1 = T −
∑N

i=1(si + ci).

Next, we identify some important properties of the optimal solution. First, the

29

following lemma states that, in the optimal solution, total update time, Tc, should

be completely utilized.

Lemma 2.2 For the linearly decaying age model, in the optimal policy, we must

have
∑N

i=1 ci = Tc.

Proof: We prove this by contradiction. Assume that in the optimal policy, we have∑N
i=1 ci < Tc. First, let us choose the smallest index, j, such that a(t′j) > 0. We can

decrease the age further by increasing cj. This policy is still feasible since the total

update time constraint is not tight. Thus, we continue to increase cj until either

a(t′j) = 0 or
∑N

i=1 ci = Tc. If a(t′j) = 0 and
∑N

i=1 ci < Tc, we move to the second

smallest index such that the age at the end of the update period is not zero and

apply the same procedure. We apply this procedure until a(t′i) = 0 for all i. At the

end, if we obtain
∑N

i=1 ci < Tc and a(t′i) = 0 for all i, we can further decrease the

age by increasing the duration of any update process by the amount Tc −
∑N

i=1 ci.

Since a(t′i) = 0 for all i, the age will stay at zero. Thus, we obtain a new policy

where
∑N

i=1 ci = Tc. This new policy has smaller age at each step, implying we have

reached a contradiction. Thus, in the optimal policy,
∑N

i=1 ci = Tc. �

From Lemma 2.2, we see that the total update time, Tc, should be fully used.

Thus, when Tc = T , the optimal solution is to update the system starting from t = 0

to t = T . The optimal age in this case is AT = 0. When Tc < T , we have time

intervals where the system ages. If we decrease Tc, the total time where the age

stays at zero decreases since there will be no update for T − Tc and some portion of

an update process can be used to decrease the age to zero. Let us first consider the

30

case where
∑k

i=1 (si − αci) ≥ 0, for all k = 1, . . . , N . In other words, we consider

the case where each soft update process ends before or as soon as instantaneous

age reaches zero. After providing a solution for this specific case, we generalize the

solution to the most general case where the age can stay at zero. Thus, we formulate

the problem with this condition enforced, as follows:

min
{si,ci}

AT

s.t.
N+1∑
i=1

si +
N∑
i=1

ci = T

N∑
i=1

ci ≤ Tc

k∑
i=1

si − αci ≥ 0, ∀k (2.36)

where AT in the cost function is the age expression in (2.35); the first constraint is

the total session duration constraint which is the sum of aging and update durations;

the second constraint is the constraint on the total soft update duration; and the

third (last) constraint enforces that each update duration ends before or as soon as

the age goes down to zero as discussed above.

This is not a convex optimization problem as the objective function is not

convex. Our approach will be to lower bound the objective function, minimize this

lower bound, and then show that this minimized lower bound can be achieved with

a certain feasible selection of the variables. First, the following lemma states that,

in the optimal solution, the age should be equal to zero at the end of each and every

soft update period, i.e., the update period should never end before the age goes

31

down exactly to zero.

Lemma 2.3 For the linearly decaying age model, for the problem in (2.36) which

terminates updates if the age reaches zero, in the optimal policy, the age should be

exactly equal to zero at the end of each soft update period i.e., a(t′i) = 0 for all i. In

addition, ci = Tc
N

, si = αTc
N

for all i = 1, . . . , N , and sN+1 = T − (α + 1)Tc.

Proof: We first note that AT in (2.35) can equivalently be written as:

AT =
α + 1

2

(
α

N∑
i=1

c2
i + 2

N∑
i=1

(si − αci)

(
N∑
j=i

cj

))
+

(T − (α + 1)Tc)
2

2
(2.37)

We next note that, even though we do not know the sign of each (si − αci) in

(2.37) at this point, we know that the entirety of the middle term in (2.37) is always

non-negative since:

N∑
i=1

(si − αci)

(
N∑
j=i

cj

)
=

N∑
i=1

(
i∑

j=1

sj − αcj

)
ci (2.38)

where the right hand side is non-negative due to the constraints in (2.36). Thus,

we lower bound (2.37) by setting the middle term as zero by choosing si = αci

for all i which also implies that the age is equal to zero at the end of each soft

update period. Then, minimizing the lower bound becomes equivalent to minimizing∑N
n=1 c

2
i subject to

∑N
i=1 ci = Tc, whose solution is ci = Tc

N
. Then, we can choose

si = αci and ci = Tc
N

for all i = 1, . . . , N , and sN+1 = T − (α + 1)Tc. �

Next, we extend our solution to include the cases where the age can stay as

zero. Towards that end, in the following lemma, we prove that the age cannot stay

32

at zero for some update process(es) unless age becomes zero at the end of each and

every update.

Lemma 2.4 For the linearly decaying age model, in the optimal policy, if the age

stays at zero for some update process(es), then the age should be equal to zero after

each update period.

Proof: We prove this by contradiction. Assume that we have an optimal update

policy where the age stays at zero for a total of T0 amount of time and yet there

exists an update period i where si − αci > 0, i.e., the age does not go down to

zero after the ith update period. Then, subtract T0 from the total update duration

Tc, and consider the age minimization problem with a total update duration of

T ′c = Tc − T0. We know from Lemma 2.3 that if the age does not decrease down to

zero after each update, the update policy cannot be optimal. Therefore, there exists

a policy which yields a smaller age than the assumed optimal update policy. Thus,

we have reached a contradiction and the original update policy cannot be optimal.

Hence, if the age stays at zero for some update process(es), then the age should be

equal to zero after each update. �

Next, we find the optimal solution structure for the case where the age stays

at zero for some update process(es).

Lemma 2.5 For the linearly decaying age model, in the optimal policy, if the age

stays at zero for some update process(es), then the optimal policy is to choose ci = Tc
N

and si = (T−Tc)α
α(N+1)+1

for i = 1, . . . , N , and sN+1 = (T−Tc)(α+1)
α(N+1)+1

. In addition, we must

have Tc ≥ NT
(α+1)(N+1)

.

33

Proof: Since we consider the case where the age stays at zero, age at the end of

each update process should be equal to zero due to Lemma 2.4. Thus, AT in (2.35)

becomes:

AT =
α + 1

2α

N∑
i=1

s2
i +

s2
N+1

2
(2.39)

For this case, we need to solve the following problem:

min
{si,ci}

α + 1

2α

N∑
i=1

s2
i +

s2
N+1

2

s.t.
N+1∑
i=1

si = T − Tc

si − αci ≤ 0, ∀i (2.40)

The last constraint in (2.40) makes sure that age goes down to zero after each soft

update period. We solve this problem using a Lagrangian:

L =
α + 1

2α

N∑
i=1

s2
i +

s2
N+1

2
− λ

(
N+1∑
i=1

si − T + Tc

)
(2.41)

Taking the derivative with respect to si and equating to zero, we obtain si = αλ
α+1

for i = 1, . . . , N , and sN+1 = λ. Since
∑N+1

i=1 si = T − Tc, the optimal solution is

si = (T−Tc)α
α(N+1)+1

for i = 1, . . . , N , and sN+1 = (T−Tc)(α+1)
α(N+1)+1

. Due to the last constraint,

we must have si = (T−Tc)α
α(N+1)+1

≤ αci. Even though these constraints are satisfied by

multiple sets of ci’s, we choose the one with ci = Tc
N

. Finally, we need Tc ≥ NT
(α+1)(N+1)

in order to have feasible selections of si ≤ αci for all i. �

34

c1 s2 c2 s3

a(t)

t

s1

s1

s3

(a)

c1 s2 c2 s3

a(t)

t

s1

s3

s1

(b)

Figure 2.7: Optimal policy structure for the linearly decaying age case: (a) When
Tc <

NT
(α+1)(N+1)

and α = 1. (b) When Tc ≥ NT
(α+1)(N+1)

and α = 1.

Finally, we summarize the optimal policy for the linearly decaying age case. If

Tc <
NT

(α+1)(N+1)
, i.e., the allowed update duration is relatively small with respect to

the total session duration, we are in Lemma 2.3 and the optimal policy is to choose

si = αci and ci = Tc
N

for i = 1, . . . , N , and sN+1 = T − (α + 1)Tc. An example age

evolution curve for this case for N = 2 is shown in Fig. 2.7(a). If Tc ≥ NT
(α+1)(N+1)

,

i.e., the allowed update duration is relatively large compared to the total session

duration, we are in Lemma 2.5 and the optimal policy is to choose si = (T−Tc)α
α(N+1)+1

,

ci = Tc
N

for i = 1, . . . , N , and sN+1 = (T−Tc)(α+1)
α(N+1)+1

.2 An example age evolution curve

for this case for N = 2 is shown in Fig. 2.7(b). The optimal policy is to update

exactly N times in both cases with the age going down exactly to zero after each

update. In addition, if the total update duration Tc is large compared to the total

time T then the age stays at zero for some time for all update periods. Finally,

we note that the case of age not going down to zero after the second update in the

example general age evolution curve shown in Fig. 2.6 can never happen.

2In [62, Section IV.B], the same result for α = 1 should hold. Therefore, when Tc <
NT

2N+2 ,

the solution remains the same as in [62, Lemma 3]. When Tc ≥ NT
2N+2 , the optimal solution is to

choose ci = Tc
N and si = T−Tc

N+2 for i = 1, . . . , N , and sN+1 = 2(T−Tc)
N+2 .

35

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

Figure 2.8: Minimum age as a function of N in the linearly decaying age case for
T = 5, Tc = 2 α = 1.

Next, we investigate how the final minimum age expression varies as a function

of the number of soft update opportunities N . If Tc <
NT

(α+1)(N+1)
, the minimum age

is:

AT =
T 2
c

N

α(α + 1)

2
+

(T − (α + 1)Tc)
2

2
(2.42)

and if Tc ≥ NT
(α+1)(N+1)

, the minimum age is:

AT =
(α + 1)(T − Tc)2

2(α(N + 1) + 1)
(2.43)

For both cases, we observe that AT is a decreasing function of N . As an example,

the minimum age as a function of N is plotted in Fig. 2.8 for T = 5, Tc = 2, α = 1.

Finally, we note that, when α→∞, Tc is only used to keep the age a(t) = 0,

36

s1 s2 s3 sN+1

a(t)

t

T−Tc

N+1

Figure 2.9: Evolution of the optimal age when α→∞.

and the optimal age can be calculated as:

lim
α→∞

AT =
1

2

(
T − Tc
N + 1

)2

(N + 1) (2.44)

In this case, the optimal age is as shown in Fig. 2.9, which corresponds to the

optimal age with instantaneous drops as in the existing literature except for the

time intervals where the age stays at zero.3

2.5 Numerical Results

In this section, we give simple numerical examples to illustrate our results. In the

first example, we consider the exponentially decaying age model with T = 5, Tc = 3,

N = 2 and α = 1. Since T > Tc − 1
α

, the optimal update policy is to update N = 2

times with equal time allocated to each update, i.e., c1 = c2 = 1.5. The evolution

of a(t) is shown in Fig. 2.10(a).

In the second example, we consider the exponentially decaying age model with

3We observe that when α→∞, the heights of the triangles become the same, which is similar
to the result in [62].

37

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a)

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b)

Figure 2.10: Evolution of a(t) in the exponentially decaying age model (a) when
N = 2, T = 5, Tc = 3, and α = 1, (b) when N = 2, T = 6, Tc = 5, and α = 1.

T = 6, Tc = 5, N = 2 and α = 1. Since Tc is large enough, i.e., T ≤ Tc − 1
α

, the

system starts updating at t = 0, proceeds to update continuously until Tc, and lets

age grow then on until the end. The evolution of a(t) is shown in Fig. 2.10(b).

In the following three examples (third, fourth and fifth), we consider the lin-

early decaying age model with α = 1. In the third example, we see the case where

Tc = NT
N(α+1)+α

. Note that if we have additional updating time, there will be time in-

tervals where the age will stay at zero. The evolution of a(t) is shown in Fig. 2.11(a).

In the fourth example, we consider the case in Lemma 2.5, where Tc >

NT
(α+1)(N+1)

. We see that since Tc is large enough compared to T , some of the to-

tal update time is used to make the age zero and for the remaining part of Tc, age

will stay at zero which is shown in Fig. 2.11(b).

In the fifth example, we consider the case where Tc <
NT

(α+1)(N+1)
. In this case,

age at the end of each update period is equal to zero. Since Tc is small compared

to T , in the optimal policy, we do not see any time intervals where the age stays at

zero. The evolution of a(t) is shown in Fig. 2.11(c).

38

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(c)

Figure 2.11: Evolution of a(t) in the linearly decaying age model, for α = 1, N = 2,
T = 3, and (a) Tc = 1, (b) Tc = 1.6, (c) Tc = 0.8.

0 0.5 1 1.5 2 2.5 3

t(s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

a
(t
)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

Figure 2.12: Evolution of a(t) in the linearly decaying age model (a) α = 2, N = 2,
T = 3, and Tc = 0.8, and (b) α = 0.5, N = 2, T = 3.6, and Tc = 1.6.

39

So far, we have provided examples for the linear case with α = 1. In the

following examples, we consider the cases with α > 1 and α < 1. In the first

case, we choose α = 2, N = 2, T = 3, and Tc = 0.8, and in the second case, we

choose α = 0.5, N = 2, T = 3.6, and Tc = 1.6. The optimal policies are shown in

Fig. 2.12(a) and Fig. 2.12(b), respectively.

2.6 Conclusion

In this chapter, we introduced the concept of soft updates which is relevant in

systems with human interactions and social media settings, where the decrease in

age happens gradually over soft update periods. We study two soft update regimes:

in the first one, age decays exponentially and in the second one age decays linearly

during the soft update period. In both models, we showed that the optimal policy

is to have N updates and Tc should be completely utilized with allocating equal

amount of time for each update.

40

CHAPTER 3

Age of Information with Distortion

3.1 Introduction

In this chapter, we consider an information update system where an information

receiver requests updates from an information provider in order to minimize the

age of information at the receiver. To generate an update, the information provider

completes a set of tasks such as collecting data and processing them. We consider the

quality of updates via their distortion. We model the quality (resp., the distortion) of

an update as a monotonically increasing (resp., monotonically decreasing) function

of the processing time spent to generate the update at the transmitter.

Examples of such systems can be found in sensor networking and distributed

computation applications. For instance, in a sensor networking application where

multiple sensors observe the realization of a common underlying random variable

(e.g., temperature), if the information provider generates an update using the ob-

servation of a single sensor, the update will be generated faster, but will have large

distortion; and conversely, if the information provider generates an update using the

observations of all sensors, the update will be generated with a delay, but will have

41

Figure 3.1: An information updating system which consists of an information
provider which collects/processes data and an information receiver.

small distortion. Similarly, in a distributed computation system with stragglers, the

master can generate an update using faster servers with lower quality, or utilize all

servers to generate a better quality update with a delay. Thus, there is a trade-off

between processing time and quality.

We consider the information update system shown in Fig. 3.1. The information

provider connects to multiple units (sensors, servers, etc.) to generate an update.

When there is no update, the information at the receiver gets stale over time, i.e.,

the age increases linearly. The information receiver requests an update from the

information provider. After receiving the update request, the information provider

allocates ci amount of time as shown in Fig. 3.2 for processing the information.

During this processing time, the information used to generate the update ages by

ci. When the information provider sends the update to the receiver, the age at the

receiver decreases down to the age of the update which is ci, as the communication

time between the transmitter and the receiver is negligible.

We model distortion as a monotonically decreasing function of processing time,

ci, motivated by the diminishing returns property [140]. We consider exponentially

42

s1 c1 s2 c2 s3 c3 s4
y1 y2 y3 y4

update

requested

a(t)

t
T

update

received

Figure 3.2: Age evolution at the receiver.

and inverse linearly decaying distortion functions as examples. In particular, in-

verse linearly decaying distortion function arises in sensor networking applications,

where all sensors observe an underlying random variable distorted by independent

Gaussian noise, and the information provider combines sensor observations linearly

to minimize the mean squared error (see Section 3.2).

In this chapter, we determine age-optimum updating schemes for a system

with a distortion constraint on each update. We are given a total time duration over

which the average age is calculated T , the total number of updates N , the maximum

allowed distortion as a function of the current age f(y), and the distortion function

as a function of the processing time D(c). We solve for the optimum request times

for the updates at the receiver and the optimum processing times of the updates at

the transmitter, to minimize the overall age.

In this work, we consider the general case where the distortion constraint

is a function of the processing time at the transmitter and the current age at the

43

receiver.1 Distortion function is always monotonically decreasing with the processing

time. Regarding the dependence of the distortion constraint on the current age at the

receiver, we consider three different scenarios: First, as in [108], distortion constraint

is constant (independent of the current age), second, the distortion constraint is

inversely proportional with the current age, and third, the distortion constraint is

proportional with the current age. The second case is motivated by the following

observation: If the age at the receiver is high, the receiver may want to receive

a high quality update, i.e., an update with low distortion, to replace its current

information with more accurate information. In this case a high age implies a low

desired distortion, hence, age and distortion constraints are inversely proportional.

The third case is motivated by the following observation: If the age at the receiver

is high, the receiver may want to receive a quick update, i.e., an update with high

distortion, to replace its current information with a fresh information. In this case,

the receiver trades its obsolete but high quality update with a fresh but low quality

update. This may be desirable in applications where the freshness of information

matters more than the quality of the information. Therefore, in this work, we

consider the cases where the distortion constraint is 1) a constant, 2) a decreasing,

and 3) an increasing function of the current age.

In this chapter, we provide the age-optimal policies by finding the optimum

processing times and the optimum update request times. We show that the optimum

processing time is always equal to the minimum required processing time that meets

1In the conference version of this work in [108], we considered the simpler case where the
distortion constraint was a function of the processing time only, i.e., it was not a function of the
current age.

44

the distortion constraint. If there is no active constraint on distortion, i.e., the

distortion constraint is high enough, the optimum processing time is equal to zero.

We observe three different optimum policies for update request times depending on

the level of distortion constraint. When the distortion constraint is large enough

except in the case where the distortion function is inversely proportional to the

current age, we show that the optimal policy is to request updates with equal inter-

update times. When the distortion constraint is relatively large, i.e., the required

processing time is relatively small compared to the total time period, it is optimal

to request updates regularly following a waiting (request) time after receiving each

update, with a longer request time for the first update than others. When the

distortion constraint is relatively small, i.e., the required processing time is relatively

large compared to the total time period, the optimal policy is to request an update

once the previous update is received, i.e., back-to-back, except for a potentially

non-zero requesting time for the first update.

3.1.1 Related Work

References that are most closely related to our work are [68, 69, 72, 84, 87, 91, 96,

141,142], which consider the trade-off between service performance and information

freshness. [91] emphasizes the difference between service completion time and the

age. [68] considers the joint optimization of information freshness, quality of infor-

mation, and total energy consumption which assumes that the distortion (utility)

function follows law of diminishing returns and models the age and energy cost as

45

convex functions. The main contribution of [68] is deriving an online algorithm

which is 2-competitive. In our work, there is no explicit energy constraint, but the

total number of updates N for a given total time duration T is limited. Even though

we consider the age and quality of the updates, the problem settings are different

where we minimize the average age of information, which is inherently non-convex,

subject to a distortion constraint for each update. Furthermore, we consider age-

dependent distortion constraint which also differentiates our overall work from [68].

In [69], service performance is measured by how quickly the provider responds

to the queries of the receiver. In [69], the performance of the system is considered

to be the highest when the service provider responds immediately upon a request.

In [69], by responding quickly, the service provider may be using available, but

perhaps outdated, information resulting in larger age; on the other hand, if the

provider waits for processing new data and responds to the queries a bit later,

information of the update may be fresher. Thus, in the model of [69], processing

data degrades quality of service as it worsens response time, but improves the age. In

contrast, in our model, processing data improves service performance (the quality of

updates), but worsens the age, as the age at the receiver grows while the transmitter

processes the data. Thus, the models and trade-offs captured in [69] and here are

substantially different.

As we model the distortion as a function of the processing time and the max-

imum allowed distortion as a function of the instantaneous age, update duration

depends on the current age. A similar problem with age-dependent update duration

was considered in [96] where the solution for a relaxed and simplified version of the

46

original problem was given. Different from [96], where only the case in which the

update duration is proportional to the current age is considered, here we consider

the cases in which the update duration is proportional and inversely proportional

with the current age, and we provide exact solutions for both problems.

References [72,141] show that scheduling based on value of information (VoI)

improves the service performance. In [72], the VoI measures the amount of uncer-

tainty reduction in the process at the information receiver. [72] expresses VoI as a

function of AoI, and designs a scheduler for AoI and another one for VoI. By com-

paring the performances of these two schedulers, [72] shows that scheduling based on

VoI results in lower uncertainty, and therefore higher control performance compared

to scheduling based on AoI. [141] proposes an index policy to calculate the VoI of

the update packets where the VoI of a packet decreases with the age and increases

with the precision of the source, and shows that the optimal policy which minimizes

the estimation error is to schedule the update with the largest VoI.

The problem which considers the trade-off between video freshness and the

video quality in real time systems in [142] is a specific application of our model.2

In [142], the original video is encoded into multiple layers. With the first layer, a

low quality video can be decoded. With the remaining layers, the video quality at

the users can be enhanced. If the videos are updated infrequently, then the users

2Similar to [143], we can consider the following quantization problem that is applicable to our
work. Assuming that the transmitter can get one bit from the sensor at a time, a quantized status
update with ci bits at the sensor can be sent to transmitter after ci amount of time (denoted
as processing time). Thus, if we increase quantization levels (which also increases the processing
time), the transmitter can get higher quality updates, but the received updates can be obsolete.
On the other hand, the transmitter can get a quick update with smaller number of quantization
levels, but the received updates will have higher distortion.

47

can collect more layers. Thus, the video quality at the users will be high, but the

received videos can be obsolete. On the other hand, if the transmitter updates videos

frequently, the users may receive fresh but lower quality videos as the users may not

collect all the layers. The aim of [142] is to maximize the overall average utility

which is a combination of freshness and the quality of the videos at the users within

a total time duration. We note that the quality function in [142] can be equivalently

represented by the distortion function in our work. Different from [142], our aim is

to minimize average AoI subject to the distortion constraints on each update which

can be age dependent.

Finally, [84] and [87] consider partial updates where the information content

is smaller compared to full updates, which also resembles trading-off update quality

with service time.

3.2 System Model and Problem Formulation

Let a(t) be the instantaneous age at time t, with a(0) = 0. When there is no update,

the age increases linearly over time; see Fig. 3.2. When an update is received, the age

at the receiver decreases down to the age of the latest received update. The channel

between the information provider and the receiver is assumed to be perfect with

zero transmission times, as in e.g., [37, 38, 43, 44]. However, in order to generate an

update, the provider needs to allocate a processing time. For update i, the provider

allocates ci amount of processing time.

We model the distortion function as a monotonically decreasing function of

48

processing time due to the diminishing returns property. For instance, we consider

an exponentially decaying distortion function, De,

De(ci) = a
(
e−bci − d

)
, (3.1)

where d ≤ e−bcmax so that the distortion function is always nonnegative. In addition,

we consider an inverse linearly decaying distortion function, D`,

D`(ci) =
a

bci + d
, (3.2)

which arises in sensor networking applications.3 In particular, consider a system

with M sensors placed in an area, measuring a common random variable X with

mean µX and variance σ2
X . The measurement at each sensor, Yj, is perturbed by

an i.i.d. zero-mean Gaussian noise with variance σ2. Information provider uses a

linear estimator, X̂ =
∑M

j=1 wjYj to minimize the distortion (mean squared error)

defined as D` = E[(X̂ − X)2]. In this model, we assume that the information

provider connects to one sensor at a time and spends one unit of time to retrieve

the measurement from that sensor. Thus, if the information provider connects to ci

sensors, it spends ci units of time for processing (i.e., retrieving data) and achieves

a distortion of D`(ci) = σ2/(ci + σ2

µ2
X+σ2

X
) for the ith update, which has the inverse

linearly decaying form in (3.2).

3Other forms of distortion may be considered as well. For example, for a distributed com-
putation system, one can consider a model with a non-zero cold start computation time, during
which the distortion is infinite, and once computations are received from all servers, the distortion
becomes zero.

49

Let si be the time interval between the reception time of the (i− 1)th update

and the request time of the ith update at the receiver, and let ci be the processing

time of the ith update at the transmitter; see Fig. 3.2. Then, yi = si + ci−1 is the

time interval between requesting the (i − 1)th and the ith updates; it is also the

age at the time of requesting the ith update; see Fig. 3.2. The remaining time after

receiving the last update is sN+1, i.e., sN+1 = T −
∑N

i=1(si + ci), and c0 = 0.

We define f(yi) as the maximum allowed distortion for each update where yi is

the current age. We will start with the case where the maximum allowed distortion

is a constant, f(yi) = β, i.e., it does not depend on the current age, and then

continue with the general case where it explicitly depends on the current age. We

consider two sub-cases in the latter case. In the first sub-case, the maximum allowed

distortion decreases with the current age, and in the second sub-case, the maximum

allowed distortion increases with the current age.

Our objective is to minimize the average age of information at the information

receiver over a total time period T , subject to having a desired level of distortion

for each update, given that there are N updates. We formulate the problem as,

min
{si,ci}

1

T

∫ T

0

a(t)dt

s.t.
N+1∑
i=1

si + ci−1 = T

D(ci) ≤ f(yi), i = 1, . . . , N

si ≥ 0, ci ≥ 0, (3.3)

50

where a(t) is the instantaneous age, D(ci) is the distortion function which is mono-

tonically decreasing in ci, and f(yi) is the maximum allowed distortion function for

update i as a function of the current age yi. We solve the optimization problem in

(3.3) by determining the optimum update request times after the previous update is

delivered, si, and the optimum update processing times, ci. The distortion function

D(ci) may be De(ci) or D`(ci) defined above, or any other appropriate distortion

function depending on the application. The maximum allowed distortion f(yi) may

be constant, i.e., f(yi) = β, or it may be a function of the current age yi. We

consider two specific cases where f(yi) is a decreasing function of yi and where f(yi)

is an increasing function of yi. Let AT ,
∫ T

0
a(t)dt be the total age. Note that

minimizing AT
T

is equivalent to minimizing AT since T is a known constant.

With these definitions, and using the age evolution curve in Fig. 3.2, the total

age AT is,

AT =
1

2

N+1∑
i=1

(si + ci−1)2 +
N∑
i=1

ci(si + ci−1). (3.4)

In the following section, we provide the optimal solution for the problem de-

fined in (3.3) when the maximum allowed distortion is constant.

3.3 Constant Allowable Distortion

In this section, we consider the case f(yi) = β. Since D(ci) is a monotonically

decreasing function of ci, D(ci) ≤ β is equivalent to ci ≥ c where c = D−1(β) is a

constant. Thus, we replace the distortion constraint given in (3.3) with ci ≥ c. In

51

addition, we substitute yi = si + ci−1 for i = 1, . . . , N + 1. Then, using (3.4), we

rewrite the problem in (3.3) as,

min
{yi,ci}

1

2

N+1∑
i=1

y2
i +

N∑
i=1

ciyi

s.t.
N+1∑
i=1

yi = T

y1 ≥ 0, yi ≥ ci−1, i = 2, . . . , N + 1

ci ≥ c, i = 1, . . . , N. (3.5)

The optimization problem in (3.5) is not convex due to the multiplicative terms

involving ci and yi. We note that ci = c for i = 1, . . . , N is an optimum selection,

since this selection minimizes the second term in the objective function and at the

same time yields the largest feasible set for the remaining set of variables (i.e., yis)

in the problem in (3.5). Thus, the optimization problem in (3.5) becomes,

min
{yi}

1

2

N+1∑
i=1

y2
i +

N∑
i=1

cyi

s.t.
N+1∑
i=1

yi = T

y1 ≥ 0, yi ≥ c, i = 2, . . . , N + 1, (3.6)

which is now only in terms of yi.

When β = ∞, and thus, c = 0 in (3.6), i.e., there is no active distortion

constraint, the optimal solution is to choose yi = T
N+1

for all i. Therefore, for the

rest of this section, we consider the case where β <∞, and thus, c > 0.

52

We write the Lagrangian for the problem in (3.6) as,

L =
1

2

N+1∑
i=1

y2
i +

N∑
i=1

cyi − λ

(
N+1∑
i=1

yi − T

)
−

N+1∑
i=2

θi(yi − c)− θ1y1, (3.7)

where θi ≥ 0 and λ can be anything. The problem in (3.6) is convex. Thus, the

KKT conditions are necessary and sufficient for the optimal solution. The KKT

conditions are,

∂L
∂yi

= yi + c− λ− θi = 0, i = 1, . . . , N, (3.8)

∂L
∂yN+1

= yN+1 − λ− θN+1 = 0. (3.9)

The complementary slackness conditions are,

λ

(
N+1∑
i=1

yi − T

)
= 0, (3.10)

θ1y1 = 0, (3.11)

θi(yi − c) = 0, i = 2, . . . , N + 1. (3.12)

When yi > c for all i, we have θi = 0 due to (3.11) and (3.12). Then, from (3.8)

and (3.9), we obtain yi = λ− c for i = 1, . . . , N , and yN+1 = λ. Since
∑N+1

i=1 yi = T ,

we find λ = T+Nc
N+1

. Thus, the optimal solution becomes,

yi =
T − c
N + 1

, i = 1, . . . , N, (3.13)

yN+1 =
T +Nc

N + 1
. (3.14)

53

In order to have yi > c, we need T > (N + 2)c. Viewing this condition from the

perspective of c, this is the case when c is small in comparison to T . Therefore, we

note that, in this case, when minimum processing time, c, is relatively small, the

optimal policy is to choose yi as equal as possible except for yN+1. When c becomes

larger compared to T , yi − c decreases. Specifically, when T = (N + 2)c, yi = c for

i = 1, . . . , N .

In the remaining case, i.e., when T < (N + 2)c, y1 < c and yN+1 > c, we have

θ1 = 0 and θN+1 = 0 by (3.11) and (3.12). Then, by solving yi = λ − c, yN+1 = λ,

and
∑N+1

i=1 yi = T , we obtain,

y1 =
T −Nc

2
, (3.15)

yi = c, i = 2, . . . , N, (3.16)

yN+1 =
T − (N − 2)c

2
. (3.17)

Since y1 > 0, we need Nc < T . Thus, this solution applies when Nc < T ≤ (N+2)c.

Finally, when T = Nc, the optimal solution becomes,

y1 = 0, (3.18)

yi = c, i = 2, . . . , N + 1. (3.19)

In summary, when c = 0, i.e., we do not have any distortion constraints, then

the optimal solution is to update in every T
N+1

units of time, i.e., yi = T
N+1

for all

i. When c > 0 but, relatively small compared to T , i.e., (N + 2)c < T , the optimal

54

solution is to wait for T−c
N+1

to request the first update. For the remaining updates,

the receiver waits for T−(N+2)c
N+1

time to request another update after the previous

update is received. After requesting N updates, the optimal policy is to let the

age grow for the remaining T−c
N+1

units of time. When c becomes large compared

to T , i.e., Nc < T ≤ (N + 2)c, the optimal policy is to wait for T−Nc
2

to request

the first update and request the remaining updates as soon as the previous update

is received, i.e., back-to-back. After updating N times, we let the age grow for

the remaining T−Nc
2

units of time. Finally, when T = Nc, the optimal policy is to

request the first update at t = 0 and request the remaining updates as soon as the

previous update is received, i.e., back-to-back. We note that when Nc > T , there

is no feasible policy. The possible optimal policies are shown in Fig. 3.3.

In the following section, we provide the optimal solution for the problem de-

fined in (3.3) when the maximum allowed distortion is age-dependent.

3.4 Age-Dependent Allowable Distortion

In this section, we consider the case where the maximum allowed distortion f(yi)

depends explicitly on the instantaneous age yi. As motivated in the introduction

section, this dependence may take different forms. In particular, depending on the

application, f(yi) may be a decreasing or an increasing function of yi. In the follow-

ing two sub-sections, we consider two sub-cases: when f(yi) is inversely proportional

to yi and when f(yi) is proportional to yi.

55

y1 y2 y3 y4

a(t)

t
Ts1 s2 s3 s4

(a)

y1 y2 y3 y4

a(t)

t
Ts1 s2 s3 s4c1 c2 c3

(b)

y1 y2 y3 y4

a(t)

t
Ts1 s4c1 c2 c3

(c)

y2 y3 y4

a(t)

t
Tc1 c2 c3

(d)

Figure 3.3: Evolution of a(t) with optimal update policies when the distortion func-
tion does not depend on the current age in the case of (a) c = 0, (b) c > 0 and
(N + 2)c < T , (c) Nc < T ≤ (N + 2)c, (d) T = Nc.

3.4.1 Allowable Distortion is Inversely Proportional to the Instanta-

neous Age

We consider the case where f(yi) is a decreasing function of yi. Since the distortion

function D(ci) is a decreasing function of the processing time ci, the distortion

constraint for each update, i.e., D(ci) ≤ f(yi), becomes ci ≥ D−1(f(yi)) where

D−1(·) is the inverse function of the distortion function. As f(yi) is a decreasing

function of yi, the minimum required processing time D−1(f(yi)) is an increasing

56

function of the current age yi, i.e., we have D−1(f(yj)) ≥ D−1(f(yi)) for all yj ≥ yi.

In general, D−1(f(yi)) function can be arbitrary depending on the selections of D(ci)

and f(yi). However, in order to make the analysis tractable, in this chapter, we focus

on a particular case where the distortion constraint for each update in (3.3), i.e.,

D(ci) ≤ f(yi), implies ci ≥ αyi, where α is a positive constant. An example for

this case is obtained, if we consider the inverse linearly decaying distortion function,

D`(ci) = a
bci+d

in (3.2), and use an inverse linearly decaying allowable distortion

function f(yi) = a
κyi+d

.

The optimization problem in (3.3) in this case becomes,

min
{yi,ci}

1

2

N+1∑
i=1

y2
i +

N∑
i=1

ciyi

s.t.
N+1∑
i=1

yi = T

y1 ≥ 0, yi ≥ ci−1, i = 2, . . . , N + 1

ci ≥ 0, ci ≥ αyi, i = 1, . . . , N. (3.20)

In the following lemma, we show that the processing time for each update

should be equal to the minimum required time in order to satisfy the distortion

constraint, i.e., ci = αyi, for all i.

Lemma 3.1 In the age-optimal policy, processing time for each update is equal to

the minimum required time which meets the distortion constraint with equality, i.e.,

ci = αyi for all i.

57

Proof: Let us assume that on the contrary there exists an optimal policy such that

cj > αyj for some j. Then, we find another feasible policy denoted by {s′i, c′i} such

that c′j = cj − ε, s′j+1 = sj+1 + ε and y′j+1 = s′j+1 + c′j = yj+1. Since cj > αyj, we can

always choose sufficiently small ε so that we have c′j ≥ αy′j for the new policy. We

have yi = y′i for all i and ci = c′i for i 6= j which means that in the new policy, we keep

all other variables the same except for c′j and s′j+1. Inspecting the objective function

of (3.20), we note that in the new policy, the age is decreased by εyj. Since the new

policy with {s′i, c′i} achieves a smaller age, we reach a contradiction. Therefore, in

the age-optimal policy, we must have ci = αyi, for all i. �

Intuitively, as the age of the receiver and the generated update increase during

an update generation process, age-optimal policy is achieved when the processing

time is equal to the minimum required processing time. We remark that Lemma 3.1

provides an alternative proof for the fact that ci must be such that ci = c in (3.5). We

argued this briefly after (3.5) based on the observation that this selection minimizes

the objective function and enlarges the feasible set.

Using Lemma 3.1, we let ci = αyi, and rewrite (3.20) as,

min
{yi}

(
1

2
+ α

) N∑
i=1

y2
i +

1

2
y2
N+1

s.t.
N+1∑
i=1

yi = T

y1 ≥ 0, yi ≥ αyi−1, i = 2, . . . , N + 1, (3.21)

which is only in terms of yi.

58

We write the Lagrangian for the problem in (3.21) as,

L =

(
1

2
+ α

) N∑
i=1

y2
i +

1

2
y2
N+1 − λ

(
N+1∑
i=1

yi − T

)
− β1y1 −

N+1∑
i=2

βi(yi − αyi−1),

(3.22)

where βi ≥ 0 and λ can be anything. The problem in (3.21) is convex. Thus, the

KKT conditions are necessary and sufficient for the optimal solution. The KKT

conditions are,

∂L
∂yi

=(1 + 2α)yi − λ− βi + αβi+1 = 0, i = 1, . . . , N, (3.23)

∂L
∂yN+1

=yN+1 − λ− βN+1 = 0. (3.24)

The complementary slackness conditions are,

λ

(
N+1∑
i=1

yi − T

)
= 0, (3.25)

β1y1 = 0, (3.26)

βi(yi − αyi−1) = 0, i = 2, . . . , N + 1. (3.27)

First, we consider the case where si > 0 and ci > 0 for all i. Then, we have

y1 > 0 and yi > αyi−1 for all i = 2, . . . , N+1. The former statement follows because

y1 = s1 > 0, and the latter statement follows because yi = αci due to Lemma 3.1

and yi = si + ci−1 = si + αyi−1 > αyi−1 since si > 0. Thus, from (3.26)-(3.27), we

have βi = 0 for all i. By using (3.23)-(3.24), we have yi = λ
2α+1

for i = 1, . . . , N , and

59

y1 y2 y3 y4

a(t)

t
Ts1 c1 s2 c2 s3 c3 s4

(a)

y1 y2 y3 y4

a(t)

t
Ts1 c1 c2 c3 s4

(b)

Figure 3.4: Age evolution at the receiver when f(yi) is inversely proportional to the
current age for (a) α ≤ 1 and (b) α > 1.

yN+1 = λ. Since
∑N+1

i=1 yi = T from (3.25), we find λ = (2α+1)T
N+2α+1

. Thus, the optimal

solution in this case is,

yi =
T

N + 2α + 1
, i = 1, . . . , N, (3.28)

yN+1 =
(2α + 1)T

N + 2α + 1
. (3.29)

In order to satisfy yi > αyi−1, we need α < 1. A typical age evolution curve for

α < 1 is shown in Fig. 3.4(a). When α = 1, we note that the optimal solution

follows (3.28) and (3.29), but yi = αyi−1 for i = 2, . . . , N .

Next, we find the optimal solution for α > 1. If we have only the total time

constraint, then the optimal solution is to choose yis equal for i = 1, . . . , N . Since

α > 1, we cannot choose yis equal due to yi ≥ αyi−1 constraints. In the following

lemma, we prove that when α > 1, yi = αyi−1 for i = 2, . . . , N .

Lemma 3.2 When α > 1, we have yi = αyi−1 for i = 2, . . . , N .

60

Proof: Assume for contradiction that there exists an age-optimal policy with yj >

αyj−1 for some j ∈ {2, . . . , N}. From (3.27), we have βj = 0. From (3.23), we get

yj =
λ−αBj+1

2α+1
and yj−1 =

λ+βj−1

2α+1
. Since yj ≥ 0, we must have λ ≥ 0. By using

yj > αyj−1, we must have (1 − α)λ > α(βj+1 + βj−1). Since α > 1 and λ ≥ 0,

this implies (1− α)λ ≤ 0, which further implies α(βj+1 + βj−1) < 0. However, this

inequality cannot be satisfied since βi ≥ 0 for all i. Thus, we reach a contradiction

and in the age-optimal policy, we must have yi = αyi−1 for i = 2, . . . , N . �

Then, the optimal policy is in the form of yi = αi−1η for i = 1, . . . , N and

yN+1 = T −
∑N

i=1 yi where η is a constant. We write the total age in terms of η as,

AT (η) =

(
1

2
+ α

)
η2

(
α2N − 1

α2 − 1

)
+

1

2

(
T −

(
αN − 1

α− 1

)
η

)2

. (3.30)

In order to find the optimal η, we differentiate (3.30), which is quadratic in η, with

respect to η and equate it to zero. We find the optimal solution for α > 1 as,

y1 =
T (αN+2 − αN − α2 + 1)

2(α2N+2 − αN+1 − αN − α2 + α + 1)
, (3.31)

yi =αi−1yi−1, i = 2, . . . , N, (3.32)

yN+1 =T −
N∑
i=1

yi. (3.33)

A typical age evolution curve for α > 1 is shown in Fig. 3.4(b).

In summary, when α < 1, i.e., when the required processing time increases

slowly with the age, then the optimal policy is to request the updates regularly

following a waiting time after receiving each update as shown in Fig. 3.4(a). When

61

α > 1, i.e., when the required processing time increases rapidly with the age, then

the optimal policy is to request the updates once the previous update is delivered

(except for a positive waiting time for the first update) as shown in Fig. 3.4(b).

3.4.2 Allowable Distortion is Proportional to the Instantaneous Age

We consider the case where f(yi) is an increasing function of yi. Similar to Sec-

tion 3.4.1, the distortion constraint for each update, i.e., D(ci) ≤ f(yi), is equivalent

to ci ≥ D−1(f(yi)). As f(yi) is an increasing function of yi, the minimum required

processing time D−1(f(yi)) is a decreasing function of the current age yi, i.e., we

have D−1(f(yj)) ≤ D−1(f(yi)) for all yj ≥ yi. Even though D−1(f(yj)) can be arbi-

trary, in this chapter, in order to make the analysis tractable, we focus on a specific

case where the distortion constraint for each update in (3.3), i.e., D(ci) ≤ f(yi),

implies ci ≥ c − αyi. In this section, we assume α < 1
2
. An example of this case is

obtained, if we consider the inverse linearly decaying distortion, D`(ci) = a
bci+d

in

(3.2), and use f(yi) = a
u−κyi . Thus, while the distortion constraint in Section 3.4.1

was ci ≥ αyi, the distortion constraint in this section is ci ≥ c− αyi.

The optimization problem in (3.3) in this case becomes,

min
{yi,ci}

1

2

N+1∑
i=1

y2
i +

N∑
i=1

ciyi

s.t.
N+1∑
i=1

yi = T

y1 ≥ 0, yi ≥ ci−1, i = 2, . . . , N + 1

ci ≥ 0, ci ≥ c− αyi, i = 1, . . . , N. (3.34)

62

In the following lemma, we show that the processing time for each update

should be equal to the minimum processing time which satisfies the distortion con-

straint, i.e., ci = (c− αyi)+ for i = 1, . . . , N , where (x)+ = max{0, x}.

