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A widely utilized chemotherapy drug, doxorubicin, has recently been shown to bind 

to a mammalian 5′ untranslated region Iron Responsive Element (IRE) RNA. In 

conjunction with the Iron Regulatory Protein (IRP), IRE RNA is involved in cellular iron 

homeostasis at the translational level. This tight RNA/protein complex prevents ribosomal 

assembly, hindering translation initiation of iron storage proteins, e.g. ferritin, under low 

cellular iron conditions. Conversely, iron overload is conducive to complex dissociation, 

allowing for up-regulation of the same proteins. However, this system is not entirely 

efficient. Some anemic patients receive adjuvant chelation therapies upon chronic blood 

transfusions to sequester excess labile iron. The use of doxorubicin to promote 

RNA/protein dissociation could potentially allow for downstream up-regulation of ferritin. 

In this work, I show how doxorubicin interacts with IRE RNA using multidimensional 

nuclear magnetic resonance, fluorescence spectroscopy, and electrophoretic mobility shift 

assays. All three approaches converge on the observation that the IRE/IRP complex 

formation is disrupted by doxorubicin. Obtaining further data on the RNA/protein/drug 

interactions may lead to unveiling a validated RNA target as a complementary treatment 

of iron overload disease, e.g. sickle cell anemia.
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Chapter 1: RNA as a target for novel biomolecular 

therapeutics of anemia 

Section 1: Prevalence of anemia 

In the latest report from the World Health Organization, the Global Database on 

Anemia reported 24.8 % of the world’s population (1.62 billion people) is affected by 

anemia.1 Even more alarming, almost 50 % of preschool-age children, 42 % of pregnant 

women and 30 % of non-pregnant women are affected by anemia.1 Anemia is defined as 

the reduction in the number of circulating red blood cells, hemoglobin or hematocrit. 

More commonly, the hemoglobin threshold is used as a diagnostic tool.2 Figure 1.1 

shows the worldwide prevalence of anemia in pregnant women, with African countries 

being the most affected, followed by Middle Eastern nations. Even in the United States, 

the frequency of anemia is considered mild with nearly 3.4 million affected.3  Anemia, 

however, does not only affect those in good health but also 80 % of chemotherapy 

patients and 87 % of chronic kidney disease patients.4,5  



2 

 

 
Figure 1.1. World prevalence of anemia in pregnant woman. Gray: normal (<5.0 %),  

pink: mild (5 – 19 %), dark pink: moderate (20 – 40 %), red: severe (>40 %),  white: no 

data.1 

Anemia, the disease can be broadly classified as iron- and non-iron deficiency 

anemia, with roughly equal distributions.2  Iron-deficiency anemia is usually caused by 

inefficient absorption of dietary iron and a subsequent lack of incorporation into 

hemoglobin. The etiology of non-iron deficiency anemia is significantly more varied, 

ranging from genetic mutations to alcoholism, which leads to hemoglobin deficiency and 

subsequent iron accumulation.  

Sickle cell and sideroblastic anemia are two well-known examples of non-iron 

deficiency anemia.6–10 The treatment for both of these diseases target the recovery of 

normal plasma hemoglobin levels by introducing holo-hemoglobin from a donor (blood 

transfusion). An inevitable adjuvant component to blood transfusions is chelation 

therapy, whereby excess Fe(II) from the donor’s hemoglobin is removed from both the 



3 

 

bloodstream and inside cells utilizing small molecule chelators of iron. Specifically, 

sickle cell disease is primarily treated by blood transfusion and often combined with 

deferiprone-based iron-chelation therapy. Sideroblastic anemia is treated solely by 

chelation therapy, which is used to circumvent formation of sideroblasts.11 In general, 

treatment options seek to prevent iron over-accumulation, since this is linked to neuronal, 

endocrinological, obstetric and vascular disorders.12–14  

By the same token, chelation therapy can also be detrimental for the patient. The 

United States Food and Drug Administration has approved two iron-chelating agents, 

deferoxamine and deferiprone. In 2009, 1,320 reported deaths were associated with 

deferiprone treatment.15 Additionally, this drug currently holds an FDA boxed warning 

regarding hepatic and renal impairment.16 This is not surprising as chelation therapy has 

been highly controversial for over a decade.17–23 Among the various studies, chelation 

therapy was associated with nausea, joint pain, an upset stomach, low white blood cell 

count, zinc deficiency, and hepatic fibrosis. Brittenham et al. suggested that hepatic 

fibrosis might be related to deactivation of the chelating agent and thus ineffective 

chelation of iron.18 Of note, Kontoghiorghes et al. suggested that in the future, treatment 

of non-iron deficiency anemia will not only involve chelating iron, but also preventing its 

cellular uptake.19    

In accordance with Kontoghiorhes et al.’s suggestion to reduce iron intake, 

another option to reduce the side effects of iron chelating agents in non-iron deficiency 

anemia patients would be to increase safe intracellular iron storage. Therefore, our 

ultimate goal is to investigate the possibility of overexpressing a cellular iron-storage 

protein.  
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Section 2: Mammalian iron homeostasis 

Prior to targeting a specific molecular player for our studies, an understanding of 

mammalian iron metabolism is required. Several reviews cover iron homeostasis at 

length.24–27 However, I will briefly explain its main features. Iron homeostasis can be 

divided into systemic and cellular mechanisms. Systemic iron regulation is a well-studied 

field; however its details are beyond the scope of this study.  

Cellular iron metabolism consists of the processes that take in, export, store, 

deliver, use, detoxify and regulate iron within a mammalian cell. For a generic 

mammalian cell, iron can be absorbed either as free circulating Fe3+ or transferrin-bound 

Fe3+ (often referred to as diferric transferrin). Free Fe3+ is transported by an integral 

membrane protein, divalent metal transporter 1 (DMT1), coupled with a ferrireductase 

(Dcytb), which reduces iron to Fe2+ for its incorporation into the intracellular iron 

pool.28,29 Diferric transferrin is internalized via clathrin-mediated endocytosis, as it is 

recognized by another integral membrane protein, transferrin receptor 1 (tfr1).30 Once 

internalized in an endosome, an ATPase actively pumps protons into its lumen, thus 

decreasing the pH and causing a dissociation of Fe3+ from transferrin.28 As is the case for 

free Fe3+, DMT1 coupled with another ferrireductase (Steap3) transports Fe2+ into the 

intracellular iron pool.31,32 From this pool, Fe2+ can have several fates. In case iron is not 

needed, it can be stored in ferritin, a cytosolic protein capable of storing up to 4,500 Fe3+ 

atoms in the form of ferric oxyhydroxide phosphate (Fe3+O-PO4).
33,34 Otherwise, excess 

iron is exported from the cell by a specific membrane protein, ferroportin, coupled with a 

ferroxidase hephaestin, to oxidize Fe2+ to Fe3+.29,35 Alternately, iron can be delivered to 

the mitochondria via transport protein mitoferritin, where it is incorporated into heme 
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groups and later hemoglobin or into Fe-S clusters within an enzyme such as 

mitochondrial aconitase.30  

Additionally, iron can be diverted to participate in a fascinating feedback 

regulatory system, the Iron Responsive Element RNA – Iron Regulatory Protein 

system.28 The salient features of cellular iron metabolism are shown schematically in 

Figure 1.2. 

 
Figure 1.2. Cellular iron metabolism. Iron enters the cell as free Fe3+ or bound by 

transferrin. Free Fe3+ is reduced and incorporated into the intracellular iron pool. 

Diferric transferrin is endocytosed, and then iron is released and transported into the 

intracellular iron pool. From this pool, iron can be exported from the cell, stored in 

ferritin, transported to the mitochondria for heme or Fe-S cluster synthesis or diverted to 

the iron responsive element/iron regulatory protein system. 
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The role of iron in a feedback regulatory loop was suggested in the early 1980s. 

Dr. Elizabeth Theil, one of the most active scientists in the field, found that iron 

modulated the expression of ferritin in embryonic erythroid bullfrog cells.36 Her initial 

work suggested iron increased the availability of ferritin mRNA for subsequent 

translation. As research progressed, it was established that this regulatory system is 

composed of an RNA element and a protein:  an Iron Responsive Element (IRE) RNA 

and its trans-acting partner, the Iron Regulatory Protein (IRP).37  The regulation scheme 

for the IRE-IRP system is shown in Figure 1.3. For illustration, under physiological 

cellular Fe3+ concentrations of 0.1 mM, the IRE-IRP interaction of ferritin mRNA 

prevents the association of the pre-initiation factors (eIF4E, eIF4G, eIF3) as well as the 

40S small ribosomal subunit to the upstream region of the AUG initiation codon.38–40 

This in turn maintains a homeostatic level of ferritin-bound iron and the intracellular iron 

pool. When Fe3+ concentrations are high, there is a need to store its excess. In this 

scenario, the IRE-IRP interaction is disrupted, thereby allowing for formation of the pre-

initiation complex recruitment, ribosomal assembly and translation of ferritin. The 

overexpressed ferritin is now able to retrieve excess intracellular iron.38,40 These findings 

led to the conclusion that ferritin IRE RNA is a 5′ untranslated region (UTR) element, 

serving as a steric barrier to ribosomal pre-initiation factors and the 40S ribosome when 

bound to IRP. This was later tested and confirmed by a series of biochemical and 

biophysical characterizations of the IRE RNA.41,42 However, ferritin is not the only 

protein regulated by this IRE-IRP interaction. The mRNA coding for the transferrin 

receptor is also under post-transcriptional control of this system.43 In this case, the 

regulatory outcome for transferrin is opposite to that of ferritin. High iron content results 
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in low expression of the protein, consequently down-regulating the uptake of diferric-

transferrin. Unlike ferritin, transferrin’s mRNA contains a 3′ UTR IRE RNA element 

with similar characteristics to that of ferritin’s 5′ UTR.43 In summary, high iron levels are 

controlled by regulated sequestration and trafficking mechanisms. Conversely, low iron 

levels lead to decreased storage and increased intake.38,44,45 To date, ten proteins have 

been shown to be under post-transcriptional control of this IRE-IRP system  (Figure 

1.3).28 

 

Figure 1.3. The Iron Responsive Element – Iron Regulatory Protein system for post-

transcriptional control of iron metabolism and other proteins. When iron is deficient, 

IRE-IRP interactions are stable. Conversely, when iron is abundant or in excess, the 

interaction is disrupted. For mRNAs containing 5′ UTR IREs, presence of the protein 

binding partner restricts translation initiation.  On the contrary, those with 3′ UTR IREs 

restrict endonuclease activity when bound to the IRP.28  
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Chapter 2: The Iron-Responsive Element RNA: a potential 

target for therapeutics 

Section 2.1: Shifting the focus of medicinal chemistry 

In our studies, I focused on the use of a small molecule drug targeted to the RNA 

in an RNA/protein interaction at the heart of cellular iron homeostasis. Our work is a 

proof of concept toward alternative treatments of non-iron deficiency anemia. Given that 

I focus on using a small molecule, our studies fall within the realm of medicinal 

chemistry of RNA: a field currently in its infancy.46,47  

The focus of medicinal chemistry have long centered around finding small 

molecules that specifically target proteins, however, RNA-based drug discovery is an 

emerging and promising field of study. For over a decade, several authors have addressed 

the advantages of targeting RNA with a variety of small molecules.48–50 Moreover, it has 

been suggested that fragment-based design, which has been used for protein targeting, 

can also be carried out for RNA.47 To date, most RNA-binding drugs belong to the 

aminoglycoside family, which generally bind at the major groove with micromolar 

affinity.46 One of the first and most studied RNA-small molecule interactions was the E. 

coli A-site RNA-Paromomycin complex.51,52 The interaction was mediated by an A-A 

base pair and a single bulged adenine at the major groove of the RNA. This study led to 

the development of a number of aminoglycosides that bound either at the major or the 

minor groove of prokaryotic and eukaryotic RNAs. However, very few RNA-

intercalating drugs have been developed or discovered. One such example is doxorubicin 

(Adriamycin®),53,54 which is a potent and widely used chemotherapeutic. It is a DNA 
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intercalator expected to prevent topoisomerase II from eliminating DNA supercoiling 

during replication perhaps leading to double-stranded DNA breaks and eventual cell 

death.55–58 However, off-target effects of doxorubicin have been suggested, some of 

which may also be involved in targeting carcinomas.59,60  

In addition to its well-known ability to bind DNA, doxorubicin has recently been 

shown to bind to a 5′ untranslated region of the heavy-chain ferritin Iron Responsive 

Element (IRE) RNA.61 Extensive biochemical and structural studies on this 30-

nucleotide, highly-conserved hairpin RNA have led to a deeper understanding of its role 

in cellular iron homeostasis.36,62–66 The RNA of interest belongs to a family of various 

IREs that are located either 5′ or 3′ of mRNAs encoding for proteins involved in iron 

intake, storage, export, and even heme synthesis.41,67 The formation of a complex 

between the IRE RNA and the Iron Regulatory Protein (IRP) at the 5′ untranslated region 

prevents ribosomal assembly, hindering translation initiation of iron storage proteins, 

such as ferritin, under low cellular iron conditions.28,68–70 Conversely, iron overload is 

conducive to complex dissociation, allowing for up-regulation of the proteins 

downstream. Upon losing its RNA-binding capability, free IRP behaves as a cytosolic 

aconitase, which contains a newly formed 4Fe-4S cluster responsible for its redox 

catalytic activity.28,71,72 Originally, formation of this 4Fe-4S cluster was thought to be 

responsible for the dissociation of the IRP complex. However, it was recently shown that 

the direct interaction of iron(II) with the IRE RNA promotes dissociation of the 

complex.64 These findings indicated that IRE RNA is also a transition metal ion binding 

RNA in a physiological context, similar to the Pb(II)-binding Phe-tRNA.73,74  
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Interestingly, the IRE/IRP regulatory system is not entirely efficient, nearly 50 % 

of ferritin mRNA is not translated even under iron overload,67,75,76 a fact especially 

relevant in cases of non-iron deficiency anemia.77 Traditional, and also outdated, 

therapies consist of extensive blood transfusions and adjuvant chelation therapies to 

sequester excess labile iron, mostly from plasma.78–80 Alternately, it has been suggested 

that modern therapies of iron-overload diseases might avoid the use of chelators due to 

their noxious chronic effects.81 Some of the deleterious effects observed for chelators are 

nausea, joint pain, low white blood cell count, zinc deficiency, hepatic fibrosis, and even 

death.82  

From the available clinical and public health data, I propose that avoiding the use 

of iron chelators in the treatment of anemia is of utmost importance. The real question 

then becomes, how do I exploit our knowledge of cellular iron homeostasis toward this 

end? One such alternative is the exogenous manipulation of iron homeostasis via 

increased rate of ferritin synthesis which may lead to safer iron storage, however only 

few examples of such approach exist.83 The ideal target for increasing ferritin synthesis 

would be the IRE RNA/IRP regulatory system. 

Although most small-molecule/RNA interactions have been targeted to inhibit 

protein synthesis,55,84,85 one example of downstream up-regulation was demonstrated by 

yohimbine. A stimulant and aphrodisiac, yohimbine, had previously been used in large 

excess to specifically disrupt the IRE/IRP complex in vitro and cause a subsequent 

increase in translation of the downstream message.75 Yohimbine achieved a modest 8 % 

disruption of the complex in vitro at a thousand-fold molar ratio over the IRP 

concentration. Subsequent wheat germ extract translation assays showed an increase of 
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nearly 40 % in ferritin translation, which could not be entirely reconciled with their own 

results. Notably, reporter constructs such as luciferase also showed a 40 % increase in 

synthesis.  

Similarly to yohimbine, the use of doxorubicin to promote RNA/protein 

dissociation could potentially enable downstream up-regulation of ferritin. I hypothesized 

that (i) doxorubicin intercalates specifically at two G•U wobble base pairs in the H-

ferritin IRE RNA (Figure 2.1c) and that (ii) it causes partial RNA melting, with 

concomitant disruption of the IRE/IRP complex. In order to test these hypotheses, I used 

fluorescence spectroscopy, multidimensional solution nuclear magnetic resonance, and 

electrophoretic mobility shift assays to study how doxorubicin interacts with H-ferritin 

IRE RNA and how doxorubicin weakens the IRE/IRP interaction. All three approaches 

converge on the observation that doxorubicin disrupted the IRE/IRP complex molecular 

stability by roughly 45 %. 
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Figure 2.1. Secondary structures of ferritin heavy-chain iron responsive element 

RNA. (A) Human ferritin H-chain IRE.61 (B) Frog ferritin H-chain IRE.86 (C) A 

consensus-derived sequence of ferritin H-chain IRE.87 

 

Section 2.2: The Iron Responsive Element RNA  

Given that IRE RNAs are ubiquitous and conserved in iron homeostasis mRNAs, 

there is great interest in the binding specificity and affinity of the RNA to its protein 

partner, IRP.88 As briefly explained above, IRE RNAs are 30-nucleotide (nt) long 

hairpins with a capping 6-nt loop.89 The hexanucleotide loop has a 5′ CAG UGX 3′ 

conserved sequence (X is any ribonucleotide except G). Additionally, there is evidence 

for a closing C-G base pair, thus converting it into a pseudo-triloop.90 The hairpin stem is 

split by a highly conserved C-bulge residue on the 5′ arm, kinking the stem by ~35°.66 As 

revealed by NMR relaxation experiments, this C is fairly flexible in solution.66,87 This 
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results in an upper and lower stem, the upper one being more conserved in sequence than 

the lower.89 The upper stem contains five canonical Watson-Crick base pairs, with the 

possibility of a single G•U wobble base pair. The lower stem contains between 2 and 5 

canonical Watson-Crick base pairs, and usually one G•U wobble pair closer to the C-

bulge.66,88–90 Figure 2.1 shows the secondary structures of three IRE RNAs from the 

ferritin heavy-chain mRNA of two different organisms and a consensus-derived 

sequence.  

Initially, secondary structures were deduced from chemical protection assays, 

mutagenesis, cobalt hexamine binding, and radical probing.91–93 Later, Pardi et al. 

determined the solution NMR structure of the free RNA, shown in Figure 2.2.66,87 This 

structure confirmed the prediction of an A-form RNA helix and the flexibility of the 

various residues, including the C-bulge (Figure 2.2) and the 3rd, 4th and 6th nucleotides in 

the hexaloop. It also revealed both a syn conformation of the G15 in the hexaloop –

suggesting its importance in IRP-recognition– and a base-stacking interaction of A14 

onto C13-G17 in the hexaloop, shown in Figure 2.2. In addition, Hall et al. used a 

truncated IRE RNA and determined that overall it is a very flexible element, having 

comparable rates for global- and nucleotide-tumbling, shown in Figure 2.2b.62 Finally, it 

was shown that this RNA element conforms to other RNAs of similar structures, such as 

the Rev response element, TAR RNA and a theophylline-binding RNA aptamer.87 
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Figure 2.2. The iron responsive element RNA used in this study. (A) Heavy-chain 

ferritin Iron Responsive Element RNA. Solid line: canonical Watson-Crick hydrogen 

bonding. Dot: wobble Watson-Crick hydrogen bonding. Dashed line: canonical but 

variable Watson-Crick hydrogen bonding according to available solution structures.66 (B) 

Overlay of fifteen NMR structures of the IRE RNA shown in (a). (C) The terminal 

hexaloop has a hydrogen bonding interactions between C13 and G17. (D) The stem bulge 

residue C7 is highly dynamic. 
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Section 2.3: The Iron Regulatory Protein 

The human Iron Regulatory Protein (IRP) is a widely studied member of cytosolic 

aconitases. This 94.7 kDa monomeric protein has been characterized genetically, 

biochemically and structurally.94 It consists of four clearly defined domains (I through 

IV), all of which make contacts with the IRE RNA. Notably, two human IRP isoforms 

exist.95 Both isoforms behave similarly upon RNA-binding; they undergo a major 

conformational change where its domain IV is transposed by ~35 ° (Figure 2.3).96,97 This 

structural rearrangement forms a complementary cavity for the IRE RNA.  Interestingly, 

the two IRP isoforms are differentially expressed across human tissue: whereas IRP-1 is 

preferentially found in cardiac tissue, and IRP-2 in hepatic and kidney tissues.98 Both 

bind the IRE RNA with similar estimated affinities, in the pM range.68,87 Likewise, their 

mechanism of gene regulation is identical, as described above.  The major difference 

between the two isoforms is that IRP-2 does not have the ability to form a 4Fe-4S cubane 

cluster. The absence of the redox-active cluster affects the degradation pathway of IRP-2 

after being released from the IRE RNA under iron overload conditions. Free IRP-2 is 

rapidly ubiquitinated for proteosomal degradation, whereas free IRP-1 is not immediately 

tagged or removed.99  
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Figure 2.3. The human iron regulatory protein isoform 1. The holo-protein (magenta) 

shows a globular conformation, whereas the apo-protein (cyan) shows a more extended 

conformation in order to accommodate the IRE RNA. The holo-protein contains a 4Fe-4S 

cubane cluster.86,96 

The crystal structure of the IRE RNA/hIRP-1 complex shows the extensive 

network of contacts that mediate this very specific interaction.86 The RNA makes two 

base-specific interactions with a few amino acids in the IRP. For instance, the binding 

pocket of the stem bulge C consists of S681, P682, R713, R780, D781, and W782. A 

milieu of non-specific backbone contacts are also made between the RNA and the protein 
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(Figure 2.4a). Namely, phosphate backbone hydrogen bonds predominate along one face 

of the IRE RNA. This is especially important, as it leaves the RNA only partially 

engulfed by the IRP. In turn, the partial steric blockade of the RNA leaves room for any 

groove-binding or intercalating drugs, i.e. doxorubicin, to interact with the RNA/protein 

complex (Figure 2.4b). Here, I showed how this was, in fact, a partial reason for 

doxorubicin’s ability to disrupt the IRE/IRP complex. Notably, the high-resolution data 

available is on a different RNA construct used herein. Walden et al. utilized the frog 

ferritin H-ferritin IRE RNA.86 Its similarities with our RNA construct are the 

conservation of the stem-loop structure, the bulge C residue, and the hexaloop sequence. 

The main difference is the replacement of a G-C for a G•U wobble base pair in the upper 

stem of our construct.  
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Figure 2.4. The iron responsive element RNA/iron regulatory protein complex. (A) 

The IRE RNA forms a high affinity complex with the IRP, mediated through a series of 

both specific and non-specific contacts. (B) Solvent-accessible surface representations of 

the IRE/IRP complex. Note the spatial engulfing of the RNA that leaves one full turn of 

the major groove exposed to solvent.86 

 

Section 2.4: Facing the challenges 

Next, this work will present the assessment of the potential of doxorubicin as an 

RNA-binder, and later as an RNA/protein disruptor. I utilized various methods including 

fluorescence spectroscopy, electrophoretic mobility shift assays and nuclear magnetic 
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resonance (NMR) to probe molecular interactions at both molecular- and atomic-

resolution.  

However, before venturing into the biochemical and biophysical characterization 

of our system via various methods, I explain some of the challenges associated with the 

NMR of RNA and the technology I developed to overcome some of these limitations 

using the IRE RNA as a model system. The following two chapters will address these 

topics at length. Then, I return to assess the RNA/doxorubicin interactions, followed by 

RNA/IRP interactions, and finally I evaluate the use of doxorubicin as a disruptor of this 

RNA/protein complex.  
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Chapter 3: Technology development to facilitate RNA studies 

by NMR: Cloning, expression, purification and assays of 

enzymes involved in nucleotide synthesis100 

Section 3.1: Introduction 

RNA molecules have taken center stage as fundamental transactors of catalysis 

and gene regulation (such as IRE RNAs) making them valuable targets for drug 

discovery efforts and biophysical characterizations.101–115 Advances in methods for 

synthesizing labeled RNA116–119 have fueled the development of new nuclear magnetic 

resonance (NMR) experiments specifically tailored for RNA characterizations.112–114,120–

122 Unfortunately, two challenges facing RNA NMR structural biology become even 

more acute for large RNAs: extensive spectral crowding and increased resonance 

linewidths.123,124 Overcoming both challenges necessitates the development of alternate 

enzymatic synthetic labeling strategies using the enzymes of the E. coli pentose 

phosphate pathway, as depicted in Figure 3.1.116–118 For a detailed description of 

challenges, see Chapter 4.1. This method enables the synthesis of all four nucleoside 

triphosphates (ATP, CTP, GTP, and UTP) using three phosphoribosyltransferases and 

CTP synthetase, and ribokinase (if using ribose), or hexokinase and three other enzymes 

if starting with glucose. Ribose-5-phosphate (R5P), synthesized from glucose or D-

ribose, is then converted to 5-phospho-D-ribosyl-α-1-pyrophosphate (PRPP) by PRPP 

synthetase. 
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Figure 3.1. Nucleotide salvage branch of the pentose phosphate pathway. This 

scheme of reactions is proposed to enzymatically synthesize site-specific labeled 

nucleoside triphosphates (NTPs), where the boxed enzymes were expressed, purified and 

characterized in this work, the rest are commercially available. Starting from ribose, 

ribokinase (RK) would make ribose 5-phosphate. Then, phosphoribosyl pyrophosphate 

synthetase (PRPPS) would react on it to synthesize the activated ribose phosphate, 5-

phospho-D-ribosyl-α-1-pyrophosphate. Following that, the respective adenine, uracil or 

xanthine/guanine phosphoribosyltransferases (APRT, UPRT, XGPRT) would synthesize 

AMP, UMP or GMP, respectively. The nucleoside monophosphates would then be 

phosphorylated by myokinase (MK), nucleoside monophosphate kinase (NMPK), 

nucleoside diphosphate kinase (NDPK) or guanylate kinase (GK) to the nucleoside 

triphosphate stage. Finally, CTP would be synthesized from UTP by CTP synthase 

(CTPS). Notice the ATP and glutamine regeneration schemes utilizing creatine kinase 

(CK) and glutamine synthase (GS), respectively. 
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A key advantage of this labeling scheme is the ability to differentially combine 

labeled glucose or ribose with labeled bases. Using this general strategy, the Williamson 

group has produced several isotopic labeling patterns116,123–127 valuable for NMR 

spectroscopic analysis of RNA structure and dynamics. Unfortunately, one limitation of 

this enzymatic approach is that 6 out of the 18 enzymes required for synthesis are not 

commercially available and must be produced from over-expressing E. coli strains. This 

hurdle must be overcome to make this method widely adopted by the biophysics and 

chemical biology communities. Of these six enzymes, only ribokinase and adenosine 

phosphoribosyl transferase (APRT) have robust activities of 350-700 U (U is the unit of 

activity, defined as μmol of substrate turned over per min) per liter of bacterial culture.128 

The other five are only moderately over-expressed with activities of 28-40 U, making the 

enzyme preparation labor intensive.116,125,127 By finding constructs that highly over-

express the commercially unavailable enzymes, the cost and labor required to synthesize 

isotopically labeled NTPs could be significantly reduced. Once these constructs are 

produced, it is expected that the process for obtaining specifically labeled NTPs will be 

facile and streamlined. Ribokinase, RK (E.C. 2.7.1.15), catalyzes the phosphorylation at 

the ribose C5′ position to produce ribose-5-phosphate.129 Phosphoribosyl pyrophosphate 

synthetase, PRPPS (E.C. 2.7.6.1), catalyzes the addition of a β,γ-diphosphate from ATP 

to the C1′ position of ribose 5-phosphate, activating it for the addition of a nucleobase.130 

The phosphoribosyl transferases catalyze the formation of a β-substituted ribose-5-

phosphate with a specific base starting from PRPP.131 Adenine and uracil phosphoribosyl 

transferases, APRT (E.C. 2.4.2.7) and UPRT (E.C. 2.4.2.9), catalyze the reaction between 

adenine or uracil and PRPP to form AMP or UMP, respectively.132,133 Xanthine/Guanine 
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phosphoribosyltransferase, XGPRT (E.C. 2.4.2.22), catalyzes not only the transfer of 

guanine to PRPP to form GMP, but also the transfer of xanthine or hypoxanthine to form 

XMP or IMP, respectively.134 For this study, the relevant reaction is that with guanine to 

form GMP. In the proposed nucleotide synthesis pathway utilizing the pentose phosphate 

pathway, cytosine triphosphate is not synthesized by a phosphoribosyl transferase and a 

kinase as is the case for ATP, GTP and UTP; there is no known cytidine 

phosphoribosyltransferase. Rather, CTP synthethase, CTPS (E.C. 6.3.4.2), is utilized in a 

separate reaction as the catalyst in the ATP-dependent production of CTP from UTP, 

using glutamine or ammonia as the source of nitrogen.127,135  

 

In this study, I subcloned the genes encoding RK, APRT, UPRT, and XGPRT 

into pET15b vectors. Then I transformed these four constructs, CTPS and PRPPS into E. 

coli BL21(AI) strains for enzyme overexpression. Subsequently, I purified all six proteins 

by a one-step Nickel Nitrilotriacetic acid (Ni-NTA) affinity chromatography yielding 

enzymes with high purity and activity for use in NTP enzymatic synthesis. The 

production of these enzymes should make it seamless and straightforward to produce 

labeled nucleotides for biophysical applications. 

