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ABSTRACT

A selection query applied to a database often has the selection predicate imperfectly specified.
We present a technique, called the Diamond-tree, for indexing fields to perform similarity-based

retrieval, given some applicable measures of approximation. Typically, the number of features

(or dimensions of similarity) is large, so that the search space has a high-dimensionality, and

most traditional methods perform poorly. As a test case, we show how the Diamond-tree tech-

nique can be used to perform retrievals based on incorrectly or approximately specified values for
string fields. Experimental results show that our method can respond to approximate match
queries by examining a small portion (1%-5%) of the database.

1. INTRODUCTION

Requirements for approximate matching arise in several applications. For instance,

Searching for names or addresses, say in a customer (mailing) list, where these are partially
specified or have errors. For example ‘1234 Springs Road’’ instead of **1235 Spring Rd”’,
or *‘Mr. John Smith’” instead of *‘Dr. J. Smith, Jr.”’

Searching bibliographic entries with possible errors or abbreviations in the various fields.
For example the bibliographic query ‘‘aho ulman tods 1979’ should retrieve the journal
article [ Optimal Partial Match Retrieval When Fields are Independently Specified A.V.
Aho and J.D. Ullman, ACM Trans. on Database Systems, 4, 2, pp. 168-179, June 1979]
despite the misspelling of the string "Ullman" and the use of the abbreviation "tods". Simi-
lar approximate matching facilities would be useful for searching manual pages etc.

Traditional text databases, e.g., law or patent office cases [15], where searches are per-
formed for similar previous cases.

Spelling error correction [3, 8,271, as well as typing and OCR error correction [22]. There,
given a wrong string, we should search a dictionary to find the closest strings to it.

DNA databases [2] where there is a large collection of strings from a four-letter alphabet
(A,G,C.T); a new string has to be matched against the old strings, to find the best candi-
dates.

T Also with the Systems Research Center (SRC). This research was partially sponsored by UMIACS, by the National Sci-
ence Foundation under the grants IRI-8719458 and IRI-8958546, by a Department of Commerce Joint Statistical Agree-
ment JSA-91-9, by a donation by EMPRESS Software Inc. and by a donation by Thinking Machines Inc..
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®  Query by image content, where both shapes in a database and the query shape are described
in terms of some feature vectors that provide an approximate indication of shape [19].
Alternatively, the features could be the coefficients of the Discrete Cosine Transform,
which is used in the JPEG image compression standard [35].

»  Fingerprints are beginning to be digitized, and there is a need to retrieve fingerprints in a
database that (approximately) match a specified query fingerprint, usually one lifted from
the scene of a crime. While good techniques exist for matching fingerprints [26], there is no
good indexing technique currently available.

In all of the above examples, there is a requirement of tolerating errors in specification and/or
supplying a few nearest matches. The ability to perform approximate match retrievals is crucial
to our ability to provide a user-friendly interface to such queries. In fact, it can even serve as the
basis of a ‘‘co-operative answers’’ system.

In this paper, we propose a technique for indexing fields in databases, so that approximate
searches are facilitated. The basic idea is to map attribute values into vectors in a ‘‘feature
space’’, in which ‘‘similar’’ objects are close to one another. Then, we construct a multi-
dimensional index structure on this feature space. The main example will consider string fields,
although the proposed file structure can be applied to any type of field for which such feature vec-
tors can be defined.

The paper is organized as follows: Section 2 describes the requirements of the target appli-
cations. Section 3 presents the proposed method and its manipulation algorithms, Section 4 gives
the experimental results of our method on a real database. Section 5 provides a brief survey of
approximate matching methods, which mainly apply to low dimensionality spaces. Section 6
lists the conclusions.

