ABSTRACT

Title of Dissertation: THE EFFECTS OF SUPERLEADERSHIP TRAINING ON LEADER BEHAVIOR, SUBORDINATE SELF-LEADERSHIP BEHAVIOR, AND SUBORDINATE CITIZENSHIP

Jonathan F. Cox, Doctor of Philosophy, 1993

Dissertation directed by: Henry P. Sims, Jr., Professor of Management and Organization, College of Business and Management

A field experiment was conducted to assess the effects of SuperLeadership training on trainee leadership behavior, subordinate self-leadership behavior, and subordinate citizenship. The experiment involved approximately 70 focal training participants and 500 subordinates. Participants were assigned to two conditions: a) a training condition, in which participants received training immediately after baseline questionnaire data were collected; and b) a comparison condition, where participants did not receive training until after a second set of data had been collected to assess change. The lag between the first and second rounds of data collection was 10-weeks.

Although data analysis confirmed the psychometric adequacy of the research questionnaires, the broad finding of the study was that the leadership behavior of participants in the training group did not change as a result of the training. Subordinate self-leadership behavior and citizenship also did not appear to change as a result of the training. However, supervisors of the participants reported increased performance of the trainees as a result of the training. This suggested that supervisors may have seen early evidence of positive change as a result of the training.

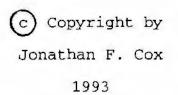
Subsequent investigation determined that although the training was perceived as effective by the participants, reductions-in-force in the host organization were perceived as inhibiting participants' ability to apply the training. Speculation concerning the apparent lack of change explored aspects of the experiment itself, the training, and the transfer setting in the host organization.

THE EFFECTS OF SUPERLEADERSHIP TRAINING ON LEADER

BEHAVIOR, SUBORDINATE SELF-LEADERSHIP BEHAVIOR,

AND SUBORDINATE CITIZENSHIP

by


Jonathan F. Cox

Dissertation submitted to the Faculty of the Graduate School of The University of Maryland in partial fulfillment of the requirements for the degree of Doctor of Philosophy 1993

Advisory Committee:

Professor Henry P. Sims, Jr., Chairman/Advisor Professor Richard A. Guzzo Associate Professor Paul J. Hanges Associate Professor Katherine J. Klein Professor Martin J. Gannon

(1 ML College of Businessand Management (VOLIT: 0 II)

DEDICATION

I wish to thank my parents, David and Jane Cox, for their support and confidence in graduate school as in all else. Their unconditional love, respect, and friendship will always be a source of strength for me. I am honored to dedicate my dissertation to them.

ACKNOWLEDGEMENT

I gratefully acknowledge the extensive contributions of a true SuperLeader, Dr. Henry P. Sims, Jr. of the College of Business and Management. Besides offering conceptual advice throughout this study, he provided on-site support that was critical for implementing the training and research. Dr. Sims has been an enduring source of personal and professional inspiration who quickly emerged as a mentor, colleague, and friend.

Thanks to Dr. Paul J. Hanges of the Department of Psychology for his superb technical support. As he has for so many graduate students over the years, Dr. Hanges contributed to my research in many ways--some small, some large, but all important. Thanks also to Dr. Richard A. Guzzo and Dr. Katherine J. Klein of the Department of Psychology and Dr. Martin J. Gannon of the College of Business and Management for their on-going advice and support.

I want to thank my roommate, Paul Yost, for the luxury of his presence--his grace, wisdom, and friendship--during the dissertation process and over the years. As he and Sheryl begin their lives together, I wish them every joy, every happiness.

iii

TABLE	OF	CONTENTS	

Section	Page
List of Tables	xv
List of Figures	xvii
Chapter I: Introduction	1
Chapter II: SuperLeadership	4
Leadership	4
The Importance of Leadership	5
The New Reality of Leadership	6
SuperLeadership: An Overview	7
The Manz/Sims Typology of Leadership	8
Strongman The Ohio State Leadership Studies Punishment Research	11 13 15
Transactor Path-Goal and Expectancy Theory Reinforcement Theory Goal Setting Theory	16 17 18 20
Visionary Hero Charismatic Leadership Theory Transformational Leadership Theory	21 22 22
SuperLeader Behavioral Self-Management Social Learning Theory Cognitive Behavior Modification Participative Management	24 25 27 29 31
Summary	32
SuperLeadership	34
SuperLeadership and Employee Self- Influence	34

Section

D	-	-	10
5	а	Ч	1

Potential Advantages and Disadvantages	35
The First Point of Leverage: Encouraging Use of Self-Leadership Skills	37
Self-Leadership Meta-Dimensions	38
Behavioral Self-Leadership Strategy Dimensions	39
Self-Observation/Evaluation Self-Reward Self-Goal Setting	39 39 40
Cognitive Self-Leadership Strategy Dimensions	41
Finding Natural Rewards	41
Opportunity Thought and Efficacy Expectations	42
SuperLeadership: Encouraging Followers to Use Self-Leadership Skills	44
Teaching Role	44
Coaching Role	45
Modelling Role	46
Summary	47
The Second Point of Leverage: Establishing a Facilitative Self-Leadership Context through Teamwork	48
SuperLeadership Training Technique and Curriculum	50 51
Research Propositions	52
Proposition 2-1	52
Proposition 2-2	54
Proposition 2-3	54
Proposition 2-4	57
Proposition 2-5	57

Section	Page
Proposition 2-6	58
Proposition 2-7	58
Chapter III: Organizational Citizenship Behavior: An External Criterion for SuperLeadership Training	60
Organizational Citizenship Behavior	60
Dimensions of Organizational Citizen- ship Behavior	63
Altruism Conscientiousness Courtesy Civic Virtue Sportsmanship	64 64 65 65 66
Counterproductive (Anti-Citizenship) Behavior (CB)	66
Dimensions of Counterproductive Behavior	69
Measures of Citizenship	69
Bateman and Organ (1983) and Smith, Organ, and Near (1983)	70
The Ball, Trevino, and Sims (1991) Citizenship Measure	71
OCB dimensions CB dimensions	71 71
Organizational Citizenship Behavior and SuperLeadership Training	73
OCB as an External Criterion	75
OCB and SuperLeader Encouragement of Employee Self-Leadership	77
Summary	79

•

Section	Page
OCB and SuperLeader Encouragement of Teamwork	80
Citizenship and Self-Leadership in in Self-Managed Teams	80
The Mandate for Positive Citizenship in Self-Managed Teams	84
SuperLeadership and Self-Managed Teams	85
Summary	87
Research Propositions	87
Proposition 3-1	88
Proposition 3-2	89
Chapter IV: Method	90
Overview and Site Preparation	90
Organizational Context	91
Training Support Factors at the Outset of Research	92
Organizational Changes During the Research	93
Participants	95
Research Design	98
Overview	98
Selection for Training	99
Design	99
Time Lag	101
Training and Follow-up	103
Training Session I	107
Day 1 Day 2	107 108

Section		Page
	Day 3 Impressions of Session I	108 109
	Training Session II	109
	figuring Session II	
	Impressions of Session II	111
	Follow-up to the Training	111
Mea	sures	113
	Leadership Strategies Questionnaire II, Subordinate Description of Participants (LSQII-sub)	115
	Antecedents of the LSQ	115
	The Scully et al. (1992) and Ball	118
	et al. (1991) LSQ Applications Extending the LSQ to the LSQII-sub	119
	Forming the Final Working Dimen- sions	121
	Assessing Internal Consistency and Within-Unit Consensus for the Final Working Dimensions	123
	Final Working Dimensions	133
	Leadership Strategies Questionnaire II Participant Self-Report (LSQII-train)	134
	Final Working Dimensions	135
	Self-Leadership Questionnaire Subord- inate Self-Report (SLQ)	138
	Final Working Dimensions	138
	Citizenship Behavior Questionnaire, Subordinate Report on Participant- Defined Work Units (CBQ)	143
	Developing the CBQ	144
	Final Working Dimensions	149
	Participant Effectiveness (Subordinate Report and Participant Self-Report)	154
	Participant Performance (Manager Report)	156

.

Section	Page
Final Working Dimensions	157
Subordinate Job Satisfaction	161
Final Working Dimensions	162
Subordinate Desire for Self-Leadership (Subordinate Self-Report)	167
Final Working Dimension	168
Subordinate Demographics	168
Manipulation Check	170
Analyses	170
Chapter V: Results	172
Preliminary Analysis	173
Manipulation Check	174
Time 1/Time 2 Descriptive Statistics	174
Subordinate Demographics Leadership Strategies Questionnaire (LSQII-train, Participant Self-	174 177
Report) Leadership Strategies Questionnaire (LSQII-sub), Self-Leadership Questionnaire (SLQ), and Citizenship Behavior Question- naire (CBQ) (All Subordinate Report)	178
Subordinate Job Satisfaction Participant Performance/Effective- ness (Manager Performance Report, Effectiveness Self-Report, Subordinate Effectiveness Report	179 179
on Participants) Moderator	181
Time 1 Comparability of Clusters Across Condition	181

Section	Page
Tests of Propositions and Exploratory Dimensions/Clusters	187
Leader Behavior	188
Strongman Behavior (Propositions	188
2-4 and 2-5) Transactor Behavior (Propositions	191
2-6 and 2-7) Visionary Hero Behavior	192
(Exploratory) SuperLeader Behavior (Propositions 2-1 and 2-2)	192
Self-Leadership Behavior (Proposition 2-3)	193
Organizational Citizenship/Counter- productive Behavior	194
Organizational Citizenship Behavior (Proposition 3-1)	194
Counterproductive Behavior (Proposition 3-2)	196
Exploratory Dimensions	198
Manager Perceptions of Performance Participant and Subordinate Perceptions of Trainee	198 200
Effectiveness Subordinate Job Satisfaction Moderator	200 200
Univariate Moderator Analysis	201
Summary of Results	207
Chapter VI: Discussion	208
Organization of Chapter VI	208
Post-Training Evaluation Interviews	209

•

.

Section	Page
Overview of Trainee Reactions and Responses to the Training	211
Retrospective Impressions of the Training	211
Responses to the Training	212
Comment on Significant Findings	214
Subordinate Counterproductive Behavior	215
Performance Ratings by Supervising Managers	217
"Desire for Self-Leadership" Moderator Effects	219
Comment on the Overall Lack of Support for the Research Propositions	223
Questions about the Research	224
Time Lag	224
Criterion Measures	225
Individual Differences in Responding to the Criterion Questionnaires	226
Inadequate Sample Size	227
Excessive Homogeneity in the Sample	227
Summary	228
Questions about the Training	229
Insufficient Training Time and Follow-up	230
The Pedagogical Approach	232
Inadequate specification of behavioral objectives	232
Inadequate opportunities to develop SuperLeadership skills	237

Section	Page
Summary	239
The Climate for Transfer in the Host • Organization	240
Stress in the Host Organization	240
Stress as a Distraction for the Trainees and their Direct-Reports Stress as a Fundamental Impediment to SuperLeadership Behavior	241 244
A New Performance Appraisal System	246
Summary	248
An Application of Generalizability Analysis	249
Restricted TRU _{ms} as a Contributor to Unreliable Measurement	256
Inflated ERR _{ms} /n as a Contributor to Unreliable Measurement	256
Summary	257
Conclusions and Directions for Future Research	258
Appendix 2-1: Leadership Training Curriculum	261
Appendix 4-1: Leadership Strategies Question- naire II Items with Origins (Subordinate Report, LSQII-sub)	267
Appendix 4-2: Subordinate Questionnaire Packet	277
Appendix 4-3: Leadership Strategies Question- naire II Items with Origins (Participant Self-Report, LSQII- train)	293
Appendix 4-4: Participant Questionnaire Packet	301

Section		Page
Appendix 4-5:	Self-Leadership Questionnaire Items (Subordinate Self-Report, SLQ)	309
Appendix 4-6:	Citizenship Behavior Question- naire Items (Subordinate Report, CBQ)	313
Appendix 4-7:	Participant Performance Question- naire (Supervising Manager Report)	317
Appendix 4-8:	Job Satisfaction Questionnaire Items (Subordinate Self-Report)	319
Appendix 4-9:	Subordinate Desire for Self- Leadership Questionnaire Items (Subordinate Self-Report)	322
Appendix 4-10:	Manipulation Check Quiz	324
Appendix 5-1:	Time 1/Time 2 LSQII-train Unit- Level Intercorrelations	326
Appendix 5-2:	Time 1/Time 2 LSQII-sub Unit- Level Intercorrelations	346
Appendix 5-3:	Time 1/Time 2 SLQ Unit-Level Intercorrelations	363
Appendix 5-4:	Time 1/Time 2 CBQ Unit-Level Intercorrelations	371
Appendix 5-5:	Time 1/Time 2 Job Satisfaction Individual-Level Intercorrela- tions	375
Appendix 5-6:	Time 1/Time 2 Performance and Effectiveness Unit-Level Inter- correlations	379
Appendix 5-7:	Time 1/Time 2 Unit-Level Inter- correlations (All)	386

Section

Appendix	6-1:	Post-Hoc Interview Protocol	473
Appendix	6-2	Nine Keys to SuperLeadership	476
Reference	es		478

Page

LIST OF TABLES

Numbe	<u>r</u>	Page
2-1	Manz and Sims (1991) Leadership Typology	9
2-2	Manz and Sims (1991) Leadership Typology with Representative Theory and Research	12
2-3	Internal Dependent Variables	53
3-1	External Dependent Variables	74
4-1	Overview of Research Design in Training and Comparison Groups	100
4-2	Training Content of Sessions I and II	104
4-3	Summary of Measures	114
4-4	Leadership Strategies Questionnaire (Subordinate Report, LSQII-sub) Dimensions with Dimension Definitions and Sample Items	116
4-5	Leadership Strategies Questionnaire (LSQII) Factor Loadings	124
4-6	Final Leadership Strategies Questionnaire (LSQII) Dimensions, Grouped by Archetype	129
4-7	Leadership Strategies Questionnaire (Participant Self-Report, LSQII-train) A Priori Dimensions with Sample Items	136
4-8	Self-Leadership Questionnaire (SLQ) A Priori Dimensions with Sample Items	139
4-9	Self-Leadership Questionnaire (SLQ) Factor Loadings	140
4-10	Final Self-Leadership Questionnaire (SLQ) Variables	142
4-11	Citizenship Behavior Questionnaire (CBQ) Dimensions with Sample Items	148
4-12	Citizenship Behavior Questionnaire (CBQ) Factor Loadings	150

Numbe	<u>r</u>	Page
4-13	Final Citizenship Behavior Questionnaire (CBQ) Variables	152
4-14	Participant Effectiveness Items (Subordinate Report and Participant Self-Report Versions)	155
4-15	Participant Performance Factor Loadings	159
4-16	Final Participant Performance Variables	160
4-17	Subordinate Job Satisfaction A Priori Dimensions with Sample Items	163
4-18	Subordinate Job Satisfaction Factor Loadings	164
4-19	Final Job Satisfaction Variables	166
4-20	Desire for Self-Leadership Sample Items	169
5-1	Time 1/Time 2 Dimension Descriptives at the Level of Analysis Used for Proposition Testing	175
5-2	Time 1 Cluster Comparability by Condition	183
5-3	Multivariate Tests of Leadership Propositions	189
5-4	Multivariate Test of Self-Leadership Proposition	195
5-5	Multivariate Tests of Citizenship Propositions	197
5-6	Tests of Exploratory Clusters/Dimensions	199
5-7	Individual Level (Subordinate Desire) Moderator Analysis	203

LIST OF FIGURES

Numb	er	Page
4-1	Participant-Centered Unit of Analysis	97
5-1	Example <u>Desire for Self-Leadership</u> Moderator Effect	206
6-1	Example <u>Desire for Self-Leadership</u> Moderator	221

Chapter I: Introduction

This report describes a field experiment concerning SuperLeadership (Manz & Sims, 1990, 1991a), a leadership perspective that emphasizes employee self-influence rather than external, top-down influence. The manipulation for this experiment, which will include both experimental and control groups, is a leadership training program based on SuperLeadership principles.

This research has three central purposes. First, I will subject SuperLeadership training to its first experimental test. Second, I will attempt to document a relationship between the SuperLeadership manipulation and two citizenship constructs: organizational citizenship behavior (Organ, 1988) and counterproductive behavior (Ball, Trevino, & Sims, 1991; Fisher & Locke, 1991). Third, I will extend the empirical base of research on recently developed measures of leadership behavior (Ball et al., 1991; Scully et al., 1992) and employee citizenship (Ball et al., 1991; Fisher & Locke, 1991; Podsakoff & MacKenzie, 1989; Podsakoff, Mackenzie, Moorman, & Fetter, 1990).

Four central propositions underlie the present research. Two propositions predicted SuperLeadership training effects on two <u>internal criteria</u>: (a) trainee <u>SuperLeader</u> behavior and (b) <u>self-leadership</u> behavior

among subordinates of trainees. The second two central propositions predicted SuperLeadership training effects on the <u>external criterion</u> of citizenship among subordinates of trainees, including (c) organizational citizenship behavior and (d) counterproductive behavior. As used above, the term internal criterion refers to a criterion that follows directly from the SuperLeadership approach and was specifically emphasized in training. Chapter II will introduce and discuss several internal criterion variables. These internal criterion variables concern trainee leader behavior, including SuperLeader behavior and other trainee leader behaviors, and self-leadership behavior among subordinates of trainees (e.g., items.a and <u>b</u> above). The above term external criterion is used to refer to a criterion that will not be specifically emphasized in the training but that should be affected by the training on theoretical grounds. Chapter III will introduce and discuss several external criterion citizenship variables. These variables include organizational citizenship behavior and counterproductive behavior among subordinates of the trainees (e.g., items c and d above).

The following chapters lay the groundwork for testing these propositions. Chapter II presents a review of the origins and development of the SuperLeadership approach.

Chapter III relates SuperLeadership to the established construct of organizational citizenship behavior and the more recent counterproductive behavior construct. Chapter IV describes the methodology used to conduct this research. Chapters V and VI present results and discussion, respectively.

Chapter II: SuperLeadership

This chapter introduces <u>SuperLeadership</u>, a perspective on leadership that has been recently proposed by Charles C. Manz and Henry P. Sims, Jr. (1989, 1990, 1991a). The chapter is structured in several sections. The first section treats leadership generally; it defines leadership, highlights the importance of leadership, and discusses the changing context of leadership. The second section introduces a leadership typology that has been proposed by Manz and Sims (1991a). This typology is an organizing framework for a review of several theoretical perspectives that pertain to leadership and leader behavior. The third section reviews the details of SuperLeadership and develops several research propositions.

Leadership

Because of the complexity of the leadership construct, the term <u>leadership</u> has long presented definitional problems for researchers and practitioners. Almost 20 years ago, for example, Stogdill (1974) observed that "there are almost as many definitions of leadership as there are persons who have attempted to define the concept" (p. 259). Unfortunately, the passage of time and the addition of hundreds of leadership studies have done little to clarify the precise meaning of the term.

These definitional problems arise partly from the imprecise application of lay terminology in leadership research (Yukl, 1989). They may also result from the large number of theoretical perspectives that have been brought to bear on leadership: leadership is usually defined by researchers "according to their individual perspective and the aspect of the phenomenon of most interest to them" (Yukl, 1989, p. 2). Just as there is no single agreed-upon definition of leadership, neither is there a unifying theory of leadership.

In his review of leadership theory and research, Yukl (1989) offers a catchall definition of leadership as "influence processes involving determination of the group's or organization's objectives, motivating task behavior in pursuit of these objectives, and influencing group maintenance and culture" (p. 5). For purposes of this dissertation, I define leadership similarly as a process of influence: if one influences another (typically a leader influencing a follower), then leadership takes place.

The Importance of Leadership

Although leadership has been a lively topic for both research and commentary, some researchers question its importance. Pfeffer (1977), for example, suggested that leaders are so constrained by political and economic

forces that their impact is rather limited. Bass (1990), however, cites empirical evidence that leaders can have a significant effect on organizational performance. Furthermore, Bennis and Nanus (1985) contend that leadership is critical for organizational success: "A business short on capital can borrow money, and one with a poor location can move. But a business short on leadership has little chance for survival" (p. 20). In a more philosophical vein, Bennis (1989) laments the lack of inspired leadership in America, asking "where have all the leaders gone?" (p. 13). Accounts in the popular press of the "leadership crisis" surrounding the 1992 U.S. elections suggest that many Americans share a similar concern.

The New Reality of Leadership

The economic and social context of organizational leadership is rapidly and significantly changing. The competitive pressures of economic globalization place additional demands on leaders to increase organizational flexibility and responsiveness. At the same time, broad social changes in the post-war era are reflected in a labor force that brings higher expectations to the workplace (e.g., Carnevale, 1991). These social trends were evident twenty years ago to Walton (1972), who identified a mismatch between traditional, hierarchical

command-and-control leadership and employees' increasing demands for satisfying work, greater egalitarianism, and greater control over their work lives. New perspectives on leadership may well be necessary to accommodate the demands of the market and the workforce. Charles C. Manz and Henry P. Sims, Jr. (1989, 1990, 1991a) have recently proposed an approach to leadership, <u>SuperLeadership</u>, that they claim can help leaders grapple with the new reality of leadership.

SuperLeadership: An Overview

SuperLeadership is an approach to leadership that emphasizes shifting employees "from dependence on external management to independence". (Manz & Sims, 1990, p. 68). Central to SuperLeadership is employee self-management and initiative: Manz and Sims (1990) style SuperLeadership as an organizing framework for replacing conventional command-and-control leadership with responsible employee self-direction and autonomy. They define a SuperLeader as "one who leads others to lead themselves" (p. 4).

The first comprehensive exposition of SuperLeadership (Manz & Sims, 1989) was a prescription for practicing managers rather than an explication of a tightly constructed psychological theory. Sims and Lorenzi (1992) recently elaborated on the theoretical underpinnings of SuperLeadership, which include social learning theory and

self-management theory. Nevertheless, SuperLeadership is as yet too new to have been explicated as a formal model. Sims and Lorenzi (1992) captured the present status of SuperLeadership by describing it as a "loosely connected, rather than a tight, precise, theoretical model. . . . In fact, it might be more precise to call [SuperLeadership] a <u>perspective</u> rather than a theory" (p. 26).

62

Though not necessarily a formal theory per se, SuperLeadership is rooted in several theoretical perspectives in psychology and organizational behavior. Although a comprehensive review of leadership theory is beyond the scope of this proposal, I will place SuperLeadership in a broader historical context by providing a brief review of selected theory in the next section. Much of this review draws heavily on Yukl's (1989) integrative review of leadership as well as Bass's (1990) more comprehensive reference work.

The Manz/Sims Typology of Leadership

The theoretical review in this section of the proposal will be organized around a leadership typology that has been recently proposed by Manz and Sims (1991a). This typology includes four archetypes (they use the term <u>strategies</u>) of leadership that typify relatively "pure" patterns of connected leader behavior: <u>Strongman</u>, <u>Transactor</u>, <u>Visionary Hero</u>, and <u>SuperLeader</u>. Table 2-1

Table 2-1

Manz and Sims (1991) Leadership Typology

	Strongman	Transactor	Visionary Hero	SuperLeader
Leadership Focus	Commands	Rewards	Visions	Self-Leaders
Power Focus	Position/ Authority	Reward/ Exchange	Relational/ Inspirational	Responsible Autonomy
Source of Wisdom & Direction	Leader	Leader	Leader	Followers with fallback to leader
Follower Response	Fear/ conditional performance	Calculation/ conditional performance	Emotional commitment to leader vision	Emotional Commitment based on self-led ownership
Major Leader Behaviors	*Directing *Commanding	*Interactive goal-setting *Contingent personal rewarding *Contingent material rewarding *Contingent reprimanding	*Communicating vision *Inspiration and persuasion *Idealism *Challenge to the status quo	*Becoming a self-leader *Modelling self-leadership *Encouraging self-set goals *Creating positive thought patterns *Developing self-leadership through reward and con- structive reprimand *Promoting teamwork *Facilitating a self- leadership culture

Note. From "SuperLeadership: Beyond the Myth of Heroic Leadership" by C. C. Manz and H. P. Sims, Jr., 1991 (spring), <u>Organizational</u> <u>Dynamics</u>, p. 22. Copyright 1991 by Charles C. Manz and Henry P. Sims, Jr. Adapted by permission.

provides an overview of the Manz/Sims typology. This typology, which has been reviewed by Scully et al. (1991), is an extension of the theoretical and empirical work of researchers like Burns (1978) and Bass and associates (c.f., Bass, Waldman, Avolio, & Bebb, 1987), who contrast transactional with transformational leadership. Manz and Sims have extended the Burns typology by adding the Strongman and SuperLeader archetypes. This typology is useful for contrasting SuperLeadership's emphasis on employee self-influence, or <u>self-leadership</u>, with alternative views of leader influence.

Included in this review are references to several behavioral variables that were measured for the present research. These variables, like the review that follows, are organized around the Manz/Sims typology. Some of these variables refer specifically to the SuperLeader archetype, the focus of this study; others refer to aspects of the other three archetypes. More detailed discussion of the SuperLeader variables will follow in later sections of this chapter when the SuperLeadership perspective is elaborated.

The <u>Strongman</u>, <u>Transactor</u>, and <u>Visionary Hero</u> archetypes are three traditionally recognized approaches to leadership. In the following paragraphs, these three archetypes will be discussed and related to historical

theory and variables. The theoretical underpinnings of SuperLeadership will then be discussed to illustrate how SuperLeadership differs from past conceptualizations of leadership. The archetypes and their related historical theories are summarized in Table 2-2.

Strongman

The first Manz/Sims archetype, <u>Strongman</u>, represents a prototypical "boss" who engages in highly directive and occasionally punitive and dictatorial leadership (e.g., Schriesheim, House, & Kerr, 1976). Relying primarily on formal position power, Strongman leaders make all key decisions in their organizations virtually alone. Based on their sole judgment, they dictate the appropriate course of action to their subordinates and expect unquestioning compliance.

Research conducted by Scully et al. (1992) has produced some interesting findings regarding Strongman leadership as a response to environmental adversity. This research considered the relationship between the financial performance of high-technology firms at one point in time and the leadership behavior of CEOs in the firms approximately one year later. Scully et al. found that leader behavior was predicted by various indices of financial performance including returns on sales, assets, and investment. Specifically, when these financial

Table 2-2

Manz and Sims (1991) Leadership Typology with

Representative Theory and Research

Archetype	Related Historical Theory/Research
Strongman	Theory X Leadership (e.g., McGregor, 1960)
	Initiating Structure Ohio State Leadership Studies (e.g., Fleishman, 1973)
	Punishment Research (e.g., Arvey & Ivancevitch, 1980)
Transactor	Expectancy Theory (e.g., Vroom, 1964)
	Path-Goal Theory (e.g., House & Mitchell, 1974)
	Goal Setting Theory (e.g., Locke & Latham, 1990)
	Reinforcement Theory (e.g., Luthans & Kreitner, 1985)
	Punishment Research (e.g., Arvey & Ivancevitch, 1980)
Visionary Hero	Charismatic Leadership Theory (e.g., House, 1977)
	Transformational Leadership Theory (e.g., Burns, 1978)
SuperLeader	Behavioral Self-Management (e.g., Luthans & Davis, 1979; Thoreson & Mahoney, 1974)
	Social Learning Theory (e.g., Bandura, 1977)
	Cognitive Behavior Modification (e.g., Meichenbaum, 1974)
	Participative Decision Making (Vroom & Yetton, 1973)

.

indicators were unfavorable, subsequent CEO behavior tended more towards Strongman leadership. Scully et al. interpreted these results as suggesting that leaders tend to be more directive under conditions of financial adversity. Scully et al. will be frequently cited throughout this report because their instrumentation contributed substantially to questionnaires used in the present study.

The Strongman archetype parallels the dominant view of leadership early in this century, when "leadership was mainly a matter of how and when to give directions and orders to obedient subordinates. The strong directed the weak" (Bass, 1985, p. 5). The punitive aspects of the Strongman are similar to McGregor's (1960) conception of Theory X leadership, in which the leader assumes that passive, malingering followers require strong, directive leadership. Leadership research at Ohio State University (e.g., Fleishman, 1973) and research on punishment (e.g., Arvey & Ivancevich, 1980) also relate to Strongman leadership.

<u>The Ohio State leadership studies</u>. The punitive and directive aspects of the Strongman archetype can be seen in the results of programmatic research on leadership at Ohio State University in the 1950s (e.g., Fleishman, 1973). Analysis of questionnaire data from the Ohio State

studies highlighted two broad behavioral factors related to leader effectiveness: <u>consideration</u> and <u>initiating</u> <u>structure</u> (Yukl, 1989). The <u>consideration</u> factor included behaviors reflecting interpersonal sensitivity and supportiveness, such as considering subordinates' feelings and consulting with subordinates before making decisions. The <u>initiating structure</u> factor included leader behaviors related to defining or structuring the work roles and behavior of the leader and her/his subordinates.

The Ohio State research is important for two reasons. First, it marked a critical reorientation toward leader <u>behavior</u> and away from leader traits. Second, it spawned a large body of research on consideration and structuring leader behavior. "Universal theories" of leader behavior were one outcome of this research (Yukl, 1989). One such theory was Blake and Mouton's (e.g., 1982) normative <u>managerial grid theory</u>. Based on the empirical finding that effective leaders are both task- and relationshiporiented, grid theory asserted that leaders should engage in both types of behavior. Despite the relatively long history of grid theory, Yukl (1989) reports little direct empirical support for the proposition that leaders who behave optimally according to the theory will necessarily be more effective in all situations.

Strongman leadership relates most directly to leader <u>initiating structure</u>. Schriesheim, House, and Kerr (1976) compared various operationalizations of <u>initiating</u> <u>structure</u> in behavior questionnaires derived from the Ohio State research. They found that different questionnaires operationalized this dimension in terms of (a) directive structuring behavior and (b) more explicit autocratic and punitive oversight behavior.

As conceptualized by Manz and Sims (1991), the <u>Strongman</u> dimension is inspired by both of these interpretations. As part of its assessment of leader behavior, this research will measure the structuring aspects of Strongman leadership through two behavioral dimensions: (a) <u>instruction and command</u>, providing commands and explicit directions about task performance; and (b) <u>assigned goals</u>, unilateral action by the supervisor to set explicit requirements for task performance. The punitive aspects of Strongman leadership were measured through two additional dimensions: (c) <u>intimidation</u>, that is, implied or explicit threat; and (d) <u>non-contingent reprimand</u>, or reprimand that is not clearly connected with subordinate performance.

<u>Punishment research</u>. The <u>non-contingent reprimand</u> dimension is also inspired by research on punishment in organizations by Arvey and Ivancevich (1980); Ball,

Trevino and Sims (1991); Podsakoff, Todor, and Skov (1982); and Sims (1980). Two central findings emerged from this research. First, non-contingent punishment had very strong, negative effects on subordinate satisfaction but little effect on performance. Second (and contrary to the predictions of reinforcement theory, discussed below), contingent punishment had almost no effect on subordinate performance.

Ball, Trevino, and Sims (1991) conducted a study on the relationship between supervisor punishment and subsequent subordinate performance and citizenship behavior. Ball et al. explored these relationships in 76 triads in 19 organizations consisting of a supervisor, a disciplined subordinate, and an uninvolved co-worker. They found that subordinate personality, perceived harshness of the punishment or reprimand, and the privacy with which the reprimand was delivered affected subsequent subordinate behavior. The Ball et al: study will be cited throughout this report because its instrumentation contributed to questionnaires used in the present study. <u>Transactor</u>

The <u>Transactor</u> leads by constructing and clarifying reward contingencies for subordinates. Transactors engage in instrumental exchange relationships with subordinates by negotiating and strategically supplying rewards in

return for achievement of goals. These rewards, in turn, evoke calculating compliance from subordinates. Four theoretical perspectives that are consistent with Transactor leadership are <u>path-goal theory</u> (e.g., House, 1971; House & Mitchell, 1974), <u>expectancy theory</u> (e.g., Vroom, 1964), <u>goal setting theory</u> (e.g., Locke & Latham, 1990), and <u>reinforcement theory</u> (e.g., Luthans & Kreitner, 1985). Because they are closely related, path-goal theory and expectancy theory will be discussed together.

<u>Path-qoal and expectancy theory</u>. <u>Path-goal theory</u> is an exchange or transactional theory of leadership that is both more situational and more explicitly motivational than grid theory. Path-goal theory relates leader behavior to subordinate performance and satisfaction within a rational expectancy framework. According to <u>expectancy theory</u>, a cognitive theory of motivation, subordinates choose their level of effort based on (a) their <u>expectancy</u> that effort will lead to performance; (b) the <u>instrumentality</u> of performance for outcomes; and (c) the <u>valence</u>, or attractiveness, of the outcomes

Path-goal theory builds on expectancy theory to suggest how leaders can influence subordinates. One path to leader influence is to strengthen the link between behavior and outcomes, the <u>instrumentality</u> of behavior. Leaders can strengthen instrumentality by providing

structure, clarification, or coaching. Leaders may also influence subordinates by increasing the <u>valence</u> or desirability of outcomes for goal accomplishment.

House and Mitchell (1974) elaborated path-goal theory by arguing that the leader can shore up motivational deficiencies by compensating for limitations imposed by the work environment, the task, and the subordinate. Initiation structure-oriented leadership, for example, can clarify reward contingencies when the work is complex or ambiguous. On the other hand, a relations-oriented approach might be more appropriate if the requirements for successful performance are well-known but the work itself is unsatisfying.

Path-goal theory is complex; it has been extended and further modified with additional contingencies for task and subordinate characteristics. Bass (1990) summarizes the current state of research on path-goal theory by saying that "it suggests that to obtain the subordinate's effective performance and satisfaction, the leader must provide structure if it is missing and must supply rewards that are contingent on the adequate performance of the subordinate" (p. 633).

Reinforcement theory. Reinforcement theory (e.g., Luthans & Kreitner, 1985; Scott & Podsakoff, 1982) is also related to Transactor leadership. In practice,

reinforcement theory is quite compatible with path-goal theory except--in the behaviorist tradition--it lacks a cognitive component. In their book on organizational behavior modification, Luthans and Kreitner (1985) discuss how reinforcement principles can be applied in organizational settings. One of their major conclusions is that a combination of positive reinforcement and extinction is more effective than contingent punishment in influencing behavior. Furthermore, they advocate that punishment, if administered at all, be strictly contingent on subordinate behavior. This recommendation is also consistent with past research on punishment, discussed above (e.g., Arvey & Ivancevich, 1980).

The present study includes three behavioral variables to assess Transactor leadership: <u>contingent material</u> <u>reward</u>, <u>contingent personal reward</u>, and <u>contingent</u> <u>reprimand</u>. These variables are consistent both with reinforcement theory and with path-goal theory's emphasis on behavioral instrumentality. Although these behavioral variables are not part of SuperLeadership per se, later discussion will suggest that they may be compatible with SuperLeadership. Research attests to the overall effectiveness of goal setting and leader contingent reward (Sims & Lorenzi, 1992).

<u>Goal setting theory</u>. <u>Goal setting theory</u> (e.g. Locke & Latham, 1990; Latham, Erez, & Locke, 1988) is also related to Transactor leadership. Goal setting theory proposes that goals can increase performance when combined with feedback on task performance. One particularly robust finding is that challenging, specific goals lead to higher performance than no goals, vague "do your best" goals, or unchallenging goals. Locke and Latham (1988) stress that commitment to goals is important for goal effectiveness; goal commitment is highest, they contend, "when people think they can attain the goal and when there are values associated with goal attainment" (p. 240).

In expectancy terms, then, goal commitment is highest when employees share an <u>expectancy</u> that effort will lead to goal attainment and assign positive <u>valence</u> to the outcomes of goal attainment. As such, goal setting theory is an important complement to path-goal theory. Furthermore, goal setting theory shares the cognitive focus of expectancy theory and path-goal theory. This cognitive focus is evident in the relationship between goals and performance that is proposed by the theory: goals assigned by the supervisor affect the employee's personal goals and her/his <u>self-efficacy</u>, or confidence in her/his ability to perform well. Personal goals and selfefficacy, in turn, affect performance.

Past research on goal setting has found that there is little difference in the effects of assigned goals versus participatively set goals. However, this study will also assess Transactor leadership through a fourth variable, <u>interactive goal setting</u> (goals established jointly by the supervisor and the subordinate). This variable is consistent with both path-goal theory and goal setting theory. Recall that <u>assigned goals</u> were earlier considered part of the Strongman archetype. The rationale for categorizing these behaviors is that assigned goals seem more consistent with the autocratic style of the Strongman; interactive goals, however, are more in keeping with the give-and-take of Transactor leadership. According to goal setting theory, however, both approaches to setting goals can enhance performance.

Visionary Hero

The <u>Visionary Hero</u> leads by inspiring followers and creating "highly absorbing and motivating visions" (Manz & Sims, 1991a, p. 21). This leadership archetype captures the spirit of <u>charismatic</u> and <u>transformational</u> leadership theories (e.g., Bass et al., 1987; Burns, 1978; Conger, 1989). Yukl (1989) indicates that these two perspectives overlap considerably but that transformational leadership tends to be defined more broadly than charismatic leadership.

Charismatic leadership theory. Charismatic leadership theory is closely associated with the work of House (1977) and Conger and Kanungo (1987). Like the definition of leadership generally, Yukl (1989) notes that the definition of charisma varies among different researchers. Locke et al. (1991) contend that charisma "is most visible as a power to arouse emotions in others" (p. 32). House (1977) described charismatic leaders as self-confident and convinced of their own beliefs and ideals. He viewed the identification of followers with the leader as a dynamic process of trust-building, where the leader's ability to inspire and to supply vision arouses commitment and dedication among followers.

Conger and Kanungo (1988; Conger, 1989) view charismatic leadership as an emergent, interactive process between leaders and followers. To Conger, charisma is <u>attributed</u> to leaders by followers: identifying leader behaviors that evoke the attribution of charisma, then, is key to understanding the charismatic leadership process. Like House (1977), Conger (1989) identified communication of vision as an important leader behavior; he also identified challenge to the status quo as an important part of charismatic leadership.

<u>Transformational leadership theory</u>. <u>Transformational</u> <u>leadership</u> was proposed by Burns (1978) as an alternative

to transactional leadership. According to Burns, the transformational leader inspires followers to look beyond their own immediate needs towards a longer-term view of the common good. An organizational study by Bass (1985) suggests that the inspiring aspects of transformational leadership can engender substantial commitment from followers. In this study, transformational leaders were "seen to lead the respondents to work 'ridiculous' hours and to do more than they ever expected to do" (Bass, 1985, p. 22).

Although Burns originally proposed that the effect of transformational leadership was positive, Bass (1985) later suggested that transformational leaders could have profoundly negative effects as well: both heros and villains could qualify as transformational leaders. Also unlike Burns, who classified leaders as either transactional or transformational, Bass (1985, 1990) asserted that leaders use a mixture of both approaches. For Bass, then, transformational leadership is a supplement rather than an alternative to transactional leadership. Although research on charismatic and transformational leadership is relatively new, research has associated transformational leader behavior with task commitment and with subordinate ratings of effectiveness (Bass, 1990).

Perhaps because this line of research is relatively new, the core characteristics of charismatic and transformational leaders have not yet shaken out. Four behavioral variables were chosen to represent the Visionary Hero archetype. The first two, <u>vision</u> and <u>idealism</u>, correspond to House's (1977) and Conger's (1989) conceptions of the charismatic leader. The third, <u>stimulation and inspiration</u>, reflects House's (1977) and Bass's (1985) observations on the inspiring aspects of charismatic and transformational leadership. The fourth variable, <u>challenge to the status quo</u>, corresponds to Conger's (1989) portrayal of the charismatic leader as one who pushes the system to change.

SuperLeader

The archetypes discussed above illustrate how three traditional types of leaders position themselves as the primary agents of influence in their organizations. The Strongman influences followers through direction or threat while the Transactor acts on followers as an exchange or reinforcing agent. The Visionary Hero, in turn, inspires or transforms followers.

In contrast, the <u>SuperLeader</u> emphasizes employee self-influence rather than external, top-down influence (Manz & Sims, 1990, 1991a). Scully et al. (1992) describe SuperLeaders as "operat[ing] under the belief that

followers are an influential source of wisdom and direction. These [Super]leaders create 'self-leaders' by evoking in them a sense of ownership* (p. 7).

The following paragraphs will relate three theoretical perspectives that were instrumental in developing key SuperLeadership variables measured for this research: <u>behavioral self-management</u> (e.g., Mahoney & Arnkoff, 1978), <u>social learning theory</u> (e.g., Bandura, 1977), and <u>cognitive behavior modification</u> (e.g., Meichenbaum, 1977). <u>Goal setting theory</u> (e.g., Locke & Latham, 1990), discussed above, is also related to SuperLeadership as well as Transactor leadership. The theory discussed below will be referred to periodically later on, when SuperLeadership is elaborated in greater detail.

<u>Behavioral self-management</u>. <u>Behavioral self-</u> <u>management</u> (BSM) adopts a behavioral perspective by extending the principles of reinforcement theory to the self-control of behavior: self-structuring of one's own reinforcement environment is central to BSM. Mahoney and Arnkoff (1978) contend that before the emergence of the self-control perspective, behaviorism had assumed <u>environmental determinism</u>: the forces shaping behavior were seen to lie primarily in the environment rather than the individual. Research on self-control "ushered in the

acceptance of a <u>reciprocal determinism</u>. . .[where] the human organism was no longer viewed as a passive product of environmental influence, but as an active participant in his or her own complex development" (Mahoney & Arnkoff, 1978, p. 690).

BSM, closely associated with the work of Thoreson and Mahoney (e.g., 1974), has been used in clinical settings to modify behavior through self-influence strategies such as self-reinforcement, stimulus control, and rehearsal (Mahoney & Arnkoff, 1978; Thoreson & Mahoney, 1974). Luthans and Davis (1979) first suggested that BSM might also be applied by managers in organizational settings. They defined BSM as "the manager's deliberate regulation of stimulus cues, covert processes, and response consequences to achieve personally identified behavioral outcomes" (p. 43). At about the same time, Manz and Sims (1980) wrote an article on "Self-Management as a Substitute for Leadership" that drew upon the work of Thoreson and Mahoney. This article, which foreshadowed SuperLeadership, defined elements of self-management and introduced the question of how leaders can "lead others to lead themselves."

Central to SuperLeadership's emphasis on breaking traditional patterns of top-down influence is encouragement of behavioral self-control among

subordinates. Four SuperLeadership behavioral variables, encourages self-goal setting, encourages self-reward, encourages finding natural rewards, and encourages selfobservation and evaluation are related to the BSM perspective.

Social learning theory. Mahoney and Arnkoff (1978) argued that reciprocal determinism was only one half of the behavioristic revolution in the mid-60s; the other half concerned "a reappraisal of the radical behavioristic neglect of 'private events'" (p. 690). One outcome of this reappraisal was the idea that thoughts, like behavior, could be modified using principles of behavior change. Social learning theory, which followed on the heels of the cognitive "covert conditioning revolution" of the mid-1960s, provided a framework within which to view the effects of cognition on behavior (Mahoney & Arnkoff, 1978).

Closely associated with Bandura (e.g., Bandura, e.g., 1977, 1989), social learning theory rejects the environmental determinism of traditional behaviorism in favor of "triadic reciprocal causation" in which action, self-generated responses (cognitions), and the environment all affect behavior (Bandura, 1989, p: 1175). Social learning theory explains the acquisition and regulation of behavior in terms of "direct, vicarious, and symbolic

sources of information" (Bandura, 1977, p. 192). As such, it has both learning and motivational implications.

Bandura (1977) posits two cognitive sources of behavioral control. The first involves interpretation, symbolic representation, and later symbolic construction of behavior consequences based on vicarious observation of <u>models</u>. The second source involves generating internal standards through self-goal setting and then comparing performance with these standards through self-observation. Contingent self-reward (positive appraisal) after goal accomplishment guides and motivates continued improvement in performance; negative appraisals motivate corrective change.

According to social learning theory, symbolic processes provide a link between goals and action (Bandura, 1989). One central mediator of these processes is <u>self-efficacy</u> or <u>efficacy expectation</u>, "the conviction that one can successfully execute the behavior required to produce the outcomes" (Bandura, 1977, p. 193) Selfefficacy was earlier mentioned in connection with goal setting theory (e.g., Locke & Latham, 1990). Efficacy epitomizes the centrality of internal representation to social cognitive theory, which links mind and behavior to an extent not admitted by conventional behaviorism. When efficacy is high, higher self-set goals, firmer commitment

to goals, and persistence in mastery attempts result. Just as important, however, efficacy expectations affect anticipatory scenarios and affective reactions. Those with high self-efficacy "visualize success scenarios that provide positive guides for performance"; those with low efficacy are burdened by disruptive apprehensive cognitions and "failure scenarios that undermine performance" (Bandura, 1989, p. 1176).

Social learning theory emphasizes the importance of self as a cause of behavior. Analogously, SuperLeadership emphasizes the importance of the individual (i.e., employee) rather than the environment (i.e., supervisor) by stressing self-regulation of behavior. One SuperLeadership variable measured in this study, <u>encourages efficacy expectations</u>, follows directly from social learning theory. Three additional variables, <u>encourages self-observation and evaluation</u>, <u>encourages self-reward</u>, and <u>encourages self-goal setting</u>, were mentioned above in relation to BSM but are also consistent with social learning theory. These variables will be described later on in greater detail.

<u>Cognitive behavior modification</u>. Like social learning theory, <u>cognitive behavior modification</u> reflected the cognitive revolution of the 1960s. Meichenbaum's (e.g., 1977) research on self-instructional training is

one prominent example of cognitive behavior modification. Meichenbaum's (1977) research was intended to "conceptualize cognitive events and to understand their role in behavior change" (p. 11). Central to selfinstructional training is the "internal dialogue" of private consciousness such as self-talk and its associated attributions, interpretations, self-reinforcements, and beliefs.

Self-instructional training tries to promote adaptive behavior by identifying and modifying self-statements and thought patterns. Two techniques that can be used to foster adaptive patterns of thought are cognitive modeling and rehearsal. Indicative of these techniques is the use of "coping" imagery, where the individual imagines a challenge and then imagines her/himself successfully coping with, though not necessarily mastering, the challenge. The goal of self-instructional training is to substitute adaptive thought patterns--patterns that aid coping--for maladaptive ones. Self-instructional training is essentially a therapeutic technique for cognitive restructuring that promotes the adaptive "success scenarios" discussed by Bandura (1989). The SuperLeadership variable encourages opportunity thought (Manz, 1992) has been included to capture the adaptive thought patterns proposed by Meichenbaum (e.g., 1977) and

Bandura (e.g., 1989). This variable has been related to employee self-leadership by Manz and Sims (1990) and Manz (1992).

Participative management. Theory on participative management does not directly relate to any of the variables measured for this study. However, it does bear on the status of SuperLeadership as a participative leadership perspective. Considered as a continuum, participation can range from autocratic decision making, where the supervisor acts alone, through consultation and joint decision making to delegation, where the leader grants subordinates the authority and responsibility for making decisions (Yukl, 1989).

Perhaps the most prominent theoretical statement on participative leadership has been offered by Vroom and Yetton (1973) and Vroom and Jago (1988). Vroom and Yetton (1973) outlined a normative theory concerning the appropriate degree of subordinate participation in decisions based on the importance of decision quality and decision acceptance by subordinates. Vroom and Jago (1988) revised this model to offer clearer guidance to the practicing manager and to incorporate concerns about time constraints and longer-term employee development.

The Vroom et al. models propose specific rules for decisions that require some degree of management

involvement. For certain decisions, the prescriptions of these model apply to the SuperLeader as well. Furthermore, participation and joint decision making are certainly not inconsistent with the SuperLeader's approach.

Unlike the contingencies covered by Vroom et al., however, SuperLeadership largely places the default decision making and control functions with the follower, as long as the issues fall reasonably within her/his area of responsibility. Furthermore, the SuperLeadership perspective extends past work on participation by offering more specific behavioral prescriptions for increasing employee involvement. From a SuperLeadership perspective, these leader behaviors should produce self-led organization characterized by extreme participation. This is compatible with the earlier observations of Burns and Stalker (1961) on organic organization, which they claim to be particularly well-suited to unstable environments. In the organic organization, directive leadership is supplanted by extensive employee involvement, shared authority, and lateral communication flows. Summary

The past few pages have related several theoretical perspectives to SuperLeadership and three more conventional perspectives on leadership. Note that the

four leadership archetypes identified by Manz and Sims (1991a) are not necessarily clear-cut or exclusive, as indicated by a second-order factor analysis of leader behavior by Ball, Trevino, and Sims (1991). Their analysis found that transactional and inspirational leader behaviors generally collapsed into a single dimension. The aversive and directive aspects of Strongman leadership, however, emerged as separate factors. Interestingly, leader encouragement of self-leadership also emerged as a separate factor. Thus, it is important to consider the Manz and Sims typology as mainly conceptually-based rather than empirically confirmed.

The remainder of this chapter will treat SuperLeadership in greater detail and discuss eleven selfleadership strategy variables, most of which have already been mentioned. These variables are <u>internal</u> variables because they are directly related to SuperLeadership and were emphasized in training. Ten of these variables will be related to the strategic <u>content</u> of SuperLeadership; the eleventh variable will be related to the team-based social <u>context</u> of SuperLeadership. This chapter will end by outlining the SuperLeadership training program that was evaluated in the present study; it will also present several research propositions.

SuperLeadership

SuperLeadership and Employee Self-Influence

SuperLeadership organizes and, in turn, is rooted in two key concepts related to employee self-influence: behavioral self-management (BSM; Mahoney & Arnkoff, 1978; Thoreson & Mahoney, 1974) and self-leadership (e.g., Manz, 1992). The discussion of BSM earlier in this chapter will not be repeated here. However, recall that Luthans and Davis (1979) defined BSM as "the manager's deliberate regulation of stimulus cues, covert processes, and response consequences to achieve personally identified behavioral outcomes" (p. 43). Manz (1986) later offered a more generalized definition of BSM as "a set of strategies that aides employees in structuring their work environment" (p. 590). This definition was offered as part of a broader conceptualization of BSM in employment settings that more fully incorporated cognition into the process of employee self-influence (e.g., Bandura, 1977; Meichenbaum, 1977). Manz (1986) asserted that the behavioral outcomes of conventional BSM are often specified by upper-level management rather than by employees themselves. As such, he argued that conventional applications of BSM are more an internalized assertion of organizational control than true employee self-control.

Manz (1986) argued that employee self-influence is fully expressed only when employees exercise selfmanagement within a context of proactive selfdetermination and relative autonomy. He adopted the term <u>self-leadership</u> to capture this more comprehensive form of self-influence. Self-leadership, of course, subsumes effective behavioral self-management. However, Manz viewed self-led employees as setting their own agendas; they perceive and respond to--even anticipate--their own requirements and the requirements of the job itself rather than the demands of their supervisors.

Recall that Luthans and Davis's (1979, p. 43) earlier definition of BSM incorporated "personally identified behavioral outcomes" that nod in the direction of Manz's self-leadership. However, Luthans and Davis were specifically addressing a managerial audience. Manz applied his idea of self-leadership to <u>all</u> employees. What he proposed was a community of self-leaders. <u>Potential Advantages and Disadvantages</u>

The SuperLeader's mandate, "to lead others to lead themselves" (Manz & Sims, 1990, p. 5), follows directly from Manz's concept of self-leadership. Leaders become SuperLeaders, according to Manz and Sims (1991a), by encouraging self-leadership among followers. In so doing, they claim, the SuperLeader harnesses "the strength and

wisdom of many persons--by helping to unleash the abilities of the 'followers' (self-leaders) that surround them" (p. 22). Manz and Sims argue that the SuperLeader does this by using two points of leverage spanning both the <u>content</u> and <u>context</u> of organizational self-leadership. First, s/he encourages employees to use several selfinfluence strategies that collectively constitute the <u>content</u> of self-leadership. Second, s/he introduces supportive elements into the social <u>context</u> of work by promoting teamwork among subordinates.

Before turning to how leaders can promote employee self-leadership, consider why they might want to do so. Manz and Sims (1990) argue that substantial benefits accrue to leaders who replace external influence with employee self-leadership: costly oversight can be reduced, command bureaucracies can be trimmed to permit greater organizational flexibility and responsiveness, and management is freed from routine supervision to focus on longer-range issues. Furthermore, employee selfleadership may enable gains in quality and productivity that are impossible when leaders--formal "managers"--act alone. At Hewlett-Packard for example, engineers in one plant were able to cut defects in half by modifying production processes. However, when "HP turned to its workers. . .they practically rebuilt the operation--and

slashed defects a thousandfold" (Port & Carey, 1991, p. 16). From a SuperLeadership perspective, this Hewlett-Packard plant is a community of self-leaders.

The competitive advantages offered by gains in productivity, flexibility, and quality need to be considered in light the downside risk of SuperLeadership: employees may not react in a responsible way if given the opportunity. Manz, Keating, and Donnellon (1990) offer an ethnographic account of difficulties involved in establishing the levels of trust required for the transition to comprehensive employee self-leadership.

The First Point of Leverage: Encouraging

Use of Self-Leadership Skills

The first point of leverage for the aspiring SuperLeader is to encourage employees to use several selfleadership strategies. Many strategies are possible and, indeed, a major challenge in conceptualizing this project was to derive a manageable set of self-leadership strategy variables. Six strategy variables, however, seem to capture the developing stream of thought on selfleadership. These strategies--distilled from Manz and Sims (1990), Manz (1992), Scully et al. (1992), and Ball et al. (1991)--were mentioned above in the review of theory related to SuperLeadership. Note that these strategies constitute <u>internal criteria</u> for the present

study; as mentioned earlier, these internal criteria follow directly from the content and context of SuperLeadership and were emphasized in the training. (More complete discussion of potential self-management strategies is offered by Luthans & Davis, 1979; Mahoney & Arnkoff, 1978; Manz, 1992, 1986; and Manz & Sims, 1980). In their review of several of these strategies, Manz and Sims (1990, 1991a) classified self-leadership strategies as mainly <u>cognitive</u> or <u>behavioral</u>. This classification will be followed for expositional purposes.

Self-Leadership Meta-Dimensions

Before discussing these six strategy variables, which have already been introduced, I will first introduce two new strategy meta-variables that were measured in the present research. These two meta-variables, <u>self-problem</u> <u>solving</u> and <u>initiative</u>, are neither clearly behavioral nor cognitive; they were recently proposed by the Ball et al. (1991) research team as more comprehensive indicators of the level of self-leadership among employees. The <u>self-</u> <u>problem solving</u> dimension refers to spontaneous problem resolution by subordinates without supervisory intervention. <u>Initiative</u> refers to subordinates' assuming greater responsibility for autonomous task completion and for spontaneously initiating change. Discussion now turns to the three behavioral and three cognitive self-

leadership strategies that can support self-problem solving and initiative.

Behavioral Self-Leadership Strategy Dimensions

The first five self-leadership strategies to be presented have been discussed extensively by Manz and Sims (1990), who consider them primarily <u>behavioral</u> in origin and effect. These strategies include <u>self-</u> <u>observation/evaluation</u>, <u>self-reward</u>, and <u>self-goal</u> <u>setting</u>.

<u>Self-observation/evaluation</u>. <u>Self-observation /</u> <u>evaluation</u> (Bandura, 1977a; Mahoney & Arnkoff, 1978; Thoreson & Mahoney, 1974) involves self-generated feedback. Self-observation in the workplace could be informal, such as periodically attending to general levels of performance, or formal, such as maintaining detailed quality logs. An example of a successful industrial application of self-observation is supplied by Krigsman and O'Brien (1987), who reduced waste in a manufacturing setting by instructing employees to monitor their use of materials.

<u>Self-reward</u>. <u>Self-reward</u> (Bandura, 1977a; Mahoney & Arnkoff, 1978; Thoreson & Mahoney, 1974) involves selfadministered reinforcers, either overt or covert. Selfreward promotes self-control by virtue of its immediacy; it can be used to fill gaps in external reinforcement with

self-reinforcers such as special treats, self-praise, positive thoughts, and the like. In their study of a manufacturing organization, Manz and Sims (1987) found that subordinate ratings of supervisor effectiveness were positively related to supervisor encouragement of selfreward. Self-reward is a potentially useful strategy for focusing attention and sustaining motivation.

<u>Self-goal setting</u>. Self-set goals are standards for behavior or performance that are established by employees themselves (e.g., Bandura, 1977a; Bandura, 1989; Mahoney & Arnkoff, 1978). Although the conditions determining the relative effectiveness of self-set versus assigned goals are unclear and probably complex, self-set goals may be better-accepted by employees (Erez, Earley, & Hulin, 1985; Latham, Erez, & Locke, 1988). Note also that effectiveness criteria are themselves context-specific and subject to various interpretations. From a selfleadership perspective, self-goal setting involves both self-definition and self-quantification of criteria. The primary role of the SuperLeader is to communicate overarching organizational goals so that subordinates' self-defined goals are appropriate and consistent with broader organizational objectives.

Toto, Inc., a Japanese manufacturer, practices an industrial application of self-goal setting that also

includes aspects of cuing and self-observation. Toto employees "post their monthly personal goal, such as reducing the time to set up a certain machine. . . (and use) a table to plot their progress" (Neff, 1991, p. 22). Manz and Sims (1990, 1991a) view self-set goals as particularly important to self-leadership. <u>Cognitive Self-Leadership Strategy Dimensions</u>

To narrow its scope to manageable proportions, this study is primarily behavioral in focus. Nevertheless, Manz and Sims consider encouraging use of cognitive strategies for self-leadership to be an important part of SuperLeadership. Consequently, three broad cognitive strategy variables were included to provide more complete coverage of SuperLeadership. These strategies are inspired by Manz and Sims (1990) and the much more detailed discussion of Manz (1992). These strategies, which pertain to <u>cognitive</u> restructuring of the work environment (e.g., Mahoney & Arnkoff, 1978), include <u>finding natural rewards</u>, <u>opportunity thought</u>, and <u>efficacy</u> <u>expectations</u>.

<u>Finding natural rewards</u>. Finding natural rewards at work is a variant of self-reward, discussed above. Natural rewards were central to Manz's (1986) idea of self-leadership because they promote motivational, not just behavioral, autonomy. Manz and Sims (1990) suggest

that employees pursue natural rewards from their work by "deliberately seeking out and building in [work] activities that provide feelings of competence, selfcontrol, and purpose" (p. 33). These feelings are reminiscent of task characteristics that promote internal or intrinsic motivation in the established traditions of job characteristics theory and cognitive evaluation theory (e.g., Deci, 1980; Hackman & Oldham, 1980; Hackman, Oldham, Janson, & Purdy, 1975). By choosing how their work will be done, according to Manz and Sims, employees can maximize its natural rewards according to their own unique needs and values. In short, Manz and Sims propose utility maximization through self-job design. Self-job design, they argue, shifts the seat of motivation from the organization or supervisor to the employee; performance, then, should follow dictates from within rather than from above.

Opportunity thought and efficacy expectations. Neck (1992) is presently conducting a detailed study of the effect of several cognitive strategies on employee performance. Two additional variables, <u>encourages</u> opportunity thinking (Manz, 1992) and <u>encourages efficacy</u> <u>expectations</u> (Bandura, 1977a), are useful proxies for several of these strategies. <u>Opportunity thinking</u>, which has been related to self-leadership by Manz and Sims

(1990) and Manz (1992), is a strategy for approaching adversity that emphasizes opportunities for effective performance rather than obstacles to performance. <u>Efficacy expectations</u>, confidence in one's ability to perform well and meet prospective challenges, parallels Bandura's (1977, 1989) concept of self-efficacy discussed above. Eden (1984) and Eden and Shani's (1982) research on the <u>Pygmalian effect</u> and <u>self-fulfilling prophecy</u> has found that followers perform better when the leader expresses confidence in them.

Opportunity thinking has the potential to reduce blocks to performance by focusing thought on potential solutions rather than obstacles. Efficacy expectations, in turn, remove self-doubt as an additional obstacle to performance. Neck (1992) cites a range of studies documenting performance gains from the use of cognitive strategies related to opportunity thought and efficacy expectations. In the organizational literature, Manz, Adsit, Campbell, and Mathison-Hance (1988) suggest that low self-efficacy can inhibit performance in organizations by leading the individual to view "potential situational difficulties" as "greater than they really are" (p. 449). Consistent with this interpretation, their field study found that lower-performing managers focused more on personal skill deficiencies as hindrances to performance

while higher-performers tended to focus on less-personal, external hindrances to performance.

Though novel in their specific application to cognition in the workplace, opportunity thinking and efficacy expectations are rooted in established approaches to cognitive-behavior therapy. Meichenbaum (1977), for example, encourages clients to "increase their awareness of the negative self-statements and images they emit" as part of a broader focus "on the client's learning to employ specific problem-solving and coping skills" (p. 198).

SuperLeadership: Encouraging Followers to Use Self-Leadership Skills

Encouraging followers to use the self-leadership skills described above is an important, concrete point of leverage for the aspiring SuperLeader. The techniques for doing this follow from three key roles that are played by the SuperLeader according to Manz and Sims (1990): <u>teacher</u>, <u>coach</u>, and <u>model</u>.

The SuperLeader's role as <u>teacher</u> is important in the early stages of the transition to self-leadership. At this stage, teaching or direct instruction can be an efficient way to transmit self-leadership strategies. Instruction might be formal, perhaps occurring in staff meetings or during one-on-one performance appraisal or

problem-solving sessions. Instruction might also occur on an informal, as-needed basis.

The SuperLeader's role as <u>coach</u> is more lasting and more characteristic of her/his daily leadership responsibilities. SuperLeader-coaches can promote employee independence by externally reinforcing selfleadership: Manz and Sims (1991a) "are basically in sympathy with. . .[the viewpoint] that material rewards should be used to reinforce desirable job-related behaviors" (p. 27).

To some extent, this aspect of their coaching responsibilities implies a reversion to Transactor leadership. Note, however, that the SuperLeader's reinforcement is directed towards self-leadership behaviors generally rather than completion of specific tasks. Furthermore, it is "essential" that SuperLeaders "construct a reward system that emphasizes selfadministered and natural rewards [from the work itself] and, in a comparative sense, de-emphasizes externally administered rewards" (Manz & Sims, 1991a, p. 27).

Coaching is an ongoing, interactive supplement to the SuperLeader's instructional efforts. Hence, the SuperLeader offers "constructive suggestions. . . and coaching on effective self-leadership behavior and thinking" (Manz & Sims, 1990, p. 55) with an emphasis on

thought-provoking questions in the Socratic tradition. The Transactor <u>interactive goal setting</u> strategy might be a particularly useful coaching tool early on. However, because it implies ongoing dependency by the follower, this is not a SuperLeadership strategy per se.

Manz and Sims note that the SuperLeader may occasionally find it necessary to reprimand. However, they advocate that reprimand be treated as an occasion for constructive diagnosis and problem-solving.

In her/his role as model of self-leadership, the SuperLeader can also encourage self-leadership by simply practicing it. Manz and Sims (1980, 1981; Sims & Manz, 1981-82) have written extensively about modelling and vicarious learning in the workplace. They recommend modelling to help employees establish new behaviors, change existing behaviors, and activate previously learned behaviors. They particularly advocate modelling leadership behaviors such as self-leadership, which "are among the most likely [behaviors] to be copied and imitated" by employees (Manz & Sims, 1990, p. 89). The SuperLeader practices self-leadership at work to demonstrate "standards for self-reinforcement" (Manz & Sims, 1980, p. 365). Subordinates can observe these standards at work with their own supervisors, interpret them in light of the needs they identify in themselves and

the organization, internalize them vicariously, and evaluate their own performance accordingly (Manz & Sims, 1980).

Weiss (1977, 1978) has documented modelling effects in organizations by operationalizing modeling as similarity between supervisor and subordinate behavior. Weiss has found that behavioral similarity between supervisors and subordinates was related to subordinate perceptions of supervisor success and competence. These findings are broadly consistent with Manz and Sims's (1990) position that SuperLeaders can promote self-led followership by successfully using and modelling selfleadership techniques.

Summary

The last few paragraphs have described the <u>content</u> of SuperLeadership: self-leadership meta-dimensions and strategies that center on the behavior and cognitions of the individual. However, Manz and Sims (1990) also stress the important contributing role of an organizational <u>context</u> that supports self-leadership through <u>teamwork</u>. By <u>context</u> I mean the social or interpersonal aspects of people working together. Establishing a team-based work context is a second point of leverage for the SuperLeader.

<u>The Second Point of Leverage: Establishing</u> <u>a Facilitative Self-Leadership Context</u>

Through Teamwork

Manz and Sims (1990) treat the organizational context of self-leadership largely in terms of teamwork and cooperation; they consider teamwork an important part of the "self-leadership system" (p. 182). They argue that problems will arise at work that cannot be solved by individuals working alone; fresh perspectives or direct assistance will sometimes be necessary. Self-leadership under these conditions will sometimes require peer collaboration and cooperation. By encouraging this collaboration, SuperLeaders can foster a norm in which every employee is a potential resource for others. To reflect the importance of teamwork to SuperLeadership, this study incorporates an eleventh dimension, <u>teamwork</u>, in addition to the ten self-leadership meta-dimensions and strategy dimensions discussed above.

Sims and Manz (1982; Manz & Sims, 1987) pursued their emphasis on teamwork and cooperation as a result of a field study they conducted in a small, non-unionized auto parts assembly plant in the southern United States. Operations in this plant were organized around small teams of employees for each segment of the production process. Sims and Manz discovered that these teams were

springboards for self-leadership throughout the plant: teams collaborated within and between themselves to set their own production and quality targets, conduct and evaluate quality inspections, schedule production, and track inventory. They also selected their own members, assigned work, and handled internal discipline. Moreover, they performed all of these tasks without routine management intervention.

The daily examples of self-leadership exercised by these teams were punctuated by periodic meetings that amounted to group problem-solving sessions. Sims and Manz (1982) analyzed the content of discussion during these meetings. They found that the tone of these meetings was occasionally contentious, particularly when internal discipline was an issue, but also problem-focused, generally nondirective, involving, and centered on selfresponsibility. Sims and Manz interpreted these meetings as concentrated exercises in self-leadership.

The plant observed by Sims and Manz (1982) is a textbook example of self-managing team working (e.g., Cummings, 1978; Hackman, 1987). Self-managed teams, carefully planned and implemented, can promote selfleadership where the unit of analysis is the group. Originally, SuperLeadership, while entirely compatible with self-managed teams, was limited mainly to the

individual. The present training program emphasized the importance of teamwork in Manz and Sims's (1990, 1991a) recent statements by including modules related to promoting teamwork and cooperation among subordinates. However, note that the training in this research is <u>not</u> intended to promote self-managing teams per se; establishing self-managing teams involves sociotechnical analysis and design that were beyond the scope of the present intervention.

SuperLeadership Training

The last few paragraphs in this section of the proposal will briefly introduce the SuperLeadership training program that was used as the manipulation for this experiment. Dr. Henry P. Sims, Jr. was responsible for designing and carrying out this training. The content of training was organized around the two points of SuperLeadership leverage discussed above: self-leadership strategies and teamwork. The material was taught through a combination of written cases, video-cases, video illustrations, interactive discussion, role-playing, and lecture. The training took approximately three working days, or a total of about 20 hours. It is important to note that the <u>design</u> of the training itself was <u>not</u> within the scope of this research. The training design was an holistic exogenous variable.

Technique and Curriculum

The trainer used an interactive, participatory approach to training. Training participants were seated to encourage them to talk with each other. Training was organized through modules, each of which conveyed one or more specific points to the trainees. A comprehensive inventory of modules used for the training, with descriptions of each module, is presented in Appendix 2-1. These modules will be discussed further in Chapter IV.

The trainer began each module by presenting a problem or issue for consideration by the trainees--a case, a problem, a video, or an exercise. Participants then grappled with the issue, made preliminary decisions, and came to preliminary conclusions. Lecture and/or discussion were then used to introduce an organizing framework to clarify possible approaches or solutions to the problem and offer tips for pragmatic application. Short videos were frequently used to supplement discussion or to illustrate a point. Although the material presented in training was based on theory, the workshop was entirely pragmatic. Training focussed on how participants could apply ideas to their own jobs and work situations.

A follow-up session was scheduled with the participants to reinforce the training and to offer suggestions for overcoming problems with implementation.

This session offered participants an opportunity to give and receive feedback and advice in an informal atmosphere.

Research Propositions

This final section distills the above discussion of SuperLeadership into a set of seven research propositions. These propositions specify <u>internal criteria</u> for the effectiveness of SuperLeadership training. Table 2-3 summarizes the internal dependent variables that were measured in the present study; the table also tags each variable with the research proposition that corresponds to it, described below.

The first proposition pertains to <u>trainees' own</u> perceptions of the extent to which they encourage the two self-leadership meta-dimensions, the eight specific behavioral and cognitive self-leadership dimensions, and the additional dimension of teamwork. Following a significant multivariate statistical test, trainee perceptions for each dimension were to be tested separately. Consequently, the following proposition potentially contained nine implied subpropositions, one corresponding to each of the above dimensions.

<u>Proposition 2-1</u>: Participant perceptions of their own SuperLeader behavior will reflect greater gains in the training group than the comparison group.

Table 2-3

Internal Dependent Variables

SuperLeadership/Self-Leadership (Propositions 2-1, 2-2, and 2-3)

Meta-Dimensions (Content)

Encourages Self-Problem Solving

Encourages Initiative

Behavioral Dimensions (Content)

Encourages Self-Goal Setting

Encourages Self-Observation and Evaluation

Encourages Self-Reward

Cognitive Dimensions (Content)

Encourages Finding Natural Rewards

Encourages Opportunity Thought

Encourages Efficacy Expectations

Teamwork (Context)

Encourages Teamwork

Other Leader Behaviors

Strongman (Propositions 2-4 and 2-5)

Instruction and Command

Non-Contingent Reprimand

Intimidation

.

Assigned Goals

Transactor (Propositions 2-6 and 2-7)

Contingent Material Reward

Contingent Personal Reward

Contingent Reprimand

Interactive Goals

Visionary Hero

Vision

Stimulation and Inspiration

Idealism

Challenge to the Status Quo

The second proposition pertains to <u>subordinate</u> perceptions of the extent to which the <u>trainees</u>, their supervisors, encourage the two self-leadership metadimensions, the six behavioral and cognitive selfleadership dimensions, and the additional teamwork dimension. Following a significant multivariate statistical test, subordinate perceptions for each dimension were to be tested separately. Consequently, the following proposition potentially contained nine implied subpropositions.

<u>Proposition 2-2</u>: Subordinate perceptions of participant SuperLeader behavior will reflect greater gains in the training group than the comparison group.

The third research proposition pertains to <u>subordinate</u> perceptions of their <u>own</u> self-leadership behavior across the nine dimensions. As before, following a significant multivariate statistical test, subordinate perceptions for each dimension were to be tested separately. The following proposition also potentially contained eleven implied subpropositions.

<u>Proposition 2-3</u>: Subordinate perceptions of their own self-leadership behavior will reflect greater gains in the training group than the comparison group.

The fourth, fifth, sixth, and seventh research propositions pertained to perceptions of trainee behavior related to the Strongman and Transactor dimensions of the Manz and Sims (1991a) leadership taxonomy. These propositions were exploratory only. Recall that Ball et al. (1991) found distinct factors for SuperLeader, Strongman, and transactional or visionary leader behaviors. While preliminary, these results suggest that SuperLeadership is to some extent behaviorally distinct from other approaches to leadership.

Based on the earlier discussion of the Manz/Sims typology, it seemed reasonable that Strongman tactics would be incompatible with SuperLed organization. The directive aspects of Strongman leadership (e.g., Schriesheim, House, & Kerr, 1976), for example, should be incompatible a priori with SuperLeadership's emphasis on employee self-leadership and extreme employee participation. Furthermore, the punitive or aversive aspects of Strongman leadership (e.g., Schriesheim, House & Kerr, 1976)--non-contingent reprimand, for example-should be incompatible with SuperLeadership's emphasis on encouraging efficacy. Manz and Sims (1990) note that "one objective of the SuperLeader is to encourage selfconfidence as an important part of the transition to selfleadership" (p. 150). Reprimand, particularly non-

contingent reprimand, threatens this transition because it "induces guilt and depression and diminishes selfconfidence" (p. 151).

Manz and Sims (1990) argue that use of reprimand should be considered particularly carefully early in the transition to employee self-leadership, when subordinates may lack confidence and when "the superior-subordinate relationship becomes very delicate" (p. 148). They recommend that reprimand, if used at all, should be contingent on specific behavior and should be reserved for particularly serious employee behavior. Based on the incompatibility of Strongman behavior with SuperLeadership, SuperLeadership training was expected to promote behaviors that would compete with and suppress Strongman leadership.

The fourth proposition pertains to <u>trainees' own</u> perceptions of the extent to which they engage in four types of Strongman leader behavior (<u>instruction and</u> <u>command</u>, <u>non-contingent reprimand</u>, <u>intimidation</u>, and <u>assigned goals</u>). Following a significant multivariate statistical test, trainee perceptions for each Strongman dimension were to be tested separately. Consequently, the following proposition potentially contained four implied subpropositions, one corresponding to each Strongman dimension. In contrast with Propositions 2-1 to 2-3, note

that this proposition implies reverse directionality: unlike perceptions of SuperLeader and self-leadership behavior, perceptions of Strongman behavior were predicted to <u>decrease</u> as a result of the training.

<u>Proposition 2-4</u>: Participant perceptions of their own Strongman behavior will reflect greater decreases in the training group than the comparison group.

The fifth proposition pertains to <u>subordinate</u> perceptions of the extent to which <u>trainees</u>, their supervisors, engage in Strongman leader behavior. Following a significant multivariate statistical test, subordinate perceptions for each Strongman dimension were to be tested separately. Consequently, the following proposition also potentially contains four implied subpropositions. Note that this proposition also implies reverse directionality.

<u>Proposition 2-5</u>: Subordinate perceptions of participant Strongman behavior will reflect greater decreases in the training group than the comparison group.

On the other hand, despite the distinctness of SuperLeader behavior found by Ball et al. (1991), the above discussion of the SuperLeader's coaching role suggests that Transactor behavior is compatible with the early stages of the transition to SuperLeadership. The sixth proposition pertains to <u>trainees' own</u> perceptions of the extent to which they engage in four types of Transactor leader behavior (<u>contingent material reward</u>, <u>contingent personal reward</u>, <u>contingent reprimand</u>, and <u>interactive qoals</u>). Following a significant multivariate statistical test, trainee perceptions for each Transactor dimension were to be tested separately. Consequently, the following proposition potentially contained four implied subpropositions, one corresponding to each Transactor dimension.

<u>Proposition 2-6</u>: Participant perceptions of their own Transactor behavior will reflect greater increases in the training group than the comparison group.

The seventh proposition pertains to <u>subordinate</u> perceptions of the extent to which <u>trainees</u>, their supervisors, engage in Transactor behavior. Following a significant multivariate statistical test, subordinate perceptions for each Transactor dimension were to be tested separately. So the following proposition also potentially contained four implied subpropositions.

<u>Proposition 2-7</u>: Subordinate perceptions of participant Transactor behavior will reflect greater increases in the training group than the comparison group.

The effects of SuperLeadership training on inspirational leadership are unclear. The results of Ball et al. (1991) indicate a degree of conceptual overlap between transactional and inspirational leadership. As such, SuperLeadership training might be expected to increase inspirational leadership as well. On balance, however, I had no a priori basis on which to develop a proposition concerning the effect of SuperLeadership training on inspirational leader behavior. Chapter III: Organizational Citizenship Behavior: An External Criterion for SuperLeadership Training

Chapter II described SuperLeadership and outlined several internal criteria dimensions that were to be used to assess the effectiveness of the new SuperLeadership training program. This chapter shifts the focus to citizenship behavior, my external criterion, and discusses several dimensions of this external criterion. As mentioned earlier in this report, these external criterion dimensions were not specifically emphasized in the training but should be affected by the training on theoretical grounds. The pages that follow will discuss the relationship between citizenship behavior and SuperLeadership. In this discussion, I will review an established citizenship construct, organizational citizenship behavior (OCB), and assess its status as an external criterion for SuperLeadership training. I will then introduce counterproductive behavior (CB), a newer construct. The chapter will end with two research propositions that were tested as part of the experiment.

Organizational Citizenship Behavior

Organ (1988) defines <u>organizational citizenship</u> <u>behavior</u> (OCB) as "behavior [by the employee] that is discretionary, not directly or explicitly recognized by the formal reward system, and that in the aggregate

promotes the effective functioning of the organization" (p. 4). Noting that discretionary behaviors vary in the likelihood with which they will be rewarded, Organ (1988) views OCBs as "nonrequired contributions that are regarded by the person as relatively less likely to lead along any clear, fixed path to formal rewards" (p. 5).

To qualify as OCB, then, a behavior must not be "directly or formally recompensed by the organization's reward system" (Organ, 1988, p. 5). To Organ (1988), for example, a salesperson's extra (discretionary) effort to increase sales volume is <u>not</u> OCB if pay and promotional opportunities are tied to sales volume. In this case, the extra effort produces rewards for the individual directly as a matter of organizational policy. Organ acknowledges that OCBs can have a beneficial cumulative effect for an individual and that the individual may consider these long-term benefits. The key to OCBs, however, is that their returns are "not contractually guaranteed," are "at best probabilistic," and are "at most an inference on the part of the individual who contemplates such returns" (Organ, 1988, p. 5).

OCBs can benefit the organization either directly or indirectly. Moreover, they can focus personally on an individual co-worker or more impersonally on the organization as an institution. Examples of OCB include

volunteerism, assistance between co-workers, unusual attendance or punctuality, and active participation in organizational affairs (Farh, Podsakoff, & Organ, 1990).

OCB can be considered one of several classes of prosocial organizational behavior (POB) that have been identified by Brief and Motowidlo (1986). They defined the broader POB construct as:

behavior which is (a) performed by a member of an organization, (b) directed toward an individual, group, or organization with whom he or she interacts while carrying out his or her organizational role, and (c) [is] performed with the intention of promoting the welfare of the individual, group, or organization toward which it is directed (p. 711).

POB differs slightly from OCB in that it also encompasses prosocial gestures that do not promote effective <u>organizational</u> functioning per se. Organ (1988) illustrates this distinction through the example of an employee who helps a co-worker cover up a potentially serious mistake. This act can be considered POB because it benefits the co-worker. However, it does not qualify as OCB because it is ultimately dysfunctional for the organization as a whole.

Considered as individual events, OCBs are almost taken for granted--as when one employee helps another who

is having difficulty with a task. Such acts are too small to be noticed by management or directly rewarded in a performance appraisal. Perhaps for this reason, OCBs seem to occur without a calculated expectation of tangible gain or compensation. Though individually inconsequential, however, Organ (1988) contends that OCBs have a beneficial cumulative effect for organizations that is reflected in a strong undercurrent of cooperation.

OCEs imply a selfless sensitivity to co-workers or the organization as a whole--a free willingness to cooperate as an organizational player--that is difficult or impossible to directly reward or specifically require in an employment contract. Smith, Organ, and Near (1983) stress the benefits of OCBs for "lubricat[ing] the social machinery of the organization" (p. 654). They liken OCB to spontaneous behavior that "goes beyond role prescriptions" (p. 653), noting that Katz (1964) considered such behavior essential for strong organizational social systems. The organization, then, gains a measure of systemic resiliency from these small, spontaneous acts of selfless sensitivity, cooperation, and uncompensated contribution.

Dimensions of Organizational Citizenship Behavior

Research specifically directed toward OCB is relatively recent, extending back only to the early 1980s.

Much of this early research has been directed toward defining and clarifying the OCB construct. Two OCB behavioral factors have been repeatedly identified in past research: <u>altruism</u> or <u>helping</u> behavior and <u>conscientiousness</u> or <u>generalized compliance</u> (e.g., Farh, Podsakoff, & Organ, 1990; Organ, 1988; Organ & Konovsky, 1989; Smith, Organ, & Near, 1983).

Altruism. The altruism factor includes face-to-face behavior that directly aids others (Smith et al., 1983). Examples of altruistic OCB include volunteering for extra work or helping other employees who are new, who have been absent, or who have heavy work loads. Altruism increases the efficiency and flexibility of the work force; it reduces the need to devote organizational resources to "purely maintenance functions" and helps the social system accommodate environmental variance (Organ, 1988, p. 8).

<u>Conscientiousness</u>. The second factor, <u>conscientiousness</u>, is more impersonal. It reflects behavior that is "indirectly helpful to others involved in the system" but is not targeted directly toward a specific co-worker (Smith et al., 1983, p. 657). Examples of conscientiousness include above-average attendance and holding breaks to reasonable length. Conscientiousness signals an incremental investment in the productivity of

the organization and lends a measure of orderly predictability to the social system.

Although the above two dimensions are welldocumented, Organ (1988) notes that the dimensionality of OCB has not been definitively established. He suggests three additional OCB dimensions that had not been explored at the time of his review: <u>courtesy</u>, <u>civic virtue</u>, and <u>sportsmanship</u>.

<u>Courtesy</u>. Whereas altruism involves helping others solve problems that have already arisen, <u>courtesy</u> reflects a degree of interpersonal sensitivity that helps avoid problems from the outset (Organ, 1988). Examples of courtesy come readily to mind, such as being considerate of the impact of one's actions at work on others. The benefit of courtesy for the organization stems mainly from interpersonal conflict avoided.

<u>Civic virtue</u>. <u>Civic virtue</u> suggests an incremental investment in the global welfare, not just the productivity, of the organization. It reflects citizenship, belonging, and constructive engagement. An example might be rank-and-file attendance at meetings that are not required. Organ (1988) contends that civic participation benefits the organization indirectly by "bringing more knowledge and points of view to bear upon the formulation of [organizational] policy" (p. 13). The

short-term cost of civic virtue in terms of productivity, he contends, can be offset by the benefits of better longterm decisions for the organization. The benefit of civic participation to the organization, increased knowledge and expressed diversity of opinion, is indirect but nevertheless potentially substantial (Organ, 1988).

<u>Sportsmanship</u>. <u>Sportsmanship</u> is defined primarily as the obverse of negative actions such as "complaining, petty grievances, railing against real or imagined slights, and making federal cases out of small potatoes" (Organ, 1988, p. 11). Sportsmanship spares the organization from the distracting dissipation of ceaseless grievances and infighting. This dimension has undergone considerable reconceptualization since its inception and is now considered by Ball, Trevino, and Sims (1991) to be a class of <u>anti-citizenship</u> behavior.

Counterproductive (Anti-Citizenship) Behavior

In their review of research on job satisfaction, Fisher and Locke (1991) reported research relating general job satisfaction to positive behaviors such as OCB. They also report research relating general job satisfaction to negative or "non-compliant" behaviors, defined by Puffer (1987) as "non-task behaviors that have negative organizational implications" (p. 615). Fisher and Locke focus particularly on behavioral responses to job

dissatisfaction, which have not been explored as extensively as satisfaction-related behaviors. Conceptual typologies of likely responses to job dissatisfaction include physical and psychological withdrawal, perceptual adjustment, and protest actions (Fisher & Locke, 1991).

Based on preliminary research, Fisher and Locke (1991) developed an inductive taxonomy of negative behavioral responses to job dissatisfaction. A range of possible behaviors were identified in two early studies by asking respondents about actions they took, considered taking, or had seen taken by others in response to job dissatisfaction. Subsequent research built on this initial item pool, categorized the items into dimensions, and developed ratings of the relative "badness" of the items. Four behavioral dimensions from the Fisher and Locke taxonomy were later conceptualized as examples of <u>anti-citizenship behavior</u> by Ball et al. (1991).

As mentioned earlier, the four dimensions explored by Ball et al. were derived inductively through research reported in Fisher and Locke (1991). Clearly, four dimensions do not exhaust the range of negative behaviors that might be exhibited by employees. The present study will focus specifically on items from three of these four dimensions in order to extend the existing empirical base established by Fisher and Locke and Ball et al. However,

note that the better-established organizational citizenship behavior construct remains the primary focus of this chapter.

This study substitutes the term counterproductive behavior (CB) for anti-citizenship behavior to accommodate the possibility that these negative behaviors might not directly oppose OCB to the extent implied by the term anti-citizenship. Sims, for example, has suggested that OCBs and CBs may be separate, coexisting dimensions that range from zero to some positive quantity (personal communication, March 13, 1991). Accordingly, reduced (increased) citizenship behavior need not necessitate a corresponding increase (reduction) in counterproductive behavior. The absence of citizenship behavior, for example, might only signal passivity with respect to positive citizenship. Counterproductive behavior, however, involves activity that has specifically negative implications for the organization. The term counterproductive behavior will be used instead of anticitizenship behavior throughout the rest of this report.

Although Ball et al. (1991) found a substantial negative (-.74) correlation between organizational citizenship behavior and counterproductive behavior, their second-order factor analysis supported the conceptual distinctness of these two classes of behavior. This

finding offers preliminary support for the separate dimensionality of OCB and CB.

Dimensions of Counterproductive Behavior

The first CB dimension included in the Ball et al. (1991) study was physical avoidance or escape from the job as a whole, reflecting behaviors like chronically late arrival to work or falsely calling in sick. The second dimension, more narrowly defined as avoidance of the work itself, includes gold-bricking behavior like letting others do one's own work or looking busy while doing nothing. The third dimension, defiance and resistance to authority, includes behavior like deliberately ignoring rules and regulations or talking back to supervisors. The fourth dimension, aggression, revenge, retaliation, getting even, includes destructive behaviors such as sabotage, lying, and purposeful interference with the work of others. For reasons that will be discussed later in the methods section, the aggression dimension was not included in the present research.

Measures of Citizenship

The development of OCB, like many emergent constructs in organizational research, is connected to the development of instruments used to measure its dimensions. The following paragraphs briefly trace the development of

OCB and CB measures, including those used in the present research.

The Bateman and Organ (1983) and Smith, Organ, and Near (1983) Measures

Two measures of OCB have been widely used in past OCB research. The first is a 30-item measure that was written by Bateman and Organ (1983) to tap behaviors thought related to the OCB construct. Subsequent analysis revealed psychometric problems including range restriction and inappropriate wording (Organ, 1988).

