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Abstract
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In the first part of this dissertation, we consider modeling and approxima-
tion of impact dynamics on flexible structures. A nonlinear model is developed
through Hertz law of impact in conjunction with the dynamic equation of the
flexible structure. We have analyzed\this nonlinear model and established the
existence and uniqueness of solutions of the nonlinear equation. A numerical
method is developed based on the contraction mapping principle. By utilizing
the fact that impact interval is very short in general, one may approximate the
transfer functions of the systems to which the impacting bodies belong by Taylor
polynomials of low order. We have developed the first and second order approx-
imations. The first order approximation yields a special function which can be
used for analytical and computational purposes. The second order approxima-
tion leads to a two-parameter family of ordinary differential equations of which
the solutions exhibit universal features of impact problems. Simulation results of
various examples have demonstrated the usefulness of the developed numerical

method and approximation methods.




The second part of this dissertation is devoted to control of impact dynamics.
We have formulated and studied a control problem where a linear system is sub-
jected to a series of impact forces. The impact forces are treated as disturbances
to the system and modeled as finite duration events using the theory developed
in part one. A reasonable control objective is to design a feedback controller to
minimize the energy transferred from the disturbances to the controlled outputs
in the Ly norm sense. Under the assumption that the disturbance information
is known a priori, a (sub)optimal control strategy is derived based on dynamic
game theory. We have shown that, by taking advantage of the fact that the
duration of each impact force is very short in general, we can derive a series of
approximate solutions of the nonlinear problem. The higher order terms may be
negligible for the disturbance attenuation problem in some applications. Hence,
the approximation with the leading term renders a linear one. A (sub)optimal
H,, controller is derived and a procedure to compute such a controller is given.
The (sub)optimal solution is naturally associated with the existence of a sta-
bilizing periodic solution of coupled Riccati equations. Hamiltonian theory is
employed to analyze the coupled Riccati equations. Finally, we investigate the
digital implementation of this control algorithm by using a sampled-data con-
troller. We have shown that under a certain sampling condition, the controller

structure could become simpler than the continuous version.
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Chapter 1

INTRODUCTION

This dissertation is composed of two parts. The first part (chapters 2, 3 and 4)
is concerned with modeling and approximation of impact dynamics on flexible
structures. Impact phenomena have interested scientists and engineers for a long
time. Numerous attempts have been made to model accurately the dynamical
effects of impact between two or more objects [1, 2]. Our motivation to study
impact problems comes from force and constrained motion control in various
robotic manipulations [1-8]. One popular example in these problems is to use a
flexible robotic arm to catch a baseball, play tennis, snatch a stationary object
from a table, hammer a nail into a board, or collect space debris while attached
to a moving space vehicle. A physical contact between the manipulator and
the object must occur before the desired force and motion can be applied to
the object. To model the effects of these actions on a flexible arm, the impact
dynamics must be examined. Salmatjidis [3] and Chapnik etc.[4] independently
studied impact control of flexible manipulators. Both of them applied open-loop
control strategies to cancel the impact forces due to the bandwidth limitation of
actuators and sensors. The open-loop control scheme requires a precise model of

impact force in order to achieve a good performance. Salmatjidis used the stere-




omechanical impact model [5] by assuming that the impact duration is negligible.
Chapnik etc. used an impact model devised by Lee etc. [6], which accounts for
the finite duration of impact. Experimental results from both studies showed
that, during the contact period, although it is very short, impact dynamics can
be a significant factor. If the impact phenomena are not modeled properly, or the
manipulator is not controlled to diminish the effect of impact, and result could
be the failure of the manipulator [7, 8, 9, 10]. Moreover, since high precision
control of robotic manipulators has become increasingly important in a variety of
industrial applications, e.g. laser beam technology, semiconductor wafer manu-
facturing etc., this requires paying extra attention to the usual dynamical effects
as well as taking into consideration otherwise ignored features such as dynamical

effects due to impact.

Consideration of displacement and use of Hertz law of impact at the region
of contact seems to be the most successful approach [11]. When the contact
involves a flexible structure Hertz law of impact leads to a nonlinear integral
equation called the Hertz equation, which incorporates the effects of local elastic
deformation at the region of contact [6]. This model has been widely applied
to various impact situations [5, 12, 13|, and experimental results obtained in
[12, 13] well support the validation of this equation. However, there are several
drawbacks associated with this nonlinear model.

1) Numerical methods: this nonlinear equation does not admit a closed form so-
lution in general, hence numerical methods must be developed to solve this equa-
tion. There are some numerical methods such as Timoshenko’s small-increment

method and an energy method devised by Zener, Feshbach and Lee etc. More




efficient methods need to be developed due to the popular use of this model.

2) Mathematical analysis: although the above numerical methods are success-
fully used to solve the nonlinear equation, these methods were proposed without
establishing their convergence or even existence of a unique solution. Our view-
point is that theoretical analysis is necessary for both proving the validation of
this equation and developing efficient numerical methods.

3) Computational complexity: in all existing numerical methods, each case, e.g.
varying initial velocities, has to be numerically solved separately. Also, a fairly
large computational burden has to be incurred for each numerical solution. One
of the goals of this dissertation is to attempt to solve these problems.

Our methodology for modeling the impact dynamics is based on the Hertz
law of impact. In chapter 3, we derive a nonlinear impact model through Hertz
law of impact in conjunction with the dynamical equation of a flexible structure
which involves impact. We establish the existence and uniqueness of solutions of
the Hertz equation by applying the contraction mapping principle. The detailed
proofs of both local and global solutions will be given. Chapter 4 addresses
the problem of numerically solving the Hertz equation. Timoshenko’s small-
increment method [11] yields a solution within any degree of accuracy provided
that sufficiently small time steps of integration are used. Hence it has become
the basis for evaluating other approximation methods. Another useful method
is the application of the energy method devised by Zener and Feshbach [14], and
applied by Lee [6] to the central impact of a sphere on a simply supported beam.
By combining the principle of conservation of energy during the impact, and
momentum considerations for the impacting sphere, the resulting velocity of the

impacting sphere and vibrational energy imparted to the beam are determined.




Impact force was assumed to be a sinusoidal function of time. This method is
simple and fast, but not reliable, and we will give some numerical examples to
illustrate this. In its place we will develop a numerical method using successive
Picard iterations; fo, P fo, PP fo, -« - , where the initial condition f; is obtained
from the energy method, and P is a contraction operator. We show that this
method is faster compared to the small-increment method, more accurate than
the energy method, and its convergence is very fast.

Observe from numerical solutions that the impact period is very short in
general. Therefore, one may approximate the transfer functions of the systems
to which the impacting bodies belong by Taylor polynomials of low order. We
explicitly carry out this computation in the cases of first and second order Taylor
polynomial approximations of the transfer functions. We show that in the case
of the first order approximation there is a universal ordinary differential equation
that describes the impact behavior completely. Therefore, one can numerically
solve this equation beforehand, save the results, and use it to predict the impact
behavior with only a minimal computational burden. In the case of the sec-
ond order approximation there is a two-parameter family of ordinary differential
equations that govern the impact behavior. These approximation methods are

validated via numerical examples.

The second part (chapter 5 and 6) is devoted to control aspects of impact
dynamics. We formulate and study a control problem where a linear system
is subjected to a series of impact forces. The impact forces are treated as the
disturbances to the system and modeled as finite duration events using the theory

developed in part one. Among the motivating factors is the need to study the



control problems related to mechanical systems subject to impact forces, e.g.
active control of the suspension system of a vehicle against irregularities of the
road [15, 16}, accurate pointing of guns, stabilization of an antenna on the space
station subject to impact from space debris, or active damping of vibrations
of flexible structures caused by impact forces [10, 17]. A reasonable control
objective in all these problems is to design a stabilizing controller to minimize
the energy transferred from the disturbances to the controlled outputs in the
L, norm sense. This problem in turn can be studied in the framework of H,
control theory.

An important paradigm in control synthesis is the H,, control problem in-
troduced by Zames [18]. In this formulation, the disturbances belong to a
ball in a certain function space, and a quadratic cost function is minimized
for the worst disturbance in this set. Various theories of H,, control prob-
lems for linear systems have been developed so far by many researchers (see
e.g. [19, 20, 21, 22, 23, 24]). Solutions to these problems can be obtained via
frequency domain methods, or recently developed state-space methods.

Recently, several researchers have attempted to extend H,, control results
to nonlinear systems. Ball and Helton [25, 26], from a viewpoint of operator
theory, have discussed H,, control theory of nonlinear systems for the first time.
Basar and Isidori [27, 28] study the connection between the H,, control theory of
nonlinear systems and differential game theory. In this setting, one is naturally
led to a nonlinear partial differential equation known as the I'saacs equation.
A straightforward application of the theory (see e.g., [29]) to the case of a plant
modeled by an affine nonlinear system shows that once a solution of the ap-

propriate Isaacs equation is found, a (full-information) feedback law providing



disturbance attenuation (in the L, gain sense) can be computed right away. Van
der Schaft [30, 31] analyzed the relation of the L, gain between nonlinear sys-
tems and their linearization, and gave a sufficient condition for the existence
of smooth H, state feedback. In addition, using the dissipative system theory
[32, 33], Van der Schaft has discussed the relation between the L, gain and the
Hamilton-Jacobi equation in [34]. However, his approach requires the equilib-
rium point of a suitable Hamilton system to be hyperbolic.

The H,, control of nonlinear systems is still largely open. One problem is the
output feedback control. Van der Schaft derived an output feedback controller for
a certain class of nonlinear systems [35], which however has the severe drawback
of being infinite-dimensional. Much more effort has been put into obtaining
finite-dimensional controllers in general (see, e.g. [36]), but without decisive
answers thus far. Another main issue for the applicability of nonlinear H
control is its computational complexity, one of the essential requirements in all
of the above approaches is either to solve a Hamilton-Jacobi equation or a set of
completed Hamilton-Jacobi inequalities [34, 35].

The disturbance attenuation of impact forces is a nonlinear control problem
due to the nonlinearity of the impact model, which is different from the prob-
lems discussed in {36, 34, 35]. It is not affine in disturbance input, and the
linearization around the equilibrium does not exist. Hence this nonlinear prob-
lem cannot be solved by the above proposed methods, but some analysis can
be carried over to this problem. Our approach is based on the dynamic game
theory [27, 29]. In this setting, the control problem naturally becomes a mini-
max optimization problem of a cost function L(u,v) with two players, where u

is the control and v is the disturbance. Roughly speaking, the player u tries to




minimize L(u,v) in U, while the player v tries to maximize L(u,v) in V simul-
taneously, where U,V are the constraint sets of u and v respectively. [27, 29]
show that the (sub)optimal disturbance attenuation problem has a solution for
a given vy > 0 if the minimax optimization problem admits a saddle point. We
show that, due to nature of impact dynamics, the saddle point may not exist in
problems involving impacts. Motivated by the dynamic game approach, if the
information of the disturbance v is assumed to be known a priori (e.g. sensors
can predict the impact velocity before impact), one can seek an optimal strategy
by using this information such that a certain attenuation level v is achieved. A
procedure is given to compute the optimal strategy u(v), and the optimal atten-
uation level v*. Finally, by taking advantage of the fact that the duration of each
impact force is very short in general, we derive a series of approximate models
for the original nonlinear system. In many cases it turns out that the higher
order terms are negligible. Hence a special linearization of the nonlinear system
can be obtained by using the leading term as an approximation. Thus, in these
cases the nonlinear problem can be approximated by a linear one. In chapter 6,
motivated by the linear impulsive model obtained in chapter 5, we formulate a
linear H,, control problem. In the infinite horizon case, a state-space solution
for the state-feedback controller design problem is derived. The (sub)optimal
H, controller is naturally associated with the existence of stabilizing periodic
solution of a coupled Riccati equations (one is a differential Riccati equation,
one is a difference Riccati equation). Hamiltonian theory is employed to analyze
the coupled Riccati equations. Finally, we investigate the digital implementa-
tion of this control algorithm by using a sampled-data controller. We show that

under a certain sampling condition, the control problem can be converted into



a standard discrete-time H, problem. Then, the state-space solution is derived
through dynamic game theory. The structure of the sampled-data controller
could be simpler than the continuous version. An impact example is given and

discussed.

In the final chapter, we summarize the main results obtained in this disser-

tation, and identify some interesting problems for future research.



Chapter 2

A REVIEW OF PREVIOUS WORK

In this chapter, we will review some previous work on modeling and control of

impact dynamics.

2.1 Impact Modeling

Impact phenomena have interested scientists and engineers for a long time. Nu-
merous attempts have been made to accurately model dynamical effects of im-
pact between two or more objects. The first formulation of rigid-body impact
theory is due to Galileo, which the focus is on the impulse-momentum law for
rigid bodies and involves a minimum of mathematical difficulties. For perfectly
elastic impact of two bodies, the law of conservation of energy provides the sec-
ond relation required to uniquely determine the final velocities of the objects.
Newton later introduced a coefficient of restitution e to account for the degree
of plasticity of the collision and energy loss during impact. This modified im-
pact law was widely used in many impact problems [1, 2, 15, 16]. However, it is
incapable of describing the transient stresses, forces, or deformations produced,
and is limited to a specification of the initial and terminal velocity states of the

objects and the applied linear or angular impulse. The theory fails to account



for local deformations at the contact point and further assumes that a negligible
fraction of the initial kinetic energy of the system is transformed into vibrational
energy of the colliding bodies. The last hypothesis has been found to be reason-
ably valid for the collision of two spheres, but not for collisions involving flexible
structures (beams, rods, plates etc).

The first satisfactory analysis of the stresses caused by the impact of two
elastic bodies is due to Hertz, who viewed the contact of two bodies as an
equivalent problem in electrostatics. A solution was obtained in the form of a
potential which described the stresses and deformations near the contact point
as a function of the geometrical and elastic properties of the bodies.

When impact involves a flexible structure, consideration of displacement and
use of Hertz’s law of impact at the region of contact seems to be the most suc-
cessful approach [11]. Hertz law of impact leads to a nonlinear integral equation
called the Hertz equation, which incorporates the effects of local elastic deforma-
tion at the region of contact [6]. This model has been widely applied to various
impact situations [5, 12, 13], and the experimental results obtained in [12, 13]
well support the validity of this equation. Unfortunately, this nonlinear equa-
tion does not admit a closed form solution, hence numerical methods must be
developed to solve this equation. Timoshenko [11] developed the so-called small-
increment method to give numerical solutions, and it has become the basis for
evaluating other approximation methods. Some other approximation methods
also give very satisfactory results [6, 38]. One of them is the application of the
energy method devised by Zener and Feshbach [14], and applied by Lee [6] to

central impact of a sphere on a simply supported beam.
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2.1.1 Stereomechanical impact

The classical theory of impact, called stereomechanics, is based primarily on the
impulse-momentum law for rigid bodies and involves a minimum of mathemati-
cal difficulties in its formulation. For perfectly elastic impact of two bodies, the
law of conservation of mechanical energy provides the second relation required
to uniquely determine the final velocities of the objects. When the impact pro-
duces a permanent deformation this relation is replaced by the introduction of a
coeflicient of restitution e for the process. This coefficient purports to describe
the degree of plasticity of the impact, and is usually defined as the ratio of final
to initial relative velocity components of the striking objects in the direction
normal to the contact surfaces. This impact theory has been used in various
applications, e.g central impact of two rigid bodies. Assume the two rigid bod-
ies of masses m; and ms respectively make initial contact with each other at a
point on the line connecting their centers of gravity with velocities v19 and vy
respectively. By the use of the moment conservation law, the velocities of the

two bodies after impact are given by [5],

)mz('vlo - 1120)

v = vp—-(1l+e 2.1.1
1 10 ( my + My ( )
my (1110 - Uzo)

) = Yp+({l+e)—————=
2 20 ( ) m1 + Mo
= U9y + Kg(vlo - ’020), (2.1.2)

where e is the coefficient of restitution and assumed to be a constant. For a
given e and initial velocities, the final velocities of contacting objects can be
determined immediately from these equations.

However, there are some limitations associated with this method, especially for

impact involving a flexible structure. It is incapable of describing the transient

11




stresses, forces, or deformations produced, and the method further assumes that
a negligible fraction of the initial kinetic energy of the system is transformed

into vibrational energy of the colliding bodies.

2.1.2 Hertz law of impact

The first satisfactory analysis of the stresses at the contact of two elastic bodies
is due to Hertz, who viewed the contact of two bodies as an equivalent problem
in electrostatics. A solution was obtained in the form of a potential which
described the stresses and deformations near the contact point as a function of

the geometrical and elastic properties of the bodies. The Hertz law of impact is,
at) = K[f@)*?, (2.1.3)

where «(t) is the relative approach, i.e. the difference between the displacements

of the bodies, and K is the Hertz constant [5, 39],

K = ${a/(@ + QAT B)), .14

where ¢, A and B are constants which depend on the local geometry of the region

of contact, for a sphere of radius R; and plane surface contact case, A = B = -

and ¢ = 7'/3, and,

Qi = (1 - p3)/Erm, Q2 = (1 — p3)/ Ear, (2.1.5)

where, u; and F; are the Poisson ratio and Young’s modulus for the two bodies
respectively.

This impact law, although both static and elastic in nature, has been widely
applied to various impact situations and the experimental results obtained well

support the validity of this equation.
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2.1.3 Central impact of a sphere on a simply supported

beam

Timoshenko was first to use the Hertz law of impact to model the impact dy-
namics on a flexible beam. He formulated and solved numerically the problem
of central impact of a sphere on a simply supported beam [11, 5]. The impact
problem can be formulated as follows; a beam is struck transversely by a spher-
ical mass m with initial moving velocity vo. We further assume that the Hertz

law of impact is valid i.e.
a = K[f@)P?, (2.1.6)

where « is the relative approach of the striking body, f(¢) is the contact force.

w(x*t s(t)

Figure 2.1: A sketch of the displacement

The relative approach is the difference between the displacement of the beam

and the contacting body, measured from the instant of initial contact. Hence

a = s(t) — w(z*, 1), (2.1.7)

13



where w(z*,t) is deflection of the beam at the point of contact z*, s(t) is the

displacement of the ball under of the contact force f(¢), and is given by,

s(t) = vgt — ;1; /ot F@)(E — 7)dr. (2.1.8)

From the equations (2.1.6)-(2.1.8) we obtain the nonlinear integral equation,

K[ = vot — % | CF) (¢ = T)dr — w(zt, b). (2.1.9)

The forced vibrations produced in the beam by the varying force f(7) at the
point of contact are expressed in terms of the normal modes of vibration. In
the case of symmetrical vibration of a simply supported beam, the normalized
characteristic deflections [11] are /2/lsin(nnz/l) for n = 1,3,5, etc., where z
is the coordinate of position along the beam of length I. The corresponding
frequencies of the natural modes of vibration are w,, related by the equation
W, = nlw.

The central deflection w(z*,t) due to the forced vibrations is given by
w(z*, 1) / ysinenlt =) (2.1.10)
1 3,5 ql

where ¢ is the constant mass per unit length of the beam. gl/2, denoted by M,
is called the reduced mass and in this particular case is equal to half the mass of
the beam. Substituting equation (2.1.10) in equation (2.1.9) gives the integral
equation for the impact force from which the motion can be determined, that is

K[f ()]2/3—v0t——/ f)t—r)dr— 3

n=1,3,5

M/f ——Smw’;fn ) gr.(2.1.11)

The nonlinear term K[f(t)]?/*, precludes any closed form solution for (2.1.11).
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2.2 Numerical Methods

There are some numerical methods available in the existing literatures [6, 38, 40].
Timoshenko’s small-increment method [11] is usually reliable, but could turn out
to be time cdnsuming. Another useful method is the application of the energy
method devised by Zener and Feshbach [14], and applied by Lee [6] to central
impact of a sphere on a simply supported beam. This method is simple and fast,

but not reliable as we will illustrate via some numerical examples.