Lemma 3.3 In the age-optimal policy, processing time for each update is equal to

the minimum required time which meets the distortion constraint with equality, i.e.,

ci = (c− αyi)+, for all i.

Proof: Let us assume for contradiction that there exists an optimal policy such that

cj > c− αyj for some j. If yj <
c
α

, then we find another feasible policy denoted by

{s′i, c′i} such that c′j = cj − ε, s′j+1 = sj+1 + ε and y′j+1 = s′j+1 + c′j = yj+1. Since

cj > c− αyj, we can always choose sufficiently small ε so that we have c′j ≥ c− αy′j

for the new policy. We have yi = y′i for all i and ci = c′i for i 6= j which means that in

the new policy, we keep all other variables the same except c′j and s′j+1. We note that

in the new policy, age is decreased by εyj. Since the new policy with {s′i, c′i} achieves

a smaller age, we reach a contradiction. Therefore, in the age-optimal policy, we

must have ci = c − αyi for all i when yi <
c
α

. If yj ≥ c
α

, then cj ≥ 0 is the only

constraint on cj. If cj > 0, we can similarly argue that decreasing cj further reduces

the age until cj becomes zero. Thus, we reach a contradiction and when yj ≥ c
α

,

in the optimal solution, we must have cj = 0. By combining these two parts, we

conclude that in the optimal policy, we must have ci = (c− αyi)+, for i = 1, . . . , N .

�

63

Using Lemma 3.3, we let ci = (c− αyi)+, and rewrite (3.34),

min
{yi}

1

2

N+1∑
i=1

y2
i +

N∑
i=1

yi(c− αyi)+

s.t.
N+1∑
i=1

yi = T

y1 ≥ 0, yi ≥ (c− αyi−1)+, i = 2, . . . , N + 1, (3.35)

which is only in terms of yi.

Next, we provide the optimal solution for the case where yi <
c
α

for i =

1, . . . , N . The problem in (3.35) becomes,

min
{yi}

(
1

2
− α

) N∑
i=1

y2
i +

N∑
i=1

cyi +
1

2
y2
N+1

s.t.
N+1∑
i=1

yi = T

y1 ≥ 0, yi ≥ c− αyi−1, i = 2, . . . , N + 1. (3.36)

We write the Lagrangian for the problem in (3.36) as,

L =

(
1

2
− α

) N∑
i=1

y2
i +

N∑
i=1

cyi +
1

2
y2
N+1 − λ

(
N+1∑
i=1

yi − T

)
− β1y1

−
N+1∑
i=2

βi(yi + αyi−1 − c), (3.37)

where βi ≥ 0 and λ can be anything. The problem in (3.36) is convex since α < 1
2
.

Thus, the KKT conditions are necessary and sufficient for the optimal solution. The

64

KKT conditions are,

∂L
∂yi

=(1− 2α)yi + c− λ− βi − αβi+1 = 0, i = 1, . . . , N, (3.38)

∂L
∂yN+1

=yN+1 − λ− βN+1 = 0. (3.39)

The complementary slackness conditions are,

λ

(
N+1∑
i=1

yi − T

)
= 0, (3.40)

β1y1 = 0, (3.41)

βi(yi + αyi−1 − c) = 0, i = 2, . . . , N + 1. (3.42)

When y1 > 0 and yi > c− αyi−1, for i = 2, . . . , N + 1, from (3.41) and (3.42),

we have βi = 0 for all i. Then, by using (3.38) and (3.39), we have yi = λ−c
1−2α

, for

i = 1, . . . , N and yN+1 = λ. From (3.40), we find λ = (1−2α)T+Nc
N+1−2α

which gives,

yi =
T − c

N + 1− 2α
, i = 1, . . . , N, (3.43)

yN+1 =
(1− 2α)T +Nc

N + 1− 2α
. (3.44)

A typical age evolution curve is shown in Fig. 3.5(b). In order to satisfy y1 > 0,

yi > c−αyi−1 for i = 2, . . . , N+1 and yi <
c
α

for i = 1, . . . , N , we need
(
N+2−α

1+α

)
c <

T <
(
N+1−α

α

)
c. Viewing this conditions in terms of T , when T is closer to the

lower boundary, i.e.,
(
N+2−α

1+α

)
c < T , we see that yi > c − αyi−1 for i = 2, . . . , N

gets tighter. When T is closer to the upper boundary, we see that yi <
c
α

, for

65

y1 y2 y3 y4

a(t)

t
Ts1 c1 c2 c3 s4

(a)

y1 y2 y3 y4

t
Ts1 c1 s2 c2 s3 c3 s4

a(t)

(b)

y1 y2 y3 y4

t
Ts1 s2 s3 s4

a(t)

(c)

y1 y2 y3 y4

t
Ts1 s2 s3 s4

a(t)

(d)

Figure 3.5: Age evolution at the receiver when the distortion function is proportional
to the current age for (a) T ≤

(
N+2−α

1+α

)
c, (b)

(
N+2−α

1+α

)
c < T <

(
N+1−α

α

)
c, (c)

(N+1−α)c
α

≤ T < (N+1)c
α

, (d) (N+1)c
α
≤ T .

i = 1, . . . , N gets tighter.

We first identify the optimal solution when T ≤
(
N+2−α

1+α

)
c. In the following

lemma, we show that when T ≤
(
N+2−α

1+α

)
c, we have yi = c−αyi−1, for i = 2, . . . , N .

Lemma 3.4 In the age-optimal policy, when T ≤
(
N+2−α

1+α

)
c, we have yi = c−αyi−1,

for i = 2, . . . , N .

Proof: We note that increasing c increases the cost of increasing yi for i = 1, . . . , N

in the objective function in (3.36). Thus, increasing c yields decreasing optimal

66

values for yi for i = 1, . . . , N . We note from (3.43) that

lim
T→(N+2−α

1+α)c
yi =

c

1 + α
, (3.45)

for i = 1, . . . , N . Thus, when
(

1+α
N+2−α

)
T ≤ c, we have yi ≤ c

1+α
for i = 1, . . . , N .

Then, we have yi + αyi−1 ≤ c for i = 2, . . . , N . Due to the distortion constraint in

the optimization problem in (3.36), we also have yi +αyi−1 ≥ c for i = 2, . . . , N + 1.

Thus, when T ≤
(
N+2−α

1+α

)
c, we must have yi = c− αyi−1, for i = 2, . . . , N . �

Therefore, we show in Lemma 3.4 that when T ≤
(
N+2−α

1+α

)
c, the optimal

policy is to request the updates back-to-back except for the first update. Then, the

optimal policy has the following structure,

y1 =η, (3.46)

yi =c
i−1∑
j=1

(−α)j−1 + (−α)i−1η, i = 2, . . . , N, (3.47)

yN+1 =T −
N∑
i=1

yi. (3.48)

In order to find the optimal η which minimizes the age, we substitute (3.46)-(3.48)

in the objective function in (3.36), differentiate the age with respect to η, and equate

to zero.

A typical age evolution curve is shown in Fig. 3.5(a). We note that when we

increase c sufficiently, y1 becomes zero. At this point, y1 ≥ 0 and yi ≥ c− αyi−1 for

i = 2, . . . , N are satisfied with equality. If we further increase c, the last feasibility

constraint, yN+1 ≥ c − yN , becomes tight and the optimal solution is y1 = 0,

67

yi = c − αyi−1 for i = 2, . . . , N + 1. If we increase c further, there is no feasible

solution.

Next, we find the optimal solution when T is relatively large, i.e.,
(
N+1−α

α

)
c <

T . With an argument similar to that in Lemma 3.4, if c becomes smaller com-

pared to T , the optimal value of yi for i = 1, . . . , N increases. We note that when

lim
T→(N+1−α

α)c
yi = c

α
for i = 1, . . . , N . Thus, when

(
N+1−α

α

)
c < T , we have c−αyi < 0

for i = 1, . . . , N . Then, the problem in (3.35) becomes,

min
{yi}

1

2

N+1∑
i=1

y2
i

s.t.
N+1∑
i=1

yi = T

yN+1 ≥ 0, yi ≥
c

α
, i = 1, . . . , N. (3.49)

We note that the problem in (3.49) is convex. Thus, the KKT conditions are neces-

sary and sufficient for the optimal solution. After writing the KKT conditions, we

observe two different optimal solution structures. When T is sufficiently large, we

have yi >
c
α

for all i. Then, the optimal solution is yi = T
N+1

for all i. A typical

age evolution curve is shown in Fig. 3.5(d). We need T ≥ (N+1)c
α

for the feasibility

of the solution. When (N+1−α)c
α

≤ T < (N+1)c
α

, we have yi = c
α

for i = 1, . . . , N and

yN+1 = T −
∑N

i=1 yi. A typical age evolution curve is shown in Fig. 3.5(c).

In summary, when T ≤
(
N+2−α

1+α

)
c, i.e., when the total time T is small com-

pared to the required processing time, the optimal policy is to request the updates

back-to-back as shown in Fig. 3.5(a). When the total time period gets larger, the

68

age at the receiver starts to get higher. Thus, the minimum required processing time

c − αyi gets smaller. Specifically, when
(
N+2−α

1+α

)
c < T <

(
N+1−α

α

)
c, the optimal

policy is to request updates following a waiting time as shown in Fig. 3.5(b). Finally,

when the age at the receiver gets even higher, i.e., when (N+1−α)c
α

≤ T , the optimal

policy is to deliver the updates without processing as shown in Figs. 3.5(c)-(d).

3.5 Numerical Results

In this section, we provide numerical results for the problems solved in Sections 3.3

and 3.4. For the numerical simulations, we use CVX tool in MATLAB [144, 145].

First, in the following subsection, we provide numerical results for the case where

the maximum allowed distortion function is a constant.

3.5.1 Simulation Results for Constant Allowable Distortion

We provide five numerical results for an exponentially decaying distortion function,

De, defined in (3.1) with a = (1 − e−1)−1, b = 1
4

and d = e−1. Note that we can

choose the processing time ci in [0, 4]. When the processing time ci is equal to 0, the

distortion function De(ci) attains its maximum value, i.e., De(ci) = 1. When the

processing time ci is equal to 4, the distortion function De(ci) reaches its minimum

value, i.e., De(ci) = 0. Since the maximum allowed distortion is a constant, we can

rewrite the distortion constraint, De(ci) ≤ β, as ci ≥ c where c = D−1
e (β) is in [0, 4].

For the first four simulations, we cover each optimal policy given in Section 3.3. In

these simulations, we take T = 10 and N = 3.

69

0 2 4 6 8 10

0

2

4

6

8

10

(a)

0 2 4 6 8 10

0

2

4

6

8

10

(b)

0 2 4 6 8 10

0

2

4

6

8

10

(c)

0 2 4 6 8 10

0

2

4

6

8

10

(d)

Figure 3.6: Evolution of a(t) with optimal update policies for T = 10, N = 3, (a)
c = 0, (b) c = 1, (c) c = 2.5, (d) c = 10

3
, when the maximum allowed distortion

function is a constant.

In the first example, we take c = 0. In other words, there is no distortion

constraint on the updates. In this case, the optimal policy is to request an update

in equal time periods, i.e., yi = 2.5 for all i. As there is no distortion constraint on

the updates, the information provider sends the updates immediately, i.e., ci = 0 for

all i, and the updates have the highest possible distortion. As a result, the optimal

age evolves as in Fig. 3.6(a).

In the second example, we take c = 1. This is the case where the minimum

required processing time c is small compared to the total time duration T , i.e.,

70

(N + 2)c < T . In the optimal policy, the receiver waits for an equal amount of

time to request another update after the previous update is received except a longer

waiting time for the first update. The optimal age evolution is given in Fig. 3.6(b).

We note that the optimal policy is to request the first update after s1 = 2.25 time.

For the remaining updates, after the previous update is received, the receiver waits

for s2 = s3 = 1.25 time to request another update. After receiving a request, the

provider generates the updates after processing c = 1 time.

For the third example, we take c = 2.5. In this case, the minimum required

processing time is high which means that we wish to receive the updates with lower

distortion compared to previous cases. The optimal age evolution is shown in

Fig. 3.6(c). We note that the optimal policy is to request the first update after

waiting s1 = 1.25. The receiver requests the remaining updates as soon as the

previous update is received (back-to-back) since the provider uses relatively large

amount of time to generate updates. In this case, the provider processes each update

for ci = 2.5 time for all i.

For the fourth example, we take c = 10
3

which is the highest possible minimum

required processing time as Nc = T . In this case, there is only one feasible solution,

which is to request the first update at t = 0 and the remaining updates as soon as

the previous update is received (back-to-back), i.e., si = 0 for all i. The provider

processes each update for ci = 10
3

time for all i. The optimal age evolves as in

Fig. 3.6(d).

Finally, we note that there is a trade-off between age and distortion. If we

increase the distortion constraint β (hence decrease the processing time constraint

71

0 1 2 3 4 5 6 7 8

14

16

18

20

22

24

26

28

Figure 3.7: Age versus distortion of the updates for a = 8
1−e−3 , b = 1.2, and d = e−3

in (3.1) when the maximum allowed distortion is a constant. We vary β and find
the minimum age for each β.

c), then we achieve a lower average age at the receiver, but the receiver obtains

updates with low quality as the distortion of the updates is high. On the other

hand, if we decrease the distortion constraint β (hence increase the processing time

constraint c), the receiver obtains updates with high quality, but in this case, the

average age at the receiver increases. We show this trade-off between age and

distortion as a fifth example in Fig. 3.7.

Next, in the following subsection we provide numerical results for the case

where the maximum allowed distortion function depends on the current age.

3.5.2 Simulation Results for Age-Dependent Allowable Distortion

First, we provide three numerical results for the case where the maximum allowed

distortion function is inversely proportional to the instantaneous age, i.e., we have

72

0 2 4 6 8 10

0

2

4

6

8

10

(a)

0 2 4 6 8 10

0

2

4

6

8

10

(b)

Figure 3.8: Evolution of a(t) with optimal update policies for T = 10, N = 3, (a)
α = 0.5, (b) α = 1.5, when the maximum allowed distortion function is inversely
proportional to the current age, i.e., ci ≥ αyi.

ci ≥ αyi constraint for each update.

For the first example, we take T = 10, N = 3 and α = 0.5. This example

corresponds to the case where the maximum allowed distortion slowly decreases with

the current age, i.e., α is small. The optimal solution follows (3.28) and (3.29) and

is equal to yi = 2 for i = 1, 2, 3 and y4 = 4. We note that the information receiver

requests all the updates when its age is equal to yi = 2, and then, lets its age grow

for the remaining time. Since ci = αyi, we have ci = 1 for all i which means that

all the updates have the same level of distortion as the processing times for the

updates are equal. We observe in Fig. 3.8(a) that the optimal policy resembles the

optimal policy for the case with constant allowable distortion when the minimum

required processing time is small, i.e., the second example shown in Fig. 3.6(b) in

Section 3.5.1.

For the second example, we take T = 10, N = 3 and α = 1.5. This example

corresponds to the case where the maximum allowed distortion decreases faster

73

0 0.5 1 1.5 2

10

15

20

25

30

35

Figure 3.9: Average age versus α for T = 10 and N = 3 when the maximum allowed
distortion function is inversely proportional to the current age, i.e., ci ≥ αyi. We
vary α in between 0 and 2 and find the corresponding minimum age for each α.

with the instantaneous age, i.e., α is large. The optimal policy follows (3.31)-(3.33)

and the optimal age evolution is shown in Fig. 3.8(b). The optimal solution is

y1 = 0.8511, y2 = 1.2766, y3 = 1.9149 and y4 = 5.9574. Due to ci = αyi, we

have c1 = 1.2766, c2 = 1.9149 and c3 = 2.8723. We observe different from the first

example where α < 1 that the processing time for each update is different which also

means that updates have different levels of distortion. We also note that updates

are requested right after the previous update is received except for the first update,

i.e., si = 0 for i = 2, . . . , N .

For the third example, we take T = 10, N = 3 and vary α in between 0 and

2. When α gets larger, the receiver starts to require updates with lower distortion.

In other words, with a larger α, the transmitter allocates more time for processing

the updates which increases the average age of the receiver as shown in Fig. 3.9.

74

When the maximum allowed distortion function is inversely proportional to the

age, two different optimum policies are observed depending on the value of α as

shown in Figs. 3.8(a)-(b). Due to these two different update policies, we observe

two different monotonically increasing functions with respect to α in Fig. 3.9, i.e.,

one is in between α ∈ [0, 1] and the other one is in between α ∈ [1, 2].

In the following five examples, we consider the case where the maximum al-

lowed distortion function is proportional to the current age, i.e., we have ci ≥ c−αyi

constraint for each update. We take N = 3, c = 1, α = 0.4.

For the first example, we take T = 3 which corresponds to the case where

T is relatively small compared to the minimum required processing time. The

optimal policy follows (3.46)-(3.48). The optimal solution is to choose y1 = 0.4478,

y2 = 0.8209, y3 = 0.6716 and y4 = 1.0597. Since ci = c− αyi, we have c1 = 0.8209,

c2 = 0.6716 and c3 = 0.7313. The optimal age evolution is shown in Fig. 3.10(a).

We observe that updates are requested right after the previous update is received

except for the first update, i.e., si = 0 for i = 2, . . . , N . In this case, as the

instantaneous age is relatively low when the update is requested, the information

provider processes the updates further to generate updates with high quality.

For the second example, we take T = 6 which corresponds to the case where T

is relatively large compared to the minimum required processing time. The optimal

solution follows (3.43)-(3.44) and y1 = y2 = y3 = 1.5625 and y4 = 1.3125. We

have ci = 0.3750 for all i. The optimal age evolution is shown in Fig. 3.10(b). As

the instantaneous age is higher when the updates are requested compared to the

first example, the system imposes a low distortion constraint for each update. We

75

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

(a)

0 1 2 3 4 5 6

0

1

2

3

4

5

6

(b)

0 1 2 3 4 5 6 7 8 9

0

2

4

6

8

(c)

0 2 4 6 8 10 12

0

2

4

6

8

10

12

(d)

Figure 3.10: Evolution of a(t) with optimal update policies for c = 1, N = 3,
α = 0.4, (a) T = 3, (b) T = 6, (c) T = 9.5, (d) T = 12, when the maximum allowed
distortion function is an increasing function of the current age, i.e., ci ≥ c− αyi.

observe that as the receiver requests all the updates when the age at the receiver is

equal to yi = 1.5625 for i = 1, 2, 3, the distortion constraint for each update becomes

the same.

For the third example, we take T = 9.5 which corresponds to the case where

the optimal policy follows yi = c
α

and yN+1 = T −
∑N

i=1 yi. The optimal solution

is yi = 2.5 for i = 1, 2, 3 and y4 = 2. In this case, as the instantaneous age

gets higher when the update is requested, freshness of the updates becomes more

important than the quality of the updates. That is why in this case, there is no

76

active distortion constraints on the updates, i.e., ci ≥ 0. Thus, the receiver sends

the updates without any processing, i.e., ci = 0 for all i. The optimal age evolution

is shown in Fig. 3.10(c). Since the processing time for each update is equal to zero,

the updates are not aged during the processing time and the age of the receiver

reduces to zero after receiving each update.

For the fourth example, we take T = 12. The optimal policy follows yi = T
N+1

and is equal to yi = 3 and ci = 0 for all i. The optimal age evolution is shown

in Fig. 3.10(d). In this case, we observe a similar optimal solution structure as in

the previous case where T = 9.5. As the updates are requested when the age is

too high, updates with the highest distortion become acceptable for the system.

We thus observe the same optimal solution structure as in the case with constant

allowable distortion when there is no active distortion constraint, i.e., when c = 0

in the first example shown in Fig. 3.6(a) in Section 3.5.1.

For the fifth example, we take T = 4, N = 3 and vary α in between 0 and

0.49. When α gets larger, the receiver starts to accept updates with higher distortion

which decreases the minimum required processing time. That is why the minimum

average age decreases with α as shown in Fig. 3.11. We note that when α ∈ [0, 0.2],

the optimal policy follows the model shown in Fig. 3.10(a). When α ∈ (0.2, 0.49], the

optimal policy follows the model shown in Fig. 3.10(b). Due to these two different

update policies, we observe two different monotonically decreasing functions of α

connected at α = 0.2 in Fig. 3.11.

77

0 0.1 0.2 0.3 0.4 0.5

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Figure 3.11: Average age versus α for T = 4 and N = 3 when the maximum allowed
distortion function is proportional to age, i.e., ci ≥ c − αyi. We vary α ∈ [0, 0.49]
and find the corresponding minimum age for each α.

3.6 Conclusion

In this chapter, we considered the concept of status updating with update pack-

ets subject to distortion. In this model, updates are generated at the information

provider (transmitter) following an update generation process that involves collect-

ing data and performing computations. The distortion in each update decreases with

the processing time during update generation at the transmitter; while processing

longer generates a better-precision update, the long processing time increases the

age of information. This implies that there is a trade-off between precision (quality)

of information and age (freshness) of information. The system may be designed to

strike a desired balance between quality and freshness of information. In this chap-

ter, we determined this design, by solving for the optimum update scheme subject

78

to a desired distortion level.

We considered the case where the maximum allowed distortion does not depend

on the current age, i.e., is a constant, and the case where the maximum allowed

distortion depends on the current age. For this case, we considered two sub-cases,

where the maximum allowed distortion is a decreasing function and an increasing

function of the current age.

We note that while we formulated the allowable distortion constraint using

the current age at the receiver, we could similarly formulate it by using time elapsed

since the last requested update. Specifically, we could use the constraint ci ≥ αsi

instead of the constraint ci ≥ αyi in (3.20) and the constraint ci ≥ c − αsi instead

of the constraint ci ≥ c − αyi in (3.34). We note that these two considerations are

similar: If the receiver has not requested an update for a long time (large si), its

current age will be high (large yi). In order to avoid repetitive arguments, in this

chapter, we only considered the case where the distortion constraint depends on the

instantaneous age yi at the receiver at the time of requesting a new update.

79

CHAPTER 4

Source Coding for Age of Information

4.1 Introduction

In this chapter, we consider a status updating system that consists of a single trans-

mitter node and a single receiver node (see Fig. 4.1). The transmitter receives

independent and identically distributed time-sensitive status update packets gener-

ated by an information source based on an observed random phenomenon that takes

n distinct values with a known probability mass function (pmf). This observed ran-

dom variable could be the position of a UAV in autonomous systems or share prices

in the stock market. Arriving status update packets are encoded at the transmitter

and sent to the receiver through an error-free noiseless channel. The receiver wants

to acquire fresh information regarding the observed random variable, which brings

up the concept of age of information.

Unlike most of the literature in which the transmission times, also referred to

as service times in queueing theory, are based on a given service distribution, in this

work, we design transmission times through source coding schemes by choosing the

codeword lengths assigned to realizations. That is, the codeword length assigned to

80

always dropped

highest k
selected

source
information

encoder

transmitter

receiver
information

dropped if busy

10011 . . .

Figure 4.1: An information source generates i.i.d. status updates from a random
variable X. Only a portion of the realizations (shown with a square) is encoded into
codewords. Update packets that come from the selected portion of the realizations
that find the transmitter node idle are sent to the receiver node. Non-selected
realizations (shown with a triangle) are always discarded at the transmitter node
even if the transmitter node is idle.

each realization represents the service time (transmission time) of that realization.

References that are most closely related to our work are [77, 78, 80] which

study the timely source coding problem for a discrete-time system. References [80]

and [77] study a communication system where a source follows a zero-wait update

generation model whereas in [78] status updates arrive exogenously as a Bernoulli

process with probability q. In [80], the transmitter only skips the status updates

that are generated while the channel is busy. Unlike the model in [80], references [77]

and [78] reconstruct the entire source message stream in a lossless manner. Reference

[80] finds real-relaxation of the underlying integer-valued codeword lengths using

Shannon codes based on a modified version of the given pmf that achieve the optimal

age with a constant gap. References [77] and [78] consider block coding and source

coding problems to find age-optimal codes for FIFO queues.

Different from [77, 78, 80], in our model, time is not slotted and the status

update packets arrive at the transmitter node following a Poisson process with a

known parameter λ. Unlike the model in [80], we introduce an encoding mechanism

81

where the transmitter skips not only the status updates that are generated while

the channel is busy but also the least probable ones to achieve a lower average age of

information at the receiver. We term this encoding mechanism selective encoding.

In this selective encoding model, instead of encoding all possible realizations, we

encode only a portion of the realizations and send to the receiver node. Specifically,

we consider what we call the highest k selective encoding scheme in which we only

encode the most probable k realizations and disregard any update packets from the

remaining n − k realizations. We note that a smaller k yields shorter codeword

lengths but larger interarrival times, as in this case most of the updates are not

encoded. However, when k is large, codeword lengths and correspondingly the

transmission times get larger even though the interarrival times get smaller. Thus,

in this chapter, based on the given pmf, we aim to find the optimal k which strikes a

balance between these two opposing trends such that the average age at the receiver

node is minimized. Due to this selective encoding scheme not every realization is

sent to the receiver even if the channel is free.

Next, we consider a scenario in which the remaining n − k realizations are

not completely disregarded but encoded with a certain probability which we call

the randomized selective encoding scheme. In this scheme, in addition to the most

probable k realizations, the remaining n−k less probable realizations are sometimes

encoded.

A disadvantage of the highest k selective encoding scheme is the fact that the

receiver node is not informed when one of the non-selected realizations occurs. For

instance, during a period with no arrivals, the receiver node cannot differentiate

82

highest k
selected

source
information

encoder

transmitter

receiver
information

dropped if busy

10011 . . .

empty symbol if
transmitter has

Figure 4.2: Update packets that come from the selected portion of the realiza-
tions (shown with a square) that find the transmitter idle are sent to the receiver.
Non-selected realizations (shown with a triangle) that find the transmitter idle are
mapped into an empty symbol.

whether there has been no arrivals or if the arrival has taken one of the non-selected

values as in either case it does not receive any update packets. Thus, lastly, we

take a careful look at the remaining n − k realizations and propose a modified

selective encoding policy which we call the highest k selective encoding with empty

symbol that still achieves a lower average age than encoding every realization but

also informs the receiver node when one of the non-selected values is taken by the

observed random variable. In this scheme, only the most probable k realizations are

encoded and the remaining n− k realizations are mapped into a designated empty

symbol such that in the case of these n − k non-selected realizations, this empty

symbol is sent to further inform the receiver (see Fig. 4.2). Thus, in such a case,

the receiver at least knows that the observed random variable has taken a value

from the non-selected portion even though it does not know which value was taken

specifically. We consider two variations on this policy: when the empty symbol does

not reset the age and when the empty symbol resets the age.1

1When the empty symbol xe is received, the receiver does not know exactly which update is
realized at the source. For that reason, operationally, the receiver may not reset its age when xe
is received. On the other hand, the receiver may reset its age as the empty symbol carries some
partial information regarding the status update at the source, i.e., when the empty symbol xe is
received, the receiver knows that one of the least probable status updates is realized at the source.
That is why we consider both of these scenarios in our analysis.

83

For all three encoding schemes, we find the average age experienced by the

receiver node and determine the age-optimal real codeword lengths, including the

codeword length of the empty symbol in the case of the highest k selective encoding

with empty symbol scheme. Through numerical evaluations for given arbitrary pmfs,

we show that the proposed selective encoding policies achieve a lower average age

than encoding every realization, and find the corresponding age-optimal k values.

In addition, we discuss the optimality of the highest k selective encoding policy.

We note that, since we focus on age-optimal real-valued codeword lengths in this

chapter, the obtained age values serve as lower bounds to what can be attained by

integer-valued codeword lengths. Designing age-optimal integer-valued codeword

lengths is not addressed in this chapter and remains an interesting open problem.

Finally, a similar k out of n type of idea was used in [19–22,24] in the context

of multicasting updates in networks, where each packet is transmitted until the

earliest k out of n receiver nodes have received the packet. While the multicast

communication problem studied in [19–22,24] and the source coding problem studied

here are fundamentally different, there is an analogy between their results as follows.

In [19–22, 24], it was shown that sending status updates to (earliest) k out of n

receivers achieves a smaller average age of information than sending status updates

to every one of n receivers. Analogously, in this chapter, we show that sending

status updates for (most probable) k out of n realizations achieves a smaller age of

information than sending status updates for every one of n realizations.

84

4.2 System Model and Problem Formulation

We consider a communication system in which an information source generates

independent and identically distributed status update packets from an observed

phenomenon that takes realizations from the set X = {x1, x2, . . . , xn} based on a

known pmf PX(xi) for i ∈ {1, . . . , n}.2 Without loss of generality, we assume that

PX(xm) ≥ PX(xm+1) for all m, i.e., the probabilities of the realizations are in a non-

increasing order. Update packets arrive at the transmitter node following a Poisson

process with parameter λ. The transmitter node implements a blocking policy in

which the update packets that arrive when the transmitter node is busy are blocked

and lost. Thus, the transmitter node receives only the updates that arrive when it

is idle.

We consider three different encoding policies: highest k selective encoding,

randomized selective encoding, and highest k selective encoding with an empty

symbol.

4.2.1 Policy 1: Highest k Selective Encoding

In the first policy, we consider a selective encoding mechanism that we call high-

est k selective encoding where the transmitter node only sends the most probable

k realizations, i.e., only the realizations from set Xk = {x1, . . . , xk}, which have

2Even though the number of realizations, n, is a finite number, it can be arbitrarily large. We
highlight that this modeling choice is well suited to many practical applications even when the
underlying randomness is continuous so long as it is quantized to sufficiently many discrete levels,
e.g., quantized temperature sensor measurements, trajectory commands in a UAV system such as
move right, left, up, down, and so on.

85

the highest probabilities among possible n updates generated by the source, are

transmitted for k ∈ {1, . . . , n}; see Fig. 4.1. If an update packet from the remain-

ing non-selected portion of the realizations arrives, the transmitter disregards that

update packet and waits for the next arrival. If an update packet arrives from the

selected portion of the realizations, then the transmitter encodes that update packet

by using a binary alphabet with the conditional probabilities given by,

PXk(xi) =


PX(xi)
qk

, i = 1, 2, . . . , k

0, i = k + 1, k + 2, . . . , n,

(4.1)

where

qk ,
k∑
`=1

PX(x`). (4.2)

The transmitter assigns codeword c(xi) with length `(xi) to realization xi for i ∈

{1, 2, . . . , k}.

4.2.2 Policy 2: Randomized Selective Encoding

In the second policy, inspired by [80], we study a randomized selective encoding

scheme. In this policy, the most probable k realizations are always encoded. How-

ever, instead of discarding the remaining n − k realizations, the transmitter node

encodes them with probability α and discards them with probability 1−α. In other

words, in this model, less likely realizations that are not encoded under the highest

86

k selective encoding policy are sometimes transmitted to the receiver node. Thus,

under this operation, codewords for each one of the n possible realizations need to be

generated since every realization can be sent to the receiver node. The transmitter

assigns codeword c(xi) with length `(xi) to realization xi for i ∈ {1, 2, . . . , n}.

The transmitter node performs encoding using the following conditional prob-

abilities,

PXα(xi) =


PX(xi)
qk,α

, i = 1, 2, . . . , k

αPX(xi)
qk,α

, i = k + 1, k + 2, . . . , n,

(4.3)

where

qk,α ,
k∑
`=1

PX(x`) + α
n∑

`=k+1

PX(x`). (4.4)

4.2.3 Policy 3: Highest k Selective Encoding with an Empty Symbol

In the third policy, we consider an encoding scheme that we call the highest k selective

encoding with an empty symbol. In this encoding scheme, the transmitter always

encodes the most probable k realizations as in the previous two policies. However,

unlike the previous models, if an update packet from the remaining non-selected

portion of the realizations arrives, the transmitter sends an empty status update

denoted by xe to further inform the receiver at the expense of longer codewords for

the selected k realizations.

When an update packet arrives from the set X ′k = Xk ∪ {xe}, the transmitter

87

node encodes that update packet with the binary alphabet by using the pmf given as

{PX(x1), PX(x2), . . . , PX(xk), PX(xe)} where PX(xe) = 1− qk. Thus, in this policy,

the transmitter node assigns codewords to the most probable k realizations as well

as to the empty symbol xe. That is, the transmitter assigns codeword c(xi) with

length `(xi) to realization xi for i ∈ {1, . . . , k, e}.

In this chapter, we focus on the source coding aspect of timely status updating.

Therefore, in all these three policies, the channel between the transmitter node and

the receiver node is error-free. The transmitter node sends one bit at a unit time.

Thus, if the transmitter node sends update xi to the receiver node, this transmission

takes `(xi) units of time. That is, for realization xi, the service time of the system

is `(xi).

4.2.4 Problem Formulation

We use the age of information metric to measure the freshness of the information at

the receiver node. Let ∆(t) be the instantaneous age at the receiver node at time

t with ∆(0) = ∆0. Age at the receiver node increases linearly in time and drops to

the age of the most recently received update upon delivery of a new update packet.

We define the long term average age as,

∆ = lim
T→∞

1

T

∫ T

0

∆(t)dt. (4.5)

Our aim is to find the codeword lengths for each encoding policy described in

Sections 4.2.1, 4.2.2, and 4.2.3 that minimize the long term average age for a given

88

k such that a uniquely decodable code can be designed, i.e., the Kraft inequality is

satisfied [146].

In the following section, we find an analytical expression for the long term

average age ∆.

4.3 Average Age Analysis

As described in Section 4.2, status update packets arrive at the transmitter as a

Poisson process with rate λ. Update packets that arrive when the transmitter is

busy are blocked from entry and dropped. Thus, upon successful delivery of a packet

to the receiver, the transmitter idles until the next update packet arrives. This idle

waiting period in between two arrivals is denoted by Z which is an exponential

random variable with rate λ due to the memoryless property of exponential random

variables as update interarrivals at the transmitter are exponential with λ.

We note that in all of the encoding policies in Section 4.2, every packet from

the set Xk which successfully enters the transmitter node is always sent to the

receiver. However, a packet from the remaining least probable n − k realizations

which enters the transmitter might not be sent. Under the highest k selective

encoding policy described in Section 4.2.1, when one of the remaining n− k packets

enters the transmitter node, the transmitter node drops the packet and proceeds to

wait for the next update arrival. Under the randomized selective encoding scheme

described in Section 4.2.2, remaining n−k less likely realizations are transmitted to

the receiver node with probability α. Under the highest k selective encoding scheme

89

with an empty symbol described in Section 4.2.3, the transmitter node sends a

designated empty status update to further inform the receiver about the occurrence

of a realization from the remaining n− k realizations.

We denote the update packets which arrive when the transmitter node is idle

and reset the age as successful update packets. Since the channel is noiseless and

there is no preemption, these successful packets are received by the receiver node.

We denote Tj−1 as the time instant at which the jth successful update packet is

received. We define update cycle denoted by Yj = Tj − Tj−1 as the time in between

two successive successful update arrivals at the transmitter. Update cycle Yj consists

of a busy cycle and an idle cycle such that

Yj = Sj +Wj, (4.6)

where Sj is the service time of update j and Wj is the overall waiting time in the

jth update cycle.3

Fig. 4.3 shows a sample age evolution at the receiver. Here, Qj denotes the

area under the instantaneous age curve in update cycle j and Yj denotes the length

of the jth update cycle as defined earlier. The metric we use, long term average

age, is the average area under the age curve which is given by [10]

∆ = lim sup
n→∞

1
n

∑n
j=1Qj

1
n

∑n
j=1 Yj

=
E[Q]

E[Y]
. (4.7)

3We note that Wj can be thought of as the idle time following the service completion of update
j.

90

t

∆(t)

Tj−2 Tj−1

Sj+1

Sj

Tj Tj+1

Wj

Yj+1

Qj

Yj

Figure 4.3: Sample age evolution ∆(t) at the receiver node. Successful updates are
indexed by j. The jth successful update arrives at the server node at Tj−1. Update
cycle at the server node is the time in between two successive arrivals and is equal
to Yj = Sj +Wj = Tj − Tj−1.

By using Fig. 4.3, we find Qj = 1
2
Y 2
j + YjSj+1, where Yj is given in (4.6). Thus,

using the independence of Yj and Sj+1, (4.7) is equivalent to

∆ =
E[Y 2]

2E[Y]
+ E[S]. (4.8)

In the following section, we find the optimal real-valued codeword lengths for

the highest k selective encoding policy described in Section 4.2.1.

4.4 Optimal Codeword Design Under Selective Encoding

In this section, we consider the highest k selective encoding policy described in

Section 4.2.1. Under this way of operation, the transmitter only sends the most

91

probable k realizations from the set Xk, and drops any update packets from the

remaining n− k least probable realizations.

Proposition 4.1 characterizes the average age ∆ given in (4.8) for the encoding

scheme described in Section 4.2.1.

Proposition 4.1 Under the highest k selective encoding scheme, the average age

at the receiver node is given by

∆ =
E[L2] + 2

qkλ
E[L] + 2

(qkλ)2

2
(
E[L] + 1

qkλ

) + E[L], (4.9)

where the first and the second moments of the codeword lengths are given by E[L] =∑k
i=1 PXk(xi)`(xi) and E[L2] =

∑k
i=1 PXk(xi)`(xi)

2.

Proof: With the highest k selective encoding scheme, we note that the overall wait-

ing time W is equal to W =
∑M

`=1 Z` where Z`s are the i.i.d. exponential random

variables with rate λ as discussed earlier. Here, M is a geometric random variable

with parameter qk (defined in (4.2)) which denotes the total number of update ar-

rivals until the first update from the set Xk is observed at the transmitter node. W

is also an exponential random variable with rate λqk [147, Prob. 9.4.1]. Then, not-

ing that the service time random variable S in (4.6) is the codeword length random

variable L, we have

E[Y] = E[L] + E[W], (4.10)

E[Y 2] = E[L2] + 2E[W]E[L] + E[W 2], (4.11)

92

where E[W] = 1
qkλ

and E[W 2] = 2
(qkλ)2 . Substituting (4.10) and (4.11) in (4.8) yields

the result in (4.9).4 �

Thus, (4.9) characterizes the average age ∆ achieved at the receiver node in

terms of the first and second moments of the codeword lengths for a given pmf,

selected k, and update arrival rate λ. Next, we formulate the age minimization

problem as,

min
{`(xi)}

E[L2] + 2aE[L] + 2a2

2(E[L] + a)
+ E[L]

s.t.
k∑
i=1

2−`(xi) ≤ 1

`(xi) ∈ R+, i ∈ {1, . . . , k}, (4.12)

where the objective function is equal to the average age found in Proposition 4.1

with a = 1
λqk

, the first constraint is the Kraft inequality, and the second constraint

represents the feasibility of the codeword lengths, i.e., each codeword length should

be non-negative.

We note that the optimization problem in (4.12) is a nonlinear fractional prob-

lem. To solve this problem, we use the fractional programming method introduced

in [148].5 For that, we define the following intermediate problem, which is parame-

4Under the assumption that E[L] and E[L2] exist and are finite, we note that the average AoI
expression in (4.9) is aligned with [10, Theorem 1], as expected.

5Here, we note that in order to apply fractional programming method, the feasible set for `(xi)
needs to be compact in (4.12), i.e., 0 ≤ `(xi) ≤ C for all xi ∈ Xk where C is the upper bound
on the codeword lengths. By assuming that PXk(xi) > 0 for the encoded updates, we can always
choose the upper bound on `(xi) arbitrarily large, and thus we can implement this technique.

93

terized by θ, similar to [31] and [46]

p(θ) := min
{`(xi)}

1

2
E[L2] + E[L]2 + (2a− θ)E[L] + a2 − θa

s.t.
k∑
i=1

2−`(xi) ≤ 1

`(xi) ∈ R+, i ∈ {1, . . . , k}. (4.13)

One can show that p(θ) is decreasing in θ and the optimal solution is obtained when

p(θ) = 0 such that the optimal age for the problem in (4.12) is equal to θ, i.e.,

∆∗ = θ [148]. We define the Lagrangian [149] function for (4.13) as

L =
1

2
E[L2] + E[L]2 + (2a− θ)E[L] + a2 − θa+ β

(
k∑
i=1

2−`(xi) − 1

)
, (4.14)

where β ≥ 0. Next, we write the KKT conditions as

∂L
∂`(xi)

=PXk(xi)`(xi) + 2E[L]PXk(xi) + (2a− θ)PXk(xi)− β(log 2)2−`(xi) = 0, ∀i,

(4.15)

and the complementary slackness condition as

β

(
k∑
i=1

2−`(xi) − 1

)
= 0. (4.16)

In the following lemma, we prove that the optimal codeword lengths must

satisfy the Kraft inequality as an equality.

94

Lemma 4.1 For the age-optimal real codeword lengths, we must have
∑k

i=12−`(xi)=1.

Proof: Assume that the optimal codeword lengths satisfy
∑k

i=1 2−`(xi) < 1, which

implies that β = 0 due to (4.16). From (4.15), we have

PXk(xi)`(xi) + 2

(
k∑
j=1

PXk(xj)`(xj)

)
PXk(xi) + (2a− θ)PXk(xi) = 0, ∀i. (4.17)

Summing (4.17) over all i ∈ {1, . . . , k} we find

3E[L] + 2a− θ = 0, (4.18)

where E[L] is as in Proposition 4.1. Thus, we find `(xi) = θ−2a
3

for all i ∈

{1, 2, . . . , k}. Thus, E[L] = θ−2a
3

and E[L2] =
(
θ−2a

3

)2
so that p(θ) = − θ2

6
− θa

3
+ a2

3
.

By using p(θ) = 0, we find θ = (−1 +
√

3)a which gives `(xi) = (−3+
√

3)a
3

< 0

for i ∈ {1, 2, . . . , k}. Since the codeword lengths cannot be negative, we reach a

contradiction. Thus, the optimal codeword lengths must satisfy
∑k

i=1 2−`(xi) = 1.

