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Multiferroic materials that display a coexistence of ferroelectric and 

ferromagnetic responses attract interest because of their potential for several novel 

device applications. In multiferroic composite, electromagnetic coupling is facilitated 

by elastic interaction between ferroelectric and ferromagnetic components via 

piezoeffect and magnetostriction. The goal of our research is to prepare 

magnetoelectric composite using sol-gel technology. This method consisted of two 

steps, preparing a mixture of the synthesized ferromagnetic and ferroelectric 

nanoparticles at certain ratio and sintering. The nanoparticles were characterized by 

Differential Thermal Analysis and Thermogravimetric Analysis. The crystal structure 

and microstructure were studied by X-ray Diffraction and Scanning Electron 

Microscopy, respectively. Dielectric Analysis, Superconducting Quantum Interference 

Device and Vibrating Sample Magnetometer were used to examine the electric and 

magnetic properties. BTO-CFO multiferroics whose electric permittivity increased by 

magnetization were successfully synthesized by this method. 
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Chapter 1: Introduction 

1.1 Biferroic Materials and Magnetoelectric Materials 

Ferroic materials are those that display a spontaneous magnetization 

(ferromagnetic), polarization (ferroelectric) and strain (ferroelastic, shape memory 

alloy). Materials that possess two “ferro” properties simultaneously are called 

“biferroics”. There are three kinds of biferroic materials, Electroelastic material, 

Magnetoelastic material and Magnetoelectric material. Table1.1 presents a brief 

summary of the history of biferroic materials.  

Table1.1 History of Biferroics 

 Biferroic Alloys Year Name TC 
(ºC) Reference 

Electroelastic PMN 1970 Cross 100 1
Ni2MnGa 1995 O’Handley 100 2Magnetoelastic FePd 1995 Wuttig 40 3
Boracide 1960 Schmid  4

Natural 

YbMnO5 2003 Cheong -230 5
Terfenol-

PVDF 2002 Wuttig >RT 6

Terfenol-
PZT 2002 Viehland >RT 7

BTO-CFO 
(PLD) 2003 Ramesh RT 8

Artificial 
Composite 

Magnetoelectric 

BTO-CFO 
(Sol-Gel) 2006 Wuttig RT  

 

Electroelastic materials are essentially piezoelectric materials, which have 

been widely studied and used in many applications. Magnetoelastic materials are 

magnetic shape memory alloys, which has also been widely studied. Regarding 

the magnetoelectric materials, little knowledge has been gathered. The 

magnetoelectric materials simultaneously possess ferromagnetic properties, which 
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will be discussed in section 1.2, and ferroelectric properties, which will be 

discussed in section 1.3. Because of the coupling between magnetization and 

polarization, a wide range of application can be proposed. Possible applications of 

magnetoelectric materials include magnetic-electric energy converting 

components, solid state nonvolatile memory, multi-state memory which can find 

application in quantum computing area and electric/optical polarization 

components which can find applications in communication, light computing and 

solid state memories based on spintronics.9, 10

The magnetoelectric effect was firstly predicted by P. Curie in 1894.11 The 

first magnetoelectric material discovered was nickel iodine boracite, Ni3BB7O13I, in 

1960’s. However, due to the complexity of the boracite structure, little 

applications and understanding behind the phenomena was found. The other 

attempt to the magnetoelectric material was to replace certain cations in the 

ferroelectric perovskite oxide by magnetic cations. However, due to the dilution 

of the magnetic ions, these materials have Curie temperatures far below room 

temperature. Recently, YbMn2O5 with a modified perovskite structure has been 

reported having magnetoelectric properties, but the Curie temperature is still far 

below room temperature. These two kinds of structures are the only possible 

structures for the magnetoelectric crystals. A lot of work has been done around 

these two structures and many modifications with different compositions have 

been reported, but no real application has been developed based on these crystals.  

There are two inherent problems with these crystals, one is low coupling efficient, 

and the other is low Curie temperature. 
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As described above, natural crystals of magnetoelectric materials were not 

suitable for common applications. Therefore, composites become the natural 

choice. If materials with magnetostriction and electrostriction were coupled 

together mechanically, the mechanical interaction between the magnetostriction 

phase and the electrostriction phase can lead to a functional magnetoelectric 

material. If a magnetic field is applied to such a composite, due to the 

magnetostriction effect, the ferromagnetic phase deforms. Because the 

electrostrictive phase is mechanically coupled with the magnetostriction phase, 

the electrostriction phase also deforms to adapt to the strain. As the 

electrostriction materials have piezoelectric effect, the spontaneous polarization of 

the electrostriction phase changes. If an electric field is applied to the composite, 

reverse effect will happen and the spontaneous magnetization changes. With this 

approach, several attempts have been made.  One attempt was coupling of 

magnetostrictive metal, Terfenol, with electrostrictive polymer, Polyvinylidene 

Fluoride (PVDF).  Terfenol was also used to couple with BaTiO3.  These two 

attempts produced magneto-electric bulk materials.12, 13 Another attempt was to 

couple CoFe2O3 with BaTiO3 by pulse laser deposition (PLD). This method can 

produce nanostructure films that can be integrated into an integrated circuit (IC).  

However, the drawback of PLD is this experiment method is expensive and slow. 

The major advantage of the composite approach over the single crystal approach 

in the engineering side is that the Curie temperatures of the material are expected 

to stay close to their bulk values. From the reported experimental data, the 

coupling coefficient is much higher than that of single phase crystals. 

