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ABSTRACT

Secondary multiple-access interference processes are characterized for multi-hop
packet radio networks, in which users are assumed to be Poisson-distributed in the plane
and to use frequency-hopped spread-spectrum signaling with a receiver-oriented assign-
ment of frequency-hopping patterns. The throughput per node and the average forward
progress are then evaluated for frequency-hopped multi-hop networks which employ (i)
random forward routing with fixed transmission radius (RFR) and (ii) most forward pro-
gress routing with fixed transmission radius (MFR). The optimal average number of
neighbors and transmission radius are derived for these cases when Reed-Solomon
forward-error-control coding with minimum distance decoding or binary convolutional

coding with Viterbi decoding is employed.
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I. INTRODUCTION

In recent years, a good deal of research has been done in the areas of multi-user
communication networks and spread-spectrum communications. One of the logical
extensio.ns of this research is the use of spréad-spectrum techniques in combination with
networking techniques in order to provide greater multi-user capabilities and higher
resistance to interference, whether hostile or benign. However, there have, thus far, been

few attempts to pursue this.

The general feature of most of the spread-spectrum network models proposed to
date has been a lack of precision in the characterization of the effects of spread-spectrum
techniques on network performance. The general practice in papers like [1] and [2] has
been not to pay sufficient attention to the accurate modeling of the effects of spread-
spectrum modulation, therefore the results obtained can be very optimistic or pessimis-
tic, depending upon what assumptions are made. In [1], a model is presented for a
frequency-hopped (FH) spread-spectrum multiple access (SSMA) digital cellular tele-
phone network, and an expression is derived for throughput. The outstanding features
of the model are the characterization of user mobility in terms of a two-dimensional
Poisson process and the treatment of transmitter power attenuation with distance.
Similar techniques are also used in [2], in which the authors concentrate on trying to
model spread-spectrum multi-hop networks and although their multi-hop network model
has merit, their treatment of the spread-spectrum modulation is inadequate (they only
employ the processing gain without taking into account the characteristics of the specific

spread-spectrum modulation).

In contrast, the work of [3] for single-hop frequency-hopped spread-spectrum net-

works examines in depth the effect of forward-error-control coding and frequency-hopped



spread-spectrum on the throughput and packet error probability of the network which
employs a slotted or an unslotted ALOHA protocol. Furthermore, the work of [4] inves-
tigates slotted ALOHA protocols with stable throughput for frequency-hopped Reed-
Solomon coded single-hop networks. No similar attempts to analyze accurately spread-

spectrum multi-hop networks have been made so far.

In this paper, we utilize the spread-spectrum models found in [3], [4], and [8] and
incorporate their precise detailed characterizations of the effects of frequency-hopping
and forward-error-control coding to the models of multi-hop networks treated in [2], [5]
and [6]. The effects of frequency-hopping and forward error-control coding (Reed-
Solomon coding with minimum distance decoding or convolutional coding with Viterbi
decoding) as well as of data modulation [M-ary (or binary) orthogonal FSK with non-
coherent demodulation] are taken into consideration, and the interference processes are
characterized accurately in order to evaluate the throughput per node and the average

forward progress of the multi-hop network.

An overview of the contents of this paper is as follows. In Section II, results are
derived for the throughput per node and the average forward progress for frequency-
hopped multi-hop networks with forward-error-control employing random forward rout-
ing with fixed transmission radius (RFR), a modification to the scheme treated in [2].
Section III contains results for similar multi-hop networks employing most forward rout-
ing with fixed transmission radius (MFR), adapted from [5]. Finally, in Section IV, we

present numerical results and conclusions.



II. FREQUENCY-HOPPED MULTI-HOP NETWORKS EMPLOYING

RANDOM FORWARD ROUTING WITH FIXED TRANSMISSION RADIUS (RFR)

In this section, expressions are derived for throughput and expected forward pro-
gress (which is used to determine optimum transmission ranges) for frequency-hopped

multi-hop networks.

The network model to be assumed here is similar to those found in [2], [5] and [6].
A geographically-dispersed network is assumed with a uniform traffic matrix. The
number of users in a given area is a two-dimensional Poisson process with density X
users per unit area. Each node is assumed to be able to transmit to users Jocated within
some radius R; thus, the average number of ‘‘neighbors” (users to whom a given
transmitter can transmit) is given by N = A\7R 2 A given node will be in transmit
mode with probability p and will not be in transmit mode with probability 1-p (this

represents a Bernoulli process with parameter p ).

The channel access protocol is assumed to be slotted ALOHA, and the system is
assumed to utilize frequency-hopping as the means of spreading the spectrum. Receiver-
oriented assignment of frequency-hopping patterns is assumed; i.e., a transmitter with a

packet to send to some receiver uses the hopping pattern unique to that receiver.