�

Next, we find the optimal codeword lengths which satisfy
∑k

i=1 2−`(xi) = 1. By

summing (4.15) over all i, we obtain

E[L] =
θ + β log 2− 2a

3
. (4.19)

95

From (4.15), we obtain

−`(xi) +
β log 2

PXk(xi)
2−`(xi) = 2E[L] + 2a− θ, (4.20)

for i ∈ {1, 2, . . . , k}, which yields

β(log 2)2

PXk(xi)
2−`(xi)e

β(log 2)2

PXk
(xi)

2−`(xi)

=
β(log 2)2

PXk(xi)
2
−θ+2β log 2+2a

3 . (4.21)

Note that (4.21) is in the form of xex = y where the solution for x is equal to

x = W0(y) if y ≥ 0. Here, W0(·) denotes the principal branch of the Lambert W

function [150]. Since the right hand side of (4.21) is always non-negative, we are

only interested in W0(·) which is denoted as W (·) from now on. We find the unique

solution for `(xi) as

`(xi) = −
log
(
PXk (xi)

β(log 2)2W
(
β(log 2)2

PXk (xi)
2
−θ+2β log 2+2a

3

))
log 2

, (4.22)

for i ∈ {1, 2, . . . , k}.

In order to find the optimal codeword lengths, we solve (4.22) for a (θ, β) pair

that satisfies p(θ) = 0 and the Kraft inequality, i.e.,
∑k

i=1 2−`(xi) = 1. Starting

from an arbitrary (θ, β) pair, if p(θ) > 0 (or p(θ) < 0), we increase (or respectively

decrease) θ in the next iteration as p(θ) is a decreasing function of θ. Then, we

update β by using (4.19). We repeat this process until p(θ) = 0 and
∑k

i=1 2−`(xi) = 1.

We note that the age-optimal codeword lengths found in this section are for a

fixed k. Thus, depending on the selected k, different age performances are achieved

96

at the receiver node. In Section 4.7, we find the age-optimal k values for some given

arbitrary pmfs numerically.

Under the highest k selective encoding policy, the receiver node does not re-

ceive any update when the remaining n− k realizations occur. However, there may

be scenarios in which these remaining realizations are also of interest to the receiver

node. In the next section, we focus on this scenario and consider a randomized selec-

tion of the remaining n−k realizations so that these realizations are not completely

ignored.

4.5 Optimal Codeword Design under Randomized Selective Encod-

ing

The selective encoding scheme discussed so far is a deterministic scheme in which a

fixed number of realizations are encoded into codewords and sent to the receiver node

when realized. In this section, inspired by [80], we consider a randomized selective

encoding scheme where the transmitter encodes the most probable k realizations

with probability 1, and encodes the remaining least probable n−k realizations with

probability α and thus, neglects them with probability 1−α. Thus, this randomized

selective encoding policy strikes a balance between encoding every single realization

and the highest k selective encoding scheme discussed so far.

Theorem 4.1 determines the average age experienced by the receiver node

under the randomized highest k selective encoding scheme.

Theorem 4.1 Under the randomized highest k selective encoding scheme, the av-

97

erage age at the receiver node is given by

∆α =
E[L2] + 2

qk,αλ
E[L] + 2

(qk,αλ)2

2
(
E[L] + 1

qk,αλ

) + E[L], (4.23)

where E[L] =
∑n

i=1 PXα(xi)`(xi), and E[L2] =
∑n

i=1 PXα(xi)`(xi)
2.

The proof of Theorem 4.1 follows similarly to that of Proposition 4.1 by replacing

qk with qk,α.

Next, we formulate the age minimization problem for this case as,

min
{`(xi),α}

E[L2] + 2āE[L] + 2ā2

2(E[L] + ā)
+ E[L]

s.t.
n∑
i=1

2−`(xi) ≤ 1

`(xi) ∈ R+, i ∈ {1, . . . , n}, (4.24)

where the objective function is equal to the average age ∆α in Theorem 4.1 with

ā = 1
λqk,α

, the first and second constraints follow from the Kraft inequality and

the feasibility of the codeword lengths, i.e., each codeword length should be non-

negative.

We first solve this problem for a fixed α in this section and determine the

optimal α numerically for given arbitrary pmfs in Section 4.7. Following a similar

solution technique to that in Section 4.4, we find

`(xi) = −
log
(
PXα (xi)

β(log 2)2W
(
β(log 2)2

PXα (xi)
2
−θ+2β log 2+2ā

3

))
log 2

, (4.25)

98

for i ∈ {1, 2, . . . , n}. To determine the age-optimal codeword lengths `(xi) for

i ∈ {1, 2, . . . , n}, we then employ the algorithm described in Section 4.4.

In the following section, we consider the case where instead of sending the

remaining least probable n − k realizations randomly, the transmitter sends an

empty symbol for these updates to further inform the receiver.

4.6 Optimal Codeword Design Under Selective Encoding with an

Empty Symbol

In this section, we calculate the average age by considering two different scenar-

ios for the empty symbol. Operationally, the receiver may not reset its age when

xe is received as it is not a regular update packet and the receiver does not know

which realization occurred specifically. On the other hand, the receiver may choose

to update its age as this empty symbol carries some information, the fact that

the current realization is not one of the k encoded realizations, regarding the ob-

served random variable. Thus, in this section, we consider both of these sce-

narios6 and find the age-optimal codeword lengths for the set X ′k with the pmf

{PX(x1), PX(x2), . . . , PX(xk), PX(xe)} in each scenario.

6We note that another possible scenario may be to drop the age to an intermediate level between
not updating at all and updating fully, considering the partial information conveyed by the empty
status update. This case is not considered in this chapter.

99

4.6.1 When the Empty Symbol Does Not Reset the Age

In this way of operation, the age at the receiver is not updated when the empty

status update xe is received. Thus, sending xe incurs an additional burden since it

does not reset the age but increases the average codeword length of the selected k

realizations.

The update cycle is given by (4.6) with

W = (M − 1)`(xe) +
M∑
`=1

Z`, (4.26)

where M is defined in Section 4.4 and denotes the total number of update arrivals

until the first update from the set Xk is observed at the transmitter. In other words,

there are M − 1 deliveries of the empty status update xe in between two successive

deliveries from the encoded set Xk. As discussed earlier, Z is an exponential random

variable with rate λ and M is a geometric random variable with parameter qk. By

using the fact that the arrival and service processes are independent, i.e., S and Z

are independent, and M is independent of S and Z, in Theorem 4.2, we find the

average age when an empty status update does not reset the age.

Theorem 4.2 When the empty status update xe does not reset the age, the average

age under the highest k selective encoding scheme with an empty symbol at the

receiver is given by

∆e =
E[L2|X ′k 6= xe] + 2E[W]E[L|X ′k 6= xe] + E[W 2]

2 (E[L|X ′k 6= xe] + E[W])
+ E[L|X ′k 6= xe]. (4.27)

100

Proof: We note that the service time of a successful update is equal to its codeword

length so that we have

E[S] =E[L|X ′k 6= xe] =
k∑
i=1

PXk(xi)`(xi) (4.28)

E[S2] =E[L2|X ′k 6= xe] =
k∑
i=1

PXk(xi)`(xi)
2 (4.29)

where PXk(xi) is defined in (4.1). By using the independence of M and Z, we find

E[W] =`(xe)

(
1

qk
− 1

)
+

1

λqk
, (4.30)

E[W 2]=
(2− qk)(1− qk)

q2
k

`(xe)
2+

4(1− qk)
λq2

k

`(xe)+
2

(λqk)2
, (4.31)

where we used E[M] = 1
qk

, E[M2] = 2−qk
q2
k

, and Z has exponential distribution with

rate λ. Substituting (4.28)-(4.31) in (4.8) yields the result in (4.27). �

We note that ∆e in (4.27) depends on `(xe) only through the overall waiting

time W as the age does not change when xe is received. Next, we write the age

minimization problem as

min
{`(xi),`(xe)}

E[L2|X ′k 6= xe] + 2E[W]E[L|X ′k 6= xe] + E[W 2]

2 (E[L|X ′k 6= xe] + E[W])
+ E[L|X ′k 6= xe]

s.t. 2−`(xe) +
k∑
i=1

2−`(xi) ≤ 1

`(xi) ∈ R+, i ∈ {1, . . . , k, e}, (4.32)

where the objective function is equal to the average age expression ∆e in (4.27).

101

We note that problem (4.32) is not convex due to the middle term in the objective

function. However, when `(xe) is fixed, it is a convex problem. Thus, we first

solve the problem in (4.32) for a fixed `(xe) and then determine the optimal `(xe)

numerically in Section 4.7.

Thus, for a fixed `(xe), (4.32) becomes

min
{`(xi)}

E[L2|X ′k 6= xe] + 2E[W]E[L|X ′k 6= xe] + E[W 2]

2 (E[L|X ′k 6= xe] + E[W])
+ E[L|X ′k 6= xe]

s.t.
k∑
i=1

2−`(xi) ≤ 1− 2−c

`(xi) ∈ R+, i ∈ {1, . . . , k}, (4.33)

where `(xe) = c. Since the empty status update length `(xe) is fixed and given,

we write the Kraft inequality by subtracting the portion allocated for `(xe) in the

optimization problem in (4.33). Similar to previous sections, we define p(θ) as

p(θ) := min
{`(xi)}

1

2
E[L2|X ′k 6= xe] + E[L|X ′k 6= xe]

2 + (2â− θ)E[L|X ′k 6= xe] +
d

2
− θâ

s.t.
k∑
i=1

2−`(xi) ≤ 1− 2−c

`(xi) ∈ R+, i ∈ {1, . . . , k}, (4.34)

where â = E[W] and d = E[W 2]. For a fixed and given `(xe), the optimization

problem in (4.34) is convex. We define the Lagrangian function as

L =
1

2
E[L2|X ′k 6= xe] + E[L|X ′k 6= xe]

2 + (2â− θ)E[L|X ′k 6= xe] +
d

2
− θâ

102

+ β

(
k∑
i=1

2−`(xi) + 2−c − 1

)
, (4.35)

where β ≥ 0. The KKT conditions are

∂L
∂`(xi)

=PXk(xi)`(xi) + 2E[L|X ′k 6= xe]PXk(xi) + (2â− θ)PXk(xi)

− β(log 2)2−`(xi) = 0, (4.36)

for all i, and the complementary slackness condition is

β

(
k∑
i=1

2−`(xi) + 2−c − 1

)
= 0. (4.37)

Lemma 4.2 shows that the optimal codeword lengths satisfy
∑k

i=1 2−`(xi) =

1− 2−c.

Lemma 4.2 For the age-optimal real-valued codeword lengths, we must have
∑k

i=1 2−`(xi) =

1− 2−c.

Proof: Assume that the optimal codeword lengths satisfy
∑k

i=1 2−`(xi) < 1 − 2−c,

which implies that β = 0 due to (4.37). From (4.36), we have

PXk(xi)`(xi) + 2

(
k∑
j=1

PXk(xj)`(xj)

)
PXk(xi) + (2â− θ)PXk(xi) = 0, ∀i. (4.38)

By summing (4.38) over all i, we get E[L] = θ−2â
3

. Then, we find `(xi) = θ−2â
3

for

all i ∈ {1, . . . , k} which makes p(θ) = − θ2+2âθ+4â2−3d
6

. By using p(θ) = 0, we find

103

θ = −â +
√

3(d− â2) which gives `(xi) = −â +
√

d−â2

3
for i ∈ {1, . . . , k}. One

can show that ∂θ
∂c
> 0, i.e., θ, hence age, is an increasing function of c. Thus, in

the optimal policy, in order to minimize the average age, c must be equal to zero.

However, choosing c = 0 leads to
∑k

i=1 2−`(xi) < 1 − 2−c = 0. Since the sum on

the left cannot be negative, we reach a contradiction. Thus, the optimal codeword

lengths must satisfy
∑k

i=1 2−`(xi) = 1− 2−c. �

Thus, for the age-optimal codeword lengths, we have
∑k

i=1 2−`(xi) = 1 − 2−c

and β ≥ 0 from (4.37). By summing (4.36) over all i and using Lemma 4.2 we find

E[L|X ′k 6= xe] =
θ + β log 2(1− 2−c)− 2â

3
. (4.39)

From (4.36), we obtain

−`(xi) +
β log 2

PXk(xi)
2−`(xi) =2E[L|X ′k 6= xe] + 2â− θ. (4.40)

Thus, we find the unique solution for `(xi) as

`(xi) = −
log
(
PXk (xi)

β(log 2)2W
(
β(log 2)2

PXk (xi)
2
−θ+2β log 2(1−2−c)+2â

3

))
log 2

, (4.41)

for i ∈ {1, . . . , k}. To determine the age-optimal codeword lengths `(xi) for i ∈

{1, . . . , k}, we then employ the algorithm described in Section 4.4.

We note that the average age achieved at the receiver depends on `(xe). In

Section 4.7, we provide numerical results where we vary `(xe) over all possible values

104

and choose the one that yields the least average age for given arbitrary pmfs.

4.6.2 When the Empty Symbol Resets the Age

In this subsection, we consider the case where the empty symbol resets the age as it

carries partial status information as in [84, 87]. In other words, each update which

arrives when the transmitter idles is accepted as a successful update.

Theorem 4.3 determines the average age ∆e when the empty symbol resets the

age.

Theorem 4.3 When the empty status update xe resets the age, the average age

under the highest k selective encoding scheme at the receiver is given by

∆e =
E[L2] + 2 1

λ
E[L] + 2

λ2

2
(
E[L] + 1

λ

) + E[L]. (4.42)

Proof: Different from the previous sections, the moments for the waiting time are

equal to E[W] = 1
λ

and E[W 2] = 2
λ2 as each successful symbol is able to reset the

age. Thus, substituting E[W] and E[W 2] in (4.8) and noting that E[S] = E[L] yields

the result. �

Next, we formulate the age minimization problem as

min
{`(xi),`(xe)}

E[L2] + 2ãE[L] + 2ã2

2(E[L] + ã)
+ E[L]

s.t. 2−`(xe) +
k∑
i=1

2−`(xi) ≤ 1

`(xi) ∈ R+, i ∈ {1, . . . , k, e}, (4.43)

105

where ã = 1
λ
. We follow a similar solution technique to that given in Section 4.4 to

get

`(xi) = −
log
(

PX(xi)
β(log 2)2W

(
β(log 2)2

PX(xi)
2
−θ+2β log 2+2ã

3

))
log 2

, (4.44)

for i ∈ {1, . . . , k, e}.

The value of k affects `(xe) such that when k is close to n, the probability of the

empty symbol becomes small which leads to a longer `(xe), whereas when k is small,

the probability of the empty symbol becomes large which results in a shorter `(xe).

In Section 4.7, we numerically determine the optimal k selection which achieves the

lowest average age for a given arbitrary distribution.

4.7 Numerical Results

In this section, we provide numerical results for the optimal encoding policies that

are discussed in Sections 4.4, 4.5, and 4.6. In the first two numerical results, we

perform simulations to characterize optimal k values that minimize the average age

with the highest k selective encoding scheme in Section 4.4. For these simulations,

we use Zipf(n, s) distribution with the following pmf for n = 100, s = 0.4,

PX(xi) =
i−s∑n
j=1 j

−s , 1 ≤ i ≤ n. (4.45)

In Fig. 4.4, we show the effect of sending the most probable k realizations when

the update packets arrive at the transmitter node rather infrequently, i.e., the arrival

106

0 20 40 60 80 100

5

10

15

20

25

30

35

40

Figure 4.4: The average age values with the age-optimal codeword lengths for λ ∈
{0.3, 0.5, 1} for the pmf provided in (4.45) with the parameters n = 100, s = 0.4. We
apply the highest k selective encoding scheme and vary k from 1 to n and indicate
k that minimizes the average age for each λ with an arrow.

rate is low. We consider the cases in which the arrival rate is equal to λ = 0.3, 0.5, 1.

For each arrival rate, we plot the average age as a function of k = 1, 2, . . . , n. We

see that increasing the arrival rate reduces the average age as expected. In this case,

optimal k is not equal to 1 since the effective arrival rate is small. In other words, the

transmitter node wants to encode more updates as opposed to idly waiting for the

next update arrival when the arrivals are rather infrequent. Choosing k close to n is

also not optimal as the service times of the status updates with low probabilities are

longer which hurts the overall age performance. Indeed, in Fig. 4.4, where update

arrival rates are relatively small, it is optimal to choose k = 76 for λ = 0.3, k = 37

for λ = 0.5, and k = 15 for λ = 1.

In Fig. 4.5, we consider a similar setting as in Fig. 4.4 but here update arrival

107

0 20 40 60 80 100

2

4

6

8

10

12

14

Figure 4.5: The average age values with the age-optimal codeword lengths for λ ∈
{2, 10} for the pmf provided in (4.45) with the parameters n = 100, s = 0.4. We
apply the highest k selective encoding scheme and vary k from 1 to n and observe
that choosing k = 1 under the relatively high arrival rates (λ = 10) minimizes the
average age.

rates are larger which means that updates arrive more frequently at the transmitter

node. We observe that when λ = 2, the optimal k is still not equal to 1 (it is equal

to 6 in Fig. 4.5) as the updates are not frequent enough. However, once updates

become more available to the transmitter node, i.e., the case with λ = 10 in Fig. 4.5,

we observe that the transmitter node chooses to only encode the realization with

the highest probability, i.e., k = 1, and wait for the next update arrival instead of

encoding more and more realizations which increases the overall codeword lengths

thereby increasing the transmission times. We also observe that the average age

decreases as the update arrival rate increases as in Fig. 4.4.

We note that when the arrival rate is high as in Fig. 4.5 when λ = 10, we

observe that the age is an increasing function of k since under this arrival profile

108

0 0.2 0.4 0.6 0.8 1

9.6

9.8

10

10.2

10.4

10.6

10.8

11

Figure 4.6: The average age values with the age-optimal codeword lengths for dif-
ferent α values with the pmf provided in (4.45) with n = 100, s = 0.2 for k = 70
and λ = 0.6, 1.2 when randomized highest k selective encoding is implemented.

codeword lengths dominate the performance which in turn increase as k increases.

On the other hand, when the arrival rate is low as in λ = 2 in Fig. 4.5 and λ =

0.3, 0.5, 1 in Fig. 4.4, we observe that initially the age is a decreasing function of

k as the waiting time in between two successive encoded updates dominates the

performance. However, when we continue to increase k, we observe that both of

these opposing trends are in play and the age starts to increase with k.

For the third numerical result shown in Fig. 4.6, we simulate the randomized

highest k selective encoding policy described in Section 4.5 with Zipf distribution

in (4.45) with parameters n = 100, s = 0.2. In Fig. 4.6, we observe two different

trends depending on the update arrival frequency at the source node, even though in

either case, randomization results in a higher age at the receiver node than selective

encoding, i.e., α = 0 case. When the arrival rate is high, λ = 1.2 in Fig. 4.6, we

109

observe that age monotonically increases with α as randomization increases average

codeword length, i.e., service times. Although increasing α results in a higher age at

the receiver node, previously discarded n−k realizations can be received under this

randomized selective encoding policy. Interestingly, when the arrival rate is smaller,

λ = 0.6 in Fig. 4.6, we observe that age initially increases with α and then starts to

decrease because of the decreasing waiting times as opposed to increasing codeword

lengths such that when α is larger than 0.3, it is better to select α = 1, i.e., encoding

every realization. That is, when α grows beyond 0.3, encoding and sending every

single realization yields a lower average age.

In the fourth and fifth numerical results, we find the optimal real-valued code-

word lengths and k values that minimize the average age ∆e with the highest k

selective encoding scheme with an empty symbol, as discussed in Section 4.6. For

these numerical results, we use the following pmf

PX(xi) =


2−i, i = 1, . . . , n− 1

2−n+1, i = n.

(4.46)

In the fourth numerical result, we consider the pmf in (4.46) for n = 10 and

take λ = 5. We find the optimal codeword length of the empty symbol, `(xe), when

the empty symbol does not reset the age (see Fig. 4.7). We observe that when k is

small, the probability of sending the empty symbol becomes large so that a shorter

codeword is preferable for xe. For example, we observe in Fig. 4.7 that choosing

`(xe) = 2 when k = 2 and `(xe) = 3 when k = 4 is optimal. Similarly, when k is

110

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

Figure 4.7: Average age with the age-optimal codeword lengths with respect to `(xe)
with the pmf in (4.46) for n = 10 and λ = 5 when the empty symbol does not reset
the age. Arrows indicate the age-optimal `(xe) values. We also provide the optimal
age without sending the empty symbol for k = 2 and k = 8.

larger, a longer codeword is desirable for xe. We observe in Fig. 4.7 that choosing

`(xe) = 5 when k = 6 and `(xe) = 7 when k = 8 is optimal. Further, we note in

Fig. 4.7 that the average age increases when we send the empty symbol in the case

of the remaining n− k realizations as the empty symbol increases the total waiting

time for the next successful arrival as well as the codeword lengths for the encoded

k realizations. For smaller k values, i.e., when k = 2, this effect is significant as the

empty symbol has a large probability whereas when k is larger, i.e., when k = 8,

sending an empty status update increases the age slightly (especially when `(xe) is

high) as the empty symbol has a small probability.

In the fifth numerical result shown in Fig. 4.8, we consider the case when the

empty symbol xe resets the age. We observe that the minimum age is achieved

111

0 5 10 15 20

1.5

2

2.5

3

3.5

4

4.5

5

Figure 4.8: Average age with the age-optimal codeword lengths for varying k with
the pmf in (4.46) for n = 20 and λ = 0.5, 1, 1.5 when the empty symbol resets the
age.

when k = 1, i.e., only the most probable realization is encoded. This is because

the overall waiting time is independent of k and larger k values result in larger

codewords which in turn increases transmission times. Thus, in this case, only the

most probable realization is received separately since all others are embedded into

the empty symbol. We note that this selection results in significant information loss

at the receiver which is not captured by the age metric alone. This problem can

be addressed by introducing a distortion constraint which measures the information

loss together with the age metric which measures freshness [87].

In the sixth numerical result shown in Fig. 4.9, we compare the performance

of the age-optimal code that we developed in Section 4.4 with well-known codes

that minimize average codeword length. For this purpose, we choose Huffman code7

7We acknowledge the feedback from one of the anonymous Reviewers who suggested that we
compare our age-optimal code with Huffman codes.

112

2 3 4 5 6 7 8 9 10

4.8

5

5.2

5.4

5.6

5.8

6

6.2

(a)

2 3 4 5 6 7 8 9 10

1.8

2

2.2

2.4

2.6

2.8

3

(b)

2 3 4 5 6 7 8 9 10

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

(c)

Figure 4.9: The average age under Huffman code, Shannon∗ code and the age-
optimal code for λ = 1 and the pmf in (4.45) with the parameters n = 10, (a) s = 0,
(b) s = 3 and (c) s = 4. We vary k from 2 to n.

which takes integer-valued codeword lengths and Shannon∗ code8 which takes real-

valued codeword lengths. We use the pmf in (4.45) with n = 10 and s = 0, 3, 4 for

λ = 1.

We note that when s = 0, the distribution in (4.45) becomes a uniform dis-

tribution. We see in Fig. 4.9(a) that for the uniform distribution, the age-optimal

8We note that codeword lengths of a Shannon code are equal to d− log2(PXk(xi))e which take
integer values [146]. However, in this chapter, we neglect the ceiling operator and consider real-
valued codeword lengths as − log2(PXk(xi)) which we denote as a Shannon∗ code.

113

real-valued codeword lengths are equivalent to Shannon∗ code. This result has been

observed in [80] as well. When k is equal to a power of 2 such as k = 2, 4, 8 in

Fig. 4.9(a), Huffman code becomes the same as Shannon∗ code as the codeword

lengths of Shannon∗ code, i.e., − log2(PXk(xi)), take integer values. For the remain-

ing k values Huffman code performs worse than Shannon∗ code and the age-optimal

code. When s = 3, we see in Fig. 4.9(b) that the age-optimal code achieves a

smaller age than Huffman and Shannon∗ codes. When k < 7, we see in Fig. 4.9(b)

that Shannon∗ code achieves a lower age than Huffman code whereas when k ≥ 7,

Huffman code achieves a lower age than Shannon code. When s = 4, we see in

Fig. 4.9(c) that the age-optimal code achieves the lowest age whereas Huffman code

performs the worst.

Thus, we observe that when the distribution is close to a uniform distribution,

i.e., when s is small, Huffman and Shannon∗ codes perform similar to the age-optimal

code (when the distribution is equal to uniform distribution, we see that Shannon∗

code is equivalent to the age-optimal code). However, when the distribution is more

polarized, i.e., when s is high, we see that the age-optimal code performs significantly

better than Shannon∗ and Huffman codes.

4.8 On The Optimality of the Highest k Selective Encoding

So far, we have considered only the case where the most probable k realizations are

encoded and sent through the channel. Based on this selection, we found the average

age and determined the age-optimal k and codeword lengths. We observed that this

114

highest k selective encoding policy results in a lower average age than encoding every

realization. However, we note that there are
(
n
k

)
selections for encoding and in this

section, we discuss the optimality of the highest k selective encoding among all

these different selections. We see that the average age expression in Proposition 4.1

depends on the pmf of X which affects the optimal codeword lengths, and the

effective arrival rate. In this section, we denote the effective arrival rate as λe given

by λe = λ
∑

x∈Xs PX(x) where Xs is the set of arbitrarily selected k updates for

encoding. Here, by choosing a different set of k realizations to encode and send,

instead of the most probable k realizations, we change the effective arrival rate and

codeword lengths which in turn yields a different age performance.

When the arrival rate is relatively low, we see in Fig. 4.4 that the average age

is dominated mainly by the effective arrival rate. Thus, choosing the realizations

with the highest probabilities may be desirable as this selection achieves the highest

possible effective arrival rate. However, when the arrival rate is relatively high, the

average age is mainly determined by the moments of the codeword lengths.

In Table 4.1, we find the age-optimal update selections for given pmfs and

arrival rates for k = 5. We use the in (4.46) with n = 10 and Zipf distribution

in (4.45) with parameters n = 10, s = 0.2. In both pmfs, the updates are in

decreasing order with respect to their probabilities, i.e., PX(xi) ≥ PX(xj) if i ≤

j. When the arrival rate is relatively small, i.e., λ = 0.1 for the first pmf and

λ = 0.5 for the second pmf, we observe that choosing the realizations with the

highest probabilities for encoding is optimal as this selection increases the effective

arrival rate the most which is the dominating factor for the age performance when

115

pmf λ optimal selection λe optimal age
The pmf in (4.46) for n = 10 0.1 {1, 2, 3, 4, 5} 0.0969 12.292

0.5 {1, 2, 8, 9, 10} 0.3789 3.867
1 {1, 7, 8, 9, 10} 0.5156 2.4229

Zipf(n = 10, s = 0.2) 0.5 {1, 2, 3, 4, 5} 0.3898 5.154
1 {1, 2, 8, 9, 10} 0.6269 3.929
2 {1, 7, 8, 9, 10} 1.01 3.304

Table 4.1: Age-optimal update selection for fixed k = 5 with different arrival rates,
λ.

the arrivals are infrequent at the source node. That is, the optimal selection is

{1, 2, 3, 4, 5} when λ = 0.1 for the first pmf and when λ = 0.5 for the second pmf.

However, when the arrival rate is high, the optimal policy is to encode the realization

with the highest probability and k−1 realizations with the lowest probabilities such

that the optimal set is {1, 7, 8, 9, 10} as this selection helps to keep the moments

of codewords lengths at appropriate levels which are the dominating factors for the

age performance when the arrivals are frequent at the source node. We see that this

selection is optimal when λ = 1 for the first pmf and when λ = 2 for the second

pmf. From these, we observe that the optimal update selection strategy is to keep

the effective arrival rate as high as possible while maintaining the moments of the

codeword lengths at the desired levels. We see this structure when λ = 0.5 for the

first pmf and λ = 1 for the second pmf where the optimal selection is to choose

the most probable two and the least probable three realizations, i.e., the optimal

selection is {1, 2, 8, 9, 10}.

Thus, even though the highest k selective encoding policy improves the age

performance as shown in Section 4.7, this selection may not necessarily be optimal

for a given pmf and arrival rate among all other possible selections. In fact, in

116

Table 4.1 we observe that, the highest k selection is optimal when the arrival rate

is low. When the arrival rate is high, however, a different k selection should be

implemented to get a better age performance as shown in Table 4.1. The theoretical

analysis for the optimality of the highest k selective encoding remains as a future

work. Further, in some cases the realizations with lower probabilities may carry

important information that cannot be ignored. In these scenarios, an importance

metric can be assigned to each realization and the encoded k realizations can be

selected considering both the importance metric and the realization probabilities.

We leave this problem for future work.

4.9 Conclusion

In this chapter, we considered a status updating system in which an information

source generates independent and identically distributed update packets based on an

observed random variable X which takes n values based on a known pmf. We studied

three different encoding schemes for the transmitter node to send the realizations to

the receiver node. In all these schemes, the most probable k update realizations are

always encoded. For the remaining less probable n − k realizations, we considered

the case in which these realizations are completely discarded, i.e., the highest k

selective encoding scheme. Next, we considered the case in which the remaining

previously discarded n − k realizations are encoded into codewords randomly to

further inform the receiver, i.e., randomized selective encoding scheme. Lastly, we

examined the case where the remaining less probable realizations are mapped into an

117

empty symbol to partially inform the receiver node, i.e., highest k selective encoding

scheme with an empty symbol. We derived the average age for all these encoding

schemes and determined the age-optimal codeword lengths. Through numerical

results we showed that the proposed selective encoding scheme achieves a lower

average age than encoding all the realizations, and determined the age-optimal k

values for arbitrary pmfs. We investigated the optimality of the highest k selective

encoding and showed through simulations that it is optimal when the arrival rate is

low.

118

CHAPTER 5

Lossy Source Coding with Partial Updates: Losing Informa-

tion for Freshness

5.1 Introduction

In this chapter, we consider a communication system, shown in Fig. 5.1, where a

source generates updates as soon as requested by a transmitter. After an update is

generated by the source, the transmitter further processes it to generate a partial

update, and assigns a codeword to it using a binary alphabet. The transmitter sends

this codeword to the receiver through a noiseless channel. Thus, the transmission

time, i.e., the service time, for a partial update is equal to its codeword length. The

average service time is equal to the expected codeword length, but the average age

depends on both the first and second moments of the codeword lengths. Our goal

is to optimize the partial update generation process, and the following codebook

design, to minimize the age while maintaining a desired level of fidelity for the

partial updates.

References that are most closely related to our work are [77–79, 81, 82, 84].

Reference [77] considers age-optimal block code design and relates age to error ex-

119

source receiverXi 101 : : :processing encoder

transmitter

X̂i

Figure 5.1: An information updating system which consists of a source, a transmitter
and a receiver.

ponents. Reference [78] considers the problem of assigning codewords to updates to

minimize the average peak age. Reference [79] considers the problem of assigning

real-valued codeword lengths to updates to minimize the average age, and shows

that Shannon codes can be used with a modified pmf to achieve asymptotically op-

timal performance. Reference [81] considers the problem of selectively encoding a

given number of most probable updates while dropping the remaining least proba-

ble updates, and shows that this may yield better age performance than encoding

all of the realizations. Reference [82] considers the problem of sending an empty

status update in the selective encoding scheme of [81] to partially inform the re-

ceiver about the dropped updates, i.e., once an empty status update is received,

the receiver knows that one of the dropped updates is realized but does not know

which one specifically. Finally, reference [84] introduces the concept of partial up-

dates where both the information content and the transmission time are reduced

compared to the original updates.

In this chapter, we consider the problem of generating partial updates from the

original updates, in a way to minimize the average age, while keeping the information

content of the partial updates at a desired level. In order to quantify the information

similarity between the original updates X and the partial updates X̂, we use the

120

mutual information between X and X̂. Since I(X; X̂) = H(X̂)−H(X̂|X) = H(X̂)

as the partial updates X̂ are functions of the original updatesX, we need to minimize

the age while keeping the entropy of the partial updates, H(X̂), at a desired level.

Thus, our problem reduces to finding a pmf for the partial updates X̂ that can be

generated from the given pmf of the original updates such that it yields the desired

entropy, and the corresponding codeword lengths generated from the pmf of partial

updates that minimize the age. This problem is NP-hard as we need to search

over all partitioning of the realizations of the original updates to obtain the partial

updates. We relax the problem to optimize over all pmfs for partial updates. While

the resulting problem is non-convex, it is individually convex with respect to the

pmf given the codewords lengths and vice versa. Thus, we develop an alternating

minimization based iterative algorithm that optimizes one set of parameters (e.g.,

pmf) given the other set of parameters (e.g., codeword lengths). We investigate the

tradeoff between the average age and the conveyed information content via numerical

results.

5.2 System Model and Problem Formulation

We consider a communication system where a source generates independent and

identically distributed status updates from a set X = {x1, x2, . . . , xn} with a pmf

PX(xi) = {p1, p2, . . . , pn} which is known. Without loss of generality, we assume

that pi ≥ pj if i < j, i.e., the elements of the set X are sorted in decreasing order

with respect to their probabilities. The transmitter requests an update from the

121

source once the transmission of the previous update is completed. Thus, the source

follows a generate at will model, and the transmitter follows a zero-wait model.

After an update is received by the transmitter, it further processes the update

by using a function g(X) to generate a partial update. The function g(X) maps

each update xi ∈ X to the set of partial updates X̂ , i.e., g : X → X̂ , where

the cardinality of X̂ is k, and 1 ≤ k ≤ n. When k < n, the transmitter maps

some of the original updates from the set X to one partial update from the set X̂ .

When k = n, the transmitter sends the updates generated from the source without

processing, i.e., g(x) = x for all x ∈ X . We write the pmf of the partial updates as

PX̂(x̂i) = {p̂i|p̂i =
∑

i∈Si pi, Si = {j|g(xj) = x̂i, j = 1, . . . , n}, i = 1, . . . , k}.

For example, let us consider a source which generates an update from X =

{a, b, c, d} with pmf {0.5, 0.25, 0.125, 0.125}. The transmitter processes the updates

to generate k = 3 different partial updates. Let the set for the partial updates X̂

be {{a}, {b}, {c, d}} with corresponding pmf {0.5, 0.25, 0.25}. When update a or

b is realized at the source, the receiver fully knows the realized update once the

corresponding partial update is received. However, when update c or d is realized at

the source, the partial update {c, d} is transmitted. Once it is received, the receiver

has the partial information about the update generated at the source, i.e., it knows

that c or d is realized but does not know which one is realized specifically.

After generating the partial updates, the transmitter assigns codewords c(x̂i)

with lengths `(x̂i) to each partial update x̂i ∈ X̂ by using a binary alphabet. Let

the first and second moments of the codeword lengths be E[L] and E[L2] where

E[L] =
∑k

i=1 PX̂(x̂i)`(x̂i) and E[L2] =
∑k

i=1 PX̂(x̂i)`(x̂i)
2. We assume that the

122

channel between the transmitter and the receiver is noiseless. Thus, if update x̂i is

transmitted, it takes `(x̂i) units of time to deliver this partial update to the receiver,

i.e., `(x̂i) is the system service time for partial update i.

In order to quantify the information retained by the partial updates, we use

mutual information I(X; X̂) = H(X̂)−H(X̂|X). We consider AoI to quantify the

freshness of the information at the receiver. Let a(t) be the instantaneous age at

time t, with a(0) = 0. When there is no update, the age at the receiver increases

linearly over time. When an update is received, the age at the receiver reduces to

the age of the latest received update. Let ∆T be the average AoI in the time interval

[0, T], which is given as

∆T =
1

T

∫ T

0

a(t)dt, (5.1)

and let ∆ be the long term average AoI, i.e., ∆ = lim
T→∞

∆T . The age function evolves

as in Fig. 5.2. Given that there are m updates until time T , we write the average

AoI, ∆T , as

∆T =
1

T

(
1

2

m∑
i=1

s2
i +

m−1∑
i=1

sisi+1 +
r2

2
+
sNr

2

)
, (5.2)

where r = T −
∑m

i=1 si and si is the service time for the ith realized update. By

using similar arguments as in [2], we calculate the long term average AoI, ∆, as

∆ = lim
T→∞

∆T =
E[S2]

2E[S]
+ E[S], (5.3)

123

a(t)

t
Ts1 s2 s3 s4 r

Figure 5.2: Sample age evolution at the receiver.

where we use lim
T→∞

m
T

= 1
E[S]

, lim
m→∞

∑m
i=1 s

2
i

2m
= E[S2]

2
and lim

m→∞

∑m−1
i=1 sisi+1

m
= E[S]2. We

note that the moments of the service times are equal to the moments of the codeword

lengths, as service times here are codeword lengths, and thus, we have E[S] = E[L]

and E[S2] = E[L2].

In this chapter, for a given k, our aim is to find the partial updates and

the corresponding codeword lengths to minimize the average age while satisfying

the constraints on the mutual information between the original and the partial

updates, i.e., I(X; X̂) = β where β is the desired level of mutual information,

and the feasibility of the codeword lengths expressed by Kraft’s inequality, i.e.,∑k
i=1 2−`(x̂i) ≤ 1. Therefore, we write the optimization problem as

min
{p̂i,`(x̂i)}

∆

s.t. I(X; X̂) = β

124

k∑
i=1

2−`(x̂i) ≤ 1

`(x̂i) ∈ Z+, i ∈ {1, . . . , k}. (5.4)

We study the optimization problem in (5.4) in the next section.

5.3 The Optimal Solution

In this section, we solve a relaxed version of the problem in (5.4) where we allow

codeword lengths to be real-valued. We need to find the age-optimal pmf for the

partial updates and the corresponding codeword lengths. We note that the con-

straint on the mutual information in (5.4), I(X; X̂) = β, is equivalent to H(X̂) = β

since I(X; X̂) = H(X̂)−H(X̂|X) and H(X̂|X) = 0. Thus, using the age expression

in (5.3), the relaxed optimization problem becomes,

min
{p̂i,`(x̂i)}

E[L2]

2E[L]
+ E[L]

s.t. H(X̂) = β

k∑
i=1

2−`(x̂i) ≤ 1

`(x̂i) ∈ R+, i ∈ {1, . . . , k}. (5.5)

Note that in order to solve the optimization problem in (5.5), we need to

find a partition of the original updates that produces the age-optimal pmf for the

partial updates and the corresponding optimal real-valued codeword lengths. For

125

a given pmf, p̂i, we obtain the age-optimal real-valued codeword lengths in Section

5.3.1.1 However, finding the optimal partition of the original updates is similar to

a bin packing problem which is a well-known combinatorial NP-hard problem [151].

Thus, the problem in (5.5) is NP-hard and the optimal solution can be found by

searching over all possible partitions.

In order to progress on the problem analytically, we relax the pmf constraint,

and allow all possible pmfs for the partial updates. Note that originally the pmfs

are limited only to the pmfs that can be generated from the partitions of n original

updates to k partial updates; here, we allow all valid pmfs. Thus, we write the

further relaxed problem as

min
{p̂i,`(x̂i)}

E[L2]

2E[L]
+ E[L]

s.t. H(X̂) = β

k∑
i=1

2−`(x̂i) ≤ 1

k∑
i=1

p̂i = 1

p̂i ≥ 0, `(x̂i) ∈ R+, i ∈ {1, . . . , k}. (5.6)

Next, we define p(λ) for the problem in (5.6) as

p(λ) = min
{p̂i,`(x̂i)}

E[L2]

2
+ E[L]2 − λE[L]

1We note that finding the age-optimal codeword lengths has been considered in [79]. Even
though this is not our main contribution, we solve this problem here for completeness, and present
an alternative technique to [79].

126

s.t. H(X̂) = β

k∑
i=1

2−`(x̂i) ≤ 1

k∑
i=1

p̂i = 1

p̂i ≥ 0, `(x̂i) ∈ R+, i ∈ {1, . . . , k}. (5.7)

This approach was introduced in [148] and has been used in [31,46]. One can show

that p(λ) is a decreasing function of λ and the optimal solution is obtained when

p(λ) = 0. The optimal age for the problem in (5.7) is equal to λ, i.e., ∆∗ = λ.

We introduce the Lagrangian function [149] for (5.7) as

L =
E[L2]

2
+ E[L]2 − λE[L] + θ

(
k∑
i=1

2−`(x̂i) − 1

)
+ γ

(
k∑
i=1

p̂i log p̂i + β

)

+ σ

(
k∑
i=1

p̂i − 1

)
−

k∑
i=1

νip̂i −
k∑
i=1

µi`(x̂i), (5.8)

where θ ≥ 0, νi ≥ 0, µi ≥ 0, and γ and σ can be anything. Next, we write the KKT

conditions as

∂L
∂`(x̂i)

=p̂i`(x̂i) + 2p̂iE[L]− λpi − θ(log 2)2−`(x̂i) − µi = 0, (5.9)

∂L
∂p̂i

=
1

2
`(x̂i)

2 + 2`(x̂i)E[L]− λ`(x̂i) + γ

(
log p̂i +

1

log 2

)
+ σ − νi = 0, (5.10)

127

for all i. The complementary slackness conditions are

θ

(
k∑
i=1

2−`(x̂i) − 1

)
= 0, (5.11)

γ

(
k∑
i=1

p̂i log p̂i + β

)
= 0, (5.12)

σ

(
k∑
i=1

p̂i − 1

)
= 0, (5.13)

νip̂i = 0, (5.14)

µi`(x̂i) = 0. (5.15)

For the partial updates with p̂i = 0, we assign `(x̂i) = ∞ as these updates

never realize and we reserve the Kraft inequality for the updates with strictly positive

probabilities. For the partial updates with p̂i > 0, we have νi = 0 from (5.14). As

entropy constraint β > 0, we need at least two updates with p̂i > 0. For each p̂i > 0,

we have `(x̂i) > 0. Otherwise, if we have `(x̂i) = 0 for an update with p̂i > 0, other

codeword lengths with non-zero probability have infinite lengths due to the Kraft

inequality which clearly cannot be the optimal solution. Thus, we have `(x̂i) > 0

which implies µi = 0.