2.2.1 Small-increment method

In this section we will illustrate Timoshenko’s small-increment method ( see [11]

for details). Recall that the Hertz equation is given by

K[f(t)]2/3=v0t—% /Ot - - Y - / St =7) 49 9.19)

i=1,3,5

Small-increment method divides the time interval [0,¢) into n sub-intervals
with increments A7, and the impact force is assumed to be constant during
each sub-interval. Thus for the n" time interval ¢ = n7, equation (2.2.1) can be

written as

A 2 n
K(f)* = wnAr - (TT)ZDn—j+lfj -

o]

& oswz(n JAT — coswi(n — j+ 1)Ar
T

— (2.2.2)

=1 1
where A7 is conveniently chosen as some small fraction of the fundamental
period of vibration of the beam. The quantity >7_; Dn—j41f; arises from the

double integration term and, for a linear continuous approximation of the force-
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time curve may be expressed as

S Duguty = 2An—Dfi+m—(fam )+

ji=1
(n=)fi— fimit+ fj2a— fims+ - F )+ +
(fn—l - fn—2 + fn—3 -k fl)] +

1/3(fn = fa1+ faz = £ f1) (2.2.3)

The accuracy of the results and the labor of computation depend upon the

proper evaluation of the term Y2, ceswi(n=i )Af"ufg’sw'(”“j AT being directly pro-

portional to the number of modes included and the fineness of the time inter-
val chosen. Procedural techniques for the step-wise approximation are given
in reference[41]. Although this method is very lengthy, it is considered in the

literature as the standard numerical method for solving the Hertz equation.

2.2.2 A solution by approximating impact force

Lorenertz [42] developed a concise method of solution by assuming that the
duration of impact is small compared with the period of the fundamental mode
of vibration of the beam and also that only fundamental model is excited. The
first assumption is justified in most impact problems and, moreover, is easily
checked, but the decision where or not it is permissible to neglect the effect of the
higher modes of vibration of the beam is more difficulty. The latter assumption
is equivalent to replacing the beam by the one degree-freedom system of a mass
on a spring [6].

The method of solution is to assume a sinusoidal contact variation f(t) =
Psin(At) which enables the integrals in equation (2.2.1) to be evaluated, thus

transforming it into an algebraic equation. Values of P and A are required to
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satisfy this equation for all t during the impact. Since f(t) = Psin(\t) cannot
be negative, contact occurs for 0< At < m, so that the duration of contact
is Tp = =/A(sec). Substituting the sinusoidal variation for f(¢) and and

evaluating the integral, the equation (2.2.1) becomes

Pt sinAt P Asinw;t — wysin)t
K P ) At 2/3 = t _ _(— _ - 1 1
[PsinAt] Yo m()\ )2 ) M w ()2 —wd)

(2.2.4)

Equation (2.2.4) is still too complicated for direct solution. Some simplifications
can be made by writing w;t for sinw,t, since w,t remains small. In addition
[sinz/ 3)t] can be approximated by Asin)t; where A is chosen so that the new
contact force variation, which makes a = KP?3Asin)t, produces the same
total change of momentum in the striking mass as did PsinAt. This condition

expressed mathematically becomes

/ "singdd = A / " sin2/30d0
0 0

which gives A = 1.093 , inserting these simplifications, Equation (2.2.4) be-

comes

) P At — sinAt
KP?BA sin\t = et — £ L sinAt st

m()\ Y ) — M_—)?—-w% . (2.2.5)

Equating the coefficients of sinAt and t on each side gives two simultaneous

equations for the determination of P and A,

0 = v L _P_A
T mA M2 —
pP P 1
KPA = — 4 o . 2.2.
m)\2+M)\2—w% (226)
After eliminating P we obtain
2 _ 212

35— [(m+ M)N\? — Mw?] (2.27)

= Yo ASFKSm2M2(N2 — w?)?”
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Then P is determined from the first of the simultaneous equations [6] which
gives

mMA(\? — w?)

P= .
T+ M)N — Mu?

(2.2.8)

Numerical results obtained in [6] showed that this method is fairly good in some
cases, but may cause a large error in other cases. This indicated that, the error
in the solution lies not in the mathematical approximations adopted but in the
physical assumption that only the fundamental mode of the beam affects the
impact process. Hence some criterion must be found which will give conditions
justifying such an assumption.

Among the other approximation methods found in the literature is the energy
.method devised by Zener and Feshbach [14], and applied by Lee [6] to central

impact of a sphere on a simply supported beam.

2.2.3 Energy method

An important contribution to the understanding of impact characteristics was
made by Zener and Feshbach [14] in their considerations of energy transfer.
The procedure in the application of the principle of conservation of energy is
to assume a contact force variation in terms of which the energy imparted
to the beam can be represented. The vibrational energy absorbed by each
mode is composed of the sum of kinetic energy and strain energy of bending
at a particular time. Recall that the deflection of the beam can be written as
w(z*,t) = Y02, Co(t)W,(z*) by using the Green’s function method, where C,,(¢)

is modal coordinate and is governed by the following differential equation,

Cu(t) + wpCu(t) = Wa(z")f(t), n=123:
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It is easy to show that the energy for the n*® mode during impact is equal to

AB, = [C30) +wiCA0)]

= %Wn(x*)zl /0 g f(r)edr|?, (2.2.9)

where the T is the time when contact loses.

Errors resulting from ignorance of the contact-force variation f(7) can be
largely eliminated by expressing f(7) in the form of a normalized force. The
rebound velocity of the impactor can be expressed in the form evy by introducing
a restitution coefficient e. The total change in the momentum of the mass

produced by the impact force is then
T
mup(l +e) = /0 f(r)dr. (2.2.10)

Now, defining the normalized impact force F(7) by the relation f(7) = muvo(1 +

e)F(r), the momentum equation becomes
T
/ F(r)dr = 1. (2.2.11)
0
Substitute for f(7), equation (2.2.9) becomes
1 T .
BB = sm*d(1+ ) Wa(a')? / F(r)e dr|?. (2.2.12)
0

The total vibrational energy of the beam is equal to the sum of the energies in the
separate modes of vibrations, i.e., the total vibration energy AE = Y >° | AE,.

Let us define a function R as
oo T )
R=mY Wn(z")? /0 F(r)e®dr|?, (2.2.13)
n=1
The total vibrational energy AFE now reduces to

ke 1
AE=Y AE,= -émvg(l +e) R = E(1 +¢€)’R. (2.2.14)
n=1
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where E represents the initial kinetic energy of the impactor. Since energy is

conserved, AF is also the loss of energy of the impactor, giving the equation
AE = E(1 - é%). (2.2.15)

Now AE/E can be eliminated from equations giving the coefficient e in terms

of the function R, or

_1-R

e=1g- (2.2.16)

If we assume that an expression for F(7) satisfies the condition (2.2.11), then
R and e can be determined. However, the F(7) is generally unknown, hence an
approximation must be selected. In order to avoid heavy computational burden
to evaluate function R, a simple force function can be chosen. One example

given in [6] is of the form

Fit) = g—;sin(wt/To)

= %sz’n)\t, Vt € [0, Ty). (2.2.17)

where, Tj is the estimated impact duration by assuming two rigid body impact,

calculated from [5]. Hence, the impact force is given by
f(t) = KpsinAt. (2.2.18)

where the K is a constant.

2.3 Control of Impact Forces

As we have pointed out in chapter 1, the force and constrained motion control in

various robotic manipulations is the main motivation to this research. In general,
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there are three modes of operation so that a robot can complete a task: motion
in free space, impact and constrained motion. Obviously the manipulator must
change from one mode to the other readily. Usually switching from the con-
strained space to free space presents no problems. However, the opposite switch
has the significant problem of impact forces. The impact forces can be very
large, and can drive an otherwise stable controller into instability. Typically,
it is the force control strategy that must deal with this transient phenomenon.
However, the natural elasticity of impacting bodies (demonstrated by the nonlin-
ear impact model), can cause the manipulator to rebound from the environment.
Thus, the manipulator is once again unconstrained. This phenomenon can cause
oscillatory behavior [43]. Obviously it is the goal of any controller to pass this
transitory period successfully, and have the manipulator stably exerting forces
on the environment in the end. The controller must, therefore, pass through the
impact phase by attempting to maintain contact with the environment until all
of the energy of the impact has been absorbed. Most early research treated the
impact as a transient and did not account for the impact effect, which resulted
in performance tradeoffs. This problem has drawn more attention recently since
high precision control of robotic manipulators has become increasingly important
in a variety of industrial applications, e.g. laser beam technology, semiconductor
wafer manufacturing etc., thus requiring extra attention to the usual dynamical
effects as well as taking into consideration otherwise ignored features such as
dynamical effects due to impact. Below we describe some the impact control

schemes that have been developed in the past few years.
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2.3.1 Open-loop control strategy

One useful method that has been used for controlling impact dynamics is open-
loop control schemes. The motivation for this strategy stems from the obser-
vation that feedback signals may obscure effects due to impact because of the
bandwidth limitations of actuators and sensors [4]. Salmatjidis [3] and Chapnik

Hub
I4 Tip

i
/’m -
1
X
TorqueT\' } oo

\

Figure 2.2: A single-link flexible robot

etc.[4] independently studied impact and force control problem of a single-link
flexible robot manipulator shown in Figure 2.2, where a flexible robot with a
flexible beam is mounted on a moving base driven by a torque T'(¢t). Suppose
the flexible robot is transversely collided with an impactor with mass m and
velocity vg. If we just consider the transverse deflection of the beam and ignore
the rotary inertia effects, by the extended Hamilton principle[44], the dynamic
equation of the beam is

%y dy* ok
p'a—tz‘ + E[@ = f(z*,1), 0 <z < (2.3.1)

where y(z,t) = w(z,t) + 20(t), w(z,t) is the deflection of the beam, and 6(t)
is the rotational angel of the hub, and f(z*,t) is the distributed load. Equa-
tion (2.3.1) describes an infinite dimensional system. Typical finite dimensional

model approximations are used for the controller design.
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Finite Element Model:
The elastic deflection w(z,t) is to be approximated using finite element tech-
niques [44]. Assembling the element mass and stiffness matrices leads to the

semi-discretized equations of motion for the flexible arm systems,
MQ+CQ+KQ=F (2.3.2)

where M, C, and K are the global mass, damping, and stiffness matrices, respec-
tively, F' is the external force vector (applied torque is specified in the first entry
of this vector), and F contains the unknown reaction (impact) forces at each
element. @ = [0, wy, W, wo, We -+ -+ ,wy,wy|T for some finite integer N > 0.
Simulation:

In order to calculate the time-domain response of the beam from the equation
(2.3.2), the Newmark-£ integration scheme [45] has been implemented, and yields
the vector Q, Q, and @ from equation after every integration time step. In order
to solve the equation completely, a model of impact force must be given.
Impact Model and Control:

Salmatjidis used a stereomechanical impact model by assuming that the impact
duration is negligible. The impulsive force is defined as

to+At

/= lim f(t)dt (2.3.3)

At—0 Sy,

Plugging the impulsive force model into the dynamic equation (2.3.2) and taking
the limit process, the problem is left to determine to the amplitude of f . Based
on this impact model the authors realized that a contact problem is actually a
problem with holonomic constraints. The primary kinematic axiom of a contact
problem is, that the structures involved do not penetrate each other. Hence

the kinematic constraint provides an extra equation necessarily to determine the
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impact force f. An open-loop control algorithm is proposed, which operates the
three modes of the flexible robot as follows;

1). The controller monitors contact through the FSR ( force sensitive resister )
output, while in free space.

2). When contact is detected, an open-loop control scheme is implemented.
The desired displacement and velocity profiles that the system should follow
are specified by using the simplified dynamic model derived through kinematic
(holonomic) constraints which hold when contact is established, then the re-
quired torque is computed.

3). Once the transient phenomenon is over and contact is established, the force
regulator is turned on ( PD control), making the last minor corrections.
Experimental results showed that this control scheme is better than convention
force control methods without accounting for the impact forces. As pointed out

by the authors, this method is still in a quite primitive state.

Chapnik etc. [4] proposed another open-loop approach. An impact model
(energy method) developed by [6, 5] is used for their analysis of impact force,

where the finite duration of impact is accounted for
f(t) = KysinAt. (2.3.4)

The control strategy is based on a computed torque scheme proposed by Bayo
[46]. As Bayo has shown, only one degree of freedom needs be specified from
equation (2.3.2) in order to solve for the required torque. Once this variable
has been specified, by an equation in time domain, the other degrees of freedom
can be calculated. It was decided that, in accordance with Bayo, the variable

specified would be the global tip acceleration, {jx. This allows the specification to
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include the final resting place of the beam, and to force minimum tip vibration in
the global sense. Once the required variable is specified, Fast Fourier Transforms
are used to calculated the required torque.

The weakness of the open-loop control schemes is obvious. Without any
feedback the performance of the control is determined by the accuracy of the
system and impact models. Modeling errors may result in even greater impact

forces than without control.

2.3.2 Proportional explicit force control

The another successful method is proposed by Volpe [9, 10], an experimental
approach devised to solve impact control problems. By using an explicit force
control and properly tuning the feedback gain, the author showed that impact
dynamics can be compensated satisfactorily. To better understand this control
scheme, let us consider a generic force-based explicit force controller shown in

Figure 2.3, where G is the plant, H is the controller, and R is the feedfor-

Rﬁ

Figure 2.3: Explicit force control block diagram

ward transfer function, and L is a force feedback filter. The plant G may be
represented by the fourth order model or the reduced second order model [43].

The controller H is usually some subset of PID control ( e.g. P, PI, PD). In

25



[9], authors implemented a force-based explicit force controller with proportional
gain and extra feedback for reaction force compensation. The plant G has be
expanded into its components. It has been shown that the system is equivalent

to one shown in Figure 2.4. An analysis using the root locus method showed

F, B Fn

i H’=H+1 A G’ o

Figure 2.4: Impact control block diagram

that the stability of the closed loop system is guaranteed for H' > 0, i.e. nega-
tive proportional force control gains down to —1 are stable. The experimental
results showed that H — —1 is desirable for impact control. An interpretation
in [10] goes as as follows;

By using this control scheme, the controller does not utilize the force error sig-
nal, since H' = H + 1 =~ 0. However, the reaction force of the impact is directly
negated by a feedback signal. Viewed this way, the impact controller does not
bounce, because the oscillations in the commanded force and those in the ex-
perienced force are equal and opposite. Thus the surface is at a node of two
interfering pressure waves. No net force means no net acceleration. Any initial
oscillation is damped out by natural and active damping. The drawback of this
control algorithm is that the best feedback gain for impact dynamics is very poor

for tracking purposes which results in performance tradeoff.
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2.3.3 Other approaches

There are some other approaches aiming to control impact forces.

A) Passive Compliance and Damping

One proposed method of dealing with the impact problem is to use passive com-
pliance, either on the end effector or in the environment. Some researchers have
proposed the use of soft force sensors [47]. These methods appear to provide
stable impact in two ways. First, the material used naturally provides passive
damping that helps to absorb some of the energy of impact. Second, the compli-
ance of the material effectively lessens the stiffness of the system composed of the
material and the environment. There are problems with the passive compliance:
it may not be modified without physical replacement of the material and it also
limits the effective stiffness of the manipulator during position control etc.

B) Active Damping

Another method is to employ maximal damping during the impact phase [48].
The goal of this strategy is to damp out the oscillations caused by the tran-
sition. While this may be successful for soft environments, stiff environment
may present some problems, since the feedback signal seems obscure the effect

of impact forces [4].
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Chapter 3

MODELING OF IMPACT ON FLEXIBLE
STRUCTURES

In this chapter, we will provide a systematic way to model the impact forces on
flexible structures via use of Hertz law of impact. For the sake of simplicity, we
only consider a flexible structure subject to impact forces occurring from contact
with an elastic body. Here a flexible structure means both finite-dimensional and
infinite-dimensional systems ( a lumped-parameter structure and a distributed-
parameter structure). We restrict attention to the problem of modeling impact
dynamics, existence of solutions to the model, and application examples. Nu-
merical aspects will be addressed in chapter 3.

In section 2 of this chapter an impact is formulated and the Hertz equation
is derived through the Hertz law of impact. In section 3 we will discuss some
basic properties of the Green’s function associated with the Euler Bernoulli beam
equation. This equation is used to describe the motion of the beam. In section
4 we establish the existence and uniqueness of solutions of the Hertz equation
by applying the contraction mapping principle. We will discuss two examples in

section 5.
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3.1 Formulation of the Impact Problem

3.1.1 Impact on a lumped-parameter structure

We first study the impact between an elastic body and a lumped-parameter
structure. For our purpose, the impact problem can be formulated as follows;
A lumped-parameter structure is described in Figure 2.1, where m; is the mass
of the iy, rigid body and k; represents the stiffness (1 = 1,2,---,n — 1,n) of a
spring between bodies ¢ and 7 + 1. The words "rigid body” certainly need to
be clarified here, the meaning of "rigid body” is macroscopic. For the impact
problem, "rigid body” is still assumed to be locally deformable. Suppose that
the system is struck by a mass m having a spherical surface at the point of
contact with initial moving velocity vy. We further assume that the Hertz law

of impact is valid , i.e,
o = K[f@#)*?, (3.1.1)

where, a(t), the relative approach, is the difference between the displacements
of the first rigid body and the contacting body, measured from the instant of

initial contact. Hence,
a = s(t) — z(t), (3.1.2)

where z;(t) is the displacement of the first rigid body of the system, s(t) is the

displacement of the ball under the contact force f(t), and is given by,

) = vt — | F)E - Ty (3.1.3)
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Figure 3.1: Impact on a lumped-parameter structure

From equations (3.1.1), (3.1.2) and (3.1.3), we obtain the following nonlinear

integral equation,

2 _ 1 t
KIS = vt — — /0 FD)E = T)dr — 2 (t). (3.1.4)

If we assume that the flexible structure is at rest just before impact, it is easy

to show that the displacement z1(¢) can be expressed as
t
21(t) = /0 Gyt — 7)f(r)dr (3.1.5)

where the function G;(-) is the Green’s function of the system. Replacing (¢
g

in equation (3.1.4) by (3.1.5), we get the nonlinear integral equation

KUF@OPP = vyt — % /Ot F)E = T)dr — /Otal(t—f) f(r)dr. (3.1.6)

We note here that in general it is impossible to solve (3.1.6) analytically.
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3.1.2 Impact on a flexible beam

We now study the impact between an elastic body and a flexible beam with
various boundary conditions. Suppose a beam is struck transversely by a mass
m having a spherical surface at the point of contact with initial moving velocity

vo ( see Figure 2.2). In the same way as for the lumped-parameter structure in

w(X*,t s(t)

Figure 3.2: Impact on a flexible beam
section 2.2.1, we end up with the nonlinear integral equation
1 rt
KIFOPF = vt — — / F()(E — T)dr —w(zt,b). (3.1.7)
0

where w(z*,t) is the deflection of the beam at the point of contact z*. Before

we can carry out further analysis, it is necessary to represent the deflection of

the beam at the point of contact w(z*,t).

3.2 Deflection of the Beam and Green’s

Function

If we restrict attention to transverse vibrations only and assume that the beam

is long and slender, the transverse shear and torsional effects can be neglected,
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and the dynamics of the beam can be described by the Euler Bernoulli beam
equation. The deflection of the beam is in turn obtained by solving the following

partial differential equation

p?;TZU+EIAw=f(m,t) 0<z<lI, (3.2.1)
in which A = 5%, [ is the length of the beam, p is the mass density and E1
is the bending stiffness (here p and EI are assumed constants), and f(x,t) is
the distributed load. The deflection of the beam is uniquely determined when
equation (3.2.1) is solved under the appropriate initial and boundary conditions.
If we assume that the beam is at rest just before impact, the initial conditions

are
w(z,0) = w(z,0) = 0. (3.2.2)

Various boundary conditions of interest can be described as
Byw(z,t) = 0, t = 1,2, z = 0,1, (3.2.3)

where B; is a linear homogeneous differential operator of maximum order 3.
The concentrated load f(t) is obtained as a limiting process of a uniformly
distributed load f(z,t) over a small range 2§ of the beam. Thus, by letting

f(z,t) = oo while § — 0, the contact force f(t) is obtained as

0 = tm [ Flot)de (3.2.4)

§—0,f =00 Jz*—§

One of the most popular methods for analyzing linear partial differential equa-
tions is the Green’s function method [49). With the aid of a Green’s function,

the solution of a certain class of PDE can be expressed as an integral.
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Definition 3.2.1 A function G(z,(;t) € L%[0,1] is called a Green’s function of
(8.2.1)-(8.2.8), if it satisfies the following conditions:

i) As a function of the argument z, it satisfies the homogeneous differential equa-
tion , i.e. f = 0, everywhere except at x = ( where it may have a singularity.
i1) As a function of the argument t, it satisfies the homogeneous differential equa-
tion everywhere except at t = 0 where it may have a singularity.

i) As a function of the argument z , G(x,(;t) satisfies the boundary condition
(3.2.8).

iv) It satisfies the initial conditions

G, ¢0%) =0  and w = 5@0)/p.  (325)
Note that (i) and (ii) above lead to
2
(BIA + pgﬁ}G(m,C;t) = 5z, O)8(t). (3.2.6)

If the PDE (3.2.1)-(3.2.3) is self-adjoint (which depends on the nature of the
boundary conditions). Cantilevered and simply supported beams result in self-
adjoint PDE’s. G(z,(;t) is symmetric with respect to z and ¢, and can be
expressed in terms of an eigenfunction expansion. Therefore, in this case it can
be shown that the Green’s function for the PDE (3.2.1)-(3.2.3) can be expressed

in the form (we refer the reader to [50] for details)

stnwgt

G@.Git) = 3 W@ ), (3.2.7)

Wk

where H(t) is the unit step function, {Wy(z)}$2, is an orthonormal basis of
eigenfunctions and {wg}52, are the corresponding eigenvalues. The following

theorem is standard in the theory of partial differential equations.
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Theorem 3.2.1 [50] A representation of the solution to the PDE (3.2.1)-(8.2.8)

in terms of the Green’s function G(z,(;t) is

w(z,t) = /Ot /OZG(:E,C;t—T)f(C,T)dCdT (3.2.8)
O

For the impact problem, because the contact can be treated as a point contact,
the contact force has the special form (3.2.4). Hence equation (3.2.8) can be

further simplified as
t
w(z,t) = /0 Gz, %t — 7) f(r)dr. (3.2.9)

For simplicity, we write G(z*;t) instead of G(x*,x*;t) in the rest of the disser-

tation. From equations (3.1.7) and (3.2.9), the Hertz equation becomes

K[f®))? = vt — %/Otf(T)(t—T)dT—/OtG(.'I?*;t—T)f(T)d’T. (3.2.10)

Remark 3.2.1 For the impact problems in section 3.2.1 and 3.2.2, we have
derived the equations of impact dynamics (3.1.6) and (3.2.10) by means of the
Hertz law of impact. Note that both equations have the same structure; the only
difference is in the nature of their Green’s functions. For a finite-dimensional
system, the Green’s function is much simpler in general, we only use equation

(3.2.10) for analysis.

