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Abstract

This paper revisits the problem of estimating ex ante cost functions previously studied by Pope and Just

(1996) and Moschini (2001). An ex ante cost function that generalizes their ex ante cost functions is

introduced, and an econometric procedure for estimating a flexible approximation to it is developed. That

generalized cost function is economically relevant not only for the Just and Pope (1996) choice setting but

for general producer risk preferences, general stochastic technologies, and general forms of price uncertainty.

An econometric strategy for estimating the resulting cost structure that adapts Moschini’s (2001) "full-

information" approach is developed. And that is followed by an econometric application to US agriculture.
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Ever since Nerlove’s (1963) pathbreaking contribution, the econometric estimation of cost functions has

been an integral part of applied production analysis. Econometrically estimated cost structures have sig-

nificantly extended our empirical understanding of technological change, input substitutability, economies

of size and scale, and economies of scope. Despite these successes, our ability to estimate cost structures

for truly stochastic technologies remains relatively primitive. In that context, successes have been few, and

applications frequently require restrictive assumptions on the technology and the underlying risk attitudes

of producers.

A fundamental challenge to estimating cost structures for stochastic technologies is that cost-minimizing

choices are often conditioned by variates that are unobservable to the econometrician. For example, Pope

and Just (1996) and Moschini (2001) argue that a risk-neutral producer facing a stochastic technology

and price uncertainty uncorrelated with production uncertainty minimizes the cost of producing expected

output at the time production decisions are made and not the cost of producing observed output. Thus,

econometric specifications of cost functions based on observed, rather than expected, output may suffer from

specification error. Pope and Just (1996) and Moschini (2001) propose different approaches for tackling the

resulting econometric problems.

This paper revisits the problem posed by Pope and Just (1996) and Moschini (2001). An ex ante

cost function that generalizes their ex ante cost functions is introduced, and an econometric procedure

for estimating a flexible approximation to it is developed. That generalized cost function is economically

relevant not only for the Just and Pope (1996) choice setting but for general producer risk preferences,

general stochastic technologies, and general forms of price uncertainty. Producers need not be risk-neutral.

The stochastic technology need not be representable by a single-product stochastic production function. And

output prices need not be nonstochastic or uncorrelated with production uncertainty.

To provide the economic rationale for this cost function, we first briefly consider the decision setting faced

by producers. That setting differs from that in Pope and Just (1996) and Moschini (2001). Where Pope and

Just (1996) and Moschini (2001) studied producers only having access to a stochastic technology to generate

income, the current paper recognizes that producers have access to financial markets. That difference

proves crucial to developing an econometric strategy for modelling cost structures. In that setting, rational

production decisions under uncertainty must be consistent with minimizing the cost of producing stochastic

revenue as discounted using a market-determined stochastic discount factor. Being market-determined, that

stochastic discount factor affords a natural instrument on which to base estimation.

The plan of the paper is a follows. The next section details the decision setting and derives the ex ante

cost function. It is shown to generalize those considered by Pope and Just (1996) and Moschini (2001). Once

the economic relevance of the cost function is established, the paper then turns to econometric issues. An

econometric strategy that adapts Moschini’s (2001) "full-information" approach is developed. And that is

followed by an econometric application to US agriculture using an updated version of the data set employed

by Pope and Just (1996). The econometric results are discussed, and the paper then concludes.
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1 The Decision Setting and the Ex Ante Cost Function

There are two periods: period 0 (the decision period) involves no uncertainty and period 1 is uncertain.

Uncertainty about period 1 is represented by the finite state space, S, and with a slight abuse of notation

S = (1, 2, ..., S) . The set of probability measures is denoted by ∆ ⊂ RS+.

Following Chambers and Quiggin (2000) and Moschini (2001), the stochastic production technology is

represented by a continuous input correspondence that maps stochastic output, z ∈ RS+, into sets of inputs,

chosen nonstochastically in period 0, capable of producing it. For notational convenience we treat the case

where the producer operates a single-product technology. The results extend directly to the multiple-output

case. Denote the inputs by x ∈ RN+ and their period 0 prices, which are nonstochastic, by w ∈ RN+ . The

continuous input correspondence describing the technology, X : RS+ ⇒ RN+ , is defined

X (z) ≡ {x ∈ RN+ : x can produce z ∈ RS}.

X (z) satisfies: X (z)+RN+ ⊂ X (z) (free disposability of inputs); z′ ≥ z =⇒ X (z′) ⊂ X (z) (free disposability

of output); and X (z) + λ (X (z′)−X (z)) ⊂ X (z + λ (z′ − z)) for λ ∈ (0, 1) (convexity of the graph).

