Event Graphs for Modeling and Evaluating
Modern Production Systems

by G. Harhalakis, S. Laftit, and].M. Proth

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 90-73

EVENT GRAPHS FOR MODELING AND EVALUATING
MODERN PRODUCTION SYSTEMS

HARHALAKIS G.(), LAFTIT S.?) and PROTH J.M.(3)

ABSTRACT:

Very few Mathematical Tools are available to study the dynamics of discrete
manufacturing systems. Petri Nets, and in particular a special type of Petri Nets called
Timed Event Graphs, seem to be of special interest for studying discrete manufacturing
systems. In this paper, we define Timed Event Graphs and emphasize the properties
which are of interest for our purpose.

Modeling job-shop systems as well as assembly systems using event graphs is then

xplained. The model obtained is a strongly connected event graph whose properties are
presented in the first part of the paper. These properties are used to derive the properties
of the manufacturing system.

In particular, it can be shown that the productivity of the manufacturing system is
defined by the cycle time of the critical circuit in its event graph model. Blocking
conditions of the system are also studied.

Finally, we show how to use the previous results to maximize the productivity with
a minimal in-process inventory when the sequences of product types are fixed at the
entrance of each machine.

Key words :

Petri Nets, Event Graphs, Evaluation of Manufacturing Systems, Discrete Event

Systems, Graph Theory.

(1) Department of Mechanical Engineering and Systems Research Center, University of
Maryland, USA

(2) INRIA - CESCOM, Technopéle Metz 2000, 57070 METZ Cedex

(3 INRIA - CESCOM, Technopéle Metz 2000, 57070 METZ Cedex and Systems Research
Center, University of Maryland, USA

1. INTRODUCTION

In this paper, the performance problem of job-shop and assembly systems with
deterministic manufacturing times under cyclic production process is addressed. In both
types of systems, the ratios of the various product types to manufacture are given. The set
of the ratios is known as the product mix. The control of a production system in order to
meet the given ratios is obtained by associating a machine sequence to each machine.
Such a sequence defines the sequencing of the product types (or the sequencing of the
components of the products types, in the case of an assembly system) on a machine. The
proportion of a product type (or a component) in a machine sequence tally with the
related ratio. If one of the machine sequences does not reflect the corresponding ratio, it
has been proved in [1] that the system blocks after a finite period of time.

The modeling of job-shop and assembly systems is based on Event Graphs ([1], [2] and
[5]), a special class of Petri Nets. The model obtained is a strongly connected event graph,
as shown in [4] for the job-shop systems.

The first goal of this paper is to explain how to model job-shop and assembly systems
using event graphs. The second goal is to show that, for both types of production systems,
it is always possible to fully utilize the bottleneck machine, and thus to reach the maximal
productivity. Finally, the machine sequences being given, we show that the optimal
solution to the problem (i.e. the solution which fully utilizes the bottleneck machine
with a minimal work-in-process (WIP)) is the solution to an integer linear programming
problem. Note that, in real-world production systems and in particular Flexible
Manufacturing Systems (FMS), minimizing WIP is the same than minimizing
transportation resources such as pallets or carts, which are often very expensive.

The paper is organized as follows. Section 2 is devoted to the presentation of the
event graphs and their properties. In section 3, we show how to use event graphs to
model job-shop as well as assembly systems. In section 4, we derive the performance
evaluation of the production systems from the properties of the event graphs. Finally, we
explain how to reach the optimal solution to the system by solving an integer linear
programming problem.

2. PETRI NETS AND EVENT GRAPHS

A Petri net is a bipartite directed graph with two types of nodes: the places
(represented by circles) and the transitions (represented by bars). These nodes are joined by
directed arcs. These arcs can be weighted. In the following, we assume that every arc has a
weight equal to 1. The two ends of a given arc are of different types. Tokens evolve in the
Petri net and represent the dynamics of the system. They are represented by black dots. A

Petri net is given in figure 1. In this example, transitions are denoted by t; (i = 1, ..., 6) and
places by Pj (j=1, ..., 6). Furthermore, p; contains two tokens, p3 one and the other places
are empty.