3.3 Analysis of the Hertz Equation

We should point out that there already exist some equations similar to equation
(3.2.10) to model impact dynamics on flexible structures [5, 6]. Timoshenko [11]

derived one for a simply supported beam. Though these equations haven’t been
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analyzed in any great detail in the existing literature, some numerical methods
for solving these equations have been presented in some detail. Our view is
that some theoretical analysis is necessary for both proving the validity of this
equation and developing efficient numerical methods. T contraction mapping
technique is employed here to show that a unique solution exists for the Hertz
equation. Before invoking the contraction mapping theorem some rearrange-

ments are necessary. Let
L{t) = t + mG(z*t). V>0 (3.3.1)

Equation (3.2.10) can be rewritten as

FO = v — = [ 1)L - (33.2)

where vy, = v/K; m' = mK,
£ = bt == [ S)L( = )dr (3.3.3)
= iyt [ )= ndr— [ F)G(E 5~ ). (33.4)

Note that v is assumed to be positive always. Both equations (3.3.3) and (3.3.4)
will be used in the following analysis. The following result is well known (see,

e.g., [51]).

Theorem 3.3.1 (Contraction Mapping Theorem) Let X be a Banach space, and
B a closed subset of X. Let P: B — B be an operator satisfying the following

condition: 3 p < 1 such that
|1Pz — Py|| < pllz - yll, Vz,y € B.

Then

a) P has ezactly one fived point in B (denoted by z*).
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b) For any xo € B, the sequence {z,}° defined by
Tpy1 = P.'En, n 2z 0
converges to z*. Moreover,
o
|lzn —a*|| < mHPmo — To||.

We will use this theorem as the main tool to show that equation (3.3.3) has
a unique solution by constructing a contraction operator P on an appropriate

closed subset B of a Banach space.

3.3.1 Local existence and uniqueness

We shall first establish some conditions under which (3.3.3) has exactly one so-
lution over every finite interval [0, §] for § sufficiently small, i.e., conditions for
local existence and uniqueness. We shall then obtain stronger conditions for
global existence and uniqueness, i.e., conditions under which (3.3.3) has exactly
one solution over [0, T for some finite . Hypotheses in both theorems are sat-
isfied by finite dimensional systems as well as simply supported and cantilevered

beams.

Theorem 3.3.2 Suppose that the Green’s function G(x*;t) is uniformly bounded
over z* € [0,] and t € [0,T] for some T > 0. Then there ezists a small enough
d > 0 such that (8.8.3) has a unique continuous solution for t € [0, 6].

Proof : Let M > 0 be such that
|G(z*;t)] < M Vi>0 and Vz*€|0,l].

Let N > 0 be a sufficiently large constant. Let § > 0 be small enough such that

. N2/38 .
(1) & < iR

36




.. 20
(#) 8 < rwriamys
(iii) 2(62/m' + M§/K),/(vh + MN/K)§ < 1.

Let the Banach space be C|0,4], the space of continuous real valued functions
from [0, 6], endowed with the sup norm, i.e. |[fllc = Supsepoy|f(t)|. Let us

define the mapping P : C[0,6] — CI0,d] by
3/2

Pft) = [ot - —/ Lt - 7)dr] , Vte[0,8. (3.3.5)
The domain of P is defined by
B8 = {f()€C0,8N > f(t) >0
vt — —/ L(t — 7)dr>0 Vie[0,8}). (3.36)

Obuiously, B[0, 6] is a closed subset of the Banach space of continuous functions
on [0,4].

The rest of the proof is divided into two parts: first, we show that P maps
B0, 8] into itself. Then we show that P is a contraction mapping on B0, §].
a) Pf > 0 Vfe€ B|0,6] by definition. Define mapping F' : B[0, 6] — B|0, d]

by
Ff(t) = t———/ f()L(t = 7)dr]
Now f € BI0,6] implies X [¢ f(T)(t — T)dr > 0. Hence,
[Ff®)] = ——/ t—TdT——/f G(z*;t — 7)dr]|

IA

vot—i—E/O |f(D)|G(x*;t — 7)|dT

< (vp + MN/K)t, te]o,d].
Ff(t) > 0 by definition. Therefore,
Ff(t) < (vp+ MN/K)t

implies Pf(t) < [(vg+ MN/K)*? <t, Vte0,d].
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FPi(t) = ojt—— [ Pf(t~)dr— [ PADG(t—)dr

1 rt 1 rt

> U(’)t—%/(t—T)TdT—E/ TMdr
0 0

1 t2

t2M

v
|
|
|
l

> 0

Thus, we have shown that PB(0, 6] C B0, d].

b) Vf]_,fQGB[O,(S],

Pfi(t) - Pfa(t)

Since f1, f» € B[0, 8] imply z(t),

Pfi(t) — Pfa(t)
[Pfi(t) = P(t)]

(1) — y*(t)

|2%() - o (t)]

A

IN

IA

ot — — / Cfi(n)L(E — 7)dr P2

it — — / folr)L(t — 7)dr ]2,

[vht — ——/ fu(r)L(t — 7)dr]/2.
——/ fo(T)G(t — T)dr]'/2.

y(t) are well defined.

3 (t) — v*(¢) vt € {0, 6]

|2*(2) = y*(B)l=(t) + y(t)]

t(fz( ) — fu(7))L(t — T)dr.
|—— / (falr) = () L(t — )dr]
/ | fa(7 )| (t —7)dr
K/ |far) = (TG ("5t — 7)ldr
(& /m! + Mt/K) ||z = fillo

(62/m’ + MS/K)||f2 = filloo.
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o) + 3] < l2(t)] + [y < 2/vht + MNY/K
< 2/(vh+ MN/K)S.
PAHE) - PRH| < 122() - ?(@)llz(t) + (1)
< 28/’ + MS/K)\/ (v + MN/K)S| f2(-) = F1(-)lloo
< pllfe = filloo vt € [0, 4].

where p = 2(6%/m’ + M(S/K)\/(v(’) + MN/K)é, and by the property(iii) of 4,

p < 1. Therefore,

|IPfi—Pflle = sup [Pfi(t) — Pfa(t)]
t€[0,0]

S p||f2_f1||oo
s0 that P is a contraction mapping on B[O, d].
Finally, using theorem 2.4.1, it follows that the mapping P has a unique fized
point in B[0,6]. It is clear that f is a solution of the equation(8.3.8) over [0, 6]
if and only if Pf = f, i.e. f is a fized point of P over B[0,6]. This completes

our proof. a

The above theorem shows that a unique solution exists over ¢ € [0, 6] for some
small §. Our interest is to find the impact force variation during the entire

contact period. The following theorem will establish this global result.

3.3.2 Global existence and uniqueness

Theorem 3.3.3 Suppose that equation (3.3.83) has a local unique solution over
[0, 6] for some sufficiently small §. If f(8) > 0, then Je > 0, such that

equation(3.3.3) has a unique continuous solution on [0,0 + €.
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Proof : The argument is similar to the proof of the local version. We will only
carry out the details of a crucial step here.

Let g : [0,8] = R be the unique solution of (3.3.8) established in the proof
of theorem 2.4.2. Let N be a positive number larger than ||g||e. Let € > 0 be a

small positive constant. Let

D[0,6+¢] = {feC0,6+¢];f |po=g;

vot——/ L{t—7)dr >0, Yt € [0,5+¢}. (3.3.7)

Clearly D is a closed subset of (C[0,6 + €], || - ||oo)-
Let F : D[0,6 4+ €] = C[0,0 + €] be

Fit)) = vt~ — [ LG m)r,

and, let P = F3/2,
We will show that for small enough ¢, P(D) C D, and P is a contraction

mapping, thus establishing the theorem. Note that it follows easily as in the proof
of theorem 2.4.2 that

|Pf(t)] < N Vte[0,6+¢.

The crucial step is to show that FPf(t) >0 Vte€[0,6+¢], Vf e D. Now,
FPf(t) = f(t) Vt <4 since f |04 satisfies (3.3.8). For 0 <t <,

1 6

FPf(t+6) = v'6———/ Pf(r)(t+6 — 7)dr
1
K

ot — = /0 Pf(r +8)L(t — 7)dr

Pf( )G(z*;t+ 6 — 7)dT

= vyd — %/Oépf(T)((s—T)dT— %/:Pf(T)G(J)*;(S—T)dT
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_% Odf(T)(G(ZB*,t-i- 0—71)—G(z*;0 —7))dr
ol — %/:f(f)df _ mi/Ot Pf(r+8)L{t — )dr
t 9 = =

720) - — [ f(r)ar - Ga*s8) + Gl 0)

ot — mi | “Pf(r+6)L(t —)dr]

where G(z*;t) = L [0 f(1)G(z*;t+8 — T)dT. By the continuity of the Green’s

function, for small enough e,
G0 - G0 <SP0 Vielnd
For such ¢,
FPf(t+6) > 0 Vte|0,¢.

Hence, we have shown that PD[0,d + €] C D[0,6 + €.
It is easy to show that P is a contraction mapping. The ezistence of a unique

solution on [0,0 + €] follows at once now. O

Remark 3.3.1 The global version has the following physical interpretation. The
condition f(t) > 0 means that the contact is in progress at t > 0; finally, f(T) =
0 means that the objects are just about to cease to be in contact, i.e., T is the

impact duration.

3.4 Two Applications

3.4.1 A single-link flexible robot

High precision control of robotic manipulators is becoming increasingly impor-

tant in a variety of applications, e.g., laser beam technology, semiconductor wafer
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manufacturing etc. This requires paying extra attention to the usual dynamical
effects as well as taking into consideration otherwise ignored features such as dy-
namical effects due to impact. Here we consider a flexible robot with a flexible
beam mounted on a moving base driven by a torque T'(¢). Suppose the flexible
robot transversely collides with an impactor with mass m and velocity vy. If we
just consider the transverse deflection of the beam and ignore the rotary inertia
effects, by the extended Hamilton principle [44], the dynamic equation of the
beam is

aZy ay4 £{ ok

where y(z,t) = w(z,t) + 20(t), w(z,t) is the deflection of the beam, and 6(t)

Hub

Iy Tip
vy S
X 1
Torque\'l\' z o
\\.
N

Figure 3.3: A single-link flexible robot

is the rotation angel of the hub and the f(z*,t) is the distributed load. For the

impact problem, the impact force has the general form
¥+ _
f@) = lim f(z,t)dz (3.4.2)

d—0,f =00 Jz*—6

where z* is the contact point of the beam. The boundary conditions are

Oy? oy’
Elaz2 - IHOt;éxl +T(t) = 0) y(m,t) = O, at =0 (343)
3y2 ay3
EIW = EI@ = 0, at z=1.
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where Iy is the inertia of the base and T'(¢) is the torque applied to the hub.
In order to apply the Green’s method as described in section 3.3 to obtain
the deflection of the flexible robot, we first need to solve the eigenvalue problem
of equation (3.4.1)-(3.4.3). The general methods can be found in [52]. Posbergh
[63] applied spectral operator theory to carry out some rigorous analysis. For
the sake of brevity some useful results are listed here ( see [53] for details).
The dynamic equations are first put into the infinite-dimensional state-space

form

d
%s(t) = As(t) + Bu(t),

where s(t) are state variables, u(¢) are inputs. A and B are two abstract opera-
tors defined on some Hilbert space H.
R1: The operator A is a skew adjoint operator. |

R2: The spectrum of operator A is discrete and the characteristic equation is

Iyp?

(1 + cos(Bl)cosh(Bl)) — sin(Bl)cosh(Bl) + sinh(Bl)cos(Bl) =0 (3.4.4)

where the eigenvalues )\ are given by A2 = —%ﬁ“.
In general, there are a countably infinite number of § which satisfy this equation,

denoted by 8,, n=1,2,- .-, giving rise to a discrete set of eigenvalues.

Remark 3.4.1 If Iy = 0 (the hinged-free case), the equation(3.4.4) reduces to

sin(Brpl)cosh(B,l) = sinh(B,1)cos(B,1).

Remark 3.4.2 If Iy — oo (the cantilevered case), the equation(3.4.4) reduces

to

cos(Bpl)cosh(Bpl) = —1.
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R3: The associated eigenfunctions are orthonormal and have the following prop-

erties
w"(z) = EpfwiWn(x), 0<z<l, (3.4.5)
Iy
" . __td 2yx —
Wn (0) - EI wan (0)7 z 0
< Wn) Wm > = (sn,m
where the inner product defined on H is given by
! df (0) dg(0
0 dx dz

Next, we derive the Green’s function for equations (3.4.1)-(3.4.3). Since our
interest is to model the impact dynamics, we will set T'(¢) = 0 for all t.
Because {W,,}52, are orthonormal and form a complete basis of the Hilbert

space H, the solution of equation (3.4.1) can be expressed in the form [44]

y(@,t) = 3 Wi(@)Cult), (3.4.6)
k=0

where Cj(t) is the k™ modal coordinate. From equations (3.4.1) and (3.4.5),

Ce(t) +wiCi(t) = Wi()f (1),

s +Im)b(t) = o (3.4.7)

If we assume that the flexible robot is at rest before impact, the corresponding

initial conditions are zero, and the solution y(z,t) can be expressed as
t
y(z,t) = /0 G(z,z*;t — 1) f()dr (3.4.8)

where the Green’s function G is given by

stnwyt

G(z,(t) = 1?—031 Wi(2) Wi (C)-

W
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In order to apply theorems 2.4.2 and 2.4.3, we then need to show that the
Green’s function G(z,(;t) is uniformly bounded. Observe that from R2 we get
two boundary cases (hinged-free and cantilevered-beam case) as the inertia of
the base Iy approaches two extreme cases (0 and o), it is shown in Appendix
A.2 that the Green’s functions are uniformly bounded in the two cases. It is
possible to carry out similar analysis for the other cases, but we will not do so

here.

3.4.2 A smart actuator

Piezoelectric and magnetostrictive actuators are gaining increasing attention for
their potential use as positioners, motors, and vibration suppressors [54, 55].
They are anticipated to play a prominent role in high precision manufacturing
devices for optical instruments such as lasers and cameras, and high precision po-
sitioning in semiconductor chip manufacturing chip etc. They are being applied
already in high precision optical telescopes, cameras etc. [56, 57].

An actuator using piezoelectric and magnetostrictive materials is being de-
signed and fabricated by R. Venkataraman [58] as a part of a project on smart
structures technology with applications to rotorcraft systems at the University
of Maryland. A description of the actuator is shown in Figure 2.4, where a
piezoelectric stack and two magnetostrictive rods are electrically connected and
controlled by a single sinusoidal voltage signal v(t). During the electrical half
cycle the piezoelectric stack expands and clamps onto a disk, while the magne-
tostrictive rod pushes the clamp. The combined motion results in the rotation
of the disk. During the second half cycle the piezoelectric stack releases its hold

on the disk and the magnetostrictive actuators return to their initial positions.
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Clamp Piezoelectric stack
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4 Magnetostrictive rod
::o_J -
SN

Disk

Figure 3.4: A sketch of smart actuator

The speed rotation of the disk is regulated by the frequency of the power supply.
Phase angle relationships of the piezoelectric stack and magnetostrictive rods are
given in Figure 2.5. During the expansion of the piezoelectric stack, it collides
with the disk and an impact occurs. Proper modeling of such impact dynamics
is important because:

1). The impact force may become so large that it will shatter the materials.
The impact model described earlier in the chapter can be used to select materi-
als (clamp and disk) as well as to determine a proper impact velocity.

2). The impact duration is non-zero and finite, and this fact turns out to be very
important for design considerations. In simulations it has been found that the
average impact duration could be as high as 50 times the time step in adaptive-
step size numerical simulations which ignore this phenomena.

The disk and the clamp system is modeled as a spring-mass system as shown in

Figure 3.6. We assume that the Hertz law of impact is valid,
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Figure 3.5: The relationship of expansion and contraction
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Figure 3.6: Disk and clamp system.
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K[f@6)P=st)-w(),

(3.4.9)

where w (t) is the displacement of the disk at the point of contact, s () is the

displacement of the clamp under the contact force f (¢), and is given by,

3 (t) — 'Uclamp sin (wnclampt) + C’1‘/32.77/ (wnclampt)

Wy clamp MelampWn clamp

———— [ ) sinfuw (s~ 7)] dr

Wy clamp Melamp

where
Cr — de A. N,
! sel,
and w (t) is given by
Vdisk SI{Wgiskl 1 t
’LU(t) — disk ( disk ) + f h[w(t— 7_)] dT
Wisk Waisk Mdisk Y0
Waisk = Wndisk \/ 1 — &2
h(t) = e~ ndisk? gin (Wgien t)
where
1
Wn clamp —
Melamp
[ kaisk
Wndisk —
disk
dampg;sk
g = STk
2 Myisk

(3.4.10)

(3.4.11)

(3.4.12)

(3.4.13)

(3.4.14)

(3.4.15)

(3.4.16)

and Veemp, Vdisk are the initial velocities of the clamp and the disk. Equations

(3.4.9) through (3.4.11) give,

£ = (E (““)‘wndmmmp [ @) sinfutt ) ar

__ /Otf(T) h[w(t—'r)]d7>)3/2

Wdisk Mdisk
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where,

aft) = Velamp SI1 (Wn clampt) + C1V sin (wn clampt) _ Vdisk sin(wdiskt)u (

3.4.18)
Wy clamp MelampWn clamp Wiisk

The disk and clamp system is similar to the lumped-parameter structure we
discussed in section 2.2.1. Without much difficulty, we can show that the Green’s
function of this system satisfies the conditions of theorem 2.4.2 and 2.4.3. Hence,
the Hertz equation has a unique solution and the impact model is valid. The
numerical solutions of the impact model for the actuator will be given in the
next chapter. For simplicity, this dissertation has dealt solely with the case of
beam. Extensions of the method to multiple space dimensions e.g. plates, are

feasible.
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Chapter 4

NUMERICAL AND APPROXIMATION METHODS

In chapter three we used the Hertz law of impact to derive an impact model when
impact involves a flexible structure, and we also established the existence and
uniqueness of solutions of the Hertz equation. Unfortunately, this impact model
is nonlinear and does not admit a closed form solution. Hence, computational
aspects must be considered.

Inspired by the contraction mapping theorem, we develop a numerical method
using the successive Picard iterations: fy, Pfo, PPfo,- - - - - , where the initial
condition f, is obtained from the energy method, and P is a contraction operator.
Our experience is that this method is faster compared to the small-increment
method, more accurate than the energy method, and its convergence is very fast.

Although the methods ( small-increment method and energy method etc.)
could provide the numerical solutions to the Hertz equation, these methods share
some drawbacks, the main one is that parameter variations e.g. varying initial
velocities, demand a whole new computation of the numerical solution. Also, a
fairly large computational burden has to be incurred for each numerical solution.

