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Laser-driven particle accelerators offer many advantages over conventional particle 

accelerators. The most significant of these is the magnitude of the accelerating 

gradient and, consequently, the compactness of the accelerating structure. In this 

dissertation, experimental and computational advances in laser-based particle 

acceleration in three intensity regimes are presented. All mechanisms investigated 

herein are accessible by “tabletop” ultrashort terawatt-class laser systems found in 

many university labs, with the intention of making them available to more compact 

and high repetition rate laser systems. The first mechanism considered is the 

acceleration of electrons in a preformed plasma “slow-wave” guiding structure. 

Experimental advances in the generation of these plasma guiding structures are 

presented. The second mechanism is the laser-wakefield acceleration of electrons in 

the self-modulated regime. A high-density gas target is implemented experimentally 

leading to electron acceleration at low laser pulse energy. Consequences of operating 



  

in this regime are investigated numerically. The third mechanism is the acceleration 

of protons by a laser-generated magnetic structure. A numerical investigation is 

performed identifying operating regimes for experimental realizations of this 

mechanism. The key advances presented in this dissertation are: 

 The development and demonstration of modulated plasma waveguide 

generation using both mechanical obstruction and an interferometric laser 

patterning method 

 The acceleration of electrons to MeV energy scales in a high-density 

hydrogen target with sub-terawatt laser pulses and the generation of bright, 

ultra-broadband optical pules from the interaction region 

 3D particle-in-cell (PIC) simulations of self-modulated laser wakefield 

acceleration in a plasma, showing the generation of broadband radiation, and 

the role of “direct laser acceleration” in this regime 

 3D PIC simulations of laser wakefield acceleration in the resonant regime, 

identifying spatio-temporal optical vortices in a laser-plasma system 

 3D PIC simulations of proton acceleration by magnetic vortex acceleration 

using TW-class laser pulses 
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magnetic field as boundary conditions for a solver of Laplace’s equation. The middle 

magnetic field is a measurement of the mid-plane out-of-plane field, which is 

qualitatively similar. The difference between fields, shown at the bottom, confers 

good agreement on the order of 1%, mostly attributable to artifacts from the field 

solver. .......................................................................................................................... 34 
Figure 2.9 Flow chart for computations using the Particle-in-Cell method. On each 

time step, charge and current densities are calculated by weighting particles on to the 

grid. Electric and magnetic fields are calculated from the corresponding grid values. 

If stochastic processes are being simulated, like collisions, ionization, radiation 

reaction, or particle generation, they can be implemented here, though this feature is 

not implemented in this work. An impulse on each of the particles is calculated and 

the particle phase space is updated. Using the updated particle positions, the boundary 

conditions on particles is enforced, and the process repeats in the next time step. .... 36 

Figure 2.10 The Yee Mesh. A single cell is depicted, with colored dots representing 

different values. Charge density (blue) is defined on the corners of the cell, current 

density and electric (yellow) field are defined on the edges of the cell, each 

component offset in its own direction. Magnetic field (green) is defined on cell faces, 

the normal of each face parallel to the component direction. With this configuration, 

each field is calculated from center-differences of values only one half-step in the 

necessary direction. ..................................................................................................... 38 

Figure 2.11 Dispersion relation for the finite difference approximation to the wave 

equation for different ratios of step size to cell size. At ratios above the speed of light, 

a positive imaginary component emerges at high wave numbers, causing unstable 

growth. Figure from  [54] ........................................................................................... 40 
Figure 2.12 Nitrogen waveguide target configuration. (Left) A high power 800 nm 

pump pulse is focused with an f/25 spherical mirror over an elongated nitrogen 

cluster jet. (Right) A high power, 1064 nm pump pulse (green) is focused with an 

axicon to produce a plasma waveguide after being patterned in a profile modulator (b) 

to produce modulated plasma waveguides discussed in Chapter 3. A synchronous 800 

nm probe pulse (red) is frequency doubled (blue) and probes the resulting waveguide. 

This is directed in to a folded wavefront interferometer (a). ...................................... 42 

Figure 2.13 Dense gas jet configuration. An intense 800 nm pump pulse (red) is 

focused into a thin dense hydrogen jet by an off-axis paraboloid. A small portion of 

the pulse is frequency doubled (blue) before probing the interaction region and 

entering a folded wavefront interferometer (a). Electrons generated from the 

interaction are analyzed in a permanent magnet charged particle spectrometer (b). 

With the probe beam blocked, a flip mirror allows light generated in the interaction 

region to be imaged into a fiber spectrometer (c). ...................................................... 44 

Figure 3.1 An intense Nd:YAG laser pulse is focused to a line in a clustered gas 

medium. This strikes a hot column of plasma which expands, dynamically forming a 

guiding structure. ........................................................................................................ 46 
Figure 3.2 Phase shift measurements 1.1 mm above a 25μm wire obstruction.  (a) 

shows plasma generated by irradiating the target above the wire with an intense 810 

nm pulse. (b) shows lineouts indicated at the dashed line in (a) for several 

temperatures, keeping the total molecular output of the jet constant. ........................ 48 
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Figure 3.3 With jet parameters fixed in the ballistic regime, a pair of 25 μm wires are 

brought together. The peak density in the region between appears unaffected by the 

wires in panels (b), (c), and (d). At about 65 μm separation in panel (a), the 

penumbras of the wires begin to overlap, reducing the density. ................................. 49 

Figure 3.4 25 μm wires were strung in an array with a 200 μm period.  The 

waveguide evolution was probed as above and the plasma densities were extracted via 

Abel inversion. (a) shows the evolution of a modulated waveguide formed with 93K 

nitrogen backed at 250 psi. (b) shows the same evolution for a mixture of 90% 

hydrogen and 10% argon at 300 psi. ........................................................................... 50 

Figure 3.5 Experimental setup. A variable polarizing beamsplitter divides the input 

pump pulse into high power and low power pulses. The low power pulse is patterned 

with a phase shift profile by a 2D reflective SLM, and its polarization is then rotated 

to match the high power beam.  The two arms are combined and interfered at a non-

polarizing beamsplitter (T=0.75) to produce transverse intensity modulations on the 

beam. The face of the SLM is imaged to a 28 base angle axicon. The high power arm 

is imaged likewise. The axicon focuses the modulated beam to a line causing axially 

modulated breakdown and heating. The plasma is probed by a synchronous pulse 

which is imaged into a folded wavefront interferometer. ........................................... 54 
Figure 3.6 (a) Image of a 130 mJ, 140 ps laser pulse with notched minima, and (b) the 

corresponding plasma with notched un-ionized regions. (c) Without the SLM 

patterning, the resulting plasma is uniform................................................................. 56 
Figure 3.7   Electron density of plasma waveguides in N2 clusters formed with and 

without modulations. (a) An unmodulated plasma waveguide formed using only the 

high power arm. (b) Plasma waveguide with a 860μm period. (c) Difference between 

modulated and unmodulated densities. Colorbars in 1018 cm-3. .................................. 57 

Figure 4.1 2D results of an intense laser field (yellow/cyan) overlaid on electron 

density (greyscale). The left panel shows the initial pulse profile and plasma wave 

and the right panel shows the same pulse after 0.5 cm of propagation. The highlighted 

area is shown in the inset to reveal a phase defect. ..................................................... 61 

Figure 4.2 3D simulation results showing the formation of a STOV. Panel a shows the 

pulse profile overlaid on electron density. The boxed region is blown up in panels b-d 

which are separated by 15 microns of propagation. Panel c shows the formation of a 

null (red circle) which decomposes into a pair of STOVs, denoted by triangles in 

panel d. Upward and downward triangles represent STOVs of +1 and -1 topological 

charge respectively...................................................................................................... 65 
Figure 4.3 <Sz>t with beam <S’>t direction overlaid in black arrows. A region of 

axis-directed energy, (indicated with a dashed white line) is seen to form and drift out 

radially, eventually over the first 520 μm of propagation. This region occludes 

outward-directed flow which, from z=520-550 μm, pushes through the axis-directed 

region, creating vortices in <S’>t. The formation of these vortices corresponds 

directly to the formation of STOVs in the laser electric field. At z=534 μm, the 

penetration of the axis-directed region, along with the formation of a phase defect in 

the electric field, are indicated by a red circle. At z=550 μm, downward- and upward-

facing red triangles indicate both STOVs with topological charge +1 and -1 

respectively as well as vortices in the <S’>t. Colorbar units are mec
3ncrit. ................. 67 
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Figure 4.4 Top: STOV formation in 3D PIC simulations shown at four propagation 

distances. The red surface is the laser pulse envelope (vertically polarized), with black 

lines indicating STOVs. First, STOVs form from point nulls on the sides of the pulse 

(declared z=0 μm). These points stretch into closed loops on the sides of the pulse 

which encircle regions of outward flow (z=14 μm). When the loops touch, they 

reconnect (z=28 μm), transforming into a pair of long-lived loops which circumscribe 

the pulse core. Bottom: A diagram of vortex reconnection. When vortices (curved 

black arrows) touch, they can change their topology via reconnection. This is the 

process by which STOVs on the side of the pulse transform into STOVs which 

circumscribe the pulse ~z=28 μm. .............................................................................. 69 
Figure 4.5 Experimental setup. A horizontally polarized Ti:Sapphire laser pulse (10-

50 mJ, 50 fs, =800 nm) interacts with a cryogenically-cooled, dense thin H2 gas jet 

(a), whose neutral and plasma density profiles are measured by 400 nm probe by 

interferometry (b). A portion of the transmitted driver pulse is sampled by a pellicle 

(c) and measured by a spectrometer. The generated electron beam transmits through 

the pellicle and enters a permanent magnet charged particle spectrometer. A 

shadowgram of the laser interaction region above the needle orifice is shown (needle 

seen as a shadow at bottom), as well as a section of the drive pulse spectrum after the 

interaction showing a stokes-shifted peak. ................................................................. 71 

Figure 4.6 (top) laser field overlaid on electron density showing the system in a 

deeply self-modulated regime. (bottom left) Accelerated electron spectra for peak jet 

electron density 4.21020 cm-3 for varying laser energy. The horizontal black lines 

indicate the experimental uncertainty in the energy, determined by geometry-limited 

spectrometer resolution. The dashed curve is a 3D PIC simulation for 40 mJ pump 

which has been scaled by a factor 0.14 to line up with the experimental curve for 40 

mJ. (bottom right) Accelerated electron spectra at laser energy 40 mJ for varying peak 

electron density. The dashed curves are from 3D PIC simulations and were scaled by 

the factor 0.14. ............................................................................................................ 73 

Figure 4.7 2D PIC simulations showing contributions of LWFA and DLA to electron 

energy gain for a fixed peak plasma density ne = 0.07ncrit for drive laser energies 15-

100mJ.  Each blue dot is a tracked macroparticle. Regions above and to the left of the 

solid red line indicate DLA as the dominant form of acceleration, whereas regions 

below and to the right are dominated by LWFA. The dashed red diagonal marks zero 

net energy gain. LWFA dominates acceleration at low drive laser energies, 

transitioning to DLA at high drive laser energies, although the electrons dephase, 

losing energy to the wake. .......................................................................................... 74 
Figure 4.8 (Top panel) Side images of intense radiation flashes from wavebreaking 

(10 shot averages). The pump laser pulse propagates left to right. Image intensities 

are normalized to the maximum intensity within each column.  The vertical dashed 

line is the center of the gas jet, whose profile is shown in the lower left. The 40 mJ, 

1.1×1020cm3 image for vertical pump polarization (enhanced 10), is dominated by 

800 nm Thomson scattering on the left and the flash on the right. Center panel: 

Spectra (10 shot averages) of the flash for conditions enclosed by the dashed black 

box in the top panel. (Bottom) A simple model showing how a particle accelerated to 

the speed of light produces a unipolar pulse. .............................................................. 76 
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Chapter 1: Introduction 

 

1.1 Motivation 

1.1.1 Conventional Particle Accelerators 

Particle accelerators are ubiquitous tools in industrial, medical, and scientific 

fields. In industry, they are used to characterize and process materials and goods, as 

well as in several forms of lithography [1]. In medicine, particles and secondary 

radiation are used to directly treat cancers, with fast ions also used to produce 

radiotracers for tomography and imaging [2]. In the fundamental sciences, particle 

accelerators are used to produce extreme conditions to study the nature of the 

universe [3]. 

Modern conventional accelerators operate using radio-frequency (RF) 

oscillating electric fields in either a cyclic or linear geometry. The RF fields are either 

produced or guided by metallic structures, limiting the maximum field strength to 

below the breakdown of the structure, ~100 MV/m and even lower at higher 

frequencies [4]. This means that for a linear accelerator to reach ~ 10 GeV energies(as 

is desirable for many scientific applications) [3], the necessary acceleration length is 

on the order of kilometers. Cyclic accelerators overcome this limitation by winding 

the acceleration length into either a spiral (as in a cyclotron) or a closed loop (a 

synchrotron) using magnetic fields. Radiative losses, however, limit the radius of 

curvature for high energy particles, which ultimately limits cyclic accelerators to TeV 

proton energy scales and impractically low energies for electrons. 
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With conventional accelerators reaching their practical energy limitations, 

efforts are being made to use plasma as a medium for acceleration. It allows for field 

gradients as high as TV/m, reducing the necessary acceleration length by several 

orders of magnitude. [5,6] 

1.1.2 Laser-Driven Particle Accelerators 

Modern laser technology can produce can produce PW (petawatt, 1015 W) 

peak powers, and even ~10 – 100 TW (terawatt, 1012 W) at the level of a university 

lab. Using interactions of these lasers with plasma, the high field gradients previously 

mentioned are accessible. At present, electrons have been accelerated to over 4 GeV 

in 9 cm using a 300 TW laser in a discharge capillary [7], and it has been shown that 

electrons can even be accelerated to the MeV scale with sub-terawatt laser pulses [8]. 

Because the interaction region is on the sub-mm to several-cm scale, it is the 

laser systems that dictate facility size and cost. These systems can range from large 

user facilities to tabletop size. There have been many efforts to develop progressively 

more powerful lasers for particle acceleration; however, this is often at the expense of 

the often-boasted-of compactness. In contrast, fiber lasers [9] and disk lasers [10] 

offer a compact, high repetition rate option and the use of such systems for particle 

acceleration would be a true realization of a portable high-energy particle accelerator. 

While conventional particle accelerators have been developing since the late 

1920’s, laser-based particle acceleration is still a young field. Although accelerating 

gradients in plasma are inherently much larger than in conventional accelerating 

structures, factors like beam quality and average current are still being addressed.  
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1.2 Laser Propagation in Plasma 

1.2.1 Electromagnetic Waves in Plasma 

In contrast to polarizable media in which bound electrons create polarization 

fields, the propagation of light in a plasma is dictated by the quivering of free 

electrons. The resulting dispersion relation, 
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with ne the electron number density, e the electron charge, and me the electron mass, 

leads to a density- and frequency-dependent refractive index η, 
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where ncrit is the critical density above which light of frequency ω becomes 

evanescent. The plasma dispersion curve is shown in figure 1.1. It can be seen that as 

the density approaches critical density, the phase and group velocity approach infinity 

and zero respectively: 
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1.2.2 Linear Guiding in a Plasma Fiber 

 From expression 1.2, it can be seen that a local plasma density minimum 

corresponds to a refractive index maximum, and thus, an electromagnetic guiding 

structure. Figure 1.2 shows the refractive index profile of a step-index fiber optic. The 

difference between the wall and the on-axis refractive index causes rays of an angle 

greater than the critical angle, 2 1in /s cr n n   to undergo total internal reflection, and 

Figure 1.1 The dispersion relation for electromagnetic waves in a plasma. Permissible frequencies are 

those above the plasma frequency. It can be seen that, for a given frequency, the phase velocity 

increases with increasing plasma density. 
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be guided. In plasma, this requires a high electron density at the walls and low density 

on-axis. 

