Automating Relational Database Support for
Objects Defined by Context-Free
Grammars - the Intension-Extension
Framework

by R. Cochrane and L. Mark

TECHNICAL
RESEARCH
REPORT

SYSTEMS

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 89-105

Automating Relational Database Support
for Objects Defined by Context-Free Grammars
— the Intenston—FEzxtension Framework

Roberta Cochranet and Leo Markt

Abstract

We are designing a framework which provides a common foundation for the integration of databases
with other areas of computer science and engineering. This framework is based on the fundamental
concepts: context—free grammars and database relations.

Our goal is to provide eutomatic database support for complex objects which can be described by
context—free grammars. Such support should include Data Definition, Date Update, Grammar Cata-
log Generation, Data Retrieval, and Database Restructuring. This paper addresses the first three
areas:

Data Definition: GeneRel automatically generates a set of normalized relational schemes under which
objects derived from a given grammar can be stored.

Data Update: GeneParse automatically generates parser specifications with insertion statements for
storing sentences acceptable by a given grammar.

Grammar Catalog Generation: GeneRel, when applied to a meta-grammar, generates relations in
which grammars derived from the meta~grammar can be stored.

Furthermore, GeneRel and GeneParse can be implemented through the specification of semantic
actions in a compiler—-compiler specification of the meta~grammar.

We believe that GeneRel and GeneParse, together with our related efforts towards providing support
for data retrieval and database restructuring in this environment, provide a tool which eliminates the
need for manual relational database design, enhances data storage and querying, aids in the process of
database restructuring, and provides a common foundation for the integration of databases with other
areas of computer science and engineering.

1. Introduction

The development of new research areas, such as Software Engineering Databases, Knowledge
Base Systems, Engineering Information Systems, Extenstble Databases, and Persistent Data Objects,
indicates a growing interest in integrating database management technology with other established
research areas.

-~ Database support for software engineering has been developed in many projects, including
GENESIS [Ramamoorthy, Usuda, Tsai & Prakash] and CACTIS [Hudson & King 86].

— Deductive rule systems, such as PROBE [Dayal & Smith] and POSTGRES (Stonebraker, Han-
son, & Hong|, indicate efforts to merge databases and expert systems.

~ The use of Relational DBMSs in the support of Computer Aided Design (CAD) [Batory &
Kim], [Dadam et al.] suggest the need to extend existing database management systems to

1 Department of Computer Science and The Systems Research Center, University of Maryland, Coilege Park, Maryland 20742 Electronic
Mail: bobbie@cs.umd.edu, leo@cs.umd.edu

accommodate scientific engineering applications.

— Extensible databases (which are being studied in the context of object—oriented database
management systems such as EXODUS [Carey, Dewitt & Vandenberg] and GENESIS [Batory
et al 1988]) and persistent data objects [Atkinson, Buneman, & Morrison| are newly developed
areas which attempt to integrate databases and programming languages.

Databases supporting the above applications require the ability to define, store and retrieve large
amounts of data about objects which have complex structures, such as dependencies between pro-
ducts and processes of software life—cycles, rules, complex objects, text, and programs. Furthermore,
the structure of these objects evolves over time, so supporting databases must have the ability to
easily adapt to changes.

Each of the aforementioned projects approach database integration from an application specific
perspective. The work described in this paper provides a common foundation on which an integra-
tion of databases with all of the above areas can evolve. This common foundation is important, not
only because it solves a more general problem, but because the above areas are not isolated from one
another and are often integrated into the same system. We base our work on one of the fundamen-
tals of computer science, context—free grammars [Hoperoft & Ullman|, and the foundation of data-
bases: relations [Codd].

Our goal is to provide automatic relational database support for objects whose structure can be
described by context-free grammars. Context—free grammars are an appropriate data definition
language for these structures because many complex structures can be described by context—free
grammars and many experts in these areas are skillful users of context—free grammars. The rela-
tional database system is chosen as the target database system because of its theoretical foundations
and general acceptance in the research as well as commercial communities.

To achieve automatic database support for objects, we want to develop tools which eliminate
the need for manual relational database design and enhance data storage and querying. We have
developed two algorithms, GeneRel and GeneParse, which support data definition and data update,
and we used the algorithms to generate grammar catalog support. GeneRel (section 4) automatically
generates a set of normalized relation schemes R from a given grammar G. Objects derived from
grammar G can be stored in the set of relations R. GeneParse (section 5) generates parser
specifications with insertion statements for storing sentences of a given grammar under the relations
generated by GeneRel. Such a parser generator facilitates data insertion in environments like pro-
gramming languages and software engineering. A meta-grammar can be written which defines the
language of context—{ree grammars. Support for a grammar catalog (section 6) can be generated by
applying GeneRel and GeneParse to this meta-grammar. GeneRel and GeneParse can be imple-
mented in the same system GeneSys (section 7) as semantic actions in a compiler—compiler
specification of the meta—grammar.

Our work has implications on the previously mentioned research areas because the objects of
interest in these areas can be defined in terms of context—free grammars:
Software engineering: Software engineering processes, programs, and even grammars themselves (as

demonstrated by our use of a meta—grammar) can be defined in terms of grammars.

