
Compact Procedural Implementation in DSP
Software Synthesis through Recursive Graph

Decomposit ion

Ming-Yung Ko1, Praveen K. Murthy2, and Shuvra S. Bhattacharyya1

1 Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies

University of Maryland at College Park, USA
{myko,ssb}@eng.umd.edu
2 Fujitsu Research Laboratories

San Jose, California, USA
pmurthy@fla.fujitsu.com

Abstract. Synthesis of digital signal processing (DSP) software from dataflow-
based formal models is an effective approach for tackling the complexity of mod-
ern DSP applications. In this paper, an efficient method is proposed for applying
subroutine call instantiation of module functionality when synthesizing embed-
ded software from a dataflow specification. The technique is based on a novel re-
cursive decomposition of subgraphs in a cluster hierarchy that is optimized for
low buffer size. Applying this technique, one can achieve significantly lower
buffer sizes than what is available for minimum code size inlined schedules,
which have been the emphasis of prior software synthesis work. Furthermore, it
is guaranteed that the number of procedure calls in the synthesized program is
polynomially bounded in the size of the input dataflow graph, even though the
number of module invocations may increase exponentially. This recursive de-
composition approach provides an efficient means for integrating subroutine-
based module instantiation into the design space of DSP software synthesis. The
experimental results demonstrate a significant improvement in buffer cost, espe-
cially for more irregular multi-rate DSP applications, with moderate code and ex-
ecution time overhead.

1 Introduction and Related Work

Due to the growing complexity of DSP applications, the use of dataflow-based, block
diagram programming environments is becoming increasingly popular for DSP system
design. The advantages of such environments include intuitive appeal; promotion of
useful software engineering practices such as modularity and code reuse; and improved
quality of synthesized code through automatic code generation. Examples of commer-
cial DSP design tools that incorporate dataflow semantics include System Canvas from
Angeles Design Systems [12], SPW from Cadence Design Systems, ADS from Agilent,
Cocentric System Studio from Synopsys [2], GEDAE from Lockheed, and the Autoc-
oding Toolset from Management, Communications, and Control, Inc. [15]. Research-
oriented tools and languages related to dataflow-based DSP design include Ptolemy
from U. C. Berkeley [3], GRAPE from K. U. Leuven [8], Compaan from Leiden Uni-
versity [16], and StreamIt from MIT [5].

A significant body of theory and algorithms has been developed for synthesis of
software from dataflow-based block diagram representations. Many of these techniques
pertain to the synchronous dataflow (SDF) model [9], which can be viewed as an im-
portant common denominator across a wide variety of DSP design tools. The major ad-
vantage of SDF is the potential for static analysis and optimization. In [1], algorithms
are developed to optimize buffer space while obeying the constraint of minimal code
space. A multiple objective optimization is proposed in [18] to compute the full range
of Pareto-optimal solutions in trading off code size, data space, and execution time.
Vectorization can be incorporated into SDF graphs to reduce the rate of context switch-
ing and enhance execution performance [7, 14].

In this paper, an efficient method is proposed for applying subroutine call instanti-
ation of module functionality to minimize buffering requirements when synthesizing
embedded software from SDF specifications. The technique is based on a novel recur-
sive decomposition of subgraphs in a cluster hierarchy that is optimized for low buffer
size. Applying this technique, one can achieve significantly lower buffer sizes than
what is available for minimum code size inlined schedules, which have been the em-
phasis of prior software synthesis work. Furthermore, it is guaranteed that the number
of procedure calls in the synthesized program is polynomially bounded in the size of the
input dataflow graph, thereby bounding the code size overhead. Having such a bound
is particularly important because the number of module invocations may increase expo-
nentially in an SDF graph. Our recursive decomposition approach provides an efficient
means for integrating subroutine-based module instantiation into the design space of
DSP software synthesis.

In [17], an alternative buffer minimization technique through transforming sched-
ules is investigated. The transformation performs once division and modulo operations
over loop counts within a selected sub-schedule. In contrast to managing loop counts in
schedules, we target token exchange rates which is suitable in the context of graph the-
ory. Since schedules can be related to SDF actor clusters, our approach, in a sense, is a
more general work in that all clusters are traversed and division/modulo are recursively
applied as far as applicable. Moreover, our graph decomposition strategy extends a two-
actor theory which prooves a minimal buffer bound [1]. The recursion generates results
better, or at least as good as, than that of [17] due to the fact that each division/modulo
induces less buffer requirement. This paper also distinguishes from [17] where multiple
coding styles, including procedures, are traded off in the software synthesis.