We propose a method to alleviate this problem. Let us first observe from our

experience that the impact period is very short in general. Therefore, one may
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approximate the transfer functions of the systems to which the impacting bodies
belong by Taylor polynomials of low order. We explicitly carry out this compu-
tation in the cases of first and second order Taylor polynomial approximations.
We show that in the case of the first order approximation, there is a universal
ordinary differential equation that describes the impact behavior completely in
the sense that parameter variations only require proper rescaling of functions.
Therefore, one can numerically solve this equation beforehand, save the results,
and can use it to predict the impact behavior with only a minimal computational
burden. In the case of the second order approximation, there is a two parameters

family of ordinary differential equations that govern the impact behavior.

4.1 A Numerical Method

The energy method is simple and fast, although less accurate than the small-
increment method. Hence, the results obtained by the energy method can be
used as a good initial approximation.

Inspired by the contraction mapping theorem, we develop a numerical method
using the successive Picard iterations, fo, Pfo, PP fo, - , where the initial con-

dition fj is obtained from the energy method, and P is the contraction operator
defined by,

1 rt 3/2
PIO) = Wit — — [ fOL@ - nar] ,  vte T

Recall that the function L(t) is given by

L(t) = t+mG(z*;1).
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The successive approximations to a solution of (3.2.10) are given by
1 t 3/2
falt) = [vit — H/ far(DL(t — T)dr] , n=1,2,--- (4.1.1)
0
We take the initial condition f, to be the one given by (2.2.18). Closed form

solution of the first iteration is,

1 rt
Al = Wit - /0 foln)L(t — 7)dr]P?, vt € [0, Ty).
Ky 1
% . B ,
—KOZW,?(x*))\smwkt wkszn)\t]3/2. (4.1.2)

Pt wr(A2 — w})
It turns out that even this first approximation yields reasonable results in some

cases (see e.g. Figure 4.4).

4.2 Numerical Examples

We consider some impact examples involving a flexible structure; a simply sup-
ported beam on which a spherical body impacts at the center. Solution of the
Hertz equation depends on several parameters. The following two examples are
used to show how the impact force is affected by the approach velocity vy and
material properties, and these results give us some “feel” for the impact problem.

The model parameters used in the numerical simulations are given in Table 3.1.

Remark 4.2.1 The purpose of the first ezample is to address the question of how
the tmpact force is affected by the approach velocity. We use different approach
velocities while keeping the material properties fized. Force profiles are plotted in

Figure 4.1.
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my: mass of the impactor (steel ball) 0.2 kg
vp: velocity of impactor 0.1m/s
[ : length of the beam 1.0m
h: thickness of the beam 0.02 m
b: width of the beam 0.06 m

Table 4.1: Model parameters
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Figure 4.1: Impact forces by different velocities; material: aluminum

For a given pair of impacting objects the impact forces and impact durations
are determined by the approach velocity vy. Smaller vjs result in smaller impact
forces and longer impact durations, while the larger vjs result in greater impact
forces and shorter impact durations. The approach velocity vy is usually control-

lable in robotics applications. Hence, it can be effectively exploited in the control

design [59].

Remark 4.2.2 The second example illustrates how the impact force is affected
by material properties. We use three different materials typically used in robotics.

The approach velocity is fized and the impact force profiles are plotted. The fol-
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Figure 4.2: Impact forces using different materials; velocity: v = 0.1m/s

lowing conclusions can be drawn from Figure 4.2. For a given approach velocity
Vo, the force magnitudes and impact durations are determined by material prop-
erties of both objects. The softer material (aluminum) results in smaller impact
force and longer impact duration while the harder one (steel) results in greater
impact force and shorter impact duration. This relationship leads to the con-
cept of passive compliance. When the approach velocity cannot be controlled to
be arbitrarily small, the passive compliance can be introduced by the use of soft

contact surfaces (such as soft force sensors), thereby reducing the impact force

greatly [47].

4.2.1 A simply supported beam

We compare the three numerical methods discussed before. We consider a sim-
ply supported beam case for which parameters are given in Table 3.1. Impact
occurs at the center of the beam. Figure 4.3 shows the solutions obtained from
the energy method, the small-increment method and three iterations using the

solution obtained from the energy method as the initial data. We note that the
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Figure 4.3: Central impact on a simply supported beam

energy method yields a large error. In order to apply the Picard iteration method
to this case we need first to show that the Green’s function associated with this
case is uniformly bounded. Details are given in Appendix A.1. The result ob-
tained from three iterations is very good, and the computational complexity is

just 1/3 that of the small-increment method.

4.2.2 A cantilevered beam

In this example, we consider a cantilevered beam and the system parameters are
the same as in Table 3.1. Impact occurs at the tip of the beam. We see that
fairly large errors occurred by using the energy method. On the other hand,
the Piccard iteration method gives a good closed form result even after just one
iteration. Figure 4.4 also shows the fast convergence of this algorithm. Again,

the Green’s function for this case is uniformly bounded as proven in Appendix

A2.
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Figure 4.4: Tip impact on a cantilevered beam

Material Mass kg | Radius m | Velocity m/s
Body 1 | PhosphorBronze | 0.0114 00 0.03
Body 2 | Steel 1.044 0.05 -0.01

Table 4.2: Impact parameters of motor

4.2.3 A smart actuator

We now revist the example of a smart actuator discussed in chapter 2. A typical
impact force profile is given in Figure 4.5, which is useful in the design proce-
dures such as selecting materials etc. Venkataraman [58] has done extensively
numerical simulations, and found the results by small-increment method and
2-steps Piccard iteration method are essentially same but the computation of

the latter is just 1/4 of the former method.

4.3 Approximation Methods

Numerical data obtained from the impact model provides useful information

as illustrated above. These numerical methods share some drawbacks, one of
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Figure 4.5: Impact force profile

which is that each situation, e.g., resulting from varying initial velocities, has to
be numerically solved separately. Also, a fairly large computational burden is
incurred for each numerical solution.

Our objective in this section is to show that it is possible to take advantage
of the fact that the impact period is very short in general. Therefore, one may
approximate the transfer functions of the systems to which the impacting bodies
belong by Taylor polynomials of low order. We carry out this computation ex-
plicitly in the cases of first and second order Taylor polynomial approximations.
We show that in the case of the first order approximation there is a univer-
sal ordinary differential equation that describes the impact behavior completely.
Therefore, one can solve this equation numerically beforehand, save the results,
and use them to predict the impact behavior with only a minimal computational
burden. In the case of the second order approximation, there is a two-parameter

family of ordinary differential equations that govern the impact behavior.
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In order to motivate the problem, for the sake of simplicity, let us consider
two flexible bodies in linear motion as shown in Figure 4.6. This could be a
simplified model for a robot and a work-piece [43, 60], where m; is the mass of
the 3" body, ¢; and k; are the associated viscous frictional coefficient and stiffness
respectively, and u(t) is the control input (force). Let f(t) denote the impact

force between the bodies. The dynamical equations for the system during the

u) ————» | X

[ — >
| [

k1 | 1 k2

— AN — -
M 1 M 5 NN
sl 11
Cq C»o

Figure 4.6: A model of robot and workpiece

impact are:

myE1(t) + 121 (t) + kizi(t) = u(t) — f(B),

maZa(t) + coZa(t) + kaz2(t) = f(2). (4.3.1)
Without loss of generality, we assume that the approach velocity of the first

body just before contact is vy > 0 and that the second body is initially at rest.

The Hertz law of impact is assumed valid, i.e.
at) = K[f(t)]2/3. (4.3.2)

Let us assume that the external forces acting on the bodies are negligible in
comparison to the impact force. We can write the displacements of the bodies

as

na(t) = ho®) = [ (e =) f(r)ar,
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2(t) = /OthQ(t-T)f(T)dT. (43.3)

where ho(t) is a function of initial condition and hg(t) = vomyhy (). The Green’s

functions h; are given by

Wy

hi(t) = k—c—Z—e‘c"“"’tsin(wn/l—Cf t), (4.3.4)
iy1—¢

where 7 = 1,2 and w; and (; are defined by

k; C;
2 _ k] 2 —
w; = —, — = 2(;w;.
m; my;

Hence, the relative approach can be written as

aft) = haft) = [ (e =) f()dr = [ haft =) f ()
= o) - [ "Rt = 1) f(7)dr, (4.3.5)
where h(t) := hy(t) + ha(2).

Equations (4.3.2) - (4.3.5) lead to,

KUF@OR? = ho(t) — /()tﬁ(t—r)f(T)dT  (436)

If the Green’s function h(t) belongs to C*[0,T] (this condition is satisfied in

many applications), then A(t) can be expanded in the form of a Taylor series:

1
h(t) = kit + '21—'k2t2 + §k3t3 Foeree ; (4.3.7)

where the coefficients k; are determined by h(t) and are finite. Since the impact
duration is short, one can frequently approximate h(t) by its first or second order

Taylor polynomials very well.
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4.3.1 First-order approximation

The solution of nonlinear equation (4.3.6) can be greatly simplified if we use
the first-order approximation. Somewhat surprisingly, equation(4.3.6) renders
a universal ordinary differential equation (UODE) in this case. The first-order
approximations of functions ho(t) and h(t) are vet and kit respectively. By

plugging these approximations into equation (4.3.6) we obtain

¢

K[fOP® = wvot— /0 ki (t — 7)f (7)dr. (4.3.8)
Because the relative approach a(t) = K f?/3(t), replacing f(t) by a(t) in equation
(4.3.8) gives

alt) = vot— /Otkl(%)?»/z(t—T)oﬁ/?(T)dT. (4.3.9)

Differentiating equation (4.3.9) twice leads to,

dza(t) — 1 3/2,3/2
- = —hi(g) (). (4.3.10)

By our assumptions, the initial conditions are a(0) = 0, and &(0) = v,. Equation

(4.3.10) can be integrated once to obtain

do(t 4 1
(ﬂf — 02 = ——ky (=) (1). (4.3.11)

5 'K
From equation (4.3.11), the maximum relative approach, (i,q;, can be imme-
diately obtained by letting &(t) = 0, and the maximum impact force is easily

obtained from (4.3.2):

3/2,,2
Omae = [2T V025,
4 Ky
5 12
fmaz = (37" (4.3.12)
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Next, we show that equation (4.3.11) can be put into a universal form by scaling
both the time and magnitude of a(t). Let us introduce two new variables 8 and

T by
B(r) = Aa(t), t = pr, (4.3.13)

where 3 and 7 will play the roles of the dependent and the independent variables,
A and p are two constants to be determined shortly. It is easy to show that

dz(:) = )\ud‘zgt). Replacing o and t by the expressions in (4.3.13) we obtain from

(4.3.11)
LGN 2,2 2 4 5, /1 32 1 5/2
_ - __ —)3 . .3.14
(TGP = X = k() () (43.14)
Let us now choose A and u such that
22,2 4 59, (13
Nptvi=1,  cutki(g) JVA=1. (4.3.15)

Equation (4.3.14) now takes the universal form

d@(:) = 1B, (4.3.16)

subject to the initial condition #(0) = 0. This completes the construction. O

The universal ordinary differential equation (4.3.16) has a unique solution with
the given initial condition, and can be solved numerically. The result is plotted
in Figure 4.7. Once the solution of this equation is obtained, any impact prob-
lem can be solved immediately by using the following relation. From equation

(4.3.15), we can solve for A and p respectively:

4 k2 5., K3
5)21)3%]1/5, = [(Z)zm]w- (4.3.17)

A=
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Let Tmez be the time before the solution of (4.3.16) crosses the time axis once

again. Then the impact duration T for the original problem is

5., K3
T = UTmes = [(Z)2m]1/57mm. (4.3.18)

The impact force can be obtained from
5 v2

£(0) = (5280w =

i )P ). (4.3.19)

By scaling back the time from 7 to ¢, we can recover the actual force f(t). Let

Figure 4.7: Numerical solution of UODE

us apply this method to the system shown in Figure 4.6 for which the model and
impact parameters are given in Table 3.2.

Case A: The two impacting bodies are assumed to be made of steel. Figure
4.8 shows that the approximate solution is practically indistinguishable from the

exact solution (numerically computed with the small increment method).

Remark 4.3.1 The first-order approximation has an interesting physical inter-

pretation. Note that ky = (1/my + 1/my). This means that we treat the two
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2.0 kg

20.0 N.s/m
10* N/m
0.5kg

15 N.s/m
10* N/m
0.1m/s

Table 4.3: Model parameters of flexible bodies
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Figure 4.8: Solutions by 1;; order approximation and small-incre. methods: Case

A
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Figure 4.9: Solutions by 1,; order approximation and small-incre. methods: Case

B
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flexible bodies as if they were two single rigid bodies in free space. When the
impact duration is relatively large ( low-speed impact, softer materials contact-
ing etc.), the effects of other factors such as damping cannot be ignored. The

first-order approzrimation will introduce some errors.

Case B: For the purpose of comparison, we increased the damping coefficients ¢;
by a factor of 10. Results are shown in Figure 4.9. The solution obtained from
the first-order approximation now begins to deviate from the exact solution.

This motivates us to consider the development of a second order approximation.

4.3.2 Second-order approximation

The second-order approximation of the function h(t) is kit + 3kot?, where ki #
0, k; # 0, and the approximation of ho(t) is vt + %k0t2. We substitute these

approximations into the nonlinear equation (4.3.6):
2/3 Lo [ 1 2
KIFOP® = vt + shot? - /0 [ku(t = 7) + halt = )71/ ()dr. (4.3.20)

Using the relation (4.3.2), replace f(-) by a(-),

1 t 1 1
ot) = wot+kot? = [ (ZVV2lkalt = 7) + shalt = )02 (r)dr.
Hence we obtain
d*a(t) _ 3. da(t) ' 3/2

ar = —Ekl a(t)T - k2a(t) y (4321)
where, k| = ki(%)¥?%, and kj = ky(%)%2.
Let us introduce two new variables:

B(r) = Aa(t), t = ur. (4.3.22)
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From equation (4.3.21) we obtain,

d*B(r) 3.
dr3 = _"lu’s)‘[_kl

LIPT) kg sy

)32, 3.
\/—ﬂ( ) (4.3.23)

B(r )/A
_ 34 dﬂ
= k1\/_,/

Let us first assume that k; > 0, and choose the parameters A and p such that

3k’ \’;_ =1 K \’;_ =1 (4.3.24)

Equation (4.3.23) now becomes a universal differential equation

d38(7) )
3 = —\/B(r )32, (4.3.25)

with the initial conditions given by

dﬂ( )

d2ﬂ( )

B(0) = 0; lrmo = Ao = Y15 ——5=|r=0 = A’ko = 2. (4.3.26)

Hence, we have a universal ordinary differential equation (4.3.25), and a two-
parameter family of initial data, parameterized by v, and ~s.
Equation (4.3.24) can be solved for u and A respectively:
3ky 3k )= 3.5k

'u=§k_§__2_E’ —(5) %ﬁ-
kJS 3 klﬁ
Y= ( ) Y m= (2) W —ko. (4.3.27)
Remark 4.3.2 When ky < 0, let szj/—a- —1. By the same procedure, we obtain

the universal differential equation

PB(r) _ _ pz=db(r) ,
2 = B0 4 (), (43.28)

with the same initial conditions (4.3.26), where the parameters are,

3k _ 3k, _ B,k

uz—ak_z__ﬁk;? (2) k,/27
3 4k 3, k8
’yl = (2) ]i?l3 07 72 = (2) k}4k0 (4329)
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Once again, the universal differential equation (4.3.25) with two-parameter v,
and 7, can be solved numerically. A table can be created to store the results
with different v; and 2, and any impact problem can be immediately solved by
using data from the table. Obviously, higher-order approximations may increase
the accuracy, but only at the expense of computational load. Let us apply the
second-order approximation to the above examples.

Case C: For the purpose of comparison, we increased the damping coefficients ¢;
by a factor of 50 . It is clear that ky = —(c;/m? + ca/m2) < 0; For the given
model parameters, a table is generated with two variables v; and ~,. It is seen
in Figure 4.10 that the result obtained by using the second order approximation
agrees with true results to a high degree of accuracy.

In summary, an approximation method has been developed for the analysis of

r 600 T T T T
e <~ T~a———— First-order approx.
’
g , N
,2 500 /. -—-———— Second-order approx.
L . N i
g . N Small-inc. method
Pd gy N\ \
S / 4 \ \
g / %\
400} // N
/ .
/ N\
/ \
\
/ \]
300 / YA
Y
\\ \
\
.\
200 \ \ 7
\, \
\3
v\
100} W\
\ \
N\
N\
N
0 ) . A .
0 0.5 1 15 2 25

time(sec. x10*)

Figure 4.10: Solutions by 1,; and 2,4 order approximation and small-incre. meth-

ods
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dynamics of flexible bodies undergoing impact. The first-order approximation
yields a special function which can be used for analytical and computational
purposes. This approximation seems to give results which are very close to the
exact solutions. A second order approximation was developed as well, and it
leads to a two parameter family of ordinary differential equations of which the

solutions contain universal features of impact problems.

68



Chapter 5

NONLINEAR OPTIMAL CONTROL OF IMPACT
FORCES

In this chapter, we study some control issues of impact dynamics. We will study
a control problem where a linear system is subjected to a series of impact forces.
The impact forces are treated as disturbances to the system and modeled as
finite duration events using the theory developed in chapters 3 and 4. Among the
motivating factors is the need to study the control problems related to mechanical
systems subject to impact forces, e.g., active control of the suspension system
of a vehicle against irregularities of the road, stabilization of an antenna on
the space station subject to impact from space debris, or active damping of
vibrations of flexible structures caused by impact forces [10, 17]. A reasonable
control objective in all these problems is to design a stabilizing controller to
minimize the effects from the disturbances to the controlled outputs in some
sense. This problem in turn can be studied in the framework of H., control
theory.

An important paradigm in control synthesis is the H,, control problem in-
troduced by Zames [18]. In this formulation the disturbances belong to a ball

in a certain function space, and a quadratic cost function is minimized for the
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worst disturbance in this set. Various theories of H,, control problems for linear
systems have been developed so far by many researchers [19, 20, 21, 22, 23].
Solutions to these problems can be obtained via frequency domain methods, or
recently developed state-space methods.

Recently, several researchers have attempted to extend the H, control the-
ory to the case of nonlinear systems. Ball and Helton [25, 26], from a viewpoint
of operator theory, discussed H,, control theory of nonlinear systems for the
first time. Basar and Isidori [27, 28] have connected the Hy, control theory of
nonlinear systems with dynamic game theory. In this setting, one is naturally
led to a nonlinear partial differential equation known as the I'saacs equation. A
straightforward application of the theory (see e.g., [29]) to the case of a plant
modeled by an affine nonlinear system shows that once a solution of the ap-
propriate Isaacs equation is found, a (full-information) feedback law providing
disturbance attenuation (in the sense of the L, gain) can be computed right away.
Van der Schaft [30, 31] analyzed the relation of the L, gain between nonlinear
systems and their linearization, and gave a sufficient condition for the existence
of smooth H,, state feedback. In addition, using the dissipative system theory
[32, 33], Van der Schaft has discussed the relation between the L, gain and the
Hamilton-Jacobi equation in [34].