This concept can be extended to small guide radii, where the assumptions of 

ray optics start to break down, and the guided light is described instead by a discrete 

number of guided modes. The index profile of the guide then dictates the shape and 

number of the guided modes. The guides described in this dissertation are nearly 

parabolic, leading to a series of guided modes described by Laguerre-Gauss 

functions. This is ultimately advantageous because the laser profile at the focus 

(where coupling takes place) is nearly Gaussian, which reduces losses when coupling 

into the guide. Generation and guiding in a plasma waveguide was first demonstrated 

by Durfee et al. [11] who used a pulsed Bessel beam to generate a plasma column 

which transiently formed a waveguide as it expanded. [12] The mode properties of 

plasma waveguides are discussed fully by Clark et al. [13] 

Figure 1.2 (a) A step-index dielectric fiber.  Rays with oblique incidence experience total internal 

reflection and are guided down the length of the fiber. (b,c) When the index profile is comparable to 

the wavelength, the light propagates as a discrete number of finite “guided modes.” The first few 

guided modes of a graded index fiber and a step index fiber are provided.  

a 

b c 
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1.2.3 Nonlinear Guiding in a Uniform Plasma 

In contrast to guiding in a preformed channel, self-guiding can occur as one of 

several nonlinear processes in a uniform plasma. This nonlinearity arises from the 

relativistic motion of electrons in the laser field, which is often associated with an 

effective “mass-shift.” The effective mass-shift can be introduced into the refractive 

index by 
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where it follows from conservation of canonical momentum (shown in the appendix) 

that  
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is the normalized vector potential. This can be expanded in the field strength, a0, for 

small values of a0 to reveal a Kerr-like nonlinearity, 
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With this nonlinearity come third-order nonlinear processes, including self-focusing, 

and self-phase modulation. It should also be noted that the nonlinearity has a strong 

dependence on plasma density near the critical density, ncrit. 
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 Equation 1.6 is useful for describing the weakly relativistic dynamics of 

propagation before pulse collapse [14], or while guided in a plasma channel [8,15,16], 

but TW-scale systems can reach intensities well above a0=1, invalidating the 

perturbative expansion (1.6) for the refractive index. Furthermore, when self-focusing 

leads to pulse collapse, the would-be collapse to singularity is mitigated by additional 

effects, which include higher order nonlinearities and ponderomotive force-induced 

charge expulsion [17]. The dynamics that ensue are highly nonlinear and thus, 

numerical simulation is often used to capture the system’s complex behavior.  

1.2.4 Power, Intensity, and Plasma Density 

 The laser systems and gas targets that will be described in Chapter 2 can 

access a wide range of nonlinearity. At low densities, or low powers, the propagation 

can be nearly linear or only weakly nonlinear. In this regime, plasma waves may be 

driven, but only at perturbative amplitudes, where the electron density response is 

sinusoidal. Without a guiding structure, diffraction entirely controls beam evolution, 

with the high-intensity interaction limited to a Rayleigh range, 

2
0

Rz
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
 , with w0 the 

focal spot size (size at beam waist) and λ the laser wavelength. Relativistic nonlinear 

focusing overcomes diffraction if the laser power P is above the critical power for 

self-focusing, [17]  

22

2 2

2
17p cr

cr

e e

nce
P GW

r n




     (1.8)  

where 
2

2e

e

e
r

m c
  is the classical electron radius. For a very long plasma, when 
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P/Pcr>1, the pulse focuses until the laser ponderomotive force drives electron 

cavitation, which terminates the self-focusing, with the laser spot about the size of a 

plasma period. For the shorter, finite length plasmas typical of gas jet targets, self-

focusing collapse and cavitation can occur for P/Pcr significantly larger than unity, 

depending on plasma length. After collapse, the pulse and plasma wave induced by 

the ponderomotive force travel as a “filament” until the laser is depleted enough that 

self-focusing can no longer beat out diffraction  [17,18]. If the density and power are 

sufficiently high, another regime can be reached in which the plasma wake is not only 

electrostatic, but also produces a magnetic field. The persistence of this field makes 

the ion motion non-negligible. In Chapter 5, this effect will be discussed in the 

context of proton acceleration. 

 

1.3 Laser Acceleration of Electrons in Plasma 

1.3.1 Laser Wakefield Acceleration 

 Much of the complexity of relativistic nonlinear optics stems from the density 

response of the plasma. The origin of this response is a time-averaged outward force 

which the laser pulse exerts on the plasma. The magnitude of this force can be 

estimated by considering the quiver energy of an electron in a laser field. The electron 

quiver energy is given by (derived in appendix A.2.1), 

11 1T      a a   (1.9) 

Since the electron’s time-averaged kinetic energy (derived in Appendix A.2.2) has 

spatial dependence, 
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a body force called the ponderomotive force can be identified. 
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 The effect of this force is the expulsion of electrons, with the laser driving a 

wake which trails it. It was proposed that electrons co-propagating with the laser 

could be accelerated by the plasma wake’s electrostatic field, [19] as shown in figure 

1.3. Moreover, it was found that a wake driven to sufficiently high amplitudes traps 

electrons from the background plasma in the accelerating phase of the wave [20,21]. 

The combination of these effects has led to laser wakefield acceleration becoming 

widely studied. High quality, high energy electron beams have been demonstrated 

using this mechanism [22–24]. 

 The coupling efficiency between the laser pulse and the plasma wave is 

dependent on the pulse length of the laser. When the laser pulse length 0  is 

approximately half of the plasma period /2p p    the laser pulse couples  

 

Figure 1.3 A schematic of laser wakefield acceleration. An intense laser pulse (red) drives a plasma wave as it 

travels through a plasma (orange). The resulting charge displacement creates an electrostatic field (black) which 

can accelerate electrons (blue). 
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Figure 1.4 Quasi-phase matching of laser wakefield acceleration. An intense laser pulse propagates in a density 

modulated plasma. In each region, indicated by the colored boxes in the top chart, the local plasma density ne 

dictates a plasma wavelength  
1

22( ) 4 /p e e een c n m 


 . The laser drives a plasma wave (red) which expands 

and contracts as it travels between regions. A properly phased electron with the appropriate velocity will 

experience the accelerating phase of the plasma wave over a greater length than the decelerating phase, resulting 

in a net energy gain. [25] 
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efficiently to the plasma wave and is said to be in the “resonant regime.” If the pulse 

length is longer than a plasma period, it is modulated into a train of pulselets which 

are separated by the plasma period, and the system is said to be in the “self-modulated 

regime.”  

 As these electrons approach the speed of light, they will exceed the laser 

group velocity, and thus the phase velocity of the plasma wake. This causes them to 

slip from the accelerating phase of the wake into the decelerating phase, imposing a 

limit on the maximum electron energy.  

S.-J. Yoon et al. showed this dephasing can be mitigated by a periodically 

modulated plasma density [25]. In their model, as an electron bunch dephases from its 

plasma wave potential bucket, the plasma wave expands due to the local change in 

plasma density, causing the electrons to enter the accelerating phase of the next 

bucket. As the electrons continue to outrun the wave, compression of the buckets 

keeps them in the accelerating phase until the process repeats. Figure 1.4 illustrates 

this concept. 

 

1.3.2 Quasi Phase-Matched Direct Laser Acceleration 

 The process of using a periodically indexed medium to combat dephasing is 

more generally referred to as “Quasi-Phase Matching” (QPM). A wave traveling 

along a periodic structure can be broken into a series of longitudinal modes, each with 

a different phase velocity which depends on the modulation period and amplitude. 

This is shown in figure 1.5. By tuning the modulation, one of the longitudinal modes  
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Figure 1.6 Using quasi-phase matching, the longitudinal field of radially polarized light can be phase matched to an 

electron bunch in a plasma waveguide. The result is energy gain with oscillatory and linear growth terms. Pic 

simulations show for a fixed laser energy and modulation period, there is a minimum initial electron energy for 

effective acceleration. [28] 

Radially Polarized Light Modulated Plasma Waveguide 

Figure 1.5 Longitudinal decomposition of a wave in a periodically modulated refractive medium. The modulation 

gives rise to a spectrum of longitudinal modes, around a central wavenumber kc, with phase velocity k/ω. Since 

this spectrum is dependent on the modulation period and amplitude, the phase velocity of a mode can be tuned to 

quasi-phase match to relativistic electrons. 
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can be matched to a desired velocity. In the case of quasi-phase matched laser 

wakefield acceleration, the plasma wave, which has a phase velocity equal to the laser 

group velocity vg<c, is quasi-phase matched to a relativistic electron beam with 

velocity nearly c. Another acceleration scheme which utilizes QPM is an alternative 

to laser wakefield acceleration proposed by Layer et al. [26] and York et al. [27]. In 

this scheme, electrons are accelerated directly with the axial component field of a 

guided radially polarized laser pulse. Quasi-phase matching is then necessary because 

the phase velocity of light in a uniform plasma or unmodulated plasma waveguide is 

superluminal, and thus inaccessible to accelerated particles. Axial modulations of a 

plasma waveguide induce significant axial harmonics of the guided pulse which are 

subluminal and can phase match to the accelerated electrons moving at nearly c. 

The realization of this mechanism involved guiding of a radially polarized 

laser pulse in a plasma channel. The radially polarized pulse has an on-axis 

longitudinal component which oscillates at the laser frequency, which can be quasi-

phase matched to a co-propagating electron bunch. Yoon et al. demonstrated this 

acceleration mechanism using PIC simulations, shown in figure 1.6. [28] Also, it has 

been seen that a half-pellicle can be used to generate a TM01 profile, which is a good 

approximation to a completely radially polarized beam. [29]  

 

1.4 Laser Acceleration of Ions in Plasma 

1.4.1 Methods of Laser-Based Ion Acceleration 

A wide variety of laser based ion acceleration mechanisms have been 

proposed [6,30]. Currently, the most prevalent mechanism for laser-ion acceleration 



 14 

 

is target normal sheath acceleration, wherein protons in adsorbents (usually water) are 

accelerated from the rear surface of metal foils upon irradiation of the front surface 

with an intense laser [31]. Other techniques which implement a laser interacting with 

an overdense plasma have been proposed, including collisionless shock 

acceleration [32], radiation pressure acceleration [33], and the break out afterburner 

mechanism [34]. These ion acceleration techniques require a carefully placed, 

delicate few-micron to few-nanometer thick foil which, following each shot, must be 

realigned off the resulting perforation. These targets are extremely sensitive to laser 

pulse contrast. Furthermore, the laser-induced blowoff from solid targets poses a 

damage and contamination hazard to nearby optics. 

 

1.4.2 Magnetic Vortex Acceleration 

The laser acceleration of ions in underdense plasma has also been 

investigated. These mechanisms enable the use of replenishable gas targets which 

produce no blowoff that can damage or coat optics, and do not need to be realigned 

after each shot. Recently, high density gas jets have been used for efficient, high 

repetition rate electron acceleration [35], operating with lower laser energy (and peak 

laser power). It is a natural question whether these targets can be used to produce 

energetic ions with a more powerful laser pulse. 

Due to their relatively high mass, protons can be considered immobile on the 

time scales of the <100 fs pulses described in this dissertation and require a 

mechanism to mediate the transfer of laser energy to them so that they can accelerate. 

This is central to all laser-driven ion acceleration schemes. As for methods described 
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in 1.4.1, this can be achieved through the transfer of energy to a hot electron 

population (as in TNSA), or an electrostatic shock (CSA). Other mechanisms using 

underdense plasma have been proposed using the beating of plasma waves [36], or 

the generation of strong magnetic fields through a processes called magnetic vortex 

acceleration [37]. In the case of acceleration via magnetic vortex, the time-averaged 

force that the laser exerts on the plasma expels electrons from the plasma wake which 

then create return currents in the form of a beam, generating a toroidal magnetic field 

that co-propagates with the laser. When the laser exits the plasma, the rapidly 

changing magnetic fields generate electric fields which acts on plasma electrons 

which then accelerate the ions. 

 

1.5 Dissertation Outline 

This dissertation summarizes several efforts to make laser-based particle 

accelerators more compact while still exploiting the high field gradients supported by 

plasma. In this chapter, the fundamentals of laser-based acceleration have been 

Figure 1.7Magnetic vortex acceleration. (Left) An intense laser pulse (red) propagates in a plasma (light 

orange). The strong ponderomotive force from the laser cavitates the electrons, and the return currents (dark 

orange) generate a toroidal magnetic field (green) which co-propagates with the laser. (Right) upon exiting the 

plasma, the magnetic torus is trapped on the downramp, pushing electrons forward and creating a polarization 

field which accelerates background ions. 
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introduced, and the propagation of a laser in plasma described, specifically with 

respect to linear and nonlinear guiding of light. This nonlinear propagation can be 

broken into three regimes. In the weakly nonlinear regime, the laser drives a 

perturbatively small plasma wake, and diffracts in the absence of a preformed plasma 

channel. At higher densities or laser powers, the nonlinearity overcomes diffraction 

and the laser self-guides, driving a nonlinear plasma wake. At even higher intensities, 

the return currents in the plasma wake produce a strong magnetic field that causes 

non-negligible ion motion. 

Chapter 2 is a description of the experimental tools used in subsequent 

chapters. A mode-locked Nd:YAG laser system and a synchronous Ti:Sapphire laser 

system are described, along with a variety of high-pressure cryogenic gas targets. The 

design, fabrication and characterization of a permanent magnet spectrometer is 

presented, along with an optical setup employing a spatial light modulator. The 

fundamentals of simulations used are also introduced. 

Chapter 3 covers the formation of preformed plasma guiding structures in a 

clustered gas target. Two techniques are then presented for the development of 

density modulated plasma guiding structures. The first technique offers deep 

modulations while the second uses a spatial light modulator to achieve period tuning 

in situ. These structures can extend weakly relativistic interactions over many 

Rayleigh lengths and overcome dephasing. 

Chapter 4 describes the propagation of an intense laser in a dense gas target in 

which the propagation is sufficiently nonlinear to self-guide. The spatio-temporal 

optical vortex, a new feature in nonlinear optics, is identified as an integral part of the 
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relativistic self-guiding system. A dense hydrogen target is implemented to reduce the 

self-guiding threshold of the laser to sub-terawatt powers, and the resulting effects are 

discussed including electron injection, self-modulated laser wakefield acceleration, 

and the generation of broadband wavebreaking radiation. 

Finally, Chapter 5 proposes a proton acceleration technique for the production 

of medical radio isotopes. The technique employs a very thin, near-critical gas target 

and relativistic filamentation, which results in a quasistatic magnetic field from 

plasma return currents. The results are presented in the context of cutting edge disk 

laser technology, which could enable the creation of a compact, high-repetition rate 

laser-proton source. A discrepancy in the previous literature is identified and 

addressed, and simulations show the efficacy of a high-repetition rate MeV-scale 

proton source. This is followed by Chapter 6, which summarizes the dissertation and 

describes the implications for future work. 
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Chapter 2: Experimental Apparatus and Simulation 

Tools 

 

 

2.1 Laser Systems 

2.1.1 High Power 140 ps Nd:YAG Laser 

 Two laser systems are used in the work of this dissertation. The first is a joule-

class 140 ps Nd:YAG laser with a 1064 nm wavelength. It features a Time Bandwidth 

GE-100 mode-locked Nd:Vanadate oscillator which outputs a 38 MHz pulse train of 

18 nJ, 140 ps pulses. A Semiconductor Saturable Absorber Mirror (SESAM) provides 

the pulse steepening necessary to achieve mode-locking in the oscillator.  