2. ENVIRONMENT - GOALS

A fundamental requirement for our indexing methods is the existence of some good feature
extraction functions. These functions should be closely related to the (dissimilarity) distance
function between two attribute values. For example:

e if the attributes are words, and the errors are OCR or typing errors: 26 features, each
representing the count of the corresponding letter (all letters folded to lower case). E.g.,
"cab" becomes the vector (1, 1, 1, 0, ..., 0). Alternatively, we could use successive, overlap-
ping triplets as features; in this case the feature vector would have 263 entries (if we optim-
istically consider only lower-case alphabetic characters - no digits, apostrophes etc.)

e if the field is a bitmap, it can be mapped to its first n coefficients of the Discrete Fourier
Transform, according to the JPEG proposed standard [35]

e In Information Retrieval [30] a document can be mapped to a vector of V elements, where
V is the vocabulary of the collection of documents. A "0" entry indicates absence of the
corresponding term in the document, a non-zero entry (usually, "1"), indicates the impor-
tance of the term in this document.
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In general, we rely on an expert to derive some good feature extraction functions for a given
applications. Ideally, the distance in feature space should be related as closely as possible to the
““difference’’ of the two objects. In order to derive the specifications for the target indexing
method, we propose to classify the above applications according to the following characteristics:

e  dimensionality of feature vectors: low (<4) / high
° sparsencss of feature vectors

® Query types: Fully specified approximate matching vs partially specified. The former
means that all the feature values are specified; the latter means that the query "does not
care" about some of the feature values. An example of the latter is "find all the customers
with last name Mac Donald", where John Mc Donald and Mr. Michael McDonald Jr should
be retrieved.

We focus on applications with high dimensionality, sparse feature vectors, with fully specified
similarity queries: For example, consider the setting of the dictionary look-up for error correction,
with triplets as features. There, we have =104 features, with =10 non-zero features per entry.
Similarly, there is a consensus [20] that index structures for similarity retrieval in high-
dimensional spaces is a key research issue in image databases.

Often, not all dimensions in feature space are independent. In this case it may be possible
to reduce the dimensionality of the space by determining correlations between the different
dimensions and finding an orthogonal basis. In fact, it has been suggested [7] that one may actu-
ally improve the performance of similarity metrics if the number of dimensions is reduced in
some carefully controlled manner, since spurious information (noise) is more likely to be elim-
inated than real correlation. We intend to study the use of such dimension reduction strategies in
the future. The point to note for the present is that even after dimension reduction, the dimen-
sionality of the reduced feature space is still expected to be high, necessitating the use of an index
structure such as the proposed Diamond-tree.

For the problem we are examining, each of the known methods presents problems: inver-
sion on each feature could be inefficient, requiring the merging of long lists of postings to derive
a short answer set; "fault tolerant” full scanning [21] could be expensive for large databases; com-
mon multi-dimensional access methods like the R-tree [13] and the grid-file [25] suffer from the
high-dimensionality, as we discuss in Section 5. We can thus develop a set of requirements for
the index structure we seek:

° It should be able to index high as well as low dimensionality spaces.

e It should efficiently support a variety of queries including exact match, approximate match
and range queries.

. It should be able to work with disk-based files.

. It should work in a dynamic environment, supporting insertions and deletions efficiently,
without the expensive construction or reorganization procedures.

e It should provide a good space utilization.
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3. THE DIAMOND TREE INDEXING TECHNIQUE

Given that objects are mapped to vectors in a n -dimensional space, we have to define a dis-
tance measure for these vectors. In general, the Minkowski metric L, between two vectors v and
& is given by

L, (Vim{z | Vit @ i (1)

The L, metric is the familiar Euclidean distance, which defines a sphere of approximation around
a point. A simpler metric is the L metric, which is the Manhattan distance measure that we use.
In this case, the region of approximation around a point has a ‘‘diamond’’ shape; this is where the
name of proposed data structure comes from. For example, in the 2-dimensional feature space of
Figure 1(a), everything inside the diamond A is » units away from the center P of the diamond.
The reasons we have chosen the L distance are (a) a diamond covers less volume than a sphere
of the same radius; thus, there will be fewer overlaps (b) it is intuitive, reducing to the Hamming
distance for binary values (c) it is simple and fast to compute.

Figure 1(a): Illustration of a Diamond-tree in 2 dimensions.
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Figure 1(b): the Diamond-tree of Figure 1(a), on disk.

