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Over the last decade, success of social networks has significantly reshaped how

people consume information. Recommendation of contents based on user profiles

is well-received. However, as users become dominantly mobile, little is done to

consider the impacts of the wireless environment, especially the capacity constraints

and changing channel.

In this dissertation, we investigate a centralized wireless content delivery sys-

tem, aiming to optimize overall user experience given the capacity constraints of

the wireless networks, by deciding what contents to deliver, when and how. We

propose a scheduling framework that incorporates content-based reward and deliv-

erability. Our approach utilizes the broadcast nature of wireless communication

and social nature of content, by multicasting and precaching. Results indicate this

novel joint optimization approach outperforms existing layered systems that sepa-

rate recommendation and delivery, especially when the wireless network is operating

at maximum capacity. Utilizing limited number of transmission modes, we signif-



icantly reduce the complexity of the optimization. We also introduce the design

of a hybrid system to handle transmissions for both system recommended contents

(‘push’) and active user requests (‘pull’).

Further, we extend the joint optimization framework to the wireless infrastruc-

ture with multiple base stations. The problem becomes much harder in that there

are many more system configurations, including but not limited to power alloca-

tion and how resources are shared among the base stations (‘out-of-band’ in which

base stations transmit with dedicated spectrum resources, thus no interference; and

‘in-band’ in which they share the spectrum and need to mitigate interference). We

propose a scalable two-phase scheduling framework: 1) each base station obtains

delivery decisions and resource allocation individually; 2) the system consolidates

the decisions and allocations, reducing redundant transmissions.

Additionally, if the social network applications could provide the predictions

of how the social contents disseminate, the wireless networks could schedule the

transmissions accordingly and significantly improve the dissemination performance

by reducing the delivery delay. We propose a novel method utilizing: 1) hybrid

systems to handle active disseminating requests; and 2) predictions of dissemination

dynamics from the social network applications. This method could mitigate the

performance degradation for content dissemination due to wireless delivery delay.

Results indicate that our proposed system design is both efficient and easy to

implement.
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Chapter 1: Introduction

Social networks, which enable information sharing and consumption among

users, have long existed on the Internet in various forms. However, it is not until

the past decade that we witnessed their huge commercial and social success. Face-

book, Twitter, YouTube, along with innumerable additional social networks, greatly

facilitate information exchange for users all across the world. Their success relies

heavily, if not solely, on content recommendation based on user profiles, including

but not limited to social associations, engagement history, etc. On one hand, social

network providers are collecting more data about users than ever, to deliver highly

relevant contents for users to consume; on the other hand, users are more willing to

share personal data with their trusted social network providers, in return for better

experience. Therefore, researchers in this area are working diligently to maximize

user experience by recommending contents relevant to each individual user so that

they are most likely to incur user engagements, with the help of sophisticated yet

scalable machine learning and data mining algorithms on big data. Metrics of sys-

tem utilities are different for different systems. For example, for ads systems, one

possible reward metric is the revenue earned from displaying ads to users; for video

subscription systems, the time users spent on the video; for general systems, user’s
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satisfaction.

In the modern era of Internet, the contents consumed most by human users are

undoubtedly multimedia (namely pictures and videos). Unlike texts or numerical

data, this type of contents are generally large in size, difficult to structuralize, and

computationally hard to separate. For example, when dealing with texts, it is gen-

erally possible to summarize, categorize, rate, search, highlight, and segment auto-

matically. This is because the texts follow certain grammatical and structural rules;

but for pictures and videos, these operations are generally still far from practical.

Therefore, content delivery systems, both wired or wireless, are facing tremendous

capacity shortages, resulting in the debate of whether system operators can impose

certain types of management policies, or more famously, network neutrality as in [1].

Even more challengingly, following the rapid development of the smart phone,

most (if not all) social networks are reporting that their users are dominantly mo-

bile, i.e. most of the users access social networks from their mobile devices. Unfor-

tunately, most of the social network (mobile) applications were designed from the

root concept of wired connections, assuming unlimited capacity and/or almost no

latency or failures in transmission. Unlike wired connections, wireless networks are

limited by insufficient radio spectrum resources and ever changing channel charac-

teristics. As multimedia contents de facto dominate contents consumed in social

network applications, the disparity between the capacity constraints of wireless net-

works and the assumptions of guaranteed delivery of contents results in poor mobile

experience and loss of user engagements, or ultimately users themselves. Even with

new generations of access technology (LTE-Advanced and beyond), users are still
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unable to fetch their contents when the number of active users within the network

increases. This is because the wireless network is a shared-medium communication

and becomes congested as it approaches its capacity limits. As a result, quality of

service degrades drastically. Hence, we are motivated to provide services in these

congested scenarios so that users could still consume contents, even though the con-

tents delivered to them might not be the best contents in the perspective of the

social network applications.

For the longest time, layered models (e.g. OSI 7-layer model in Table 1.1) have

dominated the system design in practice. Undeniably, such models are easy to imple-

ment, test and maintain for engineers, because every application program interface

(API) is explicitly defined. According to these models, each layer is responsible

for their own functions and it only directly invoked APIs of the layer immediately

beneath, and provided facility APIs for use by the layer immediately above.

As [3] suggested, such layering is in fact a decomposition of optimization for

the complex network architecture. Mathematically, it does not provide optimal

performance for the overall system, even if each layer is optimized. Therefore, the

layered solutions are inherently bad for overall system performance, especially when

the network resources are insufficient.

Existing layered solutions fail to utilize the social nature of content consump-

tion or the broadcast nature of wireless networks. They include two mostly isolated

stages:

1. The social network application chooses the best recommended contents for

3



users, regardless of the size of the contents and the traffic load the users

observe;

2. The wireless network allocates resources for each transmission on-demand in

a unicast way, unable to group the requests for the same contents or to defer

transmissions when the channel is not good.

As stated before, this unicast on-demand approach is viable only when the wire-

less resources are sufficient and/or when users have absolutely nothing in common.

However, if the wireless network is congested, this approach is extremely inefficient.

Our proposed solution tackles the weaknesses of the existing solutions via the

following major improvements:

1. Multicast and precache: in light of the preliminary research and industrial

practice of social network applications, we observe that users exhibit patterns

of temporal, spatial and social correlations: ‘similar’ users are extremely likely

to consume the same contents, though not at the exact same time. This fact

leads us towards a novel design that multicasts and precaches contents to

groups of users to reduce redundant transmissions.

2. Real-time scheduling to optimize overall performance: the system schedules

contents based on real-time channel information. Under congested circum-

stances, the system delivers contents that maximize overall user experience

across the system, but not necessarily optimal for each individual user. In

other words, we are more inclined to deliver contents in a collectively optimal

way when the wireless networks are congested.
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This novel approach requires information from both social and wireless networks to

jointly optimize system decisions. However, the APIs proposed in our approach are

straightforward and easy to implement. It does not require much modifications of

both layers and the information exposed is extremely limited.

1.1 Related Work

Certain preliminary work has been done concerning the joint user experience

optimization incorporating social and wireless networks.

A content-based hybrid system was proposed in [4] to handle two types of

content-based transmission schemes for satellite communication: unicast (‘pull’)

and multicast (‘push’). At the time of the article, it was difficult to predict ahead of

time how contents are perceived by the users, thus the scheduling system discussed

was essentially reactive to the user requests. However, with the rapid developments

of big data, we are now capable to make much more precise prediction regarding

content consumption. Therefore, we can design the system to schedule in a proac-

tive manner with the help of precache. We would also want to point out that all

wireless transmissions are fundamentally multicast because users with proper clients

(including devices, credentials, etc.) could receive the transmission.

In [5], a multicast pre-caching approach for video-on-demand service is em-

ployed to improve energy efficiency of the system. But the work stopped short to

utilize the fact that the contents/videos themselves are also subject to scheduling in

social network applications. It is a common practice for social network providers to
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shape the demand for contents, though from a different design rationale (increasing

user engagements).

In [6] and [7], a pre-caching scheduler was proposed at social networks given

the device profiles. The scheduler decides what contents and when to transmit

based on the device profiles. However, the work did not address its implementation

in real-world system in terms of the scale and the real-time information exchange

of the system. The scheduling decisions rendered are relatively coarse. In the

following work [8], a game theoretic approach was proposed to utilize the demand

prediction from the devices. Unfortunately, this approach requires substantial effort

of the mobile clients, while unable to provide the wireless base stations sufficient

information regarding how to optimize overall system performance. Additionally,

the solution would not scale up well.

In [9], an opportunistic protocol based on a wireless ad-hoc system is proposed

to forward contents with respect to possible future transmissions that could further

disseminate the contents. This protocol considers the physical feasibility of wireless

transmission, but does not discuss how to allocate wireless resources in different

wireless conditions.

1.2 Contributions and Organization of the Dissertation

In this dissertation, we discussed the content delivery problem with capacity

constraints and changing wireless channel in three different scenarios:

1. In Chapter 2, we focus on the basic setup: single base station with time-
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invariant reward. This is the basic problem and foundation for later dis-

cussions, in that it confirms that our approach is both effective and imple-

mentable. Results indicate that myopic optimization is sufficient to obtain

high-quality scheduling decisions (what contents to deliver to which users,

and how many wireless resources to allocate). We further reduce the complex-

ity of the problem by utilizing the finite multicast modes. After the reduction,

we could solve the optimization for optimal almost real-time. To incorporate

different types of delivery (system recommendation or active user request),

we introduce parameters in the hybrid systems to balance between optimizing

overall system reward delivered and satisfying active user requests. Part of

this chapter will publish in [10].

2. In Chapter 3, we extend the system design in Chapter 2 to multiple base sta-

tions. The wireless infrastructure in this chapter consists of perfectly synchro-

nized heterogeneous base stations, with macro base stations providing signal

coverage and pico base stations providing capacity enhancement. We propose

a two-phase scheduling solution that is both efficient and scalable. Part of this

chapter will publish in [11].

3. In Chapter 4, we discuss how to improve the system design with regard to social

dissemination, i.e. time-variant reward. In order to reduce redundant trans-

missions, we have to utilize predictions of content dissemination obtained from

social networks. Results indicate that predictions, even coarse ones, would sig-

nificantly improve the performance for disseminating contents. Further, the
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design of hybrid systems in 2.6 provides additional improvements.

We summarize our proposed system design and results in Chapter 5, as well as

possible future work.
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Table 1.1: OSI 7-Layer Model [2]

Layer Protocol Data Unit Function Examples

H
os
t
L
ay
er

7. Application

Data

High-level APIs, including resource sharing, remote file

access, directory services and virtual terminals.

6. Presentation

Translation of data between a networking service and an

application; including character encoding, data compres-

sion and encryption/decryption.

5. Session

Managing communication sessions, i.e. continuous ex-

change of information in the form of multiple back-and-

forth transmissions between two nodes.

RPC, SCP, NFS, PAP,

TLS, FTP, HTTP,HTTPS,

SMTP, SSH, Telnet

4. Transport
Segment(TCP)/

Datagram(UDP)

Reliable transmission of data segments between points

on a network, including segmentation, acknowledgement

and multiplexing.

NBF, TCP, UDP

M
ed
ia

L
ay
er

3. Network Packet
Structuring and managing a multi-node network, includ-

ing addressing, routing and traffic control.

AppleTalk, ICMP, IPsec,

IPv4, IPv6

2. Data Link Frame
Reliable transmission of data frames between two nodes

connected by a physical layer.

IEEE 802.2, L2TP, LLDP,

MAC, PPP

1. Physical Bit
Transmission and reception of raw bit streams over a

physical medium.

DOCSIS, DSL, Ethernet

physical layer, ISDN, USB
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Chapter 2: Joint Optimization for Time-Invariant Rewards with Sin-

gle Base Station

2.1 Overview

In this chapter, we introduce the basic setup of the content delivery problem

with capacity constraints in a system with centralized wireless infrastructure. We

need to decide what contents to transmit to which users and how to transmit.