The disturbance attenuation of impact forces is a nonlinear control problem
due to the nonlinearity of the impact model, which is different from the prob-
lems discussed in [36, 34, 35]. It is not affine in the disturbance input, and
the linearization around the equilibrium does not exist. Hence this nonlinear
problem cannot be solved by the above proposed methods, but some analysis

can be carried over to this problem. Our approach is based on dynamic game
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theory [27, 29]. In this setting, the control problem naturally becomes a mini-
max optimization problem of a cost function L(u,v) with two players, where u
is the control and v is the disturbance. Roughly speaking, the player u tries to
minimize L(u,v) over U, while the player v tries to maximize L(u,v) in V si-
multaneously, where U, V' are the constraint sets of u and v respectively. [27, 29)
show that the (sub)optimal disturbance attenuation problem has a solution for
a given v > 0 if the minimax optimization problem admits a saddle point. We
show that, due to the nature of impact dynamics, the saddle point may not
exist in this control problem. Motivated by the dynamic game approach, if the
information of the disturbance v is assumed to be known a priori (e.g., sensors
can predict the impact velocity before impact), one can seek an optimal strategy
by using this information such that a certain attenuation level v is achieved. A
procedure is given to compute the optimal strategy u(v), and the optimal at-
tenuation level v*. Finally, by taking advantage of the fact that the duration of
each impact force is usually very short, we derive a series of approximation mod-
els for the original nonlinear system. We show that the higher order terms are
negligible, hence a special linearization of the nonlinear system can be obtained
by using the leading term as an approximation. Thus the nonlinear problem can
be approximated by a linear one. The complete analysis and the solution of this

linear control problem are discussed in detail in the next chapter.
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5.1 Dynamic equation

Let [y denote the Hilbert space of square-summable complex-valued sequences

{zk, k > 0} with the norm defined by

o ¢]
[zl = (X o). (5.1.1)
k=0

Let Lo denotes the Hilbert space of all complex-valued Lebesque measurable
functions z(t) defined on [0,00) with the property that |z|? is Lebesque inte-

grable. The norm is defined by

lallza := ([ lla(®)|ae)"" (512)

For simplicity, we consider a single-input and single-output (SISO) linear system
subject to a series of impact forces, occurring at constant time intervals kTp, k =
0,1,2,¢---. , Ty > 0. The analysis and theories developed here can be easily
extended to MIMO systems and some nonlinear systems. We further assume
that a state-space form of the SISO system is given by
N
£(t) = Az(t) + Biu(t) + B2 D f(vk,t — kTp) (5.1.3)
k=0
where z € R™ are state variables, A, By, By are constant matrices with appro-
priate dimensions, N > 0 is a finite integer, andf (vg, t — kTp) is the impact force
generated by the k** impact, which is parameterized by the variable v;. We
assume that |vg| < M,k =1,2,------ N for some finite number M > 0. The
function f(vg,t — kTp) is a causal nonlinear function derived from the Hertz law
of impact, which is given by

K[f (e t — kT)P® = we(t — kTp) — /k; Gt — 7)f(vs,7), t> KTh

fut—kTy) = 0, Vt< kTp. (5.1.4)
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where G(t) is the Green’s function of the system and is assumed to be known.
Since there is no closed-form solution to the nonlinear model (5.1.4) in general,
and various numerical methods to solve this nonlinear equation are developed
in chapter 3. It is easy to show that if v € Iy, then impact forces p_, f (v, t —
kTy) € Ls.

5.2 Formulation of the control problem

In this subsection, we formulate a nonlinear optimal control problem by speci-

fying a control objective and stating the general assumptions.

5.2.1 The L, gain of a nonlinear system

Let us consider the system

z(t) = Az(t)+ Biu(t) + B, f: f (v, t — kTp)
k=0

z(t) = Cz(t) + Du(t) (5.2.1)
where z(t) is the controlled output vector, and C, D are constant matrices of
appropriate dimension. If we treat the impact forces as disturbances to the
system (5.2.1), a nonlinear Hy, control problem for disturbance attenuation can
be formulated. A word concerning terminology is certainly in order here, because
the H,, norm is defined as a norm on transfer matrices and hence does not
directly generalize to nonlinear systems. However, when translated to the time-
domain, the H, norm is none other than the Ls-induced operator norm from the
input-output viewpoint. This latter norm is extended to the nonlinear setting

by specifying that the gain should not exceed a prespecified limit.
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Definition 5.2.1 Let v > 0. System (5.2.1) is said to have Ly gain less than

or equal to vy if

T 2 A
JRECIELD (5.2.2)
0 k=0
for all T >0 and all ©N_,v? < 0o, subject to the initial condition z(0) = 0.

Now let v > 0 be a fixed number. Then in the standard nonlinear H, (sub) op-
timal control problem (for disturbance attenuation level ) one seeks a feedback
controller u such that the closed-loop system has L, gain less than or equal to
v, i.e., such that inequality (5.2.2) holds. In a dynamic game setting, the cost

function is defined as

Ly(wo) = [ =01 = ok (5.2

The requirement that the L, gain does not exceed to vy is equivalent to existence

of a saddle point (u*,v*) for the dynamic game

L,(u*,v) < L,(u*,v") < L,(u,v"),

and L,(u",v*) < 0. (5.2.4)

5.3 Main results

Before we study the nonlinear control problem, it is necessary to make some
simplifications. Since the impact force f(vg,t — kTp),k = 0,1,2,------ N has
no closed-form expression in general, it is impossible to analyze and solve the

control problem (5.2.1)-(5.2.2) explicitly.

74



5.3.1 An approximation method

In chapter 4, we developed first-order and second-order approximations for im-
pact force functions. The first-order approximation is governed by a universal
differential equation and it essentially captures all features of impact dynamics.
We use the first-order approximation to replace f(vg,t — kTp). To be explicit,

let us take £ = 0. Now f(vp,t) is given by the equation
f(vo,t) = (1/K)*203%(uy, t) (5.3.1)

where K > 0 is a constant which depends on the local geometry of the region of

contact and the material properties of the contacting bodies. In general K << 1,

and
1
a(vo, ) = B(t/7), (5.3.2)
where A and u are given by
N L W T O T (5:33)
5" vgK3 4’ yok? e

In (5.3.3), k; is a constant and 3(r) is governed by the universal differential

equation

dfi(:) = /1= B2, B0) = 0. (5.3.4)
From equations (5.3.2)-(5.3.3), we have
oo, ) = 30(t/u) = 3od'°Boudl*s), (5.3.5)

where the constant b is given by

4,8

b=[(z) K3]1/5. (5.3.6)
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Since K << 1, it follows that b >> 1. Here the constant b can be thought of
as an indicator of the time scale of impact dynamics. By plugging a(vo,t) into

equation (5.3.1), we finally arrive at
F(vo,t) = (1/K)*2a® (g, t) = avd/r (bul/°t) (5.3.7)

where r(-) = §%2() is called the normalized force. Numerica] solutions of B(7)

and 7(7) are given in Figure 5.1. By using the first-order approximation, the

Figure 5.1: Numerical solutions of 3(7) and r(r)

nonlinear system (5.2.1) becomes

N
£(t) = Az(t)+ Buu(t)+ By Y, avg/sr(bv;/s(t — kTy))
k=0
z(t) = Cz(t) + Du(t). (5.3.8)
The equation (5.3.8) has a simpler form than (5.2.1), but it is still too compli-

cated to analyze. Next, we show that it is possible to take advantage of the

fact that the impact period is very short in general. Therefore, one may further
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approximate the nonlinear system (5.3.8) by Taylor polynomials of low order. In
order to motivate our approach, let us consider a simple example. For a scalar

linear system subjected to a single impact with velocity vy, we obtain
£(t) = ay(t) + byvdPr(bvy’*t), z(0) = 0. (5.3.9)
where ay, by are constants. z(t) can be solved explicitly to obtain,
z(t) = et /Ot e‘“17b1v3/5r(bvé/57')d7', t>0. (5.3.10)
Let us perform time-scaling by defining

buy/°r = 0. (5.3.11)

Then z(t) in (5.3.10) becomes

/%t —tlo
z(t) = e‘“t/ e ;(1:73 bivd/® 1/57“(0)da
0 by
by bv(l)/St —;'1%0'
= e‘“t?vo/ e " r(o)do. (5.3.12)
0
-
Expanding e *"  in the form of a Taylor series, we have
g
—%_, 1 2
L N o2 : (5.3.13)

— o4+ ——2 0
bvé/5 2! (bvé/s)2
where a; is the time constant for the system (5.3.9). A series of approximate

models is given as

o) = et [ I S ¥
— il o __—O' ------ o'
b °Jo bvé/5
= enthuo8; (bug'°t) — ¥t yuy! Gy (bug/*t) + -+ - -+ ,  (5.3.149)

where 6,(t) and 6(t) are given by

0.(t) = /Otr(a)da, o) = [ ' or(0)do (5.3.15)
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ﬂk

8, (bvy"°t)

(= J

Tmax

Figure 5.2: Plot of nonlinear function 6 (¢)

Since impact dynamics is much faster than system dynamics in general, we have
% << 1. Thus we can often approximate xz(t) by low order terms very well.
Let Tynqey be the time before the solution of equation (5.3.4) crosses the time axis
once again (see Figure 5.1) and Tynop = Tinaz/ (bvé/ 5), define the constants 6; 6,

as
0, = /Tmam r(o)do, 0, = /me or(o)do (5.3.16)
0 0
A plot of 01(bvé/ °1) is given in Figure 5.2.

Remark 5.3.1 Since 0 < Tree << 1, the slope of 01(bv3/5t) is very sharp.
Notice that vo0l(bv(1,/ ) = 0,Vt > 0 if vo = 0. We can approzimate the function

Vo0 (bvé/St) by voby very well.
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5.3.2 A nonlinear control problem

We now consider the following infinite horizon nonlinear problem with zero initial

condition:

i(t) = Az(t) + Byu(t) + By i‘ av®Pr (bvy (¢ — kTp))
At) = Ca(t)+Dut), (5.3.17)

where the cost function

Ty(uyv) = [ llelfidt =721l (5:3.18)

for a given v > 0. For simplicity, let w(t) = SN, av/°r(bup*(t — kTp)).

In view of the definition of L, gain, for a given v > 0, we want to find a
feedback control u such that J,(u,v) < 0, Vv € V. It is easy to show [27, 29]
that this condition is equivalent to the fact that a dynamic game admits the

following saddle point,

Ly(u*,v) < L(u*,v*) < Ly(u,v%),

and L.(u*,v*) < 0. (5.3.19)

In this control problem, the saddle point (u*,v*) of the dynamic game may not
exist due to the nonlinearity of impact dynamics, hence it cannot be solved by
the standard approaches [27, 29]. Motivated by the condition (5.3.19), we con-

sider a related optimal control problem.
Impact control problem:

Let us assume that the disturbance v is known a priori. We want to use this

information to design an optimal strategy u(v) such that a certain disturbance
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attenuation level v > 0 can be achieved, i.e., the following inequality holds for

aly eV,
L, (u(v),v) <0. (5.3.20)

A sample problem of this type is to stabilize an antenna on a space station
subject to impact from space debris, where we assume that the debris coming
within a certain distance is measurable and are modeled as a sequence of events.

Towards this end, we consider the following max-min optimization problem

max min Jy(u,v) (5.3.21)

under the constraint (5.3.17).

Remark 5.3.2 The maz-min optimization problem is much easier to solve than
the minimaz problem. For a given v, the minimization problem with respect
to u can be solved by the standard optimal control theory. The cost function
Jy(u(v),v) can be explicitly evaluated by using the above approzimation method.
The cost function J,(u(v),v) is a nonlinear function of v. Sincev € V and V is

a compact set, the mazimization problem with respect to v always has a solution.

We assume that the state variables are available and the disturbance v is known

a priori. The following standard assumptions are made:
Al) (A, By) and (A, B,) are stabilizable, and (C, A) is detectable.
A2) D'[C D]=10 I].

Theorem 5.3.1 Let the pair (4, D) be a solution of the maz-min problem
(5.8.21) under the constraint (5.8.17). If the cost function J,(4,9) < 0 for a
given v > 0, then the inequality (5.3.20) holds for all v € V and the optimal

strategy is given by the solution of the minimization problem min, J,(u,v).
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Proof: Let u(v) denote the solution of the minimization problem of J.,(u,v), so
that v becomes the only variable of the function J,(u(v),v). Let O be the solution
of the mazimization problem of J,(u(v),v) under constraint V. Then by the

assumption, we have the following inequality
Jy(u(v),v) < J,(4,9) <0 (5.3.22)
where 4 = u(0). a

Now we discuss the problem of computing the optimal control strategy u(v). For

a given v, the Hamiltanion of (5.3.17)-(5.3.18) is given by
1
H(z,u,p) = §(x'C"C':L‘ + u'u) + p'(Az + Byu + Baw). (5.3.23)

The minimum principle now yields

H

The state and adjoint equations are given by

i = %p“’p) — Az — B.B\p + Byw

5 = _5H_(9gg;“_ﬂ — —A'p—C'Cx (5.3.25)

x A —BlBi T B2

d/dt = + w

p —cici -4 || 0

T
= H + Pw, t>0 (5.3.26)

P

Note for t > (N + 1)Tp, w(t) = 0, and we have the 2n x 2n Hamiltanion system

x A —B1 B} x
d/dt = , 1> (N+ 1T, (5.3.27)
P -Ccic;, A P
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The algebraic Riccati equation associated with (5.3.27) is
AQ+QA-Q@'BBiQ+C'C=0. (5.3.28)

The Riccati equation admits a unique solution @ = @' > 0 by assumption Al)
and the LQG theory. It is easy to show that p((N + 1)Tp) = Qz((N + 1)Ty).
The linear system (5.3.26) can be solved in backward time with initial condition

[z((N +1)To) p((N +1)To)]',

z(t) —  HU—(N+1)Tv) 2(N + 1)) (5.3.29)
(%) p((N +1)Tp)

t
+eflt /(N & PR, 0SS (N4 1T,
+1)To

We then apply the approximation method developed in section 4.3.1 to simplify

1 _gr
expression (5.3.29). A Taylor expansion of the function e b s given as
~-1l_g
173 T 1 1 1 9 9
e by :I_W T+2|WHT MR (5330)
k k

The following integral can be written as a series,

t N
/ e~ HTPuw(r)dr = 3 (Pbyugy (bvl/(t — kTv))
0 k=0

—HPbyvu*0,(bv}%(t — kTg)) + -« - ), (5.3.31)

and
(N+DTo N _ /57
/0 e~ B Pu(r)dr = 3 (Pbyvify — HPby%8y +----+2),  (5.3.32)
k=0
Note that

t t (N+1)To
/ e 5T Pw(7)dr =/ e H7 Pw(r)dr —/ e H™ Pw(r)dr (5.3.33)
(N+1)To 0 0

We can explicitly express z((N + 1)Tp) as a function of v by using equations

(5.3.29), (5.3.32) and the initial condition z(0) = 0. Once an expression for
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z((N +1)Ty) is obtained, z(t) and p(t) can be expressed as functions of v during
the interval [0, (N + 1)T]. For simplicity, let

z(t) = fi(t,v), p(t) = fa(t,v), 0 <t < (N +1)T,. (5.3.34)

where f; and f, are two nonlinear functions of v in general. Thus the optimal

strategy u(v) is given by

—Bi f>(t,v), 0<t<(N+1)T
u(t) = —Bip(t) = (5.3.35)
—-B1Qz(t), t>(N+1)Tp
By LQG theory, the control strategy u(t) asymptotically stabilizes the closed-
loop system.
Once the expressions for p(t), z(t), and ((N +1)Tp) over the interval [0, (N+

1)Tp] are obtained , the cost function of [;° ||z||3d¢ can be easily evaluated as
[ el = [ Ol + el [T O+ 3 (5.3.36)
= T u z u 3.
o 102 0 2 2 (N+1)To 2 2

Let us denote the first integral as fi" "™ ||Cx|[Z+||u||2dt = g1(v) > 0, and from
the LQG theory the second integral can be expressed as z((N + 1)T,)'Qz((N +

1)Ty) = g2(v) > 0. Now the total cost function becomes

Jy(v,u(v)) = 6:1(v) + g2(v) — V*|Ivll;,- (5.3.37)

The maximization problem max, J,(v,u(v)) can be solved for a given v under
constraint V. Observe that the function J, (¥, a) decreases monotonically as y
increases, hence we can always find a vy such that J,(9,4) < 0. The minimal ~*

such that J,(9,4) < 0 is called the optimal disturbance attenuation level.

83




In order to illustrate the procedure, let us take a scalar linear system sub-
jected to a single impact:
&(t) = 2a(t) + u(t) + avd5r (bvl/®t), (5.3.38)
where vy is a variable vy € [0, 0.1]. The cost function is defined as

Jy(u, vo) = /0 (z + u)?dt — y*02. (5.3.39)

Now we follow the above procedures to compute the optimal strategy u(v) and

optimal attenuation level v*, we have

1
H(z,u,p) = 5("’” +u)® + p[22(t) + u(t) + avg/sr(bv(l)/st)]
0H .
— = (=u*= —p—zx
ou X
H(x’ u*ap) = §p2 + p[x(t) —p+ a’lfg/s?"(bvé/st)]
: 0H
P= "% ~7F (5.3.40)

Without loss of any generality, let T; = 1. It is easy to obtain p(1) = 2z(1) from
equations (5.3.40). Thus

p(t) = 2¢7¢Da(1),

8
~~
o~
=
H

t
etz (1) +/ e TavdPr(bvy°r),0 < t < 1. (5.3.41)
1

Since z(0) = 0, we have
1
z(l) = e—l/ e "avy°r (buy/° 7). (5.3.42)
0
First-order and second-order approximations are considered here for the purpose

of comparison. The first-order approximation yields

zi(l) = e—1%671110,
n() = 26_t%él’vo- (5.3.43)
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a b

steel 9918.555 | 7934.8442

aluminum | 308.8 247.044

rubber 20.7873 | 16.63

Table 5.1: Impact parameters

and the total cost function is

a2

I (u,vo) = /0 (z + u)?dt — y*v2 = 2b2 0202 — y2v2. (5.3.44)
The second-order approximation yields
a = a -~
1}2(1) = 6_1(301110 - b—202’l)g/5
4,0 a -
pz(t) = 2e t(zal’vo - b—20203/5)
a - a -
J2(u,v9) = 2(3011)0 - b—202vg/5)2 — v (5.3.45)

The parameters a, b are determined by the local geometry of the region of contact
and the material properties of contacting bodies. In order to show that the
approximation is valid for a large range of applications, we select three materials:
steel, aluminum and rubber. They are representatives of a hard, medium and

soft material. The parameters are given in Table 5.1.

Casel: Steel.

Ji(u,v9) = 9.680° — %0} (5.3.46)

J2(u,v9) = 9.68v2 — 1.6 x 10740® + 3.2 x 107v%® — %2 (5.3.47)

Let v* be defined as the optimal attenuation level. The equation (5.3.46) rep-
resents the leading term approximation and equation (5.3.47) represents the

second-order approximation. The optimal attenuation levels of (5.3.46) and
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(5.3.47) are computed as v = 3.111, v5 = 3.111 respectively.

Case2: Aluminum.

Jr(u,v0) = 9.68v° — ¥*vj (5.3.48)

J2(u,v9) = 9.68v% — 0.1170%5 + 3.3 x 107485 — 4% (5.3.49)

The optimal attenuation levels of (5.3.48) and (5.3.49) are computed as v} =
3.111, v5 = 3.08 respectively.
Case3: Rubber.

Jy(u,v) = 9.680% — y%0] (5.3.50)

J2(u,v9) = 9.68v — 1.780%% 4 0.0540%% — 42?2 5.3.51
0 0

The optimal attenuation levels of (5.3.50) and (5.3.51) are v§ = 3.111, 7§ = 2.641

respectively.

Remark 5.3.3 For the hard and medium impact objects, the accuracy of the
leading term approximation is almost the same as for the second-order approzi-
mation, and the accuracy of the second-order approximation is improved by ap-
prozimately 15% for soft impact materials. Hence the following conclusion can be
drawn: For impact problems involving hard and medium materials which consists
of a large part of the applications we discussed before, the leading term of the
Taylor series provides a very good approximation. From the remark 4.8.1, this
approzimation basically renders a linear system. For impact problems involving
soft materials and low velocity, we need to keep the higher order term in order

to obtain better approzimations and need to solve the nonlinear problem directly.

In the cases where the leading term is sufficient, the impact control problem is
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Definition 6.3.2 [62] An eigenvalue A of ¥(T,0) is said to be (A(t), B(t)) un-

controllable if there exists an n-dimensional vector n # 0 such that

U(T,0)'n = Ap

B'U(t,0)n 0, Vtelo,T)].

(6.3.5)

(6.3.6)

Remark 6.3.3 The pair (A(t), B(t)) is said to be stabilizable if and only if all

the eigenvalues A of U(T,0) such that |A\| > 1 are (A(t), B(t)) controllable.

Let ®(t,7) defined in (6.2.11) be partitioned into four n x n matrices as follows,

B(t7) = Oy (t,7) P1a(t,7)
<I>21(t,7) @22(t,7')

Obviously ®(t,7) has the property for all ¢ and T,
St+T,7+T) = O(¢,7).

Lemma 6.3.1 The eigenvalues of ®(t + T, t) are independent of ¢.

Proof: Without loss generality, we assume t € (0,T). By definition,
dt+T,t) = @git+T,THFOH(T,t)
= ®y(t,0MFoy(T,t)
= &7 (T, t)®u(T,0")Foy(T, 1)

= (T, t)®(T,0)2u(T,1).

Thus, the eigenvalues of ®(t + T,t) are independent of t.