For q ∈ RS define the ex ante input correspondence, Xq : R+ ⇒ RN+ , by

Xq (r) ≡
{
x ∈ X (z) : r ≤ q>z

}
,

where q> = (q1, ..., qS) .1 Interpreting q as (period 0) state-claim prices for period 1 stochastic income, Xq (r)

gives the input combinations capable of producing a state-claim revenue r ∈ R. Xq is continuous and satisfies:

Xq (r) + RN+ ⊂ Xq (r) (free disposability of inputs); r′ ≥ r =⇒ Xq (r′) ⊂ Xq (r) (free disposability of r);

Xq (r) = Xq (r)+λ (Xq (r)−Xq (r)) for λ ∈ (0, 1) (convexity of the graph) and Xµq (µr) = Xq (r) for µ > 0

(homogeneity of degree zero). The first three properties are inherited directly from the properties of X and

the fourth, homogeneity of degree zero, ensures that the units in which one chooses to denominate period 1

state-contingent returns does not affect the underlying production possibilities.

Financial markets are stochastic and beyond the control of the individual producer. The matrix of J ex

ante financial security returns in period 1 is R ∈ RS×J , which is of full column rank. Each asset’s period

0 price is normalized at 1. The producer’s period 0 portfolio vector is denoted m ∈ RJ , and the linear sub

space spanned by R is denoted M ⊂ RS . Define

P ≡
(
R>R

)−1
R>.

We assume that no arbitrages exist.

Producer preferences over period 0 consumption, y0 ∈ R+, and period 1 stochastic consumption, y ∈ RS+,

are given by the continuous and strictly monotonic W (y0, y). Given a period 0 predetermined wealth of

i0 ∈ R+, the producer’s period 0 problem is, therefore,

max
z,m,y0,y,x

{
W (y0, y) : y0 ≤ i0 − w>x− 1>m, y ≤ p · z +Rm,x ∈ X (z)

}
, (1)

1For a ∈ RS and b ∈ RS , a>b represents the inner product in terms of the Euclidean norm.
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where 1> is a J dimensional row vector of ones, and the notation x ·y ∈ RS denotes the element-wise product

of x ∈ RS and y ∈ RS .

Because W is strictly monotonic, in any interior producer equilibrium the period 0 and period 1 budget

constraints must bind and, therefore,

y0 = i0 − w>x− 1>m

y = p · z +Rm.

Thus,

Rm = y − p · z

requiring that y − p · z ∈M . The unique portfolio solving the period 1 budget constraint given y and z is

m = P (y − p · z) .

Substituting this result into the period 0 budget constraint and that result into (1) reduces the producer’s

problem to:

max
z,y,x

{
W
(
i0 − w>x− 1>P (y − p · z) , y

)
: x ∈ X (z)

}
.

The random variable 1>P ∈ RS is the ideal stochastic discount factor for all y ∈ M. It prices, in period 0

units any period 1 asset falling in M (for example, Cochrane 2001). Denote

q∗> ≡
(
1>P

)
· p.

Thus, the sth element of q∗> ∈ RS corresponds to the sth element of 1>P times the sth element of p, and

q∗>z = 1>P (p · z) corresponds to the stochastically discounted revenue from producing z ∈ RS+.

By Bellman’s optimality principle and the definition of Xq, the producer problem now decomposes in

steps as

max
y

{
W

(
i0 + max

z,x

{
q∗>z − w>x : x ∈ X (z)

}
− 1>Py, y

)}
,

max
y

{
W

(
i0 + max

r,x

{
r − w>x : x ∈ Xq∗ (r)

}
− 1>Py, y

)}
,

and

max
y

{
W
(
i0 + max

r

{
r −min

x

{
w>x : x ∈ Xq∗ (r)

}}
− 1>Py, y

)}
. (2)

The subproblem

c∗ (w, q∗, 1) ≡ max
r

{
r −min

x

{
w>x : x ∈ Xq∗ (r)

}}
requires that x be chosen to minimize the period 0 cost of producing discounted revenue r for the stochastic

discount factor q∗ and that r be chosen to maximize discounted profit. For that reason, c∗ (w, q∗, 1) is

referred to as the discounted profit function in what follows.

This decomposition reveals that producer behavior can be modeled as though the producer pursues a

three-stage optimization procedure. First, the cost of producing revenue discounted using q∗ is minimized.
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Then discounted profit from production is maximized by chosing discounted revenue, r, properly. This ensures

that period 0 income, which is risk-free, is as large as possible for any level of period-1 consumption-risk

exposure. Put more simply, all riskless opportunities (arbitrages) to raise consumption are fully exploited.

In the final stage, the producer solves the intertemporal consumption allocation problem out of an available

period 0 income of i0 + c∗ (w, q∗, 1) .

Following Pope and Just (1996) and Moschini (2001), define the first-stage ex ante cost function, c (w,q, r) ,

as the period 0 minimal cost of producing q−discounted revenue, r. That is,

c (w,q, r) ≡ min
{
w>x : x ∈ Xq (r)

}
, (3)

if Xq (r) 6= ∅ and ∞ otherwise. c (w,q, r) is: superlinear and nondecreasing in w, convex and nondecreasing

in r, homogeneous of degree zero in (q, r) , and nonincreasing and quasi-concave in q.2 Moreover, under our

assumptions, the following duality exists between it and the ex ante input correspondence:

Xq (r) = ∩w∈RN+
{
x : c (w,q, r) ≤ w>x

}
.