 The 38 MHz pulse train is reduced to 10 Hz by a KD*P pulse slicer before 

entering a regenerative amplifier. The regenerative amplifier has a self-filtering 

unstable resonator (described in Appendix A.3.1) design which produces a high 

quality beam profile. [38] This cavity design uses a circular aperture and pair of 

curved end mirrors producing an Airy pattern whose central lobe passes through the 

aperture on each pass. This is described in detail in the appendix. The seeded output 

of the regenerative amplifier is kept at 12 mJ to avoid nonlinear self-focusing in the 

amplifier rod. 
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Figure 2.1 Schematic of 1J 140 ps Nd:YAG laser system. The oscillator is a Time-bandwidth GE100 mode-

locked Nd:Vanadate system. The 18 nJ 38 MHz output is reduced to 10 Hz and amplified to 12 mJ. This is 

fed into the power amplification stage through a faraday isolator to protect the regenerative amplifier and 

oscillator from back-reflections. The power amplification stage consists of two amplifiers, separated by a 

vacuum spatial filter and a variable attenuator. The first amplifier brings the energy up to 150 mJ and is 

spatially filtered. The filtered beam is then amplified to a maximum energy of 700 mJ in a single-pass 

amplifier. Finally, the exit face of the final amplifier is imaged through a vacuum relay imaging system to 

the target. It is also possible to image to a profile modulator, which subsequently images to the target. 
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 The output of the regenerative amplifier enters a two-pass ring amplifier, 

which amplifies it to 150 mJ. The energy is then reduced by a variable attenuator 

which ultimately determines the final pulse energy. The profile after the ring 

amplifier is poor quality so the profile is filtered in a vacuum spatial filter (VSF), 

where there is significant energy loss, bringing the energy down to 90 mJ. This then 

seeds the final amplifier which brings the energy up to 700 mJ.  

The final amplifier exit face is vacuum relay imaged to the final focusing 

optic to deliver a flat-top beam profile. If the transverse profile is to be modulated (as 

described in Chapter 3), the face is first imaged to an interferometric profile 

modulator, before again relay imaging to the final focusing optic. A schematic of this 

laser is provided in figure 2.1, with details on certain components.  

 

2.1.2 Ultrashort 25 TW Ti:Sapphire Laser 

The second laser used is a Joule-class Ti:Sapphire chirped pulse amplification 

system. The output of an ultrashort mode-locked oscillator is stretched and amplified 

to joule-level energies, before being recompressed in vacuum and focused on target. 

The oscillator is a Kerr-lens mode-locked Coherent Micra Ti:Sapphire system 

which outputs a 5 nJ pulse train at 76 MHz with a center wavelength of 810 nm and a 

bandwidth limit of 20fs. The pulses are stretched to 250 ps with a single grating 

stretcher and the repetition rate reduced to 1 kHz by a commercial acousto-optic 

programmable dispersive filter (AOPDF) [39]. This AOPDF also pre-compensates  
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Figure 2.2 Schematic of Ti:Sapphire 25 TW laser system. A Coherent Micra oscillator outputs a 5 nJ 20 fs 

pulse train at 76 MHz This pulse is stretched to 250 ps and amplified to 1 mJ after being spectrally pre-

compensated by an Acousto-Optic Programmable Dispersive Filter which reduces the repetition rate to 1 

kHz. This pulse train is reduced to 10 Hz by a Pockels cell before entering a four-pass bowtie amplifier 

which amplifies the pulse to 1.5 J. The energy of the pulse is reduced by a variable attenuator and aberration 

pre-compensation by a deformable mirror before entering the vacuum portion of the system. The pulse is 

compressed in vacuum by a two-grating compressor to a minimum pulse length of 36 fs and focused by an 

off-axis parabola. 
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the spectral phase and amplitude of the seed pulses in order to mitigate gain 

narrowing and higher order dispersion within the laser, enabling compression of the 

amplified pulse to near-bandwidth limits. 

The stretched and spectral amplitude/phase compensated kHz pulse train is 

amplified in a regenerative amplifier to 1 mJ. Due to gain narrowing, the bandwidth 

of the pulse reduces by a factor of two, increasing the bandwidth-limited compressed 

pulse to about 40 fs.  

The output of the regenerative amplifier is reduced to a 10 Hz repetition rate 

by a Pockels cell and enters a four-pass bowtie amplifier. The pulse is amplified to 

1.5 J and the final pulse energy is adjusted using a variable attenuator. A deformable 

mirror pre-compensates for focusing aberrations, and the pulse is compressed in 

vacuum by a pair of gratings before being sent to one of two target chambers, where 

it is focused on target by an off-axis paraboloid. Figure 2.2 outlines this laser system. 

2.1.3 Laser System Synchronization 

 The Micra oscillator for the Ti:Sapphire system uses a piezoelectric actuator 

within the cavity for a tunable pulse repetition rate. By actively adjusting the 

repetition rate, the oscillator pulse train can be synchronized to an external 76 MHz 

(or 38 MHz) RF signal. Using a photodiode signal from the Nd:YAG system’s mode-

locked Nd:Vanadate oscillator as the master oscillator, the two mode-locked systems 

can be synchronized to each other.  

 When the laser systems are synchronized, the Nd:YAG system’s mode-locked 

Nd:Vanadate oscillator is used as the master clock for both laser systems, triggering 
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all timing boxes, Pockels cells, cameras, and the solenoid valve of the target. The 

Ti:Sapphire system can also be run without the synchronization system, in which case 

the Micra acts as the master clock for the experiment. 

 

2.2 High Pressure Cryogenic Gas Target 

2.2.1 Elongated Nitrogen Cluster Jet 

 Two targets were used in the following work. The first is an elongated N2 

cluster jet, used to preform plasma waveguides. The target is formed using a Parker-

Hannifin series-99 solenoid valve. This valve is cooled to liquid nitrogen 

temperatures through its copper mounting block. This mounting block was cooled 

with a 22 psi flow of liquid nitrogen, and its temperature controlled by an electrical 

heating element. A thermocouple mounted on the copper block was used in a 

feedback loop with the heating element to allow temperature control of the target.  

 The solenoid valve was pressurized with nitrogen in the range of 200-1000 

PSI, adjusted with a high pressure regulator. The low temperatures and high pressures 

of the solenoid valve allow for cluster formation after throttling into vacuum. Van-

Der-Waals forces cause clusters to form as the gas adiabatically expands and 

cools. [40] 

 The flow of these clusters is nearly ballistic [41] and is confined by a pair of 

variably sized side walls or “jaws” separated by the orifice size (0.5 – 1 mm). The 

confined flow exits the jaws as a fan, at which point it is irradiated by an intense laser 

pulse. In earlier work [12], these jaws were stainless steel. In the experiments of this 

dissertation, new jaws were manufactured out of PTFE (Teflon) for its better 
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resistance to damage by high power laser radiation and laser-heated plasma. An 

added benefit is reduced coating of nearby optics with material ablated from the jaws.  

 End-coupling of injected focused pulses into a plasma waveguide is best if the 

entrance is sharp compared to the Rayleigh range of the focused pulse, so it is 

desirable that the edges of the expanding cluster fan have a high-contrast dropoff to 

vacuum. This was achieved using 100 μm thick sapphire skimmers on top of the jaws. 

The skimmers were affixed using Teflon tape and were robust to irradiation by 

channel forming pulses and by ambient laser-heated plasma. The cluster fan was 

characterized by the plasma produced when irradiated with a channel-forming pulse. 

Phase shift images were extracted from interferograms, showing a sharp entrance 

density gradient scale length of ~250 μm. 

2.2.2 Thin, Dense, Cryogenically Cooled Gas Jet 

Another jet was subsequently developed, using the same Parker-Hannifin 

series-99 solenoid valve, outfitted with an 800 μm diameter orifice head. Two 

generations of nozzles were developed with ~100 μm diameter orifices. These were 

coupled to the orifice head to produce a thin and dense gas flow target.  

Like the elongated cluster target, the valve was mounted in a copper cooling 

block. To achieve more effective cooling of the hydrogen gas, the block was designed 

with a heat exchanger to pre-cool the target gas, and more effectively cool the 

mounting block.  

The first generation of nozzles were constructed from thin steel tube. Under 

operating conditions, the high intensity interaction slowly erodes the nozzle tip,  
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Figure 2.3 An elongated nitrogen cluster jet. A Parker-Hannifin series-99 solenoid 

valve is mounted in a copper cooling block. A pair of Teflon guiding walls (off-

white) confine the expanding gas flow to a fan as clusters precipitate. A pair of 100 

μm sapphire skimmers (indicated by red arrows) are affixed to the top of the jaws to 

produce high contrast edges to the cluster fan using Teflon tape (bright white).  
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mainly from plasma-induced erosion, but also from laser interaction. The nozzle was 

regularly refreshed using low power Ti:Sapphire pulses in atmosphere to square off 

the tip.  

The second generation of these nozzles replaced the tube with a hollow 

conical shape. This allows for a gradual reduction of flow from the orifice to the 

nozzle tip.  

These targets also use a temperature control system. To adjust target density, 

the reservoir backing pressure was vary between 200 and 1100 PSI. Target neutral 

gas densities were measured using transverse interferometry. Phase shifts were 

Figure 2.4 Thin-dense hydrogen gas targets. A Parker-Hannifin series-99 solenoid valve is mounted in a 

copper cooling block. This cooling block (right) acts as a heat exchanger between a flow of liquid nitrogen and 

the high pressure hydrogen reservoir. The first generation of nozzles (top left) consisted of a thin needle. 

Modern versions (bottom left) use a hollow, conical tip. 
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extracted from interferograms and density was extracted by Abel inversion about the 

jet axis. Traces of the neutral gas imply near-critical plasma densities for Ti:Sapphire. 

 

2.3 Experimental Diagnostics and Devices 

2.3.1 Transverse Spectroscopy and Interferometry 

Figure 2.5 shows the target chamber with the various diagnostics for the 

interaction region. The interaction region is probed for ultrafast transverse 

interferometry with a frequency doubled portion of the main Ti:Sapphire pulse. The 

probe beam is imaged from the interaction region into a folded wavefront 

interferometer. Shadowgrams (phase contrast images) are obtained by blocking one 

of the arms of the interferometer. With the probe blocked, a flip mirror can redirect 

light from the interaction region to a fiber spectrometer.  

The folded wavefront interferometer splits the probe pulse after passage 

through the target. The probe is split so that the portion of the beam that is phase 

shifted by the target is recombined and interfered with an unshifted portion, which 

acts as a reference. In the interferometric probing plasma waveguides generated in 

clustered gases, the reference region was a region of uniform clustered gas above the 

plasma. In probing of thin gas jet targets, the portion of the beam passing through 

vacuum regions horizontally displaced from the interaction region were used as 

reference. 
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2.3.2 Liquid Crystal on Silicon Spatial Light Modulator 

 Liquid crystal is a state of matter which exhibits some properties of a liquid, 

while maintaining some form of long-range order. The spatial light modulator (SLM) 

used in of the experiments of this dissertation is a nematic liquid crystal on a silicon 

substrate. Nematic liquid crystals are composed of uniaxial molecules with a high 

aspect ratio having long-range rotational (alignment) order, but with no long-rage 

translational order. In the SLM used, alignment layers orient the liquid crystal along 

the SLM face, creating a slow axis for light polarized parallel with the liquid crystal 

orientation and a fast axis for light polarized perpendicular to it.  

Figure 2.5 Target chamber diagnostics, (a-d). In the left configuration, a 1064 nm pump pulse generates a 

waveguide which is probed with a synchronous 400 nm ultrashort pulse. In the right configuration an 800 nm 

pump pulse generates a plasma in a thin, dense gas target which is probed by a synchronous 400 nm pulse. a) The 

probe enters a folded wavefront interferometer imaging the interaction region. b) A beam profile modulation 

system which can be bypassed. c) With the 400 nm probe blocked, a flip mirror directs the light from the 

interaction region into a fiber spectrometer. d) a charged particle spectrometer with a permanent magnet 

dispersive element.  
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Figure 2.6 Liquid Crystal-on-Silicon Spatial Light Modulator. (Top) Nematic liquid crystal is oriented by an 

alignment layer to produce an extraordinary axis in the liquid crystal layer. A voltage applied to an electrode 

locally disturbs the liquid crystal orientation. This produces a perturbation on the local refractive index. (Bottom) 

Using an array of these electrodes, an incident laser can be patterned with a phase-shift profile Δφ. 
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The silicon substrate is written with 475200 electrodes in a 600x792 array. 

When an electrode is active, the nearby molecules re-orient, altering the local 

refractive index. When the polarization of incident light is aligned with the 

extraordinary axis, a phase shift profile is imprinted on the reflected light. If the 

polarization has components along the ordinary and extraordinary axes, a polarization 

profile is imprinted on the reflected light, as determined by the local relative speeds 

of fast and slow axes. When used with crossed polarizing optics, polarization rotation 

can be used as a means of amplitude modulation. 

 There are limitations on the use of SLMs, often due to their low damage 

threshold. Damage can arise either from high intensities or high average powers. If 

the SLM is subject to damage from high intensities, the liquid crystal molecules, 

alignment layers, printed electrodes or optical coatings can be permanently damaged. 

When subject to high average power, the SLM can heat up. Before permanent 

damage, the first effect is for the liquid crystal to “melt,” losing its rotational order. 

Though the latter process is reversible, it renders the SLM ineffective for several 

hours until the liquid crystal recrystallizes. Identifying the lack of phase shift from an 

applied voltage can be a means of measuring damage thresholds on SLMs. Table 2.1 

shows results from Hamamatsu for the SLM used in the following work.  

 To avoid damage an apparatus was designed to minimize laser fluence on the 

SLM. The SLM was used to phase-modulate a low energy beam for interferometric 

recombining with a high energy beam.  
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Light Source 

Beam size  

(mm)  

[at 1/e2] 

Irradiation  

time  

(hours) 

Irradiation intensity Peak Power Result 

Type 

Wavelengt

h  

(nm) 

Pulse 

Width 

Repetition 

frequency  

(kHz) 

Average 

output  

power (W) 

Output power  

per area 

(W/cm2) 

Peak output  

power 

Output power  

per area 

Damage 
Characteristic 

change 

YAG 

laser 

(cw) 1064 - - Φ 2.5 1 2.0 41.0 - - Not Seen Not Seen 

YAG 

laser 

(cw) 1064 - - Φ 2.5 

Several 

minutes 3.5 71.0 - - Not Seen Seen  

YAG 

laser 

(pulse) 1064 200 ns 80 Φ 2.5 1 2.0 41.0 0.2kW 1.4 kW/cm2 Not Seen Not Seen 

YAG 

laser 

(pulse) 1064 200 ns 80 Φ 2.5 

Several 

minutes 
3.5 71.0 0.2kW 1.4 kW/cm2 Not Seen Seen 

Pulse 

laser 1030 670 fs 1 Φ 24.5 10 0.6 3.6 0.86 GW 5.4 GW/cm2 Not Seen Not Seen 

Pulse 

laser 1030 1.37 ps 30 Φ 8.11 8 5.2 10.0 0.12GW 0.24 GW/cm2 Not Seen Not Seen 

Pulse 

laser 1030 11.4 ns 10 Φ13 8 17.4 13.1 0.15 kW 0.11 kW/cm2 Not Seen Not Seen 

Table 2.1 Damage threshold measurements of Hamamatsu LCOS-SLM. Though a 140 ps system was not used in 

these tests, it is prudent to stay below the peak power described in the blue row and the average power 

described in the red row. 
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2.3.3 Electron Spectrometer 

 To characterize electron beams produced by laser-driven plasma accelerators, 

a permanent magnet electron spectrometer was developed. The goal was to create a 

spectrometer that could characterize a wide variety of electron energies without heat 

load from magnet coils. The spectrometer would be in vacuum, so heat would not 

dissipate quickly. To avoid the heat load, permanent magnets were used.  

