
ABSTRACT

Title of dissertation: ESSAYS ON AUCTION
AND MATCHING THEORY

Terence Robert Johnson,
Doctor of Philosophy, 2011

Dissertation directed by: Professors Lawrence Ausubel
and Daniel Vincent

Department of Economics

This dissertation uses mechanism design theory to show how a matchmaker

should design two-sided matching markets when agents are privately informed about

their qualities or characteristics as a partner and can make monetary payments.

Chapter Two uses a mechanism design approach to derive sufficient conditions for

assortative matching to be profit-maximizing for the matchmaker or maximize social

welfare, and then shows how to implement the optimal match and payments through

two-sided position auctions as a Bayesian Nash equilibrium. Chapter Three broad-

ens these results by showing how the implementation concept can be relaxed to ex

post equilibrium through the use of market designs similar to the Vickrey-Clarke-

Groves mechanism, as well as implemented through the use of dynamic games.

Chapter Four shows how the ideas used in Chapters Two and Three can be ex-

tended to a multi-dimensional type framework, moving away from the supermodular

paradigm that is the workhorse of models of matching with incomplete information.



ESSAYS ON AUCTION AND

MATCHING THEORY

by

Terence Robert Johnson

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Professor Lawrence Ausubel, Co-Chair/Advisor
Professor Daniel Vincent, Co-Chair/Advisor
Professor Peter Cramton
Professor John Rust
Professor Raghu Raghavan



c© Copyright by

Terence Robert Johnson
2011



Acknowledgments

There are many people without whom this dissertation would not be possible.

My parents — Kenneth and Rosary Johnson — supported me in everything

I have ever attempted to do with my life, and without their encouragement and

advice I would not have been able to finish (or probably even start) this work. They

have been an incredible example to me of people who work hard, enjoy life, and care

deeply for others.

My advisors and committee — Lawrence Ausubel, Daniel Vincent, Peter

Cramton, Raghu Ragavan, and John Rust — taught me everything I know, and

endured countless questions and false-starts with patience and enthusiasm. If I am

a small fraction as successful in my career and life as my advisors, I will count my-

self among the luckiest of people. In particular, I am indebted to Prof. Vincent

for many hours of discussion about the right decisions in formulating the models

I studied, what results to pursue, and the fine details of many of the proofs. His

expertise in mechanism design and microeconomic theory was invaluable. Also, I

have benefited greatly from Prof. Ausubel’s keen eye for the important points and

ideas in a paper, and advice on how to shape formal propositions and mathematical

ideas into a meaningful economic analysis.

Professors at the University of Maryland, College Park — Roger Betancourt,

Pablo D’Erasmo, Ginger Jin, Erkut Ozbay, Emel Filiz-Ozbay, John Shea, Razvan

Vlaicu — provided instruction, advice, comments on papers and during seminars,

and very helpful discussions on market design, economics, and pursuing a life in

ii



academia. I am very grateful to have had them as colleagues and role-models.

My undergraduate advisors — Duke Kao, Jerry Kelly, Edward McClennen,

and Peter Wilcoxon — encouraged me to go to graduate school and helped me

overcome many difficulties. Attending the University of Maryland has been an

incredible opportunity, and I am very grateful for the time they took to advise me

outside of class, write recommendation letters, and discuss economics.

My classmates — Sushant Acharya, Justin Burkett, Randy Chugh, Teresa

Fort, Kyle Handley, Danny Hernaiz, Diana Iercosan, Tim Moore, Shrayes Ramesh,

and Aaron Szott — provided research advice, many hours of intellectual stimulation,

and some needed catharsis. I wish them the best of luck in their careers, and hope

to work together again in the future.

My friends and family — Alexa Donaldson, Joe Hale, Rebecca Head, Collin

Long, Kim Lord, Robert Johnson and Jessie Mast, Lina Kim, Amy McKeever,

Cheryl and Shane Symolon, and Keith Reed — were a constant source of enthusiasm

and relief. No matter how busy, anxious, or discouraged I was, my relationships with

these people reminded me there was more to life than getting a degree.

And God: “How precious to me are your thoughts, oh God! How vast is the

sum of them! Were I to count them, they would outnumber the grains of sand.”

iii



Table of Contents

List of Figures vi

List of Abbreviations vii

1 Introduction 1
1.1 Matching Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Matching Through Position Auctions 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 The Direct Revelation Mechanism . . . . . . . . . . . . . . . . . . . 21

2.3.1 The Mechanism Design Problem . . . . . . . . . . . . . . . . 21
2.3.2 Incentive Compatibility . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Truncated Assortative Matching and the Reserve Function . . 24
2.3.4 Optimality of TAM in the Constrained Problem . . . . . . . . 31
2.3.5 Welfare and Comparative Statics . . . . . . . . . . . . . . . . 33
2.3.6 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.6.1 Comparison with the Double Auction . . . . . . . . . 37
2.4 Indirect Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 A Simplified Mechanism and its Implementation . . . . . . . . . . . . 42
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Truthful Revelation in Complementary Matching Problems with Transfers 50
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 One-to-One Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 The VCG Mechanism . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.2 Ex Post Implementation . . . . . . . . . . . . . . . . . . . . . 60
3.3.3 Protecting Agents from Bad Matches . . . . . . . . . . . . . . 62
3.3.4 Dynamic Formats . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.4.1 Achieving the Stable Match with a Dynamic Mech-
anism . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.4.2 Achieving the Static Outcome with an Announce-
ment Phase . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Many-to-One Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 One-to-One Matching with Multi-dimensional Types 84
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Existence and Uniqueness of Stable Matches . . . . . . . . . . . . . . 89

iv



4.3.0.3 Multiple Stable Matches . . . . . . . . . . . . . . . . 90
4.3.0.4 Non-Unique Orderings of Partners . . . . . . . . . . 91

4.4 Deferred Acceptance Algorithms, Serial Random Dictatorship, and
Vickrey-Clarke-Groves Mechanisms . . . . . . . . . . . . . . . . . . . 92

4.5 A Mechanism for “Reciprocal” Environments . . . . . . . . . . . . . . 95
4.5.1 Reciprocity and Admissible Transformations . . . . . . . . . . 96
4.5.2 Competitive Externality Pricing in Reciprocal Problems . . . 98

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A Proofs for Chapter Two 105

B Proofs for Chapter Three 127

B Proofs for Chapter Four 144

Bibliography 150

v



List of Figures

2.1 Downward-Sloping Reserve Function . . . . . . . . . . . . . . . . . . 29
2.2 Surplus-Maximizing vs. Profit-Maximizing Matchmaking . . . . . . . 36
2.3 Exclusion in the Simplified Mechanism . . . . . . . . . . . . . . . . . 46

vi



List of Abbreviations

R The real numbers
E[f(x)] The expectation of f(x) with respect to x
1{x:P (x)} The indicator function of P (x)

CHAPTER 2

VCG Vickrey-Clarke-Groves
SRD Serial Random Dictatorship
I, J The two sides of the market
KI , KJ The number of agents on the I and J sides
K The total number of possible matches
qi, qj Privately known qualities of agents i and j
qI , qJ The vector of type realizations

on the I and J side, respectively
qI\i The vector of type realizations on the I side,

with component qi removed
Ei[h(qi, qj)] Agent i’s expectation of h(qi, qj),

conditional on qi
mij(qi, qI\i, qj , qJ\j) The probability that i and j are matched
ti(qi, qI\i, qJ) The payment made by agent i

to the matchmaker
sI(qi, qj), sJ(qj , qi) Private surpluses for the I and J sides
FI(qi), FJ(qj), fI(qi), fJ(qj) The probability distributions of qi and qj,

and their respective probability
distribution functions

ψI(qi, qj), ψJ(qj , qi) Virtual Valuation functions
RI(qi) The reservation function
q
I

The worst-off participating type on the I side

ρX(xi) The rank of component xi in the vector x
wI(qi, k) The probability that qi is the k-th highest

component of the vector qI
bAP
I (qi) The bidding function in the all-pay

position auction
bWP
I (qi) The bidding function in the winners-pay

position auction

CHAPTERS 3 and 4

vii



VCG Vickrey-Clarke-Groves
I, J The two sides of the market and the number

of agents on each side
K The total number of possible matches
si, sj Privately known qualities of agents i and j
sI , sJ , s The vector of type realizations on the

I and J side, respectively
s The realizations of all agents’ types
sI\i The vector of type realizations on the I side,

with component si removed
s\i The vector of type realizations of

the whole market, with component si removed
E\i[h(si, sj)] Agent i’s expectation of h(si, sj),

conditional on si
mij(s) The probability that i and j are matched at

realization s
ti(s) The payment made by agent i to the matchmaker
vI(si, sj), vJ(sj, si) Private surpluses for the I and J sides
f(s) The joint distribution of all types in the market
σi A type report
σI The type reports of the I side
σ A type report from all agents in the market
σ\i A type report from all agents in the market except i
∅ The null variable, mapping any input into the empty set
x∗i (si) The security bidder’s value for an agent with type si
cI Clock prices on the I side
pIk The price of the k-th match make on the I side
ht The history of a dynamic game
At The set of active bidders at time t
Pt The set of realized prices at time t
φi A pure strategy in a dynamic game
τ Ik A drop-out strategy in a dynamic game
αi The announcement of agent i
sI[k], αI[k] The k-th highest signal and announcement on the I side
δℓ The marginal value of the ℓ-th worker
Wi An ordered package of workers assigned to firm i
2X The power set of the set X

viii



Chapter 1

Introduction

1.1 Matching Markets

Matching markets are central to the modern economy, and intermediaries play

an important role. For example, the employment relationships formed between

workers and firms in labor markets are influenced by the supply of workers and

jobs, the specific skills and needs of the firms, the behavior of intermediaries like

Monster.com and headhunter firms like Korn/Ferry, and the idiosyncratic chemistry

between the firm and pre-existing workers with any new hire. The financial sector

of the economy involves a large web of interconnected obligations intermediated by

brokers and market makers: When an agent forms a risk-sharing agreement with a

particular partner, he is now exposed not just to that partner’s characteristic risks

and outcomes, but also those of his partners, and those partners’ partners, and so

on. Even the Internet, central to modern commerce and social life, is intermediated

by search engines like Google or Yahoo! and Internet Service Providers like Comcast

or Verizon. These intermediaries are constantly making deliberate choices to decide

which links between consumers and content providers or merchants are allowed, and

which receive priority for scarce bandwidth or are blocked altogether.

Amatching market is one in which there are agents on two sides — workers and

firms, for example — who seek to form partnerships. One-to-one matching, where
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each agent can only match to a single partner, has received extensive attention, but

many-to-one matching markets — such as firms seeking packages of workers — or

many-to-many markets — such as on the Internet, where content providers seek

many visitors, and visitors patronize many content providers — are of great interest

as well. Such a market exhibits incomplete information and suffers from adverse

selection if the participants have private information about their characteristics as

a partner or their tastes in partner attributes. In this case, it can be to an agent’s

advantage to misrepresent himself to ensure a better partner; for example, a worker

might get a job at a better firm by overstating his qualifications. A market outcome

is efficient if there is no alternative matching of partners where every agent weakly

prefers his new partner to his old one, and some agents strictly prefer their new

partners. A market outcome is stable if no set of agents have a mutual incentive to

“cheat” on their current partners with each other.

The central goal of this dissertation is to study how the presence of incomplete

information can prevent markets from achieving efficient or stable outcomes, and if

possible, characterize market designs that mitigate or eliminate the negative effects

of adverse selection. Studying whether a given market structure maximizes efficiency

or the profits of the intermediaries then requires tools from two different fields:

Mechanism design theory and matching theory. Mechanism design provides a formal

way of studying what outcomes can be achieved in markets where agents have private

information, and characterizing the non-cooperative games that implement those

outcomes. Matching theory analyses various algorithms or processes that might be

used to construct matches between markets that are split into two distinct groups —
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worker and firms, for example — and investigate whether these matches are stable.

By synthesizing and extending ideas from both these fields, this dissertation makes

contributions to both by characterizing efficiency and stability in matching markets

with private information, as well as providing practical market designs that produce

outcomes that satisfy these criteria.

1.2 Literature Review

Since the work of Spence [63] on job market signaling and the marriage and

labor market models of Becker [7], economists have carefully examined how in-

formation and complementarity can be important features in determining market

outcomes. In matching environments, an analogy to competitive bidding is often

used: If the best workers and best firms complement one another, matches between

them should generate the most social value. If this is true, then the better the

worker or firm, the more aggressively they should seek out other qualified partners

by offering higher wages or competing more aggressively in attaining education or

marketing themselves, since the return to searching for partners is higher. These

classical studies jointly suggest that markets should separate vertically, with the

best matches made, achieving efficiency and stability. Many subsequent papers fol-

low this line of reasoning, including the recent contributions of Bulow and Levin [9],

Damiano and Li [22], and Hoppe, Moldovanu, and Sela [35].

However, studies of markets with incomplete information suggest that inef-

ficiency is likely to be widespread. The classic paper by Myerson and Satterth-
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waite [49] considers a situation where there is the possibility of trade between a

buyer and seller, but the buyer’s value for the good and the seller’s cost of provid-

ing it are known only to them. In this context, they show that if the agents do

not have common knowledge of gains from trade — both parties do not know for

sure that the buyer values the good more than the seller — the buyer will typically

try to understate his value while the seller tries to overstate his cost, resulting in

inefficiency when trade does not occur due to the participants’ misrepresentations

of their private information. However, the seminal contributions by Myerson [48]

and Vickrey [66] establish that efficiency can be achieved in similar situations in the

presence of competition. For example, if the seller auctions the good to a number of

buyers, full efficiency or profit maximization can be achieved. More recent papers

try to incorporate matching elements into the classic mechanism design framework.

Damiano and Li [22] consider a monopolist matchmaker that wants to organize

“meeting places” with entry fees in a manner that induces agents to self-select.

Hoppe, Moldovanu and Sela [35] show that in a model of matching through costly

signaling where agents are matched on the rank of their signal leads to assortative

matching, and provide conditions under which costly signaling can improve welfare

over random matching. Hoppe et al., however, do not consider how an intermediary

would design a market to achieve objectives like profit- or welfare-maximization, and

their work focuses on establishing conditions under which signaling may be socially

wasteful. Lastly, Gomes [29] considers a mechanism design framework similar to the

problem faced by an Internet search engine when deciding which firms to present

to consumers who are searching for trading opportunities. In his paper, a finite
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number of consumers receive signals about their preferences to shop at firms, and

an intermediary designs a game that matches a single firm to all of the users who

find it profitable to trade, once the identity of the firm is known. In this setting,

the intermediary receives a noisy signal of the consumers’ preferences, but never

interacts with them directly, and only one firm is chosen to match to all consumers.

In the work considered in my dissertation, the intermediary is free to interact with

all participants, and other versions of one-to-one or many-to-one matching are con-

sidered.

Another, related literature follows David Gale and Lloyd Shapley [28], and con-

siders how stable matches might be achieved through the use of dynamic “proposal

games” called deferred acceptance algorithms ; this is most often referred to as the

“matching” literature. The majority of papers in this literature assume that agents

know their preferences over potential partners but cannot make side-payments in

the market (Gale and Shapley, [28], Roth and Sotomayor [56]), though some papers

study the case where preferences over partners are private information (Roth [54],

Niederle and Yariv [50]; Coles et al. [17]). Another part of this literature considers

which dynamic games lead to stable outcomes when agents can make payments,

including Crawford and Kelso [19], Crawford and Knoer [20], and Hatfield and Mil-

grom [34]. These papers primarily show that the set of stable matches with transfers

is a lattice, and provide an algorithm that maps feasible matches into matches, guar-

anteed to terminate at a stable match. Both these literatures generally ignore the

strategic incentives provided by the matching algorithm or price adjustment process,

however, which allows the possibility of profitable manipulation by the agents. As
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Roth [54] shows, stability, efficiency, and honest reporting can often be in conflict:

There does not exist a stable matching mechanism in which honestly revealing one’s

preferences is a weakly dominant strategy. This negative finding is in contrast to

positive results in the auction literature — particularly Vickrey [66], Myerson [48],

Ausubel [2] and [1], and Edelman, Ostrovsky and Schwarz [25] — where the problem

of selling goods to buyers with privately known values for the items being sold has

been analyzed with considerable success.

1.3 Summary of Contributions

This dissertation studies the challenges to achieving stability or efficiency in

matching markets that result from private information in matching markets by uti-

lizing the techniques that were successful in the auction and mechanism design

literature. A central result in the mechanism design literature is the revelation prin-

ciple: Any Bayesian Nash equilibrium of a game of incomplete information can be

supported as a Bayesian Nash equilibrium of an “announcement” game in which

all agents tell a fictional “mechanism operator” their true private information, and

he “plays” their equilibrium strategies for them. Such an announcement game is

called through a direct revelation mechanism. This thought experiment allows the

market designer to focus on characterizing the direct revelation mechanisms that

are welfare- or profit-maximizing, then look for more practical games that satisfy

the same characteristics, such as auctions or non-linear tariffs.

Chapter Two adds private information to the canonical complementary match-
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ing model of Becker [7], and investigates how an intermediary can design a market

to achieve efficiency and stability, or maximize the revenue of the intermediary. This

work clarifies that supermodular complementarity — a common assumption in the

literature — it is not sufficient to guarantee that a profit-maximizing intermediary

will choose the efficient and stable match. However, when the sufficient conditions

are satisfied, a set of games are characterized that implement the optimal outcome

as a Bayesian Nash equilibrium. These two-sided position auctions are similar to

those studied by Damiano and Li [22], Edelman et al. [25], Bulow and Levin [9],

Varian [65], and Hoppe, Moldovanu and Sela [35], but achieve the efficient or profit-

maximizing outcome, where those papers are mainly using the competitive bidding

framework as an analogy for the matching process, and do not provide an analysis

of the ex post efficiency or profitability of the mechanism.

Chapter Three considers how to achieve efficient outcomes in matching mar-

kets through games similar to the work of Edelman et al. [25] and Ausubel [2] and [1].

This chapter shows that the static results of Chapter Two can largely be extended

to dynamic games, using primarily ex post implementation rather than Bayesian

implementation. The difference is that the results of Chapter Two make a number

of strong assumptions about how information is distributed in the market, while ex

post equilibrium only requires that if all players act on their private information in

accordance with the equilibrium, no player can have a profitable deviation ex post.

This concept is robust to whether agents are poorly informed about their potential

partners, have accurate information, or this information is distribute asymmetri-

cally throughout the market, while Bayesian equilibrium is not. In many matching
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markets, agents may have previously been matched or have differential access to

information, making the weaker solution concept of ex post equilibrium a useful fea-

ture. The major contribution is a tractable model of many-to-one matching, which

is new to the competitive matching literature with private information, which has

previously focused on exclusively one-to-one matching.

Chapter Four extends these results to a multi-dimensional framework, allow-

ing agents to have privately known types composed of many pieces of information.

This allows, for example, heterogeneous firms that have business plans that dif-

ferentially utilize workers with heterogeneous packages of skills. The paper first

shows that the classic mechanisms for achieving honest revelation of private infor-

mation — serial random dictatorship, Vickrey-Clarke-Groves mechanisms, and, for

one side of the market, deferred acceptance algorithms — fail to implement truth-

telling in this context. Then, a mechanism is proposed that achieves efficiency as

an ex post equilibrium under a condition, called reciprocity, that ensures there is

sufficient agreement between the preferences over partners of the two sides that the

matchmaker can successfully intermediate with a market design that contains that

of Chapter Three as a special case.
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Chapter 2

Matching Through Position Auctions

2.1 Introduction

Intermediaries play a vital role in many markets, particularly where infor-

mation is scarce or unreliable. By playing the role of matchmaker, a single agent

can often improve market efficiency by providing incentives for agents to reveal

what they know honestly. This paper explores this possibility by studying how a

matchmaker can maximize profits or welfare in a two-sided matching model. Using

a mechanism design approach, I show how the matchmaker balances the motive

to maximize the welfare of the participants — and his cut of the surplus — with

the monopolistic desire to restrict the supply of matches to increase his profits. The

main results are sufficient conditions for assortative matching to be a solution to the

matchmaker’s problem, and a characterization of a class of bidding games (two-sided

position auctions) that can be used in practice to implement the optimal outcome.

Consider a market that is split into two distinct sides, where each agent can

produce surplus only by matching to a partner on the opposite side. All participants

privately know their quality as a partner, which indexes agents from worst to best.

If the match surplus for each agent is increasing in each agent’s quality and exhibits

supermodularity, an intermediary could maximize profits and efficiency simply by

ranking the agents on both sides, matching the highest-ranked agents together, the
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second-highest, and so on, charging the matched agents up to their willingness to

pay. This kind of matching is called assortative, and has long been recognized to

be socially efficient in such an environment. However, if the agents’ information is

private and the matchmaker naively asks them to report their quality, the agents

have an incentive to lie about their desirability as a partner to secure a better match,

creating a case of two-sided adverse selection.

In such a situation, an intermediary can provide a valuable service by design-

ing a game that induces them to reveal their characteristics honestly. A profit-

maximizing matchmaker, however, is not seeking to maximize welfare but instead

his own profits. This introduces a number of complications to the problem: Should

matching still be assortative? What kind of price discrimination is profit-maximizing

and what are the welfare costs? How can the matchmaker achieve this outcome using

various market institutions, such as posted prices or auctions? Does the matchmaker

ever find it profitable to arrange matches that reduce social welfare?

Using a mechanism design framework, this paper characterizes the set of imple-

mentable direct revelation mechanisms, and provides sufficient conditions for assor-

tative matching to be profit-maximizing for an intermediary. The profit-maximizing

matchmaker engages in price discrimination by withholding some socially beneficial

matches in a manner similar to a seller setting a strictly positive reserve price in in-

dependent private value auctions regardless of whether he has any value for it. If the

sufficient conditions for assortative matching are met, the optimal match can be im-

plemented through a straightforward game where all agents simultaneously submit

a single sealed bid, and then the matchmaker opens and ranks the bids, matching
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the highest-bidding agents together, the second-highest-bidding agents, and so on,

until the remaining agents are denied a match or no eligible agents remain on one

side. This two-sided position auction maximizes revenue and extracts the true qual-

ity rankings, rewarding the higher bidders by giving them more desirable partners.

Surprisingly, winners-pay auctions in which agents only pay if they receive a part-

ner are not always a successful means of implementing the optimal outcome, leaving

all-pay auctions as the only sure method of implementation without making further

assumptions. This occurs when markets are “unbalanced” in the sense that one side

is much larger than the other and there is considerable uncertainty about the supply

of partners. In particular, an agent might like to raise his bid, but the likelihood of

winning may increase much faster than the expected quality of a partner, resulting

in the potential for pooling in the winners-pay format but not the all-pay format.

This provides a practical reason why a matchmaker may limit participation in a

matching market, even though comparative statics on the optimal mechanism show

that profits are always increasing in the size of the market, given that the allocation

and expected payments are the same.

A common theme in many studies of matching is the analogy to competitive

bidding for partners. This goes back at least to the ideas of Spence [63] on costly

signaling, and the marriage market studied by Becker [7], and is developed in many

subsequent papers, including the recent contributions of Bulow and Levin [9] and

Hoppe, Moldovanu, and Sela [35]. This paper explains how such an analogy can be

operationalized and exploited by an intermediary, and when assortative matching

actually fails to be optimal. Alternatives to assortative matching such as coarse
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matching, where agents are sorted into sets wherein they are randomly matched,

have been explored in Damiano and Li [22], McAfee [44], and Hoppe, Moldovanu and

Ozdenoren [36], but these studies have focused on practical or institutional reasons

why such a mechanism would be chosen. This paper shows that when conditions on

the hazard rate and supermodularity of the surplus functions are violated, coarse

matching (pooling) can turn out to be optimal. This is similar to the work by Shimer

and Smith [61], which provides conditions for positive assortative matching to be

a solution in repeated matching economies, and shows that under some conditions

assortative matching may fail to prevail in equilibrium. This provides a useful

link between matching with incomplete information and market design, since it

clarifies why assortative or coarse matching arises, as well as the possibility of them

coexisting in the same market.

An example of a market with this structure is the executive search industry,

where firms seeking to fill vacant positions approach head-hunters, who represent a

pool of candidates meeting the firms’ criteria. Firms compete for qualified workers

by reporting a wage offer for a suitable candidate, while potential employees com-

pete either by reporting a minimum salary required for them to change jobs, or by

acquiring costly signals of quality, such as executive degrees. The head-hunter has

incentives to match profitable firms with talented executives, naturally leading to a

larger surplus to be split among the parties. In practice, some head-hunters charge

a “finder’s fee” proportion to the wage, billing their clients up front for their services

regardless of whether a match is found, while others charge an initial fee and collect

the proportional payment after a match is found. This paper provides a theoretical
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explanation for why a head-hunter might choose between these two payment struc-

tures, and clarifies how the “wages” reported by the firms should be seen as bids,

strategically influenced by the game designed by the head-hunter and intended to

signal the firm’s quality. A similar story can be told for many other intermediaries

such as financial brokers, who match investors and entrepreneurs strategically to

maximize the gains from trade, as well as taking a share of the surplus themselves.

In addition to labor and financial markets, the Internet provides many novel

and exciting design problems. From general issues like Net Neutrality to specific

questions such as how services like eBay might manipulate the allocation of buyers

and sellers of goods, intermediaries and their incentives are at the core of many

important debates about policy and welfare. One prominent example is the sale of

advertising tied to keywords by search engines such as Google or Yahoo. For each

keyword, such as “used cars” or “apartments”, a search returns both “organic” links

that are ranked by their observed use on the Internet, as well as “sponsored” links

that are sold by the search engine to advertisers. In this setting, the search engine

acts as an intermediary between consumers searching for goods or information, and

firms or organizations willing to provide their services. Research on the mechanisms

used in practice (Edelman et al. [25] and Varian [65]) has found that search engines

have mostly adopted the Generalized Second Price Auction, where bidders submit

a willingness to pay for a slot, the auctioneer ranks the bids and awards slots to the

bidders according to the rankings, then charges the k-th ranked bidder the k + 1-st

ranked bid. The authors call these mechanisms position auctions, since they use a

single bid to decide rankings, which then decide the allocation of goods. This paper

13



shows how position auctions can be generalized not just to allocate goods, but to

profitably match agents who have preferences over partners. Such a generalization

is of practical use in the design of markets on the Internet, where information about

other agents is difficult to obtain or verify or relationships are short-lived. Moreover,

this paper clarifies the matchmaker’s motives, allowing an analysis of the welfare

loss that results from price discrimination.

The framework developed allows comparative statics analysis on a number of

fundamentals in any profit-maximizing mechanism, and shows that increasing the

size of one of the market’s sides tends to erode the bargaining power of agents on that

side, similar to the analysis of marriage markets of Crawford [18]. The matchmaker’s

profits are always increasing in the size of the market, but an “improvement” in the

distribution of the types in the sense of hazard-rate dominance has two effects:

The participants are likely to be higher quality, but there is more exclusion in the

market. Since these effects go in opposite directions, it is ambiguous how these kinds

of changes affect market welfare and profits.