If one defines the convex conjugate of c (w, q, r) in u ∈ R by

c∗ (w, q, u) = sup
r
{ur − c (w, q, r)} , (4)

it’s easily seen that the solution to the discounted profit maximization problem corresponds to c∗ (w, q, u)

evaluated at q = q∗ and u = 1. Moreover, under our assumptions, standard conjugate duality (Rockafellar

1970) implies c (w, q, r) can be recovered by applying the conjugate mapping to c∗ (w, q, u) , that is,

c (w, q, r) = sup
u
{ur − c∗ (w, q, u)} (5)

= c∗∗ (w, q, r) .

The ex ante cost function studied by Pope and Just (1996) and Moschini (2001) is the special case of

c (w, q, r) where q = δp̄π with δ ∈ R++ is an intertemporal discount factor, p̄ ∈ R++ is a nonstochastic

output price (or the mean of a stochastic output price whose distribution is independent of that for z), and

π ∈ ∆ is a probability measure.3 The exact relationship is clarified by exploiting the zero homogeneity of

c (w, q, r) to obtain

c (w, δp̄π, r) = c

(
w, π,

r

δp̄

)
,

2To establish quasi-concavity, let

x̂ ∈ argmin
{
w>x : x ∈ Xqo+µ(qo−q′) (r)

}
,

for µ ∈ (0, 1) . To ensure that it can produce a z such that [qo + µ(qo − q′)]> z ≥ r, x̂ has to belong to either Xqo or Xq′ . And

thus,

c
(
w, qo + µ(qo − q′), r

)
≥ min

{
c (w,qo, r) , c

(
w,q′, r

)}
.

3Both Pope and Just (1996) and Moschini (2001) operate in a single-period context so that their δ is implicitly set to one.

Moreover, neither study includes a specific notation for the probability measure underlying expectation formation in their ex

ante cost structures.

4



which gives the cheapest way to produce an expected output equalling r
δp̄ . Its conjugate dual is

c∗ (w, δp̄π, 1) = sup
r
{r − c (w, δp̄π, r)} ,

which is the expected profit function for π ∈ ∆. It is well-known that c∗ (w, δp̄π, 1) possesses the same

properties in (w, δp̄π) as a profit function developed for a nonstochastic technology. Moschini (2001) uses

this observation to suggest that an optimal expected value retrieved from c∗ (w, δp̄π, 1) is an appropriate

platform upon which to base estimation of an econometric representation of the stochastic technology.

Besides c (w, δp̄π, r)
′
s specific reliance on risk neutrality and on restrictions on the stochastic nature of

p (see Pope and Just 1996) other distinctions exist between it and c (w, q∗, r) . Most importantly, c (w, q∗, r)

depends on q∗ ∈ RS which is determined by market forces beyond the producer’s control. The former,

however, depends upon δ and π. These depend upon the producer’s preferences and beliefs about the relative

likelihood of different states of nature occurring. Moschini (2001) clearly recognizes this aspect of his ex ante

cost structure when he writes it "...reflects the producers’ expectations in addition to the technological

properties of the stochastic production function". And, thus, it remains perfectly plausible that individual

producers with different expectation mechanisms would possess different ex ante cost structures. This is to

be contrasted with the fact that c (w, q∗, r) is economically relevant for any producer with strictly monotonic

preferences.

2 On Econometric Estimation

The good news is that a cost function that is relevant for a general decision environment exists. The bad news

is that the discounted revenue, r, that conditions c (w, q∗, r) is not observable. The econometric problem is

analogous to that faced by Pope and Just (1996) and Moschini (2001). In their case, the econometrician

only has observations on realizations of stochastic output, z (s) , for a single s ∈ S and not on expected

output. In the present case, observations are available for realized revenue, p (s) z (s) for realized s, but not

for r = q∗>z.

To fix ideas, let cθ (w, q, r) be a parametrized version of c (w, q, r) , with θ the vector of parameters to be

estimated. Given smoothness in w, Shephard’s Lemma and standard econometric practice (see, for example,

expression (9) in Moschini (2001)) suggests estimation be based on the input-demand system:

X = ∇wcθ (w, q∗, r) + ε,

where X ∈ RN+ is the vector of observed input demands, ∇wcθ (w, q∗, r) is the gradient of cθ (w, q∗, r) in w,

and ε is the error vector for the input demands.