A yoke was machined out of iron, with a pair of aluminum mounting brackets 

to hold neodymium (N42) magnets along with iron spacers.  The brackets were 

designed to allow a series of magnets with thickness ranging from ½ inch to 1/32 inch 

to be affixed to the magnet yoke. A pair of spacers was designed for each pair of 

permanent magnets to keep the geometry the same between different field strength 

configurations. Figure 2.7 shows the dispersive element and its parts. 

The field in the magnet gap was characterized by gauss probe measurement of 

the field at the magnet faces. For this measurement, the 1/8th inch thick magnets were 

used. The field within the gap was then calculated with Laplace’s equation for the 

magnetic scalar potential using the method of relaxation [42], with measured fields as 

the boundary conditions at the pole faces and zero potential at all other boundaries. A 

measurement made of the mid-plane magnetic field was compared to the computed 

mid-plane field, confirming an accurate solution. These results are shown in figure 

2.8. This process is described in greater detail in Appendix A.1.2. 

The 3D field map was then imported into Cyber-Ray ray-tracing 

software [43]. Our charged particle spectrometer was simulated using the imported B-
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field and a diagnostic surface at the scintillator location which recorded particle 

position and momentum. Simulating a broadband particle source an energy vs. screen 

position curve was calculated. To estimate energy curves for other magnets, the field 

strength was scaled with a constant multiplicative factor and the new curve calculated 

in CyberRay. Energy curves for both electrons and protons for various magnet 

configuration are shown in Appendix A.3.2. 

The full spectrometer was then assembled in the target chamber according to 

the final design from ray-tracing. Lanex scintillator film [44,45], on which the 

electron beams were dispersed by the magnet, was placed 10 inches from the magnet. 

The resulting Lanex fluorescence pattern, constituting the electron beam spectrum, 

was imaged to an Andor Electron Multiplying CCD (EMCCD). The Lanex film was 

protected from laser light by 25μm Al foil, through which the relativistic e-beam 

readily passed. 

Figure 2.7 Permanent magnet dispersive element. Neodymium magnets (blue) 

provide a source of magnetic field with no heat load. The steel yoke and spacers 

(green) confine the magnetic field to magnet gap, simplifying dispersion modeling. 

Aluminum mounting brackets provide support and a means to mount the element. 
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Figure 2.8 Accuracy of calculated magnetic field. The top magnetic field is the mid-plane out-of-

plane magnetic field calculated using measurements of the in-plane magnetic field as boundary 

conditions for a solver of Laplace’s equation. The middle magnetic field is a measurement of the 

mid-plane out-of-plane field, which is qualitatively similar. The difference between fields, shown at 

the bottom, confers good agreement on the order of 1%, mostly attributable to artifacts from the 

field solver. 
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2.4 Particle-in-cell Simulations 

2.4.1 The Particle-in-Cell Method 

In order to model the nonlinear dynamics of an intense laser-plasma 

interaction, simulations were implemented using the TurboWAVE particle-in-cell 

(PIC) code [46]. In these simulations, field quantities like electric field, charge 

density, and current density, are defined on a discrete grid. Within this grid, a number 

of “macroparticles” are defined which have positions as well as momenta in a 

continuous phase space. Upon advance of the time step, the motion of these 

macroparticles is updated based on an interpolation of the local field quantities and 

likewise, the field quantities are updated based on an interpolation of the particle 

positions and velocities. This is illustrated in figure 2.9This method is much faster 

than calculating a full 6D phase space, but still captures the kinetic dynamics which 

follow from having multi-valued velocities within a grid cell.  

 In the years since its initial development, the PIC model itself has been a field 

of study [47], with advances in computational optimization [48], geometric 

approximation [49,50], particle collision and generation [51], and hardware 

utilization [52]. As a result, many published codes have become effective tools to 

support theory as well as experiment. The code used within this dissertation is 

TurboWAVE [53], and has been under continuous development at the Naval 
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Research Lab. The details of this code are beyond the scope of this work, but some 

fundamental information will be provided here.  

 

2.4.2 Particle Pushing 

 In a PIC code, the 6D particle phase space is represented by a collection of 

“macroparticles,” which have positions and momenta defined in 6D phase space, 

collectively emulating the phase space of a much larger number of particles. On each 

time step, each macroparticle’s position and momentum are updated. The change in 

the particle’s momentum is calculated by interpolating the E and B fields at the 

particles position. The particle’s velocity is then calculated from its momentum which 

Figure 2.9 Flow chart for computations using the Particle-in-Cell method. On each time step, charge and current 

densities are calculated by weighting particles on to the grid. Electric and magnetic fields are calculated from the 

corresponding grid values. If stochastic processes are being simulated, like collisions, ionization, radiation 

reaction, or particle generation, they can be implemented here, though this feature is not implemented in this 

work. An impulse on each of the particles is calculated and the particle phase space is updated. Using the updated 

particle positions, the boundary conditions on particles is enforced, and the process repeats in the next time step.  
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is then used to update the particle’s position. The particles’ position and velocity are 

then used to calculate the charge and current density on the grid.  

 

2.4.3 Field Solvers 

 The current and charge densities (J and ρ) are calculated from the particle 

position and velocity by distributing their charge and current onto their surrounding 

grid points. Electric and magnetic fields, E and B are then calculated using J and ρ 

along with E and B from the previous time step. The leapfrog technique reduces error 

by defining charge density and magnetic field on half time steps, error is reduced. The 

fields are defined on a grid, using the standard Yee mesh [54], wherein different 

quantities are defined at different points within a grid cell which also reduces error.  

 On a grid cell with corner at point (i,j,k), the charge density is defined on the 

corners. The current density and electric field components are defined on the edges of 

the cell, offset by half a cell width in the component direction. Finally, the magnetic 

field components are defined on the cell face, offset by half a cell width in the two   

directions that are not the component direction. This method reduces error when 

solving Maxwell’s equations directly. Figure 2.10 provides a diagram of the Yee 

mesh.  

 The Yee mesh is designed such that values are calculated from differences 

which are centered on the calculated values. Maxwell’s equations can be discretized 

in space and time before being solved as follows. 

[ , , ] [ , , ] [ , , ] 4 [ , , ]x x y y z zE i j k E i j k E i j k i j k      (2.1a) 

1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2[ , , ] [ , , ] [ , , ] 0x x y y z zB i j k B i j k B i j k              (2.1b) 
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With center-differencing, 

Figure 2.10 The Yee Mesh. A single cell is depicted, with colored dots representing different values. Charge 

density (blue) is defined on the corners of the cell, current density and electric (yellow) field are defined on 

the edges of the cell, each component offset in its own direction. Magnetic field (green) is defined on cell 

faces, the normal of each face parallel to the component direction. With this configuration, each field is 

calculated from center-differences of values only one half-step in the necessary direction.  
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A consequence of this discretization is the introduction of a degree of freedom in the 

ratio of time step size to spatial grid size. This can be seen by considering an 

electromagnetic wave traveling in the z-direction with x-polarization, 

1
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Substituting exp( ( ))x z tE i    , the difference terms take the form, 
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This can be used to solve for the dispersion relation, 

 
2 2

2
cos( cos) 1 1( )

c t
t z

z
 


    


  (2.5) 

As illustrated in figure 2.11, the dispersion relation for finite difference system can be 

seen to differ from the continuous solution for z c
t

 


 , with some frequencies 

experiencing unstable growth for z c
t

 


 . In practice, this means that the step size 

must be chosen to yield a light speed as close to c as possible without causing 

unstable growth. This is known as the Courant condition. 
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 Finally, TurboWAVE supports “moving window” solvers. In this case, the 

region which is being simulated is translating at a constant speed with respect to the 

simulated system. This allows a simulation to closely follow a laser pulse as it travels 

through a plasma, reducing window size requirements and providing significant 

speedup.  

 

 

2.5 Laser-Target Configurations 

2.5.1 Clustered Nitrogen Waveguides 

Three different laser-target configurations were implemented. The first 

configuration employs the elongated cluster target with 140 ps Nd:YAG system. 

Laser pulses ranging in energy from 150 mJ to 500 mJ is focused with an axicon to a 

Figure 2.11 Dispersion relation for the finite difference approximation to 

the wave equation for different ratios of step size to cell size. At ratios 

above the speed of light, a positive imaginary component emerges at high 

wave numbers, causing unstable growth. Figure from  [54] 
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line in the elongated cluster jet. The resulting plasma is probed with a λ=400nm, ~50 

fs, frequency-doubled portion of the main Ti:Sapphire laser pulse.  

The Ti:Sapphire system is actively synchronized to the Nd:YAG system by a 

coherent Synchrolok phase locked loop system as discussed earlier in section 2.1.3. 

This allows use of the =400nm probe pulse for high time resolution interferometry 

of plasma waveguide formation by the 140ps duration Nd:YAG laser pulse.  

For a portion of the experiment, the 35 fs λ=800nm main pulse from the 

Ti:Sapphire with 200 mJ of energy was used to generate waveguides by focusing it 

with an f/25 spherical mirror.  

 

2.5.2 Dense Jet with f/9 Focusing 

 In the second configuration the Ti:Sapphire laser pulse is focused with 10-50 

mJ of energy into a thin, dense gas target. The resulting spot size is 8.5 μm FWHM. 

The same frequency doubled probe used in 1.5.1 is used to probe the plasma. At very 

high plasma densities, diffraction from the plasma causes strong intensity variations 

on the probe and the phase shift cannot be directly extracted from interferograms. 

Instead, plasma densities can be inferred through a measurement of the neutral gas 

density before ionization. To measure spectra of side-scattered laser light and light 

transversely emitted from the plasma, a flip mirror can redirect the image of the 

interaction region to a fiber spectrometer with a range of 200nm-1100nm.  

 Finally, the electron spectrometer described in section 2.3.2 was used to 

characterize forward-directed electrons. With the electrons dispersed downward, a 

horizontal slit aperture can give information about the angular dependence of the  
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Figure 2.12 Nitrogen waveguide target configuration. (Left) A high power 800 nm pump pulse is focused 

with an f/25 spherical mirror over an elongated nitrogen cluster jet. (Right) A high power, 1064 nm 

pump pulse (green) is focused with an axicon to produce a plasma waveguide after being patterned in a 

profile modulator (b) to produce modulated plasma waveguides discussed in Chapter 3. A synchronous 

800 nm probe pulse (red) is frequency doubled (blue) and probes the resulting waveguide. This is 

directed in to a folded wavefront interferometer (a). 
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electron spectrum. The magnet and aperture can be removed to expose the Lanex to 

the full electron beam to characterize the transverse profile, measure beam 

divergence, and estimate total accelerated charge.  

2.5.3 Dense Jet with f/3 Focusing 

 A setup similar to that in Section 2.5.2 was devised to study ion acceleration. 

In this configuration, the Ti:Sapphire is focused with 500mJ-1J of energy by an f/3 

off-axis paraboloid to a 3μm FWHM spot size in a 100μm hydrogen gas jet with 

molecule densities capable of producing near-critical density plasmas. A replica of 

the charged particle spectrometer described in section 2.3.2 was fabricated. The target 

uses a more advanced cooling system with a set of actuated obstructions to augment 

the target density. The ion-acceleration simulations of Chapter 5 use a similar 

geometry.  
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Figure 2.13 Dense gas jet configuration. An intense 800 nm pump pulse (red) is focused 

into a thin dense hydrogen jet by an off-axis paraboloid. A small portion of the pulse is 

frequency doubled (blue) before probing the interaction region and entering a folded 

wavefront interferometer (a). Electrons generated from the interaction are analyzed in a 

permanent magnet charged particle spectrometer (b). With the probe beam blocked, a flip 

mirror allows light generated in the interaction region to be imaged into a fiber 

spectrometer (c).  
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Chapter 3: Generation of Modulated Plasma 

Waveguides 

 

3.1 Modulated Plasma Waveguides for Electron Acceleration 

A plasma waveguide can extend the interaction of a laser pulse with an 

electron bunch over many Rayleigh ranges, while still withstanding the high optical 

fields necessary for acceleration [11]. Such a guiding structure in plasma requires a 

transverse local plasma density minimum. This structure can be created a number of 

ways. A gas in a dielectric capillary can be pulsed with an electrical current which 

ionizes and heats it. To maintain transverse plasma pressure equilibrium, during the 

discharge, given the cold walls of the capillary, a plasma density profile forms with 

the on-axis minimum necessary for guiding [55]. In an all optical scheme, a hot 

column of plasma is generated with an intense laser. This column expands at the ion 

acoustic speed of the plasma into the un-ionized medium, producing a transient shock 

wall and density minimum on-axis [11]. In this chapter, we will discuss the formation 

and manipulation of plasma waveguides using this optical technique. Figure 3.1 

illustrates this scheme for the case of a clustered gas jet target irradiated by the line 

focus of an axicon (Bessel beam heating). 

The plasma waveguides used in the experiments of this dissertation are 

formed by either focusing a 140 ps 1064 nm laser pulse to a line with an axicon or by 

focusing a 50 fs 810 nm pulse with an f/25 spherical mirror into a clustered gas 

medium [26,56]. Clusters are formed by throttling cold, high pressure, gas into a 
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vacuum. The expansion cools the gas further and it precipitates into nanometer-scale 

solid density aggregates [40]. In practice, this is achieved by pulsing cryogenically 

cooled gas through a solenoid valve into vacuum.  

Clustered gas is an efficient absorber of intense laser light. It is capable of 

producing the initial electron population and then subsequent heating and deeper 

ionization over the duration of a single 100 ps or ultrashort pulse [57]. This efficient 

absorption occurs because the average density of the clustered target is low enough to 

allow penetration of an intense laser, but the ionized clusters exhibit a local heating 

akin to a laser-solid interaction. Because of this, nitrogen clusters have been shown to 

produce uniformly ionized N5+ plasma waveguides with 140 ps laser pulses [16]. 

This chapter describes the formation and structuring of modulated plasma 

waveguides for electron acceleration schemes such as quasi-phase matched direct 

laser acceleration (QPM-DLA) and quasi-phase matched laser wakefield acceleration 

(QPM-LWFA) both developed in our group. Axially modulated plasma waveguides 

Figure 3.1 An intense Nd:YAG laser pulse is focused to a line in a clustered gas medium. This 

strikes a hot column of plasma which expands, dynamically forming a guiding structure. 
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are created either by corrugating the cluster jet flow and applying uniform axial laser 

heating, or by applying axially modulated heating to a uniform cluster flow. First, the 

creation of the clustered nitrogen target is described along with a technique for 

creating corrugations in the cluster density. Then, an optical technique is presented 

for modulating an intense pulse, which is then used to produce programmable 

waveguide modulations in a uniform cluster jet. 

 

3.2 Wire Modulated Plasma Waveguides 

One way to achieve modulations is to corrugate the flow of the clustered gas 

target [26]. This can be done using thin wires. When a wire obstructs viscous gas 

flow, it launches a disturbance in the form of a shock. In contrast, when a wire 

obstructs ballistic cluster flow, no shocks form and a “shadow” is cast in the flow. 

Operating within the well-clustered regime is therefore necessary to create high 

contrast modulations in a plasma waveguide.  

To test this, a 25μm tungsten wire was strung over a gas jet. The resulting 

‘sliced’ target was irradiated with a 200mJ 35fs 810nm pulse, focused with an f/25 

spherical mirror to ionize it. The resulting plasma structure was probed transversely 

with a λ=400nm probe pulse. The phase shift on the probe was measured using a 

folded wavefront interferometer and extracted using a Fourier transform 

technique [58]. 