2

Expert systems: Horn clauses, deductive rules, and production rules can all be defined by grammars.

Engineering systems: Engineering process plans and complex objects can be defined in terms of
grammars.

Extensible databases: New data types which require database to support can be defined by gram-
mars.

Persistent objects: The definition of types in a program can be given in terms of a grammar.

Database support for all of these objects can be generated by applying GeneSys on the grammar
definitions of these objects.

Our approach contributes to many established areas of computer science and engineering.
However, it concentrates on providing database support for these areas. It does not support com-
pletely the functionalities of each of the areas; rather, it concentrates on the data structure require-
ment. It does not provide solutions to engineering problems; rather, it provides useful database sup-
port. It does not intend to replace existing support, such as editing environments, with a database
system; rather, it is intended to compliment these tools.

We are not proposing a new database system; rather, we are extending current DBMSs to pro-
vide support for applications requiring complex object support. We are interested in providing a
tool which allows users to develop their own environment. We do not want to provide database sup-
port specific or tailored to any one of these areas. We want to find general, useful tools that contri-
bute to the research in all of these areas.

The remaining of the paper begins with a review of other research efforts which use grammars
and relations as a basis for database integration. Section 3 presents some fundamental definitions of
context—free grammars and relations. Sections 4,5,6 and 7 describe the proposed concepts, and Sec-
tion 8 gives a summary of our progress to date and our plans for future research.

2. Related Efforts

As described in the introduction, there have been a several efforts which provide application
specific database support in many areas which would benefit from the integration with databases.
However, we are familiar with only a few closely related efforts that consider a combination of the
fundamentals — grammars and relations:

The Grammatical Model [Gyssens, Paredaens, & Van Gucht 89] supports data structures based
on grammars and provides an algebra and calculus for manipulating grammars. The grammatical
model is an ideal basis for a database supporting the application areas described in the introduction.
We also recognize the importance of grammars as a tool for describing information. The major
difference is that we provide algorithms for generating relational database support from grammar
-definitions. '

A model for language-based editing environments that includes a relational database is
described in [Horwitz & Teitelbaum|. Programs are represented as attributed abstract syntax trees
with an associated relational database which aggregates information that would otherwise be scat-
tered throughout the program tree. We also consider the combination of relations and grammars.
However, we look at how grammars can be used as a specification of a database; they consider how a

—3—

relational database can be used to support specifications and operations in attribute grammars.

Inspiration for this work comes from our previous efforts in Self-Describing Databases,
Engineering Information Systems, Operative Ezpert Systems, and Software Engineering Databases.
In [Mark] we introduced the notion of Self-Describing Databases with multiple levels of intensions
and extensions of data explicitly represented. This notion has inspired the framework used in the
present work (see section 6). In [Mark & Roussopoulos] we used Update Dependencies, a powerful
operational database specification language, to specify the intension—extension dimension of a rela-
tional database system. In [Cochrane 89] we described Update Dependencies through the use of
attribute grammars. The semantic actions were specified in terms of Update Dependencies against a
set of relations storing Update Dependencies. These relations were manually generated from a
context—free grammar specification of Update Dependencies. This process was a key inspiration for
the GeneRel algorithm presented in this paper. Finally, in [Mark & Rombach| we investigated the
automatic generation of customized Software Engineering Databases from grammatical specifications
of software processes.

3. Fundamentals

This section gives definitions for the basic t;:rminology concerning grammars and relations
which is required to understand the remainder of the paper. It also formally defines our grammar
formalism, tagged context-free grammars, which is a variant of context-free grammars on which
GeneRel operates.

3.1. Grammars
Context—free grammars have played an important role in every aspect of computer science.

DEFINITION
A context-free grammar is a 4 tuple G=(V,T,P,S) where:

® Vs a finite set of nonterminals;

o T is a finite set of terminals;

o Vand T are disjoint;

e S is the special symbol called the start symbol;

o P is a finite set of productions of the form A + o where A € V and « is a string generat-

ed from the regular ezpression (V U T)*.
O

We have experimented with a number of formalisms for expressing context-free grammars to
find one for which an algorithm can produce a nice set of normalized relations. However, this aug-
mentation does not increase the power of the languages expressible by context—free grammars. It
simply structures the definition of the context-{ree grammars into a more usable format. It incor-
porates the concept of tokens, the adaptation of closure and positive closure notations, and the
inclusion of fag-names.

The concept of tokens is included because, as in other applications of context-free grammars, it
is often convenient to group together terminal characters into single entities. These single entities
are referred to as tokens. However, we would like to further distinguish between those tokens that
have associated data and those that do not. We define delimiters as those tokens that do not have
associated data values and lexicons as those tokens that have associated data values. This distine-
tion is made because the data values for lexicons must be explicitly represented for any string in the
defined language. We will assume the existence of a lexical analyzer that returns tokens and values.

The closure (*) and positive closure () notations used in the representations of regular expres-
sions are convenient ways of indicating repeating structures. Although we can develop an algorithm
to generate relations without these notations, a grammar expressed using these notations allows the
generation of relations that utilizes the set retrieval aspects of the relational query languages. This
will be discussed in further detail in section 4.