Partly in response to these problems, Smith, Organ, and Near (1983) produced a shorter, 16-item behavioral questionnaire that has also been popular. This measure was developed inductively by asking supervisors to "identify instances of helpful, but not absolutely required, job behavior" (Smith et al., 1983, p. 656). Factor analysis produced two factors, generally interpretable as the primary <u>altruism</u> and <u>conscientiousness</u> dimensions that have already been described.

The Smith et al. (1983) guestionnaire has been the measure of choice in most OCB research (e.g., Dalton & Cosier, 1988; Farh, Podsakoff, & Organ, 1990; Organ & Konovsky, 1989; Smith, Organ, & Near, 1983). This research has generally reproduced the two-factor solution

reported by Smith et al. (1983), though not without exception (e.g. Dalton & Cosier, 1988; Organ & Konovsky, 1989).

<u>The Ball, Trevino, and Sims (1991) Citizenship</u> <u>Measure</u>

OCB dimensions. As of 1988, Organ (1988) observed that OCB research was too new to have produced a definitive measure. Podsakoff and MacKenzie (1989) developed a new OCB survey in an attempt to more completely cover the full five dimensions of OCB proposed by Organ (1988). This measure was later validated by Podsakoff, MacKenzie, Moorman, and Fetter (1990) and used in modified form by Moorman (1991). Ball et al. (1991) adapted items from this measure for use in a citizenship behavior questionnaire that taps both OCB and CB. The Ball et al. citizenship measure, which was chosen for use in this research, will be discussed later in the methods section of this proposal. For now, however, note that the OCB dimensions in this instrument include items representing four of the five dimensions discussed by Organ (1988) with the exception of sportsmanship (see below).

<u>CB dimensions</u>. The Ball et al. (1991) citizenship measure also included CB dimensions based largely on items generated in research reported by Fisher and Locke (1991).

Besides including the four CB dimensions discussed above, the Ball et al. citizenship measure also included items that were originally part of the OCB <u>sportsmanship</u> dimension (Podsakoff & MacKenzie, 1989). This dimension had originally been identified in a reanalysis of data from Bateman and Organ (1983; Organ, 1988). However, Ball et al. objected to the label of this OCB dimension, claiming that the semantic content of the questionnaire items was more directly interpreted as reflecting <u>complaining</u> than sportsmanship.

Ball et al. (1991) renamed the dimension accordingly and included it in adapted form from Podsakoff and MacKenzie (1989) as a fifth dimension of counterproductive behavior in their citizenship measure. The wording of items in this dimension is consistent with the interpretation that they represent active CB: they refer to active, negative behaviors (e.g., "Since this incident occurred, he/she has consumed a lot of time complaining about trivial matters" (Ball, Trevino, & Sims, 1991, p. 50). The Ball et al. interpretation of complaining as a dimension of CB was supported by their second-order factor analysis, which found that this dimension loaded with the other four dimensions of counterproductive behavior contained in their citizenship measure.

The CB dimensions identified by Fisher and Locke (1991) and Ball et al. (1991) do not have an extensive track record in research. To extend their base of empirical support, four of these dimensions--<u>avoidance of</u> <u>the job, avoidance of work, defiance, and complaining</u>-were measured in the present study for exploratory purposes. The body of this chapter will be devoted to relating SuperLeadership specifically to the moreestablished OCB construct. CBs will be mentioned occasionally, however, and the research propositions presented at the end are written to reflect both OCB and CB. Table 3-1 summarizes the external dependent variables (OCB and CB dimensions) that were measured in the present study.

Organizational Citizenship Behavior

and SuperLeadership Training

The remainder of this chapter will discuss OCB as an external criterion for the present SuperLeadership training intervention. Schmitt and Klimoski (1991) define criteria as "evaluative standard[s]. . .we can use to index the level of person, group, or organization effectiveness" (p. 158). Appropriate criterion specification requires a delicate balancing act between the yin and yang of deficiency and contamination: on one hand, the criterion must be sufficient to register the

Table 3-1

External Dependent Variables

Organizational Citizenship Behavior (Proposition 3-1)

Conscientiousness

Altruism

Courtesy

Civic Virtue

Teamwork

Counterproductive Behavior (Proposition 3-2)

Physical Avoidance or Escape from the Job as a Whole

Avoidance of the Work Itself

Defiance and Resistance to Authority

Complaining

effect of a predictor; on the other, it must be adequately circumscribed so that it is both interpretable and minimally affected by other sources of causation. This balance lies at the heart of the criterion problem. OCB satisfies the above requirements as a criterion for the present experiment's SuperLeadership training manipulation.

OCB as an External Criterion

Although it continues to evolve as a construct, OCB is rapidly emerging as an interpretable and practical criterion of employee effectiveness. OCB is sufficient and meaningful for the present application because it is a coherent, theoretically-grounded composite criterion of employee effectiveness; it includes a whole class of behaviors that are individually specified yet conceptually unified (e.g., Fisher & Locke, 1991). Furthermore, OCB is minimally contaminated for the present study because it is under the volitional control of individual employees (e.g., Bateman & Organ, 1983; Organ, 1988). In contrast, consider plausible alternative criteria for training effectiveness such as turnover or productivity. These criteria are contaminated by factors beyond the scope of this intervention such as the job market, product development and demand cycles, general economic conditions, and production technology. Critically, and

unlike OCB, these criteria are also relatively narrowlydefined. Consequently, they may not capture the breadth of the SuperLeadership intervention.

The sufficiency of OCB is reflected in the wide range of variables that have been related to it. Although a comprehensive review of these variables and their relationships to OCB is beyond the scope of this proposal, past research has found relationships between various facets of OCB and employee demographic characteristics (Smith, Organ, & Near, 1983), perceived fairness (Farh, Podsakoff, & Organ, 1990; Moorman, 1991; Organ & Konovsky, 1989), job satisfaction (Bateman & Organ, 1983; Smith, Organ, & Near, 1983), supervisor punishment behavior (Ball, Trevino, & Sims, 1991), and task scope (Farh, Podsakoff, & Organ, 1990). The interested reader is referred to Organ (1988) for a thorough and relatively recent review of OCB research.

In the paragraphs that follow, I will argue that OCB was expected to emerge and increase as the transition to SuperLeadership progressed. Recall that two central elements characterize SuperLeadership: self-leadership and teamwork. I will relate these elements to OCB in the sections that follow.

OCB and SuperLeader Encouragement of Employee Self-Leadership

According to Manz and Sims (1990, 1991), the SuperLeader directly encourages a norm of employee selfleadership that will ideally become a mandate as the leader extricates herself from the command-and-control cycle. As the transition to self-leadership progresses, the SuperLeader serves less as a source of direction and command than "as a source of information and experience, as a sounding board, and as the transmitter of overall organizational goals" (Manz & Sims, 1991, p. 31). The role of consultant and facilitator, which typifies the SuperLeader's relationship with mature self-leaders, further reinforces the self-leadership norm. Ideally, the result is a cadre of nominal "followers" that have extensive, often decisive personal responsibility for their work and how they will carry it out. I contend that the personal responsibility mandated under SuperLeadership will foster employee behaviors that are consistent with Organ's conception of OCB.

No direct references were found in the organizational psychology literature to a connection between OCB and mandated employee responsibility of the kind that should emerge under SuperLeadership. Suggestive parallels were found, however, in the counselling psychology literature

on therapy groups. Antonuccio, Davis, Lewinsohn, & Breckenridge (1987), for example, found that group cohesiveness was positively related to nondirective leader behavior in eight psychoeducational therapy groups. These findings are consistent with earlier work by Angell and DeSau (1974), who experimentally explored the relationship between leadership and group process in leaderless, democratically-led, and directively-led therapy groups. Only the leaderless group showed increases in problemsolving behavior over time. The authors attributed this to the <u>absence</u> of direct leader support, which may have produced "discomfort, anxiety, and unusual behavior in the common social sense [that] are related to group growth and problem solving" (p. 55).

Seligman and Desmond (1975) offered an historical review of leaderless group therapy that supports the observations of Antonuccio et al. (1987) and Angell and DeSau (1974). According to Seligman and Desmond, proponents of leaderless group therapy observe that "patients are actually helped by their peers and are cast into a constructive role of 'helper'" (p. 281). Group cohesiveness and shared leadership result from leaderless therapy's "denial of leader role[,] with resultant heightened 'group-centeredness' and individual sense of responsibility" (p. 282).

The generalizability of this research and commentary to non-therapeutic settings cannot be assumed. Nevertheless, it is broadly consistent with the idea that an absence of hierarchical control can promote greater personal responsibility, mutual assistance, and collaborative problem-solving among nominal followers. It is also consistent with Manz and Sims's (1990, 1991) assertion that self-leadership, with its accompanying feelings of ownership, commitment, and personal responsibility, can fill the void created by dissolving hierarchical reporting structures.

<u>Summary</u>. It seemed reasonable that OCBs would be promoted by the SuperLeader's emphasis on employee selfleadership rather than top-down direction. Mutual assistance and interpersonal cohesion imply altruism and courtesy, for example, setting aside for a moment the confrontational aspects of therapeutic introspection. Moreover, personal responsibility seems consistent with the OCB dimension of conscientiousness. On the other hand, several dimensions of CB should be suppressed under SuperLeadership. Heightened sensitivity to personal responsibility viz-a-vis co-workers, for example, should reduce physical avoidance from the job, avoidance of the work itself, and retaliation. By promoting a SuperLeader orientation toward employee self-leadership, then, the

training was expected to increase employee OCB and reduce CB.

OCB and SuperLeader Encouragement of Teamwork

The discussion to this point makes a case that OCB should be promoted under SuperLeadership through selfleadership. The findings from the counselling psychology literature are suggestive because they trace a possible connection between self-leadership and OCB-like behavior among nominal followers in interventions that are <u>not</u> explicitly team-oriented. This section extends this notion by suggesting that the SuperLeader's direct encouragement of teamwork will also promote OCB-like behavior. The following research and commentary will link OCB-like behavior specifically to <u>team</u> self-leadership. This discussion will be used as a foil to suggest that OCB should also result from the SuperLeader's encouragement of teamwork.

MUTERSAL.

ć

<u>Citizenship and self-leadership in self-managed</u> <u>teams</u>. The organizational psychology literature contains extensive discussion of self-managing team-based production arrangements. Self-managed team interventions are necessarily sweeping, systemic, and sometimes wrenching for the participants (c.f., Rice, 1955; Trist, Susman, & Brown, 1977; Walton, 1972). As a consequence, the generalizability of this research to work settings is

to some extent offset by its complexity, which defies definite causal statements about leadership, selfmanagement, and OCB. Nevertheless, self-managing work teams share important similarities to SuperLed work contexts as portrayed by Manz and Sims (1990, 1991): they combine non-directive leadership from above with an emphasis on employee self-leadership and teamwork. Selfmanaged teams are also characterized by employee behaviors that are strikingly akin to OCB.

Consider, for example, some of the signal characteristics of self-managed work teams that have been observed by Hackman (1987). These characteristics unite self-leadership, teamwork, and OCB: team members feel personally responsible and accountable for their work; they self-lead by monitoring and directing their own performance and by taking corrective action on their own initiative (conscientiousness); and they actively help co-workers and constructively seek guidance, help, or resources from others (altruism). In a similar vein, the Tavistock Institute characterized self-managing teams as facilitating social relationships and cooperation that seem reminiscent of OCB (Pearce & Ravlin, 1987).

Walton's (1972) description of a team-based food processing plant is a case-in-point of how work behaviors and relational patterns among self-managed team members

seem to capture several aspects of OCB. Below-average absenteeism in the plant and broad employee involvement in developing and implementing new production techniques, for example, suggest a great deal of conscientiousness. Employee altruism was evident on-site in extensive mutual assistance and adjustment. Civic virtue, both within and outside the plant, was evident in extensive selfgovernance by shop-floor team members and unusual activity in public affairs in the surrounding community. This experiment in self-managed team working--which also included extensive technical innovations not described here--reported impressive reductions in overhead and gains in quality.

Kolodny and Kiggundu (1980) illustrated the importance of OCB-like behavior to self-managing teams with their ethnographic account of woodlands harvesting teams. In attempting to explain large and consistent differences in productivity across different teams, the authors discovered that team productivity rested critically on behaviors that resemble altruism and courtesy as defined by Organ (1988). High-producing teams, for example, were characterized by extensive, informal altruism: experienced machine operators offered technical advice to each other on their radios and provided informal, after-hours training for less-

experienced operators. High-producing teams also reflected courtesy, as when operators saved support mechanics several trips to the field by making an extra effort to precisely explain the nature of a mechanical problem.

Consistent with Organ's (1988) description of OCB, Kolodny and Kiggundu observed spontaneous and informal support between members of high-producing teams. Moreover, when certain employees failed to exercise their option of OCB, substantial disruptive consequences resulted for group performance and interpersonal relations. Kolodny and Kiggundu observed that some machine operators, for example, generated substantial interpersonal friction and productivity losses by merely reporting mechanical problems but not making the extra effort to troubleshoot their cause in the field. In essence, they used mechanical problems as an opportunity to take a break while uninformed mechanics ran the gauntlet between the field and the machine shed.

Before turning away from this case, a final comment should be made regarding CB. Earlier it was suggested that OCB and CB may be only loosely coupled: they are not necessarily polar opposites of the same behavioral continuum. Kolodny and Kiggundu's (1980) study, however, illustrates how difficult it can be in practice to

distinguish between passivity with respect to OCB and active CB. The behavior of the non-communicative machine operators, for example, might plausibly be interpreted two ways. On one hand, it could be argued that their failure to troubleshoot problems before reporting them to mechanics represents passivity with respect to OCB dimensions such as courtesy and altruism. On the other hand, their conspicuous inactivity on the two-way radio might itself represent signal activity--avoidance of work or even attempted sabotage of the mechanics' efforts. The latter interpretation is supported by Kolodny and Kiggundu's description of how some operators resented the mechanics' overtime pay and working arrangements.

The mandate for positive citizenship in self-managed teams. Factor analysis of the Ball et al. (1991) citizenship measure can be undertaken to clarify the extent to which OCB and CB coexist independently in the present sample. Regardless of the ultimate dependence or independence of these two constructs, however, note that the very group-centeredness of self-managed team working has been found to have a "corrective" effect--I use the term advisedly--on employee indiscretions viz-a-vis co-workers; Lawler (1986) and Walton (1972) note that peer pressure can be a potent control mechanism in self-managed work groups.

In their analysis of problem-solving conversations within self-managing teams, Sims and Manz (1982) reached a similar conclusion. They observed infrequent but memorable confrontations between group co-workers and individuals who were seen as lacking in some aspect of performance. One specific confrontation, for example, concerned the absenteeism of a group member (i.e., passivity with respect to OCB conscientiousness or active CB job escape behavior).

Presumably, then, the glare of peer scrutiny in selfmanaged teams will tend to promote OCB and suppress CB. Certainly, positive citizenship in various incarnations does seem to be important for effective team functioning (c.f., Kolodny and Kiggundu, 1980). This is perhaps because OCBs enhance systemic resiliency by facilitating fluid mutual adjustment among employees (e.g., Organ, 1988; see also discussion of employee cooperation in selfmanaging teams by Rice, 1955).

<u>SuperLeadership and self-managed teams</u>. The findings of research on self-managed teams are consistent with the idea that the SuperLeader may raise the personal stakes considerably for employees by promoting employee selfleadership and teamwork. Because employees work for themselves and each other, not for the boss, team members

themselves are likely to encourage--and if necessary, demand--positive citizenship from their colleagues.

Hackman (1987) makes the connection between SuperLeadership and self-managed teams explicit. He observes that leaders of self-managing teams concern themselves primarily with broad planning and team facilitation rather than direct intervention with team members. Hackman likens this leadership approach to Manz and Sims's (1984) idea of "unleadership" in self-managed teams. The "unleader," according to Manz and Sims (1984), is "the person who, rather than providing subordinates with specific directions, can best help others to find their own way. Thus, we might characterize the 'unleader' as one who leads others to lead themselves" (p. 411). The term <u>SuperLeader</u> follows directly from and replaces this early definition of "unleader."

Kolodny and Kiggundu (1980) paint a picture of SuperLeader-like leadership in their description of the harvesting teams. They found that effective leaders largely acted as process consultants: they facilitated group work while deemphasizing micromanagement of employees. Similarly, in Manz and Sims's (1984) field study (see also Sims & Manz, 1982; Manz & Sims, 1987), leaders who were perceived as effective were those who practiced unleadership or, in revised parlance,

SuperLeadership, by encouraging employees to manage their own efforts.

Summary. Effective leaders of self-managed work teams seem primarily to facilitate teamwork and selfleadership. The above discussion associates these actions with social systems that virtually mandate positive citizenship. Of course, it is impossible to attribute positive citizenship to any specific aspect of selfmanaged group working per se. Moreover, the proposed training intervention is a good deal less sweeping than a switch to self-managed work groups. Nevertheless, the above discussion is consistent with the idea that the SuperLeader's encouragement of self-leadership and cooperative teamwork may enhance OCB and reduce CB.

Research Propositions

This final section distills the above discussion of organizational citizenship behavior and counterproductive behavior into two research propositions. These propositions concern OCB and CB as <u>external criteria</u> for the effectiveness of SuperLeadership training. Table 3-1 tags each group of external dependent variables with the research proposition that corresponds to it, described below.

The first proposition pertains to subordinate perceptions of the extent to which their co-workers who

report to the same supervisor display behaviors from the four organizational citizenship dimensions: (a) conscientiousness, (b) altruism, (c) courtesy, and (d) civic virtue. Following a significant multivariate statistical test, subordinate perceptions for each dimension were to be tested separately. Consequently, the following proposition potentially contained four implied subpropositions, one corresponding to each of the above dimensions.

<u>Proposition 3-1</u>: Subordinate perceptions of organizational citizenship behavior among co-workers will reflect greater gains in the training group than the comparison group.

The second proposition pertains to subordinate perceptions of the extent to which their co-workers who report to the same supervisor display behaviors from four counterproductive behavior dimensions: (a) avoidance of the job, (b) avoidance of the work itself, (c) defiance, and (d) complaining. As before, following a significant multivariate statistical test, subordinate perceptions for each dimension were to be tested separately. Consequently, the following proposition potentially contained four implied subpropositions, one corresponding to each of the above dimensions.

<u>Proposition 3-2</u>: Subordinate perceptions of counterproductive behavior among co-workers will reflect greater decreases in the training group than the comparison group.

Chapter IV: Method Overview and Site Preparation

Leader behavior was experimentally manipulated through a field experiment using a leadership training program based on SuperLeadership principles inspired by Manz and Sims (1989, 1991). The experiment included both training (experimental) and comparison (control) conditions with data collected longitudinally on two occasions--both before and after training. The purpose of the experiment was to study the effects of leadership training on behavior and perceptions in an organization. Data were collected from a) the focal training participants, b) managers of the participants, and c) direct-report subordinates of the participants. Investigation focused specifically on the effects of the new training program on: a) the internal criteria of participant leader behavior and subordinate selfleadership behavior, and b) the external criterion of subordinate citizenship behavior.

Data were collected between July and November, 1992, at a defense electronics firm located in the mid-Atlantic United States. Permission for the research was granted after extensive discussion in several meetings with management at the site. During these meetings, the research team introduced SuperLeadership and described the

training program, the research design, and management's part in facilitating and reinforcing behavioral change. Meetings were also held with human resources personnel, who assisted in locating several supervisors who were interested in receiving training. Subordinates of the prospective training participants were also contacted to solicit their participation in the program.

Under the terms of the research agreement, training was offered without charge and written feedback reports of aggregate-level data were provided to all members of the organization who participated in the training or provided data. In return, the firm agreed to release the participants for training and to allow data collection during regular business hours. To ensure that obligations to all experimental participants were met, the firm also agreed to host the study at least until <u>all</u> participants-both the test and comparison groups--had received training. The firm also provided facilities for the training, logistical support, and reimbursement to the research team for direct costs of the research.

Organizational Context

In an extensive review of empirical research on leadership training, Bass (1990) reports considerable evidence that leadership training can affect leader behavior and performance. Although research suggests that

leadership skills can be trained, however, past evaluations also include many examples of leadership training programs that failed to produce change. Consequently, a primary concern was transfer of training from the instructional setting to the organization as a whole. Several characteristics of the organization, the training, and the training participants suggested that transfer was likely.

Training Support Factors at the Outset of Research

One key contributor to training success, top-level management support, was addressed early in the discussion phase of the project. Management showed early support for the project because the training was seen to meet an outstanding training need that had previously been identified by human resources personnel. Management also considered the training's emphasis on self-leadership and teamwork to be consistent with the company's transition from defense-related products toward a more civiliandominated marketplace. The extensive time demands of training and evaluation were clearly explained from the outset and were accepted by management.

INTERSIT CARA

Another facilitator of training was management's recognition of the importance of a positive climate for transfer: early discussion emphasized the importance of ensuring that trainees would receive support from their

supervisors for practicing SuperLeadership. To promote support throughout the organization, a two-hour introductory seminar was scheduled in late June, 1992, to acquaint top management with SuperLeadership, to emphasize the potential value of SuperLeadership principles, and to introduce the training program. Later, the actual training included upper-level management and selected professionals within each of the trained divisions <u>in</u> <u>addition</u> to the participants who were the focus of data collection. Including these managers and professionals was intended to maximize upper-level support by introducing SuperLeadership throughout the chain of command in each trained division. Also, a follow-up session was planned to help reinforce the training.

The characteristics of the participants and their subordinates also seemed to contribute to the probable effectiveness of training. The participants and their subordinates were generally professional engineers or skilled crafts supervisors who seemed positively disposed to embrace SuperLeadership's emphasis on self-problem solving and initiative.

Organizational Changes During the Research

Earlier it was mentioned that the host organization was entering a period of transition away from defenserelated products towards civilian applications. A major

drawback of this period of transition viz-a-viz the training was organizational stress. The transitional nature of the firm's market was discussed in early conversations with management. The consensus that emerged from these early discussions was that the organization was responding effectively to these changes.

Like many defense-related firms, employment at the host organization grew during the Reagan defense buildup of the mid-80s. Subsequent cutbacks in defense spending in the early 90s required a reduction-in-force (RIF) in the company. Because the RIF had occurred nine months before the date of training and because further cuts were not anticipated at the time of our initial discussions with management, the acute stress of job insecurity was originally not considered a serious threat to the project at the outset.

During the research, however, it became increasingly clear that a large-scale reduction in force (RIF) was likely to occur at the host facility. This RIF was a response to a persistent recession, deeper-than-expected cuts in defense-related products and services, and a worsening financial crisis in the parent corporation. Also, subsequent to the training, important bids for new contracts were not successful.

The exact timing of the anticipated RIF was unknown by the research team. To avoid the possibility that the RIF would occur in the midst of data collection, a decision was made to reduce the time lag to ten weeks from the originally-planned three months. The RIF actually did occur <u>immediately</u> after the last wave of data had been collected. Besides shortening the lag for data collection, the expected RIF created a climate that participants later described as hostile to implementing the training. The impact of the RIF on this project will be revisited in the discussion section of this report.

Participants

The basic unit of research was the focal training participant (training and comparison groups), her/his supervising manager, and her/his direct-report subordinates. The focal participants were middle-level managers whose direct-report subordinates were first-line supervisors. Hereafter, the focal middle-level manager training participants (training and comparison groups) will be called <u>trainees</u> or <u>participants</u>. The supervisors and direct-reports of the participants will be called <u>managers</u> and <u>subordinates</u>, respectively. The training participants were informed before training that, for logistical reasons, half of the total sample would be trained immediately and the other half would be trained

later. Participants who received immediate training comprised the <u>training</u> group; participants whose training was delayed comprised the no-treatment <u>comparison</u> group for the duration of the study. The unit of analysis is illustrated in Figure 4-1.

The original sample identified by the human resources support team included 75 participants (units) who were available for assignment to either the comparison or training conditions. Associated with these participants were 37 supervising managers and 543 subordinates. However, the actual number of participants in the research was lower than this original sample; also, the sample size varied slightly for different analyses.

There were two minor sources of attrition in this sample. First, one of the training group participants who was the focus of data collection was unable to attend the training. Second, data on one of the focal comparison group participants had to be excluded because the participant left the company shortly after the study had begun. This left a total of 73 participants and 526 subordinates who were potentially available for statistical tests, for an average of 7.21 potential subordinates per participant at the outset.

Additional minor sources of attrition also impacted the amount of data that were available for analysis. For

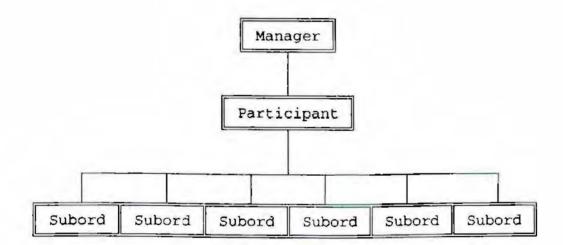


Figure 4-1. Participant-defined unit of analysis.

example, the personnel roster, though relatively current, did not reflect recent scattered transfers and/or attrition of direct-reports in this large organization. Also, a small number of subordinates (fewer than 5%) chose not to retain codes on their questionnaires that identified them and/or their supervisors (the participants). Consequently, their data could not be matched to test the propositions in the longitudinal design chosen for this research. Finally, not all participants, direct-reports, and supervising managers responded to requests for data on both occasions during the study. This time-based attrition further reduced the sample on which analyses were based. Specific sample sizes and response rates will be presented with the results of statistical analysis in the next chapter.

Research Design

Overview

A pre-test/post-test (time 1/time 2) comparison group design was used for the experiment. This relatively parsimonious design was chosen to maximize statistical power for purposes of direct comparison between conditions while minimizing many of the threats to internal validity identified by Cook and Campbell (1979). A coding system was used to tag each response with the identity of the respondent and the target (the participant or participant-

defined work group). Although participants and subordinates were free to remove this identifying information, none of the participants and less than five percent of the subordinates chose to remain anonymous.

Selection for Training

From an initial pool of eligible departments identified by the firm, units were allocated randomly into either the comparison (delayed training) or training (immediate training) conditions by department. Thus, to minimize the possibility of contamination through communication between trained and (as yet) untrained participants, all units within a given department were assigned either to the training or comparison condition. This selection protocol can be summarized as follows: a) define departments available for training, b) randomly assign departments to training and comparison conditions, and c) train all participants within departments selected for training. A total of 34 participants with 214 directreport subordinates were assigned to the training condition; 39 participants with 312 subordinates were assigned to the comparison condition.

Design

Table 4-1 summarizes the overall design of the experiment. Data were collected in three waves: a pretraining wave immediately before the training group

Table 4-1

Overview of Research Design in Training and Comparison Groups

Group		Time ^a						
	Training Session	1		2 ^c	3			
Training	I	0	x	0	0			
	II	0	х	0	0			
Comparison	III	ο			0			
	IV	0			0			

<u>Note</u>. "O" indicates an observation; "X" indicates treatment. ^aTimes "1," "2," and "3" reflect observations before training, immediately after training, and after a ten-week lag, respectively. ^bTraining sessions "I" and "II" reflect the two separate training sessions required by the large trainee sample. After data collection was complete, sessions "III" and "IV" were offered to the comparison group. ^cAt time 2, manipulation checks taken only from the training group.

received training (time "1" in Table 4-1), a post-training wave immediately after the training group had received training (time "2" in Table 4-1), and a delayed posttraining wave about ten weeks later (time *3* in Table 4-1). Most measures were taken at times 1 and 3; only the manipulation check quiz (discussed below) was administered at time 2 (immediately after training). In addition, all units provided data both before and after the training group had received training; except for the manipulation check guiz and trainee self-description (both discussed below), the comparison and training groups completed identical measures at the same time. Note from Table 4-1 that the large number of participants required two separate training sessions for the experimental group (and, later, the comparison group). The sessions for the training group will be called Session I and Session II. Time Lag

Little information was found concerning the appropriate time lag for this experiment. Sims and Szilagyi (1979), however, conducted research on leader reward behavior that seems to bear on this issue. They found that correlations between leader behavior and subordinate performance were greatest in studies with time lags between three and nine months. Based on these findings, Sims and Szilagyi recommended a lag between

three and six months for research on leader reward behavior.

Experimental research specifically concerned with leadership training seems to have adopted lags of less than six months. Tharenou and Lyndon (1990), for example, used a two-month lag in their study relating leadership training to subordinate ratings of consideration and initiating structure. In their review of twelve studies on Leader Match training, Fiedler and Mahar (1979) reported lags between leader training and performance ratings that were generally about three months. Intriguingly, Kidder (1990) found relationships between leadership training and subordinate perceptions of organizational climate with a lag of only one month. At the other extreme, Hand, Richards, and Slocum (1973) found that effects from a managerial "human relations" training program were not evident for 18 months.

A three-month time lag was priginally chosen for this research. This lag was a judgment call that attempted to balance two central concerns. On one hand, it was important that the training be given adequate time to have a detectable effect on both supervisor and subordinate behavior in the host organization. On the other hand, the lag had to be short enough to minimize the possibility of significant organizational change unrelated to the

intervention, such as dramatic attrition through reorganization. Three months seemed to be a reasonable compromise that was broadly consistent with past research on leadership training. However, as discussed earlier, the expected RIF shortened this lag to ten weeks.

Training and Follow-Up

Training was provided in two three-day sessions, Session I (July 21-23, 1992) and Session II (July 29-31, 1992). Two sessions were required because of the size of the training group. Participants from all eligible departments were assigned randomly to the sessions except for one or two instances of non-random assignment to accommodate scheduling conflicts. Session I included a total of 18 trainees who were the focus of data collection and 14 supervising managers or professionals; Session II included 16 focal trainees and 11 supervising managers or professionals. Consequently, a total of 34 focal trainees received training in these two sessions.

As presented to the trainees, the training generally occurred as described in the overview of the training presented in Chapter II. There were slight differences between the two sessions, mainly intended to take advantage of feedback from Session I. Table 4-2 lists the modules presented on each of the three days for both training sessions, with exercise numbers keyed to the

Table 4-2

Training Content of Sessions I and II

Session I (July 21-23, 1992)

July 21

- IA2 Aircraft Carrier Captain Story (Warm-up, introduction to leadership alternatives)
- IB1 Leadership Challenge Case (Strongman, Transactor, Visionary Hero, SuperLeader)

Lecturette on Leadership Archetypes Supporting Examples on Video

- IC1 Verbal Behavior and Feedback Scenarios
- IC2 Communicating through Reward and Reprimand Exercise (Transactor)
- IIA Winter Survival Exercise (Teamwork)
- IC3 Listening Exercise

July 22

- IA1 Leader Vision Exercise (Warm-up)
- ID Implementing Corporate Vision Exercise (Visionary Hero)
- IE Followership: What is it, how do you get it? (SuperLeadership)
- IIB New Truck Exercise (Teamwork)
- IIC Prisoner Dilemma Exercise (Teamwork)

(Discussion of Vision with Visiting Senior Manager)

July 23

- IA3 Cigarette Smoking Exercise (Warm-up, Strongman)
- IIF Greenfield Case (SuperLeadership, teamwork)
 Supporting discussion of self-managing teams

(table continues)

IF Video Case: Working smarter, not harder (SuperLeadership)

CHECKER CO

Supporting discussion of SuperLeadership

Session II (July 29-31)

July 29

- IA2 Aircraft Carrier Captain Story (Warm-up, introduction to leadership alternatives)
- IB1 Leadership Challenge Case (Strongman, Transactor, Visionary Hero, SuperLeader)

Lecturette on Leadership Archetypes (supporting examples on video)

- IC2 Communicating through Reward and Reprimand Exercise (Transactor)
- IC3 Listening Exercise

July 30

- IA1 Leader Vision Exercise (Warm-up)
- ID Implementing Corporate Vision Exercise (Visionary Hero)
- IE Followership: What is it, how do you get it? (SuperLeadership)
- IIC Prisoner Dilemma Exercise (Teamwork)
- IIE Teamwork Assessment Exercise

July 31

- IA3 Cigarette Smoking Exercise (Warm-up, strongman)
- IIF Greenfield Case (SuperLeadership, teamwork)
 Supporting discussion of self-managing teams

(table continues)

IB2 Assessing Your Leadership Culture

(Discussion with Visiting Senior Manager)

IF Video Case: Working smarter, not harder (SuperLeadership)

Supporting discussion of SuperLeadership, with examples of several key behaviors

Note. Training module numbers and names keyed to comprehensive module listing reproduced as Appendix 2-1.

numbers in Appendix 2-1. Note that trainees in both sessions were presented with a copy of Manz and Sims (1990) at the end of training.

Training Session I

Day 1. Training began on Day 1 with the Aircraft Carrier Captain Story (Table 4-2, IA2), an "unfinished ending" technique designed to evoke participant interaction. This story stimulated an open-ended discussion of various approaches that could be chosen for dealing with a subordinate who had made a mistake. This discussion dovetailed into the Leadership Challenge Case (Table 4-2, IB1), which concerned leadership approaches to a poor-performing subordinate. The four leadership archetypes were then introduced and illustrated with short videotape scenarios. The Verbal Behavior and Feedback Scenarios video examples and the Communicating Through Reward and Reprimand Exercise (Table 4-2, IC2) were then used to illustrate how leader feedback, appropriately timed, can shape the behavior of subordinates. The Winter Survival Exercise (Table 4-2, IIA) was then used to illustrate how teams working together can outperform individuals working alone. The day concluded with the Listening Exercise (Table 4-2, IC3), in which trainees practiced listening skills.

Day 2. Training began on Day 2 with the Leader Vision Exercise (Table 4-2, IA1), which explored the meaning of the term <u>leader</u> to the trainees. This exercise was used to suggest a range of leader behaviors and to challenge the conventional view of leaders as Strongmen and <u>Visionary Heros</u>. Through the <u>Implementing Corporate</u> Vision Exercise (Table 4-2, ID), trainees developed vision statements for the host organization and discussed how an overall direction for the firm could be charted and pursued. The Followership (Table 4-2, IE) exercise presented trainees with an organization that suffers from a lack of employee initiative and elicited suggestions for promoting self-leadership. The Prisoner Dilemma Exercise (Table 4-2, IIC) and the New Truck Exercise (Table 4-2, IIB) were used to illustrate the advantages of group cooperation and to present techniques for working through disputes to encourage teamwork. At the end of Day 2, the Divisions Manager of the host organization visited the class, reviewed the vision statements prepared by the group earlier in the day, presented his own vision of the firm's future, and interacted with the participants.

Dav 3. The <u>Cigarette Smoking Exercise</u> (Table 4-2, IA3) was used to illustrate some of the problems with relying on command-and-control, Strongman-oriented leadership. The <u>Greenfield Case</u> (Table 4-2, IIF) was then

presented as a lead-in to an extensive discussion of employee team self-management and appropriate leader behavior in a self-managing environment. A videotape, "Teamwork," illustrated techniques for encouraging cooperation within teams. Another video, <u>Working Smarter</u>, <u>Not Harder</u> (Table 4-2, IF), was then used to introduce a discussion of SuperLeadership. Key SuperLeader behaviors were briefly reviewed.

Impressions of Session I. Comments by the participants indicated that they appreciated the pace of training and felt that the exercises were relevant, wellchosen, and well-timed. The Manager of Human Resources for the host organization attended portions of the training and evaluated the class positively. Feedback was solicited from participants, and suggestions centered mainly on improving the manner in which exercises and examples could be targeted specifically to the host organization. Two trainees also suggested greater specificity regarding SuperLeader behavior. Session II was modified slightly to respond to these suggestions. <u>Training Session II</u>

On Day 1, training proceeded as in Session I with the exception of the <u>Verbal Behavior and Feedback Scenarios</u> and the <u>Winter Survival Exercise</u>, which were dropped. On Day 2, training again followed the general framework of

Session I with two exceptions. First, the Divisions Manager's visit was scheduled for Day 3. Second, the <u>New</u> <u>Truck Exercise</u> was dropped in favor of the newly-developed <u>Teamwork Assessment Exercise</u> (Table 4-2, IIE), an exercise more directed to the host organization. In this exercise, trainees were asked to consider the kinds of teams that were presently in use <u>in the host organization</u> (e.g., concurrent engineering teams, quality improvement teams, hourly employee teams, etc.). Trainees then chose one team application, analyzed its strengths and weaknesses, and discussed how team effectiveness might be improved.

Day 3 followed the pattern established in Session I, with two exceptions. First, on this day the Divisions Manager visited the class, reviewed the mission statements previously written by the participants, made his presentation, and solicited questions. Second, again in response to trainee comments in Session I, a new exercise, <u>Assessing Your.Leadership Culture</u> (Table 4-2, IB2) was introduced to focus discussion specifically on leadership in the host organization. In this exercise, trainees were asked to consider the leadership culture at the firm in relation to the firm's present business context. Trainees evaluated the appropriateness of their leadership culture and considered ways in which the present culture or (if appropriate) other approaches to leadership could be

strengthened and reinforced. Third, again in response to comments from Session I, key SuperLeader behaviors were described to the class at the end of Day 3. Through roleplay, selected behaviors were demonstrated to the class; trainees were also given an opportunity to practice these behaviors. A list of key SuperLeader behaviors was also distributed to the trainees.

and the second second second second

<u>Impressions of Session II</u>. Although the dynamics of interaction in this group seemed slightly less enthusiastic than Session I, trainees reported no major criticisms with the content, timing, or delivery of the training. In addition, this training session was evaluated by a professional trainer who was on staff with the host organization. This evaluation was also positive: the delivery and supporting materials for the training were evaluated positively, as was the training content. <u>Follow-up to the Training</u>

Follow-up sessions were conducted on September 2, 1992. Follow-up consisted of one three-hour morning session and one three-hour afternoon session. Both sessions went as planned, with trainees offering examples of strategies they had used to encourage self-leadership among their subordinates. Problems with implementation were discussed among the trainees, including the conflict between their own ultimate responsibility for project

outcomes and their desire to encourage independence among their subordinates. The strategies used by trainees centered primarily on selectively withholding direct advice and turning over projects for subordinates to complete without the trainees' direct intervention.

The trainer generally stayed in the background during much of the discussion. Although he offered advice and encouragement periodically, the trainees were ultimately more familiar with the pressures of their leadership roles and the capabilities of their subordinates. Consequently, trainees were primarily responsible for diagnosing and solving their own implementation problems. A list of key SuperLeader behaviors was again distributed to the trainees during this meeting.

Although the follow-up session was generally successful in eliciting helpful suggestions, attendance was relatively low. Of 59 trainees who attended either Session I or Session II training, only 30--about half-attended the follow-up session. Of the 34 trainees who were the focus of data collection, only 16--again, about half--attended the follow-up. A review of the attendance roster indicated that a greater proportion of Session I trainees attended the follow-up than Session II trainees. Later inquiries revealed that an emergency meeting involving many of the trainees had unexpectedly conflicted

with the follow-up session. Unfortunately, at the time of the follow-up, this conflict was not made known to the researchers.

Measures

This section of the report covers the measures used in the experiment. Discussion will consider development of the measures and the procedures used to create and test the final working variables. Two terms -- dimension and cluster -- will be used while discussing the measures in this chapter and presenting results in Chapter V. The term dimension refers to a tightly-linked group of items intended to be essentially identical in meaning. In essence, dimensions are variables. Dimensions will be defined through exploratory factor analysis later in this chapter. The term <u>cluster</u> refers to a group of dimensions that are conceptually linked, though not identical in meaning. For example, SuperLeader behavior from the LSQII-sub will be measured using a multivariate SuperLeader cluster consisting of four related dimensions: encourages self-reward, encourages teamwork, encourages independent action, and encourages opportunity thought.

Table 4-3 summarizes the dependent variable measures and descriptive measures used for the present experiment, including the name of each measure, its purpose, its source and object of data collection, and the timing of

Table 4-3

Summary of Measures

Name	adership Strategies Internal Criterion Questionnaire II		Object of Data	Time	
Leadership Strategies Questionnaire [] (LSQ[]-sub)			Participant	1,3	
Leadership Strategies Ouestionnaire II (LSQII-train)	Internal Criterion	Particípant	Participant	1 ^b ,3	
Self-Leadership Questionnaire (SLQ)			Subordinates	1,3	
Citizenship Behavior Questionnaire (CBQ)	External Criterion	Subordinate	Subordinate Work Group	1,3	
Desire for Self- Leadership	Individual-Level Moderator	Subordinate	Subordinate	1,3	
Demographics	Description	Subordinate	Subordinate	1,3	
Effectiveness	Exploratory	Subordinate	Participant	1,3	
	Exploratory	Participant	Participant	1,3	
Performance	Exploratory	Мападег	Participant	1,3	
Job Satisfaction	Exploratory	Subordinate	Subordinate	1,3	
Quiz ^C	Manipulation Check	Participant		zb	

Note. ^aTime of data collection (1 = before training, 2 = immediately after training, 3 = after lag). ^bAdministered to trainees in the immediate training group only. ^cManipulation check not used for further analysis.

its administration. These measures will be detailed below.

Leadership Strategies Questionnaire II, Subordinate Description of Participants (LSQII-sub)

Descriptions of participant leader behavior (training and comparison groups) were collected using the <u>Leadership</u> <u>Strategies Questionnaire II</u> subordinate report (LSQII-sub). Examples of items on the LSQII-sub used in this study are provided in Table 4-4 along with brief descriptions of each a priori leader behavior dimension. The LSQII-sub was an extended version of the Leadership Strategies Questionnaire (LSQ) used most recently by Scully et al. (1992) and Ball et al. (1991).

Antecedents of the LSQ. The LSQ was inspired by Manz and Sims's (1987) earlier Self-Management Leadership Questionnaire (SMLQ). Both the SMLQ and LSQ, however, are rooted in earlier leadership questionnaires. The Scully et al. research team developed the LSQ as a substantial extension of the SMLQ. Besides drafting original questionnaire items for the LSQ, Scully et al. adapted items for the LSQ Strongman, Transactor, and Visionary Hero dimensions from questionnaires used in past leadership research (e.g., Bass, Waldman, Avolio, & Bebb, 1987; Manz & Sims, 1987; Podsakoff, MacKenzie, Moorman, & Fetter, 1990) including the Multifactor Leadership

Table 4-4

Leadership Strategies Questionnaire II (Subordinate

Report, LSQII-sub) A Priori Dimensions with Dimension

Definitions and Sample Items

01. ^a	Strongman Instruction and Command: Direct instruction or command by the supervisor regarding task
	performance with little input or self-direction by the subordinate. ("He/she gives me instructions about how to do my job.")
81.	Assigned Goals: Direct assignment of goals or performance objectives by the supervisor with little or no direct input from the subordinate. ("He/she establishes my performance goals.")
07.	Non-Contingent Reprimand: Reprimand by the supervisor that is largely or wholly unrelated to performance. ("He/she is often displeased with my work for no apparent reason.")
14.	Intimidation: Overt or implied threat or coercion of a subordinate by the supervisor. ("He/she can be quite intimidating.")
	Transactor
67.	Contingent Material Reward: Material reward by the supervisor that is related to subordinate performance. ("If I perform well, he/she will recommend more compensation.")
10.	Contingent Personal Reward: Non-material reward by the supervisor such as praise and recognition that is related to subordinate performance. ("He/she gives me special recognition when my work performance is especially good.")
15.	Contingent Reprimand: Reprimand by the supervisor that is related to subordinate performance. ("He/she lets me know about it when I perform poorly.")
21.	Interactive Goals: Negotiation of goals or performance objectives by the supervisor with direct input from the subordinate. ("Ne/she works with me to develop my performance goals.")
	Visionary Hero
29.	Vision: Communication by the supervisor to the subordinate of a guiding vision regarding organizational purpose, destiny, or overarching goals. ("He/she provides a clear vision of where we are going.")
74.	Stimulation and Inspiration: Supervisor motivation of the subordinate towards higher levels of achievement or performance. ("He/she inspires me to strive for achievements 1 would not normally pursue.")
39.	Idealism: Expressed, inner-directed dedication by the supervisor to fundamental personal beliefs, ideals, or overarching goals. ("He/she is driven by higher purposes or ideals.")
22.	Challenge to the Status Quo: Supervisor behavior that challenges established ideas, routines, and conventions. ("He/she challenges established ways of doing things.")

(table continues)

.

SuperLeader

Meta-Dimensions

- 70.^a Encourages Self-Problem Solving: Supervisor encouragement of problem-solving by the subordinate without supervisory input, approval, or assistance. ("He/she advises me to solve problems when they pop up without always getting his/her stamp of approval.")
- 35. Encourages Initiative: Supervisor encouragement of spontaneous innovation and assumption of responsibility by the subordinate without supervisory input or approval. ("He/she provides the opportunity for me to take initiative on my own.")

Behavioral Strategies (content)

- 09. Encourages Self-Observation and Evaluation: Supervisor encouragement of observation and evaluation by the subordinate of her/his own work performance. ("He/she encourages me to judge how well I am performing.")
- 20. Encourages Self-Reward: Supervisor encouragement of contingent self-reward by the subordinate. ("He/she urges me to reward myself with something 1 like when 1 have successfully completed a major task.")
- 02. Encourages Self-Goal Setting: Supervisor encouragement of self-setting of goals and performance objectives by the subordinate without direct supervisor input. ("He/she urges me to define the goals myself.")

Cognitive Strategies (content)

- 28. Encourages Finding Natural Rewards: Supervisor encouragement of spontaneous self-job design by the subordinate to find satisfaction from the work itself. ("He/she advises me to find my own favorite ways to get work done.")
- 11. Encourages Opportunity Thought: Supervisor encouragement of an opportunity-oriented rather than obstacle-oriented response to adversity by the subordinate. ("He/she advises me to look for the opportunities contained in problems I face.")
- 16. Encourages Efficacy Expectations: Supervisor encouragement of confidence by the subordinate in her/his own performance or potential for performance. ("He/she encourages me to think I can do very well in my work.")

Teamwork (context)

61. Encourages Teamwork: Supervisor encouragement of cooperation and coordinated action among subordinates. ("He/she encourages me to work together with other managers/supervisors who report to him/her.")

Note. "Item numbers keyed to Section II of the subordinate

questionnaire packet reproduced as Appendix 4-2.

Questionnaire (Bass, 1985) and transformational and Transactor leadership scales by Podsakoff et al. (1990). Recent applications of the LSQ by Scully et al. and Ball et al. (1991) will now be discussed in greater detail.

The Scully et al. (1992) and Ball et al. (1991) LSQ applications. In their study of CEO leader behavior, Scully et al. used their LSQ to measure the extent to which leaders engaged in behaviors associated with the Manz and Sims (1991) archetypes. Responses were registered on Likert-type scales with response categories of 1 ("Definitely Not True"), 2 ("Not True"), 3 ("Uncertain"), 4 ("True"), and 5 ("Definitely True"). As part of their research, Scully et al. conducted a factor analysis based on LSQ descriptions of CEOs from 259 individuals in 56 top-management teams. Analysis revealed a 14-factor solution that generally conformed to a priori expectations. This finding provides support that the LSQ captured a range of archetypical leader behaviors across dimensions contained in the Manz and Sims (1991) typology.

The Scully et al. LSQ was intended to provide approximately equal coverage of the leadership archetypes proposed by Manz and Sims; SuperLeader behaviors were not emphasized in the questionnaire. The present research, however, adopts SuperLeadership as its primary focus. Consequently, the LSQ was modified to provide more

complete coverage of SuperLeader behaviors while retaining dimensions that were descriptive of the other three archetypes as well. For the present study, the midpoint of the Scully et al. response scale was also changed from <u>uncertain</u> to <u>neither true nor untrue</u>. Modifications were undertaken in several stages to produce the revised LSQ used in the present research.

Ball et al. (1991) also used a variation on the LSQ in their study of punishment incidents. They were not able to confirm the specific dimensionality of their variation of the LSQ through factor analysis because of inadequate sample size. However, Ball et al. used alpha analysis to confirm the reliability of their dimensions, which were generally consistent with the Manz and Sims (1991) typology.

Extending the LSO to the LSOII-sub. This study expanded on the LSQ of Scully et al. (1992) and Ball et al. (1991) in two stages. First, a pool of items representing the non-SuperLeader archetypes was selected by retaining the strongest-loading items from Scully et al. for the non-SuperLeader dimensions. Second, items were retained or added to more fully extend the SuperLeader dimensions. Although some items were drafted specifically for the LSQII-sub, many were adapted from a variety of published and unpublished sources including

Ball et al. (1991), Scully et al. (1992), Manz (1992), Manz and Sims (1991b), internal drafts of self-leadership questionnaires, and the personal notes and working papers of Dr. Charles C. Manz and Dr. Henry P. Sims, Jr. To maximize continuity between the LSQ and the LSQII-sub, preference was given to Scully et al. items whenever possible. These items were also preferred because the Scully et al. study was the best empirical analysis to date. A minimum of four items were selected for dimensions that had previously demonstrated reliability. Other, newer dimensions frequently contained five or six items.

The <u>content</u> of SuperLeadership was represented by items that captured the self-leadership strategies. These items were almost entirely adapted from published sources (e.g., Manz, 1992; Scully et al., 1992), working papers, and notes. Examples of these items are listed in the SuperLeader section of Table 4-4. The <u>context</u> of SuperLeadership was represented by items that tapped leader encouragement of teamwork. Items in the teamwork dimension were all drafted specifically for this questionnaire because of the emphasis on teams as part of the training. A complete listing of items on the LSQII-sub subordinate report, categorized by a priori dimension, is provided in Appendix 4-1. This appendix

also includes a table that lists the origins of all items on the LSQII. These items appeared in Section II of the subordinate questionnaire packet, which is reproduced as Appendix 4-2.

Forming the final working dimensions. The final set of working dimensions was derived using principal components analysis with varimax rotation. Scales were constructed by unit-weighting the items that clustered in the resulting factors. These scales were then tested for internal consistency reliability and interrater consensus within the participant-defined units.

There are multiple and potentially conflicting guidelines for determining when sample size is sufficient for factor analysis. Alliger (1991) notes several proposed guidelines including a) recommended ratios of the number of respondents to the number of questionnaire items, and b) recommended sample sizes of 150 to 300 or more cases depending on the size and number of loadings on expected factors (e.g., Guadagnoli & Velicer, 1988). Alliger (1991) concludes that sample sizes approaching 300 are desirable in many applications of exploratory factor analysis.

The number of subordinate questionnaires available for factor analysis exceeded 300 both at time 1 (\underline{n} = 404) and time 2 (\underline{n} = 320). Consequently, the present sample

seems acceptably large according to the above sample sizebased criteria. However, according to respondent/item ratio criteria, the large number of items (96) in the LSQII produced ratios of only 3:1 or 4:1 if the time 1 or time 2 data were considered alone. Recognizing that larger samples will generally produce more stable factor structures, a decision was made to combine the time 1 and time 2 data for factor analysis. Consequently, the factor analyses reported below that are based on subordinate data include approximately 700 responses. The length of the questionnaire and the ten-week lag between subordinate responses were thought to mitigate a minor technical violation of the assumption of response independence. This procedure resulted in an interpretable, meaningful factor structure. Furthermore, when the solution based on the combined sample was compared with solutions derived only from time 1 and time 2 data, the combined solution was quite similar and slightly more interpretable.

An iterative, judgmental process was then used to form the final dimensions. First, an unconstrained factor analysis was run to provide a scree plot and a basis for rough application of the eigenvalue-greater-than-one rule. After visually inspecting the result, constraints were placed on the number of factors to produce successively more parsimonious solutions. Once a final factor

structure was approximated, items with ancillary factor loadings within .20 of the primary factor loading were examined for possible deletion. These items were deleted when their loss did not compromise the theoretical richness of the resulting solution. The factor analysis was then rerun after these items had been deleted. In practice, the .20 criterion was applied almost universally; artifactual multicollinearity in the resulting solution is minimal. After the final dimensions had been formed, internal consistency was assessed based on the time 1 data. Table 4-5 reproduces the factor names, items, and factor loadings from the final 15-dimension LSQII-sub solution based on the combined time 1 and time 2 sample. Table 4-6 summarizes this factor structure including a priori dimension names, final dimension names, and final dimension descriptions. The item numbers in each final dimension are keyed to the item numbers in Appendix 4-1 and Section II of the subordinate questionnaire reproduced as Appendix 4-2.

Assessing internal consistency and within-unit consensus for the final working dimensions. Internal consistency was assessed for each dimension using Crohnbach's alpha (e.g., Crohnbach, 1951). Table 4-6 presents alpha coefficients (based on time 1 data, $\underline{n} = 389$ to 402) for the final scales. Alpha coefficients in the

Table 4-5

124

Leadership Strategies II (LSQII) Factor Loadings

	Factor Name		Factor Loadings													
а	Item Content	I	[]	111	IV	۷	VI	114			*	X1	X11	XIII	XIV	X
	Aversive Behavior										-					
6.	He/she behaves in a threatening manner.		14													
7.	He/she tries to influence me through threat and intimidation.		11												02	0
6.	I feel intimidated by his/her behavior.	80	15										08		01	- 1
4.	He/she can be quite intimidating.	72				13							02		04	
1.	He/she is often critical of my work, even when I perform well.	69				13							.04		07	.0
50.	I frequently am reprimanded by him/her without knowing why.		.06									.11	09	.07	12	- 1
7.	He/she is often displeased with my work for no apparent reason.	157	09	09	21	20	17	17	.03	14	18	.11	.05	.02	•.10	. 1
1.	Encourages Self-Reward								•							
7.	He/she encourages me to treat myself to something I enjoy when 1 do a task especially well.	.08	.83	. 15	.05	.07	.07	.18	.08	.13	.04	.01	.05	.09	.06	.0
0.	He/she urges me to reward myself with something 1 like when 1 have successfully completed a major task.	.07	.82	.16	.05	.14	.08	. 12	.08	.17	.06	.01	.03	.02	.01	0.
2.	He/she urges me to reward myself for doing a good job.	.13	.77	.11	.13	.11	.15	.18	.06	.08	.17	.06	.11	.10	.08	.0
2.	He/she encourages me to give myself a pat on the back when I meet a new challenge.	.11	.60	.08	.12	.16	. 15	.17	.04	.10	.40	.03	.17	.11	.13	.0
8.	He/she encourages me to take time to do work tasks that I like to do.	- 16	.60	.17	.07	.10	.20	.09	.04	.10	.15	.02	.09	.07	.31	. 1
36.	He/she urges me to do tasks at work that make me feel good about myself.	.21	.59	.13	.11	.13	.31	.14	.08	.08	-14	.03	. 15	.06	.28	.1
ц.	Challenge to the Status Quo															
4.	He/she isn't afraid to "buck the system" if he/she thinks it is necessary.	-04	.12	.81	.09	.11	. 13	.11	01	.16	.08	.07	. 13	.09	.05	. 03
4.	He/she is a non-traditional type who "shakes up the system" when necessary.	15	. 10	.80	.10	.04	.08	.04	.01	.08	.04	.08	.10	.01	.04	.0

(table continues)

2	Factor Name							Fac	tor Lo	ading	IS					
# ^a	Item Content	1	11	111	IV	۷	VI		VIII			X1	XII	XIII	X1V	/ X\
93.	He/she isn't bound by tradition when it comes to getting things done.	.08	.14	.78	.11	.11	.16	.10	00	.17	.07	.04	.18	.06	.08	.0
85.	He/she is not afraid to "break the mold" to find different ways of doing things.	. 12	.14	.76	.11	.08	. 15	.11	-01	.21	.11	.04	.15	.08	.09	.0
22.	He/she challenges established ways of doing things.	01	.14	.76	.11	,07	.05	.11	.08	.04	.06	.05	.08	. 10	.09	•.0
IV.	Encourages Teamwork															
50.	He/she advises me to work together with other managers/- supervisors who report to him/her as a team.	.13	.09	.14	.84	. 12	.20	.10	.07	.12	.11	.05	.09	.06	.03	.0
61.	He/she encourages me to work together with other managers/- supervisors who report to him/her.	.10	.12	. 15	.83	. 13	. 22	.09	.09	.08	. 14	.09	.06	.03	.10	.0
92.	He/she urges me to work as a team with other managers/- supervisors who report to him/her.	.12	.14	.12	. 80	.17	.24	. 10	.09	.11	. 12	.06	.05	.03	.11	.0
40.	He/she advises me to coordinate my efforts with other managers/supervisors who report to him/her.	. 12	. 15	.13	.75	. 13	.17	. 15	.08	.11	.06	.03	.11	.08	. 19	•.0
18.	He/she wants teamwork between me and other managers/- supervisors who report to him/her.	. 18	05	.07	.67	.17	. 15	.09	.08	.12	. 13	.09	. 18	.09	.00	.0
1	Participative Goal-Setting															
21.	He/she and I work together to decide what my performance goals should be.	.26	.09	.08	.12	.79	.20	.17	.10	.08	.16	.02	.09	. 10	02	.00
43.	He/she and I sit down together and reach agreement on my performance goals.	.22	.08	.09	. 17	.78	.08	.13	.11	.11	.15	.01	.09	.04	.08	.07
83.	He/she and I reach a mutual understanding regarding the goals for my work.	.30	.11	.08	.18	.74	. 15	. 16	.07	.12	. 15	.03	.09	.03	.00	.00
21.	He/she works with me to develop my performance goals.								.12					.05		
46.	He/she advises me to set goals for my own performance.	. 14	.24	- 14	. 15	.53	.28	.16	.01	.13	.11	.13	. 16	-09	.33	0
25.	He/she actively encourages me to set goals for myself.	- 19	.27	.20	. 18	.48	. 25	- 10	04	.18	. 12	.13	.11	.05	.37	00
VI.	Independent Action															
96.	He/she encourages me to search for solutions to my problems on the job without his/her supervision.	.20	. 19	. 13	.24	. 15	.77	. 12	.02	.13	.11	.05	00	.00	.07	.03
70.	He/she encourages me to find solutions to my problems at work without his/her direct input.	.11	.13	. 12	.22	.09	.77	.05	01	.13	.05	.04	.02	03	.03	.06

(table continues)

а	Factor Name							Facto	r Loa	dings						
_	Item Content	1	11	111	IV	V	VI	¥11	VIII	IX	x	X1	XII	XIII	XIV	XV
	He/she advises me to solve problems when they pop up without	- 29	.11	.15	.25	.21	.72	.09	05.	11 .	. 09 -	.00	.01	• .01	.07	00
	always getting his/her stamp of approval. He/she urges me to assume responsibilities on my own.	20	17	16	21	21	61	.14 .	03	16	10	07	10	06	22	04
	He/she advises me to make improvements in how I do my work on my own initiative without being told to do so.							.15								
Ι.	Contingent Material Reward															
3.	He/she will recommend that 1 am compensated well if 1 perform well.	.21	.21	.13	.11	.09	. 12	.79	.03	. 14	. 13	.03	.11	.02	.09	02
6.	He/she will recommend that 1 am compensated more if 1 perform well.	. 19	.29				. 12					.02	.08	.02	.08	.03
7.	If I perform well, he/she will recommend more compensation. His/her recommendations regarding my compensation depend on my performance.							.77 - .70						.03 .03		
<u>v111</u>	. Assigned Goals															
181.		02			.08		.02		.88	.07	.02	.10				
90.		05			.06	.07	.08	.03	.87	.00	.05	.09	.04	.07		.0
41.		05			.11		.00	.03	.78	.05	.07			.21 .24		.0 •.1
19.																
19. <u>1X</u>	. Vision															
<u>1X</u> 49	. He/she provides a clear vision of who and what we are.	.1	3.1			5.1							6.10		9.01	
<u>1X</u>	. He/she provides a clear vision of who and what we are. . He/she provides a clear vision of where we are going. . Because of him/her, I have a clear vision of our	.1 .1	3.1	.1		0.2	0 .1	7 .09		.74	.11	.0	5 .1	6 .09 4 .12 4 .10	2 .1	2 .0
<u>1X</u> 49 29	. He/she provides a clear vision of who and what we are. . He/she provides a clear vision of where we are going. . Because of him/her, I have a clear vision of our organization.	.1 .1	3 .1 7 .3	20 .1 19 .2	7 .1 25 .1	0.2 5.1	0.1	7 .09	.07 .09	.74 .73	.11	.0' 3.0	5.14 7.1	4 .12	2 .1	2.0
<u>1X</u> 49 29 69	. He/she provides a clear vision of who and what we are. . He/she provides a clear vision of where we are going. . Because of him/her, I have a clear vision of our organization.	.1 .1	3 .1 7 .3	20 .1 19 .2	7 .1 25 .1	0.2 5.1	0.1	7 .09 8 .08	.07 .09	.74 .73	.11	.0' 3.0	5.14 7.1	4 .12	2 .12	2.0

126

(table continues)

	Factor Name							Fac	tor La	badin	gs					
# ^a	Item Content	Ι	11	111	14	1	(V)	VII	VII	1 1X	×	X	X11	X11	1 X	IV X
32. 10.	He/she commends me when I do a better-than-average job. He/she gives me special recognition when my work performance is especially good.	.22 .19	.24 .26	. 11 . 18	.22	.22	.14	.24 .32	.08 .05	.15 .17	.70	09 .09 .01	.11	.05	- 11 - 19	0. 1 0. 9
<u>x1.</u>	Contingent Reprimand															
15. 77. 58. 37.	He/she lets me know about it when I perform poorly. He/she reprimands me when my performance is not up to par. When my work is not up to par, he/she points it out to me. He/she reprimands me if my work is below standard.	30	.03	.01 .15	.07 02 .13 .06	.01	.13	.03	.04 .06 .11 .09	.13	05	.75	.03			01
<u>XII.</u>	Idealism															
39. 79,	He/she is driven by higher purposes or ideals. He/she has a strong personal dedication to higher purposes or ideals.								.08 .09							
60.	He/she strives towards higher purposes or ideals.	. 10	. 16	.35	.17	.16	.05	.09	.10	. 19	. 12	. 10	.74	.02	.11	.01
XIII	Instruction and Command															
45.	When it comes to my work, he/she gives me instructions on how to carry it out.	07	. 15	.09	.07	.04	.05	.04	.19	.11	.03	.05	.03	.77	.06	. 12
01.									.17 .						. 15	
24.	He/she provides commands in regard to my job.	22												.66		
65.	Re/she gives me orders about my work.	30	.01	-04	.06 -	.02 -	.06 -	.09	.35 .	10 -	. 04	. 19	.01	.59 -	. 15 -	.03
XIV.	Encourages Opportunity Thought															
11.	He/she advises me to look for the opportunities contained in problems I face.	.10	.25	.19	. 18	.17	.20	.12	.05 .	15 .	.16	.06	.17	.10	.66 -	.03
33.	He/she encourages me to view unsuccessful performance as a chance to learn.								.00 .							
54.	He/she urges me to think of problems at work as opportunities rather than obstacles.	. 13	.23	.21	.23	. 17	.28	.12	.09 .	19 .	18	. 12	.13	.03	54	10.

(table_continues)

					-											
	Factor Name								tor L		-					
#**	Item Content	1	11	ш	14	/ V	1	VII	VII	t tx	×	XI	×11	XII	1 X1V	X
xv.	Stimulation and Inspiration															
34.	He/she inspires me to get a lot more done than I could have if he/she were not around.	.11	.39	.22	. 15	.16	-17	.14	.04	. 16	.11	. 15	.09	. 19	.12	.48
12.	Because of him/her, I do more than I expected I could do.	.09	.26	.27	. 13	.14	.21	.14	.03	.29	.16	.07	. 14	.17	.23	.47
Eiger	nvalues	22.0	6.07	3.15	2.81	2.34	2.02	1.76	1.54	1.36	1.31	1.19	1.09	1.03	.82	. 79
Perce	ent Variance	33.3	9.2	4.8	4.3	3.6	3.1	2.7	2.3	2.1	2.0	1.8	1.7	1.6	1.2	1.2

Note. ^aItem numbers keyed to Section II of the subordinate questionnaire packet reproduced as

Appendix 4-2.

Final Leadership Strategies Questionnaire (LSQII)

Dimensions, Grouped by Archetype

A Priori Dimension	Final Dimension (Item Numbers) ^D	Description	Alpha (James)
1. Strongman			
Intimidation Non-Contingent Reprimand	Aversive Behavior (76, 57, 36, 14, 51, 30, 7)	Leader behaves in threatening, non-contingent ways	.91 ^d (.82) ^e (.86)
Assigned Goals	Assigned Goals (81, 90, 41, 19)	Leader sets goals and communi- cates expectations with little or no subordinate input	.86 (.85) (.83)
Instruction and Command	Instruction and Command (45, 1, 24, 65)	Leader orders subordinates to do specific tasks and provides explicit instructions for task completion	.73 (.67) (.84)
II. Transactor			
Interactive Goals Self-Goal Setting	Participative Goal- Setting (91, 43, 83, 21, 46, 25)	Leader involves subordinates in the process of setting goals	.90 (.78) (.88)
Contingent Material Reward	Contingent Material Reward (3, 26, 67, 47)	Leader offers financial rewards or pergs based on subordinate performance	.91 (.76) (.74)
Contingent Personal Reward	Contingent Personal Reward (72, 53, 32, 10)	Leader offers praise based on subordinate performance	.92 (.69) (.76)
Contingent Reprimand	Contingent Reprimand (15, 77, 58, 37)	Leader reprimands subordinates based on performance	.81 (.75) (.85)
III. Visionary Hero			
Challenge to the Status Quo	Challenge to the Status Quo (64, 44, 93, 85, 22)	Leader adopts unconventional perspectives and/or finds novel ways of approaching problems	.91 (.76) (.84)
Vision	Vision (49, 29, 69, 5)	Leader traces a vision of the organization that is meaningful and engaging for subordinates	.88 (.77) (.80)

(table continues)

1

.

.

A Priori Dimension	Final Dimension (Item Numbers) ⁹	Description	Alpha (James)
Idealism	Idealism (39, 79, 60)	Leader is guided by noble or virtuous ideals or principles	.90 ^d (.92) ^e (.83)
Stimulation and Inspiration ^C	Stimulation and Inspiration (34, 12)	Leader stimulates high perform- ance and/or inspires subordi- nates towards achievement through the force of her/his personality	. 75 (.60) (.70)
IV. SuperLeader			
Encourages Self-Reward Encourages Finding Natural Rewards	Encourages Self- Reward (27, 20, 62, 42, 48, 86)	Leader encourages subordinates to reward themselves, either directly or by finding ways to work that are personally enjoyable	.89 (.86) (.92)
Encourages Teamwork	Encourages Teamwork (50, 61, 92, 40, 18)	Leader encourages subordinates to work together to provide support and coordinate their activities	.92 (.82) (.87)
Encourages Self-Problem Solving Encourages Initiative	Encourages Indepen- dent Action (96, 70, 87, 75, 88)	Leader encourages subordinates to solve problems and take initiative without leader involvement	.68 (.74) (.68)
Encourages Opportunity Thought	Encourages Opportun- ity Thought (11, 33, 54)	Leader encourages subordinates to view problems at work as opportunities or challenges to be overcome rather than insur- mountable obstacles	.79 (.78) (.84)
Encourages Self-Goal Setting	(See "Participative	Goal Setting" entry in Section []	above)
Encourages Self-Observa- tion and Evaluation Encourages Efficacy Expectations	(A priori dimensions	did not survive exploratory fact	tor analysis

Note. ⁹Item numbers keyed to Section II of the subordinate questionnaire packet reproduced as Appendix 4-2. ^bOriginally a SuperLeadership dimension. ^cDimension not retained for further analysis related to trainee self-description (LSQII-train). ^dColumn 1 coefficient alpha based on subordinate reports (<u>n</u> = 389 to 402). ^eColumn 2 coefficient alpha based on trainee self-reports (<u>n</u> = 31 to 32). ^fColumn 1 James coefficient (3 or more reporting subordinates, <u>n</u> = 61 units, mean <u>n</u> = 6.23 subordinates per unit). first column of the table reflect subordinate reports on participants. Alpha coefficients in the second column reflect participant self-appraisals, which will be discussed in the next section.

Note that the first column in Table 4-6 also includes James coefficients (in parentheses; e.g., James, Demaree. & Wolf, 1984) for each of the final dimensions. The James method for assessing interrater consensus was applied to each dimension to support aggregation of individual-level subordinate responses to the participant-defined unit level for analysis. Koslowski and Hattrup (1992) have distinguished between indices of interrater reliability and interrater consensus. Whereas reliability is a correlational statement on "the proportional consistency of variance among raters," consensus "addresses the extent to which raters make essentially the same ratings" (p. 162). The James index of interrater agreement was chosen to demonstrate consensus within the participantdefined units. This consensus, in turn, "provides the justification for aggregation--it substantiates the construct validity of higher level climate means" (Koslowski & Hattrup, 1992, p. 162).

The James index of agreement was applied in the present study because, unlike indices of interrater reliability such as the intraclass correlation coefficient

(ICC; e.g., Shrout & Fliess, 1979), it is unaffected by range restriction. James, Demaree, & Wolf (1984, p. 89) illustrate how range restriction can produce paradoxical results when reliability indices are used. Under conditions of between-unit range restriction, it is possible to have high levels of within-unit agreement (consensus) and yet find low levels of interrater reliability. This effect occurs because consistency indices lack power when variance between targets (in the present experiment, the participant and/or participantdefined work unit) is low.

Because this research had been undertaken in a single host organization, a degree of homogeneity was expected because of selection and climate effects (e.g., George, 1990; Schneider, 1987). Consequently, range restriction was probable and reliability indices that depend on between-unit heterogeneity were likely to be insensitive. Of equal concern is the failure of consistency indices to capture "the shared perceptions phenomenon that is central to the composition of higher levels of the climate construct" which, in the present research, is the participant-defined work unit (Kozlowski & Hattrup, 1992, p. 163). In the present study, the issue of interest was the extent to which subordinate raters agreed in their description of the target.

Final working dimensions. Note from Table 4-6 that the a priori intimidation and non-contingent reprimand dimensions of the Strongman archetype collapsed into a single dimension which was labelled aversive behavior. The final Strongman cluster, then, included three dimensions. Within the Transactor archetype, the a priori interactive goals and self-goal setting (from SuperLeadership) dimensions collapsed into a single participative goal-setting dimension. The final Transactor cluster, then, included four dimensions. All four a priori dimensions in the Visionary Hero cluster were preserved. Within the SuperLeader archetype, the a priori encourages self-reward and encourages finding <u>natural rewards</u> dimensions collapsed into a single dimension defined primarily by self-reward items, labelled encourages self-reward. The a priori encourages selfproblem solving and encourages initiative dimensions collapsed into a single dimension labelled encourages independent action. Items in the a priori encourages self-observation and evaluation and encourages efficacy expectations dimensions did not survive the item-culling process. Thus, the final SuperLeader cluster included four dimensions.

As indicated in Table 4-6, all final LSQII-sub dimensions had alpha coefficients of .73 or better, which

was judged satisfactory for subsequent statistical analysis. The James coefficients in parentheses in the first column of Table 4-6 (based on time 1 subordinate data) were computed for participant-defined units in which three or more subordinates had provided LSQII-sub data. A James coefficient of .70 or better can be considered evidence of within-group consensus (e.g., George, 1990). Mean James coefficients of .70 of more were obtained for all 15 LSQII-sub behavior dimensions. Of the 61 units to which the James procedure was applied (mean n = 6.2subordinates per unit), between 38 and 59 units produced James coefficients of .70 or greater across the various LSQII-sub dimensions. James coefficients of .80 or better were obtained from between 24 and 58 units, while coefficients of .90 or better were obtained from between 5 and 44 units. Overall, the James analysis demonstrated consensus among subordinates within participant-defined units in their perceptions of their supervisors, the participants.

Leadership Strategies Questionnaire II Participant Self-Report (LSQ11-train)

A second form of the LSQII, the <u>LSQII-train</u>, was administered to participants to gauge their perceptions of their <u>own</u> behavior. The LSQII-train was created by writing first-person translations of all items in the

LSQII-sub. Examples of the items on the LSQII-train participant self-report are presented in Table 4-7. A complete listing of LSQII-train items, categorized by a priori dimension, is provided in Appendix 4-3. The item numbers in this Appendix are keyed to the item numbers in Section II of the participant questionnaire packet, reproduced as Appendix 4-4. Note that the same five-point response scale was retained for the LSQII-train. The LSQII-train was administered only to the participants in the training condition at time 1; after the ten-week lag, it was administered to participants in <u>both</u> the training and comparison conditions.

<u>Final working dimensions</u>. Because the limited participant sample precluded independent factor analysis (time 1 training group $\underline{n} = 31$; time 2 training and comparison group total $\underline{n} = 60$), the scales used in later analysis were constructed based on the factor analysis of subordinate LSQII-sub data. Internal consistencies for the 15 final dimensions were generally satisfactory based on time 1 data ($\underline{n} = 31$ to 32), as shown in the last column of Table 4-6. Note from this table that self-report internal consistencies ranges from a high of .92 for <u>idealism</u> to lows of .69 (<u>contingent personal reward</u>) and .67 (<u>instruction and command</u>). The internal consistency of the <u>stimulation and inspiration</u> dimension was judged The Mary Mary

Leadership Strategies Questionnaire II (Participant Self-

Report, LSQII-train) A Priori Dimensions with Sample

Items

Strongman

- 01.^{*} Instruction and Command: I give my subordinates instructions about how to do their jobs.
- Assigned Goals: I establish my subordinates' performance goals.
- 07. Non-Contingent Reprimand: I am often displeased with the work of my subordinates for reasons that are not apparent to them.
- 14. Intimidation: I can be quite intimidating.

Transactor

- 67. Contingent Material Reward: If my subordinates perform well, I will recommend more compensation.
- Contingent Personal Reward: I give my subordinates special recognition when their work performance is especially good.
- 15. Contingent Reprimand: I let my subordinates know about it when they perform poorly.
- Interactive Goals: I work with my subordinates to develop their performance goals.

Visionary Hero

- Vision: I provide a clear vision of where we are going.
- 74. Stimulation and Inspiration: I inspire my subordinates to strive for achievements they would not normally pursue.
- 39. Idealism: I am drive by higher purposes or ideals.
- Challenge to the Status Quo: I challenge established ways of doing thing.

(table continues)

SuperLeader

Meta-Dimensions

- 70.^a Encourages Self-Problem Solving: I encourage my subordinates to find solutions to their problems without seeking my direct input.
- 35. Encourages Initiative: I provide the opportunity for my subordinates to take initiative on their own.

<u>Behavioral Strategies</u> (content)

- 09. Encourages Self-Observation and Evaluation: I encourage my subordinates to judge how well they are performing.
- 20. Encourages Self-Reward: I urge my subordinates to reward themselves with something they like when they have successfully completed a major task.
- 02. Encourages Self-Goal Setting: I urge my subordinates to define the goals themselves.

Cognitive Strategies (content)

- Encourages Finding Natural Rewards: I advise my subordinates to find their own favorite ways to get work done.
- Encourages Opportunity Thought: I advise my subordinates to look for the opportunities contained in the problems they face.
- Encourages Efficacy Expectations: I encourage my subordinates to think they can do very well in their work.

Teamwork (context)

 Encourages Teamwork: I encourage my subordinates to work together.

Note. "Item numbers keyed to Section II of participant

guestionnaire packet reproduced as Appendix 4-5.

unacceptably low at .60. Consequently, this dimension was dropped from further consideration.

<u>Self-Leadership Questionnaire Subordinate Self-Report</u> (SLQ)

A third form of the LSQII, the Self-Leadership Questionnaire (SLQ), was administered to subordinates of participants to gauge their perceptions of their own selfleadership behavior. The SLQ was based on the a priori SuperLeadership dimensions from the LSQII-sub. To create this questionnaire, items were translated into the firstperson and references to "supervisor" were deleted. Examples of the items on the SLQ are presented in Table 4-8. A complete listing of SLQ items, categorized by a priori dimension, is provided in Appendix 4-5. The item numbers in this Appendix are keyed to the item numbers in Section III of the subordinate questionnaire packet, reproduced as Appendix 4-2.

<u>Final working dimensions</u>. The same factor-analytic strategy discussed above with respect to the LSQII was applied to the SLQ. Table 4-9 reproduces the factor names, items, and factor loadings from the final 8-factor SLQ solution based on the combined time 1 and time 2 sample. Table 4-10 summarizes the final SLQ factor structure, including alpha coefficients (based on time 1 data, <u>n</u> = 395 to 403) for the final dimensions. The item

Self-Leadership Questionnaire (SLQ) A Priori Dimensions

with Sample Items

Meta-Dimensions

- 30.^a Self-Problem Solving: "I solve problems when they pop up without always getting my supervisor's stamp of approval."
- 41. Initiative: "I make improvements in how I do my work on my own initiative without being told to do so."

Behavioral Strategies (content)

02. Self-Observation and Evaluation: "I judge how well I am performing."

-

- 12. Self-Reward: "I give myself a pat on the back when I meet a new challenge."
- 27. Self-Goal Setting: "I define goals for myself."

Cognitive Strategies (content)

- 04. Finding Natural Rewards: "I seek out activities in my work that I enjoy doing."
- 06. Opportunity Thought: "I look for the opportunities contained in the problems I face."
- 24. Efficacy Expectations: "I expect that I will perform well."

Teamwork (context)

26. Teamwork: "I work together with other managers/supervisors who report to my supervisor."

Note. For dimension definitions, see SuperLeader section of Table 4-3 and discussion of self-leadership strategies in Chapter II. ^aItem numbers keyed to Section III of subordinate questionnaire packet reproduced as Appendix 4-2.

Self-Leadership Questionnaire (SLQ) Factor Loadings

a	Factor Name Item Content	1				Loadi V		WI 1	VITI
-					14	•	•1	***	4111
	Independent Action								
0.	I search for solutions to my problems on the job without supervision.	.81	.09		.01	.13	.08	.08	
4.	I find solutions to my problems at work without seeking my supervisor's direct input.	.81	. 10	.07	.03	.17	.07	.00	.04
0.	I solve problems when they pop up without always getting my supervisor's stamp of approval.	.81	.16	.06		.08		00	
5.	I assume responsibilities on my own.	.67	.30	.15		.19	.03	.15	.09
08.	I solve my own problems without being dependent on solutions from above.	.66	.28	.02		.18	.07		06
19.	I take initiatives on my own.	.60	.39	.07	.07	.23	.05	.20	.02
1.	Efficacy Expectations								
6.	I think I am capable of high performance.	.16	.80	.09	.06	. 10		.07	
7.	I think I can do very well in my work.	.13	.79	.13	01	.05	.13	.11	.00
4.	I expect that I will perform well.		.74	.10	.01	.09		.12	
3.	I have confidence in my ability to meet challenges at work.	.33	.72	.08	00	.11	.05	.21	.04
9.	I am sure that I am capable of overcoming almost any obstacle at work.	.21	.58	.08	.05	01	.02	.32	. 14
11.	Teamuork								
2.	I work as a team with other managers/supervisors who report to my supervisor.	.09	.08	.92				.09	.00
26.	I work together with other managers/supervisors who report to my supervisor.	.07	.10	.92					
15.	I work together with other managers/supervisors who report to my supervisor as a team.	.04	.14					.10	
8.	I coordinate my efforts with other managers/supervisors who report to my supervisor.	.16	.09	.84	.01	04	.05	.09	.1
IV.	_self_Reward								
1.	I reward myself for doing a good job.	.01	.00						
16.	I treat myself to something I enjoy when I do a task especially well.		02						
3.	I reward myself with something I like when I have successfully completed a major task.		03						
12.	I give myself a pat on the back when I meet a new challenge.	09	- 14	.09	.73	.16	.22	.06	.0

(table continues)

	Factor Name			Facto	or Loa	ding	s		
# ^a	Item Content	I	11	111		-		V11 V	111
v.	Self-Goal Setting								
27.	1 define goals for myself.	.18 .15 .20	.02	.04	12]	83	.15	.06	.14
	I set goals for my own performance.	. 15	.13	.08 .	.19	.79	.09	.10	.16
10.	I set goals for myself.	.20	.14	.07	.17	.77	.03	.15	.05
01.	l define the goals myself.	.23	.03 -	.04 -	.03	.72	.13	.01 -	.02
VI.	Finding Natural Rewards								
22.	I take time to do work tasks that I like to do.	-06 03 -11 .04	.03	.07	.24	.05	.80	.08	.10
04.		03	.09	.01	.26	.09	.76	.09	08
14.		.11	.18	.02	.08	-18	.68	.00	.03
37.		.04	.00	.05	.32	-13	.63	.22	.10
31.	I do my work in ways that I enjoy rather than just trying to get it over with.	.24	,19	.08	.04	.02]	.60]	.24	.11
VI	I. Opportunity Thought								
23	. I think of problems at work as opportunities rather than obstacles.	.09	.13	.12	.03	.05	.10	.83	.11 .01 .07 .17
06		- 16	.16	. 11	-06	.11	.18	.71	.01
15		11	. 16	.06	.19	.17	-12	.59	.07
33	I think about how challenges at work can be met, rather than why they cannot.	.26	.34	. 10	04	01	.11	.55	1.17
V	111. Self-Observation								
2	20. I try to keep track of how well I'm doing while I work.	.05	.18	. 15	.20	. 10	.07	.18	.80
2	 I keep track of my progress on tasks I'm working on. 	.14	.21	. 14	.08	.21	.11	.13	.79
5	Eigenvalues	9.10	3.9	7 2.95	2.21	1.67	7 1.50	1.2	3 1.02
	Percent Variance	26.	8 11.	7 8.7	6.5	4.9	4.4	3.6	3.0

Note. ^aItem numbers keyed to Section III of subordinate questionnaire packet reproduced as

Appendix 4-2.

Final Self-Leadership Questionnaire (SLQ) Dimensions

A Priori Dimension	Final Dimension (Item Numbers) ^a	Description	Alpha ^b (James ^c)
Self-Problem Solving Initiative	Independent Action (40, 34, 30, 35, 8, 9)	Subordinate solves problems and takes initiative without leader intervention	.88 (.96)
Efficacy	Efficacy (16, 7, 24, 33, 39)	Subordinate is confident in her/his ability to perform tasks required on the job	.83 (.96)
Teamwork	Teamwork (42, 26, 5, 18)	Subordinate works together with her/his colleagues to provide support and coordinate activities	.93 (.90)
Self-Reward	Self-Reward (21, 36, 3, 12)	Subordinate rewards her/himself for effective performance on the job	.91 (.82)
Self-Goal Setting	Self-Goal Setting (27, 19, 10, 1)	Subordinate sets her/his own goals for task accomplishment and work performance	.84 (.89)
Natural Rewards	Natural Rewards (22, 4, 14, 37, 31)	Subordinate finds ways to get work done in ways that are personally enjoyable or meaningfu	.78 (.90)
Opportunity Thought	Opportunity Thought (23, 6, 15, 32)	Subordinate views problems at work as opportunities or chal- lenges to be overcome rather thar insurmountable obstacles	.69 (.91)
Self-Observation and Evaluation	Self-Observation and Evaluation (20, 28)	Subordinate monitors and evaluate her/his own performance on the jo	

Note. ⁶Item numbers keyed to Section III of the subordinate questionnaire packet reproduced as Appendix 4-2. ^b(\underline{n} = 395 to 403). ^c(3 or more reporting subordinates, \underline{n} = 61 units, mean \underline{n} = 6.23 subordinates per unit).

numbers in each final factor are keyed to the item numbers in Appendices 4-2 and 4-5.

As with the LSQII factor analysis, the a priori selfproblem solving and initiative dimensions collapsed into a single dimension, which was labelled independent action. Unlike the previous factor structure, the remaining selfleadership dimensions retained their a priori identities. Alpha coefficients for the self-leadership scales were generally satisfactory, with coefficients in the .80s or .90s. The opportunity thought scale had the lowest alpha at .69. Because of its a priori theoretical interest, this scale was also retained for statistical analysis. Mean James coefficients of .82 or better were obtained for all eight SLQ behavior dimensions. Of the 61 units to which the James procedure was applied, between 53 and 61 produced James coefficients of .70 or greater across the various SLQ dimensions. James coefficients of .80 or better were obtained from between 47 and 60 units, while coefficients of .90 or better were obtained from between 24 and 58 units.

<u>Citizenship Behavior Questionnaire, Subordinate Report on</u> <u>Participant-Defined Work Units (CBQ)</u>

Subordinate perceptions of organizational citizenship behavior (OCB) and counterproductive behavior (CB) in

their participant-defined work groups were measured by a Citizenship Behavior Questionnaire (CBQ).

Developing the CBQ. The measure chosen for this research was a variation on a citizenship behavior questionnaire by Ball et al. (1991), which the authors successfully used to demonstrate relationships between supervisor punishment incidents and subordinate citizenship. OCB items for the measure were based on an earlier five-factor OCB measure by Podsakoff, MacKenzie, Moorman, and Fetter (1990), which was validated in a large-scale field study. Podsakoff et al. found that internal consistency reliabilities for four of the five scales exceeded .80 (conscientiousness, sportsmanship, courtesy, and altruism); the reliability of the civic virtue dimension reached .70 (total sample $\underline{n} = 988; \underline{n}$ used to compute reliability coefficients was not reported). Confirmatory factor analysis indicated a strong overall fit between employee responses to this questionnaire and Organ's (1988) a priori five-factor model.

Ball et al. (1991) found reliabilities of .82 for the <u>conscientiousness</u> (n = 90) and <u>altruism</u> (n = 88) dimensions; the reliabilities for <u>courtesy</u> (n = 90) and <u>civic virtue</u> (n = 88) were .70 and .55, respectively (G. Ball, personal communication, May 8, 1992). The low reliability of the <u>civic virtue</u> dimension may be related

to the work context studied by Ball et al. (1991): the targets of the OCB measure were relatively low-level employees who had few opportunities for involvement in civic affairs within the organization (G. Ball, personal communication, May 8, 1992). The present study permitted additional exploration of all four dimensions among higher-level employees who were likely to have greater opportunities for civic involvement.

CB items in the Ball et al. measure were based on the Cumulative work of several unpublished studies reported in Fisher and Locke (1991). These preliminary studies eventuated in a CB measure with six behavioral dimensions. As discussed in Chapter 3, items from four of these dimensions were later chosen for use by Ball et al. (1991). Fisher and Locke reported internal reliabilities for three of these four dimensions, job avoidance, work avoidance, and defiance, of .77, .76, and .65, respectively.