We note that the optimization problem in (5.7) is not convex as p̂is and `(x̂i)s

appear as multiplicative terms. However, for a given proper p̂i, the problem in (5.7)

is convex with respect to the codeword lengths `(x̂i). Similarly, for a given `(x̂i), the

problem in (5.7) is convex with respect to p̂i. We apply the alternating minimization

method (see e.g., [152–155]) to find (p̂i, `(x̂i)) such that (5.9) and (5.10) are satisfied

for all i. Starting with an initial pmf p̂i, we find the optimum real-valued codeword

128

lengths `(x̂i) for the initial pmf p̂i. Then, for given codeword lengths `(x̂i), we find

the pmf that is proper, i.e.,
∑k

i=1 p̂i = 1 and satisfies the entropy condition, i.e.,∑k
i=1 p̂i log p̂i + β = 0. We repeat these steps until the KKT conditions in (5.9) and

(5.10) are satisfied.

In Section 5.3.1, we solve for optimum `(x̂i) for given p̂i; in Section 5.3.2,

we solve for optimum p̂i for given `(x̂i); and in Section 5.3.3, we give the iterative

algorithm.

5.3.1 Age-Optimal Codeword Lengths for a Given PMF

In this section, we find the age-optimal real-valued codeword lengths for a given pmf

which satisfy (5.9). First, we show that for a given pmf, the age-optimal codeword

lengths should satisfy the Kraft inequality with equality.

Lemma 5.1 For the age-optimal real-valued codeword lengths, we have
∑k

i=12
−`(̂xi)=1.

Proof: Let us assume, for contradiction, that there exist optimal codeword lengths

such that
∑k

i=1 2−`(x̂i) < 1. Then, θ = 0 due to (5.11). From (5.9), we have

p̂i`(x̂i) + 2p̂iE[L]− λpi = 0, ∀i. (5.16)

By summing over all i, we obtain E[L] = λ
3
. Then, we solve `(x̂i) = λ

3
for all i,

which means p(λ) = −λ2

9
. By equating p(λ) to zero, we obtain the optimal solution

as λ = 0, which implies `(x̂i) = 0 for all i, which clearly cannot be a solution.

Thus, we reach a contradiction, and the age-optimal codeword lengths must satisfy

129

∑k
i=1 2−`(x̂i) = 1. �

Due to Lemma 5.1, we have
∑k

i=1 2−`(x̂i) = 1 and θ ≥ 0. By summing (5.9)

over all i, we obtain E[L] as

E[L] =
λ+ θ log 2

3
. (5.17)

We rewrite (5.9), which is,

−`(x̂i) +
θ log 2

p̂i
2−`(x̂i) = 2E[L]− λ (5.18)

slightly differently as

θ(log 2)2

p̂i
2−`(x̂i)e

θ(log 2)2

p̂i
2−`(x̂i)

=
θ(log 2)2

p̂i
22E[L]−λ. (5.19)

Note that (5.19) has the form of xex = y for which the solution for x is equal

to x = W (y) if y ≥ 0, where W (·) is the principle branch of the Lambert W

function [150]. Using this, we find the unique solution for `(x̂i) as

`(x̂i) =

(
λ− 2θ log 2

3

)
+

1

log 2
W

(
θ(log 2)2

p̂i
2
−λ+2θ log 2

3

)
. (5.20)

We note that `(x̂i) in (5.20) has two unknowns in it, θ and λ. In order to

find the optimal codeword lengths, we find the (λ, θ) pair that satisfies p(λ) = 0

and
∑k

i=1 2−`(x̂i) = 1. Starting from an initial (λ, θ) pair, if p(λ) > 0 (or p(λ) < 0),

we increase (or respectively decrease) λ in the next iteration as p(λ) decreases in

130

λ. Next, we update θ by using (5.17). We repeat these steps until p(λ) = 0 and∑k
i=1 2−`(x̂i) = 1.

5.3.2 Age-Optimal PMF for Given Codeword Lengths

In this section, we find the age-optimal pmf for given codeword lengths. For this

case, we solve p̂i as

p̂i = 2
− 1

2 `(x̂i)
2−2E[L]`(x̂i)+λ`(x̂i)−σ

γ
− 1

log 2 . (5.21)

In order to find the pmf for the partial updates, we solve (5.21) for a (γ, σ) pair that

satisfies the entropy constraint H(X̂) = β and
∑k

i=1 p̂i = 1. Starting from an initial

γ, if H(X̂) > β (or H(X̂) < β), we increase (or respectively decrease) γ in the next

iteration. Next, we update σ = γ
log 2

(logR− 1) whereR =
∑k

i=1 2
− 1

2 `(x̂i)
2−2E[L]`(x̂i)+λ`(x̂i)

γ

to ensure
∑k

i=1 p̂i = 1. We repeat these steps until H(X̂) = β and
∑k

i=1 p̂i = 1.

5.3.3 The Overall Solution

Using an alternating minimization method [152–155], starting from an arbitrary pmf,

we first find the age-optimal real-valued codeword lengths by following Section 5.3.1,

and then update the pmf by following Section 5.3.2. We repeat this procedure until

the first order optimality conditions in (5.9) and (5.10) are satisfied. Since the

overall optimization problem in (5.7) is not convex, the solution obtained from this

iterative alternating minimization algorithm may not be globally optimal.

Finally, recall that, in (5.7) and in Section 5.3.2, we solve for the pmf in an

131

unconstrained manner. However, this k-point pmf must be such that it can be

obtained from the original given n-point pmf by combining realizations. To solve

the problem in (5.5) optimally, we need to search over all possible partitions of the

original updates to generate the pmf for the partial updates, which is NP-hard.

Instead, in order to solve this problem practically, especially for large n, we apply

the proposed alternating minimization technique, which finds a proper pmf and the

age-optimal codeword lengths. We then combine updates greedily to find a partition

of the original updates that yields a pmf that approximates the solution obtained

by the alternating minimization technique.

5.4 Numerical Results

We use Zipf(s, n) as the pmf for the original updates,

PX(xi) =
i−s∑n
j=1 j

−s , i = 1, 2, . . . , n. (5.22)

For the first example, we use Zipf(0.5, 8). We vary the entropy constraint β and

find the corresponding optimum age with real-valued codeword lengths by searching

over all possible non-empty partitions of the updates for k ∈ {3, 4, 5, 6}. We see in

Fig. 5.3 that increasing the entropy constraint usually increases the average age.

This is similar to classical compression [146] where entropy limits the minimum

achievable average codeword length, i.e., H(X̂) ≤ E[L]. Further, we observe in

Fig. 5.3 that decreasing k achieves a lower average age for a given entropy constraint

β. For example, when the entropy constraint is β = 1.52, the optimal age is equal

132

0.5 1 1.5 2 2.5

1.5

2

2.5

3

3.5

4

Figure 5.3: The optimum average age with real-valued codeword lengths when X is
distributed with Zipf(0.5, 8) for k ∈ {3, 4, 5, 6}.

to 2.54 for k = 4, whereas the optimal age is equal to 2.32 for k = 3.

For the second example, we again use Zipf(0.5, 8) as the pmf for X. We find the

age-optimal pmf in Fig. 5.4(a) and the corresponding age-optimal real-valued code-

word lengths in Fig. 5.4(b) with respect to entropy constraint β ∈ {0.82, 1.43, 1.58}

when k = 3. We see that when the entropy constraint is relatively low, i.e., when

β = 0.82, the age optimal partial updates are X̂ = {{x1, x2, · · · , x6}, x7, x8}. In

other words, the most probable six updates are mapped to one partial update,

and the remaining two least probable updates are mapped to the other two par-

tial updates. Since the most probable partial update has the smallest codeword

length and realizes most frequently, the system achieves the lowest age compared to

other possible partitions. When the entropy constraint is relatively high, i.e., when

β = 1.43 and β = 1.58, we see in Fig. 5.4(a) that the optimum partial updates are

133

1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

1 2 3

0

0.5

1

1.5

2

2.5

(b)

Figure 5.4: We find (a) the age-optimal pmf and (b) the corresponding age-optimal
real-valued codeword lengths for k = 3 with respect to the entropy constraints
β ∈ {0.82, 1.43, 1.58} for an X with Zipf(0.5, 8) distribution.

X̂ = {{x2, x4, x6, x8}, {x1, x5, x7}, x3} and X̂ = {{x2, x6, x8}, {x2, x3, x7}, {x1, x5}},

respectively. Since entropy is a concave function of the pmf, when the entropy con-

straint is large, the optimum pmf for the partial updates gets closer to a uniform

distribution. Thus, age-optimal partition policy strikes a balance between making

some partial updates more probable and maintaining the entropy constraint.

In the first two examples, we used exhaustive search over partitions to obtain

pmfs p̂, and then for each pmf, we found the age-optimal codeword lengths using

Section 5.3.1. For the third example, we use the proposed alternating minimization

algorithm to find the pmf and the corresponding age-optimal codeword lengths which

satisfy the first order optimality conditions in (5.9) and (5.10) for k = 10. We use the

same initial pmf PX̂(x̂i) = {0.42, 0.32, 0.13, 0.1, 0.02, 0.007, 0.002, 0.0006, 0.00035,

0.00005} for different entropy constraints. When the entropy constraint is relatively

low, i.e., when β = 1.6, we see in Fig. 5.5(a) that the average age initially reduces

134

5 10 15 20

2

2.5

3

3.5

4

4.5

5

(a)

5 10 15 20

1.5

2

2.5

3

(b)

Figure 5.5: We use the proposed alternating minimization method to find the age-
optimal pmf and the corresponding age-optimal real-valued codeword lengths for
k = 10 with respect to the entropy constraints β ∈ {1.6, 2.4, 3.2} starting from
the same arbitrary pmf which has initial entropy close to 2. We show (a) the age
evolution, and (b) entropy evolution, versus iteration index.

faster as the entropy reduces to the desired level 1.6. Then, the average age decreases

over the remaining iterations. We find the desired pmf as PX̂(x̂i) = {0.3329, 0.3329,

0.3327, 0.0015, 0, · · · , 0} and its corresponding age-optimal lengths `(x̂i) = {1.59,

1.59, 1.59, 7.55,∞, · · · ,∞}. We note that even though k = 10, we see that the pmf

has only five partial updates with positive probabilities. This is similar to the result

in Fig. 5.3, i.e., decreasing k achieves lower average age with the same β. Further,

the entropy in Fig. 5.5(b) remains the same after iteration two, as the algorithm

always forces entropy condition to be satisfied with equality. When β = 2.4 and

β = 3.2, the age increases initially as the entropy increases to the desired level.

After the desired entropy is achieved, the average age decreases in the remaining

steps. We find PX̂(x̂i) = {0.197, 0.197, 0.197, 0.197, 0.197, 0.015, 0, · · · , 0} and

its corresponding age-optimal lengths `(x̂i) = {2.36, 2.36, 2.36, 2.36, 2.36, 5.23,

135

∞, · · · , ∞} for β = 2.4. Further, for β = 3.2 we find PX̂(x̂i) = {0.1107, 0.1107,

0.1107, 0.1107, 0.1106, 0.1106, 0.1105, 0.1104, 0.1101, 0.005} and its corresponding

age-optimal lengths `(x̂i) = {3.18, 3.18, 3.18, 3.18, 3.181, 3.181, 3.182, 3.184, 3.188,

6.857}.

5.5 Conclusion

In this chapter, we studied the problem of generating partial updates, and finding

their optimal real-valued codeword lengths to minimize the age of information at

the receiver while maintaining a desired level of mutual information between the

original and partial updates. As the original problem is NP hard, we relaxed this

problem and proposed an alternating minimization based iterative algorithm that

generates a pmf for the partial updates, and the corresponding age-optimal real-

valued codeword length for each update. In numerical results, we observed the

trade-off between obtaining more timely updates versus getting more informative

updates at the receiver.

136

CHAPTER 6

Freshness in Cache Updating Systems

6.1 Introduction

In this chapter, we consider a cache updating system that consists of a source,

cache(s) and user(s). We start with the simplest system model with a source, a

single cache and a single end-user in Section 6.3 (and shown in Fig. 6.2); generalize

it to the case where there are multiple caches in between the source and the user in

Section 6.4 (and shown in Fig. 6.4); and further extend it to the case where there are

multiple end-users in Section 6.7 (and shown in Fig. 6.6). The models we study are

abstractions of a real-life setting shown in Fig. 6.1. Specifically, the two-hop serial

cache system considered in Section 6.3 is an abstraction for the communication

system between the cloud, macro base station and user A in Fig. 6.1; the multi-hop

serial cache system considered in Section 6.4 is an abstraction for the communication

system between the cloud, macro base station, small-cell base station and user B in

Fig. 6.1 (for a three-hop system); and the multi-access caching system considered

in Section 6.7 is an abstraction for the communication system between the cloud,

macro base station, small-cell base station and users C and D in Fig. 6.1. Example

137

cloud

Figure 6.1: A cache updating system consisting of a cloud (the source), a macro base
station (the first cache), a small-cell base station (the second cache), and users. The
files at the source are updated with known rates. The first cache always obtains
fresh files from the source. However, depending on the file status at the first cache,
the second cache may not be able to obtain a fresh file all the time; the same is true
for the users as well. We consider end-to-end freshness at the users.

deployment scenarios for hierarchical caching systems connected wirelessly can be

found in 5G-enabled vehicular networks where self-sustaining wirelessly connected

caching stations are placed to enhance vehicular network capacity [156].

In all these system models, the source keeps the freshest version of all the

files which are updated with known rates λi. The cache downloads the files from

the source and stores the latest downloaded versions of these files. When the cache

downloads a file from the source, the file at the cache becomes fresh. After that,

either the user gets the fresh file from the cache or the file at the cache becomes

outdated due to a file update at the source. Thus, depending on the file status at

138

the cache, the user may get a fresh or an outdated file. For all these system models,

we derive analytical expressions for the information freshness at the end-users, and

determine the updating frequencies for the intermediate caches and the end-users

for maximum freshness.

References that are most closely related to our work are [28,93]. Reference [28]

studies the problem of finding optimal crawl rates to keep the information in a

search engine fresh while maintaining the constraints on crawl rates imposed by the

websites and also the total crawl rate constraint of the search engine. Even though

the freshness metric used in [28] is similar to ours, the problem settings are different

where we develop a general freshness expression for a multi-hop multi-user caching

system, which differentiates our overall work from [28]. Reference [93] considers a

similar model to ours where a resource constrained remote server wants to keep the

items at a local cache as fresh as possible. Reference [93] shows that the update

rates of the files should be chosen proportional to the square roots of their popularity

indices. Different from [93] where the freshness of the local cache is considered, we

consider the freshness at the user which is connected to the source via a single

cache or multiple caches. Thus, our system model can be thought of as an extended

version of the one-hop model in [93]. However, our freshness metric is different than

the traditional age metric used in [93], and hence, the overall work in this chapter

is distinct compared to [93].

In this chapter, we first consider a system where there is a source, a cache

and a user (Fig. 6.2). We find an analytical expression for the average freshness of

the files at the user. We then generalize our result to find the average freshness for

139

source cache user

1 2 n

λ1 λ2 λn c1 c2 cn u1 u2 un

ci ui

1 2 n 1 2 n

Figure 6.2: A cache updating system which consists of a source, a cache and a user.
The ith file at the source is updated with rate λi, the cache requests updates for
the ith file from the source with rate ci, and the user requests updates for the ith
file from the cache with rate ui.

the end-user when multiple caches are placed in between the source and the user

(Fig. 6.4). We impose total update rate constraints for the caches and also for the

user due to limited nature of resources. Our aim is to find the update rates for the

cache(s) and also for the user such that the total freshness of the files at the user

is maximized. We find that the average freshness of the user is a concave function

of the update rates of the caches and of the user individually, but not jointly. We

provide an alternating maximization based solution where the update rates of the

user (resp. of the cache) are optimized for a given set of update rates of the cache

(resp. of the user). We observe that for a given set of parameters, such as update

rates of the user, the optimal rate allocation policy for the other set of parameters,

such as update rates at the caches, is a threshold policy, where the files that are

updated frequently at the source may not be updated by the corresponding entity.

Finally, we consider a system where multiple users are connected to a single cache

(Fig. 6.6) and find update rates for the cache and for the users to maximize the

total freshness over all users.

140

6.2 System Model, Freshness Function and Problem Formulation

We consider a cache updating system where there is an information source, a cache

and a user as shown in Fig. 6.2. The information source keeps the freshest version

of n files where the ith file is updated with exponential inter-arrival times with rate

λi. The file updates at the source are independent of each other. A cache which is

capable of storing the latest downloaded versions of all files gets the fresh files from

the source. The channel between the source and the cache is assumed to be perfect

and the transmission times are negligible, which is possible if the distance between

the source and the cache and/or the file sizes are relatively small, as in [37,38,40–48].

Thus, if the cache requests an update for the ith file, it receives the file from the

source right away. The inter-update request times of the cache for the ith file are

exponential with rate ci. The cache is subject to a total update rate constraint as

in [93] as it is resource-constrained, i.e.,
∑n

i=1 ci ≤ C.1 The user requests the latest

versions of the files stored in the cache. The inter-update request times of the user

for the ith file are exponential with rate ui. The channel between the user and

the cache is also assumed to be perfect and the transmission times are negligible.

Similarly, there is a total update rate constraint for the user, i.e.,
∑n

i=1 ui ≤ U .

We note that each file at the source is always fresh. However, when a file is

updated at the source, the stored versions of the same file at the cache and at the

user become outdated. When the cache gets an update for an outdated file, the

1We note that in practical systems, the cache’s frequent update requests from the source can
cause network congestion problems. Even though we impose the total update rate constraint C
due to the cache’s limited resources, we can also imagine it to be imposed by the source in order
to avoid network congestion problems.

141

fc(i; t)

t

Tc(i; 1) Tc(i; 2) Tc(i; 3)

Ic(i; 1) Ic(i; 2) Ic(i; 3)

update
arrival

update
request

Wc(i; 1) Wc(i; 2)

(a)

t

fu(i; t)

Tu(i; 1) Wu(i; 1)

Iu(i; 1) Iu(i; 2)

update
request

Wc(i; 1)

Tm(i; 1)

Wc(i; 2)

Tm(i; 2)

Tu(i; 2)

(b)

Figure 6.3: Sample evolution of freshness of the ith file (a) at the cache and (b)
at the user. Red circles represent the update arrivals at the source, blue squares
represent the update requests from the cache, and green filled squares represent the
update requests from the user.

updated file in the cache becomes fresh again until the next update arrival at the

source. When the user requests an update for an outdated file, it might still receive

an outdated version if the file at the cache is not fresh. We note that since the cache

and the user are unaware of the file updates at the source, they do not know whether

they have the freshest versions of the files or not. Thus, they may still request an

update even though they have the freshest version of a file.

In order to keep track of the freshness, we define the freshness function of the

ith file at the cache fc(i, t) shown in Fig. 6.3(a) as,

fc(i, t) =


1, if the ith file is fresh at time t,

0, otherwise.

(6.1)

i.e., the instantaneous freshness function is a binary function taking values of fresh,

“1”, or not fresh, “0”, at any time t. The binary freshness function [1] is different

142

than the well-known age of information metric [2]. For example, if the information

at the source does not change frequently, then the receiver may still have the fresh-

est version of the information even though it has not received an update from the

source for a while. In this case, the traditional age of information metric at the

receiver would be high indicating that the information at the receiver is stale. Since

the traditional age of information metric does not take into account the informa-

tion change rate at the source, it may not be appropriate to measure information

freshness in such systems. As the binary freshness metric compares the information

at the receiver with the information stored at the source, it can measure informa-

tion freshness at the receiver better than the traditional age of information in such

settings.

We denote file updates which replace an outdated file with the freshest version

of the file as successful updates. We define the time interval between the jth and the

(j+ 1)th successful updates for the ith file at the cache as the jth update cycle and

denote it by Ic(i, j). We denote the time duration when the ith file at the cache is

fresh during the jth update cycle as Tc(i, j). Then, we define the long term average

freshness of the ith file at the cache as

Fc(i) = lim
T→∞

1

T

∫ T

0

fc(i, t)dt. (6.2)

Let N denote the number of update cycles in the time duration T . Given that the

system is ergodic, lim
T→∞

N
T

exists and is finite. Then, similar to [1,2,10], Fc(i) is equal

143

to

Fc(i) = lim
T→∞

N

T

(
1

N

N∑
j=1

Tc(i, j)

)
=

E[Tc(i)]

E[Ic(i)]
. (6.3)

Similarly, we define fu(i, t) as the freshness function of the ith file at the user

shown in Fig. 6.3(b). Then, the long term average freshness of the ith file at the

user is equal to

Fu(i) =
E[Tu(i)]

E[Iu(i)]
. (6.4)

Finally, we define Fu as the total freshness over all files at the user as

Fu =
n∑
i=1

Fu(i). (6.5)

Our aim is to find the optimal update rates for the cache, ci, and for the user,

ui, for i = 1, . . . , n, such that the total average freshness of the user Fu is maximized

while satisfying the constraints on the total update rate for the cache,
∑n

i=1 ci ≤ C,

and for the user,
∑n

i=1 ui ≤ U . Thus, our optimization problem is,

max
{ci,ui}

Fu

s.t.
n∑
i=1

ci ≤ C

n∑
i=1

ui ≤ U

ci ≥ 0, ui ≥ 0, i = 1, . . . , n. (6.6)

144

In the following section, we find analytical expressions for the long term average

freshness of the ith file at the cache, Fc(i), and at the user, Fu(i), as a function of

the update rate at the source λi, the update rate at the cache ci, and the update

rate at the user ui. Once we find Fu(i), this will determine the objective function

of (6.6) via (6.5).

6.3 Average Freshness Analysis for a Single Cache

In this section, we consider the system model in Fig. 6.2, where there is a source,

a single cache and a user. First, we find an analytical expression for the long term

average freshness of the ith file at the cache, i.e., Fc(i) in (6.3). We note that due

to the memoryless property of the exponential distribution, Tc(i, j) which is the

time duration when the ith file at the cache is fresh during the jth update cycle

is exponentially distributed with parameter λi. Since Tc(i, j) are independent and

identically distributed (i.i.d.) over j, we drop index j, and denote a typical Tc(i, j)

as Tc(i). Thus, we have E[Tc(i)] = 1
λi

. Let Wc(i, j) be the total duration when

the ith file at the cache is outdated during the jth update cycle, i.e., Wc(i, j) =

Ic(i, j)− Tc(i, j). Note that Wc(i, j) is also equal to the time passed until the fresh

version of the ith file is obtained from the source after the file is outdated at the

cache. We denote typical random variables for Wc(i, j) and Ic(i, j) by Wc(i) and

Ic(i), respectively. As the update request times for the cache are exponentially

145

distributed with rate ci, we have E[Wc(i)] = 1
ci

. Thus, we find

E[Ic(i)] = E[Tc(i)] + E[Wc(i)] =
1

λi
+

1

ci
. (6.7)

By using (6.3), we find Fc(i) as

Fc(i) =
ci

ci + λi
. (6.8)

We note that the freshness of the ith file at the cache Fc(i) in (6.8) is an increasing

function of the cache update rate ci, but a decreasing function of the source update

rate λi.
2

Next, we find an analytical expression for the average freshness of the ith file

at the user Fu(i). Similar to E[Tc(i)], we have E[Tu(i)] = 1
λi

due to the memoryless

property of the exponential distribution, i.e., after the user gets the fresh file, the

remaining time for the next file update at the source is still exponentially distributed

with rate λi. Similarly, we denote the time duration when the ith file at the user

is outdated during the jth update cycle as Wu(i, j) which is equal to Wu(i, j) =

Iu(i, j) − Tu(i, j). In order for the user to get fresh updates from the cache, the

cache needs to get the fresh update from the source which takes Wc(i, j) time as

2We note that [1] investigates several updating policies, including fixed-order updating,
random-order updating, and purely random updating. The freshness metric with fixed-

order updating is Ffixed-order = ci
λi

(
1− e−

λi
ci

)
, with random-order updating is Frandom-order =

ci
λi

(
1− c2i

λ2
i

(
1− e−

λi
ci

)2
)

, and with purely random updating is Fpurely-random = ci
ci+λi

, as given in

(6.8). All these three functions are monotonically decreasing in λi
ci
, and have similar forms when

plotted. We adopt purely random updating in this chapter due to its simplicity, and amenability
to yield closed form expressions when optimized.

146

discussed earlier. After the file at the cache becomes fresh, either the user gets the

fresh update from the cache or the file at the source is updated, and thus the file at

the cache becomes outdated again. We denote the earliest time that one of these two

cases happens as Tm(i), i.e., Tm(i) = min{Tc(i), W̄u(i)} where W̄u(i) is the time for

the user to obtain a new update from the cache which is exponentially distributed

with rate ui. Thus, Tm(i) is also exponentially distributed with rate ui + λi. We

note that P[Tm(i) = W̄u(i)] = ui
ui+λi

and P[Tm(i) = Tc(i)] = λi
ui+λi

.

Note that if the user gets the fresh update before the file at the cache becomes

outdated which happens with probability P[Tm(i) = W̄u(i)], an update cycle of the

ith file at the user is completed and thus, fu(i, t) is equal to 1 again. However, if the

file at the source is updated before the user gets the fresh update from the cache,

then this process repeats itself, i.e., the cache initially needs to receive the fresh

update which takes another Wc(i, j) time and so on, until the user receives the fresh

update from the cache. Thus, we write Wu(i, j) as

Wu(i, j) =
K∑
k=1

Wc(i, k) + Tm(i, k), (6.9)

where K is a geometric random variable with rate ui
ui+λi

. Due to [147, Prob. 9.4.1],∑K
k=1 Wc(i, k) and

∑K
k=1 Tm(i, k) are exponentially distributed with rates uici

ui+λi
and

ui, respectively. We use Wu(i) and Iu(i) to denote the typical random variables

for Wu(i, j) and Iu(i, j), respectively. Thus, we have E[Wu(i)] = ui+λi
uici

+ 1
ui

. Since

147

E[Iu(i)] = E[Tu(i)] + E[Wu(i)], we get

E[Iu(i)] =
1

λi
+

1

ui
+
ui + λi
uici

. (6.10)

Finally, we find Fu(i) as

Fu(i) =
E[Tu(i)]

E[Iu(i)]
=

ui
ui + λi

ci
ci + λi

. (6.11)

We note that the freshness of the ith file at the user Fu(i) in (6.11) depends

not only on the update rate of the user ui and file update rate at the source λi but

also the update rate of the cache ci as the user obtains the fresh update from the

cache.3 4 We note that Fu(i) is an increasing function of ui and ci, but a decreasing

function of λi. We observe that Fu(i) is an individually concave function of ui and ci

but not jointly concave in ui and ci, as ui and ci terms appear as a multiplication in

(6.11). If the user was directly connected to the source, its freshness would be equal

to ui
ui+λi

, i.e., the first term in (6.11). However, as the user is connected to the source

3In this chapter, we assume that the channel is perfect and the transmission times are negli-
gible. We note that Fu(i) in (6.11) can be extended to a case where the transmissions are still
instantaneous but are not error free. Let pi and qi be the probabilities of successfully transmitting
the ith file for the cache and for the user, respectively. By using [68, Prob. 9.4.1], one can show
that the successful inter-update request times for the cache and for the user are exponentially
distributed with rates pici and qiui, respectively. Then, the freshness of the ith file at the user
becomes Fu(i) = qiui

qiui+λi

pici
pici+λi

. We observe that the freshness of the ith file at the user increase
with pi and qi as expected.

4Even though we neglect the transmission times, as an extension to our work, in [99], we consider
a cache updating system where the user is able to obtain uncached files directly from the source.
However, the channel between the user and the source is imperfect, and thus there is a transmission
time which is exponentially distributed with rate si. In [99], if the ith file is not cached and the
cache is able to send all the file update requests from the user to the source, then the freshness
of the ith file is equal to Fu(i) = ui

ui+λi+
uiλi
si

. Thus, we observe that Fu(i) decreases with the

transmission delays as the additional term uiλi
si

in the denominator decreases the freshness.

148

source cache 1 user

1 2 n

λ1 λ2 λn c11 c12 c1n u1 u2 un

c1i ui

1 2 n 1 2 n

cache m
cmi

cm1 cm2 cmn

1 2 n

c2i

Figure 6.4: Generalized system model where there are m serially connected caches
in between the source and the user.

via the cache, the freshness experienced by the user is equal to the multiplication

of the freshness of the cache and the freshness of the user if the user was directly

connected to the source. Note that, since ci
ci+λi

< 1, the freshness of the user when

connected to the source via a cache is smaller than the freshness it would achieve if

it was directly connected to the source.

In the following section, we find the average freshness of the caches and of the

user for the general case when there are m caches connected serially in between the

source and the user.

6.4 Average Freshness Analysis for M Caches

In this section, we consider a system where there are m caches placed in between

the source and the user, as shown in Fig. 6.4. We denote the rth cache’s update

rate for the ith file as cri. We define Ic(r, i, j) as the jth update cycle for the ith file

at cache r for r = 1, . . . ,m. Similarly, we define Tc(r, i, j) (and Wc(r, i, j)) as the

time duration when the ith file at cache r is fresh (and outdated) during the jth

update cycle, i.e., we have Ic(r, i, j) = Tc(r, i, j) +Wc(r, i, j).

Next, we find an analytical expression for the average freshness of the ith file

149

at the rth cache Fc(r, i) and at the user Fu(i). In order to obtain a fresh file at cache

r, the file at cache r − 1 needs to be fresh for r > 1. Similar to the derivation of

Fu(i) in (6.11), after cache r − 1 obtains the fresh file, either cache r gets the fresh

file from cache r− 1 or the file at the source is updated and the file in all the caches

becomes outdated. Thus, we write Wc(r, i, j) as

Wc(r, i, j) =
Kr∑
`=1

Wc(r − 1, i, `) + Tm(r, i, `), (6.12)

whereKr is a geometric random variable with rate cri
cri+λi

and Tm(r, i) = min{Tc(r, i), W̄c(r, i)}

where Tc(r, i) and W̄c(r, i) are exponentially distributed with rates λi and cri, re-

spectively. We note that Tm(r, i) is also exponentially distributed with rate cri +λi.

Then, given that Kr = k, we write E[Wc(r, i)|Kr = k] as

E[Wc(r, i)|Kr = k] = k

(
E[Wc(r − 1, i)] +

1

cri + λi

)
. (6.13)

Then, we find E[Wc(r, i)] = E [E [Wc(r, i)|Kr]] as

E[Wc(r, i)] =
cri + λi
cri

E[Wc(r − 1, i)] +
1

cri
, (6.14)

which is equal to E[Wc(1, i)] = 1
c1i

if r = 1, and to

E[Wc(r, i)] =
1

cri
+

r−1∑
`=1

1

c`i

r∏
p=`+1

cpi + λi
cpi

, r = 2, . . . ,m. (6.15)

150

Then, by using E[Ic(r, i)] = E[Tc(r, i)] + E[Wc(r, i)], we have

E[Ic(r, i)] =


1
λi

+ 1
c1i
, r = 1,(

1
λi

+ 1
c1i

)∏r
`=2

c`i+λi
c`i

, r = 2, . . . ,m.

(6.16)

Finally, we find the average freshness for the ith file at cache r as

Fc(r, i) =
E[Tc(r, i)]

E[Ic(r, i)]
=

r∏
`=1

c`i
c`i + λi

, r = 1, . . . ,m. (6.17)

Similarly, we find E[Iu(i)] as

E[Iu(i)] =

(
1

λi
+

1

c1i

)
ui + λi
ui

m∏
r=2

cri + λi
cri

. (6.18)

Then, the average freshness of the ith file at the user is

Fu(i) =
E[Tu(i)]

E[Iu(i)]
=

ui
ui + λi

m∏
r=1

cri
cri + λi

. (6.19)

Thus, we observe from (6.17) that, for the general system, the average freshness

experienced by cache r for r > 1 is equal to the multiplication of the freshness of

cache r − 1 with the freshness of cache r when cache r is directly connected to the

source. We observe from (6.19) that the same structure is valid for the freshness

of the user as well. We also note that the average freshness expression in (6.19)

reduces to the expression in (6.11) found in Section 6.3, when m = 1. Finally, as an

explicit example of the expression in (6.19), if we have m = 2 caches between the

151

source and the user, the freshness at the user is

Fu(i) =
ui

ui + λi

c1i

c1i + λi

c2i

c2i + λi
. (6.20)

In the following section, we solve the optimization problem in (6.6) for the

system with a single cache by using the freshness expression Fu(i) found in (6.11)

in Section 6.3.

6.5 Freshness Maximization for a System with a Single Cache

In this section, we consider the optimization problem in (6.6) for a system with

a single cache. Using Fu(i) in (6.11) and Fu in (6.5), we rewrite the freshness

maximization problem as

max
{ci,ui}

n∑
i=1

ui
ui + λi

ci
ci + λi

s.t.
n∑
i=1

ci ≤ C

n∑
i=1

ui ≤ U

ci ≥ 0, ui ≥ 0, i = 1, . . . , n. (6.21)

We introduce the Lagrangian function [149] for (6.21) as

L = −
n∑
i=1

ui
ui + λi

ci
ci + λi

+ β

(
n∑
i=1

ci − C

)
+ θ

(
n∑
i=1

ui − U

)
−

n∑
i=1

νici −
n∑
i=1

ηiui,

(6.22)

152

where β ≥ 0, θ ≥ 0, νi ≥ 0 and ηi ≥ 0. Then, we write the KKT conditions as

∂L
∂ci

= − ui
ui + λi

λi

(ci + λi)
2 + β − νi = 0, (6.23)

∂L
∂ui

= − ci
ci + λi

λi

(ui + λi)
2 + θ − ηi = 0, (6.24)

for all i. The complementary slackness conditions are

β

(
n∑
i=1

ci − C

)
= 0, (6.25)

θ

(
n∑
i=1

ui − U

)
= 0, (6.26)

νici = 0, (6.27)

ηiui = 0. (6.28)

The objective function in (6.21) is not jointly concave in ci and ui since cis and

uis appear as multiplicative terms in the objective function. However, for given cis,

the objective function in (6.21) is concave in ui. Similarly, for given uis, the objective

function in (6.21) is concave in ci. Thus, we apply an alternating maximization based

method [87, 152–154] to find (ci, ui) pairs such that (6.23) and (6.24) are satisfied

for all i.5

Starting with initial uis, we find the optimum update rates for the cache, cis,

such that the total update rate constraint for the cache, i.e.,
∑n

i=1 ci ≤ C, and the

5The proposed alternating maximization based method finds (ci, ui) pairs that satisfy the first
order optimality conditions, i.e., the KKT conditions in (6.23)-(6.28). We note that as the opti-
mization problem in (6.21) is not a convex optimization problem, the solutions obtained from the
alternating maximization based method are not globally optimal. Similarly, solutions obtained for
the optimization problems in (6.37) and (6.51) are locally optimal as well.

153

feasibility of the update rates, i.e., ci ≥ 0 for all i, are satisfied. Then, for given cis,

we find the optimum update rates for the user, uis, such that the total update rate

constraint for the user, i.e.,
∑n

i=1 ui ≤ U , and the feasibility of the update rates,

i.e., ui ≥ 0 for all i, are satisfied. We repeat these steps until the KKT conditions

in (6.23) and (6.24) are satisfied.

For given uis with ui > 0, we rewrite (6.23) as

(ci + λi)
2 =

1

β − νi
uiλi
ui + λi

(6.29)

Then, we find ci as

ci =
1√

β − νi

√
uiλi
ui + λi

− λi, (6.30)

for all i with ui > 0. If ci > 0, we have νi = 0 from (6.27). Thus, we have

ci =

(
1√
β

√
uiλi
ui + λi

− λi

)+

, (6.31)

for all i with ui > 0, where (x)+ = max(x, 0). Note that ci > 0 requires 1
λi

ui
ui+λi

> β

which also implies that if 1
λi

ui
ui+λi

≤ β, then we must have ci = 0. Thus, for given

uis, we see that the optimal rate allocation policy for the cache is a threshold policy

in which the optimal update rates are equal to zero when the files are updated too

154

frequently at the source, i.e., when the corresponding λis are too large.6 7

Next, we solve for uis for given cis with ci > 0. We rewrite (6.24) as

(ui + λi)
2 =

1

θ − ηi
ciλi
ci + λi

. (6.32)

Then, we find ui as

ui =
1√
θ − ηi

√
ciλi
ci + λi

− λi, (6.33)

for all i with ci > 0. If ui > 0, we have ηi = 0 from (6.28). Thus, we have

ui =

(
1√
θ

√
ciλi
ci + λi

− λi

)+

. (6.34)

Similarly, ui > 0 requires 1
λi

ci
ci+λi

> θ which implies that if 1
λi

ci
ci+λi

≤ θ, then we must

have ui = 0. Thus, for given cis, we see that the optimal rate allocation policy for

the user is also a threshold policy in which the optimal update rates are equal to zero

when the files are updated too frequently at the source, i.e., when the corresponding

λis are too large.

In the following lemma, we show that if the update rate of the cache ci (resp.

6As the stored versions of the files that change too frequently at the source become obsolete
too quickly at the user, the freshness of these files at the user will be small. That is why, instead
of updating these files, with the threshold policy, the files that change less frequently at the source
are updated more which brings higher contribution to the overall freshness at the user.

7As a result of the threshold policy, the user may not receive the fresh versions of the files
that change too frequently at the source which can be undesirable especially if obtaining the fresh
versions of some files is more important than the others. In order to address this problem, we can
introduce an importance factor for each file µi. Then, we can rewrite the overall freshness at the
user Fu in (6.5) as Fu =

∑n
i=1 µiFu(i). We note that by solving the optimization problem in (6.6)

with a freshness expression with importance factors, the important files that change too frequently
at the source may be updated by the cache and also by the user.

155

of the user ui) is equal to zero for the ith file, then the update rate of the user ui

(resp. of the cache ci) for the same file must also be equal to zero.

Lemma 6.1 In the optimal policy, if ci = 0, then we must have ui = 0; and vice

versa.

Proof: Assume for contradiction that in the optimal policy, there exist update rates

with ci = 0 and ui > 0. We note that average freshness of this file at the user is

equal to zero, i.e., Fu(i) = 0, as ci = 0. We can increase the total freshness of the

user Fu by decreasing ui to zero and increasing one of ujs with cj > 0. Thus, we

reach a contradiction and in the optimal policy, if ci = 0, we must have ui = 0. For

the update rates with ci > 0 and ui = 0, one can similarly show that if ui = 0, then

we must have ci = 0. �

In the following lemma, we show that the total update rate constraints for the

cache, i.e.,
∑n

i=1 ci ≤ C, and for the user, i.e.,
∑n

i=1 ui ≤ U , must be satisfied with

equality.

Lemma 6.2 In the optimal policy, we must have
∑n

i=1 ci = C and
∑n

i=1 ui = U .

Proof: Assume for contradiction that in the optimal policy, we have
∑n

i=1 ci < C.

As the objective function in (6.21) is an increasing function of ci, we can increase the

total freshness of the user Fu by increasing one of ci with ui > 0 until the total update

rate constraint for the cache is satisfied with equality, i.e.,
∑n

i=1 ci = C. Thus, we

reach a contradiction and in the optimal policy, we must have
∑n

i=1 ci = C. By

using a similar argument, we can also show that in the optimal policy, we must have

156

∑n
i=1 ui = U . �

In the following lemma, we identify a property of the optimal cache update

rates ci for given user update rates ui. To that end, for given uis, let us define φis

as

φi =
1

λi

ui
ui + λi

. (6.35)

This lemma will be useful for solving for ci given ui using (6.31).

Lemma 6.3 For given uis, if ci > 0 for some i, then we have cj > 0 for all j with

φj ≥ φi.

Proof: As we noted earlier, from (6.31), ci > 0 implies φi > β. Thus, if φj ≥ φi,

then we have φj > β, which further implies cj > 0. �

Next, we describe the overall solution for the single cache setting. We start

with a set of initial uis. We obtain φi from ui using (6.35). We will utilize Fig. 6.5

to describe the steps of the solution visually. We plot φi in Fig. 6.5. Note that if

ui = 0 then φi = 0, and vice versa. First, we choose ci = 0 for the files with ui = 0

due to Lemma 6.1, i.e., in Fig. 6.5, we choose c3 and c6 as zero. Next, we find the

remaining cis with ui > 0. For that, we rewrite (6.31) as

ci =
λi√
β

(√
φi −

√
β
)+

. (6.36)

Due to Lemma 6.2, in the optimal policy, we must have
∑n

i=1 ci = C. Assuming

that φi ≥ β for all i, i.e., by ignoring (·)+ in (6.31) and (6.36), we solve
∑n

i=1 ci = C

157

1

φi

2 3 4 5 6 7 8

i

β3

β2

β1

Figure 6.5: For given uis, we show φis calculated in (6.35) for n = 8.

for β. Then, we compare the smallest φi with β. If the smallest φi is larger than or

equal to β, it implies that ci > 0 for all i due to Lemma 6.3, and we have obtained

the optimal ci values for given uis. If the smallest φi is smaller than β, it implies

that the corresponding ci was negative and it must be chosen as zero. In this case,

we choose ci = 0 for the smallest φi. In the example in Fig. 6.5, if the β we found is

β1, then since φ7 < β1 we choose c7 as zero. Then, we repeat this process again until

the smallest φi among the remaining cis satisfies φi ≥ β. For example, in Fig. 6.5,

the next β found by using only indices 1, 2, 4, 5, 8 may be β2. Since φ5 < β2, we

choose c5 = 0. In the next iteration, the β found by using indices 1, 2, 4, 8 may be

β3. Since φ8 > β3, we stop the process and find ci for i = 1, 2, 4, 8 from (6.31) or

(6.36) by using β3 in Fig. 6.5. This concludes finding cis for given uis. Next, for

given cis, we find uis by following a similar procedure. We keep solving for cis for

given uis, and uis for given cis, until (ci, ui) pairs converge.

In the following section, we provide a solution for the general system with

multiple caches.