The basic structure is similar to a B-tree, in that each node ‘‘covers’’ a partition of space (a
diamond) and has children that each cover some portion of this partition. Every node is stored in
one disk page. Thus, the fanout is dictated by the page size. Diamonds are allowed to overlap.
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Each diamond is described by its center and radius. The radius is a scalar. The center is a
long, but sparse vector. We represent sparse vectors by identifying and recording only the non-
zero values. Thus, each point is a set of pairs of the form (feature_id, value), or, in pseudo-C:

struct POINT { list_of (int feature_id; float value) )}
with one pair per non-zero coordinate. Similarly, a diamond is described by its center and the
radius;
struct DIAMOND { POINT center ; float radius)
A node in the Diamond-tree contains a set of diamonds, along with pointers to lower-level nodes:
struct NODE { list_of ( DIAMOND d; NODEPTR ptr ) }
Each diamond is the minimum bounding diamond (MBD) for the corresponding child. At the
leaf level, the pointers are null, and can be omitted. The definition of the MBD follows:

DEFINITION 1: The Minimum Bounding Diamond (MBD) for a set of diamonds is the dia-
mond with the smallest radius that contains all the diamonds in the set.

In addition to its ability to handle high-dimensionality spaces, the Diamond-tree has several
desirable features:

o Itis balanced, with guaranteed space utilization of >50%.
e It can handle easily both searches and dynamic updates.
» It can be used for low dimensionality spaces, as well

® On-the-fly addition of new feature-identifiers is possible

Next we discuss each individual operation on the Diamond-tree, as a means to explaining its
structure and its properties.

3.1. Search

Searching for a specific point, or all points within a specified region is similar to searching
on an R-tree. Begin at the root of the tree and explore each child that has an MBD that intersects
the specified query region (or includes the specified query point). Continue this process recur-
sively until all such children nodes are explored. The MBDs of sibling nodes are not necessarily
mutually exclusive. Even for a point query, it is possible that multiple indexing paths down to
leaf nodes may have to be explored. The attempt is to use good clustering algorithms so that this
overlap is minimized as much as possible. These aspects are similar to an R-tree.

Search for nearest neighbor is a little more complicated since the nearest neighbor could be
arbitrarily far away and no single region query will do. We use a Branch-and-bound algorithm,
similar to the one proposed in [12]. The idea is to traverse the tree, maintaining a cut-off dis-
tance and ignoring diamonds that are too far away. This cut-off distance is continuously updated,
as we encounter diamonds that are more promising. Figure 2 illustrates the idea: Given the
search point P and the diamond D1, there is no need to examine diamond D2.



/* prints the data points within ‘tolerance’ from ’‘p’

for the tree rooted at ‘N’ */

RSearch (POINT p, NODE N, float tolerance)
for each diamond d in N
if the diamond with center p and radius ‘tolerance’
intersects d then
if N is a leaf, print d

else RSearch( p, d, tolerance)

Range Search Algorithm
D2
Dt
< < P A >

Figure 2: Illustration of the cut-off idea for nearest-neighbor search.
3.2. Insertion

To insert a point, first perform a search for the specified point location. The point is
inserted in the leaf-node reached by the search. If more than one leaf node is reached by the
search, then the point is inserted in any of them, using some rule to break the tie. In our imple-
mentation, we select the leaf node with center closer to the inserted point. An alternative is to
choose the leaf node with least number of points.

If the point to be inserted is in some region of multi-dimensional space far away from exist-
ing points, there may be no leaf node with a minimum bounding diamond that encompasses the
point. In this case, we must choose some leaf node in which to insert the point, and expand the
MBD. In our implementation, this choice is the leal node whose MBD radius is increased the
least. An alternative is to choose the leaf node whose center is closest to the point being inserted.

Once the leaf node for the insertion has been determined, insert the point in this node,
recomputing the MBD and the center of the node, if necessary. If the MBD of a leaf node is

recomputed, this recomputation must be propagated upward until a node is reached whose MBD
is not changed by the recomputation.
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If a node overflows, upon the insertion of a point, the children of the node are divided into
two groups. We distinguish two cases: (a) the insertion is a genuine insertion (b) the insertion is
the result of a *‘force-reinsert”’.

In the former case, we split the overflowing node into two "natural” groups of diamonds.
The two groups do not necessarily contain the same number of diamonds; the smaller group is
‘“force-reinserted’’.