 3 



1.2 Ferromagnetism 

Ferromagnetism is a phenomenon by which a material can exhibit a 

spontaneous magnetization. It is responsible for most of the magnetic behavior 

encountered in everyday life and is the basis for all permanent magnets. Electron 

spin and the Pauli Exclusion Principle are the physical origin of 

ferromagnetism. 14  The spin of an electron combined with its orbital angular 

momentum, results in a magnetic dipole moment and creates a magnetic 

momentum. Only atoms with partially filled shells with unpaired spins can exhibit 

a net magnetic moment in the absence of an external field, according to the 

response to the external magnetic field, the material can be classified into 

paramagnetism, ferromagnetism, antiferromagnetism and ferrimagnetism. 

Paramagnetic materials feature disordered orientations of the magnetic moments 

due to thermal fluctuations. Ferromagnetism is the strongest form of magnetic 

responses which is characterized by the parallel alignment of adjacent magnetic 

moments. In contrast, an antiferromagnetic behavior corresponds to an 

antiparallel alignment of equal moments. Finally, ferrimagnetism is characterized 

by antiparallel moments having different magnitudes and thus yielding a non-zero 

net magnetization. 
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Fig.1.1 Hysteresis loop showing magnetization switching in ferromagnetic materials. 

 

Ferromagnetics exhibit a hysteretic response to an external magnetic field, 

as shown in Fig.1.1. The saturation magnetization (Ms), coercive field (Hc) and 

remnant magnetization (Mr) are all shown in the figure. Based on the value of a 

coercive field, magnetic materials are classified as either hard or soft magnets 

with large and small H c accordingly. 

1.2.1 Cobalt Ferrite (CoFe2O4)  

CoFe2O4 is a ferromagnetic material, which belongs to the family of spinel 

structure (also called garnet structure). The spinel structure is named after the 

mineral spinel (MgAl2O4) and has the general composition ABB2O4. It is essentially 

cubic, with the O - ions forming an FCC lattice. The cations (usually metals) 

occupy 1/8 of the tetrahedral sites and 1/2 of the octahedral sites. There are 32 O-

ions and 24 Cations in the unit cell, for a total of 56 atoms. The unit cell of spinel 
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Fig.1.2 Schematic of the spinel structure, showing octahedral and tetrahedral sites 
occupied by A and B cations. 

 

structure is illustrated in Fig.1.2. The Curie temperature of CoFe2O4 is 500ºC. 

Below TC, CoFe2O4 exhibits the ferromagnetic properties. 

CoFe2O4 also has high magnetostriction coefficient. The linear 

magnetostrictive strain of it is up to around -200×10-6, while other ferrites have a 

value at an order smaller than CoFe2O4. 15 Therefore, it is a potential candidate 

for the electromagnetic composites.  

1.3 Ferroelectricity 

Ferroelectric materials have a spontaneous electric polarization. They have 

been studied since over a century ago when large piezoelectric constants were 

observed in Rochelle salt.16 For the past few decades, ferroelectric materials have 

received a great amount of interests because of their various uses in a range of 

applications, including transducers and actuators, capacitors and memory 

applications. 
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A ferroelectric material possesses at least two equilibrium orientations of 

the spontaneous polarization vector in the absence of an external electric field, 

and the spontaneous polarization can be switched by an electric field. The polar 

character of the orientation states should represent an absolutely stable 

configuration in null field.17 The polarization as a function of the applied field for 

a ferroelectric crystal is a hysteresis loop as shown in Fig.1.3, which is a sign for 

the ferroelectric state. As the applied external field is switched off, a spontaneous 

polarization Ps persists. A reverse field -Ec, called coercive field, has to be applied 

to bring the polarization of the crystal back to zero. If the reverse field is 

increased further the polarization of the crystal is reversed. This is one of the 

important features of ferroelectrics with respect to applications. The 

ferroelectricity of a crystal disappears as it is heated up to Curie temperature Tc. 

Above Tc the crystal is said to be paraelectric.  

It is well known that any crystal can be classified in as one of the thirty-

two crystal classes (point groups) according to the symmetry elements, which it 

possesses. A study of these thirty-two classes reveals that eleven of them are 

characterized by the existence of a center of symmetry: they are called 

centrosymmetric. A centrosymmetric crystal can possess no polar properties. The 

remaining twenty-one crystal classes do not have a center of symmetry; they are 

non-centric. The absence of a center of symmetry makes it possible for crystals in 

these classes to have one or more polar axes and to show vectorial or tensorial 

properties. With one exception (i.e., the cubic class 432 which, without a center of 

symmetry, but has other symmetry elements that destroy polarity), all classes 
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devoid of a center of symmetry exhibit the piezoelectric effect that is defined by a 

change in electric polarity under applied stress, and vice versa, that is the 

converse piezoelectric effect. 

Out of the twenty piezoelectric classes, ten are characterized by the fact 

that they have a unique polar axis. Crystals in these classes are called polar 

because they are spontaneously polarized. The value of the spontaneous 

polarization is dependent on temperature; thus, if the temperature of the crystal is 

altered a change in the polarization occurs and electric charges can be observed on 

those crystal faces that are perpendicular to the polar axis. This is the pyroelectric 

effect. The ten crystal classes with a unique polar axis are also called pyroelectric 

classes. Ferroelectric crystals belong to the pyroelectric family, but they are a 

subclass in which the direction of the spontaneous polarization can be reversed by 

external electric field.18

 

Fig.1.3 Ferroelectric hysteresis loop (schematic). 
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Fig.1.4 Perovskite structure. 