Because r is unobservable and jointly dependent, an econometrically tractable replacement must be

found. Simply replacing r with p (s) z (s) for realized s is clearly inappropriate, a point emphasized by both

Pope and Just (1996) and Moschini (2001). Pope and Just (2001) and Moschini (2001) suggest different
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approaches for resolving the resulting econometric problem.4 We follow Moschini’s (2001) "full-information"

approach and replace r with

rθ (w, q∗, 1) ∈ arg max
r
{r − cθ (w, q∗, r)}

to obtain the form:

X = ∇wcθ (w, q∗, rθ (w, q∗, 1)) + ε. (6)

The practical argument for the "full-information" solution is that cθ (w, q∗, r) is of economic interest because

producers solve the discounted profit problem. And because rθ (w, q∗, 1) solves that problem, rθ (w, q∗, 1)

"...provides the correct nonlinear mapping for..." the instruments (w, q∗) (Moschini 2001). A potential

sticking point is that this approach requires either closed-form solutions for rθ (w, q∗, 1) or that numerical

solutions for it be "....retrieved as part of the estimation routine" (Moschini 2001).

If Nerlove’s (1963) approach is followed, and one starts with Xq (r) and proceeds via (3), finding closed-

form solutions for ∇wcθ (w, q∗, r) and rθ (w, q∗, 1) may prove impractical.5 But that is only one option.

Following in the spirit of Gorman (1968), econometric production-system specifications have routinely been

based on dual rather than primal representations of the technology. After all, the mathematical essence

of the dual approach is that problems posed in one context can be exhaustively characterized by analyzing

their natural duals. Thus, unless the analyst is being awarded points for "degree of diffi culty", the most

effi cient approach is to formulate problems in terms of variables that all agents face and on which we have,

or can construct, observations. So, the current problem can be framed in terms of the prices (w, q∗), cost,

discounted profit, and revenue.

Straightforward dual alternatives to Xq (r) are readily available. One is to work with a parametric

specification of c (w, q, r) that admits a closed-form solution to the problem:

c∗θ (w, q∗, 1) = sup
r
{r − cθ (w, q∗, r)} .

Another is to work with the conjugate dual of cθ (w, q∗, r) , c∗θ (w, q∗, 1) , and use (5) and Hotelling’s lemma

to obtain an econometrically tractable representations of rθ (w, q∗, 1) and xn (w, q∗, rθ (w, q∗, 1)) .

An example illustrates the first. The parametric cost structure

cQθ (w, q, r) = αθ (w, q) +
r

Aθ (w, q)
+

1

2

(
r

Bθ (w, q)

)2

,

4Pope and Just (1996) suggest retrieving their version of rθ (w, q∗, 1) (expected output) as part of the estimation process.

In the current notation, their approach retrieves r as the solution to the following problem

max
{
r : inf

w

{
1− c (w, q, r) + w>x

}
≥ 1
}
,

as part of the estimation process. This is equivalent to solving for the distance function associated with Xq (r) as evaluated

at x and then choosing the maximal r associated with that distance function. Moschini (2001) criticizes this approach on a

number of grounds including the potential presence of simultaneous-equations bias and an ultimate lack of consistency.
5Both Pope and Just (1996) and Moschini (2001) start with a stochastic production function and not Xq (r) . However,

Pope and Just (1996) use their stochastic production structure to induce an equivalent distance function representation. That

alternative, if one chooses, is also available here.
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can be parametrized to approximate an arbitrary smooth c (w, q, r) flexibly. The closed-form solution for

rθ (w, q∗, 1) is

rQθ (w, q∗, 1) = Bθ (w, q∗)
(

1−Aθ (w, q∗)
−1
)
,

which when combined with Shephard’s Lemma yields derived demands of the form:

xn (w, q∗, rθ (w, q∗, 1)) =
∂αθ (w, q∗)

∂wn
−
Bθ (w, q∗)

(
1−Aθ (w, q∗)

−1
)

Aθ (w, q∗)
2

∂Aθ (w, q∗)

∂wn

−

(
Bθ (w, q∗)

(
1−Aθ (w, q∗)

−1
))2

Bθ (w, q∗)
3

∂Bθ (w, q∗)

∂wn
, (7)

for n = 1, .., N.

Expression (7) provides a platform upon which to base econometric estimation of the parameters of

a flexible representation of the ex ante cost structure. Typically, however, it will result in a parametric

specification where the parameters of the cost structure, θ, enter the estimating equations nonlinearly. Our

empirical example pursues the alternative tack and starts with an econometrically tractable representation

of

x (w, q∗, rθ (w, q∗, 1)) ≡ ∇wcθ (w, q∗, rθ (w, q∗, 1)) .

Hotelling’s Lemma and (5) are then used to induce cθ (w, q, r) . The specific form chosen is the linear-in-

parameters form

xn (w, q∗, rθ (w, q∗, 1)) =

N∑
j=1

βnj

(
wj
wn

) 1
2

+
1

k

∑
γsn

(
q∗s
wn

)k
, n = 1, ..., N, (8)

with βkj = βjk. This system of derived demands corresponds to the discounted-profit maximizing demands

associated with the cost structure

cθ (w, q, r) = 2

N∑
n=1

N∑
j=1

βnj (wjwn)
1
2 +

k − 1

k

(
1

1− k
∑
s

∑
k

γksq
k
sw

1−k
k

) 1
1−k

r
k

k−1 , (9)

which permits the existence of non-parametric returns to scale and elasticities of substitution.