Buffer minimization and use of subroutine calls during code synthesis have also
been explored in the phased scheduling technique [4]. This work is part of the StreamIt
language [5] for developing streaming applications. Phased scheduling applies to a re-
stricted subset of SDF graphs, in particular each basic computation unit (called a filter
in StreamIt) allows only a single input and output. In contrast, the recursive graph de-
composition approach applies to all SDF graphs that have single appearance schedules
(this class includes all properly-constructed, acyclic SDF graphs), and furthermore, can
be applied outside the tightly interdependent components of SDF graphs that do not
have single appearance schedules. Tightly interdependent components are unique, max-
imal subgraphs that exhibit a certain form of data dependency [1]. Through extensive
experiments with single appearance scheduling, it has been observed that tightly inter-

dependent components arise only very infrequently in practice [1]. Integrating phased
scheduling concepts with the decomposition approach presented in this paper is an in-
teresting direction for further work.

Panda surveys data memory optimization techniques for compiling high level lan-
guages (HLLs), such as C, including techniques such as code transformation, register
allocation, and address generation [13]. Due to the instruction-level parallelism capa-
bility found in many DSP processors, the study of independent register transfers is also
a useful subject. The work of [10] investigates an integer programming approach for
code compaction that obeys exact timing constraints and saves code space as well.
Since code for individual actors is often specified by HLLs, several such techniques are
complementary to the techniques developed in this paper. In particular HLL compila-
tion techniques can be used for performing intra-actor optimization in conjunction with
the inter-actor, SDF-based optimizations developed in this paper.

2 Background and Notation

An SDF program specification is a directed graph where vertices represent functional
blocks (actors) and edges represent data dependencies. Actors are activated when suf-
ficient inputs are available, and FIFO queues (or buffers) are usually allocated to buffer
data transferred between actors. In addition, for each edge , the numbers of data values
produced and consumed are fixed at compile time for each invocation
of the source actor and sink actor , respectively.

A schedule is a sequence of actor executions (or firings). We compile an SDF graph
by first constructing a valid schedule, a finite schedule that fires each actor at least once,
and does not lead to unbounded buffer accumulation (if the schedule is repeated indef-
initely) nor buffer underflow on any edge. To avoid buffer overflow and underflow
problems, the total amount of data produced and consumed is required to be matched
on all edges. In [9], efficient algorithms are presented to determine whether or not a val-
id schedule exists for an SDF graph, and to determine the minimum number of firings
of each actor in a valid schedule. We denote the repetitions of an actor as this minimum
number of firings and collect the repetitions for all actors in the repetitions vector.
Therefore, given an edge and repetitions vector , the balance equation for is writ-
ten as .

To save code space, actor firings can be incorporated within loop constructs to form
looped schedules. Looped schedules group sequential firings into schedule loops; each
such loop is composed of a loop iteration count and one or more iterands. In addition to
being firings, iterands also can be schedules, and therefore, it is possible to form nested
looped schedules. The notation we use for a schedule loop is ,
where denotes the iteration count and denote the iterands of . Single
appearance schedules (SAS) refer to schedules where each actor appears only once. In
inlined code implementation, an SAS contains a single copy of code for every actor and
results in minimal code space requirements. For an acyclic SDF graph, an SAS can eas-
ily be derived from a topological sorting of the actors. However, such an SAS often re-
quires relatively high buffer cost. A more memory-efficient method of SAS construc-
tion is to perform a certain form of dynamic programming optimization (called DPPO

e
prd e() cns e()

e()src e()snk

e q e
q e()src() prd e() q e()snk() cns e()=

L L nI1I2…Im()=
n I1 I2 … Im, , , L

for dynamic programming post optimization) over a topological sort to generate a buff-
er-efficient, nested looped schedule [1]. In this paper, we employ the acyclic pairwise
grouping for adjacent nodes (APGAN) algorithm [1] for the generation of topological
sorts and the DPPO method described above for the optimization of these topological
sorts into more buffer-efficient form.

3 Recursive Decomposition of a Two-Actor SDF
Graph

Given a two-actor SDF graph as shown on the left in Figure 1, we can recursively gen-
erate a schedule that has a buffer memory requirement of the least amount possible. The
scheduling technique works in the following way: given the edge , and

, we derive the new graph shown on the right in Figure
1 where the actor set is and . The actor is a hi-
erarchical actor that represents the schedule , and just represents .
Consider a minimum buffer schedule for the reduced graph, where we replace occur-
rences of a by , and occurrences of are replaced by . For exam-
ple, suppose that and . Then , the minimum buffer schedule
for the reduced graph would be , and this would result in the schedule
after the replacement. As can be verified, this later schedule is a valid schedule for the
original graph, and is also a minimum buffer schedule for it, having a buffer memory
requirement of as expected.

However, the advantage of the reduced graph is depicted in Figure 2: the schedule
for the reduced graph can be implemented using procedure calls in a way that is more
parsimonious than simply replacing each occurrence of and in by proce-
dure calls. This latter approach would require 5 procedure calls, whereas the hierarchi-
cal implementation depicted in Figure 2 requires only 3 procedure calls. The topmost
procedure implements the SAS , where is really a procedure
call; this procedure call implements the SAS , which in turn call the actors and

Figure 1 A two-actor SDF graph and its reduced version.