I TO THE REAL OF MICH

Both Fisher and Locke (1992) and Ball et al. (1991) also explored a fourth dimension, <u>aggression</u>. Fisher and Locke reported that the reliability of this dimension could not be calculated because of severe range restriction on many of the items. Perhaps reflecting the strong wording of the <u>aggression</u> items, Ball et al. also encountered range restriction and positive skew (G. Ball,

personal communication, May 8, 1992). Because of the wording of the items, past psychometric problems, and the time constraints of data collection, the Fisher and Locke <u>aggression</u> dimension was not included in the present research.

The Ball et al. (1991) CB measure also included the OCB <u>sportsmanship</u> scale from Podsakoff et al. (1990), which Ball et al. renamed <u>complaining</u>. Ball et al. (G. Ball, personal communication, May 8, 1992) reported reliabilities for the four CB scales used in the present study of .71 for <u>job avoidance</u>, .87 for <u>work avoidance</u>, .77 for <u>defiance</u>, and .85 for <u>complaining</u> (all <u>n</u> = 90). Ball et al. were unable to confirm the specific dimensionality of their CB and OCB items because of inadequate sample size. However, they were able to use second-order factor analysis to demonstrate that OCB and CB items loaded on separate meta-dimensions.

Ball et al. originally administered their CBQ to supervisors in order to describe the citizenship of individual subordinates. In the present study, however, the questionnaire were modified so that <u>subordinates</u> described the citizenship behavior of their colleagues who report to the same supervisor as a <u>group</u>, not as individuals. The present approach differs from past research on OCB, which has generally relied on <u>supervisor</u>

ratings of the OCB of <u>individual</u> subordinates (Moorman, 1991; Organ, 1988). While novel, the present focus on citizenship assessment by subordinates is indicated by the nature of citizenship behavior: almost by definition, citizenship behavior is not likely to come to the attention of supervisors. Furthermore, collecting CBQ data from multiple subordinates rather than a single supervisor provides several sources of convergent information.

In addition to the OCB and CB items, appropriate translations of <u>teamwork</u> items from the LSQII were also added to the citizenship measure for this study. This permitted an assessment of teamwork at the group level. Items in this dimension paralleled the construction of teamwork items on the other measures. However, in this case the referent was the teamwork behavior of subordinate colleagues rather than encouragement of teamwork by the training participants (LSOII-sub, LSOII-train) or teamwork behavior by the subordinate (SLQ). Examples of the items on the CBQ are presented in Table 4-11. A complete listing of CBQ items, categorized by a priori dimension, is provided in Appendix 4-6. The item numbers in this Appendix are keyed to the item numbers in Section I of the subordinate questionnaire packet reproduced as Appendix 4-2.

Citizenship Behavior Questionnaire (CBQ) A Priori

Dimensions with Sample Items

Organizational Citizenship Behavior^b

- 29. Conscientiousness: "My colleagues obey company rules and regulations even when no one is watching."
- Altruism: "My colleagues help others who have heavy workloads."
- 05. Courtesy: "My colleagues are mindful of how their behavior affects other people's jobs."
- 34. Civic Virtue: "My colleagues attend meetings that are not mandatory, but are considered important."

Counterproductive Behavior^b

- 25. Physical Avoidance or Escape from the Job: "My colleagues avoid their jobs by coming in late or leaving early."
- 13. Avoidance of the Work Itself: "My colleagues try to look busy doing nothing."
- 03. Defiance, Resistance to Authority: "My colleagues have been deliberately ignoring rules and regulations."
- 08. Complaining: "My colleagues consume a lot of time complaining about trivial matters."

Teamwork

01. My colleagues work with each other as a team.

<u>Note</u>. ^aItem numbers keyed to Section I of subordinate questionnaire packet reproduced as Appendix 4-2. For dimension descriptions, see discussion of teamwork (Chapter II) and citizenship (Chapter III). ^bAdapted from "'Just' and 'Unjust' Organizational Punishment: Influences on Subordinate Performance and Citizenship Behavior" by G. A. Ball, L. K. Trevino, and H. P. Sims, 1991. Unpublished manuscript. ^cAdapted from LSQII. Final working dimensions. The same factor-analytic approach used for the LSQII and SLQ was also used for the CBQ. Table 4-12 reproduces the final factor names, items, and factor loadings from the final 7-factor CBQ solution based on the combined time 1 and time 2 sample. Table 4-13 summarizes the final CBQ factor structure, including alpha coefficients (based on time 1 data, $\underline{n} = 379$ to 388) for the final scales. The item numbers in each final dimension are keyed to the item numbers in Appendices 4-2 and 4-6.

Among the OCB items, note from Table 4-13 that the a priori teamwork and altruism dimensions collapsed into a single dimension which was labelled interpersonal support. The a priori courtesy dimension retained is identity. The a priori civic virtue dimension broke apart into two separate dimensions reflecting the dual emphasis of the a priori dimension on a) keeping abreast of news and developments in the organization and b) attending meetings that are not required. These dimensions were labelled civic virtue (news) and civic virtue (meetings). The alphas for the courtesy and civic virtue (news) dimensions were somewhat low at .66 and .67, respectively. Because of their a priori theoretical importance, these two scales were retained along with the interpersonal support dimension for subsequent analysis. The alpha for the last

150

Citizenship Behavior Questionnaire (CBQ) Factor Loadings

	Factor Name			Facto	or Lo	adino	s	
"a	Item Content	I	H	111			-	VI
1.	Interpersonal Support							
26.	My colleagues work together as a team.	.80	.20	13	.27	.13	01	05
36.	My colleagues work together.	.78	.20	08	.31	.16	00	
01.	My colleagues work with each other as a team.	.76	.17	10	.27	. 19	13	00
12.	My colleagues help orient new people even though it is not required.	.70	.15	21	07	.01	.21	08
19.	My colleagues willingly help others who have work-related problems.	.68	.27	12	.04	.01	.16	04
38.	My colleagues help others who have heavy work loads.	.68	.20	18	.21	. 12	. 15	10
09.	My colleagues coordinate their efforts with each other.	.67	.12	17	.16	.20	.05	11
03.	My colleagues have always been ready to lend a helping hand to those around them.	.66	.25	05	.25	.05	03	.01
31.	My colleagues help others who have been absent.	-64	.22	18	.03	.07	.16	12
п.	Unreliability							
17.	My colleagues get away from the job by calling in sick when they are not really sick.	15		.17	05	10	02	.04
18.	My colleagues make frequent and/or long trips to the water fountain, vending machines,	27	75	.21	04	10	00	.10
	or restroom to avoid work.					-	-	
28.	My colleagues take frequent or extra long breaks to avoid doing work.	26						
25.	My colleagues avoid their jobs by coming in late or leaving early.	27						
10.	The attendance of my colleagues has been above the norm.			03				
29.	My colleagues obey company rules and regulations even when no one is watching.	.16	.52	09	.07	.20	.13	•.30
11.	Complaining							
16.	My colleagues focus on what's wrong, rather than the positive side.	24	14	.70	.11	13	13	.14
23.	My colleagues tend to "make mountains out of molehills."	30						
	My colleagues consume a lot of time complaining about trivial matters.	20						.09

(table continues)

	Factor Name					ading		
# ³	Item Content	I	11	111	tv	V	۷I	VI
٧.	Courtesy							
05. 14. 21.	My colleagues are mindful of how their behavior affects other people's jobs. My colleagues consider the impact of their actions on co-workers. My colleagues try to avoid creating problems for co-workers.	.31 .37 .39	.11 .20 .26	26 17 03	.73 .62 .48	.01 .12 .08	.11 .11 .06	06 13 10
<u>v1.</u>	Civic Virtue (News)							
24. 02.	My colleagues have been reading and keeping up with organization announcements, memos, etc. My colleagues have been keeping abreast of changes in the organization.	.14	.14	13 07	.04 .10	.82 .74	.20 .04	03 10
<u>v11.</u>	Civic Virtue (Meetings)							
34. 15.	My colleagues attend meetings that are not mandatory, but are considered important. My colleagues attend functions that are not required, but help the company image.	.22 .00	.20 .02	.05 18	.00 .17	.06 .16	.79 .77	10 04
VIII.	Defiance							
30. 20.	My colleagues talk back to their supervisor. My colleagues resist the influence of their supervisor.	09 13	13 02	03 .30	11 04	.04 16	06 07	.83
Eiger	nvalues	10.1	1.87	1.51	1.19	1.01	.99	.86
Perce	ent Variance	37.5	6.9	5.6	4.4	3.8	3.7	3.1

Note. ^aItem numbers keyed to Section I of the subordinate questionnaire packet reproduced as

Appendix 4-2.

Final Citizenship Behavior Questionnaire (CBQ) Dimensions

A Priorí Dimension	Final Dimension (Item Numbers) ^a	Description	Alpha ^d (James ^e ,
I. Organizational C	itizenship Behavior (OCB)		
Teamwork Altruísm	Interpersonal Suppo (26, 36, 1, 12, 19, 38, 9, 3, 31)		(.94)
Courtesy	Courtesy (5, 14, 21)	Work group avoids interpersonal conflict by acting in ways that are sensitive to others in the group	.66 (.78)
Civic Virtue	Civic Virtue (News) (24, 2)	Work group keeps abreast of developments in the organization	.67 (.80)
Cívic Vírtue ^b	Civic Virtue (Meetings) (34, 15)	Work group attends meetings and other functions in the organiza- that are considered important but are not required	.50 (.77)
II. Counterproductive	Behavior (CB)		
Job Avoidance Work Avoidance Conscientiousness ^C	Unreliability (17, 18, 28, 25, 10, 29)	Work group avoids work-related responsibilities and/or discharges work-related responsi- bilities unreliably	.84 (.89)
omplaining	(16, 23, 8)	Work group habitually complains about work-related policies, practices, and procedures	.74 (.79)
fiance ^b		work group actively defies	.46

<u>Note</u>. ^aItem numbers keyed to Section I of the subordinate questionnaire packet reproduced as Appendix 4-2. ^bDimension not retained for further analysis. ^cOriginally an OCB dimension; loaded in opposite direction compared with other items in the scale. ^d(<u>n</u> = 379 to 388). ^e(3 or more reporting subordinates, <u>n</u> = 61 units, mean <u>n</u> = 6.23 subordinates per unit). OCB dimension, <u>civic virtue (meetings)</u> was an unacceptably low .50. Consequently, it was dropped from further consideration. Mean James coefficients of .80 or better were obtained for the three surviving dimensions in the OCB cluster. Of the 61 units to which the James procedure was applied, between 49 and 61 units produced James coefficients of .70 or greater across the various OCB dimensions. James coefficients of .80 or better were obtained from between 34 and 59 units, while coefficients of .90 or better were obtained from between 13 and 53 units.

Among the CB items, all of which have been developed relatively recently, the a priori job avoidance, work avoidance, and (opposite-loading) conscientiousness (originally an OCB dimension) items collapsed into a single dimension labelled <u>unreliability</u>. The a priori <u>Complaining</u> and <u>defiance</u> dimensions retained their identities. Because the alpha of the <u>defiance</u> dimension was an unacceptably low .46, this dimension was dropped from further consideration. Mean James coefficients of .79 or better were obtained for the two surviving CB dimensions. Of the 61 units to which the James procedure was applied, 52 and 57 units produced James coefficients of .70 or greater. James coefficients of .80 or better were obtained from between 38 and 53 units, while

coefficients of .90 or better were obtained from 14 and 42 units.

Participant Effectiveness (Subordinate Report and Participant Self-Report)

Participant effectiveness was assessed for exploratory purposes by administering a 4-item measure a) to subordinates as part of their description of participant leader behavior and b) to participants as part of their self-description. This measure had been used successfully in earlier self-management leadership research by Manz and Sims (1987), who reported a reliability coefficient of .92 for the scale. All items from this measure are reproduced in Table 4-14 in both subordinate and participant translations. Item numbers in this table are keyed to the item numbers in Sections II of the subordinate and participant questionnaire packets reproduced as Appendices 4-2 and 4-4, respectively. Note that the effectiveness items were included toward the end of Section II in the LSQII-sub and LSQII-train and used the same five-point response scale.

The subordinate report effectiveness scale had an alpha of .95 in the present study based on time 1 data $(\underline{n} = 399)$ and produced a mean James coefficient of .73. Of the 61 units to which the James procedure was applied, 41 produced James coefficients of .70, 26 were .80 or

Trainee Effectiveness Items (Subordinate Report and Trainee Self-Report Versions)

Subordinate Report on Trainee (LSQII-sub)^a

80. His/her performance is very high.

84. He/she is very effective.

89. He/she performs very well.

94. His/her overall effectiveness is excellent.

Trainee Self-Report (LSOII-train) b

80. My performance is very high.

84. I am very effective.

89. I perform very well.

94. My overall effectiveness is excellent.

<u>Note</u>. ⁸Item numbers keyed to Section II of the subordinate questionnaire packet reproduced as Appendix 4-2. ^bItem numbers keyed to Section II of the trainee questionnaire packet reproduced as Appendix 4-5. better, and 5 were .90 or better. The participant selfreport had an alpha of .87 based on time 1 data (immediate training group only, <u>n</u> = 32).

Participant Performance (Manager Report)

For exploratory purposes, the supervisors of participants completed a short performance questionnaire immediately before training and ten weeks after training. Because participants were assigned to condition by department, the participant(s) reported on by any given manager were either all in the immediate training group or all in the comparison group. The performance questionnaire included translations of several general performance dimensions derived by Goodale & Burke (1975). These performance dimensions were verified by management at the host organization to ensure their applicability to the participants. The previous Goodale & Burke measure had been administered to employees of an airline by Neck (1992), who reported a reliability coefficient of .93 (<u>n</u> = 47; personal communication, April 24, 1992).

The shortened measure used for the present study is reproduced as Appendix 4-7. This measure asked managers to evaluate the participants on nine performance dimensions: a) <u>organizing and planning</u>, b) <u>reaction to</u> <u>problems</u>, c) <u>reliability</u>, d) <u>adaptability</u>, e) <u>productivity</u>, f) <u>quality</u>, g) <u>team orientation</u>, h)

delegation, and i) subordinate development. Each dimension was labelled and defined on the form. As presented to the managers, this measure listed the name(s) of participant-subordinates in the boxes to the right of the response scale at the top of the form. Ratings for each subordinate appeared in the corresponding column. These ratings were entered using a five-point frequency scale with response categories of 1 ("Never/Almost Never"), 2 ("Infrequently"), 3 ("Occasionally"), 4 ("Frequently"), and 5 ("Always/Almost Always").

Final working dimensions. Originally, all dimensions on this performance measure were intended to be combined into a single overall performance variable. For exploratory purposes, manager responses from time 1 and time 2 ($\underline{n} = 131$ total responses, $\underline{n} = 36$ different managers) were combined for factor analysis. Of the 36 responding managers, 17 were managers of participants in the training group while 19 were managers of the control group. Because managers typically provided performance ratings on multiple subordinates, responses were likely to be somewhat correlated. Furthermore, the measure was likely to be contaminated by knowledge of the contents of the training group. Recall that these managers were also included in the training with their subordinates, the

participants who were the focus of data collection. A review of attendance rosters revealed that only two of the 17 training group managers had not received training along with their subordinates.

Despite these problems, three meaningful factors emerged. Table 4-15 reproduces the final dimension names, dimension labels and descriptions, and factor loadings from the final 4-factor solution based on the combined time 1 and time 2 sample. Table 4-16 summarizes the final performance factor structure, including alpha coefficients (based on time 1 manager responses, $\underline{n} = 70$ to 71 responses, $\underline{n} = 36$ different managers providing responses) for the final scales. The item labels for each final dimension are keyed to the labels in Appendix 4-7.

The a priori <u>reliability</u>, <u>quality</u>, and <u>productivity</u> items collapsed into a single dimension labelled <u>output</u> <u>effectiveness</u>. This dimension reflected items that dealt specifically with the participants' own work. The a priori <u>delegation</u>, <u>subordinate development</u>, and <u>team</u> <u>orientation</u> items collapsed into an <u>interpersonal</u> <u>effectiveness</u> dimension, reflecting the participant's effectiveness in delegating and promoting autonomy among subordinates. The a priori <u>adaptability</u> and <u>reaction to</u> <u>Problems</u> items collapsed into a dimension labelled <u>change</u> <u>effectiveness</u>, which pertained to the participant's

Trainee Performance Factor Loadings

Factor Name	Fa		Loadi	-	
Dimension Description	1	11	111	14	
1. Interpersonal Effectiveness					
Delegation: Encourages subordinates to work independently; delegates important parts of assignments to subordinates.	.85	.14	.08 .15 .39	.15	
Subordinate Development: Develops the skills of subordinates. Team Orientation: Encourages and facilitates teamwork and cooperation among	.74	.07	.15	.33	
subordinates.	1				
II. Output Effectiveness					
Reliability: Performs work conscientiously and dependably. Productivity: Provudes a volume of work consistent with established standards.	.28 05 .23	.83	04	.18	
Quality: Performs duties accurately and effectively.	.23	.69	.16	.43	
III. Change Effectiveness					
Adaptability: Changes behavior to mee the demands of the situation.	.20	.21	.85	.04	
Reaction to Problems: Identifies, analyzes, and acts upon problems in a constructive, responsible manner.	.28	.07	.69	.45	
IV. Organizing and Planning Effectiveness					
Organizing and Planning: Sets goals and priorities for maximum efficiency.	.15	.23	. 12	.88	
Eigenvalues	3.94	1.25	-94	.82	
Percent Variance	43.8	13.9	10.5	9.1	

Note. Dimension definitions keyed to Appendix 4-8.

Final Participant Performance Dimensions

A Priori Dimension ^a	Final Dimension	Description	Alpha
Reliability Productivity Quality	Output Effectivenes	s Trainee reliably produces an acceptable volume of work that is of acceptable quality	.71
Delegation Subordinate Development Team Orientation	Interpersonal Effectiveness	Trainee effectively utilizes subordinate capabilities by appropriately delegating tasks while preparing subordinates to handle delegated tasks by developing their abilities and facilitating teamwork	.78
Adaptability Reaction to Problems	Change Effectiveness	Trainee effectively accommodates change by appropriately adapting behavior and appropriately identifying and acting upon problems	.70
organization and Planning	Organizing and Plan- ning Effectiveness	Trainee sets goals and priorities for maximum efficiency	
All a priori dimensions)		Trainee is an effective in terms of her/his personal work perform- ance and her/his leadership of subordinates	.83

Note. ^aA priori variable labels keyed to the dimension labels and descriptions on the performance questionnaire reproduced as Appendix 4-8.

effectiveness in accommodating and responding to change and/or unexpected problems. The a priori <u>organizing and</u> <u>planning</u> item remained as its own factor (single-item alpha could not be calculated). All nine items were also summed to form a fifth dimension, <u>overall effectiveness</u>. Because all calculable alphas were .70 or better, all dimensions in this exploratory measure were retained for possible use later on.

Subordinate Job Satisfaction

For exploratory purposes, a job satisfaction measure was adapted in abbreviated form from Hackman and Oldham's (e.g., 1980) Job Diagnostic Survey for administration to subordinates as part of the subordinate questionnaire This measure included a total of 15 items packet. assessing overall job satisfaction (3 items) as well as five facet satisfaction dimensions: a) satisfaction with opportunities for growth on the job (3 items), b) satisfaction with pay (2 items), satisfaction with job security (2 items), satisfaction with social interaction on the job (3 items), and satisfaction with supervision (2 items). Subordinates responded to these items using a five-point scale with response categories of 1 ("Very Dissatisfied"), 2 ("Slightly Dissatisfied"), 3 ("Neutral"), 4 ("Slightly Satisfied"), and 5 ("Very Satisfied"). Examples of items from the abbreviated job

satisfaction measure, classified by dimension, appear in Table 4-17. The job satisfaction instrument is reproduced in its entirety, with items classified by dimension, as Appendix 4-8. Item numbers from Table 4-17 and Appendix 4-8 are keyed to the satisfaction items in Section IV of the subordinate questionnaire, reproduced as Appendix 4-2.

Final working dimensions. Exploratory factor analysis based on the combined time 1 and time 2 subordinate sample produced five factors. Table 4-18 reproduces the final dimension names, dimension labels and descriptions, and factor loadings from the final 5-factor solution. Table 4-19 summarizes the final job satisfaction factor structure, including alpha coefficients (based on time 1 data, $\underline{n} = 398$ to 403) for the final scales. The item numbers in Tables 4-18 and 4-19 are again keyed to the items in Section IV of Appendix 4-2.

As indicated in Table 4-19, the a priori <u>overall</u> and <u>growth</u> satisfaction dimensions collapsed into a single dimension that was simply labelled <u>overall satisfaction</u>. In retrospect, this result was not particularly surprising given the professional and managerial nature of the jobs held by respondents. The remaining <u>pay</u>, job security, <u>supervisory</u>, and <u>social</u> satisfaction dimensions retained their a priori identities. Because the alpha for <u>social</u>

Table 4-17

Subordinate Job Satisfaction A Priori Dimensions with

Sample Items

- 01.^a Overall Job Satisfaction: My job as a whole
- 02. <u>Growth Satisfaction</u>: The amount of personal growth and development I get in doing my job
- 03. <u>Pay Satisfaction</u>: The amount of pay and fringe benefits I receive
- 04. Job Security Satisfaction: The amount of job security I have
- 05. <u>Social Satisfaction</u>: The people I talk to and work with on my job
- 06. <u>Supervision Satisfaction</u>: The degree of respect and fair treatment I receive from my supervisor

Note. ^AItem numbers keyed to Section IV of subordinate questionnaire packet reproduced as Appendix 4-2.

Table 4-18

Subordinate Job Satisfaction Factor Loadings

# ^a	Factor Name Item Content	r			bading JV	
			_			-
	Overall Satisfaction					
1.	My job as a whole	.90	.14		.15	.10
13.	My job in general	.90		.14	.14	.12
07.	Hy overall job	.88	-17	.13	. 15	- 13
08.	The feeling of worthwhile accomplishment 1 get from doing my job	.77	.05	.12	-11	-17
D2.	The amount of personal growth and development I get in doing my job	.75	.08	.10	.22	.08
4.	The amount of challenge in my job	.75	.02	-10	- 14	.22
11.	Pay Satisfaction					
19.	The degree to which I am fairly paid for what I contribute to this organization	.15	.94	.09	. 14	.08
3.	The amount of pay and fringe benefits 1 receive	.17	.94	.11	.12	.05
п.	Job Security Satisfaction					
0.	How secure things look for me in the future in this organization	.18	.06	.93	.10	.08
14.	The amount of job security 1 have	.20	.15	.91	.11	.07
٧.	Supervision Satisfaction					
6.	The degree of respect and fair treatment 1 receive from my supervisor	.23	.15	. 13	.86	.14
2.	The overall quality of the supervision I receive in my work	.30	.13	.09	.85	.13

(table continues)

.

	Factor Name	Factor Loadings				
#°	Item Content	I	11	ш	14	V
v	Social Satisfaction					
05. 11.	The people 1 talk to and work with on my job The chance to get to know other people while on the job	.19 .22	.03	.09 .05	.07 .16	.82 .78
Eiger	values	6.16	1.67	1.37	1.17	.99
Perce	nt Variance	44.0	12.0	9.8	8.4	7.1

Note. ^aItems keyed to Section IV of the subordinate questionnaire packet

reproduced as Appendix 4-2.

Table 4-19

Alphad (James) Final Dimension (Item Numbers)^a A Priori Dimension Description .93 Overall Satisfaction The work in general is satisfying Overall Satisfaction Growth Satisfaction (1, 13, 7, 8, 2, 14) .94 The pay is satisfactory Pay Satisfaction Pay Satisfaction (.41) (9, 3) .90 The job security is satisfactory Job Security Satisfaction Job Security (.46) Satisfaction (10, 4) .84 The supervision provided on the Supervisory Satisfaction Supervisory (.48) job is satisfactory Satisfaction (6, 12) The social relationships at work Social Satisfaction Social Satisfaction .57 (.74) (5, 11) are satisfactory

Final Job Satisfaction Dimensions

<u>Note</u>. ⁶Item numbers keyed to Section IV of the subordinate questionnaire packet reproduced as Appendix 4-2. ^bDimension not retained for further analysis. ^C(\underline{n} = 398 to 403). ^d(3 or more reporting subordinates, \underline{n} = 61, mean \underline{n} = 6.23 subordinates per unit).

satisfaction was an unacceptably low .57, this dimension was dropped from further consideration. In addition, only the James coefficients of the surviving <u>overall</u> satisfaction dimension (.70) suggested intra-unit agreement. Consequently, all four surviving job satisfaction dimensions were retained for analysis at the individual level rather than the participant-defined unit level.

Subordinate Desire for Self-Leadership (Subordinate Self-Report)

A measure was included in a special subsection at the end of the SLQ to assess the extent to which subordinates desired to engage in key self-leadership behaviors. To construct this <u>desire for self-leadership</u> measure--an individual-level moderator--two questions were created to reflect each of four key self-leadership dimensions: the two self-leadership meta-variables (a) <u>initiative</u> and (b) <u>self-problem solving</u>, (c) the <u>self-qoal setting</u> content variable, and (d) the <u>teamwork</u> context variable. Unlike the rest of the subordinate questionnaire, the <u>desire</u> measure included reverse-scored items--one item for each of the four key variables. To answer the questions, respondents were asked to imagine an ideal job situation; all items followed the initial probe "<u>in my ideal job</u>" and

were answered using the same five-point response scale. Sample items appear in Table 4-20.

Final working dimensions. Exploratory factor analysis of this questionnaire failed to produce an interpretable factor structure. When a two-factor solution was attempted, the positively- and negativelyworded items loaded on separate factors (with one exception). Consequently, all items in the scale were grouped together to form a single moderator variable. The resulting scale had an alpha coefficient of .64 ($\underline{n} = 402$). When positively- and negatively-worded items were broken out for separate reliability analysis, the resulting alpha coefficients were .66 (n = 404) and .62 (n = 404), respectively. Based on these results, all items were retained in the single scale for possible moderator analysis at the individual level. This subordinate-report moderator, with items classified by dimension, is included in Appendix 4-9. The item numbers in this Appendix are keyed to the last portion of Section III of the subordinate questionnaire, which is reproduced as Appendix 4-2.

Subordinate Demographics

A brief demographic questionnaire was administered for descriptive purposes as part of the questionnaire packet completed by subordinates. This measure appears in

Table 4-20

Desire for Self-Leadership Sample Items

Teamwork

43.^a I would collaborate with other employees at my level to accomplish tasks without involving my supervisor.

Self-Goal Setting

49. I would define goals for myself without my supervisor's intervention.

Self-Problem Solving

44. I would find solutions to my problems at work without consulting my supervisor.

Initiative

50. I would make decisions on my own initiative without involving my supervisor.

<u>Note</u>. ^aAll items adjoin the stem "In my ideal job. . . ." Item numbers keyed to Section III of the subordinate trainee questionnaire packet reproduced as Appendix 4-2. Section V of the subordinate questionnaire packet reproduced in Appendix 4-2.

Manipulation Check

To provide a rough estimate of whether learning had taken place during the training, a brief 12-item quiz was administered to the trainees in both training sessions immediately after training. This quiz, which is reproduced in Appendix 4-10, was structured around the four leadership archetypes which were the core of the training. The quiz included three sections, each of which asked trainees to match the four archetypes with exemplary behaviors.

Analyses

To control the experiment-wise error rate (e.g., Cliff, 1987), multivariate tests of the propositions were conducted using multiple analysis of covariance (MANCOVA) as recommended by O'Brien and Kaiser (1985). Using this approach, pre-training dimension scores were treated as covariates with post-training scores as dependent variables and experimental condition (comparison or training group) as a factor. Each preliminary MANCOVA included all variables within each leadership archetype and citizenship meta-dimension. Significant multivariate results were followed by univariate analyses of covariance (ANCOVAs) for the constituent variables.

After the multivariate and univariate proposition tests and exploratory analyses had been conducted, hierarchical regression was used to perform univariate moderator analysis at the individual level based on the <u>desire for self-leadership</u> moderator questionnaire. This moderator analysis involved regressing each time 2 dimension on four independent variables (in order): a) the corresponding time 1 dimension, b) condition (training or comparison), c) the time 1 <u>desire</u> score, and d) the <u>desire x</u> condition interaction. A significant interaction term would indicate a moderator effect. This individuallevel analysis was performed on all dimensions for which individual-level data were available.

Chapter V: Results

This chapter will present the results of the experiment in two major sections. The first section includes descriptive statistics and selected time 1 comparisons between the training and comparison conditions. The second section tests the propositions in Chapters II and III and presents the results of additional exploratory analyses. The third section presents the results of moderator analysis at the individual (subordinate) level and the participant-defined unit (aggregate) level.

The clusters and dimensions included in the questionnaires analyzed for this experiment are summarized in Table 5-1, which will be presented and discussed in the next section. Recall that the LSQII-sub and LSQII-train included four leader behavior clusters at the participantdefined unit level: <u>Strongman</u> (three dimensions), <u>Transactor</u> (four dimensions), <u>Visionary Hero</u> (four dimensions for the LSQII-sub, three dimensions for the LSQII-train), and <u>SuperLeader</u> (four dimensions). These questionnaires also included a unidimensional, unit-level <u>participant effectiveness</u> scale from the perspective either of the training participant (training and comparison group) or subordinate. The SLQ included a unit-level <u>self-leadership</u> behavior cluster (eight

dimensions) and an individual-level <u>desire for self-</u> <u>leadership</u> moderator dimension. The CBQ included two unit-level clusters: <u>organizational citizenship behavior</u> (three dimensions) and <u>counterproductive behavior</u> (two dimensions). The subordinate job satisfaction questionnaire was composed of a single individual-level job satisfaction cluster (four dimensions). Finally, the manager performance questionnaire included a unit-level <u>overall performance</u> dimension and a unit-level <u>facet</u> <u>performance</u> cluster consisting of four performance dimensions.

To avoid capitalizing on chance, multivariate statistical comparisons and tests were first conducted on whole <u>clusters</u>. If statistically significant multivariate differences were found, univariate tests of individual <u>dimensions</u> followed. In the tables used to present the results, cluster labels appear at the left margin; individual dimension labels are indented and appear immediately below the corresponding cluster label.

Preliminary Analysis

First, the results of the manipulation check will be reported. Then, this section will present descriptive statistics and time 1 comparisons for the various clusters and dimensions in the experiment.

Manipulation Check

Recall from Chapter IV that a 12-item quiz was administered to the training participants immediately after training. The quiz, structured around the four Manz and Sims (1991) leadership archetypes, included three sections. Each section asked the training participants to match the four archetypes with exemplary behaviors. Out of 12 possible points, participants in Sessions I and II achieved average scores of 10.69 and 11.65, respectively. These results suggested that learning had taken place: participants were able to successfully distinguish the four leadership archetypes, including SuperLeader. Time 1/Time 2 Descriptive Statistics

Table 5-1 summarizes the cluster and dimension labels along with time 1 and time 2 means, standard deviations, and sample sizes computed at the level used for statistical comparison and analysis (either the participant-defined unit level or the individual level).

<u>Subordinate demographics</u>. Time 1 demographic data for participating subordinates appear in Section I of Table 5-1. Subordinates averaged 40 years in age and had worked in the host organization for an average of 14 years, four of which were spent with their present supervisor. In addition, responding subordinates were predominantly male and generally well-educated, having

Table 5-1

Time 1/Time 2 Dimension Descriptives at the Level of

Analysis Used for Proposition Testing

	Time 1			Time 2		
Cluster Dimension	Mean	(Std De	ev) n	Rean	(Std De	v) n
I. Subordinate Demographics						
Demographics ^a						
Age	40.0	(10.8)	370			
Years with Host Organization		(9.51)				
Years with Present Supervisor		(1.34)				
II. Leadership Strategies Question	maire, Ir	ainee S	elf-Rep	ort (LSQ)	I-train	2
Strongman						
Aversive Behavior	2.10	(.61)	31	2.03	(.74)	60
Assigned Goals	3.24		31	3.06	(.77)	60
Instruction and Command	2.81		31	2.62	(.58)	60
Transactor			100			
Participative Goals	3.96	(.46)	31	3.99	(.61)	60
Material Reward	4.15		31	4.08	(.75)	60
Contingent Personal Reward	4.05		31	4.20	(.72)	60
Contingent Reprimand	3.40	(.60)	31	3.40	(.57)	60
Visionary Hero			10.3			
Challenge to the Status Quo	3.78	(.52)	31	3.74		
Vision	3.51		31	3.64		60
Idealism	3.81	(.72)	31	3.71	(.92)	60
SuperLeader						
Self-Reward	3.02			3.25		
Teamwork	4.34	(.46)	31	4.32		
Independent Action	4.01	(.40)	31	3.94		
Opportunity Thought	3.81	(.60)	31	3.74	(.68)	60
111. Leadership Strategies Questi	onnaire, s	Subordi	nate Rep	ort (LSQ)	II-sub)	
Strongman					1.412	-
Aversive Behavior	1.90			1.91		
Assigned Goals	3.05			3.03		
Instruction and Command Transactor	2.82	(.45)	72	2.84	(.51)	71
Participative Goals	3.54	(.42)	72	3.62	(.42)	71
Contingent Material Reward	3.27			3.36		71
Contingent Personal Reward	3.47			3.54		71
Contingent Reprimand	2.91			2.91		71
Visionary Hero						-
Challenge to the Status Quo	3.05	(.62)	72	3.16	(.58)	71
Vision	3.09			3.17		71
Idealism	3.36			3.43		71
Stimulation and Inspiration	2.76			2.89		71

(table continues)

.

Dimension	Mene	ind De		Nean (Std Dev) n		
	Hean (Std Dev) n		Heary	(Sto De		
SuperLeader						
Self-Reward	2.65		72	2.79		71
Teamwork	3.75		72	3.77	(.39)	71
Independent Action	3.49		72	3.53	(.46)	
Opportunity Thought	3.16	(.45)	72	3.28	(.42)	71
V. Self-Leadership Questionnaire, Su	bordin	nate Rep	bort (SL	2)		
Self-Leadership						_
Independent Action	4.09		72	4.06	(.37)	71
Efficacy	4.19		72	4.14	(.28)	71
Teamwork	3.90		72	3.97		71
Self-Reward	2.98	(.47)	72	3.06		71
Self-Goal Setting	3.71		72	3.67		
Natural Reward	3.58	(.28)	72	3.55	(.33)	
Opportunity Thought	3.68	(.26)	72	3.77	(.28)	
Self-Observation	3.82	(.30)	72	3.81	(.34)	71
V. Citizenship Behavior Questionnaire	subo	ordinate	e Report	(080)		
Organizational Citizenship Behavior				(a. 200)		_
Interpersonal Support	3.72	(.34)	72	3.77		71
Courtesy	3.50	(.38)	72	3.60	(.37)	71
Civic Virtue (News)	3.71	(.34)	72	3.80	(.33)	71
Counterproductive Behavior						
Unreliability	1.97	(.39)	72	1.96		
Complaining	2.64	(.45)	72	2.53	(.44)	71
VI. Job Satisfaction Questionnaire, 9	Subord	inate Re	eport			
Job Satisfaction ⁸						
Overall	3.53	(.95)	387	3.60		
Pay		(1.26)			(1.19)	
Job Security		(1.14)			(1.11)	
Supervision		(1.15)		3.69	(1.03)	306
VII. Trainee Performance/Effectivene	ss					
Overall Performance (Manager Report)	4.13	(.48)	70	4.26	(.46)	61
Facet Performance (Manager Report)						
Output	4.51	(.47)	70	4.60	(.51)	
Interpersonal	3.83	(.66)	70	4.05		
Change	4.04	(.67)		4.06	(.69)	61
Organizing/Planning		(.81)		4.25	(.75)	61
Trainee Effectiveness (Self-Report) Trainee Effectiveness (Subordinate)	3.60	(.66)	31	3.69	(.79)	60
Trainee Effectiveness (Subordinate)	3.41	(.58)		3.53	(.53)	71
VIII. Moderator						
Desire ^a	3 24	(.48)	300	3 27	(.48)	308

Note. Except where noted, all descriptives at the unit level of analysis.

⁸Descriptives based on unaggregated data.

.

completed a Bachelors degree with some additional postcollege training.

Leadership Strategies Questionnaire (LSOII-train, participant self-report). Descriptives for the LSQIItrain leader behavior clusters are presented in Section II of Table 5-1. Because these data were collected from participants in the comparison and training groups, all descriptives reflect the participant-defined unit level of analysis. Note that the number of participant selfreports differs between time 1 and time 2: to avoid possible contamination, participants in the comparison group did not receive the LSQII-train at time 1. At time 1, of the 34 participants assigned to the training group, 31 (91%) returned usable LSOII-train self-report data. At time 2, of the total 73 participants who received questionnaires, 60 (82%) returned usable data. Within the time 2 sample, 25 (74%) of the 34 trainees and 35 (90%) of the 39 comparison group participants returned usable data. Intercorrelations among LSQII-train leadership dimensions for both time 1 and time 2 are presented in Appendix 5-1. Time 1/time 2 intercorrelations among all unit-level dimensions in the experiment appear in Appendix 5-7.

Leadership Strategies Questionnaire (LSOII-sub), Self-Leadership Questionnaire (SLO), and Citizenship Behavior Questionnaire (CBQ) (all subordinate report). Subordinate descriptives for the LSQII-sub, SLQ, and CBQ are presented in Sections III, IV, and V of Table 5-1, respectively. Because these data were aggregated to the unit level, descriptives reflect the participant-defined unit level of analysis. Of the 526 subordinates who received questionnaire packets at time 1, between 373 (71%) and 391 (74%) returned usable data on the various LSQII-sub, SLQ, and CBQ dimensions. Within the time 1 sample, between 150 (70%) and 153 (71%) of the 214 subordinates in the training group returned usable data; between 223 (71%) and 238 (76%) of the 312 subordinates in the comparison group returned usable data.

At time 2, between 301 (57%) and 308 (59%) subordinates returned usable data on the various LSQII-sub, SLQ, and CBQ dimensions. Within the time 2 sample, between 116 (54%) and 118 (55%) of the training group subordinates and between 185 (59%) and 190 (61%) of the comparison group subordinates returned usable data. When aggregated to the participant-defined unit level of analysis, 72 (99%) of the 73 participants were represented with usable subordinate data at time 1; at time 2, 71 (97%) participants were represented with usable

subordinate data. Time 1/time 2 intercorrelations among LSQII-sub, SLQ, and CBQ dimensions are presented in Appendices 5-2, 5-3, and 5-4, respectively. Time 1/time 2 intercorrelations among all unit-level dimensions in the experiment appear in Appendix 5-7.

Subordinate job satisfaction. Subordinate descriptives for job satisfaction are presented in Section VI of Table 5-1. Because these data were unaggregated, descriptives reflect the individual level of analysis. At time 1, 387 (74%) subordinates returned usable satisfaction data; 306 (58%) returned usable data at time 2. Within the time 1 sample, usable data were returned by 151 (71%) training group and 236 (76%) comparison group subordinates. Within the time 2 sample, usable data were returned by 117 (50%) of the training group and 189 (61%) of the comparison group subordinates. Time 1/time 2 intercorrelations among the individual-level job satisfaction dimensions are presented in Appendix 5-5.

<u>Participant performance/effectiveness (manager</u> <u>performance report, effectiveness self-report, subordinate</u> <u>effectiveness report on participants</u>. Descriptives for manager reports on participant performance, participant self-reports on own effectiveness, and subordinate reports on participant effectiveness appear in Section VII of Table 5-1. Because all of these data were either

collected at the participant-defined unit level (manager reports, participant self-reports) or aggregated to the unit level (subordinate reports), descriptives reflect the unit level of analysis. Of the 73 reports requested from managers at time 1, 70 (96%) were returned, including all 34 reports for training group participants and 36 (92%) comparison group. At time 2, 61 (84%) reports were received from managers, including 30 (88%) training group reports and 31 (79%) comparison group reports.

The return rate for participant effectiveness selfreports mirrored the return rate of LSOII-train selfreport data. At time 1, 31 (91%) of the trainees returned usable effectiveness self-report data. At time 2, 60 (82%) participants returned usable effectiveness data, including 25 (74%) trainees and 35 (90%) participants in the comparison group reports. Within the time 1 subordinate sample, 153 (71%) from the training group and 237 (76%) from the comparison group provided usable effectiveness data. Within the time 2 sample, 118 (55%) training group and 190 (61%) comparison group subordinates returned usable data. When aggregated to the unit level, 72 (99%) participants were represented with usable subordinate data at time 1; at time 2, 71 (97%) were represented with usable data. Time 1/time 2 intercorrelations among the performance and effectiveness

dimensions are presented in Appendix 5-6. Time 1/time 2 intercorrelations among all unit-level dimensions in the experiment appear in Appendix 5-7.

<u>Moderator</u>. Descriptives for the individual-level <u>desire for self-leadership</u> moderator are presented in Section VIII of Table 5-1. At time 1 390 (74%) of the subordinates returned usable <u>desire</u> moderator data, including 152 (71%) from the training group and 238 (76%) from the comparison group. At time 2, 308 (59%) returned usable data, including 118 (55%) from the training group and 190 (61%) from the comparison group.

Time 1 Comparability of Clusters Across Condition

Analysis of covariance (ANCOVA) and multiple analysis of covariance (MANCOVA) were chosen for proposition testing and exploratory statistical analysis in this experiment because of its repeated measures design. Covariate procedures are advantageous because they increase power by controlling for between-condition differences at time 1. To determine whether there were significant pre-existing differences between the training and comparison conditions, analysis of variance (ANOVA) and multiple analysis of variance (MANOVA) were applied to time 1 data before the propositions were tested.

A total of nine MANOVAs were performed to assess preexisting time 1 differences at the multivariate level.

These MANOVAs covered: a) the <u>Strongman</u>, <u>Transactor</u>, <u>Fisionary Hero</u>, and <u>SuperLeader</u> clusters from the LSQII-sub; b) the SLQ <u>self-leadership</u> cluster; c) the CBQ <u>organizational citizenship</u> and <u>counterproductive behavior</u> clusters; d) the subordinate <u>job satisfaction</u> cluster; and E) the multivariate <u>performance</u> cluster based on supervising manager data. Pre-existing differences in leader behavior clusters from the LSQII-train were excluded from this analysis because time 1 self-reports were not solicited from participants in the comparison condition.

Three ANOVAs were performed to assess pre-existing differences at the univariate level. These included the participant <u>effectiveness</u> and the <u>desire for self-</u> <u>leadership</u> dimension data provided by subordinates in the LSQII-sub and SLQ, respectively, and the combined <u>performance</u> dimension provided by managers. Except for the subordinate job satisfaction data, which were not aggregated, all of these analyses were performed at the participant-defined unit level of analysis.

The results of these analyses are shown in Table 5-2. Also presented in the table are the results of post-hoc univariate tests which followed significant multivariate tests. As shown in Section I of the table, pre-existing multivariate differences in leader behavior as perceived

Table 5-2

Time 1 Cluster Comparability by Condition

	Comparison	Training	
Cluster Dimension	Nean (Std Dev) I	Mean (Std Dev) n F Statistic
 Leadership Strategies Que 	ationnaire Subo	ordinate Report	(LSQ-sub)
- Leadership Strategies due	Stronian c.		E(3, 68) = .493 (p < .689)
Strongman		1.90 (.64)	
Aversive Behavior	1.91 (.40) 39	3.00 (.49)	33
Assigned Goals	3.08 (.36) 39	2.84 (.55)	33
Instruction and Command	2.81 (.34) 39	2.84 (E(4, 67) = .449 (p < .773)
Transactor		3.49 (.49)	33
Participative Goals	3.60 (.35) 39	3.25 (.60)	33
Contingent Material Reward	3.29 (.43) 39	3.43 (.50)	33
Contingent Personal Reward	3.50 (.42) 39	2.87 (.50)	33
Contingent Reprimand	2.95 (.36) 39	2.01 (\underline{F} (4, 67) = .219 (p < .927)
Visionary Hero		3.01 (.66)	33
Challenge to the Status Quo	3.09 (.59) 39	3.07 (.59)	33
Vision	3.10 (.41) 39	3.37 (.52)	55
Idealiem	3.36 (.43) 39	2.78 (.64)	33
Stimulation and Inspiration	2.74 (.41) 39	2.10 (1047	$\frac{33}{F}$ (4, 67) = 2.41 (p < .058)
SuperLeader		2.62 (.43)	33
Self-Reward	2.68 (.26) 39	3.70 (.51)	33
Teamwork	3 79 (.27) 39	3.36 (.54)	33
Independent Action	3.61 (.28) 39	3.05 (.53)	33
Opportunity Thought	3.26 (.36) 39	3.05 (
apportant cy mought		supert (SLQ))
II. Self-Leadership Question	<u>naire, Subordina</u>	te Report You	<u>F</u> (8, 63) = 1.57 (p < .152)
			-
Self-Leadership	4.16 (.24) 39	4.01 (.50)	55
Independent Action	4.21 (.25) 39	1 16 (29)	55
Efficacy	4.01 (.30) 39	7 77 (49)	22
Teamwork	3.07 (.43) 39	n 98 (51) .	55
Self-Reward	3.77 (.29) 39	7 66 6 441 .	55
Self-Goal Setting	5.11 (.27) 39	7 51 (77) -	55
Natural Reward	3.64 (.27) 39	7 17 (/2) .	
Opportunity Thought	3.73 (.27) 39 3.85 (.27) 39	3.79 (.33)	33
Self-Observation	3.85 (.27) 57		
***	stanning Sub	ordinate Report	1 100-2 (D C 960)
III. Citizenship Behavior Qu	estionianci		E(3, 68) = .100 (g < .960)
	Lauior	3.73 (.34)	33
Organizational Citizenship Be	3.72 (.34) 39	3.73 (.54)	33
Interpersonal Support	3.51 (.35) 39	3.48 (.42)	F(2, 69) = .257 (p < .774)
Courtesy	3.72 (.26) 39	3.69 (.41)	F(2, 69) = .251
Civic Virtue (News)	5.72 (.207	/5) 3	
Counterproductive Behavior	1.97 (.34) 39	1.97 (.45)	73
Unreliability	2.67 (.37) 39	2.61 (.53)	
Complaining	2.0/ (.5//		
IV. Job Satisfaction Questio		ate Report	*F(4, 382) = 2.78 (p < .027)
Job Satisfaction Questio	NIGITEL CO		* F (4, 382) = 2.78 (p < .027 151 F (1, 385) = .050 (p < .823 151 F (1, 385) = 4.60 (p < .033 151 F (1, 385) = 0.02 (p < .892 151 F (1, 385) = 0.02 (p < .892
			077
Job Satisfaction ^a	3 53 (.97) 23	6 5.02 (1.22)	151*F (1, 385) = 0.02 (p < .892
Overall	3 20 (1.27) 23	6 2.76 (1.18)	151 E (1, 385) = 5.58 (p < .019
Pay	2 38 (1.12) 23	6 2.50 (1.12)	$\begin{array}{l} 151 \stackrel{f}{=} (1, 385) = 4.60 \ (p < .033) \\ 151 \stackrel{f}{=} (1, 385) = 0.02 \ (p < .892) \\ 151 \stackrel{f}{=} (1, 385) = 5.58 \ (p < .019) \\ 151 \stackrel{*}{=} (1, 385) = 5.58 \ (p < .019) \end{array}$
Job Security Supervision	3 71 (1.16) 23	6 3.42 (151* <u>F</u> (1, 385) = 0.02 (p < .892 151 <u>F</u> (1, 385) = 5.58 (p < .019 151* <u>F</u> (1, 385) = 5.58 (p < .019 (table continues
Di Dani i i i	1.11		

Comparison Training Cluster Dimension Mean (Std Dev) n Mean (Std Dev) n F Statistic V. Trainee Performance/Effectiveness⁸ Overall Performance (Manager) 4.27 (.48) 36 3.97 (.43) 34 ** F (1, 68) = 7.33 (p < .009) Facet Performance (Manager) ** F (4, 65) = 5.69 (p < .001) 4.45 (.40) 34 \overrightarrow{F} (1, 68) = 1.04 (p < .312) 3.71 (.57) 34 \overrightarrow{F} (1, 68) = 2.49 (p < .119) 3.82 (.67) 34 $\overset{**F}{=}$ (1, 68) = 7.67 (p < .007) 3.65 (.77) 34 $\overset{**F}{=}$ (1, 68) = 20.4 (p < .000) 4.57 (.52) 36 Output Interpersonal 3.95 (.73) 36 Change 4.25 (.62) 36 Organizing/Planning 4.42 (.65) 36 Trainee Effectiveness (Subord) 3.48 (.46) 39 3.33 (.69) 33 E (1, 70) = 1.17 (p < .283) VI. Moderator Desire for Self-Leadership 3.25 (.46) 238 3.28 (.52) 152 E (1, 388) = .53 (p < .469) Note. *p < .05. **p < .01. Except where noted, all tests at the unit level of analysis. "No time 1 effectiveness self-report data available for comparison

group. Data unaggregated.

by subordinates were non-significant. However, betweengroup differences in SuperLeader behavior approached significance at conventional levels (\underline{F} (4, 67) = 2.41, $\underline{p} < .058$). Though non-significant, this finding suggests time 1 subordinate perceptions of greater SuperLeader behavior from participants in the comparison group than the training group.

Sections II and III of the table show non-significant differences in subordinate perceptions of their own selfleadership behavior (Section II) and citizenship behavior displayed by colleagues in their participant-defined work groups (Section III). The strongest of these differences at time 1, in subordinate self-leadership, were still nonsignificant at conventional levels (\underline{F} (8, 63) = 1.57, $\underline{P} < .152$). The trend, if any, suggested by this difference was in the direction of greater self-leadership reported by subordinates of participants in the comparison group.

As shown in Section IV of Table 5-2, individual-level time 1 differences in subordinate job satisfaction were significant at conventional levels (<u>F</u> (4, 382) = 2.78, p < .027). Subsequent univariate tests revealed that subordinate satisfaction with pay (<u>F</u> (1, 385) = 4.60, p < .033) and supervision (<u>F</u> (1, 385) = 5.58, <u>p</u> < .019)

were significantly higher among subordinates of participants in the comparison group.

Section V shows that time 1 supervising manager ratings of overall performance (F (1, 68) = 7.33, p < .009) and facet performance (F (4, 65) = 5.69, p < .001) differed significantly between the two groups. Specifically, the overall performance of comparison group participants was rated higher by their supervising managers than the training group. Univariate tests following the significant multivariate test for facet effectiveness revealed that comparison group participants were rated significantly higher in terms of their ability to manage change (\underline{F} (1, 68) = 7.67, $\underline{p} < .007$) and their organizing/planning effectiveness (F (1, 68) = 20.4, p < .000). Note that although these ratings were provided before training had begun, supervising managers were aware of whether their subordinates had been chosen to receive immediate or delayed training. Section V also shows that subordinate perceptions of participant effectiveness did not differ significantly between the two groups. Note that participant self-appraisals of effectiveness were not compared at time 1 because self-report data were not collected from participants in the comparison group.

Had these results been uniformly negative, it would have been statistically appropriate--though perhaps less

powerful--to test the propositions by comparing dimensions and clusters at time 2 through simple ANOVAs and MANOVAs. However, the time 1 comparison indicated that there was a near-significant difference in participant SuperLeader behavior and statistically significant differences in subordinate job satisfaction and supervising manager ratings of performance. Overall, these findings suggest somewhat greater SuperLeader behavior, greater subordinate job satisfaction, and higher performance among participants in the comparison group. Given these time 1 differences, the covariate approach was employed as originally planned.

Tests of Propositions and

Exploratory Dimensions/Clusters

To control the experiment-wise error rate, proposition tests and other statistical tests were first performed at the multivariate (cluster) level whenever possible. Time 2 dimension responses were treated as dependent variables, time 1 dimension responses as covariates and experimental condition (training or comparison) as a factor. An exception was the LSQII-train self-report data. Because there was no time 1 participant self-report data in the comparison group, LSQII-train self-reports were compared at time 2 between the training and comparison groups. This portion of the results chapter will be divided into several sections. The first section will treat participant leader behavior in the order in which the archetypes were presented by Manz and Sims (1991) and in which they have generally been presented: Strongman, Transactor, Visionary Hero, and SuperLeader. Discussion will then turn to subordinate self-leadership behavior, citizenship behavior, and several exploratory dimensions. Leader Behavior

Recall that data on participant leader behavior were provided from two perspectives: the participants themselves (LSQII-train) and the subordinates of participants (LSQII-sub). The results of multivariate tests on these data sources are presented in Table 5-3.

Strongman behavior (Propositions 2-4 and 2-5). Proposition 2-4 addressed participant perceptions of their Own Strongman behavior, while Proposition 2-5 addressed subordinate perceptions of participant Strongman behavior. Recall that Strongman behavior was viewed as incompatible with SuperLeadership. Consequently, these propositions predicted that participants and subordinates in the SuperLeadership training group would perceive less participant Strongman behavior than their counterparts in the comparison group. Time 2 descriptives and statistical tests for the three Strongman dimensions appear in

Table 5-3

Multivariate Tests of Leadership Propositions

	Comparison	Training	
luster Dimension	Mean (Std Dev) n	Mean (Std Dev) n	F Statistic
Propos	itions 2-4 and 2-	5 Strongman Be	havior
. Proposition 2-4: Leaders	hip Strategies Qu	estionnaire	
(Trainee Self-Report, LSC	II-train)		
Strongman ^a			F(3, 56) = 1.33 (p < .273)
Aversive Behavior	1.97 (.60) 35	2 11 / 961 25	E (3, 50) = 1.55 (2 + 1215)
Assigned Goals	3.19 (.81) 35		
Instruction and Command	2.67 (.56) 35		
1. Proposition 2-5: Leader		uestionnaire	
(Subordinate Report, LSC	nt-SVD/		
Strongman			F(3, 64) = .847 (p < .473)
Aversive Behavior	1.86 (.39) 39	1.97 (.69) 32	
Assigned Goals	3.04 (.44) 39		
Instruction and Command	2.83 (.44) 39	2.84 (.59) 32	
	the second se		
Propos	sitions 2-6 and 2	7 Transactor	Behavior
			Behavior
III. Proposition 2-6: Lead (Trainee Self-Report,	ership Strategies		Behavior
III. Proposition 2-6: Lead (Trainee Self-Report,	ership Strategies		
III. Proposition 2-6: Lead (Trainee Self-Report,) Transactor ^a	ership Strategies LSQII-train) (10 (48) 35	Questionnaire	Behavior <u>F</u> (4, 55) = .580 (p < .679)
III. Proposition 2-6: Lead (Trainee Self-Report,) Transactor ^a	ership Strategies LSQII-train) (10 (48) 35	Questionnaire	
III. Proposition 2-6: Lead (Traince Self-Report,) Transactor ^a Participative Goals Contingent Material Reward	ership Strategies SOII-train) 4.10 (.48) 35 4.19 (.67) 35	<u>Questionnaire</u> 3.85 (.74) 25 3.94 (.85) 25	
III. Proposition 2-6: Lead (Trainee Self-Report,) Transactor ^a	ership Strategies SOII-train) 4.10 (.48) 35 4.19 (.67) 35	<u>Questionnaire</u> 3.85 (.74) 25 3.94 (.85) 25	
III. Proposition 2-6: Lead (Trainee Self-Report, I) Iransactor ^a Participative Goals Contingent Material Reward Contingent Reprimend IV. Proposition 2-7: Leade	4.10 (.48) 35 4.10 (.48) 35 4.19 (.67) 35 4.28 (.71) 35 3.40 (.59) 35 rship \$trategies	<u>Questionnaire</u> 3.85 (.74) 25 3.94 (.85) 25 4.09 (.74) 25 3.41 (.55) 25	
III. Proposition 2-6: Lead (Trainee Self-Report,) Transactor ^a Participative Goals Contingent Material Reward Contingent Personal Reward Contingent Reprimand	4.10 (.48) 35 4.10 (.48) 35 4.19 (.67) 35 4.28 (.71) 35 3.40 (.59) 35 rship \$trategies	<u>Questionnaire</u> 3.85 (.74) 25 3.94 (.85) 25 4.09 (.74) 25 3.41 (.55) 25	
III. Proposition 2-6: Lead (Trainee Self-Report, Iransactor ^a Participative Goals Contingent Material Reward Contingent Personal Reward Contingent Reprimend IV. Proposition 2-7: Leade (Subordinate Report, LS)	4.10 (.48) 35 4.10 (.48) 35 4.19 (.67) 35 4.28 (.71) 35 3.40 (.59) 35 rship \$trategies	<u>Questionnaire</u> 3.85 (.74) 25 3.94 (.85) 25 4.09 (.74) 25 3.41 (.55) 25	<u>F</u> (4, 55) = .580 (p < .679)
III. Proposition 2-6: Lead (Trainee Self-Report, I) Iransactor ^a Participative Goals Contingent Material Reward Contingent Personal Reward Contingent Reprimand IV. Proposition 2-7: Leade (Subordinate Report, LS	ership Strategies SQII-train) 4.10 (.48) 35 4.19 (.67) 35 4.28 (.71) 35 3.40 (.59) 35 rship Strategies (QII-sub)	Questionnaire 3.85 (.74) 25 3.94 (.85) 25 4.09 (.74) 25 3.41 (.55) 25 Questionnaire	<u>F</u> (4, 55) = .580 (p < .679)
III. Proposition 2-6: Lead (Trainee Self-Report, I) Iransactor ^a Participative Goals Contingent Material Reward Contingent Personal Reward Contingent Reprimand IV. Proposition 2-7: Leade (Subordinate Report, LS) Transactor Participative Goals	ership Strategies <u>SOII-train</u> 4.10 (.48) 35 4.19 (.67) 35 4.28 (.71) 35 3.40 (.59) 35 rship <u>\$trategies</u> <u>OII-sub</u> 3.63 (.44) 39	Questionnaire 3.85 (.74) 25 3.94 (.85) 25 4.09 (.74) 25 3.41 (.55) 25 Questionnaire 3.60 (.42) 32	<u>F</u> (4, 55) = .580 (p < .679)
III. Proposition 2-6: Leader (Trainee Self-Report, I Transactor ^a Participative Goals Contingent Material Reward Contingent Reprimand IV. Proposition 2-7: Leader (Subordinate Report, LS) Transactor Participative Goals Contingent Reprimand	ership Strategies <u>SOII-train</u>) 4.10 (.48) 35 4.19 (.67) 35 4.28 (.71) 35 3.40 (.59) 35 rship <u>\$trategies</u> <u>OII-sub</u>) 3.63 (.44) 39 3.41 (.49) 39	Questionnaire 3.85 (.74) 25 3.94 (.85) 25 4.09 (.74) 25 3.41 (.55) 25 Questionnaire 3.60 (.42) 32 3.30 (.57) 32	<u>F</u> (4, 55) = .580 (p < .679)
III. Proposition 2-6: Lead (Trainee Self-Report, I) Iransactor ^a Participative Goals Contingent Material Reward Contingent Personal Reward Contingent Reprimand IV. Proposition 2-7: Leade (Subordinate Report, LS) Transactor Participative Goals	ership Strategies <u>SOII-train</u>) 4.10 (.48) 35 4.19 (.67) 35 4.28 (.71) 35 3.40 (.59) 35 rship <u>\$trategies</u> <u>OII-sub</u>) 3.63 (.44) 39 3.41 (.49) 39	Questionnaire 3.85 (.74) 25 3.94 (.85) 25 4.09 (.74) 25 3.41 (.55) 25 Questionnaire 3.60 (.42) 32 3.30 (.57) 32	
111. Proposition 2-6: Lead (Trainee Self-Report, I Participative Goals Contingent Material Reward Contingent Personal Reward Contingent Reprimand IV. Proposition 2-7: Leade (Subordinate Report, LS Transactor Participative Goals Contingent Material Reward Contingent Personal Reward Contingent Reprimand	Antip Strategies 1011-train 4.10 (.48) 35 4.19 (.67) 35 4.28 (.71) 35 3.40 (.59) 35 rship \$trategies 11-sub 3.63 (.44) 39 3.41 (.49) 39 3.57 (.51) 39	<u>Auestionnaire</u> 3.85 (.74) 25 3.94 (.85) 25 4.09 (.74) 25 3.41 (.55) 25 <u>Auestionnaire</u> 3.60 (.42) 32 3.30 (.57) 32 3.49 (.43) 32 2.93 (.48) 32	<u>F</u> (4, 55) = .580 (p < .679) <u>F</u> (4, 62) = .998 (p < .415)
III. Proposition 2-6: Lead (Trainee Self-Report, I Participative Goals Contingent Material Reward Contingent Personal Reward Contingent Reprimand IV. Proposition 2-7: Leade (Subordinate Report, LS Transactor Participative Goals Contingent Material Reward Contingent Personal Reward Contingent Reprimand	arship Strategies LSOII-train) 4.10 (.48) 35 4.19 (.67) 35 4.28 (.71) 35 3.40 (.59) 35 rship \$trategies (.10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Questionnaire 3.85 (.74) 25 3.94 (.85) 25 4.09 (.74) 25 3.41 (.55) 25 Questionnaire 3.60 (.42) 32 3.30 (.57) 32 3.49 (.43) 32 2.93 (.48) 32 Visionary Hero E	<u>F</u> (4, 55) = .580 (p < .679) <u>F</u> (4, 62) = .998 (p < .415) Schavior
III. Proposition 2-6: Leade (Trainee Self-Report, I) Iransactor ^a Participative Goals Contingent Material Reward Contingent Personal Reward Contingent Reprimand IV. Proposition 2-7: Leade (Subordinate Report, LS) Iransactor Participative Goals Contingent Material Reward Contingent Material Reward Contingent Material Reward Contingent Reprimand Explor V. Trainee Self-Report: Le	arship Strategies LSOII-train) 4.10 (.48) 35 4.19 (.67) 35 4.28 (.71) 35 3.40 (.59) 35 rship \$trategies (.10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Questionnaire 3.85 (.74) 25 3.94 (.85) 25 4.09 (.74) 25 3.41 (.55) 25 Questionnaire 3.60 (.42) 32 3.30 (.57) 32 3.49 (.43) 32 2.93 (.48) 32 Visionary Hero E	<pre><u>F</u> (4, 55) = .580 (p < .679) F (4, 62) = .998 (p < .415) Behavior </pre>
111. Proposition 2-6: Leade (Trainee Self-Report, I Iransactor ^a Participative Goals Contingent Material Reward Contingent Reprimand IV. Proposition 2-7: Leade (Subordinate Report, LS) Iransactor Participative Goals Contingent Material Reward Contingent Reprimand IV. Proposition 2-7: Leade (Subordinate Report, LS) Iransactor Participative Goals Contingent Material Reward Contingent Reprimand Explor V. Trainee Self-Report: Le Visionary Hero ^a	Antip Strategies 1011-train 4.10 (.48) 35 4.19 (.67) 35 4.28 (.71) 35 3.40 (.59) 35 rship \$trategies 3.63 (.44) 39 3.63 (.44) 39 3.41 (.49) 39 3.57 (.51) 39 2.90 (.34) 39 atory Analysis adership Strategi	Questionnaire 3.85 (.74) 25 3.94 (.85) 25 4.09 (.74) 25 3.41 (.55) 25 Questionnaire 3.60 (.42) 32 3.30 (.57) 32 3.49 (.43) 32 2.93 (.48) 32 Visionary Hero E es Questionnaire	<pre><u>F</u> (4, 55) = .580 (p < .679) F (4, 62) = .998 (p < .415) Behavior </pre>
III. Proposition 2-6: Leade (Trainee Self-Report, I) Iransactor ^a Participative Goals Contingent Material Reward Contingent Personal Reward Contingent Reprimand IV. Proposition 2-7: Leade (Subordinate Report, LS) Iransactor Participative Goals Contingent Material Reward Contingent Material Reward Contingent Material Reward Contingent Reprimand Explor V. Trainee Self-Report: Le	Antip Strategies 1011-train 4.10 (.48) 35 4.19 (.67) 35 4.28 (.71) 35 3.40 (.59) 35 rship \$trategies 3.63 (.44) 39 3.63 (.44) 39 3.41 (.49) 39 3.57 (.51) 39 2.90 (.34) 39 atory Analysis adership Strategi	Questionnaire 3.85 (.74) 25 3.94 (.85) 25 4.09 (.74) 25 3.41 (.55) 25 Questionnaire 3.60 (.42) 32 3.30 (.57) 32 3.49 (.43) 32 2.93 (.48) 32 Visionary Hero E es Questionnaire	<u>F</u> (4, 55) = .580 (p < .679) <u>F</u> (4, 62) = .998 (p < .415) Schavior

(table continues)

	Comparison	Training	
Cluster			and the set
Dimension	Mean (Std Dev) n	Wean (Std Dev) n	F Statistic
V1. Subordinate Report: Lea	dership Strategie	es Questionnaire ((LSOII-sub)
Visionary Hero			F (4, 62) = 1.27 (g < .29
Challenge to the Status Out	3.16 (.58) 39	3.17 (.60) 32	
Vision	3.20 (.43) 39	3.14 (.61) 32	
Idealism	3.41 (.44) 39	3.46 (.46) 32	
Stimulation and Inspiration	2.95 (.41) 39	2.82 (.59) 32	
and the second second second second		2 SuperLeader E Questionnaire	Behavior
VII. Proposition 2-1: Leade (Trainee Self-Report, L	rship Strategies		
VII. Proposition 2-1: Leade (Trainee Self-Report, L SuperLeader ^a	rship Strategies SQll-train)	Questionnaire	Behavior <u>F</u> (4, 55) = 2.15 (p < .08
VII. Proposition 2-1; Leade (Trainee Self-Report, L SuperLeader [®] Self-Reward	soli-train) 3.12 (.71) 35	<u>Questionnaire</u> 3.43 (.65) 25	
VII. Proposition 2-1: Leade (Trainee Self-Report, L SuperLeader [®] Self-Reward Teamwork	soll-train 3.12 (.71) 35 4.40 (.78) 35	<u>Questionnaire</u> 3.43 (.65) 25 4.22 (.88) 25	
VII. Proposition 2-1; Leade (Trainee Self-Report, L SuperLeader [®] Self-Reward Teamwork Independent Action	<u>soll-train</u> 3.12 (.71) 35 4.40 (.78) 35 3.91 (.53) 35	Questionnaire 3.43 (.65) 25 4.22 (.88) 25 3.98 (.74) 25	
VII. Proposition 2-1: Leade (Trainee Self-Report, L SuperLeader [®] Self-Reward Teamwork	<u>soll-train</u> 3.12 (.71) 35 4.40 (.78) 35 3.91 (.53) 35	<u>Questionnaire</u> 3.43 (.65) 25 4.22 (.88) 25	
VII. Proposition 2-1; Leade (Trainee Self-Report, L SuperLeader ^a Self-Reward Teamwork Independent Action	3.12 (.71) 35 4.40 (.78) 35 3.91 (.53) 35 3.75 (.61) 35	<u>Ouestionnaire</u> 3.43 (.65) 25 4.22 (.88) 25 3.98 (.74) 25 3.73 (.77) 25	
VII. Proposition 2-1: Leade (Trainee Self-Report, L SuperLeader [®] Self-Reward Teamwork Independent Action Opportunity Thought	3.12 (.71) 35 4.40 (.78) 35 3.91 (.53) 35 3.91 (.53) 35 3.75 (.61) 35 dership Strategie	<u>Ouestionnaire</u> 3.43 (.65) 25 4.22 (.88) 25 3.98 (.74) 25 3.73 (.77) 25	
VII. Proposition 2-1: Leade (Trainee Self-Report, L SuperLeader ^B Self-Reward Teamwork Independent Action Opportunity Thought VIII. Proposition 2-2: Lead (Subordinate Report, L	3.12 (.71) 35 4.40 (.78) 35 3.91 (.53) 35 3.91 (.53) 35 3.75 (.61) 35 dership Strategie	<u>Ouestionnaire</u> 3.43 (.65) 25 4.22 (.88) 25 3.98 (.74) 25 3.73 (.77) 25	Ĕ (4, 55) = 2.15 (₽ < .08
VII. Proposition 2-1: Leade (Trainee Self-Report, L SuperLeader ^a Self-Reward Teamwork Independent Action Opportunity Thought VIII. Proposition 2-2: Lead	3.12 (.71) 35 3.12 (.71) 35 4.40 (.78) 35 3.91 (.53) 35 3.75 (.61) 35 dership Strategie Soil-sub)	<u>Ouestionnaire</u> 3.43 (.65) 25 4.22 (.88) 25 3.98 (.74) 25 3.73 (.77) 25 s <u>Ouestionnaire</u>	
VII. Proposition 2-1: Leade (Trainee Self-Report, L SuperLeader ^a Self-Reward Teamwork Independent Action Opportunity Thought VIII. Proposition 2-2: Lead (Subordinate Report, L SuperLeader	strategies \$911-train 3.12 (.71) 35 4.40 (.78) 35 3.91 (.53) 35 3.75 (.61) 35 dership Strategie \$3011-sub 2.88 (.41) 39	<u>Ouestionnaire</u> 3.43 (.65) 25 4.22 (.88) 25 3.98 (.74) 25 3.73 (.77) 25 s <u>Ouestionnaire</u> 2.68 (.34) 32	Ĕ (4, 55) = 2.15 (₽ < .08
VII. Proposition 2-1: Leade (Trainee Self-Report, L SuperLeader ^a Self-Reward Teamwork Independent Action Opportunity Thought VIII. Proposition 2-2: Lead (Subordinate Report, L SuperLeader Self-Reward	Instruction 3.12 (.71) 35 4.40 (.78) 35 3.91 (.53) 35 3.75 (.61) 35 dership Strategie SOII-sub) 2.88 (.41) 39 3.82 (.39) 39	<u>Ouestionnaire</u> 3.43 (.65) 25 4.22 (.88) 25 3.98 (.74) 25 3.73 (.77) 25 s <u>Ouestionnaire</u> 2.68 (.34) 32	Ĕ (4, 55) = 2.15 (₽ < .08

.

Note. All tests at the unit level of analysis.

^aTime 2 comparison.

÷

Sections I and II of Table 5-3. Section I shows that there were no significant time 2 between-group differences in Strongman behavior as perceived by the participants themselves. Section II similarly shows, controlling for time 1 responses, that there was no significant time 2 between-group difference for subordinate perceptions of participant Strongman behavior. These results failed to support Propositions 2-4 and 2-5.

Transactor behavior (Propositions 2-6 and 2-7). Proposition 2-6 addressed participant perceptions of their Own Transactor behavior, while Proposition 2-7 addressed subordinate perceptions of participant Transactor behavior. Transactor behavior was seen as a useful approach early in the transition to SuperLeadership. Consequently, these propositions predicted that participants and subordinates in the SuperLeadership training group would perceive more participant Transactor behavior than their counterparts in the comparison group. Time 2 descriptives and tests of these propositions for the four Transactor dimensions appear in Sections III and IV of Table 5-3. Section III shows that there was no significant time 2 between-group difference in Transactor behavior as perceived by the participants themselves. Section IV similarly shows, controlling for time 1 responses, that there was no significant time 2 between-

group difference for subordinate perceptions of participant Transactor behavior. These results failed to support Propositions 2-6 and 2-7.

Visionary Hero behavior (exploratory only). Although additional exploratory tests will be presented later on, exploratory tests of Visionary Hero behavior are presented here because of their theoretical association with the other three Manz and Sims (1991) leadership archetypes. Based on the treatment of SuperLeadership in Chapter II, no specific propositions were developed with respect to participant Visionary Hero leader behavior. Time 2 descriptives and statistical tests for the four Visionary Hero dimensions appear in Sections V and VI of Table 5-3. As indicated in the Table, neither time 2 participant perceptions (three dimensions; excludes stimulation and inspiration because of inadequate internal consistency) nor subordinate perceptions of participant Visionary Hero behavior (four dimensions controlling for time 1 responses) differed significantly between the training and comparison groups. These results indicate that SuperLeadership training had no effect on participant Visionary Hero behavior.

<u>SuperLeader behavior (Propositions 2-1 and 2-2)</u>. Proposition 2-1 addressed self-perceptions of participant SuperLeader behavior, while Proposition 2-2 addressed

subordinate perceptions of participant SuperLeader behavior. These propositions stated that participants and their subordinates in the training group would perceive greater participant SuperLeader behavior than their counterparts in the comparison group. Time 2 descriptives and statistical tests of these propositions for the four SuperLeader dimensions appear in the Sections VII and VIII of Table 5-3. Section VII shows that time 2 differences between the self-perceptions of training and comparison group participants approached significance (F (4, 55) = 2.15, p < .086) but were still nonsignificant at conventional levels. Section VIII shows that time 2 differences in subordinate perceptions of participant SuperLeader behavior, controlling for time 1 responses, were also nonsignificant. These results failed to support Propositions 2-1 and 2-2.

Self-Leadership Behavior (Proposition 2-3)

The above statistical tests considered participant and subordinate perspectives on the leadership behavior of <u>participants</u>. The test of Proposition 2-3 specifically addressed the self-leadership behavior of <u>subordinates</u> themselves. This proposition predicted that subordinates of participants in the training group would report greater self-leadership behavior than subordinates in the comparison group. A multivariate test of this

proposition, controlling for time 1 responses, appears in Table 5-4 along with time 2 descriptives. The result fails to support Proposition 2-3: the SuperLeadership training had no significant effect on subordinate selfleadership behavior.

Organizational Citizenship/Counterproductive Behavior

The above tests considered dependent variables related to participant leader behavior and subordinate self-leadership behavior. These have been called <u>internal</u> dependent variables because they were derived directly from the theory that was the foundation of the training. The results reported in this section pertain to the citizenship behavior of subordinates of the participants. Propositions outlined in Chapter III predicted how the training would affect two aspects of subordinate citizenship: organizational citizenship behavior and counterproductive behavior. These are <u>external</u> dependent variables because they are conceptually, but not directly, related to the training.

Organizational citizenship behavior (Proposition 3-1). Proposition 3-1 addressed the organizational citizenship behavior (OCB) perceived by subordinates among colleagues in their participant-defined work groups. Recall that the SuperLeader's emphasis on employee selfleadership was thought to promote teamwork and cooperation

Table 5-4

Multivariate Test of Self-Leadership Proposition

	Comparison	Training	
Cluster Dimension	Mean (Std Dev)	n Mean (Std Dev) r	F Statistic
	Proposit	tion 2-3 Self-Lea	dership
Subordinate Self-Report:	Self-Leadership G	Questionnaire (SLQ)	
Self-Leadership			£ (8, 54) = .591 (p < .781)
Independent Action	4.15 (.26) 3	39 3.95 (.45) 32	
Efficacy	4.20 (.28) 3	4.07 (.28) 32	
Teamwork	4.01 (.27) 3	39 3.92 (.37) 32	
Self-Reward	3.10 (.46) 3	39 3.01 (.50) 32	
Self-Goal Setting	3.72 (.32)	39 3.61 (.47) 32	
Natural Rewards	3.59 (.29) 3	39 3.51 (.37) 32	
Opportunity Thought	3.79 (.26) 3	39 3.74 (.30) 32	
Self-Observation	3.82 (.37)	39 3.80 (.31) 32	

Note. All tests at the unit level of analysis.

akin to OCB. Consequently, Proposition 3-1 predicted that subordinates in the training group would perceive greater OCB among their colleagues than their counterparts in the comparison group. Time 2 descriptives and statistical tests of this proposition for the three dimensions in the OCB cluster appear in Section I of Table 5-5. Controlling for time 1 responses, there was no significant difference between the training and comparison groups in perceived OCB. These results fail to support Proposition 3-1.

Counterproductive behavior (Proposition 3-2). Proposition 3-2 addressed the counterproductive behavior (CB) perceived by subordinates among colleagues in their participant-defined work groups. Recall that the SuperLeader's emphasis on self-managed teamwork was thought to suppress counterproductive behavior among subordinates. Consequently, Proposition 3-2 predicted that subordinates in the training group would perceive less CB among their colleagues than their counterparts in the comparison group. Time 2 descriptives and statistical tests of this proposition for the two dimensions in the CB cluster appear in Section II of Table 5-5. Controlling for time 1 responses, subordinates in the training group perceived significantly more unreliability among their colleagues than subordinates in the comparison group. These results directly contradict Proposition 3-1: the

Table 5-5

Multivariate Tests of Citizenship Behavior Propositions

	Comparison	Training	
Cluster Dimension	Hean (Std Dev) n Hean (Std Dev)		F Statistic
Proposi	tion 3-1 Organiza	itional Citizensh	ip Behavior
	zenshin Rehavier Oue	stionnaina (CRO)	
I. Proposition 3-1: Citi		stionnaire (CBQ)	
I. Proposition 3-1: Citi Organizational Citizenship	Behavior	200	<u>F</u> (3, 64) = .494 (p < .687)
 Proposition 3-1: Citi Organizational Citizenship Interpersonal Support 	Behavior 3.78 (.35) 39	3.76 (.44) 32	
I. Proposition 3-1: Citi Organizational Citizenship	Behavior 3.78 (.35) 39 3.57 (.37) 39	200	

Counterproductive Behavior		* <u>F</u> (2, 66) = 4.06 ($p < .022$)
Unreliability	1.90 (.28) 39	2.05 (.41) 32 ** E (1, 67) = 8.20 (p < .006)
Complaining	2.51 (.43) 39	2.55 (.45) 32 $\underline{\tilde{F}}$ (1, 67) = 1.12 (p < .294)

<u>Note</u>. *p < .05. **p < .01. All tests at the unit level of

•

analysis.

effect of SuperLeadership training on subordinate CB was opposite to the prediction.

Exploratory Dimensions

Besides participant Visionary Hero behavior discussed above, several additional exploratory dimensions or clusters were analyzed in the present research. These analyses, presented in Table 5-6, will be discussed below.

Manager perceptions of performance. Performance data provided by the managers of participants was analyzed in two ways. The first, facet approach was a multivariate test based on the results of factor analysis reported in Chapter IV. The second, overall approach was a univariate test based on the arithmetic mean of all a priori dimensions in the performance measure completed by managers. The results of both analyses are presented at the top of Section I in Table 5-6. According to the multivariate test of performance facets, controlling for time 1 responses, there was no significant difference in participant facet performance between the training and comparison groups as perceived by managers. According to the univariate test of overall performance, however, there was a significant training effect. Although time 1 training group mean performance ratings (3.95) were lower than comparison group mean ratings (4.23), by time 2 the performance ratings had achieved parity (4.26).

Table 5-6

Part of the second seco

Tests of Exploratory Clusters/Dimensions

	Comparison		Tr	aining							
Cluster Dimension	Mean (Std Dev) n		Mean (Std Dev) n			F	Stat	Statistic			
I. Trainee Performance/Effe	ctiveness										
Facet Performance						F	14.	52) =	1.12	(p < .	358)
Output	4.59 (.53)	31	4 62	(.51)	30	-				·E	
Interpersonal	4.08 (.61)			(.65)							
Change	4.03 (.68)			(.71)							
Organizing and Planning	4.29 (.64)			(.85)							
Overall Performance Scale	4.26 (.46)	31	4.26	(.47)	30	*E	d,	58) =	5.37	(p < .	024)
Trainee Effectiveness ^a	3.71 (.73)	35	3.66	(.88)	25	£	(1,	58) =	.07 (e < .7	95)
(Self-Report)											
	3.57 (.45)	39	3.48	(.62)	32	£	(1,	68) =	.02 (p < .8	78)
Trainee Effectiveness (Subordinate)					32	1	(1,	68) =	.02 (p < .8	78)
Trainee Effectiveness (Subordinate) II. Job Satisfaction Questi					32						
Trainee Effectiveness (Subordinate) II. Job Satisfaction Questi Job Satisfaction ^b	onnaire, Subor	dinate	e Repo	ort					.02 (.261		
Trainee Effectiveness (Subordinate) II. Job Satisfaction Questi Job Satisfaction ^b Overall	onnaire, Subor 3.61 (.95)	dinate 157	e Repo	ort (.98)	90						
Trainee Effectiveness (Subordinate) <u>II. Job Satisfaction Questi</u> Job Satisfaction ^b Overall Pay	onnaire, Subor 3.61 (.95) 3.37 (1.19)	dinate 157 157	e Repo 3.69 3.19	(.98) (1.21)	90 90						
Trainee Effectiveness (Subordinate) <u>II. Job Satisfaction Questi</u> Job Satisfaction ^b Overall	onnaire, Subor 3.61 (.95)	dinate 157 157 157	e Repo 3.69 3.19 2.24	(.98) (1.21) (1.13)	90 90 90						
Trainee Effectiveness (Subordinate) <u>II. Job Satisfaction Questi</u> Job Satisfaction ^b Overall Pay Job Security	onnaire, Subor 3.61 (.95) 3.37 (1.19) 2.27 (1.09)	dinate 157 157 157	e Repo 3.69 3.19 2.24	(.98) (1.21) (1.13)	90 90 90						

^aTime 2 comparison. ^bTest on unaggregated data.

Consequently, SuperLeadership training seemed to increase the performance of training group participants as perceived by managers.

Participant and subordinate perceptions of participant effectiveness. Recall that participants were asked for their perceptions of their own effectiveness on the job as part of the LSQII-train. As shown in the middle of Section I in Table 5-6, there was no significant difference in self-perceptions of time 2 effectiveness between the training and comparison groups. In parallel items as part of the LSQII-sub, subordinates were also asked about their perceptions of participant effectiveness. As shown at the bottom of Section I in Table 5-6, controlling for time 1 responses, there was no significant difference in subordinate perceptions of participant effectiveness between the two groups.

<u>Subordinate job satisfaction</u>. Individual-level subordinate job satisfaction data were also compared between the training and comparison groups. As shown in Section II of Table 5-6, there was no significant difference in subordinate job satisfaction between groups, controlling for time 1 responses.

<u>Moderator</u>. The individual-level <u>desire for self-</u> <u>leadership</u> moderator data collected from subordinates were also compared between the training and comparison groups.

As shown in Section III of Table 5-6, there was no significant difference in subordinate desire for self-leadership controlling for time 1 responses.

Univariate Moderator Analysis

The desire for self-leadership moderator scale was included to enable moderator analysis at the individual level if it appeared that the participant-defined unit level of analysis was inappropriate. Although analysis supported aggregation, individual-level moderator analysis was nevertheless performed on each dimension to further explore the data. Analysis was performed on a dimensionby-dimension basis using step-wise regression, with time 2 subordinate responses on each dimension as the dependent variables. Predictors were entered in the following order: (1) the corresponding time 1 dimension provided by the subordinate; (2) the condition (training or comparison) for the participant who was the focus of data collection from the subordinate; (3) the subordinate response on the time 1 desire moderator dimension; and (4) the interaction between condition and desire. Consequently, the regression equation was as follows:

(1) (2) (3) (4) $T_2 = (B_1) (T_1) + (B_2) (Cond) + (B_1) (Desire) + (B4) (Cond*Desire) + K,$ where <u>K</u> is a constant.

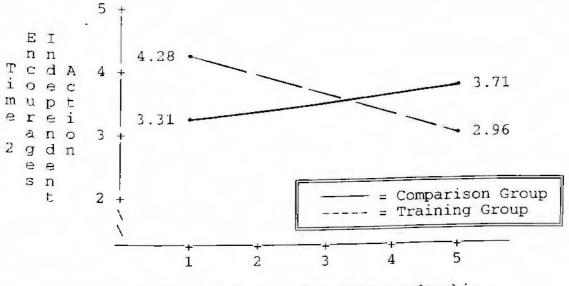
Table 5-7 presents the results of this analysis in condensed form, with beta weights for each component from the four-factor regression equation. Underlined beta weights reflect a significant step-wise increment in explained variance for that component (based on the orderof-entry described above). Note that LSQII-train dimensions, participant self-assessments of effectiveness, and supervising manager assessments of participant performance reflect the participant-defined unit level only. Consequently, they are not included in this analysis.

