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Contemporary complex systems generally have multiple sensors embedded at various 

levels within their structure. Sensors are data gathering mechanisms that measure a 

systemic quantity (such as functionality or failure) providing the engineer with a 

multitude of reliability information. When data sets are drawn simultaneously from 

multiple sensors in a system, they are said to be overlapping. Current methodologies 

focus on conducting system reliability analysis of non-overlapping data sets. We 

introduce a Bayesian methodology that allows analysis of overlapping data sets, 

exploiting their inherent inter-dependence to yield significant additional information. 

Data gathered from a sensor placed at the ‘top’ of the system (i.e. systemic 

functionality) is contextualised through dependence on data gathered simultaneously 



  

from any sub-system or component. A system that is functional in spite of a non-

functional sub-system infers information about the reliability characteristics of the 

clearly functional system remainder. The same principle extends to any other sensor 

that has subordinate sensors upon which it is observationally dependent. We apply 

overlapping Bayesian analysis on several example systems to highlight the 

information inherent in overlapping data sets and compare these results against 

previous methodologies that are constrained to non-overlapping data. The differences 

observed become errors if the incorrect methodology is used. 

The overlapping Bayesian methodology we introduce deals with on-demand and 

continuous life metric systems. The likelihood function for on-demand systems 

accommodates multiple degraded states and relies on an algorithm we introduce that 

rapidly generates combinations of disjoint cut-sets that imply the evidence. The 

likelihood function for continuous life-metric systems (such as those who failure 

probability is time based) incrementally examines each sensor data when 

contextualised through all other data sets. We generalise these likelihood functions 

for uncertain data, allowing simplification of the likelihood functions through real-life 

measuring inaccuracies. 

Finally, we use the methodologies developed above to assess probable information 

gain for various sensor placement permutations. We embed this process into a 

Bayesian experimental design framework that allows sensor placement to be 



  

optimised against information. This can then be fed into any multi-objective 

optimisation framework, or used in isolation to allow informed sensor placement. 
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Chapter 1: Introduction 

1.1. OVERLAPPING AND MULTI-LEVEL DATA IN SYSTEM RELIABILITY AND 

RISK 

It is difficult to imagine contemporary complex systems (ranging from personal motor vehicles 

to nuclear power plants) that do not have multiple sensors embedded at various levels within 

their structure. Sensors are data gathering mechanisms that measure a systemic quantity, such as 

functionality or failure in the context of system reliability analysis. Technology has advanced to 

a stage where these sensors can be implanted relatively cheaply and effectively, thus providing 

the engineer with a multitude of functionality and reliability information. However, data sets 

gathered simultaneously from multiple sensors within the same system are unique: they are 

overlapping. 

Consider a system where a particular sensor has detected that a sub-system has failed. Without 

any further information (and from a diagnostics perspective only), inference can only be made 

about the ‘unreliability’ of that sub-system. If another sensor simultaneously detects that the 

entire system is functional, additional information is at hand: it is suggested that the remainder of 

the system is still functioning to an extent that mitigates the sub-system failure. From a 

prognostics perspective, system failure can now be more readily predicted as it is now 

completely dependent on the functionality of the remainder of the system only. But there is now 

information about the ‘reliability’ of the remainder of the system: information that when 

correctly inferred improves our understanding of systemic reliability. 
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Correctly analysing these data sets, with their inherent dependencies, yields significantly more 

information. The inference made from data drawn from the system level sensor is dependent on 

data drawn from the sub-system level when drawn simultaneously. System functionality is 

conditional on the functionality of subordinate sub-systems and components. In this way, data 

sets drawn simultaneously from multiple sensors from the same system are overlapping and 

contain information through their inherent inter-dependencies and require specific analysis 

techniques. 

To instigate formal definition, sets of overlapping data are those that meet the following criteria: 

simultaneity (the sets are drawn from observations or demands that occur at the same time); and 

correspondence (the sets are dependent on the same system or process). A common example of 

overlapping data is that already introduced where reliability data is drawn from a particular 

system through multiple sensors simultaneously. At many points throughout this dissertation, 

comparisons are made between analysis of data sets as though they were either overlapping or 

non-overlapping to expose extremely significant differences. It is therefore crucial for the 

reliability engineer to understand what overlapping data is and how to analyse it.  

To date, the majority of system reliability data analysis methodologies can only analyse non-

overlapping data. A further observation of these techniques is that the since system reliability is 

a function of component reliabilities, system reliability analysis has been focussed on reliability 

testing at the component level. These approaches automatically preclude useful system and sub-
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system data (which is referred to as higher level data as it appears ‘higher’ in many visualization 

methodologies).  

Reliability analysis involves the ‘downwards’ propagation of information: test data can infer 

information ‘down’ into underlying reliability parameters (the term ‘down’ is used as it is 

common for component, sub-system and then system levels to be graphically represented 

hierarchically above reliability parameters). Reliability prediction involves ‘upwards’ 

propagation of information since reliability parameters (through reliability models and system 

logic) define higher-level performance. Component level testing is straightforward in that 

information can be propagated directly downwards into component reliability parameters. 

System and sub-system level data relies on system logic when information is propagated 

downwards, making analysis more complicated, especially when data is overlapping. This 

complexity presents not only challenges but opportunities: the fact that sensors embedded in 

systems infer information about many components can be judiciously exploited by the test 

engineer to maximise information gain. 
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1.2. RESEARCH OBJECTIVES 

The fundamental research objectives of this dissertation are as follows: 

a. To develop Bayesian frameworks and methodologies to allow analysis of overlapping data 

for (both binary and multi-state) on-demand systems and continuous life metric systems; 

b. To develop mathematical techniques and algorithms for rapid evaluation of all steps in the 

above methodologies; 

c. To generalise the above methodologies to incorporate uncertain data; and 

d. To combine the above methodologies with optimisation techniques to refine sensor 

placement within complex systems. 

1.3. TREATMENT OF NON-OVERLAPPING AND OVERLAPPING DATA IN 

BAYES’ THEOREM 

Bayes’ theorem is written formally as: 

 ( ) ( ) ( )
( ) ( )

0
1

0

|
|

| ' ' '
L E

E
L E d

π
π

π
∀

=
∫
θ

θ θ
θ

θ θ θ
...1 ---(1) 

 where θ is the set of unknowns of interest or parameters, π0(θ) is the prior distribution of θ 

(representing the initial state of knowledge), L(E | θ) is the likelihood of observing a set of 

evidence, E, for a given θ, and π1(θ | E) is the updated posterior distribution of the set of 

unknowns of interest or parameters representing the updated state of knowledge. 

                                                 
1 Throughout this dissertation, any generic evidence set is denoted E. 
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1.3.1. Non-overlapping data. 

Non-overlapping data sets are ‘observationally’ independent and therefore generate independent 

likelihood functions. In the context of a complex system of n components where the vector, jp , 

that contains the probabilities of the jth component being in a particular functional state, and the 

set or matrix of n state probability sets for the system is 1 2 3{ , , ,..., ,..., }j n=p p p p p p     , Bayes’ 

theorem becomes:  

 { }( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 0
1 1 2 3

1 2 0

| | ...
| , , ,...

| ' | ' ... ' '
L E L E

E E E E
L E L E d

π
π

π
∀

× ×
= =

× ×∫
p

p p p
p

p p p p
 ... 2

 

---(2) 

 where {E1 , E2 , E3 , …} is a number of non-overlapping data/evidence sets. 

1.3.2. Overlapping data 

The likelihood functions for overlapping data are interdependent, and cannot be substituted into 

equation (2). They generate one encompassing likelihood function. Overlapping data is 

represented formally in Bayes’ theorem as: 

 { }( ) { }( ) ( )

{ }( ) ( )
1 2 3 0

1 1 2 3
1 2 3 0

, , ,... |
| , , ,...

, , ,... | ' ' '

L E E E
E E E E

L E E E d

π
π

π

• • •
• • •

• • •

∀

= =
∫
p

p p
p

p p p
 

---(3) 

 where { }1 2 3, , ,...E E E• • •  is a number of overlapping data/evidence sets. 

                                                 
2 Note that throughout this dissertation, a convention where a vectors are represented as x , and matrices as x will be 
observed. In this instance, p is a vector but will be annotated as a matrix to align with multi-state system 
nomenclature that will become apparent further on. 
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As overlapping data sets are dependent, the overall likelihood function is not a product of 

individual data set likelihood functions. 

 { }( ) ( ) ( ) ( )1 2 3 1 2 3, , ,... | | | | ...L E E E E L E L E L E• • • • • •= ≠ × × ×p p p p  ---(4) 

Effects of inter-dependent likelihood functions are examined in Example 1 and Example 2. 

 Example 1: Effect of Overlapping data 

Consider the basic two component series system examined in Figure 1 that is to a test regime 1:  

 
Figure 1: Basic two component series system 

Test 1.  A series of 10 demands where 10 failures were detected at the system level and 1 failure 

was detected by sensor #2. 

The effect of observing different numbers of failure at sensor #2 (for 10 systemic demands) are 

explored in Table 1 within the context of systemic failure on every demand. It can be seen that 

the number of failures detected by sensor #2 affects the level of inference that the number of 

systemic failures has on the failure characteristics of component 2. 

System (Sensor #1) 

1 

Sensor  #2 2 

( )1 1 2 1 2
Sp p p p p= + − ×

2 1
Sp p=
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No of 
failures 
detected 
by sensor 

#1 

1
Sk  

No of 
failures 
detected 
by sensor 

#2 

2
Sk  

No of possible instances of 
component 2 failing 

Uncertainty in the 
behaviour of  
component 2 

10 

0 10 Specific  
1 9,10 (no uncertainty) 
2 8, 9,10  
3 7, 8, 9,10  
4 6, 7, 8, 9,10  
5 5, 6, 7, 8, 9,10  
6 4, 5, 6, 7, 8, 9,10  
7 3, 4, 5, 6, 7, 8, 9,10  
8 2, 3, 4, 5, 6, 7, 8, 9,10  
9 1, 2, 3, 4, 5, 6, 7, 8, 9,10 Ambiguous 
10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10  (total uncertainty) 

Table 1: Scope of inference on system (component 2) 

Example 2: Effect of Overlapping data – Simple time based system 

Consider a simple power module that involves two different and parallel transformer/filter sub-

systems. The system is represented in the reliability block diagram in Figure 2. There are two 

sensors that detect time to failure: sensor #1 for the entire system, and sensor #2 for sub-system 

A. It is assumed that the time to failure for each sub-system is exponentially distributed, with the 

prior distributions of µA and µB be (the means of each sub-systems’ time to failure) are 

uniformly distributed across [0,20] months. 

i.e. θ = {µA , µB} where θ is the set of all system reliability parameters. ---(5)  
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Figure 2: Reliability block diagram of power module 

Similarly, the respective probability density functions (PDFs) and cumulative distribution 

functions (CDFs) for the system and sub-systems are f(t | θ), fA(t | µA), fB(t | µB) and F(t | θ),  

FA(t | µA), FB(t | µB) where t is time. The system CDF and PDF are functions of the sub-

systems’ CDFs and PDFs.  

 F = FA•FB ---(6)  

as the system is a parallel configuration of sub-systems A and B, making systemic failure 

probability a product of sub-system failure probabilities  

 f = fAFB + fbFA … derivative of equation (6) with respect to t ---(7)  

Two evidence/data sets, in (8) and (9), are gathered from each sensor from three tests. 

 E1 = 1 {11.12,6.99,2.25}S =t … observed failure detection times of sensor #1 ---(8)  

Transformer 
A 

Filter 
A 

Transformer 
B 

Filter 
B 

Sensor #1 
(System) 

Sensor #2 
(sub-system A) 

Sub-system A 

Sub-system B 
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 E2 = 2 {11.12,6.99,2.23}S =t … observed failure detection times of sensor #2 ---(9)  

Scenario 1: Treating the data sets in (8) and (9) as non-overlapping. This scenario is equivalent 

to testing the system in isolation three times and observing evidence set (8), and subsequently 

testing sub-system A in isolation three times and observing evidence set (9). Consequently, the 

analysis is unsure at what time sub-system A failed when system level evidence is gathered. The 

likelihood function of observing the evidence sets is based on equations (6) and (7):  

 ( ) ( )
1 2

1 2| , | ,
S S

S S
A B A B B A A

t t

L E Lμ μ f F f F f
∀ ∀

   
= = • + • •   

      
∏ ∏θ t t    

 

1 1 2
1 1

1 2

1 1

S S S
S S

A B A
B A

S S

t t t
t tμ μ μ
μ μ

t tA B A

e e ee e
μ μ μ

− − −
− −

∀ ∀

   
         = − + − •            

   

∏ ∏   

 
( )

2 1 1

2 1

1

1

1 1

3
1 1

S S S

A S St A B
A B

S

t t tμ
μ μ t

μ μ

t A B A BA

e e e e
μ μ μ μμ

∀

−
− −  

− + 
 

∀

∑
 

= + − + 
 

∏   

 
( )

( ) ( )

( ) ( )

( ) ( )

1 111.12 11.12 11.12

11.12
1 6.99

2.23 1 16.99 6.99 6.99

4

1 12.25 2.25 2.25

A BA B

A

A BA B

A BA B

μ μμ μ
B A B A

μ

μ μμ μ
B A B A

A B

μ μμ μ
B A B A

μ e μ e μ μ e

e μ e μ e μ μ e
μ μ

μ e μ e μ μ e

− − − +

 
 − + 
 +  − − − +

− − − +

  
+ − +  

  
   = • + − +   
 

  • + − +    

 ---(10)  
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Scenario 2: Treating the data sets in (8) and (9) as overlapping. If the data sets (8) and (9) were 

treated as overlapping, it would be equivalent to testing the system three times only and 

simultaneously observing the evidence sets. Considering the first test where both sensors 

detected failure at the same time (11.12 months), it can be concluded that sub-system B failed 

sometime before 11.12 months, with sub-system A subsequently failing at 11.12 months causing 

the entire system to fail (noting that it is a parallel system). The same principle is applied for the 

test where failure was detected by both sensors at 6.99 months in the second test. The third test 

involved sensor #2 detecting failure at 2.23 months, slightly before sensor #1 detects failure (at 

2.25 months). It can be concluded that in this test, sub-system A failed at 2.23 months, while sub-

system B failed at 2.25 months causing the entire system to fail. This illustrates the nature of the 

information inherent in overlapping data sets.  

The posterior distributions generated by Bayesian analysis treating the data sets as overlapping 

and non-overlapping are illustrated in Figure 3. The techniques required for analysing the data 

set as if it were overlapping are developed later in this dissertation. It can be seen that the 

primary difference between each posterior distribution is the information pertaining to sub-

system B: the maximum likelihood estimate (MLE) of µB when treating the data as non-

overlapping (3.98) is approximately double the MLE of µB when treating the data as overlapping 

(1.99). Conversely, the MLE of µA increases slightly (from 5.99 to 6.78).  It is clear that 

overlapping data does not infer the same information when it is analysed as non-overlapping 

data. The difference in information can sometimes be significant, and hence needs to be treated 

accordingly. 
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Figure 3: Posterior distribution of sub-system failure rates of parallel system treating data as 

overlapping and non-overlapping. 

1.4. OVERLAPPING DATA ANALYSIS OF SYSTEMS 

There are various systems that can be studied by the reliability engineer. On-demand systems are 

those that are subject to discrete demands or trials and will respond by operating (or existing) 

within certain discrete states. Binary-state on-demand systems have only two such states; failure 

and success (or functionality). By definition, on-demand systems are made up of on-demand 

components that also operate in the same two discrete states (noting that the maximum number 

of states each component can exist in is the number of system level states). The state that an on-

demand system or component exists in is a discrete random variable. The probability of the state 

of an on-demand system is a function of the component state probabilities, dictated by the system 

structure or logic. A methodology for the analysis of overlapping data sets for binary-state on-

demand systems is developed in Chapter 3. 
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Multi-state systems are those where components can exist in states ranging incrementally in 

severity from ‘functional’ to ‘failed’. There will be one or more states of degraded functionality 

that a component can exist in. A binary-state system is the simplest form of a multi-state system. 

The method developed in Chapter 3 for the analysis of overlapping data sets generated by 

binary-state on-demand systems is generalized in Chapter 4 to accommodate multi-state systems. 

Both of the above methodologies require the generation of sets of combinations of state vectors 

that imply the evidence. The trivial approach to developing these sets (where each set is 

considered sequentially) is extremely computationally intensive, with huge numbers of possible 

combinations requiring examination. An algorithm is developed in Chapter 5 that rapidly 

compiles these sets, supporting the methodologies developed in Chapters 3 and 4. 

Systems and components with continuous life metrics (such as time) contrast from their on-

demand counterparts in that the probability that they exist in a particular state (or transition from 

one state to another) is a function of said life metric. The point at which a component or system 

transitions from one state to another (measured in terms of the life metric) is a continuous 

random variable. There are numerous systems that are based on other continuous variables 

beyond time (such as distance and flow), and the methodology developed in Chapter 6 to analyse 

overlapping data sets (even though it is exclusively are based on time) is equally transferrable to 

such variables.  
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1.5. UNCERTAINTY IN DATA 

A constant reality of data gathering is uncertainty. Chapter 7 deals with uncertainty in 

overlapping data sets, and examines how the methodologies developed in Chapters 3 to 6 can be 

modified to accommodate measurement error. A useful development for the case of systems with 

continuous life metrics is that the likelihood function required to deal with overlapping data sets 

is simplified significantly, and is a reality experienced by every system in this context. 

1.6. SENSOR PLACEMENT OPTIMISATION 

System sensor placement can come at significant resource costs, and possible sensor locations 

can be limited by the operating environment. The placement of sensors based on information 

optimality is necessarily complicated by many factors. By considering the issue of sensor 

placement as a holistic multi-objective optimization problem, sensor placement can be formally 

addressed.  

Bayesian analysis of overlapping data drawn from multi-sensor systems enables the concept of 

experimental design to be used to optimise sensor placement. The ability to correctly incorporate 

information inherent in overlapping data sets allows precise sensor placements to be analysed in 

terms of expected information gain. Chapter 8 deals with sensor placement optimisation in a 

Bayesian experimental design framework, with each permutation of possible sensor locations 

becoming a separate and distinct experiment. This allows informed decisions to be made on what 

can ultimately be costly decisions to install sensors at various places within a system or process. 
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Chapter 2: Review of the State of the Art 

2.1. INTRODUCTION 

Current system reliability analysis methodologies focus on using system failure logic (such as 

that represented in reliability block diagrams or fault-trees) to express system failure probability 

based on the failure probabilities of subordinate components. For example, the Nuclear 

Regulatory Commission (NRC) Probabilistic Risk Assessment Guide breaks this process into 

defining component failure probabilities, determining system minimal cut-set probabilities and 

using them to quantify system reliability [1]. This procedure is replicated in many other relevant 

textbooks and handbooks. 

Higher level data is generally gathered by sensors placed throughout the system structure (a 

sensor can be a dedicated device or a person: the driver of a car will be instantly aware of the 

time at which it ceases to function). Whilst a sensor typically always exists at the system level 

(as in system failure can be immediately observed or detected), it may be desirable to place 

sensors elsewhere in the system to gather more diagnostic information. Each sensor does not 

form part of the system function, but can detect whether the system is functional at that point. 

Sensors are most applicable for sub-systems with their own functionality with failure becoming 

easily detected. This chapter is a review of current methodologies that analyse data drawn from 

multi-sensor systems. 
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2.2. CURRENT METHODOLOGIES 

2.2.1. Binary-state on-demand systems 

The state variable for the jth component of a binary-state on-demand system, xj, is formally 

defined in equation (11). 

th

th

0 if the  component is functional

1 if the  component has failed    
j

j
x

j

= 


 ---(11) 

An approximate Bayesian method was considered through reliability block diagram 

methodology that combined non-overlapping system and component level data by Mastran and 

Singpurwalla [2]. A top-down approach combined system level data with component level data 

and prior distributions to update component life characteristics, which in turn provided a 

posterior distribution of system reliability. An alternate approximate Bayesian procedure based 

on a bottom-up approach with prior distribution parameters which were then combined with data 

was developed by Martz et al [3] and Martz and Waller [4]. 

Fully Bayesian techniques were developed by Johnson et al [5] and Hamada et al. [6] The latter 

technique involves beta prior distributions at the component level to incorporate test data of the 

form of k failures out of r demands to generate posterior component distributions. This allowed 

both upwards and downwards propagation of information but could not incorporate overlapping 

data. The Hamada et al method is written formally in equation (12). 



 

 29 
 

 

( ) ( ) ( )
( ) ( )

0
1

0

|
|

| ' ' '
L E

E
L E d

π
π

π
∀

=
∫
p

p p
p

p p p  ---(12)

 
 prior distribution: ( ) ( ) ( )1 1

0
1

1j j
n

j j
j

p p
α β

π
− −

=

 = −  ∏p   

 likelihood function: ( ) ( ) ( ) ( ) ( )
1 1

| 1 1
S S S
i i ij j j

n m k r kk r k S S
j j i i

j i
L E p p p p

−−

= =

      = − −            
∏ ∏p   

where p is the set of n component failure probabilities {p1 , p2 , p3 , … , pj , … , pn},  S
ip  is 

the ith system or sub-system failure probability expressed as a function of p, m is the 

number of system and sub-system probabilities under consideration (i.e. the number of 

sensors), the prior beta distributions of component failure probabilities have parameters α 

and β, and evidence is shown in Table 2. 

Component/System C1 C2 … Cn S1 S2 … Sm 

Number of detected failures k1 k2 … kn 1
Sk  2

Sk  … S
mk  

Number of Demands r1 r2 … rn 1
Sr  2

Sr  … S
mr  

Table 2: Expression of system level evidence for the Hamada et al method 

The likelihood function becomes equation (13). 
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∏
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For the Hamada et al method, it can be seen that all evidence must be of the form of k detected 

failures out of r demands. An example of an application of the method of Hamada et al for a 

basic system is illustrated in Example 3. 

The Hamada et al. method is computationally efficient to evaluate and should be used in 

scenarios involving non-overlapping data from binary-state on-demand systems. Graves et al. 

[7] generated a methodology that incorporates overlapping data for binary-state on-demand 

systems. It involves a four step algorithm primarily based on Boolean algebra and disjoint cut-set 

generation that satisfies overlapping multi-level data per demand. 

Example 3: Non-overlapping data analysis of a binary-state on-demand system 

Consider the basic two component on-demand series system in Example 1. The system level 

failure probability (or the probability of failure detection by sensor #1), 1
Sp , is defined in terms 

of the failure probabilities of components 1 and 2, (p1 and p2 respectively). In this case, the set of 

component failure probabilities, p, is {p1,p2}, noting that n = 2. 

Test 2. A series of 10 demands where 10 system level failures were detected by sensor #1 (sensor 

#2 was not involved). 

Firstly, assuming uniform prior distributions for the component failure probabilities and using 

the formalism in the Hamada et al approach, one can then summarize prior information in 
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through equations (14) and (15). 

 α1 = β1 = 1  and α2 = β2 = 1 ---(14)(15) 

There is no component level evidence, and accordingly k = r = 0 for each component. The 

system level evidence can then be expressed as 1
Sk  = 10 and 1

Sr  = 10. There is only one set of 

higher level data (the system level), and therefore m = 1. Substitution into equation (13)  yields: 

 ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1 1 1

2 1 1
1 1

1
1 1 1 2 1 1

1 1 1 2
10 0

1 1
|

' 1 ' ' 1 ' ' '

S S S
j j j j j

S S S
j j j j j

k r kk r k S S
j j

j

k r kk r k S S
j j

j

p p p p
E

p p p p dp dp

α β

α β
π

−+ − + − −

=

−+ − + − −

=

 − −  
=

  − −    

∏

∏∫ ∫
p  

  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }
10 10 101 0 1 1 0 0 1 1 0 1 1 0 0 1

1 1 2 2 1 1
1 1 10 10 101 0 1 1 0 0 1 1 0 1 1 0 0 1

1 1 2 2 1 1 1 2
0 0

1 1 1

' 1 ' ' 1 ' ' 1 ' ' '

S S

S S

p p p p p p

p p p p p p dp dp

−+ − + − − + − + − −

−+ − + − − + − + − −

− − −
=

− − −∫ ∫
 

 { }( ) ( )

( )

10
1 2 1 2

1 1 2 1 1 1 1 10
1 2 1 2 1 2

0 0

, | 10, 10
' ' ' ' ' '

S S p p p p
p p k r

p p p p dp dp
π

+ − ×
= = =

+ − ×∫ ∫
 ---(16) 

The corresponding joint posterior distribution of p1 and p2 is illustrated below in Figure 4. It can 

be seen that from the data, the failure probabilities of p1 and p2 are likely to be high (i.e. close to 

1). This makes ‘conceptual sense’, as it is known the system has a high failure probability and 

systemic failure occurs whenever component 1 or 2 fails. 
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Figure 4: Joint posterior distribution of p1 and p2 - Test 2 

(Returning to) Test 1.  A series of 10 demands where 10 failures were detected at the system 

level and 1 failure was detected by sensor #2. 