This paper also complements the extensive literature on the “marriage prob-

lem”, starting with David Gale and Lloyd Shapley [28], by considering mechanism

design in a matching environment with adverse selection. This literature has im-

proved real world matching markets, evidenced by the National Resident Matching

Program and mechanisms used to allocate students to public schools in Boston and

New York (Roth [55], Abdulkadiroglu and Somnez [4]). However, almost all these

papers assume that agents know their preferences over potential partners (Gale and

Shapley, [28], Roth and Sotomayor [56]), though these preferences may be private
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information (Niederle and Yariv [50]; Coles et al. [17]). In contrast, this paper as-

sumes that the agents know they prefer higher quality partners, but cannot discern

the desirability of any particular agent due to private information. In Niederle and

Yariv [50], players are assumed to know their own preferences over partners and

the existence of a unique stable match, but may be too impatient to wait for a

decentralized market to identify their stable partners when players use proposal and

acceptance strategies like those in a deferred acceptance algorithm. Many markets

suffer from impatience or fixed deadlines and other imperfections which may tempt

players to leave the market early or deviate from the behavior Niederle and Yariv

consider, creating a scope for an intermediary like the one studied in this paper to

improve performance.

This paper also contributes to the mechanism design literature by extending

seminal work by Myerson and Satterthwaite [49], who studied whether and how to

arrange a single transaction between two agents to which transactions to arrange

among many possible partners with externalities within the match. The closest

framework to the one in this paper is Damiano and Li [22], who consider a mo-

nopolist matchmaker that wants to organize “meeting places” with entry fees in a

manner that induces agents to self-select. They conclude that adding more meeting

places always increases revenue, and show that in the limit the monopolist would

like to have an infinite number of meeting places and match agents assortatively, as

well as efficiently. In this paper, the opposite conclusion holds: The matchmaker

introduces significant inefficiency and, in general, has incentives to oppose changes

that improve the ex ante quality of the participants. Moreover, they do not consider
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how the matchmaker could improve outcomes in the finite case by constructing a

game in a more straightforward mechanism design framework where communication

between the matchmaker and the agents is allowed, rather than exploring the limit

of a model where posted prices are used. Hoppe, Moldovanu and Sela [35] show

that in a model of matching through costly signaling where agents are matched on

the rank of their signal leads to assortative matching, and provide conditions under

which costly signaling can improve welfare over random matching. Hoppe et al.,

however, do not consider how an intermediary would design a market to achieve

objectives like profit- or welfare-maximization, and their paper is mainly a posi-

tive analysis of costly signaling in the tradition of Spence [63]. The results in both

Damiano and Li and Hoppe et al. make extensive use of the assumption that the

matching surplus is Cobb-Douglas, which provides tractability for many results, but

that assumption is quite restrictive. In particular, the analysis of Hoppe et al. relies

on being able to convert agents’ expected utilities as sums and differences of order

statistics through an analogy to Vickrey-Clarke-Groves mechanisms, which is not

possible in the framework in this paper. In the current paper, no assumptions are

made about functional form, only the signs of derivatives and the relationship to

the hazard rates of the players’ type distributions. More importantly, this paper

includes markets where some matches are not socially beneficial, which is not in-

cluded in the Cobb-Douglas case. Lastly, Gomes [29] considers a mechanism design

framework in which a finite number of agents on both sides of the market receive

signals about their preferences for partners on the opposite side, and an interme-

diary platform constructs a revelation mechanism to match one firm to the users
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who find it profitable to pay an entry fee. This framework is modelled after Internet

search, where firms are induced to reveal information honestly to the platform, who

then sells one firm the right to match with users who participate. In my framework,

the matchmaker is attempting to match users and firms one-to-one — rather than

many-to-one — and receives messages from both sides, rather than just the firms.

2.2 Model

There are two disjoint sets of agents, I and J , with KI agents on the I side

and KJ agents on the J side; let K = min{KI , KJ}, which is the largest number

of matches that can be arranged in this market. Each I-side agent would like to

match to one agent on the J side, and each agent on the J side would like to match

to one agent on the I side. Each I-side agent has a privately known quality drawn

from an absolutely continuous probability distribution function FI(q), with support

on [0, q̄I ], with qj defined likewise. Let qI = (qI1, qI2, ..., qIKI
) be a vector of types

for all the agents on the I side, and qJ defined similarly. To focus on a particular

agent i on the I side, let qI\i = (qI1, qI2, ..., qIi−1, qIi+1, ..., qIKI
), the vector of types

from the I side where the i-th entry is removed, so that qI = (qi, qI\i).

Agents who are matched produce pairwise private surpluses sI(qi, qj) for the

I-side agent and sJ(qj , qi) for the J-side agent; this can be thought of as truly

private surplus, in the case of a marriage between two individuals who derive value

from each others’ company, or as the equilibrium payoff from a perfect information,

non-cooperative game played after the matching game that satisfies appropriate
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restrictions1. Surplus is a function of both agents’ qualities, increasing in both

arguments, and differentiable.

Agents have quasi-linear preferences, so an agent i paying t to match to agent

j receives a payoff of

sI(qi, qj)− t

Throughout, the rankings of components in a vector is important. For a vector

X = (x1, x2, ..., xi, ..., xK) with some component xi, let ρX(xi) be the rank of xi in

X :

ρX(xi) = |{xk ∈ X : xk ≥ xi}|

where |A| is the number of elements in a set A. So ρX(xi) = 5 implies that there

are 5 elements in X greater than or equal to xi (including itself), and if ρX(xi) = 1,

it is the largest element in X (since xi is less than or equal to itself).

For an arbitrary function h(qI , qJ), let

Ei[h(qi, qI\i, qJ)] = EqI\i,qJ [h(qi, qI\i, qJ)]

This is the expectation of h(qI , qJ) conditional on i’s information; it can be read as

“agent i’s expectation of h(qI , qJ)”.

In addition, make the standard assumption that the monotone likelihood ratio

1For example, suppose the players’ payoffs are a function πi(si, sj , qi) that exhibit strategic

complementarities and ∂2πi/∂si∂qi ≥ 0. Then there is a lattice of equilibria for the players, with a

“best” equilibria, and their strategies are increasing in their type and their opponent’s type. (see

Milgrom and Roberts [47])
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property holds:

d

dq

1− FI(q)

fI(q)
≤ 0 (2.1)

The monotone likelihood ratio property is often invoked in the mechanism

design literature to rule out pooling, and many common distributions satisfy it, such

as the Normal family, the exponential, the Pareto, and the uniform distributions (see

Bagnoli and Bergstrom [6]).

Let the cost of arranging a match be c, independent of the realized qualities

and reports. This can be interpreted as the bureaucratic cost to the matchmaker

associated with arranging the consummation of the match or the cost of the legal

burden of connecting agents, such as background checks, insurance against civil

lawsuits, and investigating potential fraud.

A direct revelation mechanism is a set of functions

{mij(qI , qJ), ti(qI , qJ), tj(qI , qJ)}i,j

that take the type spaces of the agents as arguments, where mij(qI , qJ) is the prob-

ability that i is matched to j given types qI and qJ , ti(qI , qJ) is the amount paid by

agent i given qI and qJ , and tj(qI , qJ) is the amount paid by agent j given qI and

qJ .

Consider the direct revelation mechanism as a non-cooperative game where

agents each simultaneously announce a type — not necessarily truthfully — and

get the payoff associated with their announced type, given the announcements of

all the other players. Then the revelation principle asserts that given any game

of incomplete information and an equilibrium for that game, there exists a direct
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revelation mechanism where truth-telling is a Bayesian Nash equilibrium and the

outcomes are the same as the original equilibrium payoffs.

As in Myerson [48], we imagine that the matchmaker announces the mech-

anism to the agents, the agents then strategically report a type or decide not to

participate, and then are matched and make payments according to the mechanism.

To ensure that truth-telling is a Bayesian Nash equilibrium of the announcement

game, incentive compatibility and individual rationality restrictions are imposed.

Since this thought experiment characterizes all the implementable mechanisms, the

profit- or welfare-maximizing mechanism can be found and characterized. With

such a characterization available, any game can then be analyzed to see if it imple-

ments the same outcome, and is therefore an optimal indirect implementation. This

paper characterized incentive compatible matching mechanisms, derives sufficient

conditions for assortative matching to be a solution, then shows how two construct

optimal two-sided position auctions.

Since agents have quasi-linear preferences, agent i has an indirect utility func-

tion from participating in a given mechanism of

UI(qi) = max
q′

Ei

[
∑

j

mij(q
′, qI\i, qJ)sI(qi, qj)− ti(q′, qI\i, qJ)

]

Since no special distinctions are made between the I side and the J side of the

market all analysis will apply equally to both sides, so discussion will focus on the

I side, but all findings hold with the appropriate permutations of indices for the J

side.
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2.3 The Direct Revelation Mechanism

This section characterizes the profit-maximizing direct revelation mechanism,

compares it with the welfare-maximizing direct revelation mechanism, and derives

a number of comparative statics results showing how agents’ payoffs are influenced

by changes in the fundamentals of the market.

2.3.1 The Mechanism Design Problem

The matchmaker seeks to maximize expected profits:

Eπ = max
ti,tj ,mij

E

[
∑

i

ti(qI , qJ) +
∑

j

tj(qJ , qI)−
∑

i

∑

j

mij(qI , qJ)c

]

(2.2)

subject to individual rationality constraints and incentive compatibility constraints:

The mechanism is individually rational if, for all agents i on the I side with true

quality qi, and similarly for all agents j on the J side,

Ei

[
∑

j

mij(qi, qI\i, qJ)sI(qi, qj)− ti(qi, qI\i, qJ)
]

≥ 0 (2.3)

and the mechanism is incentive compatible if, for all agents i on the I side and

similarly for all agents j on the J side, and for all q′ not equal to the agent’s true

type qi,

Ei

[
∑

j

mij(qi, qI\i, qJ)sI(qi, qj)− ti(qi, qI\i, qJ)
]

≥ Ei

[
∑

j

mij(q
′, qI\i, qJ)sI(qi, qj)− ti(q′, qI\i, qJ)

]

(2.4)

The incentive compatibility constraints require that no agent finds it in his best

interests to lie about his type, while the individual rationality constraints require
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that no agent who participates receives a lower payoff than if he had refused to

participate at all. In particular, they ensure that truthful reporting is a Bayesian

Nash equilibrium of the announcement game.

2.3.2 Incentive Compatibility

Define q
I
as the agent on the I side with the lowest q that chooses to partici-

pate, rather than withdraw from the market and receive a payoff of zero.

Lemma 2.3.1 (Incentive Compatibility) The mechanism is incentive compati-

ble if and only if the following conditions hold: (i) the envelope condition

UI(qi) = Ei

[

UI(qI) +

∫ qi

q
I

∑

j

mij(z, qI\i, qJ)
∂sI(z, qj)

∂qi
dz

]

(2.5)

and (ii) the monotonicity condition that for q′ 6= q,

∫ q′

q

Ei

[
∑

j

(mij(z, qI\i, qJ)−mij(q
′, qI\i, qJ))

∂sI(z, qj)

∂qi

]

dz ≤ 0 (2.6)

Since a profit-maximizing matchmaker is being considered, the individual ra-

tionality constraint for the worst-off participating type will bind, implying that

UI(qI) = 0. By equating the envelope condition and the indirect utility function,

interim expected transfers can be isolated for any incentive compatible and individ-

ually rational mechanism:

Ei[ti(qI , qJ)] = Ei

[
∑

j

mij(qi, qI\i, qJ)sI(qi, qj)−
∫ q

q
I

mij(z, qI\i, qJ)
∂sI(z, qj)

∂qi
dz

]

Then ex ante expected transfers can be found through an integration by parts:

E [ti(qi, qj)] = E

[
∑

j

mij(qi, qI\i, qJ)

(

sI(qi, qj)−
1− FI(qi)

fI(qi)

∂sI(qi, qj)

∂qi

)]
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Define virtual surplus as

ψI(qi, qj) = sI(qi, qj)−
1− FI(qi)

fI(qi)

∂sI(qi, qj)

∂qi

This can be interpreted as the marginal revenue accruing to the matchmaker from

agent i when he is matched to agent j.

Then

E [ti(qi, qj)] = E

[
∑

j

mij(qI , qJ)ψI(qi, qj)

]

Substituting this expression for expected transfers into the matchmaker’s problem

yields an equivalent program:

Eπ = max
mij

E

[
∑

i

∑

j

mij(qI , qJ)(ψI(qi, qj) + ψJ(qj , qi)− c)
]

(2.7)

subject to the monotonicity condition.

So the matchmaker’s problem is reduced to choosing a matching function on

the basis of the reports, with the transfers eliminated. The monotonicity condition

essentially requires that the matchmaker assign a more advantageous lottery over

partners to agents who report higher types. Consider the relaxed program where the

monotonicity condition is dropped:

Eπ = max
mij

E

[
∑

i

∑

j

mij(qI , qJ)(ψI(qi, qj) + ψJ(qj , qi)− c)
]

To proceed, this relaxed optimization problem will be solved, and then it will be

shown that the monotonicity constraint is satisfied at that solution (Theorem 2.3.6).

Consequently, the unconstrained solution is a solution to the constrained problem.
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2.3.3 Truncated Assortative Matching and the Reserve Function

By inspection of the objective function for the relaxed program, it is evident

that the matchmaker refuses to put any agents together who satisfy ψI(qi, qj) +

ψJ(qj , qi) < c, since such a match generates negative profits. Consider the match

function that pairs agents assortatively, putting the best I agent with the best J

agent, the second-best I agent with the second-best J agent, and so on, but stops

when a pair generates negative revenue for the matchmaker:

Definition Truncated Assortative Matching (TAM)

mij(qI , qJ) =







1 , ρqI (qi) = ρqJ (qj) and ψI(qi, qj) + ψJ (qj, qi) ≥ c

0 , otherwise

This mechanism has the notable property that for those agents who receive a match,

the allocation is only dependent on rankings of the agents’ qualities, not on the

realization of qualities per se. This feature allows agents to contemplate whether

they will attain a certain rank when formulating their strategies, rather that sorting

through different possible realizations of all the other agents’ qualities.

Lemma 2.3.2 (Assignment-Optimality of TAM) If the surplus function is su-

permodular

∂2sI(qi, qJ)

∂qi∂qj
≥ 0

and exhibits decreasing supermodularity

∂3sI(qi, qj)

∂q2i ∂qj
≤ 0 (2.8)

then TAM is a solution to the relaxed matching problem.
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Proof First, note that the cross-partial derivative of ψI(qi, qj) is

∂2ψI(qi, qj)

∂qi∂qj
=
∂2sI(qi, qj)

∂qi∂qj
− 1− FI(qi)

fI(qi)

∂3sI(qi, qj)

∂q2i ∂qj
− d

dqi

[
1− FI(qi)

fI(qi)

]
∂2sI(qi, qj)

∂qi∂qj

From the assumption that sI(qi, qj) is supermodular, the monotone likelihood ratio

property of FI(q), and the added assumption of ∂3sI/∂q
2
i ∂qj ≤ 0, the cross-partial

of virtual surplus is positive, so virtual surplus is also supermodular.

It is obvious that leaving any two agents unmatched who satisfy ψI(qi, qj) +

ψJ(qj , qi) ≥ c is suboptimal, since these agents could be matched and revenue in-

creased. Likewise, matching any pair of agents who satisfy who satisfy ψI(qi, qj) +

ψJ(qj , qi) < c is suboptimal, since this reduces revenue for the matchmaker.

Now consider any match scheme other than truncated assortative matching,

where all the current matches are generating positive revenue and no pair of un-

matched agents could be profitably matched. It necessarily includes two pairs

(qi1, qj2) and (qi2, qj1) with, say, qi1 > qi2 but qj1 > qj2. Consider the change in

virtual surplus from switching to TAM, where both matches are still profitable after

the switch:

[ψI(qi1, qj1) + ψI(qi2, qj2) + ψJ(qj1, qi1) + ψJ(qj2, qi2)]−

[ψI(qi1, qj2) + ψI(qi2, qj1) + ψJ (qj1, qi2) + ψJ (qj2, qi1)]

This equals

∫ qi1

qi2

∫ qj1

qj2

∂2ψI(qi, qj)

∂qi∂qj
dqidqj +

∫ qi1

qi2

∫ qj1

qj2

∂2ψJ (qi, qj)

∂qi∂qj
dqidqj

Since virtual surplus is supermodular, the integrands are positive, and this swap has

increased revenue in equation (1.7). Therefore, any switch toward TAM raises the
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value of the objective function when no matches are destroyed.

Suppose, however, that such a switch results in the lower pair generating

virtual surplus of ψI(qi2, qj2) + ψJ(qj2, qi2) < c, so the choice is between one good

match and two mediocre matches. By way of contradiction, suppose that choosing

the one good match lowers profits, or

ψI(qi1, qj1) + ψI(qj1, qi1)− c

− [ψI(qi1, qj2) + ψI(qj2, qi1)− c + ψI(qi2, qj1) + ψI(qj1, qi2)− c] < 0

∫ qi1

qi2

∫ qj1

qj2

∂2ψI(qi, qj)

∂qi∂qj
dqidqj +

∫ qi1

qi2

∫ qj1

qj2

∂2ψJ(qi, qj)

∂qi∂qj
dqidqj

− [ψI(qi2, qj2) + ψJ (qj2, qi2)− c] < 0

But this is a contradiction, since the integrands are positive, and ψI(qi2, qj2) +

ψJ(qj2, qi2) < c, so the one good match over two mediocre matches must be more

profitable after all. This argument shows that any proposed match can be improved

unless it is identically TAM. Therefore, TAM is profit-maximizing in the uncon-

strained problem.

The key to the proof is that virtual surplus must also be supermodular to

guarantee that assortative matching is profit-maximizing in this environment. To

ensure this, three conditions are required: the monotone likelihood ratio property,

supermodularity, and decreasing supermodularity. If these conditions are violated,

the matchmaker might like to deviate from assortative matching, which can lead

to coarse matching, or pooling. Previous work (Damiano and Li [22], McAfee [44],
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Hoppe, Moldovanu and Ozdenoren [36]) have focused on institutional or practical

reasons why coarse matching might arise in practice, but this analysis shows that

pooling can be the optimal choice for markets where one or more of conditions for

virtual surplus to be supermodular are violated and the matchmaker would actually

find it profitable to utilize non-assortative matching — which can, moreover, arise

even if supermodularity holds.

Decreasing supermodularity appears elsewhere — see Fudenberg and Tirole

[27] — and essentially brings stability to the market: If even the lowest-quality

agents on one side found it profitable to bid aggressively in an attempt to get

the best partner on the other side of the market due to quality externalities, the

matchmaker may fail to be able to separate the types, forcing him — in the most

extreme case— to adopt a lottery and pool all types. Under this condition, such a

case is ruled out.

As previously noted, assortative matching is the socially optimal assignment

in environments with supermodular surplus functions. However, due to matching

costs and price discrimination motives, the matchmaker has incentives to restrict

the supply of matches. The fact that the matchmaker refuses to put some agents

together despite generating positive value is analogous to an auctioneer’s decision to

set a strictly positive reserve price, even if his value for the item for sale is zero. This

is the source of inefficiency, and is a consequence of the profit-maximizing motives

of the matchmaker. To warrant matching, the two agents must satisfy

ψI(qi, qj) + ψJ (qj, qi) ≥ c
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Let the reservation function be

RI(qi) = min
qj
{qj : ψI(qi, qj) + ψJ(qj , qi) ≥ c}

This gives the lowest-quality partner that the matchmaker will allow to match to

an agent with quality qi. It is implicitly defined as the function satisfying

ψI(qi, RI(qi)) + ψJ(RI(qi), qi) = c

Lemma 2.3.3 (Reserve Function) Suppose

fI(qi)

1− FI(qi)
≥ ∂

∂qi
log

(
∂sI(qi, qj)

∂qj

)

(2.9)

and likewise for the J side. Then RI(qi) is decreasing in qi. If the worst-off agent

who participates has a quality strictly greater than 0, his quality q
I
satisfies

ψI(qI , q̄J) + ψJ(q̄J , qI) = c

The condition in Equation (2.1.9) states that the growth rate of marginal

utility of partner quality in qi is bounded by the hazard rate of qi. If this condition

were violated, it would be possible that getting a better partner would reduce an

agent’s virtual surplus. As a result, the matchmaker might like to block the match

if joint virtual surplus falls below the match cost, but this could potentially lead

to a violation in the monotonicity condition, resulting in pooling. Equation (2.1.9)

provides a sufficient condition to rule this possibility out. Interestingly, the efficient

matchmaking scheme in Section 2.3.6 does not require this condition, implying that

it arises solely as a consequence of the matchmaker’s efforts to price discriminate.

For some commonly used surplus functions, another approach to proving that

RI(qi) is decreasing is available:
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ψI + ψJ = c

Matched

Unmatched

Excluded J agents

qj

q
I

q
J

qi
q̄I

q̄J

RI(qi)

Figure 2.1: Downward-Sloping Reserve Function

Proposition 2.3.4 Suppose that

sI(qi, qj) = λIaI(qi)aJ(qj)

and

sJ(qj , qi) = λJaI(qi)aJ(qj)

Assume aI(q) and aJ(q) are positive, increasing and concave. Then RI(qi) is down-

ward sloping.

This includes any games with symmetric Cobb-Douglas or Stone-Geary matching

surplus functions, or bargaining games with common surplus aI(qi)aJ(qj) where

λI + λJ = 1. Also, it can be adapted to include environments where λI < 0 but

λJ > 0, such as workers on the I side who incur the costs of labor effort, and firms

on the J side who take in revenue from the efforts of the workers.
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Figure 1.1 illustrates that there are two kinds of exclusion in the model. The

mechanism exhibits absolute exclusion if there exists a set of types of strictly positive

measure which prefer not to participate, in the sense that they expect non-positive

surplus from the mechanism almost surely. Relative exclusion is realized after the

type-announcements are made: Some pairs of agents are barred from matching,

since their joint virtual surplus is too low, despite generating positive social surplus.

Figure 1.1 shows an example where some agents on the J side face absolute exclusion

and will never receive a partner by participating in the mechanism, while every agent

on the I side has a non-empty set of types on the J side that he could be paired

with.

It is remarkable that there is a single reserve function that depends only on

joint virtual surplus and the matching cost: there is not a separate reserve function

for the best match, the second-best match, and so on, and the reserve function does

not depend on the number of agents in the market. This result is analogous to

symmetric independent private value auctions where the optimal reserve price does

not depend on the number of bidders, but surprising since the matchmaker optimally

decides for only one criteria on which to allow or block a match, rather than a

different one for each potential rank. If there was a cost schedule {c1, c2, ..., cK},

there would be a different threshold for each match, creating a supply function for

matches on the part of the intermediary and the potential for market congestion

effects.

The following proposition provides a necessary and sufficient condition on the

primitives of the model to determine if absolute exclusion occurs:
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Proposition 2.3.5 Absolute exclusion on the I side occurs if and only if

sI(0, q̄J) + sJ(q̄J , 0)−
1

fI(0)

∂sI(0, q̄J)

∂qi
< c (2.10)

This shows that in matching environments, absolute exclusion may not occur

on either side of the market, and all types have a positive probability of receiving a

partner ex ante. It also provides a useful way of using only model fundamentals to

check whether absolute exclusion occurs without solving for the optimal mechanism

or equilibrium strategies.

2.3.4 Optimality of TAM in the Constrained Problem

With TAM sufficiently characterized, it can be verified that the monotonicity

condition is satisfied under the sufficient conditions developed.

Let the weighting function be defined as

wI,k(q) =
(KI − 1)!

(KI − k)!(k − 1)!
FI(q)

KI−k(1− FI(q))
k−1 (2.11)

This is the probability of coming in rank k out of KI draws from distribution FI

with value q (note that, in keeping with economic tradition, the highest value is

ranked 1, and the lowest value is ranked KI). The density of the k-th of KJ order

statistics is:

fJ,(k)(x) =
KJ !

(KJ − k)!(k − 1)!
FJ(x)

KJ−k(1− FJ(x))
k−1fJ(x) (2.12)

While Section 2.3.3 shows that TAM is optimal when the monotonicity condi-

tion is ignored and characterized reserve behavior of the matchmaker, it remains to
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show that the constraint is actually satisfied. Theorem 2.3.6 shows that the condi-

tion is satisfied under the set of assumptions previously developed. It also provides

a revenue equivalence result: Under the assumptions of Theorem 2.3.6, any profit

maximizing mechanism assigns matches according to TAM, and charges the agents

the same expected payments.

Theorem 2.3.6 (Optimality and Revenue Equivalence) Under the assumptions

of supermodularity, decreasing supermodularity, and equation (1.9), TAM is a solu-

tion to the mechanism design problem; i.e., it satisfies the monotonicity condition.

In any profit-maximizing mechanism, the interim expected transfers equal

Ei[ti(qi, qI\i, qJ)]

=
∑

k

wI,k(qi)

∫ q̄J

RI (qi)

sI(qi, y)fJ,(k)(y)dy

−
∫ qi

q
I

wI,k(z)

∫ q̄J

RI(z)

∂sI(z, y)

∂qi
fJ,(k)(y)dydz

This theorem holds because the supermodularity property of the surplus func-

tions and the first-order stochastic dominance properties of distributions of order

statistics ensure that the mechanism assigns more favorable lotteries over partners

to agents who submit higher reports, and this increases the matchmaker’s profits.

This aligns the matchmaker’s incentives with those of the agents, and they have no

profitable deviations from honestly reporting their quality if everyone else is honest.

The proof uses the fact that agents care about the quality of a partner rather

than their “name”, and TAM makes the assignment on the basis of ranking the

agents’ reports. Without this property, agents would have to worry about the re-

alizations of all other agents’ qualities, rather than just their ranks, making the
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problem much more complicated — this is what makes many-to-one matching with

declining values for partners difficult to solve.

2.3.5 Welfare and Comparative Statics

In the framework developed above, a number of comparative statics predic-

tions can be made concerning how exclusion and payoffs change under the profit-

maximizing mechanism when the size or quality of the markets changes. An ab-

solutely continuous distribution F hazard rate dominates an absolutely continuous

distribution G if, for all x,

f(x)

1− F (x) ≤
g(x)

1−G(x) ←→
1− F (x)
f(x)

≥ 1−G(x)
g(x)

Hazard rate dominance implies the more commonly used first-order stochastic domi-

nance, but is more closely related to the payoffs and strategies of the agents since the

inverse of the hazard rate figures into the informational rents extracted by market

participants.