Section 3.2: Methods 

3.2.1. Cloning of RK, UPRT, APRT and XGPRT into His-tagged expression 

vectors 

I designed the following primers (Table 3.1) to contain both XhoI and BamHI 

restriction sites which allowed the amplified DNA fragments to be ligated into a pET15b 

vector (Novagen).  
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Table 3.1. DNA primers used for cloning of RK, UPRT, APRT and XGPRT. 

 

RK forward primer dCGCCTCGAGATGCAAAACGCAGGCAGCCTCGTTGT 

RK reverse primer dGCGGGATCCTCACCTCTGCCTGTCTAAAAATGCGT 

UPRT forward primer dCCGCGCCTCGAGATGAAGATCGTGGAAGTCAAACAC 

UPRT reverse primer dGCGGGATCCTTATTTCGTACCAAAGATTTTGTCACC 

APRT forward primer dCGCCTCGAGATGACCGCGACTGCACAGCAGCTTG 

APRT reverse primer dGCGGGATCCTTAATGGCCCGGGAACGGGACAAGGC 

XGPRT forward primer dCGCCTCGAGATGAGCGAAAAATACATCGTCACCTG 

XGPRT reverse primer dGCGGGATCCTTAGCGACCGGAGATTGGCGGGACGA 

 

The corresponding sequences of the genes were all amplified from plasmids 

(kindly provided by Professor Williamson at The Scripps Research Institute, La Jolla, 

CA) by PCR using Pfu polymerase (Stratagene). The PCR products for the different 

genes were gel purified using Qiagen kit and ligated into either pCR4-TOPO (Invitrogen) 

or pGEMT (Promega) vectors. The vectors were transformed into DH5α cells 

(Invitrogen), and then plated on LB/agar plates containing 100 μg/mL ampicillin and 1 

μg/mL IPTG and Xgal for blue/white screening, and at least three positive white colonies 

were cultured in 20 mL LB media containing 100 μg/mL ampicillin. Plasmids were 

isolated using Qiagen Miniprep spin columns and restriction digest reactions were 

performed using XhoI and BamHI (NEB). The positive plasmids were digested in a 
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stepwise manner with XhoI for 2 h at 37°C followed by DNA purification using Qiagen 

kit and then digested by BamHI for 2 h at 37°C. Insert fragments as well as the digested 

pET15b were extracted from 1.5 % agarose gel using Qiagen gel extraction kit. Ligation 

reactions with T4 DNA ligase (NEB) were supplemented with 4 % PEG (8000 MW), and 

the ligated constructs were transformed into TOP10 cells (Invitrogen). The nucleotide 

sequences of cloned fragments were verified by sequencing. Plasmids from positive 

colonies, identified by digesting isolated plasmids with XhoI/BamHI, were transformed 

into E. coli BL21(AI) for protein over-expression (Figure 3.2). 
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Figure 3.2. Cloning and sub-cloning of enzymes from the pentose phosphate 

pathway into high-copy plasmids for bacterial overexpression. The gene encoding for 

RK was extracted from E. coli genomic DNA by classical techniques. The genes for 

APRT, XGPRT and UPRT were all sub-cloned from an existing low-copy plasmid. All 

genes were then inserted into a linearized plasmid, propagated and digested by XhoI and 

BamHI restriction enzymes. The products were ligated into a pET15b high-copy plasmid 

under T7 RNA polymerase transcription, propagated and finally transformed into E. coli 

strain BL21(AI).  

3.2.2. Protein expression of RK, UPRT, APRT and XGPRT 

All four enzymes not obtained commercially were overexpressed and purified 

using similar procedures. The pET15b plasmid constructs prepared in this work, were all 

transformed into E.coli strain BL21(AI) (Invitrogen) for protein overexpression under 

arabinose regulation and IPTG induction. All protein expressions and purifications were 
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carried out for RK as described previously with very little modification.129,136 Cells 

transformed with the RK construct were grown onto LB plates supplemented with 100 

μg/mL ampicillin. A single colony was grown at 37˚C in a 5-mL starter culture of LB 

media with 100 μg/mL ampicillin to OD600=0.60 (ca. 4h). The cells were harvested by 

centrifugation at 3800 rpm for 15 min, resuspended in fresh LB, and added to 100 mL LB 

media with 100 μg/mL ampicillin. The cell culture was grown at 37°C to OD600=0.60 (ca. 

2h); then the cells were harvested by centrifugation at 3800 rpm for 15 min and 

resuspended in fresh LB and added to 1 L LB media with 100 μg/mL ampicillin.  

Expression was induced with 0.05 % L-(+)-arabinose at 37°C for 2 h followed by 

addition of 1mM IPTG for 3 h at 37°C. The cells were harvested by centrifugation at 

4500 rpm for 25 min at 4°C, and stored at - 80°C. 

3.2.3. Protein expression of PRPP synthetase 

The plasmid used for expression of full length human PRPP synthetase was 

cloned into the NdeI and XhoI restriction sites of pET22b(+) expression plasmid (a 

generous gift from Professor Sheng Li, Graduate school of the Chinese Academy of 

Sciences, Shanghai) was transformed into the E.coli BL21(AI) cells (Invitrogen) to 

produce an overexpressing strain of isoform 1 of human PRPPS. PRPPS expression and 

purification were carried out as described previously with some modifications [31]. A 

single colony was grown at 37˚C in a 5-mL starter culture of LB media with 100 μg/mL 

ampicillin to OD600=0.60 (ca. 4h). The cells were harvested by centrifugation at 3800 rpm 

for 15 min, resuspended in fresh LB, and added to 100 mL LB media with 100 μg/mL 

ampicillin. The cell culture was grown at 37°C to OD600=0.60 (ca. 2h); then the cells 

were harvested by centrifugation at 3800 rpm for 15 min and resuspended in fresh LB 
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and added to 1 L LB media with 100 μg/mL ampicillin. Expression was induced with 

0.05 % L-(+)-arabinose at 37°C for 2 h followed by addition of 1mM IPTG for 3 h at 

37°C. The cells were harvested by centrifugation at 4500 rpm for 25 min at 4°C, and 

stored at -80°C. 

3.2.4. Protein expression of CTP synthetase 

The CTP synthetase gene sub-cloned into pET15b (a kind gift of Professor 

Stephen L. Bearne, Department of Biochemistry and Molecular Biology, Dalhousie 

University, Halifax, Nova Scotia) was transformed into E.coli BL21(AI) strain and 

overexpressed. A single colony was grown at 37˚C in a 5-mL starter culture of LB media 

with 100 μg/mL ampicillin to OD600=0.60 (ca. 4h). The cells were harvested by 

centrifugation at 3800 rpm for 15 min, resuspended in fresh LB, and added to 100 mL LB 

media with 100 μg/mL ampicillin. The cell culture was grown at 37°C to OD600=0.60 (ca. 

2h); then cells were harvested by centrifugation at 3800 rpm for 15 min and resuspended 

in fresh LB and added to 1 L LB media with 100 μg/mL ampicillin. Expression was 

induced with 0.05 % L-(+)-arabinose at 37°C for 2 h followed by addition of 1mM IPTG 

for 3 h at 37°C. The cells were harvested by centrifugation at 4500 rpm for 25 min at 

4°C, and stored at -80°C. 

3.2.5. Protein purification 

Conditions for the purification of all the recombinant his-tagged enzymes were 

optimized for maximal yield and purity by nickel affinity chromatography, and, as an 

optional step, size exclusion chromatography could be performed using Sephadex S75 gel 

filtration column for all the proteins. The frozen cell pellet was resuspended in lysis 

buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8) supplemented with 1 
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mg/mL lysozyme and placed on ice for 30 min without addition of nucleases. The cells 

were disrupted by sonication at 4°C for 1 min with 1 min resting periods. The cellular 

debris was pelleted by centrifugation at 46000 g and 4°C for 30 min and the viscous 

nucleic acids were manually removed using a pipette. The purifications were carried out 

following the QIAexpressionist handbook (Qiagen) with very little modification. The 

supernatant was applied to pre-packed Ni-NTA beads in column mode, previously 

equilibrated with lysis buffer. 

 

Following incubation, the Ni-NTA column was washed with 6 bed volumes of 

wash buffer (50 mM NaH2PO4, 300 mM NaCl, 50 mM imidazole, pH 8). Recombinant 

proteins were then eluted from the Ni-NTA column with elution buffer (wash buffer with 

400 mM imidazole). The volume of the two eluates were reduced using Amicon ultra 

tubes (Milipore), typically to 200 μL and then buffer-exchanged to its final storage buffer 

(50 mM NaH2PO4, 150 mM NaCl or 300 mM NaCl for PRPPS only) to a final volume of 

1 mL. Equal volume of 100 % glycerol was added and the proteins were stored at -20°C. 

The different stages of purification were monitored by SDSPAGE. Protein concentrations 

were determined by Bradford assay employing BSA as the standard. 

3.2.6. Enzyme activity assay for RK 

The spectrophotometric assay is based on the coupled enzyme system116,137 as 

seen in Figure 3a. The assay mixture (1 mL) contained 50 mM Tris-HCl buffer at pH 7.8, 

5 mM Ribose, 3 mM ATP, 1 mM PEP, 100 mM KCl, 10 mM MgCl2, 0.2 mM NADH, 2 

U of lactate dehydrogenase, and 2 U of pyruvate kinase. The mixture was incubated for 5 

min until a steady baseline was obtained and then a 2-μL aliquot of ribokinase was added 
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to initiate the reaction. The absorbance change at 340 nm (ΔA340) was monitored as a 

function of time using the linear range of the kinetic trace. Units of activity were 

calculated as a function of the total reaction volume (V in L), path length (l in cm), time 

(t in min), change in extinction coefficient of 6220 M-1 cm-1 at 340 nm for oxidation of 

NADH to NAD+
 and K = 1: 

 

𝑈 =  
𝑉 ∗  𝛥𝐴

𝐾 ∗  𝜀 ∗ 𝑡 ∗ 𝑙
 

 

3.2.7. Enzyme activity assay for PRPP synthetase 

The spectrophotometric assay is based on the coupled enzyme system [39] as 

shown in Figure 3b. The assay mixture (1 mL) contained 50 mM Tris-HCl buffer at pH 

7.5, 5 mM R5P , 3 mM ATP , 1mM PEP , 10 mM MgCl2, 0.2mM NADH, 2 U of lactate 

dehydrogenase, 2 U of pyruvate kinase, and 2 U of adenylate kinase. The mixture was 

incubated for 5 min until a steady baseline was obtained and then a 2-μL aliquot of PRPP 

synthetase was added to initiate the reaction. The absorbance change at 340 nm (ΔA340) 

was monitored as a function of time using the linear range of the kinetic trace. Units of 

activity were calculated using equation (1), where ε = 6220 M-1 cm-1 at 340 nm and K = 

2. 

3.2.8. Enzyme activity assay for APRT 

The spectrophotometric assay is based on the coupled enzyme system116,137 

[17,39] as shown in Figure 3c. The assay mixture (1 mL) contained 50 mM Tris-HCl 

buffer at pH 7.8, 1.5 mM PRPP, 3 mM ATP, 1 mM PEP, 1.5 mM adenine hydrochloride, 

10 mM MgCl2, 0.2 mM NADH, 2 U of lactate dehydrogenase, 2 U of pyruvate kinase 
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and 2 U of adenylate kinase. The mixture was incubated for 5 min until a steady baseline 

was obtained and then a 2-μL aliquot of APRT was added to initiate the reaction. The 

absorbance change at 340 nm (ΔA340) was monitored as a function of time using the 

linear range of the kinetic trace. Units of activity were calculated using equation (1), 

where ε = 6220 M-1 cm-1
 at 340 nm and K = 2. 

3.2.9. Enzyme activity assay for XGPRT 

 

The spectrophotometric assay is based on monitoring the conversion of guanine 

(246 nm) to GMP at 257.5 nm using the change in extinction coefficient of ε=5817 M-1 

cm-1 as shown in Figure 3d.138–140 The assay mixture (1 mL) contained 100 mM Tris-HCl 

buffer at pH 7.5, 1 mM PRPP, 50 μM of guanine, 100 mM MgCl2 and a 2-μL aliquot of 

XGPRT. The reaction mixture was incubated without guanine for 5 min. Then, the 

reaction was initiated by the addition of guanine, and the formation of GMP was 

monitored at 257.5 nm at 25 ˚C until it reached saturation after 5-7 min.139 Units of 

activity were calculated using equation (1), where ε = 5817 M-1 cm-1 at 257.5 nm and K = 

1. 

3.2.10. Enzyme activity assay for UPRT 

 

The spectrophotometric assay is based on monitoring the conversion of uracil 

(271 nm) to UMP using the change in extinction coefficient of ε=2763 M-1 cm-1 as shown 

in Figure 3e.116 The assay mixture (1 mL) contained 50 mM Tris-HCl (pH 7.5), 1.5 mM 

PRPP, 0.1 mM of uracil, 5 mM MgCl2 and a 2-μL aliquot of UPRT. The reaction was 

incubated without uracil for 5 min. Then the reaction was initiated by addition of uracil, 

and the formation of UMP was monitored at 271 nm at 25 or 37˚C until it reached 
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saturation after 5-7 min. Units of activity were calculated using equation (1), where ε = 

2763 M-1 cm-1 at 271 nm and K = 1. 

3.2.11. Enzyme activity assay for CTP synthase 

The spectrophotometric assay is based on the increase in absorbance at 291nm 

following conversion of UTP to CTP using the change in extinction coefficient of ε=1338 

M-1 cm-1 as shown in Figure 3f.116,141 The assay mixture (1 mL) contained 50 mM Tris-

HCl (pH 8.0), 10 mM MgCl2, 1 mM UTP, 1 mM ATP, 0.25 mM GTP, 10 mM glutamine 

and a 2-μL aliquot of CTPS. The reaction was incubated without glutamine for 5 min. 

Then the reaction was initiated by addition of glutamine, and the formation of CTP was 

monitored at 291 nm at 25 or 37˚C until it reached saturation after 12-15 min. Units of 

activity were calculated using equation (1), where ε = 1338 M-1 cm-1 at 291 nm and K = 

1. 

As an independent method for cross-validating the spectrophotometric method, 

1H-13C heteronuclear single quantum correlation (HSQC) NMR experiment was 

performed on a 600 MHz Bruker Avance III spectrometer at 37°C. The NMR assay is 

based on the appearance of 13C –labeled CTP and disappearance of 13C –labeled UTP as 

monitored through the C5 aromatic carbons of UTP and CTP. The UTP C5 carbon 

resonates in a spectral region (~103 ppm) distinct from CTP’s C5 (~97 ppm) carbon. This 

separation makes it very straightforward to monitor the formation of CTP from UTP 

using two-dimensional NMR. Unfortunately, 1D NMR fails because the H5 proton 

resonances of both UTP and CTP overlap with their ribose H1′ proton resonances. The 

carbon resonances remove this degeneracy. Under our reaction conditions, CTP is made 

quantitatively in 30 min from UTP. The assay mixture (250μL) contained 90 % D2O, 50 
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mM Tris-HCl (pH 8.0), 10 mM MgCl2, 1 mM 13C-15N-UTP (Sigma-Aldrich), 1 mM 

ATP, 0.25 mM GTP, 10 mM glutamine and a 0.5-μL aliquot of CTPS. The reaction was 

incubated without glutamine for 5 min. The reaction was initiated by the addition of 

glutamine. The formation of CTP and disappearance of UTP were monitored at 37 °C 

until the reaction reached saturation after 30 min. The results were fit the following 

equation: 

Y =  𝑌𝑜  +  (𝑌𝑠𝑎𝑡 – 𝑌𝑜) ∗ (1 −  e(−𝑅∗𝑡))            

were Yo is the y-intercept, Ysat is the y-value at saturation, R is the first-order rate 

constant and t is the time elapsed. Data processing and analysis were performed with 

TopSpin 2.0 and GraphPad Prism 5 softwares. 

 

 

Section 3.3: Results 

Labeled nucleotides are valuable for use in in vitro transcription of labeled RNA 

for structural and dynamics studies, yet a number of enzymes of the pentose phosphate 

pathway needed to make these nucleotides cost-effectively are currently not 

commercially available. I have therefore focused on elaborating optimal conditions of 

facile protein production to help in making these nucleotides for NMR studies of RNA. 

 

3.3.1. Cloning and subcloning of genes encoding for RK, APRT, UPRT and 

XGPRT 

The RK gene was subcloned from the genomic DNA into pGEMT vectors and 

transformed into DH5α E. coli cell line for selection of positive colonies, and subcloned 

into the pET15b vector, encoding an N-terminal His6 tag. The new construct was 



34 

 

transformed into E. coli BL21(AI) cell line for protein overexpression. Sequencing, 

preparative scale protein expression and diagnostic SDS-PAGE confirmed the successful 

cloning and expression of the RK construct.  

Similarly, the genes for APRT, UPRT and XGPRT, all initially in a pKK223-3 

vector, were subcloned into a pCR4-TOPO plasmid and the subsequent selection, 

propagation, isolations and subcloning were identical to those performed for the RK 

gene. The new constructs were again inserted into a pET15b vector and the resulting 

genes were expressed efficiently in BL21(AI) E. coli. Sequencing, preparative scale 

protein expression and diagnostic SDS-PAGE confirmed the successful cloning and 

expression of the gene constructs. Similarly, for the clones of PRPPS and CTPS, the 

respective vectors were transformed into E. coli BL21(AI) strain for protein 

overexpression. 

3.3.2. Expression and purification of proteins 

Subcloning and transforming all the genes into identical expression hosts 

facilitated the expression and purification of these six enzymes, using a simplified and 

generalized protocol by a one-step NiNTA affinity chromatography. With this protocol, 

the overexpression and purification of all six enzymes was performed in two days.  

The overexpression of the proteins produced reproducibly milligram amounts of 

protein. Test expressions were performed with a combination of different concentrations 

of L-(+)-arabinose, lactose and IPTG to optimize conditions for overexpression. 

Induction of one-liter cultures for 2 h under 0.05 % L-(+)-arabinose and immediately 

after for 3 h under 1 mM IPTG produced the greatest amount of protein per liter culture, 
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with an average of 8 g of wet cell pellet for all constructs. Nevertheless, the amount of 

final purified protein ranged from 1 to 24 mg per liter culture and each protein construct 

gave reproducible quantities.  

For the His-tag purification, it was found that purification was most efficient for 

all six proteins using 50 and 400 mM imidazole in the wash and elution buffers, 

respectively, as judged by SDS-PAGE (Fig. 3.3). The percent recovery of protein from 

the crude supernatant of the whole cell lysate ranged from 0.5 to 5 % considering that 

total protein in the crude lysate ranged from 200 to 580 mg. The strain overexpressing 

PRPPS yielded the lowest amount of protein, whereas the strain overexpressing APRT 

gave the highest (Table 3.2). The SDS-PAGE analysis indicated that all six proteins have 

a purity of >90 % (Figure 3.3). This was also observed in the activity assays, as activities 

remained unaffected or were even higher than previously reported. 
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Figure 3.3. Representative SDS-PAGEs from each of the six pentose phosphate 

pathway enzyme purifications. (M) Marker (kDa) (C) Uninduced control (WCL) 

Supernatant of the whole cell lysate (FT) Nickel column flow-through (W1, W2) Column 

wash 1 and 2 (E1, E2) Fractions of imidazole eluted protein 1 and 2. The apparent 

molecular weights are 37, 34, 19, 15, 19 and 67 kDa for RK, PRPPS, APRT, XGPRT, 

UPRT and CTPS, respectively. 
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3.3.3. Enzymatic activity of purified His-tagged proteins 

Direct and indirect continuous spectrophotometric assays were performed to 

check the activity of all six enzymes at the two stages of purification. XGPRT, UPRT and 

CTPS were assayed directly by monitoring the appearance of the nucleotide product at 

their respective wavelength. RK, PRPPS and APRT were assayed indirectly by coupling 

their activities with NADH oxidation (Figures 3.4 and 3.5). Initial rates and maximal 

activity were obtained from every reaction, and the purified RK, UPRT, XGPRT and 

CTPS yielded robust total activities of 1500 to 2300 U per liter of bacterial culture, 

whereas PRPPS yielded 22 U per liter and APRT 484 U per liter. In addition, the 

following specific activities for each enzyme were obtained: 70 U/mg for RK (Compare 

to 75 U/mg),142 22 U/mg for PRPPS (Compare to 25 U/mg),143 and 21 U/mg for APRT 

(Compare to 14 U/mg).144 Moreover, the specific activities for XGPRT, UPRT and CTPS 

were higher than previously reported, 128, 144 and 113 U/mg, respectively. These 

numbers should be compared to 95 U/mg;145 7 U/mg;133 and 8 U/mg, respectively for the 

same proteins.146 Purification folds calculated for these enzymes ranged from 1- to ~ 20-

fold: APRT had a similar specific activity and negligible purification fold and XGPRT 

attained almost a 20-fold purification. Given that the specific activity of CTPS was 

unusually high with respect to recent work,146 a 13C NMR assay was conducted as an 

independent validation method (Fig. 3.6). The NMR method afforded a direct means of 

simultaneously monitoring the depletion of UTP and the accumulation of CTP using the 

distinct chemical shifts of uracil’s C5 atom (at 103 ppm) and cytosine’s C5 atom (at 97 

ppm). The resulting total activity of CTPS was 2640 U per liter, which yielded a specific 

activity of 131U/mg, an activity comparable to that found using the spectrophotometric 
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assay at 37°C. This experiment conducted in 90 % H2O gave a similar specific activity of 

169 U/mg. The values obtained in this work are consistently higher than previously 

reported. 

 

Figure 3.4. Direct and indirect continuous activity assays used for the six enzymes of 

the pentose phosphate pathway. (a) RK (b) PRPPS (c) APRT (d) XGPRT (e) UPRT (f) 

CTPS. The boxed molecule corresponds to the one being monitored during the assay at 

the specific wavelength with the corresponding molar extinction coefficient in M-1cm-1. 

MK: myokinase, PK: pyruvate kinase, LDH: lactate dehydrogenase, PEP: phopshoenol 

pyruvate, PPi= inorganic pyrophosphate. 
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Figure 3.5. Representative progress curves obtained from the activity assays of 

ribokinas and adenine phosphoribosyl transferase. (a) RK progress curve assayed 

with [RK] = 0.67 nM, [Ribose] =5 mM, [ATP] = 3 mM. (b) APRT progress curve 

assayed with [APRT] = 2.30 nM, [PRPP] = 1.5 mM, [adenine-HCl] = 1.5 mM. 
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Figure 3.6. Activity assay for cytidine triphosphate synthetase monitored by 1H-13C 

HSQC NMR. The assay mixture (250 μl) contained 0.64 nM CTPS, 50 mM Tris-HCl 

(pH 8.0), 10 mM MgCl2, 10 mM glutamine, 1 mM 15N2-
13C9-UTP, 1 mM ATP, 0.25 mM 

GTP and 90 % D2O. The reaction was initiated by addition of glutamine and monitored 

over the course of 30 min. The arrow depicts the progression of the reaction. 

 

Section 3.4: Discussion 

The synthesis of nucleotides using the pentose phosphate pathway requires 17-18 

enzymes (17 for systems using creatine phosphokinase for ATP regeneration) when 

starting from glucose or 12-13 when starting from ribose. When starting with glucose as 

the carbon source, 6 out of the 18 enzymes required for nucleotide synthesis are not 

commercially available and must be produced from overexpressing E. coli strains. Of 

these 6, only APRT was reported to have a significant activity of 350 U.  

 

The other five are only moderately overexpressed with activities of 28-40 U, 

making the enzyme preparation labor intensive.116,125,127 Similarly, when starting with 
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ribose as the carbon source, half of the enzymes required for nucleotide synthesis are not 

commercially available and other than ribokinase, most of the enzymes are only 

moderately active. Thus, our goal was to find cheaper avenues to make labeled 

nucleotides using constructs that highly overexpress several of the commercially 

unavailable enzymes.  

 

In this study, six His-tagged recombinant proteins from the pentose phosphate 

pathway were, therefore, successfully expressed in E. coli and purified to homogeneity, 

yielding a single protein band of the expected molecular weight on SDS-PAGE for each 

protein (Figure 3.1). In the current study, the yields of pure recombinant protein, up to 25 

mg per liter of crude E. coli supernatant, are higher than that obtained previously for 

purification of recombinant UPRT, APRT, XGPRT.119 A number of steps were taken to 

improve the yield. Previous studies used vectors which contain additional features not 

present in the pET15b vector used in the current study. The pET15b vector contains only 

a His6-tag and a thrombin cleavage site which facilitates straightforward purification and 

optional cleavage of the His6-tag, should this be deemed to interfere with function; I did 

not find it necessary for any of the constructs as activities were similar or higher than 

previously reported. Finally, while the current study used affinity chromatography for the 

end stage, previous studies used streptomycin sulfate to precipitate the nucleic acids, 

ammonium sulfate to precipitate the proteins followed by a DEAE chromatographic step 

and a final ammonium sulfate precipitation steps.125,127 Affinity chromatography is 

known to typically produce a higher protein yield and higher protein purity, compared to 

ammonium sulfate precipitations and gel filtration.128 Use of uniform expression hosts 
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and single step affinity purification means that all six enzymes can be overexpressed and 

purified in two days, saving time and making the process less laborious. 

 

In summary, His-tagged recombinant proteins have been purified to homogeneity, 

and found to possess comparable or superior activity to previously reported preparations. 

The method permits the production of substantial amounts of recombinant enzymes 

required for conducting enzymatic synthesis of nucleotides for biophysical studies such 

NMR spectroscopy, Raman spectroscopy and Mass spectrometry. 
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Chapter 4: Synthesis of site-specifically isotope-labeled 

nucleotides and their incorporation into IRE RNA for NMR 

studies 

Section 4.1: Introduction 

RNA is an established important player in cellular processes central to life. 

Beyond being a protein coding information carrier, RNAs are key regulators of gene 

expression in the form of riboswitches, miRNAs or large non-coding RNAs. 