Data suggesting that component 1 has a low failure probability (1 failure from 10 demands) was 

gathered from sensor #2 concurrently with the systemic level data used in Test 2. The sensor 

level evidence can then be expressed as 1
Sk  = 10, 2

Sk  = 1 and 1 2
S Sr r=  = 10. This suggests 

‘conceptually’ that component 2 must have a very high failure probability to generate the high 

system level failure probability given that the data from sensor #2 suggests that component 1 is 

very reliable. The new posterior distribution is defined in equation (17). 

 

( ) ( )

( ) ( )

9 10
1 1 1 1 1 2 1 2

1 1 2 1 1 9 102 2 1 1 1 2 1 2 1 2
0 0

10, 10 1
,

1, 10 ' 1 ' ' ' ' ' ' '

S S

S S

k r p p p p p p
p p

k r p p p p p p dp dp
π

  = = − + − ×   =  = =    − + − ×∫ ∫
  ---(17) 

The new joint posterior distribution of p1 and p2 is illustrated in Figure 5. The graph clearly 

suggests that p1 is small (i.e. the failure probability of component 1 is low), and that p2 is large 
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(i.e. the failure probability of component 2 is high). 

    
 

Figure 5: Joint posterior distribution of p1 and p2 -Test 1 
 
  

2.2.2. Multi-state On-demand Systems 

Multi-state systems are those where components exist in states that are classified by order of 

severity or degradation ranging from ‘functional’ to ‘failed’. Many systems exist where it is 

important to delineate between these states. Barlow and Wu [8] discuss the generalization of 

binary-state systems to multi-state systems. Graves et al [9] develop a fully Bayesian approach 

for incorporating multiple higher level non-overlapping data sets which is a generalization of 

their work in [6]. 

Each state of a multi-state system or component is represented by an integer from 0 to (z – 1), 

where z is the total number of possible states. The state ‘0’ denotes total functionality while the 

state ‘z – 1’ denotes total failure. Graves et al illustrate this in [9] by tabulating the possible states 

of five components in a system where there are four possible states in an example system. 
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 Component 
1 2 3 4 5 

Po
ss

ib
le

 
St

at
es

 0 0 0 0 0 
- 1 - 1 - 
2 2 - 2 - 
3 3 3 3 3 

Table 3: An example of possible states of components 1 to 5 of a given multi-state system 

It can be seen in Table 3 that there are z = 4 possible states, but only some of the components can 

exist at all of them. The state ‘3’ (which is z – 1) denotes complete failure, and the state ‘0’ 

denotes complete functionality. Components 2 and 4 have a total of 4 possible states (including 

two degraded states that exist between complete functionality and complete failure), while 

components 3 and 5 have a total of 2 possible states. 

The state variable for the jth component is denoted xj, and defines the state at which the variable 

exists. Equation (18) is a multi-state generalisation of the binary-state state variable equivalent 

introduced in equation (11). 

 

th

th

th

1 if the  component has completely failed                  
                             ...

1 if the  component is in the first degraded state

0 if the  component is completely functional 

j

z j

x
j

j

−

=

                  









 
---(18) 

The states of all components in an entire system are defined by the state vector in equation (19). 
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 { }1 2 3, , ,..., ,...,j nx x x x x=x  … for a system with n components ---(19) 

Multi-state systems can be equally well represented graphically as binary-state systems through 

many methodologies including reliability block diagrams, fault trees and binary decision 

diagrams. These model representations are generally predicated on the rules that are represented 

graphically in Figure 6 for various gates associated with fault tree analysis. 

 
 
 

Figure 6: Multi-state gate state variable relationships 

These basic rules form the core of multi-state system analysis and multiple tools exist for this 

purpose. Graves et al used the GROMIT algorithm [10] that generated mutually exclusive cut 

sets of component states for multi-state systems. This approach is illustrated in Example 4.  

 ● 

1 2 n … 

1 2 n … 

+ 

1 2 n … 

k/n 

State variable of AND gate  
minimum state variable of  

state vector elements, {x1 , x2 , … , xn} 

State variable of OR gate  
maximum state variable of  

state vector elements, {x1 , x2 , … , xn} 

State variable of K OUT OF N gate  
kth largest state variable of  

state vector elements, {x1 , x2 , … , xn} 
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Example 4: Development of cut-sets for multi-state systems 

Consider the basic three component system illustrated in Figure 7, which includes a ‘2 out of 3’ 

gate to define the state of the top event. The allowable states of the three components are also 

listed in a table that is included in Figure 7. 

 

Figure 7: Basic three component system with a ‘2 out of 3’ gate defining the top event 

The following mutually exclusive cut sets exist that define the top event: 

xTE = 0 … {x1=0 , x2=0};  {x1=0 , x2=1 , x3=0} ; {x1=0 , x2=2 , x3=0} ; {x1=0 , x2=3 , 

x3=0} ;  {x1=2 , x2=0 , x3=0} ; {x1=3 , x2=0 , x3=0} ---(20) 

xTE = 1 … {x1=0 , x2=1 , x3=3} ; {x1=2 , x2=1 , x3=0} ; {x1=3 , x2=1 , x3=0} ---(21) 

xTE = 2 … {x1=0 , x2=2 , x3=3} ; {x1=2 , x2=0 , x3=3} ; {x1=2 , x2=1 , x3=3} ; {x1=2 , 

x2=2} ; {x1=3 , x2=2 , x3=0} ---(22) 

xTE = 3 … {x1=0 , x2=3 , x3=3} ; {x1=2 , x2=3 , x3=3} ; {x1=3 , x2=0 , x3=3} ;  

{x1=3 , x2=1 , x3=3} ; {x1=3 , x2=2 , x3=3} ; {x1=3 , x2=3} ---(23) 

1 2 3 

2/3 

Allowable  
Component 

States 
1 2 3 
0 0 0 
- 1 - 
2 2 - 
3 3 3 

 

Top Event 

State variable of  
2 OUT OF 3 gate  

2nd largest state variable of  
state vector, {x1 , x2 , x3} 
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Each cut set is simply a particular state vector or set of state vectors. Each state vector above 

implies a certain top-event state. For example, the state vector {x1=0 , x2=1 , x3=3} implies  

xTE = 1. This is formally written as 

 { }1 2 30, 1, 3 1TEx x x x= = = = → =x  ---(24) 

Multi-state system analysis is not necessarily bound to the rules in Figure 6. For example, it may 

be desirable for the state of a gate to be described as the sum of the states of its subordinate 

components. In this instance, a basic two component system where the components exist in 

degraded states 1 and 2 respectively may imply that the system is considered to be in state 3 (the 

sum of states 1 and 2). To accommodate this, additional underlying rules and can be developed 

and mutually exclusive cut sets can be determined for each gate or system state. 

The probability of each particular state vector occurring is: 

 ( ) ( ) 1
(0) ( )

1 1
Pr |   where 1j

n zx x
j j j

j x
p p p

−

= =
= = = −∏ ∑px X  ---(25) 

where the probability of the jth component being in the xth state is ( )x
jp , the set of (z - 1) 

state probabilities for the jth component is (1) (2) (3) ( 1){ , , ,..., }z
j j j j jp p p p −=p  , the set of all n 

state probability sets for the system is 1 2 3{ , , ,..., ,..., }j n=p p p p p p     , and n is the number of 

components in the system. 
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The probability of a particular higher level state is given as: 

 ( ) ( )( ) Pr Pr   for all 
SS x S S Sp X x x= = = = →∑ X x x

   

  
1 1

( ) (0) ( )

0 1 1
  where 1  for all 

z n z
x x S

j j j
x j x

p p p x
− −

= = =
= = − →∑ ∏ ∑ x  ---(26) 

The Bayesian methodology developed by Graves et al in [9] is a generalization of their previous 

methodology (that will be distinguished throughout this dissertation by being referred to as the 

Hamada et al method) in [6]. The Hamada et al method involves beta prior distributions of 

component failure probability and a likelihood function based on the binomial distribution 

(noting that this makes the prior distribution conjugate). The Graves et al method involves 

Dirichlet prior distributions of component state probabilities and a likelihood function based on 

the multinomial distribution (nothing that this also makes the Dirichlet prior distribution a 

conjugate). The Dirichlet distribution (which is multi-variate) is defined in equation (27). 

 ( )
( )

( )
( )

( )
1(0) (1) ( ) (0) (1) ( ) ( )0

( ) 0

0

, ,..., | , ,...,
x

K
x

K
K K xx

K
x x

x

f p p p p
α

α
α α α

α

−=

=

=

 Γ    =  
 Γ

∑
∏

∏
 ---(27) 

where (0) (1) ( ){ , ,..., }Kp p p  are a set of non-negative random variables that satisfy  

(0) (1) ( )... 1Kp p p+ + + ≤  and (0) (1) ( ){ , ,..., }Kα α α  are a set of non-negative parameters. 

In the Graves et al method, the random variables equate to component state probabilities. 

However, the sum of all state probabilities must sum to 1. This effectively removes one random 
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variable (as defining K – 1 random variables defines the remaining one if it must always be the 

case that it ‘completes’ the sum to 1). Accordingly, the Dirichlet distribution used in the Graves 

et al method is a particular case of the Dirichlet distribution in equation (27) where the number 

of random variables, K, becomes z – 1 and (0) (1) (2) ( 1)1 ( ... )zp p p p −= − + + + . It can be observed 

that by definition, the Beta distribution a particular case of the Dirichlet distribution described 

above where z = 2. The Graves et al method is then written formally as: 

 ( ) ( ) ( )
( ) ( )

0
1

0

|
|

| ' ' '
L E

E
L E d

π
π

π
∀

=
∫
p

p p
p

p p p  ---(28) 

 prior distribution: ( ) ( )0 0
1

n

j
j

π π
=

= ∏p p  

  
( )

( )
(0)

( )

1
( )

11 11( ) ( )0
1

( )1 1 1

0

1
x j

j

z
x

jn z z
x xx

j jz
xj x x

j
x

p p
α

α
α

α

−

−− −−=
−

= = =

=

  Γ      = −     Γ 
 

∑
∏ ∏ ∑

∏
  

 ( )
(0)

( ) 11 11( ) ( )

1 1 1
1

x j
jn z z

x x
j j

j x x
p p

α
α

−− −−

= = =

    ∝ −      
∏ ∏ ∑  

likelihood function: ( ) ( )
( )

( )
( )1

( )
1 0

| !
!

S x
ikS xm z iS

i S x
i x i

p
L E r

k

−

= =

 
 =  
 
 

∏ ∏p ( )
( )1

( )

1 0

S x
im z kS x

i
i x

p
−

= =

 ∝  
 

∏ ∏  

where the prior Dirichlet distributions of the jth component state probabilities have 

parameters { }(0) (1) (2) (3) ( 1), , , ,..., z
j j j j j jα α α α α −=α  and evidence is input as shown in Table 4. 
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System State No S1 S2 … Sm 

Number of observed system states 

0 0
1
Sk ( )  0

2
Sk ( )  … 0S

mk ( )  

1 1
1
Sk ( )

 
1

2
Sk ( )

 … 1S
mk ( )

 
… … … ... … 
z-1 1

1
S zk −( )

 
1

2
S zk −( )

 … 1S z
mk −( )

 

Table 4: Expression of system level evidence for the Hamada et al method 

For the Graves et al method, it can be seen that all evidence gathered at each sensor must be of 

the form of (0) (2) (3) ( 1){ , , ,..., }S S S S S zk k k k −=k observed states. An example of an application of 

the method of Graves et al for a basic system is illustrated in Example 5. 

Example 5: Non-overlapping data analysis of a multi-state on-demand system 

Consider the basic two component, multi-state on-demand series system in Figure 8. The 

system level state probabilities (at the sensor #1 level), (0) (1) (2) (3)
1 1 1 1{ , , , }S S S Sp p p p  are defined in 

terms of the state probabilities of components 1 and 2, (0) (1) (2) (3)
1 1 1 1 1{ , , , }p p p p=p  and 

(0) (1) (2) (3)
2 2 2 2 2{ , , , }p p p p=p  respectively. 

 

Figure 8: Multi-state two component series system 

System (Sensor #1) 

1 

Sensor  #2 
2 

Allowable 
Component States 

1 2 
0 0 
- 1 
2 2 
3 3 
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The mutually exclusive cut sets for each state detected by sensor #1 are: 

 1 0Sx =  …{x1=0 , x2=0} ---(29) 

 1 1Sx =  …{x1=0 , x2=1} ---(30) 

1 2Sx =  …{x1=0 , x2=2} ; {x1=2 , x2=0} ; {x1=2 , x2=1} ; {x1=2 , x2=2} ---(31) 

 1 3Sx = …{x1=0 , x2=3} ; {x1=2 , x2=3} ; {x1=3} ---(32) 

Similarly for each state detected by sensor #2: 

 2 0Sx =  …{x1=0} ---(33) 

 2 2Sx =  …{x1=2} ---(34) 

 2 3Sx = …{x1=3} ---(35) 

The system was subjected to a test of consisting of 10 separate demands with the gathered 

evidence shown in equations (36), (37) and (38). 

 Sensor #1:  (0) (1) (2) (3)
1 1 1 1 1{ , , , } {2,1,4,3}S S S S Sk k k k= =k  ---(36) 

 Sensor #2:  (0) (1) (2) (3)
2 2 2 2 2{ , , , } {3,0,4,3}S S S S Sk k k k= =k  ---(37) 

 Evidence,  1 2{ , , }S S SE = k k r 

  ---(38) 

The posterior distribution of the component state probabilities was evaluated using Markov-
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Chain Monte Carlo (MCMC) simulation. The resultant marginal distributions of each state 

probability are illustrated in Figure 9.  

 

Figure 9: Marginal posterior distributions of each component state probability of system 

components in Figure 8 (using the Graves et al non-overlapping method). 

As with the Hamada et al method for binary-state on-demand systems, the Graves et al method is 

the most computationally efficient method of conducting Bayesian analysis of non-overlapping 

data sets for multi-state on-demand systems. This dissertation includes a discussion on the 

differences between overlapping and non-overlapping data, and will later outline a methodology 

that can incorporate both overlapping and non-overlapping data. 

2.3. AGGREGATION ERROR 

Using higher level data to form posterior distributions of higher level events is aggregate 

analysis. The term ‘aggregate’ refers to the fact that system level reliability characteristics are 
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resultant of many substituent component failure probabilities and the analysis considers the 

combined effects of these characteristics holistically. Conversely, using lower level data to form 

posterior distributions of higher level reliability parameters is disaggregate analysis (i.e. 

component failure data analysed to generate system reliability parameter posterior distributions). 

Any difference between the two forms of analysis is called aggregation error. Aggregation error 

implies that the system is not correctly understood and therefore the relationships between higher 

level and component failure probabilities are misrepresented. It is important to note that even if 

the system is represented incorrectly, Bayesian analysis will improve higher level posterior 

distribution (but not those of the component parameters) [11]. Aggregation error has been 

studied in the field of reliability by Mosleh and Bier [12] and further developed by Azaiez and 

Bier [13] with Bayesian reliability estimates. 

2.4. SENSOR PLACEMENT OPTIMISATION 

Literature whose subject is ‘sensor placement optimisation’ by and large refers to sensors being 

placed at various locations within a physical process or mechanism as opposed to a system. 

These sensors are intended to detect faults or failure mechanisms as opposed to improving 

understanding of component and system reliability. In the field of structural health monitoring 

(and primarily aimed with identifying damage in the form of material and geometric changes of 

physical structures such as bridges) sensor optimisation is used to measure structural fidelity. 

[14] Sensors are also placed in physical networks. Watson, Greenberg and Hart discuss the 

problem of sensor optimisation to provide protection from terrorist attacks. [15] Dhillon and 

Chakrabarty discuss sensor placement optimisation for wireless networks. [16] 
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There is significant literature on system sensor placement that focuses on improving diagnostics. 

The point of difference of the sensor placement methodology developed in this dissertation is 

that information of the unknowns of interest (the component reliability characteristics, or state of 

knowledge) is the metric of optimisation. 

2.5. SUMMARY 

The majority of current reliability analysis methodologies that deal with data sets drawn from 

various levels, locations or sensors within a system only consider said sets as if they are non-

overlapping. What this means is that (for example) if data was gathered simultaneously at the 

system and sub-system levels, traditional analysis limits inference based on an assumption that 

the data sets were gathered from distinctly separate test regimes. Chapter 2 has outlined many of 

the current methodologies that deal with non-overlapping data. 

Overlapping data sets contain inherent dependencies that when analysed correctly, yield 

information that would otherwise be misinterpreted if they were otherwise analysed. In a simple 

example, system level data is contextualised by sub-system level data gathered at the same time, 

and understanding each in conjunction with the other infers more information about all relevant 

components. Methodologies are developed in the following chapters which allow overlapping 

data reliability analysis of a system to occur that illustrate its effect. 
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Chapter 3: Likelihood function of overlapping data of binary-state on-

demand systems 

3.1. INTRODUCTION 

Graves et al. [7] proposed a method that incorporates overlapping data for binary-state on-

demand systems. The methodology is based on a four step algorithm which relies on Boolean 

algebra and disjoint cut-set generation. As it considers each demand in isolation (i.e. sensor 

states for each demand must be known), the methodology cannot incorporate data that 

summarizes multiple demands on the system through a tallied number of states that each sensor 

detects. For the purpose of delineation, this methodology will be referred to as the Overlapping 

Graves Method. The methodology developed in this chapter allows overlapping data that is 

based on multiple demands of a binary-state on-demand system to be analysed in scenarios 

where the exact configuration of each sensor information vector (the states that each sensor 

detects) is not known for every specific demand. 

3.2. LIKELIHOOD FUNCTION OF BINARY-STATE ON-DEMAND SYSTEMS 

To develop the overlapping data likelihood function, permutations of possible instances of 

component failures that imply the observed evidence (and the probability of each permutation) 

need to be developed. The probability (or likelihood) of each permutation can then be substituted 

into equation (26). This is achieved in three steps listed in subsequent sub-headings. 
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3.2.1. Step 1: State Vector Analysis 

All possible permutations of state variables for each component need to be analysed. Recall that 

the state variable for the jth component of a binary-state on-demand system, xj, is defined as: 

th

th

0 if the  component is functional

1 if the  component has failed    
j

j
x

j

= 


 ---(11) 

The state of all components in the entire system can be defined by the state vector: 

{ }1 2 3, , ,..., ,...,j nx x x x x=x  … for a system with n components ---(39) 

As there are multiple possible state vectors, the lth state vector (and its constituent component 

state variables) is written as 

( ) ( ) ( ) ( ) ( ){ }1 2 3, , ,..., ,...,l j nl l l ll
x x x x x=x  ---(40) 

3.2.2. Step 2: Structure Functions 

Structure functions calculate the state of the system at sensor locations (i.e. at sub-system and 

system levels) based on the state vector. The structure function equates to 0 if the relevant 

sensor’s (sub-) system is functional and 1 if it has failed. 3 

                                                 
3 Many structure functions are used where ‘1’ denotes functionality and ‘0’ denotes failure. For ease of future 
calculation, the structure functions used in this dissertation are effectively reversed so that they generate system state 
variables. 
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( ) { }( )1 2 3
0 if the (sub-) system is functional

, , ,... ,...,
1 if the (sub-) system has failed    

S S
j nx x x x xφ φ


= = 


x

 
---(41) 

As each component is binary-state, there will be 2n possible permutations and hence 2n possible 

state vectors. The probability of each state vector occurring can be calculated based on 

individual component failure probabilities, pj. 

( ) ( ) ( )( )1

1
Pr | 1j j

n x x
j j

j
p p

−

=

 = −  
∏= pX x

  ---(42) 

3.2.3. Step 3: (Sub-) System Failure Combinations 

The third step is to develop sets of combinations of r state vectors (recalling that r refers to the 

number of systemic demands in the data set) such that each combination generates the same 

number of detected failures as observed in the evidence set, 1 2{ , ,..., , }S S S
mE k k k r= . It is important 

to note that the evidence set involves aggregates of failure detections for each sensor after r 

demands. Multiple evidence sets should not be combined into one aggregate set, as this 

represents a loss of information. For example, the evidence sets 1 1 1 2 1 1 1{( ) , ( ) ,..., ( ) , ( ) }S S S
mE k k k r=  

and 2 1 2 2 2 2 2{( ) , ( ) ,..., ( ) , ( ) }S S S
mE k k k r=  should be separately analysed, and not combined to 

evidence set 1 2 1 1 1 2 2 1 2 2 1 2 1 2{( ) ( ) , ( ) ( ) ,..., ( ) ( ) , ( ) ( ) }S S S S S S
m mE k k k k k k r r+ = + + + + . 

 { }1 2 2, ,..., ,..., nlv v v v=v  ---(43) 

where vl is the number of occurrences of the lth state vector, lx . 
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The ath combination is defined by ( ) ( ) ( ) ( ){ }1 2 2, ,..., ,..., na la a a a
v v v v=v  ---(44) 

 where (vl)a is the number of occurrences of the lth
 state vector, lx , in the ath combination.  

The probability of occurrence of the ath combination of state vectors, av , given a set of lower 

level component failure probabilities is defined in equation (45). 

( )Pr |a a= pv V ( ) ( ) ( ) ( ) ( ) ( ){ }( )1 1 2 2Pr ,..., ,..., |n nl la a a a a a
v V v V v V= = = = p

 

 
(which is simply a specific instance of the binomial distribution) 

 
( )( )( )

( )
2

1

Pr |
!

!

l an
v

l l

l l a

r
v=

=
= ∏

pX x



    … substituting (42) yields:  

 
( ) ( )( ) ( ) ( )

( )2 1

1 1

1! 1
!

n l a
j jl l

v
n x x

j j
l jl a

r p p
v

 − 

= =

   = −  
   

∏ ∏   ---(45) 

Since each state vector is linked with a specific demand, the total number of state vectors in the 

combination must sum to r: 

i.e. 
2

1

n

l
l

v r
=

=∑  ---(46) 



 

 49 
 

Each different combination implies a different number of failures detected by each sensor. The 

number of failures detected by the ith sensor for the ath combination of state vectors, av , is 

defined in equation (47). 

 ( ) ( )
2

1

n
S S
i l i la

l
k v φ

=
= ∑ x  .... where ( ) ( ) ( ) ( ){ }1 2 2, ,..., ,..., na la a a a

v v v v=v  ---(47) 

The matrix vE contains all combinations of state vectors that imply the evidence. If the ath 

combination of state vectors, av , implies the evidence set 1 2{ , ,..., , }S S S
mE k k k r=  then it is an 

element of vE. For this to occur, the number of failures detected by each sensor implied by av  

must equal the number of detected failures in the evidence set, E. 

i.e. a E∈ vv  iff ( ) ( ) ( ) ( )
2

1
   ...   1,2,3,...,

n

a

S S S
i i l i laE l

k k v i mφ
=

= = ∀ ∈∑
v

x


  ---(48) 

where ( )S
i Ek  is the number of failures detected by the ith sensor in the evidence set E, and 

( )
a

S
ik v  is the number of implied failures detected by the ith sensor for the ath combination 

of state vectors, av . 

The likelihood function is the probability of observing the evidence, E, for a given instance of p. 

The likelihood function is based on ascertaining the combinations of state vectors that imply the 

evidence, and then evaluating the probability of each combination is outlined in equation (49). 
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 ( ) ( )Pr | Pr | ... for all that imply the evidenceE = ∑p pcombination of  state vectors  

 ( )Pr |
a E

a a
∀ ∈

= =∑
v

p
v

V v




    … substituting (45) yields: 

 
( ) ( )( ) ( ) ( )

( )2 1

1 1

1! 1
!

n l a
j jl l

a E

v
n x x

j j
l jl a

r p p
v

 − 

∀ ∈ = =

     = −       
∑ ∏ ∏

vv
 ---(49) 

Therefore, for a complex system with single occurrences of each component: 

 ( ) ( )
( ) ( ) ( )

( )2 1

1 1

1| 1
!

n l a
jj ll

a E

v
n xx

j j
l jl a

L E p p
v

 − 

∀ ∈ = =

     ∝ −       
∑ ∏ ∏

v
p

v
 ---(50) 

3.3. COMPARISON WITH NON-OVERLAPPING DATA METHODS – BINARY-

STATE ON-DEMAND SYSTEMS 

The Hamada et al method cannot incorporate information inherent in overlapping data sets as 

shown in Example 6, which compares to the non-overlapping data analysis in Example 3.  