 

1.3.1 Barium Titanate (BaTiO3) 

BaTiO3 is a ferroelectric material with a perovskite structure as shown in 

Fig.1.4. It is the first discovered piezoelectric ceramic19. BaTiO3 is cubic structure 

above Curie temperature, 120°C. Cubic BaTiO3 is non-ferroelectric because the 

centers of positive and negative charges overlap as the ions are symmetrically 

arranged in the unit cell. Below TC, it has tetragonal structure, in which the O2- 

ions in the BaTiO3 crystal are shifted in the negative c-direction, while the Ti4+ 

ions are shifted in the positive c-direction. It results an electric dipole along the c-

axis. Therefore BaTiO3 is ferroelectric in tetragonal structure.  

1.4 Composite Materials 

Composite materials are composed of two or more phases with different 

physical and chemical properties.  Suchtelen divides the physical properties of 
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composite systems into two categories: sum properties and product properties. 20 

Sum property: that is a weighted sum of the contributions from the individual 

component phases, proportional to the volume of weight fractions of these phases 

in the composite. Physical quantities, such as density and resistivity are sum 

properties. The schematic representation is written as.  

*

2

1
BA 

BA : 2 Phase
BA : 1 Phase

→⎥
⎦

⎤
→
→

                              (Eq. 1.1) 

Product property: that is reflected in the composite structure but are absent 

in the individual phases. In a biphasic composite material, if one phase exhibits a 

property A→B (application of an independent variable A resulting in an effect B) 

with a proportionality tensor dB/dA = X (maybe a constant or dependent on A or 

B) and the second phase exhibits a property B→C with a proportionality tensor 

dC/dB = Y, then the composite will exhibit a property A→C which is absent in 

either of the initial phases. The property A→C is called a product property of the 

composite. A typical example is the magnetoelectric effect in a composite material 

with one magnetostrictive and one piezoelectric phase such as BaTiO3-CoFe2O4 

composite. A magnetic field induces a magnetostriction, which distorts the 

piezoelectric phase to generate an electric field. 

CA 
CB : 2 Phase
BA : 1 Phase

→⎥
⎦

⎤
→
→

                               (Eq. 1.2) 

Depending on the application, the appropriate properties of the individual 

phases can be invoked to design a composite that will have a sum property or a 

product property.21
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1.4.1 Magnetoelectric Effect on Multiferroic Composite Materials 

The magnetoelectric effect is defined as a coupled two-field effect, 22 in 

which an application of a magnetic field induces an electric polarization. This is 

called “magnetically” induced magnetoelectric effect and denoted by MEH. The 

effect in which an application of electric induces a magnetization is called 

“electrically” induced magnetoelectric effect and denoted by MEE. Those effects 

have first been observed in Cr2O3 single-phase material. 23, , 24 25 Later some other 

single-phase materials have been investigated for the ME effect.26, , , , , 27 28 29 30 31

The ME effect in composite systems has been suggested by Suchetelene of 

the Philips Laboratory as a product property between a Piezomagnetic and a 

piezoelectric materials. A suitable combination of two phases can yield the 

desirable property such as a combination of piezomagnetic and piezoelectric 

phases or a combination of magnetostrictive and piezoelectric phases. In 1978, 

Boomgaard 32  outlined the conceptual points inherent to the ME effect in 

composites. These can be summarized as (i) Two individual phases should be in 

equilibrium (ii) Mismatching between grains should not be present (iii) 

Magnitude of the magnetostriction coefficient of piezomagnetic or 

magnetostrictive phase and magnitude of the piezoelectric coefficient of the 

piezoelectric phase must be greater than both of the constituent phases 

respectively (iv) Accumulated charge must not leak through the piezomagnetic or 

magnetostrictive phase (v) Deterministic strategy for poling of the composites. At 

present various composites have been reported such as Ni (Co, Mn)Fe2O4-BaTiO3, 

CoFe2O4-BaTiO3, NiFe2O4-BaTiO3, LiFe5O8-BaTiO3, CoFe2O4-Bi4Ti3O12 etc.33
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1.4.2 BaTiO3 – CoFe2O4 System 

BaTiO3 is a typical ferroelectric material with large piezoelectricity; 

CoFe2O4 is ferromagnetic with large magnetostriction. Composites of BaTiO3-

CoFe2O4 combine the ferroelectricity and ferromagnetism. The magnetoelectric 

coupling effect is through stress mediation. When a magnetic field is applied to 

the composite, there is stress generated by the CoFe2O4 due to its 

magnetostriction. Such a stress can create an electric field in the BaTiO3 due to its 

piezoelectricity. The reverse process is also possible. 

The first attempt to fabricate a multiferroic composite through the eutectic 

crystallization of the mixture of BaTiO3 and CoFe2O4 was reported by J. Van 

Suchtelen in 1972. The 62%BaTiO3-38%CoFe2O4 composites were synthesized 

by unidirectional solidification which is a method that has been used to produce 

an anisotropic composite directly from the melt. However, this process requires 

high temperature and a critical control over the composition especially when one 

of the components (oxygen) is gas, and unexpected third phase can appear in the 

composites.  

Sintered magnetoelectric composites are an alternative to the in-situ 

eutectic composite formation. Sintered composite materials are much cheaper and 

easier to prepare. Moreover, their preparation offers several advantages: (1) the 

free choice of the molar ratio of constituent phase; (2) the independent choice of 

the grain size of each of the phases in the starting mixture; (3) the free choice of 

the sintering temperature; (4) the fact that the existence of a eutectic point, a 

eutectic gutter, or a eutectoid phase between the two desired phases is not a 
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prerequisite. 