Table 5-7 shows that time 1 dimension scores were, in every case, predictive of time 2 scores. Once this autocorrelation effect was removed, in effect, partialled out, <u>condition</u> contributed significantly to explained variance for only one dimension. This confirms the generally nonsignificant unit-level findings reported for the experiment as a whole. <u>Desire</u> only occasionally contributed significantly to explained variance. However, the (condition * desire) interaction made a significant-sometimes quite strong--contribution for 19 of the 33 dimensions. Furthermore, 12 of the 33 dimensions displayed a specific pattern: the time 1 dimension main effect was significant and positive, the time 1 interaction effect was significant and negative, and no

Table 5-7

Individual Level (Subordinate Desire) Moderator

<u>Analysis</u>


		Dind	esire B ividual	etae Level)		
	(1)	(2)	(3)	(4)	. 6	
Order of Entry ===>		cb	ď	id	d.f. ^e	
	ta	c_		n		
	i M e	0	е s i г	t		
		n		e		
		d				
			e			
Cluster	1					
III. Leadership Strategies Questionnaire,		Ata ReD	ort (LS	aii-sub	2	
UL Londonchin Strategies Questionnaire,	subordir	ate Non			1.1.1	
			-0.39	1.09	(4, 242)	
Strongman	0.83	-1.05	-0.01	-0.46	14 6461	
Aversive Behavior	0.56	0.44	0.38	-1.19	(4, 242)	
Assigned Goals	f0.61	1.05	0.00			
Instruction and Command			0.43	-1.20	(4, 242)	
Transactor	fo.70	1.14	-0.08	0.40	(4, 241)	
Participative Goals	0.66	-0.40	0.10	-0.27	(4, 242	
Contingent Material Reward	0.71	0.28	-0.42	0.99	(4, 242)	
Contingent Personal Reward	0.62	-0.93	-0.40			
Contingent Reprimand	0.00	111.02	0.72	-2.03	(4, 242	
Visionary Hero	f0.81	1.88	0.68	-2.01	(4, 242	
Challenge to the Status Quo	0.73	1.81	0.40	-1.28	(4, 242	
Vision	f0.70	1.20	0.40		(4, 242	
	f0.68	1.04	0.40		~ ~ ~	
Idealism	0.00		A 1/	0.15	(4, 242	
Stimulation and Inspiration	0.73	-0.17	-0.14	0.29	14. 240	
SuperLeader	0.63	-0.23	-0.10	0.00	14. 242	
Self-Reward	f0.67	0.89	0.33	-0.77	(4, 242	
Teamwork	f0.69	0.70	0.20			
Independent Action						
Opportunity Thought	nate Re	port (S	<u>.0)</u>			
Opportunity Thought <u>IV. Self-Leadership Questionnaire, Subord</u>	THE STATE			-2.97	(4, 243	
	+	2.60	1.05	-2.29	14. 243	
Self-Leadership	0.73	1.97	0.04		(4. 240	
Independent Action	0.59	-0.10	0.04	0 71	14. 243	
Efficacy	0.45	-0.69	-0.25	- 17	(4, 243	
Teamwork	0.69	0.51	11,40		(4. 243	
Self-Reward	0.65	4 20	0.00		(4, 243	
Self-Goal Setting	10.68	-0.23	-0.01	2 00	(4, 240	
Natural Reward	,0.65	1 84		-6-01		
	10.48					
Self-Observation	Jinat	e Repor	t (CBO)			
Opportunity Thought Self-Observation <u>V. Citizenship Behavior Questionnaire, Su</u>	00101102			0.04	(4, 233	
- vivizensnip beneries	1.000	0.05	-0.03	-0.06	14 25-	
Organizational Citizenship Behavior	0.14	- 74	1.00		(4, 233	
Interpersonal Support	0.66	0.94		-0.15	(31	
	0.50	0.14				
Courtesy					ntinue	
Civic Virtue (News)			(+ ab	le col	<u>ntinue</u>	

		Desire Betas (Individual Level)						
Cluster	Order of Entry ===>	(1)	(2)	(3)	(4)		_	
		t ^a i m c	cb	d e s i r	i ^d n t	d.f. ^e		
			0					
			n					
			d		e			
					r			
Dimension		1		e				
Counterproductive Be	havior							
Unreliability		0.69	0.64	0.31	-0.64	(4,	231)	
Complaining		0.62	-0.44		0.49		231)	
VI. Job Satisfactio	n Questionnaire, Subord	inate Re	port					
Job Satisfaction								
Overall/Growth		0.67	-0.03		0.07		242)	
Pay		0.79	-0.99			(4,	242)	
		0.72	1.02	0.33	-1.11	(4,	242)	
Job Security						14	242)	
Job Security Supervision		0.78	<u>1.11</u>	0.43	-1.12	141		
Supervision	rmance/Effectiveness	0.78	1.11	0.45	-1.12	(4,		

Note. Underlined beta weights significant at p < .05 or better. ^aCorresponding individual-level time 1 dimension rating. ^bExperimental condition (training/comparison). ^cTime 1 individual-level "desire for self-leadership" score. ^dInteraction between condition and individual-level "desire for self-leadership" score. ^aDegrees of freedom reflecting individual level of analysis. other independent variable were significant. Dimensions with this pattern are indicated with the superscript "f" in Table 5-7.

Figure 5-1 portrays an example of this pattern--in this case for the LSQII-sub SuperLeadership meta-dimension <u>encourages independent action</u>. Note that this is only one illustration of the general pattern; similar results, for example, were also found for other dimensions, including Strongman <u>instruction and command</u>. Transactor <u>Participative goal-setting</u>, and three of the four Visionary Hero dimensions. Note also that in this example of the general pattern, for the comparison group, time 2 subordinate perceptions of participant encouragement of independent action were relatively unchanged with increasing subordinate desire for self-leadership. For the training group, however, time 2 perceptions <u>decreased</u> as subordinate desire for self-leadership increased.

To summarize, subordinates of participants who received the training were influenced by their own desire for self-leadership: subordinates who had a strong desire for self-leadership reported <u>lower</u> levels of their leader encouraging independent action. Possible explanations for this pattern of results will be discussed in greater detail in the next chapter.

Time 1 Desire for Self-Leadership

<u>Figure 5-1</u>. Example individual (subordinate) level interaction effect for subordinate Desire for Self-Leadership.

Summary of Results

The results of the experiment generally did not support the propositions advanced in Chapters II and III: none of the four leader behavior clusters differed between Conditions at conventional significant levels for either the LSQII-sub or LSQII-train. The results also did not support propositions concerning subordinate selfleadership (SLQ) and subordinate citizenship behavior (CBQ). Between-condition differences were significant for subordinate counterproductive behavior (CBQ), but the direction of the relationship was opposite to prediction. In tests of the exploratory clusters and dimensions, only manager ratings of overall participant performance differed significantly between the training and comparison conditions. That is, training group participants were perceived not to be performing as well comparison group participants at time 1, whereas performance ratings for both groups had reached parity by time 2. Finally, a pattern of significant interaction effects was found for the moderator, desire for self-leadership.

Chapter VI: Discussion

As shown in Chapter V, the results of the experiment did not support the research propositions. The experiment did not find a significant effect for the training on the behavior of middle-level managers who were the focus of data collection: neither the manager self-descriptions nor the descriptions of managers by their subordinates demonstrated training-related change. This chapter Presents post-hoc speculation and investigation concerning Why the results came out as they did. Discussion in this chapter will focus on three broad explanations for why the research propositions were not supported:

- Questions about the research itself, including an inadequate time lag, the content of criterion questionnaires, individual differences in subordinate responses to the questionnaires, and the research sample;
- · Questions about the training; and
- Questions about the climate for transfer in the host organization.

Each of these explanations will be discussed in detail later in this chapter.

Organization of Chapter VI

A central part of the post-hoc speculation of this chapter was a series of interviews with managers who

participated in the first two training sessions. Because these interviews will be important for explaining the results, they will be briefly overviewed in the next section. (Specific comments produced by these interviews will appear throughout the chapter for illustrative purposes.) Discussion will then consider some statistically significant findings that emerged from the research. These findings will help frame discussion in the following section, which will consider several possible explanations for the dominant finding that the training did not produce detectable behavioral effects. The final section will offer some suggestions for future research on SuperLeadership.

Post-Training Evaluation Interviews

To better interpret the results of the experiment, in early February, 1993, semi-structured interviews were conducted with 14 trainees who had received training in July, 1992. These interviews consisted of probes designed to elicit wide-ranging commentary on key aspects of the training and research. Starting with an initial pool of trainees who were unaffected by the RIF in October, 1992, interviewees were selected so that all divisions would be represented. The final sample included 13 middle-level managers who were the central focus of training and data collection and one senior manager who received training

but was not the focus of questionnaires. Interviews occurred on-site when possible; to accommodate scheduling conflicts, however, about 1/3 of the interviews were conducted by telephone. At the time of initial contact, interviewees were asked to think about the training program itself, the actions they took to implement the training, and how their implementation efforts had worked out.

Appendix 6-1 presents an outline for the interviews, including the introduction that was read to the trainees. The interview included two sets of related questions. The first set asked trainees for their retrospective impressions of the training based on their experiences with SuperLeadership since July, 1992. These questions concerned aspects of training that were particularly helpful, the central messages conveyed by the training, and changes the trainees would recommend. The second set of questions solicited information concerning implementation of the training, including difficulties applying the training and actions taken to implement SuperLeadership. Specific responses provided by the trainees will be highlighted periodically throughout the rest of this chapter.

Overview of Trainee Reactions and Responses to the Training

The interviewees provided much helpful information, including some surprisingly candid and specific impressions of the training itself and the climate for transfer. This section summarizes these impressions; specific comments will also be cited throughout the remainder of this chapter.

Retrospective impressions of the training. Interviewees reported two major messages that were generally consistent with the overall philosophical intent of the training. The first message concerned the importance of employee empowerment and initiative. As one trainee reported,

The major thing I learned was the importance of empowering the employee. To me, that means letting them be in control of how they achieve their specific objectives. It means giving them the support, tools, and other things they need. I see myself more as a coach.

A second central message was the importance of teamwork: one interviewee said, "the course gave me a better structure [for encouraging self-managing teams] than I had before."

In general, interviewees felt the training provided useful insights and reinforced a leadership approach they wished to pursue. Some interviewees went even further by asserting that the training sent an important message about how top management expected them to lead:

The message this training sent about what was expected was as important as the skill-building. This is one of the few courses I took where I felt like I did something. . .because management is

sending a signal that this is how I should behave. In essence, trainees felt the training was something of an implicit policy statement--a corporate imprimatur--that gave them permission to push forward. As such, the mere presence of the training may have been perceived as signalling top management support for the messages it conveyed. Some trainees also commented favorably on the time allocated to the training (three working days), considering this a signal about the perceived importance of the training to the company.

<u>Responses to the training</u>. Interviewees generally reported that they discussed the content of the course with their subordinates when they returned from the training. Discussion ranged from informal conversation to formal presentations. One trainee, for example, discussed the content of the training in a staff meeting, circulated

Manz and Sims' (1990) book, and distributed a summary listing of SuperLeadership strategies. Another trainee carried this strategy even further by meeting with each subordinate to discuss the training and to work out strategies on how to implement SuperLeadership on an individual basis. In general, trainees made an effort to communicate the broad intent of the training to their direct-reports. The possible effects of communication will be revisited periodically in this chapter.

Specific interviewee actions after the training centered mainly on encouraging autonomy and teamwork. One approach used by trainees to encourage self-leadership involved withholding direct advice: "I changed the way I approached it when someone brought a problem to me. I asked 'how would you solve that problem?' I now try to do that consistently." One comment illustrated just how hard it can be to hold back--to let employees solve their own problems--when solutions seems obvious:

I tended to delegate more [as a result of the training]. I'm trying to let people do their own thing even on problems that I have expertise with. Sometimes it's hard for me to bite my tongue. . .[but] they gained more positive experiences because of [my] backing off.

Another trainee specifically cited greater reliance on teamwork for making decisions:

I [have] used more of a team approach in delegating responsibilities [since the training]. . . Our group made assignments for developing a survey to assess people's feelings about the change [to a fourday work week]. I kicked in a few items, but the group did most of it and made the assignments to implement it.

The majority of trainees felt that the training offered important insights that affected their leadership. Furthermore, in general, the post-hoc interviews strongly suggested that trainees <u>attempted</u> to change their behavior in ways that were consistent with the intent of the training.

Comment on Significant Findings

Later sections of this chapter will directly address the question of why trainee <u>attempts</u> at behavioral change did not produce statistically significant <u>perceived</u> changes in manager behavior which might be detected by the behavioral questionnaires. The post-hoc interviews were quite helpful for elaborating possible reasons for the apparent lack of perceived change. But although there was no direct support for the research propositions, the experiment <u>did</u> produce some statistically significant

findings. This section will highlight three significant findings before more extensive discussion turns to the broader question of why the experiment generally did not produce evidence of behavioral change. These significant findings include: (a) a between-condition difference in subordinate <u>counterproductive behavior</u> that was opposite to the expected direction, (b) a between-condition difference in supervising manager ratings of <u>overall</u> <u>Participant performance</u>, and (c) a pattern of significant interaction effects for the <u>desire for self-leadership</u> moderator variable.

Subordinate Counterproductive Behavior

In Chapter V, Table 5-5 showed a significant multivariate training effect on the two-dimension <u>Sounterproductive behavior</u> cluster (<u>F</u> (2, 66) = 4.06, <u>P</u> < .022). Univariate ANCOVAs found no significant effect for the <u>complaining</u> dimension (<u>F</u> (1, 67) = 1.12, <u>P</u> < .294). However, the univariate effect for <u>Unreliability</u> was significant ((<u>F</u> (1, 67) = 8.20, <u>P</u> < .006). When the time 1 and time 2 means were compared between the comparison and training groups, the direction of this effect was found to be <u>opposite</u> to prediction. In the comparison group, the time 1 and time 2 means for unreliability <u>decreased</u> slightly from 1.97 to 1.90; Comparison group subordinates perceived their colleagues

as slightly less unreliable, that is, slightly more reliable at time 2 than time 1. In the training group, the time 1 and time 2 means <u>increased</u> from 1.94 to 2.05; subordinates in the training group perceived their colleagues as more unreliable, that is <u>less</u> reliable at time 2 than time 1.

The reasons for these findings are not clear. One speculative explanation is that something occurred in the environment of the organization that differentially affected the training and comparison groups. Because departments were randomly assigned to condition within each division, however, this explanation seems unlikely. Another possibility is that communication by returning trainees about the importance of empowerment and teamwork may have differentially affected the salience of co-worker reliability between the groups. Perhaps this somehow accounts for the opposing directional trends between the groups. But if differential sensitivity explains this finding, sensitivity effects must have been quite selective. Recall, for example, that the training had no significant effect on the SuperLeader behavior cluster -including empowerment-related dimensions such as encouraging independent action and encouraging teamwork -based on responses by participants (\underline{F} (4, 55) = 2.15, \underline{p} < .086), time 2 comparison only) and their subordinates

(F (4, 62) = 1.90, p < .122). Furthermore, no significant training effect was found for subordinate <u>organizational</u> <u>citizenship behavior</u> (F (3, 64) = .494, p < .687), which included the teamwork- and reliability-related <u>interpersonal support</u> dimension.

Ultimately, conclusions about this isolated finding must be tempered in light of the broad non-significance for the leadership, self-leadership, and citizenship clusters as a whole. The scope of data collection--the sheer number of clusters and dimensions considered in this experiment--may have increased the likelihood of finding significance somewhere in the data set despite the broad absence of detectable significant effects. In essence, this lone statistically significant finding may be a Type I error. Certainly, on the basis of these results, it would be premature to argue that the SuperLeadership training actually promoted unreliability among followers. <u>Performance Ratings by Supervising Managers</u>

A significant training effect was found for the overall performance scale completed by supervising managers of the participants (\underline{F} (1, 58) = 5.37, \underline{p} < .024). This scale was created by combining supervising manager ratings across nine performance dimensions covering aspects of performance like productivity, interpersonal effectiveness, organizing and planning, and accommodating

change (see Appendix 4-7 for full performance questionnaire). Time 2 means for overall performance in the comparison and training groups were identical (4.26). However, before training at time 1, the means for the Comparison and training groups were 4.23 and 3.95, respectively. Whereas ratings for the comparison group remained essentially constant over time, ratings for the training group increased.

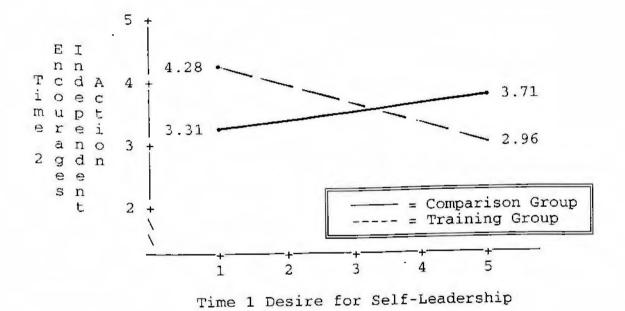
Explanations for this effect may relate to shared training experiences by the focal participants and their superiors. Recall that the experiment attempted to facilitate transfer by providing training to managers throughout the organizational hierarchy, including supervisors of the trainees who were the focus of data collection. Consequently, 16 of the 17 managers who provided performance data on the training group also participated in the training--sometimes alongside the trainees they were describing. One possible explanation for this finding, then, is that supervising managers' ratings may have been directly affected by their knowledge of whether their subordinates (the trainees) received training between time 1 and time 2.

A second, less direct interpretation is that the shared training experience provided an opportunity for communication so that supervisors actually saw key

improvements. During the post-hoc interviews, some trainees commented favorably on the opportunity to share the training with their supervisors. One interviewee, for example, said,

I had training with my supervisor. That was a positive feature of the training. We worked together. When things would happen in a meeting [after the training], I knew where he was coming from and he knew where I was coming from.

Clearly, knowledge by superiors that their subordinates had undergone training is a contaminating factor that makes strong conclusions difficult. However, because of their close communication, superiors of the trainees may have been able to see the beginnings of positive change in leadership and teamwork that were not yet evident to others--even to their subordinates.


"Desire for Self-Leadership" Moderator Effects

A pattern of interaction effects for the LSQII-sub <u>desire for self-leadership</u> moderator variable was identified in Chapter V. In this pattern, which characterized 12 of 33 dimensions, only the time 1 dimension autocorrelation effect and the time 1 (condition * <u>desire</u>) interaction contributed significantly to explained variance in time 2 dimension responses; betas for the time 1 dimension and interaction components were

positive and negative, respectively. This pattern was observed in the participant effectiveness dimension and one Strongman, one Transactor, three Visionary Hero, two SuperLeader, and four self-leadership behavior dimensions.

Figure 5-1 illustrated this pattern for a sample dimension--the LSQII-sub SuperLeadership meta-dimension <u>encourages independent action</u>. For reference, this figure is again reproduced as Figure 6-1. Note that this figure is generally typical of the pattern found among significant moderator dimensions. Note also the pattern of relationships that produced this significant moderator effect. For the comparison group in this example, time 2 subordinate perceptions were basically unchanged as a function of subordinate <u>desire</u>. For the training group, however, time 2 perceptions decreased with increased subordinate <u>desire</u>. In 12 of 33 interactions, the experimental condition affected time 2 subordinate responses in conjunction with the <u>desire for selfleadership</u> moderator dimension.

It seems implausible that this robust, consistent pattern is due solely to chance. One interesting possibility is that these findings illustrate a phenomenon called <u>beta change</u> (Golembiewski, Billingsley, & Yeager, 1976; Armenakis, 1988). <u>Beta change</u> reflects "scale recalibration," as when "the standard of measurement used

<u>Figure 6-1</u>. Example individual (subordinate) level interaction effect for subordinate Desire for Self-

Leadership.

by a subject to assess a stimulus changes from one testing period to another" (Armenakis, 1988, p. 165). In the present experiment, beta change would result if subordinates provided different time 2 responses because an event (e.g., new information) changed perceptions of "how much" leader behavior was present independent of actual changes in participant behavior.

Explanations about why a beta shift occurred in the present experiment are necessarily speculative. However, the phenomenon may involve perceptual changes related to the individual difference "desire" variable. Recall that the interviews indicated that trainees typically informed subordinates of the goals and philosophy of SuperLeadership when they returned from the training. This communication may have alerted subordinates to the training's emphasis on employee empowerment. Perceptions among subordinates for whom opportunities for selfleadership were important (that is, high desire) may have decreased at time 2 when their heightened expectations were not met by strong evidence of change. Consequently, perhaps the beta shift suggested by the interaction between desire and time 2 perceptions reflects a disillusionment effect.

Of course, this speculation goes far beyond the data collected for this experiment. Future research might

target the effects of unmet expectations (disillusionment) more directly. However, note that the interaction effects observed in the present experiment suggest that the training did have an effect--albeit not the effect intended. The implications of these moderator findings will be elaborated more fully when discussion turns to possible reasons why there was little evidence of behavioral change as a result of the training.

Comment on the Overall Lack of Support

for the Research Propositions

Overall, the experiment generally did not report significant change as a result of the training. Given the lack of apparent change, a question naturally arises as to why there was an absence of training effects. It is difficult to definitively explain the broad absence of change in the present experiment because this experiment, like all field studies, lacked laboratory-like control. The remainder of this chapter will discuss possible causes for the broadly non-supportive findings contained in this report, including: (a) the research itself, including the time lag and instrumentation; (b) the training manipulation; and (c) the climate for transfer of training in the host organization.

Questions About the Research

This section will discuss potential flaws in the execution of the research that may have contributed to the apparent lack of change. I will open by considering possible problems with the time lag chosen for the research. Discussion will then turn to questions about the criterion measures.

Time lag. As described in Chapter IV, the time lag originally chosen for this study--12 weeks--was a judgment call based on the findings of past research. Recall, however, that it seemed increasingly clear during the research that business conditions might require a reduction-in-force (RIF). Concern about the research effects of a RIF during the lag period led to a decision to shorten the original 12 week lag to ten weeks. It is possible that a 10-12 week lag may not have been adequate to detect a training effect. For example, perhaps SuperLeadership behaviors are subtle enough that it simply takes longer than 10-12 weeks to register a detectable effect. If so, there might later be a bounceback effect of the kind reported by Hand, Richards, and Slocum (1973). Hand et al. studied the effects of a general managerial "human relations training program" designed around participation exercises, listening exercises, and other modules. They found that measures of leadership attitudes

and behavior registered no change 12 weeks after training. Significant change did appear, however, after 18 months. Perhaps a longer time lag might have detected measurable change.

Criterion measures. Another explanation for the present experiment's failure to detect significant change is that the criterion measures may not have been sufficiently relevant to the training intervention. Goldstein (1986) considers training and criterion relevance to be cornerstones of successful training implementation and evaluation. Goldstein views criterion and training relevance as two sides of the same coin: approaching relevance, he asserts, is largely a process of tracing curriculum content and criterion development back to needs assessment. The "tracing-out" process advocated by Goldstein clearly increases the likelihood that the training curriculum captures the knowledge, skills, and abilities required on the job. Critically, this process also links the training curriculum with the criterion measures.

In the present experiment, curriculum design and criterion development were driven by a priori theoretical considerations developed in Chapters II and III. The critical criterion measures were designed to be either directly or conceptually related to the leadership

typology developed by Manz and Sims (1991). The internal criterion measures (LSQII-sub, LSQII-train, and SLQ) were a direct extension of the typology: these instruments were specifically designed around key leader behaviors discussed in Chapter II with an emphasis on SuperLeadership and self-leadership. The external criterion measure (CEQ) was based on citizenship constructs which were, in turn, conceptually linked with SuperLeadership in Chapter III. Ideally, the criterion measures should have meshed with the training curriculum, which was designed around the same leadership typology. However, it is possible that the criterion measures included dimensions that were irrelevant to the training content (surplus) while failing to include dimensions that were relevant to the training (deficiency).

<u>Individual differences in responding to the criterion</u> <u>Questionnaires</u>. The above discussion of the <u>desire for</u> <u>self-leadership</u> moderator effect will not be repeated here. However, the moderator effect identified in Chapter V suggests that subordinate responses on the questionnaires may have varied with individual differences in subordinate desire for self-leadership. It may have been difficult for the training intervention to produce behavioral effects that were sufficiently strong to show

through the "noise" produced by varying subordinate reactions to communication about the training.

Inadequate sample size. An average of about five subordinates were present in each participant-defined unit at time 1. Time-based attrition effects reduced this even further for tests of the propositions. A larger withinunit sample size would have increased the reliability of measurement by reducing error variance within participantdefined experimental units. Greater numbers of reporting subordinates, then, would have tended to average out within-unit differences in perception. Had larger units been available, reliability of measurement--hence the ability of measures to detect change--would have increased.

Excessive homogeneity in the sample. Chapter IV discussed how ANOVA-based procedures such as the intraclass correlation coefficient (Shrout & Fliess, 1979) can be affected by range restriction. Range restriction would have the effect of suppressing between-unit variance. George (1990) has argued that range restriction is particularly likely when research is confined to a single organization, where selection and attrition effects can produce overall homogeneity.

In the present study, most of the participant-defined units were centrally located at a single, long-established

geographical location. In addition, the organization had an historical tendency to hire employees who were relatively young: recall that although the respondents averaged 40 years in age, they had been with the company an average of 14 years. On average, then, employees had been hired when they were only 26 years old. The location of employees at a single work site, their relative youth at entry, and their long tenure suggest that acculturation effects may have produced range restriction in the experimental sample. If everyone is so similar, it may be difficult to find meaningful between-unit differences. Because statistical tests depend on between-unit differences, this relative homogeneity may have made it difficult to detect behavioral change.

Summary. The apparent lack of change may be explained in part by problems with the research itself including the time lag, the content of the questionnaires, individual differences in subordinate responses to the questionnaires, and characteristics of the sample including size and homogeneity. The present ten-week lag may have been inadequate. Furthermore, the content of the questionnaires may not have been sufficiently relevant to the training. In addition, differential subordinate responses to the questionnaires resulting from individual differences in desire for self-leadership may have

increased the error variance of measurement. At the same time, it may also have been difficult to detect change because of insufficient within-unit sample size and homogeneity produced by acculturation effects.

Although the above discussion touched specifically on concerns related directly to the research itself, some of these concerns are actually derivative to broader training and organizational climate issues. The training intervention and the climate for training transfer will be addressed below.

Questions about the Training

During the post-hoc interviews, it was clear that the training participants appreciated the pace of the training, the choice of exercises, and the emphasis on hands-on, experiential learning: "I felt that the exercises were useful, especially in contrast with straight lecture." They were also impressed with the trainer's business and academic credentials, his style of presentation, and his ability to relate course materials to his own (and the trainees') experience as managers. In retrospect, the training was probably strengthened by the status of the trainer as an outside consultant with both business and academic experience (c.f., Rosen, Georgiades, & McDonald, 1980).

In their meta-analysis of 70 management training interventions, Burke and Day (1986) considered a several different types of training. They found that lecture, group discussion, visual aids, and participation are moderately effective as assessed by subjective and objective measures of learning and behavior. The present training included all of these approaches. Still, and notwithstanding the many positive comments from the interviewees and from evaluators who sat in on the training, a potential explanation for the generally nonsignificant results is that the training had an insufficiently strong effect. Of course, experiments are more likely to produce significant results when they include a strong manipulation. As suggested by the above discussion of research-related issues, the training manipulation in this experiment probably needed to have a strong effect if broadly significant change was to be detected. This section will discuss aspects of the training that may have attenuated the strength of the training manipulation.

Insufficient Training Time and Follow-up

One possible training-related problem may have been insufficient time in the classroom. Although trainees did not report feeling rushed, three days (approximately 21 hours of classroom instruction) may not have provided

enough exposure to SuperLeadership principles and behaviors. Compared with the present training, the Participative leadership skills program evaluated by Hand et al. (1973) consisted of 90-minute training sessions each week for 28 consecutive weeks. This schedule resulted in a total of 42 hours of classroom instruction-far more than offered in the present program. However, Kidder (1990) was able to document training effects resulting from a management course in participative decision making that lasted only two days.

Compounding the possible problem of brevity was the massed nature of instruction: the training was offered on consecutive days rather than over time. Goldstein (1986) cites evidence that massed practice can be more effective than distributed practice with periods of rest for initial learning; however, massed practice generally results in less-effective retention over time. Consider a leadership training course that was successfully validated by Latham and Saari (1979). Although the course included only 18 hours of classroom instruction, training was distributed in two-hour blocks over nine weeks. In the programs evaluated by Latham and Saari and Hand et al. (1973), trainees may have benefitted from distributed practice. In the present study, it was necessary to train on Consecutive days in order to train managers as a group

while minimizing disruptions to the host organization. However, the decision to confine training to three backto-back training dates may have limited the longer-term effectiveness of the program.

Recognizing the importance of post-training reinforcement, follow-up sessions were offered to the Session I and Session II trainees. However, due to scheduling conflicts unknown to the researchers at the time, one of the sessions was poorly attended. A lack of follow-up, then, may also have weakened the net effect of the training manipulation. One of the interviewees who attended the follow-up session commented that "we need more follow-up. The one session wasn't enough. People get caught up in the rat-race and as time goes on you drift away. Just a periodic reminder of the high points would probably be helpful."

The Pedagogical Approach

The next two subsections will discuss two curricular issues that may have attenuated the impact of the training. The first concerns behavioral objectives; the second, closely related issue, concerns opportunities for trainees to learn and practice specific SuperLeadership behaviors.

Inadequate specification of behavioral objectives. Goldstein (1986) notes that an important outcome of needs

assessment is <u>behavioral objectives</u> for the eventual training program. Besides serving as a foundation for curriculum design and criterion development, behavioral objectives also "communicate to the learner what he is expected to be able to do when he finishes the program" (Goldstein, 1986, p. 59). Recall that in the present experiment, the behavioral objectives for the training program were established a priori based on theoretical considerations.

Regardless of whether the SuperLeadership trainees received formal behavioral <u>objectives</u> per se, Goldstein's observations suggest a broader question: To what extent did trainees understand how to behave as SuperLeaders? The Manz and Sims (1991) leadership archetype model received considerable treatment as an organizing framework for the training, particularly during the first day. However, it seems plausible that the impact of the training viz-a-viz SuperLeadership should be heightened to the extent that the training highlighted specific SuperLeader behaviors (e.g., the a priori SuperLeadership dimensions).

Trainees in Session I did not receive a condensed review of specific SuperLeader behaviors with detailed discussion of each behavior. However, they were provided with an overview of SuperLeadership and were given a copy

of Manz & Sims (1990), which included tables listing Several Specific SuperLeader behaviors. In Session II, besides receiving the book, the last two hours of training were devoted to presenting and discussing key SuperLeader behaviors. As part of this presentation, trainees received a one-page handout listing nine behavioral "Keys to SuperLeadership," reproduced as Appendix 6-2. Working from this handout, a listing of specific SuperLeader behaviors, an assistant described each SuperLeader behavior to the trainees. The trainer then demonstrated some of these key behaviors by role-playing an illustrative leadership situation with a volunteer trainee. In an attempt to further increase the behavioral specificity of the training, participants in both follow-up sessions also received the handout.

Conger (1992) has categorized leadership training programs into four types, two of which are of interest here. <u>Conceptual understanding</u> programs use case studies to illustrate applications of an initial model of the leadership process. <u>Skill building</u> programs focus on specific leadership skills and offer opportunities for trainees to practice the skills and plan their application in the workplace. Conger uses these categories as heuristics only; he does not evaluate the relative effectiveness of these different approaches to leadership

training. While the SuperLeadership training can be described as a mix of the conceptual and skill building approaches, it seems clear that the training generally leaned toward the conceptual.

The training offered a general introduction to SuperLeadership: Extensive classroom time was not devoted to discussing and practicing specific SuperLeader behaviors. Consistent with the broad philosophy of SuperLeadership, the post-hoc interviews found that two major messages were conveyed by the training: employee empowerment and teamwork. Both of these themes are central to SuperLeadership and were strongly emphasized in the training. However, both also tended to be treated father generally.

When responding to general questions about the training, interviewees provided positive feedback of the sort mentioned at the beginning of this chapter. In later interviews, an attempt was made to elicit more detailed feedback about the training by directly probing interviewees about whether they knew "what to do to be a SuperLeader." This question elicited mixed responses. Trainees frequently responded that they felt the training Provided enough specifics concerning SuperLeader behavior. One trainee, for example, said, "we needed more examples, but generally I knew what to do." Another trainee

focussed directly on the teamwork aspect of the training, saying,

The course gave me a better structure for [encouraging teams] than I had before. It was a lot more than 'gee whiz' stuff: it really helped. And I felt I got enough specifics as to how to make things happen.

However, other trainees perceived a need for greater Specificity in the training. After receiving the <u>Keys</u> handout, for example, two Session I senior managers Commented that "this is what we wanted all along: something to hang onto." Responding to the probe about specific knowledge of SuperLeader behavior, a Session II trainee reported, "I didn't get a good idea of what to do. I thought the [<u>Keys</u>] should have been brought out earlier."

It must be acknowledged that there is a fine line between specific probes for information in an interview and "leading questions." In fact, one trainee reacted against what he perceived to be fault-finding in the interview, saying "your question leads me to give you negative comments, but I heard many positive comments." It is also important to reemphasize that trainees generally considered the training appropriate and useful. Furthermore, none of the interviewees directly noted a

lack of behavioral specificity when responding to general "fault-finding" questions like "what was missing from the training?" Instead, responses typically related to general issues of style and content.

Trainee comments during the training and the postexperiment interviews do not definitively resolve the Question of whether trainees perceived a lack of behavioral specificity and, if so, whether this affected their ability to implement SuperLeadership. However, recall that the criterion measures were assessing <u>specific</u> behaviors, including SuperLeadership behaviors. To the extent that specificity was lacking in the training, general training effects may have been difficult to detect with the targeted measures used for validation.

<u>Inadequate opportunities to develop SuperLeadership</u> <u>Skills</u>. Related to the issue of behavioral specificity are opportunities for trainees to <u>develop</u> SuperLeadership skills in the classroom. It is possible that the training discussion, exercises, book, the handout were successful in highlighting relevant skills. Still, trainees may not have known how to actually implement these skills in the transfer setting. Goldstein and Sorcher (1974) advocated <u>behavioral modelling</u> to provide behavioral specifics along with opportunities for trainees to actually <u>see</u> a behavior and later to <u>practice</u> the behavior with feedback.

Goldstein and Sorcher viewed behavioral modelling as an alternative to conventional approaches to management training, which exhort managers to change attitudes without providing specific strategies for enacting attitude change through changes in behavior. Behavioral modelling has recently received a great deal of attention and has been found to be an effective approach to training of interpersonal skills, including leadership (Goldstein, 1986; Bass, 1990; Burke & Day, 1986; Latham, 1991).

Behavioral modelling is not a panacea for leadership training: A variety of other techniques can also be effective (c.f., Bass, 1990; Goldstein, 1986). Regardless of the technique used, however, behavioral modelling suggests that training effects can be enhanced by specifying terminal behavior sequences, modelling behavior so that trainees can watch sequences unfold, and offering opportunities for trainees to practice behavior in a structured classroom environment.

The pedagogical approach used by the trainer included elements of behavioral modelling such as modelling and role-play. Modelling, primarily through videotape, was used to illustrate different approaches to leadership through modules like the <u>Verbal Behavior and Feedback</u> <u>Scenarios</u> (Transactor; Appendix 2-1, IC1) the video portion of the <u>Leadership Challenge Case</u> (Strongman,

Transactor, and Visionary Hero; Appendix 2-1, IB1), and <u>Working Smarter, Not Harder</u> (SuperLeader; Appendix 2-1, IF). Role-play was used primarily in two exercises: the <u>Listening Exercise</u> (Appendix 2-1, IC3), which emphasized active listening skills, and the <u>New Truck Exercise</u> (Appendix 2-1, IIB), which taught trainees how to facilitate compromise and consensus in a group. The <u>New</u> <u>Truck Exercise</u> also included specific behavioral suggestions for reaching group consensus.

Recall that a behavioral modelling-like approach to SuperLeadership skill training was used late in Session II. Perhaps the training effect might have been strengthened if techniques such as specifying, modelling, and rehearsing leader behavior were applied more broadly-particularly in conjunction with detailed discussion of specific SuperLeader behaviors. Such an approach would have amounted to an extension of the existing techniques used in training.

Summary

The curriculum and subsequent trainee comments suggest that the training provided a useful, appropriate overview of SuperLeadership as a philosophy: general themes of empowerment and teamwork were clearly communicated by the training and were received by the trainees. Perhaps the training intervention might have been stronger with greater development of specific SuperLeadership skills. Under optimal experimental and environmental conditions, it is likely that the training would have still have produced some significant effects. However, several problems with the research have already been mentioned. As will be clear in a moment, the climate for transfer in the host organization was also far from ideal.

The Climate for Transfer in the Host Organization

The discussion so far has focused on research and training issues that may have contributed to a lack of apparent change. However, impediments to change may also have been introduced by the organizational setting for the training and research. This section will discuss two aspects of the transfer setting that may have attenuated the impact of the training: the stress of down-sizing and the introduction of a new performance appraisal system. Stress in the Host Organization

Organizational stress--specifically, threats of reductions-in-force (RIFs)--was always lurking in the background but dramatically came to a head after the research had begun. Stress in the host, whose products and services were heavily defense-related, was particularly intense due to basic structural changes in the U.S. economy following the end of the Cold War. The

severe, permanent implications of these changes for the host produced a level of stress bordering on stark fear-fear that was almost palpable even to the research team. Uncertainty concerning leadership at the top of the organization only compounded this fear: the CEO of the parent corporation, under fire for the duration of his tenure, resigned toward the end of the study. Furthermore, many members of the host organization expressed concern, even resentment, at what they perceived as ineffective leadership at the top. During the post-hoc interviews, trainees volunteered many comments concerning how organizational stress affected their ability to implement the training. On balance, these comments suggested that the threat of RIFs produced a hostile environment for training transfer.

Stress as a distraction for the participants and their direct-reports. The worsening business situation in the company complicated almost every aspect of the participants' work lives, including their leadership roles. Most basically, the trainees were affected by the same morale crisis that confronted their direct-reports. One interviewee summarized the numbing effect of organizational stress when s/he said, "There is a lot of pressure in our company and the U.S. today. It's hard to motivate others when you are having trouble staying

motivated yourself." Other interviewees elaborated the difficulties of applying the training under the constant threat of layoffs. One mentioned that "when you are in a crisis like we are, you tend to react rather than proact. And that's a difficult time to make these changes." Another trainee commented at greater length;

The organizational chaos [of the RIFs] has hurt a lot. I stepped back from trying new things [like SuperLeadership] and basically focused on morale. Frankly, I'm in reactive mode. It's hard for me to push the idea that people need to be self-leading and self-motivating when the environment is beating the life out of them.

Clearly, uncertainty made change of any sort-including the transition to SuperLeadership--difficult for the trainees. Furthermore, subordinates may have faced even greater uncertainty than the trainees because they had even less direct access to information concerning top management's intentions for the firm. The results of the job satisfaction portion of the subordinate questionnaire mirrored conditions at the host site. Recall from Table 5-6 that subordinate satisfaction with job security was the only satisfaction dimension that fell below the midpoint of the scale. Responses on the job security dimension fell considerably below the levels of

satisfaction reported for pay, supervision, and the job overall.

The impression left by the interviewees was that uncertainty among subordinates was itself a major source of stress for trainees. Comments concerning subordinates were too numerous to recount here in any detail, but one interviewee captured the difficulty of applying the training in the following statement:

I don't know if anybody has a clue about how to launch new ideas that make people stretch when you are working in an environment that makes people retreat--retreat from new ideas, retreat from each other. If I was working in the environment that we had two years ago, it wouldn't have been a problem. But it was just impossible the way things are now.

Many comments during the interviews suggested that organizational stress may have prevented participants from fully implementing the ideas they gained from the training. An historical parallel to the conditions facing the present study can be found in the pioneering field experiments of Roethlinsberger and Dickson (1939) at Western Electric's Hawthorne works. Unfortunately for the research team, the Hawthorne field experiments occurred during the onset of the Great Depression. One of these experiments was a two-year evaluation of the productivity

effects of wage incentives among employees who produced mica chips for electrical insulation. The researchers noted a persistent decline in productivity during the second year of observation that failed to respond to their experimental intervention. They attributed this decline to "fears and anxieties" about job security that "completely overshadowed the experimentally introduced changes" (p. 153). Consequently, a year of observational data was lost.

Roethlinsberger and Dickson dated the productivity decline in the Mica Splitting Test Room to the onset of rumors concerning impending transfers and layoffs. Like Hawthorne, rumors of possible RIFs were rampant at the host of the present study. Unfortunately, also like Hawthorne, these rumors were correct. Although they have been criticized for failing to fully acknowledge the effects of economic conditions on their research (Landsberger, 1958), Roethlinsberger and Dickson provided an early illustration of how difficult economic times can derail carefully planned field experimentation.

<u>Stress as a fundamental impediment to SuperLeadership</u> <u>behavior</u>. According to Manz and Sims (1990), SuperLeaders tend to recede into the background as their nominal "followers" begin to assume more responsibility for selfleadership. However, the environment in the host may have

erected a psychological barrier to the important process of surrendering direct control: As the "body count" escalated through successive waves of RIFs, trainees understandably felt pressure to visibly demonstrate their indispensability to the organization. This may have promoted a hands-on, take-charge stance that is incompatible with the spirit and practice of SuperLeadership. Perhaps unintentionally, one interviewee captured these pressures when s/he off-handedly commented that "you tell me that I don't have to manage so much. So I don't and then I'm on a list to be fired."

Interviewees were surprisingly perceptive, articulate, and candid about all aspects of their lives in the host organization as employees and leaders. Their appraisals of the effects of downsizing on the host's leadership culture were no exception. One interviewee, for example, provided a thumbnail ethnography that frankly portrayed SuperLeadership as a losing battle under present conditions. S/he illustrated how the philosophy of SuperLeadership conflicts directly with the need for selfprotection in a contracting corporation:

The central message [of the training] is leading others to lead themselves. . . . SuperLeaders aren't heros, they are hero-makers. That's all well and good, but that's not our culture. When 1800 people

are being laid off every six months based on performance, there is an inherent conflict: The atmosphere rewards a high profile and getting personally involved in everything, not in recognizing people who support others. The divisions manager [who spoke to the class] didn't come into the training and say "I'm going to give an award to people who facilitate others."

At a policy level, the introduction of strict budgetary controls may also have tended to conflict with SuperLeadership. In an attempt to control expenses, the host organization introduced a "budget czar" system for approving expenditures. Under this system, senior executives were required to sign off on expenditures of more than a certain amount. Although it was successful in reducing expenses, this system was uniformly disliked throughout the host--by those required to approve expenditures no less than by those who had to submit expense proposals for senior review. Besides adding bureaucracy, this system introduced additional formal topdown controls that seem to conflict with the philosophy of the training.

A New Performance Appraisal System

Another potentially significant development in the host organization, closely related to the stress of

downsizing, was discovered serendipitously during the post-experiment interviews. This development had not previously been known to the researchers. After the training in July, 1992, the host introduced a new performance appraisal system that emphasized "metrics" for quantifying the performance of employees throughout the organization. The specificity of this new system, which was explicitly evaluative rather than descriptive, may have directly conflicted with the hands-off approach of SuperLeadership. One interviewee, for example, commented that, in practice, the performance appraisal system requires managers to "know everything about what people [who report to them] are doing. I had to micro-manage because I knew I would be quizzed." Another said,

I think the metrics override the fact that I'd really like to empower this person to do whatever he can to help us meet our strategic plans. I think we are going overboard on metrics and that creates conformity. And SuperLeadership is more rebeloriented.

Perhaps more importantly, the unfortunate timing of new performance appraisal system--introduced shortly before major RIFs in the host organization--may only have heightened existing tensions and reinforced natural tendencies towards individual self-protection. The

comments of one interviewee suggested that the new system may have been broadly perceived as threatening, particularly in the present climate of the firm:

One of the problems with the [new performance appraisal system] is that they call it a coaching tool. But the fact is that people are having numbers assigned to them. And they know it. And when the next RIF comes, the people at the bottom are going to go.

The new, metric-oriented performance appraisal system emerged relatively late in the project as yet another wild-card. Although its effects on training transfer are unclear, scattered trainee comments suggest that the new system may have combined with existing stress in the host organization to further inhibit implementation of SuperLeadership.

Summary

Trainees reported that their ability to implement the training was hampered by the difficult business conditions facing the host organization. Crisis facing the host clearly had a distracting effect on the trainees and their direct-reports. As even the trainees observed, organizational stress may have been a strong inhibitor of training transfer. Given the conditions that emerged during the research, it is questionable whether any isolated training intervention could have produced measurable change at this time in the firm's history.

An Application of Generalizability Analysis

Alone or in concert, the problems discussed above may have contributed to the lack of apparent behavioral change. A relatively recent statistical technique, generalizability analysis, was applied to estimate the cumulative effect of some of these problems on an issue that is central to the present experiment's ability to detect behavioral change: reliability of measurement (Cardinet, Tourneur, & Allal, 1976; Crocker & Algina, 1986). Before discussion turns to generalizability analysis, first recall that the factor clarity of the questionnaires supported their construct validity. In addition, high coefficient alphas--often reaching into the .80s and .90s--offered strong evidence of internal consistency reliability for the questionnaire variables (see Chapter IV). Furthermore, the James procedure suggested within-unit agreement among subordinates.

Alpha analysis indicated that the behavioral questionnaires, considered alone, reliably measured the behavioral constructs they were designed to capture. However, it is also the case that factors with the experiment besides the questionnaires could have adversely affected the reliability with which behavior was actually

measured in the field. Some of these problems, discussed above, will be revisited in a moment. For now, note that there is an important distinction between the reliability of the <u>questionnaires</u>, the focus of alpha analysis in Chapter IV, and the reliability of <u>measurement</u> in the field--the reliability of the questionnaires in actual use. In turn, the reliability of measurement (reflecting the reliability of the questionnaires and other factors discussed below) has implications for the extent to which a training effect could have been detected.

Alpha analysis conducted in Chapter IV was important for providing a touchstone estimate of the upper-limit to measurement reliability set by the questionnaires themselves: measurement could not have been more reliable in the present experiment than the reliability of the questionnaires per se. Generalizability analysis, however, extends beyond the core reliability of the <u>questionnaires</u> to consider the broader question of reliability of <u>measurement</u>. Like coefficient alpha, the reliability (G) coefficient produced by generalizability analysis takes account of the reliability of the questionnaires. However, <u>G</u> also reflects factors in addition to the questionnaires that could have adversely affected the reliability of measurement such as sample size and homogeneity. In the present application of

generalizability analysis, <u>G</u> can be interpreted as an estimate of measurement reliability at the participantdefined unit level in the field. As a description of reliability, <u>G</u> reflects the extent to which <u>variance in</u> <u>behavior ratings</u> by subordinates across the participantdefined work groups captured <u>true variance in behavior</u> across the units. <u>G</u>, which has an upper limit of one, is interpreted like any other reliability index.

Generalizability analysis, an extension of analysis of variance (ANOVA), was performed on the aggregated time 1 LSQII-sub (including <u>effectiveness</u>), SLQ, and CBQ data to estimate the reliability with which leadership, self-leadership, and citizenship behaviors were actually measured in the field. Table 6-1 presents <u>G</u> coefficients for each behavior dimension along with key components for the generalizability analysis (to be discussed below).

To compute the <u>G</u> coefficients, separate one-way ANOVAs were first computed for time 1 subordinate responses in each dimension on the questionnaires. Each ANOVA included all participant-defined work units in the training and comparison conditions. The resulting ANOVAs, one for each behavioral dimension, were a completely randomized (CR) design. In this design, subordinate ratings for each dimension were the dependent variables for each ANOVA, participant i.d. was the blocking factor,

Table 6-1

Time 1 Generalizability Coefficients for Aggregated

Dimensions

	(1)		(2)		(3)	(4)	(5)
Cluster Dimension	TRU	(df)	ERR	(df)	n per unit	<u>6</u>	Explained Variance
1. Leadership Strategies Questio	nnaire, Sul	pordina	te Repor	rt (LSO	-sub)		
Strongman							
Aversive Behavior	. 1644	(71)	.5022	(319)	5.4306	.6400	.4096
Assigned Goals	.0237			(319)	5.4306	.1877	.0352
Instruction and Command	.0729			(319)	5.4306	.4698	.2207
Transactor		(11)		10			
Participative Goals	.0601	(71)	5183	(319)	5.4306	.3866	-1494
Contingent Material Reward	.0710			(318)	5.4167	.3271	.1070
Contingent Personal Reward	.0618			(319)	5.4306	.3096	
Contingent Reprimand	.0722			(319)	5.4306	.4608	.2123
Visionary Hero	.0/22	(11)	.4271	(3177			
Challenge to Status Quo	.2369	(71)	6051	(319)	5.4306	.6801	.4626
Vision	.0571			(319)	5.4306	.3258	.1061
Idealism	.1003			(318)	5.4167	.5077	.2578
Stimulation and Inspiration	.0722			(319)	5.4306	.3554	.1263
SuperLeader	.0122	(III)	.7100	(31))			2 June 1
Self-Reward	.0062	(71)	11.71	(319)	5.4306	.0708	,0050
Teamwork	.0026			(316)	5.3889	.0250	
Independent Action	.0314			(318)	5.4167	.2471	
Opportunity Thought	.0690			(319)	5.4306	.4348	.1891
Mean <u>G</u> = .36							
II. Self-Leadership Questionnair	e, Subordir	ate Re	port (Si	Q)			
Self-Leadership							
Independent Action	.0567	1711	2171	(318)	5.4167	.5857	.3430
Efficacy	.0195				5.4167	.3422	
Teamwork	.0230			(318)	5.3611	.2273	
Self-Reward	.0314			(314)	5.4167	.2177	
Self-Goal Setting				(318)	5.4167	.3741	
Natural Reward	.0396			(318)	5.4167	.0000	
Opportunity Thought				(318)		.0000	.0000
Self-Observation	.0000			(318)	5.4167		
	.0065	(11)	.3042	(315)	5.3750	.1032	.0106
Mean <u>G</u> = .23							

(table continues)

Cluster	(1)	(2)	(3)	(4)	(5)
Dimension	TRU _{MS} (df)	ERR _{ms} (df	n per) unit	Ģ	Explained Variance
111. Citizenship Behavior Qu Drganizational Citizenship Beh Interpersonal Support	estionnaire, Subordi	nate Report ((982)		
Interpersonal Support	avior				
int. T	.0176 (71)	.4013 (305)	5.2361	.1872	.0530
ivic Virtue (News)	.0164 (71)	.4133 (305)		.1719	.0296
of a state ive Robert	.0026 (71)	.4530 (305)		.0296	.0009
raining	.0374 (71)	.3798 (301)	5.1806	.3381	.1143
<u>G</u> = .19	.0282 (71)	.5295 (301)	5.1806	.2161	.0467
Effectiveness, Subordinate					
Nee Effectiveness	leport				
- c)rectiveness		6981 (318)	5.4167	5494 .	5019

and the within-unit mean square (ERR_{me}, Table 6-1, Column 2) was treated as error. (See Kirk, 1982, p. 141 for sample CR ANOVA table with expected mean squares for between- and within-block components.) The true (betweenunit) variance for each dimension (TRU_{ms}, Table 6-1, Column 1) was derived by removing error variance (ERR_{ms}) from the between-unit expected mean squares. <u>G</u> was then computed using the reliability formula below. This formula is based on classical test theory, which defines reliability as the ratio of true variance to observed variance (Cardinet et al., 1976):

TRUms

<u>G</u> = ------

 $TRU_{ms} + (ERR_{ms}/n)$

In the above equation, $\underline{\text{TRU}}_{max}$ (Table 6-1, Column 1) is between-unit variance for each dimension after error variance has been removed; $\underline{\text{ERR}}_{max}$ (Table 6-1, Column 2) is within-unit variance for each dimension; <u>n</u> is the average number of subordinates per unit providing data on each dimension (Table 6-1, Column 3). The resulting reliability (<u>G</u>) coefficients for each behavioral dimension are presented in Column 4 of the table.

Coefficient alpha considers <u>only</u> the internal consistency reliability of responses on each questionnaire. In addition to the reliability of the

questionnaires, however, the dimension reliabilities (\underline{G}) in Column 4 include other factors affecting the reliability of measurement in the field such as sample size and homogeneity (through the ERR_{ms}/n component). Note that these dimension reliabilities range from a high of .68 to a low of 0. In general, the <u>G</u> reliabilities are rather low: for the LSQII-sub, the average reliability reported in Table 6-1 is .36; for the SLQ, the average is .23; for the CBQ, the average is .19; the reliability for the participant effectiveness dimension (administered as part of the LSQII-sub) is .55. Note also that in the present experiment, finding statistically significant change hinged on detecting between-unit differences related to participation in the training. The results presented in Table 6-1 suggest that measurement in this experiment may have been insufficiently reliable to capture all but large training effects.

The above reliability equation shows that reliability and, ultimately, the ability of the measures to detect a training effect, will increase as between-unit variance increases and/or within-unit (error) variance decreases. The rest of this section will revisit some of the factors discussed earlier in this chapter that may have suppressed the reliability of measurement in the present experiment.

Restricted TRU_m, as a Contributor to Unreliable Measurement

The numerator of the above reliability equation shows that restricted variance between units, that is, restricted <u>TRU</u>_{ms}, would have the effect of suppressing the reliability of measurement. George (1990) has argued that restricted between-unit variance can occur when research is conducted within a single organization, where acculturation effects are particularly strong. To extend the discussion earlier in this chapter, acculturation effects in the host organization may have restricted <u>TRU</u>mm and, consequently, reduced reliability of measurement. In addition, it seems plausible that concerns about reductions-in-force at the time of the experiment may have had a dampening effect on the variability of behavior between groups, on the responses of subordinates to the questionnaires, or both.

Inflated ERR_{ma}/n as a Contributor to Unreliable Measurement

As shown in Table 6-1, an average of about five subordinates reported to each participant at time 1. Time-based attrition effects reduced this even further for tests of the propositions. As shown in the denominator of the reliability formula above, a larger within-unit sample size would have increased the reliability of measurement by reducing within-unit error variance (<u>ERR</u>,/n). Greater numbers of reporting subordinates, then, would have tended to average out within-unit differences in perception. Had larger units been available, reliabilities would have increased. For purposes of proposition testing, error inflation due to small within-unit sample size might have been compounded by within-unit individual differences in responding to the questionnaires resulting from subordinate desire for self-leadership.

Summary

Generalizability analysis reveals relatively low measurement reliabilities for the behavior dimensions considered in the present experiment. The measurement unreliability suggested by generalizability analysis, which was only possible to conduct once the research was well underway, is a direct explanation for the lack of apparent behavioral change. The most parsimonious explanation for unreliable measurement, in turn, is probably homogeneity within the host organization and within-unit sample size. The generalizability study suggests that a strong training effect might have been necessary to produce statistically significant evidence of behavioral change. Additional research and climaterelated problems, possibly including the time lag, the content relevance of the questionnaires to the training,

the climate for transfer, and perhaps other factors, might have compounded the challenge of detecting behavioral change.

Conclusions and Directions for Future Research

This research demonstrates all that can go right--and wrong--with field experimentation. On the positive side, participants in the training and research were uniformly receptive, facilitative, supportive, and enthusiastic. The host organization permitted a great deal of intrusion by the research team. Furthermore, human resources personal offered critical support services throughout the study: at every turn, they responded rapidly and effectively to requests for logistical support. The size of the host, combined with the host's genuine interest in SuperLeadership and the research enterprise generally, produced an environment that was ideal in many ways. Unfortunately, conditions in the organization worsened dramatically during the experiment. Frankly, the research team was saddened by the effects of staff reductions on personnel throughout the organization, many of whom had become friends by the end of the project.

The broad lack of behavioral change reported in this experiment probably resulted from a combination of many factors, some of which were discussed in this chapter. The turbulent environment was certainly a critical,

unanticipated limiting condition that alone might explain the results. Aspects of the research and training may also have contributed to overall non-significance.

Despite the findings of this research, SuperLeadership (Manz & Sims, 1989, 1990, 1991) still holds promise as a technique to encourage proactive, responsible employee autonomy that will be critical for corporate competitiveness in the global marketplace. The promise of SuperLeadership stems from two key strengths. First, it incorporates a range of leadership and selfmanagement strategies whose efficacy has been empirically demonstrated in past research. Second, as developed by Manz and Sims, SuperLeadership is pragmatic, prescriptive, and behaviorally specific: it includes specific behaviors with potential for broad application by managers in a range of settings.

The ambiguous results from the present experiment suggest several avenues for future research. An obvious starting point is replication: The present experiment might be repeated in a more stable organization. SuperLeadership fundamentally changes traditional relationships between managers and employees. As a consequence, the transition to employee self-leadership is itself likely to be somewhat stressful and, to many firstline supervisors and middle-managers, perhaps even

threatening. A foundation of relative stability would greatly enhance the ability of all organizational members to negotiate this difficult transition.

Future research might also adopt a qualitative strategy to induce a more comprehensive taxonomy of SuperLeader behaviors from the perspective of leaders and followers. A cross-sectional or longitudinal correlational approach might build on past research (e.g., Manz & Sims, 1987) by exploring the efficacy of different leader behaviors for promoting employee self-leadership. Future training-based experimental interventions might include modifications based on insights gained from this and other preliminary investigations. For example, behavioral measures might be modified to reflect a more elaborated SuperLeadership behavior taxonomy. Training might also be modified to take fuller advantage of SuperLeadership's behavioral specificity. Appendix 2-1

Leadership Training Curriculum

•

I. SELF-LEADERSHIP/SUPERLEADERSHIP

A. Typical Warm-Up or Introductory Exercises

1. The Leader Vision Exercise

This cognitive vision exercise is designed to explore the meaning of the word "leader" and examine some of the traditional behaviors that are expected of leaders. This exercise questions whether these traditional behaviors are the most effective for today's organizational leaders.

2. The Aircraft Carrier Captain Story

Uses the "you finish the story" technique to present a story about a mistake made by a young sailor on an aircraft carrier and how the new captain responds to the mistake. Explores the idea that leadership involves choice--we can <u>choose</u> how to behave as leaders--and that leadership is symbolic, with both direct and modelling effects.

3. The Cigarette Smoking Exercise

This exercise in one-way communication illustrates the limitations of instruction and command as a strategy for leader influence.

B. The Leadership Strategies Model

1. Leadership Challenge Case

This case describes a failing employee and asks what the participant, as manager, should do. Discussion explores various scenarios about how to influence the employee and speculates about how alternative leadership strategies might lead to different results.

This case is critical for introducing a core model of four <u>leadership strategies</u>: Strongman, Transactor, Visionary Hero, and SuperLeader. The lecturette following this case explores these four leadership strategies and their related behaviors. Each strategy is vividly illustrated by short video scenarios from movie segments.

2. Assessing Your Leadership Culture

This group exercise elicits an assessment of the host organization's leadership culture based on the four leadership strategies. The appropriateness of the leadership culture is considered in the context of the market conditions facing the organization. Options are discussed for reinforcing or, if appropriate, modifying the existing leadership culture.

C. The Transactor

1. Verbal Behavior and Feedback Scenarios

This series of video scenarios illustrates positive verbal feedback and verbal reprimand that are unconnected to performance. Participants provide analysis of verbal behavior shown in the videos. Discussion follows about when and when not to provide praise and how to reprimand an employee when performance is failing. A final video combines behaviors to illustrate positive feedback and more constructive negative feedback that are directly connected to performance.

These videos can be supplemented by roleplay exercises and by a case, "Non-Compensation Rewards."

 Communicating Through Reward and Reprimand Exercise

> This group exercise vividly illustrates how verbal reward and reprimand can send specific messages that dramatically alter the behavior of followers.

3. The Listening Exercise

This short behavioral exercise illustrates the technique of active listening and allows participants to practice listening techniques. Debriefing concentrates on listening behaviors and situations when listening is especially useful and appropriate.

D. The Visionary Leader

Implementing Corporate Vision Exercise

This group exercise focuses on articulating corporate vision. Includes discussion of the components and behaviors of visionary leadership and considers the pros and cons of visionary leadership on a day-to-day basis at middle and lower levels of organizations.

This exercise is particularly useful when a corporate executive, perhaps even a CEO, is willing to meet with participants to discuss corporate mission and strategy.

E. Self-Leadership

Followership: What is it, how do you get it?

This case explores the role of followers in a highly participatory organizational system. It concentrates on the idea that followership is active, not passive, and requires that subordinates assume non-traditional roles and responsibilities. This case is used to introduce the idea of <u>self-</u> <u>leadership</u>, the core of a SuperLeadership system. Both behavioral and cognitive self-leadership strategies are introduced.

F. SuperLeadership: Leading Others to Lead Themselves

Video Case: Working Smarter, Not Harder

This true case illustrates how an executive uses SuperLeadership to bring out self-leadership in direct-report employees based on the "MacGregor" character used in Manz and Sims's book, <u>SuperLeadership: Leading Others to Lead Themselves</u>.

II. TEAMS AND TEAMWORK

A. Group Decision Making

Winter Survival Exercise

This decision making exercise explores conditions in which group decisions may be preferable to individual decision making.

B. Leading Group Decision Making

The New Truck Exercise

This group decision making role-play exercise is designed to explore different methods of leading groups to make a decision. It concentrates on some of the frustrations and challenges of trying to achieve consensus within a group and explores when group decisions may be preferable to individual decision making.

C. Conflict Between Groups

The Prisoner Dilemma Exercise

This interactive sequential decision making exercise is designed to illustrate natural conflict between groups and difficulties of defining when to compete versus when to cooperate. A brief "nickel auction" exercise follows.

E. Teamwork

Teamwork Assessment Exercise

This group exercise elicits discussion about the different kinds of teams that are present in the host organization. Discussion centers on the advantages and disadvantages of existing team applications and generates recommendations for improved teamwork.

F. Self-Managing Teams

The Greenfield Case

This true case explores how much responsibility management of a startup operation will decide to invest in employee work groups. This case is especially useful for examining how much confidence and trust management assumes about employees. The case debriefing offers an inside look at real selfmanaging teams in action.

III. FOLLOW-UP DIAGNOSIS

Semi-structured meetings of participants about once every four weeks will be used to discuss difficulties and successes of implementing ideas from the training. These meetings may use role-play to work through challenging situations. Appendix 4-1

Leadership Strategies Questionnaire II Items with Origins (Subordinate Report,

LSQII-sub)

Strongman

Instruction and Command

- 001. He/she gives me instructions about how to do my job.'
- 024. He/she provides commands in regard to my job.
- 045. When it comes to my work, he/she gives me instructions on how to carry it out.
- 065. He/she gives me orders about my work.1

Non-Contingent Reprimand

- 007. He/she is often displeased with my work for no apparent reason.
- 030. I frequently am reprimanded by him/her without knowing why.
- 051. He/she is often critical of my work, even when I perform well.

Intimidation

- 014. He/she can be quite intimidating.2
- 036. I feel intimidated by his/her behavior.2
- 057. He/she tries to influence me through threat and intimidation.
- 076. He/she behaves in a threatening manner.2

Assigned Goals

- 019. He/she establishes my goals for me.1
- 041. He/she establishes the goals for my work.2
- 081. He/she establishes my performance goals.^{1/2}
- 090. He/she sets the goals for my performance.1/2

Transactor

Contingent Material Reward

- 003. He/she will recommend that I am compensated well if I perform well. 1/2
- 026. He/she will recommend that I am compensated more if I perform well. 1/2
- 047. His/her recommendations regarding my compensation depend on my performance.
- 067. If I perform well, he/she will recommend more compensation.

Contingent Personal Reward

- 010. He/she gives me special recognition when my work performance is especially good.
- 032. He/she commends me when I do a better-than-average job.
- 053. He/she gives me positive feedback when I perform well.
- 072. When I do a job well, he/she tells me about it.2

Contingent Reprimand

- 015. He/she lets me know about it when I perform poorly.
- 037. He/she reprimands me if my work is below standard.
- 058. When my work is not up to par, he/she points it out to me.
- 077. He/she reprimands me when my performance is not up to par.

Interactive Goals

- 021. He/she, works with me to develop my performance goals.
- 043. He/she and I sit down together and reach agreement on my performance goals.

- 083. He/she and I reach a mutual understanding regarding the goals for my work.
- 091. He/she and I work together to decide what my performance goals should be.

Visionary Hero

Vision

- 005. He/she provides his/her vision of our organization to me.
- 029. He/she provides a clear vision of where we are going.
- 049. He/she provides a clear vision of who and what we are.
- 069. Because of him/her, I have a clear vision of our organization.

Stimulation and Inspiration

- 012. Because of him/her, I do more than I expected I could do.
- 034. He/she inspires me to get a lot more done than I could have if he/she were not around.
- 055. He/she heightens my motivation to succeed.1
- 074. He/she inspires me to strive for achievements I would not normally pursue.

Idealism

- 017. He/she has a strong conviction in his/her own beliefs and ideals.
- 039. He/she is driven by higher purposes or ideals.4
- 060. He/she strives towards higher purposes or ideals.4
- 079. He/she has a strong personal dedication to higher purposes or ideals.

Challenge to the Status Quo

- 022. He/she challenges established ways of doing things."
- 008. He/she is a non-traditional type who "shakes up the system" when necessary.
- 044. He/she is a non-traditional type who "shakes up the system" when necessary. (duplicate)
- 064. He/she isn't afraid to "buck the system" if he/she thinks it is necessary.
- 085. He/she is not afraid to "break the mold" to find different ways of doing things.
- 093. He/she isn't bound by tradition when it comes to getting things done.

SuperLeader

Encourages Self-Goal Setting

- 002. He/she urges me to define the goals myself.
- 025. He/she actively encourages me to set goals for myself.
- 046. He/she advises me to set goals for my own performance.
- 066. He/she encourages me to define goals for myself.6

Encourages Self-Observation and Evaluation

- 009. He/she encourages me to judge how well I am performing.
- 031. He/she urges me to know how my performance stands.¹
- 052. He/she advises me to keep track of how well I'm doing while I work.
- 071. He/she encourages me to keep track of my progress on tasks I'm working on.

Encourages Self-Reward

- 020. He/she urges me to reward myself with something I like when I have successfully completed a major task.^{3/7}
- 027. He/she encourages me to treat myself to, something I enjoy when I do a task especially well.
- 042. He/she encourages me to give myself a pat on the back when I meet a new challenge.
- 062. He/she urges me to reward myself for doing a good job.
- 082. He/she advises me to feel good about myself when I perform well.

Encourages Finding Natural Rewards

- 004. He/she urges me to seek out activities in my work that I enjoy doing.
- 028. He/she advises me to find my own favorite ways to get work done.
- 048. He/she encourages me to take time to do work tasks that I like to do.
- 068. He/she encourages me to do my work in ways that I enjoy rather than just trying to get it over with.
- 086. He/she urges me to do tasks at work that make me feel good about myself.

Encourages Opportunity Thought

- 011. He/she advises me to look for the opportunities contained in problems I face.
- 033. He/she encourages me to view unsuccessful performance as a chance to learn.
- 054. He/she urges me to think of problems, at work as opportunities rather than obstacles.
- 063. He/she encourages me to think, about eventual success rather than possible failure.

073. He/she advises me to think about how challenges at work can be met, rather than why they cannot.

Encourages Efficacy Expectations

- 016. He/she encourages me to think I can do very well in my work.
- 038. He/she urges me to think I am capable of high performance.
- 059. He/she encourages me to have confidence in my ability to meet challenges at work.
- 078. He/she advises me to expect that I will perform well.
- 095. He/she assures me that I am capable of overcoming almost any obstacle at work.

Encourages Self-Problem Solving

- 006. He/she encourages me to solve my own problems without being dependent on solutions from above.
- 070. He/she encourages me to find solutions to my problems at work without his/her direct input.
- 087. He/she advises me to solve problems when they pop, up without always getting his/her stamp of approval.
- 096. He/she encourages me to search for solutions to my problems on the job without his/her supervision.

Encourages Initiative

- 013. He/she encourages me to take initiatives on my own.2
- 023. He/she encourages me to think of new ways of doing things on my own initiative.
- 035. He/she provides the opportunity for me to take initiative on my own.
- 056. He/she provides the opportunity for me to take on new responsibilities.
- 075. He/she urges me to assume responsibilities on my own.

088. He/she advises me to make improvements in how I do my work on my own initiative without being told to do so.

Encourages Teamwork

- 018. He/she wants teamwork between me and other , managers/supervisors who report to him/her.
- 040. He/she advises me to coordinate my efforts with other managers/supervisors who report to him/her.
- 050. He/she advises me to work together with other managers/supervisors who report to him/her as a team.
- 061. He/she encourages me to work together with other managers/supervisors who report to him/her.
- 092. He/she urges me to work as a team with other managers/supervisors who report to him/her.

Effectiveness

- 080. His/her performance is very high.
- 084. He/she is very effective."
- 089. He/she performs very well.8
- 094. His/her overall effectiveness is excellent.8

Note. Superscripts refer to the "Key to Item Origins" on the following page.

Key	to	Item	Origins
	for	the	LSQII

Dimension Name	Code	Origin	Origin Dimension Name	Alpha/n
Strongman				
Instruction and Command	1	Selvaggi et al. (1992)	Instruction and Commend	.91/
Non-Contingent Reprimand	1	Selvaggi et al. (1992)	Non-Contingent Reprimand	.83/
Intimidation	2	Ball et al. (1991)	Intimidation	.86/72
Assigned Goals	1	Selvaggi et al. (1992)	Assigned Goals	.89/
	2	Ball et al. (1991)	Provides Goals	.89/72
Transactor				
Contingent Material Reward	1	Selvaggi et al. (1992)	Contingent Material Reward	.86/
	2	Ball et al. (1991)	Contingent Positive Material Reward	. 68/77
Contingent Personal Reward	1	Selvaggi et al. (1992)	Contingent Personal Reward	.82/
	2	Ball et al. (1991)	Contingent Positive Personal Reward	.91/72
Contingent Reprimand	1	Selvaggi et al. (1992)	Contingent Reprimand	.79/
Interactive Goals	7	Present Study		
Visionary Hero				
Vision	1	Selvaggi et al. (1992)	Vision	.95/
· · · · · · · · ·	2	Ball et al. (1991)	Provides Vision	.91/72
	6	Nanz/Sims Working Paper		
Stimulation and Inspiration	1	Selvaggi et al. (1992)	Stimulation and Inspiration	.95/
	2	Ball et al. (1991)	Inspiration	.79/72
Idealism	4	Sims' Personal Notes		
Challenge to the Status Quo	7	Present Study		

(continues)

Dimension Name	Code	Origin	Origin Dimension Name	Alpha/r
SuperLeader				
Encourages Self-Goal Setting	1	Selvaggi et al. (1991)	Self-Goal Setting	.80/
	6	Manz/Sims Working Paper		
Encourages Self-Observation and Evaluation	1	Selvaggi et al. (1991)	Self-Evaluation and Self- Criticism	.89/
and Evaluation	7	Present Study	Criticism	
Encourages Self-Reward	3	Manz (1992)		
	6	Manz/Sims Working Paper		
	7	Present Study		
Encourages Finding Natural Rewards	6	Manz/Sims Working Paper		
	7	Present Study		
Encourages Opportunity Thought	6	Manz/Sims Working Paper		
	7	Present Study		
Encourages Efficacy Expecta- tions	2	Ball et al. (1991)	Encourage Self-Efficacy	.82/72
	7	Present Study		
Encourages Self-Problem Solving	1	Ball et al. (1991)	Encourage Self-Problem Solving	.69/72
	6	Manz/Sims Working Paper		
	7	Present Study		
Encourages Initiative	2	Ball et al. (1991)	Encourage Initiative	.72/71
	5	Internal Draft of Self- Leadership Survey, rev. 9/20/90		
Encourages Teamwork	7	Present Study		
Effectiveness				
	8	Manz (1981); Manz & Sim	ns (1987)	

Appendix 4-2

Subordinate Questionnaire Packet

YOUR SUPERVISOR'S NAME

So that we can interpret the questionnaire for research purposes, we are providing the name of your present direct-report supervisor below. Your responses on portions of this questionnaire should be based on this supervisor only.

When the questionnaire asks you to describe your <u>supervisor</u> or your <u>colleagues who report to the same supervisor</u>, you should base your answers on the supervisor listed above.

Again, all information you provide is completely confidential. When applicable, base your answers on the supervisor listed above. If possible, please return your questionnairs in about a week using the envelope provided.

TURN THE PAGE TO BEGIN THE QUESTIONNAIRE

PART I: DESCRIBE YOUR COLLEAGUES

Statements in this section refer to other supervisors/managers at your level in your present department who also report to your supervisor. Base your answers on the supervisor listed on the previous page.

> NOTE: When answering these questions, describe other supervisors/managers in your department who also report to your supervisor. Base your answers on your average impression of these supervisors/managers as a group. For the purposes of this questionnaire, these other supervisors/managers will be referred to as your "colleaques."

Circle the number indicating how <u>true</u> or how <u>untrue</u> you believe each statement to be, on average, of <u>your colleagues</u> as a group. Answer as follows:

1 = if the statement is definitely not true of your colleagues who also report to your supervisor;
2 = if the statement is not true;
3 = if the statement is neither true nor untrue;
4 = if the statement is true;
5 = if the statement is definitely true of your colleagues who also report to your supervisor.

Please circle only one number. Try not to leave any questions blank.

1 = Definitely Not True 2 = Not True

3 = Neither True Nor Untrue

4 = True 5 = Definitely True

My colleagues work with each other as a team	•	(001)	1	2	3	4	5
My colleagues have been keeping abreast of changes in the organization	-	(002)	1	2	3	4	5
My colleagues have always been ready to lend a helping hand to those around them		(003)	1	2	3	4	5
My colleagues have been deliberately ignoring rules and regulations		(004)	1	2	3	4	5
My colleagues are mindful of how their behavior affects other people's jobs		(005)	1	2	3	4	5
My colleagues put off projects until the last minute	•	(006)	1	2	3	4	5
My colleagues believe in giving an honest day's work for an honest day's pay		(007)	1	2	3	4	5

. REMEMBER: DESCRIBE OTHER SUPERVISORS/MANAGERS IN YOUR DEPARTMENT WHO ALSO REPORT TO YOUR SUPERVISOR

1 = Definitely Not True 2 = No	tely Not True 2 = Not
--------------------------------	-----------------------

3 = Neither True Nor Untrue

True

4 = True 5 = Definitely True

Hy colleagues consume a lot of time complaining about trivial matters	(008)	1	2	з	4	5
My colleagues coordinate their efforts with each other	(009)	1	2	3	4	5
The attendance of my colleagues has been above the norm	(010)	1	2	3	4	5
My colleagues look for ways to transfer out of disliked job situations	(011)	1	2	3	4	5
My colleagues help orient new people even though it is not required	(012)	1	2	3	4	5
My colleagues try to look busy doing nothing	(013)	1	2	3	4	5
My colleagues consider the impact of their actions on co-workers	(014)	1	2	3	4	5
My colleagues attend functions that are not required, but help the company image	(015)	1	2	3	4	5
Ny colleagues focus on what's wrong, rather than the positive side	(016)	1	2	3	4	5
My colleagues get away from the job by calling in sick when they are not really sick	(017)	1	2	3	4	s
My colleagues make frequent and/or long trips to the water fountain, vending machines, or restroom to avoid work	(018)	1	2	3	4	5
My colleagues willingly help others who have work-related problems	(019)	1	2	3	4	5
My colleagues resist the influence of their supervisor	(020)	1	2	3	4	5
Hy colleagues try to avoid creating problems for co-workers	(021)	1	2	3	4	5
My colleagues let others do the work for them	(022)	1	2	3	4	5
My colleagues tend to "make mountains out of molehills"	(023)	1	2	3	4	5
My colleagues have been reading and keeping up with organization announcements, memors, etc	(024)	1	2	3	4	5
My colleagues avoid their jobs by coming in late or leaving early	(025)	1	2	3	4	5
My colleagues work together as a team	(026)	1	2	3	4	5
My colleagues find fault with what the organization is doing .	(027)	1	2	3	4	5
My colleagues take frequent or extra long breaks to avoid doing work	(028)	1	2	3	4	5
My colleagues obey company rules and regulations even when no one is watching	(029)	1	2	3	4	5
Hy colleagues talk back to their supervisor	(030)	1	2	3	4	5

REMEMBER: DESCRIDE OTHER SUPERVISORS/MANAGERS IN YOUR DEPARTMENT WHO ALSO REPORT TO YOUR SUPERVISOR

3 = Neither True Nor Untrue

4 = True 5 = Definitely True

My colleagues help others who have been absent	(031)	1	2	3	4	5
My colleagues are classic "squeaky wheels" that always need greasing	(032)	1	2	3	4	5
My colleagues take steps to try to prevent problems with other workers	(033)	1	2	3	4	5
My colleagues attend meetings that are not mandatory, but are considered important	(034)	1	2	3	4	5
My colleagues talk excessively with co-workers when they are supposed to be working	(035)					
My colleagues work together	(036)	1	2	3	4	5
My colleagues are some of the most conscientious employees in this organization	(037)	1	2	3	4	5
My colleagues help others who have heavy work loads	(038)	1	2	3	4	5

REMEMBER: DESCRIBE OTHER SUPERVISORS/MANAGERS IN YOUR DEPARTMENT WHO ALSO REPORT TO YOUR SUPERVISOR

3

•

PART II: DESCRIBE YOUR SUPERVISOR

Statements in this section refer to your present direct-report supervisor. Base your answers on the supervisor listed at the beginning of this questionnaire.

Circle the number indicating how <u>true</u> or <u>untrue</u> you believe each statement to be of <u>your supervisor</u>. Answer as follows:

1 = if the statement is definitely not true of your supervisor; 2 = if the statement is not true;

3 = if the statement is neither true nor untrue; 4 = if the statement is true; 5 = if the statement is definitely true of your supervisor.

Please circle only one number. Try not to leave any guestions blank.

2 = Not True 1 = Definitely Not True

3 = Neither True Nor Untrue

4 = True5 = Definitely True

He/she gives me instructions about how to do my job	(001)	1	2	з	4	5
He/she urges me to define the goals myself	(002)	1	2	3	4	5
He/she will recommend that I am compensated well if I perform well	(003)	1	2	з	4	5
He/she urges me to seek out activities in my work that I enjoy doing	(004)	1	2	3	4	5
He/she provides his/her vision of our organization to me	(005)	1	2	3	4	5
He/she encourages me to solve my own problems without being dependent on solutions from above	(006)	1	2	3	4	5
He/she is often displeased with my work for no apparent reason	(007)	1	2	3	4	5
He/she is a non-traditional type who "shakes up the system" when necessary	(008)	1	2	3	4	5
He/she encourages me to judge how well I am performing	(009)	1	2	3	4	5
He/she gives me special recognition when my work performance is especially good	(010)	1	2	3	4	5
Re/she advises me to look for the opportunities contained in problems I face	(011)	1	2	3	4	5
Because of him/her, I do more than I expected I could do	(012)	1	2	з	4	5
He/she encourages me to take initiatives on my own	(013)	1	2	3	4	5
He/she can be guite intimidating	(014)	1	2	3	4	5
He/she lets me know about it when I perform poorly	(015)	1	2	3	4	5
He/she encourages me to think I can do very well in my work		1	2	3	4	5

REMEMBER: DESCRIBE YOUR SUPERVISOR IN YOUR PRESENT DEPARTMENT

3 = Neither True Nor Untrue

4 = True 5 = Definitely True

He/she has a strong conviction in his/her own beliefs and ideals	(017)	1	2	3	4	5
He/she wants teamwork between me and other managers/- supervisors who report to him/her	(018)	1	2	з	4	5
He/she establishes my goals for me	(019)	1	2	3	4	5
He/she urges me to reward myself with something I like when I have successfully completed a major task	(020)	1	2	3	4	5
He/she works with me to develop my performance goals	(021)	1	2	з	4	5
He/she challenges established ways of doing things	(022)	1	2	3	4	5
He/she encourages me to think of new ways of doing things on my own initiative	(023)	1	2	з	4	5
He/she provides commands in regard to my job	(024)	1	2	з	4	5
He/she actively encourages me to set goals for myself	(025)	1	2	3	4	5
He/she will recommend that I am compensated more if I perform well	(026)	1	2	3	4	s
He/she encourages me to treat myself to something I enjoy when I do a task especially well	(027)	1	2	3	4	5
He/she advises me to find my own favorite ways to get work done	(028)	1	2	3	4	5
He/she provides a clear vision of where we are going	(029)	1	2	3	4	5
I frequently am reprimanded by him/her without knowing why	(030)	1	2	3	4	5
He/she urges me to know how my performance stands	(031)	1	2	3	4	5
He/she commends me when I do a better-than-average job	(032)	1	2	3	4	5
He/she encourages me to view unsuccessful performance as a chance to learn	(033)	1	2	3	4	5
He/she inspires me to get a lot more done than I could have if he/she were not around	(034)	1	2	3	4	5
He/she provides the opportunity for me to take initiative on my own	(035)	1	2	3	4	5
I feel intimidated by his/her behavior ,	(036)	1	2	3	4	5
He/she reprimands me if my work is below standard	(037)	1	2	3	4	5
He/she urges me to think I am capable of high performance	(038)	1	2	Э	4	5
He/she is driven by higher purposes or ideals	(039)	1	2	3	4	5
He/she advises me to coordinate my efforts with other managers/supervisors who report to him/her	(040)	1	2	3	4	s

REMEMBER: DESCRIBE YOUR SUPERVISOR IN YOUR PRESENT DEPARTMENT

5

.

.

3 = Neither True Nor Untrue

4 = True 5 = Definitely True

He/she establishes the goals for my work		(041)	1	2	3	4	5
He/she encourages me to give myself a pat on the back when I meet a new challenge		(042)	1	2	3	4	5
He/she and I sit down together and reach agreement on my performance goals		(043)	1	2	3	4	5
He/she is a non-traditional type who "shakes up the system" when necessary		(044)	1	2	3	4	5
When it comes to my work, he/she gives me instructions on how to carry it out		(045)	1	2	3	4	5
He/she advises me to set goals for my own performance	•	(046)	1	2	з	4	5
His/her recommendations regarding my compensation depend on my performance		(047)	1	2	з	4	5
He/she encourages me to take time to do work tasks that I like to do		(048)	1	2	3	4	5
He/she provides a clear vision of who and what we are	1	(049)	1	2	3	4	5
He/she advises me to work together with other managers/- supervisors who report to him/her as a team		(050)	1	2	3	4	5
He/she is often critical of my work, even when I perform well		(051)	1	2	3	4	5
He/she advises me to keep track of how well I'm doing while I work		(052)	1	2	3	4	5
He/she gives me positive feedback when I perform well		(053)	1	2	З	4	5
He/she urges me to think of problems at work as opportunities rather than obstacles		(054)	1	2	3	4	5
He/she heightens my motivation to succeed	•	(055)	1	2	3	4	5
He/she provides the opportunity for me to take on new responsibilities		(056)	1	2	3	4	5
He/she tries to influence me through threat and intimidation		(057)	1	2	3	4	5
When my work is not up to par, he/she points it out to me	•	(058)	1	2	3	4	5
He/she encourages me to have confidence in my ability to meet challenges at work		(059)	1	2	3	4	5
He/she strives towards higher purposes or ideals	•	(060)	1	2	3	4	5
He/she encourages me to work together with other managers/supervisors who report to him/her		(061)	1	2	Э	4	5
He/she urges me to reward myself for doing a good job		(052)	1	2	3	4	5
He/she encourages me to think about eventual success rather than possible failure .		(063)	1	2	3	4	5

REMEMBER: DESCRIBE YOUR SUPERVISOR IN YOUR PRESENT DEPARTMENT

3 = Neither True Nor Untrue

4 = True 5 = Definitely True

Ne/she isn't afraid to "buck the system" if he/she thinks it is necessary	(064)	1	2	3	4	5
He/she gives me orders about my work	(065)	1	2	з	4	5
Re/she encourages me to define goals for myself	(066)	1	2	3	4	5
If 1 perform well, he/she will recommend more compensation	(067)	1	2	3	4	5
Ne/she encourages me to do my work in ways that I enjoy rather than just trying to get it over with	(068)	1	2	3	4	5
Because of him/her, I have a clear vision of our organization .	(069)	1	2	3	4	5
Ke/she encourages me to find molutions to my problems at work without seeking his/her direct input	(070)	1	2	3	4	5
Re/she encourages me to keep track of my progress on tasks I'm working on	(071)	1	2	3	4	5
When I do a job well, he/she tells me about it	(072)	1	2	3	4	s
He/she advises me to think about how challenges at work can be met, rather than why they cannot	(073)	1	2	3	4	5
He/she inspires me to strive for achievements I would not normally pursue	(074)	1	2	3	4	5
He/she urges me to assume responsibilities on my own	(075)	1	2	3	4	5
He/she behaves in a threatening manner	(076)	1	2	3	4	5
Ke/she reprimands me when my performance is not up to par	(077)	1	2	3	4	5
He/she advises me to expect that I will perform well ,	(078)	1	2	3	4	5
Se/she has a strong personal dedication to higher purposes or ideals	(079)	2	2	3	4	5
Ris/her performance is very high	(080)	1	2	3	4	5
He/she establishes my performance goals	(081)	1	2	3	4	5
He/she advises me to feel good about myself when I perform well	(082)	1	2	3	4	5
He/she and I reach a mutual understanding regarding the goals for my work .	(083)	1	2	3	4	5
He/she is very effective	(084)	1	2	3	4	5
He/she is not afraid to "break the mold" to find different ways of doing things	(085)	1	2	3	4	5
He/she urges me to do tasks at work that make me feel good about myself	(086)	1	2	3	4	5
He/she advises me to solve problems when they pop up without always getting his/her stamp of approval	(087)	1	2	3	4	5

REMEMBER: DESCRIBE YOUR SUPERVISOR IN YOUR PRESENT DEPARTMENT

7

•

3 = Neither True Nor Untrue

4 = True 5 = Definitely True

He/she my own	advises me to make improvements in how I do my work on initiative without being told to do so		(088)	1	2	3	4	5
He/she	performs very well		(089)	1	2	3	4	5
He/ahe	sets the goals for my performance		(090)	1	2	3	4	5
He/she should	and I work together to decide what my performance goal be	s .	(091)	1	2	3	4	5
He/she manage	urges me to work as a team with other rs/supervisors who report to him/her		(092)	1	2	3	4	5
He/she things	isn't bound by tradition when it comes to getting done		(093)	1	2	3	4	5
His/he	r overall effectiveness is excellent		(094)	1	2	3	4	5
He/she obstac	assures me that I am capable of overcoming almost any le at work		(095)	1	2	3	4	5
He/she job wi	urges me to search for solutions to my problems on the thout his/her supervision		(096)	1	2	3	4	5

REMEMBER: DESCRIBE YOUR SUPERVISOR IN YOUR PRESENT DEPARTMENT

PART III: DESCRIBE YOURSELF

<u>Statements in this section of the questionnaire refer to yourself</u>. Circle the number indicating how <u>true</u> or <u>untrue</u> you believe each statement to be of <u>you</u>. Answer as follows:

1 = if the statement is definitely not true of you;
2 = if the statement is not true;
3 = if the statement is neither true nor untrue;
4 = if the statement is true;
5 = if the statement is definitely true of you.

Please circle only one number. Try not to leave any guestions blank.