Traditional systems include two separated stages:

1. The social network applications choose the best recommended contents for

users;

2. The wireless network allocates resources for transmissions of packets.

As stated before, this unicast approach provides optimal results only when the wire-

less resources are sufficient and/or when users have absolutely nothing in common.

However, if the wireless network is congested, this approach fails to work. Worse

still, if the users or social network applications cancel or revise the delivery requests

(usually due to impatience of long delay), the system would suffer greatly in terms

of user experience, yet the network performance metrics (usually throughput) will

falsely indicate that the system works great. If we cannot guarantee that a con-
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tent is delivered to users in whole, it is very hard to evaluate the overall system

performance.

We propose a joint optimization framework for delivery requests that are based

on recommender system to better utilize the wireless resources and schedule the

wireless transmissions to obtain optimal user experience. Further, we embrace the

idea of hybrid systems in [4] and extend this framework to handle two types of

transmissions: system recommended (‘push’) and active user request (‘pull’).

We introduce our system model and evaluation framework in Section 2.2. The

performance with and without look-ahead at the wireless layer is analyzed in 2.3.2.

In Section 2.4, we propose a scalable solution by utilizing limited multicast modes

and eliminating content limits for users. Then, we analyze its performance and sen-

sitivity against real-world data in Section 2.5. Extension to hybrid systems handling

different types of delivery is discussed in Section 2.6. Finally, we present conclusions

in Section 2.9.

2.2 Problem Formulation

2.2.1 System Model

We consider a centralized system that both selects contents for users according

to rewards given wireless capacity constraints and delivers the contents to users via

a wireless network, as illustrated in Fig.2.1. All the users are served using the same

base station. We assume the bandwidth of the wired connections between the base

station and content server(s) is sufficient enough that the base station could access

11



???

Base Station

User Device

User

Wireless 

Networks

Wired Networks

Social Network 

Applications

Delivery 

Networks

Figure 2.1: System Model: The social network applications are responsible to select

contents for users according to their profiles while the delivery networks (including

wired backbone and wireless last-hop networks) are responsible to deliver to user

devices.

contents as if they are stored locally. This assumption is valid in practice because

base stations are generally connected to the Internet via fiber optic cables. Trivially,

with modern chips, the storage on user devices is large enough to precache all the

contents scheduled for delivery.

(a) The normalized reward (or reward for simplicity) earned from delivering

content j to user i is denoted by fij, 0 ≤ fij ≤ 1. This number is obtained from social

network applications via various big data techniques. The reward is earned only after

the first successful delivery of the whole content; partial or repeated delivery does

not earn (additional) reward(s). It is important to note that the reward matrix

12



might not be fully filled due to either lack of interest or sufficient data, in which

case we simply denote them as no rewards (fij = 0).

(b) The system is time-slotted with slot length T and the scheduling horizon is

TH time slots. This is consistent with modern cellular systems (GSM, UMTS, LTE,

LTE-Advanced), which are all time-slot based to simplify overhead of control plane.

Generally, the channel state is considered to remain unchanged within the slot. We

consider decisions for all the users served by the base station at the beginning of

each time slot t, with the bandwidth of the wireless network B.

(c) The wireless channel is slow fading (i.e. it remains unchanged during each

scheduling time slot, as stated in (b)) and is described by signal-to-interference-

noise ratio SINR
(t)
i for user i at time slot t, where P

(t)
i , I

(t)
i , N

(t)
i are received power

strength, interference power and noise power respectively.

SINR
(t)
i =

P
(t)
i

I
(t)
i +N

(t)
i

(2.1)

To reduce system complexity, contents shall be transmitted within one time slot;

otherwise, management of multicast groups is too complicated to implement, given

the changing channel state between slots.

(d) For simplicity, we assume contents could be reliably delivered with given

transmission rate not exceeding the Shannon limit. Therefore, given bandwidth B

and slot length T , the maximum bits deliverable to a user with SINR in the time

slot is denoted by W and it follows Shannon’s law:

R(SINR) = log2(1 + SINR) (2.2)

W = B · T · R(SINR) (2.3)
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Table 2.1 summarizes definitions of parameters.

Table 2.1: Summary of Variables

Notations Definition

M Number of users.

N Number of contents.

fij Reward for delivering content j to user i.

α
(t)
ij Binary decision variable whether to transmit content j

to user i at time slot t.

B(t) Total available bandwidth at time slot t.

s
(t)
j Wireless resource allocated for content j at time slot t.

SINR
(t)
i Signal-to-Interference-Noise ratio of user i at time slot t.

SINRth
k Threshold of Signal-to-Interference-Noise ratio for multicast mode k.

Wj Size of content j in bits.
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2.2.2 Problem Formulation

We formulate the content delivery problem as a mixed integer programming

(MIP) problem.

maximize
α
(t)
ij ,s

(t)
j

TH
∑

t=1

∑

i,j

α
(t)
ij · fij

subject to α
(t)
ij ∈ {0, 1} ∀i, j, t

TH
∑

t=1

α
(t)
ij ≤ 1 ∀i, j

∑

j

α
(t)
ij ≤ N0 ∀i, t

α
(t)
ij ·Wj ≤ s

(t)
j · R(SINR

(t)
i ) ∀i, j

∑

j

s
(t)
j ≤ B · T ∀t

s
(t)
j ≥ 0 ∀j, t

(2.4)

The objective is to maximize the overall system reward, with the constraints

of:

1. delivery decisions are binary;

2. each content is delivered to a user at most once;

3. at most N0 content is delivered to each user in one time slot;

4. quality of service (QoS) is satisfied, i.e. content size (in bits) shall not exceed

the channel capacity, given the resource and the state of the wireless channels;

5. resources allocated does not exceed system capacity.

15



2.3 Scheduling Framework

2.3.1 Decision at Each Time Slot

For general cases, the MIP problem (2.4) is NP-hard and solving it takes expo-

nential time. Moreover, we care more about the online version of the optimization,

i.e. at time slot t0, we only have access to current and historic channel information

{SINR(t)
i , ∀i; t = 1, · · · , t0}. Solving the offline version is of little practical use for

scheduling.

Therefore, at each time slot t0 we introduce the TL-step lookahead (no looka-

head with TL = 0) version of the MIP problem given the wireless channel profile

of each user. Scheduling decisions
{

α
(t0)
ij

}

,
{

s
(t0)
j

}

at each time slot are obtained

by solving this lookahead version (2.5). All the auxiliary symbols with tilde are

lookahead version of the corresponding parameters in the MIP problem (2.4).

maximize
α̃
(t)
ij ,s̃

(t)
j

t0+TL
∑

t=t0

∑

i,j

α̃
(t)
ij · f̃

(t0)
ij

subject to α̃
(t)
ij ∈ {0, 1} ∀i, j, t

t0+TL
∑

t=t0

α̃
(t)
ij ≤ 1 ∀i, j

∑

j

α̃
(t)
ij ≤ N0 ∀i, t

α̃
(t)
ij ·Wj ≤ s̃

(t)
j · R(S̃INR

(t)

i ) ∀i, j

∑

j

s̃
(t)
j ≤ B · T ∀t

s̃
(t)
j ≥ 0 ∀j, t

(2.5)
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We rewrite the single transmission constraints in (2.4) by changing reward values

at each time slot. Initially,

f̃
(1)
ij = fij, ∀i, j (2.6)

If content j was successfully transmitted to user i at slot t0, the reward drops to

zero to avoid future transmission(s).

f̃
(t0+1)
ij = f̃

(t0)
ij ·

(

1− α
(t0)
ij

)

, ∀i, j (2.7)

We predict SINR in future scheduling slots for each user using historic channel

information:

S̃INR
(t)

i =















SINR
(t0)
i t = t0

φ(SINR
(1)
i , . . . , SINR

(t0)
i ) t = t0 + 1, . . . , t0 + TL

(2.8)

The actual decisions (what contents to deliver
{

α
(t0)
ij

}

and how to allocate wireless

resources
{

s
(t0)
j

}

) taken at time slot t0 are the decisions at the first slot obtained

from the solution of the lookahead version of optimization (2.5). It is trivial to prove

that the choice of decisions satisfies all the constraints in MIP (2.4).

α
(t0)
ij = α̃

(t0)
ij , ∀i, j (2.9)

s
(t0)
j = s̃

(t0)
j , ∀j (2.10)

2.3.2 Results and Analysis

In this part, we compare our proposed scheduling system with the traditional

layered design, where the social network applications attempt to provide users with

the most rewarding contents regardless of the status of the wireless networks, while

17



the wireless networks attempt to deliver the contents with best effort regardless of

the rewards of contents.

2.3.2.1 Simulation Setup

There are M = 30 users and N = 20 contents in the system. Reward values

fij ’s are independent and uniformly distributed in [0, 1]. Note that this is already

the largest scale within which we could obtain the optimal solution to compare the

results. Content size is independent and uniformly distributed in [10, 20] Mbits. The

scheduling time slot has length of T = 1s and the scheduling horizon is TH = 10.

Each user could receive at mostN0 = 1 content in every scheduling time slot. System

level parameters are shown in Table 2.2 [12].

2.3.2.2 Results

We simulate various instances against different bandwidth, as shown in Fig.

2.2, 2.3. Clearly, joint optimization outperforms the traditional system by a wide

margin. The joint optimization gain increases as the available wireless resources

decrease.

Surprisingly, one-step lookahead scheduling (whether we use mean or max

function as SINR prediction function) does not outperform no-lookahead scheduling.

Due to the extra computation cost (it takes at least 10 times of computation time

to obtain optimization results), it is sufficient to schedule without looking ahead.
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Figure 2.2: Comparison of Overall System Rewards (B = 25 MHz)

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

Scenario #

O
ve

ra
ll 

R
ew

ar
ds

 

 
joint, TL = 1, max prediction

joint, TL = 1, mean prediction

joint, no look ahead
social−only, TL = 1, max prediction

social−only, TL = 1, mean prediction

social−only, no look ahead

Figure 2.3: Comparison of Overall System Rewards (B = 15 MHz)
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Table 2.2: System Level Simulation Parameters

Simulation Parameter Value

UE distribution UEs dropped with uniform density

within the macro coverage area.

Carrier frequency 2.0 GHz

Channel model Typical Urban (TU)

Inter-site distance 1500 m

Noise power spectral density -174 dBm/Hz

Macro BS transmit power 40 W (46 dBm)

Macrocell path loss model 128.1 + 37.6 log10R

(R in km)

Macrocell shadowing model Log normal fading with std. 10 dB

Macro BS antenna gain 15 dBi

2.4 Scaling Up

For real-world systems, the available multicast transmission modes are limited

and pre-determined. Assume the system has K available transmission modes, and

the associated data transmission rates and minimum channel quality requirements

are Rk and SINRth
k , respectively. More formally, we substitute Shannon’s Law in

the data rate function (2.2) with a step function (slightly abusing notation R0 = 0),

denoting K available modes with the order convention Rk−1 < Rk, SINR
th
k−1 <

20



SINRth
k , ∀k = 1, . . . , K:

R(SINR) =
K
∑

k=1

(Rk − Rk−1) · u(SINR− SINRth
k ) (2.11)

Therefore, if we give up the constraints of the maximum number of contents

that are allowed to transmit to a user, we could further reduce the scheduling prob-

lem to deciding on which wireless transmission mode we use to transmit what con-

tents. In this way, the complexity of the problem is significantly reduced. It would

only rely on the number of transmission modes K and contents N , dropping the

number of users M .