Synchronization at the packet level is assumed feasible for all users. Thus, the
uncertainties in the timing between different users are required to be small relative to
the packet duration; however, since they might not be small relative to the dwell time of
thé frequency-hopper, we consider asynchronous frequency-hopping systems. For sys-

tems employing Reed-Solomon coding one codeword per packet is transmitted.

There are many possible routing strategies, of which two shall be analyzed here:

random forward routing with fixed transmission radius (RFR) analyzed in this section



and most forward routing with fixed transmission radius (MFR) analyzed in the next

section.

Random forward routing with fixed transmission radius (RFR) is based on the com-
pletely random routing scheme found in [2]. The difference, of course, is that, here, a
transmitter always chooses a receiver in the forward direction, the direction in which the

ultimate destination is located.

Figure 1 illustrates this strategy and the types of interference that are encountered
therein. In the figure, X is transmitting a packet that is destined for node D. X ran-
domly chooses a node Y in the half-circle of radius R surrounding X that is in the direc-
tion of node D. Forward progress is denoted by the length of segment

XZ = z = rycosb,.

In the figure, X' and X? interfere with X’s transmission. X' is a primary
interferer; X' has a packet destined for D', and he randomly chooses Y as his immedi-
ate destination node, the same node chosen by X ( note that X, likewise, is a primary
interferer with X!'s transmission). All primary interferers use the same spread-spectrum
code as X uses. X?is a secondary interferer; X 2 has a packet destined for node D? and
chooses Y2 as an intermediate destination. However, since the distance between X? and
Y is less than R, the fixed transmission radius, some of the signal power used by X%is
received by Y. The spread-spectrum codes which are used by the secondary interferers

are different from the code used by X for transmitting to Y.

In analyzing this scheme, what is desired is the probability that X transmits
correctly to some node Y, denoted P(X —7Y ). In order to evaluate this probability, it
is necessary to evaluate the probabilities of occurence of a number of contributing

events.



Given that a node is in transmit node (with probability p), it actually transmits

N

with probability 1-¢ 2 as discussed in [3], where N is the average number of neighbor-

ing nodes (within a circle of radius R), as described above. Thus, we have

Pry(X—Y) = Pr{X in transmit mode}-Pr {X can find a receiver | X in transmit mode}
Pr {Y is not in transmit mode}

N

= p[l—eT](l-p ) W

This accounts for the “non-interference” portion of P(X —Y); we now concentrate on

the interference-related components.

The first piece of information necessary in order to evaluate the interference com-
ponents is the number of potential interferers (surrounding a receiver). The probability

that there are k interfering users (transmitting packets) within a radius B around a

e NNk

given node is given by the Poisson distribution, P (K =k) = 0

Given that there are k£ potential interferers, we must now account for the fact that
each of these can either not interfere (i.e., not transmit), be a primary interferer, or be a
secondary interferer. Let us say that j of these k do interfere; then k~7 do not, and

N

2

k-j
this probability is given by l—p[l—e ] . Now, say that ¢ out of the j are pri-

mary interferers and j—i are secondary interferers. The probability of this being true

i N
can be shown to be [——’1;7] p[l—e 2 ]—

The next step involves the evaluation of the probability that X (out of the 1+1
users transmitting to Y) is captured by the receiver Y and the probability that Y

correctly receives the packet of X in the presence of the ¢ primary and j—1 secondary



interferers. Regarding capture, we assume that perfect capture occurs; that is, only one
of the contending users will be captured by the receiver, and this event has probability

1. Since t-+1 users (including X) are contending and each one is equally likely to be

captured by the receiver Y, the probability that Y captures X is Regarding the

t+1

probability of correct reception in the presence of j—i secondary interferers it will be

denoted by P, (7-1), which, for various coded systems, is given in Appendix A.

Then, summing over all possibilities,

- kE-j
© ,-Npnk k (F N
Pripx(X—Y)= Ee—LE [] _I—P[l—e 2]}

k=0 k! o

.ijpilr __;gpj—i..
DY [:][W] _P(1~6 )_N P, (5-1). (2)

i=0 1+1
We now take our two components, Pry (X —Y) and P;|7x(X—7Y), and get the

overall expression for P (X —Y). This is simply

P(X—=Y)=Prx(X—=Y)P; | 1x(X—=Y). (3)

Unfortunately, the ! in Py | X (X —7Y) presents an obstacle in any attempt to
!

write a closed-form expression for P(X —Y ). However, can be closely approxi-

mated by a sum of exponentials, ¥ ¢ e w

14

, in which the c¢,’s and 4,’s can be determined

using Prony’s method (see, for example, 7, pp. 378-382]). We have used a three term
approximation in our analysis below and in computing the numerical results shown in

Section 1V.