1 = Definitely Not True 2 = Not True 3 = Neither True Nor Untrue

- - ----

4 = True 5 = Definitely True

I define the goals myself	01)	1	2	3	4	5
I judge how well I am performing	002)	1	2	3	4	5
I reward myself with something I like when I have successfully	003)	1	2	3	4	5
I seek out activities in my work that I enjoy doing (C	004)	1	2	3	4	5
I work together with other managers/supervisors who report to my supervisor as a team	005)	1	2	3	4	5
I look for the opportunities contained in problems I face (C	006)	1	2	3	4	5
I think I can do very well in my work	007)	1	2	3	4	5
I solve my own problems without being dependent on solutions from above	(800	1	2	3	4	5
I take initiatives on my own	(900	1	2	3	4	5
I set goals for myself (0	010)	1	2	3	4	5
I know how my performance stands	011)	1	2	3	4	5
I give myself a pat on the back when I meet a new challenge (012)	1	2	3	4	5
I think of new ways of doing things on my own initiative (013)	1	2	3	4	5
I find my own favorite ways to get work done	014)	1	2	3	4	5
I view unsuccessful performance as a chance to learn (015)	1	2	3	4	5
I think I am capable of high performance	016)	1	2	з	4	5
I use opportunities to take initiative on my own	017)	1	2	3	4	5
I coordinate my efforts with other managers/supervisors	018)	1	2	3	4	5
	019)	1	2	3	4	5

REMEMBER: DESCRIBE YOURSELF

3 = Neither True Nor Untrue

4 = True 5 =

5 = Definitely True

I try to keep track of how well I'm doing while I work		(020)	1	2	3	4	5	
I reward myself for doing a good job	•	(021)	1	2	3	4	5	
I take time to do work tasks that I like to do		(022)	1	2	3	4	5	
I think of problems at work as opportunities rather than obstacles		(023)	1	2	3	4	5	
I expect that I will perform well		(024)	1	2	3	4	5	
		(025)	1	2	3	4	5	
I work together with other managers/supervisors who report to my supervisor		(026)	1	2	3	4	5	
		(027)	1	2	3	4	5	
		(028)	2	2	3	4	5	
		(029)	1	2	3	4	5	
I solve problems when they pop up without always getting my supervisor's stamp of approval		(030)	1	2	3	4	s	
		(031)	1	2	3		5	
I think about how challenges at work can be met, rather than why they cannot		(032)	1	2	3	4	5	
I have confidence in my ability to meet challenges at work .		(033)	1	2	3	4	5	
I find solutions to my problems at work without seeking my supervisor's direct input	•	(034)	1	2	3	4	5	
I assume responsibilities on my own		(035)	1	2	3	4	5	
I treat myself to something I enjoy when I do a task especially well		(036)	1	2	э	4	5	
I do tasks at work that make me feel good about myself		(037)	X	2	Э	4	5	
I think about eventual success rather than possible failure .		(038)	1	2	3	4	5	
I am sure that I am capable of overcoming almost any obstacle at work		(039)	1	2	3	4	5	
I search for solutions to my problems on the job without supervision	•	(040)	1	2	3	4	5	
I make improvements in how I do my work on my own initiative without being told to do so	•	(041)	1	2	3	4	5	
I work as a team with other managers/supervisors who report to my supervisor		(042)	1	2	3	4	5	
	I reward myself for doing a good job	<pre>obstacles</pre>	I reward myself for doing a good job	I reward myssif for doing a good job	I reward myssif for doing a good job	I reward myself for doing a good job	I reward myself for doing a good job	I try to kep induk of now well in doing while i work it it.(021) 1 2 3 4 5I reward myself for doing a good job(021) 1 2 3 4 5I take time to do work taske that I like to do(022) 1 2 3 4 5I thik of problems at work as opportunities rather than(023) 1 2 3 4 5I use opportunities to take on new responsibilities(024) 1 2 3 4 5I use opportunities to take on new responsibilities(025) 1 2 3 4 5I use opportunities to take on new responsibilities(025) 1 2 3 4 5I use opportunities to take on new responsibilities(025) 1 2 3 4 5I define goals for myself(027) 1 2 3 4 5I define goals for myself(027) 1 2 3 4 5I keep track of my progress on tasks I'm working on(028) 1 2 3 4 5I solve problems when they pop up without always getting my supervisor's stamp of approval(029) 1 2 3 4 5I think about how challenges at work can be met, rather than why they cannot(031) 1 2 3 4 5I find solutions to my problems at work without seeking my supervisor's for my ability to meet challenges at work(033) 1 2 3 4 5I assume responsibilities on my own(035) 1 2 3 4 5I think about how that make me feel good about myself(037) 1 2 3 4 5I dataks at work that make me feel good about myself(036) 1 2 3 4 5I dia solutions to my problems at work can be met, rather than why they cannot(036) 1 2 3 4 5I think about eventual success rather than possible failure(036) 1 2 3 4 5I dataks at work that make me feel good about myself(037) 1 2 3 4 5I think about eventual success rather than possible failure<

REMEMBER: DESCRIBE YOURSELF

10

3 = Neither True Nor Untrue

4 = True 5 = Definitely True

NOTE: When responding to the following items, imagine your ideal job and describe yourself in this ideal work setting using the same 5-point response scale as above.

"In my ideal job. . ."

.

I would collaborate with other amployees at my level to accomplish tasks without involving my supervisor		(043)	1	2	з	4	5
I would find solutions to my problems at work without consulting my supervisor		(044)	1	2	3	4	5
I would seek guidance from my supervisor about the appropriate standards for performance		(045)	1	2	3	4	5
I would check my ideas about improved ways of doing things with my supervisor before I implement improvements	•	(046)	1	2	3	4	5
I would involve my supervisor as a link for communication and coordination between me and other employees at my level	•	(047)	1	2	3	4	5
I would confer with my supervisor before making decisions on how to solve problems		(048)	1	2	3	4	5
I would define goals for myself without my supervisor's intervention		(049)	1	2	3	4	5
I would make decisions on my own initiative without involving my supervisor .		(050)	1	2	3	4	5

REMEMBER: DESCRIBE YOURSELF

11

.

PART IV: YOUR JOB SATISFACTION

Statements in this section of the guestionnaire relate specifically to how satisfied you are with several aspects of your job. Circle the number indicating how satisfied or dissatisfied you are with each aspect of your job listed below. Answer as follows:

1 = if you are very dissatisfied with this aspect of your job; 2 = if you are slightly dissatisfied; 3 = if you are neutral about this aspect of your job; 4 = if you are slightly satisfied; 5 = if you are very satisfied with this aspect of your job.

Please circle only one number. Try not to leave any questions blank.

1 = Very Dissatisfied 2 = 5lightly Dissatisfied

3 = Neutral

4 = 6lightly Satisfied 5 = Very Satisfied

	_								
Hy job as a whole	•	•	(001)	1	2	3	4	5	
The amount of personal growth and development I get in doing my job			(002)	1	2	3	4	5	
The amount of pay and fringe benefits I receive			(003)	1	2	з	4	5	
The amount of job security I have			(004)	1	2	3	4	5	
The people I talk to and work with on my job			(005)	1	2	3	4	5	
The degree of respect and fair treatment I receive from my supervisor			(006)	1	2	3	4	5	
Ny overall job	-		(007)	1	2	з	4	5	
The feeling of worthwhile accomplishment I get from doing my job			(008)	1	2	د	4	5	
The degree to which I am fairly paid for what I contribute to this organization			(009)	1	2	з	4	5	
How secure things look for me in the future in this organization			(010)	1	2	з	4	5	
The chance to get to know other people while on the job		-	(011)	1	2	Э	4	5	
The overall quality of the supervision I receive in my work			(012)	1	2	3	4	5	
My job in general			(013)	1	2	Э	4	5	
The amount of challenge in my job			(014)	1	2	3	4	5	
The chance to help other people while at work			(015)	1	2	3	4	5	

REMEMBER: DESCRIBE YOUR JOB SATISFACTION

12

.

PART V: BACKGROUND INFORMATION

This section will be used to produce a general description of the participants in this research. Like all of your responses today, your responses to these questions are entirely confidential.

These questions can be answered quickly and will be helpful to the research for general descriptive purposes. We would appreciate it if you could take a moment to answer them. However, if you would prefer not to answer these questions, you may skip them.

001. What is your age to the nearest year?

years

....

002. What is your gender?

(1)	 male
(2)	 female

003. What is your highest (present) level of formal education?

	(1)	grammar school
	(2)	some high school
	(3)	high school graduate or equivalent
	(4)	some college, craft, or technical training
	(5)	graduated from 2-year college (associate degree or equivalent)
	(6)	graduated from 4-year college (bachelor's degree)
	(7)	some post-college training
	(8)	master's degree or post-college professional degree Ph.D.
004.	How long	have you worked for Westinghouse to the nearest year?

years

005. How long have you reported to your present supervisor (as listed on your data sheet, corrected if necessary)?

2)	at least 3 months but less than 6 months
	at least 6 months but less than 1 year
4)	at least 1 year but less than 2 years
5)	at least 2 years but less than 5 years
6)	at least 5 years but less than 10 years

PLEASE TURN TO THE NEXT PAGE FOR AN IMPORTANT NOTE

A FINAL WORD

Thank you very much for completing this follow-up questionnaire. Please return your questionnaire to the sealed drop box in the envelope provided.

Note that a code number appears at the bottom of this page. This code number has been assigned to you by the research team at the University of Maryland. For research purposes, it is important that we know this code number so that your responses on the follow-up questionnaire can be matched to your responses today for statistical analysis.

Some participants may not be comfortable identifying themselves even for research purposes in coded form. If you feel this way, you can remove this page and return the questionnaire without your code number. However, we would appreciate it if you would leave this code number on the questionnaire.

If you decide to leave this page, please understand that your code number will be known only to researchers at the University of Maryland and will be used only for matching purposes. Your code will never be revealed to **Statistic State**. Purthermore, your individual responses on this questionnaire and the follow-up questionnaire will never be seen by **Chaire and the** follow-up than researchers at the University of Maryland.

We appreciate your assistance. Again, thank you.

(code number)

14

Appendix 4-3 Leadership Strategies Questionnaire II Items with Origins (Participant Self-Report, LSQII-train)

Strongman

Instruction and Command

- 001. I give my subordinates instructions about how to do their jobs.
- 024. I provide commands in regard to my subordinates' jobs.
- 045. When it comes to their work, I give my subordinates instructions on how to carry it out.
- 065. I give my subordinates orders about their work.¹

Non-Contingent Reprimand

- 007. I am often displeased with the work of my subordinates for reasons that are not apparent to them.
- 030. I frequently reprimand my subordinates for reasons that are not clear to them.
- 051. I am often critical of my subordinates' work, even when they perform well.

Intimidation

- 014. I can be quite intimidating.²
- 036. I behave in ways that make my subordinates feel intimidated.
- 057. I try to influence my subordinates through threat and intimidation.
- 076. I behave in a threatening manner.²

Assigned Goals

- 019. I establish my subordinates' goals for them.¹
- 041. I establish the goals for my subordinates' work.²
- 081. I establish my subordinates' goals.^{1/2}
- 090. I set goals for my subordinates' performance.1/2

Transactor

Contingent Material Reward

- 003. I will recommend that my subordinates are compensated well if they perform well.
- 026. I recommend that my subordinates are compensated more if they perform well.
- 047. My recommendations regarding my subordinates' compensation depend on their performance.
- 067. If my subordinates perform well, I will recommend more compensation.

Contingent Personal Reward

- 010. I give my subordinates special recognition when their work performance is especially good.
- 032. I commend my subordinates when they do a better-thanaverage job.
- 053. I give my subordinates positive feedback when they perform well.
- 072. When my subordinates do a job well, I tell them about it.2

Contingent Reprimand

- 015. I let my subordinates know about it when they perform poorly.
- 037. I reprimand my subordinates if their work is below standard.
- 058. When my subordinates' work is not up to par, I point it out to them.
- 077. I reprimand my subordinates when their performance is not up to par.

Interactive Goals

021. I work with my subordinates to develop their performance goals.

- 043. I sit down with my subordinates and reach agreement on their performance goals.
- 083. I reach a mutual understanding with my subordinates regarding the goals for their work.
- 091. I work together with my subordinates to decide what their performance goals should be.

Visionary Hero

Vision

- 005. I provide my vision of our organization to my subordinates.
- 029. I provide a clear vision of where we are going.^{1/2}
- 049. I provide a clear vision of who and what we are.^{1/2}
- 069. Because of me, my subordinates have a clear vision of our organization.

Stimulation and Inspiration

- 012. Because of me, my subordinates do more than they expected they could do.
- 034. I inspire my subordinates to get a lot more done than they could have if I were not around.
- 055. I heighten my subordinates' motivation to succeed.¹
- 074. I inspire my subordinates to strive for achievements they would not normally pursue.

Idealism

- 017. I have a strong conviction in my own beliefs and ideals.
- 039. I am driven by higher purposes or ideals.4
- 060. I strive towards higher purposes or ideals.4
- 079. I have a strong personal dedication to higher purposes or ideals.

Challenge to the Status Quo

- 022. I challenge established ways of doing things."
- 008. I am a non-traditional type who "shakes up the system" when necessary.
- 044. I am a non-traditional type who "shakes up the system" when necessary. (duplicate)
- 064. I am not afraid to "buck the system" if I think it is necessary.
- 085. I am not afraid to "break the mold" to find different ways of doing things.
- 093. I'm not bound by tradition when it comes to getting things done.

SuperLeader

Encourages Self-Goal Setting

- 002. I urge my subordinates to define the goals themselves.
- 025. I actively encourage my subordinates to set goals for themselves.
- 046. I advise my subordinates to set goals for their own performance.
- 066. I encourage my subordinates to define goals for themselves.

Encourages Self-Observation and Evaluation

- 009. I encourage my subordinates to judge how well they are performing.
- 031. I urge my subordinates to know how their performance stands.
- 052. I advise my subordinates to keep track of how well they are doing while they work.
- 071. I encourage my subordinates to keep track of their progress on tasks they are working on.

Encourages Self-Reward

- 020. I urge my subordinates to reward themselves with something they like when they have successfully completed a major task.^{3/7}
- 027. I encourage my subordinates to treat themselves to something they enjoy when they do a task especially well.
- 042. I encourage my subordinates to give themselves a pat on the back when they meet a new challenge.
- 062. I urge my subordinates to reward themselves for doing a good job.
- 082. I advise my subordinates to feel good about themselves when they perform well.

Encourages Finding Natural Rewards

- 004. I urge my subordinates to seek out activities in their work that they enjoy doing.
- 028. I advise my subordinates to find their own favorite ways to get work done.
- 048. I encourage my subordinates to take time to do work tasks that they like to do.
- 068. I encourage my subordinates to do their work in ways that they enjoy rather than just trying to get it over with.
- 086. I urge my subordinates to do tasks at work that make them feel good about themselves.

Encourages Opportunity Thought

- 011. I advise my subordinates to look for the opportunities contained in problems they face.⁶
- 033. I encourage my subordinates to view unsuccessful performance as a chance to learn.
- 054. I urge my subordinates to think of problems at work as opportunities rather than obstacles.
- 063. I encourage my subordinates to think about eventual success rather than possible failure.

073. I advise my subordinates to think about how challenges at work can be met, rather than why they cannot.

Encourages Efficacy Expectations

- 016. I encourage my subordinates to think they can do very well in their work.
- 038. I urge my subordinates to think they are capable of high performance.²
- 078. I advise my subordinates to expect that they will perform well.
- 059. I encourage my subordinates to have confidence in their ability to meet challenges at work.
- 095. I assure my subordinates that they are capable of overcoming almost any obstacle at work.

Encourages Self-Problem Solving

- 006. I encourage my subordinates to solve their own problems without being dependent on solutions from above.
- 070. I encourage my subordinates to find solutions to their problems at work without seeking my direct input.
- 087. I advise my subordinates to solve problems when they pop up without always getting my stamp of approval.
- 096. I urge my subordinates to search for solutions to their problems on the job without my supervision.

Encourages Initiative

- 013. I encourage my subordinates to take initiatives on their own.
- 023. I encourage my subordinates to think of new ways of doing things on their own initiative.
- 035. I provide the opportunity for my subordinates to take initiative on their own.
- 056. I provide the opportunity for my subordinates to take on new responsibilities.

- 075. I urge my subordinates to assume responsibilities on their own.
- 088. I advise my subordinates to make improvements in how they do their work on their own initiative without being told to do so.

Encourages Teamwork

- 018. I want teamwork between the people who report to me.7
- 040. I advise my subordinates to coordinate their efforts with each other.
- 050. I advise my subordinates to work with each other as a team.
- 061. I encourage my subordinates to work together.7
- 092. I urge my subordinates to work as a team with each other.

Effectiveness

- 080. My performance is very high.8
- 084. I am very effective.8
- 089. I perform very well."
- 094. My overall effectiveness is excellent.8

Note. Superscripts refer to the "Key to Item Origins" at the end of Appendix 4-1.

Appendix 4-4

Participant Questionnaire Packet

<u>Statements in this section of the questionnaire refer to your subordinates</u>. Circle the number indicating how <u>true</u> or <u>untrue</u> you believe each statement to be of <u>your subordinates</u>. Answer as follows:

1 = if the statement is definitely not true of your subordinates;
2 = if the statement is not true;
3 = if the statement is neither true nor untrue;
4 = if the statement is true;
5 = if the statement is definitely true of your subordinates.

1

Please circle only one number. Try not to leave any questions blank.

2 = Not True 1 = Definitely Not True

3 = Neither True Nor Untrue

4 = True 5 = Definitely True

My subordinates are capable of collaborating with each other to accomplish tasks without involving me	(001)	1	2	3	4	5
Hy subordinates are capable of finding solutions to their problems at work without consulting me	(002)	1	2	3	4	5
My subordinates need guidance from me regarding the appropriate standards for performance	(003)	1	2	3	4	5
My subordinates need to check their ideas about improved ways of doing things with me before they implement improvements \cdot .	(004)	1	2	3	4	5
Hy subordinates need me to serve as a link for communication and to coordinate their actions	(005)	1	2	з	4	5
Hy subordinates need to confer with me before making decisions on how to solve problems	(006)	1	2	3	4	5
My subordinates are capable of defining goals for themselves without my intervention	(007)	1	2	3	4	5
My subordinates are capable of making decisions on their own initiative without involving me	(008)	1	2	3	4	5

REMEMBER: DESCRIBE YOUR SUBORDINATES

PART II: DESCRIBE YOURSELF

Statements in this section of the questionnaire refer to yourself. Circle the number indicating how true or untrue you believe each statement to be of you. Answer as follows:

1 = if the statement is definitely not true of you; 2 = if the statement is not true; 3 = if the statement is neither true nor untrue; 4 = if the statement is neither true nor untrue; 4 = if the statement is true; 5 = if the statement is definitely true of you.

Please circle only one number. Try not to leave any questions blank.

2 = Not True 1 = Definitely Not True

3 = Neither True Nor Untrue

4 = True

5 = Definitely True

I give my subordinates instructions about how to do their jobs	(001)	1	2	3	4	5
I urge my subordinates to define the goals themselves	(002)	1	2	3	4	5
I will recommend that my subordinates are compensated well if they perform well .	(003)	1	2	3	4	5
I urge my subordinates to seek out activities in their work that they enjoy doing	(004)	1	2	3	4	5
I provide my vision of our organization to my subordinates	(005)	1	2	3	4	5
I encourage my subordinates to solve their own problems without being dependent on solutions from above	(006)	1	2	3	4	5
I am often displeased with the work of my subordinates for reasons that are not apparent to them	(007)	1	2	3	4	5
I am a non-traditional type who "shakes up the system" when necessary	(008)	1	2	3	4	5
I encourage my subordinates judge how well they are performing	(009)	1	2	3	4	5
I give my subordinates special recognition when their work performance is especially good	(010)	1	2	3	4	5
I advise my subordinates to look for the opportunities contained in problems they face	(011)	1	2	3	4	5
Because of me, my subordinates do more than they expected they could do	(012)	1	2	Э	4	5
I encourage my subordinates to take initiatives on their own .	(013)	1	2	з	4	5
I can be quite intimidating	(014)	1	2	3	4	5
I let my subordinates know about it when they perform poorly .	(015)	1	2	3	4	5
I encourage my subordinates to think they can do very well in their work	(015)	1	2	3	4	5
I have a strong conviction in my own beliefs and ideals	(017)	1	2	3	4	5

REMEMBER: DESCRIBE YOURSELF

2

÷

1	=	D	ef	ini	te	ly No	t T	rue			2	=	Not	True	
				3	=	Neit	her	Tru	e	Nor	Untr	ue			
		4	=	Tr	ue			5	=	Def	inite	17	Tru	e	

ι	want teamwork between the people who report to me	•	(018)	1	2	3	4	5
r	establish my subordinates' goals for them		(019)	1	2	3	4	5
I ti	urge my subordinates to reward themselves with something may like when they have successfully completed a major task		(020)	1	2	3	4	5
r	work with my subordinates to develop their performance goals		(021)	1	2	з	4	5
I	challenge established ways of doing things		(022)	1	2	3	4	5
I	encourage my subordinates to think of new ways of doing hings on their own initiative	•	(023)	1	2	3	4	5
I	provide commands in regard to my subordinates' jobs	•	(024)	1	2	3	4	5
I	actively encourage my subordinates to set goals for hemselves		(025)	1	2	3	4	5
I	will recommend that my subordinates are compensated more they perform well		(026)	1	2	3	4	5
It	encourage my subordinates to treat themselves to something hey enjoy when they do a task especially well		(027)	1	2	3	4	5
t	advise my subordinates to find their own favorite ways o get work done		(028)	1	2	3	4	5
I	provide a clear vision of where we are going	•	(029)	1	2	з	4	5
Ia	frequently reprimand my subordinates for reasons that re not clear to them		(030)	1	2	3	4	5
	urge my subordinates to know how their performance stands .		(031)	1	2	3	4	5
Ia	commend my subordinates when they do a better-than- verage job		(032)	1	2	з		5
1 a	encourage my subordinates to view unsuccessful performance s a chance to learn		(033)	1	2	3	4	5
IC	inspire my subordinates to get a lot more done than they ould have if I were not around		(034)	1	2	3	4	5
I	provide the opportunity for my subordinates to take nitiative on their own		(035)	1	2	3	4	5
I	behave in ways that make my subordinates feel intimidated .	•	(036)	1	2	3	4	5
I	reprimand my subordinates if their work is below standard .		(037)	1	2	3	4	5
I	urge my subordinates to think they are capable of high erformance		(038)	1	2	3	4	5
1	am driven by higher purposes or ideals		(039)	1	2	3	4	5
1	advise my subordinates to coordinate their efforts with ach other		(040)	1	2	3	4	5
	establish the goals for my subordinates' work		(041)	1	2	з	4	5

REMEMBER: DESCRIBE YOURSELF

3

•

1 = Definitely Not True 2 = Not True

3 = Neither True Nor Untrue

4 = True 5 = Definitely True

I encourage my subordinates to give themselves a pat on the back when they meet a new challenge		(042)	1	2	э	4	5
I sit down with my subordinates and reach agreement on their performance goals		(043)	1	2	3	4	5
I am a non-traditional type who "shakes up the system" when necessary		(044)	1	2	3	4	5
When it comes to their work, I give my subordinates instructions on how to carry it out		(045)	1	2	э	4	5
I advise my subordinates to set goals for their own performance		(046)	1	2	3	4	5
My recommendations regarding my subordinates' compensation depend on their performance		(047)	1	2	3	4	5
I encourage my subordinates to take time to do work tasks that they like to do		(046)	1	2	э	4	5
I provide a clear vision of who and what we are		(049)	1	z	Э	4	5
I advise my subordinates to work with each other as a team .		(050)	1	2	Э	4	5
I am often critical of my subordinates' work, even when they perform well		(051)	1	2	3	4	5
I advise my subordinates to keep track of how well they are doing while they work		(052)	1	2	3	4	5
I give my subordinates positive feedback when they perform well		(053)	1	2	3	4	5
I urge my subordinates to think of problems at work as opportunities rather than obstacles		(054)	1	2	3	4	5
I heighten my subordinates' motivation to succeed	•	(055)	1	2	3	4	5
I provide the opportunity for my subordinates to take on new responsibilities		(056)	1	2	3	4	5
I try to influence my subordinates through threat and intimidation		(057)	1	2	3	4	5
When my subordinates' work is not up to par. I point it out to them		(058)	1	2	Э	4	5
I encourage my subordinates to have confidence in their ability to meet challenges at work		(059)	1	2	3	4	5
I strive towards higher purposes or ideals		(060)	1	2	3	4	5
I encourage my subordinates to work together	•	(061)	1	2	3	4	5
I urge my subordinates to reward themselves for doing a good job	-	(062)	1	2	3	4	5
I encourage my subordinates to think about eventual success rather than possible failure		(063)	1	2	3	4	5

REMEMBER: DESCRIBE YOURSELF

1 = Definitely Not True 2 = Not True

3 = Neither True Nor Untrue

4 = True 5 = Definitely True

I am not afraid to "buck the system" if I think it is necessary	(064)	1	2	3	4	5	
I give my subordinates orders about their work	(065)	2	2	Э	4	5	
I encourage my subordinates to define goals for themselves	(066)	1	2	3	4	5	
If my subordinates perform well, I will recommend more compensation	(067)	1	2	3	4	5	
I encourage my subordinates to do their work in ways that they enjoy rather than just trying to get it over with	(068)	1	2	3	4	5	
Because of me, my subordinates have a clear vision of our organization	(069)	1	2	3	4	5	
I encourage my subordinates to find solutions to their problems at work without seeking my direct input	(070)	1	2	3	4	5	
I encourage my subordinates to keep track of their progress on tasks they are working on	(071)	1	2	3	4	s	
When my subordinates do a job well, I tell them about it	(072)	1	2	3	4	5	
I advise my subordinates to think about how challenges at work can be met, rather than why they cannot	(073)	1	2	3	4	5	
I inspire my subordinates to strive for achievements they would not normally pursue .	(074)	1	2	3	4	5	
I urge my subordinates to assume responsibilities on their own	(075)	1	2	3	4	5	
I behave in a threatening manner	(076)	1	2	3	4	5	
I reprimand my subordinates when their performance is not up to par .	(077)	1	2	3	4	5	
I advise my subordinates to expect that they will perform well	(078)	1	2	3	4	5	
I have a strong personal dedication to higher purposes or ideals	(079)	1	2	3	4	5	
My performance is very high	(080)	1	2	3	4	5	
I establish my subordinates' performance goals	(081)	1	2	3	4	5	
I advise my subordinates to feel good about themselves when they perform well .	(082)	1	2	3	4	5	
I reach a mutual understanding with my subordinates regarding the goals for their work	(083)	2	2	3	4	5	
I am very effective ,	(084)	1	2	3	4	5	
I am not afraid to "break the mold" to find different ways of doing things	(085)	1	2	3	4	5	
I urge my subordinates to do tasks at work that make them feel good about themselves	(086)	1	2	3	4	s	
I advise my subordinates to solve problems when they pop up without always getting my stamp of approval	(087)	1	2	3	4	5	

REMEMBER: DESCRIBE YOURSELF

1 = Definitely Not True 2 = Not True

3 = Neither True Nor Untrue

4 = True 5 = Definitely True

I advise my subordinates to make improvements in how they do their work on their own initiative without being told to do so	(088)	1	2	э	4	5	
I perform very well	(089)	1	2	3	4	5	
I set goals for my subordinates' performance	(090)	1	2	3	4	5	
I work together with my subordinates to decide what their performance goals should be	(091)	1	2	3	4	5	
I urge my subordinates to work as a team with each other	(092)	1	2	3	4	5	
I'm not bound by tradition when it comes to getting things done	(093)	1	2	3	4	5	
My overall effectiveness is excellent	(094)	1	2	з	4	5	
I assure my subordinates that they are capable of overcoming almost any obstacle at work	(095)	1	2	3	4	5	
I urge my subordinates to search for solutions to their problems on the job without my supervision	(096)	1	2	3	4	5	

REMEMBER: DESCRIBE YOURSELF

A FINAL WORD

Thank you very much for completing this follow-up questionnaire. Please return your questionnaire to the sealed drop box in the envelope provided.

Note that a code number appears at the bottom of this page. This code number has been assigned to you by the research team at the University of Maryland. For research purposes, it is important that we know this code number so that your responses on the follow-up questionnaire can be matched to your responses today for statistical analysis.

Some participants may not be comfortable identifying themselves even for research purposes in coded form. If you feel this way, you can remove this page and return the questionnaire without your code number. However, we would appreciate it if you would leave this code number on the questionnaire.

If you decide to leave this page, please understand that your code number will be known only to researchers at the University of Maryland and will be used only for matching purposes. Your code will never be revealed to the part of Furthermore, your individual responses on this questionnaire and the follow-up questionnaire will never be seen by **Example 1** or anyone other than researchers at the University of Maryland.

We appreciate your assistance. Again, thank you.

(code number)

Appendix 4-5 Self-Leadership Questionnaire Items with Origins (Subordinate Self-Report, SLQ)

.

Self-Goal Setting

- 01. I define the goals myself.1
- 10. I set goals for myself.
- 19. I set goals for my own performance.1
- 27. I define goals for myself.6

Self-Observation and Evaluation

- 02. I judge how well I am performing.
- 11. I know how my performance stands.
- I try, to keep track of how well I'm doing while I work.
- 28. I keep track of my progress on tasks I'm working on."

Self-Reward

- 03. I reward myself with something I like when I have successfully completed a major task.
- I give myself a pat on the back when I meet a new challenge.
- 21. I reward myself for doing a good job.6
- 29. I feel good about myself when I perform well.6
- I treat myself to something I enjoy when I do a task especially well.

Finding Natural Rewards

- 04. I seek out activities in my work that I enjoy doing.6
- 14. I find my own favorite ways to get work done."
- 22. I take time to do work tasks that I like to do."
- 31. I do my work in ways that I enjoy rather than just trying to get it over with.
- 37. I do tasks at work that make me feel good about myself.

Opportunity Thought

- 06. I look for the opportunities contained in problems I face.
- I view unsuccessful performance as a chance to learn.
- 23. I think of problems at work as opportunities rather than obstacles.
- 32. I think about how challenges at work can be met, rather than why they cannot.
- 38. I think about eventual success rather than possible failure.

Efficacy Expectations

- 07. I think I can do very well in my work.2
- 16. I think I am capable of high performance.²
- 24. I expect that I will perform well.7
- 33. I have confidence in my ability to meet challenges at work.
- 39. I am sure that I am capable of overcoming almost any obstacle at work.

Self-Problem Solving

- 08. I solve my own problems without being dependent on solutions from above.
- 34. I find solutions to my problems at work without seeking my supervisor's direct input.
- 40. I search for solutions to my problems on the job without supervision.
- 30. I solve problems when they pop up without always getting my supervisor's stamp of approval.

Initiative

- 09. I take initiatives on my own.2
- 17. I use opportunities to take initiative on my own.²
- 25. I use opportunities to take on new responsibilities.2

- 35. I assume responsibilities on my own.2
- 41. I make improvements in how I do my work on my own initiative without being told to do so.
- I think of new ways of doing things on my own initiative.

Teamwork

- I coordinate my efforts with other managers/supervisors who report to my supervisor.⁷
- I work together with other managers/supervisors who report to my supervisor.
- 42. I work as a team with other managers/supervisors who report to my supervisor.
- 05. I work together with other managers/supervisors who report to my supervisor as a team.

Note. Superscripts refer to the "Key to Item Origins" in Appendix 4-1.

Appendix 4-6

Citizenship Behavior Questionnaire Items

(Subordinate Report, CBQ)

Organizational Citizenship Behaviors

Conscientiousness

- The attendance of my colleagues has been above the norm.
- 29. My colleagues obey company rules and regulations even when no one is watching.
- 37. My colleagues are some of the most conscientious employees in this organization.
- 07. My colleagues believe in giving an honest day's work for an honest day's pay.

Altruism

- 31. My colleagues help others who have been absent.
- 38. My colleagues help others who have heavy work loads.
- 12. My colleagues help orient new people even though it is not required.
- My colleagues willingly help others who have workrelated problems.
- 03. My colleagues have always been ready to lend a helping hand to those around them.

Courtesy

- 33. My colleagues take steps to try to prevent problems with other workers.
- 05. My colleagues are mindful of how their behavior affects other people's jobs.
- My colleagues try to avoid creating problems for coworkers.
- My colleagues consider the impact of their actions on co-workers.

Civic Virtue

- 34. My colleagues attend meetings that are not mandatory, but are considered important.
- My colleagues attend functions that are not required, but help the company image.

- 02. My colleagues have been keeping abreast of changes in the organization.
- 24. My colleagues have been reading and keeping up with organization announcements, memos, etc.

Anti-Citizenship Behaviors

Avoidance or Escape from the Job as a Whole

- My colleagues avoid their jobs by coming in late or leaving early.
- My colleagues get away from the job by calling in sick when they are not really sick.
- My colleagues look for ways to transfer out of disliked job situations.

Avoidance of the Work Itself

- 13. My colleagues try to look busy doing nothing.
- 22. My colleagues let others do the work for them.
- 06. My colleagues put off projects until the last minute.
- My colleagues take frequent or extra long breaks to avoid doing work.
- 35. My colleagues talk excessively with co-workers when they are supposed to be working.
- My colleagues make frequent and/or long trips to the water fountain, vending machines, or restroom to avoid work.

Defiance, Resistance to Authority

- 04. My colleagues have been deliberately ignoring rules and regulations.
- My colleagues resist the influence of their supervisor.
- 30. My colleagues talk back to their supervisor.

Complaining

08. My colleagues consume a lot of time complaining about trivial matters.

- 23. My colleagues tend to "make mountains out of molehills."
- 16. My colleagues focus on what's wrong, rather than the positive side.
- 27. My colleagues find fault with what the organization is doing.
- 32. My colleagues are classic "squeaky wheels" that always need greasing.

Teamwork

- 09. My colleagues coordinate their efforts with each other.
- 36. My colleagues work together.
- 01. My colleagues work with each other as a team.
- 26. My colleagues work together as a team.

Appendix 4-7

Participant Performance Questionnaire Items

(Supervising Manager Report)

Behavioral Descriptions

(Supervisor Name)

Instructions: This form asks you to describe your direct-report subordinates who are participating in a leadership training program that is being conducted at Westinghouse by the University of Maryland. Please describe the frequency with which the subordinates listed below (columns) engage in the behaviors (rows) listed below. Register your responses in each intersecting box using the numbers from the response scale below. Please report only on the subordinates listed below. This information is for research purposes only. It will be used only by researchers at the University of Maryland and will not be seen by any other Westinghouse employees, including your subordinates. Please return this questionnaire in the envelope provided by the date appearing on the cover letter. Thank you.

Response Scale 1 = Never/Almost Never 2 = Infrequently 3 = Occasionally 4 = Frequently 5 = Always/Almost Always					
Organizing and Planning: Sets goals and priorities for maximum efficiency.				 	
Reaction to Problems: Identifies, analyzes, and acts upon problems in a constructive, responsible manner.		-			
Reliability: Performs work conscientiously and dependably.	1				
Adaptability: Changes behavior to meet the demands of the situation.			 -	 -	
Productivity: Produces a volume of work consistent with established standards.	1	-1		 -	
Quality: Performs duties accurately and effectively.					
Team Orientation: Encourages and facilitates teamwork and cooperation among subordinates.			 -	_	
Delegation: Encourages subordinates to work independently; delegates important parts of assignments to subordinates.					
Subordinate Development: Develops the skills of subordinates.					

Appendix 4-8

Job Satisfaction Questionnaire Items

(Subordinate Self-Report)

Overall Job Satisfaction

- 01. My job as a whole
- 07. My overall job
- 13. My job in general

Growth Satisfaction

- 02. The amount of personal growth and development I get in doing my job
- 08. The feeling of worthwhile accomplishment I get from doing my job
- 14. The amount of challenge in my job

Pay Satisfaction

- 03. The amount of pay and fringe benefits I receive
- 09. The degree to which I am fairly paid for what I contribute to this organization

Job Security Satisfaction

- 04. The amount of job security I have
- 10. How secure things look for me in the future in this organization

Social Satisfaction

- 05. The people I talk to and work with on my job
- 11. The chance to get to know other people while on the job
- 15. The chance to help other people while at work

Supervision Satisfaction

- 06. The degree of respect and fair treatment I receive from my supervisor
- The overall quality of the supervision I receive in my work

Note. Item numbers are keyed to Section I of the participant questionnaire packet, reproduced as Appendix 4-4.

Appendix 4-9 Subordinate Desire for Self-Leadership Questionnaire Items (Subordinate Self-Report)

Teamwork

\$

- 43. I would collaborate with other employees at my level to accomplish tasks without involving my supervisor.
- 47. I would involve my supervisor as a link for communication and coordination between me and other employees at my level.

Self-Goal Setting

- 49. I would define goals for myself without my supervisor's intervention.
- 45. I would seek guidance from my supervisor about the appropriate standards for performance.

Self-Problem Solving

- 44. I would find solutions to my problems at work without consulting my supervisor.
- 48. I would confer with my supervisor before making decisions on how to solve problems.

Initiative

- 50. I would make decisions on my own initiative without involving my supervisor.
- 46. I would check my ideas about improved ways of doing things with my supervisor before I implement improvements.

<u>Note</u>. All items adjoin the stem "In my ideal job. . . ." Item numbers are keyed to Section I of the trainee questionnaire packet, reproduced as Appendix 4-2. ¹Item was reverse-scored. Appendix 4-10

.

Manipulation Check Quiz

Post-Training Questions

Now that you have completed the training, please take a moment to answer the following questions. These questions are divided into three sections. On the left side in each section are four statements concerning leader behavior. Each of these statements corresponds to one of the leadership archetypes in the box on the right. Please match these statements with the leader archetypes by writing the appropriate letter on the line beside each statement. Within each section, each statement on the left corresponds most closely to only one of the leadership archetypes; there is exactly one "A."

Section I

- ____ A leader who challenges subordinates to set their own goals
- ____ A leader who gives her/his subordinates precise job instructions
- A leader who tries to inspire her/his subordinates
- A leader who negotiates goals with her/his subordinates

Section II

- A leader who energizes followers through persuasive speech and exhortation
- A leader who encourages subordinates to show initiative
- A leader who uses disagreeable behavior to "keep subordinates on their toes"
- A leader who tries to make pay raises contingent upon the subordinate's performance

Section III

- ____ A leader who commands subordinates to pursue specific objectives
- A leader who bases reprimands on specific subordinate behaviors
- A leader who urges subordinates to work together as a team
- A leader who vigorously challenges the status quo

A = Strongman B = Transactor C = Visionary Hero D = SuperLeader

A = Strongman B = Transactor C = Visionary Hero D = SuperLeader

- A = Strongman B = Transactor
- C = Visionary Hero
- D = SuperLeader

Appendix 5-1

Time 1/Time 2 LSQII-train

Unit-Level Intercorrelations

I. Leader Behavior	LSQII	-train
Cluster Dimension	Time 1	(Time 2)
Strongman		
Aversive Behavior	Averse	(Xaverse)
Assigned Goals	Asgoal	(Xasgoal)
Inst. and Command	Inscom	(Xinscom)
Transactor		
Participative Goals	Ptgoal	(Xptgoal)
Contingent Material Reward	Matrew	(Xmatrew)
Contingent Personal Reward	Perrew	(Xperrew)
Contingent Reprimand	Crepnd	(Xcrepnd)
Visionary Hero		
Idealism	Idlsm	(Xidlsm)
Vision	Vision	(XVision)
Challenge to the Status Quo	Stquo	(Xstquo)
Stimulation and Inspiration	Stmins	(Xstmins)
SuperLeader		
Independent Action	Indactn	(Xindactn)
Teamwork	Tmwk	(Xtmwk)
Self-Reward	Snrew	(Xsnrew)
Opportunity Thought	Opptht	(Xopptht)

Key to Appendix 5-1 Intercorrelation Table:

(Table Attached)

	and the second second	Contraction of the last			
	Corr	elation Coe	fficients		
AVERSE	ASGOAL	INSCOM	PTGOAL	MATREN	PERREW
1.0000	.1985	.4190	.1006	1129	,1492
(31)	(31)	(31)	(31)	(31)	(31)
P= .	P= .284	P= .019	P= .590	P= .545	P= .423
.1985	1.0000	.4264	0508	.0518	0587
(31)	(51)	(31)	(31)	(31)	(31)
P= .284	P= -	P= .017	P= .786	P= .782	P= .754
.4190	.4264	1.0000	.2143	1277	.1414
(31)	(31)	(31)	(31)	(31)	(31)
P= .019	P= .017	P= .	P= .247	P= .494	P= .448
.1006	~.0508	.2143	1.0000	.4811	.4901
(31)	(31)	(31)	(31)	(31)	(31)
P= .590	P= .786	P= .247	P= .	P= .006	P= .005
1129	.0518	1277	.4811	1.0000	.1574
(31)	(31)	(31)	(31)	(31)	(31)
P= .545	P= .782	P= .494	P= .006	P= .	P= .398
.1492	0587	.1414	.4901	.1574	1.0000
(31)	(31)	(31)	(31)	(31)	(31)
P= .423	P= .754	P= .448	P= .005	P= .398	P= .
.3443	~.1222	.2886	.1095	.0813	.1853
(31)	(31)	(31)	(31)	(31)	(31)
P= .058	P= .512	P= .115	P= .558	P= .664	P= .318
.2873	3365	0409	.4170	.0993	.1978
(31)	(31)	(31)	(31)	(31)	(31)
P= .117	P= .064	P= .827	P= .020	P= .595	P= .286
-2095	.0755	.1614	.4544	.0926	.1877
(31)	(31)	(31)	(31)	(31)	(31)
P= ,258	P= .686	P= .386	P= .010	P= .620	P= .312
.0965	1980	1270	0310	0074	0195
(31)	(31)	(31)	(51)	(51)	(31)
P= .606	P= .286	P= .496	P= .869	P= .969	P= .917
.0423	0633	-,1638	.1998	0589	.0514
(31)	(31)	(31)	(31)	(31)	(31)
P= .821	P= .735	P= .379	P= .281	P= .753	P= .784
	1.0000 (31) P= . .1985 (31) P= .284 .4190 (31) P= .019 .1006 (31) P= .545 .1492 (31) P= .545 .1492 (31) P= .423 .3443 (31) P= .058 .2873 (31) P= .117 .2095 (31) P= .258 .0965 (31) P= .606 .0423 (31)	AVERSE ASGOAL 1.0000 .1985 (31) (31) P^{\pm} .84 .1985 1.0000 (31) (51) P^{\pm} .284 .1985 1.0000 (31) (31) P^{\pm} .284 .1985 1.0000 (31) (31) P^{\pm} .017 .1006 0508 (31) (31) P^{\pm} .950 P^{\pm} .950 P^{\pm} .9518 P^{\pm} .9517 P^{\pm} .9517 P^{\pm} .0587 (31) (31)	AVERSE ASGOAL INSCOM 1.0000 .1985 .4190 (31) (31) (31) P= .P= .284 P= .1985 1.0000 .4264 (31) (51) (51) P= .284 P= .1985 1.0000 .4264 (31) (51) (51) P= .284 P= .4190 .4264 1.0000 (31) (31) (31) P= .019 P= .4190 .4264 1.0000 (31) (31) (31) P= .019 P= .019 P= .017 .1006 0508 .2143 (31) (31) (31) P= .590 P= .786 P= .4192 0587 .1414 (192 0587 .1414 (192 .0518 1277	AVERSE ASGOAL INSCOM PTGOAL 1.0000 .1985 .4190 .1006 (31) (31) (31) (31) (31) P= . P= .284 P= .019 P= .590 .1985 1.0000 .4264 0508 (31) (31) P= .590 (31) (51) (51) (31) (31) (31) P= .590 .1985 .10000 .4264 1.0000 .2143 .10000 .2143 (31) (31) (31) (31) (31) (31) P= .019 P= .017 P= .247 .1006 0508 .2143 1.0000 (31) (31) P= .590 P= .786 P= .247 P= -1129 .0518 1277 .4811 .4901 (31) (31) P= .545 P= .782 P=<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

VM/SP CMS

19-Jul-93 GP LVL TIME 1 & 2 TRAIN REPT ON TRAINEE LDR BEH 10:21:39 The University of Maryland CSC IBM 3081GX

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

328

41

	GP LVL Time The Univers	Corre	lation Coet	ficients		
	AVERSE	ASGOAL	INSCOM	PTGOAL	MATREN	PERREW
INDACTN	.1410	2666	1451	.4969	.1287	.5127
	(31)	(31)	(31)	(31)	(31)	(31)
	P= .449	P= .147	P= .436	P= .004	P= .490	P= .003
тмик	0837	0018	2557	.1102	0179	.3352
	(31)	(31)	(31)	(31)	(31)	(31)
	P= .654	P= .993	P=.165	P= .555	P= .924	P= .065
SNREW	.0386	1340	0264	.3620	.0607	.2890
	(31)	(31)	(31)	(31)	(31)	(31)
	P= .837	P= .472	P= .888	P= .045	P= .746	P= .115
OPPTHT	.1363	1504	0160	.0714	.0193	.0325
	(31)	(31)	(31)	(31)	(31)	(31)
	P= .465	P= .419	P= .932	P= .703	P= .918	P= .862
UBPERF	.1056	1492	0311	0138	.2202	0551
	(30)	(30)	(30)	(30)	(30)	(30)
	P= .579	P= .431	P= .870	P=.942	P= .242	P= .772
AVERSE	.0821	1147	.0863	.1863	.4980	1982
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .709	P= .602	P= .695	P* .395	P= .016	P= .365
ASGOAL	1366	.3477	.2695	.1212	.3605	1115
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .534	P= .104	P= .214	P= .582	P= .091	P= .613
INSCOM	.2077	.2251	.4348	.2000	.3049	1421
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .342	P= .302	P= .038	P= .360	P= .157	P= .518
PTGOAL	.2875	.1266	.0689	.2378	4066	.5374
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .183	P= .565	P= .755	P= .275	P=.054	P= .008
MATREN	.4319	.2758	.2835	.0586	3262	.4835
	(23)	(23)	(23)	(25)	(23)	(23)
	P= .040	P= .203	P= .190	P= .791	P= .129	P= .019
XPERREN	.3053	.0068	0566	.0785	2997	.6201
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .157	P= .976	P= .798	P= .722	P= .165	P= .002

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

329

11

18

-

			lation Coef		MATREN	PERREN
	AVERSE	ASGOAL	INSCOM	PTGOAL		
XCREPND	.3062	.4099	.3804	2305	3063	.0949
	(23)	(25)	(23)	(23)	(23)	(23)
	P# .155	P= .052	P= .073	P= .290	P= .155	P= .667
XIDLSM	.4501	-,1326	.1302	.1275	3024	,5292
	(23)	(23)	(23)	(23)	(23)	(23)
	P# .031	P= ,546	P= .554	P= .562	P= .161	P= ,009
XVISION	.4333	.1638	.1253	.2590	1144	.5347
	(23)	(23)	(23)	(23)	(Z3)	(23)
	P= .039	P= ,455	P= .569	Pz .233	F= .603	P= .009
XSTQUO	.1776	1545	0106	1739	4530	.3180
	(23)	(23)	(23)	(23)	(23)	(23)
	PF ,417	P= .482	P= .962	P= .427	P= .030	P= .139
XSTMINS	.2048	2415	0279	.4410	.1428	.5161
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .349	P= .267	P= .900	P= .035	P= .516	P= .012
XINDACTH	.3424	.0972	.0615	.0782	3990	.5376
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .110	P= .659	P= .780	P= .723	P= .059	P= .008
ктмык	.2901	.1132	.0562	.0473	4324	.4893
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .179	P= .607	P= .799	P= .830	P= .039	P= .018
XSNREW	.3158	3575	0064	.3991	.0009	.4863
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .142	P= .094	P= .977	P= .059	P= .997	F= .019
XOPPTHT	.1116	3354	.0422	.1454	0308	.0553
	(31)	(31)	(31)	(31)	(31)	(31)
	P= .550	P= .065	P= .822	P= .435	P= .869	P= .768
XSUBPERF	.1973	.0365	.1512	.0925	.3229	0446
	(29)	(29)	(29)	(29)	(29)	(29)
	P= .305	P= .851	P* .434	P= .633	P= .088	P= .818

_(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

	The Univers		lation Coet	ficients		
	CREPND	IDLSM	VISION	STQUD	STMINS	INDACTN
AVERSE	.3443 (31) P= .058	.2873 (31) P= .117	.2095 (31) P= .258	.0965 (31) P= .606	.0423 (31) P= .821	.1410 (31) P= .449
ASGOAL	1222 (31) P= .512	3365 (31) P= .064	.0755 (31) P= .686	1988 (31) F= .286	0633 (31) P= .735	2666 (31) P= .147
INSCOM	.2886 (31) P= .115	0409 (31) P= .827	.1614 (31) P= .386	1270 (31) P= .496	1638 (31) P= .379	1451 (31) P= .436
PTGOAL	.1095 (31) P= .558	.4170 (31) P= .020	.4544 (31) P= .010	0310 (31) P= .869	.1998 (31) P= .281	,4969 (31) P= .004
MATREN	.0813 (31) P= .664	.0993 (31) P= .595	.0926 (31) P= .620	0074 (31) P= .969	0589 (31) P= .753	.1287 (31) P= .490
PERREN	.1853 (31) P= .318	.1978 (31) P= .286	.1877 (31) P= .312	0195 (31) P= .917	.0514 (31) P= .784	.5127 (31) P= .003
CREPND	1.0000 (31) P= .	.0348 (31) P= .852	.2346 (31) P= .204	.2916 (31) P= .111	2432 (31) P= .187	.2382 (31) P= .197
IDLSM	.0348 (31) P= .652	1.0000 (31) P= .	.5525 (51) P= .001	.4198 (31) P= .019	.5763 (31) P= .001	.4460 (31) P= .012
VISION	.2346 (31) P= .204	.5525 (31) P= .001	1.0000 (31) P= .	.5634 (31) P= .001	.4187 (31) P= .019	.2929 (31) P= .110
STQUO	.2916 (31) P= .111	.4198 (31) P= .019	.5634 (31) P= .001	1.0000 (31) P= .	.4597 (31) P= .009	.2250 (31) P= .224
STMINS	-,2432 (31) P= ,187	.5763 (31) P= .001	.4187 (31) P= .019	.4597 (31) P= .009	1.0000 (31) P= .	.3869 (31) P= .032

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

331

11

...

-

19-Jul-93 GP LVL TIME 1 & 2 TRAIN REPT ON TRAINEE LDR BEH 10:21:39 The University of Maryland CSC IBM 3081GX VM/SP CMS

		Corre	lation Coef	ficients -	-	
	CREPND	IDLSM	VISION	STQUO	STMINS	INDACTN
INDACTN	.2382	.4460	.2929	.2250	.3869	1.0000
	(31)	(31)	(31)	(31)	(311	(31)
	P= .197	P= .012	P= .110	P= .224	P= .032	P= .
ТМЫК	0288	.2557	.1414	.3337	.5836	.5185
	(31)	(31)	(31)	(31)	(31)	(31)
	P= .878	P= .165	P= .448	P= .067	P= .001	P= .003
SNREN	0960	.1510	.0555	.1208	.2958	.4342
	(31)	(31)	(31)	(31)	(31)	(31)
	P= .607	P= .417	P= .767	P= .518	P= .106	P= .015
OPPTHT	.1091	.1497	.3952	.1805	.0723	.2943
	(31)	(31)	(31)	(31)	(31)	(31)
	P= .559	P= .422	P= .028	P= .331	P= .699	P= .108
SUBPERF	1922	.0725	0357	0410	0720	.0655
	(30)	(30)	(30)	(30)	(30)	(30)
	P= .309	P= .704	P= .851	P= .830	P= .705	P= .731
XAVERSE	.2151	.2193	.0108	0073	.0480	0308
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .324	P= .315	P= .961	P= .974	P= .828	P= .889
XASGOAL	.2119	1904	.1441	1895	2699	2246
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .332	P= .384	P= .512	P= .387	P= .213	P= .303
XINSCOM	.2416	.0231	.2047	1632	0349	0462
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .267	P= .917	P= .349	P= .457	P= .875	P= .834
XPTGOAL	0885	.0711	.2357	.0769	.2036	.3226
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .688	P= .747	P= .279	P= .727	P= .352	P= .133
XMATREN	.1073	0054	.2701	.1299	0173	.1007
	(23)	(23)	(23)	(23)	(23)	(23)
	P= ,626	P= .981	P= .213	P= .555	Pr .938	P= .647
XPERREN	.1652	.2218	.366L	.3484	.2522	.3561
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .451	P= .309	P= .086	P= .103	P= .246	P= .095

(Coefficient / (Cases) / 2-tailed mig)

" . " is printed if a coefficient cannot be computed

332

11

7

-

1

19-Jul-93 GP LVE TIME 1 & 2 TRAIN REPT ON TRAINEE LDR BEH 10:21:39 The University of Maryland C3C IBM 3081GX VM/SP CMS

- - Correlation Coefficients - -

	CREPND	IDLSM	VISION	STQUO	STMINS	INDACTN
XCREPND	.3711	1706	.3853	-1325	1755	0447
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .081	P= .436	P= .071	P= .547	P= .423	P= .839
XIDLSM	.0342	.2664	.1714	.3180	.2969	.1099
	(25)	(23)	(23)	(23)	(23)	(23)
	P= .877	P= .219	F= .434	P= .139	P= .169	P= .618
XVISION	.1043	4646	.5825	.3055	.2995	.3970
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .636	P= .026	P= .004	P= .156	P= .165	P= .061
XSTQUO	.1204	1047	.3695	.5572	.1797	.1522
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .584	P= .635	P= .083	P= .006	P= .412	P= .488
XSTMINS	.2162	.5937	.5670	-5348	.4940	.5587
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .322	P= .003	P= .005	P= .009	P= .017	P= .006
XINDACTN	.0455	.1192	.2591	.1059	.1482	.2962
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .837	P= .588	P= .233	P= .631	P= .500	P= .170
хтмык	.1119	.0029	.2113	.1266	.0882	-2345
	(23)	(23)	(23)	(25)	(25)	(23)
	P= .611	P= .989	P= .335	P= .565	P= .689	P= .281
XSHREN	.2034	.3254	.1867	.2512	.0367	.3955
	(23)	(23)	(23)	(23)	(23)	(23)
	P= .352	P= .130	P= .394	P= .248	P= .868	P= .062
XOPPINT	,1115	.4117	.3831	.3742	.2176	.1293
	(31)	(31)	(31)	(31)	(31)	(31)
	P= .550	P= .021	P= .033	P= .038	P= .240	P= .488
XSUBPERF	2088	.0980	.0043	1646	.0230	1166
	(29)	(29)	(29)	(29)	(29)	(29)
	P= .277	P= .613	P= .982	P= .594	P= .906	P= .547

.

_(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

٠

-

••

the second se

19-Jul-93 GP LVL TIME 1 & 2 TRAIN REPT ON TRAINEE LDR BEH 10:21:39 The University of Maryland CSC IBM 3081GX VM/SP CMS

			active come of			
		Corre	alation Coet	fficients -	÷	
	THHK	SNREN	OPPTHT	SUBPERF	XAVERSE	XASGOAL
AVERSE	0837	.0386	.1363	.1056	.0821	1366
	(31)	(31)	(31)	(30)	(23)	(23)
	P= .654	P= .837	P= .465	P= .579	P= .709	P= .536
ASGOAL	0018	1340	1504	1492	1147	.3477
	(31)	(31).	(31)	(30)	(23)	(23)
	P= .993	P= .472	P= .419	F= .431	P= .602	P= .104
INSCOM	2557	0264	0160	-,0311	.0863	.2695
	(31)	(31)	(31)	(30)	(23)	(23)
	P= .165	P= .888	P= .932	F= .870	P= .695	P= .214
PTGOAL	.1102	.3620	.0714	0138	.1863	.1212
	(31)	(31)	(31)	(30)	(23)	(231
	P= .555	P= .045	P= .703	P= .942	P= .395	P= .582
MATREW	0179	.0607	.0193	.2202	.4980	.3605
	(31)	(31)	(31)	(30)	(23)	(23)
	P= .924	P= .746	P= .918	P= .242	P= .016	P= .091
PERREW	.3352	.2890	.0325	0551	1982	1115
	(31)	(31)	(31)	(30)	(23)	(23)
	P= .065	P* .115	P= .862	P= .772	P= .365	P= .613
CREPND	0288	0960	.1091	~.1922	.2151	.2119
	(31)	(31)	(31)	(30)	(23)	(25)
	P= .878	P= .607	P= .559	P= .309	P= .324	P= .332
IDLSM	.2557	.1510	.1497	.0725	.2193	1904
	(31)	(51)	(31)	(30)	(23)	(25)
	P= .165	P= .417	P= .422	P= .704	P= .315	P= .384
VISION	.1414	.0555	.3952	0357	.0108	.1441
	(31)	(31)	(31)	(30)	(23)	(23)
	P= .448	P= .767	P= .028	P= .851	P= .961	P= .512
STQUO	.3337	.1208	.1805	0410	0073	1895
	(31)	(31)	(31)	(30)	(23)	(23)
	P= .067	P= .518	P= .331	P= ,830	P= .974	P= .387
STMINS	.5836	.2958	.0723	07 0	.0480	2699
	(31)	(31)	(31)	(30)	(23)	(25)
	P= .001	P= .106	P= .699	P= .705	P= .828	P= .213

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

334

••

-

		Corre	elation Coe	fficients -		
	TMUK	SNREW	OPPTHT	SUBPERF	XAVERSE	XASGOAL
INDACTN	.5185	.4342	.2943	.0655	0308	2246
	(31)	(31)	(31)	(30)	(23)	(23)
	P= .003	P= .015	P= .108	P= .731	P= .889	P= .303
тмык	1.0000	.2812	1001	3784	2180	3298
	(31)	(31)	(31)	(30)	(23)	(23)
	P= .	P= .125	P= .592	P= .039	P= .318	P= .124
SHREN	.2812	1.0000	0195	2813	0025	2198
	(31)	(31)	(31)	(30)	(23)	(23)
	P= .125	P= .	P= .917	P= .132	P= .991	F= .314
OPPIHT	1001	0195	1.0000	.3049	.1588	1316
	(31)	(31)	(73)	(72)	(60)	(60)
	P= .592	P= .917	P= -	P= .009	P= .226	P= .316
SUBPERF	3784	2813	.3049	1.0000	0201	1214
	(30)	(30)	(72)	(72)	(59)	(59)
	P= .039	P= .132	P= .009	P= .	P= ,880	P= .360
XAVERSE	2180	0025	.1588	0201	1.0000	.2281
	(23)	(23)	(60)	(59)	(60)	(60)
	P= .318	P= .991	P= .226	P= .880	P= .	P= .088
XASGOAL	3298	2198	1316	1214	.2281	1.0000
	(23)	(23)	(60)	(59)	(60)	(60)
	P= .124	P= .314	P= .316	P= .360	P= .080	P= .
XINSCOM	3767	.0439	.0362	.0094	.4567	.5499
	(23)	(23)	(60)	(59)	(60)	(60)
	P= .076	P= .842	P= .784	P= .944	P= .000	P= .000
XPTGOAL	.3307	.2836	.0122	0043	6785	2105
	(23)	(23)	(60)	(59)	(60)	(60)
	P= .123	P= .190	P= .926	P= .974	P= .000	P= .106
XMATREN	.2120	.0300	.0236	.0337	6193	-,1054
	(23)	(23)	(60)	(59)	(60)	(60)
	P= .332	P= .892	P= .858	P= .800	P= .000	P= ,423
XFERREN	.5017	.1839	.1854	0027	5386	2239
	(23)	(23)	(60)	(59)	(60)	(60)
	P= .015	P= .401	P= .156	P= .984	P= .000	P= ,085

19-Jul-93 GP LVL TIME 1 & 2 TRAIN REPT ON TRAINEE LDR BEH 10:21:39 The University of Maryland CSC IBM 3081GX VM/SP CMS

(Coefficient / (Cases) / 2-tailed sig)

". " is printed if a coefficient cannot be computed

335

-

--

19-Jul-93 GP LVL TIME 1 & 2 TRAIN REPT ON TRAINEE LDR BEH 10:21:39 The University of Maryland CSC IBM 3081GX VM/SP CMS

		Corre	elation Coef	ficients -	-	
	тмык	SNREW	OPPTHT	SUBPERF	XAVERSE	XASGOAL
XCREPND	.0163	1847	.3616	1092	0646	.1607
	(23)	(23)	(60)	(59)	(60)	(60)
	P= .941	P= .399	P= .005	P= .410	Pr .624	P= .220
XIDLSH	.2222	.2561	.1907	.1015	2912	2456
	(23)	(23)	(60)	(59)	(60)	(60)
	P= .308	P= .238	P= .144	P= .444	P= .024	P= .059
XVISION	.3835	D004	.2326	.0427	2895	0296
	(23)	(23)	(60)	(59)	(60)	(60)
	P= .071	P= .999	P= .074	P= .748	F= .025	P= .822
XSTQUD	2375	.0137	.3515	.0255	3862	2600
	(23)	(23)	(60)	(59)	(60)	(60)
	P= .275	P= .950	P= .006	P= .848	P= .002	P= .045
XSTMINS	.4662	.3195	.0875	~.0269	2419	2013
	(23)	(23)	(60)	(59)	(60)	(60)
	P= .025	P= .137	P= .506	P= .840	P= .063	P= ,123
XINDACTH	.3838	.0687	0554	0042	6942	2932
	(23)	(23)	(60)	(59)	(60)	(60)
	P= .071	P= .755	P= .674	P= .975	P= .000	P= .023
хтмик	.3901	.0362	1014	1092	6395	0731
	(23)	(23)	(60)	(59)	(60)	(60)
	P= .066	P= .870	P= .441	P= .410	P= .000	P= .579
XSNREW	.1642	,6289	.0573	0627	2862	2987
	(23)	(23)	(60)	(59)	(60)	(60)
	P= .454	P= .001	P= .664	P= .637	P= .027	P= .020
хорртнт	2256	.1166	.5015	.1533	.2489	1298
	(31)	(31)	(73)	(72)	(60)	(60)
	P= .222	P= .532	P= .000	P= .199	P= .055	P= .323
XSUBPERF	3866	1489	.3199	.7583	.2590	0852
	(29)	(29)	(71)	(71)	(58)	(58)
	Pa ,038	P= .441	P= .007	P= .000	P= .071	P=.525

_(Coefficient / (Cases) / 2-tailed sig)

". " is printed if a coefficient cannot be computed

336

-

...

			ME 1 & 2 TRA rsity of Mar				MS
				elation Coef		-	
		XINSCO	M XPTGOAL	XMATREW	XPERREN	XCREPHD	XIDLSM
	AVERSE	.2077 (23) P= .342	(23)	.4319 (23) P= .040	.3053 (23) P= .157	.3062 (23) P= .155	.4501 (23) P= .031
	ASGOAL	.2251 (23) P= .302	(23)	.2758 (23) P= .203	.0068 (23) P= .976	.4099 (23) P= .052	1326 (23) P= .546
	INSCOM	.4348 (23) P= .038	.0689 (23) P= .755	.2835 (23) P= .190	0566 (23) P= .798	.3804 (23) P= .073	.1302 (23) P= .554
	PTGDAL	.2000 (23) P= .360	.2378 (23) P= .275	.0586 (23) P= .791	.0785 (23) P= .722	2305 (23) P= .290	.1275 (23) P= .562
	MATREN	.3049 (23) P=.157	4066 (23) P=.054	3262 (23) Pª .129	2997 (23) P= .165	3063 (23) P= .155	3024 (23) P= .161
	PERREW	1421 (23) P= .518	.5374 (23) P= .008	.4835 (23) P= .019	.6201 (23) P= .002	.0949 (23) P= .667	.5292 (23) P= .009
	CREPND	.2416 (23) P= .267	0885 (23) P= .688	.1073 (23) P= .626	.1652 (23) P= .451	.3711 (23) P= .081	.0342 (23) P= .877
	IDLSM	.0231 (23) P= .917	.0711 (23) P=.747	0054 (23) P= .981	.2218 (23) P= .309	1706 (23) P= .436	.2664 (23) P= .219
	VISION	.2047 (23) P= .349	.2357 (23) P= .279	.2701 (23) P= .213	.3661 (23) P= .086	.3833 (23) P= .071	.1714 (23) P= .434
	STQUO	1632 (23) P= .457	.0769 (23) P= .727	.1299 (23) P= .555	.3484 (23) P= .103	.1325 (23) P= .547	.3180 (23) P= .139
-	STMINS	0349 (23) P= .875	.2036 (23) P= .352	0173 (23) P=.938	.2522 (23) P= .246	1755 (23) P= .423	.2969 (23) P= .169

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

337

11

.

-

...

19-Jul-93 GP LVL TIME 1 & 2 TRAIN REPT ON TRAINEE LDR BEH 10:21:40 The University of Maryland CSC IBM 308IGX VM/SP CMS - - Correlation Coefficients - -

			corre	racion cuer	ricients		
		XINSCOM	XPTGOAL	XMATREN	XPERREN	XCREPND	XIDLSM
1	INDACTN	0462 (23) P= .834	.3226 (23) P= .133	.1007 (23) P= .647	.3561 (23) P= .095	0447 (23) P= .839	.1099 (23) P= .618
3	гмык	3767 (23) P= .076	.3307 (23) P= .123	.2120 (23) P= .332	.5017 (23) P= .015	.0163 (23) P= .941	.2222 (23) P= .308
5	NREN	.0439 (23) P= .842	.2836 (23) P= .190	.0300 (23) P= ,892	.1839 (23) P= .401	1847 (23) P= .399	.2561 (23) P= .238
0	PPTHT	.0362 (60) P= .784	.0122 (60) P= .926	.0236 (60) P= .858	.1854 (60) P= .156	.3616 (60) P= .005	.1907 (60) P= .144
S	UBPERF	.0094 (59) P= .944	0043 (59) P= .974	.0337 (59) P= .800	0027 (59) P= .984	1092 (59) P= .410	.1015 (59) P= .444
x	AVERSE	.4567 (60) P= .000	6785 (60) P= .000	6193 (60) P= .000	5386 (60) P= .000	0646 (60) P= .624	2912 (60) P= .024
x	ASGOAL	.5499 (60) P= .000	2105 (60) P= .106	1054 (60) P= .423	2239 (60) P= .085	.1607 (60) P= .220	2456 (60) P= .059
x	INSCOM	1.0000 (60) P= .	2026 (60) P= .120	2102 (60) P= .107	3015 (60) P= .019	.2439 (60) P= .060	2003 (60) P= .125
X	PTGDAL	2026 (60) P= .120	1.0000 (60) P= .	.7401 (60) P= .000	.7141 (60) P= .000	.0333 (60) P= .801	.5852 (60) P= .000
X	MATREN	2102 (60) P= .107	.7401 (60) P= .000	1.0000 (60) P= .	.7144 (60) P= .000	.1111 (60) P= .398	.5097 (60) P= .000
×	FERREN	3015 (60) P= .019	.7141 (60) P= .000	.7144 (60) P= .000	1.0000 (60) P= .	.2016 (60) P= .122	.6868 (60) P= .000

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

338

II.

-

....

		Corre	lation Coef	ficients -	-	
	XINSCOM	XPTGOAL	XMATREN	XPERREN	XCREPND	X1 DL SM
XCREPND	.2439	.0333	.1111	.2016	1.0000	.1226
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .060	P= .801	P= .398	P= .122	P= .	P= .351
XIDLSM	2003	.5852	.5097	.6868	.1226	1.0000
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .125	P= .000	P= .000	P= .000	P= .351	P= .
XVISION	.1058	.5593	.4365	.5810	.3536	.5553
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .421	P= .000	P= .000	P= .000	P= .006	P= .000
XSTQUO	2844	.5501	.5443	.6637	.1272	.7172
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .028	P= .000	P= .000	P= .000	P= .333	P= .000
XSTMINS	0469	.4205	.2950	.4755	0259	.3970
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .722	P= .001	P= .022	P= .000	P= .844	P= .002
XINDACTN	4104	.7526	.7861	.6865	.0146	.4744
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .001	P= .000	P= .000	P= .000	P= .912	P= .000
хтмик	1929	.7875	.7431	.6594	.1183	,6070
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .140	P= .000	P= .000	P= .000	P= .368	P= ,000
XSNREW	2520	.4087	.2865	.4789	1042	.4732
	(60)	(60)	(60)	(60)	(60)	(60)
	P=.052	P= .001	P= .026	P= .000	P= .428	P= .000
XOPPTHT	.0412	0507	0948	0567	.0640	.2420
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .755	P= .700	P= .471	P= .667	P= .627	P= .063
XSUBPERF	.1788	0594	0102	1389	2347	.0737
	(58)	(58)	(58)	(58)	(58)	(58)
	P= .179	P= .658	P= .939	P= .298	P= .076	P=,583

19-Jul-93 GP LVL TIME 1 & 2 TRAIN REPT ON TRAINEE LDR BEH 10:21:40 The University of Maryland CSC IBM 3081GX

_(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

339

11

-

15

and the second second

VH/SP CHS

		Corre	lation Coef	ficients -	-		
	XVISION	XSTQUO		XINDACTH	XTHINK	XSNREW	
AVERSE	.4333 (23) P= .039	.1776 (23) P= .417	.2048 (23) P= .349	.3424 (23) P= .110	.2901 (23) P= .179	.3158 (23) P= .142	
ASCOAL	.1638 (23) P= .455	1545 (23) P= .482	2415 (23) P= .267	.0972 (23) P= .659	.1132 (23) P= .607	3575 (23) P= .094	
INSCOM	.1253 (23) P= .569	0106 (23) P= .962	0279 (23) P= .900	.0615 (23) P= .780	.0562 (23) P= .799	0064 (23) P= .977	
PTGOAL	.2590 (23) P= .233	1739 (25) P= .427	.4410 (23) P= .035	.0782 (23) P= .723	.0473 (23) P= .830	.3991 (23) P= .059	
MATREN	1144 (23) P= .603	4530 (23) P= .030	.1428 (23) P= .516	3990 (23) P= .059	4324 (23) P= .039	.0009 (23) P= .997	
PERREN	.5347 (23) P= .009	.3180 (23) P= .139	.5161 (23) P= .012	.5376 (23) P= .008	.4893 (23) P= .018	.4863 (23) P= .019	
CREPND	.1043 (23) P= .636	.1204 (23) P= .584	.2162 (23) P= .322	.0455 (23) P= .837	,1119 (23) P= .611	.2034 (23) P= .352	
IDLSM	.4646 (23) P= .026	.1047 (23) P= .635	.5937 (23) P= .003	.1192 (23) P= .588	.0029 (23) P= .989	.3254 (23) P= .130	
VISION	.5825 (23) P= .004	.3695 (23) P= .083	.5670 (23) P= .005	.2591 (23) P= .233	.2113 (23) P= .333	.1867 (23) P= .394	
STQUO	.3055 (23) P= .156	.5572 (23) P= .006	.5348 (23) P= .009	.1059 (23) P= .631	.1266 (23) P= .565	.2512 (23) P= .248	
STMINS	.2995 (23) P= .165	.1797 (23) P= .412	.4940 (23) P= .017	.1482 (23) P= .500	.0882 (23) P= .689	.0367 (23) P= .868	

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

П

.

-

13

		Corre	lation Coef	ficients -	-		
	XVISION	XSTQUO	XSTMINS	XINDACTN	XTMNK	XSNREW	
INDACTN	.3970 (23) P= .061	.1522 (23) P= .488	.5587 (23) P= .006	.2962 (23) P= .170	.2345 (23) P= .281	.3955 (23) P= .062	
тмык	.3835 (23) P= .071	.2375 (23) P= .275	.4662 (23) P= .025	.3838 (23) P= .071	.3901 (23) P= .066	.1642 (23) P= ,454	
SNREW	0004 (23) P= .999	.0137 (23) P= .950	.3195 (23) P= .137	.0687 (23) P= .755	.0362 (23) P= .870	.6289 (23) P= .001	
OPPTHT	2326 (60) P= .074	.3515 (60) P= .006	.0875 (60) P# .506	0554 (60) P= .674	1014 (60) P= .441	.0573 (60) P= .664	
SUBPERF	.0427 (59) P= .748	.0255 (59) P= .848	0269 (59) P= .840	0042 (59) P= .975	1092 (59) P= .410	0627 (59) P= .637	
XAVERSE	2895 (60) P= .025	3862 (60) P= .002	2419 (60) P= .063	6942 (60) F= .000	6395 (60) P= .000	2862 (60) P= .027	
XASGOAL	0296 (60) P= .822	2600 (60) P= .045	2013 (60) P= .123	2932 (60) P= .023	0731 (60) P= .579	2987 (60) P= .020	
XINSCOM	.1058 (60) P= .421	2844 (60) P= .028	0469 (60) P= .722	4104 (60) P= .001	1929 (60) P= .140	2520 (60) P= .052	
XPTGDAL	.5593 (60) P= .000	.5501 (60) P= .000	.4205 (60) P= .001	.7526 (60) P= .000	.7875 (60) P= .000	.4087 (60) P= .001	
XMATREW	.4365 (60) P= .000	.5443 (60) P= .000	.2950 (60) P* .022	.7861 (60) P= .000	.7451 (60) P= .000	.2865 (60) P= .026	
XPERREN	.5810 (60) P= .000	.6637 (60) P= .000	.4755 (60) P= .000	.6865 (60) P= .000	.6594 (60) P= .000	.4789 (60) P= .000	

19-Jul-93 GP LVL TIME 1 & 2 TRAIN REPT ON TRAINEE LDR BEH 10:21:40 The University of Maryland CSC IBM 5081GX VM/SP CMS

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

341

7

		Corre	lation Coef	ficients -	-	
	XVISION	XSTQUO	XSTMINS	XINDACTN	XTMWK	XSNREM
CREPHD	.3536	.1272	0259	.0146	.1183	1042
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .006	P= .333	P= .844	P= .912	P= .368	P= .428
IDLSM	.5553	.7172	.3970	.4744	.6070	.4732
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .000	P= ,000	P= .002	P= .000	P= .000	P= .000
VISION	1.0000	.5437	.6266	.4310	.4999	.2630
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .	P= .000	P= .000	P= .001	P= .000	P= .042
STQUO	.5437	1.0000	.5092	.4857	.5529	.3722
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .000	P= .	P= .000	P= .000	P= .000	P= .003
STMINS	.6266	.5092	1.0000	.3828	.4008	.5489
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .000	P= .000	P= .	P= .003	P= .002	P= .000
INDACTN	.4310	.4857	.3828	1.0000	.7481	.4855
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .001	P= .000	P= .003	P= .	P= .000	P= .000
тмык	.4999	.5529	.4008	.7481	1.0000	.4042
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .000	P= .000	P= .002	P= .000	P= .	P= .001
SNREW	.2630	.3722	.5489	.4855	.4042	1.0000
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .042	P= .003	P= .000	P= .000	P= .001	P= .
OPPTHT	.0407	.2768	.1126	1108	1187	.0943
	(60)	(60)	(60)	(60)	(60)	(6D)
	P= .757	P= .032	P= .392	P= .399	P= .367	P= .473
SUBPERF	0736	0210	-,0795	0637	2108	-,0542
	(58)	(58)	(58)	(58)	(58)	(58)
	P= .583	P= .876	P=,553	P= .635	P= .112	P= ,686

" . " is printed if a coefficient cannot be computed

-

1.0

19-Jul-93 GP LVL TIME 1 & 2 TRAIN REPT ON TRAINEE LDR BEH 10:21:40 The University of Maryland CSC IBM 3081GX VM/SP CMS

- - Correlation Coefficients - -

	XOPPTHT	XSUBPERF
AVERSE	.1116 (31) P= .550	.1973 (29) P= .305
ASGOAL	3354 (31) P= .065	.0365 (29) P= .851
INSCOM	.0422 (31) P= .822	.1512 (29) P= .434
PTGOAL	.1454 (31) P= .435	.0925 (291 P= .633
MATREN	0308 (31) P= .869	.3229 (29) F= .088
PERREW	.0553 (31) P= .768	0446 (29) P= .818
CREPND	.1115 (31) P= .550	2088 (29) P= .277
IDLSM	.4117 (31) P= .021	.0980 (29) P= .613
VISION	.3831 (31) P= .033	.0043 (29) P= .982
STQUD	.3742 (31) P= .038	1646 (29) P= .394
STMINS	.2176 (31) P= .240	.0230 (29) P= .906

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

11

==

19-Jul-95 GP LVL TIME 1 8 2 TRAIN REPT ON TRAINEE LDR BEH 10:21:40 The University of Maryland CSC 1BM 3081GX VH/SP CMS

- - Correlation Coefficients - -

	XOPPTHI	XSUBPERF
INDACTN	.1293 (31) P= .488	1166 (29) P= .547
тмнк	2256 (31) P= .222	3866 (29) P= .038
SNREW	.1166 (31) P= .532	1489 (29) P= .441
OPPTHT	.5015 (73) P= ,000	.3199 (71) P= .007
SUBPERF	.1533 (72) P= .199	.7583 (71) P= .000
XAVERSE	.2489 (60) P= .055	.2390 (58) P= .071
XASGDAL	1298 (60) P= .323	0852 (58) P= .525
XINSCOM	.0412 (60) P= .755	.1788 (58) P= .179
XPTGOAL	0507 (60) P= .700	0594 (58) P= .658
XMATREN	0948 (60) P= .471	0102 (58) P= .939
XPERREW	0567 (60) P= .667	1389 (58) P= .298

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

344

.

-

-

Contraction of the local division of the loc

19-Jul-93 GP LVL TIME 1 8 2 TRAIN REPT ON TRAINEE LDR BEH 10:21:40 The University of Maryland CSC IBM 3081GX VM/SP CMS

- - Correlation Coefficients - -

	XOPPTHT	XSUBPERF
XCREPND	.0640 (60) P= .627	-,2347 (58) P= .076
XIDLSM	.2420 (60) P= .063	.0737 (58) P= .583
XVISION	.0407 (60) P= .757	0736 (58) P= .583
XSTQUO	.2768 (60) P= .032	0210 (58) P= .876
XSTMINS	.1126 (60) P= .392	0795 (58) P= .553
XINDACTN	1108 (60) P= .399	0637 (58) P= .635
ХТМЫК	1187 (60) P= .367	2108 (58) P* .112
XSNREN	.0943 (60) P# .473	0542 (58) Ps .686
XOPPTHT	1.0000 (73) P= .	.2772 (71) P= .019
XSUBPERF	.2772 (71) P= .019	1.0000 (71) P= .
	XIDLSM XVISION XSTQUO XSTMINS XINDACTN XTMHK XSNREH XOPPTHT	XCREPND .0640 (60) P= .627 XIDLSM .2420 (60) P= .063 XVISION .0407 (60) P= .757 XSTQUO .2768 (60) P= .032 XSTMINS .1126 (60) P= .392 XIHDACTN 1108 (60) P= .399 XTMHK 1187 (60) P= .367 XSNREH .0943 (73) P* XSUBPERF .2772 (71) .0000

_(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

.

ll

-

--

Appendix 5-2

Time 1/Time 2 LSQII-sub

Unit-Level Intercorrelations

I. Leader Behavior	LSQ1	I-sub
Cluster		
Dimension	Time 1	(Time 2)
Strongman		
Aversive Behavior	Avrs	(Xavrs)
Assigned Goals	Asgl	(Xasgl)
Inst. and Command	Incom	(Xincom)
Transactor		
Participative Goals	Pargl	(Xpargl)
Contingent Material Reward	Mrew	(Xmrew)
Contingent Personal Reward	Prew	(Xprew)
Contingent Reprimand	Repmd	(Xrepmd)
Visionary Hero		
Stimulation and Inspiration	Stmin	(Xstmin)
Idealism	Idelsm	(Xidelsm)
Vision	Vis	(Xvis)
Challenge to the Status Quo	Staquo	(Xstaguo)
SuperLeader		
Independent Action	Inactn	(Xinactn)
Teamwork	Team	(Xteam)
Self-Reward	Slfrew	(Xslfrew)
Opportunity Thought	Optht	(Xoptht)

Key to Appendix 5-2 Intercorrelation Table:

1

(Table Attached)

		Corre	elation Coef	ficients -		
	AVRS	ASGL	INCOM	PARGL	MREN	PREW
AVRS	1.0000	.2589	.2599	4835	4626	3752
	(72)	(72)	(72)	(72)	(72)	(72)
	P= -	P= .028	P= .027	P= .000	P= .000	f* .001
SGL	.2589	1.0000	.5441	.1025	.0628	.1564
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .028	P= .	P= .000	P= .392	P= .600	P= .190
NCOM	.2599	.5441	1.0000	.1171	.0853	.2306
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .027	P= .000	P= .	P= .327	P= .476	P= .051
ARGL	4835	.1025	.1171	1.0000	.4911	.5752
	(72)	(72)	(72)	(72)	(72)	(721
	P=.000	P= .392	P= .327	P= .	P= .000	P= .000
IREW	4626	.0628	.0853	.4911	1.0000	.6448
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .000	P= .600	P= .476	P= .000	P# .	P= .000
REH	3752	.1564	.2306	.5752	.6448	1.0000
	(72)	(72)	(72)	(72)	(72)	(72)
	P=.001	P= .190	P= .051	P= .000	P= .000	P= .
EPMD	.4630	.2748	.3433	.0965	.0649	.1368
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .000	P= .019	P= .003	P= .420	P= .588	P= .252
TMIN	1706	.2289	.4441	.5385	.4369	.5512
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .152	P= .053	P= .000	P= .000	P= .000	P= .000
DELSM	1410	.1373	.2801	.4513	.4658	.5057
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .237	P= .250	P= .017	P= .000	P= .000	P= .000
15	3070	.1683	.3275	.5545	.5364	.5039
	(72)	(72)	(72)	(72)	(72)	(72)
	P=.009	P= .158	P= .005	P= .000	P= .000	P= .000
STAQUO	0067	1161	.0877	.3084	(72)	.2417

" . " is printed if a coefficient cannot be computed

11

348

Ξ

		Corre	lation Coef	ficients -	-	
	AVRS	ASGL	INCOM	PARGL	MREN	PREH
NACTN	4272	0447	.0311	.6128	.3790	.3974
	(72)	(72)	(72)	(72)	(72)	(72)
	F= .000	P= .709	P= .795	P= .000	P= .001	P= .001
EAM	3258	.0790	.1077	.4963	.4038	.4650
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .005	P= .510	P= .368	P= .000	P= .000	P= .000
FREM	3958	.0699	.2175	.5843	.5338	.5326
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .001	P= .559	P= .067	P= .000	P= .000	P= .000
PTHT	3093	.0126	.3045	.5649	.3454	.4990
	(72)	(72)	(72)	(72)	(72)	(72)
	P=.008	P= .917	P=.009	P= .000	P= .003	P= .000
AVRS	.8209	.1903	.2791	4831	4378	3664
	(71)	(71)	(71)	(71)	(71)	(71)
	F= .000	P= .112	P= .018	P= .000	P= .000	P= .002
ASGL	.5174	.6671	.5089	.1039	.0627	-2224
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .007	P= .000	P= .000	P= .388	P= .605	P= .062
INCOM	.2929	.3797	.5516	.0996	.0126	.0943
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .013	P= .001	P= .000	P= .409	P= .917	P= .434
PARGL	3844	1034	1219	.6348	.4496	.4885
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .001	P= .391	P= .311	P= .000	P= .000	P= .009
MREH	4834	0786	1186	.3483	.6791	.5118
	(71)	(71)	(71)	(71)	(71)	(71)
	(= .000	P= .515	P= .324	P= .003	P= .000	P= .000
PREM	-,4263	0909	0417	.4438	.4915	.6640
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .451	P= .730	P= .000	P= .000	P= .000
REPMD	.3590	.0738	.1898	.1033	.0184	.0766
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .002	P= .541	P= .113	P= .391	P= .879	P= .525

" . " is printed if a coefficient cannot be computed

349

-

t

	GP LVL TIME The Univers				EH VM/SP (CMS -	-
		Corre	elation Coe	fficients			
	AVRS	ASOL	INCOM	PARGL	MREM	PREW	
XSTMIN	2257 (71) P= .058	.0378 (71) P= .754	.2671 (71) P= .824	.5142 (71) P= .000	.4570 (71) P= .000	.4266 (71) P= .000	
XIDELSM	1684 (71) P= .160	.0217 (71) P= .858	.1111 (71) P= .356	.3747 (71) P= .001	.3987 (71) P= .001	.4613 (71) P= .000	
XVIS	2904 (71) P= .014	1446 (71) P= .229	.1419 (71) P= .238	.3953 (713 P= .001	.3050 (71) P= .010	.3504 (71) P= .003	
XSTAQUO	.0335 (71) P= .781	1360 (71) P= .258	.0778 (71) P= .519	.1644 (71) P= .171	.1961 (71) P= .101	.1980 (71) P= .098	
XINACTH	3776 (71) P= .001	1345 (71) P= .263	1335 (71) P= .267	.4550 (71) P= .000	.2821 (71) P= .017	.2477 (71) P= .037	
XTEAM	2820 (71) P= .017	0672 (71) P= .577	1064 (71) P= .377	.4520 (71) P= .000	.3464 (71) F= .003	.3940 (71) P= .001	
XSLFREW	4032 (71) P= .000	.0592 (71) P= .745	0293 (71) P= .809	.2902 (71) P= .014	.3311 (71) F= .005	.3944 (71) P= .001	
XOPTHT	2681 (71) P=.024	.0022 (713 P= .986	-1376 (71) P= .253	.4762 (71) P= .000	.3297 (71) P= .005	.4465 (71) P= .000	

". " is printed if a coefficient cannot be computed

11

350

-

		Corre	lation Coef	ficients	-	
	REPHD	STMIN	IDELSH	VIS	STAQUO	INACTN
AVRS	.4630	-,1704	1410	3070	0067	4272
	(72)	(72)	(72)	(72)	(72)	(72)
	P=.000	P=,152	P= .237	P* .009	P=.956	P=.000
ASGL	.2748	.2289	.1373	.1683	1161	0447
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .019	P= .053	P= .250	P= .158	P= .331	P= .709
INCOM	.3433	.4441	.2801	.3275	.0877	.0311
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .003	P= .000	P= .017	P= .085	P= .464	P= .795
PARGL	.0965	.5385	.4513	.5545	.3084	.6128
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .420	F= .000	P= .000	P= .000	P= .008	P= .000
MREN	.0649	.4369	.4658	.5364	.2323	.3790
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .588	P= .000	P= .000	P= .000	P=.050	P= .001
PREW	.1368	.5512	.5057	.5039	.2417	.3974
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .252	P= .000	P= .000	P= .000	P= .041	P= .001
REPMO	1.0000	.4392	.3001	.3109	.3684	.2475
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .	P= .000	P= .010	P= .008	P= .001	P= .036
STMIN	.4392	1.0000	.6049	.6422	.4111	.5945
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .000	P= .	P= .000	P= .090	P= .000	P= .000
IDELSM	.3001	.6049	1.0000	.6486	-6638	.4390
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .010	P= .000	P= .	P* .000	P= .000	P= .000
VIS	.3109	.6422	.6486	1.0000	.5461	.5421
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .008	P= .000	P= .000	P= .	P= .000	P= .000
STAQUO	.3684	.4111	.6635	.5461	1.0000	.4650
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .001	P= .000	P= .000	P= .000	P= .	P= .000

VM/SP CMS

19-Jul-93 GP LVL TIME 1 & 2 SUB REPT ON TRAINEE LDR BEH 10:21:36 The University of Maryland CSC IBM 3081GX

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

••

		Corre	elation Coa	fficients		
	REPHD	STMIN	I DEL SM	VIS	STAQUO	INACTN
INACTN	.2475	.5945	.4390	.5421	.4650	1.0000
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .036	P= .000	P= .000	8= .000	P= .000	P= ,
TEAM	.3721	.5317	.4998	.6352	.4471	.6618
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .001	P=.000	P=.000	P= .000	P= .000	P= .000
SLFREN	,1061	.6045	.4037	.5692	.3190	.6309
	(72)	(72)	(72)	(72)	(72)	(72)
	P= ,375	P= .000	P= .000	P= .000	P= .006	P= .000
OPTHT	.2765	.5485	.4712	.5412	.4224	.6580
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .019	P= .000	P= .000	P= .000	P= .000	P= .000
XAVRS	.3747	1535	0454	2916	.0179	4274
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .001	P= .201	P= .707	P= .014	P= .882	P= .000
XASGL	.2883	.2299	.1763	.1763	0282	1383
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .015	P= .054	P= .14[P= .141	P= .816	P= .250
XINCOM	.3505	.2261	.2260	.1236	.1238	0315
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .003	P= .058	P= .058	P= .305	P= .304	P= .794
XPARGL	0018	.2190	.2931	.3464	.1295	.3178
	(71)	(71)	(71)	(71)	(71)	(71)
	Pa .988	P= .067	P= .013	P= .003	P= .282	P= .007
XHREH	0880	-1305	.2621	.2344	.0918	.2226
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .465	P= .278	P= .027	P= .049	P= .446	P= .062
XFREN	.0208	.3487	.4029	.4828	.2164	.3757
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .863	P= .003	P= .000	P= .000	P= .070	P= .001
XREPMD	.7310	.3562	.3595	.2135	.4251	.1984
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .002	P= .002	P= .074	P= .000	P= .097

(Coefficient / (Cases) / 2-tailed sig)

" , " is printed if a coefficient cannot be computed

352

11

1.0

_

19-Jul-93 GP LVL TIME 1 8 2 SUB REPT ON TRAINEE LDR BEH 10:21:36 The University of Maryland CSC IBM 3081GX VM/SP CMS

Correlation Coefficients							
	REPHD	STMIN	IDELSM	VIS	STAQUO	INACTH	
XSTMIN	.3536	.6815	.4707	.6589	.3851	.6667	
	(71)	(71)	(71)	(71)	(71)	(71)	
	P= .002	P= .000	P= .000	P= .000	P= .001	P= .000	
XIDELSM	.1385	.3340	.5770	.4383	.4551	.2443	
	(71)	(71)	(71)	(71)	(71)	(71)	
	P= .249	P= .004	P= .000	P= .000	P= .000	P= .040	
XVIS	.2355	.3433	.4122	.6150	.4748	.4924	
	(71)	(71)	(71)	(71)	(71)	(71)	
	P= .048	P= .003	P= .000	P= .000	P= .000	P= .000	
XSTAQUO	.3820	.2770	.5621	.5010	.8349	.3329	
	(71)	(71)	(71)	(71)	(71)	(71)	
	P= .001	P= .019	P= .000	P= .000	P= .000	P= .005	
XINACTN	.1767	.2849	.2086	.3463	.2465	.7499	
	(71)	(71)	(71)	(71)	(71)	(71)	
	P= .140	P= .016	P= .081	P= .003	P= .038	P= .000	
XTEAM	.1957	.2201	.3709	.4446	.3317	.4880	
	(71)	(71)	(71)	(71)	(71)	(71)	
	P= .102	P= .065	P= .001	P= .000	P= .005	P= .000	
XSLFREW	0471	.2231	.2478	.2730	.1020	.3846	
	(71)	(713	(71)	(71)	(71)	(71)	
	P= .696	P= .061	P= .057	P= .021	P= .397	P= .001	
XOPTHT	.2839	.4255	.4012	.4620	.3450	.4906	
	(71)	(71)	(713	(71)	(71)	(71)	
	P= .016	P= .000	P= .001	P= .000	P= .003	P= .000	

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

353

.