1.5 Sol-Gel Technology 

The sol-gel process is a versatile solution process for making ceramic and 

glass materials. In general, the sol-gel process involves the transition of a system 

from a liquid “sol” into a solid “gel” phase. Applying the sol-gel process, it is 

possible to fabricate ceramic or glass materials in a wide variety of forms: ultra-

fine or spherical shaped powders, thin film coatings, ceramic fibers and 

microporous inorganic membranes. An overview of the sol-gel process is 

presented in a simple graphic work as below in Fig.1.5. 

The starting materials used in the preparation of the "sol" are usually 

inorganic metal salts or metal organic compounds such as metal alkoxides. In a 

typical sol-gel process, the precursor is subjected to a series of hydrolysis and 

polymeration reactions to form a "sol".  Further processing of the "sol" enables 

one to make ceramic materials in different forms.  Thin films can be produced on 

a piece of substrate by spin-coating or dip-coating.  When the "sol" is cast into a 

mold, a wet "gel" will form.  With further drying and heat-treatment, the "gel" is 

converted into dense ceramic or glass articles.  If the liquid in a wet "gel" is 

removed under a supercritical condition, a highly porous and extremely low 

density material called "aerogel" is obtained.  As the viscosity of a "sol" 

is adjusted into a proper viscosity range, ceramic fibers can be drawn from the 

"sol".  Ultra-fine and uniform ceramic powders are formed by precipitation, spray 

pyrolysis, or emulsion techniques. 

Our research lies in using sol-gel technology to make the magnetoelectric 
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dense ceramics. There are many advantages including34, 35

1) Better homogeneity compared to traditional mixed powder technology; 

2) High purity compared to mineral raw material sources; 

3) Lower temperature processing and consolidation is possible. 

4) More uniform phase distribution in multicomponent systems; 

5) Better size and morphological control in powder synthesis. 

 

 

Fig.1.5 Sol-gel technologies and their products.36

 

1.6 Goal of Research 

The goal of research presented in this monograph is to develop a new 

method to produce magnetoelectric composite materials. Barium Titanate and 

Cobalt Ferrite were selected as the ferroelectric and ferromagnetic phase, 
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respectively.  These two materials were selected because their properties and 

structures have been widely studied and suitable for our research.  In this research, 

sol-gel was selected as the synthesis method due to its low expense and ability to 

produce samples at different dimension and scale at large batch. The Curie 

temperature of Barium Titanate and Cobalt Ferrite phases was expected to stay 

close to their reported bulk values. 

The coupling between ferromagnetic phase and ferroelectric was expected 

to be in measurable by common experiment equipments at room temperature. 
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Chapter 2: Synthesis of BaTiO3-CoFe2O4

In this thesis, the biferroic system of BaTiO3-CoFe2O4 was studied. The 

composites were prepared by Sol-Gel technology. 

2.1 BaTiO3-CoFe2O4 Synthesis 

Barium nitrate (>99%), Iron (III) nitrate nonahydrate (98.0-101.0%), 

Cobalt (II) nitrate hexahydrate (98.0-102.0%), Commercial available 

Ethylenediaminetetraacetic acid [EDTA, ((HO2CCH2)2NCH2CH2N(CH2CO2H)2)]  

(99%), and Citric acid anhydrous (>99.5%) were purchased from Alfa Aesar. Two 

kinds of butyl titanate that are Tetra-n-Butyl titanate (TnBT) and n-Butyltitanante 

polymer (BTP) were provided by DuPont with the trade name of Tyzor TnBT and 

Tyzor BTP respectively. 

BaTiO3-CoFe2O4 powders were prepared by the one-pot process.37  Six 

kinds of molar ratio were studied in this thesis as shown in Table 2.1.  

Table2.1 BaTiO3-CoFe2O4 molar ratio 

BaTiO3 % (x) 100% 80% 75% 50% 25% 0% 

CoFe2O4 % (y) 0% 20% 25% 50% 75% 100%

BaTiO3-CoFe2O4 molar ratio (x : y) 1:0 4:1 3:1 1:1 1:3 0:1 

 

2.1.1 Preparation of BaTiO3/CoFe2O4 (molar ratio: 4:1) Wet Gels 

0.1 mol Ba(NO3)2 was first dissolved into 500ml deionized water to get a 

transparent solution.  500 ml of 0.2M EDTA solution was adjusted to PH 6 by the 

addition of ammonia solution. After achieving complete dissolution, 0.1 mol  
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Ba(NO 3 ) 2 ED T A  + 
Amonia Co(NO 3 ) 2 EDTA +

Amonia
EDTA +
AmoniaFe(NO 3)3 Tyzor

Citric 
Acid 

Amonia
Solution

       0.1 mol 0.25mol 0.5mol     0.1mol

     PH=6       PH=6      PH=6      PH=6 

 

Fig.2.1 Synthesis layout. 

 

Ba(NO3)2 was gradually added to EDTA. Then, the mixture was stirred until 

transparent.  Fig.2.1 shows the synthesis layout. 

Also, 0.25 mol red Co(NO3)2·6H2O and 0.5 mol violet Fe(NO3)3·9H2O 

were separately dissolved into 250ml deionized water to get the red transparent 

solution and yellow transparent solution. Co and Fe ion-containing solutions 

stabilized by EDTA were prepared in a similar manner as was used for Ba. EDTA 

forms a chelating structure with different metal ions and preventing the formation 

of an insoluble base or salt. 