A B
n m

n > m

(1)

A1 B1

n mod m m

(2)

AA BB
n m

n > m

(1)

A1A1 B1B1

n mod m m

(2)

AB
prd AB() n cns AB()> m= =

A1 B1,{ } prd A1B1() n mod m= A1
A n m⁄ B() B1 B

A1 A n m⁄ B() B1 B
n 3= m 2= 3 mod 2 = 1

A1A1B1 ABABB

n m 1–+

A B ABABB

Figure 2 A hierarchical procedural implementation of a minimum buffer schedule for the SDF
graph on the left.

A B
3 2

A1 B1

1 2
A B

3 2
AA BB

3 2
A1 B1

1 2
A1A1 B1B1

1 2

2A1 B1

AB

A B

2A1 B1

AB

A B

A1A1B1 2A1()B1= A1
AB A

. Of-course, we could implement the schedule more efficiently than simply
using five procedure calls; for example, we could generate inline code for the schedule

; this would have 3 blocks of code: two for , and one for . We would have
to do a trade-off analysis to see whether the overhead of the 3 procedure calls would be
less than the code-size increase of using 3 appearances (instead of 2).

We first state an important theorem from [1]:

Theorem 1: For the two-actor SDF graph depicted on the left in Figure 1, the mini-
mum buffer requirement over all schedules is given by .

Proof: See [1].

We denote for a two-actor SDF graph depicted on the left in
Figure 1 as the VBMLB (the buffer memory lower bound over all valid schedules). The
definition of VBMLB also applies to an SDF edge. Similarly, for arbitrary SDF graphs,
the VBMLB for a graph can be defined as the sum of VBMLBs over all edges.

Theorem 2 shows that the preservation of the minimum buffer schedule in the re-
duced graph in the above example is not a coincidence.

Theorem 2: The minimum buffer schedule for the reduced graph on the right in Figure
1 yields a minimum buffer schedule for the graph on the left when the appropriate sub-
stitutions of the actors are made.

Proof: Let . The equation must hold since a
fundamental property of the is that . So the min-
imum buffer requirement for the reduced graph is given by from
Theorem 1. Now, when is replaced by to get a schedule for the orig-
inal graph, we see that the maximum number of tokens is going to be reached after a
firing of since firings of consume tokens. Since the maximum number of tokens
reached in the reduced graph on edge is , the maximum num-
ber reached on when we replace by will be

 .

Hence, the theorem is proved. QED.

Theorem 3: An SAS for a two-actor graph satisfies the VBMLB if and only if either
 (is dividable by) or . A 2-actor SDF graph where either or
 is called a perfect SDF graph (PSG) in this paper.

Proof: (Forward direction) Assume WLOG that . Then the SAS is going to be
. The buffering requirement of this schedule

is . Since this satisfies the VBMLB, we have

 . (1)

Since , we have to show that (1) implies . The contrapositive is that if
 does not hold then Equation 1 does not hold. Indeed, if does not hold, then

, and . In the R.H.S. of (1), we have

B ABABB

2AB() B B A

n m n m,()gcd–+

n m n m,()gcd–+

n m,()gcd g= n mod m m,()gcd g=
gcd n m,()gcd n mod m m,()gcd=

n mod m m g–+
A1 A n m⁄ B()

A B
A1B1 n mod m m g–+

AB A1 A n m⁄ B()

n mod m m g– n
m
---- m+ + n m g–+=

n | m n m m | n n | m
m | n

n m>
m n m,()gcd()⁄()A() n n m,()gcd()⁄()B()

mn n m,()gcd⁄

m
n m,()gcd

------------------------n m n n m,()gcd–+=

n m> m | n
m | n m | n

n m,()gcd m< m n m,()gcd()⁄ 2≥

, meaning that the R.H.S. is . This shows that (1) cannot
hold.

The reverse direction follows easily since if , then the L.H.S. is , and the
R.H.S. is . QED.

Theorem 4: A minimum buffer schedule for a two-actor SDF graph can be generated
in the recursive hierarchical manner by reducing the graph until either or .

Proof: This follows by Theorems 2 and 3 since reduction until or is nec-
essary for the terminal schedule to be an SAS by Theorem 3, and the back substitution
process preserves the VBMLB by Theorem 2.

Theorem 5: The number of reductions needed to reduce a two-actor SDF graph to a
PSG is polynomial in the size of the SDF graph and is bounded by .

Proof: This follows by Lame’s theorem for showing that the Euclidean GCD algo-
rithm runs in polynomial time. We repeat the proof here for completeness; it is taken
from [6]. Suppose that , and there are reductions to get the PSG. Then
we show that and , where is the Fibonacci number
(). This will imply that if ,
then there are fewer than reductions to get the PSG. Since

 ,

the number of reductions is .

The proof is by induction on . For the basis, let . Then since
needing one reduction implies that cannot be 1. Since , we must have

. Now assume that it is true that if reductions are required then
 and . We will show that it holds for reductions also. Since ,

we have , and the reduction process will produce a reduced graph with
 and . We will then make additional reductions (the next

reduction will result in a graph with , and and so on). The
inductive hypothesis implies that (since after the first reduc-
tion), proving one part of the requirement, and that . Now,

. Hence,

,

as required.