Keeping the molecular output of the jet fixed, and varying the reservoir 

temperature and pressure, the transition from a gas dominated fluid medium to a 

cluster dominated ballistic medium is observed in the generated disturbance. This was 
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accomplished by maintaining the valve backing pressure at 300 psi for temperatures 

in the range 293 K to 173 K, and 350 psi for 133 K to 93 K. Figure 3.2 shows this 

transition. The cluster flow regime is indicated by the sharp notch in the density 

directly above the wire (lower curves), while the gas flow regime is indicated by a 

wider depression outside of which are sharp density peaks characteristic of an 

expanding shock wave (upper curves). At 293K, the phase shift is almost completely 

indicative of gaseous flow, whereas by 93K, the flow of clusters is almost completely 

ballistic.  

Fine density features are necessary for QPMDLA and QPMLWFA. To inspect 

the limits on feature size, two 25 μm tungsten wires were strung above the elongated 

cluster target. One wire was fixed while the other was attached to an actuator, which 

adjusted the spacing between the wires. In the ballistic flow (clustered) regime, the 

wires were brought together from 170 μm to 65 μm in order to determine a minimum  

Figure 3.2 Phase shift measurements 1.1 mm above a 25μm wire obstruction.  (a) shows plasma 

generated by irradiating the target above the wire with an intense 810 nm pulse. (b) shows lineouts 

indicated at the dashed line in (a) for several temperatures, keeping the total molecular output of the 

jet constant.  
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Figure 3.3 With jet parameters fixed in the ballistic regime, a pair of 25 μm wires are brought together. 

The peak density in the region between appears unaffected by the wires in panels (b), (c), and (d). At 

about 65 μm separation in panel (a), the penumbras of the wires begin to overlap, reducing the density.  
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possible density feature size of ~70 μm - at which point the flow “shadows” of the 

wires begin to overlap, reducing the density between them. 

 To demonstrate the effectiveness of this method, an array of wires was strung 

over the jet at 93K, producing a series of modulations. The resulting target was 

irradiated with a 200mJ 35fs 810nm laser pulse, producing several periods of a 

modulated plasma waveguide. These results are shown in figure 3.4. 

The waveguides produced with this method have the benefit of high-contrast 

and stable modulations. However, the resulting structural modulations cannot be 

changed without creating a new wire array. Such a design has industrial applications, 

where the parameters are well known and unchanging, but less desirable in a 

scientific environment, where more flexibility is desired. 

 

Figure 3.4 25 μm wires were strung in an array with a 200 μm period.  The waveguide evolution 

was probed as above and the plasma densities were extracted via Abel inversion. (a) shows the 

evolution of a modulated waveguide formed with 93K nitrogen backed at 250 psi. (b) shows the 

same evolution for a mixture of 90% hydrogen and 10% argon at 300 psi.  
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3.3 An interferometric Patterning Method Using a Spatial Light 

Modulator 

3.3.1 Concept 

An all-optical method for imposing programmable axial density variations in 

plasma waveguides is presented. Axially modulated heater pulses have previously 

been demonstrated using a fixed transmissive ‘ring grating’ [12]. The ring grating 

method and the method described in section 3.2 produce deep modulations at periods 

down to 65 m but are limited to fixed modulation structures. Since both the 

optimum modulation period and depth for quasi-phasematching depend on many 

experimental parameters [16,57], it is desirable to have a method to tune them in situ. 

 Here, we achieve heater modulations using a 2D spatial light modulator 

(SLM), which is an electro-optic liquid crystal array with a pixel-by-pixel-

controllable linear birefringence. It is used to impose a transverse phase modulation 

on a low energy laser pulse (<15 mJ) that is interfered with a higher energy pulse 

(130 – 450 mJ) producing radial intensity modulations. The radially modulated beam 

is then focused with an axicon to generate a line focus with an axially modulated 

intensity. The concept is shown schematically in figure 3.5.  In prior work by another 

group [59], a 1D SLM and polarizer directly imposed intensity modulations on a high 

power pulse which was then focused by a cylindrical lens, leading to axially-

modulated heating of a plasma channel.  However, this method required sending over 

100 mJ through the SLM and operating dangerously close to the liquid crystal 

damage threshold. 



 52 

 

 

3.3.2 Amplitude Modulation through Phase Modulation 

The use of interferometric beam combining for patterning the high intensity 

pulse imposes a trade-off between efficient use of the laser energy and the achievable 

modulation depth. In order to investigate the relationship between modulation depth 

and efficiency, we write the field corresponding to the high energy beam as 1E  and 

that for the low energy beam as  
2 1

r
E E

i
e


 

 . Here,   describes the field 

amplitude splitting at the variable beamsplitter and  r  describes the transverse 

phase shift profile imposed on the beam by the SLM. Interference occurs at a non-

polarizing beamsplitter of transmissivity T. 

The total field after combining at the beamsplitter is, 

  1 2 11 1E= E E E
iiT Te T Te

  
 

    
 (3.1) 

leading to an intensity profile, 

       2 22

12 1 cos 1        E r EI T T T T      (3.2) 

From equation 2, we can ascertain a maximum possible modulation depth of,  

1/ (1 )4I I T T 
 (3.3) 

and maximum possible power throughput,  

     2

1
/ (1 ) (1 )

max
P T T T TP

 (3.4)  

where P1 is the power in the high power arm.   
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The achievable modulation depth and efficiency both have global maxima 

with respect to the combining beamsplitter transmissivity, T. As seen from eq. 4, the 

maximum combined power occurs for 2
, 1 /( 1)P maxT   , with the associated 

modulation depth 2
1 ,( ) 4 /(  1)P maxI I      and perfect efficiency 2

1/ 1max PP   . In 

contrast, eq. 3 shows the maximum modulation depth, 
1

( ) 2 maxI I  occurs for 

0.5T   with 21
21/ (1 )maxP P   . The advantage of our interferometric approach is 

that while the intensity modulation depth scales as  , the power on the SLM can stay 

at a safe level, scaling as 2 .  This enables extensive control of modulation depth 

while maintaining high laser power on target and low power at the SLM. 

 

3.3.3 Experimental Setup 

The apparatus, illustrated in figure 3.5, uses a 1064 nm, 140 ps long Nd:YAG 

laser pulse, which is split into high and low power pulses. The low power pulse 

reflects off the SLM (Hamamatsu LCOS-SLM, nematic liquid crystal on silicon), 

picking up a phase shift which is programmed into its refractive index.  The low and 

high energy pulses are then recombined at a non-polarizing beamsplitter (T=0.75) and 

imaged through an axicon to the line focus, generating an axially modulated plasma 

waveguide. A synchronous probe pulse passes through the plasma and is imaged into 

a folded wavefront interferometer to produce interferograms or shadowgrams. The 

interferograms are processed as described above to extract the phase shift on the 

probe [60]. Resulting phase shift images are then low pass filtered to reduce noise and 

Abel inverted to extract the 2D (axial and radial) electron density profile. 
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Figure 3.5 Experimental setup. A variable polarizing beamsplitter divides the input pump pulse into 

high power and low power pulses. The low power pulse is patterned with a phase shift profile by a 2D 

reflective SLM, and its polarization is then rotated to match the high power beam.  The two arms are 

combined and interfered at a non-polarizing beamsplitter (T=0.75) to produce transverse intensity 

modulations on the beam. The face of the SLM is imaged to a 28 base angle axicon. The high power 

arm is imaged likewise. The axicon focuses the modulated beam to a line causing axially modulated 

breakdown and heating. The plasma is probed by a synchronous pulse which is imaged into a folded 

wavefront interferometer. 

 

Experimental Setup 
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The transversely modulated pulse is then focused by an axicon to form an 

axially modulated Bessel beam.  The modulated Bessel beam ionizes and heats the 

medium and the intensity modulations result in an axially modulated plasma.  The 

period of the plasma modulations is determined by the SLM pattern, beam 

magnification between the SLM and axicon, and the axicon base angle.  The linear 

refractive axicons used in these experiments generate a one-to-one mapping of the 

beam power in an annulus at radius r and thickness dr to the power in an axial line  

element at position z and thickness dz [61].  This effectively yields a magnification 

factor of the radial modulations dependent on the axicon base angle given by 

1
tan

tan

dz
S

dr



  

 (3.5) 

where 1sin s n )( in     is the approach angle of refracted rays toward the axis, n 

is the axicon refractive index, and α is the axicon base angle. The following 

experiments utilized an SLM with 20 µm pixels magnified by a factor of 2 onto a 

fused silica axicon with base angle, yielding a minimum modulation period of the line 

focus. For experiments in air, an axicon with base angle 35° was used, leading to a 

minimum modulation period of 145 µm. In vacuum, a 28° base angle produced a 

minimum modulation period of approximately 260 µm.  

3.3.4 Experimental Results 

Air breakdown and waveguide evolution using a 35° base angle axicon were 

probed with a sample of the pump pulse at 2 ns delay for interferometric and 

shadowgraphic characterization of the resultant plasma. First, 130 mJ and 10 mJ were 
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used in the high and low power arms, respectively. In this configuration, the minima 

of the modulated Bessel beam were below the breakdown threshold of air, allowing 

modulations to produce un-ionized sections. Figure 3.6 shows shadowgrams for a 

plasma generated using a phase pattern of equally spaced thin concentric rings 

imposed on the SLM arm. This leads to a heating profile with concentric thin annular 

minima, which map to un-ionized regions notched in the plasma with a 400µm 

modulation period. The nonlinearity of ionization sharpens the notched features 

below the minimum period supported by the SLM. Such a structure is of interest for 

guided, quasi-phasematched high harmonic generation [62], with harmonics 

generated primarily in the notched zones. Without the SLM, the plasma is seen to be 

uniform.  

Figure 3.6 (a) Image of a 130 mJ, 140 ps laser pulse with notched minima, and (b) the 

corresponding plasma with notched un-ionized regions. (c) Without the SLM patterning, the 

resulting plasma is uniform. 
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Figure 3.7   Electron density of plasma waveguides in N2 clusters formed with and without modulations. (a) 

An unmodulated plasma waveguide formed using only the high power arm. (b) Plasma waveguide with a 

860μm period. (c) Difference between modulated and unmodulated densities. Colorbars in 1018 cm-3. 
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 Quasi-phasematching of both direct laser acceleration  [27] and laser 

wakefield acceleration  [25] would benefit from a modulated plasma waveguide 

without regions of un-ionized gas.  To demonstrate the technique’s utility for quasi-

phase matched acceleration experiments, the interferometric apparatus was 

constructed outside of a vacuum chamber, and the radially modulated beam was 

focused by a 28° axicon over a 7 mm long nitrogen cluster jet.  Modulated 

waveguides were formed in the cluster jet using 450 mJ in the high power arm and 10 

mJ in the low power arm.  After the combining beamsplitter this gave a maximum 

modulation depth of approximately 27% on the beam.    

 Abel inverted images of a 2.5 mm section of the 7 mm long modulated 

waveguide probed 1ns after breakdown are shown in figure 3.7.  Panel (a) shows the 

channel profile with the SLM arm blocked, yielding a straight channel with no 

periodic modulations.  Panel (b) shows a modulated channel formed by applying a 

phase mask on the SLM with a 6 pixel radial modulation period.  Finally, for clarity 

the difference between panel (a) and (b) is shown in panel (c) to highlight the periodic 

modulations imposed by the addition of the modulated beam, showing a clear 

modulation with an 860 m period.    Note that, without interference, after the 75% 

transmitting beam splitter, the phase modulated arm would only contribute 2.5 mJ of 

energy while the high power arm would contribute 330 mJ, but the interferometric 

combination leads to an approximately 10% modulation in the peak density at the 

waveguide wall.  

In summary, the patterning of intense laser pulses using an SLM in an 

interferometric configuration has been demonstrated. This method reduces the 
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required laser fluence on the SLM, protecting it. These intense patterned pulses can 

be used to create modulated plasma waveguides in air and nitrogen clusters. Even 

with ~2% of the total energy on the SLM, the resulting plasma waveguide shows 

effectively modulated electron density. This technique allows a great deal of freedom 

for tuning the plasma structures for quasi-phase matching nonlinear optical processes 

and electron acceleration. 
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Chapter 4: Self-Guided Laser Wakefield Acceleration 

and Associated Effects 

 

4.1 Introduction 

When relativistic self-focusing overcomes diffraction in a plasma, an intense 

pulse can collapse to a very intense focus. When Self-focusing collapse stabilizes 

owing to laser ponderomotive-force induced electron density cavitation, extended 

self-guiding of the pulse can take place in a relativistic filament. Self-guiding can 

extend high intensity interactions over many Rayleigh lengths [63]. In this chapter, 

we examine, with experiments and simulations, the effects of relativistic self-focusing 

in dense plasmas. First, we identify, for the first time, a new feature universal to 

relativistic self-focusing in plasma, the spatio-temporal optical vortex (STOV). We 

study STOVs using 3D PIC simulations [53] of relativistic filamentation. Second, by 

implementing a thin, dense gas target (see Chapter 2) the interaction of a laser with a 

near-critical density plasma is investigated. It is seen that these high density targets 

enable self-focusing, electron injection, and acceleration with very low energy, sub-

terawatt pulses.  

 

4.2 Spatio-Temporal Optical Vortices (STOVs) from 

Relativistic Self-Guiding 

In this section, it is shown that energy flow in relativistic filamentation is 

governed by the formation of spatio-temporal optical vortices (STOVs), just as in air 
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filamentation. [64] The complexity of relativistic self-focusing is shown to be 

simplified by consideration of the nonlinear phase shear of the pulse.  

A relativistic filament forms in a plasma when a laser pulse has peak power 

exceeding the critical power for self-focusing, [ ] 17.4( / )cr cr eP GW N N , which is the 

condition for the self-focusing-induced inward phase front curvature to exceed the 

outward phase front curvature from diffraction. The self-focusing laser pulse’s 

collapse to a singularity [14] is mitigated by ponderomotive force-induced electron 

cavitation, which simultaneously generates a large amplitude plasma wake and results 

in extended propagation of the intense pulse [63]. 

STOV formation and propagation has been studied previously using a 

cylindrically symmetric model for femtosecond laser pulse propagation in air [64], 

where the electromagnetic wave equation is solved using a fluid-like, quasi-neutral 

(electron charge density=ion charge density at every point) model for the air 

response. Such a method cannot be applied to the relativistic laser-plasma system 

Figure 4.1 2D results of an intense laser field (yellow/cyan) overlaid on electron density (greyscale). 

The left panel shows the initial pulse profile and plasma wave and the right panel shows the same 

pulse after 0.5 cm of propagation. The highlighted area is shown in the inset to reveal a phase defect. 
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because the highly nonlinear and quasi-neutrality-violating plasma response renders 

the dynamics much too complex. Instead, particle-in-cell (PIC) simulations are 

implemented, with results showing that STOV formation and propagation is integral 

to the process of relativistic nonlinear collapse and self-guiding in plasmas.  

To show the ubiquity of STOVs in relativistic self-guiding, a 2D PIC 

simulation of resonant laser wakefield acceleration (LWFA) was performed, 

simulating the conditions in prior, well-known experiments [22–24]. A =800nm, 40 

fs FWHM laser pulse with peak normalized vector potential 0 1.5a   is focused into 

a semi-infinite plasma of density 2.41018 cm-3.  Examination of Figure 4.1 shows 

that STOVs can be found on the self-guided pulse. This is seen in boxed region, 

which is blown-up in the inset, where a dark region indicates an intensity null, and the 

difference in number of waves above and below the null indicates a phase defect. 