Proposition 2.3.7 (Exclusion) (i) If F 1
I hazard-rate dominates F 2

I , then absolute

exclusion is higher in the market under F 1
I than the market under F 2

I ; absolute

exclusion does not depend on FJ . (ii) If F
1
J hazard-rate dominates F 2

J , then there is

more relative exclusion under F 1
J than F 2

J . (iii) If the cost schedule c1 ≥ c2, then

there is more absolute and relative exclusion under c1 than c2.

Absolute and relative exclusion don’t depend on KI or KJ , similar to the

result that reserve prices in auctions do not depend on the number of participants.
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This result is surprising, since it might be anticipated that if one side were much

larger than the other, payments might be depressed on the larger size. In fact, the

matchmaker doesn’t face this trade-off on exclusion, but on which kinds of bidding

games implement the optimal outcome (see the discussion following Theorem 4.1).

Proposition 2.3.8 (Market Size) (i) If KJ increases, the interim expected utility

of the agents on the I side increase. (ii) If KI increases, the interim expected utility

of the agents on the I side decrease. (iii) If KI or KJ increase, the profits of the

matchmaker increase.

This result mirrors Crawford [18], in that increasing the size of one side of the

market generally reduces the interim expected payoffs of agents on that side, but

increases the interim expected of agents on the other side.

Proposition 2.3.9 (Own-Side Effects) Suppose FI1 hazard-rate dominates FI2.

Then the interim expected payoffs of I side agents are higher under FI2.

When the hazard rate decreases for all types, higher types become more likely.

It might be expected that this would have unambiguous effects in increasing profit or

the other side’s payoffs, but that happens to fail. The reason is that the matchmaker

responds to such a change in the market by increasing exclusion, thereby reducing

the likelihood of a match. So while the matches made will be better in expectation,

fewer are likely to be made. This provides an interesting insight into matchmaker

behavior: Intermediaries will always be interested in fostering market size, but may

be more reticent about changes that improve the quality of one side since that

improves that side’s bargaining power.
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2.3.6 Efficiency

The above analysis is framed in terms of a monopolist matchmaker trying to

maximize his profits. In many applications of a theory of matchmaking, the central

authority may be organized by some organization or government, such as the NRMP

or the junior academic recruiting process in economics. In electricity markets, for

example, governments often empower a third-party regulator to design a market

that matches electricity generators and distributors or consumers, and gives any

economic profit back to the government. Suppose that the matchmaker has been

mandated to maximize total surplus, the sum of transfers and the participants’

utilities.

Since the necessary and sufficient conditions for individual rationality and

incentive compatibility are derived independently of the objective function of the

matchmaker, they also apply to this social planner’s problem. Therefore, almost all

the work done for the profit-maximizing matchmaker applies here, except the reserve

function. Then the same transfer functions can be substituted into the objective

function for the regulator, just as for the pure profit-maximizer. Then, summing

the agents’ welfare and the profits from matching them, the social planner faces the

objective function:

EW = max
m∗

ij

E

[
∑

i

∑

j

m∗
ij(qI , qJ) {sI(qi, qj) + sJ(qj , qi)− c}

]

Since the objective exhibits increasing differences, the optimal rule is:

m∗
ij(qI , qJ) =







1 , ρqI(qi) = ρqJ (qj) and sI(qi, qj) + sJ(qj , qi) ≥ c

0 , otherwise
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ψI + ψJ = c

sI + sJ = c

Matched

Unmatched

qj

qi

RI(qi)

R∗
I(qi)

Figure 2.2: Surplus-Maximizing vs. Profit-Maximizing Matchmaking

The only difference between this case and the monopolist case is the reserve con-

dition. Joint total surplus has to justify the matching cost, while the monopolist

considers the joint virtual surplus. Just as with the monopolist matchmaker there

is a reserve criterion that divides the set of matched and unmatched agents in equi-

librium:

sI(qi, R
∗
I(qi)) + sJ(R

∗
I(qi), qi) = c

The slope of R∗
I(qi) is

R∗
I
′(qi) = −

∂sI(qi, R
∗
I(qi))

∂qi
+
∂sJ (R

∗
I(qi), qi)

∂qj
∂sI (qi, R

∗
I(qi))

∂qj
+
∂sJ (R

∗
I(qi), qi)

∂qi

< 0

So there is a unique lowest-quality partner for every qi that results in a successful

match. The welfare-maximizing mechanism can be shown to be incentive compatible

by showing that m∗
ij(qI , qJ) satisfies the monotonicity constraint.

In Figure 1.2, the pairs between RI and R
∗
I go unmatched when the monopolist
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decides the allocation, but are matched by the social planner. The quasi-linearity

assumption on utilities insures that over the region in which both mechanisms match

agents, the payments made by the agents to the matchmaker fall, and in the region

where the efficient program matches the agents but the monopolist doesn’t, the total

surplus is completely lost.

Also interesting is the fact that R∗(qi) is decreasing without requiring any

extra conditions such as the one in Lemma 2.3.3. This shows that the need for

conditions such as Equation (2.2.9) stems from the matchmaker’s attempts to price

discriminate, rather than simply the presence of the externalities.

2.3.6.1 Comparison with the Double Auction

If sI(qi, qj) = qi and sJ(qi, qj) = −qj , then this framework corresponds to the

same agent preferences as a double auction, similar to the models studied in Gresik

and Satterthwaite [32], McAfee [43], Rustichini, Satterthwaite and Williams [57],

Satterthwaite and Williams [59], and Cripps and Swinkels [21]. A common theme

in that literature is that double auctions are only efficient as the number of traders

becomes large, so that the probability that a given trader’s bid affects the clearing

price goes to zero. So it is surprising that this framework can achieve efficient

allocation without passing to the limit.

The reason is that the double auction is a direct generalization of the Myer-

son and Satterthwaite bargaining game where a single trading price is maintained.

The traders consider whether they will be the “marginal agent” who is setting the
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clearing price, and attempt to extract rents from their potential partner by bidding

strategically, in the same way that agents in the Myerson and Satterthwaite frame-

work try to over- or under-state their values to extract more rents for themselves.

In short, agents are directing their informational advantage at both their opponents

on their side of the market, but also at their potential partner. In the framework de-

veloped in this paper, the matchmaker utilizes essentially two separate auctions on

each side of the market to direct the traders’ informational advantage at opponents

on their side. By setting the efficient level of exclusion, then, allocative efficiency

can be achieved, even with the externalities present in a matching framework but

not in a double auction.

2.4 Indirect Implementation

Any theory that provides a profit-maximizing direct revelation mechanism but

does not investigate characterizations of games that implement the optimal outcomes

is incomplete. The quality information held by the agents in the market might be

abstract and difficult to communicate, requiring some other means of allowing them

to report this information to the matchmaker. Similarly, this section provides a

class of games that achieve the same outcomes as the direct revelation matching

mechanism described in Section 2, but take the form of bidding games.

Since the optimal direct revelation matching mechanism depends on the ranks

of the agents’ reports, it turns out that position auctions are one appropriate tool to

implement the profit-maximizing allocation. Broadly defined, a position auction is
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an indirect mechanism where agents submit bids for a series of goods that are clearly

decreasing in value, the bids are ranked, and bidders receive the good associated

with their rank.

Consider the all-pay (winners-pay) position auction:

1. The matchmaker announces a bid-reservation schedule, (bi, bJ(bi)), giving the

lowest bid a J-side agent can make and still be eligible to match to an I-side

agent making a bid of bi.

2. Agents submit a sealed bid bi to the matchmaker.

3. The matchmaker opens all bids bi and bj and ranks them from greatest to

least, tentatively matching the highest-bidding agent on the I side with the

highest-bidding agent on the J side, the second-highest bidder on the I side

with the second-highest bidder on the J side, and so on.

4. The matchmaker checks that the bids satisfy the bid-reservation schedule for

all tentative matches. If so, he announces publicly that those agents are

matched; otherwise, he reveals nothing. All agents pay their bids (All matched

agents pay their bids).

Let bI = (b1, b2, ..., bKI
) be the list of bids from the I side of the market. Then

Theorem 2.4.1 (Profit-Maximizing Implementation) The all-pay position auc-

tion has a Bayesian Nash equilibrium that implements the profit-maximizing matches
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and payments, with a symmetric bidding strategy given by

bAP
I (q) =

K∑

k

wI,k(q)

∫ q̄J

RI(q)

sI(q, y)fJ,(k)(y)dy

−
∫ q

q
I

wI,k(z)

∫ q̄J

RI(z)

∂sI(z, y)

∂qi
fJ,(k)(y)dydz

and bid-reservation schedule (bi, bJ(bi)) schedule implicitly defined by

ψI(b
AP
I

−1(bi), b
AP
J

−1(bJ)) + ψJ(b
AP
J

−1(bJ)), b
AP
I

−1(bi))− c = 0

Let

bWP
I (q) =

bAP
I (q)

∑

k wI,k(q)(1− FJ,(k)(RI(q))

If bWP
I (q) is increasing in q, then there is a symmetric equilibrium in the winner-pay

position auction that implements the profit-maximizing matches and payments, with

bid-reservation schedule (bi, bJ(bi)) implicitly defined by

ψI(b
WP
I

−1(bi), b
WP
J

−1(bJ)) + ψJ(b
WP
J

−1(bJ)), b
WP
I

−1(bi))− c = 0

While previous works have noted that supermodularity provides the right in-

centives for a separating equilibrium in matching markets, this result shows that

position auctions can also be used in practice by intermediaries to maximize profits.

It might have been necessary that a more complicated mechanism such as a menu

auction in the form of bids for each rank of partner or a bid function expressing

willingness to pay as a function of partner quality would be required to achieve

profit maximization. But here, it turns out that this simple bidding procedure is

optimal.

The winners-pay implementation, however, may fail to implement the profit-

maximizing outcome if bWP
I (q) is non-monotonic. The numerator of bWP

I (q) is the
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expected payment in any profit-maximizing mechanism and the denominator is the

probability that the agent receives a match; so conditional on receiving a match, this

is the profit-maximizing payment to the matchmaker. However, since the probability

of receiving a match is increasing in q, the numerator may not be increasing as fast as

the denominator, and it follows these proposed bids do not form an equilibrium of the

game (since they were assumed to be invertible in the derivation). Mathematically,

bWP
I (q) is increasing if

d

dqi
Ei[tI(qi, qI\i, qJ)]

Ei[tI(qi, qI\i, qJ)]
≥

d

dqi

∑

k wI,k(qi)(1− FJ,(k)(RI(qi))
∑

k wI,k(qi)(1− FJ,(k)(RI(qi))
(2.13)

The intuition for this is that if many agents are excluded on the other side of the

market or the market is unbalanced — in the sense thatKI is much larger thanKJ —

the I-side agents are uncertain about whether or not they will receive a partner and

an increase in their quality can increase the likelihood of matching dramatically. An

increase in quality, however, also has a direct effect on their payoffs due to the match

externalities, and agents may prefer to accept a slightly lower likelihood of receiving

a partner as long as their payment is reduced. This means that if the numerator

of the right-hand side in Equation (2.13) is strictly positive, the inequality may

be violated. The winners-pay format will still have an equilibrium, but it will no

longer be strictly monotonic, leading to unprofitable and inefficient pooling. This

may explain why labor market intermediaries often focus on taking payments from

one side of the market — firms, for example — and allow the other side to compete

on costly but non-pecuniary signals like educational attainment.

Despite the drawbacks of an all-pay format, many matching environments
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have such characteristics: Some head-hunters collect fees up front, agents searching

for opportunities on the Internet pay service providers by expending time looking

at the screen or waiting in auction queues, students spend many years making

costly payments to educational institutions to be matched to good employers, and

researchers or entrepreneurs looking for grants often have to complete significant

portions of the preliminary research to exhibit their project’s fitness to investors.

Additionally, in favor of an all-pay format is that if the bids made by the agents

cannot be kept secret by the matchmaker, agents will have an incentive to renege

ex post. If participants can walk away from the matchmaker and refuse to pay after

learning the identity of their partner, not only are the matchmaker’s profits reduced,

but honest revelation is compromised: If all agents anticipate not paying, they have

no incentives to be honest, and will simply submit a maximal bid.

2.5 A Simplified Mechanism and its Implementation

In many environments, however, the optimal implementation of Section 4 is

not practical. First, if agents participate in the mechanism and can witness each

other’s bids or they receive some verified record of their participation, they can sim-

ply approach each other ex post to match, against the wishes of the matchmaker.

In some situations, it may be possible for the matchmaker to keep records of par-

ticipation and payments to himself, but for legal or practical reasons, many other

environments will require him to release such information, undermining his ability

to keep agents apart. Second, the information required to implement the optimal
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reserve function may be impossible to obtain in practice. While a standard auction-

eer might experiment with the reserve price over time to find the optimal solution,

matchmakers are essentially setting a reserve price for every qi, resulting in an in-

finite number of such thresholds, RI(qi). In this case, learning would be slow and

incompetent use of relative exclusion may greatly reduce profits. On top of this,

the matchmaker and participants would need to know the equilibrium strategies

— including consistent beliefs about the distribution of types on both sides of the

market and knowledge of both surplus functions — of the players to correctly infer

their private information.

If these issues are binding on the matchmaker, the best he can do is prevent

low-quality agents from transmitting their information though participation in the

mechanism to the other agents. In terms of the direct revelation mechanism, he can

set minimum types who are allowed to submit a report, and in terms of the bidding

game, he can set minimum bid levels. Since virtual surplus is still supermodular,

assortative matching will still be profit-maximizing. Consequently, the simplified

match function then takes the form:

m̃ij(qI , qJ) =







1 , ρqI (qi) = ρqJ (qj) and qi ≥ q
I
, qj ≥ q

J

0 , otherwise

Matchmaker expected profits in this simplified direct revelation mechanism are then

equal to

max
q
I
,q

J

∑

k

∫ q̄I

q
I

∫ q̄J

q
J

{ψI(qi, qj) + ψJ (qj, qi)− c} fJ,(k)(qj)fI,(k)(qi)dqjdqi

Consider the simplified all-pay (winners-pay) position auction:
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1. The matchmaker announces a minimum bid for each side, (bI , bJ), giving the

lowest bids that agents can make and still be eligible to participate.

2. Agents submit a sealed bid bi to the matchmaker.

3. The matchmaker opens all bids bi and bj and ranks them from greatest to least,

matching the highest-bidding agent on the I side with the highest-bidding

agent on the J side, the second-highest bidder on the I side with the second-

highest bidder on the J side, and so on, until the supply of agents on one side

is exhausted.

4. All agents are charged their bids (Any matched agent is charged his bid).

Then the following holds:

Theorem 2.5.1 (Simplified Implementation) Absolute exclusion is higher in

the simplified direct revelation mechanism than the profit-maximizing direct reve-

lation mechanism and profits are lower. The identities of the worst-off types are

determined by the system of equations:

0 =
∑

k

∫ q̄J

q
J

{

ψI(qI , qj) + ψJ(qj , qI)− c
}

fJ,(k)(qj)dqj

0 =
∑

k

∫ q̄I

q
I

{

ψI(qi, qJ) + ψJ(qJ , qi)− c
}

fI,(k)(qj)dqi

The simplified all-pay position auction has a symmetric equilibrium that implements

the simplified direct revelation mechanism, with bidding strategies

bAP
I (q) =

∑

k

wI,k(q)

∫ q̄J

q
J

sI(q, y)fJ,(k)(y)dy −
∫ qi

q
I

wI,k(z)

∫ q̄J

q
J

∂sI(z, y)

∂qi
fJ,(k)(y)dydz
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with

bAP
I (q

I
) =

∑

k

wI,k(qI)

∫ q̄J

q
J

sI(qI , y)fJ,(k)(y)dy

If

bWP
I (q) =

bI,AP (q)
∑

k wI,k(q)(1− FJ,(k)(qJ))

is increasing, then the winners-pay format has a symmetric equilibrium that im-

plements the simplified direct revelation mechanism where players use bWP
I (q). A

sufficient condition for bWP
I (q) to be increasing is

∑

k w
′
I,k(q)

∫ q̄J

q
J

sI(q, y)dy
∑

k w
′
I,k(q)(1− FJ,(k)(qJ)

≥
∑

k wI,k(q)
∫ q̄J

q
J

sI(q, y)fJ,(k)(y)dy
∑

k wI,k(q)(1− FJ,(k)(qJ)

The sufficient condition again shows how being on the long side of the market

can lead to discouragement: If KI is much larger than KJ , the sum in the denomina-

tor on the left-hand side
∑KJ

k w′
I,k(q)(1−FJ,(k)(qJ)) will be strictly positive, and the

monotonicity of the strategies in the all-pay format may fail — note that if KI = KJ

and q
I
= q

J
= 0, this condition is always satisfied. This is another advantage of

simplified implementation: It is easier to check whether the winners-pay format will

have strictly monotone bid functions, since only q
I
and q

J
need to be considered,

rather than an entire schedule of exclusion, RI(q), and the equilibrium strategies.

Extensive use of distributional information about types is generally consid-

ered a weakness in mechanism design environments, since agents may not have such

detailed information in real markets. The simplified mechanism reduces the prob-

lem of exclusion to choosing two minimum bids, thereby removing the need for the

auctioneer to deduce each agent’s type from his bid and the equilibrium strategies

45



ψI + ψJ = c

Matched

Unmatched

q
J

q
I

qj

qi

Figure 2.3: Exclusion in the Simplified Mechanism

before deciding whether a match should be allowed. Likewise, the process of map-

ping the bids into a match is much more transparent, reducing the likelihood that

bidders will protest the outcome. This simplification, however, comes at the cost of

more exclusion and lower profits.

2.6 Conclusion

This paper shows how matching in the presence of adverse selection can be ana-

lyzed with a mechanism design framework, and useful comparative statics and imple-

mentation results derived. While many papers have previously tackled these topics,

they have often been in highly stylized models, such as Caillaud and Jullien [13],

dealt with matching through costly signaling in markets without an intermediary,

such as Hoppe et al. [35], or considered mechanisms in which the communication

between the agents and the matchmaker is restricted in some way, as in Damiano
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and Li [22] or Gomes [29]. Using standard assumptions from the mechanism design

and auction literature, the framework studied in this paper yields a number of useful

conclusions about equilibrium matching with incomplete information, as well as il-

lustrates how to implement the profit-maximizing and efficient mechanisms through

practical bidding games. The analysis also uncovers some of practical limits of im-

plementations such as the winners-pay and all-pay formats by illustrating how the

winners-pay format can have non-monotone equilibria, providing some insight into

why intermediaries adopt different kinds of payment schedules. Additionally, the

results are encouraging for related research on matching with incomplete informa-

tion: The optimal mechanisms are simple, comparative statics results are available,

and the associated position auctions are straightforward and generate closed-form

equilibrium bidding functions.

Similar to the auction literature, further progress on issues of ex ante hetero-

geneity among participants and more complicated demand structures can be tech-

nically difficult. Extensions to many-to-one matching will encounter the same chal-

lenges as the multi-unit and combinatorial auction literatures. The special feature

of TAM that rankings decide the allocation of partners will break down in settings

with complementarities or demand reduction, since the allocation of a given agent

will be decided by the marginal values of the participants, which in turn depend on

how all other agents are allocated.

Besides these technical issues, matching with two-sided adverse selection af-

fords opportunities to study other issues that are difficult or impossible to capture in

many current frameworks. Many jobs are found through informal networks, where
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agents are connected to one another through some structure that allows them to

observe each others’ characteristics. For example, a firm hires a number of workers

who learn each others’ abilities, then often disperse and get new jobs elsewhere. If

someone is aware of two unmatched agents, they have incentives to try to arrange

a match, provided the payoff to them is large enough. As the networks of relation-

ships overlap, it becomes a competitive situation where intermediaries are forced

to propose the best matches and reveal their information honestly. A framework

similar to Kranton and Minehart [41] could be used to investigate when overlapping

connections help or hinder agents connecting.

The presence of the matching cost c played a small role in the analysis, but

the costs of matching in a decentralized market can be influential. To ensure the

efficient match in a decentralized market, KIKJ communications would be necessary

(on top of some form of costly signaling), while with the matchmaker, only KI +KJ

are required. For large markets, this centralization could be a substantial reduction

in costs. Moreover, if the cost of applying to a single firm is high enough, workers

might be deterred from sending too many resumes, and would subsequently run the

risk of receiving a worse partner than they might deserve. Constructing a model of

decentralized communication and matching and comparing it to this centralized one

can provide an explanation why some markets are highly organized and centralized,

while others have no intermediation at all.

Finally, competition is a central issue to models of matchmaking. If a single

monopolist is making large profits only on the strength of its position as a middleman

between agents, new entry is inevitable. While mechanism design frameworks often
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struggle with competition, the fact that the “goods” in these markets are other

agents suggests that stable and competitive markets with multiple matchmakers

operating are possible. If the matchmaker offers differentiated services or is careful

to set exclusion to deter entry, he might be able to maintain his position. Likewise,

an entrant might target specific segments of the market, rather than try to capture

all agents at once. Depending on how agents respond to different entry strategies,

an entrant may be successful at getting a foothold in the market.

49



Chapter 3

Truthful Revelation in Complementary Matching Problems with

Transfers

3.1 Introduction

The presence of intermediaries in today’s markets is ubiquitous, including the

network of traders and exchanges that form the global financial system and the

Internet Service Providers connecting users to content producers. However, their

position as a brokers of relationships raises a number of questions: How should

the market be designed? To what extent do the insights from auction theory and

Gale-Shapley-Roth-style matching theory carry over to markets with prices, exter-

nalities, and strategic participants? How can participants be incentivized to disclose

information about themselves honestly, and what limitations does this place on the

pursuit of efficiency or stability?

These issues are not purely of theoretical interest. During the recent financial

crisis, the U.S. Treasury Department briefly considered using a two-sided market

design to buy up troubled assets and improve banks’ balance sheets. One component

of the plan was to allow outsiders to compete for the banks’ assets alongside the

liquidity injection from the Treasury. Additionally, there are spot markets for labor

organized online, where intermediaries like Yahoo! attempt to temporarily match
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workers to firms, for a fee. Further investigation of the mechanisms by which efficient

or profit-maximizing matchings can be achieved is useful for illustrating the issues

facing market designers and intermediaries.

This paper examines one-to-one and many-to-one matching in environments

with incomplete information. Beginning with environments with supermodular

matching surplus and one-dimensional types, it shows that the natural extension

of the Vickrey-Clarke-Groves mechanism is not incentive compatible. An alterna-

tive mechanism is proposed that achieves truth-telling as an ex post equilibrium

given some structure on agents’ preferences over partners, called the competitive

externality mechanism. This alternative mechanism can be implemented using an

open format, and can be extended to a similar many-to-one framework, matching

packages of workers to firms.

The main difference between this paper and works such as Shapley and Shubik

[60], Crawford and Kelso [19], Crawford and Knoer [20], and Hatfield and Milgrom

[34] — which explore dynamic adjustment processes that reach the core of matching

games with transfers — is that incomplete information is explicitly introduced, and

the agents are allowed to behave strategically. These papers primarily show that

the set of stable matches is a lattice, and provide an algorithm that maps feasible

matches into matches, guaranteed to terminate at a stable match. This approach

follows the seminal paper by Gale and Shapley [28], but often ignores the strategic

incentives provided by the algorithm. As Roth [54] shows, stability, efficiency, and

honest reporting can often be in conflict. This is in stark contrast to results in the

auction literature — particularly Vickrey [66], Myerson [48], Ausubel [2] and [1],
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and Edelman, Ostrovsky and Schwarz [25] — where the problem of selling goods to

buyers with privately known values for the items being sold has been analyzed with

considerable success.

A number of papers have attempted to bridge this gap, including Bulow and

Levin [9], Damiano and Li [22], Hoppe, Moldovanu and Sela [35], Hoppe, Moldovanu

and Ozdenoren [36], Gomes [29], Johnson [38], and McAfee [44]. These papers all

analyze markets where agents derive a payoff from matching to partners — such

as workers to firms in labor markets or spouses in marriage markets with dowries

— and examine how competitive bidding might bring about favorable outcomes.

In particular, Damiano and Li [22], Gomes [29] and Johnson [38] use Bayesian im-

plementation methods from mechanism design to examine how a profit-maximizing

matchmaker might deal with the problem of intermediation in the presence of ad-

verse selection in various matching environments. The key theme underlying most

of these papers is that by making the agents compete on each side for the right to

a better partner, efficiency can be achieved, as long as the two sides have similar

group preferences over which match should be chosen.

This paper contributes to the literature by applying this “competitive” rea-

soning, and studying some many-to-one and multi-dimensional type environments.

Where possible, the solution concept used is ex post or ex post perfect. This is par-

ticularly useful for matching environments because it is often the case that agents

have knowledge about potential partners or opponents, making Bayesian implemen-

tation inappropriate since information is distributed asymmetrically in the market.

For example, workers might have previously been employed at the same firm, and in
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future periods, this gives that firm and set of workers better information about each

other than other participants in the market. Analysing the market as if there was

incomplete information may lead to misleading results, similar to how the equilibria

in the first-price or all-pay auctions with and without private information can be

very different.

3.2 Model

There are two disjoint sets of agents, I and J , with (abusing notation) I agents

on the I side and J agents on the J side; let K = min{I, J} with K > 1, which is

the largest number of matches that can be arranged in this market. Suppose that

I ≥ J , so that there is an excess supply of I-side agents. Each I-side agent would

like to match to one agent on the J side, and each agent on the J side would like to

match to one agent on the I side. Since the information and preferences considered

here are symmetric considering both sides, only the I side will be described in detail,

with the appropriate permutation of indices applying to the J side.

Each agent i = I1, I2, ..., II draws a type si from the type space [0, s̄I ] that

determines the preferences and abilities of that agent. Let a realization of types for

the I side be written

sI = (sI1, sI2, ..., sII)

and

sI\k = (sI1, sI2, ..., sI,k−1, sI,k+1, ..., sII)

Let s = (sI , sJ). A report σ = (σI , σJ) is any concatenation of types from the type
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spaces of all agents, not necessarily equal to the true types, and s\k = (sI\k, sJ).

Let the signals be distributed according to a joint density f(sI , sJ), and define

Es\k [h(sk, s\k)] as the expectation of h(sk, s\k) conditional on sk, with all other type

realizations distributed according to the marginal density f [s\k|sk].

The match surplus for agent i from being matched to agent j is described by a

surplus function vI(si, sj) that maps the types of agent i and j into a real number.

Since only si and sj determine the value of the match, and no types from other

agents enter the match surplus value, call this the pairwise private values case. If

vI(si, sj) ≥ vI(si, sj′), then agent i prefers agent j to j′, or j ≥i j
′. These ordinal

preferences correspond to those considered by Gale and Shapley [28], where the

primitives are ordinal preferences rather than cardinal ones. Assume that for all si

and sj,

∂vI(si, sj)

∂si
≥ 0 ,

∂vI(si, sj)

∂sj
≥ 0

and

∂2vI(si, sj)

∂si∂sj
≥ 0

This implies that the players’ payoffs are increasing in their own and each other’s

types, and there is complementarity between the types.