We can also show that if , then there are exactly reductions. In-
deed, if and , there is reduction. For

, we have . Thus reducing the graph with
 results in a graph with , which shows induc-

tively that there will be reductions exactly. QED.

m n m,()gcd m n< <– 2n<

m | n n
m n m–+ n=

n | m m | n

n | m m | n

O n mlog+log()

n m 0> > k 1≥
n Fk 2+> m Fk 1+> Fk kth

Fk Fk 1– Fk 2– k 1 F,>∀ 0,+ 0 F, 1 1= = = m Fk 1+≤
k

Fk φk≈ 1 5+()
2

---------------------⎝ ⎠
⎛ ⎞

k
=

O mlog()
k k 1= m 1> F2=

m n m>
n 2> F3= k 1–
n Fk 1+> m Fk> k k 0>

m 1>
n' n mod m= m' m= k 1–

n'' n'= m'' m' mod n'=
m Fk 1+> m n mod m>

n mod m Fk>
m n mod m+ m n n m⁄ m–() n≤+=

n m n mod m Fk 1+ Fk+>+≥ Fk 2+=

m Fk 1+= k 1–
n F4 3= = m F3 2= = k 1+ 3= k 1– 1=

k 2≥ Fk 1+ mod Fk Fk 1–=
n Fk 1+ m, Fk= = n' Fk 1– m', Fk= =

k 1–

Thus, we can implement the minimum buffer schedule in a recursive, hierarchical
manner, where the number of subroutine calls is guaranteed to be polynomially bound-
ed in the size of the original two-actor SDF graph.

4 Extension to Arbitrary SAS

Any SAS can be represented as an R-schedule,

 ,

where is the schedule for a “left” portion of the graph and is the schedule for the
corresponding “right” portion [1]. The schedules can be recursively decom-
posed this way until we obtain schedules for two-actor graphs. In fact, the decomposi-
tion above can be represented as a clustered graph where the top level graph has two
hierarchical actors and one or more edges between them. Each hierarchical actor in turn
contains two-actor graphs with hierarchical actors until we reach two-actor graphs with
non-hierarchical actors. Figure 3 shows an SDF graph, an SAS for it, and the resulting
cluster hierarchy.

This suggests that the hierarchical implementation of the minimum buffer schedule
can be applied naturally to an arbitrary SAS starting at the top-most level. In Figure 3,
the graph in (d) is a PSG and has the SAS . We then decompose the actors

 and . For , the graph is also a PSG, and has the schedule . Similarly,
the graph for is also a PSG with the schedule . Finally, the graph for is
also a PSG, and has the schedule . Hence, in this example, no reductions are
needed at any stage in the hierarchy at all, and the overall buffering requirement is

 for the graph in (d), for , 8 for , and for , for a total re-
quirement of 43. The VBMLB for this graph is 29. The reason that even the hierarchical
decomposition does not yield the VBMLB is that the clustering process amplifies the
produced/consumed parameters on edges, and inflates the VBMLB costs on those edg-
es.

S

S iLSL() iRSR()=

SL SR
SL SR,

SAS: (2 ((3A) B) (2C)) (E (5D))

Figure 3 An SAS showing how an SDF graph can be decomposed into a series of two-actor
subgraphs.

A

C B

D E

2

3

1

3

2

1

5

4

1

2

2 10

(a)

A

C B

D E

2

3

1

3

2

1

5

4

1

2

2 10

(a)

W2

D E

10

4 2

2 10

1

W1C
1 2

3 6

(c)

W2

D E

10

4 2

2 10

1

W1C
1 2

3 6

(c)

W2
10 1

W3 2
20

D E
2 10

(d)

W2
10 1

W3 2
20

D E
2 10

(d)

C W1

D E

3

1 2
5

4

1

2

2 10

6

A

B

1
3

(b)

C W1

D E

3

1 2
5

4

1

2

2 10

6

A

B

1
3

(b)

2W2()W3
W2 W3 W3 E 5D()

W2 W1 2C() W1
3A()B

20 2+ 22= 10 W3 W2 3 W1

The extension to an arbitrary SDF graph, in other words, is to compute the VBMLB
of the cluster hierarchy that underlies the given R-schedule. That is the goal the graph
decomposition achieves and an algorithm overview is illustrated in Figure 4. The VBM-
LB of the cluster hierarchy is calculated through summation over the VBMLB of all
edges at each hierarchical level (e.g., , , , and the top-most level comprising

 and in Figure 3). We denote this cost as the VBMLB for a graph cluster hier-
archy and for the example of Figure 3, the cluster hierarchy VBMLB is 43 as computed
in the previous paragraph.