For this complexity-reduction version, at slot t0, the reward f̂
(t0)
ij for transmit-

ting content j in wireless mode k is induced from summing up all the rewards of the

users that meet the quality of service requirement of this mode.

f̂
(t0)
jk =

∑

i:SINR
(t0)
i ≥SINRth

k

f̃
(t0)
ij (2.12)

The new scheduling formulation is thus:

maximize
α̂
(t0)
jk

,s
(t0)
j

∑

j,k

α̂
(t0)
jk · f̂

(t0)
jk

subject to α̂
(t0)
jk ∈ {0, 1} ∀j, k

K
∑

k=1

α̂
(t0)
jk ≤ 1 ∀j

α̂
(t0)
jk ·Wj ≤ s

(t0)
j · Rk ∀j, k

∑

j

s
(t0)
j ≤ B · T

s
(t0)
j ≥ 0 ∀j

(2.13)
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The reverse mapping between system decision and decisions for each individual

user is:

α
(t0)
ij =

∑

i,j:f̃
(t0)
ij >0

k:SINRth
k ≤SINR

(t0)
i

α̂
(t0)
jk (2.14)

Apparently, this user-aggregated version of scheduling framework only relies

on N (the number of contents to be scheduled) and K (the number of multicast

transmission modes in the system), thus it is robust against increase in the number

of users in the system.

However, when we relax the constraints on the number of contents delivered to

each individual user, it is important to consider fairness among users. The system

is now evaluated on both average overall reward delivered to each user and fairness

among users.

For each user, the overall reward delivered during the scheduling horizon [0, TH ]

is calculated as:

ui =

TH
∑

t=1

∑

j

α
(t)
ij fij (2.15)

Denote the user average reward and its variation as ū, σ2
u respectively.

ū =
1

M

M
∑

i=1

ui (2.16)

σ2
u =

1

M

M
∑

i=1

(ui − ū)2 (2.17)

We use Jain’s fairness index [13] as a fairness metric.

J (~u) =
ū2

ū2 + σ2
u

(2.18)

where ~u = (u1, . . . , uM). The larger the fairness index, the more fare for a scheduling

result.
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Figure 2.4: Comparison of User Reward (B = 20 MHz) with Full Random Reward

Matrix

Fig.2.4 shows the performance comparison of our proposed scheduling frame-

work and traditional layered design, on a full random reward matrix. Each point

in the graph represents one simulation instance. Clearly, the joint optimization

framework is better in terms of average overall rewards delivered per user and Jain’s

fairness metric.

2.5 Real-World User Rewards

In real-world applications, the reward matrix F = [fij ] is usually sparse due

to multiple factors: (1) naturally, users exhibit diverse interests towards different

contents; (2) technically, it is extremely difficult, if not impossible, to gather enough

information about users, in order to obtain accurate and comprehensive prediction.
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In our system, we do not distinguish between unknown reward or lack of interests,

by assigning zero reward value, i.e. fij = 0, to avoid such transmissions (proof is

trivial due to the formulation of the optimization problem).

We further define the sparseness of the reward matrix as follows:

η =
|{fij : fij > 0}|

M ·N
(2.19)

Obviously, for the full random reward matrix, P[η = 1] = 1.

In light of this observation, we need to examine the performance of our schedul-

ing framework on sparse real-world data sets.

Our empirical analysis is based on two data sets:

1. MovieLens [14]: users’ ratings of different movies. This data set has two sub

data sets. (i) ML-1M, with sparseness of η = 5%, number of total users 6000

and number of total contents 4000. (ii) ML-10M, with sparseness of η = 1%,

number of total users 72,000 and number of total contents 10,000.

2. The Yahoo! Music ratings for User-Selected and Randomly Selected Songs,

version 1.0 data set, which is available through the Yahoo! Webscope data

sharing program. This data set has sparseness of η = 2%, number of total

users 15,400 and number of total contents 1000.

2.5.1 Performance

From Fig.2.5 and Fig.2.6, it is clear that our scheduling framework still works

well for real-world data sets. However, as sparsity of reward matrix increases (η ↓),
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Figure 2.5: Comparison of User Reward (B = 20 MHz) for ML-1M (η = 5%)

the performance gain compared to the existing system diminishes. This result is

intuitive, as multicast works best only when the number of users that are interested

in the same contents is large enough.

2.5.2 Sensitivity and Saturation on Wireless Resources

In this part, we demonstrate the performance sensitivity with respect to avail-

able wireless resources (in our system, bandwidth B). Intuitively, when the wireless

resources are sufficient, the performance solely relies on the numerical reward values

obtained from the social network, as we could deliver all the contents. However, if

the wireless resources are insufficient, the performance of the system shall be reduced

due to its incapability to deliver the contents.

We plot the user average reward and fairness index against bandwidth in
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Figure 2.6: Comparison of User Reward (B = 20 MHz) for Yahoo! Music (η = 2%)

Fig.2.7,2.8 respectively, to analyze the benefits of adding more wireless resources to

the system. Fig.2.9,2.10 shows the performance saturation for our joint optimization

approach when the delivery demand is low compared to the bandwidth.

2.6 Hybrid Systems

Until now, we have been discussing systems that involve no active user requests

for delivery. This assumption is generally valid for a pure recommender system,

in which users passively consume contents delivered to their devices. We define

this delivery method as the ‘push’ operation. However, practical systems are also

required to handle active user requests within a designated timeframe, which we

define as the ‘pull’ operation. The hybrid systems shall handle both ‘push’ and

‘pull’ functions smoothly.
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Figure 2.7: Sensitivity of Average User Reward for ML-1M (η = 5%)
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Figure 2.8: Sensitivity of Fairness for ML-1M (η = 5%)
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Figure 2.9: Sensitivity of Average User Reward for ML-10M (η = 1%)

0.5 1 1.5 2 2.5 3 3.5 4
x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bandwidth/Hz

Ja
in

’s
 F

ai
rn

es
s 

In
de

x 
of

 U
se

r R
ew

ar
d

 

 
joint average
joint best
joint worst
social−only average
social−only best
social−only worst

Figure 2.10: Sensitivity of Fairness for ML-10M (η = 1%)
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Now we formally define the ‘pull’ operation. The user request q could be de-

scribed using the quadruple q = (t0, i, j, tmax) ∈ N
4, denoting the request originates

at slot t0 and demands the system to deliver content j to user i no later than tmax

(deadline). Obviously, in real systems, t0 ≤ tmax. We further assert that all requests

are valid, assuming all requests fulfilled in the past shall not occur again. This

assumption could easily be implemented by serving the transmitted content(s) from

the cache of the user’s device. Denote the set of new and active requests at slot

t as Qnew
t , Qactive

t , respectively, Qserved
t ⊆ Qactive

t as the set of requests served and

Qexpired
t ⊆ Qactive

t as the set of requests expired at the end of the slot. Then,

Qserved
t =

{

q ∈ Qactive
t : α(t)

q2q3
= 1
}

(2.20)

Qexpired
t =

{

q ∈ Qactive
t : q4 = t

}

(2.21)

Qactive
t+1 =

(

Qnew
t+1 ∪Qactive

t

)

\
(

Qserved
t ∪Qexpired

t

)

(2.22)

with the trivial convention Qactive
0 = Qserved

0 = Qexpired
0 = φ.

The validity of requests is described as: ∀q ∈ Qnew
t0

, we have q1 = t0 and

∄q′ ∈
⋃t0−1

t=1 Qserved
t , such that q2 = q′2, q3 = q′3.

The objective for serving the ‘pull’ operation is to serve as many requests as

possible. We could write the optimization problem for ‘pull’ system as:

maximize
Qserved

t

TH
∑

t=1

∣

∣Qserved
t

∣

∣

subject to Wq3 ≤ s(t)q3
· R
(

SINR(t)
q2

)

∀q ∈ Qserved
t

∑

j

s
(t)
j ≤ B · T ∀t

s
(t)
j ≥ 0 ∀j, t

(2.23)
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To integrate this ‘pull’ system with the existing ‘push’ system in Section 2.4, we

add additional reward(s) for requests with respect to their expiration time. Reward

transition in (2.7) is rewritten in part for the ‘pull’ request as:

f̃
(t0+1)
ij =















fij ·
(

1− α
(t0)
ij

)

∃(∗, i, j, t0) ∈ Qexpired
t0

(

f̃
(t0)
ij + λΓ(i, j, t0)

)

·
(

1− α
(t0)
ij

)

otherwise

(2.24)

where the incentive function Γ is exclusively awarded to unexpired active user re-

quests:

Γ(i, j, t0) =















γ (td − t0) ∃(∗, i, j, td) ∈ Qactive
t0 , t0 < td

0 otherwise

(2.25)

To balance between the two types of operations, we introduce a ‘push’ weight

coefficient λ ∈ R+ to configure the bias of hybrid system with respect to user

requests, which reduces to pure ‘push’ system (no active user requests) when λ = 0,

or pure ‘pull’ system (best-effort to serve all active user requests) when λ =∞.

In this way, we seamlessly integrate the recommender system and active user

requests together to form a hybrid delivery system that could deal with both types

of content delivery. Essentially, if we did not yet schedule transmission for the

request(s), we shall add additional reward(s) as time goes by. In doing so, we steer

the system in the direction to accomplish such requests before deadlines for the

active user request(s).

To capture the urgency when approaching the request deadline, we could wisely

choose the γ function to properly prioritize these requests. One possible function is:

γ(t) =
1

t
(2.26)
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The maximum additional award for a request is thus

Γmax =

Td
∑

t=1

1

t
(2.27)

In hybrid systems, we are evaluating the performance of both the overall user

rewards delivered by the ‘push’ operation and total served requests coming from the

‘pull’ operation.

In the simulation, new user requests are generated at the beginning of each

scheduling time slot with same expiration time Td.

q4 = q1 + Td, ∀q (2.28)

The number of requests per slot follows independent and identical uniform distri-

bution U [0, 3]. The requests at slot t0 are uniformly selected in random from an

unfulfilled set of user-content pairs
{

(i, j) : f̃
(t0)
ij > 0

}

so that the transmission has

not been scheduled before slot t0.

We plot the performance (percentage of missed ‘pull’ requests and overall user

rewards delivered) of our hybrid system with scheduling horizon TH = 60s and

different deadlines Td in Fig.2.11(a),2.12(a) (with Td = 5) and Fig.2.11(b),2.12(b)

(with Td = 10) for comparison. Obviously, the larger the ‘push’ weight coefficient

λ, the fewer missed user requests, but the less overall system reward.

2.7 More System-Level Statistics

System operators need to consider multiple aspects in order to optimize their

operations and return of investment. In this section, we provide more statistics of
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Figure 2.11: Performance for Hybrid System (ML-100K)
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Figure 2.12: Performance for Hybrid System (ML-1M)
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our scheduling framework to demonstrate the advantages of cross-layer joint opti-

mization.

2.7.1 Resource Utilization

Since spectrum is the most valuable resource in the system, it is a requirement

for the system design to ensure that the resource utilization υ is high.

υt =
1

B(t) · T

∑

j

s
(t)
j (2.29)

Our scheduling framework achieves very high resource utilization per slot,

as shown in Fig.2.13. Obviously, the concern for the worst-case scenarios in the

MIP problem, in which a substantial portion of the capacity remains unused, is

not present in the system and thus the concern is well addressed. Further, unused

wireless resources, if any, could be released for other purposes (e.g. normal one-to-

one unicast).

2.7.2 Contents Scheduled

In this part, we present the statistics regarding the scheduled transmissions

in terms of the rewards delivered and wireless resources used. Intuitively, from the

perspective of system operators, it is desirable to transmit contents with higher

values using fewer resources, i.e. higher reward per unit resource.