That (9) generates (8) as the discounted-profit maximizing demands is verified in stages. Applying

Shephard’s lemma to (9) gives the cost minimizing demands as

xn (w, q∗, r) =

N∑
j=1

βnj

(
wj
wn

) 1
2

+
1

k
r

k
k−1

(
1

1− k
∑
s

∑
k

γksq
∗k
s w

1−k
k

) k
1−k ∑

s

γns

(
q∗s
wn

)k
. (10)

Solving the discounted profit maximization problems gives

rθ (w, q∗, 1) =
1

1− k
∑
s

∑
k

γksq
∗k
s w

1−k
k

as the solution for optimal discounted revenue. Substituting this result into (10) gives (8).
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3 An Empirical Application

Following Pope and Just (1996, 1998), our empirical analysis is based on agricultural data drawn from the

United States Department of Agriculture (USDA) data set “Indices of farm output, input, and total factor

productivity for the United States, 1948-2013", currently available on line at: http://www.ers.usda.gov/

data-products/agricultural-productivity-in-the-us.aspx. These data consist of observations on

aggregate agricultural input use, their associated price indexes, aggregate agricultural output and its price

index for the United States for 1948-2013. The input aggregates considered were capital (K), labor (L),

and intermediate materials (I). Pope and Just (1996, 1998) used earlier versions (1948-1989) of this data

set. Other studies using different versions of these data include Ball (1985,1988), Vasavada and Chambers

(1986), Chavas (2008), and Yang and Shumway (2016). We also used data on financial returns obtained

from the dataset “Historical Returns: Stocks, T. Bonds & T. Bills" available from http://www.stern.nyu.

edu/~adamodar/New_Home_Page/data.html.

There are several practical issues to be tackled in constructing an econometric version of our model using

these data. First, econometric estimation of the input demand system requires an empirical approximation

for each time period for q∗ ∈ RS , which is composed of (1>P ) and the stochastic output price p. These are

constructed by assuming that market returns at each time period can be reasonably represented by the rate

of return of the S&P500 index (rt) and the 10-year T-Bond (at). Details on the exact procedure used in

constructing this approximation are provided in the next section.

The second practical problem arises from the time-series nature of our agricultural data set. Previous

studies using the aggregate data on agricultural netputs and their prices, apart from including parameters to

capture the effect of technical progress, have typically paid little attention to the time-series characteristics

of these data. If we followed that approach, we might simply estimate an input-demand structure of the

form

Xnt =

N∑
j=1

βnj

(
wjt
wnt

) 1
2

+
1

k

∑
s

γsn

(
q∗st
wnt

)k
+ µnt+ εnt, n = 1, ..., N,

where Xnt denotes the observed value of the nth demand at time t, wnt denotes the observed value of the

nth input price at time t, q∗st denotes the observed value of q
∗
s at time t, µn measures the effect of technical

progress on the optimal usage of the nth demand, and εnt is an econometric error term.

Such a procedure will yield consistent estimates of the parameters if the underlying data series are

suitably stationary. As a practical matter, that does not appear to be the case. Dickey and Fuller (1979)

and Elliott et al. (1996) unit root tests suggest the presence of unit roots in all the dependent input quantity

variables, Xnt, and most of the transformed variables (for example, square roots of the normalized input

prices and the powers of the normalized output prices).6 As usual in the time-series econometrics literature,

practicality thus requires that our input-demand system be estimated in first difference form.7 Thus, our

6Results are not presented here but are available from the authors upon request.
7Unit root tests performed on first differenced data show no remaining stochastic trends.
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practical solution is to use the following econometric representation:

Xnt −Xnt−1 = µn +
∑
j 6=n

βnj

[(
wjt
wnt

) 1
2

−
(
wjt−1

wnt−1

) 1
2

]
+

1

k

∑
γsn

[(
q∗st
wnt

)k
−
(

q∗st−1

wnt − 1

)k]
+ νnt

where νnt is the econometric error structure. This estimation strategy precludes direct estimation of the

location parameter (βnn) for each derived demand. Hence, we cannot fully recapture the parameters associ-

ated with our cost structure. It is important to emphasize, however, that this problem is not a consequence

of modelling the underlying production system as stochastic rather than deterministic. Rather, it arises from

the time-series nature of the data set.

Generating the Random Variates Corresponding to S

Time-series econometric procedures are used to identify a probability model for each financial returns series

and the agricultural output price (Rt, At and pt, respectively). Assuming that St (that is, the set of states

of nature for year t) is time invariant and can be generated from the probability distribution characterizing

variability over time, empirical approximations to (Rt, At, pt)
> ∈ R3S for each sample year t can then be

simulated by combining those results with Monte Carlo methods.