To obtain an R-schedule, DPPO is a useful algorithm to start with. As discussed in
Section 2, DPPO is a dynamic programming approach to generating an SAS with min-
imal buffering cost. Because the original DPPO algorithm pertains to direct implemen-
tation in SAS form, the cost function in the dynamic programming approach is based
on a buffering requirement calculation that assumes such implementation as an SAS. If,
however, the SAS is to be processed using the decomposition techniques developed in
Section 4, the VBMLB value for an edge ,

 ,

is a more appropriate cost criterion for the dynamic programming formulation. This
modified DPPO approach will evaluate a VBMLB-optimized R-schedule, which pro-
vides a hierarchical clustering suitable for our recursive graph decomposition.

Notice that we had to deal with multiple edges between actors in the above example.
It is not immediately obvious whether there exists a schedule for a two-actor graph with
multiple edges between the two actors that will simultaneously yield the VBMLB on
each edge individually. We prove several results below that guarantee that there does
exist such a schedule, and that a schedule that yields the VBMLB on any one edge
yields the VBMLB on all edges simultaneously.

Consider the consistent two-actor graph shown in Figure 5. The repetitions vector
satisfies the following equations:

Figure 4 An algorithm overview for arbitrary SDF graphs.

S AS
Schedu le r

R ecurs ive G raph
D ecom position

SD F G raph

R -S chedu le

T op. Sort of A ctors +
D PPO

VB M LB
Procedura l Im p l.

S AS
Schedu le r

R ecurs ive G raph
D ecom position

SD F G raphSD F G raph

R -S chedu leR -S chedu le

T op. Sort of A ctors +
D PPO

VB M LB
Procedura l Im p l.

VB M LB
Procedura l Im p l.

W1 W2 W3
W2 W3

e

prd e() cns e() prd e() cns e(),()gcd–+

Figure 5 A two-actor SDF multi-graph.

W1 W2

pk ck

c1p1

W1W1 W2W2

pk ck

c1p1

 . (2)

The fact that the graph is consistent means that (2) has a valid, non-zero solution.

Lemma 1: Suppose that . Then .

Proof: Suppose not. Suppose that for some , we have but . Equa-
tion (2) implies that . But and implies ,
contradicting (2). QED.

Now consider the two graphs shown in Figure 6. Let these graphs have the same
repetitions vector. Thus, we have

 and . (3)

Theorem 6: The two graphs in Figure 6 (I) and (II) have the same set of valid sched-
ules.

Proof: Suppose not. Suppose there is a schedule for (I) that is not valid for (II). Let
be the firing sequence , where . Since is not valid
for (II), there is some point at which a negative state would be reached in this firing
sequence in graph (II). By a negative state, we mean a state in which at least one buffer
has had more tokens consumed from it than the number of tokens that have been pro-
duced into it. That is, after firings of and respectively, we have

 while . So,

 .

By (3), we have . Thus , giving a contradic-
tion. QED.

Theorem 7: The schedule that yields the VBMLB for (I) also yields the same VBMLB
for (II).

Proof: Let be the firing sequence , where , that
yields the VBMLB for (I). By Theorem 6, is valid for (II) also. Since is the
VBMLB schedule for (I), at some point, after firings of and respectively,
we have

(4)

and for all other and in ,

 . (5)

q W1()pi q W2()ci= i∀ 1 … k, ,=

p1 … pk≤ ≤ c1 … ck≤ ≤
i j, pi pj≤ ci cj>

ci pi⁄ cj pj⁄= pi pj≤ ci cj> ci pi⁄ cj pj⁄>

Figure 6 Two two-actor graphs with the same repetitions vector.

A B
p1 c1

(I)

AA BB
p1 c1

(I)

A B
p2 c2

(II)

AA BB
p2 c2

(II)

q A()p1 q B()c1= q A()p2 q B()c2=

σ
X1X2…Xq A() q B()+ Xi A B,{ }∈ σ

nA nB, A B
nAp2 nBc2 0<– nAp1 nBc1 0≥–

0 nAp1 nBc1 nB

c2

p2
-----p1 nBc1–<–≤

c1 p1⁄ c2 p2⁄= nB c2 p2⁄() p1 nBc1– 0=

σ X1X2…Xq A() q B()+ Xi A B,{ }∈
σ σ
nA

* nB
*, A B

nA
* p1 nB

* c1– p1 c1 p1 c1,()gcd–+=

nA nB σ

nAp1 nBc1– nA
* p1 nB

* c1–≤

We have that

By (5), we have

 .

Thus,

 .

Hence, this shows that yields the VBMLB for (II) also. QED.

Theorem 8: For the graph in Figure 5, there is a schedule that yields the VBMLB on
every edge simultaneously.

Proof: Follows from the above results.