1000ml 2M citric acid [HOCOCH2C(OH)(COOH)CH2COOH] solution 

was adjusted to PH 6 by adding ammonia solution. 0.1 mol Ti[O(CH2)3CH3]4 
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liquid was mixed with the citric acid solution. The molar ratio of 

Ti[O(CH2)3CH3]4 to citric acid was 1:2. Complete dissolution was achieved by 

stirring.  

The solutions containing Ba, Co, Fe and Ti components were then mixed 

together and sol-gel reaction gradually occurs while stirring the solution at 70ºC.  

2.1.2 Preparation of BaTiO3/CoFe2O4 (3:1, 1:1 and 1:3) Wet Gels 

Using the method that we described above to prepare the BaTiO3/CoFe2O4 

molar ratio: 4:1, three other molar ratios of BaTiO3/CoFe2O4 wet gels were 

prepared. The molar ratios of these were 3:1, 1:1 and 1:3. First, Ba, Co, Fe salts 

should be dissolved in water separately. Second, the stoichiometric amount of 

0.2M EDTA solutions was prepared with the molar ratio of Ba component to 

EDTA being 1:1. The EDTA solution was adjusted PH 6 by adding an ammonia 

solution and then Ba(NO3)2 was added to it. Similarly Co and Fe ion containing 

solutions stabilized by EDTA were prepared. The stoichiometric amount of butyl 

titanate was added to a 0.2M citric acid solution with PH 6 by adding an ammonia 

solution. The molar ration of Ti(OC4H9)4 to citric acid is 1:2. Finally, the solution 

containing Ba, Co, Fe, Ti components were then mixed by mechanical stirring at 

70ºC until a viscous liquid appeared. 

In order to compare the structure and the properties of different BTO-CFO 

samples in this study, the BaTiO3 and CoFe2O4 samples were prepared by the 

same technique for calibration purpose. 
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2.2 Drying and Sintering 

 

Fig.2.2 Single-action pressing. 

 

The color of the viscous liquid was deep pink. It still contained impurities 

such as water and some organic materials and the state of particles in this liquid is 

still amorphous. In order to remove the water, solution was heated on the hot plate 

with a surface temperature above 100°C or placed in an oven at 120°C to remove 

water. After a few hours, a black hard dry mixture was retrieved. Then, the dried 

mixture was heat-treated above 400°C for 1 hour to investigate its phase 

development and achieved a fine porous powder. 

The powders were milled for about two hours to produce coarse and 

irregular particles. Then, the disk-shaped samples were compressed at 100ºC. A 

set of self-made single-action pressing stainless steel dies were used to make the 

disks as shown in Fig.2.1. The stainless steel dies were machined in the 

Engineering Machine Shop on campus. Two different shapes of samples were 

prepared. One is 1inch in diameter for measuring the dielectric constant with a 
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dielectric analyzer (DEA). The other is 1cm in diameter with 1 or 2mm thickness 

for the other characterization. 

The shaped samples were sintered at different temperatures in a tube 

furnace (Carbolite Company 1200°C CTF 12/65/550). The disk-shaped samples 

were first placed into a ceramic boat, and inserted into the tube. The boat should 

be of low thermal mass and should have feet to reduce the contact with the tube. 

Four different sintering temperatures were set as 500°C, 700°C, 900°C and 

1100°C to compare the phases and identify the crystal structure. The samples 

were heated up at 2°C per minute to the set-point temperature; held at the set-

point temperature for 2 hours; then allowed to air cool to room temperature as 

presented in Fig.2.3. 

 

Fig.2.3 Illustration for sintering. 
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Chapter 3: Characterization 

In order to study the structure and properties of BaTiO3-CoFe2O4 

composite, thermal analysis, structure analysis, electric measurement and 

magnetic measurement were performed by DTA, TGA, XRD, SEM, EDS, DEA, 

SQUID and VSM. 

3.1 Thermal Analysis: DTA, TGA 

Thermal analysis was studied by Differential thermal analysis (DTA) and 

Thermogravimetry analysis (TGA). 

3.1.1 Differential Thermal Analysis  

DTA is a “fingerprinting” technique that provides information on the 

chemical reaction, phase transformations, and structural changes that occur in a 

sample during a heat-up or a cool-down cycle.  

In this experiment, DTA-50 was used to monitor the decomposition 

process of the precursor. The test samples were placed into a specially shaped cup 

so the test material surrounded a thermocouple bead. The cup was made from a 

sintered, high purity alumina, which was relatively inert to the test sample. An 

identical cup as a reference cup was placed immediately beside the sample cup 

and went through the same heat treatment. Both cups were uniformly heated at a 

constant heating rate of 5ºC/min from room temperature till 800ºC/min. The DTA 

signal was the difference in temperature between these two thermocouple beads 

while the sample cups were heated. This temperature difference was due to heat 

capacity differences in the materials, and was constantly saved on the computer 
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along with the temperature inside the reference cup and the elapsed time. When a 

first order, second order transition, kinetic transition, or chemical reaction 

happens, there are changes in the heat capacities of the materials. These changes 

can be the “finger prints” of the transitions or reactions. 

3.1.2 Thermogravimetry Analysis 

TGA uses heat to force reactions and physical changes in materials. TGA 

provides quantitative measurement of mass change in materials associated with 

transition, thermal degradation and chemical reaction. The TGA records change in 

mass from dehydration, decomposition, and oxidation of a sample with time and 

temperature. Characteristic thermogravimetric curves are given for specific 

materials and chemical compounds due to unique sequence from physicochemical 

reactions occurring over specific temperature ranges and heating rates. These 

unique characteristics are related to the molecular structure of the sample. By 

comparing the characteristic thermogravimetric curves and experimentally 

measured curve, the constituents of unknown samples can be identified indirectly. 