If we further assume that P, (j~¢) can be put in the form Y73 b, ; a,i;,',i (this is true,
m,i

for example, for coded systems, as discussed in Appendix A), then P(X—Y) can be



expressed in a closed form as
N
P(X—Y)=p|1-e *|(-p)

3 ' Nos N 1
R BINEY S (S e el

where 6§, = e ks

In this case, the local normalized throughput (in packets per hop, per node, fre-

. . - r logsM
quency slot and dimension) is just —

P(X—Y), where we multiplied by —1—-,
q

log,M

and the forward-error-control (FEC) code rate r that is used to account for the

bandwidth spread. The expected forward progress Z can be shown to be given by

7 = %P(X—»Y). (5)

In Appendix A expressions for P(X —Y) which permit the evaluation of the
troughput per node and the average forward progress are derived for Reed-Solomon cod-
ing with error-correction decoding and erasure/error-correction minimum distance decod-
ing s well as for binary convolutional codes with side or without side information and

Viterbi decoding.

As an example of a case in which P, (j—?) is of the form ¥ b,, ; a,,’;,‘," which results
m,l

in.a closed form expression for for P(X—Y), we consider the case of RFR with
RS(n ,k) coding used along with error-correction decoding. From Appendix A eq. (A.2)

(see also [3]), we notice that we can put P,(j-¢) in the desired form, where

n)[m _
amy = (1-P4 y*+/-™ and b,, 4= [m][ I](—l)l(l—Po)m‘(" =) Thus, (2) becomes
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](1 p)
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m=0 {=0

P(X_’Y)=p[l e

N
.exp{—pN 1-e 2_ _]—\fli - (I_Ph )n +{-m
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III. FREQUENCY-HOPPED MULTI-HOP NETWORKS EMPLOYING

MOST FORWARD ROUTING WITH FIXED TRANSMISSION RADIUS (MFR)

This strategy differs from RFR in that the node Y that results in the most forward
progresé is always chosen by X . This scheme is discussed in [5]. The fact that causes
the analysis of MFR to differ from that of RFR is that, as shown in Figure 2 since Y is
the “most forward” node, there can be no nodes beyond Y in the direction of the desti-

nation; thus, a region, denoted A (r,0p) is excluded.

In [5] expressions are derived for f, 4(-,) and f,(-), the distributions of the position
of the immediate destination node (Y, in the case of X or a primary interferer; some
Y2, in the case of a secondary interferer). Expressions for the area of A (r,,0,) are deter-

mined, as well. These are all needed in the evaluation of P(X —Y).

As a preliminary to the analysis, define A’ (r0.00) = TR?-A (r4,6,) to be the area
of the non-excluded region. Thus, N=\7R? is the expected number of neighbors in an
entire circle of radius R, while N’ (r0,00)=>\A' (ro.0,) would be the expected number of
neighbors in the non-excluded region.

The quantities to be determined in this analysis are basically identical to those in
the analysis of RFR, but there are some significant differences. One such difference is
that the Poisson distribution uses N (ry,0,), rather than N, in the distribution of the

number of neighbors around Y.

In evaluating the interference probabilities in this case, we will separate the proba-

N J
bility of there being j inteferers out of k£ potential interferers, given by |p(1-e i,

from the probabilities of there being j~i secondary interferers and ¢ primary interferers.

These two quantities are now conditioned on there being 7 interferers.
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If an interferer, say X!, is a primary interferer, then Y must be X's “most for-

ward”, node. The overall probability of a node being a primary interferer, given that it is

an interferer (i.e., that it transmits and is a neighbor), is given by
P,(R) = Pr{X"is primary | X" interferes}
R
= j; P{Y is the most forward neighbor of X' | Y is at radial distance r, from X'}

P {X"s radial distance from Y is between r, and r,+dr,}dr, (7)

Thus, we can write

m,:

R 2r "1 ) ' '
P\R)= [ _}.3_2‘_ Lo J, Jeatr’ 8)ar" dd |dr, (8)

r
2

2r
where the term in brackets and R_zl’ respectively, denote the first and second probabili-

tiy terms in the right member of (7).

The probability that some node, say X2 is a secondary interferer, given that it is

an interferer, is given by the complement of (8); i.e.,
Pr {X? is secondary | X2 interferes} = P,(R)=1- P (R) (9)

This quantity represents the sum of the probabilities that Y is not in X?%s forward

direction and that Y is in X ®s forward direction but is not “most forward”.

As before, we now sum over all possibilities, and, unlike the RFR case, we must
now also take the expectation over r, and 6, the position of the ‘“most forward” node.