5 CD-DAT Example

Given the CD-DAT example in Figure 7, the DPPO algorithm returns the SAS
. This schedule can be decomposed into two-actor

clustered graphs as shown in Figure 8. The complete procedure call sequence is shown
in Figure 9, where each vertex represents a subroutine, and the edges represent caller-

nA
* p2 nB

* c2– nA
* p2 nB

*
p2

p1
-----c1–=

= p2 nA
*

c1

p1
-----nB

*–⎝ ⎠
⎛ ⎞

= p2 nA
*

p1 c1 p1 c1,()gcd– nA
* p1–+

p1
--+

⎝ ⎠
⎜ ⎟
⎛ ⎞

= p2 1
c1

p1

p1 c1,()gcd

p1
----------------------------–+

⎝ ⎠
⎜ ⎟
⎛ ⎞

= p2 c2

p1 c1,()gcd

p1
----------------------------p2–+

= p2 c2 p1

p2

p1

c1p2

p1
-----------,⎝ ⎠

⎛ ⎞gcd–+

= p2 c2 p2 c2,()gcd–+

nA nB

c1

p1
----- 1

c1

p1

p1 c1,()gcd

p1
----------------------------–+ +≤

nAp2 nBc2 nB

c1

p1
----- 1

c1

p1

p1 c1,()gcd

p1
----------------------------–+ +

⎝ ⎠
⎜ ⎟
⎛ ⎞

p2 nBc2–≤– p2 c2 p2 c2,()gcd–+=

σ

7 7 3AB() 2C()() 4D()() 32E 5F()()

callee relationships. The generated C style code is shown as well in Figure 10. The total
buffer memory requirement is:

This is a 72% improvement over the best requirement of 205 obtained for a strictly
inlined implementation of a SAS. The requirement of 205 is obtained by using a buffer
merging technique [11].

6 Overall Running Time

Previously, we showed that the number of decompositions required to reach a PSG is
polynomial in the size of the two-actor SDF graph. For arbitrary graphs, the clustering
process expands the produced/consumed numbers; in fact, these numbers can increase
multiplicatively. Is the decomposition process still polynomial in the size of the SDF
graph? It is, as the following analysis shows. First off, we have that the repetitions

CD

A B C D E F
1 1 2 3 2 7 8 7 5 1

DAT

Figure 7 A CD-DAT sample rate converter example.

Figure 8 The recursive decomposition of the CD-DAT graph.

W1 W2

32 7

W’1 W’2
4 7

W”1 W”2

2 3

A B
1 1

E F
5 1

D

C

W1 W2

32 7

W’1 W’2
4 7

W”1 W”2

2 3

A B
1 1

E F
5 1

D

C

3W1
3W2

1 3

2W1
2W2

2W2

W1 W2

32 7

1W1
1W2

4 7

W1 4W2 W2

2W1
2W2

4 3

1W1
1W1

1W2
3W1

3W2

1 3

2W1
2W2

2W2

3W1
3W2

1 3

2W1
2W2

2W2

W1 W2

32 7
W1 W2

32 7

1W1
1W2

4 7

W1 4W2 W2

1W1
1W2

4 7

W1 4W2 W2

2W1
2W2

4 3

1W1
1W1

1W2

2W1
2W2

4 3

1W1
1W1

1W2

W’1 W’2
4 7

1W’1 1W’2
4 3

W’1 W’1 W’2

2W’1 2W’2
1 3

1W’1
1W’2 1W’2

W’1 W’2
4 7

W’1 W’2
4 7

1W’1 1W’2
4 3

W’1 W’1 W’2

1W’1 1W’2
4 3

W’1 W’1 W’2

2W’1 2W’2
1 3

1W’1
1W’2 1W’2

2W’1 2W’2
1 3

1W’1
1W’2 1W’2

W”1 W”2

2 3

1W”1
1W”2

2 1

W”1 W”1 W”2

W”1 W”2

2 3
W”1 W”2

2 3

1W”1
1W”2

2 1

W”1 W”1 W”2

1W”1
1W”2

2 1

W”1 W”1 W”2

32 7 1–+() 4 7 1–+() 2 3 1–+() 5 1+ + + + 58=

number for any actor is , where
and is the set of edges in the SDF graph. If we cluster some set of actors
into a actor , the produced parameter on each edge leaving [1] is increased by

.

Figure 9 Procedure call sequence for the CD-DAT example.

33W1
3W2

2W1
2W2

A B

1W’1
1W’2

32W’1
2W’2

W1 4W2

1W”1 2
1W”2

1W1
1W2

E 5F

W’1 W’2

W”1 W”2

D

C

p1

p7 p8

p6

p4

p5

p2

p3

p10
p9

p11

33W1
3W2

2W1
2W2

A B

1W’1
1W’2

32W’1
2W’2

W1 4W2

1W”1 2
1W”2

1W1
1W2

E 5F

W’1 W’2

W”1 W”2

D

C

p1

p7 p8

p6

p4

p5

p2

p3

p10
p9

p11

Figure 10 Generated C code for the CD-DAT example.

p1() {
for (int i=0; i<3; i++)

p2();
p3();

}

p2() {
p4();
p3();

}

p3() {
p4();
p5();

}

p4() {
p6();
for (int i=0; i<4; i++)

p5();
}

p5() {
inline of actor E;
for (int i=0; i<5; i++)

inline of actor F;
}

p6() {
for (int i=0; i<3; i++)
p7();

p8();
}

p7() {
p9();
p8();

}

p8() {
p9();
inline of actor D;

}

p9() {
p11();
for (int i=0; i<2; i++)
p10();

}

p10() {
p11();
inline of actor C;

}

p11() {
inline of actor A;
inline of actor B;

}

v q v() O P E()= p MAXe E∈ prd e() cns e(),()=
E vi … vj, ,{ }

W ek W

q vk()

q vi() …q vj(),()gcd
--prd ek() q vk()prd ek()≤

Since the number of decompositions was , we see that if
, then

 ,

and this is a polynomial function of the SDF graph.