3.2 Structure Analysis: XRD, SEM, EDS 

X-ray diffraction, Scanning Electron Microscopy (SEM) and Energy 

dispersive spectroscopy (EDS) were used to study the crystal structure, 

microstructure and composition, respectively. 

3.2.1 X-ray Diffraction 

The diffraction of X-rays by matter results from the combination of two 

different phenomena: (a) scattering by each individual atom, and (b) interference 
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Fig.3.1 Diagram of incident angle and reflecting angle with respect to the normal of the 
diffracting for X-ray diffraction. 

 

 between the waves scattered by these atoms. This interference occurs because the 

waves scattered by the individual atoms are coherent with the incident wave, and 

therefore between themselves as shown in Fig.3.1. 

In 1912, W. L. Bragg recognized a predictable relationship among several 

factors. 

1. The distance between similar atomic planes in a mineral (the 

interatomic spacing) which we call the d-spacing and measure in 

angstroms.  

2. The angle of diffraction which we call the theta angle and measure in degree. 

For practical reasons the diffractometer measures an angle twice that of the 

theta angle. 

3. The wavelength of the incident X-radiation of Cu-Kα, symbolized by the 

Greek letter lambda and, in this thesis, equal to 1.54 angstroms.  

These factors are combined in Bragg’s Law: 

θλ sin2dn =                                             (Eq. 3.1) 

Where n is an integer, λ is the wavelength of X-rays, d is the lattice interatomic 
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spacing and θ is the diffraction angle. 

The XRD was used in this thesis to identify the changes of the crystal structure 

in my samples after sintered at different temperature. The scanning of the 2θ angle was 

started at 15°, and ended at 75°. The scanning rate was 0.5°/min.  

3.2.2 Scanning Electron Microscopy 

SEM is one of the most versatile instruments available for the examination 

and analysis of the microstructure characteristics of a solid. The most important 

reason for using the SEM is the high resolution that can be obtained when bulk 

sample are examined. Resolution on the order of 2 to 5 nm is now usually quoted 

for commercial instruments. Instruments with resolutions better than 1 nm are 

also available. 

Another important feature of SEM is the three-dimensional appearance of 

the image. This is a direct result of the large depth of field, as well as the shadow-

relief effects of the secondary and backscattered electron contrast. The greater 

depth of field of the SEM provides more information about the specimen. Most 

SEM micrograph has been produced with the magnification below 8000x8000 

(diameters). At this magnification the SEM is operating well within its resolution 

capacities. 

ESEM (ElectroScan) which was used in this thesis is a special type of 

SEM. It works under controlled environmental conditions and requires no 

conductive coating on the specimen. This makes it possible to examine specimens 

in their natural state.  
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3.2.3 Energy Dispersive Spectroscopy 

EDS is a standard procedure for identifying and quantifying elemental 

composition of sample areas as small as a few cubic micrometers. Characteristic 

X-rays are produced when a material is bombarded with electrons in an electron 

beam instrument, such as a scanning electron microscope (SEM). Detection of 

these X-ray can be accomplished by an energy dispersive spectrometer, which is a 

solid state device that discriminates among X-ray energies. 

EDS provides the analytical information including qualitative analysis, 

quantitative analysis, line profile analysis and elemental mapping. The model of 

the EDS which was used in this thesis is JEOL JXA 840. 

3.3 Magnetic Measurement: SQUID and VSM 

Magnetic properties were identified by Superconducting quantum 

interference device (SQUID) and Vibrating Sample Magnetometer (VSM). 

3.3.1 Superconductiving Quantum Interference Device 

SQUID is a device that measures minute changes in magnetic flux by 

means of a pair of Josephson junctions, often used to detect extremely small 

changes in magnetic fields, electric currents, and voltages. 

3.3.2 Vibrating Sample Magnetometer 

VSM is a basic research tool for determining the magnetic properties of a 

material. VSM was proposed first by Oosterhout 38  to study the structure of 

various magnetic materials. Today, it enjoys widespread use in the fields of 

superconductivity, thin films and crystal development. The VSM allows the 
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measurement of magnetic hysteresis loops, the studies of which form an important 

aspect of characterizing the magnetic materials themselves.  

When a sample material is placed in a uniform magnetic field and made to 

undergo sinusoidal motion, a dipole moment will be induced in the material. The 

magnetic flux changes inducing an electrical signal in stationary coils positioned 

near the sample. This voltage induced is proportional to the magnetization of the 

sample. 

3.4 Electric Measurement: Dielectric Analyzer (DEA) 

DEA measures dielectric properties as a function of temperature, 

frequency and time. Dielectric properties define the capacity and conductivity of 

material. Capacitive properties determine the ability of the material to store 

electric charge. Conductive properties are proportional to the ability of charges to 

move in the material. Dielectric analyzer (DEA 2970) was used to measure 

dielectric properties of the bulk in this thesis. 
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Chapter 4:  Results and Discussion 

BaTiO3-CoFe2O4 composites with four different molar ratios were 

performed by XRD and DTA. 25%BaTiO3-75%CoFe2O4 was characterized by 

TGA, SEM, EDS, DEA, SQUID and VSM.  

4.1 TGA and DTA Data 

Fig.4.1 shows a series of precursors of DTA data from 80%BaTiO3-

20%CoFe2O4, 75%BaTiO3-25%CoFe2O4, 50%BaTiO3-50CoFe2O4 and 

25%BaTiO3-75%CoFe2O4. Each precursor shows one small exothermic peak 

around 210ºC which is followed by the two exothermic reactions. The precursors 

have decomposed almost completely after the third exothermic event, which 

indicates that the organic component of the gel has decomposed. Therefore, the 

precursors were heat-treated at 500ºC for 2 hours before milling, compacting and 

sintering. Further weight loss at temperatures over 500ºC may be due to the 

evaporation of Cobalt oxide.  