The conditional mean models that best represent the data are developed using Box-Jenkins (Box et al.,

1994) methods. The first step is to test for the presence of unit roots in each individual time series. This is

investigated by applying Augmented Dickey Fuller (ADF) (Dickey and Fuller, 1979) and Elliott et al. (1996)

unit-root tests. While the S&P500 and 10-year T-Bond series are found to be stationary, the output-price

series has a stochastic trend and requires first-differencing of the series.

After preliminary testing, a stationary conditional mean model was fitted to each of the three series

separately by identifying an optimal autoregressive-moving average (ARMA) model. Results, presented in

Table 1 below, show that no ARMA effects characterize the S&P500 returns. It consists of white noise

fluctuating around a positive constant. The 10-year T-Bond is found to be characterized by a structural

break around 1970, which is captured through the introduction of a dummy variable in the conditional

mean model. No evidence of ARMA effects is found in either series. Finally, the first differenced log output

price has a MA(1) pattern. Prices are expressed in logs to induce normality. Goodness of fit checks are

conducted in order to ensure adequate modelling. The Lagrange Multiplier (LM) tests for serial correlation

and autoregressive conditional heteroscedasticity (ARCH) effects (Asteriou and Hall, 2011) suggest no serial

correlation and no ARCH effects in any of the three models’ residual series. Moreover, the Jarque-Bera

(1981) normality test suggests that the innovation distributions are normal.

The estimated time-series models were then used with Monte Carlo simulations to construct approxi-

mations to the underlying random variables. For each series and for each time-period in the sample (t =

1948 to 2013), 500 random draws are produced from the normal distribution. Responses to the shocks are

obtained from each conditional mean model. Because the conditional mean models for financial returns do

not have ARMA effects, responses need to be recursively generated only for the output price model. In this

9



case, for each of the 500 simulations associated with period t, the presample response is taken to be fixed

and to correspond to the observation at time t (t= 1948 to 2013), the time for which the state space is being

generated. The output price response is then transformed in order to convert changes of the logged price

index to price index levels.

Figures 1-3 depict the average, as well as the 5th and 95th percentiles, generated for the S&P500 returns,

the 10-year T-bond returns, and the output price index (in levels) for each sample period. Figure 4 presents

the mean and the 5th and 95th percentiles derived from computing q∗t for each year.

Input demand system

In principle, the state space, S, can be quite large, and given our procedure for approximating the random

variates, one ostensibly could set the cardinality of S to 500. But, as a practical matter, there exists a clear

trade off between the fineness of the partition for S and parametric parsimony. For practical econometric

reasons, we have thus elected to partition into two coarse events, thought of as high and low. The random

variate for the low (high) event is computed as the average of the values of q∗t below (above) the median.

Results are denoted as qL and qH , respectively and presented in Figure 5.

In our empirical model, we set k = 2 and input prices are obtained from the USDA dataset in the

form of price indices. The capital input price index is represented by wK . It includes durable equipment,

service buildings, land and inventories. The intermediate inputs price index is representeded by wI and

corresponds to the costs of feed and seed, energy, fertilizer and lime, pesticides, purchased services and other

intermediate inputs. The third input price is the labor price index (wL) that includes the cost of hired

workers and self-employed and unpaid family. The corresponding input quantity indices for each of these

input price categories are denoted by XK , XI and XL.

We estimate two versions of the model. One treats the agricultural technology as stochastic and follows

the estimation strategy developed above. The second treats agricultural output as nonstochastic and replaces

the random variate (q∗L, q
∗
H) with the (singleton) observed aggregate output price. When the models were fit

with a non-autoregressive error structure, the Hosking (1981) variant of the multivariate Q statistic indicated

the presence of serial correlation in the residuals of the model requiring the addition of an autoregressive

term in each of the three equations (that is, one lag of the dependent variable).8

The resulting parameter estimates are presented in Table 2. (Parameter estimates obtained while ignoring

the time-series characteristics of the data are reported in the Appendix.) In viewing both the stochastic and

non-stochastic versions of the model, several results are apparent. First, both specifications are characterized

by a relatively large number of imprecisely estimated parameters.9 Second, the stochastic version of the model

8Annual data rarely have ARCH properties. This was confirmed through LM tests for ARCH effects.
9This contrasts starkly with previous analyses using versions of these data that have ignored their time-series characteristics.

However, results reported in an Appendix verify that both non-stochastic and stochastic versions of the model fit while ignoring

the time-series characteristics of the data report very (apparently) precise parameter estimates. Our remaining analysis, however,

is based upon the results reported in Table 2.
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suggests that producers respond to output price variability differentially according to the state of Nature in

which it arises. Thus, the stochastic specification suggests that capital demand is non-regressive in q∗H but

regressive in q∗L, that intermediate input demand is regressive in q
∗
H but non-regressive q∗L, and that labor

demand is non-regressive in q∗H and q
∗
L. The non-stochastic specification, on the other hand suggests that all

input demands are nonregressive in the output price.