 Example 6: Overlapping data analysis of binary-state on-demand systems 

Consider the basic two component series system examined in Example 3 that was subjected to 

the first test regime:  

(Recalling) Test 1.  A series of 10 demands where 10 failures were detected at the system level 

and 1 failure was detected by sensor #2.  
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The structure functions for the system at each sensor location are: 

 ( ) { }( ) ( )2
1 1 1 2

1
, 1 1S S

j
j

x x xφ φ
=

= = − −∏x  ---(51) 

 ( ) { }( )2 2 1 2 1,S S x x xφ φ= =x   ---(52) 

Since there are two components (i.e. n = 2), the number of possible state vectors is 2n = 22 = 4. 

The state vectors are listed in Table 5, along with the states detected by sensors that they imply 

and their inherent probabilities. 

State 
Vector # 

l 

Component 
States 

State 
Vector 

lx  

States detected by 
sensors Probability 

( )Pr |l= px X  
(x1)l (x2)l ( )1

S
lφ x  ( )2

S
lφ x  

1 0 0 {0,0} 0 0 (1 - p1)(1 - p2) 
2 1 0 {1,0} 1 1 p1(1 - p2) 
3 0 1 {0,1} 1 0 (1 - p1)p2 
4 1 1 {1,1} 1 1 p1p2 

Table 5: State Vectors of system in Figure 1. 

Since there are 10 demands (i.e. r = 10), there are 286 possible state vector combinations, v , as 

each demand will invoke one of the 4 possible state vectors. A truncated list of combinations is 

listed in Table 6, along with the implied states detected by all sensors. There are only two 

possible combinations that imply the evidence. 
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State Vector 
Combination 

No 
a 

State Vector Combination, av  Implied Evidence 
1 if a E∈ vv ; 0 

otherwise 

(no. of lth state vectors) 

(v1)a (v2)a (v3)a (v4)a 
Failures 

detected by 
sensor #1  

Failures 
detected by 
sensor #2  

1 1 0 0 0 0 0 0 
2 9 1 0 0 1 1 0 

… 
65 0 1 9 0 10 1 1 

… 
121 0 0 9 1 10 1 1 

… 
285 0 0 1 9 10 9 0 
286 0 0 0 10 10 10 0 

Table 6: Possible state vector combinations of system in Figure 1. 

The normalized likelihood function given by equation (50) is substituted into equation (28) with 

uniform prior distributions to generate the posterior distribution plotted in Figure 10, along with 

the posterior distribution derived by the Hamada et al method. The normalized percentage error 

of the Hamada et al method is illustrated in Figure 11. 

 

Figure 10: Joint posterior distributions of p1 and p2 from Test 1 
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Figure 11: Percentage error in non-overlapping data likelihood function  

(maximum normalised error = 3.55 %) 

The overlapping posterior distribution illustrated in Figure 10 can fortuitously be replicated in 

this instance by the Overlapping Graves et al. Method. The evidence (10 demands, 10 systemic 

failures, 1 failure detected by sensor #2) is equivalent to one demand where the system fails and 

sensor #2 detects failure, and 9 demands where the system fails and sensor #2 does not detect 

failure. As failure detection for each demand is thus known, the Overlapping Graves et al. 

Method can be applied. 

The two posterior distributions in Figure 10 are approximately equal, with the normalized 

Hamada et al (non-overlapping) posterior distribution differing by less than 3.55 % from the 

normalised overlapping data posterior distribution. This good approximation is due to the nature 

of the evidence, E. The inference of the system level data contains a relatively small 

‘observational’ dependence on the inference of the sensor #2 data. Example 7 illustrates the 
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potential effect for an evidence set that contains a significant dependence between the data 

levels. 

Example 7: Non-overlapping and overlapping data analysis of an on-demand system. 

Consider the basic two component series system examined in Example 3 and  Example 6 

subjected to a third test regime:  

Test 3. A series of 10 demands where 5 system level failures were detected by sensor #1 and 5 

failures were detected by sensor #2. 

The evidence can be interpreted in two separate ways by considering it to be either overlapping 

or non-overlapping: 

Overlapping data. The implication of evidence set E is illustrated in Figure 12. In effect, 

component 1 has been observed to fail 5 times on 10 demands and component 2 has been 

observed to fail 0 times on 5 demands. 

 

Figure 12: Overlapping data Evidence 

Sensor #2 

System (Sensor #1) 

1 

Sensor #2 
2 

System (Sensor #1) 
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2 
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both component 1 
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systemic failure. 
(failure of 
component 2 
unknown) 
 

5 instances of: 
both system, 
component 1 and 
2 functionality (or 
success) 
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Non-overlapping data. The implication of evidence set E is illustrated in Figure 13. In effect, 

component 1 has been observed to fail 5 times on 10 demands whilst the system has separately 

been observed to fail another 5 times on 10 demands. This introduces additional uncertainty on 

both components, and will imply that component 2 has a higher likelihood of having a high 

failure probability. 

 

Figure 13: Non-overlapping data Evidence 

The normalized likelihood function given by equation (50) is substituted into equation (28) with 

uniform prior distributions to generate a posterior distribution plotted in Figure 14, along with the 

posterior distribution derived by the Hamada et al method. The normalised error associated with 

treating overlapping data as non-overlapping (i.e. the difference between the two graphs in 

Figure 14) are illustrated in Figure 15. 
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Figure 14: Joint posterior distributions of p1 and p2 from test 3 evidence  

The graph generated by the non-overlapping data analysis in the right of Figure 14 is more 

‘diffuse’ or less concentrated on a single set. This means that the overlapping data posterior 

distribution is significantly less uncertain, and hence contains more information. 

 

Figure 15: Percentage error in non-overlapping data likelihood function  

(maximum error = 59.97 %) 

-20 -10 

-10 

0 
0 

0 

0 

10 10 

10 

10 

10 20 

40 
40 

40 

50 

50 

0 0.2 0.4 0.6 0.8 1 
0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

20 30 

20 30 

30 

20 

 p2 

 p
1 

Non-overlapping data Analysis 
     (Hamada et al method) 

 
               
 

0 
0.5 

1 

0 
0.5 

 p2 

1 

5 

10 

 p1 

15 
Overlapping data Analysis 

 

0 
0.5 

1 

0 
0.5 

 p2 

1 

5 

10 

 p1 

π 1
(p

 |E
) 

15 



 

 57 
 

Treating overlapping data as non-overlapping can also incorrectly imply non-existent 

information. Higher level data may become effectively redundant in the context of lower level 

data, which may mask information about some components. Treating the data as non-

overlapping may incorrectly imply information about these components in such instances. 

 Example 8: Non-overlapping and overlapping data analysis of a binary-state on-demand 

system. 

Consider the basic two component series system examined in previous examples that is subjected 

to a fourth test regime:  

Test 4. A series of 10 demands where 10 system level failures were detected by sensor #1 and 10 

failures were detected by sensor #2. 

The evidence can be interpreted in two separate ways by considering it to be either overlapping 

or non-overlapping: 

Overlapping data. The implication of evidence set E is illustrated in Figure 16. In effect, 

component 1 has been observed to fail 10 times on 10 demands (as every time sensor #2 detects 

failure, sensor #1 detects failure) and component 2 has not been observed at all. 
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Figure 16: Overlapping data Evidence 

Non-overlapping data. The implication of evidence set E is illustrated in Figure 17. In effect, 

component 1 has been observed to fail 10 times on 10 demands, whilst the system has separately 

been observed to fail 10 times on 10 demands.  

 

Figure 17: Non-overlapping data Evidence 

The normalized likelihood function given by equation (50) is substituted into equation (28) with 

uniform prior distributions to generate a posterior distribution plotted in Figure 18, along with the 

posterior distribution derived by the Hamada et al method. The normalized percentage error of 

the Hamada et al method is illustrated in Figure 19. 
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Figure 18: Joint posterior distributions of p1 and p2 from test 4 evidence  

 

Figure 19: Percentage error in non-overlapping data likelihood function  

(maximum error = 24.99 %) 

Since all demands generated failures that were detected at the system and sensor # 2 levels, the 

behaviour of component 2 is effectively hidden. As it is a series system, the success or failure of 

component 2 does not alter the data/evidence set. Accordingly, there is no information about 

component 2, and the joint likelihood function has to be uniform with respect to the failure 
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probability of component 2. The non-overlapping posterior distribution in Figure 18 suggests that 

a higher failure probability in component 2 is more likely. This information is has no base, and 

represents another inaccuracy when overlapping data is analysed as if it were non-overlapping. 

When there is only one data set (as in data is gathered from only one sensor), the data cannot be 

considered to be overlapping or non-overlapping. In this case, the Hamada et al and overlapping 

data methods generate identical likelihood functions. 

Example 9: Non-overlapping and overlapping data analysis of a binary-state on-demand 

system. 

Consider the basic two component series system examined in previous examples subjected to the 

second test regime:  

(Recalling) Test 2. A series of 10 demands where 10 system level failures were detected by 

sensor #1 (sensor #2 was not involved).  

The implication of evidence set E is illustrated in Figure 20. Whether the data is treated as 

overlapping or non-overlapping as it is irrelevant in the case of only one data set. 



 

 61 
 

 

Figure 20: Data Inference 

The normalized likelihood function given by equation (50) is plotted in Figure 21 along with the 

likelihood function derived by the Hamada et al method. 

 

Figure 21: Normalized likelihood functions of p1 and p2 from test 1 evidence (identical) 

The normalized percentage discrepancy between the two likelihood functions is due only to 

calculation errors that do not exceed 2.22 x 10-13 %. 
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3.4. MULTIPLE INSTANCES OF IDENTICAL COMPONENTS  

Apostolakis and Kaplan outline the nature of state of knowledge dependence through multiple 

instances of identical components. [17] The underlying failure probability of each identical 

component (i.e. components of the same component type) is the same, and modifies the 

likelihood function accordingly. The unknown of interest, p, then becomes the set of component 

type failure probabilities where n is the number of component types. The total number of 

components becomes n' (and therefore n ≤ n'). The component types are numbered 1, 2, 3, … , j , 

… , n, and the components are numbered 1, 2, 3, … , b , … , n'. The component type of the bth 

component is denoted jb. The likelihood function for a binary-state on-demand system is 

modified from equation (50) when there are multiple occurrences of the same component to 

equation (53). 

 ( ) ( ) ( )( ) ( ) ( ) ( )'2 ' 1

1 1

1| 1
!

n l a
b bl l

b b
a E

vn x x
j j

l bl a

L E p p
v

 − 

∀ ∈ = =

     ∝ −       
∑ ∏ ∏

v
p

v
 ---(53) 

where the unknown of interest, p = {p1 , p2 , … , pj , … , pn} is the set of n lower level 

component type failure probabilities, pjb is the failure probability of the bth component 

(which is the failure probability of jb
th component type), av  is the ath combination of r state 

vectors (each state vector comprises of n' component states), (vl)a is the number of 

occurrences of the lth state vector in av  and (xb)l is the state variable of the bth component 

in the lth state vector. 
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Example 10: Overlapping data analysis of a binary-state on-demand system with multiple 

instances of the same component 

Consider a basic two component series system similar to that examined in previous examples. It 

is made up of two identical components of type A, and is illustrated in Figure 22. 

 

Figure 22: Basic two identical component series system 

It is subjected to the following test: 

Test 5. A series of 10 demands where 3 system level failures were detected by sensor #1 and no 

failures were detected by sensor #2. 

As the data is overlapping, the implication of evidence set E is illustrated in Figure 23. In effect, 

component 1 has been observed to fail 0 times on 10 demands, and component 2 has been 

observed to fail 3 times on 10 demands. 
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Figure 23: Overlapping data Evidence 

As components 1 and 2 are identical (i.e. the same component type), the evidence is equivalent to 

a single component of type 1 failing 3 times on 20 demands. When considering the equivalent 

evidence set E = {k = 3 ; r = 20}, the likelihood function is: 

 { }( ) ( ) ( )173
1 1 1 1 13; 20 | 1 1r kkL E k r p p p p p−= = = = − = −  ---(54) 

The normalized likelihood function given by equation (53) is plotted in Figure 24, along with the 

likelihood function derived in equation (54). The normalized percentage discrepancy between the 

two methods below is due to computational errors and does not exceed 3.33 x 10-14 %. 
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Figure 24: Identical Normalized likelihood functions of p1 from test 5 evidence 

3.5. LIMITATIONS ON PREVIOUS METHODOLOGIES 

As discussed, the majority of existing methodologies can only deal with non-overlapping data. 

The only other methodology that deals with overlapping data, the Overlapping Graves et al. 

Method, can only deal with evidence where the sensor data is precisely known for each demand 

and is not aggregated. The method proposed in this chapter can deal with not only this form of 

evidence, but evidence in the form of multiple demands where aggregate numbers of failures are 

known for each sensor.   

Example 11: Limitation of the Overlapping Graves et al. method 

Consider the 4 component, 2 sensor system in Figure 25 that is subjected to a sixth test regime: 

Test 6. A series of 10 demands where 10 system level failures were detected by sensor #1 and 10 

failures were detected by sensor #2. 
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Figure 25: Three sensor on-demand system with paths of apparent influence indicated 

In this example, it is not known if all of the demands where sensor #2 detected failure coincide 

with system level failure, if all of the demands where sensor #2 detected failure coincided with 

system level success, or any permutation in between. The Overlapping Graves et al. Method 

requires the precise permutation of sensor data to be known for each demand, and hence cannot 

incorporate evidence or data of this nature. 

3.6. SUMMARY 

Whilst fully Bayesian methodologies have been developed to incorporate data at various levels 

within binary-state on-demand systems, the majority have been constrained to treat all data as 

non-overlapping. This ignores the dependencies between the overlapping data sets and 

effectively removes or misinterprets inherent information. An overlapping data likelihood 

function for binary-state on-demand systems was developed in this chapter that incorporates 
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these inherent dependencies and generate the correct inference through Bayes’ Theorem. Several 

examples were developed to highlight the effect of the additional information overlapping data 

sets contain and how it can be used to correctly improve the state of knowledge (which in the 

context of binary-state on-demand systems is the set of component type failure probabilities). 

These examples included simple systems for the sake of illustration, but the methodology is 

equally applicable to complex systems. The flexibility of the likelihood function was also 

developed further to incorporate multiple instances of identical components. Through state of 

knowledge dependence, the resultant overlapping data Bayesian method completely incorporates 

all information and evidence that can possibly be generated or observed in complex, binary-state 

on-demand systems. 
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Chapter 4: Likelihood function of overlapping data of multi-state on-

demand systems 

4.1. INTRODUCTION 

Chapter 3 outlined a methodology for Bayesian analysis of overlapping data from binary-state 

on-demand systems. A methodology is outlined in this chapter that generalises the likelihood 

function developed in the previous chapter for multi-state on-demand systems. 

4.2. LIKELIHOOD FUNCTION OF MULTI-STATE ON-DEMAND SYSTEMS 

The developmental steps for the overlapping data likelihood function of multi-state on-demand 

systems are identical to that for binary-state systems in that permutations of possible component 

states (and the probability of each permutation) need to be developed. The probability (or 

likelihood) of observing any one of the permutations that imply the observed evidence can then 

be substituted into equation (28). This is achieved using the three steps developed in Chapter 3. 

4.2.1. Step 1: State Vector Analysis 

All possible permutations of state variables for each component need to be analysed. The system 

state vector is defined in equation (39): 

 { }1 2 3, , ,..., ,...,j nx x x x x=x  … for a system with n components ---(39) 

 where xj is the state variable of the jth component. 
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As there are multiple possible state vectors, the lth state vector (and its constituent component 

state variables) is written as: 

( ) ( ) ( ) ( ) ( ){ }1 2 3, , ,..., ,...,l j nl l l ll
x x x x x=x  ---(40) 

4.2.2. Step 2: Structure Functions 

Structure functions calculate the state of (sub-) system levels where sensors are located based on 

the state vector and is dependent on the system logic. The structure function returns the state of a 

higher level gate or sensor, and equates to (z – 1) if the relevant sensor’s (sub-) system has 

completely failed and 0 if it is fully functional.  

( ) { }( )1 2 3, , ,... ,...,S S S
i i i j nx x x x x xφ φ= =x

 

 

1 if the (sub-) system has completely failed    
                                    ...
1 if the (sub-) system is in the first degraded state
0 if the (sub-) system is completely functional

z −
= 



 ---(55) 

which is a generalisation of the binary-state equivalent developed in equation (41). 

There will be zn permutations and hence zn possible state vectors. The probability of each 

state vector occurring can be calculated based on individual component state probabilities. 

The probability of the jth component being in the xth state is denoted ( )x
jp . The probability 

of the state vector x  occurring is outlined in equation (25). 
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( ) ( ) 1
(0) ( )

1 1
Pr |   where 1j

n zx x
j j j

j x
p p p

−

= =
= = = −∏ ∑px X  ---(25) 

4.2.3. Step 3: (Sub-) System Failure Combinations 

The third step is to develop multiple combinations of r state vectors (recalling that r refers to the 

number of systemic demands in the data set) such that each combination generates the same 

number of observed states as the evidence set, 1 2{ , ,..., , }S S S
mE r= k k k   , recalling that each vector 

(0) (1) ( 1){ , ,..., }S S S S z
i i i ik k k −=k  defines the number of states detected by the ith sensor. The inclusion 

of the number of demands, r, as a separate value in the evidence set, E, is technically redundant 

as the number of states that each sensor detects, expressed by Sk , sums to r for all sensors. 

 { }1 2, ,..., ,..., nl zv v v v=v   ---(56) 

where vl is the number of occurrences of the lth state vector, lx  ... which is a generalisation 

of the binary-state equivalent in equation (43). 

The ath combination is defined by: ( ) ( ) ( ) ( ){ }1 2, ,..., ,..., na la a a z a
v v v v=v  ---(57) 

where (vl)a is the number of occurrences of the lth state vector in the ath combination ... 

which is a generalisation of the binary-state equivalent in equation (44). 

The probability of a particular combination of state vectors, av , occurring given a set of lower 

level component failure probabilities is listed in equation (58). 
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( )Pr |a a= pV v

 ( ) ( ) ( ) ( ) ( ) ( ){ }( )1 1 2 2Pr ,..., ,..., |n nl la a a a a a
V v V v V v= = = = p

 

(which is simply a specific instance of the multinomial distribution) 

 
( )( )( )

( )1

Pr |
!

!

l an
v

z l l

l l a

r
v=

=
= ∏

pX x



    … substituting (25) yields: 

 
( )

( )
( )

1 1

1!
!

n l a
j

v
z n x

j
l jl a

r p
v= =

   =   
   

∏ ∏   ---(58) 

which is a generalisation of the binary-state equivalent in equation (45) that utilised the 

binomial distribution. 

Since each state vector is linked with a specific demand, the total number of state vectors in the 

combination must sum to r: 

1

nz

l
l

v r
=

=∑  ---(59) 

which is a generalisation of the binary-state equivalent in equation (46). 

Each different combination implies a different number of states observed by each sensor. The 

number of xth states observed by the ith sensor for the ath combination of state vectors, av , is 

defined in equation (60). 

( ) ( )
( )

( )

1

1 if  

0 if 

n Sz i lS x
i l a S

l i l

x
k v

x

φ

φ=

 == 
≠

∑
x

x





 ... where ( ) ( ) ( ) ( ){ }1 2, ,..., ,..., na la a a z a
v v v v=v  ---(60) 
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The matrix vE contains all combinations of state vectors that imply the evidence. If the ath 

combination of state vectors, av , implies the evidence set 1 2{ , ,..., , }S S S
mE r= k k k   , then av  is an 

element of vE. For this to occur, the number of states detected by each sensor implied by av  must 

equal the number contained in the evidence set. 

i.e.    ( ) ( ) iff    ...   1,2,3,...,
a

S S
a E i iE

i m∈ = ∀ ∈v
v

v k k


 



 

---(61) 

where ( )S
i Ek  is the vector of the number of states detected by the ith sensor in the evidence 

set E, and ( )
a

S
i vk



  is the vector of the number of implied states detected by the ith sensor for 

the ath combination of state vectors, av , each element of ( )
a

S
i vk



  being  defined by equation 

(60) ... all of which is a generalisation of the binary-state equivalent in equation (48). 

The likelihood function is the probability of observing the evidence, 1 2{ , ,..., , }mE r= k k k    for a 

given instance of p. The likelihood function is based on ascertaining the combinations of state 

vectors that imply the evidence, and then evaluating the probability of each combination: 

 ( ) ( )Pr | Pr | ... for all that imply the evidenceE = ∑p pcombination of  state vectors  

 ( )Pr |
a E

a a
∀ ∈

= =∑
v

p
v

V v




    … substituting (58) yields: 

 
( )

( ) 1(( ) ) (0) ( )

1 1 1

1!   where 1
!

n l a
j l

a E

v
z n zx x

j j j
l j xl a

r p p p
v

−

∀ ∈ = = =

     = = −       
∑ ∏ ∏ ∑

vv
 ---(62) 
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Therefore, for a complex system with single occurrences of each component: 

 ( ) ( )| Pr |L E E= →p px
( )

( )
(( ) )

1 1

1
!

n l a
j l

a E

v
z n x

j
l jl a

p
v∀ ∈ = =

     ∝        
∑ ∏ ∏

vv
 

---(63) 

 which is a generalisation of the binary-state equivalent in equation (50). 

4.3. MULTIPLE INSTANCES OF IDENTICAL COMPONENTS 

As with the case for binary-state systems explored in chapter 3, multiple occurrences of identical 

components are incorporated into the likelihood function using state of knowledge dependence. 

The underlying state probabilities of each identical component (i.e. component type) are the 

same, and modify the likelihood function accordingly. The unknown of interest, p, then becomes 

the set of component type state probabilities where n is the number of component types. The total 

number of components again is denoted n' (and therefore n ≤ n'). The component types are 

numbered 1, 2, 3, … , j , … , n, and the components are numbered 1, 2, 3, … , b , … , n'. The 

component type of the bth component is denoted jb. The likelihood function of a multi-state on-

demand system with multiple occurrences of the same component is equation (64). 

( ) ( )

( )' (( ) )

1 1

1|
!

n l a
b l

b
a E

vz n x
j

l bl a

L E p
v∀ ∈ = =

     ∝   
     

∑ ∏ ∏
v

p
v

 ---(64) 

where (( ) )b l
b

x
jp  is the probability of the bth component being in the (xb)l

th state, n' is the 

number of components in the system and (xb)l is the state variable of the bth component in 

the lth state vector. 



 

 74 
 

4.4. COMPARISON WITH NON-OVERLAPPING DATA METHODS – MULTI-

STATE ON-DEMAND SYSTEMS 

The Graves et al. method cannot incorporate information inherent in overlapping data sets as it is 

limited to treating data as non-overlapping. Non-overlapping data sets contain no such 

dependence, and therefore there is no information inherently stored in this way. The Graves et al. 

method is faster to evaluate as it does not involve generation of combinations. Whenever 

analysis only involves non-overlapping data, the Graves et al. method should be employed. 

Example 12: Overlapping data analysis of a multi-state on-demand system 

Consider the basic two component series system examined in Example 5 that was subjected to 

the same test regime with the same evidence. The structure functions for the system at each 

sensor location are: 

 ( ) { }( )1 1 1 2 1 2, max( , )S S x x x xφ φ= =x  ---(65) 

 ( ) { }( )2 2 1 2 1,S S x x xφ φ= =x   ---(66) 

Since there are two components (i.e. n = 2) and four possible states (i.e. z = 4), the number of 

possible state vectors is zn = 42 = 16. The truncated list of state vectors is in Table 7, along with 

the sensor states they imply and their inherent probabilities. 



 

 75 
 

 

State Vector # 
l 

Component States State Vector 
lx  

States detected by 
sensors Probability 

( )Pr |l= px X  
(x1)l (x2)l ( )

1S lφ x  ( )
2S lφ x  

1 3 3 {3,3} 3 3  (3) (3)
1 2p p  

2 3 2 {3,2} 3 3 (3) (2)
1 2p p  

3 3 1 {3,1} 3 3 (3) (1)
1 2p p  

4 3 0 {3,0} 3 3 (3) (0)
1 2p p  

5 2 3 {2,3} 3 2 (2) (3)
1 2p p  

… 
12 1 0 {1,0} 1 1 (1) (0)

1 2p p  

13 0 3 {0,3} 3 0 (0) (3)
1 2p p  

14 0 2 {0,2} 2 0 (0) (2)
1 2p p  

15 0 1 {0,1} 1 0 (0) (1)
1 2p p  

16 0 0 {0,0} 0 0 (0) (0)
1 2p p  

Table 7: Truncated list of state vectors of system in Figure 1. 

Since there are 10 demands (i.e. r = 10) there are 3 268 760 possible state vector combinations, v

, as each demand will invoke one of the 16 possible state vectors. A truncated list of 

combinations is listed in Table 8, along with the implied sensor detection states. There are 600 

possible combinations that imply the evidence. The method in which they are compiled is the 

subject of chapter 5. 