Fig. 1: A Petri net example

Let P and T be respectively the set of places and the set of transitions. A marking of a

Petri net is a function
M:P - {0,1,2,..]

which assigns a non-negative number to each place. Such a number represents the
number of tokens in the place. A transition t is enabled by a marking M if and only if each
of its input places contains at least one token (assuming that the weight of each arc is
equal to 1). For instance, in figure 1, t, t4 and t5 are enabled. The firing of a transition
consists in removing one token from each input place and adding one token to each
output place. In a Petri net, it may arise that several transitions are enabled, but only some
of them can be fired. For instance, in figure 1, t4 and ts are enabled, but only one of them
can be fired because p3 contains only one token. In that case, the tokens can evolve in the
net only if we add some decision-making processes to make this kind of decision.

It is possible to assign a time to each transition. In that case, the Petri net is called
timed Petri net. Such a time represents the time taken by the related transition to fire. In a
timed Petri net, a firing is initiated by removing one token from each of the input places.

The firing terminates after a period of time equals to the time assigned to the transition,
and one token appears in each output place at the instant when the firing terminates.

An event graph is a Petri net such that each place has exactly one input transition
and one output transition and such that every arc is 1-weighted. Figure 2 gives an
example of event graph.

Fig. 2: An event graph

In such a Petri net, we never have to make a choice between several enabled
transitions to decide which one to fire. In other words, an event graph is a decision-free
Petri net. In the following, we consider only timed event graphs.

An elementary circuit is a directed path which goes from one transition back to the
same transition, and which has at most one time assigned to each transition. For instance,
in the event graph given in figure 2, the following circuits are elementary:

1 = {t1, P1, 13, 5, t4, Pa, 5, P3, t2, P2, t1)
Y2 = {t3, pe, t3}
3 = {t4, P4, t5, Ps, t6, P7, ta}

The following property has been demonstrated by Commoner and al. [2]:
Property 1:
The total number of tokens in any elementary circuit is invariant by transition firing.
We define the cycle time of an elementary circuit as follows:
Cly) = ply) / M(y) M

where:

u(y) is the sum of the times assigned to the transitions of y
M(y) is the number of tokens in ¥y

According to property 1, C(y) remains constant by transition firing and C(y) can be
computed using M°(y), initial marking of y.
I' being the set of elementary circuits of a strongly connected event graph, the
maximum cycle time over all the elementary circuits is:
C* = afax_ C(y) (2)
yel

If ye I is such that:
Clyy=C*
vis called critical circuit.
The following property is due to Chretienne and al. [1]:

Property 2:

Assuming that the transitions fire as soon as they are enabled (i.e. ready to fire) and
that the event graph considered is strongly connected, then the firing rate of all
transitions in steady state is given by:

A=1/C* 3)

Broadly speaking, A represents the speed at which the strongly connected event graph
evolves. As a consequence, it is possible to increase the "speed” of the event graph by
decreasing C*, i.e. by increasing the number of tokens in the critical circuits.

Finally, property 3 also holds:

Property 3:
If one of the elementary circuits does not contain any token, then the system blocks
after a finite period of time.

In the next section, we show how to model job-shop and assembly systems using
event graphs.

3. MODELING JOB-SHOP AND ASSEMBLY SYSTEMS
For the sake of clarity, we explain separately how to model job-shop and assembly
systems using event graphs.

3.1 Modeling job-shop systems
In the following, we explain how to model a job-shop system using the example
shown in figure 3.

Pl
— > >
- M, M;
csma% 0 jascsasfheoccccscacasweseaan=na ~ - - -
P, :
]
-« :
M, :
- IR A i e

Fig. 3: A job-shop system

The job-shop under consideration is composed of three machines denoted by M1, M;
and M3. Three types of products, denoted by Py, P; and P3, can be manufactured using this
job-shop system. Let us assume that the product mix is (0.25 ; 0.50 ; 0.25), which means
that the goal is to manufacture 25% of products of type P1, 50% of products of type P> and
25% of products of type P3. A sequence which reflects the product mix is Py, Py, Py, P3. We
assign to each element of this sequence a process circuit as presented in figure 4.

Each process circuit is an elementary circuit and models the routing of the related
product type. Each transition firing corresponds to the execution of an operation,
according to the order specified by the manufacturing process. The time assigned to each
transition is the time corresponding to the related operation. Each token in a process
circuit is a work-in-process (WIP). A place corresponds to a storage buffer and we assume
that a new part is launched in the system as soon as a part is completed. Thus, in the
process circuits, tokens recirculate indefinitely.

We then model the sequencing of the part types in the machines by means of
command circuits. A command circuit is an elementary circuit which connects all the
transitions that correspond to operations performed on the same machine. In figure 5, we
present the command circuit corresponding to machine Mj.