In the latter case, the node is divided into two groups of equal population. A minimum
bounding diamond is found separately for each group, a new node created for each group, and
these two new nodes inserted in place of the overflowed node.

In any case, the parent of the overflowed node is updated — if it overflows, this procedure is
repeated recursively. If the root overflows, it is split in two as above, and a new root created as
the parent of the two nodes resulting from the split, thereby increasing the depth of the tree by
one.

Insert (POINT p, NODE root)
Traverse the tree
pick the correct leaf L

insert p in L tentatively

if L overflows AND it is a first-time insertion, then

/* divide L into two "natural" groups */

(L1, L2) = Split(L, 100%)
if Ll has more diamonds than L2 then

L = L1 ; force-reinsert the contents of L2
else

L1l and L2 are the results of the split of L
if L overflows AND it is a forced-reinsert then
/* divide L into two equal-size groups */
(L1, L2) = Split(L, 50%)

Ll and L2 are the results of the split of L

update the ancestor(s) of L

Algorithm Insertion



3.3. Splitting

As mentioned above, there are two cases in splitting, depending on whether the insertion
that caused the split is a first-time insertion or a forced-reinsert. Both cases can be handled
changing the x parameter, which specifies the maximum percentage of diamonds that could go to
the largest group. Clearly, for x=50% we ask for two equally-populated groups; for x=100%
there are no limitations - the largest group can be as large as the geometry of the specific node
dictates.

Thus, the basic splitting routine is the same for both cases. Let C and R be the center and
radius of the MBD of N, a node that has overflowed and has to be split. We would like to divide
its children nodes into two groups, such that the total volume of the MBDs of the two groups is
minimized (without having more than x % of the nodes in the largest group).

The idea is to find the two most remote children and use them as ‘‘seeds’’ for the groups G1
and G2. Then, each of the remaining diamonds is assigned to the group that will require the smal-
lest radius increase.

To insert a diamond rather than a point (e.g., as a result of a split and forced-reinsert of a
non-leaf node) the Algorithm Insertion can be used again, modified slightly to find a node at the
appropriate level to insert into rather than a leaf node.

3.4. Deletion

Deletion of a point simply involves removing it from the leaf node that includes it. If this
does not cause an ynderflow in the node, then the new minimum bounding diamond is computed,
and after that there is no more work to be done. (We could propagate upward the recomputation
of the MBD until the root is reached or the MBD does not change. However, if the reduction in
MBD is small, this extra effort may not be worthwhile after each deletion, and could be batched,
or delayed until some time when the system load is low).

If there is an underflow, then this leaf node is deleted and the points in it are ‘‘forcibly”’ re-
inserted, using the standard insertion procedure described above. Deletion of a leaf node may
cause its parent node to underflow, in which case the parent node is deleted and the diamonds in
it reinserted, and so on recursively, until there is no underflow or the root node is reached.

3.5. Determining Minimum Bounding Diamond

In the case of the R-tree, calculating the minimum bounding rectangle is easy, and linear on the
number of dimensions. In our setting, the problem is not as straightforward. Given a set of dia-
monds, the minimum bounding diamond can be found by solving the following linear program-
ming problem:
PROBLEM MBD: Find the minimum bounding diamond for a set of diamonds.

Let there be n diamonds in the set, and d dimensions of the feature space.

Let the center of diamond i be the vector X = <x;1.%:2, . . . ,Xid>

Let the radius of diamond i be r;.



/* Splits node N into two new nodes, N1 and N2 */

Split( NODE N, float x) returns (NODE N1, NODE N2)

Let 'dl’ be the diamond farthest away from the center ‘C’
(Break tieg arbitrarily).

MBDl = d1; N1 = { dl };

Let 'd2’ be the diamond whose center is farthest away from the
center of ‘dl’.

MBD2 = d2; N2 = { d2 };

Loop, until all diamonds are assigned, or one of the new nodes

has x% of the diamonds.

° Sort the un-assigned diamonds according to the increase in
radius they will cause if assigned to N1, and if assigned

to N2.

[ Choose the diamond ‘di’ that results in the smallest ra-

dius increase, and assign it to the appropriate node.

[ Update the MBD of the node assigned to.

Assign the leftover diamonds to the smaller node.