The origin of the STOV is the strong gradient in nonlinear phase shift 

accumulated across the transverse profile of the pulse as it self-focuses. During the 

pulse collapse, the transverse phase shift gradient can become so strong at a particular 

location, say 0 0( , ) ( , )r r   , that the phase shift variation in the vicinity of this 

point can reach . Here, vg t z    is the local axial space coordinate in a frame 

moving with the pulse group velocity vg along the z-axis, and r is a transverse 

coordinate. This gives rise to the birth of a point null in the electromagnetic field 

envelope at 0 0( , ) r  , for which the local phase is undefined (we say the null point 

has a “phase defect”). In the case of a cylindrically symmetric beam, as modeled in 

Jhajj et al [64], the envelope null would appear as a ring at 0 0( , )r , and the phase 
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defect would follow the ring. The null and phase defect at 0 0( , )r    subsequently 

decomposes into two defects—one which slips towards the rear of the pulse and the 

other which propagates toward the leading edge, shaping the pulse into the 

characteristic self-guided cone [23]. Although these features have likely been present 

in many laser plasma systems, their presence in has yet gone unnoticed. A toy model 

for this process, adapted from Jhajj et al., [64] is presented in Appendix A.2.3. 

The phase circulation Γ about these defects satisfies 

1
2

/ 2 1l
defect

d


      (4.1) 

identifying phase vortices of topological charge +1 and 1, where Φ is the phase of 

the electromagnetic field component 
iE ue  , u and  are real, and the contour 

integral is taken around the phase defect in the moving frame of the pulse. In the case 

of a cylindrically symmetric pulse, the field envelope null and phase defect is located 

at the ring 0 0( , )r , and the phase circulation would be poloidal. Because, as seen in 

figure 4.1 and as explained above, there is phase circulation is in the ( , )r   plane, 

the associated vortex is spatio-temporal, with r  as the spatial coordinate and  as a 

local time-like coordinate.  

In order to study the formation of STOVs and their influence on pulse 

dynamics, 3D simulations in the resonant regime were run with parameters similar to 

those of the 2D simulations shown above. The interaction of an 810 nm 40 fs laser 

pulse with a0=2 propagating through an underdense plasma was simulated. The 

transverse laser profile was Gaussian with an 8 micron FWHM at the focus. The 

focus location was at the interface between vacuum and a semi-infinite uniform 
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plasma with a density 6x1018cm-3. The field solver and particle pusher (discussed in 

Chapter 2) used a moving window algorithm, with a window speed set at the group 

velocity of the laser, 
2

21g

p

v

c



 . Figure 4.2 shows the formation of a STOV in the 

laser field in the plane of the polarization and propagation directions. 

The  ( , )r   2D air filamentation model of Jhajj et al. in [64] assumes 

cylindrical symmetry, and so STOVs form as ring-shaped phase defects 

circumscribing a ‘core’ region of higher laser intensity. Both +1 and -1 charged 

poloidal vortices are launched in that model, with the +1 vortex eventually settling 

down to propagate with the self-guided pulse and directing its energy flow (the -1 

STOV moves backward and leaves the simulation window). In the 3D simulations of 

relativistic filamentation, STOVs can grow in a complex manner from a point defect. 

Eventually, the STOV dynamics settles down so that a +1 ring-like STOV propagates 

with and circumscribes the core of the self-guided pulse. In fact, the STOV makes  

possible a rigorous definition of the relativistic filament ‘core’ as the region 

transversely interior to the STOV, with the region outside called the ‘reservoir’ or 

‘energy bath’ [64].  

To describe the energy flow in relativistic filamentation, a beam-frame 

Poynting vector is defined. This can be formed by starting with the stationary frame 

conservation of energy, 

· · 0S J E
t


  


 (4.2) 
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Figure 4.2 3D simulation results showing the formation of a STOV. Panel a shows the pulse 

profile overlaid on electron density. The boxed region is blown up in panels b-d which are 

separated by 15 microns of propagation. Panel c shows the formation of a null (red circle) 

which decomposes into a pair of STOVs, denoted by triangles in panel d. Upward and downward 

triangles represent STOVs of +1 and -1 topological charge respectively.  
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where  is electromagnetic (EM) energy density, 
4

S E Bc


   is the Poynting vector 

(EM intensity), J is the current density, and E (B) are the laser electric (magnetic) 

fields. 

A transformation to the moving frame, 
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yields, 

'· ' · 0


  


zS

z
S J E  (4.4) 

which has the form of a conservation law. Thus, in moving frame coordinates, it is the 

forward-directed Poynting flux Sz
 that is conserved with respect to the propagation 

distance z.  
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Figure 4.3 <Sz>t with beam <S’>t direction overlaid in black arrows. A region of axis-directed energy, 

(indicated with a dashed white line) is seen to form and drift out radially, eventually over the first 520 μm 

of propagation. This region occludes outward-directed flow which, from z=520-550 μm, pushes through 

the axis-directed region, creating vortices in <S’>t. The formation of these vortices corresponds directly to 

the formation of STOVs in the laser electric field. At z=534 μm, the penetration of the axis-directed region, 

along with the formation of a phase defect in the electric field, are indicated by a red circle. At z=550 μm, 

downward- and upward-facing red triangles indicate both STOVs with topological charge +1 and -1 

respectively as well as vortices in the <S’>t. Colorbar units are mec3ncrit. 
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Figure 4.3 shows the collapse of a relativistic laser filament looking at the laser 

envelope in the y-ξ plane with extracted time averaged beam-frame Poynting vector 

<S’>t overlaid (black arrows), where it is seen that STOV formation plays an integral 

role in the pulse energy flow. Envelope quantities were extracted from the simulated 

electromagnetic fields using a fast Fourier transform technique (described in 

Appendix A.1.1), and the time-averaged energy density <ρ>t, Poynting vector <S>t, 

and <S’>t are calculated from the field envelopes, E and B, using, 

*

2 21
8

8
)

(

e(

| | | )|

R





 

   





  

     

c
t

t

t t g tv

S E B

E B

S' S

 (4.5) 

It can be seen that STOV formation is closely linked to the dynamics of <S’>t 

during pulse collapse. Initially, with self-focusing dominating, <S’>t points towards 

the center-axis. As the laser energy collects on-axis the electrons cavitate from the 

increased ponderomotive force, forming a sheath in the periphery of the pulse, and 

arresting collapse. Without the nonlinear focusing from electrons, the on-axis laser 

energy diffracts outward, as seen in the outward direction of <S’>t.  

Simultaneously, the laser energy near the sheath is directed inward, occluding 

the outward diffraction of the on-axis laser energy. As the outward-directed energy 

escapes through the inward directed wall of energy at the sheath, vortices form in 

<S’>t. In the insets, the laser E-field shows STOV formation corresponds to the 

formation of these vortices. This implies that STOV formation not only arises from a 

local nonlinear phase shear, but is integral to the global pulse collapse dynamics. 

Figure 4.4 shows the formation of STOVs in three dimensions. The formation 

of the long lived ring-like STOV which circumscribes the core region of the laser  
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Figure 4.4 Top: STOV formation in 3D PIC simulations shown at four propagation distances. The red 

surface is the laser pulse envelope (vertically polarized), with black lines indicating STOVs. First, 

STOVs form from point nulls on the sides of the pulse (declared z=0 μm). These points stretch into 

closed loops on the sides of the pulse which encircle regions of outward flow (z=14 μm). When the 

loops touch, they reconnect (z=28 μm), transforming into a pair of long-lived loops which 

circumscribe the pulse core. Bottom: A diagram of vortex reconnection. When vortices (curved black 

arrows) touch, they can change their topology via reconnection. This is the process by which STOVs 

on the side of the pulse transform into STOVs which circumscribe the pulse ~z=28 μm. 
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begins with nulls in the laser field, located on the sides of the laser pulse. These nulls 

open into loops which encircle jets of outward Poynting flux. Borrowing the language 

of superfluid helium vortices, [65,66] two STOVs can be said to “reconnect” with one 

another, touching at a point and exchanging tails. It can be seen that long-lived 

circumscribing STOVs are formed through the reconnection of the STOVs on the 

sides of the pulse. 

 

4.3 Self-Modulated Laser Wakefield Acceleration (SM-LWFA) 

in a Dense Hydrogen Gas Jet 

The power typically required for self-guiding of an ultrashort pulse (~35 fs) in 

the resonant regime (~1018cm-3) is on the order of 10 TW or higher. However, 

because of its density dependence, [ ] 17.4( / )crit crit eP GW n n  [17,18], the critical 

power for self-focusing can be reduced to below a terawatt for electron densities 

upwards of 19 33 10  en cm  and relativistically self-guiding laser pulses can be 

studied with modest laser power.  

Figure 4.5 shows an experimental setup to demonstrate electron acceleration 

with a high density target. An intense, 40 fs laser pulse (λ=810 nm) was focused on a 

thin, dense hydrogen jet to an 8 μm FWHM spot. The pulse is sampled with a pellicle 

after the interaction to measure its spectrum. The plasma is probed with a λ=400nm, 

~50 fs, frequency-doubled portion of the main Ti:Sapphire laser pulse, and imaged to 

a folded wavefront interferometer to extract target densities. Accelerated electrons  
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Figure 4.5 Experimental setup. A horizontally polarized Ti:Sapphire laser pulse (10-50 mJ, 50 fs, 

=800 nm) interacts with a cryogenically-cooled, dense thin H2 gas jet (a), whose neutral and plasma 

density profiles are measured by 400 nm probe by interferometry (b). A portion of the transmitted 

driver pulse is sampled by a pellicle (c) and measured by a spectrometer. The generated electron 

beam transmits through the pellicle and enters a permanent magnet charged particle spectrometer. A 

shadowgram of the laser interaction region above the needle orifice is shown (needle seen as a 

shadow at bottom), as well as a section of the drive pulse spectrum after the interaction showing a 

stokes-shifted peak. 
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transmit through the pellicle and enter a permanent magnet electron spectrometer, 

described in Chapter 2.  

Due to the high density of the target, electrons could be injected and 

accelerated with sub-terawatt laser pulses. This acceleration was accompanied by a 

bright flash of light which will be discussed in section 4.3. The electron spectra 

produced for a variety of pulse energies and target densities are shown in figure 4.6, 

along with simulations.  

At these high densities, (>1019cm-3) a 40 fs laser pulse is in the self-modulated 

regime, meaning the laser pulse length is longer than the plasma period, and breaks 

into a train of pulselets separated by the plasma period. This was also indicated by the 

pump spectrum in figure 4.5, showing a strong Stokes peak, indicating modulation. 

The top panel of figure 4.6 shows this pulselet formation in 3D PIC simulations. The 

bottom panels show experimental electron spectra in good agreement with the 

resulting simulated spectra. 

It can be seen in figure 4.6 the injected electron bunch (white) overlaps with 

the driving laser (cyan-yellow). This allows the laser drive betatron oscillations 

(oscillations within the ion column created by plasma wave), which results in a net 

forward acceleration when the electrons also interact with the laser magnetic field. 

The added contribution to the electron energy from the laser can be identified by 

separating the longitudinal and transverse energy gains. 
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2D PIC simulations were performed to quantify the relative contributions of direct 

laser acceleration and laser wakefield acceleration. The TurboWAVE source code 

was modified to introduce an array quantity Γij which represents the total work done 

on a macroparticle particle j over a time t by each electric field component i, 

0

][ [ ; ]ij i

t

ij jv E


 


  r . This was implemented by updating the quantity during the 

particle pushing step with the work done on the particle on that step ΔΓij[τ]. 

1 1
2 2

[[ ] [ ]

[

]

[ ];] [ ]

ij ij ij

ij ij i jEv

  

  

  

 

   

r  (4.7) 

Figure 4.6 (top) laser field overlaid on electron density showing the system in a deeply self-modulated regime. 

(bottom left) Accelerated electron spectra for peak jet electron density 4.21020 cm-3 for varying laser energy. The 

horizontal black lines indicate the experimental uncertainty in the energy, determined by geometry-limited 

spectrometer resolution. The dashed curve is a 3D PIC simulation for 40 mJ pump which has been scaled by a 

factor 0.14 to line up with the experimental curve for 40 mJ. (bottom right) Accelerated electron spectra at laser 

energy 40 mJ for varying peak electron density. The dashed curves are from 3D PIC simulations and were scaled 

by the factor 0.14. 
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The energy contributions can be calculated from Γij by multiplying by the time step 

and particle charge.  

j j xj

j j zj

W q

W

t

tq
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 (4.8) 

Figure 4.7 summarizes the relative contributions of direct laser acceleration 

(DLA) and LWFA. It can be seen that at higher intensities, the DLA contributes more 

to the electron acceleration and causes early dephasing of the accelerated electrons 

with the wakefield. Since the electrons are starting from rest, their energy gain must 

be positive, restricting their position on the WT –Wz graph to the upper right-half 

plain. A dotted line is included to indicate zero net energy gain.  

 

Figure 4.7 2D PIC simulations showing contributions of LWFA and DLA to electron energy gain for a 

fixed peak plasma density ne = 0.07ncrit for drive laser energies 15-100mJ.  Each blue dot is a tracked 

macroparticle. Regions above and to the left of the solid red line indicate DLA as the dominant form of 

acceleration, whereas regions below and to the right are dominated by LWFA. The dashed red diagonal 

marks zero net energy gain. LWFA dominates acceleration at low drive laser energies, transitioning to 

DLA at high drive laser energies, although the electrons dephase, losing energy to the wake. 
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4.4 Broadband Optical Radiation from Electron Injection 

(Wavebreaking Radiation) 

It was seen during the experiment that a bright flash of light on transverse 

images of the interaction region was correlated with the appearance of electrons on 

the LANEX screen. Figure 4.8 shows a series of bright flashes over a range of laser 

energies and target densities. This flash of light was measured to have a ~400 nm full-

width spectrum centered at λ~600nm, consistent with a few-femtosecond pulse. Such 

broadband radiation has previously been seen and identified as wavebreaking 

radiation [67], though with much lower flux.  

The production of this wavebreaking radiation can be modeled by the sudden 

acceleration of plasma electrons during wavebreaking. As a particle accelerates from 

rest to the speed of light, it produces a changing magnetic field which in turn 

produces a unipolar electromagnetic pulse, which is illustrated in figure 4.8. The 

duration of the resulting pulse is then indicative of the timescale of electron injection 

into the wakefield. The octave-spanning band is indicates a ~1 fs scale pulse, and 

therefore acceleration on the order of a femtosecond. This is consistent with 

acceleration of an electron in a fully cavitated plasma wave,  
1/4

2
0 0

1
21mc

pe
E a   . 

The acceleration time is estimated by integrating the electron’s equation of motion 

between zero kinetic energy and kinetic energy equal to its rest mass. 
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Figure 4.8 (Top panel) Side images of intense radiation flashes from wavebreaking (10 shot 

averages). The pump laser pulse propagates left to right. Image intensities are normalized to the 

maximum intensity within each column.  The vertical dashed line is the center of the gas jet, 

whose profile is shown in the lower left. The 40 mJ, 1.1×1020cm3 image for vertical pump 

polarization (enhanced 10), is dominated by 800 nm Thomson scattering on the left and the 

flash on the right. Center panel: Spectra (10 shot averages) of the flash for conditions enclosed 

by the dashed black box in the top panel. (Bottom) A simple model showing how a particle 

accelerated to the speed of light produces a unipolar pulse. 
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To explain the anomalous brightness of the broadband flash, one can consider 

a collection of accelerated electrons emitting. The radiation from these emitters can 

either add incoherently, in which case the emitted power is proportional to the 

number, or coherently, in which case the emitted power is proportional to the square 

of the number of emitters. Since the electrons are all accelerating from a crest in the 

plasma wave, the criterion for coherent emission can be taken to be the crest 

thickness crestx  being smaller than the emitted wavelength λrad. 