The order of the transitions in command circuits is determined by the input
sequence assigned to the corresponding machines.

Note that a command circuit contains only one token, and a token in a command
crcuit does not represent a part.

We can see that the model is a strongly connected event graph which contains three
types of elementary circuits:

- the command circuits

- the process circuits

- the mixed circuits, that include nodes of both processing and command circuits.

1
t,6,) Q, t,63)
M M :
G, 1 /_\51 3 "I Product type P4
< —t
2 _/ 2
£36,) Q> t6,)
G, M, [_\82 M, ’l Product type P,
27 N\ -)
9 SF &6,)
G, M, K_\S:,, M, >| Product type P,
4 <
i U ;
751 < 5630 Qs t,6,)
G, M, M3 . M; Product type P,
< (O——

Fig. 4: The process circuits

Product type P 1

Product type P 2

Product type P ,

Product type P 3

Fig. 5: The job-shop model

3.2. Modeling assembly systems

In this section, we use again a small example to explain how to model an assembly
system. Let us consider for instance two product types P; and P, whose manufacturing
processes are presented in figure 6.

2
o,| o;.,8)) Os| ™Mp,6D |Og| M,,02) | Of Ms5,82)

Oy M%) |Os| Mze3) o;| Mu8D)
T 1
1 1
Of | Mysp;) Os | Mj,02
Product type P, Product type P,

Fig. 6: Product Types P1 and P;

In figure 6, M; (i = 1, 2, 3, 4, 5) are the machines, Oj (i = 1, ..., 8) represent operations

and G)i represent the manufacturing times. Two types of operations are involved in the

manufacturing process. Operations such as O1, O just transform a component of the final
product. In the following, we refer to these operations as regular operations. Another type
of operations are the assembly operations. For instance, O4, O7 and Og are such types of
operations. An assembly operation puts together components to obtain a more complex
component of a final product or the final product itself. In figure 6, the integer values
assigned to the arrows represent the number of components of each type of product
required to obtain one unit of the next component.
In figure 7, we present the models related to the previous manufacturing processes.

Fig. 7.2: Model related to manufacturing process P2

Note that these models make use of transitions which do not represent operations
but the beginning of the manufacturing of components which are required to assemble a

more sophisticated component or the final product. In figure 7.1, it is the case of T. It is

2 2., . o . o
also the case of Tj and T in figure 7.2. We call these transitions launching transitions. A

directed path connects each transition representing an assembly operation to the related
launching transition. In practice, it means that the transportation resources used to carry
the components at this level of complexity recirculate as soon as the assembly operation
is completed. Thus, transportation resources are assigned to each level of manufacturing,

The manufacturing process models correspond to the process circuits in the case of
job-shops. These models are completed by command circuits which model the sequencing
of the part types in the machines. In figure 8, we represent the command circuit related to
machine M1, assuming that the sequencing related to M;j is
(P1, P2, Py).

1
ty
Pl manufacturing process model
C-S
P, manufacturing process model A 2[%
t
1

P, manufacturing process model | l:]

2
t1

Fig. 8: The command circuit related to M

Each command circuit contains only one token, like in the job-shop case.

Using the modeling process just described on a small example, we obtain a strongly
connected event graph, like in the case of a job-shop.

Each manufacturing process model contains several elementary circuits. For
instance, the model related to the manufacturing process P (see figure 7.1) contains two
elementary circuits:

11 11 1.1 1
Y1 = {Pa t3, Ps, t Q1, Tp, Py}

11 11 1111 1
¥ = {p1, t, P2 ta P3 ty Q1 T, p1)

The model related to the manufacturing process Py (see figure 7.2) contains the

following elementary circuits: -

22 22 2 .2
73={T21 Py tll P3, t4,Q2,T1}

Ya = (T3, Py t, Pa, t, Q) T2)
% = {To, 1, T1, Pa to Pt Pes ty Q1 T
Yo = (T3 P1, T3, Po t P ta Py t Q1 To)
¥ = {To, P, t5, Py, t5 Q1 Th)

Others elementary circuits are the command circuits and the mixed circuits, like in
the job-shop case.

4. PERFORMANCE EVALUATION OF THE PRODUCTION SYSTEMS

Let us consider an event graph model of a job-shop or an assembly system. Such a
system blocks after a finite period of time if one of the elementary circuits does not
contain any token (see property 3). If C* is the cycle time related to the critical circuit,
A =1/ C*is a parameter defining the average productivity of the system: on the average,
the system produces one sequence of products reflecting the product mix every A—period
(see property 2).