The posterior distribution of the component state probabilities was evaluated using Markov-

Chain Monte Carlo (MCMC) simulation. The resultant marginal distributions of each state 

probability are illustrated in Figure 26. They are also compared to the marginal posterior 
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distributions generated by the Graves et al. (non-overlapping) method in Example 5. 

 
State Vector  

Combination No … a 1 2 … 602 529 602 530 … 3 268 759 3 268 760 

St
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e 
V

ec
to

r 
C

om
bi

na
tio

n 
(n

o.
 o

f l
th

 st
at

e 
ve

ct
or

s)
 

(v1)a 0 0 … 0 0 … 9 10 
(v2)a 0 0 … 0 0 … 1 0 
(v3)a 0 0 … 0 0 … 0 0 
(v4)a 0 0 … 3 3 … 0 0 
(v5)a 0 0 … 0 0 … 0 0 
(v6)a 0 0 … 0 0 … 0 0 
(v7)a 0 0 … 0 1 … 0 0 
(v8)a 0 0 … 4 3 … 0 0 
(v9)a 0 0 … 0 0 … 0 0 
(v10)a 0 0 … 0 0 … 0 0 
(v11)a 0 0 … 0 0 … 0 0 
(v12)a 0 0 … 0 0 … 0 0 
(v13)a 0 0 … 0 0 … 0 0 
(v14)a 0 0 … 0 0 … 0 0 
(v15)a 0 1 … 1 1 … 0 0 
(v16)a 10 9 … 2 2 … 0 0 

Im
pl

ie
d 

Ev
id

en
ce

 

Se
ns

or
 

#1
 

de
te

ct
ed

 
St

at
es

 0 10 9 … 2 2 … 0 0 
1 0 1 … 1 1 … 0 0 
2 0 0 … 4 4 … 0 0 
3 0 0 … 3 3 … 10 10 

Se
ns

or
 

#2
 

de
te

ct
ed

 
St

at
es

 0 10 10 … 3 3 … 0 0 
1 0 0 … 0 0 … 0 0 
2 0 0 … 4 4 … 0 0 
3 0 0 … 3 3 … 10 10 

1 if a E∈ vv ; 
0 otherwise 

0 0 … 1 1 … 0 0 

Table 8: Possible state vector combinations of system in Figure 1. 
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Figure 26: Marginal posterior distributions of each component state probability of the system in 

Figure 1 (the distributions coloured grey are those derived by the Graves et al. method illustrated 

in Example 5). 

Figure 26 illustrates a marked difference between the posterior distributions produced by the 

Graves et al and overlapping data methods. The reason for this discrepancy stems from the 

nature of overlapping data, and is explored in Figure 27 and Figure 28. 

 
 

Figure 27: Evidence inferred information when considered as non-overlapping 
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When treated as overlapping, the data sets above cannot achieve the separation as illustrated in 

Figure 27 but is represented in Figure 28. 

 

Figure 28: Evidence inferred information when considered as overlapping 

Whilst entropy estimates for each marginal posterior distribution have been calculated and 

shown in Table 9, it is useful to consider the ‘amount of inference’ that each evidence set imparts 

on each component. For example, a component subjected to 10 demands can be said to have the 

‘equivalent uncertainty inferred by 10 demands’. However, a two component system has 

information ‘shared’ between components, and therefore each component has the ‘equivalent 

uncertainty inferred by more than 0 but less than 10 demands’. 

Even though the characteristics of sensor #1 evidence are a function of both component 1 and 2, 

the fact that sensor #2 information exists means that the uncertainty implied by sensor #1 

evidence is not ‘shared’ between components and is directly imparted onto component 2. A 

summary of the level of information inferred by the evidence is listed in Table 9. 
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 State 
Prob. 

Non-overlapping data Overlapping data 

Comparison Marg. 
Entropy 

(nats) 

Equivalent 
Information 
(demands) 

Marg. 
Entropy 

(nats) 

Equivalent 
Information 
(demands) 

C
om

po
ne

nt
 1

 (2)
1p  

-1.8114 10-20 
(total) -1.5029 10 

The lower marginal 
entropies and equivalent 
uncertainty shows that 

component 1 
characteristics have less 
uncertainty when data is 

constrained as non-
overlapping 

(3)
1p  

C
om

po
ne

nt
 2

 (1)
2p  

-2.3099 0-10 -2.6852 10 

The (generally) higher 
marginal entropies and 
equivalent uncertainty 

shows that component 1 
characteristics have more 
uncertainty when data is 

constrained as non-
overlapping 

(2)
2p  

(3)
2p  

Table 9: Comparison of data inference when data is constrained to be non-overlapping (Graves 

et al. method) versus overlapping (downwards inference) for analysis of system examined in 

Example 12. 

A marked difference in the posterior distributions inferred by the same evidence when 

considered to be non-overlapping versus overlapping can be clearly observed. Treating 

overlapping data as non-overlapping incorrectly increases the amount of apparent information 

for the characteristics of some components in some instances, and conversely incorrectly 

decreases the amount of apparent information for others. 
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4.5. EVALUATION 

The solution of the overlapping data likelihood function in equations (53) and (64) cannot easily 

be carried out by hand even for small systems, and a detailed algorithm (which is the subject of 

chapter 5) is required for systems of moderate to high complexity. The speed of evaluation is 

largely dependent on the generation of possible state vectors for the system in question and then 

identification of all combinations of those state vectors that imply the evidence. Once the state 

vector combinations are developed, the likelihood function is easily calculated. It must be 

repeated here that should the data for analysis be non-overlapping in nature, the Graves et al. 

method should be used to save computational time. 

4.6. SUMMARY 

Whilst fully Bayesian methodologies have been developed for data at various levels within on-

demand systems, they generally constrain data to be treated as non-overlapping. The only 

previous methodology to incorporate overlapping data is limited to binary-state on-demand 

systems, with additional limitations discussed in chapter 3. This chapter detailed the generation 

of the likelihood function for overlapping data analysis of multi-state on-demand systems, which 

is a generalisation of the likelihood function developed in chapter 3. An example was included to 

highlight the effect of the additional information overlapping data contains, how this information 

can be used to correctly improve our state of knowledge (which is the set of component type 

failure probabilities) and how analysing overlapping data as non-overlapping sometimes 

incorporates artificial information. Through state of knowledge dependence, the resultant 
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overlapping data Bayesian method completely incorporates all information and evidence that 

can possible be generated or observed by complex, on-demand multi-state systems. 
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Chapter 5: Downwards Inference Algorithm: Evaluation of overlapping 

data likelihood function of on-demand systems 

 

5.1. INTRODUCTION  

The likelihood functions for both binary-state and multi-state on-demand systems developed in 

chapters 3 and 4 are centred on the generation of a set of combinations of state vectors that infer 

the observed evidence, and then evaluating the summed probability of observing any one of 

these possible combinations (noting that they are mutually exclusive). The number of possible 

combinations that must be considered increases exponentially as the number of components and 

possible states increases, significantly affecting computational time. An algorithm is outlined in 

this chapter that allows rapid compilation of this set of combinations of state vectors and hence 

rapid analysis of the likelihood function for subsequent Bayesian analysis.  

5.2. MULTI-STATE ON-DEMAND COMPLEX SYSTEMS: LIKELIHOOD 

FUNCTION  

The likelihood function of observing evidence for a multi-state on-demand system is shown in 

equation (64). 
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( ) ( )

( )' (( ) )

1 1

1|
!

n l a
b l

b
a E

vz n x
j

l bl a

L E p
v∀ ∈ = =

     ∝   
     

∑ ∏ ∏
v

p
v

 ---(64) 

where n is the number of component types, n' is the number of components in the system, 

the unknown of interest, 1 2 3{ , , ,..., ,..., }j n=p p p p p p     is the set of n lower level component 

state probability sets for z states, { }(1) (2) (3) ( 1), , ,..., z
j j j j jp p p p −=p  is the state probability 

vector of the jth component, (( ) )b l
b

x
jp

 
is the probability of the bth component (which is the jb

th 

component type) being in the (xb)l
th  state, r is the number of demands in the data/evidence 

set E, av  is the ath combination of r state vectors (each state vector comprises of n' 

component states), vE is the set of all av  that imply the data/evidence set E, (vl)a is the 

number of occurrences of the lth state vector in av  and (xb)l is the state variable of the bth 

component in the lth state vector. 

The generation of vE, the set of combinations of state vectors that imply the evidence, is the most 

computationally intensive part of developing a likelihood function. The vector v  can be 

described as a combination of zn' possible state vectors or a permutation of the number of 

occurrences of each possible state vector, '1 2, ,..., ,..., nl zv v v v . The trivial method of generating vE 

involves considering every possible combination of zn' possible state vectors, which is equivalent 

to considering every possible permutation of ( '1 2, ,..., ,..., nl zv v v v ). The number of possible 

combinations is given in equation (67). 

 
( )

( )
'

'

1 !
Number of possible   combinations

! 1 !

n

n

z r
state vector

r z

+ −
=

−
 ---(67) 
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The number given in equation (67) can become prohibitively large to allow combinations to be 

individually considered for even moderately complex systems. One of the reasons is that it is 

exponentially dependent on the number of components, n'. The process of evaluating the 

likelihood function in equation (64) is illustrated in Figure 29. It introduces the sensor 

information vector, which is simply the vector of states observed be all sensors and can be 

expressed in terms of structure functions of the component state vector, x . 

i.e. Sensor information vector = { } ( )1 2, ,..., ,...,S S S S S S
i mx x x x= =x x

 φ  ---(68)  

where S
ix  is the state detected by the ith sensor, S

iφ  is the structure function of the ith sensor 

such that ( )S S
i ix φ= x  and S

φ  is the vector of the structure functions for all sensors such 

that S =φ 1 2{ , ,..., ,..., }S S S S
i mφ φ φ φ . 

The number of combinations can be limited by considering sensor information vectors as 

opposed to component state vectors because each sensor information vector has an associated 

probability that can be evaluated. If m is the number of sensors, the number of possible 

combinations of sensor information vectors in equation (69) is significantly less than that in 

equation (67) as there will always be fewer sensors than components (i.e. m ≤ n). 

 

( )
( )

1 !
Number of possible    combinations

! 1 !

m

m

z r
sensor state vector

r z

+ −
=

−
 ---(69) 

To save computational time, the set of sensor information vector combinations that imply the 

evidence can initially be compiled. Each sensor information vector can then have individual cut 
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sets compiled that will then allow the probability of each sensor information vector combination 

to be calculated. The resultant likelihood function is given in equation (70). 

( )
( ) ( )

( )
max

1

Pr |
|

!

S
l a

S S
a E

vSl l

S
l l a

L E
v=∀ ∈

    ∝  
 
 

∑ ∏
v

p
p

v

x





 ---(70) 

where Pr( | )S
l px

'

'
' 1

Pr( | )
nz

S
l l

l =
= →∑ p x x  which is the sum of the probabilities of each cut set 

that implies the lth sensor information vector, S
lx , S

av  is the ath combination of sensor 

information vectors such that 1 2{( ) , ( ) ,..., ( ) ,..., ( ) }n
S S S S S
a a a l a azv v v v=v , ( )S

l av  is the number of 

occurrences of the lth sensor information vector in the ath combination, lmax is the number 

of possible sensor information vectors and S
Ev  is the set of all S

av  that imply the evidence. 

 

Figure 29: Downwards Inference – Likelihood Function Evaluation Process 

Component 
state 

probabilities 
p 

Set of state 
vector 

combinations 

( )
( )

1 !

! 1 !

n
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r z
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−
 

Set of state vector 
combinations  

that imply evidence 
vE 

Set of state vector 
combinations  

that do not imply evidence 

( )|L E p
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probabilities 

p 
 

Set of sensor 
information 

vector 
combinations 

( )
( )

1 !

! 1 !

m

m

z r

r z

+ −

−
 

Combination Generation 
Algorithm 

Set of sensor information 
vector combinations that 

imply evidence 
S
Ev  

Set of sensor 
information vector 

combinations  
that do not imply 

evidence 

( )|L E p
Cut Set Generation 
Algorithm Sensor 

information vector cut 
sets 

EQUATION (64): 

EQUATION (70): 
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These two processes have two separate algorithms developed in the remainder of this chapter. 

5.3. MATHEMATICAL REPRESENTATION: EVIDENCE AS A FUNCTION OF 

SENSOR INFORMATION VECTORS 

Formal evaluation of equations (64) and (70) through the processes illustrated in Figure 29 

requires evidence to be expressed as a function of state vectors. This is best achieved through 

matrix representation: 

 S
a• =M v E  ---(71) 

where matrix M is defined in equation (74) and represents the relationship between S
av , the 

ath combination of sensor information vectors defined in equation (72), and the evidence 

vector E  defined in equation (73). 

 

max

1

2

th

( )

( )
where ( )  is the number of times the

...  
( )  sensor information vector,  occurs. 

( )

S
a

S
a

S
l aS

a S S
l a

S
l a

v

v
v

v l

v

 
 
 
 
 =
 
 
 
 
 

v
x









  ---(72) 

The evidence vector, E , contains the sequentially listed number of detections of each of the z 

states at each sensor. As there are m sensors, E  has a length of (m × z). 
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1

'0 states' detected by sensor #1

 '( -1) states' detected by sensor #1
...

'0 states' detected sensor #

 '( -1) states' detected sensor #

S

S
m

z

m

z m

  
  
  
     

   
= =  

       
  
    

k
E

k
















( )

(0)
1 1

2

( 1)3 1

(0)[ ( 1)] 1

( 1)

...
S
i

S

S z

Sz i x m

S zm z m

E k
E
E k

E k

E k

−

− + +

−
×

  
  
  
  
  

= =   
  
  
  
  

      









 ---(73) 

The matrix M is a (m × z) by lmax matrix (where lmax is the number of possible sensor 

information vectors). Each element, Mi,l is either 0 or 1 and relates the effect that the lth sensor 

information vector has on each element of the evidence vector, E . The entire system is therefore 

summarized by the matrix M. 

max

max

max

max

1,1 1,2 1, 1,

2,1 2,2 2, 2,

[ ( 1)] 1,1 [ ( 1)] 1,2 [ ( 1)] 1, [ ( 1)] 1,

( ),1 ( ),2 ( ), ( ),

S S S S
i i i i

l l

l l

z i x z i x z i x l z i x l

m z m z m z l m z l

M M M M

M M M M

M M M M

M M M M

− + + − + + − + + − + +

× × × ×

 
 
 
 
 =
 
 
 
 
 

M

 

 

    

 

    

 

 ---(74) 

 where 

th

th th

[ ( 1)] 1,

1 if the     implies 

        the ( )  state at the  sensor...
...
0 otherwise

S
i

S
i

z i x l

l sensor state vector

x iM
− + +



= 
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Example 13: Matrix equation of sensor information vectors 

Consider the basic two component series multi-state system that is illustrated in Figure 30. There 

are four allowable states (i.e. z = 4) which are 0 (complete functionality), 1 (1st degraded state), 2 

(2nd degraded state) and 3 (complete failure). 

 

Figure 30: Multi-state two component series system 

As the system is a series system, the state detected by sensor #1 must be greater than or equal to 

the state detected by sensor #2. There are 10 possible sensor information vectors and hence lmax = 

10. The set of 10 possible sensor information vectors is listed in equation (75). 

 

3 5 6 7 8 9 101 2 4

1

2

... 0 1 2 3 1 2 3 2 3 3
    , , , , , , , , ,

0 0 0 0 1 1 1 2 2 3...

S S S S S S SS S S

S

S

x

x

 =                      ⇒                     
=                      

        

         

x x x x x x xx x x

 ---(75) 

Evidence is of the form of the number of observed states at each sensor from r demands.  

 Sensor #1:  (0) (1) (2) (3)
1 1 1 1 1{ , , , }S S S S Sk k k k=k  ---(76) 

 Sensor #2:  (0) (1) (2) (3)
2 2 2 2 2{ , , , }S S S S Sk k k k=k  ---(77) 

 Evidence,  E = { 1
Sk  , 2

Sk  , r} ---(78) 

System (Sensor #1) 

1 

Sensor  #2 
2 
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The performance of the system is described by a combination of r sensor information vectors 

from the set in equation (75). The number of occurrences of the sensor information vector S
lx  is 

S
lv . The number of times the sensor #1 detects a ‘0’ state for the ath combination of sensor 

information vectors, S
av , is the sum of all sensor information vectors in the combination where 

1
Sx  = 0 (which is only the first sensor information vector, 1

Sx ).  

i.e. 0
1 1

Sk v=  ---(79) 

The number of times the sensor #1 detects a ‘1’ state for the ath combination of sensor 

information vectors, S
av , is the sum of all sensor information vectors in the combination where 

1
Sx  = 1 (which is only the 2nd and 5th sensor information vectors, 2

Sx and 5
Sx ). 

i.e. 1
1 2 5

S Sk v v= +  ---(80) 

This process is repeated and sets up a total of (z × m) simultaneous equations that can be 

represented in matrix notation as demonstrated in equation (71). 
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1
0

2 1
1

3 1
2

4 1
3

5 1
0

6 2
1

7 2
2

8 2
3

9 2

10

1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 1 1
1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1

S

S

S

S

S

S

S

S

S

S

v

v k

v k

v k

v k

v k

v k

v k

v k

v

 
 

                  • =                    
 
  




 
 
 
 
 
 
 
 
 
 
 

 ---(81) 

The matrix equation (81) of the form S
a• =M v E  summarizes the relationship between a 

combination of r sensor information vectors and the evidence it implies. 

5.4. DOWNWARDS INFERENCE – COMBINATION GENERATION ALGORITHM 

To evaluate equation (70), the set of combinations of sensor information vectors that imply the 

evidence need to be compiled. These combinations are of the form: 

 { }max1 2, ,..., ,...,S S S S S
l lv v v v=v  ---(82) 

where S
lv  is the number of occurrences of the lth sensor information vector, S

lx  in the 

sensor information vector combination, Sv . 
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The combination generation algorithm proposed below allows for rapid compilation of such sets, 

and involves the following steps.  

5.4.1. Step 1: Generation of Constraints.  

The set of requirements that each combination must satisfy is subsequently referred to as 

constraints (such as ‘ Sv  must imply the evidence’). Another constraint is that the sum of all vl 

values must equal the number of demands, r. There are two types of constraints: 

a. Partial (optional, but will greatly speed computation). Partial constraints are those that 

apply to combination sub-sets 1 2{ , ,..., }S S S
lv v v  … l < lmax.  If any combination sub-set 

violates a constraint, then all complete combinations that contain that sub-set can be 

discarded. 

b. Total. Total constraints are those that apply to complete combinations 

max1 2{ , ,..., ,..., }S S S S
l lv v v v  (i.e. the completely defined combination). 

5.4.2. Step 2: Identification of common S
lv  values (optional).  

The constraints may limit certain instances of S
lv  to specific values. By identifying these 

instances where S
lv  has a certain common value throughout all possible combinations, the 

number of subsequent possible combinations is significantly reduced, thereby reducing 
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computational requirements. One of two possible conditions must be met for common S
lv  values 

to exist: 

a. Null S
lv  values. If the evidence set involves any values for which ( )S

iS x
ik  = 0, then all non-

zero elements of the matrix M on the th([ ( 1)] 1)S
iz i x− + +  row imply that the number of 

occurrences of the relevant sensor information vectors, S
lv , must also be zero (where l is 

the column number of all non-zero elements). 

i.e. if ( )S x
ik  = 0 → S

lv  = 0 for all l such that 
([ ( 1)] 1),S

iz i x lM
− + +

 = 1. ---(83) 

b. Trivial S
lv values. If the th([ ( 1)] 1)S

iz i x− + +  row of the matrix M only has one non-zero 

value (at the element 
([ ( 1)] 1),S

iz i x lM
− + +

), then the number of lth sensor information vectors 

that occur in the combination of sensor information vectors is ( )S
ix

ik . 

i.e. if 
([ ( 1)] 1),S

iz i x lM
− + +

 = 1 and ∀ 
([ ( 1)] 1),S

iz i x lM
− + + ≠

 = 0 → S
lv  = ( )S

ix
ik  ---(84) 

For each common S
lv  value, the matrix M and vectors E  and S

av  are modified in the following 

ways: 
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S
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z i x l

m z l

M
M

v M

M

− + +

×
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E E
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1

2

1

1

1
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( )

' ( )
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a
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S S
a l a

S
l a

S
a

v
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 =
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... removing the lth element ---(85)(86) 

max

max

max

max

1,1 1, 1 1, 1 1,

2,1 1, 1 2, 1 2,

[ ( 1)] 1,1 [ ( 1)] 1, 1 [ ( 1)] 1, 1 [ ( 1)] 1,

( ),1 ( ), 1 ( ), 1 ( ),

...

...

'
... ...

...

S S S S
i i i i

l l l

l l l

z i x z i x l z i x l z i x l

m z m z l m z l m z l

M M M M

M M M M

M M M M

M M M M

− +

− +

− + + − + + − − + + + − + +

× × − × + ×





=




M





     

     










 
 
 

  

---(87) 

 removing the lth column where S
lv  is the identified common value. 

and ' S
lr r v= −  ---(88) 

Should the matrix M' have rows where all elements are zero, then that row (along with the 

corresponding row in the evidence vector E ') is removed. If the row in E  that is removed in this 

process is a non-zero element, then there is an error in the way the matrix M models the system. 
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i.e. if , 0, ...i lM l= ∀ ⇒

max

max

max

max

max

1,1 1,2 1, 1,

2,1 2,2 2, 2,

1,1 1,2 1, 1,

1,1 1,2 1, 1,

( ),1 ( ),2 ( ), ( ),

'

l l

l l

i i i l i l

i i i l i l

m z m z m z l m z l

M M M M

M M M M

M M M M

M M M M

M M M M

− − − −

+ + + +

× × × ×

 
 
 
 
 
 =
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  ---(89) 

1
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1

1

' i

i

m z

E
E

E
E

E

−

+

×

 
 
 
 
 =  
 
 
 
  

E






 ---(90) 

After each cycle, M becomes M', E  becomes E ', S
av  becomes S

av ', and r becomes r'. The 

process is repeated iteratively until the conditions in (83) and (84) can no longer be satisfied (i.e. 

no more common S
lv  values exist). 

5.4.3. Step 3: Setting minimum and maximum S
lv  values.  

One of two possible approaches must be used to establish minimum and maximum S
lv  values: 

a. Trivial. All remaining S
lv  values are assigned values of 0 and r as minimum and maximum 

values respectively.  
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{min1 , min2 , … , minl , … , 
max

minl } = {0 , 0 , … , 0 , … 0} ---(91) 

{max1 , max2 , … , maxl , … , 
max

maxl } = {r , r , … , r , … , r} ---(92) 

b. Theoretical (optional, but will greatly speed computation). For a given partial combination 

sub-set 1 2{ , ,..., }S S S
lv v v  … l < lmax, 1

S
lv +  has minimum and maximum values derived from 

constraints. The number of subsequent possible combinations is reduced, thereby 

decreasing computational time. The estimates can be improved iteratively as follows: 

Minimizing minl such that: Maximizing maxl such that: 

max

1

1

1

max

max
min

max

max

l

l

l

l

−

+

 
 
 
 
 • ≥ 
 
 
 
  

M E







 ---(93) 

max

1

1

1

min

min
max
min

min

l

l

l

l

−

+

 
 
 
 
 • ≤ 
 
 
 
  

M E







 ---(94) 

Note: The less than or equals to (≤) and greater than or equals to (≥) signs in inequalities (93) 

and (94) are used to indicate the relationship between all equivalent elements on both the left 

and right hand sides (i.e. all elements of the resultant vector on the left hand side of (93) ‘≥’ 

must be greater than or equal to all elements of the vector E  for the inequality hold). 

The procedures in (93) and (94) can be repeated iteratively until the two sets in (91) and (92) are 

developed. 



 

 96 
 

5.4.4. Step 4: Generation of combinations - ‘Sideways consideration / Upwards 

generation’. 

The final process is using the remaining undefined values of S
lv  and their associated minimum 

and maximum values to generate a set of all combinations that meet the constraints. This is done 

sequentially in sub-sets 
max1 2{ , ,..., ,..., }S S S S

l lv v v v  for l = 1,2, … , lmax  (i.e. sideways consideration) 

for each possible remaining combination (i.e. upwards generation). Depending on the nature of 

the set or sub-set under consideration, accepting and rejecting occurs as follows: 

a. Combination Sub-sets 1 2{ , ,..., }S S S
lv v v  … l < lmax. Combination sub-sets are tested against 

partial criteria. Partial combination sub-sets that meet partial criteria indicate potential 

for the remaining undefined values of 
max1 2{ , ,..., }S S S

l l lv v v+ +  to imply the evidence. If any one 

partial criterion is not met, then all combinations that contain that particular sub-set are 

invalid. This significantly reduces the number of combinations that subsequently need to 

be considered, reducing computational time. 

b. Total combinations
max1 2{ , ,..., }S S S

lv v v . Total combinations are tested against total criteria. 