-

u

-

••

19-Ju1-9 10:21:36	3 GP LVL TIME The Univers	ity of mary	land CSC 18		VM/SP C	MS
	TEAM	SLFREW	OPTHT	XAVRS	XASGL	XINCOM
AVRS	3258	3958	3093	.8209	.3174	.2929
	(721	(72)	(72)	(71)	(71)	(71)
	P= .005	P=.001	P= .008	P= .000	P= .007	P= .013
ASGL	.0790	.0699	.0126	.1903	.6671	.3797
	(72)	(72)	(72)	(71)	(71)	(71)
	P= .510	P=.559	P= .917	P= .112	P= .000	P= .001
INCOM	.1077	.2175	.3045	.2791	.5089	.5516
	(72)	(72)	(72)	(71)	(71)	(71)
	P= .368	P= .067	P= .009	P= .018	P= .000	P= .000
FARGL	.4963	.5843	.5649	4831	.1039	.0996
	(72)	(72)	(72)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .000	P= .388	P= .409
MREN	.4038	.5338	.3454	4378	.0627	.0126
	(72)	(72)	(72)	(71)	(71)	(71)
	P= .000	P= .000	P= .003	P= .000	P= .603	P= .917
PREN	.4650	.5326	.4990	3664	.2224	.0943
	(72)	(72)	(72)	(71)	(71)	(71)
	Pa .000	P= .000	P= .000	P= .002	P= .062	P= ,434
REPMD	.3721	.1061	.2765	.3747	.2883	.3505
	(72)	(72)	(72)	(71)	(71)	(71)
	P= .001	P= .375	P= .019	P= .001	P= .015	P= .003
STMIN	.5317	.6045	.5485	1535	.2299	.2261
	(72)	(72)	(72)	(71)	(71)	(71)
	P* .000	P= .000	P= .000	P= .201	P= .054	P= .058
IDELSM	.4998	.4037	.4712	0454	.1763	.2260
	(72)	(72)	(72)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .707	P= .141	P= .058
VIS	.6352 (72) P= .000	.5692 (72) P= .000	(72) P= .000	2916 (71) P= .014	.1763 (71) P= .141	.1236 (71) P= .305
STAQUO	.4471	.3190	,4224	.0179	0282	.1238
	(72)	(72)	(72)	(71)	(71)	(71)
	P= .000	P= .006	P= .000	P= .882	P= .816	P= .304

" . " is printed if a coefficient cannot be computed

П

354

11

-

.

0:21:30	GP LVL TIME The Univers			finients -	-	
		Corre	lation Loei	ficients -	XASGL	XINCOM
	TEAM	SLFREH	OPTHT	XAVRS		
	(Service		.6580	4274	1383	0315 (71)
NACTN	.6618	.6309 (72)	(72)	(71)	(71)	P= .794
NACTH	(72)	(72)	P= .000	P= .000	P= .250	P= .//
	P= .000	P= .000	F000			1218
		1111	. 5904	-,2883	.0661	.1218
EAM	1.0000	. 4444	(72)	(71)	(71) P= .584	P= .311
LAN	(72)	(72) P= .000	P= .000	P= .015	P= , 304	
	P= .	P= .000			.0915	.0775
		1.0000	.6272	- 4616	(71)	.0775
LFREN	(72)	(72)	(72)	(71)	P= .448	P= .521
	(/2)	P= .	P= .000	P= .000	1. 14.0	-
	P= .000			2000	.0501	.0401
	. 5904	.6272	1.0000	2899	(71)	(71)
PTHT	(72)	(72)	(72)	(71) P= .014	P= .678	P= .740
	P= .000	P= .000	P= .	P= .014		
	P000			1.0000	.2555	.3042
	2883	-,4616	2899	(71)	(71)	(/1)
AVRS	(71)	(71)	(71)	P= .	P= .032	P= .010
	P= .015	P= .000	P= .014			.6409
			.0501	.2555	1.0000	(71)
ASGL	.0661	.0915	(71)	(71)	(71)	P= .000
ASUL	(71)	(71)	P= .678	P= .032	P= .	P000
	P= .584	P= .448	F= .070			1.0000
		0775	.0401	. 3042	.6409	(71)
INCOM	.1218	.0775	(71)	(71)	(71) P= .000	P= .
THE OF	(71)	P= .521	P= .740	P= .010	P= .000	
	P= .311	F= .24*			,1028	.0479
	7/ 67	.2924	,2459	4711	(71)	.0479
PARGL	.3647	(71)	(71)	(71) P= .000	P= . 394	P= .692
	P= .002	P= .013	P= .039	P000		
			0070	5482	0663	1489
WO CLI	.2728	.2968	.2272	(71)	(71)	(71) P= .215
MREH	(71)	(71)	P= .057	P= .000	P= .583	P= .215
	P= .021	P= .012	F= .057		0/27	0091
		4767	.3268	5881	.0627	.0091
FREM	.4034	.4267 (71)	(71)	(71)	(71) P= .603	P= .940
	(71)	P= .000	P= .005	P= .000		
	P= .000	P000			.2079	.4005
	2027	.0384	.2444	. 3995	(71)	(71)
XREPMD	.2877	(71)	(71)	(71) P= .001	P= .082	P= .001
	(71) P= .015	P= .751	P= .040	A= 1001		

" . " is printed if a coefficient cannot be computed

11

355

..

10:21:37	The Univers				VM/SP (CM5
		Corre	lation Coet	ficients	-	
	TEAM	SLFREN	OPTHT	XAVRS	XASGL	XINCOM
XSTMIN	.6176	.6598	.5674	3155	.1443	.2245
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .007	P= .230	P= .060
XIDELSM	.3877	.3015	.2661	2400	.2156	.3758
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .001	P= .011	P= .025	P= .044	P= .071	F= .001
XVIS	.4965	.4559	.4568	3273	.0320	.2252
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .005	P= .791	P= .059
XSTAQUO	.4398	.2138	.2987	.0001	.0369	.1688
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .073	P= .011	P= .999	P= .760	P= .159
XINACTN	.5896	.4958	.5332	4649	0799	.0045
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .000	P= .508	P= .970
XTEAM	.6125	.3485	.4287	3257	.0933	.0392
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .003	P= .000	P= .006	P= .439	P= .745
XSLFREW	.4051	.5255	.3453	5103	.1184	.1191
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .003	P= .000	P= .325	P= .323
XOPTHT	.6216	.4422	.6460	3578	.1254	.2025
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P=.002	P= .297	P= .090

" . " is printed if a coefficient cannot be computed

II.

••

	The Univers			ficients -		
	XPARGL	XMREN	XPREM	XREPMD	XSTMIN	XIDELSM
AVRS	3844 (71) P= .001	4834 (71) P# .000	4263 (71) P= .000	.3590 (71) P= .002	-,2257 (71) P= .058	1684 (71) F= .160
ASGL	-,1034 (71) P= .391	0786 (71) P= .515	-, 109 (71) P± .451	.0738 (711 P= .541	.0378 (71) P= .754	.0217 (71) P= .858
INCOM	1219 (71) P= .311	1186 (71) P= .324	0417 (71) P= .730	.1898 (71) P= .113	.2671 (71) P= .024	.1111 (71) P= .356
PARGL	.6348 (71) P= .000	.3483 (71) P= .003	.4438 (71) P000	.1033 (71) P= .391	.5142 (71) P* .000	.3747 (71) P= .001
MREN	.4496 (71) P= .000	.6791 (71) P= .000	.4915 (71) P= .000	.0184 (71) Ps .879	.4570 (71) P= .000	.3987 (71) P= .001
PREW	.4885 (71) P= .000	.5118 (71) F= .000	.6640 (71) P= .000	.0766 (71) P= .525	.4266 (71) P= .000	.4613 (71) P= .000
REPMD	0018 (71) P= .988	0880 (71) P= .465	.0208 (71) P= .863	.7310 (71) P* .000	.3536 (71) P= .002	.1385 (71) P= .249
STMIN	.2190 (71) F= .067	.1305 (71) P= .278	.3487 (71) P= .003	.3562 (71) P= .002	.6815 (71) P# .000	.3340 (71) P= .004
IDELSM	.2931 (71) P= .013	.2621 (71) P= .027	.4029 (71) P= .000	.3595 (71) P= .002	.4707 (71) P= .000	.5770 (71) P= .000
VIS	.3464 (71) P= .003	.2344 (71) P* .049	.4828 (71) P= .000	.2135 (71) P= .074	.6589 (71) P* .000	.4383 (71) P= .000
STAQUO	.1295 (71) P= .282	.0918 (71) P= .446	.2164 (71) P= .070	.4251 (71) P= .000	.3851 (71) P= .001	.4551 (71) P# .000

" . " is printed if a coefficient cannot be computed

П

357

Ξ.

		Corre	lation Coet	fficients -		
	XPARGL	XMREN	XPREN	XREPHD	XSTMIN	XIDELSM
INACTN	.3178	.2226	.3757	.1984	.6667	.2443
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .007	P= .062	P=.001	P= .097	P= .000	P= .040
TEAM	.3647	.2728	.4034	.2877	.6176	.3877
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .002	P= .021	P= .000	P= .015	P= .000	P= .001
SLFREW	.2924	.2968	.4267	.0384	.6598	.3015
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .013	P= .012	P= .000	P= .751	P= .000	P= .011
OPTHT	.2459	.2272	.3268	.2444	.5674	.2661
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .039	P= .057	P= .005	P= .040	P= .000	P= .025
XAVRS	4711	5482	5881	.3995	3155	2400
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .001	P= .007	P= .044
XASGL	.1028	0663	.0627	.2079	.1443	.2156
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .394	P= .583	P= .603	P= .082	P= .230	P= .071
XINCOM	.0479	1489	.0091	.4005	.2245	.3758
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .692	F= .215	P= .940	P= .001	P= .060	P= .001
XPARGL	1.0000	.5294	.6435	.1275	.4170	.4621
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .	P= .000	P=.000	P= .289	P= .000	P= .000
XMREN	.5294	1.0000	.6430	0074	.3233	.4251
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .	P= .000	P= .951	P= .006	P= .000
XPREN	.6435	.6430	1.0000	.0449	.5012	.5392
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .	P= .710	P= .000	P= .000
XREFMD	.1275	0074	.0449	1.0000	.3093	.1844
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .289	P= .951	P= .710	P= .	P= .009	P= .124

.

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

358

7

11

		Corre	lation Coef	ficients -		
	XPARGL	XMREH	XPREN	XREPMD	XSTMIN	XIDELSM
KSTMIN	.4170	.3233	.5012	.3093	1.0000	.4443
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .006	P= .000	P= .009	P= .	P= .000
KIDELSM	.4621	.4251	.5392	.1844	.4443	L.0000
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .124	P= .000	P= .
XVIS	.4113	.2740	.5965	.2747	.6056	.5607
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .021	P= .000	P= .020	P= .000	P= .000
XSTAQUO	.2521	.2263	.3497	.4399	.4384	.6042
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .034	P= .058	P= .003	P= .000	P= .000	P= .000
CINACTN	.5196	.3392	.4605	.1491	.6198	.2553
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .004	P= .000	P= .214	P= .000	P= .032
TEAM	.5677	.4429	.5699	.1747	.4981	.4594
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P* .000	P= .145	P= .000	P= .000
KSLFREN	.4834	.4649	.5747	0549	.5084	.3125
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .649	P= ,000	P= .008
XOPTHT	.5409	.4787	.6034	.2816	.6752	.5300
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .017	P= .000	P= .000

" . " is printed if a coefficient cannot be computed

359

-

....

		Corre	lation Coef	ficients -			
	XVIS	XSTAQUD	XINACTN	XTEAM	XSLFREW	XOPTHT	
AVRS	2904 (71) P= .014	.0335 (71) P= .781	3776 (71) P= .001	2820 (71) P= .017	4032 (71) P=.000	2681 (71) P= .024	
ASGL	1446 (71) F= .229	1360 (71) P= .258	1345 (71) P= .263	0672 (71) P= .577	.0392 (71) P= .745	.0022 (71) P= .986	
INCOM	.1419 (71) P= .238	.0778 (71) P= .519	1335 (71) P= .267	1064 (71) P= .377	0293 (71) P= .809	.1376 (71) P= ,253	
PARGL	.3953 (71) P= .001	.1644 (71) P= .171	.4550 (717 P* .000	.4520 (71) P= .000	.2902 (71) P= .014	.4762 (71) P= .000	
MREU	.3050 (71) P= .010	.1961 (71) P= .101	.2821 (71) P= .017	.3464 (71) P= .003	.3311 (71) P= .005	.3297 { 71} P= .005	
PREW	.3504 (71) P= .003	.1980 (71) P= .098	.2477 (71) P= .037	.3940 (71) P= .001	.3944 (71) P= .001	.4465 (71) P= .000	
REPMD	.2355 (71) P= .048	.3820 (71) P= .001	.1767 (71) P140	.1957 (71) P= .102	0471 (71) P= .696	.2839 (71) P= .016	
STMIN	.3433 (71) P= .003	.2770 (71) P= .019	.2849 (71) P= .016	.2201 (71) P= .065	-2231 (71) P= .061	.4255 (71) P# .000	
IDELSM	.4122 (71) P= .000	.5621 (71) P= .000	.2086 (71) F= .081	.3709 (71) P= .001	.2478 (71) P= .037	.4012 (71) P= .001	
VIS	.6150 (71) P= .000	.5010 (71) P= .000	.3463 (71) P= .003	.4446 (71) P= .000	.2730 (71) P= .021	.4620 (71) P= .000	
STAQUO	.4748 (71) P* .000	.8349 (71) P= .000	.2465 (71) P= .038	.3317 (71) P= .005	.1020 (71) P= .397	.3450 (71) P= .003	

" . " is printed if a coefficient cannot be computed

360

-

-

....

19-Jul-93 GP LVL TIME 1 & 2 SUB REPT DN TRAINEE LDR BEH 10:21:37 The University of Maryland CSC IBM 3081GX VM/SP CMS

		Corre	lation Coef	ficients -		
	XVIS	XSTAQUO	XINACTN	XTEAM	XSLFREN	XOPTHT
INACTH	.4924	.3329	.7499	.4880	.3846	.4906
	(71)	(71)	(71)	(71)	(71)	(71)
	F= .000	P=.005	P= .000	P■ .000	P= .001	P= .000
TEAM	.4965	.4398	.5896	.6125	.4051	.6216
	(71)	(71)	(71)	(71)	(71)	(71)
	P=.000	P= .000	P= .000	Pª .000	P= .000	P= .000
SLFREW	.4559	.2138	.4958	.3485	.5255	.4422
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .073	P= .000	P= .003	P= .000	P= .000
OPTHT	.4568	.2987	.5332	.4287	.3453	.6460
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .011	P=.000	P= .000	P= .003	P= .000
XAVRS	3273	.0001	4649	3257	5103	3578
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .005	F= .999	P= .000	P= .006	P= .000	P= .002
XASGL	.0320	.0369	0799	.0933	.1184	.1254
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .791	P= .760	P= .508	P= .439	P= .325	P= .297
XINCOM	,2252	.1688	.0045	.0392	.1191	.2025
	(71)	(71)	(71)	(71)	(71)	(71)
	P= ,059	P= .159	P= .970	P= .745	P= .323	P= .090
XPARGL	.4113	.2521	.5196	,5677	.4834	.5409
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .034	P= .000	P= .000	P= .000	P= .000
XMREN	.2740	.2263	.3392	.4429	.4649	.4787
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .021	P= .058	P= .004	P= .000	P= .000	P= .000
XPREH	.5965	.3497	.4605	.5699	.5747	.6034
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .003	P= .000	P= .000	P= .000	P= .000
XREFMD	.2747	.4399	.1491	.1747	0549	.2816
	(71)	(71)	(71)	(71)	(71)	(71)
	F= .020	P= .000	P= ,214	P= .145	P= .649	P= .017

(Coefficient / (Cases) / 2-tailed sig)

", " is printed if a coefficient cannot be computed

361

-

..

0:21:37		ity of Mary Corre	lation Coef	ficients '		
	XVIS	XSTAQUO	XINACTN	XTEAM	XSLFREM	XOPTHT
STMIN	.6056	.4384	.6198	.4981	.5034	.6752
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .000	P= .000	P= .000
IDELSM	.5607	.6042	.2553	.4594	.3125	.5300
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .032	P= .000	P= .008	P= .000
VIS	1.0000	.5565	.5509	.4864	.3963	.6254
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .	P= .000	P= .000	P= .000	P= .001	P= .000
STAQUO	.5565	1.0000	.2792	.4465	.2327	.4444
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .	P= .018	P= .000	P= .051	P= .000
INACTN	.5509	.2792	1.0000	.6702	.5622	.6841
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .018	P= -	P= .000	P=.000	P= .000
TEAM	.4864	.4465	.6702	1.0000	.4459	.5967
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .	P= .000	P= .000
SLFREW	.3963	.2327	.5622	.4459	1.0000	.6145
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .001	P= .051	P= .000	P= .000	P= .	P= .000
СОРТНТ	.6254	4444	.6841	.5967	.6145	1,0000
	(711	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .000	P= .000	P= .

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

11

362

.

-

..

Appendix 5-3

Ł

Time 1/Time 2 SLQ Unit-Level

Intercorrelations

Key to Appendix 5-3 Intercorrelation Table:

Self-Leadership Behavior	SLQ		
	Time 1	(Time 2)	
Self-Leadership			
Independent Action	Indact	(Xindact)	
Efficacy Teamwork	Effic Teamwk	(Xeffic) (Xteamwk)	
Self-Reward	Sfrew	(Xsfrew)	
Self-Goal Setting	Sfql	(Xsfgl)	
Natural Rewards	Nrew	(Xmrew)	
Opportunity Thought	Opptht	(Xopptht)	
Self-Observation	Sobs	(Xsobs)	

(Table Attached)

19-Jul-93 GP LVL TIME 1 & 2 SUB REPT DN SELF-LEADERSHIP BEH 10:21:38 The University of Maryland CSC IBM 3081GX VM/SP CMS

		Corre	lation Coel	ficients		
	INDACT	EFFIC	TEAMHK	SFREW	SFGL	NREN
INDACT	1.0000	.4828	.2167	.2895	.4049	.2192
	(72)	(72)	(72)	(72)	(72)	(72)
	P# .	P= .000	P= .068	P= .014	P= .000	P= .064
EFFIC	.4828	1.0000	.0262	.1193	.1091	.1752
	(72)	(72)	(72)	(72)	(72)	(72)
	P# .000	P= .	P= .827	P= ,318	P= .362	P= .141
TEAMUK	.2167	.0262	1.0000	.1749	.2229	.1271
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .068	P= .827	P= ,	P= .142	F= .060	P= .287
SFREW	.2895	.1193	.1749	1.0000	.\$193	.5596
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .014	P= .318	P= .142	P= .	P= .872	Pª .000
SFGL	.4049	.1091	.2229	.0193	1.0000	.0536
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .000	P= .362	P= .060	P= .872	P= .	P= .655
NREW	(72) P= .064	.1752 (72) P= .141	.1271 (72) P= .287	.5596 (72) P= .000	.0536 (72) P= .655	1.0000 (72) P= .
OPPTHT	.1078	.2909	.1665	0346	.3071	.0551
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .368	P= .013	P= .162	P= .773	P= .009	P= .646
SOBS	.0755	.2091	-,1781	.0866	.1381	~.0757
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .528	P* .078	P= .134	P= .470	P= .247	P= .528
XINDACT	.7438	.3461	.1395	.1230	.3547	.0503
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .003	P= .246	P= .307	P= .002	P= .677
XEFFIC	.1509	.4968	.0952	.0099	.1544	0195
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .209	P= .000	P= .430	P= .935	P= .199	P= .872
ХТЕАМЫК	.2124	.4116	.4167	1119	.1304	1209
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .075	P= .000	P= .000	P= .353	P= .278	P= .315

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

365

11

-

..

			and the second				
		Corre	lation Coet	ficients -			
	INDACT	EFFIC	TEAMWK	SFREW	SFGL	NREW	
XSFREW	.0578 (71) P= .632	.0742 (71) P= .539	2379 (71) P= .046	.5303 (71) P= .000	1293 (71) P* .283	.3860 (71) P= .001	
XSFGL	.4093 (71) P= .000	.1794 (71) P= .134	0371 (71) P= .759	.0644 (71) P= .594	.2917 (71) P= .014	.3034 (71) P= .010	
XNREW	.1081 (71) P= .369	.1582 (71) P= .188	2262 (71) P= .058	.2289 (71) P= ,055	.0253 (71) P# .834	.4873 (/1) P= .000	
XOPPTHT	.1326 (72) P= .267	.4793 (72) P= .000	.0694 (72) P= .562	1145 (72) P= .338	.0030 (72) P= .980	.020\$ (72) P= .863	
XSOBS	.1187 (71) P= .324	.3134 (71) P= .008	1104 (71) P= .360	.0938 (71) P= .436	.0558 (71) P# .644	0193 (71) P= .873	

19-Jul-93 GP LVL TIME 1 & 2 SUB REPT ON SELF-LEADERSHIP &CH 10:21:38 The University of Maryland CSC IBM 3081GX VM/SP CMS

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

-

....

		Corre	lation Coef	ficients -	-	
	OPPTHT	SOBS	XINDACT	XEFFIC	ХТЕАМИК	XSFREH
INDACT	.1078	.0755	.7438	.1509	.2124	.0578
	(72)	(72)	(71)	(71)	(71)	(71)
	P=.368	P=.528	P= .000	P= .209	P= .075	P= .632
EFFIC	.2909	.2091	.3461	.4968	.4116	.0742
	(72)	(72)	(71)	(71)	(71)	(71)
	P=.013	P=.078	P= .003	P= .000	P= .000	P= .539
TEAMNK	.1665	1781	.1395	.0952	.4167	2379
	(72)	(72)	(71)	(71)	(71)	(71)
	P= .162	P= .134	P= .246	P= .430	P=.000	P= .046
SFREW	0346	.0866	.1230	.0099	1119	.5303
	(72)	(72)	(71)	(71)	(71)	(71)
	P=.773	P=.470	P= .307	P= .935	P= .353	P=.000
SFGL	.3071	.1381	.3547	.1544	.1304	1293
	(72)	(72)	(71)	(71)	(71)	(71)
	P=.009	P= .247	P= .002	P= .199	P=.278	P=.283
NREW	.0551	0757	.0503	0195	1209	.3860
	(72)	(72)	(71)	(71)	(71)	(71)
	P=.646	P≖.528	P=.677	P= .872	P= .315	P= .001
OPPTHT	1.0000	.1419	.2725	.4297	.2733	0955
	(73)	(72)	(71)	(71)	(71)	(71)
	P= .	P= .234	P=.021	P=.000	P=.021	P= .428
SOBS	.1419	1.0000	.1727	.1934	.0957	.2499
	(72)	(72)	(71)	(71)	(71)	(71)
	P= .234	P= .	P= .150	P= .106	P= .427	P= .036
XINDACT	.2725	.1727	1.0000	.4655	.3518	0209
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .021	P= .150	P= .	P=.000	P= .003	P= .862
XEFFIC	.4297 (71) P= .000	.1934 (71) P= .106	.4655 (71) P= .000	1.0000 (71) P= .	P= .000	0192 (71) P= .874
ХТЕАМЫК —	.2733 (71) P= .021	.0957 (71) P= .427	.3518 (71) 8= .003	.4686 (71) P=.000	 1.0000 (71) P= .	1704 (71) P=.155

". " is printed if a coefficient cannot be computed

h

367

			and the second second				
		Corre	elation Coef	ficients -	• •		
	OPPTHT	SOBS	XINDACT	XEFFIC	XTEAMUK	XSFREW	
XSFREN	0955 (71) P* .428	.2499 (71) P= .036	0209 (71) P= .362	-,0192 (71) P= .874	1704 (71) P= .155	1.0000 (71) P= .	
XSFGL	.1625 (71) P= .176	.0528 (71) F= .662	.4441 (71) P= .000	.1853 (71) P= .122	.0869 (71) P= .471	.0914 (71) P≃ .448	
XHREH	.0088 (71) P= .942	.3271 (71) P= .005	.2112 (71) P= .077	.2526 (71) P= .034	0026 (71) P= .983	.5005 (71) P= .000	
XOPPTHT	.5015 (73) P= .000	.1107 (72) P= .354	.3502 (71) P= .003	.6166 (71) P= .000	.5438 (71) P= .000	~.0048 (71) P≈ .968	
XSOBS	.1698 (71) P= .157	.4639 (71) P= .000	.2360 (71) P= .048	.3397 (71) P= .004	.2360 (71) P= .048	.4339 (71) P= .000	

19-Jul-93 GP LVL TIME 1 & 2 SUB REPT ON SELF-LEADERSHIP BEP 10:21:38 The University of Maryland CSC IBM 3081GX VM/SP CMS

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

368

-

18

19-Jul-93 GP LVL TIME 1 & 2 SUB REPT ON SELF-LEADERSHIP BEN 10:21:38 The University of Maryland CSC IBM 3081GX VM/SP CMS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
INDACT .4093 .1081 .1326 .1187 INDACT .4093 .1081 .1326 .1187 (71) (71) (71) (72) (71) $F=$.000 FF .369 $F=$.267 $F=$.324 EFFIC .1794 .1582 .4793 .3134 (71) (71) (72) (71) $F=$.134 $F=$.188 $F=$.000 $P=$.324 EFFIC .1794 .1582 .4793 .3134 (71) (71) (72) (71) $F=$.324 $P=$.388 $P=$.000 $P=$.908 TEAMUK 0371 2262 .0694 1104 (71) (71) (72) (71) (72) (71) $P=$.759 $P=$.055 $P=$.338 $P=$.436 $SF61$.9938 (71) (71) (72) (71) $P=$.014 $P=$.834 $P=$.980 $P=$.644 .2289 1145 .0938 SFGL .2917 .0253 .0030 .0558 .0515						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		XSFGL	XNREH	XOPPTHT	XSOBS	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	INDACT	(71)	(71)	(72)	.1187 (71) P= .324	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	EFFIC	(71)	.1582 (71) P= .188	(72)	(71)	
p= .594 $p=$.055 $p=$.338 $p=$.430 SFGL .2917 .0253 .0030 .0558 (71) (71) (72) (71) $p=$.014 $p=$.834 $p=$.980 $P=$.644 NREW .3034 .4873 .0208' 0193 .0193 (171) (71) (72) (71) .0193 .873 OPPTHT .1625 .0088 .5015 .1698 (71) (71) (73) (71) .942 $p=$.010 $p=$.942 $p=$.000 $p=$.157 SOBS .0528 .3271 .1107 .4639 .4639 .157 SOBS .0528 .3271 .1107 .4639 .157 SUBS .0528 .3271 .1107 .4639 (171) (171) (172) (11) .157 SUBS .0528 .3271 .1107 .4639 (171) (171) (171)	ТЕАМЫК		(71) P= .058	1 161	1104 (71) P= .360	
STOL (713) (713) (723) (713) P=.014 P=.8354 P=.980 P=.644 HREH .3034 .4873 .0208' 0193 (711) (711) (72) (711) P=.010 Pr.000 P=.863 Pr.873 0PPTHT .1625 .0088 .5015 .1698 (711) (711) (72) (711) P=.176 P=.942 P=.000 P=.157 SOBS .0528 .3271 .1107 .4639 (711) (711) (722) (711) P=.662 P=.005 P=.354 P=.000 XINDACT .4441 .2112 .3502 .2360 (711) (711) (712) (711) (712) P=.000 Pz.077 P=.003 Pr.048 XEFFIC .1853 .2526 .6166 .3397 P=.122 Pz.037 P=.000 P=.004 P=.004 YEAMWK .0869 0026 .5438 .22.0 XTE	SFREN	(71)	.2289 (71) P= .055	(72)	(71)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SFGL	.2917 (71) P= .014	(71)	1 721	(71)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NREN	(71)		(72)	C 71)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OPPTHT	(71)	(71)	(73)	(71)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SOBS	(71)	(71)	(72)	(71)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XINDACT	(71)	(71)	(71)	(71)	
(71) (71) (71) (71) (71)	XEFFIC	(71)	(71)	(71)	(71)	
	ХТЕАМЫК	(71)	(71)	(71)	(71)	

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

11

....

19-Jul-93	GF LVL TIME 1 8 2	SUB REPT	ON SELF-LEADERSHIP	BEH
10:21:38	The University of	Maryland	CSC IBM 3081GX	VM/SP CMS

...

		Corre	lation Coef	ficients	-
	XSFGL	XNREM	XOPPTHT	XSOBS	
XSFREW	.0914 (71) P= .448	.5005 (71) P= .000	0048 (71) P= .968	.4339 (71) P= .000	
XSFGL	1.0000 (71) P= .	.2793 (71) P= .018	.2580 (71) P= .030	.2009 (71) P= .093	
XNREW	.2793 (71) P= .018	1.0000 (71) P= .	.1285 (71) P= .286	.4527 (71) P= .000	
XOPPTHT	.2580 (71) P= .030	.1285 (71) P= .286	1.0000 (73) P= .	.3535 (71) P= .002	
XSOBS	.2009 (71) P= .093	.4527 (71) P= .000	.3535 (71) P= .002	1.0000 (71) P= -	

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

370

-

..

and the second sec

Appendix 5-4 Time 1/Time 2 CBQ Unit-Level Intercorrelations

.

Key	to	Appendix	5-4	Intercorrelation	Table:
-----	----	----------	-----	------------------	--------

III. Citizenship Behavior	CBQ		
	Time 1	(Time 2)	
Organizational Citizenship			
Interpersonal Support Courtesy Civic Virtue (News)	Intsup Ctsy Cvnws	(Xintsup) (Xctsy) (Xcvnws)	
Counterproductive Behavior			
Unreliability Complaining	Unrel Comp	(Xunrel) (Xcomp)	

(Table Attached)

19-Ju1-93 10:21:55	GP LVL TIME The Univers	1 8 Z SUB ity of Mary	REPT ON COL	LEAGUE OCB	VH/SP C	Page	4
		Corre	lation Coef	ficients -			
	INTSUP	CTSY	CVNWS	UNREL	COMP	XINTSUP	
INTSUP	1.0000 (72) P= .	.7463 (72) P= .000	,3270 (72) P= .005	3974 (72) P= .001	5683 (72) P= .000	.7492 (71) P= .000	
CTSY	.7463 (72) P= .000	1.0000 (72) P= .	.4486 (72) P= .000	4613 (72) P= .000	6092 (72) P= .000	.5504 (71) P= .000	
CVNHS	.3270 (72) P= .005	.4486 (72) P= .000	1.0000 (72) P= ,	3689 (72) P= .001	4329 (72) P= .000	.2650 (71) P= .026	
UNREL	3974 (72) P= .001	4613 (72) P= .000	3689 (72) P= .001	1.0000 (72) P= .	.5065 (72) P= .000	1855 (71) P= .121	
COMP	5683 (72) P=.000	6092 (72) P= .000	4329 (72) P= .000	.5065 (72) P= .000	1.0000 (72) P= .	2775 (71) P= .019	
XINTSUP	.7492 (71) P= .000	.5504 (71) P= .000	.2650 (71) P= .026	1855 (71) P= .121	2775 (71) P= .019	1.0000 (71) P= .	
XCTSY	.6041 (71) P= .000	.5726 (71) P= .000	.3275 (71) P= .005	3302 (71) P= .005	3763 (71) P= .001	.6729 (71) P= .000	
XCVNWS	.390D (71) P= .001	,3992 (71) P= .001	.3890 (71) P= .001	1717 (71) P= .152	3011 (71) P= .011	.4864 (71) P= .000	
XUNREL	4287 (71) P= .000	4337 (71) P= .000	2397 (71) P= .044	.6186 (71) P= .000	.4454 (71) P= .000	4681 (71) P= .000	
XCOMP	4475 (71) P= .000	6052 (71) P= .000	3097 (71) F= .009	.2248 (71) P= .039	.5037 (71) P= .000	5358 (71) P= .000	

" . " is printed if a coefficient cannot be computed

373

11

n

		Fage	5
VM/SP	CHS		

19-Jul-93 GP LVL TIME I & 2 SUB REPT ON COLLEAGUE OCB 10:21:35 The University of Maryland CSC IBM 3081GX

- - Correlation Coefficients - -

		corre	Terroit cost	
	XCTSY	XCVNHS	XUNREL	XCOMP
INTSUP	.6041	.3900	4287	4475
	(71)	(71)	(71)	(71)
	P= ,000	P= .001	P= .000	P= .000
CTSY	.5726	.3992	4337	605Z
	(713	(71)	(71)	(71)
	P= .000	P= .001	P= .000	P= .000
CVNWS	.3275	.3890	2397	3097
	(71)	(71)	(71)	(71)
	P= .005	P= .001	P= .044	P= .009
UNREL	3302	1717	.6186	.2248
	(71)	(71)	(71)	(71)
	P= .005	P= .152	P= .000	P= .059
COMP	3763	3011	.4454	.5037
	(71)	(71)	(71)	(71)
	P= .001	P= .011	P= .000	P= .000
XINTSUP	.6729	.4864	4681	5358
	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .000
XCTSY	1.0000	.4302	5033	5566
	(71)	(71)	(71)	(71)
	P= .	P= .000	P= .000	P= .000
XCVIIWS	.4302	1.0000	2959	4422
	(71)	(71)	(71)	(71)
	P= .000	P= .	P= .012	P= .000
XUNREL	5033	-,2959	1.0000	.5148
	(71)	(71)	(71)	(71)
	P= .000	P= ,012	P= .	P= .000
XCOMP	5566	4422	.5148	1.0000
	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .

_(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

374

-

44

Appendix 5-5

-

Time 1/Time 2 Job Satisfaction

Individual-Level Intercorrelations

Key to Appendix 5-5 Intercorrelation Table:

Job Satisfaction		
Time 1	(Time 2)	
Growth	(XGrowth)	
Pay	(XPay)	
Jobsec	(XJobsec)	
Supvsn	(XSupvsn)	
Social	(XSocial)	
	Time 1 Growth Pay Jobsec Supvsn	

(Table Attached)

		Corre	ation Coef	ficients -	-	
	GROWTH	PAY	JOBSEC	SUPVSN	SOCIAL	XGROWTH
GROWTH	1.0000	.3361	.4020	.4797	.3778	0660
	(387)	(387)	(387)	(387)	(387)	(302)
	P= .	P= .000	P= .000	P= .000	P=.000	P= .253
РАҮ	.3361	1.0000	.2688	.3640	.2281	.0659
	(387)	(387)	(387)	(387)	(387)	(302)
	P=.000	P= .	P= .000	P≖.000	P= .000	P= .254
JOBSEC	.4020	.2688	1.0000	.2927	.2090	.0110
	(387)	(387)	(387)	(387)	(387)	(302)
	P= .000	P= .000	P= .	P= .000	P= .000	P= .849
SUPVSN	.4797	.3640	.2927	1.0000	.3358	0359
	(387)	(387)	(387)	(387)	(387)	(302)
	P=.000	P=.000	P= .000	P= ,	P=.000	P= .534
SOCIAL	.3778	.2281	.2090	.3358	1.0000	1839
	(387)	(387)	(387)	(387)	(387)	(302)
	P=.000	F= .000	P= .000	P= .000	P= .	P= .001
XGROWTH	0660	.0659	.0110	0359	1839	1.0000
	(302)	(302)	(302)	(302)	(302)	(306)
	P= .253	P= .254	P= .849	P= .534	P= .001	P= .
XPAY	1000	0248	.0067	-,0293	0636	.3169
	(302)	(302)	(302)	(302)	(302)	(306)
	P= .083	P= .668	P= .907	P= .612	P≖.270	P= .000
XJOBSEC	0585	.0269	0521	.0190	0849	.3508
	(302)	(302)	(302)	(302)	(302)	(306)
	P= .311	P= .641	P= .367	P= .742	P= .141	P= .000
XSUPVSN	0295	.0150	0230	0348	0102	.5024
	(302)	(302)	(302)	(302)	(302)	(306)
	P= .609	P= .795	P= .690	P= .546	P= .860	P= .000
XSOCIAL	0859	.0891	0448	.0709	0193	.4467
	(302)	(302)	(302)	(302)	(302)	(306)
	P= .136	P= .122	P= .438	P= .219	P= .738	P= .000

4

. ...

_(Coefficient / (Cases) / 2-tailed sig)

" , " is printed if a coefficient cannot be computed

11

377

-

19-Jul-93 ALL IND LVL JOB SATISFACTION TIME 1 AND TIME 2 VARIABLES 10:22:04 The University of Maryland CSC IBM 3081GX VM/SP CMS

		Corre	lation Coef	ficient s - -
	XPAY	XJOBSEC	XSUPVSN	XSOCIAL
GROWTH	1000	0585	0295	0859
	(302)	(302)	(302)	(302)
	P= .083	P= .311	P= .609	P= .136
PAY	0248	.0269	.0150	.0891
	(302)	(302)	(302)	(302)
	P= .668	P= .641	P= .795	P= .122
JOBSEC	.0067	0521	0230	0448
	(302)	(302)	(302)	(302)
	P= .907	P= .367	P= ,690	P= .438
SUPVSN	0293	.0190	0348	.0709
	(302)	(302)	(302)	(302)
	P= .612	P= .742	P= .546	P= .219
SOCIAL	0636	0849	0102	0193
	(302)	(302)	(302)	(302)
	P= .270	P= .141	P= .860	P= .738
XGROWTH	.3169	.3508	.5024	.4467
	(306)	(306)	(306)	(306)
	P= .000	P= .000	P= .000	P= .000
XPAY	1.0000	.2792	.2835	.1519
	(306)	(306)	(306)	(306)
	P= ,	P= .000	P= .000	P= .008
XJOBSEC	.2792	1.0000	.2931	.2601
	(306)	(306)	(306)	(306)
	P= .000	P= .	P= .000	P= .000
XSUPVSN	.2835	.2931	1.0000	.3670
	(306)	(306)	(306)	(306)
	P= .000	P= .000	P= .	P=.000
XSOCIAL	.1519	.2601	.3670	1.0000
	(306)	(306)	(306)	(306)
	P= .008	P= .000	P= .000	P= .

_(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

378

-

...

×

Appendix 5-6 Time 1/Time 2 Performance and Effectiveness Unit-Level Intercorrelations Key to Appendix 5-6 Intercorrelation Table:

Ма	nager/Self-/Sub	oord Report
Performance/Effectiveness	Time 1	(Time 2)
Performance (Supervising Mana	ger)	
Overall	Toteff	(Xtoteff)
Output	Output	(Xoutput)
Interpersonal	Inteff	(Xinteff)
Change	Chngeff	(Xchngeff)
Organizing and Planning	Orgpln	(Xorgpln)
Effectiveness (Self)	Slfperf	(Xslfperf)
Effectiveness (Subordinate)	Subperf	(Xsubperf)

ġ

1

.

(Table Attached)

19-Ju1-93 10:21:42	GP LVL TIME The Univers	1 & Z REPT	S ON TRAINE	E PERF	VM/SP	CMS
		Corre	lation Coef	ficients -	-	
	TOTEFF	OUTPUT	INTEFF	CHNGEFF	ORGPLN	SLFPERF
TOTEFF	1.0000	.7329	.8508	.7333	.6441	1090
	(70)	(70)	(70)	(70)	(70)	(31)
	P= .	P= .000	P= .000	P= .000	P= .000	P= .560
OUTPUT	.7329	1.0000	.4338	.3132	.4543	.0791
	(70)	(70)	(70)	(70)	(70)	(31)
	P= .000	P= .	P= .000	P= .008	P= .000	P= .672
INTEFF	.8508	.4338	1.0000	.5182	.3566	2927
	(70)	(70)	(70)	(70)	(70)	(31)
	P= .000	P= .000	P= .	P= .000	P* .002	P= .110
CHNGEFF	.7333	.3132	.5182	1.0000	.4497	0771
	(70)	(70)	(70)	(70)	(70)	(31)
	P= .000	P= .008	P= .000	P= .	P= .000	P= .680
ORGPLN	.6441	.4543	.3566	.4497	1.0000	.1030
	(70)	(70)	(70)	(70)	(70)	(31)
	P= .000	P= .000	P= .002	P= .000	P= .	P= .581
SLFPERF	1090	.0791	2927	0771	.1030	1.0000
	(31)	(31)	(31)	(31)	(31)	(31)
	P= .560	P= .672	P= .110	P= .680	P581	P= .
SUBPERF	.1398	.2594	.0315	.0430	.1589	1139
	(69)	(69)	(69)	(69)	(69)	(30)
	P= .252	P= .031	P= .797	P= .726	P= .192	P= .549
XTOTEFF	.6949	.5763	.5981	.4859	.3587	.0396
	(61)	(61)	(61)	(61)	(61)	(27)
	P= .000	P= .000	P= .000	P= .000	P= .005	P= .845
XOUTPUT	.5081	.6375	.2800	.2835	.3688	.1787
	(61)	(61)	(61)	(61)	(61)	(27)
	P= .000	P= .000	P= .029	P= .027	P= .003	P= .373
XINTEFF	.5276	.2677	.6449	.3237	.1928	1206
	(61)	(61)	(61)	(61)	(61)	(27)
	P= .000	P= .037	P= .000	P= .011	P= .137	P= .549
XCHNGEFF	.5490	.3739	.4448	.5375	.2335	.2299
	(61)	(61)	(61)	(61)	(61)	(27)
	P= .000	P= .003	P= .000	P= .000	P= .070	P= .249

-

1915

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

381

.

H

-

...

19-Jul-93 10:21:42	GP LVL TIME The Univers	1 & 2 REPT	S ON TRAINE	E PERF M 3081GX	VM/SP	CHS
	*******	Corre	lation Coef	ficients - CHNGEFF	- ORGPLN	SLFPERF
XORGPLN	TOTEFF .4864	.5322		.3031	.3155	3026

AUNOI CH	(61)	(61)	(61)	(61)	(61)	(27)
	P= .000	P= .000	P= .010	P= .018	P= .013	P= .125
XSLFPERF	0393	.0849	0001	1475	1142	.5512
	(57)	(57)	(57)	(57)	(57)	(23)
	P= .772	P= .530	P= .999	P= .273	P= .398	P= .006
XSUBPERF	.0282	.1306	1193	.0638	.1657	0478
	(68)	(68)	(68)	(68)	(68)	(29)
	P= .820	P= .288	P= .333	P= .605	P= .177	P= .806

" . " is printed if a coefficient cannot be computed

	SUBPERF	XTOTEFF	XOUTPUT	XINTEFF	XCHNGEFF	XORGPLN
TOTEFF	.1398	.6949	.5081	.5276	.5490	.4864
	(69)	(61)	(61)	(61)	(61)	(61)
	P= .252	P= .000	P= .000	P= .000	P= .000	P= .000
OUTPUT	.2594	.5763	.6375	.2677	.3739	.5322
	(69)	(61)	(61)	(61)	(61)	(61)
	P= .031	P= .000	P= .000	P= .037	P= .003	P= .000
INTEFF	.0315	.5981	.2800	.6449	.4448	.3295
	(69)	(61)	(61)	(61)	(61)	(61)
	P= .797	P= .000	F= .029	P= .000	P= .000	P= .010
CHNGEFF	.0430	.4859	.2835	.3237	.5375	.3031
	(69)	(61)	(61)	(61)	(61)	(61)
	P= .726	P= .000	P= .027	P= .011	P= .000	P= .018
ORGPLN	.1589	.3587	.3688	.1928	.2335	.3155
	(69)	(61)	(61)	(61)	(61)	(61)
	P= .192	P= .005	P= .003	P= .137	P= .070	P= .013
SLFPERF	1139	.0396	.1787	1206	.2299	3026
	(30)	(27)	(27)	(27)	(27)	(27)
	P= .549	P= .845	P= .373	P= .549	P= .249	P= .125

(Coefficient / (Cases) / 2-tailed sig)

", " is printed if a coefficient cannot be computed

Ξ.

-

П

		Correl	ation Coef	ficients -	-	
	SUBPERF	XTOTEFF	XOUTPUT	XINTEFF	XCHNGEFF	XORGPLN
SUBPERF	1.0000	.1417	.2092	.0543	.0408	.1618
	(72)	(60)	(60)	(60)	(60)	(60)
	P= .	P= .280	P= .109	P= .680	P= .757	P= .217
XTOTEFF	.1417	1.0000	.7771	.7763	.8282	.5211
	(60)	(61)	(61)	(61)	(61)	(61)
	P= .280	P= .	P= .000	P= .000	P= .000	P= .000
XOUTPUT	.2092	.7771	1.0000	.3221	.5892	.3814
	(60)	(61)	(61)	(61)	(61)	(61)
	P= .109	P= .000	P= .	P= .011	P= .000	P= .002
XINTEFF	.0543	.7763	.3221	1.0000	.5217	.2334
	(60)	(61)	(61)	(61)	(61)	(61)
	P= .680	P= .000	P= .011	P= .	P= .000	P= .070
XCHNGEFF	.0408	.8282	.5892	.5217	1.0000	.2801
	(60)	(61)	(61)	(61)	(61)	(61)
	P= .757	P= .000	P= .000	P= .000	P= .	P= .029
XORGPLN	.1618	.5211	.3814	.2334	.2801	1.0000
	(60)	(61)	(61)	(61)	(61)	(61)
	P= .217	P= .000	P= .002	P= .070	P= .029	P= .
XSLFPERF	0811	.0968	.1128	.1330	.0678	1450
	(59)	(51)	(51)	(51)	(51)	(51)
	P= ,541	P= .499	P= .430	P= .352	P= .636	P= .310
XSUBPERF	.7583	.1376	.1572	.1131	.0422	.1116
	(71)	(59)	(59)	(59)	(59)	(59)
	P= .000	P= .299	P= .234	P= .394	P= .751	P= .400

". " is printed if a coefficient cannot be computed

383

3

-

Ξ

...

19-Jul-93 GP LVL TIME 1 & 2 REPTS ON TRAINEE PERF 10:21:42 The University of Maryland CSC IBM 3081GX

Correlation Coefficients -	
----------------------------	--

VM/SP CHS

	XSLFPERF	XSUBPERF
TOTEFF	0393 (57) P= .772	.0282 (68) P= .820
OUTPUT	.0849 (57) P= .530	.1306 ('68) P= .288
INTEFF	0001 (57) P= .999	1193 (68) P= .333
CHNGEFF	1475 (57) P= .273	.0638 (68) P= .605
ORGPLH	1142 (57) P= .398	.1657 (68) P= .177
SLFPERF	.5512 (23) P= .006	0478 (29) P= .806
SUBPERF	0811 (59) P= .591	.7583 (71) P= .000
XTOTEFF	.0968 (51) P= .499	.1376 (59) P= .299
XOUTPUT	.1128 (51) P= .430	.1572 (59) P= .254
XINTEFF	.1530 (51) P= .352	.1131 (59) P= .394
XCHIIGEFF	.0678 (51) P= .636	.0422 (59) P= .751

(Coefficient / (Cases) / 2-tailed sig)

" , " is printed if a coefficient cannot be computed

19-Jul-93 GP LVL TIME 1 & 2 REPTS ON TRAINEE PERF 10:21:42 The University of Maryland CSC 1BM 3081GX VM/SF CMS

-

- - Correlation Coefficients - -

.

XSLFPERF XSUBPERF

XORGPLN	1450	.1116
	(51)	(59)
	P= .310	P= .400
XSLFPERF	1.0000	1187
	(60)	(58)
	P= .	P= .375
XSUBPERF	~.1187	1.0000
	(58)	(71)
	P= .375	P= ,

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

-

7

Appendix 5-7 Time 1/Time 2 Unit-Level Intercorrelations (All) ł

Key	to	Appendix	5-7	Intercorrelation	Table:
-----	----	----------	-----	------------------	--------

Leader Behavior	LSQI	I-sub	LSQII	train
Cluster				
Dimension	Time 1	(Time 2)	Time 1	(Time 2)
Strongman				
Aversive Behavior	Avrs	(Xavrs)	Averse	(Xaverse)
Assigned Goals Inst. and Command	Asgl Incom	(Xasgl) (Xincom)	Asgoal Inscom	(Xasgoal) (Xinscom)
Transactor				
Participative Goals	Pargl	(Xpargl)	Ptgoal	(Xptgoal)
Contingent Material Reward	Hrew	(Xmrew)	Matrew	(Xmatrew)
Contingent Personal Reward	Prew	(Xprew)	Perrew	(Xperrew)
Contingent Reprimand	Repind	(Xrepmd)	Crepnd	(Xcrepnd)
Visionary Hero				
Challenge to the Status Quo	Staquo	(Xstaguo)	Stquo	(Xstquo)
Vision	Vis	(Xvis)	Vision	(XVision)
ldealism	Idelsm	(Xidelsm)	ldism	(Xidlsm)
Stimulation and Inspiration	Stmin	(Xstmin)	Stmins	(Xstmins)
SuperLeader				
Independent Action	Inactn	(Xinactn)	Indactn	(Xindactn
Teamwork	Team	(Xteam)	Tmuk	(Xtmwk)
Self-Reward Opportunity Thought	Slfrew Optht	(Xslfrew) (Xoptht)	Snrew Opptht	(Xsnrew) (Xopptht)
II. Self-Leadership Behavior		SLO		
	Time 1	(Time 2)		
Self-Leadership				
Independent Action	Indact	(Xindact)		
Efficacy	Effic	(Xeffic)		
Teamwork	Teamwk	(Xteamwk)		
Self-Reward	Sfrew	(Xsfrew)		
Self-Goal Setting	Sfgl	(Xsfgl)		
Natural Rewards	Nrew	(Xmrew)		
Opportunity Thought Self-Observation	Opptht Sobs	(Xopptht)		
Set 1-Observation	SODS	(Xsobs)		

	C	BQ		
	Time 1	(Time)	2)	
Organizational Citizenship				
Interpersonal Support Courtesy Civic Virtue (News)	Intsup Ctsy Cvnws	(Xints) (Xctsy (Xcvnw)	
Counterproductive Behavior				
Unreliability Complaining	Unrel Comp	(Xunre (Xcomp		
IV. Trainee Performance	Manager/Se	ord Report		
	Time	1 (Time 2)	
Performance (Supervising Man	адег)			
rei tornance (oupervising nam				
Overall	Totef	f (Xtoteff)	
			Xtoteff) Xoutput)	
Overall	Totef	t (
Overall Output	Totef Outpu	t (f (Xoutput)	
Overall Output Interpersonal	Totef Outpu Intef	t (f (ff (Xoutput) Xinteff)	
Overall Output Interpersonal Change	Totef Outpu Intef Chnge	t (f (ff (n (Xoutput) Xinteff) Xchngeff)	
Overall Dutput Interpersonal Change Organizing and Planning	Totef Outpu Intef Chnge Orgpl	t (f (ff (n (rf (Xoutput) Xinteff) Xchngeff) Xorgpln)	
Overall Output Interpersonal Change Organizing and Planning Effectiveness (Self)	Totef Outpu Intef Chnge Orgpl Sifpe Subpe	t (f (ff (n (rf (Xoutput) Xinteff) Xchngeff) Xorgpln) Xslfperf)	
Overall Dutput Interpersonal Change Organizing and Planning Effectiveness (Self) Effectiveness (Subordinate)	Totef Outpu Intef Chnge Orgpl Sifpe Subpe	t (f (ff (n (rf (Xoutput) Xinteff) Xchngeff) Xorgpln) Xslfperf) Xsubperf)	

(Table Attached)

1000

ъ

VM/SP CMS

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:44 The University of Maryland CSC IBM 3081GX

 -					
	Correlation	Coefficients	-	-	

		Corre	lation Loet	Ticlents -		
	AVRS	ASGL	INCOM	PARGL	MREN	FREW
AVRS	1.0000	.2589	.2599	4835	4626	3752
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .	P= .028	P= .027	P= .000	P= .000	P= .001
ASGL	.2589	1.0000	.5441	.1025	.0628	.1564
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .028	P= .	P= .000	P= .392	P= .600	P= .190
INCOM	.2599	.5441	1.0000	.1171	.0853	.2306
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .027	P= .000	P= .	P= .327	P= .476	P= .051
FARGL	4835	.1025	.1171	1.0000	.4911	.5752
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .000	P= .392	P= .327	P= .	P= .000	P= .000
MREW	4626	.0628	.0853	.4911	1.0000	.6448
	(72)	(72)	(72)	(72)	(72)	(72)
	F= .000	P= .600	P= .476	P= .000	P= .	P= .000
PREW	3752	.1564	.2306	.5752	.6448	1.0000
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .001	P= .190	P= .051	P=.000	P= .000	P= .
REPMD	.4630 (72) P= .000	.2748 (72) P= .019	.3433 (72) P= .003	.0965 (72) P= .420	.0649 (72) P= .588	(72) P= ,252
STAQUO	0067	1161	.0877	.3084	.2323	.2417
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .956	P# .331	P= .464	P= .008	P= .050	P= .041
VIS	3070	.1683	.3275	.5545	-5364	.5039
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .009	Pe .158	P= .005	P= .000	P= .000	P= .000
IDELSM	1410	.1373	.2801	.4513	.4658	.5057
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .237	P= .250	P= .017	P= .000	P= .000	P= .000
STMIN	-,1704	.2289	.4441	.5385	.4369	.5512
	(72)	(72)	(72)	(72)	(72)	(72)
	P= ,152	P= .053	P= .000	P= .000	P= .000	P= .000

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

7

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:44 The University of Maryland CSC IBM 3081GX

1000

SC IBM 3081GX VM/SP CMS

		Corre	elation Coet	fficients -		
	AVRS	ASGL	INCOM	PARGL	MREN	PREW
INACTN	4272	0447	.0311	.6128	.3790	.3974
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .000	P= .709	P= .795	F= .000	P= .001	P= .001
TEAM	3258	.0790	.1077	.4963	.4038	.4650
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .005	P= .510	P= .368	F= .000	P=.000	P≠.000
SLFREW	3958	.0699	.2175	.5843	, 5338	.5326
	(72)	(72)	(72)	(72)	(72)	(72)
	F= .001	P= .559	P= .067	P= .000	P= ,000	P= .000
OPTHT	3093	.0126	.3045	.5649	.3454	.4990
	(72)	(72)	(72)	(72)	(72)	(72)
	P=.008	P= .917	P= .009	P=.000	P= .003	P= .000
INDACT	4512	0641	4266	.2606	.2962	.1079
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .000	P= .593	P=.000	P= .027	P= .012	P= .367
EFFIC	0285	.0539	1522	0998	.1000	.0450
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .812	P= .653	P= .202	P= .404	P= .403	P= .707
TEAMWK	1575	0454	0028	.2974	.1520	,0282
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .187	P= .705	P= .981	P= .011	P= .203	P= ,814
SFREW	1459	.2179	.0083	.0397	.2691	.2574
	(72)	(72)	(72)	(72)	(72)	(72)
	P=.221	P= .066	P= .945	P= .740	P= ,022	F= .029
SFGL	3857	3252	3028	.3048	.1323	.0268
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .001	P= .005	P= .010	P= .009	P= .268	P= .823
NREN	1703	.2356	0980	0420	.1633	.0061
	(72)	(72)	(72)	(72)	(72)	(72)
	P=.153	P= .046	P= .413	P= .726	P= .170	P= .960
0PPTHT -	1294 (72) P= .279	0716 (72) P= .550	.1760 (72) P= .139	.2459 (72) P=.037	.0378 (72) P=.753	.1617 (72) P= .175

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

390

..

-

19-Jul-93	ALL	GP LVL TIME 1	AND TIME	2 VARIABLES
10:21:44	The	University of	Maryland	CSC IBM 3081GX

VM/SP CHS

.*

Correlation Coefficients - -- -MREN PREH PARGL AVRS ASGL INCOM .0594 (72) P= .620 .1484 (72) P= .214 .0106 (72) P= .929 -.0687 (72) P# .566 .2008 .0458 SOBS (72) P= .091 (72) P= .702 .2062 (72) P= .082 .1604 .0084 (72) F= .944 .1535 (72) P= .198 .1649 -.1169 (72) P= .328 INTSUP (72) P= .166 (72) P= .178 .2171 (72) P= .067 -.1393 (72) P= .243 .0142 (72) P= .906 .2217 (72) P= .061 .1455 .1442 CTSY (72) P= .223 (72) P= ,227 .2882 (72) P= .014 .4022 (72) P= .000 .2503 -.2894 (72) P= .014 .1660 (72) P= .163 .0886 CVNWS (72) P= .034 (72) P= .459 -.2969 (72) P= .011 -.2488 (72) P= .035 -.2868 .1717 (72) P= .149 -.1592 (72) P= .182 -.1820 UNREL (72) P= .015 (72) P= .126 -.3704 (72) P= .001 -. 5322 .1986 (72) P= .094 -.0210 (72) P= .861 -.1369 (72) P= .252 -. 3869 COMP (72) P= .001 (72) P= .004 .0089 .0959 .2147 (69) P= .076 -.1794 .0404 -. 0656 TOTEFF (69) P= .942 (69) P= .592 69) (69) P= .140 (69) P= .742 P= .433 .0216 .0511 (69) P= .677 .1988 .0389 (69) P= .751 -.0136 .1528 OUTPUT (69) P= .912 (69) P= .210 (69) P= .860 (69) P= .101 .0216 (69) P= .860 -. 0281 -.0945 .1897 -.2260 (69) P= .062 .0833 INTEFF (69) P= .440 (69) P= .819 (69) P= .118 C 691 P. 496 .0381 (69) P= .756 .0571 .0916 -. 0967 -.0068 -.2802 CHNGEFF (69) P= .641 (69) P= .429 (69) P= .956 (69) P= .454 (69) P= .020 .1160 (69) P= .343 .0116 -.0480 .1451 -.0420 .0382 ORGPLN (69) P= ,924 (69) P= .234 (69) P= .755 (69) F= .732 69)

P= .696

(Coefficient / (Cases) / 2-tailed sig)

", " is printed if a coefficient cannot be computed

11

Ξ

....

19-Jul-93 ALL OF LVL TIME 1 AND TIME 2 VARIABLES 10:21:44 The University of Maryland CSC IBM 30816X

- - Correlation Coefficients - -

VM/SP CMS

	AVRS	ASGL	INCOM	PARGL	MREW	PREW
SLFPERF	.2224 (30) P= .237	1648 (30) P= .384	0762 (30) P= .689	1827 (30) P= .334	0508 (30) P= .790	0208 (30) P= .913
SUBPERF	4722 (72) P= .000	.1167 (72) P=.329	.3111 (72) P= .008	.7009 (72) P= .000	.5545 (72) P= .000	.5784 (72) P= .000
DESIRE	0341 (72) P= .776	1693 (72) P= .155	4483 (72) P= .000	1725 (72) P= .147	.0439 (72) P= .714	2046 (72) P= .085
XAVRS	.8209 (71) P= .000	.1903 (71) P= .112	.2791 (71) P= .018	4831 (71) P= .000	4378 (71) P= .000	3664 (71) P= .002
XASGL	.3174 (71) P= .007	.6671 (71) P= .000	.5089 (71) P= .000	.1039 (71) P= .388	.0627 (71) P= .603	.2224 (71) P= .062
XINCOM	.2929 (71) P= .013	.3797 (71) P= .001	.5516 (71) P= .000	.0996 (713 P= ,409	.0126 (71) P= .917	.0943 (71) P= .434
XFARGL	3844 (71) P= .001	1034 (71) P= .391	1219 (71) P= .311	.6348 (71) P= .000	.4496 (71) P= .000	.4885 (71) P= .000
XMREN	4834 (71) P= .000	0786 (71) P= .515	1186 (71) P= .324	.3483 (71) P= .003	.6791 (71) P= .000	.5118 (71) P= .000
XPREN	4263 (71) P= .000	0909 (71) P= .451	0417 (71) P= .730	.4438 (71) P= .000	.4915 (71) P= .000	.6640 (71) P= .000
XREPMD	.3590 (71) P= .002	.0738 (71) P= .541	.1898 (71) P= .113	.1033 (71) P= .391	.0184 (71) P= .879	.0766 (71) P= .525
XSTAQUO -	.0335 (71) P= .781	1360 (71) P= .258	.0778 (71) P= .519	.1644 (71) P= .171	.1961 (713 P= .101	.1980 (71) P= .098

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

392

1

...

	The Univers		lation Coef		VM/SP C	
	AVRS	ASGL	INCOM	PARGL	MREN	PREN
XVIS	2904	1446	.1419	.3953	.3050	.3504
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .014	P= .229	P= .238	P= .001	P= .010	P≒ .003
XIDELSM	1684	.0217	.1111	.3747	.3987	.4613
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .160	P= .858	P= .356	P= .001	P= .001	P= .000
XSTMIN	2257	.0378	.2671	.5142	.4570	.4266
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .058	P= .754	P= .024	P= .000	P= .000	P= .000
XINACTN	3776	1345	1335	.4550	.2821	.2477
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .001	P= .263	P= .267	P= .000	P= .017	P= .037
XTEAM	2820	0672	1064	.4520	.3464	.3940
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .017	P= .577	P= .377	P= .000	P= .003	P= .001
XSLFREN	4032	.0392	0293	.2902	.3311	.3944
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .745	F= .809	P= .014	P= .005	P= .001
XOPTHT	2681	.0022	.1376	.4762	.3297	.4465
	(71)	(71)	(71)	(71)	(71)	(71)
	F= .024	P= .986	P= .253	P= .000	P= .005	P= .000
XINDACT	3602	~.1591	3146	.2878	.1838	.1364
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .002	P= .185	P= .008	P= .015	P= .125	P= .257
XEFFIC	.1028	.0060	.0690	-1612	0231	.1879
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .394	P= .960	P= .567	P= .179	P= .848	P= .117
XTEAMWK	1104	1274	0835	.1763	.0620	-1551
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .360	P= .290	P= .489	P= .141	P= .607	P= .197
XSFREW	.0192	.0674	0158	2235	.0123	.1542
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .874	P= .576	P= .896	P=.061	P= .919	P= .199

" , " is printed if a coefficient cannot be computed

-

..

		Corre	TIME 2 VARI land CSC IB	ficients -	VM/SP	city
	AVRS	ASGL	INCOM	PARGI	North	
XSFGL	3279	1147		THUCK	MREH	FREM
	(71)	(71)	2244	.1195	. 1661	
	P= .005	P= .341	(71) P= .060	C 715	(71)	.0729
XNREH				P= .321	P= .166	(71) P= 566
	1561	.0197	.0060			P= .546
	(71) P= .193	(71)	(71)	1030	.0207	.1348
	1. 192	P= .871	P= .960	(71) P= .393	(71)	(71)
OPPTHT	.0099			1	P= .864	P= .263
	(72)	1198	.0779	.0671		
	P= .934	(72) P= .316	(72)	(72)	0085	.1748
SOBS			P= .515	P= .575	(72) P= .944	(72)
12002	0403	0666			1744	P= .142
	(71)	(71)	.0399	0025	0626	
	P= .739	P= .581	(71) P= .741	(71)	(71)	.0898
INTSUP	2527			P= .984	P= .604	C 713 P= .457
	(71)	0195	1174	1/1/		
	P= .033	(71)	(71)	(71)	.0768	.0864
		P= .872	P= .329	P= .179	(71)	(71)
CTSY	2807	0168			P= .525	P= .474
	(71)	(71)	.0477	.2843	.1607	
	P= .018	P= .890	(71) P= .693	(71)	(71)	.2214
CVNHS	- 1/7/		1 693	P= .016	P= .181	(71) P= 066
	(71)	.0189	.0129			P= .064
	P= .173	(71)	(71)	.0555	.1591	.0875
unne.		P= .876	P= .915	(71) P= ,645	(71)	(71)
UNREL	.1766	0688			P= .185	P= .468
	(71)	(711	.0133	2503	1332	
	P= .141	P= .569	(71) P= .912	(71)	(71)	2112
COMP	.2205		1912	P= .035	P= .268	(71) P= .077
	(71)	~.0137	.0913			10//
	P= .065	(71)	(71)	2123	2390	-,1471
		P= .910	P= .449	P= .075	(71)	(71)
XTOTEFF	~.1647	.1182		1013	P= .045	P= .221
	(60)	(60)	.0609	.1003	.1993	
	P= .209	P= .368	(60) P= .644	(60)	(60)	.2045
XOUTFUT	1000			P= .446	P= .127	(60) P= .117
	(68)	.1405	.1395	- 0000		11/
	P= .418	(60)	(60)	(60)	.1258	.1199
		P= .284	P= .288	P= .988	(60) P= .338	(60)

". " is printed if a coefficient cannot be computed

394

-

VM/SP CMS

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:44 The University of Maryland CSC IBM 3081GX

- - Correlation Coefficients - -

	AVRS	ASGL	INCOM	PARGL	MREW	PREW
XINTEFF	2955	.1059	0271	.1704	.2614	.2046
	(60)	(6D)	(60)	(60)	(60)	(60)
	P= .022	P= .421	P= .837	P= .193	P= .044	P= .117
XCHNGEFF	1487	.0864	.0213	0181	.0942	.1543
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .257	P= .512	P= .872	P= .891	P= .474	P= .239
XORGPLN	-,1404	0188	.0792	.2084	.0446	.1142
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .284	P= .886	P# .547	P= .110	P= .735	P= .385
XSLFPERF	.0581	2222	1441	0396	0700	0533
	(59)	(59)	(59)	(59)	(59)	(59)
	P= .662	P= .091	P= .276	P= .769	P= .598	P= .688
XSUBPERF	4423	0512	.1280	.5211	.4457	.4922
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .671	P= .287	P= .000	P= .000	P= .000
XDESIRE	1512	1324	1127	.1130	.0177	0173
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .208	P= .271	Pr .349	P= .348	P= .884	P= .886

(Coefficient / (Cases) / 2-tailed sig)

", " is printed if a coefficient cannot be computed

395

Ħ

-

Ξ

0:21:44 1	he Universi	Correla				
	REPMD	STAQUO	VIS	I DEL SM	STMIN	INACTN
VRS	.4630 (72) P=,000			(72) (4272 (72) P=.000
SGL	.2748 (72) P=.019					0447 (72) P=.709
NCOM	.3433 (72) P= .003	.0877 (72) P= .464	.3275 (72) P=.005			.0311 (72) P= .795
PARGL	.0965 (72) P= .420	.3084 (72) P=,008	.5545 (72) P= .000	.4513 (72) P=.000	.5385 (72) P= .000	.6128 (72) P= .000
MREW	.0649 (72) P=.588	.2323 (72) P= .050	.5364 (72) P= .000	.4658 (72) P= .000	.4369 (72) P=.000	.3790 (72) P=.001
PREN	.1368 (72) P= .252	.2417 (72) P=.041	.5039 (72) P≐ .000	.5057 (72) P=.000	.5512 (72) P= .000	.3974 (72) P= .001
REPMD	1.0000 (72) P= .	.3684 (72) P= .001	.3109 (72) P= .008	.3001 (72) P= .010	.4392 (72) P= .000	.2475 (72) P= .036
STAQUO	.3684 (72) P= .001		.5461 (72) P= .000	.6638 (72) P=.000	.4111 (72) P= .000	.4650 (72) P= .000
VIS	.3109 (72 P=.00) (72)	1,0000 (72) P= -	.6486 (72) P=.000	.6422 (72) P=.000	.5421 (72) P= .000
IDELSM	.300 (72 P= .01) (72)	(72)		.6049 (72) P= .000	.4390 (72) P=.000
STMIN	.439 (71 P= .01	2) (72) (72)	(72)	(72)	

7

...

" . " is printed if a coefficient cannot be computed

10:21:44	The Univers		land CSC II		VM/SP	CMS
	REPMD	STAQUO	VIS	IDELSM	STMIN	INACTH
INACTN	.2475	.4650	.5421	.4390	.5945	1.0000
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .036	P= .000	P= .000	P= .000	P= .000	P= .
TEAM	.3721 (72) P= .001	(72) P= .000	.6352 (72) P= .000	.4998 (72) P= .000	.5317 (72) P= .000	.6618 (72) F= .000
SLFREW	.1061	.3190	.5692	.4037	.6045	.6309
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .375	P= .006	P= .000	P= .000	P= .000	P= .000
OPTHT	.2765	.4224	.5412	.4712	.5485	.6580
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .019	P= .000	P= .000	P= .000	P= .000	P= .000
INDACT	0287	.0496	.1583	.0523	0601	.3941
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .811	P= .679	P= .184	P= .663	P= .616	P= .001
EFFIC	.1752	0090	.0007	.0584	1790	1229
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .141	P= .940	P= .995	P= .626	P= .133	P= .304
TEAMNK	.2388	.3554	.3472	.1687	.1666	.4217
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .043	P= .002	P= .003	P= .157	P= .162	P= .000
SFREW	.0049	0454	.2790	.0535	.1685	.1329
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .967	P= .705	F= .018	P= .655	P= .157	P= .266
SFGL	1379	.1266	.0063	.0800	.0611	.4123
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .248	P= .289	P= .958	P= .504	P= .610	P= .000
NREN	.0141	1122	.0588	0588	.0044	0292
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .907	P= .348	P= .623	P=.624	P= .971	P= .808
OPPTHT	.2114	.2586	.3216	.22°*8	.2551	.2847
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .075	P* .028	P= .006	P= .061	P= .031	P= .015

" . " is printed if a coefficient cannot be computed

397

11

-

••

19-Jul-93 ALL 10:21:44 The	Universit	,	ME 2 VARIAN and CSC IBM		VM/SP CMS	Garge 04
		STAQUO	VIS	IDELSH	STMIN	INACTN
SOBS	REPMD .1706 (72) P= .152	1125 (72) P= .347	.0688 (72) P=.566	.0669 (72) P=.576	.2057 (72) (P= .083 P	.1100 72) ?= .358
INTSUP	.1703 (72) P= .153	.0431 (72) P= .719	.0716 (72) P= .550	.0915 (72) P= .445	P= ,631	.2194 (72) P= .064
CTSY	.1930 (72) P= .104	,1985 (72) P= .095	.2094 (72) P= .078	.2913 (72) P= .013	P= .769	.2370 (72) P= .045
CVNHS	0396 (72) P= .741	.2369 (72) P=.045	.3723 (72) P= .001	.3109 (72) P= .008	.1555 (72) P= .192	.2781 (72) P= .018
UNREL	.0654 (72) P= .585	2541 (72) P=.031	1485 (72) P=.213	3126 (72) P=.008	1953 (72) P= .100	1792 (72) P= .132
COMP	-,2536 (72) P= .032	3682 (72) P= .001	4130 (72) P=.000	3467 (72) P= .003	3241 (72) P= .005	3764 (72) P= .001
TOTEFF	1000	0515	(69)	(07) (64)	.1868 (69) F= .124
OUTPUT	P= .414 .017 (69	2 .147	7 .085	9 .302) (69	(69)	.1398 (69) P= .252
INTEFF	P= .88 068	16112 9) (6)	27 .001 9) (61	9) (6	9) (07)	
CHNGEF	(6	9417	06 .01	(9)	69) (69)	2 P= .242
ORGPLN	P= .1 1 (P= .	132 .0 69) (591 .01 693 (872 .0 69) (906148 69) (69 459 P= .22) (671

" . " is printed if a coefficient cannot be computed

II.

398

-

		Corre	lation Coef	ficients -	-	
	REPMD	STAQUO	VIS	IDELSM	STMIN	INACTN
SLFPERF	.1484	.1653	.0726	.0732	1188	2337
	(30)	(30)	(30)	(30)	(30)	(30)
	P= .434	P= .383	P= .703	P= .700	P= .532	P= .214
SUBPERF	.1018	.5169	.6815	.5777	.6943	.5926
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .395	P= .000	P= .000	P= .000	P= .000	₽≡ .000
DESIRE	2415	1278	2701	0902	3672	2523
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .041	P= .285	P= .022	P= .451	P= .002	P=.033
XAVRS	.3747	.0179	2916	0454	1535	4274
	(71)	(71)	(71)	(71)	(71)	(71)
	P# .001	P= .882	P= .014	P= .707	P= .201	P= .000
XASGL	.2883	0282	.1763	.1763	.2299	1383
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .015	P= .816	P= .141	P= .141	P= .054	P= .250
XINCOM	.3505	.1238	.1236	.2260	.2261	0315
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .003	P= .304	P= .305	P= .058	P= .058	P= .794
XPARGL	0018	.1295	.3464	.2931	.2190	.3178
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .988	P= .282	P= .003	P= .013	P= .067	P= .007
XMREW	0880	.0918	.2344	.2621	.1305	.2226
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .465	P= .446	P= .049	P= .027	P= .278	P= .062
XPREW	.0208	.2164	.4828	.4029	.3487	.3757
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .863	P= .070	P= ,000	P= .000	P= .003	P≈ .001
XREPMD	.7310	.4251	.2135	.3595	.3562	.1984
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .074	P= .002	P= .002	P= .097
XSTAQUO	.3820	.8349	.5010	.5621	.2770	.3329
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .001	P= ,000	P= .000	P= .000	P= .019	P= .005

" . " is printed if a coefficient cannot be computed

399

ъ

...

		Corre	lation Coef	ficients -	-	
	REPMD	STAQUO	VIS	IDELSM	STMIN	INACTN
XVIS	.2355	.4748	.6150	.4122	.3433	.4924
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .048	P= .000	P= .000	P⇒ .000	P= .003	P= .000
XIDELSM	.1385	.4551	.4385	.5770	.3340	.2443
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .249	P= .000	P= .000	P= .000	P= .004	P= .040
XSTMIN	.3536	.3851	.6589	.4707	.6815	.6667
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .002	P= .001	P= .000	P= .000	P= .000	P= .000
XINACTN	.1767	.2465	.3463	.2086	.2849	.7499
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .140	P= .038	P= .003	P= .081	P= ,016	P= .000
XTEAM	.1957	.3317	.4446	.3709	.2201	.4880
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .102	P= .005	P= .000	P= .001	P= .065	P= ,000
XSLFREW	0471	.1020	.2730	.2478	.2231	.3846
	(71)	(71)	(71)	(71)	(71)	(71)
	P=.696	P= .397	P= .021	P= .037	P= .061	P= .001
XOPTHT	.2839	.3450	.4620	.4012	.4255	.4906
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .016	P= .003	P= .000	P= .001	P= .000	P= .000
XINDACT	.0808	.1357	.2127	.1890	.0452	.4654
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .503	P= .259	P= .075	P= .115	P= .708	P= .000
XEFFIC	.2739	.1621	.1103	.1390	.0348	.1028
	(71)	(71)	(71)	(71)	(71)	(71)
	P=.021	P= .177	P= .360	P= .247	P= .773	P= .394
ХТЕАМЫК	.2697	.3026	.2539	.2605	.0070	.1314
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .023	P= .010	P= .033	P= .028	P= .954	P= .275
XSFREM	.0403	1031	0455	0392	.0676	0624
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .739	P=.392	F= .706	P= .746	P= .575	F= .605

" , " is printed if a coefficient cannot be computed

11

400

..

		Corre	lation Coef	ficients -	-	
	REPMD	STAQUO	VIS	IDELSM	STHIN	INACTN
XSFOL	2340	1393	0144	.0492	1450	.0678
	(71)	(71)	(71)	(71)	(71)	(71)
	P=.049	P= .247	P= .905	P= .683	F= .227	P= .574
XNREH	0818	1475	-,0368	.0119	.0034	0471
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .498	P= .219	P= .760	P= .922	P= .977	P= .697
XOFPTHT	.2344	.2066	.1641	.2029	.0360	0337
	(72)	(72)	(72)	(72)	(72)	(72)
	P=.047	P= .082	P= .168	P= .087 ·	P= .764	P= .779
XSOBS	.1116	0372	.0546	.0749	.1476	.0925
	(713	(71)	(71)	(71)	(71)	(71)
	P= .354	P= .758	P= .651	P= .535	P= .219	P= .443
XINTSUP	.0738	.1644	.1583	.1238	0067	.2941
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .541	P= .171	P= .187	P= .303	P= .956	P= .013
XCTSY	.0647	.1922	.2523	.2518	.1176	.3761
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .592	P= .108	P= .034	P= .034	P= .329	P= .001
XCVNWS	0129	.1505	.1723	.1643	0752	.0333
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .915	P= .210	P= .151	P= .171	P= .544	P= .783
XUNREL	0583	1903	1819	1780	0148	2465
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .629	P= .112	P= .129	P= .137	P= .902	P= .038
XCOMP	1843	3329	3903	2907	0714	3512
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .124	P= .005	P= .001	P= .014	P= .554	P= .003
XTOTEFF	.0515	0250	.1460	.1922	.2003	.0701
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .696	P= .849	P= .266	P= .141	Pr .125	P= .594
XOUTPUT	.1305	.1375	.0935	.2565	.2112	1274
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .320	P= .295	P= .477	P= .048	P= ,105	P= .332

" . " is printed if a coefficient cannot be computed

401

-

-.

		Correl	lation Coef	ficients -	-	
	REPMD	STAQUO	VIS	I DEL SM	STMIN	INACTN
XINTEFF	.0101	0847	.1796	.0801	.1678	.1936
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .939	P= .520	P= .170	P= .543	P= ,200	P= .138
KCHNGEFF	0535	1497	.0432	.0828	.0914	0524
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .685	P= .254	P= .743	P= .529	P= .487	P= .691
XORGPLN	.0777	.0475	.1065	.1797	.1306	.2702
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .555	P= .718	P= .418	P= .169	P= .320	P= .037
XSLFPERF	.0270	.2383	0310	.1213	0038	0127
	(59)	(59)	(59)	(59)	(59)	(59)
	P= .839	P= .069	P= .816	P= .360	P= .977	P= .924
XSUBPERF	.1296	.4103	.5302	.4215	.5051	-5290
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .281	P= .000	P= .000	P= .000	P= .000	P= .000
XDESIRE	-0358 (71) P= .767	.2232 (71) P= .061	0059 (71) P= .961	.0017 (71) P= .989	2420 (71) P= .042	(71) P= .678

" . " is printed if a coefficient cannot be computed

402

11

-

		Corre	lation Coef	ficients -	-	
	TEAM	SLFREW	OPTHT	INDACT	EFF1C	TEAMNK
AVRS	3258	3958	3093	4512	0285	1575
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .005	P= .001	P= .008	P=.000	P= .812	P= .187
ASGL	.0790	.0699	.0126	0641	.0539	0454
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .510	P= .559	P= .917	P= .593	P= .653	P= .705
INCOM	.1077	.2175	.3045	4266	1522	0028
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .368	P=.067	P= .009	P= .000	P= .202	P= .981
PARGL	.4963	.5843	.5649	.2606	0998	.2974
	(72)	(72)	(72)	(72)	(72)	(72)
	F= .000	P= .000	P=.000	P= .027	P= .404	P= .011
MREN	.4038	.5338	.3454	.2962	.1000	.1520
	(72)	(72)	(72)	(72)	(72)	(72)
	P=.000	P= .000	P= .003	P= .012	P= .403	P= .203
PREN	.4650	.5326	.4990	.1079	.0450	.0282
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .000	P= .000	P= .000	P= .367	P= .707	P= .814
REPMD	.3721	.1061	.2765	0287	.1752	.2388
	(72)	(72)	(72)	(72)	(72)	(72)
	P=.001	P= .375	P019	P= .811	P= .141	P= .043
STAQUO	.4471	.3190	.4224	.0496	0090	.3554
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .000	P= .006	P= .000	P= .679	P=.940	P= .002
VIS	.6352	.5692	.5412	.1583	.0007	.3472
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .000	P= .000	P* .000	P= .184	P= .995	P= .003
IDELSM	.4998	.4037	.4712	.0523	.0584	.1687
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .000	P= .000	P= .000	P= .663	P= .626	P= .157
STMIN	.5317	.6045	.5485	0601	1790	.1666
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .000	P= .000	P= .000	P=.616	P= .133	P= .162

" . " is printed if a coefficient cannot be computed

.

403

11

-

..

10:21:45	ALL GP LVL The Univers		lation Coef		-	
		SLEREN	OPTHT	INDACT	EFFIC	TEAMUK
INACTN	.6618 (72)	.6309	.6580	.3941 (72) P= .001	1229 (72) P= .304	.4217 (72) P= .000
TEAM	P= .000 1.0000 (72) P= .	P= .000 .4444 (72) P= .000	P≠ .000 .5904 (72) P= .000	.3231 (72) P= .006	.1247 (72) P= .297	.5163 (72) P= .000
I FREH	.4444 (72) P= .000	1.0000 (72) P= .	.6272 (72) P= .000	.0931 (72) P= .437	2472 (72) P= .036	.2989 (72) P= .011
PTHT	.5904 (72) P= .000	.6272 (72) P= .000	1,0000 (72) P= .	.1218 (72) P= .308	1499 (72) P= .209	.4685 (72) P= .000 .2167
INDACT	.3231 (72) P= .006	.0951 (72) Ps .437	.1218 (72) P= .308	1.0000 (72) P= .	.4828 (72) P= .000	(72) P= .068
FFIC	.1247 (72) P= .297	2472 (72) Ps .036	1499 (72) P= .209	.4828 (72) P= ,000	1.0000 (72) P= .	.0262 (72) P= .827
EAMWK	.5163 (72) P= .000	.2989 (72) P= .011	.4685 (72) P= .000	.2167 (72) P= .068	.0262 (72) P= .827	1.000D (72) P= .
FREM	.1758 (72) P= .140	.3858 (72) P= .001	.1707 (72) P= .152	.2895 (72) P= .014	.1193 (72) P= .318	.1749 (72) P= .142
FGL	.0423 (72) P= .724	.2505 (721 F= .034	.1786 (72) P= .133	.4049 (72) P= .000	.1091 (72) P= .362	.2229 (72) P= .060
IREW	0813	.1767 (72) P= .138	0646 (72) P= .590	.2192 (72) P= .064	.1752 (72) P= .141	.1271 (72) P= .287
OPPTHT	P= .497 .1776 (72)	.2262	.4399 (72) P= .000	.1078 (72) P= .368	.2989 (72) P= .013	.1665 (72) P= .162

-

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

-

404

.