This gives the following result:

N . o eV ot [N' (ro,f)o)]k
P(X—Y)=p(-e 2)(1—P)f0 fﬂ 2 k!

ek =0

w':
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. (k N J N k-j
1 lp(-e ?) 1-p|1-e 2
j=ol’
S purr npry G
igo\’ 1 1 1 c\J
[ 6(ro.bo)d bodr . (10)

In deriving (10), we assumed that capture occurs with probability 1, that is, one of the

1+1 contending packets is captured by the receiver. Furthermore, if we use the three

term exponential approximation to

™ and assume that P,(j—7) is of the form
)

3 by a,;";,”,", as we did in the RFR analysis, the integrand can be simplified to some
m,l

extent, by evaluating the summations. At the end of this section, we give an example in

which this evaluation can be carried out to the end.

log,M

Again the normalized local throughput is L P(X —Y) and the expected for-
q

ward progress can be evaluated by multiplying the integrand in (10) by rcosf, and then
integrating as in (10).
As an example, when Reed-Solomon coding with error-correction minimum distance

decoding is employed we can obtain for the MFR case (see Appendix B):

N
P(X—=Y)=rpl1-e 2 |-p)

Ny 3 l,';][7](—1)‘(1—&)’"*"*"’"’
v=1 m=0[=0
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R T N
I Y (ro,m[l—e ] [1-6,P (R -y " 1P (R ) |

2

I+ 0(r0.00)d Gpdr . (11)

Expressions similar to (11) can be derived for the case of erasure/error-correction
decoding of Reed-Solomon codes, as well as for the Viterbi decoding of binary convolu-

tional codes. These expressions have been derived and cited in Appendices B for the

MFR case.
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IV. NUMERICAL RESULTS

In this section, results are presented for the normalized throughput per node and
the expected forward progress for frequency-hopped multi-hop networks using the RFR
and MFR schemes, discussed in Sections II and III, respectively.

The usual performance measures in multi-hop networks (e.g., see [5]-[6]) are: the

) r log,M
normalized local throughput defined as § = —
q

P (X —Y) (in packets per hop, per

node, frequency slot and dimension), the expected forward progress Z (in distance units
per hop where Z has the same units as the transmission radius K ), and the normalized

total throughput « (in packets per node, frequency slot and dimension), which is defined
as 7= Z 4574 / —NE-S. Notice that the total throughput can be easily obtained from

the local throughput and the expected forward progress; we do not present any results
on the total throughput in this paper. Also notice that the expected forward progress
and the total throughput depend on both X\ and N; in contrast, the local throughput

depends on X only through N = AR 2, the average number of neighbors.

We start the presentation of results with the RFR case. Figure 3 shows the depen-
dance of Z on N as parametrized by A. The expected forward progress first increases

and then decreases as /N increases for fixed A\. As X\ increases and N is held fixed, the

forward progress decreases because the radius of transmission B = __'_‘L} decreases.
Aw

Figures 4(a) and 4(b) show that both S and Z are affected by the value of p; the
values increase, then decrease with p. The optimum value of p when N is an unres-
tricted parameter has been computed to be approximately 0.466 for S in Figure 4(a) and
approximately 0.355 for Z in Figure 4(b). The value of p = 0.1 appears to provide

almost invariant S or Z independent of the value of neighbors N. One thing should be
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noted regarding p and X: these parameters reflect users’ behavior and can not, in gen-

eral, be set to desired values.

Figures 5(a) and 5(b) demonstrate the effects of changing the rate of the code and
the decoding algorithm. As shown, throuéhput decreases significantly when the code
rate decreases while it remains invariant for a larger range of N when erasure/error-
correction decoding rather than error-correction decoding is employed. In contrast the
expected forward progress increases drastically when the code rate decreases and even
more so when erasure/error decoding instead of error-only decoding is used. The decrease
to throughput due to the decrease in the code rate is due mainly to the normalization of
the throughput; that is, the increase in the probability of correct reception due to the
lower rate does not balance the penalty of multiplying the throughput by the code rate.
On the other hand the expected forward progress does not involve any normalization so
that it takes advantage of the full benefit of lower rate coding. In comparing two
schemes with similar parameters but error-correction capability (e.g., different code rates
or decoding schemes) maintaining a large value of throughput over a broader range is a
manifestation of the fact that the one scheme rejects the multiple-access interference

better than the other.

Figure 6 shows the behavior of the throughput S as a fuction of N when
parametrized by \ for frequency-hopped multi-hop networks employing the binary con-
volutional code of constrained length 7 and rate 1/2 with no side information available
to the decoder. Similar observations as for Figure 3 are in order here. Notice that the
values of Z in Figure 6 are smaller than the corresponding values of Figure 3 and for

fixed \ they remain invariant with respect to /N in a smaller range.
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Figures 7(a) and 7(b) show S and Z, respectively, as functions of N when
parametrized by p for the same binary convolutional code as above. In particular, Fig-
ure 7(a) shows the same trends as Figure 4(a) does; the difference lies in that the convo-
lutional code provides larger peak throughput (for fixed p) but it maintains it for a
smaller range of /N than the Reed-Solomon code. In contrast, Figure 7(b) shows that
the convolutional code both provides a smaller peak expected forward progress and it

maintains for a smaller range of /N than the Reed-Solomon code.