158

6.6 Freshness Maximization for the General System

In this section, we provide a solution for the general system shown in Fig. 6.4, where

there are m caches in between the source and the user. We define Cr as the total

update rate of cache r, i.e.,
∑n

i=1 cri ≤ Cr. Using Fu(i) in (6.19), we rewrite the

optimization problem in (6.6) as

max
{cri,ui}

n∑
i=1

ui
ui + λi

m∏
r=1

cri
cri + λi

s.t.
n∑
i=1

cri ≤ Cr, r = 1, . . . ,m

n∑
i=1

ui ≤ U

cri ≥ 0, ui ≥ 0, r = 1, . . . ,m, i = 1, . . . , n. (6.37)

We introduce the Lagrangian function for (6.37) as

L =−
n∑
i=1

ui
ui + λi

m∏
r=1

cri
cri + λi

+
m∑
r=1

βr

(
n∑
i=1

cri − Cr

)
+ θ

(
n∑
i=1

ui − U

)

−
m∑
r=1

n∑
i=1

νricri −
n∑
i=1

ηiui, (6.38)

where βr ≥ 0, θ ≥ 0, νri ≥ 0 and ηi ≥ 0. Then, we write the KKT conditions as

∂L
∂cri

= − ui
ui + λi

∏
`6=r

c`i
c`i + λi

λi

(cri + λi)
2 + βr − νri = 0, (6.39)

∂L
∂ui

= − λi

(ui + λi)
2

m∏
r=1

cri
cri + λi

+ θ − ηi = 0, (6.40)

159

for all r and i. The complementary slackness conditions are

βr

(
n∑
i=1

cri − Cr

)
= 0, (6.41)

θ

(
n∑
i=1

ui − U

)
= 0, (6.42)

νricri = 0, (6.43)

ηiui = 0. (6.44)

The objective function in (6.37) is not jointly concave in cri and ui. However,

for given cris, the objective function in (6.37) is concave in ui, and for a given ui and

c`is for all ` 6= r, the objective function in (6.37) is concave in cri. Thus, similar to

the solution approach in Section 6.5, we apply an alternating maximization based

method to find (c1i, . . . , cri, ui) tuples such that (6.39) and (6.40) are satisfied for all

r and i.

Starting with initial ui and c`is for ` 6= r, we find the optimum update rates for

cache r, cris, such that the total update rate constraint for the cache, i.e.,
∑n

i=1 cri ≤

Cr, and the feasibility of the update rates, i.e., cri ≥ 0 for all i, are satisfied.

We repeat this step for all r. Then, for given cris, we find the optimum update

rates for the user, uis, such that the total update rate constraint for the user, i.e.,∑n
i=1 ui ≤ U , and the feasibility of the update rates, i.e., ui ≥ 0 for all i, are satisfied.

We repeat these steps until the KKT conditions in (6.39) and (6.40) are satisfied.

160

For given uis with ui > 0, and c`i with c`i > 0, for ` 6= r, we rewrite (6.39) as

(cri + λi)
2 =

σiλi
βr − νri

, (6.45)

where σi = ui
ui+λi

∏
6̀=r

c`i
c`i+λi

. Then, we find cri as

cri =

√
σiλi

βr − νri
− λi, (6.46)

for all i with ui > 0 and c`i > 0 for ` 6= r. If cri > 0, we have νri = 0 from (6.43).

Thus, we have

cri =

(√
σiλi
βr
− λi

)+

. (6.47)

Note that cri > 0 requires σi
λi
> βr, i.e., 1

λi

ui
ui+λi

∏
` 6=r

c`i
c`i+λi

> βr which also implies

that if 1
λi

ui
ui+λi

∏
` 6=r

c`i
c`i+λi

≤ βr, then we must have cri = 0. We repeat this step for

r = 1, . . . ,m.

Next, we solve for uis for given cris for all r with cri > 0. We rewrite (6.40) as

(ui + λi)
2 =

ρiλi
θ − ηi

, (6.48)

where ρi =
∏m

r=1
cri

cri+λi
. Then, we find ui as

ui =

√
ρiλi
θ − ηi

− λi, (6.49)

161

for all i with cri > 0 for all r. If ui > 0, we have ηi = 0 from (6.44). Thus, we have

ui =

(√
ρiλi
θ
− λi

)+

. (6.50)

Similarly, ui > 0 requires ρi
λi

> θ, i.e., 1
λi

∏m
r=1

cri
cri+λi

> θ which implies that if

1
λi

∏m
r=1

cri
cri+λi

≤ θ, then we must have ui = 0. Thus, similar to the results in Section

6.5, for given cris (resp. for given uis and c`is for all ` 6= r), we observe that the

optimal rate allocation policy for the user (resp. for cache r) is a threshold policy

and the update rates for the user (resp. for cache r) are equal to zero for the files

with very large λis.

Similar to Lemma 6.1, one can show that in the optimal policy, if cri = 0 for

some r, then we must have c`i = 0 for all ` 6= r and ui = 0. Furthermore, if ui = 0

for some i, then we must have cri = 0 for all r. One can also show that the total

update rate constraints for cache r, i.e.,
∑n

i=1 cri ≤ Cr, for all r and for the user, i.e.,∑n
i=1 ui ≤ U , should be satisfied with equality as the objective function in (6.37)

is an increasing function of cri and ui. Thus, in the optimal policy, we must have∑n
i=1 cri = Cr for all r and

∑n
i=1 ui = U .

We note from (6.47) that the update rates of cache r directly depend on the

update rates of the other caches as well as the update rates of the user. Similarly,

we note from (6.50) that the update rates of the user directly depend on the update

rates of all caches. In order to find the overall solution, for given initial uis and c`i

for all ` 6= r, we choose cri = 0 for the files with ui = 0 or c`i = 0 for some `. We

solve
∑n

i=1 cri = Cr for βr and then, find cris by using (6.47) similar to the solution

162

method in Section 6.5. We repeat this step for r = 1, . . . ,m. Next, for given cris,

we find uis by following a similar procedure. We keep updating these parameters

until (c1i, . . . , cri, ui) tuples converge.

In the following section, we find rate allocations for a system with a source, a

single cache, and multiple users.

6.7 Freshness Maximization for a System with Multiple Users

In this section, we consider a system where there is a source, a single cache and d

users connected to the cache, as shown in Fig. 6.6. Our aim is to find the update

rates for the cache and for the users such that the overall freshness experienced by

the users is maximized.

Let the kth user’s update rate for the ith file be uki. Each user is subject to

a total update rate constraint as
∑n

i=1 uki ≤ Uk, for k = 1, . . . , d, and the cache

is subject to a total update rate constraint as
∑n

i=1 ci ≤ C. From Section 6.3, the

average freshness of the ith file at the kth user is Fu(k, i) =
∑n

i=1
uki

uki+λi

ci
ci+λi

. Then,

we write the freshness maximization problem as

max
{ci,uki}

d∑
k=1

n∑
i=1

uki
uki + λi

ci
ci + λi

s.t.
n∑
i=1

ci ≤ C

n∑
i=1

uki ≤ Uk, k = 1, . . . , d

ci ≥ 0, uki ≥ 0, k = 1, . . . , d, i = 1, . . . , n. (6.51)

163

source cache

user 1

1 2 n

λ1 λ2 λn c1 c2 cn

u11

u1n

ci
u2i

1 2 n

u12

user 2

u21

u2n

u22

user d

ud1

udn

ud2

u1i

udi

Figure 6.6: A cache updating system with a source, a single cache and d users.

We introduce the Lagrangian function for (6.51) as

L =−
d∑

k=1

n∑
i=1

uki
uki + λi

ci
ci + λi

+ β

(
n∑
i=1

ci − C

)
+

d∑
k=1

θk

(
n∑
i=1

uki − Uk

)

−
n∑
i=1

νici −
d∑

k=1

n∑
i=1

ηkiuki, (6.52)

where β ≥ 0, θk ≥ 0, νi ≥ 0 and ηki ≥ 0. We write the KKT conditions as

∂L
∂ci

= − λi
(ci + λi)2

d∑
k=1

uki
uki + λi

+ β − νi = 0, (6.53)

∂L
∂uki

= − λi
(uki + λi)2

ci
ci + λi

+ θk − ηki = 0, (6.54)

164

for all k and i. The complementary slackness conditions are

β

(
n∑
i=1

ci − C

)
= 0, (6.55)

θk

(
n∑
i=1

uki − Uk

)
= 0, (6.56)

νici = 0, (6.57)

ηkiuki = 0. (6.58)

The objective function in (6.51) is not jointly concave in ci and uki. However,

for given ukis, the objective function in (6.51) is concave in ci, and for given cis, the

objective function in (6.51) is jointly concave in all uki. Thus, similar to the solution

approach used in Section 6.5, we apply an alternating maximization based method

to find (ci, uki) such that (6.53) and (6.54) are satisfied for all k and i.

For given ukis, we find ci as

ci =
1√

β − νi

√√√√ d∑
k=1

ukiλi
uki + λi

− λi, (6.59)

for all i. If ci > 0, we have νi = 0 due to (6.57). Thus, we have

ci =

 1√
β

√√√√ d∑
k=1

ukiλi
uki + λi

− λi

+

. (6.60)

Similarly, the optimal rate allocation policy is a threshold based policy where if

1
λi

(∑d
k=1

uki
uki+λi

)
< β, then we have ci = 0.

165

Next, for a given ci with ci > 0, we find uki as

uki =
1√

θk − ηki

√
ciλi
ci + λi

− λi, (6.61)

for all i. If uki > 0, we have ηki = 0 due to (6.58). Thus, we have

uki =

(
1√
θk

√
ciλi
ci + λi

− λi

)+

. (6.62)

Thus, we note that the optimal rate allocation policy is a threshold policy where

if 1
λi

ci
ci+λi

< θk, then we have uki = 0. We observe that the optimal rates for the

users depend directly on λi and ci. As the update rates for the cache depend on the

update rates of all the users, update rates of the users affect each other indirectly.

We also note that in Section 6.6, where the caches are connected serially, we see

this effect as a product of the terms, i.e.,
∏m

r=1
cri

cri+λi
. In this section, as the users

are connected in parallel to a single cache, we see this effect as a summation of the

terms, i.e.,
∑d

k=1
uki

uki+λi
.

In the next section, we provide numerical results for the system with a single

cache in Section 6.5, with multiple caches in Section 6.6, and with multiple users in

Section 6.7.

166

6.8 Numerical Results

In this section, we provide five numerical results. For these results, we use the

following update arrival rates at the source

λi = bqi, i = 1, . . . , n, (6.63)

where b > 0 and 0 < q ≤ 1 such that
∑n

i=1 λi = a. Note that with the update

arrival rates at the source in (6.63), we have λi ≥ λj for i ≤ j.

In example 1, we take a = 10, q = 0.7, and n = 15 in (6.63). For this example,

we consider the system with a source, a single cache and a user. We choose the total

update rate constraint for the cache as C = 5, i.e.,
∑n

i=1 ci ≤ 5, and for the user as

U = 10, i.e.,
∑n

i=1 ui ≤ 10. We initialize the file update rates at the user as ui = U
n

for all i. We apply the alternating maximization method in Section 6.5 to find the

update rates for the cache and for the user until the KKT conditions in (6.23) and

(6.24) are satisfied. We see in Fig. 6.7(a) that the first four files which are updated

most frequently at the source are not updated by the cache and the user. As these

files change too frequently at the source, their stored versions at the user become

obsolete very quickly. In other words, updating files that change less frequently at

the source brings more contribution to the overall information freshness at the user.

The distributions of the update rates for the cache and for the user have similar

trends as the update rates increase up to the seventh file for the cache and the sixth

file for the user, and then update rates for the cache and the user decrease. Even

167

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

Figure 6.7: (a) Update rate allocation for the cache and the user for each file, and
(b) the corresponding freshness Fu(i), when U = 10 and C = 5 with the file update
rates at the source λi given in (6.63), with a = 10 and q = 0.7 for n = 15.

though the update rates of the cache and the user for the slowly changing files are

low, we see in Fig. 6.7(b) that the freshness of the slowly varying files is higher

compared to the rapidly changing files.

In example 2, we consider the same system as in example 1, and compare

the performance of the proposed updating policy which maximizes the freshness at

the user with two other baseline updating policies. As the first baseline policy, we

consider λ-proportional update policy where the update rates for the cache and for

the user are chosen as ci = λiC∑n
i=1 λi

and ui = λiU∑n
i=1 λi

for all i, respectively. With this

policy, the freshness of the ith file at the user is Fu(i) = U
U+a

C
C+a

. Thus, this update

policy may be desirable if the user wants to have the same level of freshness for

all files. As the second baseline policy, we consider λ-inverse update policy where

the update rates for the cache and for the user are given by ci = C
1
λi∑n
i=1

1
λi

and

ui = U
1
λi∑n
i=1

1
λi

for all i, respectively. The motivation for λ-inverse update policy

168

stems from the fact that updating slowly varying files at the source with higher

update rates brings more contribution to the overall freshness. In this example, we

take C = 15, U = 10, and λi in (6.63) with n = 20. In Fig. 6.8(a), we fix the

total file update rate at the source, i.e., a = 10, and vary the distribution of the file

update rate at the source by choosing 0 < q ≤ 1. We observe in Fig. 6.8(a) that

proposed update policy achieves the highest freshness compared to the considered

baseline policies. We see that the λ-proportional policy achieves a constant level of

freshness independent of the distribution of the file change rate at the source, but

this policy gives the lowest freshness compared to others. We note that when λis are

evenly distributed, i.e., when q is close to 1, we see that all three updating policies

achieve similar levels of freshness. In Fig. 6.8(b), we fix q = 0.7 and increase the

file change rate at the source, i.e., a = 1, . . . , 20. We observe in Fig. 6.8(b) that the

proposed update policy achieves the highest freshness. When the total file change

rate at the source is low, λ-proportional update policy achieves freshness close to

the proposed update policy, whereas when the total file change rate at the source is

high, λ-inverse achieves freshness close to the proposed update policy.

In example 3, we consider the same system as in examples 1 and 2 but this time

we examine the effect of file update rates at the source over the information freshness

at the user. We take λi in (6.63) with a = 2, n = 15 for q = 0.5, 0.75, 1. We note that

a smaller q corresponds to a less even (more polarized) distribution of file change

rates at the source. We choose the total update rate for the user as U = 10 and vary

the total update rate for the cache as C = 1, 1.5, . . . , 10. For each C and q values, we

initialize ui = U
n

for all i and apply the alternating maximization method proposed

169

(a) (b)

Figure 6.8: We compare the proposed update policy with the λ-proportional and the
λ-inverse updating policies when C = 15, U = 10. We use λi in (6.63) for n = 20,
(a) a = 10, and 0 < q ≤ 1 and (b) q = 0.7 and a = 1, . . . , 20.

in Section 6.5 until convergence. We see in Fig. 6.9 that when the distribution of

the change rates of the files are more polarized, i.e., when q is small, the overall

information freshness at the user is larger as the freshness contribution from the

slowly varying files can be utilized more with the more polarized distributions of

file change rates at the source. We also note that for a fixed λi distribution, the

freshness of the user increases with the total update rate at the cache C due to the

fact that the user gets fresh files more frequently from the cache as the freshness of

the files at the cache increases with C.

In example 4, we consider a system where there are two caches placed in

between the source and the user with λi as given in (6.63) with a = 10, q = 0.7,

and n = 10. We take the total update rate constraint for the user as U = 20 and,

for the second cache as C2 = 10. We initialize the update rates at the user and

at the second cache as ui = U
n

and c2i = C2

n
for all i, respectively, and apply the

170

0 2 4 6 8 10

4

6

8

10

12

14

Figure 6.9: Total freshness of the user Fu with respect to C, when λi are given in
(6.63), with a = 2 and q = 0.5, 0.75, 1 for n = 15.

alternating maximization method proposed in Section 6.6, for the total update rate

constraint for the first cache as C1 = 4, 8. We observe that the update rates for

the caches and for the user have similar trends as shown in Fig. 6.10(a) for C1 = 4

and in Fig. 6.10(b) for C1 = 8. We note that the update rates of the caches in

(6.47) depend directly on the update rates of the other caches and also of the user.

Similarly, the update rates of the user in (6.50) depend directly the update rates of

all caches. That is why even though the total update rate constraints for the second

cache and for the user remain the same in Fig. 6.10(a)-(b), we see that the update

rates at the second cache and at the user also change depending on the update rates

at the first cache. In Fig. 6.10(c), we observe that increasing the total update rate

constraint for the first cache improves the freshness of every file except the first three

files as the total update rate constraints for the caches and for the user are not high

171

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

4

(a)

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

(b)

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)

Figure 6.10: The update rates of the caches and the user when the total update rate
constraint for the user is U = 20 and, for the second cache is C2 = 10. Total update
rate constraint for the first cache is (a) C1 = 4, and (b) C1 = 8. The freshness of
the files at the user is shown in (c).

enough to update the most rapidly changing files. Furthermore, the improvement

on the freshness of the rapidly changing files is more significant than the others as

the freshness of the files at the user is a concave increasing function of c1i.

In example 5, we consider the system where there is a source, a cache and two

users connected to the cache. For this example, we use λi in (6.63) with a = 10,

q = 0.7 and n = 10. We take the total update rate constraint for the cache as

172

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

(a)

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

Figure 6.11: A system with a source, a single cache and two users: (a) The update
rates of the cache and of the users, (b) the freshness of each file at the users.

C = 10, for the first user as U1 = 5 and for the second user as U2 = 20. We initialize

the cache update rates as ci = C
n

for all i, and apply the proposed alternating

maximization based method to find (ci, u1i, u2i) that satisfy the KKT conditions

in (6.53) and (6.54). The update rates of the cache and the users are shown in

Fig. 6.11(a) where we see that even though the update rate of the third file at the

first user is equal to zero, the cache still updates the third file for the second user.

We see in Fig. 6.11(b) that the freshness of the files at the second user is higher as

the total update rate of the second user is higher compared to the first user. The

freshness difference between the users decreases for the slowly changing files at the

source.

173

6.9 Conclusion

In this chapter, we first considered a cache updating system with a source, a single

cache and a user. We found an analytical expression for the average freshness of

the files at the cache and also at the user. We generalized this setting to the case

where there are multiple caches placed in between the source and the user. Then,

we provided an alternating maximization based method to find the update rates for

the cache(s) and for the user to maximize the total freshness of the files at the user.

We observed that for a given set of update rates of the user (resp. of the cache), the

optimal rate allocation policy for the cache (resp. for the user) is a threshold policy

where the frequently changing files at the source may not be updated by the user

and also by the cache. Finally, we considered a system with multiple users refreshed

via a single cache and found update rates for the cache and the users to maximize

the overall freshness of the users.

174

CHAPTER 7

Freshness in Cache Updating Systems with Limited Storage

Capacity

7.1 Introduction

In this chapter, we consider a cache updating system that consists of a source, a

cache with limited cache (i.e., storage) capacity and a user as shown in Fig. 7.1. In

this system, the source keeps the freshest versions of all the files that are refreshed

with known rates λi. The cache gets the freshest versions of the files from the source,

but its cache capacity is limited, i.e., it can only store the freshest versions of K files

where K ≤ n. The user gets files either from the cache or from the source. If the

user gets a file from the cache, the updated file at the user might still be outdated

depending on the file status at the source. If the user gets a file directly from the

source, the received file is always fresh. However, as the channel between the user

and the source is not perfect, there is a file transmission time which decreases the

freshness at the user. Thus, in this chapter, we study the trade-off between storing

the files at the cache to decrease the file transmission times versus directly obtaining

the fresh files from the source at the expense of higher transmission times. Our aim

175

source user

1 2 n

λ1 λ2 λn u1 u2 un

ci ui

1 2 n

si

cache

c1 c2 cK

1 2 K

Figure 7.1: A cache updating system with a source, a cache and a user.

is to find the optimal caching status for each file (i.e., whether to store the file at

the cache or not) and the corresponding optimal file update rates at the cache.

References that are most closely related to our work are [93] and [101]. Ref-

erence [93] considers a model where a resource constrained remote server wants to

keep the items at a local cache as fresh as possible. Reference [93] shows that the

update rates of the files should be chosen proportional to the square roots of their

popularity indices. Different from [93] where the freshness of the local cache is

considered, we consider the freshness at the end-user. Furthermore, the freshness

metric that we use in this chapter is different than the traditional age metric used

in [93], and hence our overall work is distinct compared to [93]. In comparison to

our earlier work in [101] (also Chapter 6 in this thesis), here, we consider a cache

with limited caching capacity, and we study the trade-off between storing the files

at the cache and obtaining the files directly from the source.

In this chapter, we find an analytical expression for the average freshness of

the files at the user when the files are cached and not cached. We impose a total

update rate constraint for the cache due to limited nature of resources. We find

176

the optimal caching status for each file and the corresponding optimal file update

rates at the cache. We observe that due to binary nature of file caching status, the

optimization problem is NP-hard. However, for a given set of caching status of the

files, the problem becomes a convex optimization problem in terms of the file update

rates at the cache. For a given set of caching status of the files, the optimal rate

allocation policy at the cache is a threshold policy where the rapidly changing files at

the source may not be updated. We observe that when the total update rate of the

cache is high, storing files at the cache improves the freshness of the user. However,

when the total update rate of the cache is low, it is optimal for the user to obtain

the rapidly changing files and the files that have relatively small transmission times

directly from the source.

7.2 System Model

We consider an information updating system where there is a source, a cache and a

user as shown in Fig. 7.1. The source keeps the freshest version of n files which are

updated with exponential inter-arrival times with rate λi. The file updates at the

source are independent of each other. The cache gets fresh files from the source, but

it may store only K files where K = 1, . . . , n. We assume that the channel between

the source and the cache is perfect and the transmission times are negligible. Thus,

if the cache requests an update for a stored file, it receives the file from the source

right away. We model the inter-update request times for the ith file at the cache as

exponential with rate ci. The cache is subject to a total update rate constraint, i.e.,

177

∑n
i=1 ci ≤ C as in [93,101].

The inter-update request times of the user for the ith file are exponential with

rate ui. The channel between the user and the cache is also assumed to be perfect

and the transmission times are negligible. Thus, if the requested file is stored at the

cache, the user gets the stored file at the cache right away. If the user requests a

file which is not cached, the cache forwards the file update request from the user to

the source. Since the cache only forwards the user requests for uncached files (i.e.,

without creating requests of its own), ci > ui is not possible, and we have ci ≤ ui. For

uncached files, the file update requests at the cache are fully synchronized with the

user’s requests which means that when the user requests an update for an uncached

file, this request reaches the source immediately if the cache forwards it. Thus, for

each file update request of the user for the uncached file i, the cache forwards the

request to the source with probability pi = ci
ui

. From [147, Thm. 13.6], the effective

inter-update request times of the user for an uncached file are exponential with rates

ci. We assume that the channel between the source and the user is imperfect and

the transmission time for the ith file is exponential with rate si.

We note that each file at the source is always fresh. However, when a file is

updated at the source, the stored versions of the same file at the cache and at the

user become outdated. When the cache gets an update for an outdated file, the

updated file in the cache becomes fresh again until the next update arrival at the

source. The user gets files either from the cache or from the source. If the user gets

a file from the cache, it will receive the file update immediately, but the received file

can be outdated if the file at the cache is not fresh. If the user gets a file directly

178

t

fu(i; 0; t)

Tu(i; 0; 1) Wu(i; 0; 1)

Iu(i; 0; 1) Iu(i; 0; 2)

Tu(i; 0; 2)

W̄u(i; 0; 1) Ts(i; 0; 1)

(a)

t

fu(i; 1; t)

Tu(i; 1; 1) Wu(i; 1; 1)

Iu(i; 1; 1) Iu(i; 1; 2)

update
request

Wc(i; 1)

Tm(i; 1)

Wc(i; 2)

Tm(i; 2)

Tu(i; 1; 2)

(b)

Figure 7.2: Sample evolution of the freshness of the ith file at the user when the
ith file is (a) not cached and (b) cached. Red circles represent the update arrivals
at the source, blue squares represent the update requests from the cache, and green
filled squares represent the update requests from the user.

from the source, the received file is always fresh, but the transmission takes time.

We note that since the cache and the user are unaware of the file updates at the

source, they do not know whether they have the freshest versions of the files or

not. Thus, they may still unknowingly request an update even though they have

the freshest version of a file.

We use ki which is a binary variable to indicate the caching status of the ith

file, i.e., ki = 1 when the ith file is cached and ki = 0 when it is not cached. We

define fu(i, ki, t) as the freshness function of the ith file at the user as,

fu(i, ki, t) =


1, if the ith file is fresh at time t,

0, otherwise,

(7.1)

where the instantaneous freshness function is a binary function taking values of fresh,

“1”, or not fresh, “0”, at any time t. A sample fu(i, ki, t) is shown in Fig. 7.2(a)

179

when ki = 0 and in Fig. 7.2(b) when ki = 1.

File updates that replace an outdated version of the file with the freshest one

are denoted as successful updates. We define the time interval between the jth and

the (j + 1)th successful updates for the ith file at the user as the jth update cycle

and denote it by Iu(i, ki, j). We denote the time duration when the ith file at the

user is fresh during the jth update cycle as Tu(i, ki, j). We denote fc(i, t) as the

freshness function of the ith file at the cache. Similarly, update cycles and duration

of freshness at the cache are denoted by Ic(i, j) and Tc(i, j). Then, we denote Fu(i, 1)

(resp. Fu(i, 0)) as the long term average freshness of the ith file at the user when

the file is cached (resp. when the file is not cached), i.e., ki = 1 (resp. ki = 0).

Fu(i, ki) is equal to

Fu(i, ki) = lim
T→∞

1

T

∫ T

0

fu(i, ki, t)dt. (7.2)

Similar to [1], we have

Fu(i, ki) = lim
T→∞

N

T

(
1

N

N∑
j=1

Tu(i, ki, j)

)
=

E[Tu(i, ki)]

E[Iu(i, ki)]
,

where N is the number of update cycles in time duration T . We define the total

freshness over all files at the user Fu as

Fu =
n∑
i=1

kiFu(i, 1) + (1− ki)Fu(i, 0). (7.3)

Our aim is to find the optimal file caching status ki, and the corresponding file

180

update rates at the cache ci for i = 1, . . . , n, such that the total average freshness of

the user Fu is maximized while satisfying the constraints on the cache capacity, i.e.,∑n
i=1 ki ≤ K, the total update rate of the cache,

∑n
i=1 ci ≤ C, and the feasibility

constraints i.e., ci ≤ ui for uncached files (for files with ki = 0). Thus, our problem

is,

max
{ki,ci}

Fu

s.t.
n∑
i=1

ki ≤ K

n∑
i=1

ci ≤ C

(1− ki)ci ≤ ui, i = 1, . . . , n

ci ≥ 0, ki ∈ {0, 1}, i = 1, . . . , n. (7.4)

In the following section, we find the long term average freshness of the ith file

at the user Fu(i, ki) when the ith file is cached and when it is not cached. Once we

find Fu(i, ki), this will determine the objective function of (7.4) via (7.3).

7.3 Average Freshness Analysis

In this section, we find the long term average freshness for the ith file at the user

Fu(i, ki) for ki ∈ {0, 1}. In the following theorem, we first find the long term average

freshness of the ith file at the user when the ith file is cached.

Theorem 7.1 If the ith file is cached, the long term average freshness of the ith file

181

at the user Fu(i, 1) is equal to

Fu(i, 1) =
E[Tu(i, 1)]

E[Iu(i, 1)]
=

ui
ui + λi

ci
ci + λi

. (7.5)

The proof of the Theorem 7.1 follows from [101, Section III]. Since the user

gets fresh files more frequently from the cache for higher values of ci, the freshness

of the ith file at the user Fu(i, 1) in (7.5) increases with ci. In addition, Fu(i, 1) in

(7.5) is a concave function of ci. If the user was directly connected to the source,

freshness of the ith file at the user would be equal to ui
ui+λi

as in [101]. However, as

the user is connected to the source via the cache, the freshness experienced by the

user proportionally decreases with the freshness of the cache which is ci
ci+λi

. Note

that ci
ci+λi

< 1 for all ci.

Next, we find the long term average freshness of the ith file at the user Fu(i, 0)

when the ith file is not cached.

Theorem 7.2 If the ith file is not cached, the long term average freshness of the

ith file at the user Fu(i, 0) is equal to

Fu(i, 0) =
E[Tu(i, 0)]

E[Iu(i, 0)]
=

ci

ci + λi + ciλi
si

. (7.6)

Proof: When the ith file at the user becomes fresh, the time until the next file

update arrival at the source is still exponentially distributed with rate λi due to the

memoryless property of the exponential distribution. Thus, E[Tu(i, 0)] = 1
λi

.

After the ith file is updated at the source, the stored version of the ith file at the

182

user becomes outdated, i.e., the instantaneous freshness function fu(i, 0, t) becomes

0 again. We denote the time interval until the source gets a file update request for the

ith file after the file at the user becomes outdated as W̄u(i, 0) which is exponentially

distributed with rate ci as discussed in Section 7.2. After receiving the file update

request from the user, the source sends the ith file directly to the user. If the ith file

at the source is updated during a file transfer, then the file transfer is interrupted

and the fresh file is sent until the freshest version of the ith file is successfully

transmitted to the user. We denote the total transmission time for the ith file as

Ts(i, 0). Due to [147, Prob. 9.4.1], Ts(i, 0) is also exponentially distributed with rate

si. Thus, we have E[Ts(i, 0)] = 1
si

. We denote the time interval when the ith file

at the user is outdated during the jth update cycle as Wu(i, 0, j), i.e., Wu(i, 0, j) =

Iu(i, 0, j) − Tu(i, 0, j), which is also equal to Wu(i, 0, j) = W̄u(i, 0, j) + Ts(i, 0, j).

We denote the typical random variables for Wu(i, 0, j) and Iu(i, 0, j) as Wu(i, 0) and

Iu(i, 0), respectively. Then, we have E[Wu(i, 0)] = E[W̄u(i, 0)] + E[Ts(i, 0)] = 1
ci

+ 1
si

and

E[Iu(i, 0)] = E[Tu(i, 0)] + E[Wu(i, 0)] =
1

λi
+

1

ci
+

1

si
.

Thus, we get Fu(i, 0) in (7.6) by using Fu(i, 0) = E[Tu(i,0)]
E[Iu(i,0)]

. �

We note that Fu(i, 0) in (7.6) is an increasing function of ci and also is concave

in ci. When the user gets a file from the source directly, the received file is always

fresh, but due to the transmission time between the source and the user, the average

time that the ith file is outdated at the user increases. Thus, the freshness of the

183

ith file at the user Fu(i, 0) in (7.6) increases with si. Further, Fu(i, 1) > Fu(i, 0)

implies that ci
ci+λi

> si
ui

. In other words, if the file update rate of the ith file at the

cache ci is high enough, it is better to cache file i. However, if file i is updated too

frequently at the source, i.e., λi is too large, or file i has small transmission times,

i.e., si is too high, then it is better to get the file from the source. Thus, there is

a trade-off: If a file is stored at the cache, this enables the user to obtain the file

more quickly, but the received file might be outdated. On the other hand, if the

user gets the file directly from the source, the file will always be fresh, but the file

transmission time decreases the freshness at the user.

7.4 Freshness Maximization

In this section, we solve the optimization problem in (7.4). Using Fu(i, ki) in (7.5)

and (7.6) and Fu in (7.3), we rewrite the freshness maximization problem in (7.4)

as

max
{ki,ci}

n∑
i=1

ki
ui

ui + λi

ci
ci + λi

+ (1− ki)
ci

ci + λi + ciλi
si

s.t.
n∑
i=1

ki ≤ K

n∑
i=1

ci ≤ C

(1− ki)ci ≤ ui, i = 1, . . . , n

ci ≥ 0, ki ∈ {0, 1}, i = 1, . . . , n. (7.7)

184

In order to solve the optimization problem in (7.7), we need to determine

the optimal caching status for each file ki and find the optimal file update rates

at the cache ci. We note that the optimization problem in (7.7) is NP-hard due

to the presence of binary variables ki. However, for a given (k1, k2, . . . , kn) tuple,

(7.7) becomes a convex optimization problem in ci. Thus, the optimal solution

can be found by searching over all possible (k1, k2, . . . , kn) tuples and finding the

corresponding optimal ci values for each (k1, k2, . . . , kn) tuple.

Next, for a given set of (k1, k2, . . . , kn) values, we find the corresponding opti-

mal ci values. For that, we introduce the Lagrangian function [149] for (7.7) as

L =−
n∑
i=1

ki
ui

ui + λi

ci
ci + λi

+ (1− ki)
ci

ci + λi + ciλi
si

+ β

(
n∑
i=1

ci − C

)

+
n∑
i=1

ηi((1− ki)ci − ui)−
n∑
i=1

νici, (7.8)

where β ≥ 0, ηi ≥ 0 and νi ≥ 0. The KKT conditions are

∂L
∂ci

= − ui
ui + λi

λi

(ci + λi)
2 + β − νi = 0, (7.9)

for all i with ki = 1, and

∂L
∂ci

= − λi(
ci + λi + ciλi

si

)2 + β + ηi − νi = 0, (7.10)

185

for all i with ki = 0. Complementary slackness conditions are

β

(
n∑
i=1

ci − C

)
= 0, (7.11)

ηi((1− ki)ci − ui) = 0, (7.12)

νici = 0. (7.13)

For given kis with ki = 1, we rewrite (7.9) as

(ci + λi)
2 =

1

β − νi
uiλi
ui + λi

. (7.14)

If ci > 0, we have νi = 0 from (7.13). Thus, we have

ci =

(
1√
β

√
uiλi
ui + λi

− λi

)+

, (7.15)

for all i with ki = 1, where (x)+ = max(x, 0). Similarly, for given kis with ki = 0,

we rewrite (7.10) as

(
ci + λi +

ciλi
si

)2

=
λi

β + ηi − νi
. (7.16)

If ci > 0, we have νi = 0 from (7.13). Furthermore, if ci < ui, then we have ηi = 0

from (7.12). Otherwise, we have ci = ui and ηi ≥ 0 from (7.12). Thus, we have

ci = min

 si
si + λi

(√
λi
β
− λi

)+

, ui

 , (7.17)

186

for all i with ki = 0.

Note that ci > 0 in (7.15) requires 1
λi

ui
ui+λi

> β which also implies that if

1
λi

ui
ui+λi

≤ β, then we must have ci = 0. Similarly, ci > 0 in (7.17) requires 1
λi
> β

which also implies that if 1
λi
≤ β, then we must have ci = 0. Thus, for given kis,

we observe that the optimal rate allocation policy for the cache is a threshold policy

in which the optimal update rates are equal to zero when the file update rates λis

are too large, i.e., when the files are updated too frequently at the source. In the

optimal policy, the total update rate constraint for the cache, i.e.,
∑n

i=1 ci ≤ C,

should be satisfied with equality as the objective function in (7.7) is an increasing

function of ci.

For given kis and uis, we define φi as

φi =


1
λi

ui
ui+λi

, if ki = 1,

1
λi
, if ki = 0.

(7.18)

Similar to [101, Lemma 3], for given kis and uis, if ci > 0 for some i, then we have

cj > 0 for all j with φj ≥ φi.

Next, for a given set of kis and uis, we find the optimal cis. First, we obtain

φi from (7.18). We initially assume that ci < ui for all i with ki = 0, i.e., ci in (7.17)

is equal to si
si+λi

(√
λi
β
− λi

)+

. Then, we rewrite (7.15) and (7.17) as

ci =


λi√
β

(√
φi −

√
β
)+
, if ki = 1,

si
si+λi

λi√
β

(√
φi −

√
β
)+
, if ki = 0.

(7.19)

187

As we discussed earlier, in the optimal policy, we must have
∑n

i=1 ci = C.

Similar to the solution method in [101], we solve
∑n

i=1 ci = C for β by assuming

that φi ≥ β for all i, i.e., by ignoring (·)+ in (7.19). Then, we compare the smallest

φi with β. If the smallest φi is larger than or equal to β, it implies that ci > 0

for all i as we assumed before, and we have obtained ci values for given kis. If the

smallest φi is smaller than β, it implies that the corresponding ci was negative and

it must be chosen as zero. In this case, we choose ci = 0 for the smallest φi. Then,

we repeat this process again until the smallest φi among the remaining cis satisfies

φi ≥ β.

Finally, when we find all ci values, we go back to our initial assumption which

is ci < ui for all i with ki = 0 and check whether it holds or not. We define the

set S = {i|ci > ui, ki = 0}. If we have ci < ui for all i with ki = 0, i.e., when S

is empty, then we obtain the optimal ci values. If we have ci > ui for some i with

ki = 0, then in the optimal policy, we have ci = ui for all i ∈ S. Then, for remaining

cis with i 6∈ S, we repeat this process again with the remaining total update rate,

i.e., C −
∑

i∈S ui, until we have ci ≤ ui for all i with ki = 0.

7.5 Numerical Results

In this section, we provide two numerical results for the optimal solution obtained

in Section 7.4 for n = 8. For these results, we consider the update arrival rates at

the source λi = bqi with q = 0.7 such that
∑n

i=1 λi = 10. We take the file request

rates at the user ui = dri with r = 0.8 such that
∑n

i=1 ui = 20. Finally, we take the

188

Figure 7.3: Total freshness of the user Fu with respect to the cache capacity K when
the total cache update rate is C = 1, 4, 8.

file transmission rates at the source si = hpi with p = 1.25 such that
∑n

i=1 si = 3.

In the first example, we increase the cache capacity K from 0 to n when the

total update rate at the cache is C = 1, 4, 8. We observe in Fig. 7.3 that when the

total cache update rate is small, i.e., when C = 1, increasing the cache capacity K

does not improve the freshness of the user much, i.e., Fu stays constant for K ≥ 1.

As the total cache update rate C is too low, if a file is stored at the cache, the user

gets obsolete versions of the file most of the time. Thus, we observe that even though

the cache capacity is high, the optimal policy is to cache only one file. In this case,

the cache mostly forwards the update requests from the user to the source, i.e., the

cache behaves like a relay node. When the total cache update rate increases, i.e.,

when C = 4, we observe in Fig. 7.3 that increasing the cache capacity K increases

the user freshness up to K = 5 and does not improve it for K > 5. Similarly,

when C = 8, we observe in Fig. 7.3 that the user freshness increases with the cache

capacity. In this case, as the total cache update rate is high enough, the optimal

189

policy is to cache every file.

In the second example, we consider the same system as in the first example,

but we take K = n and find the optimal caching status for each file ki and the

corresponding file update rates at the cache ci. When C = 1, the optimal policy is

to cache only the 6th file, i.e., k6 = 1 and ki = 0 for i 6= 6. When C = 4, the optimal

caching status is ki = 1, for i = 3, 4, 5, 6, 7 and ki = 0, otherwise. Thus, we observe

that the files that change too fast at the source are not cached. Furthermore, as the

file transmission rate of the 8th file is too high, we see that the 8th file is not cached.

When C = 8, it is optimal to cache every file, i.e., ki = 1 for all i. Thus, when

the total cache update rate is high enough, the optimal policy is to cache every file

as caching helps user to avoid the transmission time between the source and the

user. However, when the total cache update rate is limited, the optimal policy is

not to cache the files that are frequently updated at the source or the files that have

smaller transmission times.

The optimal file update rate of the cache ci is shown in Fig. 7.4(a). When

C = 1, i.e., when the total cache update rate is too small, the first two files which are

updated at the source most frequently are not updated by the cache, i.e., c1 = c2 = 0.

Furthermore, we observe in Fig. 7.4(a) that the file update rates at the cache initially

increase with the file indices up to i = 6 when C = 4 and up to i = 4 when C = 8, and

then decrease for the remaining files. The freshness of the files at the user Fu(i, ki)

is shown in Fig. 7.4(b). We see in Fig. 7.4(b) that the files that change slowly at the

source have higher file freshness at the user even though the file update rates at the

cache get lower. We observe that increasing the total cache update rate C improves

190

(a) (b)

Figure 7.4: (a) Update rate allocation at the cache for each file, and (b) the corre-
sponding freshness Fu(i, ki), when C = 1, 4, 8.

the freshness of the files. In addition, we note that the freshness improvement is

higher on the rapidly changing files compared to the others.

7.6 Conclusion

In this chapter, we considered a caching system with limited storage capacity for

the cache. Here, the user can obtain the files from the cache, but the received files

can be outdated if the cache does not have the freshest version of the files at the

time of an update request. The user can also obtain the freshest files directly from

the source at the expense of an additional transmission time between the user and

the source. In this work, we determined the optimal file caching status of files, and

their corresponding age-optimal file update rates at the cache. We observed that

when the total update rate of the cache is limited, it is optimal to obtain some of the

files that change frequently at the source and have small transmission times directly

from the source, and store the remaining files at the cache.

191

CHAPTER 8

Freshness in Gossiping Networks

8.1 Introduction

In this chapter, our aim is to study information timeliness in arbitrarily connected

and structured gossip networks using the binary freshness metric. Works that are

closely related to our work are [99,101,102,131,132]. The binary freshness metric has

been studied for serially connected caching systems in [99,101] (also Chapters 6 and 7

in this thesis) and for parallel connected caching systems in [102]. References [99,101,

102] maximize information freshness at the end-nodes in caching systems by using

alternating maximization methods. Different from [99, 101, 102], in this chapter,

we employ the stochastic hybrid systems (SHS) approach and develop a general

method that enable us to characterize the binary freshness in arbitrarily connected

networks. We explore gossiping strategies among the end-nodes and study freshness

in structured gossip networks, i.e., disconnected, ring and fully connected network

topologies. Reference [131] uses the SHS approach to characterize the version age

and finds the scaling of version age in structured gossip networks. Reference [132]

improves the scaling of version age by introducing clustering to gossip networks.

192

1

2

3

4

5

6

1sourceλe

Figure 8.1: Gossip network model consisting of a source represented by the blue
node, and the users represented by the green nodes. Here, users form a ring network.
Other network topologies are shown in Fig. 8.2.

Here, we develop the binary freshness counterpart of the works [131, 132]. As the

binary freshness metric and encompassing mathematics are different than those in

version age, our work is distinct from works [131,132].

In this work, by using the SHS approach, we first provide a way to characterize

binary freshness in arbitrarily connected networks. Then, we consider binary fresh-

ness in structured gossip networks, such as disconnected, ring and fully connected

networks; see Figs. 8.1-8.2. We show that when the number of nodes becomes large,

the binary freshness of a node decreases down to 0 with rate n−1 for the disconnected

and ring networks, but the freshness is strictly larger for the ring networks. For the

fully connected networks, when the update rates of the source and the end-nodes

are sufficiently large, the binary freshness of a node decreases down to 0 slower than

the other network types, indicating that increased connectivity among the nodes

improves the freshness. Finally, we find the binary freshness in clustered gossip net-

works, where each cluster consists of a structured gossip network and is connected

to the source through a designated access node, i.e., a cluster head. We numerically

193

(a)

(c)

(b)

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Figure 8.2: (a) Disconnected, (b) ring, and (c) fully connected network topologies
with n = 6 end-nodes.

find the optimal number of nodes in each cluster for given update rates of the source,

cluster heads, and the end-nodes.