This is confirmed by Fig.2.14,2.15, in which we provided the heat map of the

normalized intensity of scheduled contents, for both the wireless resource scheduled

(s
(t)
j ) on the x-axis and reward (

∑

i α
(t)
ij · f̃

(t)
ij , which includes the additional reward
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Figure 2.13: Statistics for Wireless Resource Utilization υ

for ‘pull’ requests, since we consider the actual input for the scheduler) on the y-axis

for each content transmission. As illustrated, most of the scheduled contents employ

only a small portion of the overall wireless resources. It appears that a lower bound

exists for the reward delivered per unit wireless resource (or the slope in the figures),

though such lower bounds are different for different data sets. The lower bounds

will be helpful in further reducing the runtime of solving the MIP problem for the

optimal.

2.8 Device-Side Improvements

Up to now, we are investigating the efforts at base station (or server) side.

Yet, our optimization mechanism would be incomplete until we investigate how to

improve the system performance at the device side as well.
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Figure 2.15: Statistics for Scheduled Contents (ML-1M, Td = 10)
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We observe the following facts:

1. Different users have different device profiles (including usage, storage, remain-

ing battery, etc.), hence it is important that the base stations schedule trans-

missions accordingly.

2. Most users possess multiple mobile devices (e.g. tablets, smart phones) and

they frequently use these devices interchangeably. These modern devices are

equipped with near-field communication (NFC) capability, i.e. transmissions

between nearby devices consume almost negligible battery and wireless re-

sources. We seldom need to worry about scheduling these NFC transmissions.

Better still, users are universally willing to accept coordination between their

devices without hesitation, while it is generally much harder to convince them

to help other users.

Therefore, we incorporate the following improvements to the system:

1. Devices periodically report their reward threshold ε
(t)
i , based on profiles. The

system would only schedule for the transmissions of the contents with reward

values greater than the reported threshold. This is done by revising (2.12) to

(2.30), and (2.14) to (2.31) correspondingly.

2. The system treats the devices belonging to the same individual user as one

and schedules transmissions only to the device with the best channel, rather

than solely transmitting to the device users are actively using. In other words,

the device with the best channel serves as a relay for all other devices of the

user.
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f̂
(t0)
jk =

∑

i:SINR
(t0)
i ≥SINRth

k

1
(

f̃
(t0)
ij > ε

(t0)
i

)

· f̃ (t0)
ij (2.30)

α
(t0)
ij =

∑

i,j:f̃
(t0)
ij >ε

(t0)
i

k:SINRth
k ≤SINR

(t0)
i

α̂
(t0)
jk (2.31)

2.9 Summary

In this chapter, we investigate the basic social content delivery system with

single base station and time-invariant reward, given the constraints from the wireless

networks. We propose a framework that evaluates the performance of the system

in terms of overall delivered rewards. To optimize system performance, we need to

schedule contents and wireless resources according to the solution of a MIP problem,

which requires exponential time to obtain the optimal solution. Results show that

myopic optimization (without lookahead) yields to sufficiently good performance.

We further reduce the complexity of the joint optimization approach to rely only

on the number of candidate contents and system transmission modes, regardless

of the number of users, by aggregating user rewards at each supported multicast

transmission mode.

The simulation results indicate that our joint optimization approach provides

better system performance than the traditional layered systems that schedule con-

tents without considering constraints of wireless networks. The joint optimization

gain is significant when the resources of the wireless network are comparatively in-

sufficient, either due to the fact that (i) the number of users is large, and/or (ii) the
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conditions of the wireless channel are not good for a large number of users. The

scheduling is also fair among users in terms of overall rewards received by each user

during the scheduling horizon.

Moreover, we investigate the performance of a hybrid system, by introducing

additional rewards for user generated requests (‘pull’ operation) with deadlines. This

hybrid system provides a natural way to balance the resource allocation between

suggested contents generated by a recommender system and actual user requests. It

further proves that our joint optimization framework is a suitable scheduling solution

for social content delivery.
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Chapter 3: Joint Optimization for Time-Invariant Rewards with Mul-

tiple Base Stations

3.1 Overview

In this chapter, we extend the system design in Chapter 2 to scenarios with

multiple base stations and investigate the content delivery problem with capacity

constraints in a system with centralized heterogeneous wireless infrastructure. In

addition to Chapter 2, in a system with multiple base stations, we need to decide

which base station serves the users and how the base stations coordinate. It is not

a simple extension: the complexity of the system builds up significantly, due to the

added freedoms and constraints introduced by new configurations, including but not

limited to power control and interference management. However, the timeliness of

the online scheduling framework remains essential to the system.

We propose a scalable two-phase scheduling framework, consisting of:

1. distributed delivery decisions by each base station;

2. resource consolidation by the system.

The first step localizes and reduces the problem to several instances of simple sin-

gle base station scheduling problem in Chapter 2. The second step reduces the
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transmission redundancy of the system brought by the first step.

We introduce our system model and evaluation framework in Section 3.2. So-

lutions to two types of system configuration regarding resource allocation are dis-

cussed: ‘out-of-band’ system in Section 3.3, and ‘in-band’ system in Section 3.4.

The performance is presented in Section 3.5 and we summarize our conclusions in

Section 3.6.

3.2 Problem Formulation

3.2.1 General System Model

We consider a centralized system that both

1. selects contents to deliver according to user rewards given wireless capacity

constraints; and

2. delivers the contents to users via a wireless network comprising of different

types of base stations (as illustrated in Fig.3.1).

Channel information of all users for all base stations at all time slots
{

SINR
(t),l
i

}

are reported to the system. We assume the bandwidth of the wired connections

among the base stations and between base stations and content server(s) is sufficient,

such that the base station could access contents as if they are stored locally. This

assumption is valid in practice because the base stations are generally connected

via fiber optic cables. Additionally, with the rapid developments of memory chips,

the storage on user devices is sufficient to precache all the contents that users are

42



possibly interested in within the scheduling horizon TH . Intuitively, the contents

that a user could and is willing to consume are bounded in both number and size.

The system is comprised of L base stations and is slotted with perfect synchro-

nization (slot length T ). At time slot t, each base station l is allocated bandwidth

B(t),l for transmission.

There are M users and N contents to be scheduled. Contents are delivered to

users using multicast and each scheduled content is transmitted within one schedul-

ing slot to avoid system complexity. The reward of delivering content j to user i is

denoted as fij , which remains unchanged during the scheduling horizon. The spec-

ified reward could only be claimed in whole at most once (i.e. partial transmission

earns no reward and repeated transmissions do not earn additional rewards).

The objective of the system is to maximize overall user rewards obtained during

the scheduling horizon, subject to the wireless capacity constraints.

max

TH
∑

t=1

∑

l

∑

i,j

α
(t),l
ij fij

s.t. α
(t),l
ij ∈ {0, 1} ∀i, j, t, l

TH
∑

t=1

∑

l

α
(t),l
ij ≤ 1 ∀i, j

QoS
(

Wj,
{

s
(t),l
j

}

,
{

SINR
(t),l
i

})

= 1 ∀α(t),λ
ij = 1

∑

j

s
(t),l
j ≤ B(t),lT ∀t, l

s
(t),l
j ≥ 0 ∀j, t, l

(3.1)

We render two types of decisions (though the delivery decisions also intertwine

with how to transmit):
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Figure 3.1: System Model: Macro and Pico Cells. Macro cells are generally respon-

sible for signal coverage, while pico cells are responsible for increasing capacity in

the area with heavy traffic.

1. What to transmit: binary delivery decision variable α
(t),l
ij indicates whether or

not to transmit content j to user i at time slot t using base station l;

2. How to transmit: resource allocation s
(t),l
j denotes how many wireless resources

of base station l to allocate for content j at time slot t.

Note that (3.1) is only an offline version. In light of Chapter 2, its myopic

online version (scheduling at each time slot without lookahead) performs relatively

well. Additionally, the Quality of Service (QoS) requirements (binary indicator

function with 1 denoting feasible and 0 infeasible) in the formulation are dependent

on system configurations (e.g. power allocation, spectrum sharing or not).

In order to increase capacity and improve performance, especially at the edge

44



of the cell, design of heterogeneous cells is introduced in modern cellular systems.

There are mostly two types of cells in the systems: 1) macro cells that primarily

provide coverage guarantee to ensure user connectivity; 2) pico cells that provide

additional capacity to increase system performance at the edge of the macro cells to

mitigate poor user Signal-to-Interference-Noise Ratio (SINR). There are generally

two types of pico cells: one employing additional wireless resources (‘out-of-band’),

and the other sharing the same with macro cells (‘in-band’).

Table 3.1 summarizes definitions of parameters.

3.2.2 Two-Phase Scheduling

The scheduling framework consists of two phases at each scheduling time slot

t: delivery decisions and resource consolidation.

3.2.2.1 Delivery Decisions

In this phase, given the dedicated wireless resources allocated to it, each base

station individually and independently decides the following:

1. what contents to deliver to users
{

α
(t),l
ij

}

; and

2. resource allocation for the scheduled contents
{

s
(t),l
j

}

.

This phase is naturally distributed.
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Table 3.1: Summary of Variables

Notations Definition

M Number of users.

N Number of contents.

L Set of base stations.

fij Reward for delivering content j to user i.

α
(t),l
ij Binary decision variable for base station l

whether to transmit content j to user i at time slot t.

B(t),l Total available bandwidth for base station l

at time slot t.

s
(t),l
j Wireless resource allocated at base station l

for content j at time slot t.

SINR
(t),l
i Signal-to-Interference-Noise ratio of user i

for base station l at time slot t

Wj Size of content j in bits

3.2.2.2 Resource Consolidation

In this phase, the system improves the decisions and resource allocation ob-

tained in the previous phase, e.g. by reducing duplicate transmissions. It is possible

that the system changes both the delivery decisions and configurations of wireless re-

sources to enhance the overall spectrum efficiency. Some resources might be released

for new allocation. This phase is centralized.
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The two phases could be repeated if needed.

3.2.3 Decision Redundancy

Obviously, redundant transmissions are inevitable if each base station makes

its decision individually.

Redundant decision is defined as: ∃i, j, t1, t2, l1, l2 and (t1, l1) 6= (t2, l2), such

that α
(t1),l1
ij = α

(t2),l2
ij = 1. Due to system design, we could guarantee that if specific

content has been transmitted to a user before, it is not retransmitted in future

slots. However, such a guarantee does not exist within the same time slot in the

delivery decisions phase. Consequently, we are able to reduce the complexity of the

optimization and ensure timeliness.

We denote the percentage of redundant decisions for the system ρt ∈ [0, 1] at

time slot t as:

ρt =
‖{(i, j) :

∑

l α
(t),l
ij > 1}‖

‖{(i, j) :
∑

l α
(t),l
ij ≥ 1}‖

(3.2)

Ideally, we want to achieve zero redundancy in transmissions: ρt = 0, ∀t. If every

base station schedules its own content transmissions without coordination, intu-

itively, we could encounter arbitrarily high redundancy.

3.2.4 Wireless Resource

Generally, there are two types of resources allocated to pico base stations in

cellular networks: 1) ‘Out-of-band’: pico base stations employ spectrum exclusively;

2) ‘In-band’: pico base stations share spectrum with other base stations. The differ-
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ence between these two types of configurations lies in their respective interference.

‘Out-of-band’ resource results in an optimal signal, but we are unable to utilize the

spatial separation of the scheduled users. ‘In-band’ resource introduces interference,

but it is possible to mitigate the negative impact by careful power allocation.

3.3 System with ‘Out-of-Band’ Resources

For ‘out-of-band’ systems, the base stations do not share spectrum with each

other. In these systems, we are scheduling the cells (whether macro or pico) with

their dedicated wireless resource to transmit, i.e. no interference. Existing sys-

tems usually schedule the cell with which user achieves highest Signal-to-Noise ratio

(SNR). However, with regard to our joint optimization system, this might not nec-

essarily be the only solution (if not the worst).