Figures 8(a) and 8(b) show S and Z, respectively, as functions of N for binary
convolutional codes of rates 1/2 and 1/3 and constraint lengths 7 and 9. We observe
that decreasing the rate of the code lowers the throughput and increases drastically the
average expected progress. Increasing the constraint length improves the performance of

the network in terms of both the throughput and the average expected forward progress.

Figures 9(a) and 9(b) provide a comparison of S and Z, respectively, as functions
of N for the rate 1/2 binary convolutional codes of constraint lengths 7 and ¢ and the
Reed-Solomon code (32,16); binary FSK modulation with noncoherent demodulation and
hard decisions are employed. Figure 9(a) shows that although the peak throughput of
the convolutional-coded network is slightly larger than that of the Reed-Solomon-coded
network, the Reed-Solomon-coded network maintains a larger value of the throughput
for a broader range of values of N. Then, as Figure 9(b) shows the RS-coded network is
far superior to the corresponding convolutional-coded networks in terms of both the
peak value and the range of N for which the peak value is approximately maintained of

the expected forward progress Z .

We now move on to discuss the results for the MFR case. Figures 10(a) and 10(b)

are analogous to Figures 4(a) and 4(b); they show the throughput and expected forward
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progress, respectively, parameterized by p. The same trends that appear in the RFR

case also appear here in the MFR case.

Figures 11(a) and 11(b) show the throughput and the expected forward progress for
two Reed-Solomon-coded networks with code rates 1/2 and 1/4. The throughput of the
RS(32,16)-coded network is higher than that of the RS(32,8)-coded system for most
values of N this is reversed for N larger than 80. On the other hand the expected for-
ward progress of the lower code-rate scheme is higher than that of the higher code-rate

scheme for all values of V.

Finally, Figures 12(a) and 12(b) compare RFR and MFR performance in terms of
throughput and average expected progress, respectively, for a given set of parameters.
In Figure 12(a), it is shown that the RFR scheme with RS(32,16) and error-only decoding
outperforms in terms of peak throughput value the corresponding MFR schemes with
the same RS coding and error-only or erasure/error decoding; however the MFR schemes
maintain a large value of the throughput for broader range of values of N and between
the two the erasure/error decoding scheme is superior. Then in Figure 12(b) it is shown
that the MFR scheme outperforms the corresponding RFR scheme and that for MFR

schemes the value of Z can improve considerably by using erasure/error decoding.
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V. CONCLUSIONS

We have presented here an analysis of a model for randomly-distributed frequency-
hopped multi-hop networks. The aspect of this analysis which differs most from previ-
ous analyses of multi-hop spread-spectrum networks is the characterization of other-user
interference and its mitigation by the use of spread-spectrum techniques (frequency-
hopping here). We have also been able to incorporate the effects of modulation, coding,

and noise into the analysis.

The numerical results presented show network performance (normalized Iocal
throughput and expected forward progress) as a function of the average number of
neighbors around a node. Variations in performance are demonstrated for variatifls in
probability of a user being in transmit mode, density of users in the plane, and coding
employed. These results also compare the two types of routing, RFR and MFR, con-

sidered in the analysis.

An obvious extension of this work would be to consider deterministic, rather than
randomly-distributed, networks. This would not involve a major modification to the
analysis; 1t would involve removing the Poisson-related elements in the analysis and is,
thus, rather trivial. However, it would be somewhat more difficult were one to consider
non-identical nodes, i.e., nodes with different transmitter powers (or, similarly, to

account for signal attenuation with distance).

The importance of this work should not be underemphasized; however, there
remains much to be done in the area of spread-spectrum multi-hop networks. The
analysis here does not deal with issues like spreading code protocols and access protocol

stability. With so many unsolved problems, this remains a fertile area of research.
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Figure 1. Interference in Random Forward Routing
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Figure 2. Excluded Region in Most Forward Routing with Fixed
Transmission Radius
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Appendix A: Derivation of Expressions for Coded RFR Systems

In Section II a result is stated for a Reed-Solomon coded RFR system. In this
appendix, it will be shown exactly how this, as well as other results for coded RFR sys-

tems, can be determined.
In Section II a general result for RFR systems is derived. We have that

P(X—>Y)= Prx(X=Y)P;;rx(X—=Y)

N 00 —NNlc E (& F N £
= p| 1- (1—P)E E[]}-p 1-e¢ 2
k=0 i
T2 P . (A.1)
,_[J[ ] 1+1 —¢ N PC(] Z)'

In that same section, it is stated that

can be closely approximated by a sum of

exponentials of the form Y)c¢,5), where §, = e”

14

in the notation used in that section. A

three term approximation is used here.

In order to obtain a closed-form expression, we must have P,(j-¢) such that the

dependency on j—t¢ is exponential; for example, if P,(j-t) = 31b,, a,;’,",’, this require-
m,l

ment would be satisfied. Having P,(j~-¢) in such a form, results in the final sum in
(A.1) having the form of a binomial expansion. Several coding schemes, including those
used here (Reed-Solomon and binary convolutional), result in a P, (j-¢), of the required

form.