The idea to include tag-names into our tagged context—free grammar was inspired by [Madsen
& Né¢rgaard]. This notation allows the user to specify meaningful names for the generated relations
and attributes. Note that we currently force all nonterminal and lexicon occurrences to be tagged,
however, this restriction can be lifted by introducing default naming conventions.

DEFINITION
A tagged context—free grammar is a 6 tuple E=(S, V, L, D, T, P) where:
e S is the special symbol called the start symbol;
e Vs a finite set of nonterminals;
e L is a finite set of lexicons;
e D is a finite set of delimiters;
e V,L, and D are disjoint;
o T is aset of tag-names;

e P is aset of productions of the form <t:A> -+ o where A € V, t € T, t uniquely specifies a
production, and o has one of the following forms:

— a string generated by the regular expression (<T:V> U <T:L> U D)* where each ele-
ment from T is unique within the string,

-~ K* where K is a symbol in (<T:V> u <T:L> U D)

— K% where K is a symbol in (<T:V> U <T:L> U D)
O

A production consists of a lefi-side and a right-side. The lefi-side is the string (i.e. <t:A>
from the definition) that precedes the "+", and the right-side is the string that follows the "-".

The nonterminals, lezicons, and delimiters make up the symbols of the grammar. A tagged symbol
is of the form <t:A> where t is a fag-name, and A is either a nonterminal or a lezicon (i.e. Ais a

symbol requiring storage).

There are two applications of tag names that correspond directly to the restrictions of the use
of tag-names listed in the definition: to uniquely name productions within a grammar, and to
uniquely name non-delimiter symbols within the right-side of a production. The first use allows the
algorithm to distinguish between productions defined for the same nonterminal. A given nontermi-
nal can exist on the left-side of more than one production. We therefore tag the nonterminal with a
tag-name that must be unique among all tag-names used to tag left-side nonterminals. The second
use allows the algorithm to distinguish between the non-delimiter symbols within the right-side of a
single production. Since a given symbol can occur several times on the right-side of a single produc-
tion, each non—delimiter symbol is given a tag-name which must be unique among all tag-names
used within the right-side of the given production.

Productions are classified as either constructor rules or list rules. Productions that have a
right-side of the first form given in the definition are constructor rules. Productions that have a
right-side of the second and third forms given in the definition are list rules.

List rules indicate that strings derivable from the production consist of a concatenation of
occurrences of the single specified symbol. The closure notation (*) means that there can be zero or
more such occurrences; the positive closure notation () indicates that there is at least one such

occurrence.

3.2. Relations

The Relational Model, [Codd], is a widely accepted database model based on the set-theoretic
relation. This section briefly overviews the structures and operations of the model, emphasizing
those aspects of the model referenced in the subsequent sections of the paper.

It is often convenient to think of a relation as a table in which there is no duplication of rows
(tuples), row order is insignificant, column (attribute) order is insignificant, and all table entries are
atomic values. The relational scheme defines the table name, column headings and domains.

DEFINITIONS

A relational scheme for a relation has the form R(Al:Dl, A2:D2, An:Dn) where

o R is the relation name
° Ai’s are atiribute names denoting attributes of the relation; each attribute name is unique
within a given relation scheme

° Di’s are domain names denoting domains over which the attributes are defined; domains need
not be distinct.

A relation R consists of a set of tuples where a fuple is a mapping from the set of attributes to
a set of values in the associated domains.

A key of a relation is a combination of attributes for which the corresponding tuple values are
unique.

O

The relational model is extended with domains of surrogates [Hall, Owlett & Todd] for
representing non-lexical object types. Surrogates are system generated internal identifiers that are
ideal for representing unnamed objects such as uses of production rules in a grammar.

4. GeneRel

The first step in providing relational support for objects is facilitating the definition of rela-
tional schema under which such objects can be stored. The GeneRel algorithm automates the pro-
cess of constructing the relational schemes for a given tagged context—{ree grammar.

G?G-ds@——
Tagged Context—Free

Relational
"""""" H Grammar GeneRel
Schema
(Language X)

Figure 1: Automatic Generation of Relation Schemes

GeneRel defines a mapping from tagged context—free grammar specifications to relational
schemes which support the storage of the objects defined by the grammars (Figure 1). Relation
names, attributes names and domains are determined from the tag names and symbols in the pro-
ductions. Tag names are used to derive relation names and attribute names. All nonterminal and
lexicon symbols, have corresponding domains. For each nonterminal, N, in the grammar, a domain,
N, of surrogates uniquely represents derivations of the nonterminal. For each lexicon, L, in the
grammar, a domain, L, of lexical objects represents the syntactic category defined by the lexicon.

The GeneRel algorithm is summarized in Figure 2. One relation scheme is generated for each
production in the grammar. The form of the generated relation schemes depends on the structure of
the productions. Productions are classified according to their structure as either constructor rules,
list-of-structure rules, or list-of-delimiter rules.