8.2 Freshness in Arbitrarily Connected Networks

In this section, we consider freshness in gossip networks with arbitrary topologies.

System model considered in this section is complementary to the models in [131,

132], in that we use the binary freshness metric to characterize timeliness in gossip

networks as opposed to the version age metric used in [131,132]. In our model, there

is a single source node that is updated as a Poisson process with rate λe. This source

node updates the nodes in the system with a total rate of λ. There are n nodes in

the system, which are denoted by the set N , {1, 2, . . . , n}. Nodes in the system

implement gossiping as in [131,132] to distribute update packets among each other.

The total update rate of a node is λ, and each node in N uniformly distributes its

194

update rate among its neighbors.

We first characterize the binary freshness in arbitrarily connected gossip net-

works. Following the analysis for the version age in [131,132], we write the freshness

Fi in terms of FS, which denotes the freshness of a subset S and it is given by

FS(t) , maxj∈S Fj(t). We note that here we have a maximum operator as opposed

to a minimum operator since our freshness metric takes the maximum value when

the information at the receiver node is the freshest.

As in [131], we denote the total update rate from node i into set S by λi(S),

i.e., λi(S) =
∑

j∈S λij when i /∈ S. Similarly, λs(S) denotes the total update rate

from the source into set S. Set N(S) denotes the set of updating neighbors of S

given by N(S) = {i ∈ {1, . . . , n} : λi(S) > 0}.

In Theorem 8.1, we characterize the freshness in arbitrarily connected gossip

networks. This result is the binary freshness equivalent of the version age result

in [131, Thm. 1].

Theorem 8.1 The average freshness of a set S, FS = limt→∞ E[FS(t)], for S ⊆ N

is given by

FS =
λs(S) +

∑
i∈N(S) λi(S)FS∪{i}

λe + λs(S) +
∑

i∈N(S) λi(S)
. (8.1)

Proof: A state transition in the system happens when a node i updates node j.

We first present the possible state transitions. Let L denote the set of transitions

195

as in [131]. Accordingly,

L = {(s, s)} ∪ {(s, j) : j ∈ N} ∪ {(i, j) : i, j ∈ N}, (8.2)

where the first transition occurs when the source generates a new update, the second

set of transitions occur when the source node directly updates an end-node in N ,

and the third set of transitions occur when an end-node updates another end-node.

In our case, different than [131], the freshness vector evolves as

F ′k =



0, i = j = s, k ∈ N ,

1, i = s, j = k ∈ N ,

max(Fi, Fj), i ∈ N , j = k ∈ N ,

Fk, otherwise,

(8.3)

where F ′k is the freshness of node k after a transition. In (8.3), freshness takes the

minimum value of 0 when node k has stale information while it takes the maximum

value of 1 when node k has fresh information, i.e., the same information as the

source. After the (s, s) transition, the freshness of the set S becomes 0 as all the

nodes in set S become out-of-date. For other transitions (i, j), given that j ∈ S, we

have

F ′S = max
k∈S

F ′k = max
k∈S∪{i}

Fk = FS∪{i}. (8.4)

196

We note that when i = s, (8.4) implies that F ′S = 1. If j /∈ S, the freshness of

set S is unchanged after transition (i, j), i.e., F ′S = FS. Using (8.3) and (8.4) and

following similar steps as in [131] yields the result. �

8.3 Sample Freshness Evaluations

To demonstrate the application of (8.1), in what follows, we consider simple network

examples and characterize the average binary freshness experienced by the end-

nodes.

First, we consider the network in Fig. 8.3(a). The information at the source is

updated with rate λe. The source sends updates to the cache with rate λd and the

cache sends updates to node 1 with rate λc. By noting that only the cache updates

node 1 and there is no direct link from the source to node 1, we have N(1) = C

and λs(1) = 0. Thus, from (8.1), we find F1 =
λcF{1∪C}
λe+λc

. As the subset {1 ∪ C} gets

updates only from the source, we have N({1∪C}) = ∅ and λs({1∪C}) = λd. Thus,

F{1∪C} becomes λd
λd+λe

. By inserting F{1∪C} into F1,

F1 =
λc

λc + λe

λd
λd + λe

. (8.5)

Note that, in this example, the nodes are connected serially and the freshness ex-

pression in (8.5) is the same as [101, (11)].

Second, we consider the network in Fig. 8.3(b) where we have a source, two

caches connected in parallel, and a user. We want to find the freshness at node 1,

197

111C1Sλe

λd λc

λe

(a)

11

C1

1Sλe

λd1

λc2C2

λc1

λd2

λe

(b)

11

1C1Sλe

λd

λc1

12

λc2

λ λ

λe

(c)

Figure 8.3: Freshness of information in (a) a serially connected network, (b) a
parallel connected network, and (c) an arbitrarily connected network.

i.e., F1. Since N(1) = {C1, C2} and λs(1) = 0, F1 is equal to

F1 =
λc1F{1∪C1} + λc2F{1∪C2}

λe + λc1 + λc2
. (8.6)

Then, we find F{1∪C1} = (λd1 + λc2F{1∪C1∪C2})/(λe + λd1 + λc2), F{1∪C2} = (λd2 +

λc1F{1∪C1∪C2})/(λe + λd2 + λc1), F{1∪C1∪C2} = (λd1 + λd2)/(λe + λd1 + λd2). Inserting

F{1∪C1}, F{1∪C2}, and F{1∪C1∪C2} back into (8.6), we obtain

F1 =
(λd1 + λd2)(λc1 + λc2)

(λe + λd1 + λd2)(λe + λc1 + λc2)
− λe

(λe + λd1 + λd2)(λe + λc1 + λc2)
×(

λc2λd1

λe + λc1 + λd2

+
λc1λd2

λe + λc2 + λd1

)
. (8.7)

Note that, in this example, the caches are connected in parallel and the freshness

expression in (8.7) is the same as [102, (21)] but its derivation is much simpler here.

Third, we consider the network in Fig. 8.3(c). In this example, we want to find

198

the freshness at node 1, i.e., F1. Since N(1) = {2, C} and λs(1) = 0, F1 is equal to

F1 =
λc1F{1∪C} + λF{1∪2}

λe + λc1 + λ
. (8.8)

Similarly, we find F{1∪C}, F{1∪2}, and F{1∪2∪C}. By using these in (8.8), we obtain

F1 =
λc1

λe + λc1 + λ

λd + λ λd
λd+λe

λe + λd + λ
+

λ

λe + λc1 + λ

(λc1 + λc2) λd
λd+λe

λe + λc1 + λc2
. (8.9)

Note that, in this example, the nodes are arbitrarily connected, i.e., the network

includes both serial and parallel connections. Prior to this work, the freshness

expression was known only for serially connected networks [101] and parallel relay

networks [102]. Thus, with the method developed here, we are able to find the

freshness expression for arbitrarily connected networks.

8.4 Freshness in Structured Gossip Networks

In this section, we consider information freshness in structured networks. We con-

sider three different network structures regarding the connectivity among the end-

nodes: disconnected, ring and fully connected networks. In all cases, there is a

single source node and n end-nodes. The information at the source node is updated

with rate λe. The source node updates each end-node with rate λ
n
. Each end-node

updates its immediate neighbors with a total λ update rate equally distributed over

the neighbors. In what follows, we denote ρ , λe
λ

.

199

8.4.1 Disconnected Networks

In this network, the end-nodes are not connected to each other and only the source

node updates the end-nodes with rate λ
n

for each node; this network is obtained

when Fig. 8.2(a) is inserted into Fig. 8.1. Thus, for an arbitrary node S1, we have

λs(S1) = λ
n

and N(S1) = ∅. Then, from (8.1), we have

FS1 =
1

1 + nρ
. (8.10)

Hence, the freshness of a node goes to 0 as 1
n

with the network size n. This is stated

formally in Theorem 8.2 below.

Theorem 8.2 In a disconnected network, the average freshness of a single node

decreases down to 0 as 1
ρ
n−1.

8.4.2 Ring Networks

In this network, the end-nodes are connected to each other as a bidirectional ring

where each node updates its two neighbors with rate λ
2

each, and the source node

updates the end-nodes with rate λ
n

for each node; this is the network in Fig. 8.1.

Here, subset Sj denotes any arbitrary j adjacent nodes. In particular, if Sj =

{1, . . . , j}, then we have λs(Sj) = jλ
n

, and N(Sj) = {j + 1, n} (see Fig. 8.2(b)).

Thus, from (8.1), we have

FSj =
jλ
n

+ λFSj+1

λe + λ+ jλ
n

, (8.11)

200

for j = 1, . . . , n − 1, and FSn = 1
1+ρ

. Theorem 8.3 below states the form of the

freshness of a node for large n. We note that the freshness in a ring network in

Theorem 8.3 is larger than the freshness in a disconnected network in Theorem 8.2.

Theorem 8.3 In a ring network, the average freshness of a single node decreases

down to 0 as
(

1
ρ

+ 1
ρ2

)
n−1.

Proof: From (8.11), we write the freshness of a node FS1 as

FS1 =
n−1∑
i=1

a
(n)
i +

n

n− 1
a

(n)
n−1FSn , (8.12)

where a
(n)
i is given for i = 1, . . . , n− 1 as

a
(n)
i =

i

n

i∏
j=1

1

1 + ρ+ j
n

=
i

n

1

(1 + ρ)i

i∏
j=1

1

1 + 1
1+ρ

j
n

. (8.13)

From [132, eqns. (5)-(6)], the product term in (8.13) can be approximated as e−
i2

2(1+ρ)n ,

and a
(n)
i in (8.13) can be approximated as a

(n)
i ≈ i

n
1

(1+ρ)i
e−

i2

2(1+ρ)n ≈ i
n

1
(1+ρ)i

. Then,

since
∑∞

i=1 i
1

(1+ρ)i
= 1

ρ
+ 1

ρ2 , and the second term in (8.12) is negligible, we have

FS1 ≈
∑n−1

i=1 a
(n)
i ≈

(
1
ρ

+ 1
ρ2

)
1
n
. �

8.4.3 Fully Connected Networks

In this network, the end-nodes are fully connected, and each end-node is updated by

each of the remaining end-nodes with rate λ
n−1

and by the source with rate λ
n
. Let

Sj denote a subset of any arbitrary j nodes. Since λs(Sj) = jλ
n

and N(Sj) = N \Sj.

201

Thus, from (8.1), we have

FSj =
jλ
n

+ j(n−j)λ
n−1

FSj+1

λe + jλ
n

+ j(n−j)λ
n−1

, (8.14)

for j = 1, . . . , n−1, and FSn = 1
1+ρ

. Theorem 8.4 below gives the freshness of a node

for large n. We note that the freshness in a fully connected network in Theorem 8.4

is larger than the freshness in disconnected or ring networks in Theorems 8.2 and

8.3. Thus, connectedness improves freshness in gossip networks.

Theorem 8.4 In a fully connected network, the average freshness of a single node

decreases down to 0 as n−ρ when 0 < ρ < 1; as log(n)
n

when ρ = 1; and as n−1 when

ρ > 1.

Proof: Using (8.14), we write the freshness of a node FS1 as

FS1 =
n−1∑
i=1

b
(n)
i +

n

n− 1
b

(n)
n−1FSn , (8.15)

where b
(n)
i is given for i = 1, . . . , n− 1 as

b
(n)
i =

1

1 + nρ
i

+ n
n−1

(n− i)

i−1∏
j=1

1

1+ (n−1)ρ
(n−j)j + n−1

n
1

n−j

. (8.16)

Then, we have

− log(b
(n)
i) = log

(
1 +

nρ

i
+

n

n− 1
(n− i)

)
+

i−1∑
j=1

log

(
1+

(n− 1)ρ

(n− j)j
+
n− 1

n

1

n− j

)
.

(8.17)

202

Inside the second log(·) in (8.17), (n−1)ρ
(n−j)j = (n−1)ρ

n

(
1
j

+ 1
n−j

)
. For large n, we have

n−1
n
≈ 1, and for small x, we have log(1 + x) ≈ x, then the second term in (8.17)

becomes
∑i−1

j=1 log
(

1+ (n−1)ρ
(n−j)j + n−1

n
1

n−j

)
≈ (1 + ρ)

∑i−1
j=1

1
n−j + ρ

∑i−1
j=1

1
j
. For large

i,
∑i−1

j=1
1
j
≈ log i and

∑i−1
j=1

1
n−j ≈ log n − log(n − i). Thus, − log(b

(n)
i) in (8.17)

becomes

− log(b
(n)
i) ≈ c+ (1 + ρ) log n− ρ log(n− i) + ρ log i, (8.18)

where c = log
(
1 + ρ

i
+ 1+ρ

n−i

)
, and log(1) ≤ c ≤ log(2 + ρ). Thus, we rewrite b

(n)
i

in (8.16) as b
(n)
i ≈ d

n

(
1
i
− 1

n

)ρ
where d = e−c, which is a constant between 1 and

1/(2 + ρ). Since the last term in (8.15) is negligible for large n, we have

FS1 =
n−1∑
i=1

b
(n)
i ≈

d

n

n−1∑
i=1

(
1

i
− 1

n

)ρ
. (8.19)

By noting that 1
2ρ

1
iρ
≤
(

1
i
− 1

n

)ρ
for 1 ≤ i ≤ n

2
, we have

1

2ρ

n/2∑
i=1

1

iρ
≤

n−1∑
i=1

(
1

i
− 1

n

)ρ
≤

n−1∑
i=1

1

iρ
. (8.20)

By using Riemann sum, for large n, we approximate
∑n

i=1
1
iρ

as

n∑
i=1

1

iρ
≈



n1−ρ

1−ρ , when 0 < ρ < 1,

log n, when ρ = 1,

constant, when ρ > 1.

(8.21)

203

Thus, FS1 in (8.19) becomes

FS1≈
d

n

n−1∑
i=1

(
1

i
− 1

n

)ρ
≈



1
nρ
, when 0 < ρ < 1,

logn
n
, when ρ = 1,

1
n
, when ρ > 1,

(8.22)

which completes the proof. �

8.5 Freshness in Clustered Gossip Networks

In this section, similar to [132], we consider clustered networks, in which each cluster

has an associated cluster head that receives updates from the source and forwards

them to the corresponding nodes in its own cluster. The total of n nodes are divided

into m clusters, with k nodes in each cluster, thus n = km. Here, the source updates

the cluster heads with a total update rate of λs (thus, λs
m

update rate per cluster

head); each cluster head updates its end-nodes with a total update rate of λc (thus,

λc
k

update rate per end-node); and each end-node updates its immediate neighbors

with a total update rate of λ. Since the nodes (among themselves) and the cluster

heads (among themselves) are symmetrical, freshness experienced by each end-node

is statistically identical. Thus, in the following analysis, we consider the freshness of

a typical node in an arbitrary cluster. In addition to the aforementioned definitions

of λi(S) for i = {1, . . . , n} and N(S) for an arbitrary subset S of the nodes, in what

follows, λc(S) denotes the total update rate of a cluster head into the subset S.

In Theorem 8.5, we characterize the freshness in clustered gossip networks.

204

Theorem 8.5 In a clustered network with m clusters of k nodes each, the freshness

of a subset S is given by

FS =
λc(S)Fc +

∑
i∈N(S) λi(S)FS∪{i}

λe + λc(S) +
∑

i∈N(S) λi(S)
, (8.23)

with Fc = λs
λs+mλe

.

The proof of Theorem 8.5 follows from the application of Theorem 8.1 to

clustered networks. In the following subsections, we characterize the information

freshness recursions for the disconnected, ring and fully connected cluster models.

8.5.1 Disconnected Clusters

The overall disconnected clustered network behaves like a two hop multicast net-

work. In the first hop, the source sends the updates to m cluster heads. In the

second hop, each cluster head sends updates to k nodes within its cluster. Differ-

ent from the multicast network studies in [19–22, 24], here, we consider freshness

of information at the end-nodes by random gossiping without applying any central

control over the update flows.

Let Sj denote an arbitrary subset of j nodes in a cluster. Since nodes are

disconnected, we have N(S1) = ∅ and thus, we write the freshness of a single node

as

FS1 =
λcFc

λc + kλe
=

λc
λc + kλe

λs
λs +mλe

. (8.24)

205

In this network, a single node is serially connected to the source via its cluster head.

Thus, the freshness in (8.24) has the same form as in (8.5). Next, we consider how

fast the freshness goes down to 0 as the number of nodes, n, grows large.

Theorem 8.6 In a clustered disconnected network, the freshness of a node decreases

down to 0 as λcλs
λ2
e
n−1.

We note that even with the use of clusters, the freshness of a node still decreases

down to 0 with rate n−1. When λc > λe, the convergence rate is slightly improved,

i.e., it increases to λcλs
λ2
e
n−1 in Theorem 8.6 from λs

λe
in Theorem 8.2. When λc < λe,

the freshness of a node converges to 0 faster. That is, the presence of cluster heads

may hurt information freshness in a disconnected network when the update rates of

cluster heads are not sufficiently large.

8.5.2 Ring Clusters

With ring clusters, there are two nodes that update the subset Sj with a total rate

λ. From (8.23), we write

FSj =
jλc
k
Fc + λFSj+1

λe + jλc
k

+ λ
, (8.25)

for j = 1, . . . , k− 1, and we have FSk = λc
λc+λe

λs
λs+mλe

. For j = k, the network simply

becomes a two hop network where the first hop is from the source to the cluster

head and the second hop is from the cluster head to the entire cluster.

206

8.5.3 Fully Connected Clusters

With fully connected clusters, each node is connected to other k − 1 nodes with

rates λ
k−1

. Let Sj denote an arbitrary j-node subset in a cluster. Subset Sj receives

updates from the cluster head with rate jλc
k

and from each of the remaining k − j

nodes in the same cluster with rate λ
k−1

. With these, from (8.23), we write

FSj =
jλc
k
Fc + j(k−j)λ

k−1
FSj+1

λe + jλc
k

+ j(k−j)λ
k−1

, (8.26)

for j = 1, . . . , k − 1, and we have FSk = λc
λc+λe

λs
λs+mλe

.

In the following section, we provide numerical results for the scaling of fresh-

ness in large gossip networks, as well as for the optimal selection of m and k for

clustered network models with different λ, λs, and λc values.

8.6 Numerical Results

8.6.1 Numerical Results for Large Gossip Networks

In this subsection, we provide numerical results for the scaling of information fresh-

ness in large gossip networks. For all network types, since information freshness

decreases to 0, we consider the scaling of the inverse freshness function of a node,

i.e., F−1
S1

= 1
FS1

, and vary n in between 500 to 100, 000.

In the first numerical result, we consider disconnected and ring networks for

λe = 2, and λ = 1, i.e., ρ = 2. In Fig. 8.4(a), we see that the scaling of inverse

207

0 2 4 6 8 10

10
4

0

0.5

1

1.5

2
10

5

(a)

0 2 4 6 8 10

10
4

0

2

4

6

8

10

12
10

4

(b)

Figure 8.4: Scaling of inverse freshness of a node (a) in disconnected and ring
networks when ρ = 2 (λe = 2 and λ = 1), (b) in a fully connected network when
ρ = 2 (λe = 2 and λ = 1), ρ = 1 (λe = 1 and λ = 1), and ρ = 0.5 (λe = 0.5 and
λ = 1).

freshness of a node is F−1
S1
≈ ρn for the disconnected network, and F−1

S1
≈ ρ2

1+ρ
n for

the ring network. Although the inverse freshness increases linearly with n for both

network types, we see in Fig. 8.4(a) that the slope of inverse freshness in the ring

network is smaller, indicating a slower decrease to 0 for freshness. This verifies that

increased connectedness improves freshness in gossip networks.

In the second numerical result, we consider a fully connected network when

ρ = 2 (λe = 2, and λ = 1), ρ = 1 (λe = 1, and λ = 1), and ρ = 0.5 (λe = 0.5, and

λ = 1). In Fig. 8.4(b), we see that when ρ = 2, i.e., when the update rates of a

node and the source (both are λ) are smaller compared to the information change

rate at the source λe, then the inverse freshness still scales linearly with n. When

λ gets large (specifically, when λ = λe), inverse freshness of a node starts to scale

with n
log(n)

as shown in Fig. 8.4(b). When we further increase λ, i.e., when λ > λe

(or ρ < 1), the inverse freshness scales with nρ, i.e., sublinearly. Thus, when the

208

update rates of the source and the end-nodes are large enough in the fully connected

network, freshness can be improved from 1
n

to 1
nρ

.

8.6.2 Numerical Results for Clustered Gossip Networks

In this subsection, we provide numerical results regarding the optimal cluster size

selection k in clustered networks for the cases of disconnected, ring and fully con-

nected clusters, for different update rates at the source, cluster heads and the nodes,

when information change rate at the source is λe = 1 and the number of nodes is

n = 120.

First, we take λs = 1, λc = 1, λ = 1. In Fig. 8.5(a), we see that the optimal

cluster size is k∗ = 40 in fully connected clusters; k∗ = 20 in ring clusters; k∗ = 10 or

k∗ = 12 in disconnected clusters. We observe that the optimal cluster size increases

as the connectivity among the nodes increases. Further, the achievable freshness

increases with the connectivity within the clusters.

Second, we consider λs = 10, λc = 1, λ = 1, i.e., the update rate of the source

is increased compared to the setting in Fig. 8.5(a). In Fig. 8.5(b), we see the trade-off

between the number of clusters and the number of nodes in a cluster. Even though

we increase the update rate of the source, since it is not large enough, freshness

initially increases with the cluster size k as the total number of clusters decreases.

That is, the source can send updates to each cluster more efficiently with increasing

k. On the other hand, since the update rates at the cluster heads are also limited,

further increasing k starts to decrease the freshness at the end-nodes. Thus, there

209

0 20 40 60 80 100 120
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

(a)

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

(b)

0 20 40 60 80 100 120
0.05

0.1

0.15

0.2

0.25

0.3

(c)

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

(d)

Figure 8.5: Binary freshness of a node with disconnected, ring and fully connected
clusters with n = 120, λe = 1, (a) λs = 1, λc = 1, λ = 1, (b) λs = 10, λc = 1, λ = 1,
(c) λs = 10, λc = 10, λ = 1, (d) λs = 10, λc = 1, λ = 2.

is a sweet spot where the freshness is maximized for each cluster topology. Since we

increase λs compared to the previous example, the source can support more cluster

heads and the optimal cluster sizes become k∗ = 8 for fully connected clusters,

k∗ = 6 for ring clusters, k∗ = 3 or k∗ = 4 for disconnected clusters.

Third, we consider λs = 10, λc = 10, and λ = 1, i.e., we increase the cluster

heads’ update rate compared to the second example. Since we increase the update

rate of the cluster heads, the optimal cluster size increases from k∗ = 8 to k∗ = 15

210

for fully connected clusters; from k∗ = 6 to k∗ = 15 for ring clusters; and from k∗ = 3

or k∗ = 4 to k∗ = 10 or k∗ = 12 for disconnected clusters as shown in Fig. 8.5(c).

Fourth, we take λs = 10, λc = 1, and λ = 2, i.e., compared to the second ex-

ample, we increase the update rate among the end-nodes. We see in Fig. 8.5(d) that

since there is no updates among the nodes in the disconnected clustered network,

the optimal cluster size stays the same as k∗ = 3 or k∗ = 4. On the other hand, since

the update rates among the nodes are increased, the optimal cluster sizes become

to k∗ = 15 for fully connected clusters, and k∗ = 8 for ring clusters.

8.7 Conclusion

In this chapter, by using the SHS method, we developed recursive formulas to find

the binary freshness for a given node in arbitrarily connected networks. Next, we

considered structured large gossip networks. We showed that the binary freshness

decreases to 0 with rate n−1 both for disconnected and ring networks, but with a

strictly slower rate in ring networks. We also showed that binary freshness decreases

to 0 with much slower rates for fully connected networks; in particular, the form

of the freshness function changes from n−1 to n−ρ when we go to fully connected

networks when the update rate of the source is sufficiently large. We also found

recursive expressions for the binary freshness in clustered gossip networks. Via

numerical results, we studied the effects of the update rates of the source, cluster

heads and the end-nodes on the optimum cluster size.

211

CHAPTER 9

Timely Tracking of Multiple Counting Random Processes:

Tracking Citation Indices of Researchers

9.1 Introduction

In this chapter, we consider the problem of real-time timely estimation of signals,

which have different change rates and importance factors, with the goal of finding

the optimal individual sampling rates, under a total system sampling rate constraint.

Here, we specialize this broader goal to the setting of counting processes and to the

context of tracking citation counts of researchers. As abstracted out in Fig. 9.1,

Google crawls the web to find and index various items such as documents, images,

videos, etc. Focusing on scientific documents, Google Scholar further examines

the contents of these documents to extract out citation counts for indexed papers.

Google Scholar then needs to update citation counts of individual researchers, which

there are many. We model the citation count of each individual researcher as a

counting process with a fixed mean, e.g., λi for researcher i. Assuming that Google

Scholar is resource-constrained, i.e., that it cannot update all researchers all the

time, how should it prioritize updating researchers? If it can update only a fraction

212

web crawler

N1(t)

t

N2(t)

t

Nn(t)

t

update
scheduler

citation
counts

Figure 9.1: Web crawler finds and indexes scientific documents, from which citation
counts are extracted upon examining their contents. Scheduler schedules updating
citation counts of individual researchers based on their mean citations, and option-
ally, importance factors, subject to a total update rate.

of all researchers, who should it update? Should it update researchers with higher

mean citation rates more often as their citation counts are subject to larger change

per unit time? Or should it update researchers with lower mean citation rates more

often in order to capture rarer more informative changes?

We model the citation count of each researcher as a counting process with a

given mean. In particular, we model citation arrivals for researcher i as a Poisson

counting process with rate λi. Optionally, we may further assign an importance

factor to each researcher, based on their research field or citation count, but this is

optional, and does not affect the structure of the results. If an importance coefficient

is used, we denote it with µi for researcher i. Ideally the updater should update

all researchers all the time, however, due to computational limitations, this may

not be possible. We model the updater as a resource-constrained entity which

has a total update capacity of c, which it should distribute among all researchers.

We allocate an update rate ρi for updating researcher i. These ρi are collectively

213

subject to the total system update capacity of c. We consider the cases of Poisson

updates (i.e., updates with exponential inter-update times), deterministic updates,

and synchronized updates. We determine the optimal update rates ρi subject to the

total update rate c in a way to maximize the system freshness.

References that are most closely related to our work are [28] and [30]. Refer-

ence [28] considers the problem of finding optimal crawl rates to keep the information

in a search engine fresh while maintaining the constraints on crawling rates imposed

by the websites and also the total crawl rate constraint of the search engine, in the

presence of non-uniform importance scores and change rates for the websites. Ref-

erence [30] focuses on remote real-time reconstruction of a single Poisson counting

process using uniform sampling. While taking more samples helps reconstruct the

signal better, this increases queuing delays, which inherently affects the real-time

signal estimation negatively. Reference [30] studies this trade-off and finds the op-

timal sampling rate. Our timeliness metric is similar to the one considered in [30],

which is the difference of a counting process and its sampled (updated, in our case)

version. However, we consider multiple counting processes with different arrival

rates and importance factors, and optimize our update rates for all processes jointly

under a total update rate constraint. Similar to [28], we consider exponential arrival

and sampling times in a constrained manner, and allow for importance coefficients,

however, our timeliness metric and our overall problem setting are different.

In this chapter, we first find an analytical expression for the long-term average

difference between the actual and updated counting processes. We then minimize

this expression as a function of the update rates of individual researchers subject to

214

the overall update rate. We show that the optimal update rates are proportional to

the square roots of mean citation rates of the researchers for constant importance

factors. Thus, it is optimal to update more prolific researchers more often, however,

the proportionality is sub-linear and in the form of square root of the mean citation

rate, i.e., there are diminishing returns due to the concavity (sub-linearity) of the

square root function. We show that if the importance factors of the researchers are

linear in their mean citation rates, then the optimal update rates are linear in their

mean citation rates as well. We finally remark that other square root results have

appeared in completely different settings in caching problems. In particular, it was

found in [93] that, in order to keep the files fresh in a caching system, the (uniform)

update rates of the files should be chosen proportional to the square roots of their

popularity indices. In addition, it was shown in [157] that, in order to minimize the

average number of websites searched, the number of websites that a file is mirrored

should be chosen proportional to the square root of the file’s popularity.

9.2 System Model and Problem Formulation

Consider n researchers. Let Ni(t) denote the number of citations of researcher i. We

modelNi(t) as a Poisson process with rate λi, and assume thatNi(t), for i = 1, . . . , n,

are independent. Let ti,j denote the time instance when the updater updates the

number of citations of researcher i for the jth time. We denote the inter-update

time between the jth and (j − 1)th updates for researcher i as τi,j. Based on these

samples, the updater generates a real-time estimate of the counting process Ni(t)

215

Ni(t)

t

N̂i(t)

ti;1 ti;2 ti;3 ti;5ti;4
τi;1 τi;2 τi;3 τi;4 τi;5

Figure 9.2: The number of citations, Ni(t), and the estimated number of citations,
N̂i(t), for researcher i. Aj denotes the total estimation error in [ti,j−1, ti,j).

as N̂i(t), where

N̂i(t) = Ni(ti,j−1), ti,j−1 ≤ t < ti,j. (9.1)

Fig. 9.2 shows Ni(t) and N̂i(t) with black and blue lines.

Similar to [30], we use the average difference between the actual and updated

processes as a measure of timeliness,

∆i(T) =
1

T

∫ T

0

(
Ni(t)− N̂i(t)

)
dt. (9.2)

If there are m updates in the interval [0, T], then ∆i(T) is

∆i(T) =
1

T

m∑
j=1

Aj, (9.3)

where Aj is the difference in the interval [ti,j−1, ti,j), see Fig. 9.2. Then, the long

216

term average difference for researcher i is ∆i = limT→∞∆i(T), and can be written

as [10], 1

∆i = lim
T→∞

1

T

m∑
j=1

Aj = lim
T→∞

m

T
· 1

m

m∑
j=1

Aj = ρiE[A]. (9.4)

Similar to the derivation in [30], conditioned on an arbitrary jth inter-update

time, i.e., τi = τi,j = d, and the number of citation arrivals in that time interval

[ti,j−1, ti,j−1 + d), i.e., Ñi(d) = Ni(ti,j−1 + d)−Ni(ti,j−1) = k, the expected difference

is

E
[
A|Ñi(d) = k, τi = d

]
=
kd

2
. (9.5)

Thus, we have

E [A|τi = d] = E
[
E
[
A|Ñi(d) = k, τi = d

]]
=
λid

2

2
. (9.6)

In the following subsections, we present three different models for updating the

citation numbers.

9.2.1 Model 1: Poisson Updater

In this model, shown in Fig. 9.3, the inter-update times for researcher i are expo-

nential with rate ρi. Update processes for different researchers are independent.

1The existence of this limit is shown in [158, Lemmas 1 and 2] for the deterministic updater
model, and in [158, Lemmas 5 and 6] for the Poisson updater model considered in this work.

217

researcher 1

researcher 2

researcher n

arrivals updates

Figure 9.3: Poisson updater: Inter-update times are exponential with rate ρi.

Continuing from (9.6), we find E[A] using exponential distribution as,

E[A] =

∫ ∞
0

E [A|τi = t] fτi(t)dt =
λi
2
E
[
τ 2
i

]
=
λi
ρ2
i

. (9.7)

Thus, the long term average difference ∆i in (9.4) with a Poisson updater is

∆i =
λi
ρi
. (9.8)

9.2.2 Model 2: Deterministic Updater

In this model, shown in Fig. 9.4, the inter-update times are deterministic and chosen

optimally. Similar to [93], given that there are mi updates for researcher i in the

time interval [0, T], the optimal inter-update times should be chosen equal to each

other, i.e., τi,j = T
mi+1

, for all j. Letting T → ∞, this update scheme results in

uniform sampling with rate ρi for researcher i where ρi = limT→∞
mi
T

. By using

di = 1
ρi

and (9.6), we obtain E[A] = λi
2ρ2
i
. Thus, the long term average difference ∆i

218

researcher 1

researcher 2

researcher n

d1 d1 d1 d1 d1 d1

d2 d2 d2 d2

dn dn dn

arrivals updates

Figure 9.4: Deterministic updater: Inter-update times are equal with di = 1
ρi

.

in (9.4) with a deterministic (and uniform) updater is

∆i =
λi
2ρi

. (9.9)

9.2.3 Model 3: Common Synchronized Probabilistic Updater

In this model, shown in Fig. 9.5, the updater has a common synchronized update

schedule that applies to all researchers. The inter-update times of the common

updater are exponential with rate ρ. At each update instant, researcher i is updated

with probability pi independently of other researchers. Thus, inter-update times for

researcher i are exponential with rate ρpi. Note that here, we create the Poisson

updates for researcher i by thinning the Poisson common updates using probabilistic

updates according to pi. The main problem, therefore, is to choose pi for each

researcher as it determines its mean update rate. This problem is the same as the

one in Section 9.2.1 and in the optimal policy pi is pi = ρi
ρ

assuming ρ is sufficiently

large to have feasible pi, i.e., 0 ≤ pi ≤ 1, for all i.

219

researcher 1

researcher 2

researcher n

arrivals updates

Figure 9.5: Common synchronized updater: Common synchronized inter-update
times are exponential with rate ρ. At each common update opportunity, researcher
i is updated with probability pi

.

9.2.4 Problem Formulation

Researcher i has the mean citation rate λi. In addition, and optionally, we con-

sider an importance factor, µi, for researcher i. This may be removed by choosing

all µi = µ. Then, the total long term average difference (over all researchers) be-

comes ∆ =
∑n

i=1 µi∆i, where per researcher difference, ∆i, is given by (9.8) for the

Poisson updater and common synchronized updater models, and by (9.9) for the

deterministic updater model. The expressions in (9.8) and (9.9) differ only by a

factor of 2, which is inconsequential for optimization purposes. Therefore, without

loss of generality, from now on, we use the expression in (9.8). In addition, due to

computational limitations, the updater is subject to a total update rate constraint∑n
i=1 ρi ≤ c. Our aim is to find the optimal update rates for all researchers, ρi, for

i = 1, . . . , n, such that the total long term average difference, ∆, is minimized while

satisfying the constraint on the total update rate. Thus, our optimization problem

220

is,

min
{ρi}

n∑
i=1

µiλi
ρi

s.t.
n∑
i=1

ρi ≤ c

ρi ≥ 0, i = 1, . . . , n. (9.10)

We solve the optimization problem in (9.10) in the next section.

9.3 The Optimal Solution

The optimization problem in (9.10) is convex as the cost function is convex and the

constraints are linear. We introduce the Lagrangian function [149] for (9.10) as

L =
n∑
i=1

µiλi
ρi

+ β

(
n∑
i=1

ρi − c

)
−

n∑
i=1

νiρi, (9.11)

where β ≥ 0 and νi ≥ 0 for all i. Next, we write the KKT conditions as

∂L
∂ρi

= −µiλi
ρ2
i

+ β − νi = 0, (9.12)

for all i, and the complementary slackness conditions as

β

(
n∑
i=1

ρi − c

)
= 0, (9.13)

νiρi = 0, (9.14)

221

for all i. Since the optimization problem in (9.10) is convex, the KKT conditions

are necessary and sufficient.

First, we observe that the total update rate constraint
∑n

i=1 ρi ≤ c must

be satisfied with equality. If there is an update rate allocation policy such that∑n
i=1 ρi < c, then we can achieve a lower average difference by increasing any ρi

as the cost function of (9.10) is a decreasing function of ρi. Thus, in the optimal

update rate allocation policy, we must have
∑n

i=1 ρi = c and β ≥ 0 due to (9.13).

Next, we note that in the optimal policy, we must have ρi > 0, for all i,

as ρi = 0 leads to infinite objective function in (9.10) which clearly cannot be an

optimal solution. Thus, for the optimal rate allocations, we have ρi > 0 and νi = 0,

for all i, due to (9.14).

From (9.12), we find ρi =
√

µiλi
β

. By using
∑n

i=1 ρi = c, we solve β =

(
∑n
i=1

√
µiλi)

2

c2
, which gives the optimal policy,

ρi =
c
√
µiλi(∑n

j=1

√
µjλj

) , i = 1, . . . , n. (9.15)

Using the optimal rate allocation policy in (9.15), we obtain

∆i =

√
λi

(∑n
j=1

√
µjλj

)
c
√
µi

, i = 1, . . . , n, (9.16)

and the total long term average difference ∆ as

∆ =

(∑n
j=1

√
µjλj

)2

c
. (9.17)

222

Thus, the optimal update rates allocated to researchers in (9.15) are propor-

tional to the square roots of their importance factors, µi, multiplied by their mean

citation rates, λi. We note that if we ignore the importance factors, i.e., µi = µ = 1,

then the optimal update rates are proportional to the square roots of the mean cita-

tion rates. On the other hand, if we choose the importance factors as proportional

to the mean citation rates, i.e., µi = αλi, then the optimal update rates become

linear in the mean citation rates.

9.4 Numerical Results

In this section, we provide three numerical results. In the first two examples, we

choose the mean citation rates as

λi = ari, i = 1, . . . , n, (9.18)

where a > 0 and 0 < r ≤ 1.

In the first example, we take a = 10, r = 0.75, n = 20 and c = 10. For this

example, we use uniform importance coefficients, i.e., µi = 1, for all i. We observe

in Fig. 9.6(b) that researchers with higher mean citation rates have higher long term

average difference ∆i even though they are updated with higher update rates shown

in Fig. 9.6(a). Further, we observe in Fig. 9.6(a) that due to diminishing returns

caused by the square root allocation policy, update rates of the researchers with low

mean citation rates are still comparable to the update rates of the researchers with

high mean citation rates.

223

0 5 10 15 20

0

0.5

1

1.5

(a)

0 5 10 15 20

0

1

2

3

4

5

6

(b)

Figure 9.6: (a) Optimal update rate allocation for each researcher, and (b) the corre-
sponding optimal long term average difference ∆i, when we use uniform importance
coefficients µi = 1, with λi given in (9.18), with a = 10 and r = 0.75 for n = 20.

In the second example, we consider the case where the importance factors are

chosen proportional to the mean citation rates of the researchers. We call such

coefficients as λ-proportional importance coefficients, which are given by

µi =
λi∑n
j=1 λj

, i = 1, . . . , n. (9.19)

In order to make a fair comparison between the λ-proportional and uniform impor-

tance coefficients, we scale the uniform importance coefficients as µi = 1
n
, for all

i.

As mentioned at the end of Section 9.3, when we use λ-proportional importance

coefficients, the optimal update rates become linear in the mean citation rates.

We observe in Fig. 9.7(a) that using λ-proportional importance coefficients favor

researchers with higher mean citation rates as their update rates increase compared

to the update rates with the uniform importance coefficients. Further, we observe

224

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

(a)

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(b)

Figure 9.7: (a) Optimal update rate allocation for each researcher, and (b) the
corresponding optimal long term average difference ∆i, when we use λ-proportional
and uniform importance coefficients, with λi given in (9.18), with a = 10 and
r = 0.75 for n = 10.

in Fig. 9.7(b) that the long term average differences are equal to each other when

λ-proportional importance coefficients are used.

In the third example, we choose the mean citation rates as

λi =
ari∑n
j=1 r

j
, i = 1, . . . , n, (9.20)

which satisfy
∑n

i=1 λi = a. Note that, by this selection, we force total citation

means of all researchers to be a constant. For this example, we take n = 10,

a = 1 and consider three different r, which are r = 0.5, 0.75, 1. Note also that,

a smaller r corresponds to a less even (more polarized) distribution of total mean

citation rates among the researchers. We use uniform importance coefficients and

plot achieved ∆ with respect to c in Fig. 9.8. We observe in Fig. 9.8 that more

polarized distribution of mean citation rates (smaller r) yields a lower ∆ for the

225

0 2 4 6 8 10

0

0.5

1

1.5

2

Figure 9.8: Total long term average difference ∆ with respect to c, when uniform
importance coefficients are used and λi are given in (9.20), with a = 1 and r =
0.5, 0.75, 1 for n = 10.

system, as we exploit the differences among the researchers by allocating even higher

update rates to researchers with higher mean citation rates. As an aside, we note

that if we used λ-proportional importance coefficients, we would have a ∆ which is

independent of individual λi that depends only on the sum of λi which is a here.

This achieved ∆ is also equal to the ∆ achieved with uniform importance coefficients

when r = 1 which is shown as the blue dashed line in Fig. 9.8. Thus, if we use λ-

proportional importance coefficients, the achieved ∆ is independent of the mean

citation rate distribution among the researchers, but it results in higher ∆. In other

words, uniform importance coefficients achieve lower ∆ compared to λ-proportional

importance coefficients in this case for r < 1.

226

9.5 Conclusion

In this chapter, we considered the problem of timely updating of citation counts by

a resource-constrained updater. We showed that the optimal policy is to choose the

update rates of individual researchers proportional to the square roots of their mean

citation rates multiplied by their importance factors (if any).

Next, we discuss limitations of our model. First, we note that we modeled

the citation numbers of a researcher as a counting process, which is monotonically

increasing and increments one at a time. The monotonically increasing nature of the

counting process assumes that published articles are always available and cannot

be withdrawn or changed, which may not be the case, especially if the crawler

cannot reach certain websites that it used to reach, and lose access to previously

counted publications. In addition, one at a time increments assume that citations

come one by one, which may not be the case as conferences publish all the articles

simultaneously in proceedings, and journals publish articles in monthly issues. That

is, the increments in citations for each researcher may be more than one at a time.