We shall first consider Reed-Solomon coding RS (n,k) with error-correction

decoding. In this case, we have



. . t n . . m . . "—m
(== B | | [nG-0]" [i-psi-0) ], (A2)
m=0{ ™
where t = l n -k J is the error-correction capability of the RS (n ,k) code and p,(j—17) is

the probability of a symbol error. Furthermore, p,(j—¢) can be bounded/ approximated
by

po(5-1) < 1-(1-Po)(1-P; )’ (A.3)
for codes over GF (M) [(1-P,) becomes (l—Po)m‘ for codes over GF (M ™)), where P,is

the probability of symbol error (without multi-user interference) and P, is the probabil-

ity of a symbol being hit (interferred with by another user’s transmission, given by [8]

1 m, log,M
Py==|1+—=

for random hopping pattern assignments. Here, ¢ is the number of available hopping
frequencies, IV, is the number of bits per hop, and M™ is the order of the fleld over

which the code is defined.

Using (A.3), (A.2) can be written as

[ nir .. m . . In-m
P (j~i) = z)[ ] 1-0-Po)1-P) | [a-Poa-Py )7 |
m=0{ ™) "
t mn)(m PR . n-
=% % ][ ](—1)’ [a-Po-P 7 | [a-Poa-Py )y~ |
m=o0 I=o{ ™) /!
t m(n m j-i
— E 2 J[ ](_I)I(I_Po)n+l—m [(I—P}, )n+l-m ] . (A4)
m=0 i—olm) !

(A.4) has the form discussed above. We now use (A.4) and the aforementioned exponen-

tial approximation to ,:_1 in (A.1) to yield
1



N it m{n m) 00 ,_NNk
P(X—=Y)=p|1-e (1~p)Ec,,2 2[ ][ 1) (-Pyrtitm n & X

=1 m=ol=0{™) | ! k=0 k!
k k{ [ *g_]]"-i i (N[ N y i
1-p| 1-¢ 2 i e 1- 2*—1—] - Y
()l e 20 5] en)

—ﬂ 3 ¢ m n m 0o -N k
=P[1‘e 2}(1—1’)2%2 E[ }[ (1) =Pyt 3y £

{ k=0
E(k N I [ 5 A j
p> [J] 1-pl1-¢ 2 {p L-—]%—f-[l—e 2—71\[--](1~P,z yrHi-m ]}
j=o0

N
=p[1—-6 2](1—17);30,/2‘: h m][l](_l)l(l_Po)n-}-l—me—N

v=1 m=0 [=0

o N N ¢
Eafolol e Fg o))
=0 M

Honge s 5(0)( oo

m=0 {=0

Nos N
exp{ -pN [l—e 2 —7:,—-[ 1-e 2 ——1]\—[](1—13,, yrHi-m }} (A.5)

This exactly the expression given as eq. (6) in Section II.

I
~
e,
—
&
w]z

The expression for RS(n,k) Reed-Solomon coding with erasure/error-

correction decoding can be obtained in a similar fashion. In this case, P,(j—7) is

given by (see, for example, {9])

P.(j-i)=1- % [] [ . §] [peti=0 [ levti=d J' [ G- -0 [ a

n+¢<n LS
e +1<2¢+9

where e ==n -k, €,(j-1) is the symbol erasure probability given by

€, (j-1)=1-(1-P; )7,

and p, (J-1), the symbol error probability, is given by



Py (§—1)=Py(1-P; )7~
for codes over GF (M?") [the P, would become 1—(1—P0)m‘ for codes over GF (Mm‘)].

Substituting into (A.1) and proceeding as above, we obtain

N

Y 3 " " "M
P(X—»Y)=P[1_e 2](1—1’)2% OSSR ﬁ[”][ "u][j]
} I=o0

v=1 §#=0
m=maz| 0,e +1-2p

N N
ELNY N
(-1 P (l—PO)"_”"’exp{—pN ll—e 2 ——]\Vl—[ 1-¢ 2 ——le ](I—P,, yr e ]}

(A7)

For binary convolutional codes with Viterbi decoding and hard decisions,

P, (7-1) can be bounded/approximated by (see, for example, [10])

o0
P(j-t)<1-r, 35 w,P,
“:d/yu

where

Po(u;p (7-17)), no side information
Pu =
L g Ko .
[68 (71 )] Pyp)+ 3 [ 1] [6,(J — )] P, (u-1;P,), with side information,
=0

(A.8)

where r, is the code rate, dfm is the free distance of the code, Wy is the total informa-

tion weight of all sequences which produce paths of weight u, P, is as described above,

p(J-t)=1-(1-P)(1-P; Y, ==, and ¢, (j -1 )=1-(1-P, Y'. Py(n;q)is defined as

1
2



n n
» [ ]q'(l—q)"", n odd
(=t !