This crest thickness can be estimated using a 1D nonlinear model, 

3/4 3/41
0/ ~ ( / ) ( / 2 )crest p px p mc


      [68], where 0p is the electron initial 

momentum spread and λp is the quiescent plasma wavelength. For ne=3×1020 cm-3 and 

0 / ~ 0.06p mc  (from an initial spread ~ 2

0( ) / 2p m  < 1 keV from residual electron 

heating after ionization [69]) the crest thickness is / ~ 0.04crest px  , or 

~ 0.12crest radx  , which is sufficiently small for coherent emission across the visible 

spectrum. The estimation for the crest thickness also implies that a transition occurs 

from incoherent to coherent emission as plasma density is increased. This may 

explain why previous observations [67] of wavebreaking radiation at >10x lower 

plasma density reported a much dimmer flash. 



 78 

 

Our 3D PIC simulations confirm this prediction. The top panel of figure 4.9 

shows a highly nonlinear plasma wake generated by a 100 mJ pulse in a 0.1 ncrit 

plasma just before wave breaking. The crest thickness is seen to be ~100 nm thick, in 

good agreement with the 1D model. The longitudinal vector potential in the lower 

panel shows the propagation of a spherical wave following wavebreaking. Though the 

central wavelength of the resulting wave is λ~1μm which is longer than the 

experimental value of λ=600nm, this may be due to chromatic effects in the collection 

optics which were centered on the visible spectrum.  

 

Figure 4.9 PIC simulation results of a 100 mJ laser pulse in a 0.1 ncrit plasma. Top panel shows 

transverse electric field overlaid on greyscale electron density 5 fs before wave breaking. The 

nonlinear crest thickness is seen to be on the order of 100 nm, consistent with the predictions of the 

1D model. The bottom panel shows the generated electromagnetic field 16 fs after wavebreaking. 

White circles highlight three spherical waves emitted from individual plasma wave crests. 
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4.5 Conclusion 

In conclusion, we have examined, with experiments and simulations, the 

effects of relativistic self-focusing in dense plasmas. Using 3D PIC simulations, we 

have identified, for the first time, the spatio-temporal optical vortex (STOV) in 

relativistic self-focusing in plasma, and seen that it is integral to the global pulse 

dynamics. Second, by implementing a thin, dense gas target (see Chapter 2) the 

interaction of a laser with a near-critical density plasma has been investigated. These 

high density targets are found to enable self-focusing, electron injection, and 

acceleration with very low energy, sub-terawatt pulses, in addition to bright 

broadband electromagnetic radiation from wavebreaking. 
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Chapter 5: Laser-Driven Proton Acceleration in an 

Underdense Plasma 

 

5.1 Introduction 

The thin, dense gas jet described in Chapter 2 makes accessible the regime of 

near-critical density plasmas (1020-1021 cm-3) needed for magnetic vortex acceleration 

(MVA) of protons. [37,70] In this chapter, the acceleration of protons to the MeV 

scale is investigated using 3D PIC simulations with TurboWAVE. [53] First, the 

application of a high repetition rate, MeV scale, laser-proton source to medical 

radioisotope production is considered. Then, a process for tuning target parameters 

for proton acceleration is demonstrated, followed by possible realizations of high 

repetition rate laser-driven proton accelerator using MVA.  

Positron Emission Tomography (PET) is a medical imaging technique that 

utilizes positron emitters with half-lives on the order of tens to hundreds of minutes. 

They are produced by proton bombardment in cyclotron facilities, in a concentrated 

form to compensate for decay during transport to the medical facility. The production 

of 18F from proton bombardment of 18O water (18O + p → 18F + n) is favorable due to 

the relatively long half-life of 18F at 110 minutes, because of reduced decay during 

transport. A compact proton accelerator would enable the on-site and on-demand 

production of PET isotopes, and enable more widespread use of alternative isotopes  
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Figure 5.1 Cross sections for the production of a variety of PET isotopes. (a) can be produced 

with the lowest incident particle energies, and is most commonly used in conventional PET 

isotope production due to the relatively long half-life of  18F. (b) and (c) would be more useful if 

produced on-demand, and require lower concentrations due to shorter half-life. (c) also has the 

added benefit that 14N makes up more than 99% of naturally occurring nitrogen and is therefore 

quite inexpensive. Taken from NEA databases [71]. 
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with shorter half-lives at lower concentrations. PET using shorter half-life 

radioisotopes, requires a smaller initial concentration because the higher rate of 

decay, and thus imposes a smaller total dose on the patient. Production of 13N (13C + 

p → 13N + n) and 11C (14N + p → 11C + α) is also feasible via proton bombardment. 

Furthermore, production of 11C from 14N has the added benefit that 14N is extremely 

abundant, making up over 99% of naturally occurring nitrogen. 

Activation cross sections for the production of 18F, 13N, and 11C are shown in 

figure 5.1. Each reaction has a cross section in the many millibarn range for few to 

tens of MeV proton energies, and sharp onsets at lower energies of 2.5 MeV, 3 MeV, 

and 5 MeV for 18F, 13N, and 11C, respectively [71]. For this reason, the focus of this 

chapter will be the generation of protons at 2-10 MeV energies.  

 

5.2 Achieving Proton Acceleration in 3D simulations 

When an intense laser enters a dense plasma, the ponderomotive force causes 

electron cavitation and generates a beam of electrons which then generates a strong 

(~10kT) toroidal magnetic field. This changing magnetic field produces an electric 

field which bores a hole in the electron density which produces an electrostatic field, 

opening the channel in the protons as well. As the laser deposits its energy into this 

magnetic field, it depletes, but the magnetic field persists. Without the laser to drive 

it, the magnetic field undergoes its own dynamics. As described in  [70], the magnetic 

toroid dynamics on a density gradient are dictated by Ertel’s theorem, which states 

that the quantity /nΩ  is conserved with n the local electron density, Ω P  the 

generalized vorticity, and electron canonical momentum e P p A .  
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It has been shown with 2D PIC simulations that the electric fields generated 

from the expansion of this magnetic field on a plasma density gradient can accelerate 

protons to 10-150 MeV energies. [37,70] However, experimentally, and in 3D 

simulations, this mechanism has been seen to be significantly less effective, 

producing few energetic protons (<1 pC above 1 MeV) from TW laser 

interactions [72,73]. Recently, 3D simulations of a 34J, 17fs laser pulse interacting 

with a liquid hydrogen target have been shown to produce GeV-scale protons [74], 

although no 3D simulations have thus far shown acceleration on the many pC scale 

above 1MeV from 20 TW laser systems. 

To achieve ion acceleration via MVA in a 3D PIC simulation, a near-critical 

density plasma target was designed in three steps. Figure 5.3 illustrates the 

Figure 5.2 The longitudinal target profile is described by four values, Peak density np, background 

density nbg, upramp length zup, and downramp length zdown. These are tuned in three steps to a given 

laser pulse. 
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longitudinal target profile and the relevant parameters to be tuned. Electromagnetic 

instabilities can cause deflection and breakup of the laser, limiting its 

penetration. [75,76] It was seen in [75] that circularly polarized light partially 

mitigates these instabilities by reducing temperature anisotropy in the plasma. We 

have also seen that longer pulses exhibit less transverse instability than shorter pulses 

for a given pulse energy. A 110 fs circularly polarized laser pulse with wavelength 

810 nm and 3.25 TW of power was used to design this target because it was seen to 

show stable propagation in the 0.2-0.5xncrit density plasmas. The vacuum focus 

position is set half-way up the target up-ramp, with a spot size of 5.4 μm FWHM.  

Figure 5.3 For a given pulse energy, the penetration depth into a target can be tuned by the target 

density. Optimum acceleration conditions should occur at the maximum density which permits 

transmission of the laser pulse. 
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The peak profile density np was varied. For this step the length scale zup was 

chosen to be 100 μm, similar to those experimentally demonstrated in [8]. As seen in 

figure 5.3 the peak density of this stage was varied from 0.2 - 0.5ncrit and for densities 

above 0.3ncrit, the laser was seen to deplete before boring to the peak density at z=0.  

Next, the peak density was fixed at 0.3ncrit from the previous step, and the 

length of the downramp was varied. Figure 5.4 shows that, although a downramp of 

12μm produces a higher maximum energy, a downramp of 25 μm produces about 

50% more protons in the energy range suitable for PET isotope production (>4 MeV).  

Figure 5.4 The exit density ramp is steepened, revealing that an exceptionally steep (25 um) drop in density is 

required for acceleration of protons >5MeV. At shorter lengths, the total proton yield begins to drop. 

Falling Edge Scan 



 86 

 

Finally, a background plasma was introduced to supply more protons for 

acceleration. Using the profile from the previous step with a 25 μm downramp, the 

background density was varied. Figure 5.5 shows the resulting proton spectra. At high 

background densities, the magnetic field expansion is impeded by the background 

plasma at the downramp, and at low densities, the results approach those obtained in 

the downramp-varying step. At the optimum background density, 0.0008 ncrit, 1.2x109 

protons with energy above 4MeV are produced. 

 

5.3 MVA with a 20 TW Ti:Sapphire Laser 

In this section, the target parameters resulting from Section 5.2 are adjusted to 

meet experimental constraints of the thin dense target and Ti:Sapphire laser system 

described in Chapter 2. In Section 5.2, it was seen that production of 4MeV protons 

required a downramp as small as 25 μm, which is smaller than those measured in the 

existing targets. Instead, a symmetric 50 μm FWHM density profile is used, and the 

Figure 5.5 Spectra produced by varying background plasma density. There is a clear optimum with a 

maximum energy and maximum proton yield with respect to background density. At very low densities, 

densities, the spectrum approaches the best spectrum in figure 3.4, whereas at high densities, the 

background suppresses magnetic vortex expansion, impeding acceleration. 



 87 

 

laser energy is limited to under 1 J. As above, the laser was circularly polarized to 

reduce the effects of transverse instabilities in the pulse propagation. The vacuum 

focus intensity was fixed at a0=3.5, and the laser focused half way up the up ramp.  

The target profile is a 5th order polynomial resembling a Gaussian with 50 

micron FWHM and a peak density of 0.3 critical. With the peak laser field fixed at 

a0=3.5, the energy of the pulse was increased by increasing the pulse length. Because 

the intensity is the same across these simulations, much of the dynamics are the same, 

but the longer pulses have more energy to contribute to the generated magnetic field 

(and therefore, the protons) before depleting.  

Figure 5.6 shows the simulation results and spectra. 5.5 x1010 protons above 

1MeV with a cutoff energy of 7.5 MeV are produced in the interaction using <1 J of 

laser energy. It can be seen that about 650 mJ of laser energy in 225 fs is necessary to 

produce an appreciable proton population above 4MeV.  

 

Figure 5.6 Simulations of an 810 nm pulse interacting in a 50micron FWHM plasma profile 

with a peak density of 0.3xncrit. The resulting spectra show protons in our region of interest 

(>2.5 MeV) with less than 400 mJ of laser energy. 
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5.4 High Repetition Rate Disk Laser Systems 

Since proton movement is long timescales compared to electron movement, 

the need for a short pulse may be relaxed, and allowing for picosecond-scale pulses 

enables the use of high-average power disk lasers to drive the acceleration. Such 

lasers are commercially available with 200 mJ 1-picosecond pulses at a kilohertz 

repetition rate [77]. Advances have been made pushing few-ps pulses to the Joule 

level, maintaining 100 Hz repetition rates [78,79]. Additionally, advances have been 

made reducing pulse lengths to 185 fs with 0.5mJ of pulse energy at 20kHz [80]. It 

will be shown here that existing disk-laser technology is on the verge of application to 

proton acceleration and that, with modest enhancement of pulse energy or reduction 

of pulse length, they would be ideal drivers for high repetition rate laser-driven proton 

sources. 

Currently, commercial disk lasers are available at kHz repetition rates with 1 

ps pulses up to 200 mJ of energy [77]. We will first consider the scenario in which 

kHz, 1ps disk lasers can produce energies in the range of 1J and find the necessary 

target parameters which will enable the acceleration of protons. Then, we will 

consider the possibility that a kHz 200 mJ laser can be compressed to ~100 fs pulse 

lengths, and again find the target parameters necessary for proton acceleration. 

First, considering the case of a joule-class 1ps laser system, we take the pulse 

length to be fixed, and vary the pulse energy from 0.7 – 6.7 J. In these simulations a 

63 micron FWHM longitudinal plasma profile was used. As in Section 5.3, we want 

to keep the self-guided field strength fixed at a0=3.5 and vary the pulse energy, but 

since the pulse length is fixed at 1ps, the vacuum spot size was varied instead. The 
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target density was adjusted for each energy such that the spot size scaled with the 

plasma wavelength and thus the self-guided spot size. [81] For example, if the spot 

size was doubled, the density was reduced by a factor of 4.  

Figure 5.7 summarizes the results. At high energies (and therefore, low 

densities), the generated magnetic field (which scales linearly with plasma density) is 

reduce, yielding a smaller cutoff energy, while at low laser energies (higher 

densities), the laser depletes before it drives the magnetic field on the downramp of 

the plasma. These competing effects lead to an optimum energy and density of ~1.4J 

and 0.5xncrit respectively. 

Finally, considering efforts to create sub-picosecond pulses using disk 

lasers. [80] Regenerative amplifiers have been developed showing that Yb:KYW disk 

laser pulses can be compressed to less than 200 fs [80]. We will consider in 

simulations the compression of an existing 200mJ commercial disk laser. Here, laser 

Figure 5.7 Proton spectra for a variety of plasma densities and pulse energies, holding the pulse length fixed 

at 1 picosecond, and the peak intensity fixed with a0=3.5. Cutoff energies are seen above 10 MeV with little 

over one joule of laser energy. 
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energy is fixed at 200 mJ, and the plasma density is adjusted. Since we would again 

like to hold a0=3.5, and because the self-guided spot size scales linearly with the 

plasma wavelength, the pulse length is adjusted in proportion to the square of the 

plasma wavelength.  

Because the energy in the pulse was about 25% of the optimum in the energy 

scan in figure 5.7, the target thickness was reduced to 13 microns FWHM. Figure 5.8 

outlines the resulting proton spectra, showing an optimum near critical density with a 

200 fs pulse. The best results show cutoff energies of over 3 MeV with 3 x 108 

protons above 2.5 MeV, the lower limit for effective generation of 18F from 18O. 

5.5 Conclusion 

In conclusion, 3D simulations of proton acceleration of 5.5 x 1010 protons 

above 1MeV demonstrated, with less than 1J of laser energy, accessible to the 

Ti:Sapphire system described in Chapter 2, with a thin-dense target about half the 

Figure 5.8 Proton spectra resulting from 200 mJ pulses of various pulse lengths irradiating a variety of plasma 

densities. The highest cutoff energy is seen at critical density with a 200 fs pulse. At high densities, the laser does 

not fully penetrate the plasma and at low densities and at short pulse lengths, the magnetic fields are too transient 

to efficiently couple energy to the protons. 
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thickness of the thin-dense hydrogen target, also described in Chapter 2. Hypothetical 

laser systems representing likely advances in disk laser technology are seen to 

generate 1.4 x 1010 protons above 4 MeV with cutoff energies above 10MeV using 

1.2J of energy in a 1ps pulse. 1010 protons above 1MeV with cutoff energies above 

3MeV were demonstrated with 200mJ of energy in a 200ps pulse. Such developments 

in disk lasers will enable high repetition rate compact proton sources for PET isotope 

production for a variety of medical applications. 
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Chapter 6:  Conclusion and Future Work 

 

6.1 Particle Acceleration in Three Regimes 

Three regimes of laser-plasma-based charged particle acceleration have been 

discussed. In the first regime, laser propagation is linear or weakly nonlinear, and if 

there is no preformed guiding structure, the interaction will be limited to a Rayleigh 

length of propagation. A guiding structure can be produced using the transient 

expansion of a plasma formed at the line focus of an axicon.  