Agents have quasi-linear preferences, so an agent i paying t to match to agent

j receives a payoff of

vI(si, sj)− t

If vI(si, y) ≥ 0 for all potential partner types y, then all partners are acceptable for

type si. If vI(si, y) ≥ 0 for all partner types y and vJ (sj, y) ≥ 0 for all partner types
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y, then say all matches are acceptable.

The game is modelled as a situation where a matchmaker is trying to construct

a game to induce agents to honestly reveal their private information, so that the

matchmaker can maximize ex post efficiency. From the revelation principle, any

Bayesian game can be thought of as a “revelation mechanism”, in which agents make

a report to the matchmaker — not necessarily truthfully— and then the matchmaker

acts as a “referee”, playing the agent’s equilibrium strategy for him. By studying

revelation mechanisms generally, conditions for welfare- or profit-maximization can

be developed subject to the constraint that agents find it in their best interests to

reveal their private information honestly to the matchmaker.

A direct revelation matching mechanism (direct mechanism) is a set of func-

tions

{mij(σ), ti(σ), tj(σ)}i,j

where mij(σ) maps any report σ into a probability distribution over matches in the

set I×J , and the payment functions ti(σ) and tj(σ) map any report σ into transfers

to the matchmaker. In particular, mij(σ) gives the probability that i and j are

matched, given the report.

A direct mechanism is Bayesian incentive compatible for agents if

si ∈ Argmaxσi
EsI\i,sJ

[
∑

j∈J

mij(σi, s\i)vI(si, sj)− ti(σi, s\)
]

If, for any profile of types s′\i reported by i’s opponents, it is true that

si ∈ Argmaxσi

∑

j∈J

mij(σi, s
′
\i)vI(si, sj)− ti(σi, s′\i)
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then honesty is a weakly dominant strategy.

Honesty is an ex post equilibrium if, for all realizations of the types,

si ∈ Argmaxσi

∑

j∈J

mij(σi, s\i)vI(si, sj)− ti(σi, s\i)

A match is ex post individually rational if all agents have positive payoffs ex

post. Since there is quality uncertainty in the market, it is important to differentiate

which market designs can guarantee ex post positive payoffs because agents may

attempt to renege if they do worse by abiding by the results than opting out after

the payments and qualities of partners are revealed.

Lastly, suppose there are two matches (I1, J2) and (I2, J1), where I1 prefers

to match to J1 at the price paid by I2 to matching with his partner J2 at the price

quoted for J2. If J1 prefers to match to I1 at the price paid by J2 rather than

match to I2 at the price quoted for I2, the match is unstable with transfers ; this

includes the case where an agent prefers to be unmatched rather than match to his

current partner. If a match is not unstable, it is stable with transfers.

3.3 One-to-One Matching

In the auction and public goods literatures, honest reporting in weakly dom-

inant strategies can be achieved through the Vickrey-Clarke-Groves mechanism,

in which an agent’s impact on social welfare is internalized through his transfers so

that the other participants receive the same payoff, regardless of the agent’s report1.

This section shows that, although matching markets have similarities to both auc-

1For a complete introduction to Vickrey-Clarke-Groves mechanisms, see Milgrom [46], p. 45-64
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tions and public goods provision, the VCG mechanism fails to provide incentives for

agents to report their types honestly, even in the special case of vertically differen-

tiated supermodular preferences. Alternatively, the failure of the VCG mechanism

to implement incentive compatible revelation can be seen as a parallel of Roth’s [54]

non-existence result in a transferable utility environment.

3.3.1 The VCG Mechanism

Suppose the matchmaker asks the agents to make a report about their types,

not necessarily honestly, with the option of withdrawing from the market altogether

by reporting the null variable ∅.

After receiving reports from the agents, the matchmaker can compute the

welfare-maximizing allocation, given the reported types:

V (σ, I, J) = max
mij

∑

i∈I

∑

j∈J

mij(σ) {vI(σi, σj) + vJ(σi, σj)} (3.1)

Then if Iℓ chooses to withdraw from the market, define

V (σ, I\Iℓ, J) = max
mij

∑

i∈I\Iℓ

∑

j∈J

mij(∅, σ\Iℓ) {vI(σi, σj) + vJ(σj , σi)} (3.2)

to be market welfare when agent Iℓ refuses to participate. Construct the payment

function of the k-th agent on the I side as

tIℓ(σ) =
∑

i∈I\Iℓ

∑

j∈J

mij(∅, σ\Iℓ) {vI(σi, σj) + vJ(σj , σi)}

−
∑

i∈I\Iℓ

∑

j∈J

mij(σIℓ, σ\Iℓ) {vI(σi, σj) + vJ (σj, σi)}+ hIℓ(σ\Iℓ)

In some cases — for example, auction environments — the VCG mechanism often

satisfies all of a market designer’s criteria: it implements the efficient outcome,

57



honest reporting is an equilibrium in weakly dominant strategies, outcomes are

individually rational, and it runs a budget surplus, but perhaps does not maximize

revenue. Other environments however — for example, public goods — have the

unfortunate property that outside funds may be required to implement the efficient

outcome. Therefore, before proceeding to examine other mechanisms, the incentive

properties of the VCG mechanism should be considered in this particular case.

Proposition 3.3.1 Suppose all matches are acceptable. The VCG mechanism is

not incentive compatible.

Example Consider a simple supermodular market where vI(si, sj) = vJ(sj , si) =

sisj , (sI1, sI2) = (sJ1, sJ2) = (1, 2). If I1 honestly reports a 1 and the other agents

do as well, I1 and J1 are matched, and I2 and J2 are matched. Then I1 gets a

payoff from reporting honestly of

UI(1, 1) = mI1,J1(1, s−I1)(1 ∗ 1 + 1 ∗ 1) +mI2,J2(1, s−I1)(2 ∗ 2 + 2 ∗ 2)

−mI2,J2(∅, s−I1)(2 ∗ 2 + 2 ∗ 2)

= 2

But suppose he makes a report σ strictly higher than 2, he gets a better partner, as

well as receives a higher payment based on his report:

UI(1, σ) = mI1,J2(σ, s−I1)(1 ∗ 2 + 2 ∗ σ) +mI2,J1(σ, s−I1)(1 ∗ 2 + 2 ∗ 1)

−mI2,J2(∅, s−I1)(2 ∗ 2 + 2 ∗ 2)

= 2 ∗ σ − 2

> UI(1, 1)
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So it is a profitable deviation to lie, and the VCG mechanism is not incentive com-

patible (truth-telling is not even a Nash equilibrium, let alone a dominant strategy).

The failure of incentive compatibility arises because the VCG mechanism sets

the payment of a given agent equal to his impact on social surplus relative to the

reports, and agents can manipulate their perceived impact on social surplus through

the valuation function of their partner. In an independent private values frame-

work, each agent’s valuation depends only on his own signal, so this motivation

is not present. Here, however, partners who are compensated for the value they

bring to their partner can always inflate their payoff by claiming they are a higher

type. Consequently, the workhorse for designing efficient and incentive compatible

mechanisms in other environments is not suited for any matchmaking purposes.

The problems arising with the VCG matching mechanism do not arise in other

papers in the competitive matching literature, where markets can successfully be

designed to implement the welfare-maximizing outcomes. In those papers, a key

feature of the mechanisms studied is that agents on each side are forced to com-

pete with each other, jockeying for position. Once their ranking is decided, it is

straightforward for the matchmaker to pair the agents assortatively. This feature —

considering the market as two auctions for a risky right to a partner on the other side

— is what removes the cross-market payments that makes the VCG mechanism fail

to implement honest reporting. However, if the cross-market payments are removed,

the key feature of the VCG mechanism — that each player receives all the gains

59



from trade of his or her participation, and subsequently has incentives to maximize

social welfare — no longer holds. So this competitive approach will not, in general,

implement truth-telling either. The next section shows that for the supermodular

framework used in this paper, however, such a mechanism is incentive compatible.

3.3.2 Ex Post Implementation

Definition The competitive externality mechanism (CEM) satisfies the following

construction:

• The matchmaker asks the agents to report their private types σ.

• On the I side, the matchmaker chooses a match function mI
ij(σ) to maximize

VI(σ, I) = max
mI

ij

∑

i∈I

∑

j∈J

mI
ij(σ)vI(σi, σj)

and on the J side, the matchmaker chooses a match function mJ
ij(σ) to maxi-

mize

VJ(σ, J) = max
mJ

ij

∑

j∈J

∑

i∈I

mJ
ij(σ)vJ(σj , σi)

• If the optimal allocations on the two sides agree, match the agents and charge

agent Ik on the I side

tIk(σ) =
∑

i∈I\Ik

∑

j∈J

mI
ij(∅, σ\Ik)vI(σi, σj)−

∑

I\Ik

∑

J

mI
ij(σIk, σ\Ik)vI(σi, σj)

and the charge agent Jk on the J side

tJk(σ) =
∑

j∈J\Jk

∑

i∈I

mJ
ij(∅, σ\Jk)vJ(σj, σi)−

∑

j∈J\Jk

∑

i∈I

mJ
ij(σJk, σ\Jk)vJ(σj , σi)
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If the optimal allocations on the two sides do not match, no agents are matched

and nothing is charged.

Say that CEM is feasible if, for all type reports σ, mI
ij(σ) = mJ

ij(σ).

Example Suppose there are three I agents with signals sI = (1, 2, 3), and two

J agents with signals sJ = (2, 3). The valuations of the agents are vI(si, sj) =

vJ(sj , si) = sisj. The valuation functions can be summarized in a table:

J2 J1

I3 2, 2 3, 3

I2 4, 4 6, 6

I1 6, 6 9, 9

So the agents report their types to the matchmaker, and he computes the efficient

and stable match: {(I3, J2), (I2, J1), (I3, ∅)}. Agent I1 has to pay for blocking both

I2 and I3 from receiving better partners:

tI1 = −{mI2,J2(4) +mI3,∅(0)}+ {mI2,J16 +mI3,J22} = 4

And agent I2 has to pay for blocking I3 from receiving a better partner:

tI2 = −{mI3,∅(0)}+ {mI3,J22} = 2

On the other side of the market, agent J1 blocks J2 yielding

tJ1 = −{mI2,J2(4)}+ {mI1,J2(6)} = 2

while J2 pays nothing, since he is not blocking anyone.
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The reason for constructing the mechanism in this way is that it ignores the

positive welfare consequences of an agent’s participation for the other side in comput-

ing payments and charges agents on the basis of the negative welfare consequences

of their participation for their own side. It turns out that truth-telling is an ex post

equilibrium.

Proposition 3.3.2 Suppose all matches are acceptable. Then the competitive ex-

ternality mechanism is feasible and truth-telling is an ex post equilibrium.

Note that honesty is not a weakly dominant strategy, but only an ex post

equilibrium. For example, suppose the best agent on the J side reported that he

was actually the worst potential partner. In the competitive externality mechanism,

some I side agent can now get the best partner and pay as if he were receiving the

worst — clearly honesty is no longer a best response. The competitive externality

mechanism includes no penalty for submitting reports that harm the opposite side

of the market, so it requires restrictions on preferences such that there is sufficient

pressure on each separate side of the market to induce honest reporting. Said another

way, if the other side reported honestly, it would be a weakly dominant strategy to

report honestly.

3.3.3 Protecting Agents from Bad Matches

One of the assumptions in the above analysis is that all matches are acceptable,

or that matching with any partner is better than staying alone. Infeasibility of CEM

may occur if there are matches which are acceptable for the partner on one side, but
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not the partner on the other. For example, if the agents enter into a partnership and

split a surplus vI(si, sj) = λ(r(si, sj)−γ) and vJ(sj , si) = (1−λ)(r(si, sj)−γ), no pair

of agents from either side of the market will want to match if r(si, sj)− γ < 0, and

all the results will hold. However, if the two sides have significantly different private

surplus there can easily be disagreement between the two sides about whether the

low-value matches should be arranged, and the competitive externality mechanism is

no longer feasible; for example, the I-side partner has valuation function vI(si, sj) =

rI(si, sj)−γI and the J-side partner has vJ(sj, si) = rJ(sj , si)−γJ . Moreover, truth-

telling will no longer be an ex post equilibrium if the matchmaker announces that he

will not arrange matches that give either party a negative payoff ex post, since the

agents then have an incentive to lie about their type to manipulate the operation of

the mechanism on the other side of the market. This could lead to a mixed-strategy

equilibrium and other strategic behaviors that undermine efficiency or stability.

To resolve this issue, introduce security bidders, who bid for only one agent and

represent his interests on the other side of the market. In particular, the matchmaker

takes i’s report and instructs the security bidder for agent i bids to only on agent i,

acting as a J side agent with a signal x∗i (si) implicitly defined by

vI(si, x
∗
i (si)) = 0

Proposition 3.3.3 (i) Honest reporting is an ex post equilibrium in the competi-

tive externality mechanism with security bidders. (ii) Revenue is weakly improved

compared to the competitive externality mechanism without security bidding when all

matches are acceptable. (iii) This is not necessarily efficient, but it is stable.
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Since submitting a security bid can only reduce the likelihood of receiving a

partner without affecting their payment, agents have no incentive to make a false

report. Revenue weakly increases because the lowest payment now increases from

0 (for the worst agent matched on the smaller side of the market) to the value of

the security bid for the worst matched partner. As a result, the other payments

on that side of the market weakly increase as well. So this small addition to the

mechanism reduces the likelihood of unacceptable outcomes or infeasibility while

improving revenue and incentives.

3.3.4 Dynamic Formats

This section investigates the properties of dynamic games that achieve the

same allocation of partners as the static competitive externality mechanism, achieved

through clock formats similar to the Generalized Second Price Auction studied in

Edelman, Ostrovsky and Schwarz [25] and Varian [65]. Having a clock implemen-

tation in this environment is useful because the payments depend on the agents’

valuation functions and types, and these may be difficult to describe in a matching

environment where information can be a latent signal about one’s own talent. For

example, agents may find it difficult or disadvantageous to enumerate the mapping

vI(si, sj) for the matchmaker’s use. Using a dynamic format can avoid problems

in environments where the matchmaker is not sophisticated enough to compute the

correct transfers or where there is no natural way to report private information.

Since this section considers dynamic games, a new notion of equilibrium is
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required. A strategy profile σ∗ = {σ∗
i (si, ht)}i of a dynamic game is an ex post

perfect equilibrium if for every player i with private information si, every realization

of private information (si, s\i), and at any time t following a history ht, σ
∗ is a

Nash equilibrium of the continuation game starting from time t. Alternatively, the

strategy profile σ∗(si, ht) is an ex post perfect equilibrium if it is a Nash equilibrium

in any subgame, for any realization of private information.

3.3.4.1 Achieving the Stable Match with a Dynamic Mechanism

Suppose the matchmaker uses the following simple ascending competitive ex-

ternality matching mechanism: The clock prices cI and cJ on each side of the market

are set equal to zero. Initially, all agents are active, and indicate to the matchmaker

at each moment in time whether they would like to remain active or drop out ; agents

who have dropped out cannot become active again. The matchmaker then uses the

following procedure to determine the match and set prices:

• On the I side, the matchmaker begins the process in an elimination stage E

by raising the clock price cI until the number of active agents on each side

of the market is the same (recall that I ≥ J); the clock price at which the

J + 1-st agent on the I side dropped out is recorded as pIK , and p
J
K = 0.

• Suppose there are exactly k agents left on each side; call this the k-th stage

of the mechanism. Then the matchmaker proceeds as follows for k = K,K −

1, ..., 2:

– Raise the clock price on the J side until an agent drops out; set pJk−1
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equal to clock price at which this occurred. Raise the clock price on the

I side until an agent drops out; set pIk−1 equal to the clock price at which

this occurred.

– The matchmaker privately notes the identities of the two agents who

most recently dropped out on each side — Ik and Jk— and the prices

they should pay — pIk and pJk , respectively.

• Once all but two agents have dropped out, the matchmaker ends the auction,

charges the agents the prices established by the game, and releases the identity

of their partners.

During the process, only the drop-out behavior of agents on the I side is

witnessed by agents on the I side, and only the drop-out behavior of agents on the

J side is witnessed by agents on the J side. This turns the game into a dynamic

game of incomplete information, since the agents on the I side cannot be sure what

strategies the agents on the J side have played. If this were public information,

agents on the I side could conceivably attempt to manipulate agents on the J side

by staying in “too long” or dropping out early.

A strategy might be defined as being a function mapping all the information

available to an agent at a given moment time into a probability of indicating to the

matchmaker that the agent wishes to withdraw, 0, or remain active, 1. In particular,

a history hc is a I-dimensional vector AI that contains a drop-out time for the k-th

entry if at least k agents have dropped out, and the null variable ∅ otherwise. Then

a pure strategy for a player on the I side is a function φi : (si, AI , cI) → ∆({0, 1}),
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where ∆({0, 1}) is the set of all probability distributions over remaining active or

dropping out. However, just as in the repeated games literature, it is preferable to

use a simpler notion of a behavior or Markov perfect strategy — plans of action

depending only on some aspects of the current state of play — rather than pure

strategies that are functions of the entire history, especially if an equilibrium can

be found that has a plausible behavioral interpretation. In particular, let the class

of drop-out strategies be sequences of functions τ Ik : (si, AI) → R+ indexed by the

stage k = E, 1, 2, 3, ..., K that map the current state into a time at which the agent

should withdraw, if no other withdrawals have yet occurred in that stage. In other

words, the strategies τ Ik propose an optimal stopping time for each stage and state,

potentially using only some of the available information at that time.

Define the ranking function

ρsJ (j) = |{ℓ ∈ J : sJℓ ≤ sj}|

Then ρsJ (j) gives that the cardinality of the agents on the J side whose signal is

lower that sj , or the rank of j in J .

Suppose the agents use the following drop out strategy along the equilibrium

path to decide when to withdraw in the elimination phase:

τE(si, sJ,J) = E[vI(si, sj)|ρsJ (j) = J ] (3.3)

Here, agents are taking the expectation with respect to the J-th order statistic of a

sample of size J . If agents follow this strategy, they stay in until their gains from

matching to the worst potential partner in expectation are exhausted by the price

of receiving a partner.
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Once the number of active agents is the same on both sides, suppose the agents

use the following drop-out strategy to decide when to withdraw from competition

in stage k:

τ Ik (si, p
I
k) = E[vI(si, sj)|ρsJ (j) = k − 1]− E[vI(si, sj)|ρsJ (j) = k] + pIk (3.4)

These strategies correspond to each agent deciding the highest clock price at which

they are indifferent between getting the worst remaining active agent on the other

side of the market in expectation and paying pIk, or waiting and matching to the

next-best agent at a higher clock price:

E[vI(si, sj)|ρsJ (j) = k − 1]− τ Ik (si, pIk) = E[vI(si, sj)|ρsJ (j) = k]− pIk

Edelman et al. [25] provide such an equilibrium for their model, showing that there

is a set of drop-out strategies that implement the same allocation and payments as

the VCG mechanism in the position auction they study.

Example Consider three agents on each side of the market, I = {a, b, c} and J =

{α, β, γ}. Suppose the true realizations of their types are (2, 5, 8) and (2, 5, 6),

all drawn independently from a uniform distribution over [0, 10]. Let vI(si, sj) =

vJ(sj , si) = sisj.

The expected values of the the first, second, and third order statistics from a

uniform variable on [0, 10] are

s(1) = E[si|ρI(i) = 1] =
15

2
= 7

1

2

s(2) = E[si|ρI(i) = 1] = 5
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s(3) = E[si|ρI(i) = 1] =
5

2
= 2

1

2

Consider the bidding on the I side. In the first stage of the game, the three

agents are essentially bidding for the right to match to the third order statistic, s(3),

at a price of pI3 = 0, so their proposed drop-out strategies are

τ I3 (si, p
I
3)

τ I3 (2, 0) = E[2 ∗ sj)|ρsJ (sj) = 2]− E[2 ∗ sj)|ρsJ (sj) = 3]

= 2 ∗ s(2) − 2 ∗ s(3) = 5

τ I3 (5, 0) = E[5 ∗ sj)|ρsJ (sj) = 2]− E[5 ∗ sj)|ρsJ (sj) = 3]

= 5 ∗ s(2) − 5 ∗ s(3) = 12
1

2

τ I3 (8, 0) = E[8 ∗ sj)|ρsJ (sj) = 2]− E[8 ∗ sj)|ρsJ (sj) = 3]

= 8 ∗ s(2) − 8 ∗ s(3) = 20

So agent a drops out first at a price of 5, setting pI2 = 5. The two remaining bidders,

b and c, then adjust their drop out strategies for stage 2 of the auction:

τ I2 (si, p
I
2)

τ I2 (5, 5) = E[5 ∗ sj)|ρsJ (sj) = 1]− E[5 ∗ sj)|ρsJ (sj) = 2] + 5 =

5 ∗ s(1) − 5 ∗ s(2) + 5 = 17
1

2

τ I2 (8, 5) = E[8 ∗ sj)|ρsJ (sj) = 1]− E[8 ∗ sj)|ρsJ (sj) = 2] + 5

= 8 ∗ s(1) − 8 ∗ s(2) + 5 = 25

So agent b drops out at a price of 171
2
, and pI1 = 171

2
. Then, in expectation, the

69



players’ payoffs are

E[2 ∗ sj|ρsJ (j) = 3]− 0 = 5

E[5 ∗ sj|ρsJ (j) = 2]− 5 = 20

E[8 ∗ sj |ρsJ (j) = 1]− 17
1

2
= 42

1

2

On the J side, the same process occurs, giving the set of prices (since α and β

have the same signals as a and b): pI3 = 0, pI2 = 5, and pI3 = 171
2
. Then the ex post

payoffs are

ua = uα = 2 ∗ 2− 0 = 4

ub = uβ = 5 ∗ 5− 5 = 20

uc = uγ = 8 ∗ 6− 17
1

2
= 30

1

2

However, it is possible to generate ex post irrational payoffs, despite the fact that

agents expect positive payoffs at the interim stage. Suppose that sα = 1, sβ = 1.5,

and sγ = 2. Then the I side’s ex post payoffs would have been

ua = uα = 2 ∗ 1− 0 = 4

ub = uβ = 5 ∗ 11
2
− 5 = 5

1

2

uc = uγ = 8 ∗ 2− 17
1

2
= −11

2

Therefore, even though the correct match is implemented, the lack of information

about potential partners may be important to the participants.

Even though this strategy completely ignores the drop-out behavior of the

other players on the I side except for the realizations of the prices, this dynamic
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game does implement the stable match, where the proposed drop-out strategies are

a Bayesian equilibrium.

Proposition 3.3.4 Suppose all matches are acceptable, and the types of the agents

are private information and independently and identically distributed on [0,∞) ac-

cording to absolutely continuous densities FI(si) and FJ(sj). Then the drop-out

strategies in Equations 3.3 and 3.4 form a perfect Bayesian equilibrium of the simple

ascending competitive externality mechanism, which implements the stable match.

Some players may receive negative payoffs ex post.

This format has the useful feature of not requiring the matchmaker to know

anything about the agents’ information and preferences except that the valuation

functions are supermodular and that all matches are acceptable. In particular, the

matchmaker merely has to run the clocks and keep track of the payments. In a mar-

ket where the signals or valuation functions are difficult to describe or communicate,

this makes efficient intermediation possible. In some situations, however, the pos-

sibility of negative ex post payoffs may be a serious drawback. For that reason, an

ascending mechanism which achieves both the same match and the same payments

as an ex post perfect equilibrium is desirable.

3.3.4.2 Achieving the Static Outcome with an Announcement Phase

The matchmaker faces two difficulties in assisting agents to reveal more of their

private information to potential partners: First, they may lie in the hopes of getting

a better partner, and, second, the release of enough information may render the
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matchmaker irrelevant. If all information is released to the participants and becomes

common knowledge they could presumably work out the unique stable match on

their own, leading to dis-intermediation. However, without knowledge about the

partners for which the agents are bidding, it is a challenge for the participants to

decide when to drop out.

Suppose the matchmaker attempts to overcome the adverse selection by ask-

ing each agent on the I side to submit a report αi that he will announce to the

J side before using an ascending mechanism. This allows agents to replace the

order statistics in their drop-out strategies from the previous mechanism with the

announcements.

The new dynamic mechanism — the announcement ascending competitive

externality mechanism — begins with an announcement phase where the match-

maker solicits a report αi from each agent about his or her quality, and announces

αI = (αI1, αI2, ..., αII) to the J side and αJ to the I side. The matchmaker then

sets the clock prices cI and cJ on each side of the market equal to zero. Initially, all

agents are active, and indicate to the matchmaker at each moment in time whether

they would like to remain active or drop out ; agents who have dropped out cannot

become active again. The matchmaker then uses the same dynamic process as for

the simple ascending competitive externality mechanism to establish the match and

payments.

Again, there are advantages to considering drop-out strategies that use only a

limited amount of information at each stage of the game. Let αI[k] be the commonly

known value of the k-th highest announcement of an agent on the I side, and αJ [k]
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defined likewise. Suppose the agents use the following drop out strategies to decide

when to withdraw in the elimination phase:

τ IE(si, αJ [J ]) = vI(si, αJ [J ]) (3.5)

Once the number of active agents is the same on both sides, suppose the agents

use the following drop-out strategy to decide when to withdraw from competition

in stage k:

τ Ik (si, αJ [k−1], αJ [k], p
I
k) = vI(si, αJ [k−1])− vI(si, αJ [k]) + pIk (3.6)

To illustrate how the mechanism and drop-out strategies work, consider the

following example:

Example Let sI = (1, 2, 3, 4) and sJ = (1, 2, 3), so that I = 4 and J = 3, and

assume that the valuation functions on both sides are v(si, sj) = sisj . Assume the

agents announce their types honestly to the matchmaker.

The clocks are initially set to zero, and the matchmaker begins raising the

one on the I side, since I > J . The drop-out strategies for the I-side agents in the

elimination phase then are:

τ Ik (si, αJ [J ])

τ IE(1, 1) = 1 ∗ 1 = 1

τ IE(2, 1) = 2 ∗ 1 = 2

τ IE(3, 1) = 3 ∗ 1 = 3

τ IE(4, 1) = 4 ∗ 1 = 4
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So the first drop-out on the I-side occurs at 1 when the first agent drops out, setting

pI3 = 1. Since no drop-outs were forced on the J side, pJ3 = 0.

Then at the beginning of the third stage, the agents on the J side anticipate

getting a partner with a signal of 2 if they drop out or a partner with a signal of 3

if they drop out next round, which they use in their drop-out strategies:

τJ3 (sj, αI[2], αI[3], p
I
3)

τJ3 (1, 3, 2, 0) = 1 ∗ 3− 1 ∗ 2 + 0 = 1

τJ3 (2, 3, 2, 0) = 2 ∗ 3− 2 ∗ 2 + 0 = 2

τJ3 (3, 3, 2, 0) = 3 ∗ 3− 3 ∗ 2 + 0 = 3

So the first agent drops out on the J side when the clock reaches 1. At the beginning

of the third stage on the I side, the remaining I-side agents anticipate getting a

partner with signal 1 if they drop out this stage at a price of pI2 = 1 if they drop

out in this stage, and a partner with a signal of 2 if they drop out in the next stage.