The pattern of differential responses to q∗H and q
∗
L observed in the capital and intermediate-input demand

systems can be partially explained by considering a simple thought experiment. Suppose that the length

of the interval [q∗L, q
∗
H ] were to increase as a result of increasing q∗H and decreasing q∗L by an equal amount.

The results in Table 2 would suggest that this increase in price dispersion, which may be identified with

either greater price risk or price uncertainty, would lead to more capital-intensive production practices. Not

only that, but the magnitude of the estimated parameters would suggest that the increase associated with

falling prices in the low-state would be larger than the increase prompted by the increase in the high state.

Thus, producers respond to increased price uncertainty by expanding capital usage, and they respond more

forcefully in this regard to a downward extension of the lower tail of the distribution than to an upward

extension of the upper tail.

The results also suggest that intermediate input usage plays just the reverse role. Intermediate input

usage increases as the interval [q∗L, q
∗
H ] decreases and decreases as the interval increases. And again we see

that the response is relatively greater to changes in the low-state price than to changes in the high-state

output prices. Labor usage, on the other hand, responds positively to increases in both the high and low-state

discounted output price, but because it appears to respond more forcefully to changes in the high-state price

than to changes in the low-state, lengthening the interval [q∗L, q
∗
H ] in the manner suggested would lead to more

intensive labor usage. Conversely, shrinking the interval and moving to a more concentrated price dispersion

would lead to decreased labor usage. Thus, capital and labor both appear to be risk complementary, in

regards to price risk, in the sense of Chambers and Quiggin (2000), while intermediate materials appear to

be risk subsitutes.

Both the stochastic and the non-stochastic versions of the model suggest that technical change in aggre-

gate US agriculture has been capital and labor saving and intermediate input using. These results contrast

with studies of aggregate US agriculture based on earlier time periods (see, for example, Just and Pope 1996

and the sources cited therein) that suggest that technical change in agriculture is generally capital using

and labor saving. Two points are relevant here. First, it is true that US agriculture went through a period

of intensive capital investment between the end of the Second World War and approximately 1980. Since

approximately 1983 (the last 30 years of our sample), however, there has been a secular decline in aggregate

capital usage in US agriculture. Second, it must be remembered that previous empirical examinations of

US agriculture have not taken account of the time-series characteristics of the underlying data. And thus,

results on the nature of the character of technical change are not directly comparable to ours.

Summary results on calculated elasticities of input demands with respect to input prices are presented in

11



Table 3. The elasticities reported there are the immediate or impact elasticities. Elasticities were computed

for each sample period, using observed demands. The means and standard deviations as well as the coeffi cient

of variation for each of these elasticities are the results reported in Table 3. Several points are worth

remarking. First, when compared to previous studies of aggregate US agriculture, with the exception of

the average own-price elasticity for intermediate inputs for the non-stochastic specification, the average

elasticities are extremely low and indicative of little or no price responsiveness. Second, again with the

exception of the own-price elasticity for intermediate inputs, the rough magnitude of the elasticities for

both the stochastic and the non-stochastic specifications are broadly similar. And third, the results suggest

that in the main the aggregate inputs are substitutes for one another. The sole exception is capital and

intermediates in the nonstochastic specification.

4 Concluding Remarks

We have reconsidered the problem posed by Pope and Just (1996) and Moschini (2001) of estimating ex ante

cost functions for stochastic technologies. In doing so, we have generalized the decision setting considered

by those authors to allow producers to have access to capital and equity markets and to face arbitrary forms

of price uncertainty. Both generalizations seem eminently plausible for producers operating in a modern

economy with active financial markets. An ex ante cost function that generalizes their ex ante cost functions

is introduced, and an econometric procedure for estimating a flexible approximation to it is developed.

That generalized cost function is economically relevant not only for the Just and Pope (1996) choice setting,

which requires risk-neutral producers facing a production technology characterized by a stochastic production

function, but also for general producer risk preferences, general stochastic technologies, and general forms of

price uncertainty. An econometric version of the resulting ex ante cost function has been estimated for US

agriculture.
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Table 1. Box-Jenkins method 

 S&P500 10-year T-

Bond 

Logged output 

price changes 

Conditional mean model parameters    

Constant 0.127 

(0.021)** 

0.018 

(0.018) 

0.019 

(0.014) 

Dummy (=1 if t>1970)  0.060 

(0.022)** 

 

MA(1)   0.585 

(0.102)** 

JB test for normality 2.035 2.914 4.828 

LM test for correlation up to order 5 1.205 1.058 1.409 

LM test for ARCH up to order 5 0.859 1.301 0.813 
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Table 2. Input demand system when the time-series properties of the data are considered 