Total combinations that meet total criteria imply the observed evidence. If they do, then 

that particular combination is added to the set of combinations that imply the evidence. 

The process is represented below in Figure 31.  
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Figure 31: Representation of ‘sideways consideration / upwards generation’ combination 

algorithm 

By identifying infeasible values of S
lv , large fractions of combinations which have that particular 

combination sub-set can be excluded from consideration. The earlier this occurs (i.e. the closer l 

is to 1), the larger the numbers of combinations that can be excluded. This significantly 

decreases computational time. The process is illustrated in the flow-chart in Figure 32. 
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Figure 32: Downwards Inference Combination Generation Algorithm Flow-Chart  

(‘sideways consideration / upwards generation’) 
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Example 14: Solving matrix equation of sensor information vectors 

Consider the same two component series system in Example 13. The system was subjected to 10 

demands (i.e. r = 10) and the following evidence was obtained: 

 Sensor #1:  { } { }(0) (1) (2) (3)
1 1 1 1 1, , , 0,0,5,5S S S S Sk k k k= =k  ---(95) 

 Sensor #2:  { } { }(0) (1) (2) (3)
2 2 2 2 2, , , 0,3,4,3S S S S Sk k k k= =k  ---(96) 

 Evidence,  E = { 1
Sk  , 2

Sk  , r} = { 1
Sk  , 2

Sk , 10} ---(97) 

Substitution into equation (81) yields: 
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0 0 0 0 0 0 0 0 0 1
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   =
  
  
  
  
  
   

 ---(98) 

Since there were 10 demands, it can also be written: 

 
10

1
10S

l
l

v r
=

= =∑  ---(99) 
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Equations (98) and (99) together form the total criteria for the evidence based on the system 

logic. Both equations (98) and (99) must be met for the combination of sensor information 

vectors, 1 2 10{ , ,..., ,..., }S S S S
lv v v v  to be valid. 

Partial criteria deal with subsets of the combination of sensor information vectors, 

1 2{ , ,..., }S S S
lv v v where l < 10. The fact that S

lv  is a non negative integer can be exploited to 

establish partial criteria. Let {min1 , min2 , … , minl , … , min10} and {max1 , max2 , … , maxl 

, … , max10} bet the set of minimum and maximum values respectively for all S
lv . This allows 

the following equations to be written to express the partial criteria: 
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E  ---(100)(101) 

 

 

 
10

' '
' 1 ' 1

min 10
l

S
l l

l l l
v r

= = +
+ ≤ =∑ ∑   and  

10

' '
' 1 ' 1

max 10
l

S
l l

l l l
v r

= = +
+ ≥ =∑ ∑           ---(102)(103) 

The next step is to identify common sensor information vector numbers, S
lv . From equation 

(83), it can be observed that 1 2 3 4,  ,  ,  S S S Sv v v v  and 5
Sv  are equal to 0 as corresponding non-zero 
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elements exist on rows 1, 2 and 5 which have zero observations in the evidence vector, E . From 

equation (84), it can be observed that (3)
10 2 3S Sv k= =  since the only non-zero element of the 8th 

row of matrix M corresponds to 10
Sv , and the 8th row of the evidence vector, E , is (3)

2
Sk . 

1 2 3 4 5 6 7 8 9 10    
0 1  0  0  0  0  0  0  0  0  0 
00 1 0 0 1 0 0 0 0 0
50 0 1 0 0 1 0 1 0 0

   ...  50 0 0 1 0 0 1 0 1 1
01 1 1 1 0 0 0 0 0 0
30 0 0 0 1 1 1 0 0 0
40 0 0 0 0 0 0 1 1 0
30 0 0 0 0 0 0 0 0 1

S S S S S S S S S Sv v v v v v v v v v
  
  
  
  
  = =   
  
 
 
 
 
  

M E






 

With these common values, equations (85) to (89) reduce the matrix equation to: 

 

6

7

8

9

1 0 1 0 5
0 1 0 1 2

' ' '
1 1 0 0 3
0 0 1 1 4

S

S
S
a S

S

v

v

v

v

            • = → • =             

M v E  ---(104) 

 where 1 2 3 4 5 0S S S S Sv v v v v= = = = = , 10 3Sv =  and r' = 7. 

The sets {min6 , min7 , min8 , min9} and {max6 , max7 , max8 , max9} are trivially set at: 

 {min6 , min7 , min8 , min9} = {0 , 0 , 0 , 0} ---(105) 
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 {max6 , max7 , max8 , max9} = {r' , r' , r' , r'} ---(106) 

The minimum and maximum sets can be improved based on the matrix M and evidence set E 

through iteratively undertaking (93) and (94) until the sets in (105) and (106) reach steady state. 

Accordingly, the minima and maxima are as follows: 

 {min6 , min7 , min8 , min9} = {1 , 0 , 2 , 0} ---(107) 

 {max6 , max7 , max8 , max9} = {3 , 2 , 4 , 2} ---(108) 

The generation of combinations is then carried out using the partial criteria represented in 

equations (100), (101), (102) and (103), and total criteria represented in equations (99) and 

(104). The process is illustrated in Figure 33. It can be seen that there are three sensor 

information vector combinations that imply the evidence. The method illustrated in Figure 31 and 

Figure 32 has reduced the problem to that of one considering 9 different combinations of 4 

sensor information vectors as opposed to the completely trivial method of individual 

consideration of a possible 3 724 680 960 combinations of 10 sensor information vectors, 

allowing simple numerical compilation in negligible computing time. 
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Figure 33: Generation of sensor information vector combinations.4 

5.5. DOWNWARDS INFERENCE - CUT SET GENERATION ALGORITHM 

To evaluate the likelihood function, the probabilities of the sensor information vector 

combinations that have been have been generated by the Combination Generation Algorithm 

outlined above need to be calculated. The probability of each component state probability cut set 

(where each cut set is in effect a specific instance of a component state vector) is easily 

evaluated. Each sensor state combination will have a corresponding set of component cut sets, 

x = {x1 , x2 , … , xb , … , xn'}, and can be substituted into equation (70) to yield the sensor 

information vector probability. 

                                                 
4 The author has observed that in all the instances he has run this algorithm, the corresponding illustration to figure 5 
always generates a symmetric path through feasible combination elements. 
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The Cut Set Generation Algorithm process is similar to the Combination Generation Algorithm 

in that it rapidly eliminates large numbers of component cut sets for consideration by rapidly 

identifying and discarding those that are irrelevant. There are a total of zn' possible sets (or 

component state vectors) with only a small fraction of them relevant cut sets. From the 

Combination Generation Algorithm a set of ‘relevant’ sensor information vectors will be 

identified as all sensor information vectors from which all combinations of sensor information 

vectors consist of. 

i.e. { }S S
l= ∀x x  for  l∀ where 0 for each     S

lv combination of sensor state vectors≠  ---(109) 

5.5.1. Step 1: Generation of Constraints.  

The set of requirements that each cut set must satisfy is subsequently referred to as constraints. 

The two types of constraints introduced earlier still apply: 

a. Partial (optional, but will greatly speed computation). Partial constraints are those that 

apply to cut sub-sets {x1 , x2 , … , xb }, b < n'. In this instance, a partial constraint implies 

that a particular cut sub-set belongs to at least one complete cut set that implies one of the 

sensor information vectors considered in the Combination Generation Algorithm. 

b. Total. Total constraints are those that apply to complete cut sets  

x = {x1 , x2 , … , xb , … , xn'} (i.e. the completely defined cut set). In this instance, a total 
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constraint implies that a particular complete cut set implies one of the sensor information 

vectors considered in the Combination Generation Algorithm. 

5.5.2. Step 2: Setting minimum and maximum component state variables, xj.  

One of two possible approaches must be used to establish minimum and maximum xj values: 

a. Trivial. All component state variables. xb, are assigned values of 0 and (z-1) as minimum 

and maximum values respectively. 

{min1 , min2 , … , minb , … , minn'} = {0 , 0 , … , 0 , … 0} ---(110) 

{max1 , max2 , … , maxb , … , maxn'} = {(z-1) , (z-1) , … , (z-1) , … , (z-1)} ---(111) 

b. Theoretical (optional, but will greatly speed computation). All component state variables. 

xb, have minimum and maximum values derived from constraints. The number of 

subsequent possible cut sets is significantly reduced, thereby reducing computational 

timeframes. The estimates can be improved iteratively as follows: 
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Minimizing minb such that: 
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  and maximizing maxb such that:  
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where 
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2

...
,   

...

S
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S S S
S
i

S
m

x

x

x

x

 
 
 
  = ∈ 
 
 
 
  

xx x  . 

Equations (112) and (113) are repeated until the two sets in (110) and (111) are developed. 
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5.5.3. Step 3: Generation of cut sets - ‘Sideways consideration / Upwards generation’.  

As previously discussed, the final process is using the remaining undefined values of xj and their 

associated minimum and maximum values to generate a set of all cut sets that meet the 

constraints. This is done sequentially in sub-sets {x1 , x2 , … , xb}, for b = 1,2, … , n'  (i.e. 

sideways consideration) for each possible remaining combination (i.e. upwards generation). 

Acceptance and rejection occurs as follows: 

a. Cut Sub-sets {x1 , x2 , … , xb}, b < n'. Cut sub-sets are tested against partial criteria. Cut 

sub-sets that meet partial criteria indicate potential for the remaining undefined values of 

{xb+1 , xb+2 , … , xn'} to imply the evidence. If any one partial criterion is not met, then all 

combinations that contain that particular sub-set are invalid. This significantly reduces the 

number of possible cut sets that subsequently need to be considered, reducing 

computational time. 

b. Complete Cut Sets {x1 , x2 , … , xb , … , xn'}. Complete cut sets are tested against total 

criteria. Complete cut sets that meet total criteria imply the observed evidence and are 

added to the set of cut sets that imply the evidence. 

The process is illustrated in Figure 34. 
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Figure 34: Overlapping Cut Set Generation Algorithm  

(‘sideways consideration / upwards generation’) 

Example 15: Cut-set (state vector) generation for sensor information vectors 

Consider the two component series system in Example 14. The Combination Generation 

Algorithm generated three possible combinations of sensor information vectors that implied the 

evidence, and are listed in equations (114), (115), and (116). 
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 { }1 6 7 8 101, 2, 4, 3S S S S Sv v v v= = = = =v  ---(114) 

 { }2 6 7 8 9 102, 1, 3, 1, 3S S S S S Sv v v v v= = = = = =v  ---(115) 

 { }3 6 8 9 103, 2, 2, 3S S S S Sv v v v= = = = =v  ---(116) 

where S
lv  is the number of times the lth sensor information vector, S

lx , appears in the 

combination, and all values S
lv  that are not listed in (114), (115) or (116) are zero. 

The relevant sensor information are those referenced in (114), (115) and (116) that form the set: 

 { }6 7 8 9 10, , , ,S S S S S S=x x x x x x      ---(117) 

These relevant sensor information vectors are listed in Table 10. 

xS 

l S
lx  1

Sx  2
Sx  

6 6
Sx  2 1 

7 7
Sx  3 1 

8 8
Sx  2 2 

9 9
Sx  3 2 

10 10
Sx  3 3 

Table 10: List of relevant sensor information vectors for the system in Figure 30 with evidence 

in equations (95), (96) and (97). 

Structure functions calculate the state of the sensors located at the (sub-) system levels based on 
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the state vector and system logic (such as that illustrated in Figure 29).  

( ) { }( )1 2 3 ', , ,..., ,...,S S S
i i i b nx x x x x xφ φ= =x

 

1 if the (sub-) system has completely failed    
                                    ...
1 if the (sub-) system is in the first degraded state
0 if the (sub-) system is completely functional

z −
= 

  

---(55) 

Therefore, the sensor information vector can be defined as: 

 
( )
( )

{ }( )
{ }( )

1 1 2 3 '11

22 2 1 2 3 '

, , ,..., ,...,

, , ,..., ,...,

SSS
b nS

SS S
b n

x x x x xx

x x x x x x

φφ

φ φ

        = = =     
          

x
x

x







 ---(118) 

The total criteria for component state vectors, x  = {x1 , x2 , x3 , … , xb , … , xn'}, is that they 

must imply a sensor information vector that is listed in the set (117) and Table 10. 

i.e. 
( )
( )

{ }( )
{ }( )

1 1 2 3 '11

22 2 1 2 3 '

, , ,..., ,...,

, , ,..., ,...,

SSS
b nS S

SS S
b n

x x x x xx

x x x x x x

φφ

φ φ

        = = = ∈     
          

x
x

x
x







 ---(119) 

The partial criteria deal with component state vector sub-sets, {x1 , x2 , x3 , … , xb} where b < n'. 

If {min1 , min2 , … , minb , … , minn'} and {max1 , max2 , … , maxb , … , maxn'} are the set of 

minimum and maximum possible state variable values, xb, the partial criteria can be written as: 
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and 
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  ≥ = ∈ 
  

xx x   ---(121) 

The sets {min1 , min2} and {max1 , max2} are trivially set at: 

 {min1 , min2} = {0 , 0} ---(122) 

 {max1 , max2} = {(z – 1) , (z – 1)} = {3 , 3} ---(123) 

The minimum and maximum sets are improved based on iteratively undertaking (112) and (113) 

until the sets in (122) and (123) reach steady state shown in (124) and (125). 

 {min1 , min2} = {1 , 0} ---(124) 

 {max1 , max2} = {3 , 3} ---(125) 
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The generation of cut-sets is then carried out using the partial criteria represented in equations 

(120) and (121) and total criterion represented in equation (119). The process is illustrated in 

Figure 35.  

 

Figure 35: Generation of component cut-sets. 

It can be seen that there are ten cut-sets that generate sensor information vectors that form 

combinations previously identified. The algorithm reduces the number of potential cut-sets that 

need to be considered from a total of zn' = 42 = 16 to 12. This is not a large reduction due to the 
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high proportion of relevant cut-sets (10 out of 16), but this process will yield significant 

computational reductions in larger, more complex systems. 

5.6. EVALUATING DOWNWARDS INFERENCE LIKELIHOOD FUNCTION 

Recall that the likelihood function for downwards inference was modified to: 

( )
( ) ( )

( )
max

1

Pr |
|

!

S
l a

S S
a E

vSl l

S
l l a

L E
v=∀ ∈

      ∝   
  
  

∑ ∏
v

p
p

v

x





 ---(70) 

The outputs of the combination generation and cut-set generation algorithms allow equation (70) 

to be solved. 

Example 16: Multi-state on-demand system likelihood function evaluation 

Consider the two component series system in Example 14. The three possible combinations of 

sensor information vectors are: 

 { }1 6 7 8 101, 2, 4, 3S S S S Sv v v v= = = = =v  ---(114) 

 { }2 6 7 8 9 102, 1, 3, 1, 3S S S S S Sv v v v v= = = = = =v  ---(115) 

 { }3 6 8 9 103, 2, 2, 3S S S S Sv v v v= = = = =v  ---(116) 

where S
lv  is the number of times the lth sensor information vector, S

lx , appears in the 
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combination, and all values S
lv  that are not listed in (114), (115) or (116) are zero. 

The relevant sensor information vectors form the set: 

 { }6 7 8 9 10, , , ,S S S S S S=x x x x x x      ---(117) 

The vectors in (117), their cut-sets and conditional probabilities are listed in Table 11. 

Sensor information 
vector Cut Sets 

x  = {x1 , x2} ( )Pr |S
l px  

l S
lx  

6 {2,1} {1,2} ( ) (1) (2)
6 1 2Pr S p p=x  

7 {3,1} {1,3} ( ) (1) (3)
7 1 2Pr S p p=x  

8 {2,2} {2,0}; {2,1}; {2,2} ( ) (2) (0) (2) (1) (2) (2)
8 1 2 1 2 1 2Pr S p p p p p p= + +x  

9 {3,2} {2,3} ( ) (2) (3)
9 1 2Pr S p p=x  

10 {3,3} {3,0}; {3,1}; {3,2}; 
{3,3} ( ) (3) (0) (3) (1) (3) (2) (3) (3)

10 1 2 1 2 1 2 1 2Pr S p p p p p p p p= + + +x  

Table 11: List of relevant sensor information vectors for the system in Figure 30 with evidence 

in equations (95), (96) and (97) and mutually exclusive cut-sets. 

Substituting these outputs into equation (70) yields: 
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=  
 + + + ×  + + +     

---(126) 

5.7. SUMMARY 

Chapter 5 outlined an algorithm that is used to generate likelihood functions that allow Bayesian 

analysis of overlapping data sets from on-demand systems. At the heart of the algorithm is the 

development of sets of combinations of sensor information vectors that imply the evidence. A 

sensor information vector summarises the states detected by all sensors in a particular demand. 

Based on the number of demands, generating combinations of sensor information vectors that 

imply the evidence is the most computationally burdensome activity. By replacing component 

state vectors with sensor information vectors, the total number of possible vectors each 
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combination can include is considerably less (noting that there will be fewer sensors than 

components). The probability of each sensor information vector can be calculated using cut sets 

derived from the algorithm, and the likelihood function for specific evidence sets easily 

evaluated. 
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Chapter 6: Overlapping data likelihood function of systems with 

continuous life metrics 

6.1. INTRODUCTION 

In the case of systems based on time (which is a continuous life metric), the probability of the jth 

component having failed at a given time t is defined by the set of reliability parameters of that 

component. This requires a fundamental change in approach to data analysis when compared to  

that for on-demand. This chapter outlines a methodology that allows Bayesian analysis of time-

based systems that have overlapping data sets. The methodology is completely translatable to 

systems based on other continuous life metrics (such as distance). 

6.2. TIME BASED FAILURE PROBABILITY 

For a system, component failure probability is equivalent to the time based cumulative 

distribution function or CDF, F(t). The failure probability then becomes a function of time. The 

CDF is defined by a set of parameters, which for the jth component is represented as jθ . The set 

of all n component parameters for the system is: 

 1 2 3{ , , ,..., ,..., }j n=θ θ θ θ θ θ      ---(127) 
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As the CDF is the failure probability of each component at time t: 

 ( ) ( )j j j j j jtime t
p t F t p p

=
= = = θ θ  ---(128) 

The probability that the jth component will fail at time tj is: 

 ( ) ( ) ( ) ( )Pr
j j

j j j j j j j j j j
t t t t

d dT t f t dt dt p t dt F t
dt dt= =

   = = = =      
   θ θ θ θ  ---(129) 

where ( )j j jf t θ  is the probability density function or PDF of the time to failure of the jth 

component given the set of parameters j
θ . 

It is typical for PDFs to be used in likelihood functions dealing with continuous random 

variables, even though they are not by definition probabilities. PDFs are non-zero and exploit 

proportionality, whilst specific probabilities of a continuous random variable being a particular 

value are zero. Notwithstanding, expressing the probability of observing a continuous random 

variable as a factor of dt (even though this is as discussed theoretically equivalent to zero) is 

important for subsequent steps in the methodology proposed.  

Recall that if overlapping data sets are denoted E• (each E• is overlapping with every other E•), 

then  overlapping data within a system based on continuous life metrics is formally written in 

Bayes’ theorem in equation (130). 
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 { }( ) { }( ) ( )

{ }( ) ( )
1 2 3 0

1 1 2 3
1 2 3 0

, , ,... |
| , , ,...

, , ,... | ' ' '

L E E E
E E E E

L E E E d

• • •
• • •

• • •

∀

= =
∫
θ

θ θ
θ

θ θ θ

π
π

π
 ---(130) 

where 1 2 3{ , , ,...}E E E• • •  is a number of overlapping data/evidence sub-sets of the total 

evidence E. 

As overlapping data sets are dependent, the overall likelihood function is not a product of 

individual data set likelihood functions. 

 { }( ) ( )1 2 3, , ,... | |i
i

L E E E E L E• • • •

∀
= ≠ ∏θ θ  ---(131) 

The inherent dependence of overlapping data means that each set is dependent on some or all of 

the other sets, and the likelihood function in equation (131) can be amended: 

 { }( ) ( )1 2 3, , ,... | | ,i i
i

L E E E E L E E• • • • •
≠

∀
= = ⊆ ∀∏θ θ  ---(132) 

As studied previously, it is often the case where sensors are placed at various hierarchical levels 

of systems. Evidence is then taken as the time failure is detected by various sensors and is by 

definition overlapping. 
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 1 2 3{ , , ,..., ,..., }S S S S S S
i mE t t t t t= =t  ---(133) 

where E is the evidence set of the complex system, m is the number of sensors in the 

system, and S
it  is the time failure is detected by the ith sensor. 

To better understand the nature of overlapping data sets in the context of time-based systems, the 

concept of inference diagrams is introduced. Each sub-set is defined by an inference diagram. In 

effect, inference diagrams modify the likelihood function in equation (132) by generating 

separate likelihood functions for each sub-set of the evidence, and generating an overall 

likelihood function through their product.  

Example 17: Inference Diagrams 

Consider the 4 component, 3 sensor system in Figure 36. The different colours denote different 

regions of inference and influence for each sensor. Components 2 and 3 are identical components 

(i.e. components from the same component type). The component type number of the jth 

component, jb, is listed in Table 12. 

Component Number 
b = ∈ (1, 2, … , n') 

Component Type 
jb ∈ (1, 2, … , n) 

Component Failure 
Probability 

pjb 
1 1 (type A) p1 
2 2 (type B) p2 
3 2 (type B) p2 
4 3 (type C) p3 

Table 12: Component numbers and component type numbers for components  

in the system illustrated in figure 16. 
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Figure 36: Three sensor on-demand system with paths of apparent influence indicated 

It can be seen that there are three distinct apparent inference paths. The blue inference path 

terminates at the top event or system level, and shows that components 1, 2 and sensor #3 data 

does not have an apparent influence on system level characteristics since sensor #2 summarizes 

all subordinate structural characteristics. Should sensor #3 evidence change or be re-evaluated, it 

will have no implication on system level evidence if the sensor #2 evidence remains unchanged. 

In this way, sensors can ‘isolate’ the inference and influence of subordinate systems, sub-systems 

and components. The inference of each sensor separate the system in figure 16 into three separate 

sub-systems as illustrated in Figure 37. 
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Figure 37: Three apparent sub-systems based on inference relationships 

  

The inference diagram introduced in Example 17 is a directed acyclic graph that illustrates paths 

of apparent inference and how sensor data summarizes the effect that subordinate components 

have on superior sensors. Inference diagrams are technically a form of an influence diagram 

primarily emanating from the fields of Bayesian networks and decision-making methodologies. 

Nevertheless, some distinction between the two is worthwhile as inference diagrams only 

involve ‘events’ in the form of component functionality, and are meant to assign inference from 

components to sensors rather than being a fundamental part of calculation. They also include 

additional information on the nature of dependence between components by the inclusion of 

logical gates (such as the ‘AND’ / ‘OR’ gates of a fault-tree). The colour shading in Figure 36 

and Figure 37 emphasizes how the system is broken into sub-systems, while the grey shading 

highlights that components 2 and 3 both share failure probability p2.  [18] 
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In this way, the apparent inference from superior sensor data comes from subordinate sensor data 

and subordinate components. For example, components 3 and 4 in Figure 36 and Figure 37 are 

subject to inference from sensors #1 and #2 only; how components 1 and 2 behave does not 

matter given data from sensor #2 is gathered (hence the term apparent inference). 

The system in Figure 36 is equally well represented by the three separate sub-systems in Figure 

37. By definition, they are overlapping through the dependency between failures detected by the 

same sensor represented in different sub-systems. However, the sub-systems can be treated as 

non-overlapping when each is calculated in the context of all other evidence sets (which would 

be the product of individual likelihood functions of each sub-system). As components 2 and 3 are 

identical but appear in different sub-systems, the likelihood of the component type failure 

probability is influenced by two of the three sub-system likelihood functions. 

As illustrated in Figure 38 (which replicates the system represented in Figure 36 and Figure 37), 

the inference from any sub-set of the evidence must be considered in the context provided by all 

other evidence. For example, sensor #1 will always detect failure at the same time sensor #2 

detects failure if component 2 has not previously failed. 
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Figure 38: Three apparent sub-systems based on inference relationships 
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6.3. HIERARCHY OF SENSORS AND COMPONENTS 

If a system has m sensors, then the hierarchy of each sensor needs to be understood. The 

following definition and terminology is based on any reliability graphical representation of a 

system but is most easily observed within a fault-tree. Any component or sensor that is 

hierarchically beneath a particular point but not necessarily within the same branch in a graphical 

representation of a system is said to be at a lower-level to that point. Conversely, any component 

or sensor that is hierarchically above a particular point but not necessarily within the same 

branch is said to be at a higher-level to that point. Any component or sensor that is at the same 

level hierarchically is said to be equivalent. 