In light of the results in the single cell scenario in Chapter 2, we focus on ‘push’

only systems in this chapter, i.e. the system attempts to deliver contents without

consideration of user-generated requests. It is easy to employ the same technique in

Chapter 2 of altering reward values to incorporate the impact of user requests.

In this chapter, we focus on one macro cell with several pico cells: L =

{macro} ∪ Lpico. With slight abuse of notation, we drop the dependency on time

slot in (3.1), as results in Chapter 2 indicated that myopic optimization performs

fairly well and runs significantly faster. At each time slot t, we obtain content de-

livery decisions
{

α
(t),l
ij

}

and resource allocation
{

s
(t),l
j

}

based on the solution to the

optimization problem, constructed as a mixed integer programming problem as in
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(3.3):

maximize
α
(t),l
ij ,s

(t),l
j

∑

l

∑

i,j

α
(t),l
ij f

(t)
ij

subject to α
(t),l
ij ∈ {0, 1} ∀i, j, t, l

∑

l

α
(t),l
ij ≤ 1 ∀i, j

α
(t),l
ij Wj ≤ s

(t),l
j R(SNR

(t),l
i ) ∀i, j, l, t

∑

j

s
(t),l
j ≤ B(t),lT ∀t, l

s
(t),l
j ≥ 0 ∀j, t, l

(3.3)

With slight abuse of notation, reward value of delivering content j to user i at time

slot t is

f
(t)
ij = f

(t−1)
ij

(

1−max
l

α
(t−1),l
ij

)

(3.4)

with initial values

f
(1)
ij = fij (3.5)

This approach is different from existing systems, in that it considers the over-

all system rewards first rather than scheduling users to specific cells before content

decision. It is intuitive due to the broadcast nature of wireless communications: all

users with adequate channel states could obtain the content, thus reducing redun-

dant transmissions of identical content. An extreme but illustrative example is the

scenario where all users in the macro cell are interested in one content: if the cell

selection happens first, both macro and pico base stations would transmit it, which

might be inefficient in certain circumstances.

Our scheduling framework reduces the dependency among time slots, but it
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is still difficult to scale up. The major constraint that disables us from distributing

the decision process to each individual base station is the single transmission con-

straint, i.e. each user shall only receive the same content once, regardless of the cells

selected to transmit. So we remove the single transmission constraints and let each

base station render its delivery decisions locally, either by solving the mixed integer

programming (3.3) for the optimal or by employing greedy algorithms. This way,

the first phase is fast and distributed.

Therefore, the problem now is to reduce the decision redundancy ρ in the

‘out-of-band’ systems.

To begin with, we define a partial order for resource allocation decisions

(s1, . . . , sL) as follows. Allocation decision ~s1 = (s11, . . . , s
|L|
1 ) precedes ~s2 with re-

gards to utility function f(denoted as ~s1 �f ~s2), iff si1 ≤ si2, ∀i = 1, . . . , |L| and

f(~s1) ≤ f(~s2).

We define the overall reward function R for content j given wireless resource

allocation ~s at time slot t0 as follows:

R
(t0)
j (~s) =

∑

i

f
(t0)
ij ·max

l
111

(

R
(

SNR
(t0),l
i

)

≥
Wj

sl

)

(3.6)

Therefore, given initial resource allocation ~s0, if we cannot find any ~s 6= ~s0, such

that ~s �−R ~s0, then we claim such resource allocation ~s0 is non-improvable.

For each content j, we consolidate the resource allocation ~sj,0 rendered by

each individual cell using the Greedy Decision Deduplication Algorithm shown in

Fig.3.2 with respect to an ordered permutation L̂ of base station set L. Note, in the

algorithm, we employ the trivial fact that each base station would schedule content
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if user SNR satisfies QoS requirements and user yields positive reward towards the

content. This is due to the additive property of the objective function.

We prove that the new resource allocation ~sj is non-improvable.

Theorem 1 (Non-improvability of Greedy Decision Deduplication Algorithm). The

result obtained by the Greedy Decision Deduplication Algorithm is non-improvable

and without decision redundancy, i.e. ρ = 0.

Proof. The decision redundancy part is straightforward as outlined in the algorithm:

all the redundant delivery decisions are removed. At most one base station will serve

the user.

Proof of non-improvability by contradiction.

Without loss of gennerality, we start with L̂ = {1, . . . , |L|}. Denote ~s =

GreedyDecisionDeduplication(~s0). Trivially, if we use fewer wireless resources, we

will achieve no better performance, or ∀~s′ � ~s, we have R
(t0)
j

(

~s′
)

≤ R
(t0)
j (~s). The

loop invariance of the greedy algorithm ensures that whether a user is served or

not remains unchanged before or after the algorithm; therefore R
(t0)
j (~s) = R

(t0)
j (~s0).

Hence, we only need to prove ∄~s′ � ~s, ~s′ 6= ~s, such that R
(t0)
j

(

~s′
)

= R
(t0)
j (~s).

Assume the contrary and denote the index of first discrepancy as l0, i.e. sl =

s′l, ∀l ∈ {1, . . . , l0 − 1}, sl0 < s′l0 . After each loop, all the users that could be served

by other cells are offloaded and only the users that could not be served by any

other cell will remain within the cell. Since s′l0 < sl0 , there exists at least one user

that could be offloaded to other cells, which is contradictory to what the algorithm

dictates. Therefore, the contrary assumption could not hold.
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Require: User SNR for each base station
{

SNRl
i

}

, delivery decisions of each base

station {αl
i}, content size W .

1: procedure GreedyDecisionDeduplication(~s0, L̂)

2: ~s← ~0

3: for l ← {1, . . . , |L̂|} do

4: for i0 ← {i : α
L̂l

i = 1} do

5: α̃L̂l

i0
← 1 ⊲ Initialization

6: for l′ ← {l + 1, . . . |L̂|} do

7: if α
L̂l′

i0
== 1 then ⊲ If another BS could deliver the content

8: α̃L̂l

i0
← 0 ⊲ Unload user i to other base stations.

9: if α̃L̂l

i0
== 1 then

10: sL̂l ← max

(

sL̂l, W

R

(

SNR
L̂l
i0

)

)

⊲ Recalculate resource allocation

given new association.

11: return ~s, {α̃l
i} ⊲ Returns the new resource allocation and content delivery

decisions.

Figure 3.2: Greedy Decision Deduplication Algorithm
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Theorem 2 (Complexity of the Greedy Decision Deduplication Algorithm). The

complexity of the Greedy Decision Deduplication Algorithm is O(M · |L|), and can

be improved to O(M · Lmax), where Lmax is the maximum number of cells a user

could associate with:

Lmax = max
i

∑

l

111
(

SNRl
i ≥ SINRth

)

(3.7)

Therefore, using the Greedy Decision Deduplication Algorithm, we could ef-

ficiently and quickly figure out the overall resource allocation among different cells

to deliver the same content without redundancy (ρ = 0). This essentially breaks

down the large optimization problem containing multiple cells into a set of small

optimization problems for each individual cell, hence reducing the complexity for

scheduling.

3.4 Systems with ‘In-Band’ Resources

For ‘in-band’ systems, different base stations could utilize the same wireless re-

sources. It is not guaranteed to perform better, because simultaneous transmissions

introduce undesirable interference at the receiver. However, if the users (receivers)

are spatially separated, such interference might not degrade quality of service for

intended transmissions and therefore might save wireless resources system-wide.

This is a much harder problem, because we could change user SINR by adjust-

ing the transmit power of each base station. To reduce scheduling complexity, we

could initially treat ‘in-band’ systems just like ‘out-of-band’ systems, as discussed

in Section 3.3, by allocating dedicated wireless resources to individual cell and ap-
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plying the Greedy Decision Deduplication Algorithm to reduce redundant delivery

decisions from different base stations. Afterwards, we determine whether we could

further consolidate the wireless resources, by deciding whether or not to share the

spectrum to transmit, in order to achieve better spectrum efficiency.

Therefore, with ‘in-band’ wireless resources, we need to decide whether sharing

the spectrum would be efficient for the base station set L. Denote the set of users

scheduled for transmission at base station l as Ul = {i : αl
i = 1}. Denote the

SINR for spectrum sharing given a power allocation vector ~P as S̃INR(~P ). We have

∀l ∈ L, the minimum SINR for scheduled users is:

S̃INR
l

(~P ) = min
i∈Ul

S̃INR
l

i(
~P ) (3.8)

where the SINR from base station l to user i given the power allocation ~P ∈ R|L|+ is

denoted as:

S̃INR
l

i(
~P ) =

hl,iPl

N0 +
∑

q 6=l

hq,iPq
(3.9)

We denote hq,i as channel gain from base station q to user i.

Specifically, the SINR for transmission without spectrum sharing is SNR.

SNRl
i =

hl,iPl,max

N0

= S̃INR
l

i(0, . . . , Pl,max, . . . , 0)

(3.10)

Trivially,

S̃INR
l

(~P ) < SNRl = min
i∈Ul

SNRl
i (3.11)

With slight abuse of notation, we omit ~P in the following discussions for sim-

plicity, but any variables with tilde imply their dependencies on the power allocation

vector ~P .
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Obviously, the resource allocation is based on the scheduled user(s) with worst

wireless channel state, with or without spectrum sharing:

sl = max
i∈Ul

Wl

R
(

SNRl
i

) =
Wl

R
(

SNRl
) (3.12)

s̃l =
Wl

R

(

S̃INR
l
) = sl ·

R
(

SNRl
)

R

(

S̃INR
l
) (3.13)

Denote

s̃min = min
l

s̃l = min
l

(

sl
c̃l

)

(3.14)

with rate decay ratio c̃l for base station l defined as

c̃l =
sl
s̃l

=

R

(

S̃INR
l
)

R
(

SNRl
) , ∀l ∈ L (3.15)

Apparently, 0 ≤ c̃l ≤ 1.

The overall resource allocated for spectrum sharing among the base station

set L is thus comprised of interfered and non-interfered parts:

s̃ = s̃min +
∑

l∈L

(

1−
s̃min

s̃l

)

· sl (3.16)

We could decide whether to share spectrum to transmit depending on:
∑

l sl ≷

s̃

The wireless resource saved by sharing spectrum ∆̃ could be written as

∆̃ =
∑

l

sl − s̃

= s̃min

(

∑

l∈L

c̃l − 1

) (3.17)

Therefore, we have the improvement condition:
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Theorem 3 (Spectrum-Sharing Criterion). Spectrum sharing uses less resource for

the rate decay ratio vector c̃ = (c̃1, . . . , c̃|L|) ∈ [0, 1]|L|, iff

∑

l∈L

c̃l > 1 (3.18)

Note that the discussion above is independent of which contents are being

transmitted, therefore, it could be applied to different and/or identical contents,

rather than deduplicating delivery decisions for the same contents, as in the ‘out-

of-band’ discussion.

If the available transmission modes are limited, as in practical systems (e.g.

LTE [15]), we can transform the problem into feasibility problems with different

parameters. The basic formulation is as follows: given the target SINR level SINRkl
th

for transmission mode kl ∈ {1, . . . , K} at each base station l ∈ L, determine whether

a power allocation vector ~P for spectrum sharing exists such that,

S̃INR
l

i(
~P ) ≥ SINRkl

th, ∀i ∈ Ul (3.19)

Trivially, we require mutual exclusiveness (3.20):

Ul1 ∩ Ul2 = ∅, ∀l1 6= l2 ∈ L (3.20)

Essentially, it is equivalent to a feasibility problem with respect to the linear

constraint set:

−
hl,i

SINR
kl
th

Pl +
∑

q 6=l hq,iPq +N0 ≤ 0 ∀i ∈ Ul

0 ≤ Pl ≤ Pmax
l ∀l ∈ L

(3.21)

We could further normalize the constraint set to

− pil

SINR
kl
th

ξl +
∑

q 6=l piqξq ≤ −1 ∀i ∈ Ul

0 ≤ ξl ≤ 1 ∀l ∈ L

(3.22)
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where pil is the maximum receiver SNR of user i for base station l

pil =
hl,i

N0

Pmax
l (3.23)

The power allocation for each base station is thus a feasible solution to the linear

programming constraint set

Pl = ξlP
max
l (3.24)

The feasibility problem with respect to linear constraint set is a special form

of linear programming problem, which could be solved efficiently and fast in most

practical problems by the Simplex algorithm. Therefore, the problem of wireless

resource consolidation among base stations is reduced to a solvable form.