Thus, modeling the number of citations with a simple Poisson process may not

be sufficient. However, as the researchers increasingly publish their works as they

are completed on their personal websites or academic websites such as arXiv, it

may still be acceptable to model arrivals as Poisson processes. Even then though,

multiple citations to the same researcher from a single article will not be captured

by the model in this chapter. In addition, considering the fact that researchers

often collaborate and publish articles jointly, the arrivals of citations for different

227

researchers might be correlated. In this chapter, we considered the case where the

citation arrivals for researchers are independent counting processes. This may be

feasible by focusing on researchers with no common publications.

228

CHAPTER 10

Timely Tracking of Multiple Binary Random Processes: Track-

ing Infection Status of Individuals in a Population

10.1 Introduction

In this chapter, we consider the problem of real-time timely tracking of multiple

binary random processes via a resource constrained Poisson updater. As a particular

case, we consider the problem of timely tracking of an infectious disease, e.g., covid-

19, in a population of n people. In this problem, a health care provider wants to

detect infected people as quickly as possible in order to take precautions such as

isolating them from the rest of the population. The health care provider also wants

to detect people who recovered from the disease as soon as possible since these

people need to return to work which is especially critical in sectors such as health

care, food retail, and public transportation. Ideally, the health care provider should

test all people all the time. However, as the total test rate is limited, the question

is how frequently the health care provider should apply tests on these people when

their infection and recovery rates are known. In a broader sense, this problem is

related to timely tracking of multiple processes in a resource-constrained setting

229

t

x̂1(t)

t

x̂2(t)

t

x̂3(t)

t

x̂n(t)

t

x1(t)

t

x2(t)

t

x3(t)

t

xn(t)

Figure 10.1: System model. There are n people whose infection status are given
by xi(t). The health care provider applies tests on these people. Based on the test
results, estimations for the infection status x̂i(t) are generated. Infected people are
shown in red color and healthy people are shown in green color.

where each process takes binary values of 0 and 1 with different change rates.

Recent studies have shown that people who recovered from infectious diseases

such as covid-19 can be reinfected. Furthermore, the recovery times of individuals

from the disease may vary significantly. For these reasons, in this problem, the ith

person gets infected with rate λi which is independent of the others. Similarly, the

ith person recovers from the disease with rate µi.
1 We denote the infection status of

the ith person as xi(t) (shown with the black curves on the left in Fig. 10.1) which

takes the value 1 when the person is infected and the value 0 when the person is

healthy. The health care provider applies tests to people marked as healthy with

rate si and to people marked as infected with rate ci. Based on the test results,

the health care provider forms an estimate for the infection status of the ith person

1We note that the index i may represent a specific individual or a group of individuals that have
common features such as age, gender, profession. For example, i = 1 may denote men between
ages 70-75 who live in nursing homes, and i = 2 may denote women between ages of 20-25 who
work in the medical field, and so on. Therefore, depending on the demographics, coefficients λi
and µi may be statistically known by the health care provider.

230

denoted by x̂i(t) (shown with the blue curves on the right in Fig. 10.1) which takes

the value 1 when the most recent test result is positive and the value 0, otherwise.

We measure the timeliness of the tracking process by the difference between

the actual infection status of people and the real-time estimate of the health care

provider which is based on the most recent test results. We note that the difference

can occur in two different cases: i) when the person is sick (xi(t) = 1) and the

health care provider maps this person as healthy (x̂i(t) = 0), and ii) when the person

recovers from the disease (xi(t) = 0) but the health care provider still considers this

person as infected (x̂i(t) = 1). The former case represents the error due to late

detection of infected people, while the latter case represents the error due to late

detection of healed people. Depending on the health care provider’s preferences,

detecting infected people may be more important than detecting recovered people,

or vice versa.

Most relevant to our work, the real-time timely estimation of a single and

multiple counting processes [30, 36], a Wiener process [31], a random walk process

[118], a binary Markov source [34] have been studied. The work that is closest to our

work is reference [34] where the remote estimation of a symmetric binary Markov

source is studied in a time-slotted system by finding the optimal sampling policies

via formulating a Markov Decision Process (MDP) for real-time error, AoI and AoII

metrics. Different from [34], in our work, we consider real-time timely estimation

of multiple non-symmetric binary sources for a continuous time system. We note

that in our work, the sampler (the health care provider) does not know the states of

the sources (infection status of people), and thus takes the samples (applies medical

231

tests) randomly with fixed rates. Thus, in our work, we optimize the test rates of

people to minimize the real-time estimation error.

In this chapter, we consider the real-time timely tracking of infection status of

n people. We first find an analytical expression for the long-term average difference

between the actual infection status of people and the estimate of the health care

provider based on test results. Then, we propose an alternating minimization based

algorithm to find the test rates si and ci for all people. We observe that if the

total test rate is limited, we may not apply tests on all people equally. Increasing

the total test rate helps track the infection status of people better, and increasing

the size of the population increases diversity which may be exploited to improve

the performance. Finally, depending on the health care provider’s priorities, we can

allocate more tests to people marked as healthy to detect the infections more quickly

or to people marked as infected to detect the recoveries more quickly.

10.2 System Model

We consider a population of n people. We denote the infection status of the ith

person at time t as xi(t) (black curve in Fig. 10.2(a)) which takes binary values 0

or 1 as follows,

xi(t) =


1, if the ith person is infected at time t,

0, otherwise.

(10.1)

In this chapter, we consider a model where each person can be infected multiple

232

times after recovering from the disease. We denote the time interval that the ith

person stays healthy for the jth time as Wi(j) which is exponentially distributed

with rate λi. We denote the recovery time for the ith person after infected with the

virus for the jth time as Ri(j) which is exponentially distributed with rate µi.

A health care provider wants to track the infection status of each person. Based

on the test results at times ti,`, the health care provider generates an estimate for

the status of the ith person denoted as x̂i(t) (blue curve in Fig. 10.2(a)) by

x̂i(t) = xi(ti,`), ti,` ≤ t < ti,`+1. (10.2)

When x̂i(t) is 1, the health care provider applies the next test to the ith person

after an exponentially distributed time with rate ci. When x̂i(t) is 0, the next test

is applied to the ith person after an exponentially distributed time with rate si.

An estimation error happens when the actual infection status of the ith person,

xi(t), is different than the estimate of the health care provider, x̂i(t), at time t. This

could happen in two ways: when xi(t) = 1 and x̂i(t) = 0, i.e., when the ith person

is sick, but it has not been detected by the health care provider, and when xi(t) = 0

and x̂i(t) = 1, i.e., when the ith person has recovered, but the health care provider

does not know that the ith person has recovered.

We denote the error caused by the former case, i.e., when xi(t) = 1 and

x̂i(t) = 0, by ∆i1(t) (green areas in Fig. 10.2(b)),

∆i1(t) = max{xi(t)− x̂i(t), 0}, (10.3)

233

t

xi(t),

ti,1 ti,2 ti,3 ti,4 ti,5 ti,6

x̂i(t)

1

xi(t)x̂i(t)

(a)

t

∆i(t)

ti,1 ti,2 ti,3 ti,4 ti,5 ti,6

θ

1− θ

(b)

Figure 10.2: (a) A sample evolution of xi(t) and x̂i(t), and (b) the corresponding
∆i(t) in (10.5). Green areas correspond to the error caused by ∆i1(t) in (10.3).
Orange areas correspond to the error caused by ∆i2(t) in (10.4).

and we denote the error caused by the latter case, i.e., when xi(t) = 0 and x̂i(t) = 1,

by ∆i2(t) (orange areas in Fig. 10.2(b)),

∆i2(t) = max{x̂i(t)− xi(t), 0}. (10.4)

Then, the total estimation error for the ith person ∆i(t) is

∆i(t) = θ∆i1(t) + (1− θ)∆i2(t), (10.5)

where θ is the importance factor in [0, 1]. A large θ gives more importance to the

234

detection of infected people, and a small θ gives more importance to the detection

of recovered people.

We define the long-term weighted average difference between xi(t) and x̂i(t)

as

∆i = lim
T→∞

1

T

∫ T

0

∆i(t)dt. (10.6)

Then, the overall average difference of all people ∆ is

∆ =
1

n

n∑
i=1

∆i. (10.7)

Our aim is to track the infection status of all people. Due to limited resources,

there is a total test rate constraint
∑n

i=1 si +
∑n

i=1 ci ≤ C. Thus, our aim is to find

the optimal test rates si and ci to minimize ∆ in (10.7) while satisfying this total

test rate constraint. We formulate the following problem,

min
{si,ci}

∆

s.t.
n∑
i=1

si +
n∑
i=1

ci ≤ C

si ≥ 0, ci ≥ 0, i = 1, . . . , n. (10.8)

In the next section, we find the total average difference ∆.

235

(a) (b)

Figure 10.3: A sample evolution of (a) ∆i1(t), and (b) ∆i2(t) in a typical cycle.

10.3 Average Difference Analysis

We first find analytical expressions for ∆i1(t) in (10.3) and ∆i2(t) in (10.4). We note

that ∆i1(t) can be equal to 1 when x̂i(t) = 0 and is always equal to 0 when x̂i(t) = 1.

Assume that at time 0, both xi(0) and x̂i(0) are 0. After an exponentially distributed

time with rate λi, which is denoted by Wi, the ith person is infected, and thus xi(t)

becomes 1. At that time, since x̂i(t) = 0, ∆i1(t) becomes 1. ∆i1(t) will be equal to

0 again either when the ith person recovers from the disease which happens after

Ri which is exponentially distributed with rate µi or when the health care provider

performs a test on the ith person after Di which is exponentially distributed with

rate si. We define Tm(i) as the earliest time at which one of these two cases happens,

i.e., Tm(i) = min{Ri, Di}. We note that Tm(i) is also exponentially distributed with

rate µi + si, and we have P(Tm(i) = Ri) = µi
µi+si

and P(Tm(i) = Di) = si
µi+si

. If

the ith person recovers from the disease before testing, we return to the initial case

where both xi(t) and x̂i(t) are equal to 0 again. In this case, this cycle repeats

itself, i.e., the ith person becomes sick again after Wi and ∆i1(t) remains as 1 until

236

either the person recovers or the health care provider performs a test which takes

another Tm(i) duration. If the health care provider performs a test before the person

recovers, then x̂i(t) becomes 1. We denote the time interval for which x̂i(t) stays at

0 as Ii1 which is given by

Ii1 =

K1∑
`=1

Tm(i, `) +Wi(`), (10.9)

where K1 is geometric with rate P(Tm(i) = Di) = si
µi+si

. Due to [147, Prob. 9.4.1],∑K1

`=1 Tm(i, `) and
∑K1

`=1Wi(`) are exponentially distributed with rates si and λisi
µi+si

,

respectively. As E[Ii1] = E[
∑K1

`=1 Tm(i, `)] + E[
∑K1

`=1 Wi(`)], we have

E[Ii1] =
1

si
+
si + µi
siλi

. (10.10)

When x̂i(t) = 1, the health care provider marks the ith person as infected.

The ith person recovers from the virus after Ri. After the ith person recovers, either

the health care provider performs a test after Zi which is exponentially distributed

with rate ci or the ith person is reinfected with the virus which takes Wi time.

We define Tu(i) as the earliest time at which one of these two cases happens, i.e.,

Tu(i) = min{Wi, Zi}. Similarly, we note that Tu(i) is exponentially distributed with

rate λi + ci, and we have P(Tu(i) = Wi) = λi
λi+ci

and P(Tu(i) = Zi) = ci
λi+ci

. If the

person is reinfected with the virus before a test is applied, this cycle repeats itself,

i.e., the ith person recovers after another Ri, and then either a test is applied to the

ith person, or the person is infected again which takes another Tu(i). If the health

237

care provider performs a test to the ith person before the person is reinfected, the

health care provider marks the ith person as healthy again, i.e., x̂i(t) becomes 0.

We denote the time interval that x̂i(t) is equal to 1 as Ii2 which is given by

Ii2 =

K2∑
`=1

Tu(i, `) +Ri(`), (10.11)

where K2 is geometric with rate P(Tu(i) = Zi) = ci
λi+ci

. Similarly,
∑K2

`=1 Tu(i, `) and∑K2

`=1Ri(`) are exponentially distributed with rates ci and ciµi
λi+ci

, respectively. As

E[Ii2] = E[
∑K2

`=1 Tu(i, `)] + E[
∑K2

`=1Ri(`)], we have

E[Ii2] =
1

ci
+
ci + λi
ciµi

. (10.12)

We denote the time interval between the jth and (j + 1)th times that x̂i(t)

changes from 1 to 0 as the jth cycle Ii(j) where Ii(j) = Ii1(j) + Ii2(j). We note

that ∆i1(t) is always equal to 0 during Ii2(j), i.e., x̂i(t) = 1, and ∆i1(t) is equal to 1

when xi(t) = 1 in Ii1(j). We denote the total time duration when ∆i1(t) is equal to

1 as Te,1(i, j) during the jth cycle where Te,1(i, j) =
∑K1

`=1 Tm(i, `). Thus, we have

E[Te,1(i)] = 1
si

. Then, using ergodicity, similar to [101], ∆i1 is equal to

∆i1 =
E[Te,1(i)]

E[Ii]
=

E[Te,1(i)]

E[Ii1] + E[Ii2]
. (10.13)

Thus, we have

∆i1 =
µiλi
µi + λi

ci
µici + λisi + cisi

. (10.14)

238

Next, we find ∆i2. We note that ∆i2(t) is equal to 1 when xi(t) = 0 in

Ii2(j) and is always equal to 0 during Ii1(j). Similarly, we denote the total time

duration where ∆i2(t) is equal to 1 in the jth cycle Ii(j) as Te,2(i, j) which is equal

to Te,2(i, j) =
∑K2

`=1 Tu(i, `). Thus, we have E[Te,2(i)] = 1
ci

. Then, similar to ∆i1 in

(10.13), ∆i2 is equal to

∆i2 =
µiλi
µi + λi

si
µici + λisi + cisi

. (10.15)

By using (10.5), (10.14), and (10.15), we obtain ∆i as

∆i =
µiλi
µi + λi

θci + (1− θ)si
µici + λisi + cisi

. (10.16)

Then, by inserting (10.16) in (10.7), we obtain ∆. In the next section, we solve the

optimization problem in (10.8).

10.4 Optimization of Average Difference

In this section, we solve the optimization problem in (10.8). Using ∆i in (10.16) in

(10.7), we rewrite (10.8) as

min
{si,ci}

n∑
i=1

µiλi
µi + λi

θci + (1− θ)si
µici + λisi + cisi

s.t.
n∑
i=1

si +
n∑
i=1

ci ≤ C

si ≥ 0, ci ≥ 0, i = 1, . . . , n, (10.17)

239

We define the Lagrangian function [149] for (10.17) as

L =
n∑
i=1

µiλi
µi + λi

θci + (1− θ)si
µici + λisi + cisi

+ β

(
n∑
i=1

si + ci − C

)
−

n∑
i=1

νisi −
n∑
i=1

ηici,

(10.18)

where β ≥ 0, νi ≥ 0, and ηi ≥ 0. The KKT conditions are

∂L
∂si

=
µiλici
µi + λi

(1− θ)µi − θ(ci + λi)

(µici + λisi + sici)2
+ β − νi = 0, (10.19)

∂L
∂ci

=
µiλisi
µi + λi

θλi − (1− θ)(µi + si)

(µici + λisi + sici)2
+ β − ηi = 0, (10.20)

for all i. The complementary slackness conditions are

β

(
n∑
i=1

si + ci − C

)
= 0, νisi = 0, ηici = 0. (10.21)

First, we find si. From (10.19), we have

(µici + λisi + sici)
2 =

µiλici
µi + λi

θ(ci + λi)− (1− θ)µi
β − νi

. (10.22)

When θ(ci + λi) ≥ (1− θ)µi, we solve (10.22) for si as

si =
µici
λi + ci

(√
1

µici

λi
µi + λi

θ(ci + λi)− (1− θ)µi
β

− 1

)+

, (10.23)

where we used the fact that we either have si > 0 and νi = 0, or si = 0 and νi ≥ 0,

due to (10.21). Here, (·)+ = max(·, 0).

240

Finally, when θ(ci + λi) < (1 − θ)µi, we have ∂∆i

∂si
> 0, and thus it is optimal

to choose si = 0 as our aim is to minimize ∆ in (10.7). In this case, when si = 0,

we have ∆i = θλi
µi+λi

which is independent of the value of ci. As we obtain the same

∆i for all values of ci, and the total update rate is limited, i.e.,
∑n

i=1 si + ci ≤ C, in

this case, it is optimal to choose ci = 0 as well (i.e., when si = 0).

Next, we find ci. From (10.20), we have

(µici + λisi + sici)
2 =

µiλisi
µi + λi

(1− θ)(µi + si)− θλi
β − ηi

. (10.24)

When (1− θ)(µi + si) ≥ θλi, we solve (10.24) for ci as

ci =
λisi
µi + si

(√
1

λisi

µi
µi + λi

(1− θ)(si + µi)− θλi
β

− 1

)+

, (10.25)

where we used the fact that we either have ci > 0 and ηi = 0, or ci = 0 and ηi ≥ 0,

due to (10.21).

Similarly, when (1−θ)(si+µi) < θλi, we have ∂∆i

∂ci
> 0. Thus, in this case, it is

optimal to choose ci = 0. When ci = 0, we have ∆i = (1−θ)µi
µi+λi

which is independent

of the value of si. Thus, it is optimal to choose si = 0 when ci = 0.

From (10.23), if 1
µici

λi
µi+λi

(θ(ci + λi) − (1 − θ)µi) ≤ β, we must have si = 0.

Thus, for a given ci, the optimal test rate allocation policy for si is a threshold policy

where si’s with small 1
µici

λi
µi+λi

(θ(ci + λi) − (1 − θ)µi) are equal to zero. Similarly,

from (10.25), if 1
λisi

µi
µi+λi

((1− θ)(si + µi)− θλi) ≤ β, we must have ci = 0. Thus,

for a given si, the optimal policy to determine ci is a threshold policy where ci’s

241

with small 1
λisi

µi
µi+λi

((1− θ)(si + µi)− θλi) are equal to zero.

Next, we show that in the optimal policy, if si > 0 and ci > 0 for some i, then

the total test rate constraint must be satisfied with equality, i.e.,
∑n

i=1 si + ci = C.

Lemma 10.1 In the optimal policy, if si > 0 and ci > 0 for some i, then we have∑n
i=1 si + ci = C.

Proof: The derivatives of ∆i with respect to si and ci are

∂∆i

∂si
=

µiλici
µi + λi

(1− θ)µi − θ(ci + λi)

(ciµi + sici + λisi)
2 , (10.26)

∂∆i

∂ci
=

µiλisi
µi + λi

θλi − (1− θ)(si + µi)

(ciµi + sici + λisi)
2 . (10.27)

We note that si > 0 in (10.23) implies that θ(ci + λi) > (1− θ)µi. In this case, we

have ∂∆i

∂si
< 0. Similarly, ci > 0 in (10.25) implies that (1− θ)(si + µi) > θλi. Thus,

we have ∂∆i

∂ci
< 0. Therefore, in the optimal policy, if we have si > 0 and ci > 0 for

some i, then we must have
∑n

i=1 si + ci = C. Otherwise, we can further decrease ∆

in (10.7) by increasing ci or si. �

Next, we propose an alternating minimization based algorithm for finding si

and ci. For this purpose, for given initial (si, ci) pairs, we define φi as

φi=


1
µici

λi
µi+λi

(θ(ci + λi)− (1− θ)µi), i=1, . . . , n,

1
λisi

µi
µi+λi

((1− θ)(si + µi)− θλi), i=n+ 1, . . . , 2n.

(10.28)

242

Then, we define ui as

ui =


µici
λi+ci

(√
φi
β
− 1
)+

, i = 1, . . . , n,

λisi
µi+si

(√
φi
β
− 1
)+

, i = n+ 1, . . . , 2n.

(10.29)

From (10.23) and (10.25), si = ui and ci = un+i, for i = 1, . . . , n.

Next, we find si and ci by determining β in (10.29). First, assume that, in the

optimal policy, there is an i such that si > 0 and ci > 0. Thus, by Lemma 10.1,

we must have
∑n

i=1 si + ci = C. We initially take random (si, ci) pairs such that∑n
i=1 si+ci = C. Then, given the initial (si, ci) pairs, we immediately choose ui = 0

for φi < 0. For the remaining ui with φi ≥ 0, we apply a solution method similar

to that in [101]. By assuming φi ≥ β, i.e., by disregarding (·)+ in (10.29), we solve∑2n
i=1 ui = C for β. Then, we compare the smallest φi which is larger than zero in

(10.28) with β. If we have φi ≥ β, then it implies that ui ≥ 0 for all remaining i.

Thus, we have obtained ui values for given initial (si, ci) pairs. If the smallest φi

which is larger than zero is smaller than β, then the corresponding ui is negative

and we should choose ui = 0 for the smallest non-negative φi. Then, we repeat this

procedure until the smallest non-negative φi is larger than β. After determining all

ui, we obtain si = ui and ci = un+i for i = 1, . . . , n. Then, with the updated values

of (si, ci) pairs, we keep finding ui’s until the KKT conditions in (10.19) and (10.20)

are satisfied.

We note that for indices (persons) i for which (si, ci) are zero, the health

care provider does not perform any tests, and maps these people as either always

243

infected, i.e., x̂i(t) = 1 for all t, or always healthy, i.e., x̂i(t) = 0. If x̂i(t) = 0 for all

t, ∆i = θλi
µi+λi

, and if x̂i(t) = 1 for all t, ∆i = (1−θ)µi
µi+λi

. Thus, for such i, the health

care provider should choose x̂i(t) = 0 for all t, if θλi
µi+λi

< (1−θ)µi
µi+λi

, and should choose

x̂i(t) = 1 for all t, otherwise, without performing any tests.

Finally, we note that the problem in (10.17) is not a convex optimization

problem as the objective function is not jointly convex in si and ci. Therefore, the

solutions obtained via the proposed method may not be globally optimal. For that

reason, we choose different initial starting points and apply the proposed alternating

minimization based algorithm and choose the solution that achieves the smallest ∆

in (10.7).

10.5 Numerical Results

In this section, we provide four numerical results. For these examples, we take λi as

λi = ari, i = 1, . . . , n, (10.30)

where r = 0.9 and a is such that
∑n

i=1 λi = 6. Also, we take µi as

µi = bqi, i = 1, . . . , n, (10.31)

where q = 1.1 and b is such that
∑n

i=1 µi = 4. Since λi in (10.30) decreases with i,

people with lower indices get infected more quickly compared to people with higher

indices. Since µi in (10.31) increases with i, people with higher indices recover more

244

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

(a)

1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

0.25

(b)

Figure 10.4: (a) Test rates si and ci, (b) corresponding average difference ∆i.

quickly compared to people with lower indices. Thus, low index people get infected

quickly and get well slowly.

In the first example, we take the total number of people as n = 10, the total

test rate as C = 16, and θ = 0.5. We start with randomly chosen si and ci such that∑n
i=1 si+ci = 16, and apply the alternating minimization based method proposed in

Section 10.4. We repeat this process for 30 different initial (si, ci) pairs and choose

the solution that gives the smallest ∆. In Fig. 10.4(a), we observe that the first

three people are never tested by the health care provider. We note that si, which

is the test rate when x̂i(t) = 0, initially increases with i but then decreases with

i. This means that people who get infected rarely are tested less frequently when

they are marked as healthy. Similarly, we observe in Fig. 10.4(a) that ci, which is

the test rate when x̂i(t) = 1, monotonically increases with i. In other words, people

who recover from the virus quickly are tested more frequently when they are marked

infected.

245

5 10 15 20

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Figure 10.5: The average difference ∆ with respect to total test rate C.

In Fig. 10.4(b), we plot ∆i resulting from the solution found from the pro-

posed algorithm, ∆i when the health care provider applies tests to everyone in the

population uniformly, i.e., si = ci = C
2n

for all i, and ∆i when the health care

provider applies no tests, i.e., si = ci = 0 for all i. In the case of no tests, we have

∆i = min{ θλi
µi+λi

, (1−θ)µi
µi+λi

}. We observe in Fig. 10.4(b) that the health care provider

applies tests on people whose ∆i can be reduced the most as opposed to uniform

testing where everyone is tested equally. Thus, the first three people who have the

smallest ∆i are not tested by the health care provider. With the proposed solu-

tion, by not testing the first three people, ∆i are further reduced for the remaining

people compared to uniform testing. For the people who are not tested, the health

care provider chooses x̂i(t) = 1 all the time, i.e., marks these people always sick as

θλi
µi+λi

> (1−θ)µi
µi+λi

. This is expected as these people have high λi and low µi, i.e., they

are infected easily and they stay sick for a long time.

246

0 5 10 15 20 25 30

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Figure 10.6: The average difference ∆ with respect to number of people n. We use
uniform infection and healing rates, i.e., λi = 6

n
and µi = 4

n
for all i, and also λi in

(10.30) and µi in (10.31) with
∑n

i=1 λi = 6 and
∑n

i=1 µi = 4.

In the second example, we use the same set of variables except for the total test

rate C. We vary the total test rate C in between 5 and 20. We plot ∆ with respect

to C in Fig. 10.5. We observe that ∆ decreases with C. Thus, with higher total

test rates, the health care provider can tract the infection status of the population

better as expected.

In the third example, we use the same set of variables except for the total

number of people n. In addition, we also use uniform infection and healing rates,

i.e., λi = 6
n

and µi = 4
n

for all i, for comparison with λi in (10.30) and µi in (10.31),

while keeping the total infection and healing rates the same, i.e.,
∑n

i=1 λi = 6 and∑n
i=1 µi = 4, for both cases. We vary the number of people n from 2 to 30. We

observe in Fig. 10.6 that when the infection and healing rates are uniform in the

population, the health care provider can track the infection status with the same

247

0.2 0.3 0.4 0.5 0.6 0.7

0

0.05

0.1

0.15

0.2

0.25

0.3

(a)

0.2 0.3 0.4 0.5 0.6 0.7

5

6

7

8

9

10

11

(b)

Figure 10.7: (a) ∆ in (10.7), ∆̄1 which is 1
n

∑n
i=1 ∆i1, and ∆̄2 which is 1

n

∑n
i=1 ∆i2,

(b) corresponding total test rates
∑n

i=1 si and
∑n

i=1 ci.

efficiency, even though the population size increases (while keeping the total infection

and healing rates fixed). For the case of λi in (10.30) and µi in (10.31), when we

increase the population size, we increase the number of people who rarely get sick,

i.e., people with high i indices, and also people who rarely heal from the disease,

i.e., people with small i indices. Thus, it gets easier for the health care provider to

track the infection status of the people. That is why when we use λi in (10.30) and

µi in (10.31), we observe in Fig. 10.6 that the health care provider can track the

infection status of the people better, even though the population size increases.

In the fourth example, we use the same set of variables as the first example

except for the importance factor θ. Here, we vary θ in between 0.2 to 0.7. We

plot ∆ in (10.7), ∆̄1 which is ∆̄1 = 1
n

∑n
i=1 ∆i1, and ∆̄2 which is ∆̄2 = 1

n

∑n
i=1 ∆i2

in Fig. 10.7(a). Note that ∆̄1 represents the average difference when people are

infected, but they have not been detected by the health care provider, and ∆̄2

represents the average difference when people have recovered, but the health care

248

provider still marks them as infected. Note that when θ is high, we give importance

to minimization of ∆̄1, i.e., the early detection of people with infection, and when θ

is low, we give importance to minimization of ∆̄2, i.e., the early detection of people

who recovered from the disease. That is why we observe in Fig. 10.7(a) that ∆̄1

decreases with θ while ∆̄2 increases with θ.

We plot the total test rates
∑n

i=1 si and
∑n

i=1 ci in Fig. 10.7(b). We observe

in Fig. 10.7(b) that if it is more important to detect the infected people, i.e., if θ

is high, then the health care provider should apply higher test rates to people who

are marked as healthy. In other words,
∑n

i=1 si increases with θ. Similarly, if it is

more important to detect people who recovered from the disease, then the health

care provider should apply high test rates to people who are marked as infected.

That is,
∑n

i=1 ci is high when θ is low. Therefore, depending on the priorities of the

health care provider, a suitable θ needs to be chosen.

10.6 Conclusion

In this chapter, we considered timely tracking of infection status of individuals in

a population. For exponential infection and healing processes with given rates, we

determined the rates of exponential testing processes. We observed in numerical

results that the test rates depend on individuals’ infection and healing rates, the in-

dividuals’ last known state of healthy or infected, as well as the health care provider’s

priorities of detecting infected people or recovered people more quickly.

249

CHAPTER 11

Age-Efficient Scheduling for Binary-Valued Information Sources:

Group Updating

11.1 Introduction

In this chapter, we consider two different problems with similar system models:

anomaly detection in sensor networks and testing for infections in human popu-

lations. In the anomaly detection problem, n sensor nodes monitor a region and

make measurements for an anomaly (e.g., fire, chemical spills, etc.) and report their

measurements to a central location; see Fig. 11.1(a). Each sensor node detects an

anomaly with probability p independent of others. In the infection testing problem,

there are n individuals each of whom is infected with probability p independent

of others, and their infection status needs to be tallied at a central location; see

Fig. 11.1(b). In both problems, we want to identify the anomaly/infection status

of each node as timely as possible in order to take necessary actions as quickly as

possible, e.g., control the fire or isolate/treat the infected persons. For a measure

of timeliness, we use age of information, which keeps track of the time elapsed since

the last time the status of a node is updated.

250

source
group 2

group 3

group m− 1

group m

receivertransmitter

group 1

(a) An anomaly detection system with multiple sensor nodes. Sensors in red indicate
an anomaly and sensors in green indicate no anomaly.

1

1

1

1 1

0

0 0 0 0 0

(b) An infection detection system in a human population. Persons in red are infected
and persons in green are not infected.

Figure 11.1: System models considered in this chapter.

Inspired by the group testing approach introduced in [159], we develop a group

updating approach to maintain timely status updates at the central location. To

that end, we divide n nodes into groups of k nodes each. In the case of anomaly

detection, a local transmitter collects anomaly status of all nodes within the group.

If there is no anomaly detected within the group, the local transmitter sends a

single 0 to the central location. The central location, then, knows the status of all

nodes within the group. On the other hand, if there is at least one anomaly detected

within the group, the local transmitter sends a 1 to the central location. The central

location, then, knows that there is at least one anomalous reading within the group.

251

The local transmitter then sends the individual measurements of the sensors (0s and

1s) to the central location one-by-one. Similarly, in the case of testing humans for

infection, we divide n individuals into groups of k each. Within each group, we mix

the test samples of the individuals and perform a single test. If the test result is a

0, we know that no one within the group is infected. If the test result is a 1, then,

we know that at least one person within the group is infected. In the latter case,

we test each person within the group individually one-by-one.

In the proposed group updating method, the group size k plays an important

role in the performance of the system, i.e., in the resulting age. If k is too large,

then the first update will likely result in a 1, and we will need to proceed to update

the status of each node within the group one-by-one. This will increase the update

duration, and hence, the age. On the other hand, if k is too small, then this will

result in too many groups, and therefore, too many updates within an update cycle.

This will increase the age as well. Thus, there is an optimum group size k, which is

not too small, not too large. Here, we find that optimum size for given n and p.

With this work, we are bringing age of information as a measure of timeliness to

anomaly detection and testing for infections. Specifically relevant to our case is the

setting of multi-source systems, where maximum age first (MAF) [160], maximum

age difference (MAD) [161], Whittle index [3,59,162], slotted ALOHA with threshold

[163], hierarchical cooperation [65] have been used to achieve good age performance.

Different from most of these works, where only one source can be updated at a time,

with the proposed group updating approach, we allow all sources in a group to be

updated simultaneously with a single status update.

252

In this chapter, we introduce a group updating approach where if all updates

from the sources in the same group are 0, then the transmitter sends only a single

status update representing the entire group, otherwise, the transmitter sends an

update indicating that there is at least one 1 in the group, and proceeds to send

all individual updates within the group one-by-one. For this updating method, for

arbitrary n and p, we first find an analytical expression for the average age, which

depends on the group size k. For given n and p, we find the optimal group size k

that minimizes the age. Next, we compare the performance of the proposed group

updating policy with the performances of the traditional scheduling methods, and

observe that the proposed group updating policy achieves a lower age than the

existing schemes when p is small. In addition, we compare the optimal group size k

in the group updating problem and in the group testing problem in [159] and observe

that they are different in general indicating the difference of the metrics used.

11.2 System Model

We consider a system with n sources/nodes. We divide the n sources into groups

of size k, where m = n
k

is the number of groups. Without loss of generality, we

assume that k divides n, and thus, m is an integer. We denote the status of the

jth source in the ith group in the `th update cycle by Xij(`), where i = 1, . . . ,m,

j = 1, . . . , k, and ` ≥ 1. Xij(`) is an independent and identically distributed (i.i.d.)

253

binary random variable for all i, j and `, with distribution,

Xij(`) =


1, with probability p,

0, with probability 1− p,

(11.1)

where a status 1 indicates an anomaly/infection, and a status 0 indicates no anomaly

/infection.

Let Sij(`) denote the service time for the status update of the jth source in

the ith group in the `th update cycle. This is the time it takes for the status of

the node to go through the system and be tallied at the central location. Note that

if the status of all nodes in the ith group is 0, then the service time for all nodes

in this group is equal to 1, as in this case, for the anomaly detection problem, the

local transmitter needs to send a single 0 to convey the status of all nodes, and in

the infection testing problem, a single test will determine the infection status of all

nodes in the group. On the other hand, if any one of the sources in the ith group

generates 1 as a status update, the service time for the jth source in the ith group

will be equal to j + 1, as in this case, an initial status update is sent representing

the entire group, j − 1 status updates are sent for the sources before source j, and

a final update is sent for source j itself. Thus, the service time for the jth node in

group i is a random variable with distribution,

Sij(`) =


1, with probability (1− p)k,

j + 1, with probability 1− (1− p)k.

(11.2)

254

The service time of the entire ith group in the `th update cycle, denoted by

Wi(`), is equal to the service time of the last source in the ith group,

Wi(`) = Sik(`), i = 1, . . . ,m. (11.3)

As the central location wants to get timely updates from all sources, we track

the age of each source at the central location separately. We denote the instanta-

neous age of source j in group i at time t by aij(t), with aij(0) = 0. Age of each

source at the central location increases linearly in time and drops to the age of the

most recently received update once an update is received. The long term average

age of node j in group i is given by,

∆ij = lim
T→∞

1

T

∫ T

0

aij(t)dt. (11.4)

The overall average age of all sources ∆ is equal to,

∆ =
1

n

m∑
i=1

k∑
j=1

∆ij. (11.5)

Our aim is to find the optimal group size k∗ that minimizes the average age of all

sources ∆, i.e.,

k∗ = arg min
{k}

∆. (11.6)

In Section 11.3, we first find the average age, ∆, in (11.5).

255

1

2

k

k + 1

k + 2

2k

(m− 1)k + 1

n

|
{
z

}
|

{
z

}

group 1

group 2

sources

| {z }| {z }

update cycle 1 update cycle 2

|
{
z

}

group m(m− 1)k + 2

first group
updated

mth group
updated

second group
updated

Figure 11.2: A sample update generation and update delivery timeline. Lines 1
through n denote the nodes. Lines 1 through k denote the nodes in group 1. Green
and red balls represent the anomaly/no anomaly status of each node. In update
cycle 1, the yellow strip shows the time where the status of all nodes in group 1 is
updated, the blue strip shows the time where the status of all nodes in group 2 is
updated, and the pink strip shows the time where the status of all nodes in group m
is updated. The process repeats itself in update cycle 2. Delivery times are marked
by the downward arrows.

11.3 Average Age Analysis

With the group updating policy, the transmitter starts with sending updates from

the sources in the first group. If all the updates from the first group are 0 (as

shown with green balls in the first k lines in Fig. 11.2), then the transmitter sends

a single 0 to update all the sources in the first group (that is why the delivery times

of updates for all sources in the first group marked with arrows in Fig. 11.2 are

equal to 1). After sending updates from the first group, the transmitter proceeds

to send updates from the second group. If any one of the updates from the second

256

group is equal to 1 (denoted by a red ball in the lines between lines k + 1 and 2k

in Fig. 11.2), then the transmitter first sends a 1 as a status update representing

the entire group, and then sends individual updates from each source one-by-one.

As shown in Fig. 11.2, the receiver gets the first update from the second group

after 2 units of time. After sending updates from the second group, the transmitter

proceeds to send updates from the third group, and so on, up until the mth (last)

group. We call this entire time in which the status of all n sources are updated as

update cycle 1 in Fig. 11.2. Once update cycle 1 ends, update cycle 2 starts all over

again with all sources taking a new i.i.d. realization. In Fig. 11.2, in update cycle 1,

the yellow vertical strip shows the time in which the status of all nodes in group 1

is updated, the blue strip shows the time in which the status of all nodes in group

2 is updated, so on so forth, and finally, the pink strip shows the time in which the

status of all nodes in group m is updated.

Fig. 11.3 shows a sample age evolution curve for the jth source in the ith group

at the central location, i.e., aij(t). Here, Sij(`) defined in (11.2) denotes the service

time of the jth source in the ith group in the `th update cycle. In addition, Wij(`)

denotes the total waiting time until the `th update is generated after the service

completion of the (`− 1)th update for the same source. Thus, Wij(`) is given by,

Wij(`) = W̄ij(`− 1) +
m∑

r=i+1

Wr(`− 1) +
i−1∑
r=1

Wr(`), (11.7)

where Wr(`) is given in (11.3), and W̄ij(` − 1) denotes the remaining service time

of the ith group in the (` − 1)th update cycle which is given by W̄ij(` − 1) =

257

update

generated

aij(t)

t

update

received

Wij(1) Sij(1) Wij(2) Wij(3) Wij(4)Sij(2) Sij(3)

Yij(1) Yij(2) Yij(3) Yij(4)

Figure 11.3: A sample age evolution aij(t) at the central location.

Wi(`− 1)− Sij(`− 1).

We denote the length of the `th update cycle for the jth source in the ith

group as Yij(`) = Sij(`− 1) +Wij(`) with Sij(0) = 0 for convention. One can show

that the long term average age ∆ij given in (11.4) as in [10] is,

∆ij = lim
N→∞

1
N

(
1
2

∑N+1
`=1 Yij(`)

2 +
∑N

`=1 Yij(`)Sij(`)
)

1
N

∑N
`=1 Yij(`)

, (11.8)

where N denotes the number of update cycles. We note that (11.8) can be written

equivalently as,

∆ij =
E[Y 2

ij]

2E[Yij]
+ E[Sij]. (11.9)

We note that the length of an update cycle Yij is equal to the service completion

258

time of all the groups, i.e.,

Yij = Sij +Wij =
m∑
r=1

Wr. (11.10)

Therefore, the variable Yij does not depend on i or j. We thus denote Yij with a

single random variable Y , i.e., Y = Yij. On the other hand, from (11.2), Sij depends

on j, and we denote it by Sj. Then, the overall average age ∆ in (11.5) is equal to,

∆ =
E[Y 2]

2E[Y]
+ E[S], (11.11)

where E[S] = 1
n

∑m
i=1

∑k
j=1 E[Sij] = 1

k

∑k
j=1 E[Sj].

Now, using (11.2)-(11.3), we have E[Wr] = 1+k
(
1− (1− p)k

)
for all r. Thus,

from (11.10),

E[Y] =
n

k
+ n

(
1− (1− p)k

)
. (11.12)

In addition,

E[Y 2] = n(n− k)(1− p)2k +
n2(k + 1)2

k2
− n

(
2n

(
1 +

1

k

)
− k
)

(1− p)k. (11.13)

Further, from (11.2), we have,

E[Sij] = E[Sj] = 1 + j(1− (1− p)k), (11.14)

259

and thus, we have,

E[S] = 1 +
k + 1

2
(1− (1− p)k). (11.15)

Hence, the overall average age ∆ in (11.11) is

∆ =
k2(n− k)(1− p)2k + n(k + 1)2

2k + 2k2 (1− (1− p)k)
− (2n (k + 1)− k2) (1− p)k

2 + 2k (1− (1− p)k)
+ 1

+
k + 1

2
(1− (1− p)k). (11.16)

The overall average age in (11.16) depends on n, p and k. We find the optimal

k that minimizes ∆ numerically in Section 11.5.

11.4 Group Updating versus Group Testing

While the group testing and group updating policies are operationally similar, pa-

rameter selection, mainly selection of the group size in both problems, is different.

In particular, in group testing, group size k is chosen to minimize the expected

number of tests. In our terminology, expected number of tests corresponds to the

expected length of an update cycle, i.e., E[Y], as the transmitter sends one status

update at a time. Thus, group testing chooses the group size k∗gt by solving,

k∗gt = arg min
{k∈Z+}

E[Y], (11.17)

260

where E[Y] is given in (11.12). In order for group testing to be more efficient than

sequential updating of sources one-by-one, which uses n tests in an update cycle,

we need E[Y] ≤ n, which implies p ≤ pgt, where

pgt = 1−
(

1

k

) 1
k

. (11.18)

We note that pgt attains its maximum value 0.3066 when k = 3. Thus, when

p > 0.3066, group testing becomes inefficient compared to sequential updating of

sources one-by-one.

Next, we find k∗gt in (11.17) analytically. For that, we first relax the integer

constraint on k. Then, by equating the derivative of E[Y] in (11.12) with respect to

k to zero, we obtain,

∂E[Y]

∂k
= − n

k2
− n(1− p)k log(1− p) = 0, (11.19)

which gives,

k

2
log(1− p)e

k
2

log(1−p) = −1

2

√
− log(1− p). (11.20)

Note that (11.20) is in the form of xex = y, whose solutions for x are x1 = W0(y)

and x2 = W−1(y) when −1
e
≤ y < 0. Here, W0(·) and W−1(·) denote the principle

and −1st branches of the Lambert W function, respectively [150]. Thus, when

261

0 < p ≤ 1− e−
4
e2 = 0.418, we have two solutions for (11.20) which are given by,

α1 =
2

log(1− p)
W0

(
−1

2

√
− log(1− p)

)
, (11.21)

α2 =
2

log(1− p)
W−1

(
−1

2

√
− log(1− p)

)
. (11.22)

When p > 0.418, one can show that ∂E[Y]
∂k

< 0, and thus, the optimal k is equal to

n. However, as the group testing method becomes inefficient when p > 0.3066, we

only need to consider the case when 0 < p ≤ 0.418, and thus, α1 in (11.21) and α2

in (11.22) always exist.