Any lower-level component or sensor that appears within the same branch of a particular point is 

said to be subordinate. Likewise, any higher-level component or sensor that appears within the 

same branch of a particular point is said to be superior. For any sensor, all subordinate 

components and sensors that appear in its relevant inference diagram (as per the example in 

Figure 38) are said to be inferentially subordinate. 

Let the 1st sensor be such be the ‘highest’ sensor and the mth sensor be the ‘lowest’. This means 

that in any fault-tree representation, the (i+1)th sensor will always be represented below or 

hierarchically equivalent to the ith sensor. Inferentially subordinate sensors to the ith sensor must 

be drawn from the set of the (i+1)th to mth sensors. This ordering is apparent in Figure 39.  



 

 126 
 

 

Figure 39: Hierarchy of a 5 component, 5 sensor system with respect to sensor #2 

Figure 38 also illustrates how data from subordinate sensors effectively summarizes the effect 

that lower level components have on higher level sensors. Therefore, the time to failure detection 

characteristics of each sensor is conditional on inferentially subordinate components and sensors 

only. Referring to Figure 39, even though component 1 is subordinate to sensor #2, it is not 

inferentially subordinate to sensor #2 as sensor #4 provides all relevant information about the 

state of the system at that point. Given that sensor #4 exists, the behaviour of component 1 is no 

longer relevant. This allows the generation of inferentially subordinate sets for each sensor as 

listed in Table 13. 
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Sensor 
Number 

i 

Inferentially subordinate sets 

sensor 
indices 

S
i
⊂
i  

sensors 
S

i
⊂
S  

sensor 
detection 

times 
S

i
⊂
t  

component 
indices 

S
i
⊂
j  

components 
S

i
⊂
C  

component 
failure 

probabilities 
S

i
⊂
p  

component 
reliability 
parameters 

S
i
⊂θ  

1 {2,3} {S2,S3} 2 3{ , }S St t  ∅ ∅ ∅ ∅ 

2 {4} {S4} 4{ }St  {2,3} {C2,C3} {p2,p3} { }2 3, θ θ  

3 {5} {S5} 5{ }St  {4} {C4} {p4} { }4
θ  

4 ∅ ∅ ∅ {1} {C1} {p1} { }1
θ  

5 ∅ ∅ ∅ {5} {C5} {p5} { }5
θ  

 

Table 13: Expression of multi-level evidence for binary-state on-demand systems 

Inferentially subordinate sets are formally defined as: 

S
i
⊂
i  … the set of indices of all sensors that are inferentially subordinate to the ith sensor; 

S
i
⊂
S … the set of all sensors that are inferentially subordinate to the ith sensor; 

S
i
⊂
t … the set of all failure detection times of sensors that are inferentially subordinate to 

the ith sensor (i.e. the failure detection times of all sensors ∈ S
i
⊂S ); 

S
i
⊂
j  … the set of indices of all components that are inferentially subordinate to the ith 

sensor; 

S
i
⊂
C … the set of all components that are inferentially subordinate to the ith sensor; 

S
i
⊂
p … the set of failure probabilities of all components that are inferentially subordinate 

to the ith sensor (i.e. the failure probabilities of all components ∈ S
i
⊂C ); and 

S
i
⊂θ … the set of reliability parameters of all components that are inferentially subordinate 

to the ith sensor (i.e. the reliability parameters of all components ∈ S
i
⊂C ). 
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As all of the sets above are drawn from internally from the system, the following can also be 

written: 

 S
i
⊂ ⊆ p p  and S

i
⊂ ⊆θ θ            ---(134)(135) 

Therefore, generalizing the likelihood function in equation (132) allows the posterior distribution 

using evidence taken as the times failure is detected by various sensors is: 

 

( ) { }( ) { }( )1 1 1 2 3 1 1 2 3| | , , ,..., ,..., | , , ,..., ,...,S S S S S
i m i mE E E E E E t t t t t• • • • •= =θ θ θπ π π

 ( ) ( )

( ) ( )

0
1

0
1

| ,

| ', ' '

m
S S S
i i i

i
m

S S S
i i i

i

L t

L t d

⊂ ⊂

=

⊂ ⊂

=∀

 
  =

 
  

∏

∏∫
θ

θ θ

θ θ θ





π

π

t

t
 ---(136) 

where E is the evidence set 1 2 3{ , , ,..., ,..., }S S S S S
i mt t t t t  and S

it  is time failure is detected by the 

ith sensor. 

It can be seen that equation (136) is of similar construction to what one would expect when 

compiling multiple non-overlapping data sets (by simply multiplying individual likelihood 

functions). The key difference is that the likelihood function for each overlapping data element 

(which is the time to failure detection of the ith sensor) is conditional on all inferentially 

subordinate failure detection times. This allows the dependence from the overlapping nature of 

the data to be incorporated into a Bayesian construct that can be more easily evaluated. The 
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likelihood function in equation (136) utilizes a state of knowledge dependence to incorporate 

multiple instances of the same component type. This dependence assumes that each component 

has the same underlying reliability parameters.  

6.4. PROBABILITY DENSITY FUNCTIONS OF TIMES THAT SENSORS DETECT 

FAILURE 

The development of a likelihood function for a system using evidence of the form introduced in 

equation (133) requires the time to failure detection probabilities of all sensors to be calculated. 

This involves the PDF of time to failure being calculated for the relevant points in the system. 

Using the system illustrated in Figure 38, the relationship between tS (time sensor detects failure) 

and t (times that components fail) is illustrated in Figure 40. 

Using the influence diagrams, the representation within Figure 38 can be represented as shown in 

Figure 41. 
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Figure 40: Representation of the probabilistic relationship between component failure times and 

times to detection of failure by sensors. 

 

Figure 41: Representation of the probabilistic relationship between component failure times and 

sensor failure detection times – sensor inference sub-systems, 
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The CDF of the time to failure detection by the ith sensor is based on the CDF of time to failure 

(detection) of inferentially subordinate components and sensors. The PDF is the derivative of the 

CDF with respect to t. 

i.e. probability of ith sensor failure detection  ( ) ( )'| , ,S S S S S S
i i i i i i jt t

F t p p p p⊂ ⊂ = = ∀ ∀θ t ---(137) 

 where ' S
ii ⊂∈ i  and S

ij ⊂∈ j . 

All probabilities in equation (137) are functions of time and conditional on inferentially 

subordinate parameters, and equivalent to respective CDFs (i.e. CDF ≡ p). The CDF of the time 

to failure detection is a function based on system logic (through generation of disjoint cut-sets or 

equivalent method). The PDF of time to sensor detection by the ith sensor is the derivative of 

equation (137) with respect to time. 

i.e. ( ) ( ) '
'

' '
| , ,

S S
i i

S S S S
jS S S S Si i i i

i i i i i j S
i j ji

dpdp d p dp pf t p p p
dt dt dt p dtp⊂ ⊂

⊂ ⊂

∈ ∈

  ∂ ∂
= = ∀ ∀ = • + •     ∂∂   

∑ ∑
i j

θ t ---(138) 

 where ' S
ii ⊂∈ i  and S

ij ⊂∈ j . 

When sensor evidence or data is introduced, the probabilistic relationships in Figure 40: and 

Figure 41 are broken between separate inference diagrams as previously discussed. This is 

shown in Figure 42 where all inferentially subordinate sensors have precisely known times to 

failure detection. 
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Figure 42: Representation of the probabilistic relationship between component failure times and 

times at which sensors detect failure – sensor inference sub-systems (where the times to failure 

detection of sensors #2 and #3 are known). 

The evidence defines the characteristics of all inferentially subordinate sensors, which are those 

that appear on the right hand side of equations (137) and (138). The CDF of the time to failure 

detection of inferentially subordinate sensors becomes the unit or Heaviside step function5. This 

modifies equation (137) to: 

 ( ) ( )'| , ,S S S S S S
i i i i i i jF t p p p p⊂ ⊂ = = ∀ ∀θ t  ---(139) 

 where ( )' '
S S
i ip H t t= −  and H(x) is the unit or Heaviside step function. 

                                                 
5 In this dissertation, the right continuous Heaviside step function will be used where H(x) = 1 when x ≥ 0, 0 
otherwise. 
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( ) ( )'

' '
| ,

S S
i i

SS S S
i jS S S i i i

i i i S
i j ji

dH t t dpdp p pf t
dt dt p dtp⊂ ⊂

⊂ ⊂

∈ ∈

 −  ∂ ∂ = = • + •  ∂ ∂   
∑ ∑θ
 



i j
t

 

 
( )'

' 'S S
i i

S S
jSi i

iS
i j ji

dpp pδ t t
p dtp⊂ ⊂∈ ∈

  ∂ ∂
= • − + •     ∂∂   

∑ ∑
 i j

 ---(140) 

This allows the modification of the CDF of to time to failure detection by superior sensors, and 

introduces ‘steps’. For example, the CDFs for sensors #1 and #2 in Figure 42 are illustrated in 

Figure 43. It can be seen how the failure detection by subordinate sensors introduces ‘steps’ into 

the CDF of the superior sensor time to failure detection. As the conditional PDF in equation 

(140) is in effect the derivative of these stepped functions, special care must be taken when 

dealing with them mathematically. The PDFs of the CDFs below are undefined at the times 

when subordinate sensors detect failure, and hence cannot be substituted directly into Bayes’ 

Theorem. In this context, the probability of observing a particular instance of a continuous 

random variable (which is typically zero), will actually be finite when it coincides with the 

failure detection times of subordinate sensors. 

 

Figure 43: Conditional CDFs of time to failure detection of sensors #2 and #1 respectively, 

given the failure detection time of subordinate sensors. 
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Throughout this dissertation, the following taxonomy will be adhered to: 

a. ( ) ,  and  ,
S

S S S i
i i i

dpCDF F p PDF f
dt

 
 
 

 apply to the sensor being analysed. These functions 

are conditional on inferentially subordinate sensors and components. The functions are 

directly utilized in the development of the likelihood function, as they calculate 

probabilities associated with the time the ith sensor detects failure. 

b. Evidential probability of failure detection ( )'
S
ip  applies to inferentially subordinate 

sensors. This function is primarily conditional on observed times to failure, as they 

contextualize the functions in the previous sub-paragraph. 

As equation (140) is the PDF of time to failure detection by the ith sensor at time t, it is 

equivalent to the likelihood function: 

i.e. ( ) ( )| , | ,
S
i

S
S S S S S S S S i
i i i i i i i i

t t

dpL t f t
dt

⊂ ⊂ ⊂ ⊂

=

= ≡θ θ t t

 

  

( )'

' 'S S
Si iS ii

SS S
i ji i

S
i j ji t tt t

dH t t dpp p
dt p dtp⊂ ⊂∈ ∈ ==

 −  ∂ ∂ = • + •  ∂ ∂   
∑ ∑
 i j  

  

( ) ( )'

' '
|

S S
Si iS ii

SS S
i Si i

j i jS
i j ji t tt t

dH t tp p f t
dt pp⊂ ⊂∈ ∈ ==

  −∂ ∂  = • + •
 ∂ ∂   

∑ ∑
 



i j
θ

 
---(141) 

 where the PDF of time to failure of the jth component, ( )|
S
i

jS
j i j

t t

dp
f t

dt =

=θ . 
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The Dirac delta function is defined as 0 when x ≠ 0 and + ∞ when x = 0 (and hence is not a 

proper function), making the evaluation of equation (141) problematic. Appendix A outlines how 

a likelihood function of the form in equation (141) is dealt with in a Bayesian context. Therefore, 

the likelihood function becomes: 

 ( )
( )

' '' '
...  and 0

| ,

| ... otherwise

S
i

S
Si
i

S S
i i

iS S
i ii it tS S S S

i i i i S
Si

j i j
j j t t

p p
p p

L t
p f t
p⊂

∈ ∈=⊂ ⊂

∈ =

 ∂ ∂
≠ ∅ ≠

∂ ∂≡ 
∂ • ∂

∑ ∑

∑
θ

i i

j

i

t

θ

 









 ---(142) 

 given { }'i i= ∀i  such that '
S S
i it t=  and ' S

ii ⊂∈ i . 

Equation (142) will be a function of inferentially subordinate sensor failure detection 

probabilities. Recall that in each case, this is defined as: 

 ( ) ( ) '
' ' '

'

0...
|

1...

S
iS S S

i i i S
i

t t
p t t H t t

t t

 <= − = 
≥   

---(143) 

The likelihood of observing the set of failure detection times of the m sensors,  

1 2 3{ , , ,..., ,..., }S S S S S S
i mt t t t t=t  given the set of parameters that define the reliability (and failure 

probability) characteristics of all system components 1 2 3{ , , ,..., ,..., }j n=θ     θ θ θ θ θ , is defined 

below. The likelihood functions derived from the data set of each sensor can now be multiplied 

as they have been effectively isolated into separate sub-systems of non-overlapping inference. 
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 ( ) ( ) ( )1 1
1

| { ,..., } | ,..., | ,
m

S S S S S S S
m n i i i i

i
L L t t L t ⊂ ⊂

=
= = ∏θ θ 

 tθ θ t  

  

( )

' '' '

1

...  and 0

| ... otherwise

Si ii

S
Si
i

S S
i i

iS S
i ii im t t

Si Si
j i j

j j t t

p p
p p

p f t
p⊂

∈ ∈=

=

∈ =

  ∂ ∂
≠ ∅ ≠ 

∂ ∂ ≡  
 ∂ •  ∂  

∑ ∑

∏
∑

 







i i

j

i

θ

 ---(144) 

given { }'i i= ∀i   such that '
S S
i it t=  and ' S

ii ⊂∈ i  and where ( )' '
S S
i it

p H t t= − , 

( )|j j jt
p F t= θ  and ( )|j

j j
t

dp
f t

dt
= θ . 

6.5. CENSORED DATA 

Thus far, overlapping data sets have been considered where all sensors, systems and sub-systems 

are allowed to operate until failure is detected. The evidence set, 1 2 3{ , , ,..., ,..., }S S S S S S
i mt t t t t=t , 

contains specific times or inequalities for all S
it , which is the time that the ith sensor detects 

failure. It is not unusual for systems to cease being operated (or observed) once sensor level 

failure occurs. In this instance, if t* is the time that the relevant sub-system is ‘tested’, then it can 

be written: 

 
... where 

 is 
{ } ... (i.e. the set of all  times  greater than )

iS
i

i i

t t t
t

t t t t

∗

∗ ∗

 = ≤


∀ >
 ---(145) 

If the ith sensor has not detected failure by time it
∗ , (i.e. { }S

i it t t∗= ∀ > ), then the likelihood of the 

corresponding observation is simply the complement of probability of failure detection by the ith 

sensor by time it
∗ . 
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i.e. ( )| , 1
i

S S S S S
i i i i i t t

L t p ∗
⊂ ⊂

=
= −θt  if { }S

i it t t∗= ∀ >  ---(146) 

All inferentially subordinate sensors (recalling that they are primarily conditional on observed 

failure detection time) need to be modified to incorporate right censored data. As inferentially 

subordinate sensor probability functions contextualize the likelihood functions of higher-level 

sensor data, a provision must be made for scenarios where inferentially subordinate sensors 

cease to be observed prior to higher-level sensors cease observation.  

i.e. 

( )
( )
( )

' ' '
' ' '

' ' ' ''

'

| ,
... if { } and 

1 | , 

... otherwise

S S S
i i i S

i i iS S SS
i i i ii t

S
i

f t
t t t t t

F tp

H t t

⊂ ⊂
∗ ∗

∗ ⊂ ⊂


 = ∀ > > −= 


−

θ

θ

t

t





 ---(147)
 

In effect, equation (147) allows scenarios where subordinate sensors are right censored, meaning 

that the only thing that is known about their respective sub-system is that eventual time to failure 

will occur sometime after 'it
∗ . Therefore, the ‘state of knowledge’ of the eventual time to failure 

becomes a truncated PDF defined on 'it t∗> . 

This modifies the likelihood function derived in equation (144), which is based exclusively on an 

evidence set where the system is allowed to operate until all sensors detect failure, to the 

generalized form in equation (148). 
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( ) ( ) ( )1 1

1
| { ,..., } | ,..., | ,

m
S S S S S S S

m n i i i i
i

L L t t L t ⊂ ⊂

=
= = ∏θ θ 

 tθ θ t  

 

( )

1 ' '' '

1 ... if { } (i.e.   data)

... if   and 0

| ... otherwise.

i

Si ii

S
Si
i

S S
i i it t

S Sm
i i

iS S
i i ii it t

S
Si

j i j
j j t t

p t t t right censored

p p
p p

p f t
p

∗

⊂

∗

=

= ∈ ∈=

∈ =

 
 

− = ∀ > 
 
 ∂ ∂

≡ ≠ ∅ ≠ 
∂ ∂ 

 
 ∂

• ∂  

∏ ∑ ∑

∑

i 







i

j

i

θ

 ---(148) 

given { }'i i= ∀i  such that '
S S
i it t=  and ' S

ii ⊂∈ i , where  S
ip  is the probability of the ith 

sensor detecting failure expressed as a function of time t, inferentially subordinate 

component and sensor failure (detection) probabilities pj and '
S
ip , 

( )
( )
( )

' ' '
' ' '

' ' ' ''

'

| ,
... if { } and 

1 | , 

... otherwise

S S S
i i i S

i i iS S SS
i i i ii t

S
i

f t
t t t t t

F tp

H t t

⊂ ⊂
∗ ∗

∗ ⊂ ⊂

 
 = ∀ > > −=  
 

−  

θ

θ

t

t



 , ( )|j j jt
p F t= θ  and 

( )|j
j j

t

dp
f t

dt
= θ . 

6.6. CONTINUOUS LIFE METRIC SYSTEM - ALGORITHM 

The practical construction of the likelihood function, equation (144), is based on the distinct 

steps listed below. It is assumed that the logic of the system in question has been determined 

(including sensor placement), and all components have been modelled on respective parameter 

sets. 
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6.6.1. Step 1: Determine the set of all inferentially subordinate components and sensors 

for each sensor.  

This involves all sensors. The sets for the ith sensor are: 

 
S

i
⊂
i  … the set of indices of all sensors that are inferentially subordinate to the ith sensor; and 

 
S

i
⊂
j  … the set of indices of all components that are inferentially subordinate to the ith sensor. 

For example, if a system fails whenever a sub-system with its own sensor (sensor #2) or a 

separate component (component 1) fails, then the relevant sets for sensor #1 (the system) are 

{2}S
i
⊂ =i  and {1}S

i
⊂ =j . 

6.6.2. Step 2: Model system failure detection probabilities on inferentially subordinate 

components and sensors.  

This involves generating expressions for each sensor, as per equation (139). The function, by 

definition, must be expressed in terms of the inferentially subordinate sensors and components 

established in the previous step. 

( ) ( )'| , ,S S S S S S
i i i i i i jF t p p p p⊂ ⊂ = = ∀ ∀θ t

 

---(139) 

The structure of these functions is based on system logic and derived utilizing Boolean algebra. 

For example, if a system fails whenever a sub-system with its own sensor (sensor #2) or a 
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separate component (component 1) fails, then the probability of failure detection for the 1st 

sensor (the system) is defined as ( )1 2' 1 2' 1
S S Sp p p p p= + − . All inferentially subordinate sensors 

that appear on the right hand side of these equations are denoted '
S
ip  (and therefore 1' Si ⊂∈ i ). 

6.6.3. Step 3: Compile evidence.  

The evidence set, 1 2 3{ , , ,..., ,..., }S S S S S S
i mt t t t t=t , is the compilation of times until failure detection 

for each sensor, S
it . If the detection time is right censored (as in detection stopped at it

∗  with no 

failure), then S
it  is the set of all time greater than it

∗ : { }S
i it t t∗= ∀ > . 

6.6.4. Step 4: Compile evidential probability of failure detection '
S
ip  for all inferentially 

subordinate sensors.  

The expression for '
S
ip  is conditional on the evidence set. 

( )
( )
( )

' ' '
' ' '

' ' ' ''

'

| ,
... if { } and 

1 | , 

... otherwise

S S S
i i i S

i i iS S SS
i i i ii t

S
i

f t
t t t t t

F tp

H t t

⊂ ⊂
∗ ∗

∗ ⊂ ⊂


 = ∀ > > −= 


−

θ

θ

t

t



  ---(147) 

6.6.5. Step 5: Differentiate all sensor failure detection probabilities, S
ip , with respect to  

inferentially subordinate sensor failure detection probabilities, '
S
ip .   

For example, if a system fails whenever a sub-system with its own sensor (sensor #2) or a 

separate component (component 1) fails, then the derivative of 1
Sp  with respect to 2'

Sp  is 1 – p1. 
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6.6.6. Step 6: Differentiate all sensor failure detection probabilities, S
ip , with respect to 

inferentially subordinate component failure probabilities, pj.  

For example, if a system fails whenever a sub-system with its own sensor (sensor #2) or a 

separate component (component 1) fails, then the derivative of 1
Sp  with respect to p1 is 2'1 Sp− . 

6.6.7. Step 7: For all sensors, compile set of all inferentially subordinate sensors that have 

identical failure detection times.  

That is, { }'i i= ∀i  such that '
S S
i it t=  and ' S

ii ⊂∈ i . It is possible that no inferentially subordinate 

sensors share the same time to failure detection to the ith sensor, in which case i
i  will be a null 

set, ∅. 

6.6.8. Step 8: Substitute all elements into the likelihood function.  

At this stage, all elements of equation  (148)  have been determined, and substitution will yield 

the likelihood function. 

Example 18: Basic two component continuous life metric system overlapping data analysis 

Consider the simple parallel system illustrated in Figure 44 The system is tested until failure is 

detected by each sensor. Sensor #2 detects failure first, followed by the system (sensor #1). Both 

components have had their time to failure probability modelled and is summarized in Table 14. 
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Figure 44: Basic two component parallel system 

Component number: j PDF: ( )|j jf t θ  CDF: ( )|j jF t θ  Parameters: j
θ  

1 1
1

λ tλ e−  11 λ te−−  λ1 

2 2
2

λ tλ e−  21 λ te−−  λ2 

Table 14: Component reliability characteristics for system illustrated in Figure 44. 

 

Step 1. The sets of inferentially subordinate sensors and components for each sensor are shown 

in Table 15: 

Sensor #: i S
i
⊂
i  S

i
⊂
j  

1 {2} {2} 
2 ∅ {1} 

Table 15: Sets of inferentially subordinate sensors and components for the system in Figure 44.  

Step 2. The sensor failure detection probabilities in terms of inferentially subordinate 

components and sensors are listed in equations (149) and (150). 

System (Sensor #1) System (Sensor #1) 

1 

Sensor  #2 
2 

● Number of components, n = 2 
 
Number of sensors, m = 2 
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 For sensor #1: 1 2' 2
S Sp p p= ×  ---(149) 

 For sensor #2: 2 1
Sp p=  ---(150) 

Step 3. The times to failure detection generate the evidence set: 

 { }1 210.538 , 9.269 S S SE t h t h= = = =t  ---(151) 

Step 4. There is only one inferentially subordinate sensor (sensor #2), and its evidential failure 

probability is: 

 ( )2'  9.269S
t

p H t= −  ---(152) 

Steps 5 and 6. All relevant partial derivatives of higher level probabilities are shown in Table 16: 

x 1
Sp

x
∂
∂

 2
Sp

x
∂
∂

 

2'
Sp  p2 n/a 

p1 n/a 1 
p2 2'

Sp  n/a 

Table 16: Partial derivatives of higher level failure probabilities for the missile guidance system 

Step 7. There are no instances of identical times to failure detection, so i = ∅i  for all i. 
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Step 8. Substituting the above equations into equation (148) yields: 

 ( )

( )

2

1 ' '' '

1 ... if { } (i.e.   data)

| ... if   and 0

| ... otherwise.

i

Si ii

S
Si
i

S S
i i it t

S S
S i i

iS S
i i ii it t

S
Si

j i j
j j t t

p t t t right censored

p pL
p p

p f t
p

∗

⊂

∗

=

= ∈ ∈=

∈ =

 
 

− = ∀ > 
 
 ∂ ∂

≡ ≠ ∅ ≠ 
∂ ∂ 

 
 ∂

• ∂  

∏ ∑ ∑

∑

θ
 









i i

j

t i

θ

 

  ( )
2

1
|

S
Si
i

S
Si

j i j
i j j t t

p f t
p⊂= ∈ =

 ∂ = •
 ∂
 

∏ ∑




j
θ   

 

  ( ) ( )
1 2

1 2

1 2
1 2| |

S S
S S

S S
S S

j j j j
j jj jt t t t

p pf t f t
p p⊂ ⊂∈ ∈= =

  ∂ ∂  = • •
  ∂ ∂
  

∑ ∑
 

 

j j
θ θ  

  
( ) ( )

1 2

1 2
2 1 2 1 2 1

2 1
|

S S

S S
S S

t t t t

p pf t f t
p p

= =

  ∂ ∂  = • •
  ∂ ∂
  

| θ θ

 

  
( ) ( )( )

1
2 2 1 2 1 2 1|S
S S S

t t
p f t f t

=
 = • 
 

| θ θ
 

  
( )( ) ( )1 22 1 1 2 9.269 10.538

2 1 1 2
S St te e e− +− −= = λ λλ λλ λ λ λ

 
---(153)

 

It can be observed that the likelihood function in equation (153) is equivalent to: 

 ( ) 1

2

component 1 failing at 9.269 h given ; and
| Pr

component 2 failing at 10.538 h given      
SL


= 


θ

λ
λ

t  ---(154) 

as there are no instances of right 
censoring, and no instances of identical 
times to failure detection at multiple 
sensors. 
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The likelihood function is illustrated in Figure 45.  