For each candidate decision of transmission modes (k1, . . . , k|L|) ∈ {1, . . . , K}|L|

that satisfies (3.25), we run a feasibility test for constraint set (3.22) to determine

if a power allocation solution is available for such decision

∑

l∈L

Rkl

R
(

SINRl
) > 1 (3.25)

3.4.1 Coordinated Multi Point Transmission

As [16] suggested, multiple base stations, if fully connected and synchronized,

could cooperate and transmit the same signal simultaneously to increase the SINR

by transforming interference into a useful signal. Obviously, it is an ideal addition

in our application scenario, as long as it could actually be implemented.

It is easy to incorporate such technology in our scheduling framework. As long

as the base stations are delivering the same content(s), we need to obtain the power
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configuration for all the base stations L based on the feasibility test of multicast

mode k for the base station cooperation set Lc:

− 1
SINRk

th

∑

l∈Lc

pilξl +
∑

l /∈Lc

pilξl ≤ −1 ∀i ∈
⋃

l∈Lc

Ul

0 ≤ ξl ≤ 1 ∀l ∈ L

(3.26)

3.5 Simulations and Results

3.5.1 Simulation Setup

There are M = 300 users and N = 600 contents in the system. As far as we

understand, there are no generative models available that could mimic real-world

data, so we settle on data-driven simulations. Reward values fij ’s are taken from

data sets of Yahoo [14] and MovieLens [17], and normalized to [0, 1].

Content size is independent and uniformly distributed in [5, 40] Mbits. The

scheduling time slot has length of T = 1s and the scheduling horizon is TH = 10.

System level parameters are shown in Table 3.2 [12].

There is one macro base station and two pico base stations. The two pico

base stations are located with a distance of 1.9r (where r is the designed range

for a pico base station), ensuring there is certain but not major coverage overlap

of the two pico base stations. The pico base stations are assigned equal spectrum

resources in the delivery decisions phase and such assignment is time-invariant, i.e.

B(t),l = Bl. Each base station makes its delivery decisions by solving the mixed

integer programming problem (3.3) for the optimal.
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Figure 3.3: Decision Redundancy for ‘Out-of-Band’ Systems.

3.5.2 Results

3.5.2.1 ‘Out-of-Band’ Systems

We first present the distribution of decision redundancy ρ for the ‘out-of-band’

systems in Fig.3.3. The redundancy is higher when pico base stations are allocated

with more resources. This is intuitive because with more resources, pico base stations

could deliver more contents, and thus introduce redundancy. We also observe that in

more than 60% of the scheduling instances, there would be no decision redundancy,

indicating that the distributed delivery decisions phase of our proposed scheduling

framework works reasonably well for real-world data. At the same time, decision

redundancy in certain instances could be as high as 65%, indicating that decision

deduplication must be more than optional.
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3.5.2.2 ‘In-Band’ Systems

The results of ‘in-band’ systems are presented in Fig.3.4, 3.5. In the figures,

we plot the maximum resource saved by spectrum sharing, normalized with re-

spect to overall spectrum available, among all base stations. The results are even

more impressive if we choose to normalize against overall resource used (rather than

available) for all base stations before resource consolidation, but it is not a fair

comparison and might elude the big picture.

As the bandwidth dedicated to pico base stations increases, the resource con-

solidation phase saves more, illustrated in both the cumulative distribution function

and the average. In certain scheduling instances, it could save as much as 38% of

the overall available resources, or 76% of the wireless resources allocated to the pico

base stations. We could either reapply the saved resource in the two-phase schedul-

ing framework or release it for other purposes. Note that we are only plotting (one)

maximum saving scheme. It is possible to employ non-exclusive saving schemes to

save even more. Further, if we are allowed to drop certain ‘difficult’ users, or math-

ematically, users with contradictory constraints in (3.22), we could potentially save

more wireless resources, but at the expense of losing user rewards.

We can conclude from Fig.3.4 that there is a nontrivial portion of situations

in which the resource consolidation does not help. One extreme example is that all

base stations decide to transmit to the same set of users with different contents.

In this case, no spectrum sharing is obviously the best solution. In our two-phase

framework, we are only aiming to reduce redundant transmissions, rather than com-
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Figure 3.4: Saved Wireless Resources for ‘In-Band’ Systems.

peting transmissions. The latter has been inherently reduced in the system design

because the first phase of the scheduling framework executes with dedicated wireless

resources.

The P90 of runtime of feasibility tests is 623µs.

3.6 Summary

We investigated a centralized wireless content delivery system with heteroge-

neous base stations, aiming to optimize overall user experience given the capacity

constraints of the wireless networks. We proposed a scalable two-phase scheduling

framework, consisting of: 1) distributed delivery decisions by each base station, and

2) centralized resource consolidation by the system. We tested the design using real-

world rating data sets and the results indicate this novel approach is both efficient
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Figure 3.5: Average Saved Wireless Resources for ‘In-Band’ Systems.

and scalable. The scheduling framework is able to incorporate both the objective

of social networks to harvest more overall user rewards and the capacity constraints

of the wireless networks. More importantly, this framework is scalable and requires

minimal information exchange between social networks and wireless networks and

among base stations. With a resource consolidation phase, we could further uti-

lize spectrum sharing and power allocation to use fewer wireless resources, hence

increasing system efficiency.

There are no explicit references to the hierarchy of the base stations in this

chapter, except for the priority order of different base stations in the Greedy Deci-

sion Deduplication Algorithm. Therefore, this work could be naturally extended to

scenarios with multiple macro base stations.

Future work for this chapter includes extending this framework by relaxing
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the commitments to the delivery decisions made by each base station in scheduling

phase 1. Such commitments are expensive, because in certain situations, the edge

users prohibit coordination of base stations, due to the conflicting requirements (one

user’s signal is another’s interference).
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Table 3.2: System Level Simulation Parameters

Simulation Parameter Value

UE distribution Uniformly dropped within respective cells.

Macro: 25%, Pico: 75%.

Carrier frequency 2.0 GHz

Bandwidth 20 MHz

Channel model Typical Urban (TU)

Inter-site distance 750 m

Noise power spectral density -174 dBm/Hz

Macro BS transmit power 40 W (46 dBm)

Macro cell path loss model 128.1 + 37.6 log10R

(R in km)

Macro cell shadowing model Log normal fading with std. 10 dB

Macro BS antenna gain 15 dBi

Pico BS transmit power 250 mW (24 dBm)

Pico cell path loss model 140.7 + 36.7 log10R

(R in km)

Pico cell shadowing model Log normal fading with std. 6 dB

Pico BS antenna gain 5 dBi
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Chapter 4: Joint Optimization for Time-Variant Rewards with Sin-

gle Base Station

4.1 Overview

In the real world, user rewards are hardly static since they evolve with time,

though the dynamics governing such evolutions still remain an open question. Intu-

itively, just like any contagious disease, the evolutions are ‘viral’, in that they require

certain forms of interactions between the users, be it ‘share’, ‘like’, rate or comment.

Particularly, researchers have already confirmed the effectiveness of friend’s recom-

mendations compared to those generated by the algorithm [18]. In fact, as the

commercial success of Facebook demonstrates, users are more vulnerable to the in-

fluence of other users than that of machine suggestions. In other words, users are

highly likely to consume contents (even ads) that are disseminated by actual human

users, especially by their friends. Modern social networks significantly reduce the de-

gree of separations between users [19] and ‘infection’ time using attention-grabbing

mobile notifications, which in turn makes these interactions more pervasive.

Unlike Chapter 2 and Chapter 3, in this chapter, we are taking the dynamics

of social networks into account: the reward values are time-variant due to the in-
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teractions between users. An intuitive example of the importance of the dynamics

is that the contents only become more rewarding and viral after certain users (e.g.

celebrities, public figures) consume and spread them.

According to [20], content dissemination (or ‘cascade’) in social network gen-

erally follows a diffusion process. The cascades are predictable with high precision

based on user profiles. Fast algorithms are developed in [21] to infer network diffu-

sion parameters for a continuous time diffusion model. However, the models used

at social network layer failed to consider the fact that mobile delivery can be the

bottleneck of social content dissemination.

In this chapter, we investigate the content dissemination problem with capacity

constraints in a system with centralized wireless infrastructure. We need to decide

what contents to transmit to which users and how to transmit them.

We introduce our system model and evaluation framework in Section 4.2. The

impact of delivery delay is presented in Section 4.3 and we propose look-ahead

scheduling based on predictions of social dynamics in Section 4.4. The performance

is analyzed in Section 4.5 and we summarize our conclusions in Section 4.6.

4.2 Problem Formulation

4.2.1 General System Model

We consider a centralized system that both selects contents to deliver according

to user rewards given wireless capacity constraints and delivers the contents to users

via a wireless network comprising different transmission modes, as illustrated in
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Figure 4.1: System Model: The disseminating contents are propagated from influ-

encer(s) to influencee(s) based on influence graphs (the boldness of the edge demon-

strate its ‘strength’), while the wireless networks are responsible to deliver them to

user devices.

Fig.4.1. Channel information of all users for all base stations are known to the system

and we assume the bandwidth of the wired connections among the base stations and

between base stations and content server(s) is sufficient that the base station could

access contents as if they are stored locally. This assumption is valid in practice

because base stations are generally connected via fiber optic cables. Trivially, with

developments of memory chips, the storage on user devices is sufficiently large to

precache all the contents scheduled for delivery.
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In this chapter, we focus on a slotted single base station scenario with K mul-

ticast modes and slot length T . The same as Chapter 2, we complete transmitting

any content within one scheduling slot to avoid management complexity of multicast

groups. The objective is to maximize overall user rewards of the system subject to

capacity constraints.

max

TH
∑

t=1

∑

k

∑

i,j

α
(t),k
ij f

(t)
ij

s.t. α
(t),k
ij ∈ {0, 1} ∀i, j, k, t

TH
∑

t=1

∑

k

α
(t),k
ij ≤ 1 ∀i, j

s
(t)
j · Rk ≥Wj ∀α(t),k

ij = 1

SNR
(t)
i ≥ SNRth

k ∀α(t),k
ij = 1

∑

j

s
(t)
j ≤ B(t)T ∀t

s
(t)
j ≥ 0 ∀j, t

(4.1)

Reward for transmitting content j to user i is time-variant f
(t)
ij ∈ [0, 1] (unlike

Chapter 2 and 3). Given the optimization formulation in (4.1), only contents with

positive reward values would be scheduled for transmission.

The time-variance of reward usually comes from the following two aspects:

1. social dynamics: users become more (or less) interested in a content than

before, due to other users (either their own behaviors or interactions); and/or

2. information revelation: after gathering sufficient information regarding users

(or their peer), the social networks may adjust previous predictions.
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In this chapter, we model the time-variance based on social dynamics. Specif-

ically, we focus on the content dissemination with the help of influence graphs.

4.2.2 Content Dissemination Without Delivery Delay

At social layer, for a given content without delivery delay, we model the

continuous-time reward change as activation process: reward for user i to consume

the content (j omitted in notation for simplicity) at time slot t is dependent on

reward value fi and its binary activation state γi(t).

f̃
(t)
i = fi · γ̃i(t) (4.2)

The activation process is based on directed graph G = (V,E). Binary acti-

vation state of user u is dependent on previous activation states of influencer set

I←u .