2

Py(n;q)= n

En) ["]ql(l—q)"_l+% " [q(l—q)]?, n even.

l

n
l=—+1
2
\

It should be noted that the summation over u in (A.8) generally involves only a few

non-zero terms.

Substituting (A.8) into (A.1) and proceeding as above, the following result is

obtained:

N
P(X—-Y)= p[l—e-2 ](1-—p)23] c, l:exp[—p (1-6))] - r,
r=1

o0

p=d

free

w#Qﬂ], (A.9)

where for the case in which no side information is available,

[ e fu)(r N 5, N )
Qu= ¥ X [ (-1)"(1-P )#*"Pexpy -pN|1-¢ %- 1-¢ 2-L -p, e | 2,
g ttL n=0 L2 7 N N

2

(A.10a)
if p is odd, and

p +1 r’=0 14 L

( N _N
Qu= ﬁ;} Zp)[”] :](—1)”(1—Po)"+*"exp{—pN[l—e 2—5—[\”,—[1—6 2—LN](1—P;, )"*’“’]}
=2

(1
2 +£ s, - oty
+% Z p (—1)”(1—Po)p 2exp{—pN{x—e 2—W—[1-e L la-Py) 2|},

XIS

if p is even; whereas for the case in which side information is available,

# . 61/ 2 1
n=o[n](—1)’7exp -pN|1-e 2—N 1-e 2_W (1-P, )"

1.4
G?;z :=:-[)2(ll;?5') :E:



S AY N N
g b . 4 2 6'/ 2 1 u+a-x
+ 3 S Py(u-N\Py) S (-1)%expy ~pN | 1-e N 1-e Y (1-P) .

A==0 =07
(A.11)

Note that Pz(l‘;';—) and P ,(u—X\;P ) have not been expanded, since each is a constant for

a given value of g or (p—X), respectively.



Appendix B : Derivation of Expressions for Coded MFR Systems

As in Appendix A, above, we will show, in detail, how closed-form results have been
obtained for the same codes treated in Appendix A, but in an MFR system. The expres-
sions for P,(j—-1) are exactly as stated in Appendix A and will not be repeated here.
The result for binary convolutional coding with side information available at the decoder
will be derived in detail, and the other results will be stated, for the sake of complete-

ness.

In Section III the following formula is derived:

N
P(X—Y)=rp|1-e % |(a-p)

: L
Rz o o N (robo)f * [* B J — ]
j(.) f E € oo ———k"-—'— E j pll-e 1-p 1-¢

7=0

i (i) 1 i it .
Eo[.-]?Tl[Pl(R)] [1-PuR) | P (G=0)
S v 8(r 0.00)d Oodr . (B.1)

As in Appendix A, we will use the three term exponential approximation to :_1 s
)

3 .
S ¢ ,6,). For convenience, let use define /,(ro,6,) by

r=1
- , , v N J N k-j
pirato= ettt gL ][ )]

k =0 7 =0

i =0

i i j-i L.

> ( ] [e.PuR) | [1-PaB) | PG00 (B.2)
3

It is clear that this includes all that varies from one code to another, and therefore, all of

the results with be stated in terms of I, (r0,). Note that, by definition,



N 3 R T

P(X—Y)= p[l—e 2 ](1-p)z) cofy S, TArof0)]  dro8o)d Godr o,
v=1 -
2

and, since expected forward process is computed by including r ocosf, in the integrand,

N n
= 3 R 5
= P[ l-e 2 ](I—P DY c,,J; f ,, rocosby I,(r0,00) [ 4(r0,00)d bydr .
v=1 —;
Let us begin with the case of binary convolutional coding with side informa-
tion available at the decoder. The expression for P,(j-1) is given in eq. (A.8). Before

beginning the actual analysis, let us first observe that since 17=% and P0 is a constant,

the factors involving P,(-;-) are independent of (j—¢); thus, it will not be necessary to
expand them (as opposed to the case in which no side information is available to the

decoder; the expression is of the form P ,(-;p (7 -7)) and must be expanded).

To start, let us manipulate P, (7 -1) into a desirable form.