Significantly, the amount of non-protein coding sequence appears to scale with 

organismal complexity to the extent that in humans, ~98.8 % of the DNA does not code 

for proteins; rather it is likely transcribed into RNA.147 As a result RNAs are increasingly 

targeted for drug discovery and biophysical characterizations.101–115,148 In spite of this 

centrality of RNA to biomedical science, I know far less about the 3D architectures of 

RNAs than those of proteins. For instance, as of September 2013, RNA accounts for only 

1.1 % of the proportion of structures deposited in the Protein Data Bank (PDB) compared 

to 92.6 % for proteins.149,150  This discrepancy arises from the difficulties in 

determination of RNA structures by either X-ray crystallography or nuclear magnetic 

resonance spectroscopy (NMR). The strong electrostatic repulsions between closely 

apposed phosphates groups with high negative charges on the RNA backbone as well as 

the inherent dynamic nature of the RNA molecules often preclude crystallization. Almost 

half of the RNA structures, for instance, deposited in the PDB were determined by X-ray 

crystallography and the other half by NMR spectroscopy, underscoring the centrality of 

NMR spectroscopy to tackle the structures of RNAs.149 Advances in methodology, 
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sample preparation, isotopic labeling and spectrometer engineering have led to highly 

refined solution structures of several RNAs.120–122,124,151–155  

Although NMR spectroscopy has demonstrated its potential to determine the 

structures and dynamics of RNAs, most high-resolution NMR structural studies have 

been satisfactorily applied to small RNAs (<25 nucleotides) using unlabeled and 

uniformly 1H, 13C, 15N-labeled nucleotides.123,124 The prevalence of structural data for 

small RNAs is due to several factors: (i) RNAs contain only four nucleotides, compared 

to protein’s twenty amino acids, so that RNA’s 1H, 13C, 15N and 31P nuclei tend to 

resonate in very narrow spectral ranges that lead to extensive chemical shift overlap. (ii) 

Larger RNA molecules have larger correlation times. This results in rapid NMR signal 

decay, reflected in broadened lines. (iii) Line broadening leads to diminished signal-to-

noise ratios, thus rendering NMR spectra nearly useless. To address these problems, 

various labeling schemes have been proposed.116,125,127,151,154,156–161 

However, structural and dynamics studies of RNA requires a different, more 

specific, approach to preclude cumbersome pulse programs and inaccurate data analysis 

from uniformly labeled RNA. For instance, it is known that 13C-13C residual dipolar, and 

direct one-bond scalar couplings are main contributors to relaxation in the micro- to 

millisecond time scales.162–164 These strong couplings, present in uniformly labeled RNA, 

introduce undesired contributions to NMR relaxation dispersion-type experiments, and 

thus lead to erroneous data analysis and interpretation. Specifically, Thakur et al. had 

previously shown how dynamics measurements of R1 longitudinal relaxation rates 

deviated from monoexponential decay for uniformly labeled RNAs in contrast to 

specifically labeled nucleotides.159 As an added benefit, I have also shown how selective 
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labels effectively recover sensitivity and resolution, even when compared to constant-

time NMR experiments. Hence, if not carefully taken into consideration, dipolar and 

scalar couplings of multi-spin systems may give rise to inaccurate dynamics 

measurements of non-exchangeable protons, e.g. pyrimidine’s C6-H6. Given that all 

NMR-active nuclei influence relaxation rates, it follows that isolated nuclear two-spin 

systems would allow for accurate extraction of relaxation parameters. Unfortunately, to 

date, some of the techniques to obtain isolated two-spin systems have lacked both 

versatility, accessibility and reliability for production of site-specifically labeled RNA 

NMR samples.  

To address the limitations of uniform labeling, five approaches are utilized to 

obtain site-specifically isotopically labeled RNA. (i) Total chemical synthesis of 

nucleotides, followed by solid-phase synthesis of RNA using phosphoramidite chemistry. 

This method is powerful in custom isotope incorporation in the RNA, but has problems 

of regio- and stereo-selectivity, along with low yields (<10 %).165,166 (ii) De novo 

biosynthesis of NTPs, followed by in vitro RNA transcription produces labeled 

nucleotides at significant yields (<60 %).167 This robust methodology comes at the cost of 

using ~18-23 enzymes, expensive precursor substrates, and inaccessibility to some labels. 

(iii) Biomass production of NMPs that are phosphorylated to NTPs for use in in vitro 

RNA transcription provides useful labeled nucleotides; however, the overall yield is low 

per labeled input metabolite, and isotopic scrambling often leads to inadequate 

suppression of 13C-13C couplings.151,168,169 (iv) Selective biomass production of NMPs 

overcomes the isotopic scrambling problem with adequate suppression of 13C-13C 

couplings; however, the overall low yield remains an issue.154,157–159,170–172 (v) Chemo-
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enzymatic synthesis of nucleotides, followed by in vitro RNA transcription,  is the most 

versatile of all methods developed thus far because of the potential to expand the range of 

labels accessible for various biophysical studies.116    

To expand the range of labels accessible for various biophysical works, I use the 

chemo-enzymatic method to combine ribose (which has many commercially available 

site specific labels) with labeled uracil. As had been shown before by Santa Lucia et 

al.,173 Kreutz et al. recently synthesized uracil using labeled potassium cyanide, and 

unlabeled bromoacetic acid and urea.165 In particular, I present a streamlined and reliable 

chemical enzymatic synthesis of site-specifically labeled 13C- and 15N-pyrimidine 

nucleotides containing isolated two-spin systems in both the ribose and the nucleobase. 

With our method, I can incorporate 13C and 15N isotopes in uracil at any carbon site in the 

uracil ring, including nitrogens (Figure 4.1). The latter can be used simultaneously to 

address structural questions, such as secondary structure rearrangements or sub-

populations at equilibrium. Herein, I report on the use of 6-13C-1,3-15N2-uracil and 1′,5′-

13C2-D-ribose as the building blocks of choice. Furthermore, I address the problems of 

accessibility, robustness, and more accurate dynamics measurements. 

The chemo-enzymatic synthesis of site-specifically labeled uridine and cytidine 

nucleotides employs three to four enzymes from the pentose phosphate pathway (Figure 

4.2). These enzymes are Ribokinase, RK (E.C. 2.7.1.15), which catalyzes the 

phosphorylation at the ribose C5′ position to produce ribose-5-phosphate (R5P).129 

Phosphoribosyl pyrophosphate synthetase, PRPPS (E.C. 2.7.6.1), catalyzes the addition 

of a β,γ-diphosphate from ATP to the C1′ position of R5P, activating it for the addition of 

a nucleobase.130 Uridine phosphoribosyl transferase, UPRT (E.C. 2.4.2.9), catalyzes the 
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condensation between phosphoribosyl pyrophosphate and uracil to form uridine 

monophosphate.131–133 Finally, CTP synthethase, CTPS (E.C. 6.3.4.2), is utilized in a 

separate reaction as the catalyst in the ATP-dependent production of CTP from UTP, 

using ammonia as the nitrogen source.127,135 These enzymes have been previously cloned, 

expressed, purified and assayed; making their production in large milligram quantities 

nearly effortless.100 Other enzymes and components used in the reactions are inexpensive 

and commercially available.  

In this chapter, I show that the IRE RNA transcribed with our custom nucleotides 

exhibits improved NMR spectral properties and further provides more accurate dynamics 

measurements. Specifically, the IRE RNA showed enhanced relaxation properties, less 

signal crowding, and narrower linewidths as hypothesized. Moreover, the methods for the 

production of the site-specifically labeled nucleotides have been streamlined, becoming 

highly accessible to any biochemistry/NMR lab. 

Section 4.2: Methods 

4.2.1. Buffers and reagents: 

All buffers were prepared in-house utilizing standard chemicals (Sigma-Aldrich, 

Fisher Scientific). Unless otherwise stated, all chemicals used were purchased from 

Sigma-Aldrich or Fisher Scientific. 

4.2.2. Uridine triphosphate synthesis: 

The site-specifically labeled 1′,5′,6-13C3-1,3-15N2-Uridine triphosphate was 

enzymatically synthesized in vitro. First, uridine monophosphate (UMP) was synthesized 

from uracil and ribose. The reaction was carried out in 50 mM Na3PO4 pH 7.5, 10 mM 
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MgCl2, 2 mg/mL ampicillin, 10 mM DTT, 0.5 mM dATP, 100 mM creatine phosphate, 8 

mM uracil, 10 mM ribose, 50 U/mL creatine kinase, 50 U/mL myokinase, 0.4 U/mL 

thermostable inorganic pyrophosphatase (New England Biolabs), 5 U/mL ribokinase, 3 

U/mL phosphoribosyl pyrophosphate synthetase, and 5 U/mL uridine phosphoribosyl 

transferase. The reaction was incubated at 37 °C for 5 hours. UMP was then purified by 

boronate affinity chromatography and lyophilized to a powder. The powder was then 

resuspended, and assayed for UMP concentration by its UV trace at 262 nm wavelength 

(ε = 10,000 M-1cm-1). Our typical yield was 90 %.  

Fresh UMP was then phosphorylated to synthesize UTP. The reaction was carried 

out in 70 mM Tris-HCl pH 7.5, 20 mM KCl, 20 mM MgCl2, 2 mg/mL ampicillin, 10 mM 

DTT,  0.5 mM dATP, 100 mM creatine phosphate, 2.5 mM UMP, 5 µg/mL creatine 

kinase, 0.1 mg/mL BSA, and 50 µg/mL nucleoside monophosphate kinase (Roche). The 

reaction was incubated at 37 °C for 6 hours. UTP was then purified by boronate affinity 

chromatography and lyophilized to a powder. The powder was then resuspended, and 

assayed for UTP concentration by its UV trace at 262 nm wavelength (ε = 10,000 M-1cm-

1). Our typical yield was >95 %. Consequently, our overall yield was >76 % using this 

method. The resuspended UTP was washed several times and finally stored as a 50 mM 

stock in 10 mM Tris-HCl pH 7.0, 1 mM EDTA at -20°C. The identity of all of the 

intermediates and products were confirmed by FPLC utilizing a reverse-phase analytical 

column.  

Alternately, the phosphorylation of UMP can be achieved in situ immediately 

after its synthesis. Addition of 20 mM KCl and 50 µg/mL nucleoside monophosphate 

kinase from bovine liver (Roche), followed by incubation at 37 °C for 6 hours achieved 
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complete phosphorylation of UMP to UTP. The pH of the reaction was adjusted with 

either HCl or NaOH to fall between 7.5 and 8.0. In most cases, the reaction mixtures 

were also spiked with 0.2 mM dATP and 20 mM creatine phosphate. Our typical overall 

yield with this method was 90 % with respect to input uracil. 

4.2.3. Cytidine triphosphate synthesis: 

The site-specifically labeled 1′,5′,6-13C3-1,3-15N2-Cytidine triphosphate was 

enzymatically synthesized in vitro in a single-step reaction. The previously synthesized 

uridine triphosphate (UTP) was converted in a reaction with dATP and ammonium 

chloride, catalyzed by CTP synthetase. The reaction was carried out in 50 mM Tris-HCl 

pH 8.0, 10 mM MgCl2, 2 mg/mL ampicillin, 4 mM dATP, 2 mM UTP, 20 mM 15N-

NH4Cl, and 0.1 mg/mL CTP synthetase. The reaction was incubated at 37 °C for 6 hours. 

The reaction was then filtered through a 3,000 molecular weight cut-off filtering device. 

The flow-through was collected and assayed for CTP concentration by its UV trace at 

273 nm wavelength (ε = 9,000 M-1cm-1). The recovered CTP at nearly quantitative yields 

was used directly in in vitro transcriptions. Our typical yield was 95 %. 

4.2.4. RNA Preparation:  

Iron Responsive Element RNA 

(5′GGAGUGCUUCAACAGUGCUUGGACGCUCC) was synthesized in vitro from 

synthetic DNA templates (Integrated DNA Technologies Inc.). The transcriptions were 

carried out in transcription buffer [40 mM Tris-HCl pH 8.0, 0.1 mM spermidine, 0.01 % 

Triton X-100, 10 mM DTT, 80 mg/mL PEG (8000MW)], supplemented with 2.0 U/mL 

thermostable inorganic pyrophosphatase (New England Biolabs, Inc.), 0.3 μM each DNA 

template, 10 mM MgCl2, 5 mM NTPs (1.25 mM each NTP), and 0.25 mg/mL T7 RNA 
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polymerase. The T7 RNA polymerase was expressed in E. coli BL21(DE3) and purified 

on pre-packed Ni-NTA beads in column mode as previously described. The T7 promoter 

sequence used was 5′ CTA ATA CGA CTC ACT ATA G. The template strands of wild-

type IRE RNA was 5′GGAGCGTCCAAGCACTGTTGAAGCACTC 

CTATAGTGAGTCGTATTAG. Two terminal 2’-O-methyl modifications in the template 

strands were introduced to substantially reduce transcript heterogeneity. All purchased 

DNA oligonucleotides were PAGE-purified. The transcription conditions were optimized 

by a sparse-matrix approach. The reactions were incubated at 37 °C for 3h. The reactions 

were then phenol-chloroform extracted and then ethanol-precipitated overnight with three 

volumes of absolute ethanol and 0.3 M sodium acetate pH 5.2. The precipitates were then 

re-suspended in a minimum amount of water and PAGE-purified in 8 M Urea/13 % 

acrylamide-bis (19:1) gels. The gel was UV-shadowed, the corresponding band was then 

excised and the RNA was then electro-eluted on an Elutrap electro-separation system 

(Schleicher and Schuell) at 200 V for 6-7 h. The elution fractions were pooled, 

concentrated and extensively dialyzed against a high-EDTA buffer (10 mM Na3PO4 or 

Tris-HCl pH 6.5, 10 mM NaCl, 10 mM EDTA) and a low-EDTA buffer (same as above, 

0.2 mM EDTA). Prior to use, the RNA was heated to 90 °C for two minutes and 

immediately cooled on ice for 10 minutes to promote folding. 

4.2.5. Nuclear Magnetic Resonance: 

NMR experiments were conducted on the IRE RNA to show the incorporation of 

the newly synthesized site-specifically labeled nucleotides from above. All NMR samples 

contained 0.25 mM 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) for 1H and 15N 

chemical shift referencing. IRE RNA was kept at a concentration of 0.2 – 1 mM. One-
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dimensional proton, two-dimensional homo- and hetero-nuclear Overhauser (NOE), two-

dimensional constant- and non-constant time 13C and 15N heteronuclear single quantum 

correlation (HSQC), three-dimensional 1H-1H-13C NOESY-HSQC, and three-dimensional 

1H-13C-15N out-back HCN spectra were collected at 25 °C on a 600 MHz Bruker Avance 

III spectrometer equipped with a HCN triple resonance cryoprobe. All NMR data were 

processed using TopSpin 3.2, NMRpipe/NMRDraw, and NMRviewJ. The statistical 

quality factor utilized for the data fits was chi-squared (χ2), as given by the equation 

below, 

χ2 = ∑
(𝐸𝑖 − 𝑂𝑖)

2

𝐸𝑖
 

where Ei is the expected value, Oi is the observed value for any given measurement. 

Section 4.3: Results 

4.3.1. Synthesis of site-specifically labeled UTP 

In this work, I aimed to chemo-enzymatically synthesize site-specifically labeled 

pyrimidine nucleotides, UTP and CTP. These were then used for in vitro transcriptions of 

the IRE RNA (Figure 2.1c). In order to synthesize nucleotides, I expressed and purified 

four enzymes from the pentose phosphate pathway: ribokinase, phosphoribosyl 

pyrophosphate synthetase, uridine phosphoribosyl transferase, and cytidine triphosphate 

synthetase. As described in our previous work and in Chapter 3,100 I induced the 

expression of the His6-tagged enzymes in bacterial systems by the addition of L-(+)-

arabinose and IPTG to the cell cultures. The isolated proteins were purified by 

immobilized metal affinity chromatography. From a one liter culture, 21 mg of ribokinase 
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(RK), 5 mg phosphoribosyl pyrophosphate synthetase (PRPPS), 15 mg of uridine 

phosphoribosyl transferase (UPRT), and 25 mg of cytidine triphosphate synthetase 

(CTPS) were isolated at or above 90 % purity. Their specific activities were also 

consistent with our previous findings: 70 U/mg; 22 U/mg; 150 U/mg and 120 U/mg, 

respectively. It was determined that given the purity and specific activity of the enzymes, 

they did not need further purification or His6-tag cleavage. These enzymes were then 

used for the subsequent nucleotide synthesis reactions.    

Prior to the synthesis of uridine triphosphate, I aimed to synthesize one of its 

building blocks: uracil. Its chemical synthesis had been previously described,173 and has 

now been optimized to obtain yields of synthesis >82 %.165 This readily accessible 

reaction consisted of a three-step coupling of commercially available precursor 

compounds: 2-bromoacetic acid; 15N2-urea; and K13CN (See Figure 4.1). Using these 

reagents, the final 13C-labeled position in the uracil ring was C6. The synthesis was 

optimized to obtain gram quantities at very low expense. The identity of 6-13C1-1,3-15N2-

uracil was confirmed by nuclear magnetic resonance (NMR), as previously described.165 

 

Figure 4.1. Chemical synthesis of uracil. (a) sodium carbonate, pH 9, 3 h at 80 °C, 20 h 

at room temperature; (b) urea in acetic anhydride, 30min at 90 °C, 5 % Pd/BaSO4 in 50 

% aqueous acetic acid, 36 h at room temperature; (c) ribokinase, phosphoribosyl 

pyrophosphate synthetase, uridine phosphoribosyl transferase, nucleoside monophosphate 

kinase in sodium phosphate pH 7.5, 10 h at 37 °C; (d) cytidine triphosphate synthetase in 

Tris-HCl pH 8.0, 6 h at 37 °C. Magenta: 13C; yellow: 15N. 
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The in vitro one-pot, two-step synthesis of UTP was readily accomplished in high 

yields, > 80 %. The first step in the reaction is the formation of UMP from 1′,5′-13C2-

ribose (omicron biochemicals) and 6-13C1-1,3-15N2-uracil (Figure 4.2). The reaction 

proceeded to completion within 5 hours, with nearly complete depletion of uracil as seen 

in Figure 4.3. Of note, I utilized a slight molar excess of ribose, as they were shown to 

have better reaction yields than when utilizing equimolar amounts or excess uracil (data 

not shown). 

 

Figure 4.2. Two-step chemo-enzymatic synthesis of uridine triphosphate. Notice the 

coloring scheme of the uracil moiety, in relation to its enzymatic synthesis, where every 

carbon in the ring can be differentially labeled. The first step is carried out through 

uridine phosphoribosyl transferase; the second consists of the phosphorylation of UMP. 

The reaction mixture consists of ribokinase, phosphoribosyl pyrophosphate synthetase, 

uridine phosphoribosyl transferase, nucleoside monophosphate kinase in sodium 

phosphate pH 7.5, and 10 h at 37 °C. 
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Figure 4.3. Chromatography profile of the synthesis of uridine monophosphate. 

Reverse-phase high-pressure liquid chromatography reveals the depletion of uracil with 

concomitant synthesis of UMP. Notice that at five hours (purple), this reaction begins 

non-specific phosphorylations of UMP. Leftover uracil corresponds to the 1.2 molar 

excess in comparison to ribose used in the reaction. 

 

To verify the synthesis of UMP, I carried out two-dimensional HSQC 

spectroscopy experiments. These experiments were used as a direct continuous assay of 

the enzymatic reactions. To our advantage, the chemical shift of C1′ of ribose and UMP 

are vastly different in both proton and carbon dimensions. Therefore, by observing the 

slow exchange process of the C1′-H1′ of the substrate (ribose) to product (UMP), I 

confirmed the synthesis of UMP at nearly quantitative yields (Figure 4.4). Additionally, I 

monitored the C6-H6 spin system of uracil (substrate), since it also showed a drastic 

chemical shift change upon coupling to ribose. The 13C-1H HSQC experiments also 

revealed conversion of ribose to UMP (Figure 4.5). Finally, as an additional orthogonal 
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method of verifying the synthesis of our mononucleotide, I performed a two-bond 15N-1H 

HSQC experiment, where I correlate both H5 and H6 of the uracil base to both nitrogens, 

N1 and N3, via through-bound correlations. As expected, the chemical shift differences 

of the substrate and product were substantially different for the 1H-15N correlations, thus 

allowing us to follow and confirm the progress of the reaction (Figure 4.6). Altogether, I 

showed from HPLC and NMR results that 1′,5′-13C2-1,3-15N2-UMP was synthesized from 

ribose and uracil in five hours at nearly quantitative yields. 

 

Figure 4.3. Synthesis of uridine monophosphate observed by 13C-1H HSQC NMR of 

the ribose ring. (A) Positive control: Uniformly labeled 13C/15N uridine monophosphate, 

observing the C1’ moiety. Dotted circle: expected site of C1′ resonance as free ribose. (B) 

Negative control: 1′,5′-13C2-D-ribose, observing both C1′ and C5′ resonances. (C) Early 

time point of the chemo-enzymatic synthesis of UMP. Notice the appearance of a 

resonance at the same chemical shift as the positive control, corresponding to the C1′ of 

the newly formed UMP. (D) End point of the synthesis of UMP, showing complete 

formation of UMP and depletion of ribose. Inset: three-dimensional view of the same 

window to show that there is no trace of substrate left. 



56 

 

 

Figure 4.5. Time course of the synthesis of uridine monophosphate observed by 13C-
1H HSQC NMR of the uracil ring. From left to right, notice how the resonances 

corresponding to C6-H6 shift upfield on the 13C dimension and downfield on the 1H 

dimension as the reaction progresses. After 60 minutes, the resonances corresponding to 

uracil’s C6-H6 have completely disappeared. This experiment used 13C-15N uniformly 

labeled uracil as a substrate, hence the doublets observed. 

 

 

Figure 4.6. Time course of the synthesis of uridine monophosphate observed by two-

bond 15N-1H HSQC NMR of the uracil ring. From left to right, notice how the 

resonances corresponding to H5-N1 and H6-N1 shift downfield both on the 15N and 1H 

dimensions as the reaction progresses. Meanwhile, the H5-N3 resonances slightly shift 

downfield on the 1H dimension and upfield on the 15N dimension. After 60 minutes, the 

resonances corresponding to uracil’s H5-N1, H6-N1 and H5-N3 have completely 

disappeared. This experiment used 13C-15N uniformly labeled uracil as a substrate, hence 

the doublets observed. 
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To our surprise, at the end of the UMP synthesis reaction, a significant amount of 

UDP and UTP had been formed. These were products of non-specific phosphorylation. 

For this reason, I hypothesized that adding the minimal components needed for 

nucleoside monophosphate kinase (NMPK) to function would deplete UMP and 

phosphorylate it through UTP. Addition of KCl and NMPK along with a small 

replenishment of dATP and creatine phosphate enabled straightforward and effective 

phosphorylation; this was the second step of our reaction. The HPLC chromatograms 

indicated a negligible amount of residual substrates or intermediates (Figure 4.7). The 

newly synthesized UTP was then purified by boronate affinity chromatography; a 

representative chromatogram is shown in Figure 4.8. Although the enzymatic reactions 

appeared to have a quantitative yield, the recovery of isolated product after purification 

was nearly 90 %. I presume that some of the indispensable reaction components such as 

DTT may have interfered with the chemistry of the purification due to their diol 

functional groups. As well, it had been suggested that highly charged groups, i.e. UTP, 

may also interfere with binding to the solid phase of the column.127  
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Figure 4.7. Chromatography profile of the phosphorylation of uridine 

monophosphate. Reverse-phase FPLC reveals the depletion of UMP and the appearance 

of UTP. Notice that there is no detectable UDP in the chromatographic trace. 

 

 

Figure 4.8. Boronate purification of uridine triphosphate. Fast-performance liquid 

chromatography purification of nucleotides on pre-packed Affigel boronate beads. The 

first peak in the chromatogram represents unbound sample, i.e. dATP. The second broad 

peak represents the eluted nucleotides over the course of several column volumes.  



59 

 

 Before the freshly made UTP was used directly for our downstream applications, 

I performed a series of quality control experiments. The identity of 1′,5′,6-13C3-1,3-15N2-

UTP was confirmed by FPLC and NMR (Figure 4.9). First, one dimensional 13C and 31P 

spectra were collected to confirm the incorporation of 6-13C in the uracil ring and the 

phosphorylation stage of UTP, respectively. As seen in Figure 4.9a, one major peak is 

observed near 146 ppm, which represents the C6 moiety. The smaller peak observed 

~104 ppm likely corresponds to an impurity. The phosphorous one-dimensional spectrum 

confirmed the presence of all three phosphate groups attached to UTP (Figure 4.9c). The 

presence of both 1′- and 5′-13C was confirmed by a one dimensional 13C spectrum (Figure 

4.9e). Next, I carried out a series of two-dimensional experiments that confirmed our one-

dimensional results. These were 2D 15N- and 13C-1H HSQC experiments, our results 

showed the labeling of both base nitrogens, C6, C1′ and C5′ (Figure 4.9b,d,f). Altogether, 

our results showed us that our newly synthesized UTP had incorporated all the site-

specific 15N and 13C isotopes, and that its phosphorylation state was adequate for use in in 

vitro RNA transcriptions. 
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Figure 4.9. Spectra of 1′,5′,6-13C3-1,3-15N2-uridine triphosphate. (A) One-dimensional 

carbon spectrum, showing the only labeled carbon in the uracil base. (B) Two-

dimensional two-bond 15N-1H HSQC spectrum, showing resonances of H5-N1, H6-N1, 

H5-N3, and H5-N1. (C) One-dimensional phosphorous spectrum, showing all phosphate 

moieties in UTP. (D) Two-dimensional 13C-1H HSQC spectrums showing C6 of UTP and 

the absence of C5. (E) One-dimensional carbon spectrum, showing the two carbon atoms 

in the ribose ring. (F) Two-dimensional 13C-1H HSQC spectrum, showing both C1′ and 

C5′ of the ribose region, notice the lack of J-coupling. 

 



61 

 

4.3.2. Synthesis of site-specifically labeled CTP 

Next, I aimed to synthesize site-specifically labeled CTP from our freshly made 

UTP. In our reactions, 1′,5′,6-13C3-1,3,4-15N3-CTP was synthesized by the ATP-

dependent amination of 1′,5′,6-13C3-1,3-15N2-UTP with 15NH4Cl using CTP synthetase, as 

shown in Figure 4.10. Potential substrates for the amination include both L-glutamine and 

ammonia, with nearly similar catalytic efficiencies.174,175 For our purposes, I utilized 

15NH4Cl as our nitrogen source.  

 

Figure 4.10. One-step enzymatic synthesis of cytidine triphosphate. CTP synthetase 

catalyzes the amination of UTP on C4. As mentioned above, the uracil ring, and thus the 

cytidine too, may be selectively labeled on any carbon. 

 

After optimizing the reaction conditions, I obtained nearly quantitative CTP 

synthesis.  The reaction reached completion at 4 h, as evidenced by our FPLC 

chromatograms (Figure 4.11). In contrast to UTP, CTP was not purified by boronate 

chromatography because the enzymatic reaction was performed under in vitro 

transcription-like conditions. That is, the buffer components and salt conditions were 

within the same order of magnitude of those used in in vitro transcriptions. Specifically, I 
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filtered the reaction through a 3,000 Da molecular weight cut-off filtering device to 

separate the enzyme from the reaction mixture. Therefore, I virtually obtained 

quantitative yields from our enzymatic reactions. After confirming the identity of 1′,5′,6-

13C3-1,3,4-15N3-CTP by FPLC, one-, and two-dimensional NMR, the freshly made CTP 

was used directly for in vitro RNA transcriptions without further purifications. 

 

Figure 4.11. Representative chromatography profile of the synthesis of cytidine 

triphosphate. Reverse-phase high-pressure liquid chromatography reveals the depletion 

of UTP with concomitant synthesis of CTP. Synthesis of CTP ends after four hours. 

4.3.3. Structural analysis of the IRE RNA synthesized with site-specifically 

labeled nucleotides 

Our enzymatic reactions, in milliliter scales, yielded milligram amounts of site-

specifically 13C- and 15N-labeled nucleotides that were then used in in vitro transcriptions 

of the IRE RNA (Figure 2.1c). This 29-nucleotide 5′ untranslated region hairpin has also 

been heavily studied due to its role in cellular iron homeostasis, as detailed in chapters 1 

and 2 herein.66,68 This RNA is an excellent system for solution NMR dynamics studies as 

many of its residues are highly flexible, especially the stem-bulged cytidine 
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nucleotide.62,66,87 Pardi et al. and Hall et al. have carried out dynamics measurements of 

this RNA, thus providing us with a reference and a point of comparison for our 

studies.62,87  

The IRE RNA was in vitro transcribed using our site-specifically labeled 

nucleotides, then purified and characterized by NMR. The initial characterization for our 

construct consisted of one-dimensional proton experiments that confirmed the formation 

of secondary structure. Indeed, the IRE RNA showed a number of resonances in the 

imino proton region, which correspond to base-pair hydrogen bonding (shown in the 

following chapter, Figure 5.3).  

The site-specific labeling of these RNAs significantly reduced spectral crowding, 

eliminated 13C-13C scalar couplings, and increased the signal-to-noise ratios. To show 

that our specifically labeled RNAs exhibited these characteristics, I performed a series of 

two-dimensional experiments in the RNA showcasing 13C/15N uniform, uridine-only, or 

our custom-made nucleotides. For the IRE RNA, the 13C-1H correlation spectra focused 

in the ribose region (3.6 – 6 ppm 1H; 60 – 95 ppm 13C) of these three labeling schemes 

clearly showed the uncluttering of the spectral window (Figure 4.12). Of note, from our 

results I can argue that RNAs shorter than 30 nucleotides already show significant 

uncluttering just by segmental labeling schemes, i.e. 13C/15N uridine-only (Figure 4.12b). 