7 Experimental Results

Our optimization algorithm is particularly beneficial to a certain class of applications.
The statement of Theorem 3 tells us that no reduction is needed for edges with produc-
tion and consumption rates that are multiples of one another. We call such edges uni-
form edges. Precisely, if an edge has production and consumption rates and , re-
spectively, then is uniform if either or . Our proposed strategy can improve
buffering cost for non-uniform edges and generate the same buffering cost as existing
SAS techniques for uniform edges.

We define two metrics for measuring this form of uniformity for a given SDF graph
 and an associated R-schedule . For this purpose, we denote as the set

of edges in the cluster hierarchy associated with . Thus, since every
has a corresponding edge in one of the clustered two-actor subgraphs associated with

. The set can be partitioned into two sets: the uniform edge set , which consists
of the uniform edges, and the non-uniform edge set , which consists of the remain-
ing edges.

Metric 1: Uniformity based on edge count:

 .

Metric 2: Uniformity based on buffer cost:

 ,

where is the buffer cost on edge for the given graph and schedule.

 Our procedural implementation technique produces no improvement in buffering
cost when uniformity is 100% (note that 100% uniformity for Metric 1 is equivalent to
100% uniformity for Metric 2). This is because if uniformity is 100%, then the two-ac-
tor graphs in the cluster hierarchy do not require any decomposition to achieve their as-
sociated VBMLB values.

We examined several SDF applications that exhibit uniformity values below 100%,
and the results are listed in Table 1. The first three columns give the benchmark names
and graph sizes. Uniformity is measured by the proposed metrics and is listed in the
fourth and fifth columns. The R-schedule in the uniformity computation is generated by
the combination of APGAN and DPPO [1]. The last column is the buffer cost ratio of
our procedural implementation over an R-schedule calculated by the combination of

O m()log()
m q vk()prd ek()=

m()log q vk()() prd ek()()log+log E P() prd ek()()log+log= =

e m n
e m n n m

G V E,()= S Ec
S Ec E= e E∈

S Ec Eu
Enu

U1 G S,()
Eu

E
---------=

U2 G S,()

b e()
e Eu∈
∑

b e()
e E∈
∑

------------------------=

b e() e

APGAN and DPPO. A lower ratio means that our procedural implementation consumes
less buffer cost. The first five qmf benchmarks are multirate filter bank systems with dif-
ferent depths and low-pass and high-pass components. Following those are three sam-
ple rate converters: cd2dat, cd2dat2, and dat2cd. The function of cd2dat2 is equivalent
to cd2dat except for an alternative breakdown into multiple stages. A two-channel non-
uniform filter bank with depth of two is given in filtBankNu. The last benchmark
cdma2k_rev is a CDMA example of a reverse link using HPSK modulation and demod-
ulation under SR3.

Uniformity and buffer cost ratio are roughly in a linear relationship in Table 1. To
further explore this relationship between buffer cost ratio and uniformity, we experi-
mented with a large set of randomly-generated SDF graphs, and the results are illustrat-
ed in Figure 11. Both charts in the figure exhibit an approximately proportional rela-
tionship between uniformity and buffer cost ratio. The lower the uniformity, the lower
the buffer cost ratio.

To better understand the overheads of execution time and code size for procedural
over inlined implementation, we examined the cd2dat and dat2cd examples in more de-

Table 1: Experimental results for real applications.

actor count edge count U1 (%) U2 (%) buffer cost
ratio (%)

aqmf235_2d 20 22 90 88 88

aqmf235_3d 44 50 76 70 76

aqmf23_2d 20 22 90 86 93

aqmf23_3d 44 50 80 70 87

nqmf23 32 35 82 84 86

cd2dat 8 7 42 4 9

cd2dat2 6 5 40 10 21

dat2cd 5 4 50 17 14

filtBankNu 26 28 82 83 90

cdma2k_rev 143 157 96 77 90

Figure 11 Relationship between uniformity and buffer cost ratio for random graphs.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

buffer cost ratio (%)

u
n

if
o

rm
it

y
m

et
ri

c
1

(%
)

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

buffer cost ratio (%)

u
n

if
o

rm
it

y
m

et
ri

c
2

(%
)

tail. In the experiment for cd2dat, we obtained 0.75% and 10.85% execution time and
code size overheads, respectively, compared to inlined implementations of the sched-
ules returned by APGAN and GDPPO. In the experiment for dat2cd, the overheads ob-
served were 1.26% and 9.45% respectively. In these experiments, we used the Code
Composer Studio by Texas Instruments for the TMS320C67x series processors. In gen-
eral the overheads depend heavily on the granularity of the actors. In the applications of
Table 1, the actors are mostly of coarse granularity. However, in the presence of many
fine-grained (low complexity) actors, the relative overheads are likely to increase; and
for such applications, the procedural implementation approach proposed in this paper is
less favorable, unless buffer memory constraints are especially severe.