I←u = {v : λvu > 0} (4.3)

Conversely, the influencee set is I→u .

I→u = {v : λuv > 0} (4.4)

For generality, we do not confine the influencer/influencee set to include only the ex-

plicit neighbors of the user, but due to system complexity, the influence propagation

is usually calculated based on a sparse set of users.

γ̃u(t) = Au

(

{γ̃v(τ)}v∈I←u
τ<t

)

(4.5)

For simplicity, we assume that once users are activated, they will stay acti-
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vated, or

γ̃u(t1) ≤ γ̃u(t2), ∀t1 < t2 (4.6)

We denote the activation time T̃u as

γ̃u(t) =



















0 ∀t < T̃u

1 ∀t ≥ T̃u

(4.7)

Based on the assumptions of independence and time-shift-invariance as in [21],

we rewrite the state transition as

γ̃u(t) = max
v∈I←u

Avu

(

t− T̃v
)

(4.8)

Mappings {A(·)} are obtained from social network applications based on user pro-

files, and they are subject to different models.

The mappings satisfy causality

Avu(t) = 0, ∀t < 0 (4.9)

In general cases, mappings A(·) are defined on a random space. In this chap-

ter, we assume that the pairwise activation time τvu for user v to ‘infect’ user u

is independent and follows exponential distribution τvu ∼ Exp(λvu). Diffusion pa-

rameter λvu reflects the influence rate of the influence link v → u, the larger the

more quickly user u is activated due to user v. User v has no influence on user u iff

λuv = 0.

Then we could obtain the activation time of user u in (4.10).

T̃u = min
v∈I←u

(

T̃v + τvu

)

(4.10)
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Denote the social dissemination graph for a specific content as G(V,E), with

users as its nodes V , directed influence link as its edges E = {(u, v) : λuv > 0}. For

time t, the binary user activation state vector γ̃G(t) ∈ {0, 1}
|V | in the graph is:

γ̃G(t) = (γ̃u(t))u∈V (4.11)

Then, the state transition process is essentially a Markov Chain with transition rate:

λγ̃G
=

∑

(u,v)∈E

γ̃u · (1− γ̃v) · λuv (4.12)

and transition probability

P [γ̃G + ev | γ̃G] =
1

λγ̃G





∑

u∈I←v

1(γ̃u) · [1− 1(γ̃v)]λuv



 (4.13)

Note that modern social network applications significantly increase the in-

fluence rate λ’s (in a selective way), resulting in much shorter activation time for

certain social connections. This is due to the facts that notifications on mobile de-

vices are more visible to the users, and at the same time users are generally more

attentive when they use mobile devices. But this is way beyond our discussions for

this chapter, or even dissertation.

Table 4.1 summarizes definitions of parameters.

4.3 Impact of Delivery Delay on Content Dissemination

Due to capacity constraint of wireless networks, we might not be able to sched-

ule the contents immediately. However, a user is activated after the content is avail-

able at the device. Therefore, the content dissemination starts after the content
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itself is delivered and consumable to the target users. For simplicity, we assume

users will wait for the content rather than moving on to the next content. Denote

πv as the delivery delay for user v, then the diffusion process is no longer Markovian:

Tu = min
v∈Iu

(Tv + πv + τvu) (4.14)

with Tu the activation time of user u in the new process.

As evident, this new process of dissemination is not quite the same as the

original diffusion process except when πu ≪ Tu, ∀u. Intuitively, we might want to

minimize each πu so that the dissemination faithfully follows the prediction and we

could obtain a higher reward (as shown in Theorem 4).

There are two possible solutions:

1. On-demand: traditional systems schedule transmissions only after users are ac-

tivated, hoping to achieve low latency for each individual transmission. Such

goal is extremely hard to achieve without sacrificing overall system perfor-

mance (as the results indicated in Chapter 2), especially when the wireless

capacity is insufficient. Note that πu > 0, ∀u.

2. Precache: the system transmits content to the users before they request it.

This approach makes it possible for some users to enjoy no delivery delay

πu = 0, if not for all, provided that the delivery happens before user activation

happens.

Therefore, we need flexibility and insight in design to obtain a better system.

We observe two facts:
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(i) We are not obliged to provide universal delivery guarantee for all users

any time, i.e. certain users at certain social network activation states could receive

different quality of service.

(ii) With multicast available, we might be able to eliminate the delivery delay

for a group of users at the same time.

Theorem 4 (Worse Performance with Delay). With delivery delay, the expected

rewards delivered by the system until scheduling horizon TH is no better than the

system without delay.

Proof. The expected rewards collected is

Rγ0
(TH) =

∑

u∈V

fu · P [Tu ≤ TH | γ0] (4.15)

and the no-delay version is

R̃γ0
(TH) =

∑

u∈V

fu · P
[

T̃u ≤ TH | γ0

]

(4.16)

Yet with conditional probability

P [Tu ≤ TH | γ0] =

∫

1 [Tu ≤ TH | γ0, {τµv}] dF ({τµv}) (4.17)

Given {τµv} and {πµ}, we have

Tu ≥ T̃u, ∀u (4.18)

Therefore, we have

Rγ0
(TH) ≤ R̃γ0

(TH) (4.19)
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(a) Legends.
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(b) Initial state: user 1 and user 5 have the con-

tents available; user 1 is activated. Therefore,

all the influence links originating from user 1 are

active, but other links are inactive because their

influencers are not activated.

1
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(c) Possible evolution: user 5 is activated; user 2

has the content delivered. We are unable to claim

the reward from user 3 yet because the content

is not available. User 4 is not under any active

influence because its influencer (user 3) has not

yet acquired the content. Any link with both

nodes activated is moot.

Figure 4.2: Illustration of Content Dissemination and Delivery
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4.4 Look-Ahead Scheduling

Obviously, if we could leverage the information from the social network on how

contents disseminate, the system might be able to precache smartly, utilize wireless

resource fully, and provide better user experience.

Unfortunately, for general graphs, calculating the exact probability of activa-

tion before social scheduling horizon TH is not quite easy. For a directed forest

graph (in which each node has at most one parent, i.e. in-degree of each node is at

most one |{v : τvu > 0}| ≤ 1, ∀u), it yields to analytical form [22], provided that a

node u’s root ancestor is activated at time 0:

P[γu(TH) = 1] =
∑

ω∈θu









(

1− e−λωTH
)

·
∏

ω′∈θu
ω′ 6=ω

λω′

λω′ − λω









(4.20)

where θu is the path (set of directed edges) from node u’s root ancestor to itself.

However, if the graph is moderately complicated, e.g. the graph has rings or

alternative paths, it is computationally expensive to calculate the exact probability

in its analytic form. To the best of our knowledge, there are no reported results

regarding analytical forms of the solution.

To resolve the disadvantage, we employ the Monte Carlo method to approx-

imate the reward. The basic idea is to generate a large number of instances and

use instance average to substitute expectation. For each instance, we scan the dis-

semination path with breadth first search, using min-heap H (ordered by activation

time) to store the nodes to be activated before scheduling horizon TH and their

respective activation times. The complexity of each heap operation is O(log |H|),
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hence the overall complexity for running a simulation instance is O(|E|+|V | log |V |).

The algorithm is stated in Fig.4.3. Note that if the content has been delivered be-

fore (denoted by binary user delivery state φu, 0 not delivered and 1 delivered), we

do not attribute the reward to current transmission, but rather previous transmis-

sion. Given the fact that the activation graph is sparse, we could run each instance

relatively fast and different instances could run in parallel.

Obviously, we need to run sufficient number Ms of instances and use the in-

stance result to predict activation states for each disseminating content given its

current user activation states.

γ̂ = Ψ
(

γ̂
1, . . . , γ̂Ms

)

(4.21)

where Ψ is a chosen detector function.

4.4.1 Runtime

The runtime for each simulation instance depends on the number of edges

evaluated. We present the statistics of runtimes for 100,000 simulation instances

running on a machine with 2.2 GHz CPU in Table 4.2, for graph parameters used in

Section 4.5. Apparently, the simulations are fast and hence could be run real-time

in actual systems.
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Require: User activation state γ, directed and weighted diffusion graph G = (V,E)

with diffusion parameter λuv as the weight of the edge from u to v.

1: procedure EstimateUserActivation(T H)

2: H ← ∅ ⊲ H is a min-heap for tuple (i, T̂i) ordered on ascending estimated

activation time T̂i.

3: γ̂ ← γ

4: for i← {i : γi = 1} do

5: H.insert ((i, 0))

6: while H 6= ∅ do

7: u, T̂u ← H.poll() ⊲ Next activated node.

8: γ̂u ← 1

9: for v ← {v : v ∈ I→u , γ′v = 0} do

10: τ̂uv ← exp(λuv)

11: T̂ ′v = T̂u + τ̂uv

12: if T̂ ′v ≤ TH then ⊲ Only update when the activation is within

scheduling horizon.

13: if v /∈ H then

14: H.insert
(

(v, T̂ ′v )
)

15: else

16: H.update
(

v,min(T̂v, T̂ ′v )
)

17: return {γ̂}

Figure 4.3: Monte Carlo Estimation of User Reward
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4.4.2 Performance

The major metrics about the performance of the estimations are false predic-

tion ratio PF and missed prediction ratio PM.

PF =
|{i : γi = 0 ∧ γ̂i = 1}|

|{i : γ̂i = 1}|
(4.22)

PM =
|{i : γi = 1 ∧ γ̂i = 0}|

|{i : γi = 1}|
(4.23)

We use a simple independent and identical threshold hard-detector in (4.24)

for all users. The number of estimations per instance is Ms = 50. We plot the

performance for different relative threshold ratio χ in Fig.4.4 with different param-

eters in each sub graph (number of initial activated users ‖γ0‖1 and dissemination

horizon TH).

Ψi({γ̂
q}) = 1

(

∑

q

γ̂q
i > χ ·Ms

)

(4.24)

We could conclude that:

1. the performance of Monte Carlo Estimation based on a simple detector is

somewhat acceptable;

2. the more initial activated users (denoted by ‖γ0‖1) and/or the longer the

dissemination horizon (TH), the more precise Monte Carlo Estimation is;

3. trivially, when the threshold χ is higher, missed prediction is higher but false

prediction is lower.

The predicted look-ahead reward for delivering content j to user i at slot t is
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Figure 4.4: Performance for Monte Carlo Estimation
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thus:

f̂ij(t) = γ̂
(t)
ij ·

(

1− φ
(t)
ij

)

· fij (4.25)

even though the reward might not be immediately claimed at the same slot of

delivery.

Note that we only need to run these Monte Carlo simulations once new user

activations occur.

Given the computation complexity and in light of Chapter 2, we obtain the

scheduling decisions for each time slot t by solving mixed integer programming

problem (4.26) for the optimal. We could easily confirm that the scheduling solution

satisfies all constraints in (4.1).

max
∑

k

∑

i,j

ᾱ
(t)
jk · f̄

(t)
jk

s.t. ᾱ
(t)
jk ∈ {0, 1} ∀j, k, t

∑

k

ᾱ
(t)
jk ≤ 1 ∀j, k

s
(t)
j · Rk ≥ α

(t)
jk ·Wj ∀j, k, t

∑

j

s
(t)
j ≤ B(t)T ∀t

s
(t)
j ≥ 0 ∀j, t

(4.26)

with look-ahead reward f̄
(t)
jk for content j transmitted at mode k based on predicted

user rewards in (4.27).

f̄
(t)
jk =

∑

i:SNR
(t)
i ≥SINRth

k

f̂
(t)
ij (4.27)
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Then we have the reverse mapping and state transitioning

α
(t)
ij =

∑

i,j:f̂
(t)
ij >0

k:SINRth
k ≤SINR

(t)
i

ᾱ
(t)
jk (4.28)

φ
(t+1)
ij = max

(

φ
(t)
ij , α

(t)
ij

)

, ∀i, j, t (4.29)

4.5 Simulations and Results

In this part, we conduct simulations to demonstrate the relationship between

delay, total rewards obtained for content cascade and overall system reward deliv-

ered.