A constructor rule has the form:

<t0:A> * W, <t1:A1> Wo <t2:A2> W <tn:An> Wnat
where LA is a possibly empty string of delimiters, Ai is a nonterminal or lexicon, A is a nonterminal,
and ti is a tag-name. The relation generated for a constructor rule is named with the tag-name, by
of the left-side nonterminal of the rule. The key for this relation is an attribute named occur which
is defined over the domain, A, which corresponds to the left-side nonterminal. Additionally, there
is an attribute corresponding to each nonterminal or lexicon symbol, Ai’ on the right-side. The
attribute name is the tag-name of the symbo], t, and the domain is the domain, Ai’ which

corresponds to the symbol.
A list-of-structure rule has the form: 4
<t AS> * <t A >* or <tgA> + <tpA >t
where Ai is a nonterminal or lexicon, A is a nonterminal, and t; i1s a tag-name. The relation gen-

erated for a list—of-structure rule is named with the tag-name, t,, of the left-side nonterminal of
the rule. This relation has three attributes: one named occur that is defined over the domain, A,
which corresponds to the left-side nonterminal, one corresponding to the nonterminal or lexicon

7

PRODUCTION RELATION

Constructor:

) >
<tgiAS> - occur:A JJIAI I l tothy I

W <zl'.A1 SWo. Wy <tp A SW, +1

List of Structures

<hGA> + <tjA > £

0> <Yy l [position:
or + occurA tl:A.‘ counter
<30:A> - <Q12A1>

List of Delimiters:

*
<to:A> -w

count:
or occurA In
<tgA>+wt =

Figure 2: GeneRel Algorithm

symbol A1 named by the tag-name ty defined over the domain Al’ and an additional attribute
named posttion defined over the domain of positive integers. The position attribute is introduced to
indicate the order of symbols in the stored sentential form. The attributes occur and position con-
stitute a key for the relation.
A list-of-delimiter rule has the form:
<ty A> -+ w¥* or <t A> =+ wt

where w is a delimiter, A is a nonterminal, and to is a tag—name. The relation generated for a list—
of—delimiter rule is named with the tag-name, to of the left-side nonterminal of the rule. This rela-
tion has two attributes: one named occur that is defined over the domain, A, which corresponds to
the left—side nonterminal, and an additional attribute named count defined over the domain of posi-
tive integers. The count attribute is introduced to indicate the number of occurrences of the delim-
iter in the stored sentential form.

EXAMPLE

This example shows the production set of a tagged grammar for specifying drawing descriptions
which contain complex objects (Figure 3). A drawing is a rectangle which consists of a location and
a body which is described by a number of smaller rectangular areas. The location of a drawing is
defined by the bottom-left and top-right points of the drawing. There are two types of areas: com-
ponents and free paths. The lexicon integer is assumed to be defined in the lexical analyzer. Figure
4 shows the relation schemes that are generated by applying GeneRel to the Drawing Descriptions
tagged grammar,

A new notation is introduced for expressing relation schemes. The domains are represented by
circles: a solid circle represents a domain of surrogates (non-lexical objects), a dashed circle
represents a domain of lexical objects. The rectangles denote the relation schema with the attribute

<DRAWING:DRAWING > + <location:RECTANGLE > <body.AREAS>
<AREAS:AREAS > + <area:AREA>* :
<PATH:AREA > + <free.RECTANGLE >

< COMPONENT:AREA > + <occupied: DRAWING >
<RECTANGLE:RECTANGLE> =+ <bot-left:POINT> <top-right:POINT>
<POINT:POINT > + <xinteger> <yinteger>

Figure 3: Tagged Grammar for Drawing Descriptions

—> < >

occur |location| body occur[area ‘posltlon|
DRAWING AREAS

on | x | v |

Figure 4: Schema for Storing Drawing Descriptions

names occurring within the rectangle and the relation name occurring somewhere outside but near
the rectangle. The arrowed lines indicate attributes that constitute a key for the relation. This nota-
tion allows shared domains, which indicate joinable attributes, to be highlighted.

EXAMPLE

This example shows the production set of a tagged grammar that defines a simple structured
programming language (Figure 5). A block is defined as a possibly empty list of statements. The
lexicons :d and int are assumed to be defined in the lexical analyzer. Figure 6 shows the relation
schemes that are generated by applying GeneRel to the grammar in Figure 5.

<BLOCK:BLOCK > -+ begin <body:STMTLIST> end
<STMTLIST:STMTLIST > <stmt:STMT >*
<IFSTMT:STMT > -+ if <cond:COND>

- then <trueact:STMTLIST >

else <falseact:STMTLIST > endif
<var:id> = <value:int>
<var:id> == <valueiint>

+

<ASSIGNSTMT:STMT >
<EQUAL:COND >

+

+

Figure 5: Tagged Grammar for Simple Language

Figure 6: Schema for Simple Language Example

An instance of a block stored under this schema would have a tuple, K, in the relation
BLOCK, where K.occur is a surrogate which uniquely identifies the block and K.body is a surrogate
which identifies the statement list comprising the block. The tuples in the relation STMTLIST
which have the value K.body in the occur field are all of the statements which comprise the state-
ment list of the block. Figure 7 shows a program which is a sentence of the blocks grammar, and a
possible representation for this program under the schema generated by GeneRel.