However, the absence of resonances arising from C2′, C3′ and C4′ further simplify the 

spectra and provide other advantages addressed below. 
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Figure 4.12. 13C-1H correlation spectra of the ribose region of the IRE RNA under 

different labeling conditions. (A) Two-dimensional 13C-1H HSQC spectrum of a 

uniformly-labeled IRE RNA. (B) Two-dimensional 13C-1H HSQC spectrum of a UTP-

only uniformly-labeled IRE RNA. (C) Two-dimensional 13C-1H HSQC spectrum of a 

1′,5′-13C2-ribose site-specifically-labeled IRE RNA showing the complete disappearance 

of resonances corresponding to C2′, C3′ and C4′ sites. 

 

Further inspection of the 13C-1H HSQC spectra showed the absence of 13C-13C 

scalar couplings, since only positions 1′ and 5′ contained 13C isotopes in the ribose ring 

(Figure 4.13). This is a very important feature since it eliminated the need of decoupling 

and the use of constant-time modules for refocussing 1JCC at the expense of lower 

sensitivity and limited spectral resolution.128,158 Long delays in pulse programs sizably 

reduce resonance intensities of large RNAs due to rapid signal decay, often leading to 

complete signal loss.128 Lastly, in combination with the use of cryo-cooled probes,176,177 

our site-specifically labeled RNAs were shown to provide better signal-to-noise ratios 

than uniformly labeled constructs. This was expected, as one of the main signal decay 

pathways – through dipolar couplings– was effectively reduced by our labeling schemes. 
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Figure 4.13. Site-specific labeling of the IRE RNA eliminates 13C-13C J-coupling. 

Correlation spectra of the C1′ ribose region of the IRE RNA under different labeling 

conditions, all images are zoomed-in versions of Figure 4.12. (A) Two-dimensional 13C-
1H HSQC spectrum of a uniformly-labeled IRE RNA. (B) Two-dimensional 13C-1H 

HSQC spectrum of a UTP-only uniformly-labeled IRE RNA. (C) Two-dimensional 13C-
1H HSQC spectrum of a 1′,5′-13C2-ribose site-specifically-labeled IRE RNA showing the 

absence of J-coupling at the C1′ site. 

 

 Additionally, I synthesized an IRE RNA with our site-specifically labeled CTP. I 

aimed to identify the degree of overlap between U and C residues, so as to prepare a 

doubly site specifically-labeled RNA. To our surprise, all the qualitative spectra collected 

on the CTP-labeled IRE RNA showed no major overlap issues in any of the regions 

observed: C1′; C5′; or C6 (Figure 4.14). From our results, I determined that utilizing an 

RNA sample with both C and U would be of our best interest for the subsequent 

relaxation dispersion analyses.  
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Figure 4.14. Site-specific labeling of both C and U in the IRE RNA does not cause 

overlap. By labeling both residues separately, I determined that the spectral quality 

remained untouched, and was amenable for dynamics studies of the construct. (A) 13C-1H 

HSQC experiment of a uniformly 13C/15N labeled IRE RNA, showing all ribose residues. 

(B) Same as (a), for a 1′,5′,6-13C2-1,3-15N2-UTP labeled IRE RNA. (C) Same as (a), for a 

1′,5′,6-13C2-1,3,4-15N3-CTP labeled IRE RNA. 

 

 To further show the improvement in spectral quality by utilizing site-specifically 

labeled nucleotides, I evaluated linewidths and signal-to-noise ratios of two-dimensional 

spectra. Specifically, I compared 2D 13C-1H HSQC experiments from uniformly 13C/15N 

and U/C site-specifically labeled IRE RNAs. Interestingly, when observing all regions, 

C1′, C5′, and C6, I noticed a marked improvement in the linewidths of every resonance 

(Figure 4.15a-c). The narrower linewidths would prove more important to reduce peak 

overlap in larger RNA samples, i.e. >70 nt. When extracting one dimensional planes from 

the experiments, I did not observe a sizeable improvement in signal-to-noise ratios. 

Nonetheless, I exploited the C5′ methylene moiety in CH2-optimized transverse 

relaxation-optimized spectroscopy (TROSY) experiments, selecting for the H component, 

the sharpest from the collection of eight peaks in an entirely de-coupled spectrum (Figure 

4.15d).178,179 These experiments were contrasted with traditional CH2-optimized HSQC 
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experiments.179 When extracting a one dimensional plane from the experiment, I 

observed a ~2:1 improvement in signal-to-noise ratios when utilizing our site-specifically 

labeled IRE RNA (Figure 4.15d-inset). Interestingly, the 13C linewidths appeared to be 

larger than in non-TROSY experiments. This artifact is possibly due to a different 

spectral resolution utilized in the experimental parameters. This recovery of signal in 

contrast to a traditional HSQC experiment would prove useful in larger RNAs as well. 

Altogether, I have shown that our site-specifically labeled nucleotides have improved 

both signal-to-noise ratios and linewidths, as well as reduce spectral crowding in our 29-

nt IRE RNA.   
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Figure 4.15. Site-specifically labeled RNA reduces spectral crowding and increases 

sensitivity. (A) 2D 13C-1H HSQC experiment focused in the C1′-H1′ region of the IRE 

RNA comparing a 13C/15N uniformly labeled and a site-specifically labeled sample. 

Notice that all peaks are resolved in the latter, along with a decreased linewidth for each. 

(B) Same as (a), focused in the C5′-H5′ region. (C) Same as (a), focused in the C6-H6 

region. This region is of utmost importance as overlap is severe due to C8-H8 peaks from 

purines. (D) 2D 13C-1H methylene-optimized TROSY-HSQC provides increased signal-

to-noise ratios compared to HSQC experiments even for RNAs as short as the IRE RNA 

(29 nt). Inset: 1D spectrum of the two peaks circled, notice the near two-fold increase in 

signal-to-noise ratio on the TROSY-based experiments. Note that in (d), the apparent 

shifting in the peak positions arises from the TROSY effect, in which from a collection of 

eight peaks, the bottom right is chosen. For more information, see Miclet et al.178 The 

differences in 13C linewidths may arise from different spectral resolutions used in the 

experiments. 
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I then aimed to assign the minimal set of resonances needed for a structural and 

dynamic analysis of the IRE RNA. I employed a combination of traditional and novel 

assignment methods, mostly based in the work by Dayie.180 In his work, he presents a 

straightforward and rapid assignment protocol, consisting of a few experiments that aim 

to assign exchangeable base protons and their covalently attached nitrogens, followed by 

non-exchangeable base protons and their attached carbons. Then, base protons are 

correlated to ribose H1′ protons. In our work, I followed this methodology with minimal 

modifications. A series of two- and three-dimensional experiments allowed us to 

accurately and rapidly assign most resonances to their corresponding atomic nucleus in 

the RNA of interest. Exchangeable imino proton assignments (H1 and H3) were 

performed by a series of 2D 15N-1H HSQC and 2D 1H-1H NOESY experiments. Next, I 

confirmed base pair formation by 2D HNN COSY experiments. Additionally, I observed 

most C1′-H1′, C5′-H5′, C5′-H5′′, and C6-H6 resonances by 2D 13C-1H HSQC 

experiments. By combining the information from imino protons and their through space 

connectivities to H2 or H4 due to the geometry of base pairing, I were able to assign 

those nuclei. I followed by performing a 3D HCCNH experiment, to assign H5, H6, and 

(G)H8 resonances. Taking advantage of our pyrimidine-only labeling scheme, I 

performed a 3D 1H-1H-13C NOESY-HSQC experiment. In this experiment, I performed a 

sequential through-space walk from H1′ to its own intra “i” nucleotide H6 on to the 

sequential “i+1” nucleotide H1′ (Figure 4.16a). Using our labels, I avoid the spectral 

cluttering arising from H1 to H8 connectivities, and also H1 to other protons within 

distance, i.e. H2′, H3′, H4′, H5 (Figure 4.16b,c). 
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Figure 4.16. Three-dimensional 1H-1H-13C NOESY-HSQC experiment for peak 

assignments by sequential through-space walks. (A) Through-space NOE walk in a 

pyrimidine stretch of the IRE RNA. I highlight all the potential connectivities observed 

utilizing out site-specifically labeled nucleotides (B) Two-dimensional projection of a 3D 

NOESY-HSQC experiment showing the well-resolved crosspeaks from aromatic H6 to 

H1′, H6 to H5′, and H1′ to H5′. The first is used for performing a sequential walk along 

helical segments in the IRE RNA that allows for peak assignment. (C) Focus on the 

region within the dashed lines in (a). Notice the sequential walk performed between the 

crosspeaks and the lack of any major overlap.    

 

Next, to finish the rapid resonance assignment of the IRE RNA, I confirmed H1′ 

and H6 connectivities via through-bond experiments. I performed a 3D out-back HCN 

experiment which follows the coherence pathway from H1′  C1′  N1(pyrimidines) 
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and H6  C6  N1(pyrimidines, Figure 4.17a). The experiment showed us clear 

correlation peaks that corresponded to H1′ to H6 through-bond transfer (Figure 4.17b). 

 

Figure 4.17. Three-dimensional out-back HCN experiment for peak assignments. 

(A) Scheme representing the magnetization transfer from protons in the ribose or base to 

the common N1 in pyrimidines used in our labeled IRE RNA. (B) Representative slice of 

a 3D HCN experiment, where I show the correlations between H6 and H1′ to allow for 

peak assignments. Notice the lack of overlap and the high signal-to-noise ratio. 

 

Altogether, our battery of experiments allowed us to readily assign the minimum 

set of resonances needed for dynamics measurements of the IRE RNA. The 

simplification of the spectra due to the use of our site-specifically labeled nucleotides was 

instrumental in performing the assignments. I were able to assign every C1′-H1′ and C6-

H6 moiety (Figure 4.18 and Table 4.1), both of which were later used for measurement of 

R1 and R2 decay constants. Additionally, as explained above, I assigned other resonances, 

which are given in Table 4.2. 
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Figure 4.18. Initial 13C-1H assignments of the IRE RNA ribose and base moieties. 

(A) Assignments of C1′-H1′ resonances in a 13C-1H HSQC spectrum. (B) Assignments of 

C6-H6 resonances in a 13C-1H HSQC spectrum. Notice that all peaks are resolved. 

Table 4.1. Partial resonance assignments of the IRE RNA, focused on residues 

utilized for dynamics measurements.†  
Residue C1' H1' C6 H6 

U5 91.37 5.29 137.75 7.44 

C7 89.54 5.94 136.19 7.06 

U8 90.84 5.58 139.23 7.95 

U9 91.78 5.52 139.62 7.94 

C10 90.77 5.40 139.28 7.86 

C13 90.19 5.89 139.15 7.60 

U16 87.20 5.83 140.18 7.72 

C18 91.29 5.40 141.31 7.88 

U19 91.06 5.43 141.15 7.65 

U20 91.50 5.50 140.54 7.82 

C24 90.53 5.21 137.60 7.26 

C26 90.30 5.23 137.21 7.46 

U27 91.14 5.49 141.15 7.65 
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C28 91.51 5.55 138.09 7.64 

C29 90.06 5.63 139.57 7.86 

†All chemical shifts are in part-per-million (ppm) 

 

Table 4.2 Partial resonance assignments of the IRE RNA, residues not involved in 

dynamics measurements.† 
Residue N1 H1 Residue C2 H2 Residue* N3 H3 

G1 147.59 12.61 A3 151.05 7.59 U5 158.72 11.60 

G2 146.84 12.39 A11 149.35 6.72 U8 162.67 14.05 

G4 148.55 13.59 A12 150.66 7.57 U9 158.20 11.73 

G6 147.92 12.92 A14 151.17 7.84 U19 162.20 13.86 

G17 144.05 10.94 A23 151.63 6.96 U20 162.37 13.08 

G21 146.51 11.73    U27 162.67 14.07 

G25 144.61 11.13       

†All chemical shifts are in part-per-million (ppm) 

*U16 is not shown as it does not participate in base pairing; its imino H3 proton is in 

rapid solvent exchange, thus not observable in our experiments. 

Next, to test the hypothesis that relaxation properties of our site-specifically 

labeled RNA are more favorable than those of uniformly-labeled RNAs, I conducted a 

series of relaxation experiments in our C- and U-labeled IRE RNA. Among the 

experiments I chose were: T1 and T1ρ to measure ps – ns dynamics. Onward, a significant 

portion of the results obtained and their analysis were performed by Regan LeBlanc.  

In particular, I chose the C6 position in the uracil and/or cytidine rings and the C1′ 

position in the ribose ring as our nuclear probes. Both C6 and C1′ have good chemical 

shift dispersion (7 – 8 ppm 1H; 135 – 145 ppm 13C, and 5 – 6 ppm 1H; 88 – 96 ppm 13C, 

respectively), have no 1JCC-coupling in our constructs, and have been extensively used for 
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dynamics measurements in a number of systems.164,181 Below, I highlight results from our 

findings. 

Data from our T1 experiments showed a good fit to a mono-exponential decay for 

the IRE RNA. The IRE RNA is only a 29-nucleotide RNA, and as such it was expected 

to behave favorably toward relaxation experiments. As stated above, I measured 

dynamics parameters of C1′-H1′ and C6-H6 moieties. The equation utilized to fit T1 data 

was: 

𝑀(𝑡) = 𝑀𝑒𝑞 ∗ (𝑒−𝑡 𝑇1⁄ ); 

Where, M(t) is the magnetization as a function of time, Meq is the normalized 

magnetization at the start of the experiment, t is time, and T1 is the decay constant. The 

parameter determined from each experiment for each residue was T1 which inverse 

magnitude provides the R1 rate constant (in s-1). Analogously, to obtain an R2 constant 

from T1ρ experiments, I utilized the following equation: 

𝑅1ρ = 𝑅1 ∗ 𝑐𝑜𝑠2θ + 𝑅2 ∗ 𝑠𝑖𝑛2 θ; and 

θ = arctan (𝜔 𝛺⁄ ) 

Where, θ is the tilt angle, ω is the spin-lock power level (3 KHz), and Ω is the resonance 

off-set. Data fits from T1 and T1ρ experiments of this uniformly labeled RNA showed χ2 

values < 2x10-2, indicating robust fits to a mono-exponential decay (Figure 4.19a-b). 

Notably, some χ 2 values were as low as 7x10-4 for residues in the C6-H6 moiety. I then 

determined the R1 and R2 relaxation decay rates (in Hz) for every C and U residue in the 
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IRE RNA. R1 and R2 values can, for instance, be suggestive of conformational exchange 

in the moiety or residue in the micro- to millisecond time-scale. However, other 

relaxation mechanisms contributing to R1 and R2 relaxation rates cannot be discarded. 

Consistent with the available three-dimensional solution structure, the residues 

suggesting the largest conformational exchanges in the IRE RNA were C7, C13, U16, 

and C29 (Figure 4.19c-d).87 C7 is a stem bulge residue, C13 is loosely base paired to G17 

in the terminal loop, U16 is unconstrained in the terminal loop, and C29 is the closing 

base pair of the hairpin possibly undergoing end-fraying. I then proceeded to measure 

identical dynamic parameters in our C- and U-site specifically labeled IRE RNA for 

purposes of comparison.  

 

Figure 4.19. Dynamics data obtained from uniformly 13C/15N labeled IRE RNA. (A) 

Longitudinal relaxation (T1) dynamics curve fits on five residues of the IRE RNA, 

focused on the C1′-H1′ spin system. (B) Rotating frame relaxation (T1ρ) dynamics curve 

fits on the same five residues, focused on the C6-H6 spin system. (C) Decay rates 

determined for each residue of the IRE RNA from T1 experiments. (D) Same as (c), but 

from T1ρ experiments. Error bars are shown as standard deviation. 
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Both labeling schemes, 13C/15N uniform and site-specific, yielded similar yet 

distinguishable results for R1 and R2 relaxation rates. It is important to note that the χ 2 

values of the data fits from the specifically-labeled IRE RNA were frequently an order of 

magnitude smaller than those of the uniformly labeled construct, e.g. 2.4x10-3 and 

1.3x10-2, respectively (Figure 4.20a). In order to compare our results, I plotted the R2/R1 

ratio for each measured residue under uniform or specific labeling schemes (Figure 

4.20b).  

Notably, most residues retained the same dynamic parameters within error, except 

for at least three residues, U8, C13 and C26. The R2 and R1 fits of these residues in the 

uniformly labeled RNA noticeably deviated from a mono-exponential decay, displaying 

standard errors ~ 20 % of the determined decay rate. However, when utilizing our 

custom-made labels, I recovered a robust exponential decay fit, with χ 2 values from 

2.7x10-4 to 2.3x10-3 and standard errors < 6 % for the residues analyzed. Another trend I 

can highlight is that uniform labeling seemed to consistently underestimate the R2/R1 

ratio, with a few exceptions, i.e. C13, C24, and C26. Also, of note, some χ 2 values for the 

fits from the specifically labeled RNA were in the order of 10-5. 
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Figure 4.20. Site-specific labeling of the IRE RNA improves dynamics 

measurements of the IRE RNA. (A) Curve fits of T1ρ experiments on five residues of 

the IRE RNA. Notice the excellent fitting to a monoexponential decay. (B) Comparison 

of overall dynamics (R2/R1 ratio) of all U and C residues of the IRE RNA when the 

molecule was 13C/15N uniformly or site-specifically labeled. U8, C13 and C26 show 

sizeable differences in error. Most other residues remain unaffected. Errors bars are 

shown as standard deviation from three independent experiments. The error bar in C26 

spans up to an R2/R1 value of 50 as is not shown in its entirety for illustrative purposes. 

 

Altogether, our results have highlighted the usefulness of site-specific labeling of 

RNA. I showed that reduced spectral crowding along with segmental labeling aided in 

performing rapid peak assignment. In most cases, peak assignment represents the limiting 

step in RNA structure elucidation. Additionally, I established that the determination of 

dynamic parameters is more robust when utilizing our site-specific labels in contrast to 

13C/15N uniformly labeled RNA. 

Section 4.4: Discussion 

Solution NMR still encounters problems related to spectral crowding, broad 

linewidths, unfavorable relaxation properties and diminished signal-to-noise ratios. To 

date, several strategies have been developed to address these issues, and these exploit 
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13C/15N/2H site-specific labeling of the RNA of interest. Five major approaches have been 

described to produce nucleotides and their subsequent incorporation into RNAs. (i) 

chemical synthesis of NTPs, (ii)  De novo biosynthesis, (iii) Biomass production of 

NMPs, (iv) site-specific biomass production of NMPs, and (v) chemical enzymatic 

synthesis of nucleotides, followed by in vitro RNA transcription.116 Each of these have 

their own advantages and downsides. In our work, I elaborated on (v), as it presents an 

outstanding combination of yields, labeling versatility and experimental ease.  

Here I have showed the straightforward production of two pyrimidine nucleotides 

that were used in in vitro transcriptions of the IRE RNA (29 nt). First, in collaboration 

with Dr. Cristoph Kreutz, I were able to synthesize uracil with placement of isotopic 

labels anywhere I desire.165 Then, the chemo-enzymatic synthesis of UTP consisted of a 

two-step one-pot reaction of <12 hours, achieving yields of >80 %. The synthesis of CTP 

directly from UTP was a one-step 5-hour reaction, with yields of >90 %. This allowed for 

the production of gram quantities of nucleotides with ease utilizing relatively inexpensive 

substrates. Yields from other methods (see above), ranged from 10 % to 75 %.158,165,167 

Since the necessary substrates and enzymes are now available by our lab,100 I claim that 

the chemo-enzymatic protocols presented herein may be carried out without difficulties 

and with minimal hands-on work by any RNA/protein biochemistry laboratory. 

I utilized 1′,5′-13C2-D-ribose as the sugar moiety in our enzymatic condensation 

reactions. This labeling pattern provides the best chemical shift dispersion of the ribose 

ring with no coupling between the two 13C sites. Additionally, the C1′ position and its 

proton have also been used previously as dynamics probes,164,182 especially in samples 

where the C5 position of pyrimidines is not labeled, i.e. 6-13C-uracil (see above). As an 
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added benefit, the C5′ atom is an excellent probe for tailored methylene-optimized 

TROSY-based experiments, which I briefly used herein (Figure 4.15d). This experiment, 

which exploited the CH2 group of the C5′ moiety, showed that our specific labels 

increased the signal-to-noise ratio by a factor of two. Additionally, as seen in Figure 

4.16a, the assignment of the C5′, H5′ and H5′ is now more accessible. Previously, 2D 

total correlation experiments relying on uniformly labeled ribose rings and long transfer 

sequences were used to, at best, ambiguously assign C5′, H5′, and H5′′.126,180,183 Of note, 

the ribose molecule used herein is available commercially (Omicron biochemicals), as are 

several other labeling combinations of ribose, however at higher expense. Currently, I are 

exploring the possibility of chemically synthesizing ribose, incorporating 13C and/or 2H 

isotopes at specific locations. 

Our site-specifically labeled nucleotides were shown to improve the relaxation 

properties of our medium-sized RNA. Various residues in the IRE RNA showed larger 

errors in their relaxation rates as a uniformly labeled molecule when compared to a site-

specifically labeled sample. Incorporation of our site-specifically labeled nucleotides 

noticeably reduced the errors in longitudinal relaxation parameters, as shown in the 

mono-exponential decay fits of the experimental data for U8, C13, and C26. Strong scalar 

couplings, present in uniformly labeled RNA, introduce undesired contributions to NMR 

relaxation experiments, and thus can lead to erroneous data analysis and 

interpretation.128,154 Given our results with a 29-nucleotide RNA, I think that RNAs larger 

than 30 nucleotides would greatly benefit from the use of 13C/15N site-specifically labeled 

nucleotides, and that the chemo-enzymatic synthesis of such nucleotides is a robust 

method for their production.  
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As an added benefit, our 13C/15N site-specifically labeled nucleotides also 

simplified spectral crowding, resolved 13C-13C scalar couplings and recovered some 

sensitivity challenges. Regardless of the RNA size, spectral crowding, especially near the 

C1′ and C5 region is problematic for peak assignments, dynamics measurements or any 

other type of spectral analysis. As such, I carefully picked the two building blocks (uracil 

and ribose) to synthesize versatile labels that contained isolated two-spin systems. 

Additionally, removing scalar couplings avoided the use of constant-time decoupling 

pulses. These pulses entail delays, which lead to signal loss, which is more dramatic with 

RNAs >30 nucleotides due to their longer correlation time.128,180 Moreover, constant-time 

experiments do achieve effective decoupling, however at the expense of spectral 

resolution.184–187 Other methods, such as broadband decoupling have the intrinsic 

disadvantage of precluding the observation of some decoupled nuclei, i.e. C2′.180,188 The 

synergism of the two aforementioned improvements –lack of constant-time and 

decoupling pulses–, resulted in increased signal-to-noise ratios and resolution of the 

spectral data. Two of the major contributors to our improvements are: (i) the lack of 

direct one-bond scalar couplings, and (ii) a reduced number of dipolar couplings.  

The full potential of the site-specifically labeled RNAs shown here has yet to be 

entirely explored. Here, I presented a battery of two- and three-dimensional experiments 

to assign peak resonances, analyze the structure, and dynamics of our system. However, 

there are several pulse programs that can be tailored to exploit the isolated two-spin 

systems presented herein. For instance, the C5′ moiety has been shown to be an excellent 

probe for CH2-optimized TROSY.178 Moreover, due to the spatial proximity of C5′ 

moieties in continuous nucleotides, there is potential to utilize TROSY-NOESY 
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experiments to obtain a distance-dependent ladder along the RNA backbone. This would 

in turn complement more traditional NOESY walks connecting C1′/C8/C6 moieties along 

the RNA which are heavily dependent on ribose pucker and syn/anti base orientation. In 

our work, I presented some preliminary data of the TROSY enhancement effect on the 

C5′ moiety. Current work in our laboratory is ongoing to further optimize the pulse 

program and incorporate other modules such as NOE and CPMG. 

Further alterations can be made to our labeling schemes in order to increase their 

versatility and usefulness. Since our chemo-enzymatic method of synthesis is 

independent of the substrate labeling pattern, any combination of 13C/15N/2H isotopes 

may be used. For instance, I have successfully transcribed RNAs containing unlabeled 

ribose rings and uniformly labeled uracil rings. The limitation to the labeling patterns of 

our pyrimidine nucleotides is, at this point, the ribose ring. Its chemical synthesis has 

proven cumbersome, yet improvements have been made, and recently more labeling 

combinations have been made commercially available. For instance, if placed 

strategically, 2H may greatly enhance the relaxation properties of certain spin systems. 

Specifically, it has been shown that the CSA of the C5-H5 spin system is highly 

detrimental to dynamics measurements, especially for larger RNAs.128,189,190  

Altogether, Chapters 3 and 4 have presented the groundwork for the future 

widespread use of 13C/15N site-specifically labeled nucleotides in NMR studies of RNA. 

The advantages of using custom-made nucleotides vastly overcome the cost and labor to 

synthesize them. Here, I have shown the efficacy of our nucleotides for structural and 

dynamic analyses of the IRE RNA. Notably, the study of RNA by NMR spectroscopy has 

been consistently picking up pace, especially in the last decade. Interestingly, the use of 
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dynamics to address biological questions has become of major interest to RNA 

biophysicists and biochemists.191,192 Therefore, I strongly believe that technology 

development to facilitate studies will contribute to the continuing development of the 

field.  

In the following chapters I return to addressing our overarching biological 

question of doxorubicin as a disruptor of the IRE RNA/IRP complex disruptor. Chapter 5 

focuses on the biophysical characterization of the RNA/doxorubicin interaction, namely 

utilizing NMR spectroscopy. Chapter 6 focuses on the biophysical characterization of the 

RNA/protein interaction by biochemical methods. Finally, Chapter 7 addresses the 

potential of doxorubicin in disrupting the RNA/protein complex.  
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Chapter 5: Doxorubicin, a Chemotherapeutic Drug, as an 

Intercalator of the IRE RNA 

Section 5.1: Introduction: Repurposing an Old Drug 

The exogenous manipulation of cellular iron homeostasis by increasing the rate of 

ferritin synthesis may lead to better treatments, however few examples of such treatments 

exist.83 Although most small-molecule/RNA interactions are targeted toward the 

inhibition of protein synthesis,55,84,85 one example of downstream up-regulation was 

demonstrated by yohimbine. A stimulant and aphrodisiac, yohimbine, had previously 

been used in large excess to specifically disrupt the IRE/IRP complex and cause a 

subsequent increase in translation of the downstream message.75 Yohimbine achieved a 

modest, yet significant, 8 % disruption of the complex in vitro while at a thousand-fold 

excess, presumably by binding to an internal bulge of the RNA, precluding specific 

RNA-protein contacts. Subsequent assays showed an increase of nearly 40 % in 

translation products, which could not be entirely reconciled with in vitro results. 

Likewise, the use of doxorubicin to promote RNA-protein dissociation could 

potentially allow for downstream up-regulation of ferritin. I hypothesize that (i) 

doxorubicin intercalates specifically at two G•U wobble base pairs in the H-ferritin IRE 

RNA (Figure 2.1c) and that (ii) it causes partial RNA melting. In the following chapter I 

will address the concomitant disruption of the IRE/IRP complex by doxorubicin. In this 

chapter, I use fluorescence spectroscopy, multidimensional nuclear magnetic resonance, 

and electrophoretic mobility shift assays to study how doxorubicin interacts with H-
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ferritin IRE RNA. All three approaches converge on the observation that doxorubicin 

intercalated in the IRE RNA with low micromolar affinity.  