Thus, in order to find the optimal k, we need to check k = αur where αur =

min{k|k ≥ αr, k|n} for r = 1, 2; k = α`r where α`r = max{k|k ≤ αr, k|n} for r = 1, 2;

k = 1; and k = n. In other words, the optimal k is given by,

k∗gt = arg min
{k∈K}

E[Y], (11.23)

where K = {1, α`1, α`2, αu1 , αu2 , n}.

We perform a similar analysis for the group updating problem. Group updat-

ing chooses the group size k∗gu by solving,

k∗gu = arg min
{k∈Z+}

∆, (11.24)

where ∆ is given in (11.16). In order for group updating to be more efficient than

sequential updating, ∆ in (11.16) needs to be smaller than ∆round-robin. For the

262

round-robin (sequential) scheduling method, E[Y] = n, E[Y 2] = n2, E[S] = 1, and

the overall average age from (11.11) is,

∆round-robin =
n

2
+ 1. (11.25)

The condition ∆ ≤ ∆round-robin gives an upper bound for the probability p, which we

denote by pgu. In other words, when p > pgu, group updating becomes inefficient

compared to sequential updating. Further, by relaxing the integer constraint on

k and equating the derivative of ∆ in (11.16) with respect to k to 0, we can find

the critical points where the age is minimized, and find k∗gu analytically. Since ∆

in (11.16) is an involved function of k, in this work, we do not pursue analytical

results on pgu and k∗gu. Instead, we find k∗gu for given of p and n, and examine pgu,

numerically, in the next section.

11.5 Numerical Results

In this section, we provide four numerical results to illustrate the performance of

the proposed group updating method, and also to show its difference from the group

testing method. In all the numerical results, we only consider k values that divide

n. For example, if n = 6, we consider k = 1, 2, 3, 6.

In the first numerical example, we compare the performance of the proposed

group updating method with the performances of the existing updating policies of

MAF and MAD. Since after receiving each update, the age at the receiver goes

down to 1, MAF and MAD scheduling policies become identical. In addition, as

263

0 20 40 60 80 100 120

0

20

40

60

80

100

120

140

Figure 11.4: Average age versus group size with the proposed group updating
method and the round robin method when p = 0.01, 0.1, 0.2, 0.4.

the ages of all sources start from zero, MAF and MAD policies become the same

as the round-robin scheduling method. The average age for the round-robin scheme

is given in (11.25). We note that ∆round-robin increases linearly with n and does not

depend on the probability p.

In the first numerical example, we take n = 120 and plot in Fig. 11.4 the

average age ∆ in (11.16) with respect to k when p = 0.01, 0.1, 0.2, 0.4, together

with ∆round-robin in (11.25). We observe in Fig. 11.4 that, for all values of p, the

average age first decreases with k and then increases with k, as initially, increasing

k decreases the number of groups, making group updating more efficient, but after

a while, further increasing k decreases the likelihood of having all zero updates

in a group, requiring many follow-up individual updates. Thus, there is a trade-off

between these two opposing factors, and there is an optimum group size to minimize

264

200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

Figure 11.5: Average age versus population size with the proposed group updating
method and the round robin method when p = 0.01, 0.1, 0.2, 0.4.

the average age. As marked with a cross in Fig. 11.4, when p = 0.01 the optimal

group size is k∗gu = 8; when p = 0.1 it is k∗gu = 4; when p = 0.2 it is k∗gu = 3;

and when p = 0.4 it is k∗gu = 3. We also observe that the group updating method

becomes inefficient with increased p as it becomes more likely for the transmitter to

send individual updates. When p is large enough, e.g., when p = 0.4, we observe in

Fig. 11.4 that group updating becomes inefficient and does not improve the average

age compared to the round-robin scheduling method.

In the second numerical example, we again take p = 0.01, 0.1, 0.2, 0.4, and

plot in Fig. 11.5 the average age with respect to n, the population size, for n from

60 to 1200. For each value of p and n, we first find the optimal k∗gu that achieves

the minimum age, then plot that minimum age with respect to n. We observe in

Fig. 11.5 that the average age increases linearly with the proposed group updating

265

0 10 20 30 40 50

10

15

20

25

30

35

40

45

50

55

(a)

0 10 20 30 40 50

15

20

25

30

35

40

45

50

55

60

(b)

Figure 11.6: Average age for the group updating method and average number of
updates for the group testing method with respect to k for n = 48 when (a) p = 0.05
and (b) p = 0.15.

method as with the round-robin scheduling method. Similar to the first numerical

example, the average age increases with p as group updating becomes less efficient

with larger p.

In the third numerical example, we examine the differences between the group

updating problem and the group testing problem. For this numerical example, we

take n = 48, p = 0.05, 0.15, and determine the optimal k values that minimize the

average age and also the average number of updates. When p is small, e.g., when

p = 0.05, we observe in Fig. 11.6(a) that the optimal group size that minimizes the

average age is k∗gu = 4, whereas the optimal group size that minimizes the average

number of updates is k∗gt = 6. This verifies that the group updating problem is

different than the group testing problem. However, when p is relatively large, e.g.,

when p = 0.15, we observe in Fig. 11.6(b) that the optimal group sizes in both

problems are equal k∗gu = k∗gt = 3. In other words, when p gets larger, the optimal k

266

0 0.05 0.1 0.15 0.2 0.25

0

2

4

6

8

10

Figure 11.7: Optimum group sizes k∗gu in the group updating problem and k∗gt in the
group testing problem for n = 120, for p from 0.01 to 0.25.

values for the group updating and group testing problems get closer to each other.

In the fourth numerical example, we examine k∗gu and k∗gt as a function of

p. We take n = 120 and vary p between 0.01 and 0.25. We observe in Fig. 11.7

that both k∗gu and k∗gt decrease with probability p. With higher p, the sources in a

group begin to generate more 1s as status updates, which results in sending more

individual updates from the sources. Thus, decreasing the group size k∗ in both

of the problems helps counter the effects of increased p. Similar to the previous

example, we observe in Fig. 11.7 that k∗gu and k∗gt are different when p is small, and

become the same when p ≥ 0.13 for this choice of n.

267

11.6 Conclusion

In this chapter, we considered the problem of timely group updating, where similar

to group testing, the sources are divided into groups; if all updates within a group

are negative, a single group update suffices; if at least one update is positive, this

triggers a sequence of individual updates. For this updating scheme, we derived an

analytical expression for the average age as a function of the group size k, the number

of sources n, and the probability p. For given n and p, we found the optimal group

size k that minimizes the age. We showed that when p is small, group updating

performs better than sequential updating. We also showed that the optimal group

sizes for group updating and group testing are different. This is because, while group

testing aims to minimize the first moment of the length of an update cycle, group

updating aims to minimize the age which depends on both the first and second

moments of the length of an update cycle. An analogous observation was made in

timely source coding versus traditional source coding, where the former depends on

the first and second moments of the codeword length, while the latter depends only

the first moment [80,83].

268

CHAPTER 12

Conclusions

In this dissertation, we developed solutions for fundamental timely update delivery

problems in communication networks with various system settings.

In Chapter 2, we introduced the concept of soft updates which begin reducing

the age immediately but drop it gradually over time as opposed to traditional age

metric where updates are countable (hard) and drop the age instantaneously (pos-

sibly after a delay). We studied two soft update regimes: exponentially and linearly

decaying age models. For both of these models, we found the optimum start times

for the soft updates and their corresponding optimum update durations to mini-

mize the average age. We showed that the optimal policy is to utilize all updating

opportunities by allocating equal amount of update duration for each update.

In Chapter 3, we modeled the distortion on updates as a decreasing function of

the processing time that the transmitter spent to generate an update. We considered

the problem of minimizing age of information at the receiver subject to a distor-

tion constraint on each update. We considered constant and also age-dependent

distortion constraints. For all these distortion constraints, we found the optimum

269

time to request updates from the transmitter and their corresponding processing

times to generate the updates. We showed that there is a trade-off between the age

and distortion on the updates and for all these distortion constraints, the optimum

processing times are equal to the minimum required processing duration that meets

the distortion constraints.

In Chapter 4, we considered selective encoding policies that only encode the

most probable status updates. For the remaining least probable updates, we studied

the cases where these updates are never sent, probabilistically sent, represented by

a designated empty symbol. For all these encoding schemes, we found the optimum

number of encoded updates and as well as their corresponding age-optimal real

valued codeword lengths.

In Chapter 5, we studied the problem of generating partial updates, which

carry less information, but can be transmitted faster than the original updates. We

minimized the age of information while maintaining a desired level of information

fidelity between the original and the partial updates. We proposed an alternating

minimization based method that produced a pmf for the partial updates and their

corresponding age-optimum real-valued codeword lengths.

In Chapter 6, we considered the binary freshness metric for a caching system

consisting of a source, cache(s), and a user. We characterized the binary freshness at

the end user and proposed an alternating maximization based method to maximize

the overall freshness at the end user subject to total update rate constraints on the

cache(s), and the user.

In Chapter 7, different from our work in Chapter 6, we considered a caching

270

system with a limited storage capacity for the cache. Here, the user can get the files

from the cache at the expense of sometimes receiving an outdated version of the files;

or get fresh files directly from the source at the expense of additional transmission

times between the source and the user. For this problem, we found the optimum

caching status of each file and their optimum update rates at the caches to maximize

the overall freshness at the end user. We observed that rapidly changing files at the

source and files with smaller transmission times can be directly obtained from the

source when the total update rate and storage capacity of the cache are limited.

In Chapter 8, we studied binary freshness in structured gossip networks. Dif-

ferent from the works in Chapters 6 and 7, here, we allow the end nodes to share

their local versions with each other via a process called gossiping. By using an SHS

approach, we characterized the information freshness in arbitrarily connected gossip

networks. When the number of nodes gets large, we showed that the binary fresh-

ness decreases to 0 as n−1 for both disconnected and ring networks, but with strictly

higher freshness for the ring networks. When the update rates of the source and the

nodes are sufficiently large, for fully connected networks, binary freshness decreases

to 0 with a smaller rate. In addition, we considered clustered gossip networks and

found the optimal cluster sizes numerically.

In Chapter 9, we considered the problem of timely updating of citation counts

of a group of researchers under the limited total update rate constraint for Google

Scholar. We modeled the citation arrival profile of each researcher as a count-

ing process. We showed that the optimum update rates of researchers should be

proportional to the square root of their citation arrival rates multiplied by their

271

importance factors.

In Chapter 10, we considered the real-time timely tracking of infection status

of people under limited total test rate constraints for the health care provider. For

given infection and recovery rates of individuals, we found the rates of Poisson testing

processes when the people are considered to be sick and healthy by the health care

provider. When the total test rate is limited, we showed that some portion of the

population may not be tested by the health care provider.

In Chapter 11, we considered a communication system with large number of

sources that produce binary status updates that can indicate an anomaly or in-

fection. Instead of sending updates sequentially, we proposed a group updating

method inspired by the group testing approach, but with the aim of minimizing the

average age over all sources. We showed that when the anomaly/infection proba-

bility is low, the proposed group updating method achieves lower average age than

sequential updating methods.

The contents of Chapter 2 are published in [62, 63], Chapter 3 in [108, 109],

Chapter 4 in [81–83], Chapter 5 in [87], Chapter 6 in [100, 101], Chapter 7 in [99],

Chapter 8 in [164], Chapter 9 in [36], Chapter 10 in [165], Chapter 11 in [73].

272

Bibliography

[1] J. Cho and H. Garcia-Molina. Effective page refresh policies for web crawlers.
ACM Transactions on Database Systems, 28(4):390–426, December 2003.

[2] S. K. Kaul, R. D. Yates, and M. Gruteser. Real-time status: How often should
one update? In IEEE Infocom, March 2012.

[3] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano. Schedul-
ing policies for minimizing age of information in broadcast wireless networks.
IEEE/ACM Transactions on Networking, 26(6):2637–2650, December 2018.

[4] M. Costa, M. Codrenau, and A. Ephremides. Age of information with packet
management. In IEEE ISIT, June 2014.

[5] A. M. Bedewy, Y. Sun, and N. B. Shroff. Optimizing data freshness, through-
put, and delay in multi-server information-update systems. In IEEE ISIT,
July 2016.

[6] Q. He, D. Yuan, and A. Ephremides. Optimizing freshness of information: On
minimum age link scheduling in wireless systems. In IEEE WiOpt, May 2016.

[7] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and A. Ephremides.
Age of information with a packet deadline. In IEEE ISIT, July 2016.

[8] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff. Up-
date or wait: How to keep your data fresh. IEEE Transactions on Information
Theory, 63(11):7492–7508, November 2017.

[9] E. Najm and E. Telatar. Status updates in a multi-stream M/G/1/1 preemp-
tive queue. In IEEE Infocom, April 2018.

[10] E. Najm, R. D. Yates, and E. Soljanin. Status updates through M/G/1/1
queues with HARQ. In IEEE ISIT, June 2017.

[11] A. Soysal and S. Ulukus. Age of information in G/G/1/1 systems. In Asilomar
Conference, November 2019.

273

[12] A. Soysal and S. Ulukus. Age of information in G/G/1/1 systems: Age expres-
sions, bounds, special cases, and optimization. IEEE Trans. on Information
Theory, 2021. To appear. Available on arXiv: 1905.13743.

[13] B. Buyukates and S. Ulukus. Age of information with Gilbert-Elliot servers
and samplers. In CISS, March 2020.

[14] R. D. Yates. The age of information in networks: Moments, distributions, and
sampling. IEEE Transactions on Information Theory, 66(9):5712–5728, May
2020.

[15] R. Talak, S. Karaman, and E. Modiano. Minimizing age-of-information in
multi-hop wireless networks. In Allerton Conference, October 2017.

[16] V. Tripathi and S. Moharir. Age of information in multi-source systems. In
IEEE Globecom, December 2017.

[17] A. M. Bedewy, Y. Sun, and N. B. Shroff. Age-optimal information updates in
multihop networks. In IEEE ISIT, June 2017.

[18] A. M. Bedewy, Y. Sun, and N. B. Shroff. The age of information in multihop
networks. IEEE/ACM Transactions on Networking, 27(3):1248–1257, June
2019.

[19] J. Zhong, E. Soljanin, and R. D. Yates. Status updates through multicast
networks. In Allerton Conference, October 2017.

[20] J. Zhong, R. D. Yates, and E. Soljanin. Multicast with prioritized delivery:
How fresh is your data? In IEEE SPAWC, June 2018.

[21] B. Buyukates, A. Soysal, and S. Ulukus. Age of information in two-hop mul-
ticast networks. In Asilomar Conference, October 2018.

[22] B. Buyukates, A. Soysal, and S. Ulukus. Age of information in multihop
multicast networks. Journal of Communications and Networks, 21(3):256–
267, July 2019.

[23] K. S. A. Krishnan and V. Sharma. Minimizing age of information in a multihop
wireless network. In IEEE ICC, June 2020.

[24] B. Buyukates, A. Soysal, and S. Ulukus. Age of information in multicast
networks with multiple update streams. In Asilomar Conference, November
2019.

[25] S. Farazi, A. G. Klein, and D. R. Brown III. Fundamental bounds on the age of
information in multi-hop global status update networks. Journal of Commu-
nications and Networks, special issue on Age of Information, 21(3):268–279,
July 2019.

274

[26] S. Ioannidis, A. Chaintreau, and L. Massoulie. Optimal and scalable distribu-
tion of content updates over a mobile social network. In IEEE Infocom, April
2009.

[27] Y. Azar, E. Horvitz, E. Lubetzky, Y. Peres, and D. Shahaf. Tractable near-
optimal policies for crawling. PNAS, 115(32):8099–8103, August 2018.

[28] A. Kolobov, Y. Peres, E. Lubetzky, and E. Horvitz. Optimal freshness crawl
under politeness constraints. In ACM SIGIR Conference, July 2019.

[29] B. E. Brewington and G. Cybenko. Keeping up with the changing web. Com-
puter, 33(5):52–58, May 2000.

[30] M. Wang, W. Chen, and A. Ephremides. Reconstruction of counting process
in real-time: The freshness of information through queues. In IEEE ICC, July
2019.

[31] Y. Sun, Y. Polyanskiy, and E. Uysal-Biyikoglu. Remote estimation of the
Wiener process over a channel with random delay. In IEEE ISIT, June 2017.

[32] Y. Sun and B. Cyr. Information aging through queues: A mutual information
perspective. In IEEE SPAWC, June 2018.

[33] J. Chakravorty and A. Mahajan. Remote estimation over a packet-drop
channel with Markovian state. IEEE Transactions on Automatic Control,
65(5):2016–2031, July 2020.

[34] C. Kam, S. Kompella, and A. Ephremides. Age of incorrect information for
remote estimation of a binary Markov source. In IEEE Infocom, July 2020.

[35] A. Arafa, K. Banawan, K. G. Seddik, and H. V. Poor. Sample, quantize
and encode: Timely estimation over noisy channels. IEEE Transactions on
Communications, 2021. To appear. Available on arXiv:2007.10200.

[36] M. Bastopcu and S. Ulukus. Who should Google Scholar update more often?
In IEEE Infocom, July 2020.

[37] B. T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu. Age of information
under energy replenishment constraints. In UCSD ITA, February 2015.

[38] B. T. Bacinoglu and E. Uysal-Biyikoglu. Scheduling status updates to mini-
mize age of information with an energy harvesting sensor. In IEEE ISIT, June
2017.

[39] B. T. Bacinoglu, Y. Sun, E. Uysal-Biyikoglu, and V. Mutlu. Achieving the
age-energy trade-off with a finite-battery energy harvesting source. In IEEE
ISIT, June 2018.

[40] A. Baknina, O. Ozel, J. Yang, S. Ulukus, and A. Yener. Sending information
through status updates. In IEEE ISIT, June 2018.

275

[41] A. Baknina and S. Ulukus. Coded status updates in an energy harvesting
erasure channel. In CISS, March 2018.

[42] X. Wu, J. Yang, and J. Wu. Optimal status update for age of information
minimization with an energy harvesting source. IEEE Transactions on Green
Communications and Networking, 2(1):193–204, March 2018.

[43] S. Feng and J. Yang. Optimal status updating for an energy harvesting sensor
with a noisy channel. In IEEE Infocom, April 2018.

[44] S. Feng and J. Yang. Minimizing age of information for an energy harvesting
source with updating failures. In IEEE ISIT, June 2018.

[45] A. Arafa, J. Yang, S. Ulukus, and H. V. Poor. Age-minimal online policies for
energy harvesting sensors with incremental battery recharges. In UCSD ITA,
February 2018.

[46] A. Arafa, J. Yang, and S. Ulukus. Age-minimal online policies for energy
harvesting sensors with random battery recharges. In IEEE ICC, May 2018.

[47] A. Arafa, J. Yang, S. Ulukus, and H. V. Poor. Age-minimal transmission for
energy harvesting sensors with finite batteries: online policies. IEEE Trans-
actions on Information Theory, 66(1):534–556, January 2020.

[48] A. Arafa, J. Yang, S. Ulukus, and H. V. Poor. Online timely status updates
with erasures for energy harvesting sensors. In Allerton Conference, October
2018.

[49] A. Arafa, J. Yang, S. Ulukus, and H. V. Poor. Using erasure feedback for
online timely updating with an energy harvesting sensor. In IEEE ISIT, July
2019.

[50] A. Arafa and S. Ulukus. Age minimization in energy harvesting communica-
tions: Energy-controlled delays. In Asilomar Conference, October 2017.

[51] A. Arafa and S. Ulukus. Age-minimal transmission in energy harvesting two-
hop networks. In IEEE Globecom, December 2017.

[52] S. Farazi, A. G. Klein, and D. R. Brown III. Average age of information for
status update systems with an energy harvesting server. In IEEE Infocom,
April 2018.

[53] S. Leng and A. Yener. Age of information minimization for an energy har-
vesting cognitive radio. IEEE Transactions on Cognitive Communications and
Networking, 5(2):427–439, June 2019.

[54] Z. Chen, N. Pappas, E. Bjornson, and E. G. Larsson. Age of information in
a multiple access channel with heterogeneous traffic and an energy harvesting
node. In IEEE Infocom, April 2019.

276

[55] A. Arafa and S. Ulukus. Timely updates in energy harvesting two-hop net-
works: Offline and online policies. IEEE Transactions on Wireless Commu-
nications, 18(8):4017–4030, August 2019.

[56] R. V. Bhat, R. Vaze, and M. Motani. Throughput maximization with an
average age of information constraint in fading channels. IEEE Transactions
on Wireless Communications, 20(1):481–494, January 2021.

[57] J. Ostman, R. Devassy, G. Durisi, and E. Uysal. Peak-age violation guarantees
for the transmission of short packets over fading channels. In IEEE Infocom,
April 2019.

[58] S. Nath, J. Wu, and J. Yang. Optimizing age-of-information and energy effi-
ciency tradeoff for mobile pushing notifications. In IEEE SPAWC, July 2017.

[59] Y. Hsu. Age of information: Whittle index for scheduling stochastic arrivals.
In IEEE ISIT, June 2018.

[60] I. Kadota, A. Sinha, and E. Modiano. Scheduling algorithms for optimizing age
of information in wireless networks with throughput constraints. IEEE/ACM
Transactions on Networking, 27(4):1359–1372, August 2019.

[61] A. Kosta, N. Pappas, A. Ephremides, M. Kountouris, and V. Angelakis. Age
and value of information: Non-linear age case. In IEEE ISIT, June 2017.

[62] M. Bastopcu and S. Ulukus. Age of information with soft updates. In Allerton
Conference, October 2018.

[63] M. Bastopcu and S. Ulukus. Minimizing age of information with soft updates.
Journal of Communications and Networks, special issue on Age of Informa-
tion, 21(3):233–243, July 2019.

[64] B. Buyukates, A. Soysal, and S. Ulukus. Age of information scaling in large
networks. In IEEE ICC, May 2019.

[65] B. Buyukates, A. Soysal, and S. Ulukus. Age of information scaling in large
networks with hierarchical cooperation. In IEEE Globecom, December 2019.

[66] B. Buyukates, A. Soysal, and S. Ulukus. Scaling laws for age of informa-
tion in wireless networks. IEEE Transactions on Wireless Communications,
20(4):2413–2427, April 2021.

[67] J. Zhong, R. D. Yates, and E. Soljanin. Minimizing content staleness in
dynamo-style replicated storage systems. In IEEE Infocom, April 2018.

[68] N. Rajaraman, R. Vaze, and G. Reddy. Not just age but age and quality of
information. IEEE Journal on Selected Areas in Communications, 39(5):1325–
1338, May 2021.

277

[69] Z. Liu and B. Ji. Towards the tradeoff between service performance and
information freshness. In IEEE ICC, May 2019.

[70] A. Maatouk, M. Assaad, and A. Ephremides. The age of incorrect information:
an enabler of semantics-empowered communication. December 2020. Available
on arXiv:2012.13214.

[71] E. Uysal, O. Kaya, A. Ephremides, J. Gross, M. Codreanu, P. Popovski,
M. Assaad, G. Liva, A. Munari, T. Soleymani, B. Soret, and K. H. Johansson.
Semantic communications in networked systems. March 2021. Available on
arXiv:2103.05391.

[72] O. Ayan, M. Vilgelm, M. Kluge, S. Hirche, and W. Kellerer. Age-of-
information vs. value-of-information scheduling for cellular networked control
systems. In ACM/IEEE ICCPS, April 2019.

[73] M. Bastopcu and S. Ulukus. Timely group updating. In CISS, March 2021.

[74] R. D. Yates and S. K. Kaul. The age of information: Real-time status updating
by multiple sources. IEEE Transactions on Information Theory, 65(3):1807–
1827, March 2019.

[75] A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff. Age-optimal sampling
and transmission scheduling in multi-source systems. In ACM MobiHoc, July
2019.

[76] S. Banerjee, R. Bhattacharjee, and A. Sinha. Fundamental limits of age-of-
information in stationary and non-stationary environments. In IEEE ISIT,
June 2020.

[77] J. Zhong and R. D. Yates. Timeliness in lossless block coding. In IEEE DCC,
March 2016.

[78] J. Zhong, R. D. Yates, and E. Soljanin. Timely lossless source coding for
randomly arriving symbols. In IEEE ITW, November 2018.

[79] P. Mayekar, P. Parag, and H. Tyagi. Optimal lossless source codes for timely
updates. In IEEE ISIT, June 2018.

[80] P. Mayekar, P. Parag, and H. Tyagi. Optimal source codes for timely updates.
IEEE Transactions on Information Theory, 66(6):3714–3731, March 2020.

[81] M. Bastopcu, B. Buyukates, and S. Ulukus. Optimal selective encoding for
timely updates. In CISS, March 2020.

[82] B. Buyukates, M. Bastopcu, and S. Ulukus. Optimal selective encoding for
timely updates with empty symbol. In IEEE ISIT, June 2020.

278

[83] M. Bastopcu, B. Buyukates, and S. Ulukus. Selective encoding policies for
maximizing information freshness. IEEE Transactions on Communications,
2021. To appear. Available on arXiv:2004.06091.

[84] D. Ramirez, E. Erkip, and H. V. Poor. Age of information with finite horizon
and partial updates. In IEEE ICASSP, May 2020.

[85] A. Arafa, K. Banawan, K. G. Seddik, and H. V. Poor. On timely channel
coding with hybrid ARQ. In IEEE Globecom, December 2019.

[86] A. Arafa and R. D. Wesel. Timely transmissions using optimized variable
length coding. In IEEE Infocom, May 2021.

[87] M. Bastopcu and S. Ulukus. Partial updates: Losing information for freshness.
In IEEE ISIT, June 2020.

[88] M. A. Abd-Elmagid and H. S. Dhillon. Average peak age-of-information min-
imization in UAV-assisted IoT networks. IEEE Transactions on Vehicular
Technology, 68(2):2003–2008, February 2019.

[89] J. Liu, X. Wang, and H. Dai. Age-optimal trajectory planning for UAV-
assisted data collection. In IEEE Infocom, April 2018.

[90] M. A. Abd-Elmagid, N. Pappas, and H. S. Dhillon. On the role of age of infor-
mation in the internet of things. IEEE Communications Magazine, 57(12):72–
77, December 2019.

[91] A. Alabbasi and V. Aggarwal. Joint information freshness and completion
time optimization for vehicular networks. IEEE Transactions on Services
Computing, pages 1–14, March 2020.

[92] W. Gao, G. Cao, M. Srivatsa, and A. Iyengar. Distributed maintenance of
cache freshness in opportunistic mobile networks. In IEEE ICDCS, June 2012.

[93] R. D. Yates, P. Ciblat, A. Yener, and M. Wigger. Age-optimal constrained
cache updating. In IEEE ISIT, June 2017.

[94] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and A. Ephremides.
Information freshness and popularity in mobile caching. In IEEE ISIT, June
2017.

[95] S. Zhang, J. Li, H. Luo, J. Gao, L. Zhao, and X. S. Shen. Towards fresh and
low-latency content delivery in vehicular networks: An edge caching aspect.
In IEEE WCSP, October 2018.

[96] H. Tang, P. Ciblat, J. Wang, M. Wigger, and R. Yates. Age of information
aware cache updating with file- and age-dependent update durations. In IEEE
WiOpt, June 2020.

279

[97] J. Zhong, R. D. Yates, and E. Soljanin. Two freshness metrics for local cache
refresh. In IEEE ISIT, June 2018.

[98] L. Yang, Y. Zhong, F. Zheng, and S. Jin. Edge caching with real-time guar-
antees. December 2019. Available on arXiv:1912.11847.

[99] M. Bastopcu and S. Ulukus. Maximizing information freshness in caching sys-
tems with limited cache storage capacity. In Asilomar Conference, November
2020.

[100] M. Bastopcu and S. Ulukus. Cache freshness in information updating systems.
In CISS, March 2021.

[101] M. Bastopcu and S. Ulukus. Information freshness in cache updating sys-
tems. IEEE Transactions on Wireless Communications, 20(3):1861–1874,
March 2021.

[102] P. Kaswan, M. Bastopcu, and S. Ulukus. Freshness based cache updating in
parallel relay networks. In IEEE ISIT, July 2021.

[103] Y. Gu, Q. Wang, H. Chen, Y. Li, and B. Vucetic. Optimizing information
freshness in two-hop status update systems under a resource constraint. IEEE
Journal on Selected Areas in Communications, 39(5):1380–1392, May 2021.

[104] Q. Kuang, J. Gong, X. Chen, and X. Ma. Age-of-information for computation-
intensive messages in mobile edge computing. January 2019. Available on
arXiv: 1901.01854.

[105] J. Gong, Q. Kuang, X. Chen, and X. Ma. Reducing age-of-information for
computation-intensive messages via packet replacement. In IEEE WCSP, Oc-
tober 2019.

[106] P. Zou, O. Ozel, and S. Subramaniam. Trading off computation with trans-
mission in status update systems. In IEEE PIMRC, September 2019.

[107] A. Arafa, R. D. Yates, and H. V. Poor. Timely cloud computing: preemption
and waiting. In Allerton Conference, September 2019.

[108] M. Bastopcu and S. Ulukus. Age of information for updates with distortion.
In IEEE ITW, August 2019.

[109] M. Bastopcu and S. Ulukus. Age of information for updates with distortion:
Constant and age-dependent distortion constraints. IEEE/ACM Transactions
on Networking, 2021. To appear. Available on arXiv:1912.13493.

[110] A. Behrouzi-Far and E. Soljanin. On the effect of task-to-worker assignment
in distributed computing systems with stragglers. In Allerton Conference,
October 2018.

280

[111] B. Buyukates and S. Ulukus. Timely updates in distributed computation
systems with stragglers. In Asilomar Conference, November 2020.

[112] B. Buyukates and S. Ulukus. Timely distributed computation with stragglers.
IEEE Transactions on Communications, 68(9):5273–5282, September 2020.

[113] P. Zou, O. Ozel, and S. Subramaniam. Optimizing information freshness
through computation–transmission tradeoff and queue management in edge
computing. IEEE/ACM Transactions on Networking, 29(2):949–963, April
2021.

[114] E. T. Ceran, D. Gunduz, and A. Gyorgy. A reinforcement learning approach
to age of information in multi-user networks. In IEEE PIMRC, September
2018.

[115] H. B. Beytur and E. Uysal-Biyikoglu. Age minimization of multiple flows
using reinforcement learning. In IEEE ICNC, February 2019.

[116] M. A. Abd-Elmagid, H. S. Dhillon, and N. Pappas. A reinforcement learning
framework for optimizing age of information in RF-powered communication
systems. IEEE Transactions on Communications, 68(8):4747–4760, August
2020.

[117] H. Tang, J. Wang, L. Song, and J. Song. Scheduling to minimize age of
information in multi-state time-varying networks with power constraints. In
Allerton Conference, September 2019.

[118] J. Yun, C. Joo, and A. Eryilmaz. Optimal real-time monitoring of an infor-
mation source under communication costs. In IEEE CDC, December 2018.

[119] G. Stamatakis, N. Pappas, A. Fragkiadakis, and A. Traganitis. Autonomous
maintenance in IoT networks via AoI-driven deep reinforcement learning. In
IEEE Infocom, May 2021.

[120] N. Zhang, J. Liu, L. Xie, and P. Tong. A deep reinforcement learning approach
to energy-harvesting UAV-aided data collection. In IEEE WCSP, October
2020.

[121] X. Wu, X. Li, J. Li, P. C. Ching, and H. V. Poor. Deep reinforcement learn-
ing for iot networks: Age of information and energy cost tradeoff. In IEEE
Globecom, December 2020.

[122] E. U. Atay, I. Kadota, and E. Modiano. Aging bandits: Regret analysis and
order-optimal learning algorithm for wireless networks with stochastic arrivals.
December 2020. Available on arXiv:2012.08682.

[123] J. Hu, H. Zhang, L. Song, R. Schober, and H. V. Poor. Cooperative internet of
UAVs: Distributed trajectory design by multi-agent deep reinforcement learn-
ing. IEEE Transactions on Communications, 68(11):6807–6821, November
2020.

281

[124] S. Leng and A. Yener. Age of information minimization for wireless ad hoc
networks: A deep reinforcement learning approach. In IEEE Globecom, De-
cember 2019.

[125] M. A. Abd-Elmagid, A. Ferdowsi, H. S. Dhillon, and W. Saad. Deep reinforce-
ment learning for minimizing age-of-information in UAV-assisted networks. In
IEEE Globecom, December 2019.

[126] A. Elgabli, H. Khan, M. Krouka, and M. Bennis. Reinforcement learning
based scheduling algorithm for optimizing age of information in ultra reliable
low latency networks. In IEEE ISCC, June 2019.

[127] B. Buyukates and S. Ulukus. Timely communication in federated learning. In
IEEE Infocom, May 2021.

[128] E. Ozfatura, B. Buyukates, D. Gunduz, and S. Ulukus. Age-based coded
computation for bias reduction in distributed learning. In IEEE Globecom,
December 2020.

[129] A. Kosta, N. Pappas, and V. Angelakis. Age of information: A new con-
cept, metric, and tool. Foundations and Trends in Networking, 12(3):162–259,
November 2017.

[130] R. D. Yates, Y. Sun, D. R. Brown III, S. K. Kaul, E. Modiano, and S. Ulukus.
Age of information: An introduction and survey. IEEE Journal on Selected
Areas in Communications, 39(5):1183–1210, May 2021.

[131] R. D. Yates. The age of gossip in networks. In IEEE ISIT, July 2021.

[132] B Buyukates, M. Bastopcu, and S. Ulukus. Age of gossip in networks with
community structure. In IEEE SPAWC, September 2021.

[133] B. Abolhassani, J. Tadrous, A. Eryilmaz, and E. Yeh. Fresh caching for
dynamic content. In IEEE Infocom, May 2021.

[134] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides. The age of incor-
rect information: A new performance metric for status updates. IEEE/ACM
Transactions on Networking, 28(5):2215–2228, July 2020.

[135] R. D. Yates and S. K. Kaul. Real-time status updating: Multiple sources. In
IEEE ISIT, July 2012.

[136] S. K. Kaul, R. D. Yates, and M. Gruteser. Status updates through queues. In
CISS, March 2012.

[137] C. Kam, S. Kompella, and A. Ephremides. Age of information under random
updates. In IEEE ISIT, July 2013.

282

[138] C. Kam, S. Kompella, G. D. Nguyen, and J. E. Wieselthier. Towards an
effective age of information: Remote estimation of a Markov source. In IEEE
Infocom, April 2018.

[139] R. D. Yates, E. Najm, E. Soljanin, and J. Zhong. Timely updates over an
erasure channel. In IEEE ISIT, June 2017.

[140] M. Bastopcu and S. Ulukus. Scheduling a human channel. In Asilomar Con-
ference, October 2018.

[141] R. Singh, G. K. Kamath, and P. R. Kumar. Optimal information updating
based on value of information. In Allerton Conference, September 2019.

[142] J. Ma, L. Liu, H. Song, and P. Fan. On the fundamental tradeoffs between
video freshness and video quality in real-time applications. IEEE Internet of
Things Journal, 8(3):1492–1503, February 2021.

[143] A. Arafa, K. Banawan, K. G. Seddik, and H. Vincent Poor. Timely estimation
using coded quantized samples. In IEEE ISIT, June 2020.

[144] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex program-
ming, version 2.1. http://cvxr.com/cvx, March 2014.

[145] M. Grant and S. Boyd. Graph implementations for nonsmooth convex pro-
grams. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances
in Learning and Control, Lecture Notes in Control and Information Sciences,
pages 95–110. Springer-Verlag Limited, 2008.

[146] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 2012.

[147] R. D. Yates and D. J. Goodman. Probability and Stochastic Processes. Wiley,
2014.

[148] W. Dinkelbach. On nonlinear fractional programming. Management Science,
13(7):435–607, March 1967.

[149] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[150] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On
the Lambert W function. Advances in Computational Mathematics, 5(1):329–
359, December 1996.

[151] K. Ryan, A. Imen, P. Borne, and K. Mekki. Evolutionary Approach for
the Containers Bin-Packing Problem. Studies in Informatics and Control,
18(4):315–324, November 2009.

[152] D. P. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Nu-
merical Methods. Englewood Cliffs: Prentice Hall, 1989.

283

http://cvxr.com/cvx

[153] J. A. O’Sullivan. Alternating minimization algorithms: From Blahut-Arimoto
to expectation-maximization. Codes, Curves and Signals:Common Threads in
Communications, 485:173–192, 1998.

[154] A. Yener, R. D. Yates, and S. Ulukus. Interference management for CDMA
systems through power control, multiuser detection, and beamforming. IEEE
Transactions on Communications, 49(7):1227–1239, July 2001.

[155] U. Niesen, D. Shah, and G. Wornell. Adaptive alternating minimization algo-
rithms. In IEEE ISIT, June 2007.

[156] S. Zhang, N. Zhang, X. Fang, P. Yang, and X. S. Shen. Self-sustaining caching
stations: toward cost-effective 5G-enabled vehicular networks. IEEE Commu-
nications Magazine, 55(11):202–208, November 2017.

[157] E. Cohen and S. Shenker. Replication strategies in unstructured peer-to-peer
networks. ACM SIGCOMM Computer Communication Review, 32(4):177–
190, August 2002.

[158] M. Wang, W. Chen, and A. Ephremides. Real-time reconstruction of a count-
ing process through first-come-first-serve queue systems. IEEE Transactions
on Information Theory, 66(7):4547–4562, July 2020.

[159] R. Dorfman. The detection of defective members of large populations. Ann.
Math. Statist., 14(4):436–440, December 1943.

[160] Y. Sun, E. Uysal-Biyikoglu, and S. Kompella. Age-optimal updates of multiple
information flows. In IEEE Infocom, April 2018.

[161] H. B. Beytur and E. Uysal-Biyikoglu. Minimizing age of information for mul-
tiple flows. In IEEE BlackSeaCom, June 2018.

[162] A. Maatouk, S. Kriouile, M. Assad, and A. Ephremides. On the optimality
of the Whittle’s index policy for minimizing the age of information. IEEE
Transactions on Wireless Communications, 20(2):1263–1277, February 2021.

[163] O. T. Yavascan and E. Uysal. Analysis of slotted ALOHA with an age thresh-
old. IEEE Journal on Selected Areas in Communications, 39(5):1456–1470,
May 2021.

[164] M. Bastopcu, B. Buyukates, and S. Ulukus. Gossiping with binary freshness
metric. July 2021. Available on arXiv:2107.14218.

[165] M. Bastopcu and S. Ulukus. Timely tracking of infection status of individuals
in a population. In IEEE Infocom, May 2021.

284

	List of Figures
	List of Tables
	Introduction
	Age of Information with Soft Updates
	Introduction
	System Model and the Problem
	Exponentially Decaying Age Model
	The Optimal Solution Structure When x1>0
	The Optimal Solution Structure When x1 =0

	Linearly Decaying Age Model
	Numerical Results
	Conclusion

	Age of Information with Distortion
	Introduction
	Related Work

	System Model and Problem Formulation
	Constant Allowable Distortion
	Age-Dependent Allowable Distortion
	Allowable Distortion is Inversely Proportional to the Instantaneous Age
	Allowable Distortion is Proportional to the Instantaneous Age

	Numerical Results
	Simulation Results for Constant Allowable Distortion
	Simulation Results for Age-Dependent Allowable Distortion

	Conclusion

	Source Coding for Age of Information
	Introduction
	System Model and Problem Formulation
	Policy 1: Highest k Selective Encoding
	Policy 2: Randomized Selective Encoding
	Policy 3: Highest k Selective Encoding with an Empty Symbol
	Problem Formulation

	Average Age Analysis
	Optimal Codeword Design Under Selective Encoding
	Optimal Codeword Design under Randomized Selective Encoding
	Optimal Codeword Design Under Selective Encoding with an Empty Symbol
	When the Empty Symbol Does Not Reset the Age
	When the Empty Symbol Resets the Age

	Numerical Results
	On The Optimality of the Highest k Selective Encoding
	Conclusion

	Lossy Source Coding with Partial Updates: Losing Information for Freshness
	Introduction
	System Model and Problem Formulation
	The Optimal Solution
	Age-Optimal Codeword Lengths for a Given PMF
	Age-Optimal PMF for Given Codeword Lengths
	The Overall Solution

	Numerical Results
	Conclusion

	Freshness in Cache Updating Systems
	Introduction
	System Model, Freshness Function and Problem Formulation
	Average Freshness Analysis for a Single Cache
	Average Freshness Analysis for M Caches
	Freshness Maximization for a System with a Single Cache
	Freshness Maximization for the General System
	Freshness Maximization for a System with Multiple Users
	Numerical Results
	Conclusion

	Freshness in Cache Updating Systems with Limited Storage Capacity
	Introduction
	System Model
	Average Freshness Analysis
	Freshness Maximization
	Numerical Results
	Conclusion

	Freshness in Gossiping Networks
	Introduction
	Freshness in Arbitrarily Connected Networks
	Sample Freshness Evaluations
	Freshness in Structured Gossip Networks
	Disconnected Networks
	Ring Networks
	Fully Connected Networks

	Freshness in Clustered Gossip Networks
	Disconnected Clusters
	Ring Clusters
	Fully Connected Clusters

	Numerical Results
	Numerical Results for Large Gossip Networks
	Numerical Results for Clustered Gossip Networks

	Conclusion

	Timely Tracking of Multiple Counting Random Processes: Tracking Citation Indices of Researchers
	Introduction
	System Model and Problem Formulation
	Model 1: Poisson Updater
	Model 2: Deterministic Updater
	Model 3: Common Synchronized Probabilistic Updater
	Problem Formulation

	The Optimal Solution
	Numerical Results
	Conclusion

	Timely Tracking of Multiple Binary Random Processes: Tracking Infection Status of Individuals in a Population
	Introduction
	System Model
	Average Difference Analysis
	Optimization of Average Difference
	Numerical Results
	Conclusion

	Age-Efficient Scheduling for Binary-Valued Information Sources: Group Updating
	Introduction
	System Model
	Average Age Analysis
	Group Updating versus Group Testing
	Numerical Results
	Conclusion

	Conclusions
	Bibliography