(6.3.7)

(6.3.8)

O

The hybrid state transition matrix ®(¢ + T, t) displays same properties familiar

with periodic systems. Hence we may expect that there exists a periodic solu-

tion of equations (6.2.1)-(6.2.2). For simplicity, we will assume that the matrix
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®(T,0) has distinct eigenvalues. Let A be the corresponding diagonal Jordan

form such that
S7H0)®(T,0)S(0) = A, (6.3.9)

where the matrix S(0) is composed of eigenvectors of ®(T, 0). It should be noted
that the derivation of results can be applied to the case of multiple eigenvalues

with minor modifications. Now partition S(0) into four n x n matrices
5(0) = (6.3.10)

and partition A similarly. Then equation (6.3.9) can be written as,

©1(T,0) 212(T,0) || Y(0) V(0) Y(0) V(0) || At

= (6.3.11)
@y, (T,0) D52(T,0) || X(0) U(0) X(0) U(0) 0 A,
where A; is an n X n diagonal matrix,

Ay = diag{\, -+ y Ant (6.3.12)
and {Ag,------ , An } are n of the 2n eigenvalues of ®(7',0). Let us define a 2n X 2n
matrix S(¢) for ¢ > 0 by

S(t) = @(t,0)5(0). (6.3.13)
Again, partition S(t) as follows,
Y(i) V(¢
S(t) = ® v (6.3.14)
X&) U®)

Lemma 6.3.2 The equation ®(t + T,t)S(t) = S(¢t)A holds for all t > 0.
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Proof:
Ot +T,t)S(t) = t+T,T)8(T,1)S(¢)
= ®(t0)9(T,t)®(t,0)S(0)

= &(¢,0)®(T,0)S(0)

= S@)A
Thus,
®(t+T,1)S(t) = S(A, Vt>0. (6.3.15)
O
It is easy to show that the following equation also holds,
4SO _ me, 14T,
dt
Stt) = FS@t), t=4T,i=0,1,2,------ , (6.3.16)

Yy
Theorem 6.3.1 Let A be an eigenvalue of ®(¢,7) and be the correspond-

x
. -z |
ing eigenvector. Then A~ is also an eigenvalue of ®(t,7) and is the
Y
eigenvector of ®(t,7) associated with A71.
Proof: Define a 2n x 2n symplectic matriz
0 I
J = (6.3.17)
-1 0

Since H 1s a Hamiltonian matriz and F is a symplectic matriz, we have the

following equations,

HJ+JH = 0,

99



F'JF = J.
On the other hand,
%[@(t, YDt 7)] = B(t, ) [HJ + JH]B(2, ) = 0.
The possible initial conditions are

&(r,7)J®(r,7) = J, T #1T,

o(rt,7)J®(rt,7) = FJF=J, 1=l
Hence,

O(t,7)JO(t,7) = J, Vi, T

(6.3.18)

(6.3.19)

(6.3.20)

(6.3.21)

Equation (6.3.21)shows that ®(t, ) is non-singular for all t and T implying that

none of the eigenvalues of ®(t, ) vanishes. Let,

O(t, 7) = A

- —z
o (t, ) o) | =ar| Y =
y r T )
Hence,
—x —x
o(t, 1) =1
y )

Therefore, if X is an eigenvalue of ®(t, ), then so is A7 .
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6.3.2 Parameterization of periodic solutions with jump

The following theorem gives a parameterization of all periodic solutions of equa-

tions (6.2.1)-(6.2.2) in terms of X (¢) and Y(¢) defined in equation (6.3.14).

Theorem 6.3.2 Suppose Y (t) defined in equation (6.3.14) is non-singular for
allt € [0,T). Then P(t) given by

Pt) = X@)Y(®)™, t>0 (6.3.24)

is a periodic solution of equation (6.2.1) and (6.2.2).

Proof:
St+T) = &(t+7T,0)5(0)
= ®(t+T,t)%(¢,0)5(0)
= S@)A
Therefore,
Ye+T) = Y() Ay, t2>0. (6.3.25)
Xt+T) X(t)

Pt) = XO)Y®) 1 -X@Y @)Y @)Y (@®)?
= [CICY(R) - AXO)YER) ™ - XY ()!
[AY (t) - BB X (t)]Y ()
= —A'P(t) - P(t)A+ P(t)B.B{P(t) — C;Cy
P(07) = X(0N)Y (o)~
= X(0)[Y(0) =y B2 By X (0)] ™"

= P(0)[I =y ?ByB,P(0)] " (6.3.26)
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It is easy to show that P(0%) satisfies equation (6.2.2). Thus P(t) satisfies
equations (6.2.1) and (6.2.2). It is periodic because from (6.8.25),

Pt+T)=Xt+T)Y(t+T) ' = XOMY®)A]™ =Pt). (6.3.27)

a

6.3.3 Analysis of periodic solutions with jumps

The following Lemmas(4.3)-(4.6) characterize the properties of a solution P(t)

that depend on the choice of n eigenvalues Ay, ---- - A for A;. Let
Q) = Y(@)X(), (6.3.28)
Q) = Y@)'X(@), (6.3.29)

where * is used to denote the complex conjugate transpose.

Lemma 6.3.3 If \! # )\]71 for all i,7,1 < 14,5 < n, then Q(t) is Hermitian and

A

Q(t) is symmetric.
Proof: Let z;(t) and y;(t) be the i** columns of X (t) and Y (t) respectively, and

also let

The ij—element w;;(t) of Q(t) is then described as

wij(t) = y; (H)z;(t) (6.3.30)
and hence

wii(t) — wi(t) = 2 (t)Jz(t) (6.3.31)
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Noting that A} — /\j_1 # 0, equations (6.8.15) and (6.8.21) leads to,

wig(t) —wi() = (O = A THINZ ()2 (1) — A2 (8) T2 (1)

= (N - @O@RE+T, )T — IOt + T, ))2(t)

= 0. (6.3.32)
The proof that CU(t) is symmetric is analogous to above. O

Lemma 6.3.4 Assume that |Y (¢)| # 0 for all t € [0,T]. If A} # A7 and
Ai # )\j_l for all4,5,1 < 4,5 < n, then P(t) defined by equation (6.3.24) is real.

Proof: Under the assumptions, P(t) can be rewritten as,

Pt) = XY@

= (YOVQ®)Y@®)™ (6.3.33)

By Lemma (6.8.8), Q(t) and Q(t) are Hermitian and symmetric respectively.
Equation (6.8.83) then shows that P(t) is Hermitian as well as symmetric. Thus

P(t) is a real matriz. O

Lemma 6.3.5 Suppose that (A, By) is controllable and (Cy, A) is observable. If
M| <1 foralli=1,2,------ n, then Q(t) is positive definite.
Proof: Let k=0,1,2,------

Y (1)
Uk) = A¥ (6.3.34)
X(t)
then from equation (6.3.15)
Uk+1) = (t+T,t)U(k). (6.3.35)
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Let us define a 2n x 2n matriz V as,

0 0
vV = . (6.3.36)
-1 0
Q(t) can then be expressed as
Q) = =U*0)VU(0). (6.3.37)
Since |N| <1 foralli=1,2,------ n, then U(k) — 0 as k — oo. Therefore,
Q) = Y U(k+1)VU(k+1)—U*(k)VU(k)
k=0

[e.9]

= YUK+ T, t)VOt+T,t) - VIU(k).  (6.3.38)

Define a matriz M(t,r) by,

M@, 1) =0t 17)Ve(t,T) - V. (6.3.39)
Then
3M§:’ D e,V [HY + VH®, )
— ®(t,7)N'NO(t,7) (6.3.40)
where
C; 0
N = . (6.3.41)
0 B
Since
M(r,7y = 0, 71#1T, (6.3.42)
0 0
M(rt,7) = FVF-V= >0,7=14T. (6.3.43)
0 ~2B,B,
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Thus,
t
Mt7) = [ O(s,7YN'NO(s,T)ds, 7 #T, (6.3.44)
t
M(,7) = / ®(s, 1) N'N®(s,7)ds + M(r+,7), 7 =iT. (6.3.45)

Since (A, By) is controllable and (C1, A) is observable, it is easy to show that
M(t,7) > 0 for all t > 7. Thus from equations (6.3.88) and (6.8.39), it can be
concluded that Q(t) > 0. O

Theorem 6.3.3 Assume that for all eigenvalues of ®(T,0), |\ # 1, 1 =
1,2--.. 2n and that |Y(t)| # 0 for all t € [0,T]. If n eigenvalues in A; are
chosen such that |A| < 1,1 =1,2----- n, then a periodic solution P(t) given by
equation (6.3.24) is real, symmetric and positive definite.

Proof: The assumption || <1 foralli=1,2-----. n guarantees that A} # )\;1
and )\; # )\j_l for all i,7,1 < i,j < n. Therefore P(t) is real and symmetric by
Lemmas (6.3.3) and (6.3.4) respectively. That P(t) is positive definite follows
from Lemma (6.8.5) and equation (6.3.34). O

6.3.4 The periodic Lyapunov equation

Our approach for the analysis of the closed-loop system (6.2.12) is based on the
Lyapunov method. As is well-known, the Lyapunov equation plays an important
role in the analysis of Riccati equations and the associated closed-loop systems
[63, 69, 70]. Here we extend some useful results on the periodic Lyapunov equa-
tion to our particular problem, namely, to the periodic Lyapunov equation with
jumps.

Let P(t) be a solution of the coupled Riccati equations (6.2.1)-(6.2.2),

P(t) = —A'P(t)— P(t)A+ P(t)B,B,P(t) — CiCy, t # iT (6.3.46)
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P(TY) = P(T)+ (ByYP(iT)) (v*I — ByP(iT)B,) "' By P(iT). (6.3.47)

It can be rewritten as a Lyapunov-type equation,
P(t) = —A(t)P(t) — P(t)A.(t) — H(t)'H(t), t #T (6.3.48)
PGETY) =  P@T) + Qump(6T). (6.3.49)

where A.(t), H(t) and Qimp(¢T) are given in (6.2.17). Therefore, we can obtain
the following results from [69, 71]. If P(-) is a symmetric periodic solution of the
Riccati equation (6.3.46)-(6.3.47), then P(-) is also a solution of the Lyapunov
equation (6.3.48)-(6.3.49). The structural properties of the pair (H(t), A.(t))
can be related to the ones of the pair (C}, A) by means of the following Lemma

[71, 72).

Lemma 6.3.6 The pair (Cy, A) is observable if and only if, for any T—periodic
matriz P(-), the pair (H(t), A.(t)) is observable. O

The solution of equations (6.3.48)-(6.3.49) can be also given by the celebrated
formula [65]. Let Py be the initial condition of equation (6.3.48) at time tg, the

solution of the equation (6.3.48) is given by
P(t) = ®',_(to,t) Po s, (t0, 1) / &', (r,t)H(r) H(r)®, (r,t)dr. (6.3.50)
Without loss of generality, we assume t, = 0, then P(T') is given by
P(T)=®/, (T, 0)" Py®4(T, 0)" / &', (v, T)H(r) H(r)®, (r, T)dr.(6.3.51)

Since we are looking for the periodic solutions of equations (6.3.48)-(6.3.49), the

periodic generator Py must satisfy the following algebraic Lyapunov equation

Py = &', (T,0)Py®4,(T,0) + W (T) (6.3.52)
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expressed as

z(t) = Az(t)+ Biu(t) + B, év: vEd(t — kTp)

z(t) = Cz(t) + Du(t) (5.3.52)
where §(t) is the standard Dirac delta distribution. The control objective is

given by
2112, < *lIvll. (5.3.53)

Remark 5.3.4 The linear model has a physical interpretation. Since each im-
pact duration is very short, we can ignore the finite duration and treat the impact
as an impulsive event. This linear model has been used in various impact prob-

lems.

We should point out that the control problem (5.3.52)-(5.3.53) is also different
from the standard linear ones discussed in {20, 22]. The disturbance v € I3 is a
discrete-time signal, while the controlled output z(¢) are continuous signals. The
standard approaches [20, 22] cannot be applied to this problem directly. We will

analyze and solve this special linear control problem in the next chapter.
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Chapter 6

H,, CONTROL FOR IMPULSIVE DISTURBANCES

In chapter 5, we studied the nonlinear control of impact forces when the impact
forces are modeled as finite duration events. We have shown that, in certain
cases, by taking advantage of the fact that the impact duration is very short,
we can approximate the system dynamics undergoing impact by low order terms
of the Taylor polynomials. For the disturbance attenuation problem the leading
term provides a very good approximation. A linear model can be obtained if
we treat the finite event by an impulsive event. Thus, the nonlinear control
problem can be solved via a linear one. In this chapter, we analyze and study
the disturbance attenuation problem for the corresponding linear system. This
control problem has some special features; the disturbance input v € I, is a
discrete-time signal, while the controlled output z is a continuous signal. It
cannot be solved by the existing Hy, approaches [19, 20, 24, 21, 22, 23]. We are
motivated by the approaches [20, 24| for a standard H,, control problem, where a
state-space solution of H,, control is closely related to the solutions of the Riccati
equations. If full state-feedback is available, we knew that a controller exists if
and only if the unique solution of the associated algebraic Riccati equation is

positive definite. In addition, a formula for the state-feedback gain matrix was
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given in terms of the solution of the Riccati equation. In this control problem,
instead of the one algebraic Riccati equation involved in problems [20, 24], we
will have two coupled Riccati equations in order to account for the impulses
in the state-feedback case. Hamiltonian theory is used to analyze the coupled
Riccati equations, and necessary and sufficient conditions are obtained for the
existence of a unique solution. Because the state variables may experience jumps
due to the effects of impulsive forces, an extended Lyapunov lemma is derived

to prove the stability of the closed-loop system.

6.1 Formulation of the Control Problem

We consider a finite-dimensional linear system

z L11 ng v

(6.1.1)
Yy Ly Ly Uu

where z(t),y(t) are the controlled and measured output vectors, respectively.
They are piecewise-continuous signals. There are two kinds of input signals,
u, the control vector which is assumed to be piecewise-continuous, and, v, the
impulsive disturbance vector which is assumed to be in the [, space. L;j,%,j =
1,2 are linear operators mapping from {v,u} to {z,y}. This is a hybrid system
because it contains both continuous time and discrete time components. In view
of the results obtained in chapter 5 we assume that the system (6.1.1) admits a

state space realization of the form

i(t) = Az(t)+ Bu(t) +ZBQ’U 5(t —iT),

I
~
o~
o
I

0111,'( )+D1U( ),

y(t) = Chz(t). (6.1.2)
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It is convenient to use the state space equations (6.1.2) in the form
(t) = Az(t)+ Byu(t), t#4T,

z(tt) = =z(t) + B(i), t=iT, i=0,1,2,------ ,

N
~—~
a3
~—
Il

Clx(t) + Dlu(t),

y(t) = Chx(t). (6.1.3)

where z(t*) denote the values of state variables immediately after a jump. The
state variables z(t) are right continuous and may be left discontinuous due to
the possible jump.

The control problem here is to design a stabilizing controller to attenuate the
effects of the impulsive disturbance v on the controlled output z. Let us define
K as the set of all causal, finite-dimensional linear stabilizing controllers.

We will now introduce a minimax performance measure which is motivated

by [27]. For k € K define a performance measure

2
J(k) = sup (%). (6.1.4)
velaw0 |[V][7,

J(k) can also be viewed as the induced operator norm from Iy — L,.
We want to find a controller £ € K to minimize the worst case performance
measure J(k). Specifically, we solve the following (sub)optimal problem. Given

v > 0, find a k € K such that following inequality holds:
J(k) < +* (6.1.5)
Equivalently, we require that
12112, = VIloll, < 0, (6.1.6)

for all possible v € I3, under the constraints of the system equations (6.1.3). If

such a controller £ exists, we call it a y—level disturbance attenuation controller.
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6.2 Main Results

We start with a standard H, control problem treated in [20, 24] where we
consider a continuous LTI system. It is well known that a state-space solution
to the H, control problem is closely related to Riccati equations. If full state-
feedback is available, a controller exists if and only if the unique solution of the
associated algebraic Riccati equation is positive definite. In addition, a formula
for the state-feedback gain matrix was given in terms of the solution of the
Riccati equation. Similar results can be obtained for discrete-time systems [22]
and time-varying systems [61].

It should be noted that the control problem defined in (6.1.6) is different from
the standard H,, problems treated in [20, 22, 24, 61]. Since the system (6.1.3) is
a hybrid system which contains both continuous and discrete components. The
control problem cannot be solved by the formulas obtained in [20, 24, 22, 61].
However, the essential ideas can be carried over to analyze the control problem
(6.1.6). For state-feedback control, instead of the one algebraic Riccati equation
involved in problems [20, 24], we will have two coupled Riccati equations given

by

K(t) = —A'K(t)— K@t)A+ K(t)B,B\K(t) — C.Cy, t #iT (6.2.1)

K(@GTY) = K(T)+ (BoK(T)) (v*1 — ByK(iT)By) *BYK (iT) (6.2.2)

where v > 0 is a given real number, the n X n matrix-valued function K (¢) is
right continuous and may be left discontinuous, K (iT+) represents the value of
K (t) after the 1™ jump, while K (iT) represents the value of K (t) just before the
it jump, i.e., K(iT) := lim.s, 0 K (iT — €) assuming that the limit exists.

The main results of this chapter are stated as Theorems 6.2.1- 6.2.3. We
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assume that all state variables are measured, and consider the infinite horizon
problem with zero initial state. First the following assumptions are made.
i) (A, By) is controllable, (Ci, A) is observable.
ii) D{[Cy, Dy =10 I].

Assumption i) is standard in the quadratic regulation of a linear system.
It can be relaxed by the assumption that (A, By) is stabilizable and (C}, A) is
detectable. Assumption ii) is made here just for the sake of simplicity. Relaxing
this assumption will only complicate the formulas, but an analysis can be carried
out along lines similar to what appears below. We will state the main theorems

first and defer the proofs to the following sections.

Theorem 6.2.1 Consider the hybrid system described by (6.1.8). Let v > 0 be
given. Suppose that the assumptions i) and 1) hold. Then there ezists a con-
troller k € K such that J(k) < ~2 if there ezists a unique stabilizing positive
definite periodic solution P(t) of the coupled Riccati equations (6.2.1)-(6.2.2).
Moreover, if this condition is satisfied, one such stabilizing state-feedback con-

troller is given by
u(t) = =By P(t)z(t), Vt>O0. (6.2.3)
O

Remark 6.2.1 As y — oo, the coupled Riccati equations (6.2.1)-(6.2.2) degen-

erate into the continuous-time Riccati equation
K({t) = —-A'K(t)— K{t)A+ K(t)B,B.K(t) — C\C,. (6.2.4)

This Riccati equation will yield a unique positive definite constant matriz solu-

tion under assumption i). It is well known that this unique solution internally
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stabilizes the associated closed-loop system from LQG theory. Thus, the Hy

problem degenerates into a LQG problem as v — oo.

Via the Hamiltonian theory, the solution of a Riccati equation can be obtained
by solving a suitable set of linear differential equations. The Hamiltonian matrix
associated with the continuous time Riccati equation (6.2.1) is given by
A —B,B;
H = . (6.2.5)
-Ccic, A

As usual let us consider a 2ny, order differential equation
X(@t) = HX(), t#iT. (6.2.6)
The state transition matrix associated with H is
X(t) = @u(t,7)X (1), t>7, and t,7 #T, (6.2.7)

where ®g(t,7) has the following properties,

aq)H (t’ T)

e H®y(t,7), ®@n(r,7)=1. (6.2.8)

The symplectic matrix associated with the difference Riccati equation (6.2.2) is
given by
I —y2B,B}

F = . (6.2.9)
0 I

Let us define a 2ny, order difference (jump) equation
X" = FX(@®), t=1T. (6.2.10)

The combined equations (6.2.6) and (6.2.10) are a hybrid system. For 7 = T, i =

0,1,...,..., and’rStS (7,+1)T, we have,
X)) = ®yx(t,7)FX(1),

= B, 17)X(1). (6.2.11)

93



We will show later that this state transition matrix ®(¢, 7) of the hybrid system
displays the same properties as for a periodic system.
Now, let P(t) be a periodic solution of equations (6.2.1)-(6.2.2). The associ-

ated closed-loop system is given by
z(t) = [A— BiBiP(t)]z(t). (6.2.12)

Definition 6.2.1 A periodic solution P(t) of (6.2.1)-(6.2.2) is called a stabiliz-

ing solution if the closed-loop system (6.2.12) is asymptotically stable.

Let us consider the following hybrid system first:

i(t) = [A-BiBP()z(),

= Aft), t#iT, (6.2.13)
z(t*) = [ —97°BuByP(t)]a(t),

= F(@), t=iT. (6.2.14)

We will show that if (6.2.12) is asymptotically stable, then the hybrid system

asymptotically stable also.