Algorithm Split

Let the MBD we desire have radius r and center ¢=<c1,¢c2, . .. ,Cd>

We wish to minimize r, such that
Forall 1<i<n,

rzaii+ap+ o taggt+r;
For all 1<j<d,

Qij 2 Cj — Xij

ajj 2 Xij — Cj

where the g;; are intermediate variables representing the absolute value of the difference along
dimension j of the points ¢’ and X} .

Thus we have a linear programming problem with (n+1)*d + 1 variables and (2n+1)*d
inequality constraints. This problem has size linear in n and d. Typically # is fairly small, being
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limited by the number of entries possible on a page, which is a few dozen at most. d could be
large if all dimensions of feature space are considered. However, d can also be reasonable if we
consider only the non-zero dimensions. Thus the problem size could be manageable.

Even though the linear programming solution described above is not prohibitive, it could
still be too expensive to do every time an MBD has to be recomputed. A fast, approximate algo-
rithm to calculate the MBD for a set of diamonds would be as follows:

ALGORITHM AMBD: Find an Approximate MBD, for a set of diamonds:
e Find the (weighted) average of the center coordinate vectors
e Perform any thresholding suggested (e.g., ignore features with values < 0.5 - see next sub-
section)
® Calculate the radius, so that it covers all the diamonds in the sct.
The center of each diamond is found by calculating the weighted average of the vectors of the
centers of constituent diamonds, weighting each diamond by the number of data points it
includes. We used this approximate algorithm in our implementation.

3.6. Additional Implementation Considerations

During the implementation of the method, several "low-level" details had to be considered. We
discuss them briefly, along with the proposed solutions

Rounding of the coordinates. Recall that no space is wasted recording zeroes of the largely
sparse vectors that we expect to deal with. To minimize the number of non-zeroes that are to be
recorded, it may be worthwhile to set a threshold below which any number will be treated as zero.
This is particularly useful because the average (or sum) of several sparse vectors is no longer as
sparse, with small non-zero components where only one (or a few) vectors were non-zero. If data
points are boolean, one could additionally set a threshold above which any number will be treated
as 1. If these thresholds are at 0 and 1 respectively, then the centers of diamonds are maintained
exactly. If these thresholds are both set to 0.5, then we have a boolean vector for the center as
well. It can be shown that such thresholding will decrease the average distance to the center of
the points in a cluster. We have implemented the thresholding mechanism. The experiments
mentioned in the next section were performed without thresholds, except that the number of non-
zero features per point was (arbitrarily) limited to 12. Thus, only the 12 features with the largest
weights were kept as diamond centers.

Distorted diamonds. Instead of using perfect diamonds, we could use "distorted” ones, by stor-
ing the extent along each non-zero attribute independently. That is, each diamond is stored as a
set of triplets of the form
(featurc_id, value, extent)

This is the Manhattan-distance equivalent of the Euclidean ellipses. However, the extra storage
required will reduce the fan-out of each node; it is not clear whether the reduced volume of each
diamond will offset the effects of the smaller fanout on the search performance. Thus, we didn’t
implement this version.
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Dimension reduction. Finally, if the features are not independent, dimensionality reduction tech-
niques could be used, to eliminate features that are highly correlated with others [7]. Given that
these algorithms could be slow for a large data sets sampling could be used to derive quickly a
(sub)-optimal set of independent features.

4. PERFORMANCE

The code for the Diamond-tree was written in C and UNIX 7™ | The computational effort is
measured in terms of the number of leaf pages fetched. The reason is that the root of an index
tree, and sometimes even the next level of nodes, can be pinned in memory. Furthermore, in
structures where searches may follow multiple paths down to the leaves, these paths usually share
the same parents at some level below the root, and therefore it is useful to buffer in memory
pages corresponding to the top few levels parents of the current node. As such, the number of
leaf nodes accessed appeared to be the best measure of performance available.