Then their drop-out strategies are:

τ I3 (si, αJ [2], αJ [3], p
I
3)

τ I3 (2, 2, 1, 1) = 2 ∗ 2− 2 ∗ 1 + 1 = 3

τ I3 (3, 2, 1, 1) = 3 ∗ 2− 3 ∗ 1 + 1 = 4

τ I3 (4, 2, 1, 1) = 4 ∗ 2− 4 ∗ 1 + 1 = 5

So the second agent drops out on the I side at a clock price of 3. The matchmaker

records that the second agent on the I side and the first agent on the J side should

be partners, and they will pay pI3 = 1 and pJ3 = 0, respectively. He sets pI2 = 3 and
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pJ2 = 1.

Now there are only two agents remaining on each side. At the beginning of

the second stage on the J side, the participants anticipate that the worst remaining

partner has a signal of 3, and matching in the next stage will yield a partner with

a signal of 4. The matchmaker continues raising the clock on the J side, and the

remaining J agents adopt the strategies:

τJ2 (si, αI[1], αI[2], p
I
2)

τJ2 (2, 4, 3, 1) = 2 ∗ 4− 2 ∗ 3 + 1 = 3

τJ2 (3, 4, 3, 1) = 3 ∗ 4− 3 ∗ 3 + 1 = 4

So the second agent drops out on the J side at a clock price of 3. At the beginning

of the second stage on the I side, the agents anticipate that the worst remaining

partner has a signal of 2 and the best has a signal of 3. The matchmaker then begins

raising the I-side clock, and the remaining I-side agents adopt the strategies:

τ I2 (si, αJ [1], αJ [2], p
I
2)

τ I2 (3, 3, 2, 3) = 3 ∗ 3− 3 ∗ 2 + 3 = 6

τ I2 (4, 3, 2, 3) = 4 ∗ 3− 4 ∗ 2 + 3 = 7

So the third agent drops out on the I side at a clock price of 6. The matchmaker

then records that the third agent on the I side and the second agent on the J side

will be matched, and pay prices of pI2 = 3 and pJ2 = 1, respectively. He sets pI1 = 6

and pJ1 = 4.

Lastly, the matchmaker records that the fourth agent on the I side and the
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third agent on the J side should be matched, and should pay pI1 and pJ1 , and the

game concludes.

Now the matchmaker charges the matched agents the appropriate payment

pI1, p
I
2, p

I
3 or pJ1 , p

J
2 , p

J
3 , and releases the identities of the equilibrium partners.

This replicates the same match and payments as if the static competitive

externality mechanism had been used, much the same as how the Generalized Second

Price Auction replicates the same allocation and payments as the VCG mechanism

in Edelman et al. [25]. It turns out that these strategies also form an ex post perfect

equilibrium of the dynamic game:

Proposition 3.3.5 Suppose all matches are acceptable. Then there exists an ex post

perfect equilibrium of the announcement ascending competitive externality mecha-

nism in which agents announce their types honestly to the matchmaker and use the

drop-out strategies in Equations (3.5) and (3.6). This results in the same allocation

and payments as the static competitive externality mechanism. There also exists an

equilibrium in which the announcements are ignored, and the outcome is the same

as the simple ascending competitive externality mechanism.

Achieving the static outcome without the announcement phase is more com-

plicated, because the static prices cannot be achieved if agents do not know what

kind of partners they are bidding for. Like many cheap talk games, this game also

has a “babbling equilibrium” where the announcements are false and ignored, and

agents follow the equilibrium strategies of the simple ascending auction.
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3.4 Many-to-One Matching

This section considers the case where the I side desires multiple partners on

the J side, but the J side only wants one partner on the I side, analogous to firms

hiring packages of workers.

Similar to specifying relationships between random variables, there are many

ways to construct valuation functions for the agents that depend in non-trivial ways

on their own type, the types of their co-workers or employer, and the package of

workers a firm receives. In general, these potential dependencies could make honest

revelation an intractable problem. In particular, workers will often have an incentive

to misreport their type to manipulate the size of the firm, or because they have

preferences over their “rank” at the firm.

Let a package of workers allocated to firm i be denoted Wi = {sj1, sj2, ..., sjL}.

A package is ordered if sj1 ≥ sj2 ≥ ... ≥ sjL; all packages are ordered in what

follows.

The firms have quantity-submodular or substitutes preferences if for any two

disjoint packages of workers Wi1 and Wi2,

vI(si,Wi1) + vI(sj ,Wi2) ≥ vI(si,Wi1 ∪Wi2)

Note that this class includes additively submodular firm values as a special case:

vI(si,Wi) =
∑

jℓ∈Wi={sj1,sj2,...,sjL}

πℓ(si, sjℓ)

where πℓ(si, sj) ≥ πℓ+k(si, sj), for all sj and k > 0. This is a natural restriction and

captures the idea of diminishing marginal returns to additional workers. If, for all
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k and ℓ,

∂vI(si, {..., sJk, ...})
∂si∂sJk

≥ 0 ,
∂vI(si, {..., sJk, ..., sJℓ, ...})

∂sJℓ∂sJk
≥ 0

then firm and worker signals are complementary and worker signals are complemen-

tary, respectively. This is assumed throughout, and covers the natural case where

worker and firm competence is mutually beneficial.

If workers get a constant share of their marginal contribution to firm profits,

say that the workers are paid their marginal product : If worker j is the k-th worker

at the firm,

vJ(sj, si, ℓ) = α(vI(si, {sji1, sji2, ...., sjiℓ−1, sj})− vI(si, {sji1, sji2, ...., sjiℓ−1}))

For the additively submodular case, this is equivalent to

vJ(sj , si, ℓ) = απℓ(sj , si)

and workers only care about their marginal contribution to the profitability of the

firm.

This construction allows the worker’s payoff to depend on the types of some of

their co-workers. For example, the best worker at a given firm might be a manager,

so that the payoffs of all the workers depend non-trivially on the firm’s quality and

the manager’s talent, but not on any of the other worker’s characteristics except their

own — this is included in the additively submodular specification where workers are

paid their marginal product.

The need for these definitions, rather than a general model, results from the

fact that the two sides can now non-trivially disagree about how workers should
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be allocated to firms. For example, a worker might realize that reporting his type

honestly will result in the addition of another employee who will lower his wages at

his current firm. This might provoke him to understate his qualifications, thereby

lowering the firm’s expectations of productivity. This kind of manipulation is moti-

vated by considerations about the size of the firm. A second motivation to lie is that

the worker would rather be a “big fish in a small pond” and be the best worker at

a bad firm rather than the worst worker at a better firm, especially if the difference

in firm qualities is small. If the firms pay workers their marginal product, however,

these motivations are mitigated.

LetW = 2J be the power set of J — all the possible packages of workers. Then

the competitive externality mechanism can be extended to a many-to-one compet-

itive externality mechanism in which an allocation is a probability distribution in

the mixed extension over I, so that miWi
(σ) gives the probability that a package of

workers Wi ∈ W will be assigned to firm i as a function of all the reports. Suppose

the matchmaker separately chooses an allocation for both sides that maximizes the

payoffs of the agents, and carries out the match only if the allocations match. Then

the payments are decided for the firms as

tIℓ(σIℓ, σ\Iℓ) = −
∑

i∈I\Iℓ

∑

Wi∈W

miWi
(σIℓ, σ\Iℓ)vI(σIℓ,Wi)

+
∑

i∈I\Iℓ

∑

Wi∈W

miWi
(∅, σ\Iℓ)vI(σIℓ,Wi)
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and for the workers as

tJℓ(σJℓ, σ\Jℓ) = −
∑

j∈J\Jℓ

∑

Wi∈W

miWi
(σJℓ, σ\Jℓ)vJ(σj ,Wi)

+
∑

j∈J\Jℓ

∑

Wi∈W

miWi
(∅, σ\Jℓ)vJ(σj ,Wi)

so the competitive externality of participation is internalized on all the agents.

Proposition 3.4.1 Suppose all matches are acceptable. Then honest reporting is

an ex post equilibrium of the many-to-one competitive externality mechanism if the

firms pay workers their marginal product.

So under these conditions, the matchmaker can intermediate in markets where

there is many-to-one demand. Weakening these results will require assumptions

about information, type distributions and payoffs that ensure agents are suitably

ignorant of their opponents’ and partners’ characteristics so that they believe that

reporting a higher type will get them a better package of workers or a better job in

expectation. Since ex post equilibrium allows information to be distributed asym-

metrically across the market, however, it applies more broadly in terms of achieving

stability and efficiency in the presence of differential information, but with other

payoff structures, there may be many additional incentive problems.

There are two difficulties in using a dynamic format to implement the same

outcome as the static mechanism. First, the final payment of agent k is contingent

on a hypothetical allocation of goods to the agents in market in which agent k has

refused to participate. Since the marginal value of workers shifts whenever a firm

acquires a worker, any straightforward extension of Proposition 3.4.1 fails to achieve
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the same outcome. One possibility is to employ a crediting/debiting mechanism, as

studied in Ausubel [2]. However, the presence of private information on the part of

the “goods” substantially complicates matters. It is not immediately clear whether

the auction will release enough information for the agents to learn their value for all

the potential packages of partners, and the notion of “sincere bidding” is complicated

by the fact that information is being released about the value of potential partners

continuously.

3.5 Conclusion

This paper provides a number of useful results on the dynamic implementa-

tion of ex post efficient matches in matching markets, and characterizes a set of

assumptions that allow incentive compatible many-to-one matching, a case that has

not before received attention in the competitive matching literature.

By combining ideas from the position auction literature — particularly Edel-

man et al. [25] — some useful dynamic games can be constructed to intermediate

matching with supermodular complementarity, even in many-to-one matching con-

texts. While the assumptions in the many-to-one matching section — workers are

paid their marginal product and firms have submodular preferences over package

size — were strong, they are economically motivated and provide some insight into

the challenges posed by many-to-one environments. Namely, workers have incentives

to manipulate the size of the firm by over- or under-stating their complementarities

with other workers, and a worker may have different preferences over firms about
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being the best worker at a better firm or the worst worker at a worse firm. Finding

other mechanisms or sets of economically-meaningful assumptions that offer similar

results might help distinguish important features of markets and shed light on why

we see particular trading institutions emerge in the economy.

However, the case of single-dimensional types and supermodular valuation

functions is quite restrictive. It would be preferable to allow firms to vary in their

characteristics, allowing a rate of substitution between the worker types and their

own. This would create other patterns of sorting different from the vertical type ob-

served in the supermodular case. This introduces a number of new issues, however,

because once the lattice of stable matches is no longer a singleton, the competi-

tive framework used here breaks down: Agents are not only competing against the

participants on their own side for partners, but groups of agents on each side are

now competing against each other to insure their side’s preferred match is chosen.

Managing incentives in a situation like this poses many challenges because any com-

bination of motives to compete, free ride, or mis-report private information can be

in conflict or agreement throughout the type space.

Lastly, “matching” can be understood formally as choosing a weighted bi-

partite graph, where the edges represent the partner relationships and the weights

represent the payments. There are many markets where relationships exist between

and among many agents, such as in Kranton and Minehart [41] or Jackson [37]. For

example, the entities who regulate power networks often have to procure electricity

when there are limits on how much the various “sub-markets” can interact, and

agents participate in many of these sub-markets — there are limits to how much
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electricity can be moved from Canada to Maine to Boston. Another example is the

participation of outside commercial sellers on Amazon.com or eBay.com. How and

why the matchmaker manipulates the structure of markets provides a new avenue

for understanding commerce beyond the price mechanism of auction theory, or the

partner-allocation algorithms of matching theory.
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Chapter 4

One-to-One Matching with Multi-dimensional Types

4.1 Introduction

A common assumption in the matching literature is that agents know their

preferences — whether it be cardinal utility or an ordered list — over partners.

Incomplete information, when considered, then takes the form of uncertainty over

the preferences of their potential partners or their opponents for mates. This paper

shows that when there is uncertainty over the privately known characteristics of

agents and their types are multi-dimensional, the common methods of achieving

truthful reporting of private information as a weakly dominant strategy — serial

random dictatorship, the Vickrey-Clarke-Groves mechanism, and, on one side of

the market, deferred acceptance algorithms — fail to implement honest reporting.

This occurs because when agents only know their own characteristics, they require

knowledge of potential partners’ characteristics to form a valuation, and this creates

an avenue for manipulation that is assumed away when agents already know their

preferences over partners. The second part of the paper constructs a mechanism

with transfers that, with an appropriate restriction on preferences, does achieve

honest revelation of private information as an ex post equilibrium. The restriction,

called reciprocity, has a precedent in the linear assignment problem literature — see

Shapley and Shubik [60] and Bikchandani and Ostroy [8] — and is not related to
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“vertical” or “horizontal” differentiation of market participants, nor the common

assumption of supermodularity used throughout the literature.

In particular, this paper follows the approach taken in Damiano and Li [22],

Hoppe, Moldovanu and Sela [35], Hoppe, Moldovanu and Ozdenoren [36], Bulow

and Levin [9], Johnson [38], McAfee [44] and others following Becker [7]: When

can competitive mechanisms in which agents’ payments are based on competition

for partners achieve stable or efficient outcomes? This literature will be referred to

as the competitive matching literature because in contrast to other styles of inquiry

such as Kelso and Crawford [19], Hatfield and Milgrom [34] and Chambers and

Echenique [15], the emphasis is on how the market structure fosters competition

for partners and leads to efficient matching, as opposed to studies where strategic

behavior by the participants is ignored. All of the papers listed as part of the com-

petitive matching literature, however, assume supermodularity and one-dimensional

types. This paper extends those insights to multi-dimensional types and vertical or

horizontal differentiation, but the results are not entirely positive: Restrictions must

be placed on the relationship between the preferences for partners that the two sides

of the market can have for each other, or the competition across the market under-

mines the competition within each side.

A recent paper by Chakraborty et al. [14] focuses on similar issues. They

consider the problems facing a market designer who faces “students” with privately

known multidimensional types and “universities” with publicly known types. Their

focus is on how the amount of information released by the matching mechanism can

undermine stability: By witnessing the final match, it may resolve some uncertainty
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on the part of the universities about the private information of the students that

reveals the match is unstable. This is similar to the result in this paper that shows

that serial random dictatorship, the classic deferred acceptance algorithm, and VCG

do not implement honest revelation of private information in a multi-dimensional

environment.

4.2 Model

There are two disjoint sets of agents, I and J , with (abusing notation) I agents

on the I side and J agents on the J side; let K = min{I, J} with K > 1, which is

the largest number of matches that can be arranged in this market. Suppose that

I ≥ J , so that there is an excess supply of I-side agents. Each I-side agent would

like to match to one agent on the J side, and each agent on the J side would like to

match to one agent on the I side. Since the information and preferences considered

here are symmetric considering both sides, only the I side will be described in detail,

with the appropriate permutation of indices applying to the J side.

Each agent receives a type si ∈ SI that determines the preferences and abil-

ities of that agent. The type space for each agent on the I side, SI , is a com-

pact, convex subset of RL. A particular agent’s type is a vector of characteris-

tics si = (s1i , s
2
i , ..., s

ℓ
i, ...s

L
i ), and a realization of types for the I side is an L × I

sI = (sI1, sI2, ..., sII), including a column for each agent I1, I2, ..., II. Let the matrix

with column Ik removed be

sI\Ik = (sI1, sI2, ..., sI,k−1, sI,k+1, ..., sII)
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Let s = (sI , sJ). A report σ = (σI , σJ) is any collection of types from the type spaces

of all agents, not necessarily equal to the truly realized types, and s\Ik = (sI\Ik, sJ).

Let the signals be distributed according to a joint density f(sI , sJ), and define

Es\i[h(si, s\i)] as the expectation of h(si, s\i) conditional on si, with all other type

realizations distributed according to the marginal density f [s\i|si]. Suppose that,

given that some agent already exists with a type in the set A ⊂ SI where the

measure of A is strictly positive, the probability that another agent draws a type

in A is strictly positive for all A in the appropriately defined probability space. If

this condition is satisfied, say that the type distribution is rich. This ensures that

the agents’ types are not deterministic in such a way that the sequence of realized

types is carefully chosen to avoid incentive problems in an artificial fashion.

The match surplus accruing to agent i from being matched to agent j is given

by a surplus function vI(si, sj) that maps the types of agent i and j into a real

number, with vJ(sj , si) defined similarly. Since only si and sj determine the value

of the match between agent i and j — and not any of the signals received by agents

outside the i-j match — this the pairwise private values case. Agents have quasi-

linear preferences, so an agent i paying t to match to agent j receives a payoff

of

vI(si, sj)− t

A direct revelation matching mechanism (direct mechanism) is a set of func-

tions

{mij(σ), ti(σ), tj(σ)}i,j
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where mij(σ) maps any report into a lottery over matches in the set I × J , and the

payment functions ti(σ) and tj(σ) map a report σ into transfers to the matchmaker.

The probability that i and j are matched at report σ is mij(σ).

A direct mechanism is Bayesian incentive compatible for agents if

si ∈ Argmaxσi
EsI\i,sJ

[
∑

j∈J

mij(σi, s\i)vI(si, sj)− ti(σi, s\i)
]

If, for any profile of types s′−i reported by i’s opponents, it is true that

si ∈ Argmaxσi

∑

j∈J

mij(σi, s
′
\i)vI(si, sj)− ti(σi, s′\i)

then honesty is a weakly dominant strategy.

Honesty is an ex post equilibrium if, for all realizations of the types,

si ∈ Argmaxσi

∑

j∈J

mij(σi, s\i)vI(si, sj)− ti(σi, s\i)

If vI(si, sj) ≥ vI(si, sj′), then agent i prefers agent j to j′, or j ≥i j
′. These

ordinal preferences correspond to those considered by Gale and Shapley [28], where

the primitives are ordinal preferences rather than cardinal ones. The allocation is

envy free if there does not exist an agent on the I side, I1, who prefers a partner

J2 matched to I2 at price tI2 to his own partner J1 at price tI1:

vI(sI1, sJ1)− tI1 ≥ vI(sI1, sJ2)− tI2

This is an important aspect of the analysis in Edelman et al. [25], since it ensures

that agents don’t have an incentive to attempt to “steal” partners in an ascending

auction for goods. Without it, there is the possibility that dynamic mechanisms can

have equilibria where agents can profitably steal partners from one another.

There are two main examples used in examples and proofs in this paper:
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• Agents have increasing supermodular preferences if the valuation functions are

increasing in all arguments, and for all ℓ1 and ℓ2

∂2vI((s
1
i , s

2
i , ..., s

ℓ1

i , ...s
L
i ), (s

1
j , s

2
j , ..., s

ℓ2

j , ...s
L
j ))

∂sℓ
1

i ∂s
ℓ2

j

≥ 0

So there is complementarity between an agent’s characteristics and his part-

ner’s characteristics. For example, vI(si, sj) = si · sj =
∑L

ℓ=1 s
ℓ
is

ℓ
j .

• Suppose SI = SJ and δI(si, sj) is a distance metric, possibly specific to the

I side. Then agents have single-peaked preferences if the valuation function

takes the form

vI(si, sj) = fI(δ(si, sj))

where f() is a decreasing function. For example, vI(si, sj) = e
−
√

∑L
ℓ=1(s

ℓ
i−sℓj)

2

.

These cases are intended to correspond to, respectively, a market in which

agents always prefer a partner with a higher realization of signal type, and a market

in which every agent has an “ideal” kind of partner, but these ideal vary on the

characteristics of the agent. Of course, there are many other frameworks: one

dimension could represent quality while the others are a location to nest the above

preferences in one model, and so on. However, the set of stable matches can be

non-trivial even these simple assumptions, as the next section shows.

4.3 Existence and Uniqueness of Stable Matches

Gale and Shapley [28] established the existence of a stable match in any mar-

riage market, and Conway [40] proved that the set of stable matches is a lattice,
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where each side has a “group preference” that partially orders the set of stable

matches, but that in the two-sided matching case, these orders run in opposite

directions.

Theorem 4.3.1 (Gale and Shapley [28], Conway [40]) The set of stable matches

is a non-empty lattice. The I side agrees over a common preference ordering on the

set of stable matches, and the J side agrees over a common preference ordering on

the set of stable matches. These orders run in opposite directions.

The single-dimensional matching cases with supermodular complementarity is

studied in a number of papers, including Damiano and Li [22], Hoppe et al. [35],

Johnson [38] [39], and McAfee [44]. However, this case has the convenient feature

that the lattice of stable matches is a singleton: The best match for the I side is

also the best match for the J side. In the multi-dimensional case, this can easily

fail. This section presents a few simple examples in the increasing supermodular

case of how the set of stable matches can be complicated by (i) the existence of an

I-optimal stable match not equal to the J-optimal stable match, and (ii) existence

of type realizations where each side does not have a uniform ranking of potential

partners for some realization of partner quality.

4.3.0.3 Multiple Stable Matches

If the two sides have different preferences, the uniqueness of the stable match

fails, even when supermodularity is assumed. This occurs whenever the two sides

disagree on the marginal rate of substitution between two characteristics. For ex-
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ample, consider

vI(si, sj) = .75s1i s
1
j + .25s2i s

2
j

vJ(sj, si) = .25s1i s
1
j + .75s2i s

2
j

If si1 = (1, 2), si2 = (2, 1), sj1 = (1, 2) and sj2 = (2, 1), then the values of the various

matches are:

(vI , vJ) j1 j2

i1 (1.75, 3.25) (2,2)

i2 (2, 2) (3.25, 1.75)

So both the I-side agents prefer j2 to j1, but both the J-side agents prefer

agent i1 to i2. So there are two stable matches1: µ1 = {(i1, j1), (i2, j2)} and µ2 =

{(i1, j2), (i2, j1)}.

4.3.0.4 Non-Unique Orderings of Partners

Another useful characteristic of the single-dimensional type environment is

that all the agents on a given side agree on how to rank their potential partners. In

the multi-dimensional type case, this no longer holds. Let

vJ(si, sj) = .5s1i s
1
j + .5s2i s

2
j

If si1 = (1, 2), si2 = (2, 1), sj1 = (1, 2) and sj2 = (2, 1), then the J side match values

are
1To see this more formally, consider using the Gale-Shapley algorithm with the I side proposing,

then the J side proposing. This yields two matches, so there is a non-trivial lattice of stable

matches.
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vI , vJ i1 i2

j1 2.5 2

j2 2 2.5

So the two J agents disagree about which I agent is better. Slightly perturbing

the signals does not resolve this issue, either, since the cases above are not “knife-

edge”. So despite having supermodular surplus functions, there can be substantial

disagreement over how the agents should be matched. This has substantial impli-

cations for designing the market. In particular, the approach used in Johnson [38]

was to harness competition between the agents to compete for partners on the other

side of the market. Now, however, the agents are not only competing against par-

ticipants on their side, but necessarily against agents on the other side to determine

which of the possible matchings is chosen by the matchmaker.

4.4 Deferred Acceptance Algorithms, Serial Random Dictatorship,

and Vickrey-Clarke-Groves Mechanisms

In the matching literature, there are two main mechanisms used for matching

problems: The first, serial random dictatorship (SRD), asks agents to report their

preferences over partners to the matchmaker, who then draws agents in random or-

der and matches them to the highest-ranked unmatched partner remaining on their

lists. The second, deferred acceptance algorithms, asks agents to report their pref-

erences as ordered lists to the matchmaker, who uses an appropriate version of the
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Gale-Shapley algorithm to compute an allocation using the lists. These mechanisms

are defended on strategic grounds by pointing out that it is a dominant strategy

to report honestly in SRD because mis-reporting preferences does not provide any

advantage: When chosen by the matchmaker to pick, it is better to have reported

honestly than to have lied. For the Gale-Shapley algorithm, the defense is more

subtle: Roth [54] has shown that it is never a dominant strategy for both sides to

report honestly. However, in many practical applications, it is sufficient to guar-

antee that one side report honestly, since the other side of the market is often an

institution such as a public school that has no way of manipulating its preference

report. Roth has shown that the proposing side always has a dominant strategy to

report honestly, so the mechanism can be arranged so that the side with the incen-

tive to mis-report proposes, and incentive compatibility is established. Similarly, a

common method of implementing honest reporting in the auction and public goods

literatures is the Vickrey-Clarke-Groves mechanism. With incomplete information

about types, however, these mechanisms no longer implement honest reporting. The

reason is that by manipulating information revelation about himself, an agent can

influence the perceived preferences of potential partners, thereby getting a better

partner (and often a lower payment) merely by lying.

To show this, consider the following formal definitions of the mechanisms: The

incomplete information serial random dictatorship mechanism is the direct revela-

tion mechanism in which agents are asked to make a type report σi, the matchmaker

computes the matrices of match values VI = [vI(σi, σj)]ij and VJ = [vJ (σj, σi)]ji, and

then proceeds by randomly picking one of the remaining agents and matching them
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to the remaining partner who gives them the highest valuation. The incomplete in-

formation deferred acceptance algorithm is the direct revelation mechanism in which

agents are asked to make a type report σi, and then the matchmaker computes VI

and VJ , and uses the following matching algorithm:

• The matchmaker represents each agent’s preferences over partners through an

ordered list, where, for agent i, j �i j
′ if vI(σi, σj) ≥ vI(σi, σj′).

• Using the ordered lists, the matchmaker runs the Gale-Shapley algorithm “in

virtual time”:

– All agents on the I side propose to their favorite potential partner on the

J side. All J side agents tentatively accept their favorite proposal.

– All the unmatched I-side agents propose to the next-highest potential

partner on the J side, and the J side agents either retain their current

partner or tentatively accept one of the new proposals.

– The previous step is repeated until all the agents are matched or every

unmatched I side agent has previously proposed to every acceptable J

side partner.

Then the following is true:

Proposition 4.4.1 Truth-telling is, in general, not an ex post equilibrium of (i) se-

rial random dictatorship, (ii) deferred acceptance algorithms, even for the proposing

side, and (iii) not an ex post equilibrium of the Vickrey-Clarke-Groves mechanism.

94



The reason that Proposition 4.4.1 holds is that when agents’ preferences are

formed by the information revelation induced by the mechanism, there are possibil-

ities for manipulation, and this is precisely the problem in matching markets with

incomplete information: Agents are not sure about their partners’ or opponents’

types, and the market designer’s goal is to help them through a process of mu-

tual revelation. So the results of Roth [54] and others on the incentive compatibility

properties of SRD and Gale-Shapley algorithms do not extend to this broader notion

of uncertainty.

4.5 A Mechanism for “Reciprocal” Environments

As shown above, the Vickrey-Clarke-Groves mechanism is not well-suited to

matching environments because agents’ payments are based on their anticipated

contribution to social welfare, and this can always be manipulated upwards by

misrepresenting one’s self as a better partner, thereby inflating the anticipated gain

from matching. This makes constructing any matching mechanism that implements

truth-telling a challenge.