The DTA/TGA curves for the 25%BaTiO3-75%CoFe2O4 precursor are 

shown in Fig.4.2. The first weight loss before 100ºC can be explained by the 

gradual evaporation of the water. The DTA events are accompanied by a second 

weight loss at 205ºC and gradual decomposition from 230ºC to 380Cº. The 

gradual weight loss may be explained by gradual decomposition of the organic 

components. 
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Fig.4.1 DTA of BaTiO3-CoFe2O4 precursors in air. 

 

 

Fig.4.2 DTA and TGA results for 25%BaTiO3-75%CoFe2O4 precursor. Heat treatment at 
5°C/min in DTA and 20°C/min in TGA in air. 
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4.2 XRD Results 

In order to know what phases are present in the samples, it is very 

important to calibrate the reference data of each phase of BTO and CFO. The 

wavelength λ that was used in the XRD measurement was 1.54Å. With the 

knowledge that λ=1.54Å and n=1, 2θ can be calculated by Bragg’s Law according 

to the atomic plane spacing d with respect to the phase hkl. Fig.4.3 and Fig.4.4 

show the XRD patterns of BTO and CFO that were sintered at 1100°C, 

respectively. The peaks intensity provides information on the crystallinity and 

concentration of a material. Peak height is affected by orientation of crystals, 

quantity of crystals present and size of crystals. XRD can be used to determine the 

phase distribution of a material.39 Different phases of a material will be identified 

by their crystallographic arrangement. There will be different XRD peaks for each 

phase of a material.40
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Fig.4.3 XRD pattern of BTO sintered at 1100°C. 

 

 

Fig.4.4 XRD pattern of CFO sintered at 1100°C. 
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Fig.4.5 XRD patterns of the samples with a composition of 80%BaTiO3-20% CoFe2O4, 
heat-treated at 500°C, 700°C, 900°C and 1100°C respectively. P is BaTiO3 perovskite 

phase. S is CoFe2O3 spinel phase. 

 

Fig.4.5 shows the XRD patterns of the samples with a composition of 

80%BaTiO3-20% CoFe2O4, which was heat-treated 500°C, 700°C, 900°C and 

1100°C respectively. The diffraction scans are from 15° to 75°. The X-ray 

diffractions showed that the precursor was of poor crystalline quality 500°C 

(black solid lines in Fig.4.5). When the sintering temperature reached 700°C, the 

crystalline BTO phase was formed, but the CFO phase was not well crystallized 

until 900°C. When the sample was sintered at 1100°C, only BTO and CFO phases 

were present without the inclusion of other phases. This is the prerequisite for 

presence of the magnetoelectric coupling effect. The peak intensities of the 

patterns indicated that the BTO phase was present in larger quantities than CFO 

phase. 
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Fig.4.6 XRD patterns of the samples with a composition of  (A) 80%BaTiO3-
20%CoFe2O4, (B) 75%BaTiO3-25%CoFe2O4, (C) 50%BaTiO3-50%CoFe2O4, (D) 

25%BaTiO3-75%CoFe2O4 heat-treated at 1100°C respectively. P is BaTiO3 perovskite 
phase. S is CoFe2O3 spinel phase. 

 
Fig.4.6 shows the XRD patterns of the BTO-CFO samples with four 

different compositions that were all heat-treated at 1100°C. The relative 

intensities of the patterns of the two phases are indicative of the composition of 

the BTO and CFO. Sample A and B indicated that the BTO is rich, while CFO is 

rich in sample C and D.  

4.3 SEM and EDS Measurements 

The sintered samples were first polished and coated with Pt, then were 

examined by Scanning Electron Microscopy (SEM).  SEM images of 

25%BaTiO3-75%CoFe2O4 sintered sample in Fig.4.7 showed that the average of 

the particles size is about 150nm.  
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Fig.4.7 Typical SEM micrograph of the polished surface of the 25%BaTiO3-
75%CoFe2O4 composite sample sintered at 1100ºC for 2 hours. 

 

The results of the EDS are shown in Fig.4.8. The results of the matrix 

show strong Ba and Ti peaks with little appearance of Co and Fe peaks, which 

suggest that the composition of the matrix is BaTiO3; on the other hand, the phase 

in black was identified as CoFe2O4, since the EDS results exhibit strong Co and 

Fe peaks. In the results, probably Ba and Ti peaks appeared in white areas or Co 

and Fe peaks in black area and the reason why Co and Fe still can be observed in 

Ba and Ti area is that the incident electron beam could penetrate several 

micrometers in depth in the sample. Furthermore, XRD results (Fig.4.3-Fig.4.6) 

have confirmed that BaTiO3 and CoFe2O4 exist separately as pure and single 

phases. 
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(a)  

 

(b) 

Fig.4.8 The result of EDS of the 25%BaTiO3-75%CoFe2O4 composite. 

 

4.4 Ferromagnetic Measurement 

Ferromagnetic measurements were carried out on Superconducting 

Quantum Interference Device (SQUID) magnetometer and vibrating sample 

magnetometer (VSM). The magnetic hysteresis loop of 25%BaTiO3-75%CoFe2O4 

composite and the pure CoFe2O4 is shown in Fig.4.9.  
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Fig.4.9 M vs. H for 25%BaTiO3-75%CoFe2O4 composite and pure CoFe2O4 at 300K. 