Finally, if the initial marking of the event graph is given, it is possible to compute
the productivity of the related manufacturing system or to see if it will block after a finite
period of time, providing that the elementary circuits have been identified. Note that the
initial marking is known'as soon as the initial work-in-processing and the machine
sequences are known.

Algorithms to compute the elementary circuits are given in [5] and [6].

5. OPTIMIZATION OF THE PRODUCTIVITY

The productivity of a manufacturing system is maximal if one of the command
circuits of the related model is a critical circuit. Thus, optimizing the productivity consists
in adding as few tokens as possible in the elementary circuits (except in the command
crcuits which contain only one token) in order to make critical a command circuit.

Let T ={y1, Y2, .-., Yn} be the set of elementary circuits except the command circuits and
P = {p1, p2, ..., g} the set of places in the event graph model.

vy being an elementary circuit, we denote by p(y) the sum of the times assigned to the
transitions of .

If ¢ is the set of command circuits, let:

M = sax u(y)
ve Ic
and, fori=1,2,...,n
nj = I-p.(Yi)/ M]
where [x!is the smallest integer greater than or equal to x.
nj is then the minimal number of tokens to be put in the elementary circuit v; € F in
order that y; be not critical.
We define:
-the matrix A = [aij] ;i=1,..,n5=1,...,q
where:
o {0 if pj does not belong to ¥;
77 11 otherwise
- the matrix X =[x, ..., xq]t, where x; is the number of tokens in p;
- the matrix N = {n1, np, ..., nult
The problem to solve is as follows:

Minimize i Xj
=1
s.t.
AXz2N
xj20and integerforj=1,...,q
the x; corresponding to places belonging to command circuits are known

In [3] an efficient heuristic algorithm has been proposed to solve this integer LP-
problem.

The optimal solution of the previous integer LP-problem is the initial marking of the
strongly connected event graph. This initial marking corresponds to the initial WIP of the
production system. Some of these work-in-process may not actually exists. In that case, we
introduce artificial WIP, and the system reaches its steady state when all these artificial
WIP are removed from the system.

The problem with the previous algorithm is that the number of elementary circuits
(i.e. the value of the parameter n) grows very fast with the size of the model. As a
consequence, only quite small systems can be handled using this approach.

Another approach is currently under development. This approach also leads to an
integer LP program, but the number of constraints is equal to the number of places. A step
by step heuristic algorithm is under development around this new approach. It will allow
to handle models with thousands of places.

6. CONCLUSION

In this paper, we have explained how to model job-shop and assembly systems using
event graphs. In the case when the demand is expressed as a product mix, we show that
models are always strongly connected event graphs. Thus, the initial state of the system
being given, we can derive the behavior of the manufacturing system from the properties
of the strongly connected event graph. We also explain how to reach the maximal
productivity with a minimal number of parts in process, the machine sequences being
given.

The critical point in the previous work is the computation of the elementary circuits
whose number increases very fast with the size of the model. A research currently in
progress investigates how to avoid the computation of these elementary circuits.

(1

2]

3]

4]

(5]

[6]

BIBLIOGRAPHY

CHRETIENNE P.,
"Les réseaux de Petri temporisés", Université Paris VI, These d'Etat, 1983.

COMMONER F., HOLT A., EVEN S. and PNUELI A,
"Marked Directed Graphs”, Journal of Computer and System Science, vol. 5, n° 5,
1971.

HILLION H.P. and PROTH J.M,,
"Analyse de fabrications non linéaires et répétitives a l'aide de graphes
d'événements temporisés", RAIRO, vol. 22, n° 2, Septembre 1988.

HILLION H.P. and PROTH J.M,,
"Performance Evaluation of Job-Shop systems Using Timed Event Graphs”, IEEE
Transactions on Automatic Control, vol. 34, n° 1, Janvier 1989.

RAMAMOORTY C.V. and HO G.5,,
"Performance Evaluation of asynchronous concurrent systems using Petri nets”,
IEEE Trans. Software Eng., vol. SE-6, n° 5, pp. 440-449, 1980.

RAMCHANDANI C.,
"Analysis of asynchronous concurrent systems by timed Petri Nets", Lab.
Computer Science, MIT, Cambridge, MA, Tech. Rep. 120, 1974.