In the competitive matching literature, the following pattern emerged for suc-

cessful implementation: Make the agents on each side of the market compete for the

rights to partners of better quality, and then match the two sides on the basis of

the rankings. This logic immediately faces two problems when moving away from

the single-dimensional supermodular case: What does better quality now mean, and

what happens if the outcomes of the competition on the two sides of the market
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disagree?

4.5.1 Reciprocity and Admissible Transformations

A transformation g : vI(si, sj) → vJ(sj , si) is reciprocal if, for any proposed

match m∗
ij and any alternative allocation m

′

ij, if

∑

i

∑

j

m∗
ijvI(si, sj) ≥

∑

i

∑

j

m′
ijvI(si, sj)

then

∑

i

∑

j

m∗
ijvJ(sj , si) ≥

∑

i

∑

j

m′
ijvJ(sj , si)

This ensures that applying the transformation g() does not change the relative

ordering of matches on either side of the market with respect to social welfare. A

related definition comes from Vo-Khac [68] and is developed further in Burkard,

Hahn and Zimmerman [12], and reviewed in Burkard and Cela [11]. That literature

considers an assignment problem of allocating jobs to workers or machines to mini-

mize costs: For a set of n workers and n machines, with cost cij of allocating task i

to worker j, the decision-maker seeks to minimize

min
xij

∑

i

∑

j

xijcij

where xij ∈ {0, 1},
∑

i xij = 1,
∑

j xij = 1, and cij > 0. Clearly, this cost min-

imization problem is connected to the assignment problem of setting prices and

allocations in a game theory setting, which is explored fruitfully in Shapley and

Shubik [60], Bikchandani and Ostroy [8], and Vohra [67]. In the assignment setting,
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a transformation of cost matrix C = (cij) to C̃ = (c̃ij) is admissible if, for each j,

n∑

i=1

cij =
n∑

i=1

c̃ij + Z

where Z is a constant which depends on the transformation but not on anything else.

In the assignment literature, a transformation of the costs is admissible if it leaves

unchanged the relative order of objective function values of all feasible solutions.

This ensures that the solution to an assignment problem is the same as that for any

admissible transformation of it. This is exactly the condition needed for the two

sides of the market to “agree” on a match in the incomplete information matching

framework developed.

The set of reciprocal transformations is not empty. For example, let g :

vI(si, sj) → αvI(si, sj) + β, with α > 0 and β ≥ 0, a positive affine transforma-

tion. Then

∑

i

∑

j

m∗
ij(s)vI(si, sj) ≥

∑

i

∑

j

m′
ij(s)vI(si, sj)

α
∑

i

∑

j

m∗
ij(s)vI(si, sj) + Jβ ≥ α

∑

i

∑

j

m′
ij(s)vI(si, sj) + Jβ

∑

i

∑

j

m∗
ij(s)(αvI(si, sj) + β) ≥

∑

i

∑

j

m′
ij(s)(αvI(si, sj) + β)

∑

i

∑

j

m∗
ij(s)vJ(sj, si) ≥

∑

i

∑

j

m′
ij(s)vJ(sj, si)

implying that
∑

i

∑

j m
∗
ij(s)vJ(sj, si) ≥

∑

i

∑

j m
′
ij(s)vJ(sj , si). So there is at least

one class of admissible transformations. However, the definition potentially allows

other kinds of transformations, and these transformations may depend on the valu-

ation functions underlying the matching problem being investigated. For example,

in the one-dimensional supermodular case, any transformation that maintains su-
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permodularity is admissible.

4.5.2 Competitive Externality Pricing in Reciprocal Problems

Let sIℓ be agent Iℓ’s true signal, σIℓ a potentially false report to the match-

maker, and ∅ the null variable that indicates agent Iℓ prefers not to participate in

the mechanism. Then the competitive externality mechanism is the direct revelation

mechanism in which agents report possible types σi to the matchmaker, who then

uses the following procedure to decide the match:

• The matchmaker finds the allocation mI
ij(σ) that solves

max
mI

ij

∑

i

∑

j

mij(σ)vI(σi, σj)

• The matchmaker finds the allocation mJ
ij(σ) that solves

max
mJ

ij

∑

i

∑

j

mJ
ij(σ)vJ(σj , σi)

• If, for all i and j at σ, mI
ij(σ) = mJ

ij(σ), then the match is feasible and the

matchmaker announces the identities of the partners. If, for some i and j at

σ, mI
ij(σ) 6= mJ

ij(σ), the matchmaker does not match any agents or charge any

payments. If agents are matched, the Iℓ agent pays

tIℓ(σIℓ, σ\Iℓ) = −
∑

i∈I\Iℓ

∑

j∈J

mij(σIℓ, σ\Iℓ)vI(σi, σj)

+
∑

i∈I\Iℓ

∑

j∈J

mij(∅, σ\Iℓ)vI(σi, σj)

and similarly for the J side.
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This internalizes the welfare consequences of agent Iℓ’s participation on his

opponents on his side of the market, ignoring the welfare effects that impact the J

side. In general, this need not lead to any kind of equilibrium — in particular, agent

Iℓ might find it profitable to mis-represent himself to manipulate the behavior of

the J side agents, and such manipulation might even benefit the other agents on his

side of the market.

One obviously deficient feature of the competitive exernality mechanism is

that if the welfare-maximizing match is different on the two sides, no action is taken

by the matchmaker. A precedent for such a requirement is Gul and Stachhetti [33],

where untruthful bidding in an auction can lead to a poorly defined excess demand

vector, derailing the auction. In that paper and here, this lack of trade merely

“closes” the model so that it is well-defined for all reports σ. In Johnson [39], as-

cending formats are used to implement the same outcome, given sufficient structure

on the types and valuation functions of the participants, avoiding the inaction that

results when the competitive externality mechanism is infeasible. Lastly, this feature

actually highlights the key issue that arises in matching with incomplete informa-

tion as opposed to package auctions, assignment problems, or other environments:

As long as the two sides ex post agree on a unique efficient match, the problem is

simply to provide incentives for agents on each side separately to reveal their infor-

mation honestly. Once the two sides ex post disagree, each agent has a potential

incentive to misrepresent himself to manipulate the other side’s conception of an ex

post efficient match.
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Note that in Proposition 4.4.1, the preferences used to generate the counter-

examples were v(si, sj) = si · sj for both sides. These preferences are reciprocal, and

represent probably the simplest non-trivial case of complementarity between all the

agents’ characteristics. So the following proposition is a strict improvement over the

failures there to generate incentive compatibility or efficient and stable matching:

Proposition 4.5.1 Suppose the type distribution is rich. Then a competitive exter-

nality mechanism is feasible and truth-telling is an ex post equilibrium iff preferences

are reciprocal.

The added assumption that the type distribution is rich ensures that the prob-

ability distributions of types are not “degenerate” in such a way that any sequence

of draws that can occur will not include disagreement between the two sides, even

if the preferences and type spaces admit disagreement for other distributions of

types. Proposition 4.5.1 shows that the reciprocity condition guarantees the CEM

approach can be used, regardless of whether the agents have characteristics that

are quality- or distance-based. Unfortunately, this is an unrealistic assumption in

many situations. For example, in the special case of one-dimensional supermod-

ular types, assortative matching is the unique efficient outcome, and any class of

transformations that maintains supermodularity maintains the ranking of the assor-

tative match as the best; this is the mathematical feature of that environment that

makes it so tractable. However, Proposition 4.5.1 is useful because it illustrates how

non-reciprocity complicates the demands of incentive compatibility in matching en-

vironments. As long as the incentive constraints can be handled separately on each
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side, the reasoning from the competitive matching literature extends to considerably

more general environments.

To implement these outcomes dynamically, it would be helpful if none of the

agents would like to “swap” partners and payments at the proposed allocation. This

envy-free condition appears in Edelman et al. [25] and Johnson [38] [39]. Theorem

1 of Edelman et al., for example, requires envy-free prices to establish the result.

Proposition 4.5.2 The allocation and payments of the competitive externality mech-

anism may not be envy-free.

In Johnson, the match is ex post stable because of the supermodularity of the

valuation functions and one-dimensionality of the types, which do not hold here.

The failure of these features may have implications for efforts to design dynamic

mechanisms, for example, since agents may be able to “intimidate” one another

into dropping out early by over-bidding.

Lastly, it is possible for outcomes to be stable, given the payments, but un-

stable without them. This is not possible in the supermodular, one-dimensional

type case, where the payments merely provide incentives for agents to report their

information honestly. In the following example, there is a unique stable match with-

out the payments, but welfare is maximized at a different matching and allocation.

Consequently, the payments play two roles: The first is to provide incentives to

report honestly, but the second is to compensate the agents for not moving to the

stable match without the transfers. For example, consider a marriage market with

dowries. Without the payments, one allocation might arise that is based only on
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the participants’ preferences for their partners, but this is not efficient. With the

introduction of the payments, however, the efficient match can be arranged.

The intuition of the following example is based on the idea that if agents prefer

to be “closer” to one another and both sides of the market agree on the metric, then

there will be a unique stable match as long as there are no indifferences among the

agents. However, a social planner may prefer a different allocation that minimizes

the total distance among partners. These solutions can be different, and making

the efficient match stable will require carefully constructed payments.

Example Suppose I = J = 2 with types in R
2 and agents have minimum distance

preferences, vI(si, sj) = vJ(sj , si) = v̄−||si−sj ||, where || · || is the Euclidean norm,

and v̄ >
√
2. Then let the coordinates of I1’s type in the plane be sI1 = (0, 1),

the coordinates of I2’s type be sI2 = (.25, .5), the coordinates of J1’s type be

sJ1 = (0, 0), and the coordinates of J2’s type be (1, 0). Then the surpluses associated

with each of the matches are approximately

J1 J2

I1 v̄ − .559 v̄ − .901

I2 v̄ − 1 v̄ −
√
2

So the unique stable match is {(I1, J1), (I2, J2)}, but welfare is maximized at

{(I1, J2), (I2, J1)} because

2(2v̄ − (.901 + .559)) = 2(2v̄ − 1.46) > 2(2v̄ − 1.901)
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In the competitive externality matching mechanism with v̄ =
√
2, the payments are

approximately

tI1 = −.612

tI2 = .269

tJ1 = −.414

tJ2 = .368

∑

k

tk = −.387

so that agent I1 and J1 are compensated for not moving to block the efficient

allocation, agents I2 and J2 make payments to the matchmaker. It turns out that

the mechanism runs a deficit in this example, which is not necessarily the case when

the efficient and stable matches are the same — in supermodular markets where

there is a unique stable match, for example, there is a budget surplus.

This shows that the following proposition is true:

Proposition 4.5.3 A match generated by the competitive externality mechanism

may be efficient, but not ex post stable without the payments.

This might matter in situations where the payments are required to maintain

stability, not just reveal information. For example, consider an infinitely repeated

marriage market. Then agent i maximizes his discounted expected utility,

∞∑

τ=0

βτEi

[
∑

j

mijτvI(si, sj)− t0
]
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wheremijτ is the probability that agent i and j are matched at time τ , and payments

are only made at date 0, t0. In a market where types are one-dimensional and surplus

is supermodular, the unique stable match is identified in period 0 and the partners

need no payments in subsequent periods for the efficient outcome to be supported.

In the market considered in the previous example, however, the efficient outcome

can only be supported in periods in which the mechanism designer is willing to

make a payment into the market: Once information is revealed and the flow of

payments stops, agents will be tempted to cheat. Consequently, honest revelation

and efficiency can be achieved, but maintaining the efficient outcome will require

outside funds in all future periods or the agents will revert to the stable, inefficient

outcome. In these markets, then, stability and efficiency can be in conflict.

4.6 Conclusion

Further work on multi-dimensional types may provide many more satisfying

answers to the implementation problem. Finding a mechanism that selects a par-

ticular element from the set of stable matches would provide useful insight into how

to balance the competition for partners on each side of the market, versus the com-

petition between the two sides to get the matchmaker to implement their preferred

element of the set of stable matches. However, this paper provides a useful inter-

mediate step by finding a mechanism that moves past the increasing-supermodular

paradigm that is popular in the competitive matching literature.
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Appendix A

Proofs for Chapter Two

Lemma A1 If q > q′, the distribution h(q′, K) =
∑K

k=1wI,k(q
′) first-order

stochastically dominates h(q,K) ; having a higher q places more weight on the “high”

rankings, corresponding to 1, 2, ...

Proof First, note that
∑KI

k=1wI,k(q) = 1, by the binomial theorem. Then

KI∑

k=1

w′
I,k(q) = 0

For k = 2, 3, ..., KI − 1,

w′
I,k(q) =

(KI − 1)!

(KI − k)!(k − 1)!
fI(q)FI(q)

KI−k−1(1−FI(q))
k−2 [(KI − k)(1− FI(q))− (k − 1)FI(q)]

For k = 1 and k = KI , the functions wI,k(q) are monotone increasing and decreasing,

respectively. Let the sequence of points {q̃k}KI−1
k=2 be defined as

q̃k = F−1
I

(
KI − k
KI − 1

)

This is a decreasing sequence in k. For a given q, find the interval [q̃k, q̃k+1] and

label the accompanying k as k∗. Now, for all the terms w′
I,k(q) with k < k∗, w′

I,k(q)

is positive but for all terms w′
I,k(q) with k > k∗, w′

I,k(q) is negative. Then as we

drop negative terms from the end of the sum, KI , KI−1, ..., K, the value of h′(q,K)

must be positive. Then h(q,K) = h(q′, K) +
∫ q

q′
h′(z,K)dz ≥ h(q′, K). This shows
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that h(q,K) ≥ h(q′, K) for all K, so h(q′, K) first-order stochastically dominates

h(q,K).

Lemma A2 FJ,(ℓ)(q) first-order stochastically dominates FJ,(ℓ+1)(q).

Proof I’ll show that fJ,(ℓ)(q) likelihood ratio dominates fJ,(ℓ+1)(q), from which the

conclusion follows. Note that

fJ,(ℓ)(x) =
K!

(ℓ− 1)!(−+K − ℓ)!FJ(x)
K−ℓ(1− FJ(x))

ℓ−1fJ(x)

Take x < y. Then, since the (ℓ) distribution beats one more agent and the (ℓ + 1)

distribution loses to one more agent,

fJ,(ℓ)(x)

fJ,(ℓ+1)(x)
=

(K − ℓ− 1)!ℓ!

(K − ℓ)!(ℓ− 1)!

FJ(x)

1− FJ(x)

Since cumulative density functions are non-decreasing, FJ(y) ≥ FJ(x), and

fJ,(ℓ)(x)

fJ,(ℓ+1)(x)
=

(K − ℓ− 1)!ℓ!

(K − ℓ)!(ℓ− 1)!

FJ(x)

1− FJ(x)
≤ (K − ℓ− 1)!ℓ!

(K − ℓ)!(ℓ− 1)!

FJ(y)

1− FJ(y)
=

fJ,(ℓ)(y)

fJ,(ℓ+1)(y)

So FJ,(ℓ)(x) likelihood ratio dominates FJ,(ℓ+1)(x), which implies first-order stochastic

dominance.

Lemma A3 Consider

{∫ q̄J

RI (z)

∂sI(z, y)

∂qi
fJ,(k)(y)dy

}KJ

k=1

This sequence is non-increasing in k.

Proof By calculation,

∫ q̄J

RI (z)

∂sI(z, y)

∂qi
fJ,(k)(y)dy −

∫ q̄J

RI (z)

∂sI(z, y)

∂qi
fJ,(k+1)(y)dy
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= −
∫ q̄J

RI (z)

∂sI(z, y)

∂qi
d[1− FJ,(k)(y)] +

∫ q̄J

RI (z)

∂sI(z, y)

∂qi
d[1− FJ,(k+1)(y)]

Integrating by parts yields

=
[
FJ,(k+1)(RI(z))− FJ,(k)(RI(z))

] ∂sI(z, RI(z))

∂qi
+

∫ q̄J

RI(z)

[
FJ,(k+1)(y)− FJ,(k)(y)

] ∂2sI(z, y)

∂qi∂qj
dy

Because of the first-order stochastic dominance of FJ,(k) over FJ,(k+1) and supermod-

ularity, this entire term is positive.

Lemma A4 Let FJ,(k),KJ
(q) be the distribution of the k-th order statistic,

when there are KJ draws from FJ(q). Then FJ,(k),KJ+1(q) first-order stochastically

dominates FJ,(k),KJ
(q).

Proof Let q > q′. First, fJ,(k),KJ+1(q) likelihood-ratio dominates fJ,(k),KJ
(q):

fJ,(k),KJ+1(q
′)

fJ,(k),KJ
(q′)

=
KJ + 1

KJ + 1− kFJ(q
′) ≤ KJ + 1

KJ + 1− kFJ(q) =
fJ,(k),KJ+1(q)

fJ,(k),KJ
(q)

Since likelihood-ratio dominance implies first-order stochastic dominance, the result

follows.

Lemma A5 Under TAM and for an integrable function h(qi, qj),

Ei

[
∑

j

mij(qi, qI\i, qJ)h(qi, qj)

]

=

∑

k

wI,k(q)[1− FJ,(k)(RI(qi))]Ei[h(qi, qk)|ρqJ (qk) = k, qk ≥ RI(qi)]

Proof Under TAM, the matching rule is:

mij(qi, qI−i, qJ) =







1 , ρqI (qi) = ρqJ (qj), ψI(qi, qj) + ψJ(qj , qi) ≥ c

0 , Otherwise
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Then

Ei

[
∑

j

mij(qi, qI−i, qj , qJ−j)h(qi, qJ)

]

= Ei

[
∑

j

1{ρqI (qi)=ρqJ (qj),qj≥RI (qi)}h(qi, qj)

]

Then the indicator function can be broken up into two events

1{ρqI (qi)=ρqJ (qj),qj≥RI (qi)} = 1{ρqI (qi)=ρqJ (qj)}1{qj≥RI (qi)}

Then

Ei

[
∑

j

1{ρqI (qi)=ρqJ (qj)∩qj≥RI (qi)}h(qi, qj)

]

= Ei

[
∑

j

1{ρqI (qi)=ρqJ (qj)}1{qj≥RI (qi)}h(qi, qj)

]

= Ei

[
1{ρqI (qi)=1}1{qj≥RI (qi)}h(qi, qj) + ...+ 1{ρqI (qi)=K}1{qj≥RI (qi)}h(qi, qj)

]

The above equation shows that for each agent on the other side, named j, there are

K = min{KI , KJ} ways to match to him: i can do it as the best ranked agent on

the I side, as the second-best, and so on. Since the agents are symmetric, there are

KJ terms for each of the ranks, and probability 1/KJ that each agent j achieves

that rank, leading to

Ei

[
∑

j

K∑

k=1

1{ρqI (qi)=k∩ρqJ (qj)=k}1{qj≥RI(qi)}h(qi, qj)

]

=

K∑

k=1

EqI\i

[
1{ρqI (qi)=k}

]

(
∑

j

1

KJ

EqJ

[
1{ρqJ (qj)=k}1{qj≥RI(qi)}h(qi, qj)

]

)
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Since the J-side agents are all symmetric and the expectation of an indicator function

is a density,

=
K∑

k=1

wI,k(qi)EqJ

[
1{ρqJ (qk)=k}1{qk≥RI(qi)}h(qi, qk)

]

The remaining expectation can be written as

∫

z1

...

∫

qk

...

∫

zKJ

1{ρqJ (qk)=k}1{qk≥RI(qi)}

h(qi, qk)fJ(z1)...fJ(qk)...fJ(zKJ
)dz1...dqk...dzKJ

The indicator function 1{ρqJ (qj)=k} is activated whenever the particular component

qj takes the k-th slot less than KJ . The support of qJ can be divided into KJ !

disjoint sets that correspond to all the rankings of the components of the vector

of qualities. These permutation transformations have a Jacobian of | ± 1|, so that

their joint distribution on the set on which the indicator function takes the value

one, rather than zero, is KJ !fJ(q(1))fJ(q(2))...fJ(q(KJ )) which is the distribution of

the order statistics. Taking this transformation and making a number of routine

changes of order of integration leads to

=
∑

k

wI,k(qi)

∫ q̄J

0

1{qk≥RI(qi)}h(qi, qk)

KJ !

(k − 1)!(KJ − k)!
FJ(qk)

KJ−k(1− FJ(qk))
k−1fJ(qk)dqk

=
∑

k

wI,k(qi)

∫ q̄J

0

1{qk≥RI(qi)}h(qi, qk))fJ,(k)(qk)dqk

Calculation yields

=
∑

k

wI,k(qi)

∫ RI (qi)

0

0dqk +

∫ q̄J

RI (qi)

h(qi, qk)fJ,(k)(qk)dqk
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Dividing the remaining term by (1 − FJ,(k)(RI(qi))) makes it into a conditional

expectation. Substituting this into Equation 17 yields

∑

k

wI,k(qi)
[
1− FJ,(k)(RI(qi))

]
Ei [h(qi, qk)|ρqJ (qk) = k, qk ≥ RI(qi)] (A.1)

Therefore, the expectation can be written as claimed.

Proof of Lemma 2.3.1 (Incentive Compatibility)

Proof Only if: Assume incentive compatibility holds; I now show (i) and (ii) hold.

Define q as the agent’s true quality, and q̂ as the report submitted to the

mechanism operator. If the mechanism is locally incentive compatible, maximizing

with respect to the report q̂ in the indirect utility function yields

0 =
∂

∂q̂

[

Ei

[
∑

j

mij(q̂, qI\i, qJ)sI(q, qj)− ti(q̂, qI\i, qJ)
]]

q̂=q

Taking the total derivative of the indirect utility function then yields

U ′
I(q) =

∂

∂q̂

[

Ei

[
∑

j

mij(q̂, qI\i, qJ)sI(q, qj)− ti(q̂, qI\i, qJ)
]]

q̂=q

+ Ei

[
∑

j

mij(q, qI\i, qJ)
∂sI(q, qj)

∂qi

]

= Ei

[
∑

j

mij(q, qI\i, qJ)
∂sI(q, qj)

∂qi

]

Integrating with respect to q yields the indirect utility function, (i):

UI(q) = UI(qI) + Ei

[
∑

j

∫ q

q
I

mij(z, qj)
∂sI(z, qj)

∂qi
dz

]

(ii) Using (i) and the indirect utility function, interim expected transfers can
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be written

Ei[ti(q, qI\i, qJ)] =

Ei

[
∑

j

mij(q, qI\i, qJ)sI(q, qj)−
∫ q

q
I

mij(z, qI\i, qJ)
∂sI(z, qj)

∂qi
dz

]

− UI(qI)

Then lying and submitting a report q′ yields an expected payoff of

Ũ(q, q′) =

Ei

[∑

j

mij(q
′, qI\i, qJ)sI(q, qj)−

∑

j

mij(q
′, qI\i, qJ)sI(q

′, qj)

+

∫ q′

q
I

∑

j

mij(z, qI\i, qJ)
∂sI(z, qj)

∂qi
dz
]

− UI(qI)

(A.2)

Then lying is unprofitable if

ŨI(q, q
′)− UI(q) =

Ei

[
∑

j

mij(q
′, qI\i, qJ)(sI(q, qj)− sI(q′, qj))

+

∫ q′

q

∑

j

mij(z, qI\i, qJ)
∂sI(z, qj)

∂qi
dz

≤ 0

or

ŨI(q, q
′)−UI(q) =

∫ q′

q

Ei

[
∑

j

{
mij(z, qI\i, qJ)−mij(q

′, qI\i, qJ)
} ∂sI(z, qj)

∂qi

]

dz ≤ 0

This is condition (ii), the monotonicity condition.

If: Assume (i) and (ii) hold; I show incentive compatibility holds. Using con-

dition (i) and the indirect utility function, transfers can be isolated and substituted

into the indirect utility function to get Equation 14. Then deviating to q′ rather

than reporting q gives a change in payoff of
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ŨI(q, q
′)− ŨI(q, q) =

Ei

[∑

j

mij(q
′, qI\i, qJ)(sI(q, qj)− sI(q′, qj))

+

∫ q′

q

∑

j

mij(z, qI\i, qJ)
∂sI(z, qj)

∂qi
dz
]

= Ei

[

−
∑

j

mij(q
′, qI\i, qJ)

{
∫ q′

q

∂sI(z, qj)

∂qi
dz

}

+

∫ q′

q

∑

j

mij(z, qI\i, qJ)
∂sI(z, qj)

∂qi
dz
]

=

∫ q′

q

Ei

[
∑

j

{
mij(z, qI\i, qJ)−mij(q

′, qI\i, qJ)
} ∂sI(z, qj)

∂qi

]

dz

By (ii), the last line is non-positive, implying that reporting q′ 6= q isn’t a profitable

deviation.

Lemma 2.3.3 (Reserve Function)

Proof The reserve function is implicitly defined as:

ψI(qi, RI(qi)) + ψJ(RI(qi), qi) = c

Totally differentiating with respect to qi and rearranging yields

∂ψI(qi, RI(qi))

∂qi
+
∂ψI(qi, RI(qi))

∂qj
R′

I(qi)+

∂ψJ (RI(qi), qi)

∂qj
R′

I(qi) +
∂ψJ (RI(qi), qi)

∂qi
= 0

R′
I(qi) = −

∂ψI(qi, RI(qi))/∂qi + ∂ψJ (RI(qi), qi)/∂qi
∂ψI (qi, RI(qi))/∂qj + ∂ψJ (RI(qi), qi)/∂qj

The terms ∂ψI (qi, qj)∂qi is positive by assumption, but terms
∂ψI (qi, qj)

∂qj
and

∂ψJ (qj , qi)

∂qi
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are ambiguous; for instance,

∂ψI(qi, qj)

∂qj
=
∂sI(qi, qj)

∂qj
︸ ︷︷ ︸

+

−1− FI(qi)

fI(qi)

∂2sI(qi, qj)

∂qj∂qi
︸ ︷︷ ︸

−

To ensure the above term is positive, the above can be rearranged as

fI(qi)

1− FI(qi)
≥ ∂2sI(qi, qj)

∂qj∂qi
/
∂sI(qi, qj)

∂qj
=

∂

∂qi
log

(
∂sI(qi, qj)

∂qj

)

If this condition and its analog for the J side hold, RI(qi) is decreasing, so it is

almost everywhere differentiable. Then if RI(0) < q̄J , 0 participates, and he is the

worst-off type. Otherwise, the worst-off agent on the I-side can only match to the

best agent on the other side of the market, namely q̄J . So this player must satisfy

ψI(qI , q̄J) + ψJ(q̄J , qI) = c.