begin
X:i=8
{fX ==4 then
STMTLIST
Xi=§ | E— —
oceur stmt tion
else post
, STS 1 ST 1 1 ASSIGNSTMT
ifX ==28 then b = A —
STs 1 ST 2 2 oceur var value
X:i=1 e hud
STS 2 ST 8 1 ST 1 X uge
else = ud =
STS 8 ST 4 1 ST 8 X~ n5w
X:=8 = = -
STS 4 ST 5 1 ST 5 X» wqn
endif = = =
SIS & ST 6 1 ST 6 wxXm g«
endif el = =
end
IFSTMT BQUAL
—>
¢ BLOK R occur cond trueact falseact oceur var value
occur body ST 2 c1 STS 2 STS 8 c1 uxe 4"
B_1 STS_1 ST 4 Cc2 STS 4 STS 6 Ccze o 3w

Figure 7: Program

~10—

The representation stored under the GeneRel schemes can be conceptually pictured as directed
acyclic graphs (DAGS) with typed nodes. The value of a node is the attribute value it répresents. If
the attribute value is a surrogate, then the type of the node is the domain (which corresponds to a
nonterminal) over which the surrogate is defined. If the attribute value is lexical, then the type of
the node is lexical. Surrogate nodes have at least one child, and lexical nodes do not have any chil-
dren. Node N is a child of surrogate node X if the value of N is an attribute value in the same tuple
for which node X is the occur value. If there is no object sharing, the stored DAGS are trees which
are similar to parse trees for the stored sentences. In either case, a parse tree for a given derivation
can be constructed from the stored database. Figure 8 is the conceptual DAG which is stored for
the example in Figure 7.

Figure 8: Conceptual DAG

5. GeneParse

Database update, often overlooked as being trivial, is an important issue in providing relational
database support. However, in systems which support the storage of objects with complex struc-
tures, data insertion, deletion, and modification are nontrivial problems.

In a system which provides general support for many different kinds of objects, different tools
will be needed to support database update. In a CAD/CAM environment, a tool may interface with
the graphics display to determine the hierarchy of objects and object sharing and to automatically
store these objects and relationships under the relations generated by GeneRel. In an interactive
system, a tool may guide the user through data update, allowing the specification of data describing
new objects, as well as data identifying previously stored data. In the simplest case, a tool may
parse sentences accepted by a tagged grammar and store them under the schema generated by
GeneRel for the tagged grammar. This section describes an algorithm, GeneParse, which provides

~11—

the basis for a tool which supports this simplest case.

In many applications, objects which are described by context—{ree grammars are also written as
sentences of the grammar. These sentences are subsequently parsed for further processing, such as
object code generation (when the sentences are programs) or compiler generation (when the sentences
are grammars describing programming languages). In such an environment, a useful tool for data
insertion is one which parses the sentences and stores them under the schema generated by GeneRel
(Figure 9). This tool would be useful in a programming environment in which it is desirable to store
programs for further analysis and querying.

Sentences + STORED
"""""" R 1 Parser
SENTENCES

(Language X)

Figure 9: Parsing and Storage of Sentences

GeneParse supports the creation of such a tool. The algorithm takes as input a tagged gram-
mar and generates a parser specification which contains insert statements for storing the parsed sen-

tences in the database (Figure 10)

ai‘G—dsiﬁer

‘Tagged Context—Free
"""""" b Gramimar
(Language X)

Figure 10: Automatic Generation of Parsers

Sentences accepted by the tagged grammar can then be parsed and stored under the relations
generated by GeneRel for the tagged grammar. Figure 11 depicts GeneRel and GeneParse in the
intension—extension framework. The intension-extension framework relates the intensional tagged
context—free Grammars to their extensional sentences and the intensional generated relational
schema to their extensional stored data.

Instead of actually creating a parser, GeneParse creates a parser specification for a compiler—
compiler. Each production in the tagged grammar is translated into an equivalent context—{ree
grammar production acceptable to the compiler—compiler. The translation for constructor rules is
straightforward — tags are removed and the proper delimiters are used. The list rules involve pro-
ducing two extra rules to express the list as left recursive compiler-compiler rules. The database
insert statements are added as semantic actions which are invoked when the corresponding produc-

tions are recognized. These statements are based on the knowledge of the relations generated by
GeneRel.

—12-

CFG-desiner @
Tagged Context-Free
" Relational

----------- & Grammar
Schema
I (Language X) -
INTENSION/
EXTENSION

Sentences + Stored
........... ,- | Parser
Sentences

{Language X)

Figure 11: GeneRel & GeneParse in the Intension—Extension Framework

6. The Grammar Catalog

It is often desirable to obtain structural information about data stored in the database. In the
case of data stored under the schema generated by GeneRel, this structural information is contained
in the tagged grammar that generated the schema. For example, one may want to know which com-
ponents comprise an if-statement, or if nonterminal N is used in the definition of nonterminal S.
The structural information is also necessary for the execution of the extended algebra operators,
described in [Cochrane & Mark 90A]. It is, therefore, necessary to store the tagged grammars in the
database. The relations which support the storage of the tagged grammars will be referred to as the
grammar catalog.