To evaluate the performance of the Diamond-tree, we ran some experiments in performing
approximate string matching using a Diamond-tree index. We used the first 1,000, 2,000 and
3,000 words of the UNIX dictionary (typically found in the file "/usr/dict/words"), after we
deleted the strings with non-alphabetic characters, and folded the remaining strings into lower
case letters. The page size was 1K, which roughly corresponds to 8 diamonds per page. The
features were the letter counts, resulting in a 26-dimensions feature space. The queries were 254
words chosen at random from the above dictionary. We experimented with distance ("tolerance")
ranging from O to 2. A distance of O represents an exact match query. A distance of 1 represents
the possible addition or deletion of one character, and so on. Graph 1 shows the average number
of leaves accessed per query, as a function of the database size N and the tolerance (TL). Graph
2 plots the same measurements, when the forced re-insert mechanism was turned off (dashed
lines); for comparison, we plot with solid lines the corresponding performance with forced re-
insert. Graph 3 shows the same results as Graph 1, plotting the leaf accesses as a function of the
tolerance. The conclusions from the above graphs are the following:

e  Forced-reinsert pays off, possibly because it results in better trees

e  Graph 3 shows that the response time of the method grows quickly (probably, exponen-
tially) with the tolerance. This is expected, since the number of qualifying points increases
quickly with the tolerance. In a n dimensional space, with points uniformly distributed, the
number of neighbors within distance r is O (r7),

e  The absolute number of disk accesses is very encouraging: even for the worst queries (toler-
ance=2), the Diamond-tree responds with =30 leaf accesses; assuming 20 msec for each
access (the typical disk access time), we can expect response times <1sec.

Comparing the performance of the Diamond-tree with other methods is difficult: traditional
methods (R-trees, grid-file etc.) are not applicable, due to the high dimensionality; the literature

UNIX TM 5 5 registered trademark of UNIX System Laboratories.
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Graph 1: Avg. leaf accesses per query, as a function
of number of words N. The tolerance (TL) is 0, 1, 2 respectively.
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Graph 2: Avg. leaf accesses per query with and without forced-reinsert
(solid and dashed lines, respectively). The tolerance is 0,1.

on clustering methods, e.g., in Information Retrieval, mainly focuses on nearest neighbor queries
that are partially specified, using *‘recall”” and ‘‘precision’” as performance measures, and rarely
reporting disk accesses.
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Graph 3: Avg. leaf accesses per query, as a function
of the tolerance TL . N=1, 2, and 3 thousand items.

tol=0 tol=1 tol=2

N=1000 | 0.0101 | 0.0250 | 0.0490

N=2000 | 0.0064 | 0.0172 | 0.0406

N=3000 | 0.0059 | 0.0144 | 0.0353

Table 1: Average fraction of leaf nodes touched per query

Few papers report measurements or estimates of the search effort for high-dimensional
spaces. They typically measure the proportion of records accessed during a nearest neighbor
query: Shasha and Wang [33] report accessing =20%-80% of the database; Friedman et al. [10]
report that their method tends to access almost 100% of the database, for dimensionalities =8-9
and above. Some more details about both these papers are presented in the next section.

For comparison, we computed the average fraction of leaf nodes that are touched per
as a function of the number of elements N in the database and
the tolerance of the query. A direct comparison of the Diamond-tree with the two previous
methods is not very meaningful, because the environments are very different. In any case, the
Diamond-tree touches <1% for exact match queries, <2.5% for queries with tolerance=1, and

query. Table 1 shows the results,

<5% for queries with tolerance=2.
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In conclusion, the search effort of the Diamond tree is very promising, not only as a percen-
tage of the sequential scan effort, but as an absolute value, as well. Moreover, it should be noted
that our implementation had several shortcuts, aiming mainly to prove the feasibility of the
method. Future versions of the Diamond-tree will benefit from several performance boosters,
such as (a) dimensionality reduction algorithms, (b) more careful thresholding, (c) the exact
MBD algorithm, as opposed to the approximate one etc.

5. RELATED WORK.

Most nearest-neighbor searching methods work well for low-dimensionality spaces. We present
a brief survey here and explain why they do not work well for spaces with many dimensions.
Nearest neighbor searching techniques can be classified in two groups. The first group exploits
the fact that the points are embedded in a co-ordinate space. The second exploits the triangular
inequality.