Proof of Proposition 2.3.4

Proof The value of q
I
is determined by:

c = λIaI(qI)aJ(q̄J)−
1− FI(qI)

fI(qI)
λIa

′
I(qI)aJ(q̄J) + λJaI(qI)aJ(q̄J)

c

aJ(q̄J)
=

[

λIaI(qI)−
1− FI(qI)

fI(qI)
λIa

′
I(qI) + λJaI(qI)

]

Then R′
I(q) < 0 if, for all qi who participate, ∂ψI (qi, qj)/∂qj + ∂ψJ/∂qj ≥ 0, or

λIaI(qi)a
′
J(qj)−

1− FI(qi)

fI(qi)
λIa

′
I(qi)a

′
J(qj) + λJaI(qi)a

′
J(qj)

− d

dqj

[
1− FJ(qj)

fJ(qj)
λJaI(qi)a

′
J(qj)

]

> 0
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Then the left-hand side of the above inequality is, for all qi > q
I
,

λIaI(qi)a
′
J(qj)−

1− FI(qi)

fI(qi)
λIa

′
I(qi)a

′
J(qj) + λJaI(qi)a

′
J(qj)

− d

dqj

[
1− FJ(qj)

fJ(qj)
λJaI(qi)a

′
J(qj)

]

> λIaI(qi)a
′
J(qj)−

1− FI(qi)

fI(qi)
λIa

′
I(qi)a

′
J(qj) + λJaI(qi)a

′
J(qj)

= a′J(qj)

[

λIaI(qi)−
1− FI(qi)

fI(qi)
λIa

′
I(qi) + λJaI(qi)

]

The term in brackets is an increasing function of qi, so using the condition defining

q
I
,

> a′J(qj)
c

aJ(q̄J)

> 0

Then for all qi ≥ q
I
, the reserve function is downward sloping.

Proof of Proposition 2.3.5

Proof (Only If) Suppose there is a set of agents of positive measure who expect

zero or negative surplus almost surely, so the mechanism exhibits absolute exclusion.

Absolute exclusion is characterized by Lemma 1.3.3, by the condition

ψI(qI , q̄J) + ψJ(q̄J , qI) = c

Since the set [0, q
I
] has positive measure, and ψI(qi, qj) + ψJ(qj , qi) is increasing in

both arguments, it must be true also that

ψI(0, q̄J) + ψJ(q̄J , 0) < c
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(If) The virtual surplus generated by an agent with qi = 0 and the best match

partner qj is

sI(0, q̄J)−
1− FI(0)

fI(0)
+ sJ(q̄J , 0)−

1− FJ (q̄J)

fJ(q̄J)
= sI(0, q̄J)−

1

fI(0)

∂sI(0, q̄J)

∂qi

If this quantity is strictly negative, then the lowest quality agent on the I side

produces negative virtual surplus a.s., since they produce negative surplus even

when guaranteed the best partner. Since ψI is continuous, there are q′i near qi = 0

for which joint virtual surplus is strictly negative as well. Then there is a set of

agents of positive measure who expect zero surplus a.s., so the mechanism exhibits

absolute exclusion.

Proof of Theorem 2.3.6 [Optimality and Revenue Equivalence]

Proof The proof relies on the lemmas:

• [Lemma A1] If q > q′, the distribution h(q′, k) =
∑k

j=1wI,j(q
′) first-order

stochastically dominates h(q, k) ; having a higher q places more weight on the

“high” rankings, corresponding to 1, 2, ...

• [Lemma A2] FJ,(ℓ)(q) first-order stochastically dominates FJ,(ℓ+1)(q).

• [Lemma A3] Consider

{∫ q̄J

RI (z)

∂sI(z, y)

∂qi
fJ,(k)(y)dy

}KJ

k=1

This sequence is non-increasing in k.

and Lemma A5, which allows computation of expectations under TAM.
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The strategy of the proof is to show that the integrand is negative for all values

of z between q and q′, implying that the entire integral is negative.

Case 1: Assume q′ > q. Then it needs to be shown that

∫ q′

q

∑

j

{

wI,j(z)

∫ q̄J

RI (z)

∂sI(z, y)

∂qi
fJ,(j)(y)dy

− wI,j(q
′))

∫ q̄J

RI (q′)

∂sI(z, y)

∂qi
fJ,(j)(y)dy

}

dz ≤ 0

If the integrand is negative for all z, then the conclusion for this case follows. This

is true if, for all z > q,

∑

j

wI,j(z)

∫ q̄J

RI (z)

∂sI(z, y)

∂qi
fJ,(j)(y)dy ≤

∑

j

wI,j(q
′)

∫ q̄J

RI(q′)

∂sI(z, y)

∂qi
fJ,(j)(y)dy

First note that since q′ > z, RI(q
′) < RI(z), and it suffices to show that

∑

j

wI,j(z)

∫ q̄J

RI(z)

∂sI(z, y)

∂qi
fJ,(j)(y)dy ≤

∑

j

wI,j(q
′)

∫ q̄J

RI (z)

∂sI(z, y)

∂qi
fJ,(j)(y)dy

Since q′ > z, the distribution over j on the left-hand side first-order stochastically

dominates the distribution on the right-hand side (Lemma A1). The remaining

terms on each side form a decreasing sequence in j (Lemma A3). The two sums

can be considered as expectations over a decreasing sequence, with the right-hand

side placing more weight on early terms in the sequence. Therefore, the inequality

holds.

Case 2: Assume q′ < q. Then it needs to be shown that

∫ q

q′

∑

j

{

wI,j(z)

∫ q̄J

RI(z)

∂sI(z, y)

∂qi
fJ,(j)(y)dy

− wI,j(q
′))

∫ q̄J

RI (q′)

∂sI(z, y)

∂qi
fJ,(j)(y)dy

}

dz ≥ 0
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This would be true if for z < q the integrand was positive, or

∑

j

wI,j(z)

∫ q̄J

RI (z)

∂sI(z, y)

∂qi
fJ,(j)(y)dy ≥

∑

j

wI,j(q
′))

∫ q̄J

RI(q′)

∂sI(z, y)

∂qi
fJ,(j)(y)dy

Note that since q′ < z, RI(q
′) > RI(z), and it suffices to show

∑

j

wI,j(z)

∫ q̄J

RI(z)

∂sI(z, y)

∂qi
fJ,(j)(y)dy ≥

∑

j

wI,j(q
′))

∫ q̄J

RI (z)

∂sI(z, y)

∂qi
fJ,(j)(y)dy

From a similar argument to case 1, this is true, and the integrand is positive. There-

fore, the monotonicity condidition is satisfied and TAM is a solution.

Proof of Proposition 2.3.6 (Exclusion)

Proof Let q
I1

be the exclusion associated with F 1
I (q), and q

2
I
the exclusion associ-

ated with F 2
I (q). Hazard rate dominance implies

−1 − F
1
I (x)

f 1
1 (x)

≥ −1 − F
2
I (x)

f 2
I (x)

Then q1
I
satisfies

0 = sI(q
1

I
, q̄J)−

1− F 1
I (q

1
I
)

f 1
I (q

1
I
)

∂sI(q
1
I
, q̄J)

∂qi
+ sJ(q̄J , q

1

I
)− c

But then

0 < sI(q
1

I
, q̄J)−

1− F 2
I (q

1
I
)

f 2
I (q

1
I
)

∂sI(q
1
I
, q̄J)

∂qi
+ sJ(q̄J , q

1

I
)− c

Since the right-hand side is increasing in q
I
, exclusion must be higher under FI2

than FI1, since the above inequality is zero when evaluated as q
I2
, but positive

when evaluated at q
I1
.
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Consider changing F 1
J to F 2

J , where F
1
J hazard-rate dominates F 2

J . Then rela-

tive exclusion function under F 1
J , R

1
Ik(q), is defined by

0 = sI(q, RI(q))−
1− FI(q)

fI(q)

∂sI(q, R
1
I(q))

∂qi
+ sJ(R

1
I(q), q)−

1− F 1
J (R

1
I(q))

f 1
J (R

1
I(q))

∂sJ (R
1
I(q), q)

∂qj
− c

But then

0 < sI(q, (q))−
1− FI(q)

fI(q)

∂sI(q, R
1
Ik(q))

∂qi
+ sJ(R

1
Ik(q), q)−

1− F 2
J (R

1
Ik(q))

f 2
J (R

1
Ik(q))

∂sJ (R
1
I(q), q)

∂qj
− c

because the second line equals 0 when evaluated at R2
Ik(q), and is increasing in

R1
Ik(q). Since virtual surplus is increasing in both qualities, R1

Ik(q) > R2
Ik(q).

Take the condition

sI(qI , q̄J)−
1− FI(qI)

fI(qI)

∂sI(qI , q̄j)

∂qi
+ sJ(q̄J , qI) = c

Treat q
I
(c) as a function of c1 and totally differentiate to get:

q′
I
(c) =

1

∂sI(qI , q̄J)

∂qi
−

1− FI(qI)

fI(qI)

∂2sI(qI , q̄j)

∂q2i
− d

dqi

[

1− FI(qI)

fI(qI)

]

∂sI(qI , q̄J)

∂qi
+

∂sJ(q̄J , qI)

∂qi

> 0

Similarly, take the condition

ψI(q, (q, c)) + ψJ((q, c), q) = c

Then

∂(q, c)

∂c
=

1

ψI(q, (q, c))

∂qj
+
∂ψJ ((q, c), q)

∂qj

> 0
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Verification that the denominator is positive comes from the conditions in Proposi-

tion 3.3.

Proof of Proposition 2.3.7 (Market Size)

Proof (i) The interim indirect utility of agents on the I side is

UI(qi) =

∫ qi

q
I

∑

k

wI,k(z)

∫ q̄J

(z)

∂sI(z, qj)

∂qi
fJ,(k)(y)dydz

Since a change in KJ doesn’t affect exclusion, only fJ,(k)(y) is altered. The first-

order stochastic dominance property (from Proposition A4) implies that probability

is shifted onto higher realization of partner quality, and because of supermodularity,

this function increases in KJ .

(ii) Let

wI,k:KI
(q) =

(KI − 1)!

(KI − k)!(k − 1)!
FI(q)

KI−k(1− FI(q))
k−1

Then

wI,k:KI
(q) = wI(q, k,KI)

KI

KI + 1− kFI(q)

Note that
KI

KI + 1− kFI(q) ≤ 1 only if

q ≤ F−1

(
KI + 1− k

KI

)

Let q̂k be the value of q that satisfies the above inequality with an equality. That

sequence of points is q̂1 = q̄I , q̂2 = F−1

(
KI − 1

KI

)

, ..., q̂KI+1 = 0. So for any q, the

interval q ∈ [q̂k̂, q̂k̂+1] can be found. For all terms k < k̂, the probability of that

agent attaining that rank has fallen due to an increase from KI to KI + 1; for all

terms k ≥ k̂, that agent has become more likely to hold that rank. This entails
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a shift in probability from favorable, highly ranked partners to unfavorably ranked

partners. Since
KI∑

k=1

wI,k,KI
(q) = 1 =

KI+1∑

k=1

wI,k:KI+1(q)

the sum on the left (associated with KI) must place more weight on the better

partners than the term on the right (associated with KI+1). Note also that for this

reason, cutting off the sums at any particular K < KI implies
∑K

k=1wI,k:KI
(q) ≥

∑K
k=1wI,k:KI+1(q). In other words, the lottery associated with KI + 1 first-order

stochastically dominates the lottery associated with KI over the terms 1, 2, ..., KI .

Note also that
∫ q̄J
(q)

∂sI(q, y)

∂qi
fJ,(k)(y)dy is a decreasing sequence in k. Then let

UI(q,KI) be the interim utility of an agent on the I-side when there are KI agents

in the market: The agent has drawn his private information, but has not received

any other information about his opponents.

Suppose that KI > KJ , so that min{KI + 1, KJ} = KJ . Then

UI(q,KI+1) =

∫ q

q
I

KJ∑

k=1

wI,k:KI+1
(z)

∫ q̄J

(z)

∂sI(z, y)

∂qi
fJ,(k)(y)dydz

≤
∫ q

q
I

KJ∑

k=1

wI,k:KI
(z)

∫ q̄J

(z)

∂sI(z, y)

∂qi
fJ,(k)(y)dydz = UI(q,KI)

since
∑ℓ

1wI,ℓ:KI
(q) first-order stochastically dominates

∑ℓ
1wI,ℓ:KI+1

(q) in ℓ. Now

suppose KI ≤ KJ + 1, so that min{KI+1, KJ} = KI + 1. Then adding the extra

I-side agent leads to the creation of another slot. But since
∑KI

1 wI,k:KI
(q) =

1 =
∑KI+1

1 wI,k:KI+1(q), this shifts weight onto worse partners, since the sequence

∫
∂(sI(q, y)/∂qi)fJ(k)(y)dy is decreasing, so UI(q,KI) ≥ UI(q,KI + 1) in that case

as well.
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(iii) Matchmaker profits are

∑

k

∫ q̄I

q
I

∫ q̄J

(qi)

{ψI(qi, qj) + ψJ (qj, qi)− c} fI,(k)(qi)fJ,(k)(qj)dqidqj

An increase in KI or KJ leads implies first-order stochastic dominance by Propo-

sition A4 without affecting exclusion, and since the integrand is supermodular, the

value of all existing matches improves. If the small side of the market has increase,

profits also increase because there are more matches made in expectation.

Proof of Proposition 2.3.8 (Own-Side Effects)

Proof Note that from Proposition 3.6, absolute and relative exclusion is higher

under F 1
I than F 2

I . This reduces the welfare of newly excluded agents and raises the

payments of the remaining agents. Additionally, consider

wI1,k(q)

wI2,k(q)
=

(
FI1(q)

FI2(q)

)KI−k (
1− FI1(q)

1− FI2(q)

)k−1

Then wI1,k(q) ≥ wI2,k(q) if k is greater than

k̃ =

log

(

1− FI1(q)

1− FI2(q)

(
FI2(q)

FI1(q)

)KI

)

log

(
1− FI1(q)

1− FI2(q)

FI2(q)

FI1(q)

)

Since hazard rate dominance implies first-order stochastic dominance, FI1(q) <

FI2(q) but 1 − FI1(q) > 1 − FI2(q), and the above expression is positive. So for

k ≤ k̃, wI2,k(q) will be less than wI1,k(q), but for k ≥ k̃, wI1,k(q) will be greater

than wI2,k(q). This means that for all q, the lottery over partners is more favorable

under FI2(q) than FI1(q), given that the agent participates under FI2(q). So the

added exclusion doesn’t benefit the remaining bidders, and the interim payoffs of

the I-side agents fall.
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Proof of Theorem 2.4.1 (Profit-Maximizing Implementation)

Proof Consider first the all-pay position auction. Note that the minimum bid

schedule is equivalent to the reservation function in the optimal mechanism, so

we can work with RI(q) instead of bJ(bi) in the agents’ maximization problems.

In any symmetric, increasing equilibrium, the bidders’ common strategy bAP
I (q) is

invertible, and agents face the problem:

max
b

K∑

k=1

wI,k(b
AP
I

−1(b))

∫ q̄J

RI(b
AP
I

−1(b))

sI(qi, y)fJ,(k)(y)dy − b

Then a necessary condition for maximization is that

bAP
I

′(q) =

d

dq

[
K∑

k

wI,k(q)

∫ q̄J

RI (q)

sI(q, y)fJ,(k)(y)dy

]

−
K∑

k

wI,k(q)

∫ q̄J

RI(q)

∂sI(q, y)

∂qi
fJ,(k)(y)dy

Integration yields

bAP
I (q) =

K∑

k

wI,k(q)

∫ q̄J

RI(q)

sI(q, y)fJ,(k)(y)dy

−
∫ q

q
I

wI,k(z)

∫ q̄J

RI(z)

∂sI(z, y)

∂qi
fJ,(k)(y)dydz

Since the worst-off type receives zero surplus in the mechanism, there is a natural

boundary condition to the differential equation of

bAP
I (q

I
) =

K∑

k

wI,k(qI)

∫ q̄J

RI(qI)

sI(q, y)fJ,(k)(y)dy

Since the right-hand side of the bid function is exactly the optimal payment in

the direct revelation mechanism, this mechanism implements the optimal outcome.

To ensure that this game is useful for implementation, we also have to check that
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bI,AP (q) is monotonically increasing, so that the quality rankings of the agents can be

correctly inferred from their bids (and the assumptions of invertibility is satisfied).

Then

bAP
I

′(q) =
∑

k

w′
I,k(q)

∫ q̄J

RI (q)

sI(q, y)fJ,(k)(y)dy

− wI,k(q)sI(q, RI(q))fJ,(k)(RI(q))R
′
I(q)

Since R′
I(q) < 0, the second term is positive. Note that by the binomial theorem,

∑KI

k wI,k(q) = 1, so
∑KI

k w′
I,k(q) = 0. Also, the sequence

∫ q̄J

RI(q)
sI(q, y)fJ,(k)(y)dy is

decreasing in k. Then for k = 2, 3, ..., KI − 1,

w′
I,k(q) =

(KI − 1)!

(KI − k)!(k − 1)!
fI(q)FI(q)

KI−k−1(1− FI(q))
k−2

[(KI − k)(1− FI(q))− (k − 1)FI(q)]

For k = 1 and k = KI , the slopes of wI,k(q) are monotone increasing and decreasing,

respectively. Let the sequence of points {q̃k}KI−1
k=2 be defined as

q̃k = F−1
I

(
KI − k
KI − 1

)

This is a decreasing sequence in k. For a given q, find the interval [q̃k, q̃k+1] and

label the accompanying k as k∗. Now, for all the terms w′
I,k(q) with k < k∗, w′

I,k(q)
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is positive but for all terms w′
I,k(q) with k > k∗, w′

I,k(q) is negative. Then

bAP
I

′(q) =
K∑

k

w′
I,k(q)

∫ q̄J

RI(q)

sI(q, y)fJ,(k)(y)dy

−wI,k(q)sI(q, RI(q))fJ,(k)(RI(q))R
′
I(q)

>

K∑

k

w′
I,k(q)

∫ q̄J

RI(q)

sI(q, y)fJ,(k∗)(y)dy

>

KI∑

k

w′
I,k(q)

∫ q̄J

RI(q)

sI(q, y)fJ,(k∗)(y)dy

=

∫ q̄J

RI (q)

sI(q, y)fJ,(k∗)(y)dy

KI∑

k

w′
I,k(q) = 0

Where the second line follows since
∫ q̄J
RI(q)

sI(q, y)fJ,(k)(y)dy is decreasing in k; de-

crease the terms above k > k∗ that appear with a negative w′
I,k(q), and decrease the

terms k < k∗ that appear with a positive w′
I,k(q). So the bid function is monotone

increasing.

If a winners-pay position auction is used instead, the agents maximize

max
b

∑

k

wI,k(b
WP
I

−1(b))

[
∫ q̄J

RI (b
WP
I

−1(b)
sI(q, y)fJ,(k)(y)dy − (1− FJ,(k)(RI(b

WP
I

−1(b))))b

]

with a potential solution (using the same approach as for the all-pay position

auction)

bWP
I (q) =

∑

k wI,k(q)
∫ q̄J
RI(q)

sI(q, y)fJ,(k)(y)dy −
∫ q

q
I

wI,k(z)
∫ q̄J
RI(z)

∂sI(z, y)

∂qi
fJ,(k)(y)dydz

∑

k wI,k(q)[1 − FJ,(k)(RI(q))]

Then this equals

bWP
I (q) =

bAP
I (q)

∑

k wI,k(q)[1− FJ,(k)(RI(q))]

The numerator and denominator are both increasing, so it is theoretically ambiguous

whether the entire function is increasing or decreasing.

Proof of Theorem 2.5.1 (Simplified Implementation)
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Proof Matchmaker profits are

∑

k

∫ q̄I

q
I

∫ q̄J

q
J

{ψI(qi, qj) + ψJ (qj, qi)− c} fJ,(k)(qj)fI,(k)(qi)dqjdqi

Maximizing over q
I
(and likewise for q

J
) yields a condition for maximization:

0 =
∑

k

∫ q̄J

q
J

{

ψI(qI , qj) + ψJ(qj , qI)− c
}

fJ,(k)(qj)dqj

From an integration by parts and re-arranging,

ψI(qI , q̄J) + ψJ(q̄J , qI)− c =
∑

k

∫ q̄J

q
J

{
ψI(qI , qj) + ψJ (qj, qI)− c

∂qj

}

[FJ,(k)(qj)− FJ,(k)(qJ)]dqj
∑

k 1− FJ,(k)(qJ)
> 0

Absolute exclusion in the optimal mechanism comes from lemma 1.3.3, where the

left-hand side of the above equation is set equal to zero. Since the left-hand side is

increasing in q
I
and the right-hand side is positive, exclusion here is higher.

The payments in the simplified mechanism can be computed similarly to the

optimal mechanism to get

Ei[ti(qi, qI−i, qJ)]

=
∑

k

wI,k(qi)

∫ q̄J

q
J

sI(qi, y)fJ,(k)(y)dy −
∫ qi

q
I

wI,k(z)

∫ q̄J

q
J

∂sI(z, y)

∂qi
fJ,(k)(y)dydz

Using this, the same arguments as in Section 1.3 show the monotonicity constraint

fails to bind for the simplified direct mechanism, so it is incentive compatible. In

the all-pay format, it is an equilibrium to bid the expected transfer exactly, and it

is increasing by similar arguments to Theorem 2.4.1, so the all-pay format imple-

ments the same payments and allocations as the simplified direct mechanism. The
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minimum bid is derived as the boundary condition to the solution of the differential

equation characterizing the bid function, using the condition that the worst-off type

get a payoff of zero. Lastly, to provide a sufficient condition that the function is

increasing, suppose bWP
I (q) is increasing and differentiate to get

∑

k w
′
I,k(q)

∫ q̄J

q
J

sI(q, y)fJ,(k)(y)dy

∑

k wI,k(q)
∫ q̄J
q
J

sI(q, y)fJ,(k)(y)dy −
∫ q

q
I

wI,k(z)
∫ q̄J
q
J

∂sI(z, y)

∂qi
fJ,(k)(y)dydz

≥
∑

k w
′
I,k(q)(1− FJ,(k)(qJ)∑

k wI,k(q)(1− FJ,(k)(qJ)

Dropping the negative term in the denominator on the left-hand side (thereby re-

ducing the magnitude of the left-hand side) and rearranging yields

∑

k w
′
I,k(q)

∫ q̄J

q
J

sI(q, y)dy
∑

k w
′
I,k(q)(1− FJ,(k)(qJ)

≥
∑

k wI,k(q)
∫ q̄J

q
J

sI(q, y)fJ,(k)(y)dy
∑

k wI,k(q)(1− FJ,(k)(qJ)

The right-hand side is the expected value of a match, given that a match occurs.

The left-hand side will be large only if
∑

k w
′
I(q, k)(1− FJ,(k)(qJ) is small, requiring

that 1− FJ,(K)(qJ) is sufficiently close to 1 and K is close to KI .
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Appendix B

Proofs for Chapter Three

Throughout the appendix, sIℓ refers to the signal received by agent Iℓ on the

I side, while sI[ℓ] refers to the ℓ-th highest signal received by any agent on the I

side.

Proof of Proposition 3.3.1

Proof Let UI(σIk, s\Ik) be the indirect utility function for agent Ik when he reports

σIk while everyone else reports honestly, s\Ik. Note that k’s payoff from reporting

σIk whenever everyone else reports their true type, s\Ik, is

UI(σIk, s\Ik) =
∑

j∈J

mkj(σIk, s\Ik)vI(sk, s\Ik)− tk(σIk, s\Ik)
∑

j∈J

mkj(σIk, s\Ik)vI(sk, s\Ik)

+
∑

j∈J

mkj(σIk, s\Ik)vJ(s\Ik, σIk)

+
∑

i∈I\k

∑

j∈J

mij(σIk, s\Ik)(vI(si, sj) + vJ(sj , si))

−
∑

i∈I\k

∑

j∈J

mij(∅, s\Ik)(vI(si, sj) + vJ(sj , si))− hk(s\Ik))
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Then

U(sk, s\Ik)− U(σIk, s\Ik) =

∑

j∈J

mkj(sk, s\Ik)vI(sk, s\Ik)

−
∑

j∈J

mkj(σIk, s\Ik)vI(sk, s\Ik)

+
∑

j∈J

mkj(sk, s\Ik)vJ(s\Ik, sk)

−
∑

j∈J

mkj(σIk, s\Ik)vJ(s\Ik, σIk)

+
∑

i∈I\k

∑

j∈J

mij(sk, s\Ik)(vI(si, sj) + vJ(sj , si))

−
∑

i∈I\k

∑

j∈J

mij(σIk, s\Ik)(vI(si, sj) + vJ(sj , si))

Let sJ [k] be the k-th highest signal on the J side, and suppose that sIk is ranked

k-th. Note that if the agent “goes after” the best partner on the other side, the

term

... + vJ(sJ [k], sIk))− vJ(sJ [1]), σIk) + ...

appears in Ik’s payoff. This can be made arbitrarily negative by submitting a

high-enough report σIk, yielding U(sIk, s\Ik) < U(σIk, s\Ik). Therefore, there is a

profitable deviation, and truth-telling is not incentive compatible.

Proof of Proposition 3.3.2

Proof (i) Since we can completely order the types according to either side’s pref-

erences, let sI[k] be the type of the agent with the k-th highest signal on the I side,

so sI[1] ≥ sI[2] ≥ ... ≥ sI[I]. Likewise, we can completely order the types on the J

side, sJ [1] ≥ sJ [2] ≥ ... ≥ sJ [J ]. By supermodularity, for all integer ℓ1, ℓ2 ≥ 1

vI(sI[k], sJ [k]) + vI(sI[k+ℓ1], sJ [k+ℓ2]) ≥ vI(sI[k+ℓ1], sJ [k]) + vI(sI[k], sJ [k+ℓ2])
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and

vJ(sI[k], sJ [k]) + vJ(sI[k+ℓ1], sJ [k+ℓ2]) ≥ vJ (sI[k+ℓ1], sJ [k]) + vJ(sI[k], sJ [k+ℓ2])

So the agents should be matched assortatively as

{(I[1], J [1]), (I[2], J [2]), ..., (I[k], J [k]), ...(I[K], J [K])}

This is the efficient and stable match.