The second regime is dominated by relativistic self-guiding and wakefield 

generation. With laser power above Pcr, of the surrounding plasma, self-focusing 

effects overcome diffraction and the laser collapses and propagates as an intense 

filament. In this regime, large amplitude, nonlinear plasma waves are driven which 

can inject electrons into the accelerating phase of the wakefield. 

Finally, in the third regime, cavitation and electron injection generate a quasi-

static magnetic field which co-propagates with the laser through the plasma. In this 

regime, ions can be moved by prolonged charge separation, forming channels or 

being accelerated as a beam. 

 

6.2 Electron Acceleration Assisted by a Guiding Structure 

Acceleration in the first regime requires a relativistic electron bunch to be 

injected along with the drive laser in a preformed plasma waveguide. Two 

acceleration methods were introduced involving the use of axial density modulations 
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in the plasma waveguide to overcome dephasing. In the quasi phase-matched direct 

laser acceleration (QPM-DLA) method, a longitudinal component of the laser is quasi 

phase-matched to the electron bunch, producing a net forward acceleration. In the 

quasi phase-matched laser wakefield acceleration method, a linear plasma wave is 

quasi-phasematched to an electron bunch.  

The fabrication of modulated waveguides for these schemes was presented. Two 

techniques for generating modulated plasma waveguides were demonstrated. One 

uses thin wires to obstruct clustered gas flow, producing a corrugated neutral target 

which can then be formed into a modulated waveguide by ionization with a channel 

forming pulse. The effects of gas reservoir temperature and pressure on the 

modulation formation were measured and a highly clustered regime with sharp 

features identified.  

The second technique used a spatial light modulator (SLM) to pattern the 

channel forming pulse. The average and peak pulse power were well above damage 

threshold of the SLM so an interferometric technique was developed to allow the 

beam to be patterned. This instead required only putting a small fraction of the total 

beam power on the SLM. The patterned beam produced axial modulations in the 

resulting plasma waveguide which were adjustable in situ by adjusting the 

modulations on the SLM.  

6.3 Electron Acceleration and Pulse Propagation Dominated 

by Relativistic Self-Focusing 

When the power of a laser is above the critical power of the plasma in which it 

propagates, a relativistic Kerr nonlinearty causes it to self-focus until higher order 



 94 

 

nonlinearites balance out the self-focusing. The resulting filament drives a large 

amplitude plasma wave which self-injects electrons.  

It was shown through simulation that in the self-guiding regime, defects form in 

the phase of the laser pulse. These spatiotemporal optical vortices (STOVs) are seen 

to be ubiquitous in relativistic self-guiding systems. Simulations of the well-studied 

resonant regime suggest STOVs have already been present in many experiments and 

simulations. Their dynamics were seen to be central to the flow of energy during 

pulse collapse.   

Simulations in the self-modulated regime were also performed wherein the laser 

pulse length is greater than the plasma period. It was shown that with a sufficiently 

thin and dense hydrogen target, wakefield acceleration in the self-guiding regime can 

be achieved with less than a terawatt peak-power. This was confirmed 

experimentally, and was in good agreement with simulations.  

The TurboWAVE source code was modified to track work done by transverse 

and longitudinal components which differentiates between wakefield energy gains 

and those from ion-channel DLA. It was found that at higher pulse powers, DLA 

contributes significantly, causing early dephasing of the electrons from the wakefield. 

The generation of a bright flash of broadband optical radiation in this regime was 

also seen. This was identified as wavebreaking radiation and characterized to be 

octave spanning, coherent visible light. The mechanism was identified as coherent 

wavebreaking radiation. The sudden acceleration of electrons to near light speeds 

produces a unipolar electromagnetic pulse. If the plasma crest is sufficiently sub-

wavelength, this emission is expected to be coherent. Simulations confirm both the 
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emission of broadband radiation and the crest thickness to be a fraction of the emitted 

wavelength.  

 

6.4 Ion Acceleration in a Near-Critical Density Hydrogen Gas 

Jet 

At even higher densities and powers, the plasma response is so nonlinear that a 

quasistatic toroidal magnetic field is generated. This field causes prolonged charge 

separation, evacuating strongly magnetized electrons and leaving behind 

unmagnetized protons. This charge separation then induces proton motion, forming a 

proton channel in the wake of the pulse. The expansion of this magnetic toroid on a 

density gradient has been proposed [37,70] to produce protons with MeV energies.  

Three-dimensional simulations were performed which demonstrated proton 

acceleration up to 10 MeV. The necessary laser and target parameters were deduced 

for three plausible scenarios. In the first, a proof-of-principle experiment was 

simulated, using a joule-class Ti:Sapphire laser producing 5.5x1010 protons for <1J of 

laser energy. Then, a laser pulse consistent with commercial disk lasers was simulated 

and the optimum pulse energy for proton acceleration found. Finally, keeping pulse 

energy fixed and compressing it, acceleration to 3MeV was also achieved. These 

scenarios confirm the efficacy of the acceleration mechanism and provide a future 

direction for laser based ion acceleration devices.  
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6.5 Future Work 

6.5.1 High-Density Electron Acceleration 

Currently, work is being done to characterize the broadband optical radiation 

emitted during wavebreaking. An experiment is underway to use self-diffraction 

frequency resolved optical gating (SD-FROG) [82] to measure the spectral phase of 

the flash. Preliminary measurements of spectral coherence of the flash were made by 

interfering it with a narrower bandwidth supercontinuum (SC) reference pulse 

generated in a xenon gas cell. In the top panel of figure 6.1 this flash can be seen to 

be spectrally coherent over the full reference SC bandwidth. However, because the 

flash bandwidth exceeds the SC bandwidth, the flash coherence remains to be fully 

characterized. 

The generation of electrons with sub-terawatt pulses has opened up the 

opportunity to perform electron acceleration with more compact and high repetition 

rate laser systems. The bottom panels of figure 6.1 show electron spectra and profiles 

using a kilohertz repetition rate 10 mJ laser system. Efforts are currently being made 

to further reduce pulse energy using few-cycle optical pulses.   
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6.5.2 Proton Acceleration 

An experiment is underway to demonstrate proton acceleration using the 

Ti:Sapphire system described Chapter 2 in an f/3 focusing geometry. In Chapter 5, 

the acceleration of protons from a 50μm thick near-critical density plasma with 

500mJ – 1J, 230 fs laser pulses was demonstrated in simulations. Using the same 

thin-dense hydrogen target described in Chapter 2, with razorblades as obstructions, 

an even thinner, denser structure is achievable which should be sufficient for 

acceleration. Figure 6.2 shows an interferogram of a razor blade creating a shock over 

a 150 μm nozzle. The shock appears to have thickness on the order of 50 μm, so the 

parameters in the simulation described in Section 5.3, which showed protons 

accelerated above 7 MeV, should be achievable experimentally. 

 

Figure 6.1 (Top) Spectral interferometry of supercontinuum from a xenon gas cell with broadband flash emitted 

during wavebreaking. Fringes appear over the entire supercontinuum range, but even the supercontinuum does 

not cover the entire bandwidth of the flash. (Bottom) Electron spectra (left) and electron beam profiles (right) 

generated using a 10 mJ 1 kHz repetition rate laser system.  
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6.6 Conclusion 

At their conception, laser based particle accelerators could boast enormous 

accelerating gradients compared to conventional accelerators. To push the limits on 

particle energy, larger lasers have been and are being built. However, there are other 

important particle beam qualities. System compactness, high bunch charge, average 

current, and beam quality are all desirable for many particle accelerator applications. 

The work described here contributed to developing truly compact laser based particle 

accelerators, which would have broad impact in scientific, industrial and medical 

applications.  

Figure 6.2 A shock formed from a razor blade over the thin-dense hydrogen gas jet. This 

method offers a way of both generating sharper target gradients, as well as higher target 

densities. 

150 μm  

Razor 
Blade 

Shock 
~50 μm 
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Appendix I: Computational Methods 

A.1.1 Phase Extraction 

Phase extraction from interferograms is achieved by identifying a peak in the 

two-dimensional FFT of the interferograms, and shifting it to center on zero 

frequency.  Taking the argument of the inverse FFT of the resulting image produces a 

phase shift image which can be further processed to attain neutral gas or plasma 

density. This technique can also be used to map the envelope of a laser pulse from a 

simulation. 

Figure A.1 A benchmark of the phase extraction algorithm. A phase shift Φ(x) is applied to a sinusoid 

to make a signal y(x). The phase is extracted by selecting a peak in the Fourier domain kx, and shifting 

it to zero before inverting. The phase of the resulting complex envelope is the extracted phase from the 

waveform which is in good agreement with the original applied phase. 
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A.1.2 Spectrometer Magnetic Field Calculation 

The calibration of the electron spectrometer described in Chapter 2 relied on 

the calculation of a 3D magnetic field from a measured magnetic field. This was 

achieved by using the absence of free currents to define a magnetic scalar potential 

which obeys Laplace’s equation.  

Using measurements of the transverse magnetic field at the magnet surfaces, 

the magnetic scalar potential Φm was found by integrating them at their respective 

planes. These were then be used as boundary conditions for a field solver. The scalar 

potential was solved by the method of relaxation [42] converging to a tolerance of 

one part in one thousand. 

Figure A.2 A volumetric magnetic field is calculated using the magnetic field along its surface 

to define the boundaries of a magnetic scalar potential. This scalar potential, which obeys 

Laplace’s equation, is solved numerically  
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A.1.2 WAVE 5th Order Polynomial  

 In TurboWAVE, it is necessary to initiate electromagnetic waves in vacuum. 

To do this, the longitudinal profiles of the laser pulse and plasma must have well-

defined termination points. In this work, a fifth-order polynomial, referred to as 

WAVE, was frequently used to approximate a Gaussian. This polynomial is plotted in 

figure A.3 and is given by, 

3 4 5( ) 10 615WAVE x x x x   (A.1) 

It can be seen in figure A.3 that WAVE is a good approximation to 2sin ( )x  but can 

have almost 10% deviation from a Gaussian. 

 This polynomial was used to generate the longitudinal envelope of all laser 

pulses as well as all longitudinal plasma density profiles. Whenever this polynomial 

was used to represent a Gaussian, parameters were chosen such that the polynomial 

shared a FWHM with the desired Gaussian. 

Figure A.3 A comparison of a quintic polynomial used in TurboWAVE to various functions which it may 

approximate. Parameters are chosen to match peak value and FWHM. 
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Appendix II: Derivations 

A.2.1 Relativistic Factor as a Function of Vector Potential 

The energy of a charged particle in a relativistically strong electromagnetic plane 

wave is derived. The Lagrangian for a charged particle in an electromagnetic field is, 

2
2

2
1

v e
L mc

c c
e     v A   (A.2) 

which can be normalized, 
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 (A.3) 

Assuming a takes the form of a plane wave polarized in the x-direction, traveling in 

the z-direction and no scalar potential, 

) ˆ

0

( ,x z ta x







a
 (A.4) 

The Lagrangian has no explicit x-dependence, so the corresponding canonical 

momentum is conserved, 
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It can be taken that before the wave encounters the particle, the particle is at rest. This 

implies that the canonical momentum at that time is zero, 

( 0) 0

( 0) 0
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x
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a t
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 (A.6) 

Thus, the velocity is related to the vector potential by, 

21

x
x xa








  (A.7) 

Assuming the x-component of β dominates the particle motion, this can be solved for 

gamma in terms of ax to give, 

21 xa    (A.8) 
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A.2.2 Time Averaging for the Ponderomotive Energy 

The derivation of the ponderomotive force in Chapter 1 hinges on the identification of 

a “ponderomotive energy.” This energy is the average kinetic energy of a quivering 

electron in an electromagnetic field, and can be derived by considering the results 

from Appendix A.2.1 and identifying time dependence, 

21 )( ) (xt a t    (A.9) 

The time-averaged relativistic factor can be defined, 

0

21
1 ( )xdt a t






    (A.10) 

where τ is the time over which the factor is being averaged. This can be taken to be 

one period of the oscillation of ax which can be taken to be a sinusoid, 

0( ) cos )(xa t a t  (A.11) 

The average relativistic factor is therefore, 
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With some algebra, this takes the form, 
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Where the complete elliptic integral of the second kind is identified, 

 
2 2

0

21 sin ( )E k d k


    (A.14) 

It can also be seen that for small a0, the relativistic factor approaches, 

2 21
20 01 1a a      (A.15) 

Which was used in Chapter 1 to derive the relativistic plasma frequency and the 

ponderomotive force. For large values of a0, the relativist factor approaches  

0

2
a


   (A.16) 

Figure A.4 The complete elliptic integral of the second kind.  
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A.2.3 A Toy Model for STOV Formation 

(Adapted from Jhajj et al. [64])  

Figure A.8 A toy model for STOV formation. (left) An electromagnetic wave with a temporal intensity profile 

(superimposed in white). The medium in which it travels is divided into a ‘core’ with nonlinearities, and a 

‘periphery’ without. (center) This causes a phase slippage between the core and periphery, eventually 

reaching a difference of π after propagating a distance zv, forming a phase defect and intensity null indicated 

by the black circle. (right) As the phase continues to slip, the defect decomposes into a pair of defects about 

which opposite topological charge can be identified. Counting oscillations above and below a defect and 

taking the difference gives the topological charge of the defect. 
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Appendix III: Experimental Considerations 

A.3.1 The Self-Filtering Unstable Resonator 

Figure A.9 The mechanism behind the self-filtering unstable resonator cavity. (A)On each pass, a 

collimated beam is clipped by an aperture. (B) The resulting small flat-top profile is focused by an end 

mirror back onto the aperture such that (C) the resulting Airy profile is clipped at the first minimum, 

producing a small near-Gaussian profile which diverges from the aperture. (D) The diverging beam is 

amplified by the gain medium, and collimated by another end mirror. The reflected collimated beam is 

amplified through the rod again, after which it heads towards the aperture repeating the cycle.   
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The Nd:YAG laser regenerative amplifier has a self-filtering unstable 

resonator(SFUR) design, described in detail in [38]. The goal of including this section 

in the appendix is to dispel misconceptions about the self-filtering unstable resonator. 

Neither end mirror truly focuses the beam onto the aperture. The end mirror on the 

right collimates the beam, while the end mirror on the left, although placed with the 

aperture at its focus, serves only to transform the small flat-top beam into its far-field 

Airy pattern.  

The aperture is fashioned from a sturdy metal with a 1mm hole, making it 

robust to standard operation. This is in contrast to the pinhole in the vacuum spatial 

filter (VSF) which is easily damaged. Because the SFUR produces a clean Gaussian 

profile, the load on the vacuum spatial filter is reduced. However, even with standard 

operation, the VSF pinhole needs to be changed out regularly. 

Figure A.10 The aperture in the Nd:YAG regenerative amplifier SFUR(left), and a damaged pinhole used in 

the Nd:YAG vacuum spatial filter.(right) The SFUR aperture is still a clean, 1mm circle after decades of use. 

The laser profile is burned around the aperture, showing the extent to which the aperture is overfilled. In 

contrast, the VSF pinhole is easily damaged by misaligning the high power beam which is focused through 

it.  
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A.3.2 Energy Curves for Permanent Magnet Spectrometer 

Using the 3D magnetic field which resulted from section A.1.2, an electron 

spectrometer was simulated in CyberRay ray tracing software. The magnetic field 

was originally measured using the 1/8” thick magnets. To simulate other magnets, 

this field was scaled linearly with the magnet thickness, in good agreement with the 

magnet specifications.  

 

 

Figure A.11 Electron deflection as a function of energy for the simulated spectrometer using 1/8” magnets. 
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Figure A.12 Electron deflection as a function of energy for the simulated spectrometer using 1/2” 

and 1/4” magnets. 
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Figure A.13 Electron deflection as a function of energy for the simulated spectrometer using 

1/16” and 1/32” magnets. 
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