In the first group fall the k-d tree inspired methods: Friedman et al. [11] use a k-d tree on
the co-ordinate space, to locate the nearest neighbor in logarithmic time. Bentley and Weide [S]
divide the plane in a square grid and find the nearest neighbors in constant expected time, if the
points are drawn from a uniform distribution. They use a "spiral search”, ie., examine the cell of
the query point, then the cells that are one step away, then two steps away etc., until the closest
match is found. The method could be generalized for n -d co-ordinate spaces, but the complexity
of the spiral search grows exponentially with n. Friedman et al. [10] project the points on one
dimension, choose the nearest neighbors on this dimension, and examine them until the actual
nearest neighbor is found. The method works well for low dimensionality (d <8), as the authors
mention. For higher dimensionalities, almost the whole file has to be examined. Eastman and
Zemankova [9] derive a formula for the search performance of fully and partially specified
nearest-neighbor queries.

There are many other methods for spatial data organizations, based on hierarchical space
decomposition, suitable for disk-based storage: k-d B-trees [28]; are a direct extension of k-d
trees. The R-tree [13] family of methods allow overlapping parent nodes with several variants:
R+ trees [32], packed R-trees [29], R*-trees [4], and P-trees [18]; Another family consists of
methods that allow for holes in the parent nodes [23]. A closely related family of methods is
based on a flat, grid-based, decomposition of the space, with the grid file as the main representa-
tive [25] and several variants, e.g. [16].

All these methods do not work well for high-dimensionality sparse vectors: the k-d tree
method will lead to highly un-balanced trees, because most of the attributes have a 0 value; the
R-tree based methods will have a low fan-out, because of the large space required to store each
vector/rectangle; the grid-file methods will require too much space for the directory, which grows
exponentially with the dimensionality.

The second group of methods, based on the triangular inequality, include the following: Ito
and Kizawa [17] suggest imposing a linear ordering on the objects, by traversing their minimum
spanning tree. However, their method seems fine-tuned for words of a dictionary and specifically
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for typing errors. Fukunaga and Narendra [12] proposed the "branch and bound" algorithm we
adopted, to search a cluster hierarchy for nearest neighbors. However, they do not consider inser-
tions and deletions, nor efficient methods of building the tree structure. Shasha and Wang [33]
precompute and store the distances from several pairs of points. Using the triangle inequality,
they can infer the lower and upper bound on every other distance of interest; the results are stored
in a nXn matrix, called the ADM (=Approximate Distance Map); » is the number of points.
According to the graphs they reported, their method examines =20%-80% of the n points. The
computation of the ADM requires O (n3) steps, which becomes prohibitive for large databases.

Relevant to our work is a wide variety of clustering algorithms (see, for example,
[24, 30, 31, 34] for surveys). However, their main goals are to detect patterns in the data; there is
little attention paid to the time required for cluster creation and update operations, especially for
large databases.

6. CONCLUSIONS

We have examined the problem of indexing points in a high-dimensionality space, to han-
dle efficiently fully specified approximate searches. We have designed and implemented the
Diamond-tree structure, which exhibits the following virtues:

® It handles high as well as low dimensionalities; it could even be used for 1-d spaces, replac-
ing the B-tree. Thus, it could be used as a generic method for indexing in Object-Oriented
databases, [1, 6, 14] to handle several data types, such as strings, images, fingerprints etc.

e It can even handle the case of a dynamically changing feature set, as long as there are
enough unused feature-ids.

) It is designed to work on disks, to support large databases
° It guarantees 50% space utilization, and it is implemented as a balanced tree.

Preliminary experimentation shows very good performance on a 3,000 item database (words,
searched for typing errors). The method touches =1%-5% of the data, in a 26-dimensional space;
related methods for approximate searching touch much larger portions (e.g., 20%-80% of the size
of the file in [33], or almost 100% of the file, for high-dimensionality spaces [10]). Moreover, in
the proposed method, the absolute number of leaves touched is small, promising response times
below 1 second.

The major ideas and contributions in this work are

e  The use of compressed vectors to handle high-dimensionality points; the use of diamonds
(as opposed to rectangles) to save space and increase the fanout of the nodes of the tree

e  Manipulation algorithms for the diamonds (calculation of minimum bounding diamond,
splitting etc.)

o Implementation and cxperimental results, that show that the method is feasible and promis-
ing for real applications.
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