 

Figure 45: Likelihood function for system illustrated in Figure 44 with evidence set (151) 

The downwards inference technique outlined above is able to incorporate overlapping data from 

various levels from within a system and can identify situations where sensor data is able to infer 

information directly about individual component failure times (a situation explored in Example 

18). Downwards inference also infers information when the sequence of sensor failure detection 

effectively ‘masks’ some of the component failure times (a situation explored in Example 19).  

Example 19: Basic two component continuous life metric system overlapping data analysis 

Consider the same simple parallel system considered in Example 18 and illustrated in Figure 44. 

The system is tested until failure is detected by each sensor. As opposed to Example 18, the 

system (sensor #1) and sensor #2 detect failures simultaneously. The failure detection times, in 

equation (155), generate the evidence set. 

0
0.5

1

0
0.5

1

λ1 λ2 

L(
t S   |

 λ
1 ,

 λ
2)

 
~ 
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 { }1 2 9.745 S S SE t t h= = = =t  ---(155) 

Steps 1, 2, 5 and 6 in developing the likelihood function are identical to those in Example 18. 

Modified steps are listed below. 

Step 3: The times to failure detection generate the evidence set are { }1 2 9.745 S S SE t t h= = = =t . 

Step 4. There is only one inferentially subordinate sensor (sensor #2), and its evidential failure 

probability is: 

 ( )2'  9.745S
t

p H t= −  ---(156) 

Step 7. Since  1 2
S St t= :    1 {2}=i  ---(157) 

But 2 = ∅i  as sensor #2 has no inferentially subordinate sensors ---(158) 

Step 8. Substituting the above equations into equation (148) yields equation (159). 
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( )

( )

2

1 ' '' '

1 ... if { } (i.e.   data)

| ... if   and 0

| ... otherwise.

i

Si ii

S
Si
i

S S
i i it t

S S
S i i

iS S
i i ii it t

S
Si

j i j
j j t t

p t t t right censored

p pL
p p

p f t
p

∗

⊂

∗

=

= ∈ ∈=

∈ =

 
 

− = ∀ > 
 
 ∂ ∂

≡ ≠ ∅ ≠ 
∂ ∂ 

 
 ∂

• ∂  

∏ ∑ ∑

∑

θ
 









i i

j

t i

θ

 

  ( )
1 21

1 2
2

' '
|

SS S
i

S S
S

j jS
i j ji t t t t

p p f t
pp ⊂∈ ∈= =

  ∂ ∂  = •
 ∂ ∂  

∑ ∑






i j
θ   

  ( )
1

1 2
1 2 1

12'
|

S S
i

S S
S

S
t t t t

p p f t
pp

= =

  ∂ ∂  = •
∂  ∂  

θ ( ) ( )( )
12 1 2 11 |S

S
t tp f t
=

= • θ  

  ( ) ( )2 1 2 1 2 1| |S SF t f t=  θ θ ( )2 1 1 2
11

S St te eλ λλ− −= −  

 

( )2 19.745 9.745
11 e eλ λλ− −= −  ---(159) 

It can be observed that the likelihood function in equation (159) is equivalent to: 

 ( ) 1

2

component 1 failing at 9.745 h given ; and
| Pr

component 2 failing before 9.745 h given  
SL

λ
λ


= 


θt  ---(160) 

The likelihood function is illustrated in Figure 46. 
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Figure 46: Likelihood function for system illustrated in Figure 44 with evidence set (155) 

Example 20: Basic two component continuous life metric system overlapping data analysis 

Consider the simplified missile guidance system illustrated in Figure 47. It is being tested on 

inert missiles that have three additional sensors embedded that relay information back to a 

ground station real-time. The six components have had their time to failure probability modelled, 

and prior information exists for some of their reliability parameters from previous testing 

regimes and expert solicitation. This modelling and information is summarized in Table 17.  

0
0.5

1

0
0.5

1

λ1 λ2 

L(
t S   |

 λ
1 ,

 λ
2)

 
~ 
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Figure 47: Missile Guidance System 

Component 
number j 

PDF 
( )|j jf t θ  

CDF 
( )|j jF t θ  

Parameters 
j
θ  

Prior Distribution 

1* 1
1

λ tλ e−  11 λ te−−  λ1 ( ) 1

1
1

0 1
1

... 0

0 ... 0
λ λ

π λ
λ

>= 
≤

 

2 
1

βtβ
η

β
βt e
η

 − − 
   1

βt
ηe

 
− 

 −  

β2 ( ) ( )0 2 2,3π β U=  

η2 ( ) ( )0 2 100,150π η U=  

3* 

2
3

3

1
2

2
32

tμ
σe
πσ

 −
−  

 
 

3

3

1 1 erf
2 2

tμ
σ

  −
+  

   
 

µ3 ( ) 3
0 3

3

1 ... 0
0 ... 0

μ
π μ

μ
>

=  ≤
 

σ3 ( ) 3
1

3
0 3

3

... 0

0 ... 0
σ σ

π σ
σ

>= 
≤

 

4 4
4

λ tλ e−  41 λ te−−  λ4 ( ) ( )0 4 0.01,0.03π λ U=  

5 5
5

λ tλ e−  51 λ te−−  λ5 ( ) ( )0 5 0,0.02π λ U=  

6 6
6

λ tλ e−  61 λ te−−  λ6 ( ) ( )0 6 0,0.1π λ U=  

 

Table 17: Missile Guidance System component reliability characteristics for time expressed as 

minutes (* - Jeffreys’ non-informative prior distributions for relevant parameters [19]). 

Attitude 
Control  

Sub-
system 2 

Sub-
system 1 

 
 
 
 
 

Flight-path 
 Control 

Sub-
system 2 

Sub-
system 1 

Power  
Supply 

1 

Sensor #2 

4 

 

 

5 

Missile Guidance System (Sensor #1) 
 

Sensor #3 

2 3 

6 

Number of components, n = 6 
 
Number of sensors, m = 3 
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The entire set of parameters is defined as:  { }1 2 2 3 3 4 5 6, , , , , , ,λ β η μ σ λ λ λ=θ  ---(161) 

Step 1. The set of inferentially subordinate sensors and components for each sensor is shown in 

Table 18. 

Sensor # i S
i
⊂
i  S

i
⊂
j  

1 {2,3} {4,6} 
2 ∅ {1,2,3} 
3 ∅ {5} 

Table 18: Sets of inferentially subordinate sensors and components for the system in Figure 47 

Step 2. The sensor failure detection probabilities in terms of inferentially subordinate 

components and sensors are: 

 For sensor #1: 1 2' 4 3' 6 2' 4 3' 2' 6 4 3' 6 2' 4 3' 6
S S S S S S S S Sp p p p p p p p p p p p p p p p p= + + − − − +  ---(162) 

 For sensor #2: ( )2 1 2 3 2 3
Sp p p p p p= + −  ---(163) 

 For sensor #3: 2 5
Sp p=  ---(164) 

Step 3. The missile guidance system was tested until it failed at 113.54 minutes. Before failure, 

sensor #3 detected failure at 78.69 minutes. After the system failed, the inert missile lost control 

causing the test to be declared complete at the time of system failure, with sensor #2 yet to detect 

failure: 

 { }1 2 3113.54 min, 113.54 min, 78.69 minS S S SE t t t= = = > =t  ---(165) 
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Step 4. The evidential failure probabilities of the inferentially subordinate sensors (sensor #2 and 

sensor #3) are listed in equation (166). 

 

( )
( )

2
2 2' 2'

2' 2 2' 2'
2 113.54

| ,
... if 113.54 1 | , 1

0
0 ... otherwise

S
S S S

time tS S S S
Sit

time

dp
f t

dt
tp F t p

⊂ ⊂

=∗ ⊂ ⊂

=


 
  >= =−  − 
 



θ

θ





t

t  ---(166) 

noting that as the test concludes at 113.54 minutes, there is no need to develop 

equation (166) further. 

 ( )3'  78.69S
t

p H t= −  ---(167) 

Steps 5 and 6. All relevant partial derivatives of higher level probabilities are shown in can be 

calculated: 

X 1
Sp

x
∂
∂

 2
Sp

x
∂
∂

 3
Sp

x
∂
∂

 

2'
Sp  4 3' 6 4 3' 61 S Sp p p p p p+ − +  n/a n/a 

3'
Sp  4 2' 4 4 6 2' 4 6

S Sp p p p p p p p− − +  n/a n/a 
p1 n/a 2 3 2 3p p p p+ −  n/a 
p2 n/a ( )1 31p p−  n/a 

p3 n/a ( )1 21p p−  n/a 

p4 3' 2' 3' 3' 6 2' 3' 6
S S S S S Sp p p p p p p p− − +  n/a n/a 

p5 n/a n/a 1 
p6 2' 4 3' 2' 4 3'1 S S S Sp p p p p p− − +  n/a n/a 

Table 19: Partial derivatives of higher level failure probabilities for the missile guidance system 
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Step 7. There are no instances of identical times to failure detection, so i i = ∅ for all i. 

Step 8. Substituting the above equations into equation (148) yields: 

( )

( )

3

1 ' '' '

1 ... if { } (i.e.   data)

| ... if   and 0

| ... otherwise.

i

Si ii

S
Si
i

S S
i i it t

S S
S i i

iS S
i i ii it t

S
Si

j i j
j j t t

p t t t right censored

p pL
p p

p f t
p

∗

⊂

∗

=

= ∈ ∈=

∈ =

 
 

− = ∀ > 
 
 ∂ ∂

≡ ≠ ∅ ≠ 
∂ ∂ 

 
 ∂

• ∂  

∏ ∑ ∑

∑

θ
 









i i

j

t i

θ

 

  

( )

( )
( )

1

3

1

113.54

2 113.54

3

78.69

113.54 |

1

78.69 |

S

S

S

j j
j j t

S
t

S

j j
j j t

p f
p

p

p f
p

⊂

⊂

∈ =

=

∈ =

  ∂  •
 ∂   

 ≡ × − 
 
  ∂  × •

 ∂   

∑

∑









j

j

θ

θ  

  

( ) ( )( )
( ) ( )( )

( )( ) ( )

3' 2' 3' 3' 6 2' 3' 6 4 4113.54

2' 4 3' 2' 4 3' 6 6113.54

1 2 3 2 3 5 5113.54

113.54 |

1 113.54 |

1 78.69 |

S S S S S S
t

S S S S
t

t

p p p p p p p p f

p p p p p p f

p p p p p f

=

=

=

  − − + •  
   ≡  + − − + • 

  
 × − + − •  







θ

θ

θ
 

---(168)
 

Substituting equations (166) and (167) into equation (168) yields equation (169). 
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 ( )
( ) ( )( )

( ) ( )( )
( )( ) ( )

6 4 4113.54

4 6 6113.54

1 2 3 2 3 5 5113.54

1 113.54 |

1 113.54 ||

1 78.69 |

t

S
t

t

p f

p fL

p p p p p f

=

=

=

  − •
  
   + − •≡    
 × − + − • 

θ









θ

θt

θ

 ---(169) 

Breaking down equation (169) illustrates the nature of the system failure. In essence, the 

likelihood function in equation (169) is equivalent to: 

( )
4 6

4 6

1

components 6 functional and 4 failing at 113.54 given { , }; or
;  and

   components 4 functional and 6 failing at 113.54 given { , }
| Pr

sensor #2 not detecting failure at 113.54 given {
SL

 
 
 =θ

λ λ
λ λ

λ
t

2 2 3 3

5

, , , , };  and
component 5 failing at 78.69 given 








β η µ σ
λ

 

Substitution into Bayes’ Theorem yields: 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

6

0
1 0

0

|
| |

| '

S
S S

S

L
L

L d
∀

= ∝
∫
θ

θ θ
θ θ θ

θ' θ' θ




 



π
π π

π

t
t t

t
 ---(170) 

where ( )|SL θt  is provided by equation (169) and ( )0 θπ  is given by the product of all 

prior distributions defined in Table 17. 

A set of random draws utilizing Markov chain Monte Carlo simulation is an effective way of 

understanding the nature of the joint posterior distributions of the reliability parameters. [20] The 

following statistics are drawn for each parameter: 
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Parameters 
θ 

Percentiles 
Prior Posterior 

5th 50th 95th 5th 50th 95th 
λ1 n/a – improper prior distribution 0.0396 3.0383 17.375 
β2 2.05 2.50 2.95 2.0757 2.5019 2.9270 
η2 102.5 125.0 147.5 104.98 128.72 147.22 
µ3 n/a – improper prior distribution 12.511 137.49 240.25 
σ3 n/a – improper prior distribution 45.464 135.02 210.13 
λ4 0.011 0.020 0.029 0.0108 0.0168 0.0272 
λ5 0.001 0.010 0.019 0.0027 0.0110 0.0185 
λ6 0.005 0.050 0.095 0.0018 0.0132 0.0446 

 

Table 20: Missile Guidance System reliability parameter statistics (derived from Markov chain 

Monte Carlo simulation with 100 000 draws). 

6.7. SUMMARY 

Fully Bayesian methodologies have been developed for overlapping data at various levels within 

on-demand systems. The basis of this methodology is referred to as downwards inference and is 

extended to systems based on continuous life metrics in this chapter. A key aspect of downwards 

inference is the ability to incorporate overlapping data. Constraining overlapping data as non-

overlapping ignores the dependencies between the data sets and effectively removes information. 

An overlapping data likelihood function was developed to incorporate these inherent 

dependencies and generate the correct inference within Bayes’ Theorem for systems. All 

examples and equations were time based, but can easily transferrable to any other continuous 

independent random variable such as distance. The methodology developed above allow all 

information gathered from various hierarchical levels within a system to be correctly analysed to 

infer  all facets of information that such overlapping data sets contain. Several examples were 

developed to highlight the effect of the additional information overlapping data contains and 
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how it can be used to correctly improve our state of knowledge (which is the set of component 

reliability characteristics parameters). The flexibility of the likelihood function allows 

incorporation of multiple instances of the same component simultaneously. Through state of 

knowledge dependence, the resultant overlapping data Bayesian method completely incorporates 

all information and evidence that can possible be generated or observed by complex time based 

systems. 

  

 

 

 

 

  



 

 156 
 

Chapter 7: Uncertain Evidence 

7.1. INTRODUCTION 

This chapter explores fully Bayesian methodologies for incorporating uncertain overlapping data 

based on the likelihood functions outlined in previous chapters. In the case of on-demand 

systems, uncertain data manifests itself in terms of the number of observed degraded states from 

a number of demands, whereas it is manifested in terms of the time at which failure is detected 

for continuous time based systems. Incorporating uncertain evidence in the latter yields a 

likelihood function that is not only computationally simpler than that proposed in chapter 6, but 

correctly replicates reality in that all time detection devices have a known uncertainty.  

7.2. GENERAL FRAMEWORK FOR UNCERTAIN DATA 

Uncertain data in a Bayesian context conventionally refers to error associated with data 

collection. A system will behave in a particular way, and uncertainty is drawn from any process 

that prevents this particular way to be properly understood. The observed (uncertain) evidence, 

Ê , is separate to the ‘true’ (unknown) evidence, E. When the observed evidence, Ê , is gathered 

using a process or device that has an inherent deviation from the actual evidence, E, the 

relationship between the two (or uncertainty) is probabilistic. Bayesian analysis necessarily 

requires this uncertainty to be characterized by a subjective probabilistic relationship.  

There are two types of methods that exist when the uncertainty is expressed as a conditional 

probability. The first type is based on the conditional probability that E is the true evidence set 
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when the evidence set Ê  is observed: ˆPr( | )E E . This probabilistic relationship is referred to as 

Berkson error [21-23].  The first method for dealing with evidence uncertainty is Jeffrey’s rule 

of probability kinematics [24], and revolves around the generation of a posterior distribution 

which itself is the weighted average or weighted sum of posterior distributions for all possible 

true evidence sets, E as shown in equation (171).  

 ( ) ( ) ( )1 1
ˆ ˆ| | Pr |

E
E E E Eπ π

∀
= ∑θ θ  ---(171) 

Cheeseman’s rule [25] is based on theory where prior information and observed data is combined 

to construct a weighted likelihood function, and is shown in equation (172).  

 ( ) ( ) ( )ˆ ˆ| | Pr |
E

L E L E E E
∀

= ∑θ θ  ---(172)  

Tan and Xi [26] propose a method where Classical error is used to summarize the relationship 

between E and Ê . Classical error expresses the uncertainty as a conditional probability that Ê  is 

the observed evidence set when the true evidence set is E: ˆPr( | )E E . [21, 23, 27] The method, 

referred to as likelihood in terms of observation, is expressed in equation (173).  

  ---(173)  
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As mentioned in previous chapters, the calculation of the likelihood function of on-demand 

systems using downwards inference is computationally intensive. Therefore, there will be a 

significant computational liability with treating uncertainty evidence through evaluations of 

equation (171), (172) or (173). 

7.3. EVIDENCE UNCERTAINTY FOR ON-DEMAND SYSTEMS.  

With the nomenclature outlined above for both observed and true evidence sets, the likelihood 

function for overlapping data sets from multi-state on-demand systems in equation (64) can be 

re-written as equation (174). 

( ) ( )

( )'

ˆ

' (( ) )

1 1

1ˆ |
!

n l a
b l

b
a E

vz n x
j

l bl a

L E p
v∀ ∈ = =

     ∝   
     

∑ ∏ ∏
v

p
v

 ---(174) 

recalling that  when av  implies the data/evidence set Ê , it appears in the set vE.  

In essence the right hand side of the proportionality in equation (174) is simply a sum of the 

probability of occurrence for all possible combinations of state vectors that imply the observed 

evidence for r demands. The term av  refers to the ath combination of component state vectors, 

which is equivalent to a possible true evidence set, Ea. Therefore, (174) is expressed in terms of 

classical error as shown in equation (175).  
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( ) ( ) ( ) ( )
ˆ

ˆ ˆ| Pr | Pr | Pr |
a aE

a a aL E E
∀ ∈ ∀

= =∑ ∑
v

p p p
v v

v v v
 

     

 where
 

( )
ˆ1 ...  implies (i.e. )ˆPr |

ˆ0 ...  doesn't imply (i.e. )
a a E

a
a a E

E
E

E

 ∈= 
∉

v

v

v v
v

v v

 



   

 
( ) ( ) ( )

ˆ
ˆPr | Pr | Pr |

aa

a a a
EE E

E E E E
∀∀ →

≡ =∑ ∑p p
 

 where
 

( )
ˆ1 ...  implies (i.e. )ˆPr |

ˆ0 ...  doesn't imply (i.e. )
a a a E

a
a a a E

E E E
E E

E E E

 ≡ ∈= 
≡ ∉

v

v

v

v



  
---(175) 

The likelihood function in (174) therefore adheres to the likelihood in terms of observation 

method expressed in (173). 

7.4. CONTINUOUS TIME BASED SYSTEMS 

Example 19 in chapter 6 highlights the general implication of multiple sensors detecting failure 

at identical times for complex systems: there is typically a component that has failed prior to that 

time allowing the failure of a single component to cause multiple simultaneous failure detection. 

In reality, it is impossible to conclude from sensor whether failure detection was simultaneous 

due to limits in accuracy. A tenet of probability theory is that it is impossible for two random 

events to occur at exactly the same time. The time of failure detections in Example 19 was 9.745 

h, which implies the actual time to failure detection at each sensor is greater than or equal to 

9.745 h but less than 9.746 h (assuming accuracy of 0.001 h in measurement).6 In this case, it is 

possible for component 2 to have failed after component 1 even if both sensors detect times to 

                                                 
6 It is typical with most timing devices that time measurements increase ‘at’ increments of the smallest unit of 
measurement and remain unchanged until the next increment occurs. 
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failure of 9.745 h (e.g. components 1 and 2 could have failed at approximately 9.7453 h and 

9.7457 h respectively). Time measurements are recorded in multiples of basic time intervals that 

represent accuracy.  

e.g. t̂  = i ● Δt,        i ∈ 1 , 2 , 3 , … ---(176)  

where t̂  represents an uncertain observation of the underlying random variable, t 

(applicable to all random variables written throughout this dissertation).  

What this implies is that the actual time of failure, t, exists within the following domain: 

 ˆ ˆt t t t< ≤ + ∆  ---(177) 

The interval Δt is often used to define the accuracy of the time measurement device (e.g. 

hundredths or thousandths of a second is a typical short time frame accuracy metric). Assuming 

that all time measurements from multiple sensors within a system share common accuracy 

intervals, the likelihood function can be amended to be expressed in terms of component and 

sub-system CDFs only (i.e. not PDFs and hence no differentiation is required).  The uncertain 

data likelihood function is simplified and written in equation (178).  

 
( ) ( )1 1
ˆ ˆ ˆ| , { ,..., } | ,..., ,S S S

m nL t L t t t∆ = ∆θtθ θ  



 

  
( )

1

ˆˆ ˆPr ( ) | ,
m

S S S S S
i i i i i

i
t T t t ⊂ ⊂

=
= ≤ < + ∆∏ θ t
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( ) ( )

1

ˆ ˆˆ ˆ| , | ,
m

S S S S S S S S
i i i i i i i i

i
F t t F t⊂ ⊂ ⊂ ⊂

=

 ≡ + ∆ −  ∏ θ t θ t 

 

 

  
ˆ ˆ1

S S
i i

m
S S
i it t t t ti

p p
= +∆ ==

 = −  
∏

  
---(178)  

where Δt is the time increment used in measuring time to failure detection, ˆSt  (as opposed 

to St ) represents the vector of failure detection times with an inherent uncertainty, ∆t, and 

ˆ S
i
⊂t  is the set of all uncertain failure detection times of sensors that are inferentially 

subordinate to the ith sensor (i.e. the failure detection times of all sensors ∈ S
i
⊂S ). 

This modifies the steps (6.6.1 to 6.6.8) to the following steps.  

7.4.1. Step 1: Determine the set of all inferentially subordinate components and sensors 

for each sensor.  

The sets for the ith sensor remain unchanged: 

 
S

i
⊂
i  … the set of indices of all sensors that are inferentially subordinate to the ith sensor; and 

 
S

i
⊂
j  … the set of indices of all components that are inferentially subordinate to the ith sensor. 

7.4.2. Step 2: Model system failure detection probabilities on inferentially subordinate 

components and sensors.  

All functions that describe system failure detection probabilities are expressed in terms of the 

inferentially subordinate sensors and components established in the previous step. 
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 ( ) ( )'| , ,S S S S S S
i i i i i i jF t p p p p⊂ ⊂ = = ∀ ∀θ t

 

---(139) 

7.4.3. Step 3: Compile uncertain evidence.  

The evidence set (times at which failure is detected) with inherent uncertainty ∆t is now 

represented as 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ{ , , ,..., ,..., }S S S S S S

i mt t t t t=t . As before, if the detection time is right censored (as 

in detection stopped at ît
∗  with no failure), then ˆS

it  is the set of all time greater than ît
∗ : 

{ }S
i it t t∗= ∀ > . 

7.4.4. Step 4: Compile evidential probability of failure detection '
S
ip  for all inferentially 

subordinate sensors.  

The expression for '
S
ip  is conditional on the evidence set. 

'
'

'

ˆ0 ... if 
 

ˆ1 ... if 

S
iS

i St
i

t t
p

t t t

 ≤= 
≥ + ∆

 ---(179) 

7.4.5. Step 5: Substitute all elements into the likelihood function.  

At this stage, all elements of equation  (178)  have been determined, and substitution will yield 

the likelihood function. 
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Example 21: Overlapping data analysis of a continuous time-based system with inherent 

timing inaccuracies. 