 

 

Fig.4.10 M vs. T response for 25%BaTiO3-75%CoFe2O4 composite. 
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Fig.4.11 DEA for 25%BaTiO3-75%CoFe2O4 composite with and without magnetized. 

 

Fig.4.10 shows the M-T behavior of specimen over the range of 

0<T<650K. It demonstrates a ferromagnetic phase transition for CoFe2O4 near 

505ºC.  The Curie temperature of the pure CoFe2O4 is almost the same as this 

composite. It is identified that the composite has the ferromagnetic phase. 

4.5 DEA Measurement 

The dependence of the dielectric constant (ε’) with frequency for the 

composite 25%BaTiO3-75%CoFe2O4 is shown in Fig.4.11. The sintered sample 

was 1 inch in diameter with 1mm thickness. The sample was measured by DEA 

before and after magnetized. Fig.4.11 show that the electric permittivity increased 

after the sample was magnetized.  

It can be inferred from the result that the magnetization has a huge effect 
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on the permittivity of the nanocomposite, as the permittivity of magnetized 

sample is larger than that of the unmagnetized sample. This effect can be 

explained by the interaction between the ferromagnetic particles and the 

ferroelectric particles coupling. 

4.6 Discussion 

From the result it can be concluded that most of the research goal has been 

achieved.  Firstly the composite has been made with low expense by sol-gel 

method.  The Curie temperature of ferromagnetic phase in composite was 

measured as 505ºC by VSM which is close to its reported value in literature.  

Attempts at measuring the Curie temperature of Barium Titanate have been made, 

but with the limited amount of data, a conclusive result can not been provided yet. 

The coupling between ferroelectric phase and the ferromagnetic phase was 

examined through the use of a Dielectric Analyze.  An increase of dielectric 

constant as much as 50% after magnetization was observed. 
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Chapter 5:  Conclusion 

BaTiO3-CoFe2O4 biferroic composites have been synthesized by sol-gel 

method. The synthesis process has been described which consisted of two steps. 

The first step was to prepare a mixture of the synthesized ferromagnetic and 

ferroelectric nanoparticles at certain ratio from them into a given shape.  The 

second step was to sinter.  

Four samples with different molar ratios were prepared and studied. The 

precursors of materials have been characterized by DTA and TGA.  

X-ray characterization shows that the precursor was of poor crystallinity 

below 500°C. BaTiO3 and CoFe2O4 phase were formed at 700°C and 900°C 

separately. When the sample was sintered at 1100°C, BaTiO3 and CoFe2O4 phases 

exist separately as pure and single phase. Four samples were heat-treated at 

1100°C for 2 hours. The relative intensities of the patterns of the two phases are 

indicative of the amount of BaTiO3/CoFe2O4 phases. 

The average of the particles size for BTO-CFO composite is about 150 nm 

this was determined by SEM.  

We measured the dielectric and magnetic properties of the 25%BaTiO3-

75%CoFe2O4 composite by DEA, SQUID and VSM. The electric permittivity 

increased 50% after the sample magnetized. This effect can be explained by the 

interaction between the ferromagnetic particles and the ferroelectric particles.  

The result of VSM shows that the phase transition point of the 

ferromagnetic phase in 25%BaTiO3-75%CoFe2O4 composite is near 505ºC.  

 38 



Chapter 6: Future Research  

6.1 Embedded Particles with Two Phases 

Embedded particles are particles with a ferromagnetic core and 

ferroelectric exterior layer or vice versa, shown in Fig.6.1. The outer layer directly 

“grows out” on the core. The advantage of this kind of structure over the sintered 

sample is that the interaction between these two kinds of materials is stronger than 

the sintered composite material. 

The synthesis process consists of two steps. The first step is to produce 

nanoparticles of one material by sol-gel method. Then a second layer can be 

grown by either wet chemical (sol-gel) method or by chemical (CVD) method. 

6.2 Films with Embedded Second Phase Particles 

The films with embedded particles are films with embedded particles 

inside. This kind of structure can be used to make storage media.  

The synthesis process consists of three steps. First step is to make 

nanoparticles by sol-gel method. The second step is to distribute the particles on 

the surface of substrate. The third step is to deposit film on to the substrate by 

either dry chemical or wet chemical method. 

The other approach to make this kind of structure is to disperse the 

nanoparticles into the film forming second phase sol solution. Then coat the 

particle containing sol onto the substrate and form film. 
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Fig.6.1 Illustration of embedded particles with two phases. 
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Appendix: 

 

 

XRD analysis data of BaTiO3  

BaTiO3  

Barium Titanium Oxide 

d (Å) 2θ (º) hkl 

7.652 

5.492 

4.515 

3.924 

3.524 

3.222 

2.802 

2.643 

23.22 

32.57 

39.89 

46.21 

51.82 

57.11 

66.69 

71.29 

102 

110, 104 

006, 202 

204 

116, 212 

108, 214 

208, 220 

217, 311 
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XRD analysis data of CoFe2O4

CoFe2O4

Cobalt Ferrite 

d (Å) 2θ (º) hkl 

4.847 

2.968 

2.531 

2.424 

2.099 

1.926 

1.713 

1.615 

1.483 

1.419 

1.3273 

1.2798 

18.79 

30.76 

36.1 

37.7 

43.71 

47.64 

54.05 

57.54 

63.13 

66.35 

71.48 

74.57 

111 

220 

311 

222 

400 

331 

422 

711 

440 

531 

620 

533 
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