Support for the catalog can be generated by applying GeneRel and GeneParse to a tagged
context-free grammar (called the meta-grammar) which describes the class of tagged context—free

grammars. Figure 12 is a meta—grammar defining the class of tagged context—{free grammars.

GeneRel applied to the given meta-grammar produces a set of relation schemes under which
any tagged grammar — including the meta—grammar itself — can be stored (Figure 13).

Bobble
Meta- Meta-Grammar
"""""" g Grammar 1 GeneRel
Schema

(Language for Tagged
Context Free Grammars)

Figure 13: GeneRel Produces Meta—grammar Schema

Figure 14 depicts the relation schemes generated by applying GeneRel to the highlighted
meta—grammar productions from Figure 13.

—138-

{ GRAMMAR,

{ GRAMMAR START NONTERMS LEXICONS DELIMITERS TAG_NMS PRODS PRODUCTION
NONTERM_TAG RHS SYMBOL LEXICON_TAG }

{ nonterminal delimiter lexicon tag_name }

{}s*t <>

{ GRAMMAR, start, nonterms, lexicons, delimiters, tag_nms, prods, START, value, NONTERMS, LEXICONS, DEL-
IMITERS, TAG_NMS, PRODS, PRODUCTIONS, lefi-side, right-side, CONSTRUCTOR, LIST, POSITIVE_LIST,
DELIMITER_SYM, NONTERM_SYM, LEXICON_SYM, NONTERM_TAG, name, domain, LEXICON_TAG }

A~

{

<GRAMMAR:GRAMMAR > + {"<start:START> ‘{’<nonterms:NONTERMS> "} *
‘{ * <lexicons:LEXICONS> ‘}~
{ < delimiters:DELIMITERS> "} *
{"<tag_nms:TAG_NMS> }"* ‘{’*<prods:PRODS> "}*
3+

<START:START> + <value:nonterminal >

<NONTERMS:NONTERMS> + <value:nonterminal> "

<LEXICONS:LEXICONS > + <value:lexicon>*

<DELIMITERS:DELIMITERS > + <value:delimiter>*

<TAG_NMS:TAG_NMS> + <value:tag_pame>*

<PRODS:PRODS> + <value:PRODUCTION>*

<PRODUCTIONS:PRODUCTION>+ <left-side:NONTERM_TAG> °+° <right—side:RHS> ;

<CONSTRUCTOR:RHS>

<LIST:RHS>

<POSITIVE_LIST:RHS>
<DELIMITER_SYM:SYMBOL >
<NONTERM_SYM:SYMBOL >
<LEXICON_SYM:SYMBOL >
<NONTERM_TAG:NONTERM_TAG>
<LEXICON_TAG:LEXICON_TAG>

<value:SYMBOL > *
<value:SYMBOL > “**
<value:SYMBOL > o+

** < value:delimiter > " **
<value:NONTERM_TAG>
<value:LEXICON_TAG>
‘<’ <name:tag_name>>":* <domain:nonterminal>‘> "
‘< <name:tag_name>’:” <dormaln:lexicon> "> *

+ o+ o+

Figure 12: Meta-Grammar

NONTERM
_TAG

4—»
oceur l left-side L’igm—sid

oocur l start lnonterma{le)dcons }.ie.urmt.enitag mml prods | @ ‘

PROfS oceur] value lposmon]——’ counter }
N /

~ -

Figure 14: Meta~-Grammar Schema

14—

GeneParse applied to the meta-grammar produces the specification of a parser which reads
tagged grammars, and stores them under the meta—grammar relations produced by GeneRel (Figure

15).
Bobble
Meta-Grammar
........... N
Schem
CFG-desty
; ‘Tagged Context Free
Stored
"""""" # Grammar |
Grammars
(Language X)

Figure 15: GeneParse Produces Tagged grammar Parser

GeneRel and GeneParse applied to the meta—grammar add an extra level to the intension—
extension framework described in the previous section. The resulting framework is illustrated in Fig-
ure 16. It is quite similar to the intension—extension framework for DBMSs presented in [Mark] and

in [Mark & Roussopoulos].

Bobbie
Meta- Meta-Grammar
‘ Schema
(Language for Tagged
Context Free
INTENSION/
EXTENSION
desi T T &Eared T T)
Tagged Context Free | Meta-Grammar _|
reeeeeed] Stored Grammars
;
2geX) Relational Schema
INTENSION/
EXTENSION
%
SENTENCES
(Language X)

Figure 16: Intension-Extension Framework

—16—

7. GeneSys

Both the GeneRel algorithm and the GeneParse algorithm are driven by the structure of the
tagged grammar rules. Therefore, they can be implemented as semantic actions in a compiler—
compiler input specification of the meta—grammar.