Section 5.2: Methods 

5.2.1. RNA preparation: 

Iron Responsive Element RNA 

(5′GGAGUGCUUCAACAGUGCUUGGACGCUCC) and its double mutant 

G22A,G25A (5′GGAGUGCUUCAACAGUGCUUGAACACUCC) were synthesized in 

vitro from synthetic DNA templates (Integrated DNA Technologies Inc.). The 

transcriptions were carried out in transcription buffer [40 mM Tris-HCl (pH 8.0), 1 mM 

spermidine, 0.01 % Triton X-100, 10 mM DTT, 80 mg/mL PEG (8000 MW)], 

supplemented with 2.0 U/mL thermostable inorganic pyrophosphatase (New England 

Biolabs, Inc.), 0.3 μM each DNA template, 10 mM MgCl2, 10 mM total NTP (2.5 mM 

each NTP), and 0.5 mg/mL T7 RNA polymerase (expressed in E. coli BL21(DE3) and 

purified on pre-packed Ni-NTA beads in column mode as previously described).193 The 

T7 promoter sequence used was 5′CTA ATA CGA CTC ACT ATA G. The template 

strands of wild-type and double-mutant (G22A,G25A) IRE RNA were 

5′GGAGCGTCCAAGCACTGTTGAAGCACTC CTATAGTGAGTCGTATTAG and 

5′GGAGTGTTCAAGCACTGTTGAAGCACTC CTATAGTGAGTCGTATTAG, 

respectively. Two terminal 2’-O-methyl modifications in the template strands were 

introduced to substantially reduce transcript heterogeneity.194,195 The transcription 

conditions were optimized by a sparse-matrix approach. The RNA was purified using 

denaturing 13 % polyacrylamide gels, electroeluted, extensively dialyzed and diluted into 

10 mM Na3PO4 or Tris-HCl pH 6.5, 10 mM NaCl, 0.2 mM EDTA. NMR samples were 
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prepared in phosphate buffers, whereas all other biochemical samples were prepared in 

Tris-HCl buffers. RNA transcripts containing 13C and 15N stable isotopes (Isotec/Sigma-

Aldrich, Omicron) were transcribed under identical conditions, with the exception of 

NTPs, reduced to 5 mM total (1.25 mM each). Prior to any use, NMR or biochemical, the 

RNA was heated to 90 °C for two minutes and snapped cooled on ice for 10 minutes. 

5.2.2. Fluorescence quenching of doxorubicin 

I performed fluorescence quenching assays of doxorubicin to determine KD values 

for the interaction of doxorubicin with IRE RNA. RNA-drug fluorescence quenching 

experiments were conducted on a spectrofluorimeter equipped with a precise temperature 

control unit. Experiments were conducted at 25 °C, with excitation wavelength of 480 

nm, emission scanning wavelengths from 500 to 700 nm, and slit widths of 10 nm for 

both excitation and emission. The titrations of RNA into 7 µM doxorubicin were carried 

out in 10 mM Tris-HCl pH 6.5, 10 mM NaCl, 0.2 mM EDTA. These are the minimal 

buffer requirements for correct folding of the RNA. The data on the y-axis were plotted 

as fractional saturation. The data were fit to a Langmuir binding isotherm to determine 

the binding affinity and stoichiometry. All experiments were done in triplicates. All data 

were analyzed and plotted with GraphPad Prism 5. 

5.2.3. Relative electrophoretic mobility shift assays 

The interaction of the IRE RNA and doxorubicin were monitored with relative 

electrophoretic mobility shift assays. Prior to any assay, the IRE RNA was re-folded as 

described above. RNA-drug assays were incubated in 10 mM Tris-HCl pH 6.5, 10 mM 

NaCl, 0.2 mM EDTA for 30 min at room temperature. The RNA-drug complexes were 

then resolved in 15 % (19:1) acrylamide/bisacrylamide nondenaturing gels. The RNA 
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concentration was kept constant at 0.5 µM and the doxorubicin concentration varied from 

0 to 100 µM. Likewise, RNA-protein assays were incubated in 24 mM HEPES-KOH pH 

7.2, 60 mM KCl, 0.2 mM EDTA, 2 % β-mercaptoethanol, 5 % glycerol for 30 min at 

room temperature. The RNA concentration was kept constant at 0.2 µM and the protein 

concentration varied from 0 to 3 µM. Free and bound RNA was resolved in 6 % (19:1) 

acrylamide/bisacrylamide nondenaturing gels. Gels were run at 4 °C at 100 V. Free and 

bound RNA were visualized by staining with ethidium bromide. RNA-IRP-small 

molecule assays were carried out similarly, varying the drug concentration from 0 to 100 

µM, keeping IRP-1 constant at 1.1 µM and visualizing the RNA. All gel images were 

quantified using GeneTools, and plotted with GraphPad Prism 5. 

5.2.4. Nuclear Magnetic Resonance 

The interaction of doxorubicin and IRE RNA was monitored with NMR spectra 

of the IRE RNA. The NMR samples contained 0.25 mM DSS for 1H chemical shift 

referencing. IRE RNA was kept at a concentration of 0.1 – 0.2 mM, due to the poor 

solubility of doxorubicin in phosphate buffers. One-dimensional proton, two-dimensional 

homonuclear nuclear Overhauser, two-dimensional constant- and non-constant time 13C 

and 15N heteronuclear single quantum correlation (HSQC) spectra were collected at 25 °C 

on a 600 MHz Bruker Avance III spectrometer equipped with a HCN triple resonance 

cryoprobe. Standard protocols were used for the assignment of proton, carbon and 

nitrogen resonances. Three to four concentrations of drug were titrated into the RNA. All 

NMR data were processed using TopSpin 3.2.  
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Section 5.3: Results 

5.3.1. IRE RNA and doxorubicin have low micromolar affinity 

In order to test our hypothesis that doxorubicin specifically interacts with two 

G•U wobble sites in the IRE RNA, I performed a thermodynamic characterization of the 

interaction between the two molecules. The structure and 1H NMR spectrum of 

doxorubicin is shown in Figure 5.1. As previously described, the natural fluorescence of 

doxorubicin was exploited to determine its apparent dissociation constant (KD) with the 

IRE RNA.196 Because doxorubicin undergoes fluorescence quenching upon interacting 

with nucleic acids, I were able to use fluorescence emission spectroscopy to monitor 

binding as a function of increasing RNA concentration with fixed drug concentration at 7 

µM drug. A representative emission spectrum titration experiment is shown in Figure 

5.2a. The fractional saturation was then plotted against the RNA concentration and the 

data were fit to a Langmuir binding isotherm to determine the apparent KD of the 

interaction (Figure 5.2b).  Note that these KD’s do not provide any conclusive 

information on the type of interaction occurring between the RNA and doxorubicin. The 

KD’s of doxorubicin with wild-type and G22A,G25A RNA were 730 ± 20 nM and 1300 

± 50 nM, respectively. The values of the Gibbs free energy of binding of doxorubicin to 

wild-type and mutant IRE RNA corresponding to the observed KD values were calculated 

to be -4.3 ± 0.1 kcal/mol and -3.9 ± 0.2 kcal/mol, respectively. Our results showed that 

doxorubicin had a modest preferential binding to the IRE RNA construct containing G•U 

wobbles, a result that was consistent with previous findings using a similar IRE RNA 

construct.61 Our results did not indicate specificity of doxorubicin toward the IRE RNA, 

but the data suggests that the interaction with the G•U-containing IRE RNA is marginally 
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favored. Similarly, the high nanomolar binding affinity of doxorubicin is expected, as its 

structure does not provide moieties to mediate several hydrogen-bonding interactions, 

salt-bridges or even shape-complementarity to either nucleobases or ribose rings. 

 

Figure 5.1. Doxorubicin, the DNA-intercalator used in our studies. (A) Structure of 

the anthracycline, the shaded numbers represent the non-exchangeable protons 

observable by NMR spectroscopy. (B) One dimensional proton spectrum of doxorubicin 

in water. The numbers correspond to the numbering scheme used in (a).  

 

 

Figure 5.2. Doxorubicin has low micromolar-affinity interactions with the IRE 

RNA. (a) Representative fluorescence quenching profile of 7 µM doxorubicin’s emission 

from 500 to 650 nm as increasing amounts of IRE RNA (0 to 25 µM) are titrated into the 

solution. (b) The emission intensity at 550 nm for every titration point was extracted and 

plotted against its corresponding IRE RNA concentration. The data were fitted to a 

Langmuir binding isotherm. Error bars represent standard deviation from three 

independent experiments. (c) Competition assay of paromomycin against doxorubicin. 

This order-of-addition experiment shows that increasing concentrations of paromomycin 

do not recover fluorescence, thus doxorubicin is not displaced by paromomycin from the 

IRE RNA.  
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Affinity measurements were also conducted with a close analog of doxorubicin, 

daunorubicin. The only difference between these two molecules is the substitution of an 

exocyclic α-hydroxyl by a methyl group. I hypothesized that the absence of the hydroxyl 

group weakens its binding affinity to the IRE RNA. The fluorescent properties of 

daunorubicin are identical to those of doxorubicin, hence I performed fluorescence 

quenching experiments to test our hypothesis. I determined daunorubicin’s binding 

affinity to the wild-type IRE RNA to be 1600 ± 50 nM. These results showed that the 

absence of a single hydroxyl group affected the binding of the drug/RNA complex. 

Further, this data supported our previous results that doxorubicin preferentially binds IRE 

RNA.  

  Additionally, I performed competition assays with known RNA major groove 

binding agents to test both the specificity and affinity of doxorubicin to the IRE RNA. I 

hypothesized that doxorubicin binding to the IRE RNA was stronger and more specific 

than other aminoglycosides such as paromomycin, kanamycin, and streptomycin. The 

small molecules used were paromomycin, streptomycin and kanamycin. A competition 

experiment was carried out probing a doxorubicin-bound IRE RNA with increasing 

concentrations of aminoglycosides. A recovery in fluorescence signal represents effective 

displacement of doxorubicin from the IRE RNA. As seen in Figure 5.2c, addition of 

paromomycin up to 100 molar equivalents of doxorubicin did not recover any 

fluorescence, hence this small molecule was not able to displace doxorubicin. The other 

two molecules, streptomycin and kanamycin showed similar results, but were able to 

recover ~20 % of doxorubicin fluorescence at 100 and 1000 molar equivalents, 

respectively. These results indicate major groove binding aminoglycosides were not 
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specific for the binding site of doxorubicin and did not out-compete doxorubicin binding 

to the IRE RNA.  

Having established interaction between the drug and IRE RNA by fluorescence 

experiments, I next investigated whether drug binding caused any major global 

conformational changes in the RNA. Interestingly, native gel electrophoresis did not 

show any significant migration changes even at doxorubicin concentrations in 1000-fold 

molar excess of the RNA; the Rf differences were <0.01. Notably, at concentrations ≥100 

μM, doxorubicin is thought to dimerize, and such dimerization may impair interactions 

with the IRE RNA.197 Doxorubicin’s solubility is also poor ≥100 µM.    

5.3.2. Doxorubicin interacts at G•U wobble base pairs flanked by G-C base pairs 

To address our hypothesis of G•U wobble disruption and intercalation, I 

performed several nuclear magnetic resonance experiments aimed at dissecting the 

atomic and nucleotide-level interactions of doxorubicin with the IRE RNA. As observed 

in one-dimensional titration experiments, addition of the doxorubicin causes the 

disappearance, perhaps by solvent-exchange, of seven imino proton resonances (Figure 

5.3a). The seven positions involved were G4, U5, G6, U9, G21, G22, and G25. The 

signal disappearance of G1-H1 can be attributed to end-fraying of the RNA, or perhaps 

due to non-specific electrostatic interactions with doxorubicin. The remaining six imino 

protons corresponded to both G•U wobble and their flanking G-C base pairs.  
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Figure 5.3.  Doxorubicin disrupts four base-pair interactions in the IRE RNA. 

Representative NMR titration of doxorubicin into the IRE RNA. The resonances were 

assigned and are shown. Six resonances in the imino region undergo signal attenuation 

with increasing drug concentrations, as evidenced by their decrease in intensity. (a) One-

dimensional titration, shaded ovals show the peak assignments. (b) Two-dimensional 15N-
1H HSQC focused in the imino base-pairing region, shaded residues represent those 

undergoing a decrease in intensity, notice that the G25 resonance does not completely 

disappear.  

 

To further support our hypothesis, I carried out two-dimensional 15N-1H single-

quantum correlation spectroscopy (HSQC) experiments that correlate hydrogen-bonding 

imino protons to their nitrogen atoms (Figure 5.3b). The results corroborated the findings 

of the one-dimensional titrations; namely, only the two G•U wobble base pairs and their 

flanking G-C base pairs were affected by drug binding. The resonances corresponding to 

the G•U wobble and the flanking G-C base pair protons (U5, G6, U9, G21, G22, and 

G25) disappeared from the spectrum, whereas most other resonances remained 

unchanged (Figure 5.3b). The flanking G-C base pairs appeared to be disrupted to a lesser 
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extent. Additionally, at higher doxorubicin concentrations, other resonances appeared 

affected, suggesting further helix unwinding.  

In order to test the notion that doxorubicin intercalated between both G•U and G-

C base pairs, I performed two-dimensional 1H-1H nuclear Overhauser spectroscopy 

(NOESY) experiments (Figure 5.4, 5.5 and 5.6). NOESY experiments display off-

diagonal resonances corresponding to two nuclei that are in close proximity (ca. 5 Å). 

Additionally, the intensity of the off-diagonal resonance peaks have a strong dependence 

on the distance between the two neighboring nuclei. For example, the imino proton of 

G25 is < 5 Å above the imino proton of G4, thus giving rise to a strong off-diagonal 

correlation peak (Figure 5.4a). Therefore, intercalation of the drug within two base pairs 

may increase the base pair rise and thus decrease the intensity of the involved off-

diagonal peaks. As expected, in the absence of drug, I observed off-diagonal peaks of 

different intensities in the imino proton region corresponding to U5-H3•G25-H1, U5-

H3•G6-H1, U9-H3•G22-H1, and U8-H3•G21-H1 (Figure 5.4a); all peak pairs were 

within 4.5 Å in the NMR solution structure.66 Interestingly, upon titration of doxorubicin, 

the NOESY experiments showed a gradual attenuation of off-diagonal peaks 

corresponding to flanking base-pairs, i.e. U5-H3•G6-H1, and U8-H3•G21-H1, upon 

reaching equimolar amounts of drug (Figure 5.4b-c). In agreement with our previous 1H 

and 15N NMR data (Figure 5.3), the off-diagonal peaks corresponding to G•U wobble 

imino protons, i.e. U5-H3•G25-H1 and U9-H3•G22-H1, also had a dose-dependent signal 

decrease (Figures 5.4 and 5.5a).  
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Figure 5.4. Doxorubicin disrupts the IRE RNA at G•U wobble base-pairs and 

suggests helix melting. Representative NMR titrations of doxorubicin into the IRE RNA 

are shown in these two-dimensional NOESY experiments showing the disappearance of 

imino-imino cross-peaks between G•U wobble and flanking G-C base-pairs. (a) Unbound 

RNA. (b) Complex of RNA:Doxorubicin in 1:1 molar ratio (c) Complex of 

RNA:Doxorubicin in 1:3 molar ratio. Solid lines: Upper stem, Dashed lines: Lower stem. 

Because NOESY experiments show spatial connectivity between imino and 

amino protons of base pairs, I exploited this feature to titrate in doxorubicin. I found the 

off-diagonal resonance of G6-H1···C24-H4 was no longer observable (Figure 5.5b). The 

disappearance of the amino-imino resonance provided further evidence for the base-pair 

disruption of the G-C base pair that flanks the U9•G22 wobble. Upon further titrations of 

doxorubicin, the spectral signal-to-noise ratio increased, and other off-diagonal 

resonances disappeared from the spectrum, suggesting helical melting of the RNA. These 

results are consistent with previous data, where doxorubicin increased IRE RNA’s Tm by 

9.9 °C.61 However, not all of the IRE RNA resonances disappeared. Specifically, the off 

diagonal peaks corresponding to G2-H1···C28-H4, and U27-H3···A3-H2 remained 

unaffected throughout the drug titrations (Figure 5.5b). Interestingly, the U20-H3···A11-

H2 connectivity did show attenuation, however to a lesser extent than other residues. 

Furthermore, two-dimensional 15N-1H HSQC experiments that provide information on 

amino protons also demonstrate that major changes are not occurring in the RNA 
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structure, but that some guanine and cytosine amino residues disappear from the spectra. 

This line broadening effect may arise from solvent-exchange or fast exchange with 

doxorubicin. Two-dimensional data regarding carbon-proton correlations further provide 

support for no major conformational changes.  

 

Figure 5.5. Doxorubicin disrupts the G•U wobble base pairs and their flanking G-C 

base pairs. (a) Expanded view of two-dimensional NOESY experiment of the U5•G25 

base pair and their off-diagonal peak. Note the disappearance of both the imino signals 

and their corresponding cross-peak, likely represents the disruption of such base pair. (b) 

Two-dimensional NOESY experiment focused on the imino-aromatic proton region. The 

contacts of the G6 imino proton with the C24 amino (doublet at ~13 ppm) disappear upon 

addition of doxorubicin. Two connectivities not involved in the interaction are also 

highlighted, U27H3···A3H2 and G2H1···C28H4, and their intensities remain unaffected. 

Black: Unbound RNA, cyan: 1:1 RNA:drug complex, orange: 1:3 RNA:drug complex. 

(c) Base pairs that are affected by the interaction between the IRE RNA and doxorubicin. 

According to their signal attenuation, base pairs are represented from magenta (majorly 

attenuated) to gray (nearly unperturbed). 
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Next, I characterized doxorubicin’s interactions with a double-mutant IRE RNA 

construct which replaced the two G•U wobble for two canonical A-U base pairs. As 

mentioned above, the G22A,G25A had a marginally larger dissociation constant with 

doxorubicin, 1300 ± 50 nM, than its wild-type counterpart, 730 ± 20 nM. Therefore, I 

hypothesized that the mutant IRE RNA base pair signal intensities and NOE contacts 

would be affected by doxorubicin to a lesser extent than with the wild type RNA.  

The data obtained with the G22A,G25A double mutant IRE RNA showed similar, 

yet distinguishable, perturbation patterns upon doxorubicin titrations. Both one- and two-

dimensional 1H data showed a gradual disappearance of the two resonances produced by 

the newly introduced U5···A25 and U9···A22 base pairs. NOESY experiments showed 

drug intercalation as previously described for the wild-type RNA, however, the dose-

dependent response was weaker. This was expected, as the apparent KD of the double-

mutant construct with doxorubicin was nearly two-fold larger in magnitude. It is 

important to note that these results do not let us claim an RNA-specific binding of 

doxorubicin to the H-ferritin IRE RNA, but rather its preference toward intercalation at 

G•U wobble base pair sites.  

Additionally, since daunorubicin showed a similar binding affinity to the IRE 

RNA, 1.6 ± 0.1 µM, I hypothesized that it produced similar hydrogen-bonding and 

intercalation effects as doxorubicin. To test our hypothesis, I performed similar NMR 

experiments as described above for the characterization of doxorubicin’s binding. Our 

results showed that daunorubicin also promoted base-pair opening at the same seven 

positions in the IRE RNA. Similarly, NOESY-type experiments showed decreased 

intensity of cross-peaks corresponding to G•U wobble base pairs and their flanking G-C 
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base pairs, albeit to a lesser degree than seen with doxorubicin. These results 

complemented the findings that daunorubicin has a decreased affinity toward the IRE 

RNA, yet its interactions are similar in nature: base pair disruption at G•U wobble base 

pairs. 

Altogether, our results support our hypothesis that doxorubicin altered base 

pairing specifically at G•U and G-C base pairs in the H-ferritin IRE RNA, possibly by 

intercalation and subsequent helix melting at high doxorubicin:RNA molar ratios. Next, I 

aimed to test our hypothesis that doxorubicin, despite its weak binding affinity to the IRE 

RNA, is capable of disrupting the tight interaction of this RNA with is protein partner, 

IRP. 

Section 5.4: Discussion  

Doxorubicin is a strong chemotherapeutic agent widely used for a variety of 

carcinomas and its mechanism of action has been extensively characterized.54–56 Its main 

interactions have been shown to be with genomic DNA, preventing cell division. 

However, non-specific interactions were suggested, and recently, this drug was shown to 

bind to the Iron Responsive Element (IRE) RNA in vitro.61 The RNA/doxorubicin 

interaction, however, was not entirely characterized.  

In this chapter, I characterized the interaction of doxorubicin with the consensus 

mammalian H-ferritin IRE RNA. The apparent dissociation constant of the 

IRE/doxorubicin complex was 730 nM, which was within an order of magnitude of 

previous work.61 I showed, from our NMR results, that doxorubicin interacted at two 

G•U wobble and their flanking G-C base pairs, potentially affecting their hydrogen 
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bonding. Additionally, our data suggested partial RNA melting without a major 

conformational change in the IRE RNA structure. These results were not only consistent 

with previous reports by Canzoneri & Oyelere, but also with DNA-doxorubicin crystal 

structures (Figure 5.7).53,54,198 In these crystal structures, doxorubicin intercalates between 

alternating G-C base pairs. The aromatic moiety of doxorubicin makes extensive pi-pi 

stacking interactions with the nucleotide bases. Additionally, its outer heterocyclic 

moiety makes hydrogen bond contacts with the phosphate backbone of the DNA, 

defining a type of anchoring that increases the affinity of the interaction. Likewise, from 

preliminary NMR results (not shown), I observed RNA/doxorubicin contacts at both 

aromatic and ribose moieties that may resemble the anchoring interactions found in 

DNA/doxorubicin crystal structures. Therefore, I put forward that a potential mode of 

interaction of doxorubicin is by major groove intercalation, accompanied by a few point 

contacts along the RNA’s ribose and/or phosphate backbone. Current work in our 

laboratory is focused on obtaining a solution structure of the RNA/drug complex. It is 

important to note that no quantitative information could be obtained from our NMR 

experiments due to the concentration regimes of RNA and drug that were needed for 

reasonable experiment times, acceptable signal-to-noise ratios, and avoid doxorubicin 

precipitation. As mentioned above, doxorubicin is believed to self-dimerize at ≥ 20 µM, 

which likely partially hinders interaction with the RNA.    
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Figure 5.7. Crystal structure of doxorubicin in complex with DNA. (A) Overall view 

of the intercalation of doxorubicin in a DNA duplex. (B) Top view of the complex, notice 

the directionality of the intercalation and the aromatic stacking. (C) Close-up view of the 

binding site from the major groove, highlighting potential 1H-1H contacts below 5 Å. (D) 

Same as (c), but visualized from the minor groove.54  

 

I recognize that doxorubicin does not provide exacerbated specificity or affinity. 

However, its binding affinity to the IRE RNA and the related free energy of binding are 

within those traditionally determined for other nucleic acid-intercalators and π- π 

interactions overall.53,199–201 The removal of G•U wobbles in the mutant IRE RNA 

resulted in two-fold weaker binding affinities, showing the proclivity of doxorubicin 
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toward the wobble base pairs. One interesting approach to further develop doxorubicin, 

or any close derivative, would be to implement the work by Beal et al.202 In their work, 

they modified an RNA intercalator to display peptide sequences that had affinity toward 

both RNA grooves. If the peptides chosen mimic the hIRP-1 aminoacids involved in 

RNA-binding, this may in turn increase both the affinity and specificity of the RNA/drug 

complex and further display enhanced competition against the IRP itself.    

Of note, our studies were carried on a consensus RNA sequence for the 5′ UTR 

IRE of the human heavy-chain ferritin RNA. Other authors have performed extensive 

characterization of the complete sequence found in the human genome.42,203,204 Our 

construct was chosen as it was representative of the wide variety of IREs, it consists of a 

portion of the human sequence, and it was amenable to NMR spectroscopy studies. From 

published reports, the human H-chain ferritin IRE RNA shares the following features 

with the construct used herein: (i) two distinguishable stems; (ii) 6-nt terminal loop of the 

sequence CAGUG(U/C); (iii) unpaired C-bulge residue five nucleotides below the 

hexaloop; and (iv) significant canonical secondary structure to maintain an A-form helix 

(Figure 2.1c). Further studies will focus in utilizing the human variant of the H-ferritin 

IRE RNA in assessing its binding to doxorubicin and hIRP-1. 

 Altogether, in Chapter 5, I have showed data that suggests doxorubicin is an 

intercalator of the IRE RNA. Additionally, the intercalation of doxorubicin produced a 

concomitant partial helix melting, leaving four base pairs stitching the RNA together. The 

binding affinity of the complex is 730 nM. The binding is weakened when utilizing either 

a mutant RNA or a close analog of doxorubicin. Our findings reconcile prior in vitro 
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data, and primes our studies for the future potential of doxorubicin as an RNA/protein 

disruptor.  

Next, in Chapter 6, I characterize the IRE RNA/hIRP-1 interaction. I utilize 

various techniques, namely electrophoretic mobility shift assays and fluorescence 

spectroscopy to determine their apparent binding affinity. I present, to our knowledge, the 

first direct evidence of our specific RNA construct binding to the hIRP-1. 
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Chapter 6: Binding Studies of the IRE RNA / IRP Complex 

Section 6.1: Introduction 

 Prior to evaluating the potential of doxorubicin as an RNA/protein complex 

disruptor, I aimed to characterize the complex biochemically. The IRE/IRP complex has 

been previously characterized by utilizing a combination of human, rabbit, and frog 

constructs.65,75,86 However, this is the first time that hard evidence is presented on the 

binding of this particular human H-ferritin IRE RNA construct and the human Iron 

Regulatory Protein 1. Pardi et al. suggested having performed competition assays to 

estimate the binding affinity of the RNA/protein complex in the 20 – 40 pM range; 

however no direct evidence was presented to support these findings.87 More recently, 

Goss et al. had characterized the binding of the IRE RNA/IRP complex, and determined 

its apparent binding affinity to be 14.2 ± 0.3 nM.65 This binding affinity is well within the 

range of well-characterized RNA/protein interactions, which normally have a binding 

affinity in the low- to mid-nanomolar range.205,206  

 To our knowledge, this study represents the first direct evidence of our specific 

construct binding to the human Iron Regulatory Protein 1. Here, I sought to characterize 

the interaction, determining its binding affinity. With the KD of the interaction at hand, I 

would be able to later assess the potential of doxorubicin as a bona fide disruptor of the 

complex.  

 The available high-resolution structural data on the IRE/IRP complex revealed a 

series of specific contacts that mediated the interaction, thus accounting for nanomolar 

complex binding.86 Of note, the IRE RNA used by Walden et al. was that of frog, not the 
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human genome. Interestingly, hIRP-1 does not bind to the IRE RNA using traditional 

RNA binding motifs such as RNA-recognition motifs, zinc-fingers, or PUFs domains.207 

Instead, the IRE/IRP interaction may be classified separately due to the two-point 

interaction accompanied by partial protein engulfment. As seen in Figure 6.1a, the hIRP-

1 adopts an extended conformation, an L-like shape to bind one IRE RNA molecule. 

Interestingly, if the complex is viewed from the top, one face of the RNA is entirely 

exposed to solvent (Figure 6.1b). More importantly, the minor groove of the IRE RNA 

makes most of the contacts with the IRP, thus leaving the major groove available for 

interactions with solvent, ions, or even small molecules (Figure 6.1c). The number of 

non-specific contacts, i.e. electrostatic contacts with the RNA’s phosphate backbone, 

cover nearly 3000 Å2, which contributes to the expected low nanomolar affinity.  
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Figure 6.1. Crystal structure of the IRE RNA/hIRP-1 complex. (A) Overall view of 

the interaction. Note that the protein binds the RNA predominantly on one face. (B) Top 

view of the RNA/protein complex to show the solvent accessibility of nearly half of the 

RNA surface. (C) Close up view of the binding surfaces to show that most of the 

RNA/protein interactions are minor groove-mediated, whereas the major groove of the 

IRE RNA remains accessible to solvent.86 
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The specificity of binding is mainly due to buried nucleobases into aminoacid side 

chain cavities at two separate locations. Two terminal loop residues, A14 and G15 (using 

the numbering in Figure 5.1c), extend into a binding cavity between domains 2 and 3 of 

the IRP. Toward the center of the RNA, C7, buries into a pocket of domain 4 where it 

makes contacts with a number of aminoacid side chains. Specifically, C7 makes direct 

contacts with S681, P682, R713, R780, D781, and W782 (Figure 6.2). Another 

contributing factor to the specificity of the IRP for the IRE RNA is the ~30 Å separation 

between the C7 and G15 binding points. This distance is held in place by the upper 

stem’s five base pairs, thus functioning as a molecular ruler. It is important to highlight 

that the G•U wobble base pairs do not participate in binding to the protein, yet, they are in 

close proximity to the residues involved in binding (Figure 6.2). 