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:45 The University of Maryland CSC IBM 3081

			Araug CSC	IBM JOSLOV		
		Core	al. 4:	VOLOX	VH-SP	CMS Page 7
	Tran	+017	elation Coe	fficient		
	TEAM	SL FREW				
SOBS		SCI KLY	OPTHT	INDACT		
	0093	. 0983		INDALI	EFFIC	TEARN
	(72)	(72)	.1088			TEAMNIK
	P= .938		(72)	.0755	. 2091	
THEAM		P= .411	P= .363	(72)		1781
INTSUP	.3778			P= .528	- 161	(72)
	(72)	.2243	1950		P= .078	P= .134
		(72)	-1859	.1264		
	P= .001	P= .058		(72)	.0754	. 3468
CTSY			P= .118	P= .290	(72)	
	3327	.1654		. 270	P= .529	
	(72)		. 2130			P= .003
	P= .004	72)	(72)	.2321	.1534	
CVNHS		P= .165	P= .072	(72)	(72)	.3253
CAMPI2	. 2137			P= .050	P= .198	(72)
	1 72)	. 3870	.2763		.198	P= .005
	P= .071	(72)	(72)	.1210	0070	
	1	P= .001		(72)	.0039	.2162
UNREL			P= .019	P= .311	(72)	1 721
	2403	2343			P= .974	
		(72)	2202	.0453		P= .068
	PE .042	P= .048	(72)	(72)	0401	
COMP			P= .063		(72)	1898
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4926	3360		P= .706	P= .738	
	(72)		3060			P= .110
	P= .000		5 72)	0604	0404	
TOTEFF		P= .004	P= .009	(72)	(72)	3052
. aiter	. 0522			P= .614	P= .736	(72)
	(69)	. 1145	.1009		.1.26	P= .009
	P= .670	\$ 69)	(69)	.1583	1339	
DUTAN		P= .349	P	(69)		.1363
DUTPUT	.0565		F= .409	P= .194		(69)
	(69)	.1267	8170		P= .273	P= .264
	P= .645	(69)	. 0170	. 0535		
	.045	P= .300		691	1617	.0874
INTEFF	69.54		P= .890	P= .662	69)	(69)
	.0858	.0751			P= .184	P= .475
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	(69)	. 1416	. 1660		
1. A.	P= .484	P= .540	69)	(69)	0925	1777
CHNGEFF			P= .246	P= .173	(69)	.1377
	0186	. 0637		.1/5	P= .450	
	693		.0972	1874		P= .259
	P= .880		693	.1534	.0030	
ORGPLN		P= .603	P= ,427	(69) P= 201	601	.0002
THUR LIN	.0367	Bain		80S. #9	P= .981	(69)
-	(69)	.0943	. 0754			P= ,999
	P= .764	(69)	(69)	.1040	1720	
	1144	P= .441	P= .538	(69)	(69)	.2872
10				P= .395		(69)
Coeffici	ent / (Cases				P= .158	Po .017
	i uases	1 / 2-tail.	d at the second			

(Coefficient / (Cases) / 2-tailed sig)

", " is printed if a coefficient cannot be computed

405

• 6

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:45 The University of Maryland CSC IBM 3081GX

	Correl	ation Coeff	icients		
			INDACT	EFFIC	TEAMWK
0451	2382	2532	.1097	,4065 (30)	0351 (30) P= .854
(30) P = .813	P= .205	P= .177			.2901
.4954	.6011 (72) P= .000	.5160 (72) P= .000	(72) P= .138	(72) P= .477	(72) P= .013
1733	2811 (72) P=.017	3448 (72) P=.003	.2818 (72) P= .016	.1518 (72) P= .203	1345 (72) P=.260
2883	4616 (71) P= .000	2899 (71) P= .014	5227 (71) P=.000	(71) P= .882	2384 (71) P= .045
.0661	.0915 (71) P= .448	.0501 (71) P= .678	2824 (71) P=.017	(71) P= .972	0514 (71) P=.671
.1218	.0775	(11)	3068 (71) P= .009	(71) P= .924	
. 364	, .292 , (71	4 .2459) (71)	(71	(71	7 P= .267
.27	28 .29 1) (7	58 .227 1) (71	5 (71		P = .718
.40	134 .4	267 .32 71) (7	1) (7	1) (($\begin{array}{c} 1 \\ 28 \\ 28 \\ P = .181 \end{array}$
o .2	877 .0 71) (384 .29 71) (4441 71) (71) (097 P= .066
000 .	4398 71) (2138 ·2 71) (.987 .1 71) (713 (815 .2467 71) (71) .130 P= .038
	$ \begin{pmatrix} 30\\ P = .813 \\ .4954 \\ (72)\\ P = .000 \\1733 \\ (72)\\ P = .145 \\2883 \\ (71)\\ P = .015 \\ .0661 \\ (71)\\ P = .584 \\ .1218 \\ (71)\\ P = .313 \\ .364 \\ (71)\\ P = .313 \\ .364 \\ (71)\\ P = .00 \\ .277 \\ P = .00 \\ .20$	TEAM SLFREW 0451 2382 (30) (30) P=.813 P=.205 .4954 .6011 (72) (72) P=.000 P=.000 1733 2811 (72) (72) P=.145 P=.017 2883 4616 (71) (71) P=.015 P=.000 .0661 .0915 (71) (71) P=.584 P=.448 .1218 .0775 (71) (71) P=.311 P=.523 .3647 .292 (71) (71) P=.002 P=.01 .2728 .291 (71) (71) P=.002 P=.01 .2728 .291 (71) (71) P=.000 P=.000 .4034 .43 (71) (71) P=.015 <td< td=""><td>TEAM SLFREW OPTHT 0451 2382 2532 (30) (30) (30) P=.813 P=.205 P=.177 .4954 .6011 .5160 (72) (72) (72) P=.000 P=.000 P=.000 1733 2811 3448 (72) (72) (72) P=.145 P=.017 P=.003 2883 4616 2899 (71) (71) (71) P=.015 P=.000 P=.011 P=.015 P=.000 P=.011 P=.586 P=.448 P=.678 .1218 .0775 .0401 (71) (71) (71) P=.311 P=.521 P=.012 P=.311 P=.521 P=.032 .2728 .2928 .2273 (71) (71) (71) P=.002 P=.012 P=.052 .4034</td><td>TEAM SLPREM OFTIM 0451 2382 2532 .1097 (30) (30) (30) (30) (30) P=.813 P=.205 P=.177 P=.564 .4954 .6011 .5160 .1763 (72) (72) (72) (72) P=.000 P=.000 P=.000 P=.138 1733 2811 3448 .2818 (72) (72) (72) (72) P=.145 P=.017 P=.003 P=.016 2883 4616 2899 5227 (71) (71) (71) (71) P=.015 P=.000 P=.014 P=.000 .0661 .0915 .0501 2824 (71) (71) (71) (71) P=.586 P=.448 P=.017 P=.000 .1218 .0775 .0401 3068 (71) (71) (71) (71) P=.311</td><td>TEAMSLFREWOPTHTINDACTEFFIC045123822532.1097.4065(30)(30)(30)(30)(30)P=.813P=.205P=.177P=.564P=.026.4954.6011.5160.17630852(72)(71)<td< td=""></td<></td></td<>	TEAM SLFREW OPTHT 0451 2382 2532 (30) (30) (30) P=.813 P=.205 P=.177 .4954 .6011 .5160 (72) (72) (72) P=.000 P=.000 P=.000 1733 2811 3448 (72) (72) (72) P=.145 P=.017 P=.003 2883 4616 2899 (71) (71) (71) P=.015 P=.000 P=.011 P=.015 P=.000 P=.011 P=.586 P=.448 P=.678 .1218 .0775 .0401 (71) (71) (71) P=.311 P=.521 P=.012 P=.311 P=.521 P=.032 .2728 .2928 .2273 (71) (71) (71) P=.002 P=.012 P=.052 .4034	TEAM SLPREM OFTIM 0451 2382 2532 .1097 (30) (30) (30) (30) (30) P=.813 P=.205 P=.177 P=.564 .4954 .6011 .5160 .1763 (72) (72) (72) (72) P=.000 P=.000 P=.000 P=.138 1733 2811 3448 .2818 (72) (72) (72) (72) P=.145 P=.017 P=.003 P=.016 2883 4616 2899 5227 (71) (71) (71) (71) P=.015 P=.000 P=.014 P=.000 .0661 .0915 .0501 2824 (71) (71) (71) (71) P=.586 P=.448 P=.017 P=.000 .1218 .0775 .0401 3068 (71) (71) (71) (71) P=.311	TEAMSLFREWOPTHTINDACTEFFIC045123822532.1097.4065(30)(30)(30)(30)(30)P=.813P=.205P=.177P=.564P=.026.4954.6011.5160.17630852(72)(71) <td< td=""></td<>

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

-

11

11

10.21.12	ALL GP LVL The Univers			ficients		
	TEAM	SLFREW	OPTHT		EFFIC	TEAMWK
XVIS	.4965	.4559	.4568	.1342	0027	.4186
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .265	P= .982	P= .000
XIDELSM	.3877	.3015	.2661	.0857	.0867	.1770
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .001	P= .011	P= .025	P= .477	P= .472	P= .140
XSTMIN	.6176	.6598	.5674	.2013	0323	.3496
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .092	P= .789	P= .003
XINACTN	.5896	.4958	.5332	.5219	.0511	.5025
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .000	P= .672	P= .000
XTEAM	.6125	.3485	.4287	.4386	.2228	.3770
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .003	P= .000	P= .000	P= .062	P= .001
XSL FREW	.4051	.5255	.3453	.3004	-0544	.1915
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .003	P= .011	P= .652	P= .110
XOPTHT	.6216	.4422	.6460	.2641	.0851	.4476
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .026	P= .480	P= .000
XINDACT	.3643	.1640	.2639	.7438	.3461	.1395
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .002	P= .172	P= .026	P= .000	P= .003	P= .246
XEFFIC	.0982	.0271	.1215	.1509	.4968	.0952
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .415	F= .823	P= .313	P= .209	P= .000	P= .430
ХТЕАМЫК	.3560	-,0749	.2198	.2124	.4116	.4167
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .002	P=,535	P= .066	P= .075	P= .000	P= .000
XSFREW	.0056	.0606	0486	.0578	.0742	2379
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .963	P= .616	P= .687	P= .632	P= .539	P= .046

" , " is printed if a coefficient cannot be computed

407

11

11

10:21:45 TI	he Universi	IME 1 AND T. ty of Maryla	and CSC IBM	3081GX	VM/SP CMS	
	,	Correla	tion Coeff:	icients -	-	
	TEAM	SLFREH	OPTHT	INDACT	EFFIC	TEAMWK
SFGL	.0281	.1163	.0167	.4093	.1794	0371
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .816	P= .334	P= .890	P= .000	P= .134	P= .759
NREH	1729	.0423	.0000	.1081	.1582	2262
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .149	P= .726	P=1.000	P= .369	P= .188	P= .058
XOPPTHT	.0793	0703	.1436	.1326	.4793	.0694
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .508	P=.558	P= .229	P= .267	P=.000	P=.562
XSOBS	.0974	0399	.0415	.1187	.3134	1104
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .419	P= .741	P= .731	P= .324	P= .008	P= .360
XINTSUP	.4436	.1851	.1986	.2278	.0963	.3965
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .122	P= .097	P= .056	P= .424	P= .001
XCTSY	.5394	.1648	.2785	.3082	.2277	.3337
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .170	P= .019	P= .009	P= .056	P= .004
XCVNWS	.0891	.0881	0013	.0642	.0693	.0592
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .460	P= .465	P= .992	P= .595	P= .566	P= .624
XUNREL	4196	1606	2636	1297	1488	2642
	(71)	(71)	(713	(71)	(71)	(71)
	P= .000	P= .181	P= .026	P= .281	P= .216	P=.026
XCOMP	5282 (71 P= .00) (71)	(71)	(71)	(71)	4474 (71) P=.000
XTOTEFF	.143 (60 P= .27) (60	.1403 (60 8 P= .28) (60) (60)	(60)
XOUTPUT	059 (61 P= .6)) (60) (60) (60) (60)	(60)

" . " is printed if a coefficient cannot be computed

-

0

11

		Corre	lation Coef	ficients -	-	
	TEAM	SLFREN	OPTHT	INDACT	EFFIC	ТЕАМЫК
CINTEFF	.2578	.2339	.2603	.2498	0612	.1823
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .047	P= .072	P= .045	P= .054	P= .642	P= .163
CHNGEFF	0583	.0153	0716	.1180	.0197	1656
	(60)	(60)	(60)	(60)	(60)	(60)
	F= .658	P= .908	P= .587	P= .369	P= .881	P= .206
ORGPLN	.3840	.1348	.3419	.1275	1368	.2497
	(60)	(60)	(60)	(60)	(60)	(60)
	P= .002	P= .305	P= .008	P= .332	P= ,297	P= .054
SLFPERF	0507	0669	.1245	0590	.0833	0495
	(59)	(59)	(59)	(59)	(59)	(59)
	P= .703	P= .615	P= .347	P= .657	P= .530	P= .710
SUBPERF	.4532	.5107	.4078	.2872	.0403	.3177
	(71)	(71)	(71)	(71)	(71)	(71)
	P=.000	P= .000	P= .000	P= .015	P= .739	P= .007
DESIRE	.1505	.0297	.1803	-2678	.2325	.1994
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .210	P= .806	P= .132	P= .024	P= .051	P= .096

". " is printed if a coefficient cannot be computed

409

-

-

...

19-Jul-95 10:21:45	ALL GP LVL The Univers	TIME 1 AND	TIME 2 VARI	ABLES M 3081GX	VM/SP C	HS
		Correlation Coefficients				
	SFREU	SFGL	NREW	OPPTHT	5085	INTSUP
AVRS	1459	3857	1703	1294	.0106	1169
	(72)	(72)	(723	(72)	(72)	(72)
	P= .221	P= .001	P= .153	P= .279	P= .929	P= .328
ASGL	.2179	3252	.2356	0716	0687	.1535
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .066	P= .005	P= .046	P= .550	P= .566	Pt .198
INCOM	.0083	3028	0980	.1760	.0458	.0084
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .945	P= .010	P=.413	P= .139	P= .702	P= .944
FARGL	.0397	.5048	0420	,2459	.1484	.2062
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .740	P= .009	P= .726	P= .037	P= .214	P= .082
MREW	.2691	.1323	.1633	.0378	.0594	.1649
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .022	P= ,268	P= .170	P= .753	P= .620	P= .166
PREN	.2574	.9268	.0061	.1617	.2008	.1604
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .029	P= .823	P= .960	P= .175	P= .091	P= .178
REPMD	.0049	1579	.0141	.2114	.1706	.1703
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .967	P= .248	P= .907	P= .075	P= .152	P= .153
STAQUO	0454	.1266	1122	.2586	1125	.0431
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .705	P= .289	P= .348	P= .028	P= .347	P= .719
VIS	.2790	.0063	.0588	.3216	.0688	.0716
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .018	P= .958	P= .623	P= .006	P= .566	P= .550
IDELSM	.0535	.0800	0588	.2218	.0669	.0915
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .655	P= .504	P= .624	P= .061	P= .576	P= .445
STMIN -	.1685 (72) P= .157	.0611 (72) P= .610	.0044 (72) P= .971	.2551 (72) P= .031	.2057 (72) P= .083	.0575 (72) P= .631

" . " is printed if a coefficient cannot be computed

Ш

-

...

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:45 The University of Maryland CSC IBM 3081GX

INACTN	SFREW		ation Coeff	icients -		
INACTN	SFREW					
INACTN		SFGL	NREW	OPPTHT	SOBS	INTSUP
	.1329 (72) P=.266	.4123 (72) P=.000	0292 (72) P= .808	.2847 (72) P=.015	.1100 (72) P=.358	.2194
TEAM	.1758 (72) P=.140	.0423 (72) P= .724	0813 (72) P=.497	.1776 (72) P= .135	0093 (72) P=.938	P= .064 .3778 (72) P= .001
SLFREW	.3858 (72) P= .001	.2505 (72) P= .034	.1767 (72) P= .138	.2262 (72) P=.056	.0983 (72) P= .411	.2243 (72) P= .058
OPTHT	.1707 (72) P= .152	.1786 (72) P= .133	0646 (72) P= .590	.4399 (72) P= .000	.1088 (72) P=.363	.1859 (72) P= .118
INDACT	.2895 (72) P=.014	.4049 (72) P= .000	.2192 (72) P= .064	.1078 (72) P=.368	.0755 (72) P=.528	.1264 (72) P= .290
EFFIC TEAMWK	.1193 (72) P= .318	,1091 (72) P= .362	.1752 (72) P= .141	.2909 (72) P=.013	.2091 (72) P= .078	.0754 (72) P=.529
	.1749 (72) P= .142	.2229 (72) P= .060	.1271 (72) P= .287	.1665 (72) P= .162	1781 (72) P=.134	.3468 (72) P= .003
SFREW	1,0000 (72) P= .	.0193 (72) P= .872	.5596 (72) P≖ .000	0346 (72) P=.773	.0866 (72) P= .470	.1227 (72) P= .304
SFGL	.0193 (72) P= .872	1.0000 (72) P= ,	.0536 (72) P= .655	.3071 (72) P= .009	-1381 (72) P= .247	.0788 (72) P=.510
NREW	.5596 (72) P= .000	.0536 (72) P= .655	1.0000 (72) P= .	.0551 (72) P= .646	0757 (72) P=.528	.1184
OPPTHT -	0346 (72) P= .773	.3071 (72) P= .009	.0551 (72) P= .646	1.0000 (73) P=	.1419 (72) P= .234	P= .322 0838 (72) P= .484

(Coefficient / (Cases) / 2-tailed sig)

7

• •

" . " is printed if a coefficient cannot be computed

411

10.21.40	The Univers			ficients -	-	
	SFREM	SFGL	NREM	OPPTHT		INTSUP
SOBS	.0866	.1381	0757	.1419	1.0000	.0551
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .470	P= .247	P= .528	P= .234	P= .	P= .645
INTSUP	.1227	.0788	.1184	0838	.0551	1.0000
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .304	P= .510	P= .322	F= .484	P= .645	P= .
CTSY	.1507	.0507	.2021	0037	0091	.7463
	(72)	(723	(72)	(72)	(72)	(72)
	P= .206	P= .672	P= .089	P= .976	P= .939	P= .000
CVIII45	.1861	.0412	.1255	.1182	0272	.3270
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .117	P= .731	P= .294	P= .323	P= .821	P= .005
UNREL	0405	1275	.0188	1533	.0740	3974
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .736	P= .286	P= .876	P= .199	P= .537	P= .001
COMP	.0574	0029	.0503	1152	1513	5683
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .632	P= .981	P= .675	P= .335	P= .205	P= .000
OTEFF	0665	.2311	.0204	.0711	.0446	.1533
	(69)	(69)	(69)	(70)	(69)	(69)
	P= .587	P= .056	P= .868	P= .559	P= .716	P= .209
UTPUT	0335	.2273	0608	.0146	.0215	.0764
	(69)	(69)	(69)	(70)	(69)	(69)
	P= .785	P= .060	P= .619	P= .904	P= .861	P= .533
NTEFF	1225	.2134	.0004	.0834	.0789	.1840
	(69)	(69)	(69)	(70)	(69)	(69)
	P= .316	P= .078	P= .997	P= .492	P= .519	P= .130
CHNGEFF	0368	.1651	.0640	.1369	.0103	.1019
	(69)	(69)	(69)	(70)	(69)	(69)
	P= .764	Pa .175	P= .601	P= .259	P= .933	P= .405
ORGPLN	.0884	.0363	.1019	0005	0483	.0702
	(69)	(69)	(69)	(70)	(69)	(69)
	P= .470	P* .767	P= .405	Pa .997	P= .693	P= .567

" . " is printed if a coefficient cannot be computed

412

П

-

...

		Corre	lation Coet	ficients -	-	
	SFREW	SFGL	NREW	OPPTHT	SOBS	INTSUP
SLFFERF	.0610	.1452	1216	.2851	.0693	1470
	(30)	(30)	(30)	(31)	(30)	(30)
	P= .749	P= .444	P= .522	P= .120	P= .716	P= .438
SUBPERF	.1572	.1359	.0900	.3049	.0314	.1017
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .187	P= .191	P= .452	P=.009	P= .793	P= .395
DESIRE	.0436	.0657	.1047	2309	2898	1522
	(72)	(72)	(72)	(72)	(72)	(72)
	P= .716	P= .583	P= .381	P= .051	P= .014	P= .202
XAVRS	-,2653	3925	2952	1750	.1204	1216
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .027	P= .001	P= .012	P= .144	P= .317	P= .512
XASGL	.1259	2906	.1611	.0325	0678	.0389
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .295	P= .014	P= .180	P= .788	P= .574	P= .747
XINCOM	.0047	0865	.0582	0262	0652	.0771
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .969	P= .473	P= .629	P= .828	P= .589	P= .523
XPARGL	.1755	.2955	.0494	.0897	.1815	.0762
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .143	P= .012	P= .683	P= .457	P= .130	P= .528
XMREW	.2073	.3158	.2185	.2149	.0236	.1755
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .085	P= .007	P= .067	P= .072	P= .845	P= .143
XPREW	.3203	.3133	.0857	.2165	.0800	.1759
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .006	P= .008	P= .477	P= .070	P= .507	P= .142
REPMD	1257	.1048	1365	.2809	.1651	.1137
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .296	P= .384	P= .256	P= .018	P= .169	P= .345
XSTAQUO	-,0022 (71) P= ,986	.1080 (71) P= .370	0805 (71) P= .505	.2828 (71) P= .017	0574 (71) P= .634	(71) P= .756

" . " is printed if a coefficient cannot be computed

413

-

	ALL GP LVL The Univers		050 IE	M 3081GY	VM/SP C	
		Corre	lation Coef	ficiente -	VIU SP C	MS
WHER &	SFREW	SFGL	NREW	OPPTHT	-	
XVIS	.1328	. 3040		OFFIAI	SOBS	INTSUP
	(71)	(71)	0376	.2882	1049	
	P= .270	P= .010	(<u>71</u>)	(71)	(71)	.1398
XIDELSM			P= .756	P= 015	P= .384	(71)
	. 1732	. 0856	0350			P= .295
	(71) P= 160	5 711	(71)	.1308	1326	
	P= .149	P= .47.8	P= .771	(71)	(71)	.0263
XSTMIN	7914		1 1	P= .277	P= .270	(71)
	-2816	.2458	.1068			P= .824
	(71) F= .017	(71)	(71)	.3514	.1985	1/40
Sec. Sec.		P= .039	P= .375	(71)	\$ 711	.1640
XINACTH	.2385			P= .003	P= .097	(71) P= .172
	(71)	.4024	.1307	1777		
	P= .045	(71)	(71)	.1777	.0551	.2407
VICAN		P= .001	P= .277	(71) P= .138	(71)	(71)
XTEAM	.2296	2024			P≈ .648	P= .043
	(71)	(2234	.0352	(⁻¹⁸⁵⁶ (71)		
	P= .054	(71) P= .061	(71)	(71)	.1220	.3555
XSLFREN			P= .771	P= .121	(71)	(71)
AJEFREN	. 5531	.2838			P= .311	P= .002
	(71)	(71)	. 5271	.1166		
	P= .000	P= .016	(71)	(71)	· 0401 (71)	.2358
XOPTHT			P= .000	P= .333	(71) P= .740	\$ 71)
	.2760	.2336	1767		/ 40	P= .048
	(71) P= .020	\$ 711	. 1743	.2992	0214	
	.020	P= .050	P= .146	(71)	(71)	-2347
XINDACT	.1230		1140	P= .011	P= .859	(71) P= 060
	7	.3547	.0503	27.0.+		P= .049
	P= .307	(71) P= 002	\$ 711	.2725	.1727	.1895
YEEETA		P= .002	P= .677	(71) P= .021	5 711	(71)
XEFFIC	.0099	.1544			P= .150	P= .113
	(71)	\$ 711	0195	.4297	1001	
	P= .935	P= .199	(71)	(71)	-1934	.1676
XTEAMHK			P= .872	P= .000	P= .106	(71)
	1119	.1304	1209		.100	P= .162
	(71) P= .353	(71)	(71)	.2733	.0957	
		P= .278	P= .315	(71)	(71)	.2972
XSFREM	- 5303			P= .021	P= .427	(71) P= .038
	(71)	(71)	. 3860	0955		
	P= .000		(711	(71)	. 2499	0520
		P# .283	P= .001	P= .428	(71)	(71)
10-10-	ient / (Cara				P= .036	P= .667

" . " is printed if a coefficient cannot be computed

Ξ.

414

.

	The Univers			ficients -	-	
	SFREW	SFGL	NREW	OFPTHT	SOBS	INTSUP
XSFGL	.0644	.2917	.3034	.1625	.D528	.0474
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .594	P= .014	P= .010	P= .176	P= .662	P= .695
XNREW	.2289	.0253	.4873	.0088	.3271	0597
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .055	P= .834	P= .000	P= .942	P= .005	P= .621
XOPPTHT	1145	.0030	.0208	.5015	.1107	-,0278
	(72)	(72)	(72)	(73)	(72)	(72)
	F= .338	P= .980	P= .863	P= .000	P= .354	P= .817
XSOBS	.0938	.0558	0193	-1698	.4639	.0615
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .436	P= .644	P= .873	P= .157	P= .000	P= .610
XINTSUP	.0837	.1225	.1205	0695	0480	.7492
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .488	P= .309	P= .317	P= .565	P= .691	P= .000
XCTSY	.1307	.1977	.0009	.0454	1190	.6041
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .277	P= .098	P= .994	P= .707	P= .323	P= .000
XCANHS	.1824	0209	.1326	1448	0124	.3900
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .128	P= .863	P= .270	P= .228	P= .918	P= .001
XUNREL	.0361	0937	0225	2194	.1832	4287
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .765	P= .437	P= .852	P= .066	P= .126	P= .000
XCOMP	0973	.0266	1263	.1131	.2936	4475
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .420	P= .826	P= .294	P= .348	P= .013	P= .000
XTOTEFF	0006	.0350	0234	.0468	.0466	.1198
	(60)	(60)	(60)	(61)	(60)	(60)
	P= .996	P= .790	P= .659	P= .729	P= .724	P= .362
XOUTPUT	045Z	0861	0471	.0*<2	.0476	.0022
	(60)	(60)	(60)	(61)	(60)	(60)
	P= .731	P= .513	P= .721	P= .782	P= .718	P= .987

" , " is printed if a coefficient cannot be computed

11

7

...

2.7

		1000
VM/SP	CMS	and the second second

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:46 The University of Maryland CSC IBM 30816X

-	-	Correlation	Coefficients	-	-

	SFREM	SFGL	NREW	OPPTHT	SOBS	INTSUP
XINTEFF	.0724	.1536	.0428	.0759	.0062	.1816
	(60)	(60)	(60)	(61)	(60)	(60)
	P= .583	P= .241	P= .745	P= .561	P= .963	P= .165
XCHNGEFF	.0258	.0231	.0135	0011	.0335	.0530
	(60)	(60)	(60)	(61)	(60)	(60)
	P= .845	P= .861	P= .918	P= .993	P= .799	P= .688
XORGPLN	0880	0140	1653	.0088	.0950	.1234
	(60)	(60)	(60)	(61)	(60)	(60)
	P= .504	P= .916	P= .207	P= .946	P= .470	P= .347
XSLFPERF	1952	.2073	1754	.1938	.1929	1239
	(59)	(59)	(59)	(60)	(59)	(59)
	P= .139	P= .115	P= .184	P= .138	P= .143	P= .350
XSUBPERF	,2152	.2913	.1515	.3199	0668	.0336
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .072	P= .014	P= .207	P= .007	P= .580	P= .781
XDESIRE	0837	.0998	.0040	.3012	2962	.0323
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .488	P= .407	P= .974	P= .011	P= .012	P= .789

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

1

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:46 The University of Maryland CSC IBM 3081GX

VH/SP CHS

- - Correlation Coefficients - -CVNWS UNREL COMP

	CTSY	CVNHS	UNREL	COMP	TOTEFF	OUTPUT
AVRS	1393	2894	.1717	.1986	*,1794	.0389
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .243	P= .014	P= .149	P= .094	P* .140	P= ,751
ASGL	.1442	.1660	1820	0210	.0404	.0511
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .227	P= .163	P= .126	P= .861	P= .742	P= .677
INCOM	.0142	.0886	1592	1369	0656	0136
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .906	P= .459	P= .182	P= .252	F= .592	P= .912
PARGL	.2217	.4022	2969	3704	.2147	.1988
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .061	P= .000	P=.011	P= .001	P= .076	P= .101
MREW	.2171	.2882	2488	3869	.0959	.1528
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .067	P= .014	P= .035	P= .001	P: .433	P= .210
PREN	.1455	.2503	2868	3322	.0089	.0216
	(72)	(72)	(72)	(72)	(69)	(69)
	P=.223	P= .034	P= .015	P= .004	Ps .942	P= .860
REPMD	.1930	0396	.0654	2536	1000	.0172
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .184	P741	P= .585	P= .032	P= .414	P= .888
STAQUO	.1985	.2369	2541	3682	0515	.1477
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .095	Pa .045	P= .031	P= .001	P= .674	P= .226
VIS	.2094	.3723	1485	-,4130	,0418	.0859
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .078	P= .001	P= .213	P= .000	P= ,733	P= .483
IDELSH	.2913	.3109	3126	3467	.1031	.3022
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .013	P= .008	P= .008	P= .003	P* .399	P= .012
STMIN	.0352	.1555	1953	3241	0256	.1244
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .769	P192	P= .100	P= .005	P= .835	P= .309

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

417

li.

.

-

...

-

VM/SP CMS

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:46 The University of Maryland CSC IBM 3081GX

		Corre	lation Coet	fficients -	-	
	CTSY	CVNWS	UNREL	COMP	TOTEFF	OUTPUT
INACTN	.2370	.2781	1792	3764	.1868	.1398
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .045	P= .018	P= .132	P= .001	P= .124	P= .252
TEAM	.3327	.2137	2403	4926	.0522	.0565
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .004	P= .071	P= .042	P= .000	P= .670	P= .645
SLFREW	.1654	.3870	2343	3360	.1145	.1267
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .165	P= .001	P= .048	P= .004	P= .349	P= .300
OPTHT	.2130	.2763	2202	3060	.1009	.0170
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .072	P= .019	P= .063	P= .009	P= .409	P= .890
INDACT	.2321	.1210	.0453	0604	.1583	.0535
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .050	P= .311	P= .706	P= .614	P= .194	P= .662
EFFIC	.1534	.0039	0401	0404	1339	1617
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .198	P= .974	P= .738	P= .736	P= .273	F= .184
TEAMHK	.3253	.2162	1898	3052	.1363	.0874
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .005	P= .068	P= .110	P= .009	P= .264	P= .475
SFREW	.1507	.1861	0405	.0574	0665	0335
	(72)	(72)	(72)	(72)	(69)	(69)
	P* .206	P= .117	P= .736	Pa.632	P= .587	P= .785
SFGL	.0507	.0412	1275	0029	.2311	.2273
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .672	P= .731	P= .286	P= .981	P= .056	P= .068
NREW	.2021	.1255	.0188	.0503	.0204	0608
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .089	P= .294	P= .876	P= .675	P= .868	P= .619
0PPTHT	0037	.1182	1533	1152	.0711	.0146
	(72)	(72)	(72)	(72)	(70)	(70)
	P= .976	P= .323	P= .199	P= .335	P= .559	P= .904

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

418

-

...

VH/SP CMS

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:46 The University of Maryland CSC IBM 3081GX

		Corri	elation Coe	fficients		
	CTSY	CVNHS	UNREL	COMP	TOTEFF	OUTPUT
SOBS	0091	0272	.0740	1513	.0446	.0215
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .939	P= .821	P= .537	P= .205	P= .716	P= .861
INTSUP	.7463	.3270	3974	5683	.1533	.0764
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .000	P= .005	P= .001	P= .000	P= .209	P= .533
CTSY	1.0000	.4486	4613	6092	.2377	,1698
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .	F= .000	P= .000	P= .000	P= .049	P= .163
CVNHS	.4486	1,0000	3689	4329	.1870	.1001
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .000	P= .	P= .001	P= .000	P= .124	P= .413
UNREL	4613	3689	1.0000	.5065	1124	1349
	(72)	(72)	(72)	(72)	(69)	(69)
	P= .000	P= .001	P= .	P= .000	P= .358	P= .269
COMP	-,6092	4329	.5065	1.0000	1003	1620
	(72)	(72)	(72)	(72)	(69)	(69)
	Pa .000	P= .000	P= .000	P= .	P= .412	P= .184
TOTEFF	.2377	.1870	1124	1003	1.0000	.7329
	(69)	(69)	(69)	(69)	(70)	(70)
	P= .049	P= .124	P= .358	P= .412	P= .	P= .000
OUTPUT	.1698	.1001	1349	1620	.7329	1.0000
	(69)	(69)	(69)	(69)	(70)	(70)
	PT .163	P= .413	P= .269	P= .184	P= .000	P= .
INTEFF	.2133	.2100	1377	1414	.8508	.4338
	(69)	(69)	(69)	(693	(78)	(70)
	P= .078	P= .083	P= .259	P= .246	P= .000	P= .000
CHNGEFF	.2278	.0884	0190	0011	.7333	.3132
	(69)	(69)	(69)	(69)	(70)	(70)
	P= .060	P= .470	P= .877	P= .993	P= .000	P= .008
ORGPLN	.0767	.1003	.0077	.1260	.6441	.4543
	(69)	(69)	(69)	(69)	(70)	(70)
	P* .531	P= .412	P= .950	P= .302	P= .000	P= .000

(Coefficient / (Cases) / 2-tailed sig)

" , " is printed if a coefficient cannot be computed

419

11

-

-

••

19-Jul-93 10:21:46	ALL GP LVL The Univers	TIME 1 AND ity of Mary	TIME 2 VARI	ABLES M 3081GX	VH/SP C	MS
		Corre	lation Coef	ficients -	-	
	CTSY	CVNWS	UNREL	COMP	TOTEFF	OUTPUT
SLFPERF	0399 (30) P= .834	0554 (30) P= .771	.1166 (30) P= .540	.0497 (30) P= .794	109B (31) P= .560	.0791 (31) P= .672
SUBPERF	.1466 (72) P= .219	.3757 (72) P= .001	3103 (72) P= .008	3957 (72) P=.001	.1398 (69) P= .252	.2594 (69) P= .031
DESIRE	0821 (72) P= .493	1852 (72) P= .119	.0270 (72) P= .822	.2327 (72) P= .049	.0469 (69) P= .702	.1467 (69) P= .229
XAVRS	0864 (71) P= .474	2488 (71) P= .036	.0080 (71) P= .947	.0579 (71) P= ,631	1272 (68) P= .301	.0388 (68) Pz .753
XASGL	.0221 (71) P= .855	.1257 (71) P# .296	1898 (71) P= .113	0532 (71) P= .660	0404 (68) P= .743	.0806 (68) P= .513
XINCOM	.0790 (71) P= .512	.0952 (71) P= .439	2703 (71) P= .025	1360 (71) P= .258	0883 (68) P= .474	.0505 (68) P= .682
XPARGL	.0845 (71) P= .483	.2034 (71) P= .089	0809 (71) P= .502	1204 (71) P= .317	.0806 (68) P= .513	.0417 (68) P= .735
XMREN	.1031 (71) P= .392	.1233 (71) P= .306	1243 (71) P= .302	1151 (71) P= .339	.0329 (68) P= .790	.0122 (68) P= .921
XPREW	.0886 (71) P= .463	.2346 (71) P= .049	0527 (71) P= .662	0979 (71) P= .417	0137 (68) P= .911	0391 (68) P= .752
XREPMD	.1288 (71) P= .284	.0727 (71) P= .547	2019 (71) P= .091	2691 (71) P= .023	1312 (68) P= .286	0142 (68) P= .908
XSTAQUO	.1286 (71) P= .285	.1144 (71) P= .342	1389 (71) P= .248	2713 (71) P= .022	0853 (68) P= ,489	.0497 (68) P= .687

", " is printed if a coefficient cannot be computed

II.

-

..

420

ş.,

	The Univers		lation Coef			
	CTSY	CVNWS	UNREL	COMP	TOTEFF	OUTPUT
XV13	.1458	.2265	1978	2041	.0126	0011
	(71)	(71)	(71)	(71)	(68)	(68)
	P= .225	P= .058	P= .098	P= .088	P= .919	P= .993
XIDELSM	.0774	.1472	2991	1433	0342	.1864
	(71)	(71)	(71)	(71)	(68)	(68)
	P= .521	P= .221	P= .011	P= .233	P= .782	P= .128
STMIN	.0498	.2115	0691	3111	.1211	.1663
	(71)	(71)	(71)	(71)	(68)	(68)
	P= .680	P= .077	P= .567	P= .008	P= .325	P= .175
INACTN	.2120	.2422	.0214	1667	.1891	.0486
	(71)	(71)	(71)	(71)	(68)	(68)
	P= .076	P= .042	P= .859	P= .165	P= .122	P= .694
CTEAM	.3579	.1853	0765	3502	.1663	.1162
	(71)	(71)	(71)	(71)	(68)	(68)
	P= .002	P= .122	P= .526	P= .003	P= .175	P= .345
SLFREW	.1634	.1694	0765	0431	.0345	0680
	(71)	(71)	(71)	(71)	(68)	(68)
	P= .173	P= .158	P= .526	P= .721	P= .780	P= .582
OPTHT	.1545	.1711	0844	1286	.0185	0264
	(71)	(71)	(71)	(71)	(68)	(68)
	P= .198	P= .154	P= .484	P= .285	P= .881	P= .831
INDACT	.2783	.1098	,1483	1810	.1544	.0869
	(71)	(71)	(71)	(71)	(68)	(68)
	P= .019	P= .362	P= .217	P= .131	P= .209	P= .481
EFFIC	.1584	.1442	1052	2958	.0073	.0450
	(71)	(71)	(71)	(71)	(68)	(68)
	P= .187	P= .230	P= .383	P= .012	P= .953	P= .716
ТЕАМЫК	.2661	.1415	0121	2895	.2252	.1387
	(71)	(71)	(71)	(71)	(68)	(68)
	P= .025	P= .239	P= .920	P= .014	P= .065	P= .259
KSFREH	~.1307	0320	-0902	.1438	0842	1472
	(71)	(71)	(71)	(71)	(68)	(68)
	P= .277	P= .791	P= .454	P= .231	P= .495	P= .231

" . " is printed if a coefficient cannot be computed

11

=

11

421

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:46 The University of Maryland CSC IBM 308

	The Univers	Corre	alation Coer	ficiente	VMrSP	CMS
	CTSY	CVNHS		serents -		
VCEAL		CANNO	UNREL	0.000		
XSFGL	.1368			COMP	TOTEFF	100 C
		.2268			INITEL	OUTPUT
		(71)	0510	1363		
	P= .255		(71)		. 3132	.1869
VIIDAN		P= .057	P= .673		(68)	
XNREW	0094			P= .257	P= .009	(68)
		.0090	1747			P= .127
		(71)	. 1707	.0670		
	P= .938	P= .941	(71)		.0908	0668
VODDTUT			Pz .155	711	(68)	
XOPPTHT	.1248			P= .579	Pz .461	
	(72)	.0113	0224			P= .588
		1 723		~.0919	00.00	
	P= .296	P= .925	723	(721	.0839	0026
XSOBS			P= .852	P= .443	(70)	(70)
10003	.0023	201-		445	P= . 490	
	(71)	. 2063	.0069			P= .983
		(71)		0670	.1629	
	P= .985	P= .084		(71)		.0842
XINTSUP			P= .955	P= .579	(68)	(68)
	.5504	3/1-			Pa .185	P= .495
	(71)	.2650	1855			. 495
	P= .000	5 71)	(71)	2775	.1955	
		P= .026	P= .121	(71)		.0359
XCTSY			121	P= .019	68)	(68)
	. 5726	. 3275			P= .110	P= .771
	(71)	(71)	3302	~. 3763		
	P= .000		(71)	(71)	.0105	
XCVNHS		P= .005	P= .005		681	0283
VEAUMS	.3992			P= .001	P= .932	
	(71)	. 3890	1717		. / 52	P= .819
	P= .001	(71)	(71)	3011	0704	
		P= .001		(71)	.0298	0264
XUNREL			Pa .152	P= .011	68)	(68)
	4337	2397			P= .810	P= .831
	(71)	(71)	.6186	.4454		
	P= .000		(71)		1953	- 1754
XCOMP		P= .044	P= .000		(68)	1376
ACOMP	6052			P= .000	P= .110	(68)
	(71)	3097	.2248			P= .263
		(71)		. 5037	- 1704	
	P= .000	P= .009	71)	(71)	1306	0953
XTOTEFF			P= .059	P= .000	68)	(68)
and a second	. 1126	0517			P= .288	P= .440
	(60)	1	.0739	- 00/-		
	P= .392	(60) P= 695	601	0942	.6949	
VAURAL		P= .695	Pa .575		611	. 5763
XOUTPUT	.0582			P= .474	P= .000	(61)
-		0412	- 0/1-			P= .000
	60)	6 603	0612	0981		
	P= .659	P= .754	(60)	(60)	. 5081	.6375
		./34	P= .642		61)	
10				P= -456	P= .000	61)
Coeffici	ient / (Cases) / 2-tail				P= .000

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

11

-

		Contraction of the local division of the loc
VM/SP	CHS	1000

.

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:46 The University of Maryland CSC IBM 3081GX

- - Correlation Coefficients - -

	CTSY	CYNHS	UNREL	COMP	TOTEFF	OUTPUT
XINTEFF	.0886	0136	.0675	1108	.5276	.2677
	(60)	(60)	(60)	(60)	(61)	(61)
	P= .501	P= .918	P= .608	P= .399	P= .000	P= .037
XCHIIGEFF	.0572	0943	.1551	.0869	.5490	.3739
	(60)	(60)	(60)	(60)	(61)	(61)
	P= .664	P= .473	P= .237	P= .509	P= .000	P= .003
XORGPLN	.1660	0015	.0949	1626	.4864	.5322
	(60)	(60)	(60)	(60)	(61)	(61)
	P= .205	P= .991	P= .471	P= .214	P= .000	P= .000
XSLFPERF	1383	1249	0152	0470	0393	.0849
	(59)	(59)	(59)	(59)	(57)	(57)
	P= .296	P= .346	P= .909	P= .724	P= .772	P= .530
XSUBPERF	0194	.1851	0900	1510	.0282	.1306
	(71)	(71)	(71)	(71)	(68)	(68)
	P= .873	P= .122	P# .456	P= .209	P* .820	P= .288
XDESIRE	.0817	.0857	1802	0637	0877	0823
	(71)	(71)	(71)	(71)	(68)	(68)
	P= .498	P= .477	F= .133	P= .598	P= .477	P= .504

(Coefficient / (Cases) / 2-tailed sig)

-

-

..

" . " is printed if a coefficient cannot be computed

	The Univers				VM/SP C	
		Corre	lation Coef	ficients -	-	
	INTEFF	CHNGEFF	ORGPLN	SLFPERF	SUBPERF	DESIRE
AVRS	2260	2802	0420	.2224	4722	0341
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .062	P= .020	P= .732	P= .237	P=.000	P= .776
ASGL	.0833	0967	.0382	1648	.1167	-,1693
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .496	P= .429	P= .755	P= .384	P= .329	P= ,155
INCOM	0945	0068	0480	0762	.3111	4483
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .440	P= .956	P= .696	P= .689	P= .008	P=.000
PARGL	.1897	.0916	.1451	1827	.7009	1725
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .118	P= .454	P= .234	P= .334	P= .000	P= .147
MREW	.0216	.0381	.1160	0508	.5545	.0439
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .860	P= .756	P= .343	P= .790	P=.000	P= .714
PREW	0281	.0571	.0116	-,0208	.5784	2046
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .819	P= .641	P= .924	P= .913	P=.000	P=.085
REPMD	0686	1594	1132	.1484	.1018	2415
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .575	P= .191	P= .354	P= .434	P= .395	P= .041
STAQUD	1127	1706	.0591	.1653	.5169	1278
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .357	P= .161	P= .630	P= .383	P= .000	P= .285
VIS	.0010	.0106	.0872	.0726	.6815	2701
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .994	P= .931	P= .476	P= .703	P= .000	P= .022
IDELSM	0194	0124	.0906	.0732	,5777	0902
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .874	P= .919	P= .459	P= .700	P* .000	P=.451
STMIN	.0118	1489	1489	1198	.6943	3672
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .923	P= .222	P= .222	P= .532	P=.000	P=.002

" . " is printed if a coefficient cannot be computed

424

11

....

19-Jul-93	ALL	GP LVL TIME 1 University of	AND TIME Maryland	csc	IBM 3081GX	
TOTEL				-	cal signific	

	Correl	ation Coeff	icients -	-	
				SUBPERF	DESIRE
.1774	.1428	.1134	2337 (30) P=.214	.5926 (72) P= .000	2523 (72) P=.033
.0858	0186 (69)	.0367	0451 (30) P= .813	.4954 (72) P=.000	1733 (72) P=145
.0751	.0637	.0943 (69) P= .441	2382 (30) P= .205	.6011 (72) P= .000	2811 (72) P=.017
.1416	.0972	.0754 (69) P= .538	2532 (30) P= .177	.5160 (72) P=.000	3448 (72) P=.003
.1660	.1534	.1040 (69) P= .395	.1097 (30) P= .564	.1763 (72) P= .138	.2818 (72) P=.016
0925	.0030	(69)	(30)	(72)	.1518 (72) P= .203
.137	7 .000) (69) (30	(72)	P = .260
12	2503		9) (3)	0) (/2	$r_{p} = .716$
.2	134 -1 69) <u>(</u>	651 .03 69) (6	(3	50) (7	2) (12) 91 P= .583
	004 .(69) (640 .1 69) (69) (30) ((16)
нт с	0834 70) (1369 70) (0005 .3 70) (31) (0492309 72) (72) 009 P=.051
	$\begin{array}{c} .1774\\ (& 69)\\ P= .145\\ .0858\\ (& 69)\\ P= .484\\ .0751\\ (& 69)\\ P= .540\\ .1416\\ (& 69)\\ P= .246\\ .1660\\ (& 69)\\ P= .246\\ .1660\\ (& 69)\\ P= .173\\ .0925\\ (& 69)\\ P= .451\\ .137\\ (& 69)\\ P= .25\\ .137\\ (& 69)\\ P= .25\\ .12\\ .12\\ .12\\ .12\\ .12\\ .12\\ .12\\ .12$	INTEFF CHNGEFF .1774 .1428 (69) (69) P= .145 P= .242 .08580186 (69) (69) P= .484 P= .880 .0751 .0637 (69) (69) P= .540 P= .603 .1416 .0972 (69) (69) P= .246 P= .427 .1660 .1534 (69) (69) P= .173 P= .208 .0925 .0030 (69) (69) P= .450 P= .981 .1377 .000 (69) (69) P= .259 P= .93 (69) (69) P= .316 P= .7 .2134 .14 (69) (7 P= .997 P= HT .0834 (70) ($\begin{array}{cccccccccccccccccccccccccccccccccccc$	INTEFF CHRGEPF ONOI CA .1774 .1428 .11342337 (69) (69) (69) (30) P= .145 P= .242 P= .355 P= .214 .08580186 .03670451 (69) (69) (69) (30) P= .484 P= .880 P= .764 P= .813 .0751 .0637 .09432382 (69) (69) (69) (30) P= .540 P= .603 P= .441 P= .205 .1416 .0972 .07542532 (69) (69) (69) (30) P= .246 P= .427 P= .538 P= .177 .1660 .1534 .1040 .1097 (69) (69) (69) (30) P= .173 P= .208 P= .395 P= .564 .0925 .00301720 .4065 (69) (69) (69) (30) P= .450 P= .981 P= .158 P= .026 .1377 .0002 .28720355 (69) (69) (69) (30) P= .259 P= .999 P= .017 P= .85 .12250368 .08864 .061 (69) (69) (69) (30) P= .516 P= .764 P= .470 P= .7 .2134 .1651 .0363 .16 (69) (69) (69) (69) (37 P= .078 P= .175 P= .767 P= .4 .0004 .0640 .10191 (69) (69) (69) (69) (37 P= .997 P= .601 P= .405 P= . HT .0834 .136900057	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

.....

VM/SP CMS

i

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

il

...

-

VM/SP CHS

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:46 The University of Maryland CSC IBH 3081GX

		Corre	lation Coer	fficients -	-	
	INTEFF	CHNGEFF	ORGPLN	SLFPERF	SUBPERF	DESIRE
SOBS	.0789	.0103	0483	.0693	.0314	2898
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .519	P= .933	P= .693	P= .716	P= .793	P= .014
INTSUP	.1840	.1019	.0702	1470	.1017	-,1522
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .130	P= .405	P= .567	P= .438	P= .395	P= .202
CTSY	.2133	.2278	.0767	0399	.1466	0821
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .078	P= .060	P= .531	P= .834	P= .219	P= .493
CVNWS	.2100	.0884	.1003	0554	.3757	1852
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .083	P= .470	P= .412	P= .771	P= .001	P= .119
UNREL	1377	0190	.0077	.1166	3103	.0270
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .259	P= .877	P= .950	P= .540	P= .008	P= .822
COMP	1414	0011	.1260	.0497	3957	.2327
	(69)	(69)	(69)	(30)	(72)	(72)
	P= .246	P= .993	P= .302	P= .794	P= .001	P= .049
TOTEFF	.8508	.7333	.6441	1090	.1398	.0469
	(70)	(70)	(70)	(31)	(69)	(69)
	P= .000	P= .000	P= .000	P= .560	P= .252	P= .702
OUTPUT	.4338	.3132	.4543	.0791	.2594	.1467
	(70)	(70)	(70)	(31)	(69)	(69)
	P= .000	P= .008	P= .000	P= .672	P= .031	P= .229
INTEFF	1.0000	.5182	.3566	2927	.0315	0963
	(703	(70)	(70)	(31)	(69)	(69)
	P= .	P= .000	P= .002	P= .110	P= .797	P= .431
CHNGEFF	.5182	1.0000	.4497	0771	.0430	.0596
	(70)	(70)	(70)	(31)	(69)	(69)
	P= .000	P= .	P= .000	P= .680	P= .726	P= .626
ORGPLN	.3566	.4497	1.0000	.1030	.1589	.0958
	(70)	(70)	(70)	(31)	(69)	(69)
	P= .002	P= .000	P= .	P= .581	P= .192	P= .433

(Coefficient / (Cases) / 2-tailed sig)

" , " is printed if a coefficient cannot be computed

7

..

VM/SP	CMS	

19-Ju1-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:47 The University of Maryland CSC IBM 3081GX

10:21:47	he onrices		ation Coeff	icients		
	INTEFF	CHNGEFF	ORGPLN	SLFPERF		DESIRE
SLFPERF	2927 (31) P= .110	~.0771 (31) P= .680	.1030 (31) P= .581	1.0000 (31) P= .		.1231 (30) P= .517
SUBPERF	.0315 (69) P= .797	.0430 (69) P= .726	.1589 (69) P= .192	1139 (30) P= .549	1.0000 (72) P= .	1890 (72) P= .112
DESIRE	0963 (69) P= .431	.0596 (69) P= .626	.0958 (69) P= .433	.1231 (30) P= .517	1890 (72) P= .112	1.0000 (72) P= .
XAVRS	0808 (68) P= .512	2671 (68) P=.028	1474 (68) P= .230	.1559 (29) P≠ .419	4740 (71) P= .000	0794 (71) P= .510
XASGL	0680 (68) P= .582	1618 (68) P= .188	.0430 (68) P= .727	-,3082 (29) P= .104	.1313 (71) P= .275	0655 (71) P= .588
XINCOM	1433 (68) P= .244		0137 (68) P= .912	-,1973 (29) P= .305	.1548 (71) P= .198	0783 (71) P= .516
XPARGL	.053° (68 P= .66	9 .0631) (68)		-,2231 (29) P= ,245	.4009 (71) P=.001	.0051 (71) P= .966
XMREW	014 (68 P= .9	4 .0657 3) (68) (68) (29)	.3696 (71) P≖ .002	.0415 (71) P= .731
XPREW	08	15 .071 8) (68	(68) (29)	(71)	(71)
XREPM		52121 68) (6	8) (6	8) (29) (71) (71)
XSTAG		.369 -,10 68) (0	195 .03 58) (6	is) (2º)) (71	() (71)

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

-

••

10:21:47				Conne					VH/SP	CMS
				COIFE	alat1	on Coe	ffici	ente .		
	INTE	FF	CH	NGEFF					-	
XVIS.					05	RGPLN	S	LFPERF	Subber	
	03		. (346		1000			SUBPERF	DESIRE
	6 68	3)	(68)	(1898		. 0298	4	
	P= .76	53	P= .	779		68)	(291	(71)	3162
IDELSM					F =	.121	P=	. 878		(71)
	162		1	007					P= .000	P= .007
	68		(68)		0805		0039		
	P= .18	7	P= .	414	P.	66)	(29)	(71)	~.0768
STMIN					F -	.514	P=	.984		(71)
	.082		0	257	-				P= .000	P= .524
	68)		68)	("	1703		0283	Edo.	
	P= .50	3 1		835	0-	68)	(291	(5821	3316
INACTH					P=	- 105	P=	.884	(71) P- 000	(71)
	(.169		.1	946		0.0.4			P= .000	P= .005
	68		1	681		1986		2990	. 3284	
	P= .16	6	P≈ .	112		68)	(29)		2198
TEAM	101				L.	.104	P=	.115		(71)
	.121		.1	106		2098			P= .005	P= .065
	P= .32		C	68)	¢ ''	68)		0117	.2839	
	34	4	P= .	369		. 086	C	29)		1016
SLFREN	017					. 000	6=	.952	(71) P= .016	(71)
	1 68		1	220		1680				P= .399
	P= .88		1	68)	5	68)		3966	.2990	
VORTUT		~~	P= .	322	P=	.171	P*	29)	(71)	0227
XOPTHT	. 023	82					I. *	.033	P= .011	(71)
	(6:	81		009		1310				P= .851
	P= .8	19	P=	68)	(68)		2405	. 4226	
XINDACT				. 994	P=	. 287	P=	29)	(71)	(71)
ATODACI	. 07	25		2925				- 209	P= .000	P= .016
	(6	8)	C	693		0465		. 3338		
	P= .5	57	P=	.015	Pa	68)	(29)	. 1997	.1797
XEFFIC		-			P.E	.707	P=	.077	(71)	(71)
	07			1309					P= .095	P= .134
	D- 0	8)	(681	(0354		. 5430		
	P= .5	220	P⇒	.287	P=	68)	(291	.1386	0958
XTEAMWK	1.					.119	P=	.002	P= .249	(71)
	C .15	10		2837		1678			1 649	P= .427
	P=	212	5	68)	(68)		.3676	.1198	
Vana			P≈	.019	P=	.171	(29)	(71)	0194
XSFREW	01	73				. ATT	Pa	.050	P= .320	(71)
		58)		1170		.0132				P= .873
		889	P=	68)	(6 2 3		.1407	038z	
			r=	. 342	P=	.915	(29)	(71)	0930
(Coeffici							F. 6	.467	Pa .752	(71) P= .440

" . " is printed if a coefficient cannot be computed

428

-

н

		Corre	lation Coef	ficients -	-	
	INTEFF	CHNGEFF		SLFPERF	SUBPERF	DESIRE
XSFGL	.2649	.2819	.1425	.1963	.0271	.3105
	(68)	(68)	(68)	(29)	(71)	(71)
	P= .029	P= .020	P= .246	P= .307	P= .822	P= .008
XNREW	.1031	.2166	0101	.0772	0344	1531
	(68)	(68)	(68)	(29)	(71)	(71)
	P= .403	P= .076	P= .935	P= .691	P= .776	P* .203
ХОРРТНТ	0186	.3134	.0295	.3751	.1533	0661
	(70)	(70)	(70)	(31)	(72)	(72)
	P= .879	P= .008	P= .809	P= .038	P= .199	P= .581
XSOBS	.1956	.0954	.0496	.3735	.0185	2300
	(68)	(68)	(68)	(29)	(71)	(71)
	P= .110	P= .439	P= .688	P= .046	P= .879	P= .054
XINTSUP	.1517	.2466	.2515	1466	.1096	1165
	(68)	(68)	(68)	(29)	(71)	(71)
	P= .217	P= .043	P= .039	P= .448	P= .363	P= .333
XCTSY	0159	.1219	0223	.0102	.2528	0929
	(68)	(68)	(68)	(29)	(71)	(71)
	P= .897	P= .322	P= .857	P= .958	P= .033	P= .441
XCVNWS	0593	.1627	.1250	.1026	.1204	1123
	(68)	(68)	(68)	(29)	(71)	(71)
	P= .631	P= .185	P= .310	P= .596	P= .317	P= .351
XUNREL	1103	2392	1756	.0493	2272	1012
	(68)	(68)	(68)	(29)	(71)	(71)
	P= .370	P= .049	P= .152	P= .799	P= .057	P= .401
XCOMP	0384	1646	1753	0818	2744	0763
	(68)	(68)	(68)	(29)	(71)	(71)
	P= .756	P= .180	P= .153	P= .673	P= .021	P= .527
XTOTEFF	.5981	.4859	.3587	.0396	.1417	.0143
	(61)	(61)	(61)	(27)	(60)	(60)
	P= .000	P= .000	P= .005	P= .845	P= .280	P¤ .914
XOUTPUT	.2800	.2835	.3688	.1787	.2092	.0916
	(61)	(61)	(61)	(27)	(60)	(60)
	P= .029	P= .027	P= .003	P= .373	P= .109	P= .486

" . " is printed if a coefficient cannot be computed

Ξ

11

19-Jul-93	ALL	GP LVL TIME 1	AND TIME	2 VARIABLES
10:21:47	The	University of	Maryland	CSC IBM 3081GX

	Correlation Coefficients						
	INTEFF	CHNGEFF	ORGPLN	SLFPERF	SUBPERF	DESIRE	
XINTEFF	.6449	.3237	.1928	1206	.0543	0608	
	(61)	(61)	(61)	(27)	(60)	(.0)	
	P= .000	P= .011	P= .137	P= .549	P= .680	P= .644	
XCHNGEFF	,4448	.5375	.2335	,2299	.0408	.0969	
	(61)	(61)	(61)	(27)	(60)	(60)	
	P= .000	P= .000	P= .070	P= ,249	P= .757	P= .461	
XORGPLN	.3295	.3031	.3155	3026	.1618	1490	
	(61)	(61)	(61)	(27)	(60)	(60)	
	P= .010	P= .018	P013	P= .125	P= .217	P= .256	
XSLFPERF	0001	1475	1142	.5512	0811	0845	
	(57)	(57)	(57)	(23)	(59)	(59)	
	P= .999	P= .273	P= .398	P= .006	P= .541	P= .525	
XSUBPERF	1193	.0638	.1657	0478	.7583	1823	
	(68)	(68)	(68)	(29)	(71)	(71)	
	P= .333	P= .605	P= .177	P= .806	P= .000	P= .128	
XDESIRE	1162	.0077	.0450	.1191	.1256	.3410	
	(68)	(68)	(68)	(29)	(71)	(71)	
	P= .345	P= .950	P= .716	P= .538	P= .297	P= .004	

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

430

.

.

11

-

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:47 The University of Maryland CSC IBM 3081GX

VM/SP CMS

		Corre	elation Coe	fficients -		
	XAVRS	XASGL	XINCOM	XPARGL	XMREW	XPREW
AVRS	.8209	.3174	.2929	3844	4834	4263
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .007	P= .013	P= .001	P= .000	P= .000
ASGL	.1903	.6671	.3797	1034	0786	0909
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .112	P= .000	P= .001	P= .391	P= .515	P=.451
INCOM	.2791	.5089	.5516	1219	1186	0417
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .018	P= .000	P= .000	P= .311	P= .324	P= .730
PARGL	4831	.1039	.0996	.6348	.3483	.4438
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .388	P= .409	P= .000	P= .003	P= .000
MREN	4378	.0627	.0126	.4496	.6791	.4915
	(71)	(71)	{ 71)	(71)	(71)	(71)
	P= .000	P= .603	P= .917	P= ,000	P= .000	P= .000
PREH	3664	.2224	. 0943	.4885	.5118	.6640
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .002	P= .062	P= ,434	P= .000	P= .000	P= .000
REPMD	.3747	.2883	-3505	0018	0880	.0208
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .001	P= .D15	P= .003	P= .988	P= .465	P= .863
STAQUO	.0179	0282	.1238	.1295	.0918	,2164
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .882	P= .816	P= .304	P= .282	P= .446	P* ,079
VIS	2916	.1763	.1236	.3464	.2344	.4828
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .014	P= .141	P= .305	P= .003	P= .049	P= .000
IDELSM	0454	.1763	.2260	.2931	.2621	.4029
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .707	P= .141	P= .058	P= .013	P= .027	P= .000
STMIN	1535	.2299	.2261	.2190	,1305	.3487
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .201	P= .054	P= .058	P= .067	P= .278	P= .003

.

(Coefficient / (Cases) / 2-tailed sig)

". " is printed if a coefficient cannot be computed

11

-

-

			TIME 2 VARI	SUOTOX	VMUSP	CHS
	XAVRS	Corre	lation Coef	ficients		CHS
INACTH	ANKS	XASGL	XINCOM			
THACTN	4274	1383		XPARGL	XMREN	XPREW
	(71) P= .000	(71)	0315	.3178		ALKEW
		P= .250	(71) P= .794	(71)	.2226	. 37 57
TEAM	2883			P= .007	(71) P= .062	(71)
	(71)	.0661	.1218	22.00		P= .001
	P= .015	P= .584	(71)	(71)	. 2728	.4034
SLFREM	- 6/11		P= .311	P= .002	5 71)	(71)
	4616	. 0915	.0775		P= .021	P= .000
	P= .000	(71)	5 715	.2924	. 2968	
PTHT		P= .448	P= .521	2 / 1 /	(71)	. 4267
	2899	.0501		P= .013	P= .012	C 71) P≈ .000
	(71) P= .014	(71)	.0401	.2459	2020	
NDACT		P= 678	P= .740	(71)	(71)	. 3268
MDAC I	5227	2824		P= .039	P= .057	(71)
	(71) P= .000	(71)	3068	.4093		P= .005
		P= 017	(71) P= .009	(71)	.4498	.3127
EFFIC	D179			P= .000	P= .000	6 711
	(71) P= 887	0043	0115	.1697		P= .008
	P= .882	P= .972	(71) P= .924	(71)	. 3250	.1822
EAMIK	2384		.929	P= .157	(71) P= .006	(71)
	213	(71)	.1324			P= .128
	P= .045	P= .671	(71)	.1335	. 0435	.1604
SFREW	2633		P= .271	P= .267	P= .718	(71)
	(71)	(71)	.0047			P= .181
	P= .027	P= .295	(71)	(71)	.2073	1207
SFGL	3925		P= .969	P= .143	(71) P= 083	(71)
	(71)	2906	0865		P= .083	P= .006
	P= .001	(71) P= .016	(71)	(2955	. 3158	
REN	2952		P= .473	P= .012	(71)	(71)
	(71)	.1611	.0582		P= .007	P= .008
	P= .012	P= .180	(71)	.0494	.2185	
OPPTHT		160	P= .629	(71) P= .683	(71)	(71)
	1750	.0325	0262		P= .067	P= .477
	P= 144	5 71)	(71)	.0897	.2149	
		P= .788	P= .828	P= .457	1 71)	.2165

". " is printed if a coefficient cannot be computed

432

* 6

-

11

19-Jul-93 10:21:47			TTY (PIG I DIG	508	1 CV				-
				Corre	elation	-		LOX		VM/SP	CMS	
	X	AVRS	-		and cron	Loeff	icier	ite .				
			XA	SGL	YTH				-			
SOBS		1204			XINC	MU	XPA	RGL				
	1	1209		0678				NOL	XI	REH	Y	PREW
	P-	711	(711	06		1	815			~	ACM
		. 317	P=	. 574	(7	1)				0236		
INTSUP					P= .5	89	Pa	71)	(771	<	.0801
	, .	1216		0389				130	P=	.845	à.,	71:
	(71)	5	71)	. 07	71					P=	. 507
	P=	.312	P-	.747	(7	11	0	762		1755		
CTSY				./4/	P= .5		(71)	(711		1759
		0864					P= .	528	P=	.143	(711
	C	711	1 .	0221	. 07					.145	Pr	-142
	Pa	.474	à-	71)		1	. 0	845		1071		
VNHS			P=	.855	P= .5		(71.	¢ '	1031		0886
CHIN2	-	2488				16	P= .	483		71)	(711
	(71)		1257	.09				r -	. 392	P=	. 46
	P=	.036	\$	71)			.2	034		-		. 10.
un m.		.030	P=	296		1)	(711		1233		2346
INREL		0080			P= .4	23	P= .	0.80	5	71)	1	
	(71)		898				007	PE	. 306	P-	-049
		.947	(711	(27		~.0	100			1 -	- 099
		. 947	P=	.113		1)	(71)		1243	-	
OMP		01.20			P= .0		-	50Z	(711	(0527
	('	0579	- 1	1532				202	P=	. 302	ò-	711
	B-	71)	(711	.13	60					P. =	. 662
	1	.631	P=	. 660	(7	1)	(1			1151		
OTEFF					P= .2			71)	(71)		0979
		1272		3484			P= .	517	P=	.339	5	71)
	(P=	68)	(601	,08	83					P=	. 417
	P=	.301	P=	68)	(6		0	806		0329		
JUTPUT				.145					(68)		.0137
13 C. 1		0388		0806			P= ,	513		.790	٢.	68
		68)	(4.6.5	.05						P =	. 91
	P=	.753	P=	68)	(4	9.5	0	417		0125		
INTEFF				. 513	P= .6	P m	5	68)	(.0122	-	. 039
		8080	-	0680			P= .	735	Pa	68)	C	8 3
	5		(14	133				. 261	P=	.75
	P =	.512		68)				1539	-	.0144		
CHNGEFF				. 202	P=	44	(68)	5	681	-	.081
and a second		2671	-	1618			P=	.663	Pa	.907	t	6.8
	0	68)	(1	326				. 747	P=	.50
	Pa	. 028		68)			!	0631		.0657		
ORGPLN				.102	Pz	281	(68)	C C	633	~	.071
		1474		04.70			63	.609	P=	. 595	(6.9
	C	68)	(0430	0	1 37				1343	P	. 56
	P=	. 230	-	68)			1 .1	5430		.1134		
				.727	P= 1	912	C	495	1			.119
Coefficie ", " is n							P=	470	P=	68)	(68

" . " is printed if a coefficient cannot be computed

7

....

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:47 The University of Maryland CSC IBM 3081GX

		Correl	ation Coeff	icients		
					XMREW	XPREW
SLFPERF	.1559	3082 (29)	1973 (29) P= .305	2231 (29) P= .245	1264 (29) P= .513	.0902 (29) P= .642
SUBPERF	4740 (71)	.1313 (71) P= .275	.1548 (71) P= .198	.4009 (71) P= .001	.3696 (71) P= .002	.4526 (71) P=.000
DESIRE	0794 (71) P= .510	0655 (71) P= .588	0783 (71) P= .516	.0051 (71) P= .966	(71) P= .731	0880 (71) P= .465
XAVRS	1.0000 (71) P=	.2555 (71) P= .032	.3042 (71) P= .010	4711 (71) P= .000	(71) P= .000	5881 (71) P=.000
XASGL	.2555	1.0000 (71) P= .	.6409 (71) P= .000	.1028 (71) P= .394	0663 (71) P= .583	.0627 (71) P= .603
XINCOM	.3042	(71	(71)		(71) P= .215	
XPARGL	471	1 .102	i) (71	5 (71) (71 P= .00	0 P= .000
XMREN	54	8706	1) (7)	0 (7)	1) (7)	P = .000
XPREW	5	881 .0 71) (627 .00 71) (7	1) (7	1) (7	1) (1) 100 P= .
XREPH	ю	3995 71) (2079 .4 71) (71) (71) (71) (71) 951 P= .710
XSTA	QUO (·	0001 (0369 .3	71) (71) (
	SUBPERF DESIRE XAVRS XASGL XINCOM XPARGL XMREU XPREW XREPM	SLITERN (-29) P= .419 SUBPERF4740 (71) P= .000 DESIRE0794 (71) P= .510 XAVRS 1.0000 (71) P= . XASGL .2555 (71) P= .032 XINCOM .3042 XINCOM (71) P= .010 XPARGL471 (71 P= .010 (71) P= .020 (71) P= .010 (71) P= .020 (71) P= .010 (71) P= .010 (71) P= .010 (71) P= .010 (71) P= .010 (71) (71) P= .010 (71) (71) P= .010 (71) (71) P= .010 (71) (71) (71) P= .010 (71) (71	XAVRS XASGL SLFPERF .1559 3082 (29) (29) P=.419 P=.104 SUBPERF 4740 .1313 (71) (71) P=.000 P=.275 DESIRE 0794 0655 (71) (71) P=.510 P=.588 XAVRS 1.0000 .2555 XASGL .2555 1.0000 (71) (71) P=.032 XASGL .2555 1.00000 (71) (71) (71) P=.032 P=. . XINCOM .3042 .6409 (71) (71) (71) P=.032 P=. . XINCOM .3042 .6409 (71) (71) (71) P=.010 P=.032 P=. XINCOM .3042 .6409 (71) (71) (71) P=.000 P=.32 XMREW	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

(Coefficient / (Cases) / 2-tailed sig)

-

14

" . " is printed if a coefficient cannot be computed

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:48 The University of Maryland CSC IBM 3081GX

		-				
	XAVRS	XASGL	XINCOM	XPARGL	XMREM	XPREW
XVIS	3273	.0320	.2252	.4113	.2740	.5965
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .005	P= .791	P= .059	F= .000	P= .021	P= .000
XIDELSM	2400	.2156	.3758	.4621	.4251	.5392
	(71)	(71)	(71)	(71)	(71)	(71)
	P# .044	P= .071	P= .001	P= .000	P= .000	P= .000
XSTMIN	3155	.1443	.2245	.4170	.3233	.5012
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .007	P= .230	P= .060	P= .000	P= .006	P= .000
XINACTN	4649	0799	.0045	.5196	.3392	.4605
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .508	P= .970	P= .000	P= .004	P= .000
XTEAM	3257	.0933	.0392	.5677	.4429	.5699
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .006	P= .439	P= .745	P= .000	P= .000	P= .000
XSLFREN	5103	.1184	.1191	.4834	.4649	.5747
	(71)	(71)	(71)	(71)	(71)	(71)
	P* .000	P= .325	P= ,323	P= .000	P= .000	P= .000
XOPTHT	3578	.1254	.2025	.5409	.4787	-6034
	(71)	(71)	(71)	(71)	(71)	(71)
	Ps.002	P= .297	P= .090	P= .000	P= .000	P= .000
XINDACT	4501	3143	3470	.2830	.3140	.2662
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .008	P= .003	P= .017	P= .008	P= .025
XEFFIC	0451	.0227	0223	.1624	.1048	.2047
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .709	P= .851	P= .853	P= .176	P= .384	P= .087
ХТЕАМЫК	-,0958	0722	0318	.1442	.1263	.3142
	(71)	(71)	(71)	(71)	(71)	(71)
	P= ,427	P= .550	P= .792	P= .230	P= .294	P= .008
XSFREM	.0768	0073	0707	.0497	.1187	.1801
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .525	P= .952	P= .558	P= .681	P= .324	P= .133

VM/SP CHS

••

(Coefficient / (Cases) / 2-tailed sig)

". " is printed if a coefficient cannot be computed

11

-

...

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:48 The Univer≄ity of Maryland CSC IBM 3081GX

		Corre	lation Coeff	icients -	-	
	XAVRS	XASGL	XINCOM		XMREN	XPREW
XSFGL	3363 (71) P= .004	1448 (71) P= .228	2048 (71) P=.087	.1706 (71) P= .155	.3251 (71) P= .006	.1529 (71) P= .203
XNREW	0792 (71) P= .512	0943 (71) P=.434	2088 (71) P=.081	.0647 (71) P=.592	.1289 (71) P= .284	.0585 (71) P=.628
XOPPTHT	1247 (71) P= .300	0908 (71) P=.451	0435 (71) P=.719	.1283 (71) P= .286	.1878 (71) P= .117	.2721 (71) P= .022
XSOBS	.0765 (71) P= .526	1102 (71) P= .360	0897 (71) P=.457	.0001 (71) P=1.000	.0520 (71) P= .667	.1177 (71) P= .328
XINTSUP	2880 (71) P= .015	0639	(71)	.1697 (71) P= .157	.2085 (71) P= .081	.3049 (71) P= .010
XCTSY	270 (71 P= .02	5035	7 .1196) (71)	.2973 (71) P= .012	.2690 (71) P= .023	.3170 (71) P=.007
хслимг	170 (7 P= .1	10	050663 1) (71) (711	.1766 (71) P= .141	(1)
XUNREL	.18 .18 (P= .	9713 1) (32 .004 71) (71	2118) (71	
XCOMP		903 .0 71) (34210 71) (7	1) (7	1) ([(71)
XTOTE	EFF	1679 ·	03751 59) (.778 P=.	59) (108 .13 59) (995 P=	59) (59) 520 P= .375
XOUT	PUT	.0672	.2305 .1	111	59) (59) (59)

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

-

11

11

-	-

VH/SP CMS

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:48 The University of Maryland CSC IBM 3081GX

		Corre	lation Coef	ficients -	•	
	XAVRS	XASGL	XINCOM	XPARGL	XMREW	XPREN
XINTEFF	2753	0376	2234	.1354	.2145	.2065
	(59)	(59)	(59)	(59)	(59)	(59)
	P= .035	P= .777	P= .089	P= .307	P= .103	P= .117
XCHNGEFF	1764	0621	2268	0409	.1321	.1151
	(59)	(59)	(59)	(59)	(59)	(59)
	P= .181	P= .640	P= .084	P= .758	P= .319	P= .385
XORGFLN	1026	0512	0756	.0573	.0688	0661
	(59)	(59)	(59)	(59)	(59)	(59)
	P= .440	P= .700	P= .569	P= .666	P= .605	P= .619
XSLFPERF	.2302	2380	1446	1636	1127	1057
	(58)	(58)	(58)	(58)	(58)	(58)
	F= .082	P= .072	P= .279	P= .220	P= .400	P= .430
XSUBPERF	5872	.0764	.1748	.5686	.4960	.6753
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .526	P= .145	P= .000	P= .000	P= .000
XDESIRE	1402	1003	.0029	.0028	.2662	0135
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .243	P= .405	P= .981	P= .982	P= .025	P= .911

(Coefficient / (Cases) / 2-tailed sig)

" , " is printed if a coefficient cannot be computed

437

.

h

-

...

		Corre	lation Coef	ficients -	-	
	XREPHD	XSTAQUO	XVIS	XIDEL SH	XSTMIN	XINACTA
AVRS	.3590	.0335	2904	1684	2257	3776
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .002	P= .781	Pr .014	P= .160	P= .058	P= .001
ASGL	.0738	1360	1446	.0217	.0378	1345
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .541	P= .258	P= .229	P= .858	P= .754	P= .263
INCOM	.1898	.0778	.1419	.1111	.2671	1335
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .113	P= .519	P= .238	P= .356	P= .024	P= .267
PARGL	.1033	.1644	.3953	.3747	.5142	.4550
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .391	P= .171	P* .001	P= .001	P= .000	P= .000
MREN	.0184	.1961	.3050	.3987	.4570	.2821
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .879	P= .101	P= .010	P= .001	P= .000	P= .017
PREN	.0766	.1980	.3504	.4613	.4266	.2477
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .525	P= .098	P= .003	P= .000	P= .000	P= .037
REPHD	.7310	.3820	.2355	.1385	.3536	-1767
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .001	P* .048	P= .249	P= .002	P= .140
STAQUO	.4251	.8349	.4748	.4551	.3851	.2465
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .500	P= .000	P= .001	P= .038
VIS	.2135	.5010	.6150	.4383	.6589	.3463
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .074	P= .000	P= .000	P= .000	P= .000	P= .003
I DEL SM	.3595	.5621	.4122	.5770	.4707	.2086
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .002	P= .000	P= .000	P= .000	P= .000	P= .081

(Coefficient / (Cases) / Z-tailed sig)

" . " is printed if a coefficient cannot be computed

H

438

-

		Corre	lation Coef	ficients -	-	
	XREPMD	XSTAQUD	XVIS	XIDELSM	XSTHIN	XINACTN
INACTN	.1984	.3329	.4924	.2443	.6667	.7499
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .097	P= .005	P= .000	P= .040	P= .000	P= .000
TEAM	.2877	.4398	.4965	.3877	.6176	.5896
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .015	P= .000	P= .000	P= .001	P= .000	P= .000
SLFREW	.0384	.2138	.4559	.3015	.6598	.4958
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .751	P= .073	P= .000	P= .011	P= .000	P= .000
OPTHT	.2444	.2987	.4568	.2661	.5674	.5332
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .040	P= .011	P= .000	P= .025	P= .000	P= .000
INDACT	1362	.1254	.1342	.0857	.2013	.5219
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .258	P= .298	P= .265	P= .477	P= .092	P= .000
EFFIC	.1983	.1815	0027	.0867	0323	.0511
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .097	P= .130	P= .982	P= .472	P= .789	P= .672
TEAMUK	.2191	-2467	.4186	.1770	.3496	.5025
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .066	P= .038	P= .000	P= .140	P= .003	P= .000
SFREW	1257	0022	.1328	.1732	.2816	.2385
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .296	P= .986	P= .270	P= .149	P= .017	P= .045
SFGL	.1048	.1080	.3040	.0856	.2458	.4024
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .384	P= .370	P= .010	P= .478	P= .039	P= .001
NREW	1365	0805	0376	.0352	.1068	.1307
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .256	P= .505	P= .756	P= .771	P= .375	P= .277
0PPTHT	.2809	.2828	.2882	.1308	.3514	.1777
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .018	P= .017	P= .015	P= .277	P= .003	P= .138

" . " is printed if a coefficient cannot be computed

7

11

19-Jul-93 10:21:48	ALL GP LVL The Univers	TIME 1 AND ity of Mary	TIME 2 VARI	ABLES 3M 3081GX	VM/SP C	:MS
		Corre	lation Coel	fficients -	-	
	XREPMD	XSTAQUO	XVIS	XIDELSM	XSTMIN	XINACTN
SOBS	.1651	0574	1049	1326	.1985	.0551
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .169	P= .634	P* .384	P= .270	P= .097	P= .648
INTSUP	.1137	.0376	.1398	.0268	.1640	,2407
	(71)	(71)	(71)	(71)	(71)	(71)
	P=.345	P= .756	P= .245	P= .824	P= .172	P= ,043
CTSY	.1288	.1286	.1458	.0774	.0498	.2120
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .284	P= ,285	225	P= .521	P= .680	P= .076
CAIMR2	.0727	.1144	.2265	.1472	.2115	.2422
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .547	P= .342	P= .058	P= .221	P= .077	P= .042
UNREL	2019	1389	1978	2991	0691	.0214
	(71)	(71)	(71)	(71)	(71)	(71)
	F= .091	P= .248	P* .098	P= .011	P= .567	P= .859
COMP	2691	2713	2041	1433	3111	1667
	(71)	(71)	(71)	(71)	(71)	(71)
	P=.023	P= .022	P= .088	P= .233	P= .008	P= .165
TOTEFF	1312	0853	.0126	0342	.1211	.1891
	(68)	(68)	(68)	(68)	(68)	(68)
	P= .286	P= .489	P= .919	P= .782	P= ,325	P= .122
OUTPUT	0142	.0497	0011	.1864	.1663	.0486
	(68)	(68)	(68)	(68)	(68)	(68)
	P= .908	P= .687	Ps .993	P= .128	P= .175	P= .694
INTEFF	0521	1369	0373	1620	.0825	.1699
	(68)	(68)	(68)	(68)	(68)	(68)
	P= .673	P= .266	P= .763	P= .187	P= .503	P= .166
CHNGEFF	2110	1095	.0346	1007	0257	.1946
	(68)	(68)	(68)	(68)	(68)	(68)
	P= .084	P= .374	P= .779	P= .414	P= .835	P= .112
ORGPLN	1963	.0303	.1898	.0805	.1703	.1986
	(68)	(63)	(68)	(68)	(68)	(68)
	P= .109	P= .806	Pa .121	P= .514	P= .165	P= .104

۰.

(Coefficient / (Cases) / 2-tailed mig)

" . " is printed if a coefficient cannot be computed

440

11

-

	The Univers			ficients -		
	XREPMD	XSTAQUO	XVIS	XIDELSM	XSTMIN	XINACTN
SLFPERF	.1012 (29) P= .601	.1891 (29) P= .326	.0298 (29) P=.878	(29)	-,0283 (29) P= .884	2990 (29) P= .115
SUBPERF	.0681	.3471	.4658	.4665	.5821	.3284
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .572	P= .003	P= .000	P= .000	P= .000	P= .005
DESIRE	2456 (71) P= .039	1482 (71) P= .217	3162 (71) P= .007		3316 (71) P= .005	2198 (71) P= .065
XAVRS	.3995	.0001	3273	2400	3155	4649
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .001	P= .999	F= .005	P= .044	P= .007	P= .000
XASGL	.2079	.0369	.0320	.2156	.1443	0799
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .082	P= .760	P= .791	P= .071	P= .230	P=.508
XINCOM	.4005	.1688	.2252	.3758	.2245	.0045
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .001	P= .159	P= .059	P= .001	P= .060	P= .970
XPARGL	.1275	.2521	.4113	.4621	.4170	.5196
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .289	P= .034	P= .000	P= .000	P= .000	P= .000
XMREW	0074	.2263	.2740	.4251	.3233	.3392
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .951	P= .058	P= .021	P= .000	P= .006	P= .004
XFREW	.0449	.3497	.5965	.5392	.5012	.4605
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .710	P= .003	P= .000	P= .000	P= .000	P= .000
XREPMD	1.0000	.4399	.2747	.1844	.3093	.1491
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .	P= .000	P= .020	P= .124	P= .009	P= .214
XSTAQUO	.4399	1.0000	.5565	.6042	.4384	.2792
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .	P= .000	P= .000	P= .000	P= .018

" . " is printed if a coefficient cannot be computed

-

14

	The Univers	Corre	lation Cont		VM/SP	CMS
	XREPHD	Vettore		-ilcients -	-	
XVIS	-	XSTAQUO	XVIS	XI DEL SH	XSTMIN	
	.2747	.5365	1.0000		AST IT I	XINACTA
	(71) P= .020	(71)	\$ 715	. 5607	.6056	. 5509
		P= .000	P= .	(71) P= .000	(71)	(71)
IDELSM	.1844	.6042			P= .000	P= .000
	(71)	[71)	(71)	1.0000	. 4443	
	P= .124	P= .000	P= .000	(71)	(71)	(71)
STMIN	. 3093			P= .	P= .000	P= .032
	211	(71)	.6056	. 4445	1.0000	
	P= .009	P= .000	(71) P= .000	(71)	(71)	.6198
LHACTN	.1491			P= .000	P= .	P= .000
	(71)	.2792	· 5509	.2553		
	P= .214	(71) P= .018	(71)	(71)	(71)	1.0000
TEAM			P= .000	P= .032	P= .000	(71) P= 71)
	(71)	. 4465	- 4864			
	P= .145	(71) P= .000	(71)	(71)	. 4981	.6702
XSLFREN		000	P= .000	P= .000	(71) P= .000	(71)
STEREN	0549	.2327	. 3963			P= .000
	(71) F= .649	6 715	(71)	(71)	. 5084	. 5622
OPTHT		P= .051	P= .001	P= .008	(71)	(71)
AUF INT	.2816	. 4444	.6254		P= .000	P= .000
	(71) P= .017	6 711	(71)	.5300	.6752	.6841
Thims		P= .000	P= .000	(71) P= .000	(71)	(711
XINDACT	0210	.1902			P= .000	P= .000
	(71) P= .862	(71)	(71)	.0036	.2038	
VECTO	200	P= .112	P= .344	(71) P= .976	\$ 711	(71)
XEFFIC	2711	.2470			P= .088	P= .000
	(71) P= .022	(71)	(71)	.0798	.1081	
	022	P= .038	P= .165	(71) P= .509	(71)	(71)
XTEAMNK	.2726	. 3418			P= .370	P= .688
	(71)	1 711	(71)	.1618		
	P= .021	P= .004	P= .017	(71)	.0887	(71)
XSFREN	.0152	.0099		P= .178	P= .462	P= .098
•	(71)	\$ 711	0029	0515	.0831	
	P= .900	P= .935	P= .981		(71)	(71)
(Can 652	P≈ .900	P= .935	(71) P= .981		(71) P= .491	.00 F=

" . " is printed if a coefficient cannot be computed

-

...

It

	The Univers			ficients -		
	XREPHD	XSTAQUO	XVIS	XIDELSM	XSTMIN	XINACTN
XSFGL	1873 (71) P= .118	(71)	0983 (71) P= .415	0806 (71) P= .504	.1878 (71) P= .117	.1457 (71) P= .225
XNREW	1280 (71) P= .288	0533 (71) P= .659	1164 (71) F= .334	1230 (71) P= .307	0291 (71) P= .810	.0400 (71) P= .741
XOPPTHT	.2408 (71) P= .043	.3390 (71) P= .004	.1879 (71) P= .117	.1612 (71) P= .179	.0962 (71) P= .425	.0493 (71) P= .683
XSOBS	.1665 (71) P= .165	.0279 (71) P= .817	.0619 (71) P= .608	0949 (71) P= .431	.1892 (71) P= .114	.1730 (71) P= .149
XINTSUP	.0636 (71) P=.598	.2748 (71) P= .020	.3489 (71) P= .003	.1861 (71) P= .120	.2257 (71) P= .058	.4485 (71) P= .000
XCTSY	.1556 (71) P= .195	.2638 (71) P= .026	.3689 (71) P= .002	.3005 (71) P= .011	.3166 (71) P= .007	.4440 (71) P= .000
XCVIIIIS	.0511 (71) P= .672	.1826 (71) P= .127	.2577 (71) P= .030	.2184 (71) P= .067	.0502 (71) P= .678	.0521 (71) P= .666
XUNREL	1293 (71) P= .282	2270 (71) P= .057	2671 (71) P= .024	2418 (71) P= .042	1274 (71) P= .290	1962 (71) P= .101
XCOMP	0711 (71) P=.556	3020 (71) P= .010	4288 (71) P= .000	2888 (71) P= .015	2746 (71) P=.020	4257 (71) P= .000
XTOTEFF	2246 (59) P=.087	0060 (59) P= .964	.0101 (59) P= .939	.1024 (59) P= .440	.1572 (59) P= .235	.0686 (59) P= .605
XOUTPUT	0699 (59) P= .599	.0834 (59) P= .530	0437 (59) P= .743	.1918 (59) P= .146	.0648 (59) P= .626	2097 (59) P= .111

" . " is printed if a coefficient cannot be computed

443

П

Ξ

...