This section describes a system, GeneSys, which supports the middle level of the intension-
extension framework. This is the level which supports the data definition and automatic storage for
objects whose structures are defined by tagged grammars. GeneSys must perform three functions:

e store
store the input tagged grammar specification under the meta-grammar schema,

e GeneRel
apply GeneRel to the input tagged grammar, generating schema in the database, and

o GeneParse
apply GeneParse to the input tagged grammar, generating a compiler—compiler input
specification for the tagged grammar which contains database insert statements.

Since each of these three functions are implemented by semantic actions of the same tagged gram-
mar, they can be merged as semantic actions in the same compiler-compiler specification.

For flexibility, GeneSys can perform any combination of its three functions each time it runs.
The top level of the intension—extension framework is implemented by GeneSys run with the
GeneRel and GeneParse options applied to the meta-grammar. This invocation of GeneSys is
represented by the notation GeneSysgenerelGencParselMeta—grammar). The compiler—compiler
specification for the tagged grammar pa,rser+ generated by this invocation of GeneSys is exactly the
one needed to support the store function of GeneSys.

Implementation of the system then consists of the following steps:

(1) Integrate the GeneRel and GeneParse algorithms into the compiler-compiler specification of
the meta—grammar. This compiler-compiler supports the top level of the intension-extension
framework.

(2) GeneSysGencRel, GeneParseMmeta-grammar) which generates the meta-grammar schema and a
parser+ which is a compiler-compiler specification of the meta-grammar containing database
insert statements for tagged grammars.

(3) Integrate, by hand, the insertion statements from the parser’ generated in the previous step
into the compiler—compiler specification of the first step. This is done to support all three func-
tions of GeneSys in one parse of a grammar. The final specification supports the middle level
of the intension-extension framework.

(4) GeneSys,or{meta-grammar) will now store the meta—grammar under the meta-grammar

schema.

The default mode, GeneSYs,;,re GeneRel,GeneParse dPPlied to any tagged grammar implements the
middle level of the intension—extension framework. The compiler—compiler specification generated is
the specification of the parser required to implement the third level of the framework for the given

—16-

tagged grammars.

Figure 17 depicts the construction of the different phases of GeneSys including the invocations
of the compiler—compiler (CC).

contains procedures to implemnt
storing tagged grammars

GeneParse

(OC specification)

Run with any combination of:
1. store taggt
2. Apply GeneRel

% - Compiler-Compiler

GeneSys

CRG-designer 1 {Generated C-Qode}
Language X “ i
............) " if GeneRel
(TCFG Specification) Qreate Relations
if GeneParse It store
Store TCFG Specification
Language X (under Meta-Level Relations)
Parsert
{Generated OC Specifications
‘With DBMS Insert Stmts)
USER Language X
""""""" Sentence

Figure 17: GeneSys

8. Summary and Future Research

We have presented two algorithms, GeneRel and GeneParse, which provide a common founda-
tion for the integration of databases with other areas of computer science and engineering. These
algorithms provide automatic data definition and one form of data insertion, respectively, from
grammar specifications. We have shown how these algorithms can be implemented in the same sys-
tem, GeneSys, through the specification of semantic actions in a compiler-compiler specification of
the meta—grammar. We are currently implementing GeneSys as described in section 7.

17—

Our goal is to provide automatic database support for objects which can be described by
context—free grammars. The database support needed and our efforts to provide this support are
summarized below.

Data Definition: GeneRel automatically generates a set of normalized relations in which objects
derived from the grammar can be stored. GeneRel has been implemented as part of GeneSys.
Future research in this area could relax the requirements of the tagged grammar by introducing
default relation and attribute naming.

Data Update: GeneParse automatically generates parser specifications with insertion statements for
storing sentences acceptable by a grammar from the grammar specification. GeneParse has
also been implemented as part of GeneSys. We are currently developing a method for inserting
objects which share objects. Complex objects are rarely written down as sentences of the
grammar that describes their structure. They are normally input through an interactive
mechanism which allows the user to specify reuse of data objects as a subparts of other objects.
We are developing tools which allow the user to identify existing objects and combine them
into more complex structures. Future research could concentrate on developing a general
update language to support the modification of the data stored under GeneSys.

Grammar Catalog Generation: We have shown how GeneRel and GeneParse can be applied to a
meta-grammar to generate automatic catalog support, allowing structural information to be
stored as relational data.

Data Retrieval: We are currently developing an extended relational algebra which contains graph
operators especially designed to retrieve information from the relations generated by GeneRel
[Cochrane & Mark 90A]. These operators allow the user to specify traversals of the stored
parse trees. They facilitate the expression of complex, recursive queries which are common for
data having complex structure. The operators are implemented as a set of algebra equations
whose fixpoint contains the result. This system of equations can be generated from the gram-
mar specifications. These operators will eventually be integrated into GeneSys.

Database Restructuring: We are currently designing a restructuring framework which uses GeneSys
and the catalog information to automate the process of database restructuring when a gram-
mar is transformed [Cochrane & Mark 90B].

We feel that our approach has great potential because it contributes to many current efforts to
integrate databases into other areas of computer science and engineering, and it is based on funda-
mental concepts in computer science and databases. This common foundation is important, not only
because it solves a more general problem, but because the above areas are not isolated from one
another and are often integrated into the same system.