 

Figure 6.2. The specific interactions of the IRE RNA and hIRP-1. Crystal structure 

showing a number of specific contacts of the IRP with C7 of the IRE RNA. Also, 

highlighted in purple are the G•U wobbles in the RNA. Note the proximity of the 

wobbles to C7.86 
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 In this chapter, I characterize the binding of our IRE RNA construct to the hIRP-

1. I hypothesized that the apparent binding affinity of the partners is in the low nanomolar 

range given all the precedence on this system. I also hypothesized that our G22A,G25A 

mutant RNA construct presents no impairment when binding to the hIRP-1. Obtaining an 

estimate of the molecular stability of the RNA/protein complex will then allow us to 

assess the potential of doxorubicin to weaken such stability.  

  

Section 6.2: Methods 

6.2.1. RNA Preparation 

Iron Responsive Element RNA 

(5′GGAGUGCUUCAACAGUGCUUGGACGCUCC) and its double mutant 

G22A,G25A (5′GGAGUGCUUCAACAGUGCUUGAACACUCC) were synthesized in 

vitro from synthetic DNA templates (Integrated DNA Technologies Inc.). The 

transcriptions were carried out at 40 mM Tris-HCl (pH 8.0), 1 mM spermidine, 0.01 % 

Triton X-100, 10 mM DTT, 80 mg/mL PEG (8000 MW), 2.0 U/mL thermostable 

inorganic pyrophosphatase (New England Biolabs, Inc.), 0.3 μM each DNA template, 10 

mM MgCl2, 10 mM total NTP (2.5 mM each NTP), and 0.5 mg/mL T7 RNA polymerase 

(expressed in E. coli BL21(DE3) and purified on pre-packed Ni-NTA beads in column 

mode as previously described).193 The T7 promoter sequence was 5′CTA ATA CGA 

CTC ACT ATA G. The template strands of wild-type and double-mutant (G22A,G25A) 

IRE RNA were 5′GGAGCGTCCAAGCACTGTTGAAGCACTC 

CTATAGTGAGTCGTATTAG and 5′GGAGTGTTCAAGCACTGTTGAAGCACTC 

CTATAGTGAGTCGTATTAG, respectively. Two terminal 2’-O-methyl modifications 
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in the template strands were introduced to substantially reduce transcript 

heterogeneity.194,195 The transcription conditions were optimized by a sparse-matrix 

approach. The RNA was purified using denaturing 13 % polyacrylamide gels, 

electroeluted, extensively dialyzed and diluted into 10 mM Tris-HCl pH 6.5, 10 mM 

NaCl, 0.2 mM EDTA. Prior to any use, the RNA was heated to 90 °C for two minutes 

and snapped cooled on ice for 10 minutes. 

6.2.2. Iron regulatory protein expression and purification: 

Histidine-tagged human cytoplasmic aconitase (hIRP1), 98.4 kDa, was 

overexpressed in Escherichia coli by the overproducing strain K12 pQE9-his-hIRF, 

which was kindly provided by Professor Matthias Hentze of the European Molecular 

Biology Laboratory in Heidelberg.  The culture was grown, harvested, and lysed 

according to a locally modified version of a published protocol.208  Purification of hIRP1 

from the lysate was carried out using a HiTrap chelating resin (Pharmacia) charged with 

Ni2+.  The resin was washed with the following buffers: Buffer A) 25 mM Tris-HCl, pH 

7.6, 150 mM potassium acetate, 1.5 mM MgCl2, 5 % glycerol; Buffer B) Buffer A + 10 

mM imidazole + 0.5 M NaCl  to remove non-specifically bound proteins.  After the 

addition of each buffer, the resin was washed until A280 had returned to background 

levels.  The tagged protein was eluted with a gradient of 10 mM to 100 mM imidazole in 

Buffer A.  Fractions were collected and analyzed by SDS-gel electrophoresis. Purity was 

estimated to be ~90 % by SDS-gel electrophoresis.  Protein concentration was 

determined by measuring absorbance at 280 nm using a molar extinction coefficient of 

84,700 M-1cm-1.   Protein was stored at -70 °C until ready for use, at which time it was 

exchanged into the desired buffer for binding assays. 
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6.2.3. Relative electrophoretic mobility shift assays 

The interaction of the IRE RNA and IRP were monitored with relative 

electrophoretic mobility shift assays. Prior to any assay, the IRE RNA was re-folded as 

described above. RNA-protein assays were incubated in 24 mM HEPES-KOH pH 7.2, 60 

mM KCl, 0.2 mM EDTA, 2 % β-mercaptoethanol, 5 % glycerol for 30 min at room 

temperature. The RNA concentration was kept constant at 0.2 µM and the protein 

concentration varied from 0 to 3 µM. Free and bound RNA was resolved in 6 % (19:1) 

acrylamide/bisacrylamide nondenaturing gels. Gels were run at 4 °C at 100 V. Free and 

bound RNA were visualized by staining with ethidium bromide. All gel images were 

quantified using GeneTools, and plotted with GraphPad Prism 5. 

6.2.4. Fluorescence quenching of hIRP-1 

I performed quenching of intrinsic tryptophan fluorescence to determine apparent 

KD values for the IRE RNA/IRP interaction. RNA/protein experiments were conducted 

on a JY Horiba Fluorolog-3 spectrofluorimeter equipped with a precise temperature 

control unit. Experiments were conducted at 25 °C and 12 °C, with an excitation 

wavelength of 280 nm, emission scanning wavelengths from 300 to 400 nm, and slit 

widths of 5 nm and 6 nm for excitation and emission, respectively. The titrations of IRE 

RNA into 150 nM hIRP-1 were carried out in a 24 mM HEPES-KOH pH 7.2, 60 mM 

KCl, 0.2 mM EDTA, 2 % β-mercaptoethanol buffer. The IRE RNA concentrations 

ranged from 1 nM to 900 nM. The fluorescence intensity at 335 nm was extracted and 

plotted against the RNA concentration titrated. Throughout the titrations, the IRP 

concentration was only decreased by < 2 %. The data were fit to a Langmuir binding 
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isotherm to determine the apparent binding affinity. All experiments were done at least in 

triplicates. All data were analyzed and plotted with GraphPad Prism 5. 

 

Section 6.3: Results 

6.3.1. The IRE RNA and IRP have an interaction in the low nanomolar range 

The interaction between the heavy-chain ferritin IRE RNA and the Iron 

Regulatory Protein isoform 1 (IRP) has been extensively characterized,86,97,209 with a very 

high-resolution crystal structure of the frog H-ferritin IRE RNA and rabbit IRP-1.86 

Similarly, using quenching of intrinsic tryptophan fluorescence upon RNA-binding to 

IRP, Theil and Goss showed that the human version of the RNA binds with low 

nanomolar affinity to IRP-1.64,65  

In our work, I utilized a consensus mammalian H-ferritin IRE (Figure 5.1c) that 

differs from the human counterpart in two ways. First, our construct is truncated in the 

lower stem by three base pairs, with the addition of two G-C base pairs to promote 

complete helix formation to facilitate NMR studies.87 Second, whereas the human 

counterpart features one uridine and one cytosine internal bulges. Ours has only one 

bulged cytosine (C7) in the hairpin stem. In the human sequence, these two bulged C and 

U residues are expected to make both specific and non-specific interactions with the IRP, 

but there is no high-resolution data available to confirm this. Other residues involved in 

specific IRP-binding are located in the hexaloop, such as G15, which is also present in 

our construct. 
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To our knowledge, this is the first time that this particular H-ferritin IRE RNA 

construct has been shown to be bound by the human IRP-1. I performed intrinsic 

tryptophan fluorescence quenching assays to determine the apparent dissociation constant 

of the IRE RNA/IRP complex (Figure 6a). According to the published crystal structures, 

one tryptophan residue, W590, undergoes a local structural rearrangement that may partly 

account for the fluorescence quenching phenomenon.86,96 Nonetheless, I cannot discard a 

conglomerate effect of more than one tryptophan residue contributing toward this 

fluorescence quenching effect. Early reports by Goforth et al. had estimated this RNA-

protein binding to occur in the pM range, whereas recent work by Khan et al. had 

reported a KD of nearly 50 nM.42,65 In our assays, due to low signal-to-noise ratios and 

inner-filter effects below 50 nM IRP, I were unable to determine a true dissociation 

constant of the IRE RNA/IRP complex. Therefore, I sought to determine an apparent KD, 

which would only represent the molecular stability of the complex under the specific 

conditions and concentration regimes used in our assays. I determined the binding 

affinity of the complex to be 9.1 ± 0.4 nM (Figure 6b). Interestingly, the binding of the 

double-mutant G22A,G25A IRE RNA was determined to be slightly stronger to the IRP 

than its wild-type counterpart. The apparent binding affinity of G22A,G25A IRE RNA to 

the IRP was 6.2 ± 0.5 nM. 
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Figure 6.3. The IRE RNA-IRP interaction has a low nanomolar binding affinity. (a) 

Representative intrinsic fluorescence quenching profile of 150 nM hIRP-1 emission from 

300 to 375 nm as increasing amounts of IRE RNA (0 to 1300 nM) are titrated into the 

solution. (b) The emission intensity at 335 nm for every titration point was extracted and 

plotted against its corresponding IRE RNA concentration. The data were fit to a 

Langmuir binding isotherm. Error bars represent standard deviation.  

 

6.3.2. The IRE RNA and IRP binding stoichiometry 

Interestingly, when assessing the IRE/IRP interaction by relative electrophoretic 

mobility shift assays, binding was observed only at high protein/RNA ratios. This 

behavior has been observed with other IRE RNA constructs, showing complete 

disappearance of free RNA at a 10:1 protein/RNA molar ratio.65 Similarly, our gel shift 

assays showed the same apparent binding stoichiometry (Figure 7a). The counter-

intuitive stoichiometry can be attributed to the dimerization of IRP at low micromolar 

concentrations, where the dimer loses its RNA-binding capability. At 0.15 μM IRP, 

nearly 30 % of the protein has been found as a dimer in solution.210 In our experiments, 

coomassie brilliant blue staining for IRP showed two bands, corresponding to both 

monomers and dimers of the protein, whereas ethidium bromide staining only showed 

one band overlapping with the monomer IRP. Additionally, the faint/slightly diffuse 
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IRE/IRP band in the gel shift assays rather than a sharp/crisp band has been previously 

observed.65 

 

Figure 6.4. The IRE RNA/IRP binding stoichiometry seems suprisingly high. 

Representative mobility gel shift assay that shows binding of the IRE RNA to the hIRP-1 

at high protein/RNA molar ratios.  

  

 Altogether, our results confirmed our hypothesis that the IRE/IRP complex has 

tight binding in the low nanomolar range. Our fluorescence quenching experiments 

showed a marked dose-dependent response to the IRE RNA concentration. Surprisingly, 

our gel shift assay results did not resemble our fluorescence assays, as the binding 

stoichiometry of the complex appeared to be nearly 10:1 IRP:RNA molar ratios. 

Section 4: Discussion 

 The IRE RNA/hIRP-1 complex has been heavily characterized over the last two 

decades, hence it has become an excellent model system for our studies. Its binding 



112 

 

affinity had been previously estimated in the low nanomolar and even picomolar range. 

Here I showed, for our purposes, that the complex has an apparent binding affinity of 9.1 

± 0.4 nM. Interestingly, the G22A,G25A RNA mutant showed a stronger binding 

affinity, 6.2 ± 0.5 nM. This result is not entirely surprising as the exchange of G•U 

wobble for canonical A-U base pairs should contribute toward the stabilization of the 

helical structure. Consequently, a more stable and canonical upper stem would mean that 

the required 30 Å distance between G15 and C7 is maintained more rigorously, thus 

allowing for a more robust recognition of the IRE RNA by hIRP-1.  

 The interaction between the IRE and IRP is rather strong, however high-

resolution structural data highlights some weaknesses of the complex. First, the mode of 

interaction of the protein with the RNA leaves significant solvent accessible surfaces 

(Figure 6.1b). Further inspection reveals that the major groove of the IRE RNA is almost 

entirely solvent exposed for one full helical turn (Figure 6.1c). Second, the stringent 

dependence on the upper stem’s length in determining protein-binding leaves room for 

manipulating this interaction. Increasing the base pair rise beyond the canonical 2.8 Å 

may effectively elongate the upper stem to partially disturb IRP binding of the IRE RNA.  

 The unexpected gel shift assay results emphasized the strong dimer interaction 

between hIRP-1 at higher micromolar concentrations. The hIRP-1 has a dimerization 

constant of 7.7 ± 0.8 μM.210 Given this strong dimerization, it was difficult to reconcile 

how a crystal structure of the RNA/protein complex was obtained,86 since dimerization 

precludes RNA-binding. As well, the crystal structure of IRP as a cytosolic aconitase 

does not show dimers in the asymmetric unit.96 Our future work will entail validating the 

dimerization of the protein by NMR, utilizing diffusion-ordered two-dimensional 
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spectroscopy.211,212  This experiment would allow us to clearly distinguish the 

concentration regimes under which IRP behaves as a monomer or dimer. Furthermore, 

our future work will focus on characterizing the RNA/protein complex by solution NMR, 

observing either the protein or the IRE RNA. The latter would be achieved by 

implementing 13C/15N site-specifically labeled nucleotides and tailored pulse programs to 

exploit our labels (see Chapter 4). 

 Chapters 5 and 6 have focused on characterizing the binary interactions of the 

IRE RNA with either doxorubicin or the IRP; Chapter 7 will focus on the tripartite 

system. I showed that doxorubicin has a high nanomolar binding affinity for the IRE 

RNA, 730 nM; and that the IRP has a low nanomolar affinity to the RNA, 9.1 nM. From 

first principles, the ~100-fold differential in affinities would represent a difficulty in 

testing our hypothesis that doxorubicin does indeed weaken the RNA/protein complex. 

Nonetheless, given all the structural features of the RNA/protein complex and its inherent 

weaknesses detailed in this chapter, I present, in the next chapter, how doxorubicin has a 

mild disruptive effect on the IRE/IRP complex.  
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Chapter 7: Doxorubicin as a Blocker of the IRE RNA – IRP 

Complex 

Section 7.1: Introduction 

In the previous two chapters, I were able to characterize the interaction between 

the IRE RNA and doxorubicin and also with the IRP. The interaction with hIRP-1 is both 

very strong and specific for the IRE RNA. The interaction with doxorubicin is weaker 

and less specific. In our work, I determined the IRE RNA/IRP complex apparent 

dissociation constant to be 9.1 ± 0.4 nM; and that of RNA/doxorubicin to be 730 ± 20 

nM. I strongly emphasize that the value determined for the IRE/IRP complex is likely not 

the true binding affinity, as it had been expected to be between 20 – 40 pM,87 therefore 

further testing with higher sensitivity assays will need to be performed. Nonetheless, the 

magnitude of the binding affinity determined in our studies is a trustworthy measure of 

the stability of the complex under the conditions tested. Hence, our results will be 

presented as molecular stabilities, KA, instead of dissociation constants.  

As previously mentioned, the binding of the IRP to the IRE RNA presents several 

opportunities for its disruption. The solvent-accessible surface area is ~3700 Å2, mostly 

displaying a full turn of the major groove, and nearly half a turn of the minor groove.86 

Therefore, I hypothesized that the extensive solvent exposure and groove accessibility of 

the IRE RNA while in complex with the IRP may allow for doxorubicin to intercalate 

into the IRE RNA, promoting complex disruption. Additionally, as seen in Figure 6.2, the 

proximity of the G•U wobble base pairs to the C7 bulge is also indicative of the potential 

for doxorubicin to disturb the RNA/protein complex. The intercalation of doxorubicin 
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into the IRE RNA, shown in Chapter 5, produced partial helix melting. This effect may in 

turn render the bulge C7, and maybe other contacts, off the stringent geometric 

requirement of the IRP to bind the IRE RNA. Thus, I further hypothesized that 

doxorubicin, as an RNA intercalator and promoter of partial helix melting, would also 

allow for RNA/protein complex weakening.  

Other authors have shown the potential of small molecules as disruptors of 

RNA/protein interactions. Over a decade ago, Werstuck and Green had shown that some 

small molecules, tobramycin and kanamycin, had gene regulatory roles when bound to 

specific RNA aptamers.213 Harvey et al. then demonstrated via translation assays that 

other small molecules, theophylline and caffeine, when bound to their specific RNA 

aptamers prevented ribosomal assembly at the 5′ UTR of the mRNA of interest.85 

Coincidentally, the RNA aptamers were located in tandem at the 5′ UTR. Altogether, 

their findings represented the first direct evidence of small molecules having an 

inhibitory effect on protein translation. One interesting finding by Harvey et al. was that 

biotin produced an enhanced inhibitory effect on translation while showcasing a 

relatively low binding affinity to its RNA aptamers, 6 μM.85 Doxorubicin’s binding to the 

IRE RNA is 0.7 μM. Also, of note, the exact step of inhibition during initiation complex 

assembly was not determined. 

To date, there has not been an extensive characterization of an RNA/protein 

complex disruption by a small molecule. Yet, this study shows that doxorubicin is a 

satisfactory disruptor of this high-affinity interaction. As previously mentioned, the 

findings of Ma et al. consisted of the first direct evidence of a small molecule promoting 

up-regulation of translation. Despite its mild disruption of the RNA/protein complex in 
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mobility gel shift assays, ~8 %, yohimbine enhanced translation of the message 

downstream of the IRE RNA by up to 40 %. Similarly, our work in this chapter will 

focus on assessing the potential of doxorubicin to weaken the RNA/protein complex. Of 

note, I do not aim for doxorubicin to completely abolish the interaction, but rather only 

“nudge” it. The reason is that, eventually, manipulating iron homeostasis cannot consist 

of circumventing an entire regulatory system, instead, I would aim for careful regulation 

of protein synthesis.  

Section 7.2: Methods 

7.2.1. Relative electrophoretic mobility shift assays 

The interaction of the IRE RNA, IRP and doxorubicin were monitored with 

relative electrophoretic mobility shift assays. Prior to any assay, the IRE RNA was re-

folded as described above. RNA-protein-drug assays were incubated in 24 mM HEPES-

KOH pH 7.2, 60 mM KCl, 0.2 mM EDTA, 2 % β-mercaptoethanol, 5 % glycerol for 30 

min at room temperature without any order of addition. The RNA concentration and 

protein concentrations were kept constant at 0.2 µM and 1.1 µM, respectively. The drug 

concentration was varied from 0 to 100 µM. Free and bound RNA for each condition was 

resolved in 6 % (19:1) acrylamide/bisacrylamide nondenaturing gels. Gels were run at 4 

°C at 100 V. Free and bound RNA were visualized by staining with ethidium bromide. 

All gel images were quantified using GeneTools, and plotted with GraphPad Prism 5. 

7.2.2. Fluorescence quenching of hIRP-1 under doxorubicin 

I performed quenching of intrinsic tryptophan fluorescence to determine apparent 

KD values for the IRE RNA/IRP interaction under a series of concentrations of 
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doxorubicin and other small molecules. RNA/protein experiments were conducted on a 

JY Horiba Fluorolog-3 spectrofluorimeter equipped with a precise temperature control 

unit. Experiments were conducted at 25 °C and 12 °C, with an excitation wavelength of 

280 nm, emission scanning wavelengths from 300 to 400 nm, and slit widths of 5 nm and 

6 nm for excitation and emission, respectively. The titrations of IRE RNA into 150 nM 

hIRP-1 were carried out in a 24 mM HEPES-KOH pH 7.2, 60 mM KCl, 0.2 mM EDTA, 

2 % β-mercaptoethanol buffer. The IRE RNA concentrations ranged from 1 nM to 900 

nM, and the small molecule concentrations were either 10-, 100-, or 1000-fold than that 

of IRP. The fluorescence intensity at 335 nm was extracted and plotted against the RNA 

concentration titrated. Throughout the titrations, the IRP concentration was only 

decreased by < 2 %. The data were fit to a Langmuir binding isotherm to determine the 

apparent binding affinity. All experiments were done at least in triplicates. All data were 

analyzed and plotted with GraphPad Prism 5. 

7.2.3. RNA preparation 

Refer to Chapter 6, Section 6.2.1. 

7.2.4. Iron regulatory protein expression and purification 

Refer to Chapter 6, Section 6.2.2. 

Section 7.3: Results 

7.3.1. Gel mobility assays revealed a weak disruption of the IRE RNA/IRP 

complex 

After showing that our IRE RNA construct bound to the IRP, I sought to assess 

the potential of doxorubicin as a disruptor of this interaction. I hypothesized that the drug 
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(KD = 730 nM) would have a modest disruptive effect on the IRE/IRP complex (KD = 9.1 

nM), but that other small molecules would have no effect whatsoever on their binding. To 

test our hypothesis, I selected a condition in which I could observe both free and bound 

RNA, and then probed it with doxorubicin and other small molecules at varying 

concentrations. 

Doxorubicin showed a mild disruption of ~3 % of the IRE/IRP complex. As seen 

in Figure 7.1, doxorubicin concentrations up to 100 μM produced no evident decrease in 

the IRE/IRP complex band intensity nor did it produce a notorious increase in the free 

IRE RNA band. Upon quantification of each band as a percentage of the total intensity of 

free and bound-RNA, I determined that at 100 μM doxorubicin, the IRE/IRP complex 

had decreased by 2.5 % (Figure 7.1c). This value, although small, is comparable in 

magnitude with a previously used small molecule, yohimbine, which caused a decrease of 

~8 % of the complex.75 Analogously to doxorubicin, daunorubicin also showed a mild 

disruption of 2.5 % of the IRE/IRP complex. Of note, the disruption pattern was more 

erratic and did not follow a strict dose-dependent perturbation of the complex.  
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Figure 7.1. The IRE RNA/IRP binding affinity at micromolar concentrations 

remains unaffected in the presence of doxorubicin and other drugs. (A) 

Representative mobility gel shift assay that shows binding of the IRE RNA to the hIRP-1 

at high protein/RNA ratios. (B) The RNA/protein complex was probed at increasing 

doxorubicin concentrations, showing the faint recovery of free RNA and minimal 

depletion of the complex. (C) Quantification of the gel shift assay in (b). The y-axis is the 

change in band intensity as a ratio of the IRE/IRP or IRE band to the sum of both. (D) 

Other RNA-binding drugs were used in identical experiments and identical 

quantifications were performed for the IRE RNA band. None of the other drugs seemed 

to cause any evident disruption of the complex. The legend of (d) applies to (c). 
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Interestingly, ethidium bromide caused a very mild disruption of the IRE/IRP 

complex. As seen in Figure 7.1d, ethidium bromide caused a mild decrease of the 

complex formation, by only 1 %. These results were surprising, as ethidium bromide is a 

well-characterized non-specific nucleic acid intercalator. At such high concentrations and 

molar ratios to the RNA and protein, ethidium bromide was expected to have a sizeable 

disruptive effect on the complex.  

Other small molecules, namely aminoglycosides, did not show any IRE/IRP 

complex disrupting capability. Earlier, I showed that paromomycin had no observable 

competition for doxorubicin’s binding site (Figure 5.2c). Therefore, I probed the IRE/IRP 

complex stability with paromomycin. Even at a concentration of 100 µM, it had no 

disruptive effect on the complex (Figure 7.1d). Of note, other small molecules, 

streptomycin and kanamycin did not have any disruptive effects.   

Altogether, our results showed that doxorubicin had a very minor disruptive effect 

on the IRE/IRP complex. Additionally, daunorubicin and ethidium bromide showed a 

similar effect to doxorubicin. Lastly, paromomycin showed no disruptive effect on the 

IRE/IRP complex. 

7.3.2. Fluorescence experiments showed a sizeable effect of doxorubicin on the 

IRE/IRP complex  

Next, I aimed to further characterize and obtain more quantitative information on 

the disruptive effect of doxorubicin with the IRE/IRP complex at more physiologically 

relevant concentrations. I hypothesized that at nanomolar concentrations of the molecular 

players, the disruptive effect of doxorubicin and other molecules is likely greater than 3 
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%. To test our hypothesis, I performed intrinsic fluorescence spectroscopy experiments to 

measure the apparent dissociation constant of the IRE/IRP complex in the presence of 

various concentrations of doxorubicin and other small molecules. These experiments 

were identical to those used above to measure the apparent binding constant of the 

IRE/IRP complex.  

To our surprise, doxorubicin increased the IRE/IRP complex apparent 

dissociation constant from 9.1 ± 0.4 nM to 16.7 ± 0.9 nM at a 100:1 doxorubicin:IRP 

complex ratio. The binding of IRE/IRP was partially impeded by doxorubicin, by 

weakening its apparent binding affinity by nearly two-fold (Figure 7.2a). In terms of their 

molecular stabilities (KA), the RNA/protein complex was affected by reducing its 

stability from (110 ± 5) x 106 M-1 to (60 ± 3) x 106 M-1 at 15 µM doxorubicin, accounting 

for a destabilizing effect of ~45 % (Figure 7.2b). At first glance, these results are 

contradictory of the ~3 % disruption of the RNA/protein complex caused by doxorubicin 

as observed by gel-shift assays (Figure 7.1c). However, the design of the fluorescence 

experiments herein present an intrinsic advantage toward doxorubicin-mediated 

disruption: lower protein concentrations; and more free RNA available for drug-binding. 

I also showed that the disruption of the RNA/protein complex was dose-dependent on the 

doxorubicin:IRP molar ratio (Figure 7.2a-b). Also, as explained above, the dimerization 

of doxorubicin near and above 20 µM has been suggested; this process likely interferes 

with RNA-binding in the prior gel-shift assays, thus also reconciling our results. 
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Figure 7.2. The IRE RNA-IRP binding affinity at nanomolar concentrations is 

affected by doxorubicin. (a) Upon addition of doxorubicin, the apparent binding affinity 

of the complex is shifted toward larger values two-fold. (b) The molecular stabilities (KA) 

of the RNA/protein complex is affected by 45 % in the wild-type RNA, whereas the 

G22A,G25A mutant RNA is only affected by 29 %. (c) In identical experiments, the 

addition of daunorubicin and paromomycin had a significant and no observable effect, 

respectively, in the apparent binding affinity of the RNA/protein complex.  

 

Furthermore, the G22A,G25A IRE RNA/IRP complex showed a less marked 

response to doxorubicin than its wild-type counterpart. The apparent binding affinity of 

the RNA/protein complex at 15 µM doxorubicin was determined to be 8.7 ± 0.5 nM, 

compared to 6.2 ± 0.5 nM without drug. As shown in Figure 7.2b, this corresponded to a 

disturbance of molecular stability from (160 ± 10) x 106 M-1 to (114 ± 7) x 106 M-1 at 15 

µM doxorubicin, accounting for a destabilizing effect of ~29 %. These findings were 

expected, resulting from a combination of tighter affinity of the mutant RNA to the 

protein partner and a weaker binding of the drug to the mutant RNA. 

Daunorubicin showed a decreased ability to disrupt the IRE RNA/IRP complex in 

comparison to its stronger-binding analog doxorubicin. Previously, I did not observe any 

major disruptive effect of daunorubicin on the RNA/protein interaction (Figure 7.1d). 
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However under the specific conditions used in this fluorescence assay I were able to 

observe a sizeable disruption of the complex at 15 µM drug. The molecular stability of 

the IRE RNA/IRP complex was decreased from (110 ± 5) x 106 M-1 to (90 ± 5) x 106 M-1 

(Figure 7.2c). The extent of disruption could be reconciled with the experimental 

evidence that daunorubicin had a decreased affinity to the IRE RNA, 1300 nM.  

Other drugs did not show any disruption of the RNA/protein complex. As 

expected, the RNA-binding drug paromomycin had no effects on the RNA/protein 

formation at similar micromolar concentrations (Figure 7.2c). The latter results were in 

line with our previous competition assays where paromomycin was unable to displace 

doxorubicin from the IRE RNA (Figure 5.2c).  

Altogether, in the last three chapters, our results have supported our hypotheses: 

(i) Doxorubicin interacts with the IRE RNA with a preference for G•U wobbles flanked 

by G-C base pairs; and (ii) this chemotherapeutic agent is able to disrupt the IRE 

RNA/IRP complex. A close derivative of doxorubicin, daunorubicin is also able to 

disrupt the RNA/protein complex, but to a lesser extent. Other small molecules were 

nearly harmless to the complex. Finally, when the G•U wobble base pairs are swapped 

for A-U base pairs, the disruptive effect of doxorubicin on the molecular stability of the 

IRE RNA/IRP complex was lessened by nearly 20 %. 