P (j~t)=1-r, "=%mw” [fa(j~i) ]“Pz[u;%]-%:};:[:] [e, (7-1) ]“‘sz[y—x;Po]
=1-r, “=%mwu{ [1—(1—Ph)f-i ]”Pz[u;%]
+:§0 :\ [1—(1—13,, )i~ ]* [(1-Pb )i ]“'xp2[,¢->\;Po]}

"

—1-r % wy Pz[ﬂ;';-] ﬁo[:](—l)" [a-Pur |
=




u-1 N fu )y N j-i
=0 o=0{*)J?
(B.3)
We now have P,(j-7) depending on (j—¢) exponentially, as desired.
We can now substitute (B.3) into (B.2) and derive [, (r,,0,); however, the expression
would be rather long. Instead, we will treat the three terms of (B.3) individually (we
consider the leading 1 as a term). Looking at the first term, we have

( J k-j
00 k N N
19 oty=3 e ('°”°’ME[-] [P 1-c ” [H[‘-e ”
J \

k=0 k! j=o0

,=o[] 6vP1(R)] [Py |

J N k-j
[1—:: (1-e 2) ]

S N ot IV (roboll” IV (’0’(’0) [ ] [p(l e 7 —(1—6U)P1(R)]
= 1*° d

k=0

k
=§ -N' (rg.60) [N (;:0' 0)] [_p[ 1- —_](1—5V)P1(R)
k=0
N
=exp) -pN' (r.0,)] 1-¢ 2 |(1-6,)P(R){. (B.4)

From the second term, we get

i
0 N (e [N (70,8 E(k N
I9Gol)=r. 5 w,Ps [u, ]é[”]( D> N ot IV o0l o) ‘E[j] [P[l—e 2”
=0 0

b= d[nz
N

k-
[1—17[ I-e 7] ] é[ ] (28] [o-Puriia-rir | ™

[o 0] 00 - r N (T ’ )]
— P ’ 1" N'( oﬂo)[ oY
" u=%,,,w” [# ]n—o[ ]( ' E —o ok



j

Eo(k N N ¢
E[] pli-e ® [6VP1(R )+[1—P1(R)1(1—Ph)"] l—p[l—e 2]

=0/

[o.¢]
- rc E pr2[/~";

= d/ru

8 |
NI

L © N (rote) IN (r0.00))F
;[n](—l)"g_)e w k!
=0 k=0

k

N
l—p[ 1-e 2 ] [1—6VP1(R }-[1-P (R )I(1-P, )" ]

o 1) 2
=7r. Y pr2[l‘§E‘J 3 . (="
7=0

”=dfue

N

exp) -pN' (r0,90)[1—e 2][1-@131(12 }-[1-P (R )J1-P, )ﬂ] .

(B.5)

Since the analysis of the third term is nearly exactly the same as that of the second

term, the result will simply be stated:

00 p-1 X
I®(rob) =r, 3 w,, 2[ ][ ]( 1)"P u)\Po)

B= d/ne

N
exp) -pN’ (ro,eo>[ e * ] [1-6,P (R -1-P (R )I0-Py 47 |
(B.6)
I,(r 0,0,) is obtained by taking I (r.60) = I/ (ro.05) — T2 (ro.0,) — I (r4.6,).
For the other three coding schemes considered here, the results are as follows:

1. For RS (n ,k) Reed-Solomon coding with error-correction decoding,



t m n m
I(ro.0) = ¥ 5 ['"J [ I](_l)l(l_Po)n Hi-m

m =0l =0

N
exp —PN’ (ro,ﬂo)[l—e 2 ] [1—5VP1(R )~[1-P (R ))(1-P; )" +-m ]

(B.7)

2. For RS(n k) Reed-Solomon coding with erasure/error-correction decoding,

use Ilfl) (7 0,9,) in (B.4) and I (r,,0,) = IW (r0.00) ~ 152) (r0,05), where

n —u 7
1152)(7'0:00): > E[ ][ ][ ]( 1tk
p=0 { I o #
=max

0,e +1-2u

N

exp —PN’ (ro,ﬁo)[l—e 2 ] [1—5VP1(R [1-P,(R)]1-P; )" -H-y;]

(B.8)

Note that for both RS (n,k) coding cases, the results are shown for codes over GF (M?1).
For codes over GF(M"™), replace (1-P,) in both cases by (1—P0)m‘, and, in (B.8),
replace the factor of P by a factor of [1—(1—P0)m‘]“.

3. For binary convolutional coding with no side information available to the

decoder, we have IV (r4.6,) as in (B.4),

o0
]152) (robo) =r1. 3 quu (B.9)

b= d]ru

where, if p is odd,

P” ( ][ ]( l)”(l P )ﬂ+ﬂ-l)
p+1n=o 4



N

exp) PN "0"’0)[1‘6_?] [l-%Pl(R )-(1-P (R )(1-P; )"*’“’] ,

(B.10a)

and, if p is eveni,
7 p (r)(r

P,= X E[ ][ ](-l)"(l-Po)”+"‘”
u n

N

exp) -pN' (ro,oo)[l—eT] [1—6f1(R 1-P (R )}(1-P; )**™* ]

s £ .
1le]2 s
+ — -1)’(1-P,) ?

AR (-1)°(1-P,)
2

N o+

exp) -pN' (robp)| 1-¢ 2 | |1-6,P (R )-1-P(R)I(1-P;) *

(B.10b)

and, as before, I,(rq,0,) = I (r0,80) - 112 (7 6,80)-