_18-

References

[Atkinson, Buneman, & Morrison]
Atkinson, M. P., P. Buneman, and R. Morrison, eds., Date Types and Persistence, Springer—
Verlag, 1988.

[Batory et al 1988]
Batory, D. S., J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C. Twichell, and T. E.
Wise, GENESIS: An Extensible Database Management System, IEEE Transactions on Software
Engineering Vol. 14, No. 11 (November 1988), pages 1711-1730.

[Batory & Kim]
Batory, D. S. and W. Kim, Modeling Concepts for VLSI CAD Objects, in Supplement to ACM
SIGMOD International Conference on Management of Data, 1985, pages 18-32.

[Carey, Dewitt & Vandenberg]
Carey, Michael J., David J. Dewitt, and Scott L. Vandenberg, A Data Model and Query
Language for EXODUS, in Proc. ACM SIGMOD International Conference on Management of
Data, Chicago, lllinois, June 1-3, 1988, pages 413-423.

[Cochrane 89)
Cochrane, Roberta, Operational Relational Model — Implementation Through Specification, Sys-
tems Research Center, College Park, Maryland, SRC-TR-89-46, 1989.

[Cochrane & Mark 90A]
Cochrane, Roberta and Leo Mark, Automatic Relational Database Support for Objects Defined by
Contezt-Free Grammars - An Extended Relational Algebra, Department of Computer Science

and Systems Research Center, University of Maryland, College Park, Maryland, (in progress),
1990.

[Cochrane & Mark 90B]
Cochrane, Roberta and Leo Mark, Automatic Relational Database Support for Objects Defined by
Context-Free Grammars - Database Restructuring, Department of Computer Science and Sys-
tems Research Center, University of Maryland, College Park, Maryland, (in progress), 1990.

[Codd] Codd, E. F., Extending the Database Relational Model to Capture More Meaning, ACM Transac-
tions on Database Systems Vol. 4, No. 4 (December 1979), pages 397-434.

[Dadam et al.]
Dadam, P., A DBMS Prototype to Support Extended NF? Relations: An Integrated View on Flat
Tables and Hierarchies, Proc. ACM-SIGMOD International Conference on the Management of
Data, Washington DC, May 1986, pages 356-364.

19—

[Dayal & Smith)]
Dayal, U. and J. M. Smith, PROBE: A Knowledge-Oriented Database Management System,
Proceedings of the Islamorada Workshop on Large Scale Knowledge Base and Reasoning Systems,
February 1985.

[Gyssens, Paredaens, & Van Gucht 89)
Gyssens, M., J. Paredaens, and D. Van Gucht, A Grammar-Based Approach towards Unifying
Hierarchical Data Models (extended abstract), in Proc. ACM SIGMOD International Conference
on Management of Data, Portland, OR, June 1989, pages 263-272.

[Hall, Owlett & Todd]
Hall, P., J. Owlett, and S. Todd, Relations and Entities, in Modelling in Database Management
Systems, edited by G. M. Nijssen, North-Holland, 1976.

[Hoperoft & Ullman|
Hoperoft, John E. and Jeffrey D. Ullman, Introduction to Automata Theory, Langueges, and
Computation, Addison—Wesley Publishing Company, 1979.

[Horwitz & Teitelbaum]
Horwitz, Susan and Tim Teitelbaum, Generating Editing Environments Based on Relations and
Attributes, ACM Transactions on Programming Languages and Systems Vol. 8, No. 4 (October
1986), pages 577-608.

[Hudson & King 86]
Hudson, S. and R. King, CACTIS: A Database System for Specifying Functionally-Defined Data,
in Proc. Workshop on Object-Oriented Databases, Pacific Grove, CA, 1986.

[Madsen & N¢rgaard]
Madsen, O. L. and C. N¢ gaard, An Object-Oriented Metaprogramming System, in Hewaii Inter-
national Conference on System Sctences, January 1988.

[Mark] Mark, Leo, Self-Describing Database Systems - Formalization and Realization, Department of
Computer Science, University of Maryland, College Park, MD., TR-1264, 1985.

[Mark & Rombach|
Mark, Leo and H. D. Rombach, Generating Customized Software Engineering Information Bases
from Software Process and Product Specifications, in Proc. Twenty-Second Annual Hawaii Inter-
national Conference on System Sciences, edited by Bruce D. Shriver, IEEE Computer Society
Press, Washington, D. C., January 1989, pages 587 — 595.

[Mark & Roussopoulos] ‘ :
Mark, Leo and Nick Roussopoulos, Metadata Management, IEEE Computer Vol. 19, No. 6
(December 1986).

[Ramamoorthy, Usuda, Tsai & Prakash|
Ramamoorthy, C. V., Y. Usuda, W. Tsai, and A. Prakash, GENESIS: An Integrated Environ-
ment for Supporting Development and Evolution of Software, in Proc. COMPSAC, 1985.

[Stonebraker, Hanson, & Hong|
Stonebraker, M., E. Hanson, and C. Hong, The Design of the POSTGRES Rules System, in Proc.
Third International Conference on Data Engineering, Los Angeles, CA, February 1987.

-21—