We simulate the performance based on synthetic Kronecker graphs [23], gen-

erated by SNAP [24]. In the simulations, we use the default parameters (with seed

matrix [0.9, 0.5; 0.5, 1]) to generate Kronecker synthetic graph instances of size 256

(or 28) nodes. The set of initial activated users are chosen as follows: 1) choose

number of activated users MA uniformly from 1 to 10; 2) choose Ma users uniformly

random from the top 20 influencers (i.e. users with largest out-degree |I→i |). For sim-

plicity, we assume that the reward for an activated user to consume a disseminating

content is 1.

System level parameters are the same as Chapter 2, as shown in Table 2.2.

4.5.1 What Shall We Aim For?

We fix the horizon TH = 120s. For each instance Ω, consisted of activation

times {τuv} and delay times {πu}, we focus on the ratio κ ∈ [0, 1] of activated and

81



delivered users (essentially the users that have collected the reward) normalized

against no delay.

κ(Ω) =
N ({τuv}, {πu};γ, G)

N ({τuv}, 0;γ, G)
(4.30)

Delivery delay is consisted of two parts: actual transmission time and schedul-

ing delay. Since we use a slotted system, the actual transmission time T0 is the same

as the time slot length T0 = T = 1s.

4.5.1.1 Different Scheduling Delay Models

We use three scheduling delay models with the same expected total delay time

π0 (i.e. scheduling delay is π0 − T0):

1. Fixed:

ffixed(π) = δ(π − π0) (4.31)

2. Exponential:

fexp(π) =
1

π0 − T0

e
− π

π0−T0 · 1(π > T0) (4.32)

3. Uniformly random:

funiform(π) =
1

2(π0 − T0)
· 1(T0 < π < 2π0 − T0) (4.33)

We plot the distribution of κ with different π0 in Fig.4.5,4.6. Ideally, we want

the distribution to be close to the step function u(t − 1), because it essentially

means that the content disseminates as if no delay is present. From the figures,

we could tell that fixed delay performs better in distribution than the other two
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Figure 4.5: Performance for Different Delay Models (π0 = 11s)

delay models. This suggests that our multicast and precache approach might help in

content dissemination because it elevates the priority of the content in the scheduling

system while reducing delays for all the users in the multicast group.

4.5.1.2 Different Delay Times

Given the results in 4.5.1.1, we focus on the performance for different fixed

delays. We plot the cumulative distribution function of κ with different π0 in Fig.4.7.

Apparently, without scheduling delay, the system achieves almost identical
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Figure 4.6: Performance for Different Delay Models (π0 = 16s)
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Figure 4.7: Performance for Different Fixed Delay Times π0

performance (P[κ > 0.9] ≈ 1) as the ideal dissemination model without any delay.

As delay grows larger, the performance quickly starts to degrade significantly.

4.5.2 Scheduling Using Hybrid Systems

In this part, we investigate the performance for social content dissemination in

our joint optimization scheduling framework for hybrid requests (‘push’ for system

recommendation and ‘pull’ for active user requests). Unlike Chapter 2, we impose

no deadlines, but rather introduce unbounded additional rewards for active user
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requests.

Specifically, at time slot t, if user i is activated for content j, then there is an

additional reward growing with time, controlled by weight factor ρ. The longer such

requests are not delivered, the larger the (unbounded) additional reward.

f
(t)
ij = γ

(t)
ij ·

(

1− φ
(t)
ij

)

· [fij + ρ (t− ⌈Tij⌉)] (4.34)

Of course, the system reduces to a ‘push’-only system when ρ = 0.

In the simulations, we choose the following parameters:

1. number of users M = 300, number of contents N = 600;

2. number of disseminating contents Nd = 0.05N = 30;

3. scheduling horizon TH = 120s, slot length T = 1s;

4. bandwidth B = 20 MHz.

We use MovieLens data [14] as the user reward values of the non-disseminating

contents.

We map the nodes Vj of social dissemination graph Gj for content j randomly

to the users.

All the curves in 4.5.2 (without predictions from social networks) are plotted

in dash lines, compared with those with predictions (4.5.3) in solid lines.

The performance for disseminating contents is evaluated using the following

metrics:

1. normalized activated and delivered users are plotted in Fig.4.8 (ideal situation

yields u(t− 1));
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2. delay in Fig.4.9 (ideal situation yields u(t));

3. number of total transmissions per content in Fig.4.10;

4. number of users served per transmission in Fig.4.11.

The overall reward for the system is shown in Fig.4.12.

Without any prioritization (ρ = 0), the disseminating contents suffer from

significant performance degradation.

4.5.3 Look-Ahead Scheduling

As described in Section 4.4, we employ Monte Carlo Estimation to predict the

activation states
{

γ̂
(t)
ij

}

based on the social dissemination graph without delivery

delay. We use threshold value of ξ = 0.3 for estimation. Therefore, for scheduling

purposes, we have:

f̂
(t)
ij = γ̂

(t)
ij ·

(

1− φ
(t)
ij

)

·
[

fij + ρ · γ(t)
ij · (t− ⌈Tij⌉)

]

(4.35)

It is easy to verify that (4.25) and (4.35) are equivalent when ρ = 0. The additional

rewards significantly improve the system performance.

All the curves in 4.5.3 (with predictions from social networks) are plotted in

solid lines, compared with those without predictions (4.5.2) in dash lines.

Compared with on-demand/no-lookahead scheduling (illustrated in dash lines),

we note that with predictions (illustrated in solid lines):

1. The overall system reward is significantly improved (Fig.4.12).

2. The performance for disseminating contents is greatly improved (Fig.4.8).
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Figure 4.8: Social Performance for Disseminating Contents in Hybrid System
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Figure 4.9: Delay for Disseminating Contents in Hybrid System
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Figure 4.10: Total Transmissions per Content for Disseminating Contents in Hybrid

System
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Figure 4.11: Total Transmission per Content for Disseminating Contents in Hybrid

System
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Figure 4.12: Overall System Reward for Hybrid System
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3. Delay for the disseminating contents is greatly improved and could reach 0

now due to the precaching(Fig.4.9).

4. Redundant transmissions are greatly reduced (Fig.4.10) and the users served

per transmission are increased (Fig.4.11). This is great news for the system

operator since better resource utilization usually brings about higher profits.

We also plot the ratio of missed deliveries (in which users are activated but

do not receive the contents) versus ratio of unnecessary transmissions (users are not

activated but are delivered the contents) in Fig.4.13, from 100 randomly selected

disseminating contents up until the scheduling horizon TH .

P ′F =
|{i : γi = 0 ∧ φi = 1}|

|{i : φi = 1}|
(4.36)

P ′M =
|{i : γi = 1 ∧ φi = 0}|

|{i : γi = 1}|
(4.37)

In fact, the definitions (4.36)(4.37) are somewhat identical to the concept in social

networks (4.22)(4.23), as plotted in Fig.4.4. The empirical distributions of the ratio

of unnecessary transmissions are plotted in Fig.4.14. We observe that the hybrid

scheduling framework greatly improves the prediction precision. This is most prob-

ably due to the fact that the hybrid system drives towards actual user requests,

increasing the number of activations in general and triggering more re-evaluations.

4.6 Summary

In this chapter, we investigate how to facilitate content dissemination in the

presence of wireless capacity constraints. We leverage the predictions of social dy-
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Figure 4.13: Prediction Precision for Hybrid System

94



Ratio of Not Needed Transmissions for Disseminating Contents
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Em
pi

ric
al

 C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ=0
ρ=10-0.5

 ρ=100.0

 ρ=100.5

(a) ML-1M

Ratio of Not Needed Transmissions for Disseminating Contents
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Em
pi

ric
al

 C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ=0
ρ=10-0.5

 ρ=100.0

 ρ=100.5

(b) Yahoo-Music

Figure 4.14: Ratio of Unnecessary Transmissions for Hybrid System
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namics to transmit the contents before the users actually request them. Results

indicate that with the help of predictions, we could mitigate the performance degra-

dation for disseminating contents and improve the overall system performance. Re-

sults also indicate that the hybrid systems proposed in Chapter 2 greatly improve the

performance of content dissemination, because they introduce proper prioritization

for active user requests and thus prioritize social content dissemination.

Future work includes extending the analysis with more accurate predictions

and extending the design to scenarios with multiple base stations.
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Table 4.1: Summary of Variables

Notations Definition

M Number of users.

N Number of contents.

fij Reward for delivering content j to user i.

γ
(t)
ij Binary activation state for user i to consume content j

at time slot t.

φ
(t)
ij Binary delivery state whether content j has been

transmitted to user i before time slot t.

I←i Influencer set for user i.

I→i Influencee set for user i.

τvu Diffusion parameter of (exponential) influence time

for user v to activate user u.

πu Wireless delivery delay for user u.

α
(t)
ij Binary decision variable whether to transmit content j

to user i at time slot t.

B(t) Total available bandwidth at time slot t.

s
(t)
j Wireless resource allocated for content j at time slot t.

SINR
(t)
i Signal-to-Interference-Noise ratio of user i at time slot t

SINRth
k SINR threshold for transmission mode k

Wj Size of content j in bits
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Table 4.2: Monte Carlo Instance Runtime (in microseconds)

Min P90 P95 P99 Max Mean

2.8 58.8 77.4 137.6 900.9 32.6

98



Chapter 5: Conclusions and Future Work

In this dissertation, we propose a novel cross-layer joint optimization frame-

work to schedule the delivery of social contents more efficiently, in the presence of

wireless capacity constraints and changing wireless channels. Our proposed schedul-

ing framework:

1. utilizes the social nature of contents and broadcast nature of wireless commu-

nication by multicasting the contents to groups of users;

2. takes advantage of reward predictions obtained from social networks using

sophisticated machine learning algorithms and ‘big’ data of users;

3. requires minor changes of the existing system architecture and minimum in-

formation exchange between social networks and wireless networks;

Simulations indicate that our design would greatly improve user experience

and increase the efficiency of spectrum resource, compared to the existing layered

solutions. The major functions of social and wireless layers are still separated: the

delivery scheduling is strictly implemented at the base stations, rather than at the

central servers; the reward predictions are completed regardless of the volatility of

user’s network conditions. The connection between the two layers is conveniently
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made by assigning content-based reward, which drives the wireless networks to de-

liver one complete content package rather than just multiple packets.

We repeatedly take advantage of the limited number of multicast transmission

modes to reduce the scale of our problems. In fact, in actual wireless communication

systems, it is only possible to implement limited modes. Therefore, for each mode,

we can conveniently aggregate users and reduce the optimization complexity. We

further reduce the open hard problem involving multiple base stations to a set of

simple and parallel feasibility tests. This pragmatic approach makes real-time online

scheduling possible in practice.

Finally, we seamlessly incorporate the predictions of social dynamics into the

scheduling system. Not only does our scheduling framework work well when the

content reward remains unchanged during the scheduling horizon, it also works well

when we have time-variant reward due to social dynamics, with the leverage of the

hybrid systems.

5.1 Future Work

Future work based on this dissertation includes:

1. incorporating the uncertainty of reward prediction in the system: in this dis-

sertation, we did not consider how the prediction error affects system perfor-

mance;

2. allocating the resource dynamically:

(a) between multicast and unicast: certain requests, especially security and
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privacy related ones, are inherently unicast;

(b) between different base stations: apparently, the allocation should be

adaptive to the change of traffic load;

(c) incorporate frequency-selective and fast fading;

3. improving performance with better client-side design.
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