(ii) Let sI[k] be the k-th highest signal received by an agent on the I side. This

his payment is

tI[k](s) =
{
vI(sI[k+1], sJ [k])− vI(sI[k+1], sJ [k+1])

}

+
{
vI(sI[k+2], sJ [k+1])− vI(sI[k+2], sJ [k+2])

}

+ ...+
{
vI(sI[K], sJ [K−1])− vI(sI[K], sJ [K])

}

Note that because of the vertical nature of the market, the set of agents that k and

k + 1 are blocking overlap for all terms k + 2 up to K

tI[k](s) =
{
vI(sI[k+1], sJ [k])− vI(sI[k+1], sJ [k+1])

}
+ tI[k+1](s)
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Then the realized utility of an agent is:

vI(sI[k], sJ [k])− tI[k] =

vI(sI[k], sJ [k])−
{
vI(sI[k+1], sJ [k])− vI(sI[k+1], sJ [k+1])

}

−tI[k+1](s)

=

{
∫ sJ[k]

sJ[k+1]

∂vI(sI[k], y)

∂sj
dy + vI(sI[k], sI[k+1])

}

−
{
∫ sJ[k]

sJ[k+1]

∂vI(sI[k+1], y)

∂sj

}

− tI[k+1](s)

=

∫ sJ[k]

sJ[k+1]

∫ sI[k]

sI[k+1]

∂2vI(x, y)

∂si∂sj
dxdy + vI(sI[k], sI[k+1])− tI[k+1](s)

We can continue to exploit the above pattern, yielding a final expression

vI(sI[k], sJ [k])− tI[k] =

=

∫ sJ[k]

sJ[k+1]

∫ sI[k]

sI[k+1]

∂2v(x, y)

∂si∂sj
dxdy

+

∫ sJ[k+1]

sJ[k+2]

∫ sI[k]

sI[k+2]

∂2v(x, y)

∂si∂sj
dxdy

+...+

∫ sJ[K−1]

sJ[K]

∫ sI[k]

sI[K]

∂2v(x, y)

∂si∂sj
dxdy + vI(sI[k], sJ [K])

Since an agent’s payment doesn’t depend on his type report, they can only deviate

downward or upward in rank. Deviating down “throws away” some of the terms

in the above sum, since the agent is no longer blocking those competitors. This

is unprofitable, since the terms are all positive due to supermodularity. Likewise,

deviating upward includes terms that are negative, because the order of integration

is reversed when evaluated from a worse agent (the deviator) to a better one. So

there are no profitable deviations for any realization of types.

So if the two halves of the competitive externality mechanism {mI
ij(σ), ti(σ)}
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and {mJ
ij(σ), tj(σ)} agree on the allocation, it is an ex post equilibrium for agents

to report honestly. It is not a dominant strategy, since if other agents lied about

their types, it would no longer be a best-reply to be honest. For example, if the best

J-side agent submitted a report that made her appear to be the worst partner on

that side, a profitable deviation from truth-telling on the I side would be to pretend

to be the worst partner who receives a match, and then making the lowest payment

and getting the best partner.

Proof of Proposition 3.3.3

Proof (i) Suppose all the types are common knowledge and an agent tries to lie

about his type to exploit security bidding to his advantage. If Iℓ is ranked k-th,

making a falsely high report that blocks all the matches from K to k − ℓ actually

lowers the bar for receiving a partner, since

dx∗(si)

dsi
= −∂vI (si, x

∗(si)

∂vI (si, x∗(si)
< 0

So an upward deviation only exposes an agent to more risk of an unacceptable

partner, given his true signal. The only way to get a better partner by falsely

submitting a higher type is to achieve a better rank, which is already shown to be

unprofitable in Proposition 3.2. Submitting a falsely low report, likewise, allows

the possibility of matching to a low quality agent and getting a negative matching

surplus in addition to potentially making a payment to the matchmaker. This, too,

is obviously less profitable than reporting honestly and getting zero whenever the

only available partners are unacceptable. So even if agent Iℓ knew the types of
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his opponents, lying about his type is unprofitable, so it cannot be profitable in

expectation, and this is an ex post equilibrium strategy.

(ii) In the mechanism without security bidders, the lowest payment on the I

side is tIK ≥ 0 whenever I > J , and tJK is always equal to zero. Because of the

security bidders, there are other bid-entries, weakly raising these lowest payments,

and subsequently improving revenue.

(iii) Security bidding is not necessarily efficient because whenever a participant

i on the I side “wins himself” through security bidding, a potential match — which

would not have been stable — is not made. However, this match could have satisfied

vI(si, sj) < 0 and vJ(sj, si) > 0, but vI(si, sj) + vJ(sj, si) > 0, so that blocking the

match is not socially efficient.

Proof of Proposition 3.3.4

Proof Note that there is no way for agents on the I side to influence the behavior of

the agents on the J side through their bidding behavior, since no information leaks

across the two markets, so any deviation must be intended to improve an agent’s

behavior with respect to its implications for his opponents’ payoffs.

First, the proposed drop-out strategies are monotone. Consider equation 2.4:

τ Ik (si, p
I
k+1) = E[vI(si, sj)|ρsJ (j) = k]− E[vI(si, sj)|ρsJ (j) = k + 1] + pIk+1

The derivative with respect to si is

∂τ Ik (si, p
I
k+1)

∂si
= E

[
vI(si, sj)

∂si
|ρsJ (j) = k

]

−E

[
∂vI(si, sj)

∂si
|ρsJ (j) = k + 1

]
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The support of si when ranked k-th or k+1-st is the same, since the only restriction

is that sJ [k] ≥ sJ [k+1]. Then let fk:J(sj) be the distribution of the k-th of J order

statistic.

∂τ Ik (si, p
I
k+1)

∂si
=

∫ s̄J

sJ

vI(si, y)

∂si
fk:J(y)dy −

∫ s̄J

sJ

∂vI(si, y)

∂si
fk+1:J(y)dy

From an integration by parts,

∂τ Ik (si, p
I
k+1)

∂si
= (Fk+1:J(sJ)− Fk:J(sJ))

vI(si, sJ)

∂si

+

∫ s̄J

sJ

(Fk+1:J(y)− Fk:J(y))
∂2vI(si, y)

∂sj∂si
dy

This is positive, because Fk:J(sj) first-order stochastically dominates Fk+1:J(sj) and

vI is supermodular.

Now suppose agent I[k] knew all of sI , but the other agents on the I side only

know their own information; it will be shown that there are no profitable deviations

for I[k], implying that there cannot be any profitable deviations in expectation,

either. If the J side uses the proposed strategies, winning rank k entitles an I side

agent to a draw from the distribution of the k-th order statistic, Fk:J(sj). Then

the payoff for the k-th ranked agent on the I side from playing according to the

proposed strategies is

E[vI(sI[k], sj)|ρsJ (j) = k]− pIk

If the other players use the proposed strategies,

pIk =

∫

vI(sI[k+1], y)fk:J(y)dy −
∫

vI(sI[k+1], y)fk+1:J(y)dy + pIk+1

=

K∑

ℓ=k+1

{∫

vI(sI[ℓ], y)fℓ−1:J(y)dy −
∫

vI(sI[ℓ], y)fℓ:J(y)dy

}

+

∫

vI(sI[K+1], y)fK:J(y)dy
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Substituting this in and re-arranging yields

E[vI(sI[k], sj)|ρsJ (j) = k]− pIk =

∫
{
vI(sI[k], y)− vI(sI[k+1], y)

}
fk:J(y)dy

+

∫
{
vI(sI[k+1], y)− vI(sI[k+2], y)

}
fk+1:J(y)dy

+...

+

∫
{
vI(sI,[K], y)− vI(sI[K+1], y)

}
fK:J(y)dy

=

∫ ∫ sI[k]

sI[k+1]

∂vI(x, y)

∂si
fk:J(y)dxdy

+

∫ ∫ sI[k+1]

sI[k+2]

∂vI(x, y)

∂si
fk+1:J(y)dxdy

+...

+

∫ ∫ sI[K]

sI[K+1]

∂vI(x, y)

∂si
fK:J(y)dxdy

Since vI is supermodular and Fk:J(y) first-order stochastically dominates Fk+1:J(y),

all the terms above are positive if agent I[k] uses the proposed strategies. Now,

if agent I[k] on the I side deviates by dropping out early, he foregoes one of the

integral terms above. These are all positive, so his payoff falls. If agent I[k] on

the I side stays in and steals the position of an agent with a higher signal, the

payoff will be negative, since the region of integration will flip (from sI[k+ℓ] to sI[k]

above becomes sI[k] to sI[k−ℓ]). Therefore, following the proposed strategies is an

equilibrium: by dropping out earlier or later, for any realization of sI , agent k’s

payoff will fall. Lastly, since each of I[k]’s opponents only knows his own type, none

of them have a reason to “respond” to a deviation by I[k] — to them, it simply

appears that I[k] has a higher value than he actually does. Subsequently, the agents
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who witness a drop-out occur at time dI,k can update their beliefs by inverting the

drop-out strategy at stage k to get the probability that agent Iℓ withdrew:

pr[sIℓ = s|dI,k] =







1 , τ Ik (s, p
I
k) = dI,k

0 , otherwise

and let beliefs at stage k at clock time cI about an active agent sIℓ be

pr[sIℓ = s|cI ] =







1

I − (k − 1)

(
∑k

n=1 fn:I(s)
)

, s ≥
(
τ Ik
)−1

(cI , sJ [k−1], sJ [k], p
I
k)

0 , otherwise

This provides beliefs that are consistent with the strategies and any observed history.

Since there are no profitable deviations for any realization of sI , deviating

cannot be profitable in expectation, either. Since this holds for the I side, it holds

for the J side as well, and these strategies constitute a perfect Bayesian equilibrium.

Proof of Proposition 3.3.5

Proof First, if the players use the proposed drop-out strategies, the match and

payments will be equivalent to the static CEM. Let that αI[k] and αJ [k] be the

announced values of the k-th highest signals on the I and J side, respectively.

Note that the drop-out strategies are monotone in the players’ private infor-

mation:

∂τk(si, αJ [k−1], αJ [k], p
I
k)

∂si
=
∂vI(si, αJ [k−1])

∂si
− ∂vI(si, αJ [k])

∂si

=

∫ αJ[k−1]

αJ[k]

∂2vI(si, y)

∂sj∂si
dy ≥ 0
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Therefore, using this strategy, the worst agents drop out first, and the strategies im-

plement the correct matching. This procedure also implements the same payments

as the static competitive externality mechanism. Then the payment by the k-th

highest ranked agent on the I side in the static CEM is

tI[k](s) =
{
vI(sI[k+1], αJ [k])− vI(sI[k+1], αJ [k+1])

}

+
{
vI(sI[k+2], αJ [k+1])− vI(sI[k+2], αJ [k+2])

}

+ ...+
{
vI(sI[K], αJ [K−1])− vI(sI[K], αJ [K])

}

Then the payments in the proposed equilibrium of the dynamic competitive exter-

nality mechanism are

pIk = vI(sI[k+1], αJ [k])− vI(sI[k+1], αJ [k+1]) + pIk+1

Iterating over k yields

pIK = vI(sI[K+1], αJ [K])− 0

pIK−1 = vI(sI[K], αJ [K−1])− vI(sI[K], αJ [K]) + vI(sI[K], αJ [K])

...

resulting in

pIk =
{
vI(sI[k+1], αJ [k])− vI(sI[k+1], αJ [k+1])

}

+
{
vI(sI[k+2], αJ [k+1])− vI(sI[k+2], αJ [k+2])

}

+ ...+
{
vI(sI[K], αJ [K−1])− vI(sI[K], αJ [K])

}

Which are the same payments as the static version of the mechanism.
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To show the proposed strategies form an equilibrium, first note that deviating

at the announcement stage has no effect on bidding on the I side, because that

information is not revealed to the agents on the I side. Also, lying misleads the

J-side agents, but does not change the rankings, since the drop-out strategies are

monotone. As a result, there are no profitable deviations at the announcement

stage, since the matching will still be assortative.

Now we prove that if the agents on the J side adopt the proposed strategies,

the agents on the I side have no profitable deviations (and since the two sides are

symmetric, this is then an equilibrium). Since the agents on the J side cannot

see what is happening on the I side, there is no way to manipulate their behavior

by deviating in the I side. Subsequently, any profitable deviation must come by

manipulating one’s opponents on one’s own side.

To prove this is an ex post perfect equilibrium, we need to show that for any

history and at any subgame following the announcement phase, for any realization

of private information, bidding according to the proposed drop-out strategies is a

Nash equilibrium (i.e., the strategies are Nash in every subgame). This is shown by

considering each stage as a subgame and using backwards induction.

• (Stage 1) Suppose there are only two agents left, I1 and I2, the clock price

is any cI , and the price for the second-best match is any pI2. Then the only

payoff-relevant information left to be decided at this stage of the game is which

agent gets the best partner and which gets the second-best partner, and what

pI1 will be. Suppose that sI1 > sI2 (we are not assuming that sI1 = sI[1]—
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any pair of players may have made it into this final round, given the previous

history of the game, so the “names” I1 and I2 are arbitrary labels).

First, suppose the clock price is higher than either agent’s proposed drop-out

strategy. Both agents should drop out immediately; since this is a tie, we can

award the partners randomly. The agent who gets αJ [2] only has to pay pI2,

and gets a payoff

vI(si, αJ [2])− pI2

while the agent who gets αJ [1] has to pay the clock price and gets a payoff of

vI(si, αJ [1])− cI

but since cI is greater than either agent’s proposed drop-out price, so getting

αJ [2] at p
I
2 must be preferable to getting αJ [1] at cI . Dropping out is better

than staying in if

1

2

{
vI(si, αJ [1])− cI + vI(si, αJ [2])− pI2

}
≥ vI(si, αJ [1])− cI

which is true for both players. Thus, they should follow the drop-out strategies

and both withdraw immediately.

Alternatively, suppose the clock price is not higher than I1’s proposed drop-

out time. If I1 adopts the proposed drop-out strategy, agent I2 can only win

the best partner by outbidding I1. This entails staying in longer than

τ I2 (sI1, αJ [1], αJ [2], p
I
2) = vI(sI1, αJ [1])− vI(sI1, αJ [2]) + pI2

Then for agent I2, winning the best partner requires staying in until

cI > vI(sI1, αJ [1])− vI(sI1, αJ [2]) + pI2
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yielding a payoff of

vI(sI2, αJ [1])− vI(sI1, αJ [1]) + vI(sI1, αJ [2])− pI2

= −
∫ sI1

sI2

∫ αJ[1]

αJ[2]

∂2vI(x, y)

∂si∂sj
dydx+ vI(sI2, αJ [2])− pI2

< vI(sI2, αJ [2])− pI2

So usurping I1’s position is not a profitable strategy. Likewise, as long as

player I2 drops out before the proposed drop-out time, player I1 prefers to

wait. Therefore, in this final stage of the game and for any realizations of

types and histories, the proposed drop-out strategies are subgame perfect.

• (Stage k) Now we extend the reasoning of the previous argument to k players at

the k-th stage. Suppose there are a subset S of players greater than 2 for whom

the clock price is greater than their proposed drop-out strategy. If the other

players adopt the proposed drop-out strategies, the players in S whose partner

on the equilibrium path at the expected prices — if all the agents in I\S use

the proposed drop-out strategies in the continuation game — should all drop

out immediately. Since this is a tie, we can match these agents randomly.

Since the clock price was higher than their value for any achievable future

partner, they prefer a lottery for the partner with announcement αJ [k] at price

pIk to any partner they could achieve by staying in any longer. Therefore, they

should follow the drop-out strategies.

Suppose such a set S with |S| > 1 is not present. Let pIk be the price of the

k-th match, and the remaining players have commonly known qualities sI1 >
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sI2 > ... > sIk, and the relevant announcements are αJ [1] > αJ [2] > ... > αJ [k].

If the agents I1; I2; ...; I, k − 2 adopt the proposed drop-out strategies, they

have no profitable deviations at this stage, since nothing happens at this point

relevant to their payoffs and the induction hypothesis is that play is subgame

perfect in the next stage. Then agent Ik can attempt to steal I, k−1’s position

by outbidding him, but this results in a payoff of

vI(sIk, αJ [k−1])− vI(sI,k−1, αJ [k]) + vI(sI,k−1, αJ [k])− pIk

= −
∫ sI,k−1

sIk

∫ αJ[k−1]

αJ[k]

∂2vI(x, y)

∂si∂sj
dydx+ vI(sIk, αJ [k])− pIk

< vI(sIk, αJ [k])− pIk

So usurping the k−1-st slot is an unprofitable deviation. Likewise, the I, k−1

agent doesn’t want to drop out any earlier for any realization of types and

histories, since for any δ < τ Ik (sI,k−1, αJ [k−1], αJ [k], p
I
k),

vI(sI,k−1, αJ [k−1])− τ Ik (sI,k−1, αJ [k−1], αJ [k], p
I
k) = vI(sI,k−1, αJ [k])− pIk

so

vI(sI,k−1, αJ [k−1])− δ > vI(sI,k−1, αJ [k])− pIk

So no players have a profitable deviation at any point in time in this stage, for all

histories, prices and realizations of sI , since any further deviations are already in-

cluded in the two-player endgame considered in the stage 2 analysis, or the beginning

paragraph of the stage k analysis.

Then players anticipate subgame perfect player in all future stages, and this

anticipation makes current deviations unprofitable. Note that the above analysis
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includes scenarios where the I[5] agent bids his way into the third stage, with, say,

I[1] and I[2], since we took the set of currently active agents and the current price

as given at the start of the stage.

So it is an ex post perfect equilibrium to bid according to the proposed drop-out

strategies, since the drop-out strategies are a Nash equilibrium for every subgame.

Proof of Proposition 3.4.1

Proof (i) Matching workers to firm slots sequentially and assortatively maximizes

the value on both sides of the market: Consider the decision to allocate the k-th

best worker on the J side. The firms have marginal values

δ(si, sj,Wi) = vI(si,Wi ∪ sj)− vI(si,Wi)

If firm a gets a higher marginal value from worker j than firm b, then

δ(s1, sj,W1) ≥ δ(s2, sj,W2)

αδ(s1, sj,W1) ≥ αδ(s2, sj,W2)

vJ (s1,W1 ∪ sj) ≥ vJ(s2,W2 ∪ sj)

So worker j also prefers to work at firm 1 rather than firm 2. So both sides agree

that on the margin, worker Jk belongs to the firm with the higher marginal value.

This assignment procedure is also socially optimal. Note that δ(si, sj,Wi) only

depends on the addition of the marginal worker, and the firm valuation function can
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be written

vI(si, {sJ1, sJ2, ..., sJL})

= vI(si, {sJ1, sJ2, ..., sJL})

−vI(si, {sJ1, sJ2, ..., sJ,L−1})

+vI(si, {sJ1, sJ2, ..., sJL−1})

= δL(si, sJL, {sJ1, sJ2, ..., sJ,L−1})

+vI(si, {sJ1, sJ2, ..., sJL−1})

...

=

L∑

ℓ=1

δℓ(si, {sJ1, sJ2, ..., sJℓ−1}, sJℓ)

So at each step of the allocation process, the matchmaker never wants to revisit any

earlier decisions about allocation because of complementarity between workers — if i

has the highest value for j at the k-th stage, that will always be the most productive

use of j, since it is better than any other open slot and raises the marginal value of

all the subsequent slots at firm i.

(ii) It is a best-response for the firms to report honestly if all other agents do:

Consider I, k’s payoff for any report σIk:

U(σIk, s\Ik) =
∑

i∈I

∑

Wi∈W

miWi
(σIk, s\Ik)vI(si,Wi)

−
∑

i∈I

∑

Wi∈W

miWi
(∅, s\Ik)vI(si,Wi)

Note that the right-hand side of the first line is the total welfare of the agents on

the I side, and the second does not depend on Ik’s report. Then from step (i),
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we know the whole expression is maximized at the sequentially assortative match,

which coincides with making an honest report. So honest reporting is an ex post

equilibrium for the I side. Likewise, on the J side, the agents (workers) have the

same incentives as in Proposition 3.2 (the one-to-one case), so honesty is an ex post

equilibrium for them as well.
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Appendix B

Proofs for Chapter Four

Proof of Proposition 4.4.1

Proof Suppose that vI(si, sj) = vJ(sj , si) = si · sj =
∑

ℓ s
ℓ
is

ℓ
j.

(i) Let sI1 = (3, 3), sI2 = (2, 2), sI3 = (1, 1), sJ1 = (2, 2), sJ2 = (1, 1). If all

agents report honestly, agent I3 only gets a partner if he is chosen first or second,

for a final probability of getting any partner of 41
5
1
3
. By reporting sI4 = (4, 4),

however, he improves the odds of getting a partner to 41
5
1
3
+ 3

5
, since J1 and J2

now prefer him relative to the reported information and will be matched with him

whenever the opportunity to do so arises. Therefore, truth-telling is not an ex post

equilibrium.

(ii) Suppose sI1 = (1, 1), sI2 = (2, 2), sJ1 = (2, 1) and sJ2 = (3, 3). If agent I1

reports (3, 3), he moves to the top of both J1 and J2’s preference orderings. If the

I side is proposing, J2 will clearly prefer an agent with I1’s report to agent I2, and

the deviation is profitable for the proposing side. If the J side is proposing, I1 can

report (0, 5), generating perceived values for the J side of

I1 I2

J1 5 6

J2 15 12

Subsequently, if the J side reports honestly, agent I1 is matched to I2, and this is
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a profitable deviation.

(iii) (From Johnson [39]) Consider a simple supermodular market where vI(si, sj) =

vJ(sj , si) = sisj and

(sI1, sI2) = (sJ1, sJ2) = (1, 2)

If I1 honestly reports a 1 and the other agents do as well, I1 and J1 are matched,

and I2 and J2 are matched. Then I1 gets a payoff from reporting honestly of

UI(1, 1) = mI1,J1(1, s−I1)(1 ∗ 1 + 1 ∗ 1) +mI2,J2(1, s−I1)(2 ∗ 2 + 2 ∗ 2)

−mI2,J2(∅, s−I1)(2 ∗ 2 + 2 ∗ 2)

= 2

But suppose he makes a report σ strictly higher than 3, he gets a better partner, as

well as receives a higher payment based on his report:

UI(1, σ) = mI1,J2(σ, s−I1)(1 ∗ 2 + 2 ∗ σ) +mI2,J1(σ, s−I1)(1 ∗ 2 + 2 ∗ 1)

−mI2,J2(∅, s−I1)(2 ∗ 2 + 2 ∗ 2)

= 2 ∗ σ − 2

> UI(1, 1)

So it is a profitable deviation to lie, and the VCG mechanism is not incentive com-

patible (truth-telling is not even a Nash equilibrium, let alone a dominant strategy).

Proof of Proposition 4.5.1

Proof Proof (If preferences are reciprocal, then CEM is feasible and truth-telling
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is an ex post equilibrium:) Suppose the matchmaker solves the following linear

assignment problems:

• maxmI
ij

∑

i

∑

j m
I
ijv(si, sj) subject to

∑

im
I
ij ≤ 1 and

∑

j m
I
ij ≤ 1

• maxmJ
ij

∑

i

∑

j m
J
ijv(si, sj) subject to

∑

im
J
ij ≤ 1 and

∑

j m
J
ij ≤ 1

If vJ(sj , si) is reciprocal to vI(si, sj), then the objective functions assign the same

ordering to all the same matches; i.e., if
∑

i

∑

j mijvI(si, sj) ≥
∑

i

∑

j m̃ijvI(si, sj),

then
∑

i

∑

j mijvJ (sj, si) ≥
∑

i

∑

j m̃ijvJ(sj , si). Therefore, CEM is feasible if

preferences are reciprocal. The set of positive affine transformations vJ(sj , si) =

αvI(si, sj) + β, where α, β > 0, for example, is a class of reciprocal preferences for

any vI(si, sj).

To show that truth-telling is an ex post equilibrium of CEM, consider the

transfers:

tIℓ = −







∑

i∈I\Iℓ

∑

j∈J

mij(σIℓ, s\Iℓ)vI(si, sj)






+







∑

i∈I\Iℓ

∑

j∈J

mij(∅, s\i)vI(si, sj)







Then Iℓ’s payoff is

∑

j

mij(σIℓ, s\Iℓ)vI(sIℓ, sj)− tIℓ(σIℓ, s\Iℓ)

=







∑

j

mij(σIℓ, s\Iℓ)vI(sIℓ, sj) +
∑

i∈I\Iℓ

∑

j∈J

mij(σIℓ, s\Iℓ)vI(si, sj)







−







∑

i∈I\Iℓ

∑

j∈J

mij(∅, s\i)vI(si, sj)







The second term in braces does not depend on σIℓ, so Iℓ cannot manipulate it. The

first term in braces is the welfare of the I side, which is maximized at the true
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report, since then the matchmaker chooses the welfare maximizing allocation. So if

all other agents report honestly, agent Iℓ should report honestly as well. Therefore,

truth-telling is an ex post equilibrium of the CEM mechanism when preferences are

reciprocal.

( If CEM is feasible and truth-telling is an ex post equilibrium, then preferences

are reciprocal ): This will be by way of contrapositive. Namely, if preferences are

not reciprocal, then CEM is not feasible for all s, or truth-telling is not an ex post

equilibrium for all s, or both. Since the match values are pairwise private value and

preferences are not reciprocal, we can construct a situation with two agents on each

side of the market where

vI(sI1, sJ1) > vI(sI1, sJ2)

vI(sI2, sJ2) > vI(sI2, sJ1)

vJ(sJ1, sI2) > vJ(sI2, sJ1)

vJ(sJ2, sI1) > vJ(sJ2, sI2)

or possibly

vI(sI1, sJ1) > vI(sI1, sJ2)

vI(sI2, sJ2) > vI(sI2, sJ1)

vJ(sJ1, sI2) > vJ(sI2, sJ1)

vJ(sJ2, sI1) < vJ(sJ2, sI2)

with vJ(sJ1, sJ2) > vJ(sJ2, sI2). If this wasn’t possible for any s, then we would have

reciprocal preferences by definition because the social ordering of matches would be
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the same on both sides. The solution on the I side is mI
11 = 1, mI

22 = 1, mI
12 = 0,

mI
21 = 0. The solution on the J side is mJ

11 = 0, mJ
22 = 0, mJ

12 = 1, mJ
21 = 1. So

for I = J = 2, if the surplus functions aren’t reciprocal, CEM is not feasible. By

assumption, we can replicate the existing players arbitrary numbers of times — this

does nothing to resolve the infeasibility problem, since the optimal matches now

become lotteries where the two sides continue to disagree. Consequently, for any

number of participants I and J , if preferences are not reciprocal, a type realization

s can be constructed for which CEM is not feasible.

Proof of Proposition 4.5.2

Proof Player I1 is envious of player I2 if

vI(sI2, sJ1)− tI1 > vI(sI2, sJ2)− tI2

This implies

vI(sI2, sJ1) + vI(sI1, sJ1)− (vI(sI1, sJ1) + tI1) >

∑

i∈I

mij(s)vI(si, sj)−
∑

i∈I\I2

mij(s)vI(si, sj)



vI(sI2, sJ1) +
∑

i∈I\I2

mij(s)vI(si, sj)



+



vI(sI1, sJ1) +
∑

i∈I\I1

mij(s)vI(si, sj)





> 2
∑

i∈I

mij(s)vI(si, sj)

The two terms on the left-hand side of the inequality correspond to two proposed

matches that are potentially different from the original one, but allowing agent

J1 to be matched at most twice. The relaxation of this constraint introduces the
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possibility that the inequality holds, and that players are jealous of each other’s

resulting partner and payment.
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