Section 7.4: Discussion 

Doxorubicin is a strong chemotherapeutic agent widely used for a variety of 

carcinomas and its mechanism of action has been extensively characterized.54–56 Its main 

interactions have been shown to be with genomic DNA, preventing cell division. 
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However, non-specific interactions were suggested, and recently, this drug was shown to 

bind to the Iron Responsive Element (IRE) RNA in vitro.61 The RNA/doxorubicin 

interaction, however, was not entirely characterized. 

In this thesis, I biophysically and biochemically characterized the interaction of 

doxorubicin with the consensus human H-ferritin IRE RNA. The apparent dissociation 

constant of the IRE/doxorubicin complex was 730 nM, which was within an order of 

magnitude of previous work, 904 nM.61 I showed, from our NMR results, that 

doxorubicin intercalated between two G•U wobble and their flanking G-C base pairs. 

Additionally, I observed sizable RNA melting without a major conformational change in 

the IRE RNA structure. In previous chapters, I had laid the foundation for understanding 

how doxorubicin may disrupt the IRE/IRP complex. I proposed a model by which 

doxorubicin intercalates between G•U and G-C base pairs, potentially promoting partial 

helical melting.  

To our knowledge, there are few examples of small molecules that disrupt 

RNA/protein complexes. Malina et al. use doxorubicin to study the effect of nucleic acid 

binders in wheat germ extract protein translation.55 It was found that doxorubicin reduced 

translation of a bioluminescent reporter construct; however no specific target was 

attributed to its mechanism of action. Interestingly, all nucleic acid binders used in such 

study lowered translation levels. Currently, there is only one example of small molecule-

induced protein translation enhancement which involves a similar IRE/IRP system used 

in our study.75 As stated previously, yohimbine was shown to deplete the IRE/IRP 

complex by 8 %. However its ultimate effect in wheat germ translation was an 

enhancement of nearly 40 % of reporter constructs. Such enhancement in translation can 
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be expected in part due to the non-linear nature of an in vivo gene regulatory system; 

however, the magnitude was harder to reconcile.  

In this chapter, I evaluated the potential of doxorubicin as an IRE/IRP complex 

disruptor. Previously I had analyzed the crystallographic evidence of the RNA/protein 

complex, and I highlighted its weaknesses. Therefore, if doxorubicin is capable of 

reaching the major groove of the G•U wobbles, even during a protein-bound state, it may 

be able to disrupt these base pairs and exert its partial helix melting action. This would in 

turn promote dissociation of the RNA/protein complex. Our results showed that the IRE 

RNA/IRP complex’s apparent binding affinity was weakened from 9.1 nM to 16.7 nM at 

15 µM doxorubicin. This is equivalent to a molecular stability (KA) destabilization of 45 

%. Due to the relatively low disruptive effect in terms of binding affinities, I carried out 

identical experiments at 12 °C to further validate our results (data not shown). As 

expected, the apparent binding constant was 2.1 nM, nearly four-fold stronger than at 25 

°C. The destabilizing effects of doxorubicin were comparable to those at 25 °C; the 

apparent KD at 15 μM doxorubicin was 4.6 nM (~52 % disruption in terms of molecular 

stability). In addition, the effects of doxorubicin’s close analog, daunorubicin, on the 

RNA/protein complex were similar, yet less pronounced. Paromomycin, a known RNA 

major groove binder, had no disruptive effect on the RNA/protein complex. 

Unfortunately, the effects of ethidium bromide were not observable under our specific 

tryptophan fluorescence assay conditions due to its strong absorbance near the excitation 

wavelength used. However, our relative electrophoretic mobility shift assays showed that 

this nucleic acid stain did not have a sizeable disruptive effect on the complex.  
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The potential of doxorubicin to disrupt the IRE/IRP complex in vitro may 

reconcile previous in vivo data.59,60,214 In Kwok and Richardson’s work, they observed 

that subjecting myocardial and neoplastic cells to doxorubicin decreased IRP’s RNA-

binding activity.59,60 They observed a biphasic behavior, first of decreased IRP-bound 

RNA, followed by a rapid recovery of actively-binding IRP when cells were exposed to 

20 μM doxorubicin. Additionally, they did not observe major depletion of the total IRP 

concentration. Furthermore, they showed that incubation of these cell lines with 

doxorubicin increased Fe(II) storage in ferritin three-fold. Interestingly, they showed a 

two-fold increase in expression of H-ferritin. In this work, I showed how doxorubicin 

decreased the apparent binding affinity of IRP to IRE nearly two-fold. Henceforth, our 

findings allow us to propose a simple model by which doxorubicin displaces hIRP-1 from 

binding to the H-ferritin IRE RNA. I propose that doxorubicin intercalates between two 

G•U/G-C base pairs in the IRE RNA, promoting partial helix melting, thus altering the 

structure of the RNA and precluding it from binding to hIRP-1. Disruption of the 

RNA/protein complex would then allow for formation of the 40S pre-initiation complex. 

This model may explain both the increased ferritin expression and storage of Fe(II) 

observed in cell lines exposed to doxorubicin.  

Altogether, I have presented how doxorubicin is able to partially disrupt a strong 

IRE RNA/hIRP-1 interaction. Despite the large differential in affinities of the RNA to 

each molecular player, doxorubicin is capable of lowering the affinity of hIRP-1 to the 

IRE RNA. Ongoing work in our laboratory is focused in obtaining a solution structure of 

the RNA-doxorubicin complex. I are also developing NMR technologies to characterize 

the interaction between the IRE RNA and the 98 kDa hIRP-1 also under the presence of 
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doxorubicin to fully discard the possibility of a tripartite complex. Alongside, I are 

conducting studies in the presence of a series of divalent metal ions, which have been 

shown to also disrupt the IRE/IRP complex.64 Preliminary results utilizing the Fe(II) 

surrogate, Mn(II), have shown decreased affinity of the RNA to doxorubicin, but an 

increase of this drug’s disruptive effect on the complex. 

This study expands on the number of small molecules that disturb RNA/protein 

complexes in charge of down-regulating downstream mRNA translation. Further 

development of this proof of principle may result in promising therapies of certain 

diseases that could benefit from overexpression of proteins. Applying this approach to the 

IRE RNA-IRP regulatory system may also lead to novel adjuvant therapies of non-iron 

deficiency anemia that replace noxious iron chelators.11,81,82 For instance, overexpression 

of iron-storage proteins such as ferritin would ameliorate secondary iron overload 

produced by recurring blood transfusions in sickle cell, β-thalassemia anemic, or 

hereditary hemochromatosis patients.78,81 
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Chapter 8: Conclusions and Future Directions 

Section 8.1: Contributions toward a “cure” for anemia 

 The treatment of non-iron deficiency anemia and iron-overload diseases has, for 

long, focused in palliation rather than a definite cure.6,215 Many common diseases such as 

sickle cell anemia and β-thalassemia are treated mainly by recurring blood transfusions 

and supplemented with subcutaneous or oral iron chelators.216,217 The latter component is 

used to ameliorate transfusional iron overload. Unfortunately, the risks of using iron 

chelators such as deferiprone or deferoxamine may outweigh their benefits.21 For that 

reason, in our work, I proposed to sidestep iron chelation therapies for newer 

biomolecular therapeutics, approaching safer intracellular iron storage with a novel 

approach.  

In our work, I aimed at disrupting an RNA/protein complex responsible for down-

regulating the expression of iron-storage proteins. I showed that a small 

chemotherapeutic drug, doxorubicin, is able to mildly disrupt the IRE RNA/IRP complex 

(Figure 7.2). Our results indicate that further development of this drug, or screening for 

similar RNA intercalators, may lead to potential leads for increasing ferritin synthesis in 

vivo.   

 Our studies represent the initial steps toward renewal of current treatments of 

anemia, rather than proposing an actual cure. As mentioned previously, the worldwide 

prevalence of anemia is striking, affecting nearly one out of four individuals globally.1 

One of the main reasons that treatments are palliative rather than curative is the vast 

etiology generating this disease, especially non-iron deficiency anemia. Many authors 
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have addressed the current status of the development of new treatments.218,219 

Unfortunately, to date, not much progress has been made, in part due to the lack of a 

consistent molecular mechanism within all variants of the disease.216,217,219–222 Ongoing 

research is focused in developing personalized gene therapies, however, this field has 

seen more rapid progress in cancerous diseases rather than anemia.223–225  

Section 8.2: The advent of RNA-targeted therapeutics & other approaches  

In Chapter 2, I stated that molecular medicine is mainly focused in targeting 

proteins with small molecules for the sake of a medical benefit. Our work is another 

stepping stone toward RNA-targeted therapeutics. I do not claim that, by any means, that 

doxorubicin is to be used as a molecular therapeutic. Rather I claim that there is potential 

for regulatory RNA elements, such as the IRE RNA, to be targeted for therapeutics of not 

only anemia, but any disease that could benefit from a renewed form of treatment. The 

work presented herein represents a proof of concept that careful manipulation of 

RNA/protein interactions can be achieved and perhaps exploited in future therapeutics.  

RNA has long been a target of bacterial antibiotics, and I believe it is time to 

exploit the full scope of RNA functionality.50 The potential of RNA as a target is 

highlighted by this biomacromolecule’s ubiquity in various biological processes. In our 

work, I only present a system involved in iron homeostasis; however many RNA-based 

regulatory systems exist in eukaryotes and higher mammals, especially since the advent 

of the human genome project147 when it was unveiled that the vast majority of the human 

genome codes for non-protein coding RNAs.  
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The use of doxorubicin as an RNA/protein complex disruptor is not the only 

approach that can be used to achieve our long term impact. I acknowledge that in contrast 

to the approach presented in our work, several pathways in the synthesis of iron storage 

proteins may be targeted. For instance, introducing a small-interfering RNA (siRNA) 

complementary to the mRNA of hIRP-1 would also achieve up-regulation of iron storage 

proteins.226 Another potential approach to preventing the IRE/IRP interaction could 

involve the use of locked nucleic acids (LNAs).227 These have been shown to have 

enhanced binding to RNA, significantly contributing to duplex stability. Hence LNAs 

could behave as competitors against IRP binding and achieve the similar desired 

regulatory effects.  

Section 8.3: Future directions 

 The thesis work presented herein consists only of the initial steps of our 

laboratory in the field of RNA-drug interactions and development of NMR technologies. 

In this section, I present a series of ideas that may represent future work to be performed 

not only in the matters concerning this thesis, but also in general for our laboratory. As 

well, within each sub-section, I present a series of desired improvements for the 

experimental work performed thus far.  

8.3.1. Development of novel technologies for the NMR of RNA 

 In our work (Chapters 3 and 4), I showed how the utilization of 13C/15N site-

specifically labeled nucleotides improved the analysis of RNA structural and dynamic 

parameters by NMR. Our yields of nucleotide synthesis were consistently > 90 %, the 

reaction times < 24 h, and the experimenter hands-on labor minimized < 6 h. The spectral 

resolution and sensitivity obtained with our custom-made nucleotides as consistently 
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improved, I eliminated the need for lengthy decoupling pulses; field of NMR should 

benefit considerably using these labels with larger RNAs. Nonetheless, there is always 

room for improvement in specific areas of this project.  

 Most certainly, to validate our results and our predictions, I have to utilize our 

custom-made labels to synthesize RNAs  >50 nucleotides 

 Ideally, in the synthesis of CTP from UTP, I will incorporate an ATP-

regeneration system. The excessive use of an expensive substrate, dATP, may 

become limiting over time. 

 Also, the concentration of CTP used, 2 mM, may be further improved, to 

reduce reaction volumes. 

 Our collaborator, Dr. Cristoph Kreutz at the University of Innsbruck, is 

currently working on synthesizing deuterated uracil. A 2H isotope in the C5-

H5 spin system would prove exceedingly useful in NMR analysis due to its 

overlap with H1′ resonances. As well, it would improve the relaxation 

properties of the C6-H6 system, due to the lack of 3JHH coupling. 

 In the topic of deuteration, if deuterated ribose molecules become more 

readily available or if I can carry out its chemical synthesis, then I would 

obtain a very useful and versatile labeled nucleotide.  

 As well, Dr. Kreutz is currently synthesizing 8-13C-guanine. Current work in 

our lab is devote to optimizing the synthesis of GTP in a similar manner to the 

synthesis of UTP showcased in this thesis. 

 From a technical perspective, boronate affinity chromatography is effective 

for the purification of nucleotides, and I were able to automate it in the FPLC. 
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However, I suggest changing the wash buffer (TEABC) to another buffer 

system that is less hazardous to the experimenter. 

8.3.2. Use of small molecules to disrupt RNA/protein complexes  

 In our work (Chapters 5 through 7), I showed that doxorubicin is modest disruptor 

of the IRE/IRP complex. I utilized biochemical and biophysical tools to support our 

hypotheses of drug-binding, intercalation, helix melting, and complex weakening. Our 

results showed a complex weakening by ~50 %. Nevertheless, below I present a series of 

experiments and complementary data that I suggest be obtained in the future. Some of 

these items are currently under work in our laboratory. 

 Continue the resonance assignment for the IRE RNA. 

 Map chemical shift perturbations across the IRE RNA when doxorubicin is 

titrated into the sample. 

 Carry out ligand-observed experiments, as mentioned in Chapter 5. 

 Perform two- and three-dimensional filtered NMR titration experiments to 

observe direct effects of doxorubicin on the IRE RNA. 

 Incorporate our 13C/15N site-specifically labeled nucleotides in assessing the 

change in residue dynamics when the IRE RNA is bound by doxorubicin. 

 Despite the poor solubility of doxorubicin in NMR buffer, attempt to obtain a 

solution structure of the RNA/doxorubicin complex. 

 As well, derivatize doxorubicin to increase its solubility in phosphate-based 

buffers. 

 Our collaborator, Dr. Yomi Oyelere at the Georgia Institute of Technology, is 

currently working on synthesizing doxorubicin derivatives that may also bind to 
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the IRE RNA. This would in turn allow us to determine the minimal binding 

component of doxorubicin, to then further functionalize the molecule to attain 

both higher affinity and specificity to the RNA.  

 Utilize various other IRE RNA constructs, for instance, the whole human 

sequence which features a more extended lower stem compared to the construct 

used herein. If the full human H-ferritin IRE RNA has a stronger affinity to 

doxorubicin, then this drug’s disruptive ability of the IRE/IRP complex may be 

enhanced. Additionally, I may utilize 3′ UTR RNAs, such as the transferrin 

receptor IRE RNA. These are responsible for the post-transcriptional regulation of 

the transferrin receptor, which is involved in cellular iron uptake from diferric-

transferrin.38,68,228 
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Appendices 

The Appendix section will be divided into detailed experimental protocols and 

supplementary data that was referred to in the text. 

Detailed experimental methods: 

Protocol: Protein Overexpression of BL2AI strains with pET15b vector:  

Timing: One Overnight + 12 hours 

 Plate cells (no more than 10µl) in LB plate with 100µg/ml Ampicillin (from 

now on, Amp). Grow overnight (O/N).  

 Use single colony to inoculate a 25-mL culture in LB media with Amp. 

Grow @ 37°C, 270rpm until OD ≈ 0.6.  (About 4.5h) 

 Pellet cells @ 3500rpm, 15’, 4°C. Discard supernatant. Resuspend pellet in 

25mL of LB with Amp 

 Inoculate 5mL into 100mL LB with Amp.  

 Grow @ 37°C, 270rpm until OD ≈ 0.6 (About 1.5h) 

 Pellet cells @ 3500rpm, 15’, 4°C. Discard supernatant. Resuspend pellet in 

100mL of LB with Amp. (Usually done in two 50-mL fractions) 

 Defrost stocks of arabinose 

 Inoculate 20mL into 1L LB with Amp.  

 Take a 5mL sample (in a falcon tube) to serve as the UNinduced control. Let 

grow @ 37°C, 270rpm  until all inductions are done. Pellet and resuspend in 

SDS-PAGE buffer or loading solution, then freeze at -20°C. 

 Induce the culture with 0.05% L(+)-arabinose for 2h @ 270rpm, 37°C. 

 Defrost stocks of IPTG 

 Induce with 1mM IPTG for 3h @ 270rpm, 37°C 
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 Take a 1mL sample (in eppendorf) to serve as the Induced control. Pellet 

and resuspend in SDS-PAGE buffer or loading solution, then freeze at -

20°C. 

 Pellet the 1L culture @ 5500rpm for 15’, 4°C. Discard supernatant. 

 Weigh wet cells. 

 Alternative 1: Store pellet at -20°C. 

 Alternative 2: Go on to Cell Lysis Protocol 

 Note: Usually, the 1L culture can be done in quadruplicate. Previous yield 

has been of ≈ 16 – 21g / 4L 

Protocol: Cell Lysis using Sonication  

Timing: 3h - 3h  30’ 

 Thaw cells in ice for 15’ 

 Resuspend cell pellet in Lysis buffer. Use ~2mL/g of pellet. Mix gently. 

 

 

 

  Add lysozyme, 

1mg/mL. Incubate on ice for 30’. 

 Sonicate at 40% duty for 1’, 45s cooling. Perform three times. 

 Add RNase A (10µl/mL) and DNase I (5µl/mL). Incubate on ice for 20’. 

 Prep Ni-NTA column. 

 Centrifuge lysate @ 46 000g (20 000rpm) for 25’ @ 4°C 

 Continue prep Ni-NTA column. 

 Remove gDNA manually by pipetting carefully 

 Remove supernatant 

 Take a 20µL sample for enzyme activity assay. Preferably, measure 

activity ASAP, or else freeze at -20°C 

50mM NaPO4 6.90g NaH2PO4∙H2O 

300mM NaCl 17.54g NaCl 

10mM imidazole 0.68g imidazole 

QIAexpressionist p114 pH 8.0 

file:///C:/Users/Luigi/Dropbox/Daily_Experiments_Alvarado/Thesis/Protocol_Cell%20Lysis%20with%20Sonication.docx
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 Take another 20µL sample for SDS-PAGE. Add 20µl of 2X SDS loading 

solution, freeze at -20°C. 

 Take 20µL sample for Bradford Assay. Add 80µL of lysis buffer. Add 

3mL of Bradford reagent. Let sit for 10’, measure OD at 595nm. 

 Optional (Adds 1h 30’): Resuspend cell pellet with a minimum amount of 

lysis buffer, and sonicate again at 40% duty for 1’, 45s cooling. Perform 

three times. Centrifuge lysate @ 46 000g (20 000rpm) for 25’ @ 4°C. 

Remove gDNA. Consolidate supernatants, and dispose of pellet.  

 

Ni-NTA Column Purification of Pentose Phosphate Pathway Proteins 

Timing: 12 – 14 hours 

 Prep of column:  

o Retrieved beads from fridge. Poured them in column, collected the flow-

through (FT). Beads Volume = 6 ml 

o Washed column with 20ml of 0.5M EDTA pH 8.1).  

o Washed with 50ml of water. 

o Added 20ml of 1X NiCl2 solution (stock is 400mM, 8X). Collected FT 

o Added 25ml of lysis buffer (50mM Na3PO4 pH 8.0, 300mM NaCl, 10mM 

imidazole). Collected FT 

o Capped, and transferred to cold room. Let sit for 20’. Column is ready  

 Purification: 

o Place _____ WCL supernatant on column. Collected __ml of Flow 

Through. Retrieved a 20µl aliquot for SDS PAGE  

o  Add 75ml of wash buffer (50mM Na3PO4 pH 8.0; 300mM NaCl; 50mM 

imidazole). Collected __ml of W1. Retrieved a 20µl aliquot for SDS 

PAGE 

o Wash #2, add 75mL of wash buffer, collected __ml of W2, Idem. 

Retrieved aliquot. 
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o Add 10ml of elution buffer (Wash buffer, with 400mM imidazole instead). 

Collected 10ml of E1. Retrieved a 20µl aliquot for SDS PAGE  

o Elution #2, add 10mL of elution buffer collected 10ml of E2, Idem. 

Retrieved aliquot 

o Reduce sample volumes to 2mL with 3K MWCO tubes. Spun at 4000rpm 

for 30’ @ 4C. Then, add 10ml of storage buffer and re-spun at 4000rpm 

for 30’ @ 4C. 

o Repeat this last step at least 3 – 4 times. 

 Storage buffer for RK, UPRT, XGPRT, APRT and CTPS: 50mM 

Na3PO4 pH 7.5, 150mM NaCl 

 Storage buffer for PRPPS: 50mM Na3PO4 pH 7.5, 300mM NaCl 

o Took a 10μl aliquot for Bradford assay. 

 OD = _.__  _.___mg/ml  x10X-dilution  __.__mg/ml in 

_ml 

 Total isolated = __.__mg 

o Add 1 volume of glycerol, note the final effective concentration 

o Stored ______ as one __.__mg/ml in 50% glycerol stock, 2mM β-

mercaptoethanol 

 Recycling: 

o Retrieved beads with 30% ethanol into a falcon tube 

o Place in fridge at 4°C 

Protocol for T7 RNA Polymerase Purification: 

Timing: 12 – 14 hours 

Cell Lysis 

 Thaw ____g of cells in ice for 15’ 

 Resuspended cell pellet in __mL of lysis buffer (20mM NaH2PO4 pH 8; 

500mM NaCl; 5mM imidazole; 0.05% Tween 20; 1mM PMSF added). 

Mixed gently. Generally, 10mL will dissolve 1g of pellet. 

  Added __mg lysozyme (to 1mg/mL). Incubate on ice for 30’ 
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 Sonicated at 40% duty for 1min, 30s cooling. Performed twice. 

 Centrifuged lysate @ 25 000rpm for 30’ @ 4°C 

 Removed gDNA manually by pipetting carefully 

 Transferred __ml of supernatant to falcon tube. 

 Took a 20µL sample for SDS-PAGE. Added 20µl of 2X SDS loading 

solution, heated at 95C for 10’. 

 Took a 10µL sample for Bradford Assay. Added 90µL of lysis buffer. 

Add 3mL of Bradford reagent. Let sit for 10’, measured OD at 595nm.  

 OD = _.__  _.___mg/ml  x10X-dilution  __.__mg/ml in 

__ml 

Ni-NTA Column Purification  

 Prep of column:  

o Retrieved beads from fridge. Poured them in column, collected the flow-

through (FT). Beads Volume = __ml (Capacity: 50mg of protein / 1 mL of 

beads) 

o Washed column with 25ml of 0.5M EDTA. Collected FT 

o Washed with 50ml of water. 

o Added 20ml of 1X NiCl2 solution (stock is 400mM, 8X). Collected FT 

o Added 25ml of lysis buffer. Collected FT 

o Capped, and transferred to cold room. Let sit for 20’. Column is ready  

 

 

 Purification: 

o Placed _____ WCL supernatant on column. Collected __ml of FT. 

Retrieved a 20µl aliquot for SDS PAGE  

o  Added __ml of wash buffer (20mM NaH2PO4 pH 8; 500mM NaCl; 8mM 

imidazole). Collected __ml of W1. Retrieved a 20µl aliquot for SDS 

PAGE 
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o Wash #2, collected __ml of W2, Idem. Retrieved aliquot  

o Added 10ml of elution buffer (Wash buffer pH 8, with 100mM imidazole 

instead). Collected 10ml of E1. Retrieved a 20µl aliquot for SDS PAGE  

o Elution #2, collected 10ml of E2, Idem. Retrieved aliquot 

o Reduce sample volumes to 1mL with Amicon 3K ultra MWCO tubes. 

Spun at 4000rpm for 1h @ 4C. Then, added 10ml of storage buffer 

(20mM Na3PO4, 0.1mM EDTA, 1mM DTT, 150mM NaCl – pH 7.6) 

o , and re-spun at 4000rpm for 1h @ 4C.  

o Took a 10μl aliquot for Bradford assay. 

 OD = _.__  _.___mg/ml  x10X-dilution  __.__mg/ml in 

_ml 

 Total isolated = __.__mg 

o Stored T7 RNAP as one __.__mg/ml in 50% glycerol stock 

 Recycling: 

o Retrieved beads with 30% ethanol into a falcon tube 

o Place in fridge at 4°C 
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Activity Assays for Various Enzymes Used (and not used) in this Work 

Protocol: Enzyme activity assay by spectrophotometry 

 PRPP Synthetase 

o Reaction mixture: 1mL 

o Incubate mixture for 5’.  

o Mix 10μl PRPPS + 90μl of 55.6mM Tris-HCl pH 7.5. 

o Note: 100-fold dilution from stock. 

o Add 40 µl of PRPPS solution to assay. 

o Note: 250-fold dilution from solution. 

o Monitor ΔA340 over time every 10s. 

o Calculate activity as: 

 

𝑈 =  

1
2 ∗ 𝑉 ∗  ΔA340 

6220 ∗ 𝑡 ∗ 𝑙
 

  Where, V is volume in L, t is time consistent with ΔA340, and l is 

path length in cm. 

 

 

 

 

 

 

 

 

H2O 647μl 

Tris-HCl pH 7.5 50mM (50µl of 1M) 

R5P 5mM (100 µl of 50mM) 

ATP 3mM (30 µl of 100mM) 

PEP 1mM (20 µl of 50mM) 

MgCl2 10mM (10 µl of 1M) 

NADH 0.4mM (100 µl of 4mM) 

LDH 2U (1μl) 

Pyr Kin 2U (1μl) 

MyoKin 2U (1μl) 
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 Ribokinase 

o Reaction mixture: 1mL 

o Incubate mixture for 5’.  

o Mix 10μl Rbsk + 90μl of 55.6mM Tris-HCl pH 7.8. 

o Note: 100-fold dilution from stock. 

o Add 40 µl of RbsK solution to assay. 

o Note: 250-fold dilution from solution. 

o Monitor ΔA340 over time every 5s. 

o Calculate activity as: 

 

𝑈 =  
𝑉 ∗  ΔA340 

6220 ∗ 𝑡 ∗ 𝑙
 

  Where, V is volume in L, t is time consistent with ΔA340, and l is 

path length in cm. 

 

 

 

 

 

 

 

 

 

 

H2O 548μl 

Tris-HCl pH 7.8 50mM (50µl of 1M) 

Ribose 5mM (100 µl of 50mM) 

ATP 3mM (30 µl of 100mM) 

PEP 1mM (20 µl of 50mM) 

MgCl2 10mM (10 µl of 1M) 

KCl 100mM (100μl of 1M) 

NADH 0.4mM (100 µl of 4mM) 

LDH 2U (1μl) 

Pyr Kin 2U (1μl) 
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 APRT 

o Reaction mixture: 1mL 

o Incubate mixture for 5’.  

o Add all components except adenine 

o Mix 10μl APRT + 90μl of 55.6mM Tris-HCl pH 7.8. 

o Add adenine to start the reaction 

o Add 40 µl of APRT solution to assay. 

o Monitor ΔA340 over time every 10s. 

o Calculate activity as: 

 

𝑈 =  

1
2

∗ 𝑉 ∗  ΔA340 

6220 ∗ 𝑡 ∗ 𝑙
 

 

Where, V is volume in L, t is time consistent with ΔA340, and l is path length 

in cm. 

 

 

 

 

 

 

 

 

 

H2O 657μl 

Tris-HCl pH 7.8 50mM (50µl of 1M) 

PRPP 1.5mM ( 75µl of 20mM) 

ATP 3mM (30 µl of 100mM) 

PEP 1mM (20 µl of 50mM) 

Ade HCl 1.5mM (15μl of 100mM) 

MgCl2 10mM (10 µl of 1M) 

NADH 0.4mM (100 µl of 4mM) 

LDH 2U (1μl) 

Pyr Kin 2U (1μl) 

Ade Kin 2U (1μl) 
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 XGPRT 

o Reaction mixture: 1mL 

o Incubate mixture for 5’.  

o Add all components except Guanine 

o Mix 10μl XGPRT + 90μl of 55.6mM Tris-HCl pH 7.5. 

o Add 40 µl of XGPRT solution to assay. 

o Add Guanine to start the reaction 

o Monitor ΔA257 over time every 10s @ 37°C (or RT) for 12-15min. 

o Calculate activity as: 

 

𝑈 =  
𝑉 ∗  ΔA257 

5817 ∗ 𝑡 ∗ 𝑙
 

  Where, V is volume in L, t is time consistent with ΔA257, and l is 

path length in cm. 