VH/SP CHS

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:48 The University of Maryland CSC 1RM 3081GX

		Lorre	lation Loei	ficients "		
	XREPMD	XSTAQUO	XVIS	XIDELSM	XSTMIN	XINACTN
XINTEFF	2326	0137	.1233	.0687	.2307	.2606
	(59)	(59)	(59)	(59)	(59)	(59)
	P= .076	P= .918	P= .352	P= .605	P= .079	P= .046
XCHNGEFF	2733	0808	1102	0136	0234	0571
	(59)	(59)	(59)	(59)	(59)	(59)
	F=.036	P= .543	P= .406	P= .919	P= .860	P= .668
XORGPLN	0424	0366	.0357	.0546	.2334	.2733
	(59)	(59)	(59)	(59)	(59)	(59)
	P= .750	P= .783	P= .788	P= .681	P= .075	P= .036
XSLFPERF	.1304	.1855	.0125	.0352	1584	0647
	(58)	(58)	(58)	(58)	(58)	(58)
	P= .329	P= .163	P= .926	P= .793	P= .235	P= .629
XSUBPERF	.1368	.4675	.6861	.6407	.6562	.5617
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .255	P= .000	P= .000	P= .000	P= .000	P= .000
XDESIRE	.0890	.1791	.1238	.1055	1358	.0225
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .461	P= .135	F= .304	P= .381	P= .259	P= .852

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

11

-

..

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:48 The University of Maryland CSC IBM 3081GX

- - Correlation Coefficients - -

	XTEAM	XSLFREN	XOPTHT	XINDACT	XEFFIC	ХТЕАМЫК
AVRS	2820	4032	2681	3602	.1028	1104
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .017	P= .000	P= .024	P= .002	P= .394	P= .360
ASGL	0672	.0392	.0022	1591	.0060	1274
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .577	P= .745	P= .986	P= .185	P= .960	P= .290
INCOM	1064	0293	.1376	3146	.0690	0835
	(713	(71)	(71)	(71)	(71)	(71)
	P= .377	P= .809	P= .253	P= .008	P= .567	P= .489
PARGL	.4520	.2902	.4762	.2878	.1612	.1763
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .014	P= .000	P= .015	P= .179	P= .141
MREW	.3464	.3311	.3297	.1838	0231	.0620
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .003	P= .005	P= .005	P= .125	P= .848	P= .607
PREW	.3940	.3944	.4465	.1364	.1879	.1551
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .001	P= .001	P= .000	P= .257	P= .117	P= .197
REPMD	.1957	0471	.2839	.0808	.2739	.2697
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .102	P= .696	P= .016	P= .503	P=.021	P= .023
STAQUO	.3317	.1020	.3450	.1357	.1621	.3026
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .005	P= .397	P= .003	P# .259	P= .177	P= .010
VIS	.4446	.2730	.4620	.2127	.1103	.2539
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .021	P= .000	P= .075	P= .360	P= .033
IDELSM	.3709	.2478	.4012	.1890	.1390	.2605
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .001	P= .037	P= .001	P= .115	P= .247	P= .028
STMIN -	.2201 (71) P= .065	.2231 (71) P= .061	.4255 (71) P= .000	.0452 (71) P= .708	.0348 (71) P= .773	.0070 (71) P= .954

(Coefficient / (Cases) / 2-tailed sig)

". " is printed if a coefficient cannot be computed

445

11

7

••

-

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:48 The University of Maryland CSC IBM 3081GX

		Correl	lation Coef	ficients -	-	
	XTEAM	XSLFREW	XOPTHT	XINDACT	XEFFIC	XTEAMHK
INACTN	.4880	.3846	.4906	,4654	.1028	.1314
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .001	P= .000	P≈ .000	P= .394	P= .275
TEAM	.6125	.4051	.6216	.3643	.0982	.3560
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .002	P= .415	P=.002
SLFREW	.3485	.5255	.4422	.1640	.0271	0749
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .003	P= .000	P= .000	P= .172	P= .823	P=.535
OPTHT	.4287	.3453	.6460	.2639	.1215	.2198
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .003	P= .000	P= .026	P= .313	P= .066
INDACT	.4386	.3004	.2641	.7438	.1509	.2124
	(71)	(71)	(71)	(71)	(71)	(71)
	F= .000	P= .011	P=.026	P= .000	P= .209	P=.075
EFFIC	.2228	.0544	.0851	.3461	.4968	.4116
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .062	P≠ .652	P= .480	P= .003	P= .000	P= .000
ТЕАМЫК	.3770	.1915	.4476	.1395	.0952	.4167
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .001	P= .110	P= .000	P= .246	P= .430	P= .000
SFREN	.2296	.5531	.2760	.1230	.0099	1119
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .054	P= .000	P= .020	P= .307	P= .935	P= .353
SFGL	.2234	.2838	.2336	.3547	.1544	.1304
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .061	P= .016	P= .050	P= .002	P= .199	P= .278
NREN	.0352	.5271	.1743	.0503	0195	1209
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .771	P=.000	P= .146	P= .677	P= .872	P= .315
0PPTHT -	.1856 (71) P≍ .121	.1166 (71) P= .333	.2992 (71) P= .011	.2725 (71) P= .021	.4297 (71) P= .000	.2733 (71) P= .021

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

...

П

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:48 The University of Maryland CSC IBM 3081GX

- - Correlation Coefficients - -XEFFIC **XTEAMWK** XINDACT XSLFREM XOPTHT XTEAM .0957 .1727 .1934 -.0214 .1220 (71) P= .311 .0401 SOBS 71) 71) (71) F= .150 71) • P= ,106 P= .427 P= .859 P= ,740 .2472 .1676 (71) P= ,162 .1895 (71) P= .113 .2358 71) .2347 .3555 71) INTSUP 71) 71) 5 P= .038 P= .049 P= .002 P= .048 .2661 .1584 (71) P= .187 .1545 (71) P= .198 .2783 . 3579 (71) CTSY (71) P= .025 (71) P= .019 P= .173 P= .002 .1415 (71) P= .239 .1711 (71) Pz .154 .1442 .1694 (71) P= .158 .1098 .1853 CVHHS (71) P= ,230 (71) P= .362 (71) P= .122 -.1052 -.0121 .1483 -.0765 -.0844 -.0765 UNREL (71) P# .484 (71) P= .217 (71) P= .383 (71) P= .920 (71) P= .526 (71) P= .526 -.2895 -.1286 (71) P= .285 -.2958 -.1810 -.0431 -.3502 COMP (71) P= .014 (71) P= .131 (71) P= .012 (71) P= .003 (71) P= .721 .2252 .1544 .0073 .0345 .0185 .1663 TOTEFF 68) (68) P= .209 (68) P= .953 (68) P= .065 (68) P= .780 (68) P= .175 P= .881 .0450 .1387 .0869 -.0264 .1162 -.0680 OUTPUT (68) P= .716 (68) P= .259 (68) P= .831 (68) 68) 68) (P= .481 P= .582 P= .345 .1516 (68) P= .217 .0725 -.0771 .0282 .1214 -.0173 INTEFF (68) P= .532 (68) P= .557 (68) P= .324 (68) P= .888 68) P= .819 .2925 .1309 (68) P= .287 . 2837 .0009 .1220 .1106 CHNGEFF 68) (68) P= .015 (68) P= .322 (68) P= .994 (68) P= .369 P= .019 -.0354 .1678 .1310 .0465 .2098 .1680 ORGPLN (68) P= .774 (68) P= .171 (68) P= .287 (68) P= .707 (68) P= .171 (68) P= .086

(Coefficient / (Cases) / 2-tailed sig)

", " is printed if a coefficient cannot be computed

447

li

-

..

		Corre	lation Coef	ficients -	•	
	XTEAM	XSLFREW	XOPTHT	XINDACT		XTEAMW
SLFPERF	.0117	3966	2405	.3338	.5430	.3676
	(29)	(29)	(29)	(29)	(29)	(29)
	P= .952	P= .033	P= .209	P= .077	P= .002	P= .050
SUBPERF	.2839	.2990	.4226	.1997	.1386	.1198
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .016	P= .011	P= .000	P= .095	P= .249	P= .320
DESIRE	1016	0227	2858	.1797	0958	0194
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .399	P≠ .851	P= .016	P= .134	P= .427	P= .873
XAVRS	3257	5103	3578	4501	0451	0958
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .006	P= .000	P= .002	P= .000	P= .709	P= .427
XASGL	.0933	.1184	.1254	3143	.0227	0722
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .439	P= .325	P= .297	P= .008	P= .851	P= .550
XINCOM	.0392	.1191	.2025	3470	0223	0318
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .745	P= .323	P= .090	P= .003	P= .853	P= .792
KPARGL	.5677	.4834	.5409	.2830	.1624	.1442
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= ,017	P= .176	F= .230
XHREW	.4429	.4649	.4787	.3140	.1048	.1263
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P=.000	P= .000	P= .008	P= .384	P= .294
XPREN	.5699	.5747	.6034	.2662	.2047	.3142
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .025	P= .087	P= .008
XREPMD	.1747	0549	.2816	0210	.2711	.2726
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .145	P=.649	P= .017	P= .862	P# .022	P= .021
XSTAQUO	.4465	.2327	.4444 (71) P= .000	.1902 (71) P= .112	.2470 (71) P= .038	.3418 (71) P= .004

" . " is printed if a coefficient cannot be computed

11

448

...

-

VM/SP CMS

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:48 The University of Maryland CSC IBM 3081GX

- - Correlation Coefficients - -

	XTEAM	XSLFREW	XOPTHT	XINDACT	XEFFIC	ХТЕАМЫК
XVIS	.4864	.3963	.6254	.1139	.1666	.2829
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .001	P= .000	P= .344	P= .165	P= .017
XIDELSM	.4594	.3125	.5300	.0036	.0798	.1618
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .008	P= .000	P= .976	P= .509	P= .178
XSTMIN	.4981	.5084	.6752	.2038	.1081	.0887
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .088	P= .370	P= .462
XINACTN	.6702	.5622	.6841	.4699	.0485	.1978
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .000	P= .688	P= .098
XTEAM	1.0000	.4459	.5967	.4405	.2402	.5326
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .	P= .000	P= .000	P= .000	P= .044	P= .000
XSLFREW	.4459	1.0000	.6145	.2499	.0150	0368
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .	P= .000	P= .036	P= .901	P= .760
XOPTHT	.5967	.6145	1.0000	.1862	.0581	.2401
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .	P= .120	P= .630	P= .044
XINDACT	.4405	.2499	.1862	1.0000	.4655	.3518
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .036	P= .120	P= .	P= .000	P= .003
XEFFIC	.2402	.0150	.0581	.4655	1.0000	.4686
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .044	P= .901	P= .630	P= .000	P= .	P= .000
ХТЕАМЫК	.5326	0368	.2401	.3518	.4686	1.0000
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .760	P= .044	P= .003	P= .000	P= .
XSFREN	.0407	.4214	.1068	0209	0192	1704
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .736	P= .000	P= .375	P= .862	P= .874	P= .155

(Coefficient / (Cases) / 2-tailed sig)

", " is printed if a coefficient cannot be computed

-

		TIME 1 AND sity of Mary	land CrowARI	ABLES		
		TIME 1 AND sity of Mary	lation Coef	H 30810Y		
	XTEAM	corre	lation C-		VM/SP (-
SFGL	AT LAN	XSLFREN	coet	ficiente	- (
	, -1130	- CINCH	XOPTHT		-	
	\$ 71)	. 3172	101	XINDACT		
	P= .348	1 71.	. 0696		XEFFIC	
NREH	1940	P007		4441		XTEAMINK
	, .0265		P= .564	5 711	. 1853	
	. 71.	, -2745		P= .000	(71) P= .122	.0869
	P= .826		0325		F= .122	71)
OPPTHY		P= .021	1 71)	(-2112		P= ,471
	. 2062		P= .788	71)	. 2526	
	2 711	, .0192		P= .077	8- 71)	0026
	P= 085		.2363		Pz .034	P= 71)
SOBS		P= .873	71)	.3502		P= .983
	, .1622		P= .047	P= .003	(.6166	
		(7190		- 003	P- 71)	. 5438
	P= .176	6. 71)	(.0878		P= .000	(71) P= .000
INTSUP		Pz .875	P- 71)	(2360		
	1 .5048		P= . 467	71)	. 3397	
	P= .000	(.2968		P= .048	(71) P= .004	2360
CTSY	.000	(71) P= .012	(.3994	22		(71) P= .048
CIST.		.012	P= .001	1 -2317	0.5/ -	.048
	5195	2/10	001	(71) P= .052	- 0563	3908
	P= .000	.2683	****	.052	P= .641	(
CVINIS		P= .024	. 3775	71.0.1	.041	P= .001
C. 11112	7670	.024	P= .001	. 2696	1551	
	(.2672	.1470	.001	P= .023	1.1551	, .3017
	P= .024	(71)	. 0405		P= .197	(71)
UNREL		P= .221		. 0871		P= .011
	C 3760		P= .737		. 1680	
	5 71)	,~.1198		P= .470		.2968
VCA	P= .001	2 711	(2495		P= .161	71)
COMP		P= .320	711	- 1967		P= .012
	- 4828		(71) P= .036		2924	
		.2226		P≈ (100	2 71)	3436
XTOTEFF	P= .000	P. 713	(3015		F= .013	P. 71)
ULEFF		P= .062	P= .011	(.2762		Pa .003
	.2221	0.0.5	011	D. (4)	(0775	
	P= .091	(.0079		F= .020	P= .520	3529
XOUTPUT	.091		· 0741	14.70		P = -003
	, 0122	P= ,953	P= .577	(1638	0483	
	595	,1970		P= .215		. 2728
	P= .927	(59)	C		P= .717	(59)
			(59)	(.0461		P= .037
Coeffini			(59) P= .605	(59)	, 0183	
	int / (Care			P= .729		(.2203
" im -		*) / 2-tail-			P= .890	59)
	rinted if	f= .135 s) / 2~taile a coefficien	sig)			P= .094
	- 1	· coefficie-	4			

450

...

		Corre	lation Coef	ficients -	-	
	XTEAM	XSLFREM	XOPTHT	XINDACT	XEFFIC	XTEAMHK
XINTEFF	.3537	.2352	.2177	.1246	1371	.1923
	(59)	(59)	(59)	(59)	(59)	(59)
	P= .006	P= .073	P= .098	P= .347	P=.300	P= .145
XCHNGEFF	.0853	0679	1108	.2673	.0795	.1709
	(59)	(59)	(59)	(59)	(59)	(59)
	P= .520	P= .610	P= .404	P= .041	P= .549	P= .196
XORGPLN	.2431	.0002	.2436	.2175	0562	.2543
	(59)	(59)	(59)	(59)	(59)	(59)
	P= .064	P= .999	P= .063	P= .098	P= .673	P= .052
XSLFPERF	.0322	2016	0856	.0775	.0871	.1336
	(58)	(58)	(58)	(58)	(58)	(58)
	P= .811	P= .129	F= .523	P= .563	P= .516	P= .317
XSUBPERF	.4643	.5162	.6440	.2647	.2066	.1765
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .000	P= .000	P= .026	P= .084	P= .141
XDESIRE	.1449	0326	.0748	.2731	.2029	.2885
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .228	P= .787	P= .535	P= .021	P= .090	P= .015

" . " is printed if a coefficient cannot be computed

451

11

1

..

		Corre	lation Coef	ficients -	-	
	XSFREW	XSFGL	XNREN	XOPPTHT	XSOBS	XINTSUP
AVRS	.0192 (71) P= .874	3279 (71) P= .005	1561 (71) P= .193	.0099 (72) P= .934	0403 (71) P= .739	2527 (71) P= .033
ASGL	.0674 (71) P= .576	1147 (71) P= .341	.0197 (71) P= .871	1198 (72) P= .316	0666 (71) P= .581	0195 (71) P= .872
INCOM	0158 (71) P= .896	2244 (71) P= .060	.0060 (71) P= .960	.0779 (72) P= .515	.0399 (71) P= .741	1174 (71) P= .329
PARGL	2235 (71) Pz .061	.1195 (71) P= .321	1030 (71) P= .393	.0671 (72) P= .575	0025 (71) P= .984	.1614 (71) P= .179
MREW	.0123 (71) P= .919	.1661 (71) P= .166	.0207 (71) P= .864	0085 (72) P= .944	0626 (71) P= .604	.0768 (71) P= .525
PREH	.1542 (71) P= .199	.0729 (71) P= .546	.1348 (71) P= .263	.1748 (72) P= .142	.0898 (71) P= .457	.0864 (71) P= .474
REPMD	.0403 (71) P= .739	2340 (71) P= .049	0818 (71) P= .498	.2344 (72) P= .047	.1116 (71) P= .356	.0738 (71) P= .541
STAQUO	1031 (71) P= .392	1393 (71) P= .247	1475 (71) P= .219	.2066 (72) P= .082	0372 (71) P= .758	.1644 (71) P= .171
VIS	0455 (71) P= .706	0144 (71) P= .905	-,0368 (71) P= ,760	.1641 (72) P= .168	.0546 (71) P= .651	.1583 (71) P= .187
IDELSM	0392 (71) P= .746	.0492 (71) P= .685	.0119 (71) P= .922	.2029 (72) P= .087	.0749 (71) P= .535	.1238 (71) P= .503
STMIN	.0676 (71) P= .575	1450 (71) P= .227	.0034 (71) P= .977	.0360 (72) P= .764	.1476 (717 P= .219	0067 (71) P= .956

" , " is printed if a coefficient cannot be computed

452

H

7

19-Jul-9 10:21:49	3 ALL GP LVL The Univers	ity of Mary	land CSC II	BM 3081GX	VM/SP C	MS
	XSFREW	Corre	XNREH	fficients - XOPPTHT	XSOBS	XINTSUP
INACTN	0624	.0678	0471	0337	.0925	.2941
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .605	P= .574	P= .697	P=.779	P= .443	P= .013
TEAM	.0056	.0281	1729	.0793	.0974	.4436
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .963	P= .816	P= .149	P=.508	P= .419	P= .000
SLFREN	.0606	.1163	.0423	0703	0399	.1851
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .616	P= .334	P= .726	P= .558	P= .741	P= .122
OPTHT	0486	.0167	.0000	.1436	.0415	.1986
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .687	P= .890	P=1.000	P= .229	P= .731	P= .097
INDACT	.0578	.4093	.1081	.1326	.1187	.2278
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .632	P= .000	P= .369	P= .267	P= .324	P= .056
EFFIC	.0742	.1794	.1582	.4793	.3134	.0963
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .539	P= .134	P= .188	P= .000	P= .008	P= .424
ТЕАМЫК	2379	0371	2262	.0694	1104	.3965
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .046	P= .759	P= .058	P= .562	P= .360	P= .001
SFREW	.5303	.0644	,2289	-,1145	.0938	.0837
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .000	P= .594	P= ,055	P= ,338	P= .436	P= .488
SFGL	1293	.2917	.0253	.0030	.0558	.1225
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .283	P= .014	P= .834	P= .980	P= .644	P= .309
NREW	.3860	.3034	.4873	.0208	0193	.1205
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .001	P= .010	P=.000	P= .863	P= .873	P= .317
0PPTHT	0955	.1625	.0088	.5015	.1698	0695
	(71)	(71)	(71)	(73)	(71)	(71)
	P= .428	P= .176	P= .942	P= .000	P= .157	P= .565

" . " is printed if a coefficient cannot be computed

453

-

**

VH/SP CHS

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:49 The University of Maryland CSC IBM 3081GX

- - Correlation Coefficients - -

	XSFREW	XSFGL	XNREW	XOPPTHT	XSOBS	XINTSUP
SOBS	.2499	.0528	.3271	,1107	.4639	0480
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .036	P= .662	P= .005	P= ,354	P= .000	P= .691
INTSUP	0520	.0474	0597	0278	.0615	.7492
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .667	P= .695	P= .621	P= .817	P= .610	P= .000
CTSY	1307	.1368	0094	.1248	.0023	.5504
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .277	P= .255	P= .938	P= .296	P= .985	P= .008
CVNWS	0320	.2268	.0090	.0113	.2063	.2650
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .791	P= .057	P= .941	P= .925	P= .084	P= .026
UNREL	.0902	0510	.1707	-,0224	.0069	1855
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .454	P= .673	P= .155	P= _852	P= .955	P= .121
COMP	-1438	1365	.0670	0919	0670	2775
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .231	P= .257	P= .579	P= .443	P= .579	P= .019
TOTEFF	0842	.3132	.0908	.0839	.1629	.1955
	(68)	(68)	(68)	(70)	(68)	(68)
	P= .495	P= .009	P= .461	P= .490	P= .185	P= .110
OUTPUT	1472	.1869	0668	0026	.0842	.0359
	(68)	(68)	(68)	(70)	(68)	(68)
	P= .231	P= .127	P= .588	P= .983	P= .495	P= .771
INTEFF	0173	.2649	.1031	0186	.1956	.1517
	(68)	(68)	(68)	(70)	(68)	(68)
	P= .889	P= .029	P= .403	P= .879	P= .110	P= .217
CHNGEFF	1170	.2819	.2166	.3134	.0954	.2466
	(68)	(68)	(68)	(70)	(68)	(68)
	P= .342	P= .020	P= .076	P= .008	P= .439	P= .043
ORGPLN	.0132	.1425	0101	.0295	.0496	.2515
	(68)	(68)	(68)	(70)	(68)	(68)
	P= .915	P= .246	P= .935	P= .809	P= .688	P= .039

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

11

-

..

VM/SP CMS

- - Correlation Coefficients - -

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:49 The University of Maryland CSC IBM 3081GX

	XSFREW	XSFGL	XNREN	XOPPTHT	XSOBS	XINTSUP
SLFPERF	,1407	.1963	.0772	.3751	.3735	1466
	(29)	(29)	(29)	(31)	(29)	(29)
	P= ,467	P= .307	P= .691	P= .038	P= .046	P= .448
SUBPERF	0382	.0271	0344	.1533	.0185	.1096
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .752	P= .822	P= .776	P= .199	P= .879	Pz .363
DESIRE	0930	.3105	1531	0661	2300	1165
	(71)	(71)	(71)	(72)	(71)	(71)
	P= .440	P= .008	P= .203	P= .581	P= .054	P= .333
XAVRS	.0768	3363	0792	1247	.0765	2880
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .525	P= .004	P= .512	P= .300	P= .526	P= .015
XASGL	0073	1448	0943	0908	1102	0639
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .952	P= .228	P= .434	P= .451	P= .360	P= .597
XINCOM	0707	2048	2088	0435	0897	0021
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .558	P= .087	P= .081	P= .719	P= .457	P= .986
XPARGL	.0497	.1706	.0647	.1283	.0001	.1697
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .681	P= .155	P= .592	P= .286	P=1.000	P= .157
XMREN	.1187	.3251	.1289	.1878	.0520	.2085
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .324	P= .006	P= .284	P= .117	P= .667	P= .081
XPREW	.1801	.1529	.0585	.2721	.1177	.3049
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .133	P= .203	P= .628	P= .022	P= .328	P= .010
XREPMD	.0152	1873	1280	.2408	.1665	.0636
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .900	P# .118	P= .288	P= ,043	P= .165	P= .598
XSTAQUO	.0099	0460	0533	.3390	.0279	.2748
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .935	P= .703	P= .659	P= .004	P= .817	P= .020

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

455

Ξ

..

VM/SP CMS

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:49 The University of Maryland CSC IBM 3081GX

10.21.47	Correlation Coefficients							
	XSFREW	XSFGL	XNREM	XOPPTHT		XINTSUP		
XVIS	0029	0983	1164	.1879	.0619	.3489		
	(71)	(71)	(71)	(71)	(71)	(71)		
	P= .981	P= .415	P= .334	P= .117	P≠ .608	P= .003		
XIDELSM	0515	0806	1230	.1612	0949	.1861		
	(71)	(71)	(71)	(71)	(71)	(71)		
	P= .670	P= .504	P= .307	P= .179	F= .431	P= .120		
XSTMIN	.0831	.1878	0291	.0962	.1892	.2257		
	(71)	(71)	(71)	(71)	(71)	(71)		
	P= .491	P= .117	P= .810	P= .425	P= .114	P= .058		
XINACTN	.0640	.1457	.0400	.0493	.1730	.4485		
	(71)	(71)	(71)	(71)	(71)	(71)		
	P= .596	P= .225	P= .741	P= .683	P= .149	P= .000		
XTEAM	.0407	.1130	.0265	.2062	.1622	.5048		
	(71)	(71)	(71)	(71)	(71)	(71)		
	P= .736	P= .348	P= .826	P= .085	P= .176	P= .000		
XSLFREW	.4214	.3172	.2745	.0192	.0190	.2968		
	(71)	(71)	(71)	(71)	(71)	(71)		
	P= .000	P= .007	P= .021	P= .873	P= .875	P= .012		
XOPTHT	.1068	.0696	0325	.2363	.0878	.3994		
	(71)	(71)	(71)	(71)	(71)	(71)		
	P= .375	P= .564	P= .788	P= .047	P= .467	P= .001		
XINDACT	0209	.4441	.2112	.3502	.2360	.2317		
	(71)	(71)	(71)	(71)	(71)	(71)		
	P= .862	P= .000	P= .077	P= .003	P= .048	P= .052		
XEFFIC	0192	.1853	.2526	.6166	.3397	.0563		
	(71)	(71)	(71)	(71)	(71)	(71)		
	P= .874	P= .122	P= .034	P= .000	P= .004	P= .641		
XTEAMWK	1704	.0869	0026	.5438	.2360	.3908		
	(71)	(71)	(71)	(71)	(71)	(71)		
	P= .155	P= .471	P= .983	P= .000	P= .048	P=.001		
XSFREW	1.0000	.0914	.5005	0048	.4339	0758		
	(71)	(71)	(71)	(71)	(71)	(71)		
	P= .	P= .448	P= .000	P= .968	P= .000	P= .530		

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

1

		Corre	lation Coef	ficients -	-	
	XSFREM	XSFGL	XNREH	XOPFTHT	XSOBS	XINTSUP
XSFGL	.0914	1.0000	.2793	.2580	.2009	0322
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .448	P= .	P= .018	P= .030	P= .093	P= .790
NREW	.5005	.2793	1.0000	.1285	.4527	0377
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .018	P= .	P= .286	P= .000	P= .755
OPPTHT	0048	.2580	.1285	1.0000	.3535	.0682
	(71)	(71)	(71)	(73)	(71)	(71)
	P= .968	P= ,030	P= .286	P= .	P= .002	P= .572
SOBS	.4339	.2009	.4527	.3535	1.0000	.0936
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .000	P= .093	P= .000	P= .002	P= .	P= .437
INTSUP	0758	0322	0377	.0682	.0936	1.0000
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .530	P= .790	P= .755	P= .572	P= .437	P= .
CTSY	0930	.1007	1104	.0988	.1201	.6729
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .440	P= .404	P= .359	P= .412	P= .319	P= .000
CVNWS	.0525	0596	.0929	.0066	.0119	.4864
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .664	P= .621	P= .441	P= .956	P= .921	P= .000
UNREL	.1622	2585	.1896	3004	0380	4681
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .177	P= .050	P= .113	P= .011	P= .753	P= .000
COMP	.1398	1461	.2137	1734	.0846	5358
	(71)	(71)	(71)	(71)	(71)	(71)
	P= .245	P= .224	P= .074	P=.148	P= .483	P= .000
TOTEFF	0668	.1782	.1640	.0690	.1575	.1197
	(59)	(59)	(59)	(61)	(59)	(59)
	P= .615	P= .177	P= .215	P= .597	P= .234	P= .367
OUTPUT	1088	.0242	0309	.1277	.0368	0396
	(59)	(59)	(59)	(61)	(59)	(59)
	P= .412	P= .855	F= .816	P= .327	P= .782	P= .766

". " is printed if a coefficient cannot be computed

н

7

-1

		Corre	lation Coef	ficients -	-	
	XSFREW	XSFGL	XNREH	XOPPTHT	XSOBS	XINTSUP
XINTEFF	0205	.1575	.1586	1012	. 0730	.1461
	(59) P= .877	(59) P= ,234	(59) P= .230	(61) P= .438	(59) P= .583	(59) P= .269
XCHNGEFF	.0567	. 1886	.3164	. 1778	.2804	.0901
	(59) P= .670	(· 59) P= .153	(59) P= .015	(61) P= .170	(59) P= .031	(59) P= ,497
XORGPLN	2219	.1722	0289	.0213	.0930	. 2283
	(59) P= .091	(59) P= .192	(59) P= .828	(61) P= .870	(59) P= .483	(59) P= .082
XSLFPERF	. 1649	2327	.1725	.0186	.1536	0999
	(58) P= .216	(58) P= .079	(58) P= .195	(60) P= .888	(58) P= .250	(58) P= ,456
XSUBPERF	.0562	.0524	.0034	.2772	.0481	.2421
	(71) P= .642	(71) P= .664	(71) P= .978	(71) P= .019	(71) P= .691	(71) P= .042
XDESIRE	1933	. 1967	1096	.1942	1236	.0664
	(71) P= .106	(71) P= .100	(71) P= .363	(71) P= .105	(71) P= .305	(71) P= .582

", " is printed if a coefficient cannot be computed

11

-

		TIME 1 AND tity of Mary	Tak:		VM SP C	21
	XCTSY		lation Coef	ficients .		
VRS		XCVIINS	XUNREL		-	
and a	2807		NONKEL	XCOMP	VTOTAT	
	(71)	1634	. 1766		XTOTEFF	XOUTPUT
	P= .018	71)	(71)	. 2205	1647	
SGL		P= .173	P= .141	(71)		.1065
our.	0168			P= .065	P= .209	60)
	5 713	.0189	0688			P= .418
	P= .890	Pa 71)	(71)	0137	.1182	
NCOM	1.4.1	Pa .876	P= .569		(60)	1405
	. 0477	.0129		P= .910	P= .368	60)
	71)	(71)	.0133	.0913		P= .284
	P= .693	Pa .915	(71)		.0609	
ARGL			P= .912	P= ,449	\$ 60.5	.1395
	.2843	. 0555			P= .644	60)
	P= .016	(71)	2503	2123		P= .288
REM		P# .645		(71)	.1003	- 0020
RCM	. 1607		P= .035	P= .075	(60) P= 60)	(60)
	5 711	.1591	1332		P= .446	P= .988
	P= .181	71)	(71)	2390	100-	
REH		P# .185	P= .268	5 71)	.1993	1258
	2214	.0875		P= .045	P= .127	60)
	711	(71)	2112			P= .338
	P= .064	P= .468	1 711	1471	.2045	
EPMD	.0647		P= .077	P= .221	1 1	. 1199
	211	0129			P= .117	P= 60)
	P= .592	5 71)	0583	1843		P= .362
TAQUO		P= .915	P= .629	(71)	.0515	.1305
	.1922		.029	P= .124	P. 60)	(60)
	71)	-1505	1903		P= .696	P= .320
	P= .108	P# .210	(71)	,3329	0250	
15	.2523	····	P= .112	P= ,005	601	1375
	(71)	1723			Pa .849	P= 205
	P= .034	5 715	1819	3903		P= .295
DELSM		P# .151	P= .129	(715	(1460	.0935
Secon	. 2518	1		P= .001	P= .266	6 4 8 3
	(71)	-1643	1788		. 266	P= .477
	P= .034	P= .171	1 71.	2907	. 1922	
THIN			P= .137	P= .014	1 401	. 2565
	1176	0732			P= .141	P= .048
	P= .329	(71)	0148	0714		.048
		P= .544	P= 002	(71)	.2003	2112
Confest	24 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C			P≈ .554	P= 60)	(60)
	nt / (Cases) / 2-taile			P= .125	P= .105
		coefficien	d sial			

-

0:21:49	ALL GP LVL T The Univers:	Ley of the P			-	
		Corre	lation Coef	ficients		XOUTPUT
	XCTSY	XCVNWS	XUNREL	XCOMP	XTOTEFF	
NACTH	.3761	.0333	2465	3512	.0701	1274
	(71)	(71)	(71)	(71)	(60)	(60)
	P= .001	P= .783	P= .038	P= .003	P= .594	P= .332
EAM	.5394	.0891	4196	5282	.1436	0593
	(71)	(71)	(71)	(71)	(60)	(60)
	P= .000	P= .460	P= .000	P=.000	P= .274	P= .653
SLFREW	.1648	.0381	1606	2232	.1257	0037
	(71)	(71)	(71)	(71)	(60)	(60)
	P= .170	P= .465	P= .181	P= .061	P= .338	P= .978
OPTHT	.2785	0013	2636	1743	.1402	0305
	(71)	(71)	(71)	(71)	(60)	(60)
	P= .019	P= .992	P=.026	P= .146	P= .285	P= .817
INDACT	.3082	.0642	1297	3194	.1391	0846
	(71)	(71)	(71)	(71)	(60)	(60)
	P= .009	P= .595	P= .281	P= .007	P= .289	F= .520
EFFIC	.2277	.0693	1488	0813	0986	1510
	(71)	(71)	(71)	(71)	(60)	(60)
	P= .056	P= .566	P= .216	P= .500	P= .453	P= .249
ГЕАМЫК	.3337	.0592	2642	4474	.0690	0083
	(71)	(71)	(71)	(71)	(60)	(60)
	P= .004	P= .624	P= .026	P= .000	P= .600	P= .950
SFREN	.1307	.1824	0361	0973	0006	0452
	(71)	(71)	(71)	(71)	(60)	(60)
	P= .277	P= .128	P= .765	P= .420	P= .996	P= .731
SFGL	.1977	0209	-,0937	.0266	.0350	0861
	(71)	(71)	(71)	(71)	(60)	(60)
	P= .098	P= .863	P= ,437	P= .826	P# .790	P= .513
REW	.0009	.1326	0225	1263	0234	0471
	(71)	(71)	(71)	(71)	(60)	(60)
	P= .994	P= .270	P= .852	P= .294	P= .859	P= .721
OPPTHT	.0454 (71)	1448 (71) P= .228	2194 (71) P= .066	.1131 (71) P= .348	.0468 (61) P= .720	.0362 (61) P= .782

.

" , " is printed if a coefficient cannot be computed

460

-

	Correlation Coefficients								
	XCTSY	XCVNWS	XUNREL	XCOMP	XTOTEFF	XOUTPUT			
SOBS	1190	0124	.1832	.2936	.0466	.0476			
	(71)	(71)	(71)	(71)	(60)	(60)			
	F= .325	P= .918	P= .126	P= .013	P= .724	P= .718			
INTSUP	.6041	.3900	4287	4475	.1198	.0022			
	(71)	(71)	(71)	(71)	(60)	(60)			
	P= .000	P= .001	P= .000	P= .000	P= .362	P= .987			
CTSY	.5726	.3992	4337	6052	.1126	.0582			
	(71)	(71)	(71)	(71)	(60)	(60)			
	P= .000	P= .001	P= .000	F= .000	P= .392	P= .659			
CVNWS	.3275	.3890	23 97	3097	0517	0412			
	(71)	(71)	(71)	(71)	(60)	(60)			
	P= .005	P= .001	P=.044	P= .009	P= .695	P= .754			
UNREL	3302	1717	.6186	.2248	.0739	0612			
	(71)	(71)	(71)	(71)	(60)	(60)			
	P= .005	P= .152	P= .000	P= .059	P= .575	P= .642			
COMP	5763	3011	.4454	.5037	0942	0981			
	(71)	(71)	(71)	(71)	(60)	(60)			
	P= .001	P= .011	P= .000	P= .000	P= .474	P= .456			
TOTEFF	.0105	.0298	1953	1306	.6949	.5081			
	(68)	(68)	(68)	(68)	(61)	(61)			
	P= .932	P= .810	P= .110	P= .288	P= .000	P= .000			
OUTPUT	0283	0264	1376	0953	.5763	.6375			
	(68)	(68)	(68)	(68)	(61)	(61)			
	P= .819	P= .831	P= .263	P= .440	P= .000	P= .000			
INTEFF	0159	0593	1103	0384	.5981	.2800			
	(68)	(68)	(68)	(68)	(61)	(61)			
	P= .897	P= .631	P= .370	P= .756	P= .000	P= .029			
CHNGEFF	.1219	.1627	2392	1646	.4859	.2835			
	(68)	(68)	(68)	(68)	(61)	(61)			
	P= .322	P= .185	P= .049	P= .180	P= .000	P= .027			
DRGPLN	0223	.1250	1756	1753	.3587	.3688			
	(68)	(68)	(68)	(68)	(61)	(61)			
	P= .857	P= .310	P= .152	P= .153	P= .005	P= .003			

-

VM/SP CMS

(Coefficient / (Cases) / 2-tailed sig)

" , " is printed if a coefficient cannot be computed

19-Jul-95 ALL GF LVL TIME 1 AND TIME 2 VARIABLES 10:21:50 The University of Maryland CSC IBM 3081GX

461

11

-

••

19-Jul-9. 10:21:50			est 1	DH SUSICX	VM-SP (MS
	VOTO	- Corr	elation Coe	fficients		
	XCTSY	XCVNWS	XUNREL			
SLFFERF	.0102		NOUNTE	XCOMP	XTOTEFF	XOUTPL
	(291	(29)	.0493	0818		AUDIPL
	P= .958	P= .596	(29)	(29)	.0396	.1787
SUBPERF	0100		P= .799	P= .673	(27) P- 27)	(27)
and the second second	(71)	.1204	2272		P= .845	P= .373
	P= .033	(71)	(71)	2744	.1417	
DECTOR		P= .317	P= .057	(71)	(60)	.2092
DESIRE	~.0929	- 1107		P= .021	P= .280	60)
	(71)	(71)	1012	0763		P= .109
	P= .441	P= .351	(71)	(71)	.0143	.0916
XAVRS			P= .401	P= .527	60)	(60)
	(71)	- 1742	.1897		P= .914	P= .486
	P= .023	(71)	(71)	. 2903	1679	
XASGL	.023	P= .146	P= .113	(71)	(59)	.0672
ANDUL	-,0357	1005		P= 014	P= .204	(59)
	(71)	(71)	1332	.0342		P= .613
	P= .768	P= .404	(71) P= 268	(71)	.0375	.2305
XINCOM	1104		P= .268	P= .777	59)	(50)
	(71)	0663	.0042		P= .778	P= .079
	P= .321	(71) P= 587	(71)	1025	1363	
XPARGL		P= .583	P= .972	(71) P= 395	(59)	(.1320
AL ANOL	. 2973	.1470		P= .395	P= .303	(59) P= .319
	(71) P- 71)	(71)	1185	1769		
	P= .012	P= .221	(71) P= .325	\$ 71)	.0008	1416
XMREH	.2690		. 325	P= .140	(59) P= .995	(59)
	6 713	(71)	2403			P= .285
	P= .023	P= .141	5 715	0793	.1316	- 0753
XPREW	7170		P= .044	P= .511	(59)	0357
	(71)	.2407	1963		P= .320	P= .78
	P= .007	(71)	(71)	2809	.1177	
XREPMD		P= .043	P= .101	5 71)	(50)	.0138
ANCI NU	.1556	.0511		P= .018	P= .375	P= .91
	(71) P= .195	(71)	1293	0711		91
Van	195	P= .672	(71) P= 282	(71)	(59)	0699
XSTAQUO	. 2638		P= .282	P= .556	(59) P= .087	(50
	(71)	.1826	2270	3020		P= .59
	P= .026	P= .127	(71)	(71)	0060	.083
2 10 10 10 10 10 10 10 10 10 10 10 10 10		s) / 2-taile	P= .057	P= .010	(59) P= .964	(59 P= .53

" . " is printed if a coefficient cannot be computed

11

462

..

Ξ

VM/SP CMS

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:50 The University of Maryland CSC IBM 3081GX

		C	orrela	tion	Coeff:	clent				XOUTPUT
	XCTSY	XCVN	45	XUNR	EL	XCOM	1P	XTOTE	FF	
(VIS	.3689	.25 (7 P=.0	77	26 (7 P= .0	1)	-,42 (7 P= ,1	(1)	.010 (59 P= .93	9) 39	0437 (59) P= .743
XIDELSM	P= .002 .3005 (71)	.21	84 1)	24 (7 P= .0	18 1)	2) (P= .	71)	.10 (5 P= ,4	9)	.1918 (59) P= .146
XSTMIN	P= .011 .3166 (71	.0	502	1; (P= .	274	2 (P=		.15 (E P= .2	i9)	.0648 (59) P= .626
XINACTN	P= .00 .444 (71	0.0	521 71)	1 (962	(4257 71) .000	.0 (P= .	686 59) 605	2097 (59) P= .111
XTEAM	P= .00	45 (⁻	2672 71) .024	 (3760 71) .001	(.4828 71) .000	(2221 59) .091	0122 (59) P= .927
XSLFREW	P= .(.2 (P=	683 71) (.1470 71) .221	ç	.1198 71) .320	(2226 71) = .062	(P=	0079 59) .953	1970 (59) P= .135
XOPTHT		3775	.040	5 (-,249 71 = .03) '	3015 71 P= .01	1 (.0741 59) 577	
ADNIX	т (.2696 71) = .023	.08 (7 P= 4	11	190 (7 P= .1	1)	276 (7 P= .0) (,1638 59 = ,21	5 P= .729
XEFF!	ic (.1551 71)	.1((P=	680	29 (P= .	71)	07 (7 P=	1)	-,048 (5 P= .7	(2) (2)
XTEP	-	-= .197 .3017 (71)		2968 71) .012	3		3 (P=	529 71) 003	.27 (! P= .	59) (59 037 P= .09
XSF	REW	P= .011 0930 (71)		.0525	. ·	1622 71) .177	(1398 71) .245	0 (P=	66810 59) (5 .615 P= .4

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

10

18

463

10.01.00	The Univers		lation Coef			
	XCTSY	XCVNWS	XUNREL	XCOMP	XTOTEFF	XOUTPUT
XSFGL	.1007	0596	2585	1461	.1782	.0242
	(71)	(71)	(71)	(71)	(59)	(59)
	P= .404	P= .621	P= .030	P= .224	P= .177	P= .855
XNREW	1104	.0929	.1896	.2137	.1640	0309
	(71)	(71)	(71)	(71)	(59)	(59)
	P= .359	P= .441	P= .113	P= .074	P= .215	P= .816
XOPPTHT	.0988	.0066	3004	1734	.0690	.1277
	(71)	(71)	(71)	(71)	(61)	(61)
	P= .412	P= .956	P= .011	P= .148	P= .597	P= .327
XSDBS	.1201	.0119	-,0380	.0846	.1575	.0368
	(71)	(71)	(71)	(71)	(59)	(59)
	P= .319	P= .921	P= ,753	P= .483	P= .234	P= .782
XINTSUP	.6729	.4864	4681	5358	.1197	0396
	(71)	(71)	(71)	(71)	(59)	(59)
	P= .000	P= .000	P: .000	P= .000	P= .367	P# .766
XCTSY	1.0000	.4502	5033	5566	0858	2862
	(71)	(71)	(71)	(71)	(59)	(59)
	P=	P= .000	P= .000	P= .000	P= .518	P= .028
XCVIIIIS	.4302	1.0000	2959	-,4422	0796	0736
	(71)	(71)	(71)	(71)	(59)	(59)
	P= .000	P= .	P= .012	P= .000	P= .549	P= .580
XUNREL	5033	2959	1,0000	5148	.)004	.0434
	(71)	(71)	(71)	(71)	(59)	(59)
	P= .000	P= .012	P= .	P= .000	P* .997	P= .744
XCOMP	5566	4422	.5148	1.4000	0578	0148
	(71)	(71)	(71)	(71)	(59)	(59)
	P= .000	P= .000	P= .000	P=	P= .776	P= 911
XTOTEFF	0858 (59) P= .518	(796 (59) P= .549	.0004 (59) P= .997	0378 (59) P= .776	1.1000 (61) P= .	(61) P= .000
XOUTPUT	2862 (59) P= .028	0736 (59) P= .580	.0434 (59) P= .744	(59) P= .911	.7771 (61) P= .000	1.0000 (61) P= .

" . " is printed if a coefficient cannot be computed

464

11

14

-

.

VM/SP CNS

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:50 The University of Maryland CSC IBM 30816X

- - Correlation Coefficients - -

	XCTSY	XCVIIIIS	XUNREL	XCOMP	XTOTEFF	XOUTPUT
XINTEFF	.0303	0207	.0092	0820	.7763	.3221
	(59)	(59)	(59)	(59)	(613	(61)
	P= .820	P= .876	P= .945	P= .537	P= .000	P= .011
XCHNGEFF	0671	0787	.0372	.0557	.8282	.5892
	(59)	(. 59)	(59)	(59)	(61)	(61)
	P= .613	P=.554	P= .780	P= .675	P= .300	F= .000
XORGPLN	.1478	0932	1458	1031	.5211	.3814
	(59)	(59)	(59)	(59)	(61)	(61)
	P= ,264	P= .483	P= .271	P= .437	P= .000	P= .002
XSLFPERF	1957	0327	.1027	.1565	.0968	.1128
	(58)	(58)	(58)	(58)	(51)	(51)
	P= .141	P= .808	P= .443	P= .241	P= .499	P= .430
XSUBPERF	.2682	.1872	1646	3271	.1376	.1572
	(71)	(71)	(71)	(71)	(59)	(59)
	P= .024	P118	P= .170	P= .005	P# .299	P= .234
XDESIRE	.1552	.0335	3769	1297	1526	1473
	(71)	(71)	(71)	(71)	(59)	(59)
	P= .196	P= .781	P= .001	P= .281	P≥ .249	P= .266

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

-

..

19-Jul-93	ALL	GP LVL TIME 1	AND TIME	2 VARIABLES
10:21:50	The	University of	Maryland	CSC IBM 3081GX

		Corre	lation Coef	ficients -	-	
	XINTEFF			XSLFPERF		XDESIRE
AVRS	2955 (60) P= .022	1487 (60) P= .257	1404 (60) P= .284	.0581 (59) P= .662	4423 (71) P= .000	1512 (71) P=.208
ASGL	.1059 (60) P= .421	.0864 (60) P= .512	0188 (60) P= .886	2222 (59) P=.091	0512 (71) P= .671	1324 (71) P=.271
INCOM	0271 (60) P= .837	.0213 (60) P= .872	.0792 (60) P= .547	1441 (59) P= .276	.1280 (71) P= .287	1127 (71) P= .349
PARGL	.1704 (60) P= .193	0181 (60) P= .891	.2084 (60) P= .110	0390 (59) P=.769	.5211 (71) P= .000	,1130 (71) P= .348
MREW	.2614 (60) P= .044	.0942 (60) P= .474	.0446 (60) P= .735	0700 (59) P= .598	.4457 (71) P= .000	.0177 (71) P=.884
PREW	.2046 (60) P= .117	.1543	.1142 (60) P= .385		.4922 (71) P= .000	0173 (71) P= .886
REPMD	.010 (60 P= .93	1053 (60) (60)) (59)		.0358 (71) P= .767
OUPATZ	08 (6 P= .	(0) (6	0) (60)) (59) (71)	(71)
VIS	.1 (P=		60) (6	(5	9) (71	P = .961
IDELS	M (P=	0801 .1 60) (.543 P=	60) (797 .12 60) (.169 P= .	13 .42 59) (7 360 P= .0	1) (71) 000 P= .989
STMI	N (P=	.1678 60) (.200 P=	60) (13060 60) (.320 P=	59) (

" . " is printed if a coefficient cannot be computed

-

...

	GF LVL TIME 1 AND TIME 2 VARIAB University of Maryland CSC IBM		VM/SP CM	5
	Correlation Coeffi	cients -	-	

	correlation coefficients								
	XINTEFF	XCHNGEFF	XORGPLN	XSLFPERF	XSUBPERF	XDESIRE			
INACTN	.1936	0524	.2702	0127	. 5290	.0501			
	(60)	(60)	(60)	(59)	(71)	(71)			
	P= .138	P= .691	P= .037	P= .924	P= .000	F= .678			
TEAM	.2578	0583	. 3840	0507	.4532	.1505			
1 SALL	(60)	(60)	(60)	(59)	(71)	(71)			
	P= ,047	P= .658	F= .002	P= .703	P= .000	P= .210			
SLFREW	.2339	.0153	.1348	0669	. 5107	. 0297			
JET REA	(60)	(60)	(60)	(59)	(71)	(71)			
	P= .072	P= .908	P= .305	P= .615	P= .000	P= .806			
OPTHT	.2603	0716	. 3419	.1245	.4078	. 1803			
	(60)	(60)	(60)	(59)	(71)	(71)			
	P= .045	P= .587	P= .008	P= .347	P= .000	P= .132			
INDACT	.2498	.1180	.1275	0590	.2872	.2678			
	(60)	(60)	(60)	(59)	(71)	(71)			
	P= .054	P= .369	P= .332	P= .657	P= .015	P= .024			
EFFIC	0612	.0197	1368	.0833	.0403	.2325			
	(60)	(60)	(60)	(59)	(71)	(71)			
	P= .642	P= .881	P= .297	P= .530	P= .739	P= .051			
TEAMNK	.1823	1656	.2497	0495	. 3177	.1994			
	(60)	(60)	(60)	(59)	(71)	(71)			
	P= .163	P= .206	P= .054	P= .710	P= .007	P= .096			
SFREW	.0724	.0258	0880	1952	.2152	0837			
	(60)	(60)	(60)	(59)	(71)	(71)			
	P= .583	P= .845	P= .504	P= .139	P= .072	P≢ .488			
SFGL	.1536	.0231	0140	.2073	.2913	.0998			
	(60)	(60)	(60)	(59)	(71) P= .014	(71) P= .407			
	P= .241	P= .361	P= .916	P= .115	P= .014				
NREH	.0428	.0135	1653	1754	.1515	.0040			
	(60)	(60)	(60)	(59) P= .184	(71) P= .207	P= .974			
	P= .745	P∓ ,918							
OPPTHT	.0759	0011	.0088	.1938	.3199	.3012			
-	(61)	(61)	(61)	(60)	(71) P= .007	(71) P= .011			
	P= .561	P= .993	P= .946	P= .138	P007	011			

" . " is printed if a coefficient cannot be computed

467

11

-

1	
6 mm	
-	

10:21:51	The Unive	rsity o	1 1161 7 1	IME 2 VARIA and CSC IBM ation Coeff		-	
	XINTEF		HNGEFF	XORGPLN	XSLFPERF	XSUBFERF	XDESIRE
SOBS	.0062 (60) P= .963	· ·	0335 60) 799	.0950 (60) P= .470	.1929 (59) P= .143	0668 (71) P= .580	2962 (71) P= .012
INTSUP	.1816 (60) P= .165	(0530 60) .688	.1234 (60) P= .347	1239 (59) P= .350	.0336 (71) P= .781	.0323 (71) P= .789
CTSY	.0886 (60 P= .50) (0572 60) .664	.1660 (60) P= .205	1383 (59) P= .296	0194 (71) P=.873	.0317 (71) P= .498
CVHWS	013 (60 P= .91) (.0943 601 .473	0015 (60) P= .991	1249 (59) P= .346	.1851 (71) P= .122	.0857 (71) P= .477
UNREL	.06 (6 P= .6	0) (.1551 60) = .237	.0949 (60) P= .471	0152 (59) P= .909	0900 (71) P= .456	1802 (71) P=.133
COMP	1) (P=	60)	.0869 60) P= .509	1626 (60) P= .214	0470 (59) P= ,724	1510 (71) P= .209	0637 (71) P= .598
TOTEFF	(5276 61) .000	.5490 (61) P= .000	(61)	(57) (68)	P = .477
OUTPUT	(2677 61) .037	.373 (61 P= .00) (61) ()	(68) (68) 58 P= .504
INTEF	. ι	.6449 61) = .000	.44 (6 P= .0	1) (6	1) (5	7) (6 999 P= .3	8) (68) 33 P= .345
CHNG		.3237 61) P= .011	.5 (P= .	61)	0311 61) (018 P= .	57) (273 P=	68) (68 605 P=.95
ORG		.1928 (61) P= .137	¢	61) (61) (1142 .1 57) (.398 P=	

" . " is printed if a coefficient cannot be computed

-

...

10.11.11	ALL GP LVL T The Universi	Correl	ation Guer			XDESIRE
	XINTEFF	XCHNGEFF	XORGPLN	XSLFPERF	XSUBFERF	.1191
	ATULLI			.5512	0478	(29)
	1206	.2299	3026	(23)	(29)	P= .538
SLFPERF	(27)	(27)	(27)	P= .006	P= .806	P
	P= .549	P= .249	P= .125			1256
			.1618	0811	.7583	.1256
	.0543	.0408	(60)	(59)	(71)	P= .297
SUBPERF	(60)	(60)	P= .217	P= .541	P= .000	
	P= .680	P= .757	P= .211		1001	, 3410
	100-		-,1490	0845	1823	(71)
	0608	.0969	(60)	(59)	(71)	P= .004
DESIRE	(60)	(60)	P= .256	P= .525	P= .128	
	P= .644	P= ,461	F		5872	1402
			1026	.2302	(71)	(71)
	2753	1764	(59)	(58)	P= .000	P= .243
XAVRS	(59)	(59)	P= .440	P= .082	P= .000	
	P= .035	P= .181			.0764	1003
			0512	2380	(71)	(71)
XASGL	0376	0621	(59)	(58)	P= .526	P= .405
TAJOL	(59)	(59)	P= .700	P= .072	Pa . 520	
	P= .777	P= .640			.1748	.0029
		2268	-,0756	1446	(71)	(71)
XINCOM	2234	(59)	(59)	(58)	P= 145	P= .981
ATROOM	(59)	P= .084	P= .569	P= 279	1	
	P= .089	P= .004		. / 7/	. 5686	.0028
		0409	.0573	1636	(71)	(71)
XPARGL	.1354	(59)	(59)	P= .220	P= .000	P= .982
	(59)	P= .758	P= .666	P= . 620		0//7
	P= .307			1127	.4960	.2662
	.2145	.1321	.0688	(58)	(71)	(71) P= .025
XMREN	(59)	(59)	(59)	P= .400	P= .000	P= .025
	P= ,103	P= .319	P= .605	F 100		0135
	P105		0//1	1057	.6753	(71)
	.2065	.1151	0661	(58)	(71)	P= .911
XPREW	(59)	(59)	(59) P= .619	P= .430	P= .000	
	P= .117	P= .385	P= .017		17/0	.0890
			0424	.1304	.1368	(71)
-	2326	2733	(59)	7 58J	(71)	P= .461
XREPMD	(59)	(59)	P= .750	P= .329	P= .255	
	P= .076	P= .036			.4675	.1791
		0009	0366	.1855	(71)	(71)
XSTAQUO	0137	0808	(59)	(58)	P= .000	P= .135
XSTAQUU	(59)	(59) P= .543	P= .783	P= 163	r	
	P= .918	P= . 343				

1

(Coefficient / (Cases) / 2-tailed sig)

" . " is printed if a coefficient cannot be computed

469

•

11

-

••

19-Jul-93 ALL GP LVL TIME 1 AND TIME 2 VARIABLES 10:21:51 The University of Maryland CSC IBM 30816X

VH/SP CMS

- - Correlation Coefficients - -XSUBPERF XDESIRE XSLFPERF XINTEFF XCHNGEFF XORGFLN .0125 .6861 -.1102 .1238 .0357 XVIS .1233 (59) Pa .406 (58) 71) (71) (59) P= .352 P= .788 P= .926 P= .000 P= .304 .0352 .6407 .0546 .1055 XIDELSM . 0687 -.0136 (71) (59) P= .605 (59) P= .919 (59) P= .681 (58) P= .793 P= .000 P= .381 .2334 -.1584 →.1358 .6562 XSTMIN .2307 -.0234 (71) P= .259 (59) P= ,860 (58) F= .235 (71) (59) 591 P= .075 P= .000 P= .079 .2733 (59) P= .036 .5617 .0225 -. 0647 XINACTN .2606 -. 0571 (59) P= .668 71) (71) 59) (58) P= .852 P# ,629 P= .000 P= .046 .1449 .0853 .2431 .0322 XTEAM . 3537 .4643 (59) P= .064 (71) P= .000 (58) P= .811 0 71) (59) P= ,520 (59) P# .228 P= .006 -.0326 .2352 (59) P= .073 -.0679 .0002 -.2016 .5162 XSL FREH (71) (59) P= .610 (59) P= .999 (58) P= .129 (71) P= .000 P= .787 .0748 .2436 -.0856 .6440 XOPTHT .2177 -.1108 (71) P= .000 71) (59) P= .098 (59) P= .404 (58) • Ps .535 P= .063 P= .523 .2175 (59) P= .098 .2647 (71) P= .026 .2731 .2673 (59) P= .041 .1246 .0775 XINDACT 71) (58) P= .563 (59) P= .347 P= .021 -.0562 .0871 .2866 .2029 XEFFIC -.1371 .0795 (59) P= .673 (58) P= .516 (71) (71) P= .090 (59) P= .300 (59) P= .549 P= .084 .1923 .2543 (59) P= .052 .1336 (58) P= .317 .1709 (59) P= .196 .1765 ,2885 **XTEAMHK** (71) P= .141 (71) 591 P= .015 P= .145 .1649 -.2219 (59) P= .091 .0562 -.1933 XSFREN .0567 -.0205 (59) P= .670 (58) P= .216 (71) (59) P= .877 P= .642 P= .106

(Coefficient / (Cases) / 2-tailed sig)

", " is printed if a coefficient cannot be computed

470

11

-

10.21.91	The Universi			ficients -	-		
	XINTEFF	XCHNGEFF	XORGFLN	XSLFPERF	XSUBPERF	XDESIRE	
XSFGL	.1575 (59) P= .234	.1886 (59) P= .153	.1722 (59) P= .192	2327 (58) F= .079	.0524 (71) P* .664	.1967 (71) P= .100	
XNREW	.1586 (59) P= .230	.3164 (59) P= .015	-,0289 (59) P= .828	.1725 (58) P= .195	.0034 (71) P= .978	1096 (71) P=.363	
XOPPTHT	1012 (61) F= .438	.1778 (61) P= .170	.0213 (61) P= .870	.0186 (60) P= .888	.2772 (71) P# .019	.1942 (71) P= .105	
XSOBS	.0730 (59) P= .583	-2804 (59) P= .031	.0930 (59) P= .483	.1536 (58) P= .250	.0481 (71) P= .691	1236 (71) P= .305	
XINTSUP	.1461 (59) P= .269	.0901 (59) P= .497	.2283 (59) P= .082	0999 (58) P= .456	.2421 (71) P= .042	.0664 (71) P= .582	
XCTSY	.0303 (59) P= .820	0671 (59) P= .613	.1478 (59) P= .264	1957 (58) P= .141	.2682 (71) P= .024	.1552 (71) P= .196	
XCVNMS	0207 (59) P= .876	0787 (59) P= .554	0932 (59) P= .483	0327 (58) P= .808	.1872 (71) P= .118	.0335 (71) P= .781	
XUNREL	.0092 (59) P= .945	.0372 (59) P= .780	1458 (59) P= .271	.1027 (58) P= .443	1646 (71) P= .170	3769 (71) P= .001	
XCOMP	0820 (59) P=.537	.0557 (59) P= .675	1031 (59) P= .437	.1565 (58) P= .241	5271 (71) P= .005	1297 (71) P= .281	
XTOTEFF	.7763 (61) P= .000	.8282 (61) P= .000	.5211 (61) P= .000	.0968 (51) P= .499	.1376 (59) P= .299	1526 (59) P= .249	
XOUTFUT	.3221 (61) P= .011	.5892 (61) P= .000	.3814 (61) P= .002	.1128 (51) P= .430	.1572 (59) P= .234	1473 (59) P= .266	

" . " is printed if a coefficient cannot be computed

11

471

**

-

VM/SP	CMS	-
VM/SP	CMS	

19-Jul-93	ALL	GP LVL TIME 1 AND 1	IME 2 VARIABLES
10:21:51	The	University of Maryl	and CSC IBM 3031GX

	Correlation Coefficients					
	XINTEFF	XCHNGEFF	XORGPLN	XSLFPERF	XSUBPERF	XDESIRE
XINTEFF	1.0000	.5217 (61) P= .000	.2334 (61) P= .070	.1330 (51) P= .352	.1131 (59) P= .394	1298 (59) P= .327
XCHNGEFF	.5217	1.0000	.2801	.0678	.0422	1428
	(61)	(61)	(61)	(51)	(59)	(59)
	P= .000	P= .	P= .029	P= .636	P= .751	F= .281
XORGPLN	.2334	.2801	1.0000	1450	.1116	.0126
	(61)	(61)	(61)	(51)	(59)	(59)
	P= .070	P= .029	P= .	P= .310	P= .400	P= .925
XSLFPERF	.1330	.0678	1450	1.0000	-,1187	.0135
	(51)	(51)	(51)	(60)	(58)	(58)
	P= .352	P= .636	P= .310	P= .	P= ,375	P= .920
XSUBPERF	.1131	.0422	.1116	1187	1.0000	.0849
	(59)	(59)	(59)	(58)	(71)	(71)
	P= .394	P= .751	P= .400	P= .375	P= .	P= .482
XDESIRE	1298	1428	.0126	.0135	.0849	1.0000
	(59)	(59)	(59)	(58)	(71)	(71)
	P= .327	P= .281	P= .925	P= .920	P= .482	P*

-

18

" . " is printed if a coefficient cannot be computed

472

Appendix 6-1

Post-Hoc Interview Protocol

Interview Protocol

Introduction

- Purpose of the Interview: To add meaning to the results of formal data analysis by getting participant reactions to the training in their own words. At this point, we are only in the exploratory phase of data analysis; we hope to have a brief report for the participants and the subordinates in about six weeks. This will probably take the form of a letter.
- How you were Selected: I selected you more-or-less randomly. I limited my sample only to people who had actually received training (no control group interviews) and chose people who had a fair number of subordinates who filled out questionnaires. (Mention rapport.)
- Assurance of confidentiality: I am only the evaluator of the training and at this point am working independently of Hank. I am not using recording devices; I am only taking notes. Your identity will never be revealed to your organization or to Hank. Because of that, I ask that you speak freely with me.

The Training Itself

These questions ask you specifically about the training itself. In a few minutes, I'll ask you about issues related to implementing the training.

- (A1) As you think back to the training, what did you get out of the program that you thought was helpful?
- (A2) Related to the previous question, what were the major things you learned during the training? What messages did you receive from the training?
- (A3) Thinking back to your reactions during the training, were there any changes you wanted to make as you got near the end of the training program?
- (A4) In retrospect, would you recommend any changes to the training based on the R.I.F.?

Implementing What you Learned

• (B1) Was there difficulty translating material from the training program in ways that applied to your job? If so, can you describe the problems?

- (B2) What did you do as a result of the training? How did it work out? Has the RIF made it easier or harder?
- (B3) Do you think your boss saw any changes as a result of the training? How do you feel about top management support for the training?
- (B4) What did you say to your subordinates about the training program? Did you say anything to them about it? Did you discuss it with them? What do you think your subordinates would say about your behavior after the training?

Summary

- How would you feel if I talked to some of your subordinates? (I'm not sure that I will actually do this, but I wanted to ask you just in case.)
- In summary, What do you think we ought to do in terms of trying to make the training more on-target for the next time around? What was missing, what should we emphasize?

Appendix 6-2

Nine Keys to SuperLeadership

NINE KEYS TO SUPERLEADERSHIP

Overall Strategies

Encourage Initiative

Encourage Self-Problem Solving

Encourage Teamwork

Behavior-Focused Strategies

Encourage Self-Goal Setting

Encourage Self-Observation/Evaluation

Encourage Self-Reward

Cognitive-Focused Strategies

Encourage Opportunity Thinking

Encourage Finding Natural Rewards from the Work Itself

Enhance Self-Efficacy

References

- Alliger, G. (1991, November). Principal components analysis. <u>Academy of Management Research Methods</u> <u>Division Newsletter</u>, 7(1), 9-10.
- Angell, D. L., & DeSau, G. T. (1974). Rare discordant verbal roles and the development of group problemsolving conditions. <u>Small Group Behavior</u>, <u>5(1)</u>, 45-55.
- Antonuccio, D. O., Davis, C., Lewinsohn, P. M., & Breckenridge, J. S. (1987). Therapist variables related to cohesiveness in a group treatment for depression. <u>Small Group Behavior</u>, <u>18</u>(4), 557-564.
- Armenakis, A. A. (1988). A review of research on the change typology. <u>Research in Organizational Change and</u> <u>Development</u> (Vol. 2, pp. 163-194). Greenwich, CT: JAI Press.
- Arvey, R. D., & Ivancevich, J. M. (1980). Punishment in organizations: A review, propositions, and research suggestions. <u>Academy of Management Review</u>, <u>5</u>, 123-132.
- Ball, G. A., Trevino, L. K, & Sims, H. P., Jr. (1991). "Just" and "unjust" organizational punishment: Influences on subordinate performance and citizenship behavior. Unpublished manuscript.
- Bandura, A. (1989). Human agency in social cognitive theory. <u>American Psychologist</u>, <u>44</u>(9), 1175-1184.

Bandura, A. (1977a). Self-efficacy: Towards a unifying theory of behavioral change. Psychological Review, 84,

Bandura, A. (1977b). Social learning theory. Englewood

Cliffs, NJ: Prentice-Hall. Bass, B. M. (1990). Bass and Stogdill's handbook of leadership: Theory, research, and managerial applications (3rd ed.). New York: Free Press. Bass, B. M. (1985). Leadership and performance beyond

expectations. New York: Free Press. Bass, B. M., Waldman, D. A., Avolio, B. J., & Bebb, M. (1987). Transformational leadership and the falling

dominoes effect. Group and Organization Studies, 12, Bateman, T. S., & Organ, D. W. (1983). Job satisfaction and the good soldier: The relationship between affect and employee 'citizenship'. Academy of Management

Baumgartel, H., & Jeanpierre, F. (1972). Applying knowledge in the back home setting. Journal of Applied Bebko, J. M, & Lennox, C. (1988). Teaching the control Of diurnal bruxism to two children with autism using a

simple cuing procedure. <u>Behavior Therapy</u>, <u>19(2)</u>, 249-

255.

Bennis, W. G., & Nanus, B. (1985). Leaders: The

strategies for taking charge. New York: Harper & Row.
Blake, R. R., & Mouton, J. S. (1982). Management by grid
principles or situationism: Which? Group and
Organization Studies, 7, 207-210.

- Brief, A. P., & Motowidlo, S. J. (1986). Prosocial organizational behavior. <u>Academy of Management Review</u>, <u>10</u>, 710-725.
- Burke, M. J., & Day, R. R. (1986). A cumulative study of the effectiveness of managerial training. <u>Journal of</u> <u>Applied Psychology</u>, <u>71(2)</u>, 232-245.
- Burns, J. M. (1978). Leadership. New York: Harper & Row.
- Burns, T. R., & Stalker, G. M. (1961). <u>The management of</u> <u>innovation</u>. Chicago: Quadrangle Books.
- Cardinet, J., Tourneur, Y., & Allal, L. (1976). The symmetry of generalizability theory: Applications to educational measurement. <u>Journal of Educational</u> <u>Measurement</u>, <u>13</u>(3), 119-135.
- Carnevale, A. (1991). <u>America and the new economy</u>. San Francisco: Jossey-Bass.
- Cliff, N. (1987). <u>Analyzing multivariate data</u>. San Diego, CA: Harcourt Brace Jovanovich.

- Conger, J. A. (1992) <u>Learning to lead: The art of</u> <u>transforming managers into leaders</u>. San Francisco: Jossey-Bass.
- Cook, T. D., & Campbell, D. T. (1979). <u>Quasi-</u> <u>experimentation: Design and analysis issues for field</u> <u>settings</u>. Boston: Houghton-Mifflin.
- Conger, J. A. (1989). <u>The charismatic leader: Behind</u> <u>the mystique of exceptional leadership</u>. San Francisco: Jossey-Bass.
- Conger, J. A., & Kanungo, R. M. (1988). Behavioral dimensions of charismatic leadership. In J. A. Conger & R. N. Kanungo (Eds.), <u>Charismatic leadership: The</u> <u>elusive factor in organizational effectiveness</u>. San Francisco: Jossey-Bass.
- Crohnbach, L. J. (1951). Coefficient alpha and the internal structure of tests. <u>Psychometrika</u>, <u>16</u>, 297-334.
- Crocker, L., & Algina, J. (1986). <u>Introduction to</u> <u>classical and modern test theory</u>. New York: Holt, Rinehart, & Winston.
- Cummings, T. G. (1978). Self-regulating work groups: A socio-technical synthesis. <u>Academy of Management</u> Review, <u>3</u>, 625-634.
- Dalton, D. R., & Cosier, R. A. (1988). Psychometric properties of the organizational citizenship behavior

scale. Educational and Psychological Measurement, 48, 479-482.

Deci, E. L. (1980). The psychology of self-

determination. Lexington, MA: D. C. Heath.

- Eden, D., & Shani, A. B. (1982). Pygmalion goes to boot camp: Expectancy, leadership, and trainee performance. Journal of Applied Psychology, 67(2), 194-199.
- Erez, M., Earley, P. C., & Hulin, C. L. (1985). The impact of participation on goal acceptance and performance: A two-step model. <u>Academy of Management</u> <u>Journal</u>, <u>28</u>(1), 50-66.
- Farh, J., Podsakoff, P. M., & Organ, D. W. (1990). Accounting for organizational citizenship behavior: Leader fairness and task scope versus satisfaction. Journal of Management, 16(4), 705-721.
- Fiedler, F. E., & Mahar, L. (1979). The effectiveness of contingency model training: A review of the validation of LEADER MATCH. <u>Personnel Psychology</u>, <u>32</u>, 45-62.
- Fisher, C. D., & Locke, E. A. (1992). A new look in job satisfaction research and theory. In C. J. Cranny, P. C. Smith, & E. F. Stone (Eds.), <u>Job satisfaction:</u> <u>How people feel about their jobs and how it affects</u> <u>their performance</u>. New York: Lexington Books.
- Fleishman, E. A. (1973). Twenty years of consideration and structure. In E. A. Fleishman & J. G. Hunt (Eds.),

Current developments in the study of leadership.

Carbondale, IL: Southern Illinois University Press.

- George, J. M. (1990). Personality, affect, and behavior in groups. <u>Journal of Applied Psychology</u>, <u>75(2)</u>, 107-116.
- Goldstein, A. P., & Sorcher, M. (1974). <u>Changing</u> <u>supervisor behavior</u>. New York: Pergamon Press.
- Golembiewski, R., Billingsley, K, & Yeager, S. (1986). Measuring change and persistence in human affairs: Types of change generated by OD designs. <u>The Journal</u> of Applied Behavior Science, <u>12</u>, 133-157.
- Goodale, J. G., & Burke, R. J. (1975). Behaviorally based rating scales need not be job specific. <u>Journal</u> of Applied Psychology, <u>60</u>(3), 389-391.
- Guadagnoli, E., & Velicer, W. F. (1988). Relation of sample size to the stability of component patterns. <u>Psychological Bulletin</u>, <u>103</u>, 265-275.
- Hackman, J. R. (1987). The psychology of self-management in organizations. In M. S. Pollock & R. O. Perloff (Eds.), <u>Psychology and work: Productivity change and</u> <u>employment</u> (pp. 85-136). Washington, DC: American Psychological Association.
- Hackman, J. R. (1987). The design of work teams. In J. W. Lorsch (Ed.), <u>Handbook of organizational behavior</u> (pp. 315-342). Englewood Cliffs, NJ: Prentice-Hall.

- Hackman, J. R., & Oldham, G. R. (1980). <u>Work redesign</u>. Reading, MA: Addison-Wesley.
- Hackman, J. R., Oldham, G. R., Janson, R., & Purdy, K. (1975). A new strategy for job enrichment. <u>California</u> <u>Management Review</u>, <u>17</u>, 57-71.
- Hand, H. H., Richards, M. D., & Slocum, J. W. (1973). Organizational climate and the effectiveness of a human relations training program. <u>Academy of Management</u> <u>Journal</u>, <u>16</u>(2), 185-195.
- House, R. J. (1971). A path goal theory of leader effectiveness. <u>Administrative Science Quarterly</u>, <u>16</u>, 321-338.
- House, R. J. (1977). A 1976 theory of charismatic leadership. In J. G. Hunt & L. L. Larson (Eds.), <u>Leadership: The cutting edge</u>. Carbondale, IL: Southern Illinois University Press.
- House, R. J., & Mitchell, T. R. (1974). Path-goal theory of leadership. <u>Journal of Contemporary Business</u>, <u>3</u>, 81-97.
- James, L., Demaree, R., & Wolf, G. (1984). Estimating within-group interrater reliability with and without response bias. <u>Journal of Applied Psychology</u>, <u>69</u>(1), 85-98.
- Katz, D. (1964). The motivational basis of organizational behavior. <u>Behavioral Science</u>, <u>9</u>, 131-133.

Kidder, P. J. (1990). <u>The effects of appropriately</u> <u>participative leadership on the core dimensions of</u> <u>climate</u>. Unpublished doctoral dissertation, University of Maryland, College Park.

- Kolodny, H., & Kiggundu, M. (1980). Towards the development of a socio-technical systems model in woodland mechanical harvesting. <u>Human Relations</u>, <u>33</u>, 623-645.
- Komaki, J., Blood, M. R., & Holder, D. (1980). Fostering friendliness in a fast food franchise. <u>Journal of</u> <u>Organizational Behavior Management</u>, <u>2</u>(3), 151-164.
- Kozlowski, S. W., & Hattrup, K. (1992). A disagreement about within-group agreement: Disentangling issues of consistency versus consensus. <u>Journal of Applied</u> <u>Psychology</u>, <u>77</u>(2), 161-167.
- Krigsman, N., & O'Brien, R. M. (1987). Quality circles, feedback and reinforcement: An experimental comparison and behavioral analysis. <u>Journal of Organizational</u> <u>Behavior Management</u>, <u>9</u>(1), 67-82.
- Landsberger, H. A. (1958). <u>Hawthorne revisited</u>. Ithaca, NY: Cornell University Press.
- Latham, G. P. (1991). Behavioral approaches to the training and learning process. In I. L. Goldstein & Associates, <u>Training and development in organizations</u>. San Francisco: Jossey-Bass.

Latham, G. P., Erez, M., & Locke, E. A. (1988).

Resolving scientific disputes by the joint design of crucial experiments by the antagonists: Application to the Erez-Latham dispute regarding participation in goal setting. <u>Journal of Applied Psychology</u>, <u>75(6)</u>, 753-772.

- Latham, G. P., & Saari, L. M. (1979). Application of social-learning theory to training supervisors through behavioral modeling. <u>Journal of Applied Psychology</u>, <u>64(3)</u>, 239-246.
- Lawler, E. E., III. (1986). <u>High-involvement management</u> (pp. 101-118). San Francisco: Jossey-Bass.
- Locke, E. A., & Latham, G. P. (1990). Work motivation and satisfaction: Light at the end of the tunnel. <u>Psychological Science</u>, 1(4), 240-246.
- Luthans, F., & Davis, T. R. V. (1979, summer). Behavioral self-management: The missing link in managerial effectiveness. <u>Organizational Dynamics</u>, 42-60.
- Luthans, F., & Kreitner, R. (1985). <u>Organizational</u> <u>behavior modification and beyond</u>. Glenview, IL: Scott, Foresman.
- Mahoney, M. J., & Arnkoff, D. B. (1978). Cognitive and self-control therapies. In S. L. Garfield & A. E.

Borgin (Eds.), <u>Handbook of psychotherapy and therapy</u> <u>change</u> (pp. 689-722). New York: Wiley.

- Manz, C. C. (1992). <u>Mastering self-leadership:</u> <u>Empowering yourself for personal excellence</u>. Englewood Cliffs, NJ: Prentice-Hall.
- Manz, C. C. (1981). <u>An exploration of the leadership of</u> <u>self-managed work groups</u>. Unpublished doctoral dissertation, The Pennsylvania State University.
- Manz, C. C. (1986). Self-leadership: Toward an expanded theory of self-influence processes in organizations. <u>Academy of Management Review</u>, <u>11</u>, 585-600.
- Manz, C. C., Adsit, D. J., Campbell, S., & Mathison-Hance, M. (1988). Managerial thought patterns and performance: A study of perceptual patterns of performance hindrances for higher and lower performing managers. <u>Human Relations</u>, <u>41</u>(6), 447-465.
- Manz, C. C., Keating, D. E., & Donnellon, A. (1990). Preparing for an organizational change to employee self-management: The managerial transition. <u>Organizational Dynamics</u>, 15-26.
- Manz, C. C., & Sims, H. P., Jr. (1991, spring). SuperLeadership: Beyond the myth of heroic leadership. <u>Organizational Dynamics</u>, 18-35.

Manz, C. C., & Sims, H. P., Jr. (1991b). Leadership

strategies inventory trainer guide. King of Prussia,

PA: Organization Design and Development, Inc.

- Manz, C. C., & Sims, H. P., Jr. (1990). <u>SuperLeadership:</u> <u>Leading others to lead themselves</u>. New York: Berkeley Books.
- Manz, C. C., & Sims, H. P., Jr. (1989). <u>SuperLeadership:</u> <u>Leading others to lead themselves</u>. New York: Prentice Hall.
- Manz, C. C., & Sims, H. P., Jr. (1987). Leading workers to lead themselves: The external leadership of selfmanaging work teams. <u>Administrative Science Quarterly</u>, <u>32</u>, 106-128.
- Manz, C. C., & Sims, H. P., Jr. (1984). Searching for the "unleader": Organizational member views on leading self-managed groups. <u>Human Relations</u>, <u>37</u>, 409-424.
- Manz, C. C., & Sims, H. P., Jr. (1981). Vicarious learning: The influence of modeling on organizational behavior. <u>Academy of Management Review</u>, <u>6</u>, 105-113.
- Manz, C. C., & Sims, H. P., Jr. (1980). Self-management as a substitute for leadership: A social learning theory perspective. <u>Academy of Management Review</u>, <u>5(3)</u>, 361-367.
- McGregor, D. (1960). <u>The human side of enterprise</u>. New-York: McGraw-Hill.

Meichenbaum, D. (1977). Cognitive-behavior modification:

An integrative approach. New York: Plenum Press. Moorman, R. H. (1991). Relationship between

- organizational justice and organizational citizenship behaviors: Do fairness perceptions influence employee citizenship? <u>Journal of Applied Psychology</u>, <u>76(6)</u>, 845-855.
- Neck, C. (1992). <u>Thought self-leadership training: The</u> <u>effects of teaching cognitive strategies on employee</u> <u>performance</u>. Unpublished doctoral dissertation, Arizona State University.
- Neff, R. (1991, October 25). No. 1--and trying harder. BusinessWeek, pp. 8-16.
- O'Brien, R. G., & Kaiser, M. K. (1985). MANOVA method for analyzing repeated measures designs: An extensive primer. <u>Psychological Bulletin</u>, <u>97</u>(2), 316-333.
- Oldham, G. R. (1976). Job characteristics and internal motivation: The moderating effect of interpersonal and individual variables. <u>Human Relations</u>, <u>29</u>(6), 559-569.
- Organ, D. W. (1988). <u>Organizational citizenship</u> <u>behavior: The good soldier syndrome</u>. Lexington, MA: Lexington Books.
- Organ, D. W., & Konovsky, M. (1989). Cognitive versus affective determinants of organizational citizenship

behavior. <u>Journal of Applied Psychology</u>, <u>74</u>(1), 157-164.

Pfeffer, J. (1977). The ambiguity of leadership.

Academy of Management Review, 2, 104-112.

- Pearce, J. A., & Ravlin, E. C. (1987). The design and activation of self-regulating work groups. <u>Human</u> <u>Relations</u>, <u>40</u>(11), 751-782.
- Podsakoff, P. M., & MacKenzie, S. B. (1989). <u>A second</u> <u>Generation measure of organizational citizenship</u> <u>behavior</u>. Unpublished manuscript, Indiana University, Bloomington.
- Podsakoff, P. M., MacKenzie, S. B., Moorman, R. H., & Fetter, R. (1990). Transformational leader behaviors and their effects on trust, satisfaction, and organizational citizenship behaviors. <u>The Leadership</u> <u>Quarterly</u>, 1, 107-142.

Podsakoff, P. M., Todor, W. D., & Skov, R. (1982). Effects of leader contingent and noncontingent reward and punishment behaviors on subordinate performance and satisfaction. <u>Academy of Management Journal</u>, 25, 810-821.

- Port, O., & Carey, J. (1991, October 25). Questing for the best. <u>BusinessWeek</u>, pp. 8-16.
- Rice, A. K. (1955). Productivity and social organisation in an Indian weaving mill, II. A follow-up study of

the experimental reorganisation of automatic weaving. <u>Human Relations</u>, <u>7</u>(3), 399-428.

Roethlinsberger, F. J., & Dickson, W. J. (1939). <u>Management and the worker</u>. Cambridge, MA: Harvard University Press.

the first of the second second second

- Rosen, N. A., Georgiades, N. J., & McDonald, G. (1980). An empirical test of a leadership contingency model for teaching behavioral science concepts to managers. <u>Journal of Occupational Psychology</u>, <u>53</u>, 1-10.
- Schmitt, N. W., & Klimoski, R. J. (1991). <u>Research</u> <u>methods in human resources management</u>. Cincinnati, OH: South-Western Publishing.
- Schriesheim, C. A., House, R. J., & Kerr, S. (1976). Leader initiating structure: A reconciliation of discrepant research results and some empirical tests. <u>Organizational Behavior and Human Performance</u>, <u>15</u>, 197-321.
- Scott, W. E., Jr., & Podsakoff, P. M. (1982). Leadership, supervision and behavioral control: Perspectives from an experimental analysis. In L. Frederickson (Ed.), <u>Handbook of organizational behavior</u> management. New York: Wiley.
- Seligman, M., & Desmond, R. (1975). The leaderless group phenomenon: A historical perspective. <u>International</u> <u>Journal of Group Psychotherapy</u>, 277-290.

Scully, J. S., Sims, H. P., Jr., Olian, J. D., Smith, K. G., Schnell, E. R., & Smith, K. A. (1992). <u>Tough</u> <u>times make tough bosses: A meso-analysis of ceo leader</u> <u>behavior</u>. Unpublished manuscript, University of Maryland, College Park.

- Shrout, P. E., & Fliess, J. L. (1979) Intraclass correlations: Uses in assessing rater reliability. <u>Psychological Bulletin</u>, <u>86</u>, 420-428.
- Sims, H. P., Jr. (1980). Further thoughts on punishment in organizations. <u>Academy of Management Review</u>, <u>5</u>, 133-138.
- Sims, H. P., Jr., & Lorenzi, P. <u>The new leadership</u> <u>paradigm: Social learning and cognition in</u> <u>organizations</u>. Newbury Park, CA: Sage.
- Sims, H. P., Jr., & Manz, C. C. (1982, summer). Conversations within self-managed work groups. <u>National Productivity Review</u>, 261-269.
- Sims, H. P., Jr., & Manz, C. C. (1981-82). Social learning theory: The role of modeling in the exercise of leadership. <u>Journal of Organizational Behavior</u> <u>Management</u>, <u>3</u>(4), 55-63.
- Sims, H. P., Jr., & Szilagyi, A. D. (1979). Time lags in leader reward research. Journal of Applied Psychology, 64(1), 71-76.

- Smith, C. A., Organ, D. W., & Near, J. P. (1983).
 Organizational citizenship behavior: Its nature and
 antecedents. Journal of Applied Psychology, 68(4),
 653-663.
- Smith, P. C., Kendall, L. M., & Hulin, C. L. (1969). The measurement of satisfaction in work and retirement. Chicago: Rand McNally.
- Stogdill, R. M. (1974). <u>Handbook of leadership: A</u> <u>survey of the literature</u>. New York: Free Press.
- Tharenou, P., & Lyndon, J. T. (1990). The effect of a supervisory development program on leadership style. <u>Journal of Business and Psychology</u>, <u>4</u>(3), 365-373.
- Thoreson, E. E., & Mahoney, M. J. (1974). <u>Behavioral</u> <u>self-control</u>. Holt, Rinehart, & Winston.
- Trist, E. L., Susman, G. L., & Brown, G. (1977). An experiment in autonomous working in an American underground coal mine. <u>Human Relations</u>, <u>30</u>(3), 201-236.
- Vroom, V. H. (1964). <u>Work and motivation</u>. New York: Wiley.
- Vroom, V. H., & Jago, A. G. (1988). The new leadership: <u>Managing participation in organizations</u>. Englewood Cliffs, NJ: Prentice-Hall.

- Vroom, V. H., & Yetton, P. W. (1973). Leadership and decision making. Pittsburgh: University of Pittsburgh Press.
- Walton, R. E. (1972, November/December). How to counter alienation in the plant. <u>Harvard Business Review</u>, 70-81.
- Weiss, H. M. (1978). Social learning of work values in organizations. <u>Journal of Applied Psychology</u>, <u>6</u>, 711-718.
- Weiss, H. M. (1977). Subordinate imitation of supervisory behavior: The role of modeling in organizational socialization. <u>Organizational Behavior</u> <u>and Human Performance</u>, <u>19</u>, 89-105.
- Yukl, G. A. (1989) <u>Leadership in organizations</u> (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.
- ²iegler, S. G. (1987). Effects of stimulus cuing on the acquisition of groundstrokes by beginning tennis players. <u>Journal of Applied Behavior Analysis</u>, <u>20</u>(4), 405-411.