 STOCHASTIC MODEL  NON-STOCHASTIC MODEL 

  xK xI xL   xK xI xL 

qH 8.60 -116.38 26.88** p 1291.95** 33315.52** 1144.40**

 (9.72) (149.63) (7.05)  (558.22) (7,034.31) (362.44)

qL  -36.49 514.32 5.84  

 (37.54) (474.30) (19.69)   

wK   wK  

     

wI 1094.45 wI -3,233.02

 (1689.405)  (2,293.69)

wL 1,997.12 12828.64** wL 3284.2694** 8,029.94

 (1,522.54) (5,536.04)  (1,618.98) (6,225.26)

intercept -99.01 1141.84*  - 1160.89** intercept -91.26 1475.40** -1191.98**

 (88.58) (586.97) (448.95)  (88.81) (512.60) (482.58)

AR(1) 0.53** -0.02 0.12 AR(1) 0.55** 0.07 0.18*

 (0.09) (0.12) (0.10)  (0.09) (0.11) (0.10)

MVQSTAT up to 
order 5 

47.24 MVQSTAT up to 
order 5 

46.40

 Note: qL and qH take very small values leading to very big coefficient estimates. To prevent this, they were rescaled (by taking the sum of values above and below the median 
instead).  Elasticity estimates do not change. Standard errors in parethesis 
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Table 3. Input demand elasticities 

 STOCHASTIC  NON-STOCHASTIC  

 mean std cv mean std cv 

EK_wK -0.026 0.006 -0.209 -0.034 0.019 -0.577

EK_wI 0.008 0.001 1.307 -0.025 0.003 -0.130

EK_wL 0.011 0.004 0.350 0.018 0.006 0.350

       

EI_wK 0.005 0.001 0.187 -0.014 0.003 -0.187

EI_wI 0.000 0.021 120.820 -0.535 0.272 -0.509

EI_wL 0.040 0.004 0.096 0.025 0.002 0.096

       

EL_wK 0.015 0.004 0.246 0.024 0.006 0.246

EL_wI 0.098 0.016 0.160 0.061 0.010 0.160

EL_wL -0.226 0.105 -0.464 -0.207 0.092 -0.442

Note: the models labeled cross-sectional are the models that ignore the time-series properties of the data.  
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Figure 1. Summary statistics for the state-space generated for S&P 500 returns for 

each year 
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Figure 2. Summary statistics for the state space generated for the 10-year T-Bond 

returns for each year  
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Figure 3. Summary statistics for the state space generated for the output price 

index for each year 
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Figure 4. Summary statistics for the state space generated for qt*T for each year 
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Figure 5. Coarse partition of the state space qt*T for each year 
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APPENDIX 

Input demand system when time-series properties of the data are ignored 

 STOCHASTIC MODEL  NON-STOCHASTIC MODEL 

  xK xI xL   xK xI xL 

qH 79.83* -140.21 31.66** p 3950.58** 4,506.06 2353.88**

 (44.40) (198.12) (6.41)  (1,748.37 (7,848.95) (121.81)

qL   - 885.57** -887.81  110.42**

 (220.13) (698.36) (35.92)  

wK 83041.64**  wK 78550.40**   

 (2,807.81)   (3,006.89  

wI 5438.61 71680.86** wI 2,460.60 57025.46**

 (3900.88) (7,849.87)  (5,108.58 (9,265.63)

wL  - 14626.24** 22088.48** 118587.22** wL  - 21219.39** 17381.62** 133805.89**

 (3,162.15) (4,720.25) (9,806.35)  (3,750.94 (4,422.88) (10,282.53)

trend  - 274.98** 785.26**  -1127.80** trend -37.06 1107.64**  -1207.87**

 (46.21) (125.46) (80.47)  (54.85 (135.58) (80.78)

   

   

MVQSTAT 236.90** MVQSTAT 263.7**

 Note: qL and qH take very small values leading to very big coefficient estimates. To prevent this, they were rescaled (by taking the sum of values above and below the median 
instead).  Elasticity estimates do not change. Standard errors are in parenthesis.  

 



23 
 

Input demand elasticities when time-series properties of the data are ignored 

 STOCHASTIC  NON-STOCHASTIC  

 mean std cv mean std cv 

EK_wK 0.030 0.056 1.865 -0.025 0.094 -3.703 

EK_wI 0.042 0.005 0.130 0.019 0.002 0.130 

EK_wL -0.081 0.028 -0.350 -0.117 0.041 -0.350 

       

EI_wK 0.024 0.004 0.187 0.011 0.002 0.187 

EI_wI 0.034 0.118 3.503 -0.135 0.038 -0.280 

EI_wL 0.068 0.007 0.096 0.054 0.005 0.096 

       

EL_wK -0.108 0.027 -0.246 -0.157 0.034 -0.218 

EL_wI 0.168 0.027 0.160 0.132 0.021 0.160 

EL_wL -0.233 0.203 -0.873 -0.225 0.221 -0.980 

Note: the models labeled cross-sectional are the models that ignore the time-series properties of the data.  

 

 