Theorem 6.2.2 Let v > 0 be given. Suppose that the assumptions i) and i)
hold. Then a necessary and sufficient condition for the existence of a unique
positive definite periodic solution P(t) to equations (6.2.1) - (6.2.2), such that
the hybrid system (6.2.18)-(6.2.14) is asymptotically stable, is that no eigenvalue

of ®(T,0) lies on the unit circle. O

The next theorem gives necessary and sufficient conditions that the unique pos-

itive definite periodic solution stabilizes the associated closed-loop system.
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Theorem 6.2.3 Suppose that the assumptions i) and i) hold. Let P(t) be the
unique positive definite periodic solution of (6.2.1) and (6.2.2). Then P(t) is a

stabilizing solution if and only if the inequality
We(T) — @4 (T, 0)Qimp(T)® 4, (T, 0) > 0. (6.2.15)
holds, where
T
Wo(T) = / 4 (r,0) H(r) H(r)® 4 (r,0)dr (6.2.16)
0

and @4 (t,7) is state transition matriz of A.(t), and where the matrices A.(t),

H(t) and Qumyp(T) are defined by

Ac(t) = A- BlBi‘P(t%
H(t)H(t) = C!Cy+ P(t)B,B,P(t),
Qunp(T) = (ByP(T))(v*I — B4P(T)By) 'ByP(T).  (6.2.17)

O

6.3 Background and Technical Lemmas

In order to prove Theorems (6.2.1)-(6.2.3), we need to develop theory and tech-
nical machinery to analyze the coupled Riccati equations (6.2.1)-(6.2.2). Specif-
ically, 1) we will give conditions for existence of periodic solutions of equations
(6.2.1)-(6.2.2), 2) If such conditions are satisfied, we will parameterize all stabi-
lizing periodic solutions. The technical machinery developed here is based on the
standard tools for the analysis of periodic systems {62, 63, 64]. We will show that
equations (6.2.1)-(6.2.2) display same properties similar to a standard periodic
system, the main difference being that we need to take care of the jumps in the

state which actually result in the periodic solutions.
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6.3.1 Periodic system and stability analysis

Consider the following linear periodic system

i) = A@)z(t) + B(t)u(t)

y(t) = C(t)x(t) (6.3.1)

where z(t) € R™, y(t) € R™,u(t) € RP are state, output and input vector vari-

ables respectively, A(-), B(-), C(-) are assumed to be periodic matrices of period

T, i.e,
A@t+T)=A(), Bt+T)=B{#), Ct+T)=C(t), Vt>0. (6.3.2)

The state transition matrix of system (6.3.1) is denoted by ¥(%,ty). The matrix
U(t + T,t) is called the monodromy matrix at time t. Since ¥(t + T,t) =
U(t, 7)¥(r + T,7)¥(t, 7)"L, the eigenvalues of (¢t + T,t) are independent of t.

they are also called the characteristic multipliers [65, 66, 67].

Remark 6.3.1 [67, 68] The system (6.3.1) is asymptotically stable if and only

if the eigenvalues of W(T,0) are all inside the unit circle.

Definition 6.3.1 [62] An eigenvalue A of ¥(T',0) is said to be (C(t), A(t)) un-

observable if there exists an n-dimensional vector & # 0 such that

(T, 0)¢ AE (6.3.3)

CU(t0¢ = 0, Vtelo,T) (6.3.4)

Remark 6.3.2 The pair (C(t), A(t)) is said to be detectable if and only if all
eigenvalues A of U(T,0) such that |A| > 1 are (C(t), A(t)) observable.
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at the sampling instances are given by

zk+1) = Fax(k)+ Giu(k) + Gav(k)

y(k) = Cox(k) (6.5.2)

where F = e4T, G, = fOT eAT-T) B.dr. Gy = eAT B,. The controlled output is

continuous and is given by

t
2(kT +t) = Cre®z(kT) + / C1e7) Bydru(kT) + Cet Byu(kT)
0

Vt € [kT, kT +T). (6.5.3)

It is well-known if (A, B;) is controllable and (C;, A) is observable, for a generic
choice of the sampling period T so are the pairs (F,G;) and (C;, F)) [74]. We
assume that the sampling period T satisfies generically condition in the rest of
this chapter.

Let K be the set of all discrete-time LTT stabilizing controllers. The H,, control
problem we address here is that for given v > 0, find a k € K such that the

following inequality holds
L(K) = ll2I7, = Illlf, < o. (6.5.4)

for all v € Iy, and zero initial conditions. It is known that a sampled-data
control system in general is time-varying [76]. H, control design problem for
sampled-data control systems has been addressed by many researchers recently (
see [23, 77, 75] for details). Our interest here is to adapt the theory to the case of
impulsive disturbances attenuation. We will show that by using a sampled-data
controller, the control problem can be converted into a LTI discrete-time H,

control problem.
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The term ||z||3, during [T, (k + 1)T] can be rewritten as

/OTz’(kT +t)2(kT + t)dt = z' (k) Miz (k) + 2u' (k) Pz (k) + ' (k) Mau(k) +
2v' (k) Pyz(k)+v' (k) Mav (k)+2v' (k) Pyu(k). (6.5.5)

where M; are weighting matrix associated with state z(k), control u(k) and

disturbance v(k), and P; are cross-terms respectively. They are given by,
T T t
M1 = / CA tC{CleAtdt, P1=/ / eA tC{CleA(t_T)Bldet
0 0o Jo
T rt , T '
My = / / BleA -1 C1eA ) B drdt, Py= / A0 Cr et Bydt
o Jo 0

T , T ,t ,
M= / BleAtC! CeAt Bydt, Py= / / B!eAtC1C1eAtT Bydrdt. (6.5.6)
0 0o Jo
Hence the square of the controlled output’s norm is in turn given by

IR, = /()mz'(t)z(t)dt:,é [ e

0 T
= Y / 2(kT +t)'z(kT + t)dt
k=0"0

o0

= Y 2'(k)Miz(k) + 2u' (k) P{z(k) + ' (k) Mau(k) +

k=0
2v' (k) Pyz(k) + o' (k) Mav(k) + 2v' (k) Pyu(k). (6.5.7)

The sampled-data control problem is now converted into the following discrete-

time Hy, control problem, where the system is given by,

z(k+1) = Faz(k)+ Gu(k) + Gou(k)

y(k) = Coyz(k), k=0,1,2,--- (6.5.8)
and the control objective is to find a k € K such that

Iy(K) = |l2lZ, = Plloll, < 0 (6.5.9)
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where ||2[[3, is given by (6.5.7).

Among different state-space approaches to this class of H,, control problems,
the one that uses the framework of dynamic game theory seems to be the most
natural. This is so because the original Hy-optimal control problem (in its
equivalent state-space formation) is in fact a minimax optimization problem,
and hence a zero-sum game [27], where the controller can be viewed as the
minimizing player and disturbance as the maximizing player. We will use this

approach to derive the (sub)optimal solution to the problem (6.5.8)-(6.5.9).

6.5.2 Full state-feedback control

Consider a standard discrete-time system given by

z(k+1) = Az(k)+ Biu(k) + Byu(k)

y(k) = Cax(k). (6.5.10)

The performance measure is given by
J7(I~{) =Y 2'(k)Qz(k) + u'(k)u(k) — 2! (k)v(k) <0 (6.5.11)
k=0
for some specified vy > 0 and @ > 0, and v € [,.
First we consider the case when the full state variables (Cy = I) are available.
We make the following standard assumptions:
A1) The pairs (A4, By) and (A, B;) are controllable.
A2) (4, QY?) is observable.

Let us define an algebraic Riccati equation,

M = AM™'+BB —v?B,B)) A+ Q. (Rl)
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Theorem 6.5.1 [27] Consider discrete-time system described by (6.5.10), let
v > 0 be given. Suppose that the assumptions Al) — A2) hold. Then there exists
a controller k € K such that inequality (6.5.11) hold if and only if

1) (R1) admits a positive definite solution M,.

2) 421 — BtM B, > 0.

Moreover, when these conditions hold, one such stabilizing feedback controller is

given by
u(k) = —-BiM,A'Az(k), (6.5.12)
v(k) = -y ByM;A'Az(k),
A: = I+ (BB, —vBBY)M,. k=1,2,3,--
and the closed-loop matriz (I — BiB{ M. A1) A is Hurwitz. O

Now we are ready to present our main results. Let us first make the following

assumptions:

ffl) ’)’21 - M3 >0,

2) The pairs (A, By), (A, B,) are controllable and (Cy, A) is observable,

A2)
A3) B; is full rank,
A4)

4) @@ > 0 and is defined by
Q = M, + P,My™ ' P) — (Pl + PsMs ™' Py M, (Pl + P;M;™'P))  (6.5.13)
where the M, and M; are given by
My =~ —-Ms, M,= M,+ P;M; P, (6.5.14)

and M; and P; are defined by (6.5.6).
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Theorem 6.5.2 Consider the sampled-data system described by (6.5.1). Let
v > 0 be given. Then there ezists a controller k € K such that (6.5.9) hold if
and only if following conditions hold:

1’) The Riccati equation (R1) associated with (A, By, By, Q) has a positive defi-
nite solution M.,

2’) v2I — By M. B, > 0.

When these conditions hold, one such stabilizing controller is given by

a(k) = —ByM,.A"'Ax(k), (6.5.15)
o(k) = —y72By M, A 'Ax(k),
A: = T+ (3131’—7_23232’)]\_44_, k= 1,2,3, ......

where the A, By, By are defined by,

A = F+GiMy 'P)— (vG M3~ P)My " (Pl + P;M; ™' P))

B, = (Gi+ 7G2M3_1P§)M2"1/2

.B_2 = ’)’GgMg_l/z (6516)

Proof: In order to apply theorem (6.5.1) to this problem, we first need to con-
vert the problem (6.5.8)-(6.5.9) into the standard problem described by (6.5.10)-
(6.5.11), then we show that the assumptions of theorem (6.5.1) are satisfied.
Since the pairs (A, Bi)and(A, By) are controllable and (Cy, A) is observable by
assumption A2), hence the discrete system (F,G1), (F,Gs) are also controllable
and (Cy, F) is observable by the assumption of that generic condition of the sam-
pling period T is satisfied.

Next, we carry out linear transformations. By doing so, we first define a new
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variable (k) as

3(k) = %M;/?[u(k) — My N Pla(k) + Plu(k)], k=0,1,2,--- (6.5.17)

The Mj is invertible by assumption Al). The system (6.5.8) and the performance

measure (6.5.9) become

2(k +1) = (A+ GoMs ' P)x(k) + (Gy + Go My~ Pu(k) + 7Go Mz 5 (k)

BR) = 3o ())(M; + Poly ™ PY)a(k) + 2u(kY (P + Pyl ™ Pl)a(k) +
k=0
o' (k) (M + PsMs ™" Pyu(k) — v*5(k)'5(k)
Since (Cy, A) is observable, and By is full rank by assumption A3), it is easy to
show that the matriz M, is positive definite. The Ms™" > 0 follows from M; > 0.
This implies that PsMs™"P} > 0. Hence, My = My + P3Ms "P} > 0 is positive
definite. Define a new variable u(k) as

a(k) = My *[u(k) + My~ (P! + P3My~ " PL))z(k) (6.5.18)

and Q = My + P,My" ' P, — (P! + P;My™ ' P)Y My ' (P! + P;M;~'P}). After some
simplifications, we finally arrive at

T (R) = g% (k) Qu(k) + a(k) (k) — v2o(k)5(k) (6.5.20)

Since the linear transformations do not affect the controllability and observabil-
ity, it follows that (A, By)and(A, By) are controllable. Q is positive semi-definite
by its structure and assumption A4). Since (Cy, A) is observable, it is straight-
forward to show that (A, QY?) is also observable. Hence, the assumptions Al)
and A2) of theorem (6.5.1) are satisfied, and the proof is completed by invoking
the theorem (6.5.1) to the problem (6.5.19)-(6.5.20). a
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The feedback controller is expressed by in the new variables % and ©. By changing
back the variables, we get
u(k) = —M;?[BIM,AT'A— My 2P|+ PsM; PY))z(k),  (6.5.21)
v(k) = —M;"*[y ' ByMLATIA — My Y2 Pla(k) + My Plu(k).
In most practical control applications, only partial state variables are available,

we will derive the solution for output-feedback problem in next section.

6.5.3 Output-feedback control

When the full state variables are not available, we need to construct a observer-
based feedback controller. The following theorem gives us the standard results.
We first assume the following assumptions hold.
A1) The pairs(A, By), (A, By) are controllable and (Cy, A) is observable.
A2) @ is positive semi-definite.
Let us define two algebraic Riccati equations as follows,

M = AM?+BB, —vy?B,B)'A+Q (R1)

N = ANT'+C)C, —72Q)'A' + BB, (R2)
Theorem 6.5.3 [27] Consider discrete-time system described by (6.5.10), let
v > 0 be given. Suppose that the assumptions Al) — A2) hold. Then there exists
a controller k € K such that inequality (6.5.11) hold if and only if
1) (R1) and (R2) have positive definite solutions M, and N.
2) p(M1Ny) <2
Moreover, when these conditions hold, one such stabilizing feedback controller is

given by

Bk+1) = AB(k) + AN+ C40 — 77Q) " [ Qa(k)
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+CL(y(k) — Coi(k))] + Bru(k) (6.5.22)

u(k) = —B\(M,™"+ B\B, -y 2B, By A(I — /N, M) &(k),
where the I is an observer. O

Now we solve the problem (6.5.8)-(6.5.9) by applying theorem (6.5.3). Let us
first make the following assumptions:

Al) v2I — M3 > 0,

A2) The pairs (4, By) is controllable and (Cy, A) is observable, so are (A4, Bs)
and (C,, A) respectively,

A3) B, is full rank,
A4) @ > 0 and is defined by

Q =M, + P,M;" P} — (P! + PyM; ™' P)) My ™ (P! + P;M;"'P}) (6.5.23)
where the M, and Ms are given by
My =~*1—M,, M= M,+ P;M; ‘P, (6.5.24)
and M; and P; are defined by (6.5.6).

Theorem 6.5.4 Consider the sampled-data system described by (6.5.1). Let
v > 0 be given. Then there exists a controller k € K such that (6.5.11) hold if
and only if following conditions hold:

1’) The two Riccati equations (R1) and (R2) associated with (A, By, By, Cs, Q)
have positive definite solutions M and N.

2’) p(MN) <.

When these conditions hold, one such stabilizing controller is given by

Bk+1) = Az(k)+ AN +C)'C — v2Q) [y Qi (k)
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+Cy (y(k) — Coz(k))] + Byu(k) (6.5.25)

a(k) = —B,(M™'+ BB, — v %B,B,))"'A(I — v*NM) '%(k)
where the (A, By, By, C,) are defined by,

A = F+GyMy ' Py — (vGo M3 P)My ' (Pl + P;M; ™' P))
Bl = (G1 + ’YGzMg*lPé)Mz_l/z
-1/2

B, = 7G2M3

Proof: The proof is analogous to the proof of theorem (6.5.2) and is omitted

here. O

The output-feedback controller (6.5.25) is expressed by in the new variable @(k),
and the actual control u(k) can be obtained by changing back the variable
(6.5.18)

Ek+1) = Aik)+ AN +C'Co— v72Q) v 2Qa(k) + C:' (y(k)
—Ci#(k))] + BiMy * (P! + Py My " P)i(k) + By My *u(k)
u(k) = —M, "*B)(M~' + BB, — v 2B,B,) Y A(I — v*N M) '3(k)

—M, "N (P! + Ps M3~ P)E(K). (6.5.27)

To recap, let us list the steps in the design procedures for the output feedback
problem:

step 1: Calculate the matrices M; and P; according to (6.5.6),

step 2: Give v > 0, check if the conditions A1) and A4) are satisfied, if not,
increase 7y until these conditions are satisfied,

step 3: Calculate matrices A, B, By, Cy according to (6.5.26),
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step 4: Solve two algebraic Riccati equations (R1), (R2) for M, N associated with
(A,U1, By, Cs, Q), check if conditions 1’ and 2' are satisfied, if not, increase v,
go back to step 3.

The state-feedback is a special case, the design procedure is similar to output

feedback.

6.5.4 Example

Our motivation for developing the H,, optimal control for impulsive disturbances
is from various impact control problems. Let us consider the following impact
control example shown in Figure 6.2. The system represents a flexible body with
mass my, and the k, c represents its stiffness and damping coefficient respectively,
and u is the control input. The system is subjected to a series of impulsive
disturbances (impact forces). When the impact occurs, a significant portion
of the kinetic energy of the impactor will be transferred to the flexible body,
causing vibrations. Hence, a reasonable control objective is to minimize the
energy transferred to the system by the impact forces. This control problem
can be viewed as a disturbance attenuation problem. Suppose the displacement
of the mass is available. The state space representation of the system with

impulsive disturbances is given by,

0 1 0
z(t) = z(t) + u(t)
—k/my —c/mgy 1/my
00 0
+3 v(k)o(t — kT)
k=0 | by/my
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where the W(T') is given by
W(T) = We(T) — 4 (T,0)Qump(T) P 4. (T, 0). (6.3.53)

Proposition 6.3.1 [70] The Lyapunov equations (6.3.48)-(6.3.49) admit a
unique positive periodic solution if and only if the algebraic Lyapunov equation

(6.3.52) admits a positive definite solution P,. 0

Proposition 6.3.2 [68] Suppose that the A (t) is asymptotically stable. Then
the necessary condition that algebraic Lyapunov equation (6.8.52) admits a pos-

itive definite solution is that W (T') defined in (6.3.53) is positive definite. O

6.4 Proofs of Theorem 6.2.1- 6.2.3

Now, we are ready to prove the main results of this chapter. First we prove the
Theorem (6.2.2), then we prove the Theorem (6.2.3). Finally, we consider the
Theorem (6.2.1).

6.4.1 Proof of theorem 6.2.2

Recall the hybrid system defined in (6.2.13)-(6.2.14),

i) = [A-BBPW)a(t),

= AJt), t#iT, (6.4.1)
z(tt) = [I—7"2BByP(t)]x(t),

= F(t), t=iT. (6.4.2)

Denote the state transition matrix of the hybrid system (6.4.1) -(6.4.2) by

®.(t,7). It has the following properties,

0o.(t,7)
5 = A () ®.(2, T), (6.4.3)
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d(rH,7) = F(1). (6.4.4)

Theorem 6.4.1 Let P(t) in equation(6.3.24) be substituted into equation
(6.4.1) and (6.4.2). Alsolet \;;i=1,2,-+---- n be n eigenvalues of ®(T,0) used
to form A, in equation(6.3.12), then ®.(t,0) is given by

®.(t,0) = Y)Y (0)! (6.4.5)

and the eigenvalues of ®.(T,0) are \;,1=1,2,------ n.

Proof: Using equation (6.3.15), we have

®.(t,00 = YY)
= [AY () - BB X ()Y (0)~
= [A - BIBQP(t)](I)c(t: 0)

= At)®.(t,0). (6.4.6)

®.(07,0) = Y(0MY(0)™*
= [Y(0) = 77?B, By X (0)]Y(0)™

= [I=97B;ByP(0)]

= F,0). (6.4.7)
From equation (6.3.25),
Y(T) = Y(0)A
®,(T,0) = Y(T)Y(0)!'=Y(0)AY(0)™" (6.4.8)
Thus, eigenvalues of ®.(T,0) are A\;,i =1,2,------ n. O

The following Lemmas relate the positive definite periodic solution of the coupled
Riccati equations and the structure properties of systems (controllability and

observability).
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Lemma 6.4.1 Assume (Cy, A) is observable and no eigenvalue of ®(T,0) lies
on the unit circle. Then there exists a positive definite periodic solution P(t) to
equations (6.2.1) - (6.2.2) such that the hybrid system (6.4.1)-(6.4.2) is asymp-
totically stable if (A, By) is controllable.

Proof: Since only solutions P(t) of equations (6.2.1) and (6.2.2) that lead to
asymptotically stable hybrid systems are under consideration, n eigenvalues in
Ay must be chosen so that |\;| < 1 fori=1,2,------ ,n according to Theorem
(6.4.1). Such a choice is possible under the current hypothesis and Theorem
(6.3.1). From Theorem (6.3.3), the resulting P(t) clearly satisfies P(t) > 0. The
non-existence of P(t) > 0 then arises only when the condition that |Y (t)| # 0 for
all t € [0,T) is violated. In the sequel, we will show that (A, By)-controllability
implies Y (t)| # 0 for all t € [0,T]. Suppose to the contrary that for some
t=s,5€[0,T)],Y(t) is singular. Let b # 0 be an n-dimensional vector belonging

to the null space of Y(s), t,e.