8 Conclusion

In this paper, an efficient method is developed for applying subroutine call instantiation
of module functionality when synthesizing embedded software from an SDF specifica-
tion. This approach provides for significantly lower buffer sizes, with polynomially
bounded procedure call overhead, than what is available for minimum code size, inlined
schedules. This recursive decomposition approach thus provides an efficient means for
integrating subroutine-based module instantiation into the design space of DSP soft-
ware synthesis. We develop metrics for characterizing a certain form of uniformity in
SDF schedules, and show that the benefits of the proposed techniques increase with de-
creasing uniformity. Directions for future work include integrating the procedural im-
plementation approach in this paper with existing techniques for inlined implementa-
tion. For example, different subgraphs in an SDF specification may be best handled us-
ing different techniques, depending on application constraints and subgraph
characteristics (e.g., based on uniformity, as defined in this paper, and actor granulari-
ty). Integration with other strategies for buffer optimization such as phased scheduling
[4] and buffer merging [11] are also useful directions for further investigation.

References

[1] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis from Dataflow
Graphs. Kluwer Academic Publishers. 1996.

[2] J. Buck and R. Vaidyanathan. Heterogeneous modeling and simulation of embedded sys-
tems in El Greco. In Proceedings of the International Workshop on Hardware/Software
Co-Design, May 2000.

[3] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and
Y. Xiong. Taming heterogeneity — the Ptolemy approach. Proceedings of the IEEE, Jan-
uary 2003.

[4] M. Karczmarek, W. Thies, and S. Amarasinghe. Phased scheduling of stream programs.
Proceedings of Languages, Compilers, and Tools for Embedded Systems (LCTES’03),
pages 103-112, San Diego, California, June 2003.

[5] M. Karczmarek, W. Thies, and S. Amarasinghe. StreamIt: A Language for Streaming Ap-
plications. Proceedings of the International Conference on Compiler Construction, Gre-
noble, France, April 2002.

[6] D. E. Knuth. Seminumerical algorithms, 2nd edition, The Art of Computer Programming
volume 2, Addison-Wesley, Reading, MA, 1981.

[7] K. N. Lalgudi, M. C. Papaefthymiou, and M. Potkonjak. Optimizing computations for ef-
fective block-processing. ACM Transactions on Design Automation of Electronic Systems,
5(3):604-630, July 2000.

[8] R. Lauwereins, M. Engels, M. Ade, and J. A. Peperstraete. Grape-II: A system-level pro-
totyping environment for DSP applications. IEEE Computer Magazine, 28(2):35-43, Feb-
ruary 1995.

[9] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of IEEE, vol. 75,
pp. 1235–1245, September 1987.

[10] R. Leupers and P. Marwedel. Time-constrained code compaction for DSP's. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 5(1):112-122, March 1997.

[11] P. K. Murthy and S. S. Bhattacharyya. Buffer merging — a powerful technique for reduc-
ing memory requirements of synchronous dataflow specifications. ACM Transactions on
Design Automation of Electronic Systems, 2004. To appear.

[12] P. K. Murthy, E. G. Cohen, and S. Rowland. System Canvas: A new design environment
for embedded DSP and telecommunication systems. In Proceedings of the International
Workshop on Hardware/Software Co-Design, April 2001.

[13] P. R. Panda, F. Catthoor, N. D. Dutt, et. al. Data and Memory Optimization Techniques for
Embedded Systems. ACM Transactions on Design Automation for Electronic Systems,
6(2):149-206, April 2001.

[14] S. Ritz, M. Pankert, V. Zivojnovic, and H. Meyer. Optimum vectorization of scalable syn-
chronous dataflow graphs. Proceedings of the International Conference on Application
Specific Array Processors, pp. 285-296, October 1993.

[15] C. B. Robbins. Autocoding Toolset software tools for automatic generation of parallel ap-
plication software. Technical report, Management, Communications & Control, Inc.,
2002.

[16] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere. System design using
Kahn process networks: the Compaan/Laura approach. In Proceedings of the Design, Au-
tomation and Test in Europe Conference, February 2004.

[17] W. Sung and S. Ha. Memory Efficient Software Synthesis using Mixed Coding Style from
Dataflow Graph. IEEE Transactions on VLSI Systems, Vol. 8, pp 522-526, October 2000.

[18] E. Zitzler, J. Teich, and S. S. Bhattacharyya. Multidimensional exploration of software im-
plementations for DSP algorithms. Journal of VLSI Signal Processing Systems for Signal,
Image, and Video Technology, pages 83-98, February 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