 

 

 

 

 

 UPRT 

o Reaction mixture: 1mL 

o Add all components except Uracil. 

o Mix 10μl UPRT + 90μl of 55.6mM Tris-HCl pH 8.5. 

o Note: 100-fold dilution from stock. 

o Add 40 µl of UPRT solution to assay. 

o Note: 250-fold dilution from solution. 

o Incubate mixture for 5’. 

o Add Uracil to start the reaction.  

o Monitor ΔA271 over time every 10s @ 37°C (or RT) for 12-15min. 

o Calculate activity as: 

 

H2O 685μl 

Tris-HCl pH 7.5 100mM (100µl of 1M) 

PRPP 1mM (50 µl of 20mM) 

MgCl2 100mM (100 µl of 1M) 

Gua 50µM (25 µl of 2mM) 



144 

 

𝑈 =  
𝑉 ∗  ΔA271 

2763 ∗ 𝑡 ∗ 𝑙
 

  Where, V is volume in L, t is time consistent with ΔA271, and l is 

path length in cm. 

 

 

 

 

 

 CTP synthase 

o Reaction mixture: 1mL 

o Add all components except glutamine 

o Mix 10μl CTPS + 90μl of 55.6mM Tris-HCl pH 7.8. 

o Add 40 µl of CTPS solution to assay. 

o Incubate mixture for 5’.  

o Add glutamine to start the reaction 

o Monitor ΔA291 over time every 5s @ 37°C (or RT) for 15min. 

o Calculate activity as: 

 

𝑈 =  
𝑉 ∗  ΔA291 

1338 ∗ 𝑡 ∗ 𝑙
 

  Where, V is volume in L, t is time consistent with ΔA291, and l is 

path length in cm. 

 

 

 

H2O 810μl 

Tris-HCl pH 8.5  20mM (20µl of 1M) 

PRPP 1.5mM (75 µl of 20mM) 

MgCl2 5mM (5µl of 1M) 

(GTP) 1mM 

Ura 0.1mM (50 µl of 2mM) 

H2O 867.5μl 

Tris-HCl pH 8.0  50mM (50µl of 1M) 

MgCl2 10mM (10µl of 1M) 
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 CTP synthase (NMR Assay) 

 

o Reaction mixture: 1mL, but prepare two mixtures, one will be Assay, the 

other will be Control. 

o Add all components except glutamine and enzyme 

o Aliquot 228µl for two assays into two separate eppendorf tubes.  

o Mix 10μl water + 90μl of 55.6mM Tris-HCl pH 8. 

o  Add 40 µl of control solution to Control assay. 

o Add 50µl of glutamine to Control assay. 

o Mix 10μl CTPS + 90μl of 55.6mM Tris-HCl pH 8. 

o Add 10µl of CTPS solution to each assay eppendorf. DON’T add glutamine 

yet. 

o Incubate mixtures for 5’ @ 37°C. 

o Transfer both assay tubes and 250µl of the control into NMR tubes. 

o Aliquot 12.5µl of glutamine into two separate eppendorfs. 

o Bring the reaction vessels, glutamine tubes, NMR pipets, etc down to the 

NMR room.   

o Add 12.5μl of glutamine to start the reactions 

o Monitor U and C’s C1’,C5 over time for the appearance of 13C-15N-CTP. 

o Additionally, prepare a product standard solution with 2mM 13C-15N-CTP 

under the same conditions of assay, except use no enzyme and cold UTP. 

 

 

 

 

Either Glutamine 10mM (50µl of 200mM) 

UTP 1mM (10μl of 100mM) 

ATP 1mM (10μl of 100mM) 

GTP 0.25mM (2.5μl of 100mM) 

Sample Preparation (1 mL to be split) 

H2O (or D2O) 737.5μl 

D2O 10% (100μl of 100%) 

DSS 0.24mM (20μl of 12mM) 

NaN3 1mM (10μl of 100mM) 
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Tris-HCl pH 8.0  50mM (50µl of 1M) 

MgCl2 10mM (10µl of 1M) 

13C-15N-UTP 1mM (10μl of 100mM) 

ATP 1mM (10μl of 100mM) 

GTP 0.25mM (2.5μl of 100mM) 

Product standard solution (250 μl) 

D2O 204.4μl 

DSS 0.24mM (5μl of 12mM) 

NaN3 1mM (2.5μl of 100mM) 

Tris-HCl pH 8.0  50mM (12.5µl of 1M) 

MgCl2 10mM (2.5µl of 1M) 

Glutamine 10mM (12.5µl of 200mM) 

UTP 1mM (2.5μl of 100mM) 

13C-15N-CTP 2mM (5μl of 100mM) 

ATP 1mM (2.5μl of 100mM) 

GTP 0.25mM (0.63μl of 100mM) 
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 Phosphopentomutase: 

o Prepare enzyme mixture  

o Incubate on ice for 5’.  

o Prepare assay mixture 

o Note: 1000-fold dilution from stock. 

o Add 20 µl of PPM solution to assay. 

o Note: 5000-fold dilution from solution. 

o Monitor ΔA340 over time every 10s. 

o Calculate activity as: 

 

𝑈 =  

1
2

∗ 𝑉 ∗  ΔA340 

6220 ∗ 𝑡 ∗ 𝑙
 

  Where, V is volume in L, t is time consistent with ΔA340, and l is 

path length in cm. 

Note: If using the NanoDrop, the rate given is equal to ΔA340/t. 

Coupling Scheme: 

R1P (PPM) R5P (4.1.2.4) glyceraldehyde-3-phosphate + acetaldehyde + 

2NADH (1.1.1.1)  EtOH + glycerol-3-phosphate + 2NAD+ 

 

 

 

 

 

 

Enzyme mixture (1mL) 

H2O 680μl 

Tris-HCl pH 7.5 10mM (10µl of 1M) 

CoCl2 250μM (250µl of 1mM) 

EDTA pH 7.5 50μM (50μl of 1mM) 

PPM Stock 10μl 
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Ribonucleoside Hydrolase (E.C. 3.2.2.8) 

o Reaction mixture: 1mL 

o Incubate mixture for 2’. 

o Mix 10μl RihA + 90μl of 55.6mM HEPES pH 7.4. 

o Note: 100-fold dilution from stock. 

o Add 40 µl of RihA solution to assay. 

o Note: 250-fold dilution from solution. 

o Monitor ΔA262 over time every @ 37°C for 12-15min (Nanodrop 2000c 

Kinetics Module). 

o Calculate activity as: 

 

𝑈 =  
𝑉 ∗  ΔA262 

2.18 ∗ 𝑡 ∗ 𝑙
 

Where, V is volume in L, t is time consistent with ΔA262, and l is path length 

in cm. The result will be in μmol/min. 

Assay mixture (1mL) 

H2O 763.6μl 

Tris-HCl pH 8.3 50mM (50µl of 1M) 

R1P 1mM (86.5µl of 11.67mM) 

(Ribose-1,5-bisP)  

NADH 0.2mM (50μl of 4mM) 

Deoxyriboaldolase 3.2U (27µl of 120U/ml) 

Alcohol dehydrogenase 6U (2.9µl of 2099U/ml) 

PPM mixture 20μl 
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Note: KM = 0.06mM for uridine and 0.7mM for cytidine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H2O  802 μl 

HEPES pH 7.4  50mM (50µl of 1M) 

Uridine 80μM (8µl of 10mM) 

NaCl 100mM (100µl of 1M) 
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Protocol: Chemo-enzymatic synthesis of Uridine MonoPhosphate (UMP) 

Allotted time: 2 – 3 days (depending on scale) 

Day 1 

Experiment Type Purpose Allotted time (hours) 

Enzymatic reaction Coupling of ribose and uracil to 

synthesize UMP 

2 

FPLC - Vydac Verify synthesis of UMP 1 

FPLC - Boronate Purify UMP  3 

Lyophilization Extract UMP from elutions 1 overnight per 50mL of 

eluent 

Day 2 

Waiting 

Day 3 

UV Check concentration of product 0.5 

 

Materials needed: (no specific amounts given it depends on the scale of synthesis) 

 Deionized/autoclaved water 

 1M Sodium phosphate monobasic 

 500mM Sodium phosphate dibasic 

 1M MgCl2 

 100mg/mL ampicillin (Store at -20C) 

 1M DTT (Store at -20C) 

 100mM dATP (Store at -20C) 

 500mM Creatine phosphate (Store at 4C) 

 1M ribose (Store at -20C) 

 50mM uracil (Store at -20C) 

 1mg/mL creatine kinase (Store at -20C) 

 Myokinase (from bottle) (Store at 4C) 

 2U/μL thermostable pyrophosphatase (from vial) (Store at -20C) 

 10 mg/mL Bovine Serum Albumin (from vial)(Store at -20C) 
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 Ribokinase (Store at -20C) 

 Phosphoribosylpyrophosphate synthetase (Store at -20C) 

 Uridine phosphoribosyl transferase (Store at -20C) 

 Vydac column, buffer A: 25mM Na3PO4 pH 2.8, 0.22μm filtered. 

 Vydac column, buffer B: 125mM   Na3PO4 pH 2.8, 0.22μm filtered. 

 50% methanol, 0.22μm filtered. 

 1M Triethylamine bicarbonate (TEABC), pH 9.4, 0.22μm filtered. 

 Acidified water, pH 4.6, 0.22μm filtered. 

Notes about reagents: 

 dATP: Make a fresh stock every time if possible, since it dephosphorylates on 

every freeze-thaw cycle. 

 Uracil: Its solubility is very poor, so a 50mM solution is quite cloudy. You could 

work with a lower concentration. However, making sure you mix the solution 

before use solves the problem. 

 Creatine kinase: Make the 1 mg/mL stock solution in a 50mM Tris-HCl pH 7.5, 

50% glycerol solution 

 Myokinase: The commercial enzyme is an ammonium sulfate precipitate. It can 

be used directly without centrifuging it and using the pellet. 

 RK, PRPPS and UPRT: These enzymes are isolated in house and stored as 50% 

glycerol stocks. 

 Vydac column, Buffers A and B: Preparation is key. Use equimolar amounts of 

sodium phosphate mono- and di-basic to reach 25mM or 125mM total 

concentration, leaving plenty of space for pH adjustment. Then, adjust the pH 

with glacial acetic acid to 2.8. Fill up to volume with water. Then, filter through a 

0.22μm filter. 

 1M TEABC: For every liter, mix 121mL of pure Triethylamine in the hood and 

fill up to a liter with water. The solution will have a yellow-ish layer at the top, 

this is normal. Attach a pH probe to the solution. Then, bubble CO2 (dry ice) until 

pH reaches 9.4. If bubbling is too slow you can heat up the container with dry ice 

to speed up the bubbling. If the solution has debris in it, gravity filter it. This 

cannot be vacuum filtered because the CO2 will be taken out of solution. 

 Acidified water: To a liter of pure water, bubble CO2 (dry ice) until pH reached 

4.4-4.6. This will take some time, so be patient. If the solution has debris in it, 

gravity filter it. This cannot be vacuum filtered because the CO2 will be taken out 

of solution. 

Procedure: 

Preparatory work: 
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 Prepare all of the reagents needed for the reaction, given the scale that you wish to 

utilize. 

 Below (reaction section), you will find a modifiable spreadsheet which can be 

used to both determine the reaction components and the amount of reagents 

needed. 

Reaction: 

 In a conical tube (or appropriate container), put together the reaction mixture in 

the order stated, up to UPRT; following the spreadsheet below. 

 

 Incubate the reaction at 37C for 5-10 minutes, or until the temperature of the 

mixture has reached 37C. 

 Add ribose to start the reaction. Swirl or pipette up-and-down, do not shake or 

vortex. 
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 Incubate the reaction at 37C for 5 hours, with occasional stirring. 

Quality control: 

 Once the reaction is over, take a 120-μL aliquot and then transfer the rest to 4C. 

 Load the aliquot onto a 3kDa molecular weight cut-off concentrator mini-column, 

spin at no more than 10,000 rpm for 15 minutes 

 Collect the flow-through 

 FPLC sub-protocol: 

o Wash the FPLC system with both buffer A and B, 30mL each at least. 

o Wash the Vydac reverse-phase analytical column (Port #4) manually with 

30mL of Buffer A at 1.5mL/min, pressure should be near 15MPa. The 

maximum pressure of this column is 25MPa. 

o Inject 10μL of the flow-through sample onto the FPLC system. 

o Run the “Vydac Phosphorylation” method, approximate running time is 40 

minutes. 

o Successfully made UMP should appear as a sharp peak near 5mL of 

elution, compare to uracil standards. 

o If the column will not be used for longer than a week, store in 50% 

methanol/water. Alternatively, 20% ethanol would suffice. 

UMP Purification by boronate affinity chromatography: 

 Wash the FPLC system with both acidified water and 1M TEABC, 30mL each at 

least. 

 Wash the boronate affinity chromatography column (Port #3) manually with 

140mL of 1M TEABC at 5.0mL/min, pressure should be near 1MPa. The 

maximum pressure of this column is 2.5MPa. 

 Using a syringe of appropriate size, inject the entire sample directly into the in-

house packed boronate column. Make sure you release both ends from the FPLC 

system to do so 

 Reconnect the column to port #3. Watch for major bubbles being caught in the 

tubing. 

 Run the “Boronate SorbTech” method, approximate running time is 1h 30min at 

5.0mL/min.  

 Successfully purified UTP should appear as a broad peak near 75mL after the 

switch to elution. Another way to monitor it is by the conductivity of the eluent, 

once the value starts dropping steeply, the peak is about to appear. 

 Collect and pool all fractions of UMP in conical tubes. 

Lyophilization of UMP elution fractions: 
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 Use a dry ice/acetone or dry ice/ethanol bath to freeze the fractions that are 

poured directly into the lyophilization flask. Warning, the temperature of this bath 

is near -78C. 

 When freezing the solution, constantly rotate the flask so you can form a layer 

around the walls of the flask, thus increasing surface area for faster lyophilization. 

 Connect the flask to the lyophilizer, already at temperature and vacuum (which 

are automatic settings). 

 Let the lyophilization run until only powder is left in the tubes. Check regularly to 

ensure temperature and pressure are being maintained.  

 Once finished, re-suspend powder in a minimum amount of water. 

Final concentration check of UMP: 

 Make sure the re-suspended UMP is well mixed. 

 Using water as a blank first, make a 100- and 1000-fold dilution of UMP and 

measure its UV absorbance at 262nm. Ideally, use a wavescan setting so you can 

evaluate the shape of the absorption peak. Make note of the pathlength being 

used. 

 Calculate the concentration of UMP using an extinction coefficient of 10,000 M-

1cm-1. 

 Calculate the yield of the reaction and purification up to this point. 

 If the concentration is too low (< 50mM), concentrate the solution in the 

SpeedVac in its automatic setting. If too high (> 100mM), dilute with water. 

 Add enough 1M Tris-HCl pH 7.5 buffer to reach a final concentration of 10mM 

Tris-HCl pH 7.5 without altering the volume significantly.  

 Store the newly synthesized UMP at -20C until further use. 

 

Protocol: Synthesis of Cytidine TriPhosphate (CTP) from Uridine TriPhosphate 

(UTP) 

Allotted time: 6 – 7 days (depending on scale) 

Day 1 

Experiment Type Purpose Allotted time (hours) 

Enzymatic reaction Amination of UTP to 

synthesize CTP 

6 
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FPLC - Vydac Verify synthesis of CTP 1 

FPLC - Boronate Purify CTP  3 

Lyophilization Extract CTP from elutions 1 overnight per 50mL of 

eluent 

Day 2, 3, 4 

Waiting 

Day 5 

Speedvac Wash re-suspended product 4 

UV Check concentration of product 0.5 

FPLC - Vydac Quality control of product 1 

Day 6 

NMR Quality control of product 2 

 

Materials needed: (no specific amounts given it depends on the scale of synthesis) 

 Deionized/autoclaved water 

 1M Tris-HCl, pH 8.0 

 1M MgCl2 

 100mg/mL ampicillin (Store at -20C) 

 100mM dATP (Store at -20C) 

 500mM NH4Cl 

 X mM UTP (Store at -20C) 

 CTP synthetase (Store at -20C) 

 Vydac column, buffer A: 25mM Na3PO4 pH 2.8, 0.22μm filtered. 

 Vydac column, buffer B: 125mM   Na3PO4 pH 2.8, 0.22μm filtered. 

 50% methanol, 0.22μm filtered. 

 1M Triethylamine bicarbonate (TEABC), pH 9.4, 0.22μm filtered. 

 Acidified water, pH 4.6, 0.22μm filtered. 

 

Notes about reagents: 

 dATP: Make a fresh stock every time if possible, since it dephosphorylates on 

every freeze-thaw cycle. 
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 Vydac column, Buffers A and B: Preparation is key. Use equimolar amounts of 

sodium phosphate mono- and di-basic to reach 25mM or 125mM total 

concentration, leaving plenty of space for pH adjustment. Then, adjust the pH 

with glacial acetic acid to 2.8. Fill up to volume with water. Then, filter through a 

0.22μm filter. 

 1M TEABC: For every liter, mix 121mL of pure Triethylamine in the hood and 

fill up to a liter with water. The solution will have a yellow-ish layer at the top, 

this is normal. Attach a pH probe to the solution. Then, bubble CO2 (dry ice) until 

pH reaches 9.4. If bubbling is too slow you can heat up the container with dry ice 

to speed up the bubbling. If the solution has debris in it, gravity filter it. This 

cannot be vacuum filtered because the CO2 will be taken out of solution. 

 Acidified water: To a liter of pure water, bubble CO2 (dry ice) until pH reached 

4.4-4.6. This will take some time, so be patient. If the solution has debris in it, 

gravity filter it. This cannot be vacuum filtered because the CO2 will be taken out 

of solution. 

Procedure: 

Preparatory work:  

 Prepare all of the reagents needed for the reaction, given the scale that you wish to 

utilize. 

 Below (reaction section), you will find a modifiable spreadsheet which can be 

used to both determine the reaction components and the amount of reagents 

needed. 

Reaction: 

 In a conical tube (or appropriate container), put together the reaction mixture in 

the order stated, up to CTPS; following the spreadsheet below. Make sure to 

modify the UTP stock concentration to whatever value you actually have in hand. 
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 Incubate the reaction at 37C for 5-10 minutes, or until the temperature of the 

mixture has reached 37C. 

 Add NH4Cl to start the reaction. Swirl or pipette up-and-down, do not shake or 

vortex. 

 Incubate the reaction at 37C for 6 hours, with occasional stirring. 

Quality control:  

 Once the reaction is over, take a 120-μL aliquot and then transfer the rest to 4C. 

 Load the aliquot onto a 3kDa molecular weight cut-off concentrator mini-column, 

spin at no more than 10,000 rpm for 15 minutes 

 Collect the flow-through 

 FPLC sub-protocol: 

o Wash the FPLC system with both buffer A and B, 30mL each at least. 

o Wash the Vydac reverse-phase analytical column (Port #4) manually with 

30mL of Buffer A at 1.5mL/min, pressure should be near 15MPa. The 

maximum pressure of this column is 25MPa. 

o Inject 10μL of the flow-through sample onto the FPLC system. 

o Run the “Vydac Phosphorylation” method, approximate running time is 40 

minutes. 

o Successfully made CTP should appear as a small broad peak near 20mL of 

elution, compare to standards. Another means to check for reaction 

completion is by observing the disappearance of UTP at 37mL of elution.  

o Also note that the height of the CTP peak is not directly related to the 

amount made, since its extinction coefficient at 254nm (FPLC default) is 

quite low. 

CTP Purification by boronate affinity chromatography: 



158 

 

 Wash the FPLC system with both acidified water and 1M TEABC, 30mL each at 

least. 

 Wash the boronate affinity chromatography column (Port #3) manually with 

140mL of 1M TEABC at 5.0mL/min, pressure should be near 1MPa. The 

maximum pressure of this column is 2.5MPa. 

 Using a syringe of appropriate size, inject the entire sample directly into the in-

house packed boronate column. Make sure you release both ends from the FPLC 

system to do so 

 Reconnect the column to port #3. Watch for major bubbles being caught in the 

tubing. 

 Run the “Boronate SorbTech” method, approximate running time is 1h 30min at 

5.0mL/min.  

 Successfully purified CTP should appear as a broad peak near 75mL after the 

switch to elution. Another way to monitor it is by the conductivity of the eluent, 

once the value starts dropping steeply, the peak is about to appear. 

 Collect and pool all fractions of CTP in conical tubes. 

 Note that, for the same reason explained above, the CTP peak may appear small. 

Lyophilization of CTP elution fractions: 

 Use a dry ice/acetone or dry ice/ethanol bath to freeze the fractions that are 

poured directly into the lyophilization flask. Warning, the temperature of this bath 

is near -78C. 

 When freezing the solution, constantly rotate the flask so you can form a layer 

around the walls of the flask, thus increasing surface area for faster lyophilization. 

 Connect the flask to the lyophilizer, already at temperature and vacuum (which 

are automatic settings). 

 Let the lyophilization run until only powder is left in the tubes. Check regularly to 

ensure temperature and pressure are being maintained.  

 Once finished, re-suspend powder in a minimum amount of water. 

Final concentration check of CTP: 

 Make sure the re-suspended CTP is well mixed. 

 Using water as a blank first, make a 10- and 100-fold dilution of CTP and 

measure its UV absorbance at 273nm. Ideally, use a wavescan setting so you can 

evaluate the shape of the absorption peak. Make note of the pathlength being 

used. 

 Calculate the concentration of UMP using an extinction coefficient of 9,000 M-

1cm-1. 

 Calculate the yield of the reaction and purification up to this point. 
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 If the concentration is too low (< 50mM), concentrate the solution in the 

SpeedVac in its automatic setting. If too high (>100 mM), dilute with water. 

 Add enough 1M Tris-HCl pH 7.5 buffer to reach a final concentration of 10mM 

Tris-HCl pH 7.5 without altering the volume significantly.  

 Store the newly synthesized UTP at -20C until further use. 

Quality Control: 

 To ensure that your final product is indeed pure CTP, with no (or little) 

contamination from substrates, you will collect another FPLC trace and some 

NMR data.  

 FPLC QC: 

o Follow the same directions as above for the Vydac reverse-phase column. 

o The CTP sample may be injected directly into the system, a 2-5μL aliquot 

of a 100mM solution should suffice. 

o Again, the peak corresponding to CTP should appear near 20mL of 

elution. 

 NMR QC: 

o Make note of the isotopic labels that have been included in the nucleotide, 

so as to run the appropriate experiments. 

o All the pulse programs used have already been optimized for nucleic 

acids, therefore they need little to no modification.  

o Make a 2mM CTP sample in 10% D2O, 0.25mM DSS in 250μL for a 

Shigemi tube. 

o Run diagnostic 1D and 2D experiments that will pin point the labeled 

atoms in UTP. Only 31P experiments need to be run in the 800 MHz NMR. 

o Below is a table of common experiments and some important parameters: 

 

Experiment 

Nuclei 

Observed 

Region 

Observe

d 

1H 

Carrier 

/ppm 

13C/15N/31P 

Carrier 

/ppm 

SW 
1H 

/ppm 

SW 
13C/15N

/31P 

/ppm 

Kgzgwg 1H All 4.7 117 24 - 

Hsqcetgp 1H/13C Ribose 4.7 80 13 50 

Hsqcetgp 1H/13C Base 4.7 130 13 94 

Ktd_hsqcetf3g

psidec 

1H/15N Base 4.7 175 9 90 
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Ktd_hsqcetf3g

psidec_1d 

1H/15N Base 4.7 175 9 90 

Zgdc30 13C All 4.7 110 - 120 

zgdc 31P Phosphat

e 

4.7 0 - 60 

 

 

o Once all experiments are done, you can return your NMR sample to your 

bulk sample, or just dispose of it.  

 If the CTP passes QC, it is ready for use. Store at -20C until needed.  

 

Supporting information of doxorubicin stacking into the IRE RNA: 

To further support the hypothesis of doxorubicin intercalation, I identified NOE 

contacts between the drug and the RNA. Interestingly, in NOE spectra, doxorubicin 

caused no major crosspeaks of its own from H1, H2 and H3 (for numbering, see figure 

5.1). However, I observed a number of crosspeaks arising from potential 1H-1H contacts 

between aromatic protons of doxorubicin and nucleobase protons of the IRE RNA 

(Figure A.1a). Specifically, in the aromatic-to-aromatic region, I observed two relatively 

strong peaks with a dose-dependent signal increase. Utilizing doxorubicin’s proton 

assignments and canonical nucleobase proton chemical shifts as a guide, I determined the 

nature of these new crosspeaks. These contacts corresponded to doxorubicin’s H2 to a 

pyrimidine H5, and from H1/H3 to a pyrimidine H5. Of note, I also observed a weak 

crosspeak, potentially generated by an H1/H3 to H5 contact (Figure A.1b). These results 

showed that doxorubicin’s aromatic moiety was in close proximity to nucleobases in the 

IRE RNA, namely pyrimidines.   
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Figure A.1. Doxorubicin generates new NOE contacts with the IRE RNA. (A) Slice 

of a 2D NOESY experiment showing two correlation off diagonal peaks that appear upon 

doxorubicin titration into the IRE RNA, contacts are made from aromatic nucleobase 

protons ((R)H5) to aromatic doxorubicin protons ((D)H1/H2/H3). (B) Blow out of a 

similar slice to show one more weak correlation peak corresponding to an NOE contact 

of doxorubicin’s H1/3 to a pyrimidine H5. (D) = doxorubicin; (R) = RNA. Ratios are 

shown as molar ratios. 
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Supporting information of the IRE RNA/IRP project: 

 

Figure A.2. Daunorubicin has micromolar-affinity interactions with the IRE RNA. 

(a) Representative fluorescence quenching profile of 7 µM daunorubicin’s emission from 

500 to 650 nm as increasing amounts of IRE RNA (0 to 25 µM) are titrated into the 

solution. (b) The emission intensity at 550 nm for every titration point was extracted and 

plotted against its corresponding IRE RNA concentration. The data were fitted to a 

Langmuir binding isotherm. Error bars represent standard deviation from three 

independent experiments. 

 

Figure A.3. Streptomycin and kanamycin have a weak competition against 

doxorubicin binding to the IRE RNA. These order-of-addition experiments show that 

increasing concentrations of both drugs recovered fluorescence only at large molar ratios 

of drug:RNA. (a) Streptomycin competition experiments. (b) Kanamycin competition 

experiments. 
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Figure A.4. Two-dimensional 13C-1H HSQC at 1:0 and 1:3 molar ratio of 

RNA:doxorubicin focused in the base region. No major chemical shift perturbations 

are observed. Line broadening is observed in the adenine H2 region only. Black: 1:0; 

Cyan: 1:3 RNA:drug molar ratio. 

 

Figure A.5. 1D Daunorubicin disrupts base-pair interactions in the IRE RNA. 

Representative NMR titration of doxorubicin into the IRE RNA. The assigned resonances 

are shown. Six resonances in the imino region decrease in intensity with increasing drug 

concentrations. Blue: 1:0; Red: 1:0.5; Green: 1:1; Magenta: 1:2 molar ratios of 

RNA:daunorubicin. 
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Figure A.6. The IRE RNA/IRP binding affinity at micromolar concentrations 

remains unaffected in the presence of streptomycin and kanamycin. (a) The 

RNA/protein complex was probed at increasing streptomycin and kanamycin 

concentrations. Quantification of the gel shift assays reveals no significant change in free 

or bound RNA. The y-axis is the change in band intensity as a ratio of the IRE/IRP or 

IRE band to the sum of both. 

 

Figure A.7. Doxorubicin causes two specific chemical shift perturbations in the IRE 

RNA. Two-dimensional 13C-1H HSQC at 1:0 and 1:3 molar ratio of RNA:doxorubicin 

focused in the ribose region. Only two specific chemical shift perturbations are observed. 

Cyan: 1:0; Magenta: 1:3. 
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Figure A.8. The IRE RNA-IRP binding affinity at nanomolar concentrations is 

affected by doxorubicin at lower temperatures. (a) Upon addition of doxorubicin, the 

apparent binding affinity of the complex is shifted toward larger values two-fold at 12 °C. 

(b) The molecular stabilities (KA) of the RNA/protein complex is affected by 45 % in the 

wild-type RNA, whereas the G22A-G25A mutant RNA is only affected by 29 %. 
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