Y(s)h = 0 (6.4.9)
Also for k=10,1,------ . Let a(k) and B(k) be n-dimensional vectors such that
a(k Y (s)Akb
By | _ | YO (6.4.10)
(k) X(s)Afb
Define a vector u(k) as
a(k)
ulk) = (6.4.11)
(k)

From equation (6.3.15), we have

wk+1) = &S +T,S)uk) (6.4.12)
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Let us define a scalar W (k) as
W(k) = p*(k)a(k) — 5*(k+ Da(k + 1) (6.4.13)
Since a(0) =Y (s)b =0, and a(k),B(k) = 0 as k — oo,
S Wk =0 (6.4.14)
k=0
On the other hand, from equation (6.3.39)

W (k)

u*(k + 1)Vu(k + 1) — u*(k)Vu(k)
= u*(k)[®(s+T,s)VO(s+T,s)— Vl]u(k)

= w(k)M(s + T, s)u(k) (6.4.15)

Since M(s+T,s) > 0 from equations (6.3.43)-(6.3.45), hence yielding W (k) >
0. FEquation (6.4.14) then implies that W(k) = 0 for all k = 0,1,2,------ .
Therefore,” M (s + T, s) is not positive definite, hence (A, By) is not controllable,

a contradiction. a

Lemma 6.4.2 Assume that no eigenvalue of ®(T,0) lies on the unit circle and
(A, By) is controllable. Then there ezists a unique positive definite periodic so-
lution P(t) to equations (6.2.1)-(6.2.2) if (Cy, A) is observable.

Proof: Under the assumptions, the existence of at least one solution P(t) > 0 is
guaranteed by Lemma (6.4.1). Such a solution P(t) is obviously associated with
the asymptotically stable hybrid system (6.4.1) and (6.4.2). In the following, we
shall show that the additional condition (C1, A)-observability, necessarily implies
the asymptotic stability of the hybrid system (6.4.1) and (6.4.2). The uniqueness
of the solution can be established by this way. Assume to the contrary that the

hybrid system (6.4.1) and (6.4.2) is unstable. It then follows from Theorem

110



(6.4.1) that A, in equation (6.3.12) has at least one eigenvalue \ of ®(T,0) such
that |A| > 1. Since the order of eigenvalues in A, is irrelevant to solution, it can
be assumed that A\, = X without loss of generality. Denote by P(t) the solution
of equations (6.2.1) and (6.2.2) corresponding to this set of eigenvalues.

Let x; and y; be n-dimensional vectors that constitute the eigvector corresponding

to A1, namely,

aT0) | | =AY (6.4.16)
T Iy
Also for k=0,1,2------ . Let y(k) and 6(k) be n-dimensional vectors such that
k
LN I AT (6.4.17)
6(k) I
(k) .
Furthermore, Let v(k) = , then from equations (6.4.16) and (6.4.17),
d(k)
we obtain
v(k) = ®(T,0)v(k +1) (6.4.18)
Define a scalar w(k) by
w(k) = 0*(k + 1)y(k + 1) — §*(k)v(k) (6.4.19)
since y(k),d(k) = 0 as k — oo, we have
> w(k) = —ziyr. (6.4.20)
k=0

On the other hand, similar steps used to derive equation (6.3.38) lead to

W(k) >0, K=0,1,2,0 (6.4.21)

111



We consider two cases:

(1) t # 4T, differentiate V'(¢) along the trajectory of system (6.2.12),

V(t) = @(t)Pt)z(t) + z(t) Pt)z(t) + z(t) P(t)z(t)
= () (P(t) + Ac(t) P(t) + P(t) Ac(t))2(t)
= —z(t)H(t)'H(t)z(t) (6.4.24)
< 0.
Hence inequality holds for all ¢, ¢, # iT.
(2)t=4T,i=0,1,2,------ . In the rest of proof, we use ¢ to replace T for
the sake of brevity. Since V(t) = —z(t)'H(t)'H(t)z(t) < 0,

VG) = V-1~ [ o) HE) HEar)ir
VY = o) PaM)s()
= () P(i)z(5) + (i) Qump (1) (1)
= V(@) + z(3) Qmp (i) (7). (6.4.25)
Hence,
V() = V(G- 1)) = 2(2) Qump (1) z(3) — /z; z(r) H(7)' H(r)2(7)d7(6.4.26)
From equation (6.2.12), we can explicitly solve z(t) starting at arbitrary z(i —1),
z(t) = B4, (t,i— D)z — 1), V€ [(E—1), 1. (6.4.27)
Replace z(t) in equation (6.4.26) by (6.4.27),
V@t - V(i - 1))
= (i 1Y@ (i — 1) Qumpli) B, (i — 1)

- /Zil O (r,i = 1)H () H(1)®4 (1,5 — 1)dr)z(i — 1). (6.4.28)
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Since A.(t), H(t)'H(t) and Qump(7) are periodic, ®4, (4, — 1) = $4,(T,0), and
Qimp(T) = Qump(T) for all ¢ = 0,1,2,------ . The equation (6.4.28) can be

further simplified as

V) = V(= 1)) = a(i~1)[&), (T, 0)Qum(T)®4,(T,0)
_ /OT @', (1,0)H (1) H(7)®a,(7,0)dr]z(i — 1)

< 0, by inequality (6.2.15). (6.4.29)

(Necessity):

Since the closed-loop system A.(t) is asymptotically stable and P(t) is positive
definite, the inequality (6.2.15) follows immediately from Propositions 4.3.1 and
4.3.2. O

6.4.3 Proof of theorem 6.2.1

We use the standard completion of squares method while accounting for the pos-
sible jumps. Differentiating z'(t) P(t)z(t) along the trajectory of system (6.1.3),
we obtain

%x'Pm = &' (t)P@t)z(t) + 2 (t) P(t)z(t) + z'(t) P(t) ()

= 2'(t)[AP(t) + P(t) + P(t)AJz(t) + 2 < u, B, Pz > .(6.4.30)

Replace term [A'P(t) + P(t) + P(t)A] by equation (6.2.1), and use assumption
i),
—2'Pr = —z'(t)C1Ciz(t) + 2'(t)P(t) B1B{P(t)z(t) + 2 < u, B{ Px >

= —llal* +Ilu+ By Pal. (6.4.31)
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Integrating equation (6.4.31) from [:T', (z + 1)T] for some i, the right-hand side
(RHS) of equation (6.4.31) becomes
RHS = _||Z“[2iT,(i+1)T] + [|u + BQP$||[21'T,(¢+1)T]- (6.4.32)
where the left-hand side (LHS) of equation (6.4.30) becomes
LHS = Z'(iTY)PGET*)z(iTt) — o' (iT)P(iT)z(iT)
= [z(iT) + Bow()] P(iTH)[z(iT) + Bav(i)]
—2' (iT) P(iT)z(:T)
= v'(1)ByP(iT")Byv(i) + 2 < v(3), ByP(iT )z (iT) >
+z(¢T)[P(iT) — P(iT)|x(:T)
= =Pl +[|(v*I + B;P(iT*)B;)"/?
X[v(2) + (v*I + ByP (T %) By)  BoP(:TH)x(iT))||?. (6.4.33)
Since the closed-loop system is stable, hence z(t) — 0 as ¢ — oo. Assume the

initial condition x(0) = 0. Integrate above equation from 0 to oo, we obtain the

following equation,

=7 llolli, + 20 N*T + By P(iT*) By) 2
1=0
X[v() + ('] + By P(iT*) Ba) ' By P (i) (iT )|
= —|l2l13, + llu+ B, Pa|[%,. (6.4.34)

Taking a feedback controller u(t) = —B{ P(t)z(t) and since the summation term

is always nonnegative, we have the following inequality
12112, < 2*1lvlfE,- (6.4.35)
It is easy to see from (6.4.34) that the worst case impulsive disturbances is

v(i) = —(v*I + BYP(kT ") By) ' ByP(iT*)x(iT). (6.4.36)
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The procedure to compute such a feedback controller is outlined as follows:
1). Given v > 0, check if the matrix &(T,0) has no eigenvalues on the unit
circle. If not, increase v until the condition is satisfied.
2). Compute the periodic solution P(t) according to equations (6.3.9), (6.3.13)
and (6.3.24).
3). Check if the inequality (6.2.15) is satisfied. If not, go back to step 1) and
increase 7y until this condition is satisfied.

4). Compute the feedback controller u(t) according to equation (6.2.3).

6.5 Implementation By A Digital Controller

In this section we will address the optimal H,, control for impulsive disturbances
by using a sampled-data controller. This consideration is partially motivated by
the need for digital implementation of any controller. In chapter 4, we have
deduced that the (sub) optimal solution and the controller is time-varying in
general. When using a sampled-data controller we are able to convert the con-
trol problem into a discrete-time H,, control problem under a proper sampling

condition, hence the control structure is simpler than the continuous one.

6.5.1 A sampled-data controller

To facilitate exposition, the problem we consider here is a simple case which

captures all the essential features of the general problem. The linear system is
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— S " K H —

Figure 6.1: A sampled-data controller
given by,

z(t) = Az(t)+ Biu(t) + i Byvé(t — kTY)
k=0

[\
—
4
~—
It

Clx(t) + Dlu(t)

y(t) = Caz(t) (6.5.1)

We shall study the problem of controlling (6.5.1) using a sampled-data controller
k, and k has the form of Figure 6.1, where the S is sampling operator with
sampling period T, k is a discrete-time LTI system. H is the hold operator
(zero-order) [73, 74, 75]. Suppose that the sampling period is 7,. The structure
of this system with sampled-data controller is similar to so called multirate
sampling systems. [76] has shown that given two sampling periods 77 and T5,
if the ratio of two periods is a rational number T;/T> = N;/N,, where N; and
N, have no common factor. Then there exists a smallest integer N and a real
number T such that T} = TN, /N, T, = TNy/N, and N = N1 N,. If the samples
are synchronized, it follows that the control and measurement signals will be
constant over sampling periods of length T'/N. Sampling with that period gives
a discrete-time system that is periodic with period T'. The system can then be
described as time-invariant discrete-time system if the values of system variables
are considered only at integer multiples of 7. The ordinary discrete-time theory
and state-space form can then be applied. In our problem, we assume that
T,/T> = n, where n > 1 is an integer, hence the above assumptions are satisfied.

For simplicity, we assume 7} = 75 = T in this chapter. The state and observation

117



Figure 6.2: System diagram

() = [0 1]x(t) = Cua(t)
v = |1 0]s0) = G (6.5.28)

Let us apply the state-space formula to solve this control problem. We consider
the output-feedback case. Without loss of generality, we choose k, ¢, mo, and b,

such that the matrices are given as,

0 1 0

A= )Bl:BZZ acl=[0 1:|)C2=[1 0](6529)
-2 -3 1

It is easy to check that assumptions A2) and A3) are satisfied. Let us follow the

design procedures.

Step 1: Let sampling period T = 1, the M; and P; are given by,

0.177113  —0.0540768 —0.0885563
1= ’ 1= )
—0.0540768 0.147066 0.0270384
—0.0540768

My =0.127396, P, =
0.147066
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M; = 0.147066, P; = 0.0270384. (6.5.30)

Step 2: Let v =1, 21 — M3 = 0.852934 > 0, and Q is given by

_ 0.117005  —0.0410887
Q= > 0,
—0.0410887  0.164588

Step 3: Calculate A, By, By, C, according to (6.5.16).

Step 4: Solve two algebraic Riccati equations (R1) and (R2), the solutions are

_ 0.2840 —0.0086 _ 0.0405 —0.0007
M= , N= (6.5.31)
—0.0086  0.1789 —0.0007 1.1872

It is easy to show that both M and N are positive definite and p(NM) < 1.

Hence, the discrete-time observer #(k) and suboptimal controller u(k) are given

by,
0.456713  0.302102 | _ 0.145365
Fk+1) = Z(k) +

~0.696961 0.142489 0.0319954

i 0.199788
Wk -1 1|20+ (k)

0.264245

u(k) = [0.684444 —0.382274]9?@), k=0,1,2,--- (6.5.32)

6.6 Conclusion

In this chapter, we described a complete state-space solution to the (sub)optimal
control problem of a class of linear systems subject to impulsive disturbances.
The state feedback controller can be computed in terms of the unique positive
definite periodic solution of a coupled Riccati equations. Finally, we implemented

this control algorithm by using a sampled-data controller, we showed that the

129



structure of the sampled-data controller could be simpler that continuous version

under a proper choice of the sampling period.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have derived a general nonlinear model for impact dy-
namics on flexible structures based on Hertz law of impact. A mathematical
analysis of this model has been carried out to prove the existence of a unique
solution. A numerical method has been developed based on the contraction
mapping principle. By taking advantage of the fact that the impact period is
usually very short we have developed a series of approximation solutions. The
first order approximation yields a special function which can be used for ana-
lytical and computational purposes. The second order approximation leads to
a two-parameter family of ordinary differential equations of which the solutions
contain universal features of impact problems. Simulation results of various ex-
amples have demonstrated the usefulness of the developed numerical method and
approximate methods. We believe this nonlinear model and its approximation
solutions are useful in the design and analysis of various engineering problems
involving impact. This methodology has already been used for the analysis and
design of a smart motor and a walking robot at the University of Maryland at
college park. Besides the applications discussed in the introduction to this dis-

sertation, the potential areas could be found in biomechanical engineering such
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as the need to study of human jumping, foot landing etc.

We have systematically investigated the control of impact forces by using a
nonlinear model for impact developed in the first part of this dissertation, where
the impact forces are treated as disturbances to the system. A nonlinear optimal
control problem is formulated under the assumption that the information of
impact forces is known a priori. Optimal control strategies were derived via the
use of dynamic game theory. A more interesting problem is to derive optimal
solutions where sensors information on impacting velocities is not available a
priori. This requirement leads to a nonlinear H,, control problem which needs
further investigation. Again, by taking advantage of the fact that impact period
is very short in general we have developed a series of approximate solutions for
the nonlinear optimal control problem. We have shown that the higher order
terms are negligible in some cases, hence the approximation leads to a linear
problem. A linear H, control problem is formulated and a state-space solution
has been obtained. The solution is naturally associated with the existence of a
stabilizing periodic solution of a coupled Riccati equations. Hamiltonian theory
is employed to analyze the coupled Riccati equations. Finally, we investigate
the digital implementation of this control algorithm by using a sampled-data
controller. We show that under a certain sampling condition, the controller
structure could become simpler than the continuous one. These control methods
are proposed and analyzed on the theoretical base. It would be more interesting
and challenging to implement and test these algorithms on some real world
problems. One application is force and constrained motion control of a flexible

robot. An experimental apparatus in the ISL laboratory at the University of
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Maryland could be a good test bed. Another application is to investigate the

active control of the suspension system of a vehicle [16, 15].
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Appendix A

PROOFS OF CHAPTER 3

A .1 A simply supported beam

For the free vibration, the deflection of a beam is governed by the PDE,

2 4
ow 0w 0 0 <z < (A1)

T

and boundary conditions for the simply supported case are

w(0,t) = w"(0,t) = 0, (A.2)
w(l,t) = w"(l,t) = 0.
The corresponding eigenvalue problem can be written as
" a4w n

where 3 is an eigenvalue and the W(z) € L%[0,1] is the corresponding eigen-
function. The boundary conditions are

(A.4)
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The general solution can be expressed as

W(z) = c15tnfz + cacosBz + cssinhfBz + cycoshBz, (A.5)

where the ¢, to c4 are constants to be determined by boundary conditions (A.4).

In order to satisfy boundary conditions (A.4) we get,

sinfBl = 0. (A.6)
The solution of equation(A.6) is Byl = km,k=1,2,------ 00
The normal eigenfunctions are
Wi(z) = V2sinfx k=1,2,-----. 00 (A.7)

Lemma A .1 Vz,{ € [0,] and Vt > 0 , the Green’s function is uniformly
bounded.

Proof: It is easily checked that (A.8), (A.4) is self -adjoint. Hence, its

Green’s function can be expressed as

Gz, ¢ ) fj (O S b, (A.8)
Since,
Wi(z) = V2sinfir Vz € [0,1]

(Wi(2)Wi($)]

Gl Gt)| = |§Wk(x>m<<)“’;‘:’°tﬂ<t>|

2|sinfrzsinfrl| < 2

IA

z Wiz ||S”“”’°t H(b)|

|smwkt|

IA
M8 i

W
1
1 Wk

a
(]

A
[\
8 =

(wi = Brp/EI)

x>
Il



converges, AIM > 0, such that G(z,(;t) < M Vz,¢ € [0,1].

A .2 A cantilevered beam

The PDE is same as in equation (A.1l), and the boundary conditions for the

cantilevered beam are

w(0,t) = w (0,t) = 0, (A.9)

wl,t) = w'(,t) = 0.

The approach to solve the eigenvalue problem is the same as in A.1. Again, we
write the general solution and plug in the boundary conditions (A.9) into this

equation. After simplification, we get the beam characteristic equation,
cosfilcoshfBl = —1. (A.10)
The orthonormal eigenfunctions are determined by the following equations,

Wi(z) = Z%W(m) (A11)

coshfBrx — cosfrx 3 sinhfx — sinfix
coshfBl + cosfl sinhBil + sinfyl
_ cos*fil

!
2 _ 12 =1.2. ...
and A7 = /0 Wi(z)dr = vy k=12, 0.

where  Wi(z) =

Lemma A .2 The orthonormal eigenfunctions {Wy(x)}2, are uniformly
bounded.

Proof: There are infinitely many solutions to the characteristic equation (A.10),
O<Bil<Bol < vvnn < 00, where Bl = 4.73.

Note that coshfrl > 0, coshfrz > 0, sinhfyl > 0, sinhfBz > 0. Vz € [0,1], Vk.

coshfxx — cosfBrx  sinhfrr — sinfix

W,
k(@) coshBil + cosfyl stnh Bkl + sinfyl
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where

C

Dy

C’k(x) — Dk (117)
(coshBil + cosBil)(sinhBil + sinfil)
() = (coshfz — cosfiz)(sinhfl + sinbyl);

() = (sinhfrz — sinfyz)(coshfil + cosBl).

Now, we carry out the simplifications:

Cr(z) — D(z)

|Cr(2) — Di(2)]

Since Bl > 4 VEk,

coshfBrxsinhfil — sinhfBrxcoshBil — cosBrrsinhfyl
+coshfrzsinfil + sinfBrrcoshfBil — sinhBrxcosBl

+sinfrrcosfyl — cosBrrsinfl

= sinhf(l — z) + sinBi(z — 1) — cosBrzsinhfBl

IN

IA

<

+coshfBrzsinfil + sinfrxcoshfil — sinhfrxcosfBil

sinhfx(l — z) + |sinfBi(z — )| + |cosBrx|sinh Bl
+coshfyz|sinfil| + |sinBrz|coshBil + sinhfx|cosfyl|
sinhfe(l — ) + 1 + sinhfl

+coshfByx + coshfl + sinhfyx

1/2eP0=2) 4 1 4 Pil 4 ePe® = py (1) > 0;

it follows that sinhfl > 2, and coshfyl > 2,Vk. Hence,

|Ck(2) — Dy(x)|

Wil <

Wil < |cosh Byl + cosBl||sinhBil + sinBl]
< hi ()
= (coshfBl — 1)(sinhBl — 1)
< l .
= coshfBl(sinhfBl — 1) since  coshfl > 2;

4h(z) : ,
< 9
S CoshBusinhBil since  sinhfl > 2;
since cosfrlcoshfBil = —1 = cos®Bil = ———1— and coshfBl > 0;

cosh? (1
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2
o CoS“[l 1
E T Simag = —Ak = sin“Prlcoshfl —

Wi(z)| = &;Wk(xn

4hk (.’13)
coshfilsinhfl

= sin’Bilcoshfil

< 4hk (.’IJ)

~  sinhGl

8(eﬂk(l—w)/2 + ePrl 4 kT 1)

ePrl — e—Brl

8(e= Pk /2 + ePr(E=1) o o=Prl 4 1)
1 — e~2h

8(e P12 /2 4 efrle—l) 4 o=Ful 4 1)
1— =261

Hence, AMy > 0 such that
Wi(z)| < My Vzel0,l;k=1,2,----- .

For the cantilevered beam, the differential operator is also self-adjoint. Thus,

the proof that the Green’s function is uniformly bounded is similar to lemma

Al
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