Consider the same simple parallel system considered in Example 19 based on the same evidence 

set, but the accuracy of measurement is 0.001 hr. The first two steps remain unchanged, but recall 

that: 

 For sensor #1: 1 2' 2
S Sp p p= ×  ---(149) 

 For sensor #2: 2 1
Sp p=  ---(150) 

The CDFs of time to failure for each component (from Table 14) are: 

 Component #1: ( ) 1
1 1 1| 1 tp F t e λλ −= = −  ---(180) 

and  Component #2: ( ) 2
2 2 2| 1 tp F t e λλ −= = −  ---(181) 

Step 3. The times to failure detection generate the evidence set: 

 { }1 2
ˆˆ ˆ ˆ 9.745 S S SE t t h= = = =t   ... where ∆t = 0.001 h ---(182)  

Step 4. There is only one inferentially subordinate sensor (sensor #2), and its evidential failure 

probability, from equation (179), is shown in equation (183). 
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2'

2'
2'

ˆ0 ... if 
 

ˆ1 ... if 

S
S

St

t t
p

t t t

 ≤= 
≥ + ∆

 ---(183) 

Step 5: Substituting the above equations into equation (178) yields:  

 ( ) ( )1 2 1 2
ˆ ˆ ˆ| , { , } | , ,S S SL t L t t tλ λ∆ = ∆θt

 

  
ˆ ˆ1

S S
i i

m
S S
i it t t t ti

p p
= +∆ ==

 = −  
∏

1 1 2 2
1 1 2 2ˆ ˆ ˆ ˆS S S S
S S S S

t t t t t t t t t t
p p p p

= +∆ = = +∆ =
   = − −      

 

  
( ) ( )

2 21 1
2' 2 2' 2 1 1ˆ ˆˆ ˆ S SS S
S S

t t t t tt t t t t
p p p p p p

= +∆ == +∆ =
   = × − × −    

 

  

( )

( )

( )
( )

2

1

1 2

1

2 2

1

2'

2' ˆ ˆ

2' ˆ

2' ˆ

ˆ0 ... if 
1

ˆ 11 ... if 

ˆ 10 ... if 
1

ˆ1 ... if 

S S

S

S

S
t

tS
t t t t t t

tS
t t t

S
t t

t t
e

et t t

et t
e

t t t

λ
λ

λ
λ

−
−

= +∆ = +∆

−
− =

=

   ≤  × −     − ≥ + ∆      =      − −≤      − × −    ≥ + ∆      

  

( ) ( )2 1
1 21 2

2 1

1 2
ˆ

ˆˆ1 2

1 2
ˆ

1 2

ˆ ˆ0 ... if 

ˆ ˆ1 ... if 

ˆ ˆ0 ... if 

ˆ ˆ1 ... if 

S
SS

S

S S

t t S S
t tt

S S

t S S

t t t

e t t
e e

t t

e t t t

λ
λλ

λ

− +∆
− +∆−

−

  + ∆ ≤   
  − ≥    = − 
    ≤  −  
 − ≥ + ∆   

 

  

( )

( )
( )2 1 1 2 1

2 1 2

1 2
ˆ ˆ

1 2
ˆ

1 2

ˆ ˆ0 ... if 

ˆ ˆ1 ... if  1

ˆ ˆ1 ... if  

S S

S

S S

t t t tS S

t t S S

t t

e t t e e

e e t t

λ λ λ

λ λ

− +∆ − − ∆

− − ∆

 <
 
 = − = − 
 

− >  
 

---(184)  

 noting that the last step exploits the fact that t̂  exists as multiples of Δt. 
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An observation is that the likelihood function is zero if 1 2ˆ ˆS St t< , as it is physically impossible for 

sensor #1 to detect failure prior to sensor #2 due to it being a series system. Substituting the 

evidence from (182) generates equation (185). 

 
( ) ( )( ) ( )2 1 19.745 0.001 9.745 0.001ˆ | , 1 1SL t t e e eλ λ λ− + − −∆ = − −θ

 

 
( ) ( )2 1 19.746 9.745 0.00011 1e e eλ λ λ− − −= − −

 
---(185)  

The same technique was used for the data proposed in Example 18, with the same uncertainty in 

measurement. The likelihood functions are illustrated in Figure 48. It can be observed that they 

very closely match the ‘certain’ likelihood functions in Figure 45 and Figure 46, whilst being 

significantly easier to evaluate (without the need for differentiating). 

 

Figure 48: Likelihood functions of system illustrated in Figure 44 with evidence sets (151) and 

(155), analysed with an uncertainty in measurement of 0,001. 
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It can be seen that the limiting case of the general likelihood function in equation (184) when Δt 

approaches zero is equivalent to the likelihood functions from Example 18 and Example 19.  

 ( ) ( )1 2 2 1

1 2 2 1

1 2

ˆ ˆ
1 1 2

ˆ ˆ2
1 2 1 2

ˆ ˆ0                               if 
ˆ ˆ ˆ| , 1  if 

ˆ ˆ     if 

S S

S S

S S

t tS S S

t t S S

t t

L t dt e e t t

dt e e t t

λ λ

λ λ

λ

λ λ

− −

− −

 <

∆ = − =

 >

θt

  

... noting that 
lim 0

1 x t

t

e x
t

− ∆

∆ →

−
=

∆
 ---(186) 

Uncertain data for continuous time based systems can be analysed using Berkson or Classical 

error in either equations (171), (172) or (173). However, a specific case of uncertain data 

analysis has been explored in the case of inherent time measurement inaccuracies, resulting in a 

simplified likelihood function in equation (178) which is demonstrated in Example 21. 

Recalling:  

 
( )ˆ | ,SL t∆ =θt ( )

1

ˆˆ ˆPr ( ) | ,
m

S S S S S
i i i i i

i
t T t t ⊂ ⊂

=
≤ < + ∆∏ θ t



 
---(178) 

It can be seen that equation (178) is in fact equivalent to the likelihood in terms of observation 

method written in equation (173), where the observed evidence Ê  is equivalent to a set of failure 

detection times and the inherent inaccuracy: ˆÊ = t . 

 ( ) ( )
1

ˆ ˆˆ ˆ| , Pr ( ) | ,
m

S S S S S S
i i i i i

i
L t t T t t ⊂ ⊂

=
∆ = ≤ < + ∆∏θtθ t 
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ˆPr | ,
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S S S S S
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⊂ ⊂

=
≡ =∏ ∫ θ t
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( ) ( )
1

ˆˆPr | , Pr | ,
S
i

m
S S S S S S S

i i i i i i i
i t

t t t T t dt⊂ ⊂

= ∀

 = ∆ =  ∏ ∫ θ t

  

where ( ) ˆ ˆ1 ... ( )ˆPr | ,
0 ... otherwise

S S S
S S i i i

i i
t t t tt t t

 < ≤ + ∆
∆ = 


, which is analogous to 

classical error ( )ˆPr |E E , 

( )
0 ˆ1 0, ,2 ,...

ˆˆlim Pr( | , ) Pr( | , )
S S S Si i i i

m
S S S S S S

i i i i i i
ti t t t

t t t T t
∞

⊂ ⊂

∆ →= = ∆ ∆

  
= ∆ =      

∏ ∑ θ t



 

( )
0 ˆ1 0, ,2 ,...

ˆˆlim Pr( | , ) ( | , )
S S S Si i i i

m
S S

i i
ti t t t

E E t L E
∞

⊂ ⊂

∆ →= = ∆ ∆

  
= ∆      

∏ ∑ θ t



 

which is simply products of the likelihood function proposed by Tan and Xi in 

equation (173). 

7.5. SUMMARY 

The likelihood functions developed in previous chapters for both on-demand and continuous 

time based systems are generated from first principles and inherently deal with uncertainties 

contained with various evidence states. The derivation of each likelihood function is analogous 

with the likelihood in terms of observation method developed by Tan and Xi. Additionally, the 

inherent inaccuracies that exist in time measurement devices were exploited for the case of 

continuous time-based systems to generate a computationally efficient likelihood function. This 

reduces computational time significantly, and reflects time measurement in reality.  
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Chapter 8: Sensor Placement: Maximising information from Bayesian 

analysis of complex systems 

8.1. INTRODUCTION 

At the heart of Bayesian analysis is the concept of improving state of knowledge and 

information. This is formally implemented by observing a process or system, gathering evidence 

and incorporating it through Bayes’ Theorem to modify a joint distribution of the ‘unknowns of 

interest’, representing the state of knowledge. Typically, improving information through 

Bayesian analysis is in itself the only desired outcome, but in some instances it may be beneficial 

to quantify the amount of information ‘improvement’ in a way that allows the engineer to assess 

the nature of information gathering for the purpose of improving it. Alternately, the form or 

nature that evidence is gathered may have constraints (such as resource, time or physical) where 

it may be desirable to assess the probable improvement of information. This can allow different 

forms of evidence to be compared against each other for the probable gains in information. 

Such an example for assessing the information gains from various forms of evidence gathering is 

posed by of overlapping data sets gathered from complex systems, as these sets are drawn from 

sensors whose placement may have some flexibility. An approach is developed in this chapter 

that allows the reliability engineer to optimise sensor placement in complex systems. 
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8.2. BAYESIAN EXPERIMENTAL DESIGN 

Bayesian Experimental Design provides a framework through which experiments can be 

assessed against the expected value of a utility function.  The utility function defines the ‘worth’ 

or ‘value’ of a particular experiment in a theoretical probabilistic Bayesian construct. Bayesian 

inference allows the utility function to incorporate both the meaning or information contained by 

observing a given set of evidence and any prior information that exists about the parameters or 

the unknowns of interest. [28] 

The term ‘experiment’ typically conjures ideas of expeditionary activities representing an 

exploration to improve overall state of knowledge of the system or process in question. It implies 

that a ‘test environment’ is established along with its own variables and constraints in order to 

gain information about relevant parameters. Thus, an experiment differs fundamentally from 

actual use, operation or natural occurrence of the process or system as the latter instances do not 

involve a contrived ‘test environment’. Whilst this may be a discussion on semantics, the 

problem posed by the question of employing sensors within a system to improve the value of the 

state of knowledge can be considered to exist within the realms of both experimentation and 

actual use. The reason being is that the system function within its operational environment is 

independent of sensor placement, and sensor placement can be completely controlled by the test 

engineer. 

Design of experiments historically focuses on the duration, size and conditions of test. However, 

in the analysis of systems, the ability to move and locate sensors at various levels within system 
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hierarchy is not limited to the system design phase, and sensors can continue to be placed in 

optimal locations during operational use of the system without affecting overall functionality. In 

this way, experimentation can be considered (from certain points of view) to continue after the 

completion of design phases. Ultimately systems can always be changed or modified for certain 

resource investments, so the ability to influence designs never disappears. 

Recalling that Bayes’ theorem is written formally as: 

 ( ) ( ) ( )
( ) ( )

0
1

0

|
|

| '
L E

E
L E d

π
π

π
∀

=
∫
θ

θ θ
θ

θ' θ' θ
 ---(1) 

 where θ is the set of unknowns of interest or parameters, π0(θ) is the prior distribution of θ 

representing the initial state of knowledge, L(E | θ) is the likelihood of observing a set of 

evidence, E, for a given θ, and π1(θ | E) is the updated posterior distribution of the set of 

unknowns of interest or parameters representing the updated state of knowledge. 

The nature of the evidence is inherently linked to the nature of the experiment and physical rules 

of observation. For example, if an experiment, ε1, involves testing the reliability of 10 

components and recording failure times, then the evidence set, E1, consists of failure times {t1 , 

t2 , … , t10}. If another experiment, ε2, involves testing the same 10 components but only 

observing their state after a test duration, T, then the evidence set, E2, consists of the number of 

failed and surviving components at time T, {FT , ST , T}, noting that FT + ST = 10. Each 

experiment is observing the same process, but is structured differently and thus implies different 
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evidence sets. This is an often assumed aspect of the likelihood function, L(E | θ) and the 

experimental framework is rarely written explicitly.  

When this aspect of the likelihood function is not assumed and the experimental framework is 

denoted ε, then Bayes’ Theorem in equation (1) is more completely written as: 

 ( ) ( ) ( )
( ) ( )

0
1

0

| ,
| ,

| , '
L E

E
L E d

ε π
π ε

ε π
∀

=
∫
θ

θ θ
θ

θ' θ' θ
 ---(187) 

where ε is the framework (experimental or otherwise) through which the evidence E is 

gathered. 

The likelihood function in equation (187) can be written as either L(E | θ , ε) or Lε(E | θ). The 

discussion below follows steps extensively covered in literature on the topic such as Lindley 

[29]. The question that then arises is: ‘What experimental framework, ε, should be established in 

order to optimize the “value” of the experiment?’ This can be achieved by considering the 

probability of observing specific evidence sets based on the prior information of the parameter 

set θ. For example, if there is no uncertainty with the parameter set θ, (implying that all 

parameters are known), then it can be written 

 Pr(E | θ , ε) = the probability of observing evidence set E  ---(188) 

   for parameter set θ in experimental framework ε. 
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However, should these parameters be known with absolute certainty then there is no need to 

conduct an experiment. In reality, there is by definition uncertainty in the parameter set θ which 

is summarized by the prior distribution π0(θ). The probability of observing a given set of 

evidence becomes marginalized as it is a function of π0(θ) and the following can be written: 

 [ ] ( ) ( )0 0 0Pr | , ( )   or  Pr | , Pr | , ' ( ') 'E E E dε π ε π ε π
∀

= ∫
θ

θ θ θ θ  ---(189) 

noting that the symbol ‘π’ when used throughout this dissertation in isolation represent a 

joint probability density function of a set of unknowns of interest or parameters. 

Equation (189) allows the probability of observing specific instances of the evidence set E based 

on the experimental framework ε in the information context provided by prior information. 

8.3. UTILITY FUNCTION 

The utility function quantifies the ‘value’ of an experiment to the test engineer, and is designated 

with the symbol U. When the utility function is based on uncertainty or information, it is by 

definition derived from the nature of the ‘state of knowledge’ of the unknowns of interest. 

Therefore, information utility, UI, must be a function of the joint probability density function of 

all relevant unknowns of interest or parameters. 

 i.e. Information utility ( ) ( )  or  I IU Uπ π=   θ  ---(190) 
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When considering the information utility associated with an observed set of evidence, E, within 

an experimental framework, ε, the calculation is still derived from joint probability density 

functions. It can be based on the posterior distribution, π1(θ | E , ε), such as the information or 

uncertainty implied with prior knowledge, E and ε. Alternately, the information utility can be a 

comparison between the utilities of the posterior distribution and the prior distribution π0(θ). 

 i.e. Information utility of E and ε 

    ( ) ( ) ( )0 0 1 0, |   or  , |   or  |I I IU E U E Uε π ε π π π=   θ  ---(191) 

noting that E and ε given π0 defines π1 as per Bayes’ theorem in  

equation (187). 

The evidence set, E, is resultant from random processes, and thus is outside the control of the test 

engineer. However, the experimental framework, ε, is completely controlled by the test engineer, 

and in the context of complex systems consists of various arrangements of sensors within the 

system logic. It is therefore useful to attribute information utility to the experimental framework 

only. In the case of on-demand systems, there is only a set of discrete possible evidence sets, ˆ
jE , 

meaning the information utility of an experimental framework is described by a discrete 

probability density function. 

i.e.  ( ) ( ) ( )0
ˆPr Pr | ,I I

j j jf U U E ε π= =  ---(192) 

where I
jU  is ( )0

ˆ , |I
j jU E ε π , the information utility of the jth possible evidence set, ˆ

jE , and 

the experimental framework, ε, given the prior distribution π0(θ). 
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The expected information utility, I
U , can then be calculated by finding the mean of the 

distribution in equation (192): 

 ( ) ( ) ( )0 0
ˆ| Pr | ,

j

I I I I I
j j j j j

j
U U f U dU U Eε π ε π

∀∀
= • = •∑∫  ---(193) 

Substituting equation (189) into equation (193) yields equation (194). 

 ( ) ( )0 0
ˆ| Pr | , ' ( ') 'I I

j j
j

U U E dε π ε π
∀ ∀

 
= •  

 
∑ ∫

θ
θ θ θ  ---(194) 

If the amount of information ‘improvement’ between prior and posterior distributions is 

valuable, then ( )0|IU ε π  would be constructed in a manner that it is maximized when this is 

achieved. The experimental framework with the highest expected utility then becomes the most 

‘valuable’ to the test engineer allowing optimization to occur. In some instances, it is possible for 

the utility of an experimental framework to be superior to all others for all possible prior 

distributions meaning that it is the optimal framework in any possible scenario [29]. 

8.4. INFORMATION OPTIMIZATION THROUGH INFORMATION UTILITY 

FUNCTIONS 

There is significant literature regarding the design of experiments to maximize information of 

parameters. Information can be viewed as the inverse of uncertainty. Typically, information is 

characterized primarily on the scaled or normalized magnitude of the variance of parameters and 
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is considered optimal when the smallest possible variance is achieved. Two popular information 

metrics are listed below. 

8.4.1. Fisher Information.  

Explored by Fisher, the Fisher Information of a set of random variables with a joint probability 

distribution provides the lower bounds on variance and covariance. Maximizing Fisher 

Information therefore minimizes the variation of these random variables [30]. 

8.4.2. Shannon Information.  

Developed by Shannon [31], Shannon Information, described by Differential Entropy quantifies 

the uncertainty of a set of random variables with a joint probability distribution. Minimizing the 

differential entropy decreases the uncertainty or disorder, and hence increases information. 

Shannon introduced the concept of differential entropy in an influential paper which has been the 

basis of much subsequent analysis in the field of information theory [31]. Entropy is a measure 

of uncertainty associated with a random variable. Entropy of a discrete random variable is a non-

negative number where 0 represents total certainty, and is defined by: 

 ( ) ( ) ( )logH p p
∀

= −∑
θ

θ θ θ  ---(195) 

where H(θ) is the entropy of the discrete random variable set θ, and p(θ) is the probability 

of θ. 
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Entropy of a continuous random variable is more difficult to estimate as the limiting case of an 

increasingly discretized continuous probability distribution is always 0. Differential entropy of a 

continuous random variable is analogous to the entropy of a discrete random variable, but has 

several unique properties. For example, the differential entropy can have a negative value, and 

increasingly negative values represent increasing certainty. 

 ( ) ( ) ( )logh f f d
∀

= − ∫
θ

θ θ θ θ  ---(196) 

where h(θ) is the differential entropy of the continuous random variable set θ, and f(θ) is 

the probability density function of θ. 

The differential entropy defined in equation (196) can be estimated using techniques described in 

[32]. This metric can then be used to assess the uncertainty (and hence information) associated 

with a posterior distribution defined by Bayes’ Theorem. The units associated with differential 

entropy are dependent on the base of the logarithm in equation (196). The units are ‘nats’ when 

the natural logarithm is applied and will be the units used throughout this dissertation. 

A continuous random variable that involves less uncertainty (and hence more information) will 

have a lower differential entropy and can be used to assess the information associated with a 

posterior distribution defined by Bayes’ Theorem. The concept of marginal differential entropy 

will be introduced and used throughout this dissertation to assess the amount information a joint 

posterior distribution has about a particular parameter or sub-set of parameters (it is based on the 

entropy of marginal posterior distributions of these sub-sets). 
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 ( ) ( ) ( )' log ' 'm m mh f f d
•

• • • •

∀

= − ∫
θ

θ θ θ θ
 

  
( ) ( )' log '; ' ' 'f f d d

•

• • •

∀ ∀

 
= −   

 
∫ ∫
θ θ

θ θ θ θ θ


   ---(197) 

where •θ  is the sub-set of continuous random variables that are being investigated, θ  is 

the remaining sub-set of continuous random variables which are not being investigated 

(making θ  the complement of •θ  and therefore θ = { •θ , θ}), hm( •θ ) is the marginal 

differential entropy of the sub-set of continuous random variable θ, and f(θ) is the 

probability density function of θ. 

8.5. INFORMATION UTILITY FUNCTION 

There are other information metrics within literature that have not been mentioned at this point 

as it is not the intent of this dissertation to advocate the use of any metric in particular. In any 

case, the test engineer conducts experimentation in order to gain information to make physical 

predictions with certain levels of confidence. The requisite levels of Fisher or Shannon 

Information for the relevant parameters to achieve this level of confidence would not be directly 

calculable. It may be that the confidence on the physical prediction represents the utility of the 

experimental framework. Using Fisher or Shannon Information to optimize experimental 

framework utility may be used by the test engineer as it is assumed it will improve the 

confidence of subsequent physical predictions, making the utility a subjective measurement. 

Optimization techniques focus on specific aspects of information metrics employed at the 

discretion of the test engineer or data analyst. 
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Once a relevant information metric has been determined, it then becomes the core of the utility 

function of a given evidence framework, ε. However, the following aspects of the utility function 

need to be considered: 

8.5.1. Information of the Posterior Distribution.  

The information of the posterior distribution represents the resultant information of the 

experiment, which involves both the prior information and the information gained by the 

experiment. 

8.5.2. Information difference of Posterior/Prior distributions.  

Much literature focuses on the information difference of posterior/prior distributions, as this 

represents the information gained by the experimental framework, ε. Lindley discusses this at 

length in regard to the information gain in Shannon Information throughout [29]. 

8.5.3. Information of specific parameters.  

It may be the case that information of certain parameters is more valuable than others or need to 

be treated differently. For instance, it may be desirable to optimize the minimum information of 

the parameter set (i.e. improve the information of the parameter with the lease prior information 

about it). It maybe that the test involves a system or process with many parameters, but one 

parameter in particular is the most valuable in terms of the confidence of subsequent physical 

predictions. 
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8.5.4. Information of variables that are functions of parameters.  

The physical relevance of parameters is once again, subjective. For example, it may be desirable 

to gain information about the time to failure of a particular component. This time to failure is 

itself a function of parameters and this may be the most relevant metric that is being investigated. 

The utility function can be determined based on these factors above. Several examples of 

information based utility functions for the purpose of optimizing experimental frameworks are 

included in Table 21. 

Utility Function Description 

( )
( ) ( )

( ) ( )

1 1

0
0 0

ln ' | ', ' | ', '
, |

ln ' ' '
I

E E d
U E

d

π ε π ε
ε π

π π
∀

∀

   
= 

−    


∫

∫
θ

θ

θ θ θ

θ θ θ
 

Expected improvement of Shannon 

Information by posterior 

distribution when compared to prior 

distribution [29] 

( )
( )

1 2
2 2 2 2

0 2
1

where { , ,..., }1, | min  ...  
and | ,              

nIU E
E
θ θ θσ σ σ

ε π
π ε

= 
=  

 

θ

θ

σ
σ θ ~ θ

 
Inverse of the largest posterior 

parameter variance 

( ) ( )0 1
2

1

1, |  ... where | ,

j

I
n

j

U E E
θ

ε π π ε
σ

=

=
∑

θ ~ θ  Inverse of the sum of the posterior 

variance of all parameters.  

 

Table 21: Examples of information based Utility Functions of experimental frameworks 
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8.6. SENSOR PLACEMENT 

Placing sensors within systems comes at sometimes significant resource costs. Physical 

limitations (such as volume and temperature) may impose constraints on the number and 

locations of sensors. It is suggested that the issue of sensor placement be considered a holistic 

multi-objective optimization problem, where the information utility is but one objective of many. 

Many techniques exist for multi-objective optimization (see Steuer [33]) but they will not be 

explored herein. 

The placement of sensors based on information optimality is necessarily complicated by many 

factors, each of which is addressed in the following proposed steps to optimize sensor placement 

for maximal information. 

8.6.1. Prior Information.  

The prior information of components affects information that sensors yield about all other 

components demonstrating the need for utility functions to be dependent on prior information in 

equations above. For example, if a basic two component series system comprising of 

components A and B has a system level sensor that detects high systemic failure probability and 

prior information suggesting that component A is very reliable, then the sensor evidence infers 

that component B is very unreliable. Conversely, if the prior information suggest component A is 

very unreliable, then minimal information is yielded about the reliability characteristics of 

component B as systemic level failure will most likely be caused by component A failure.  
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8.6.2. Available Sensor Locations.  

Some systems cannot allow sensor to be located at all hierarchical positions within system logic. 

Potential sensor sites are typically limited through physical and environmental constraints. 

Whether part of a multi-objective optimization problem or otherwise, all possible sensor 

locations need to be identified. Wherever possible, the set ε should be minimized through the 

realization of any physical constraints of the system to limit computational time.  

 { }1 2 3, , ,...ε ε ε=ε  where ε i is a particular permutation of sensor locations. ---(198) 

8.6.3. Information Utility.  

The utility function needs to be selected, and could be any of the examples listed in Table 21. 

The utility function will be a condition function of the posterior distribution given the prior 

distribution of the unknowns of interest. 

( ) ( )0 1 0, |   or  |I IU E Uε π π π  ---(199) 

8.6.4. System Logic (Bayesian Analysis).  

If a sensor is not immediately ‘above’ a component when represented hierarchically, the system 

logic is required to generate inference about subordinate components. The amount of information 

decreases based on the complexity and nature of the system logic. 
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8.6.5. Nature of the evidence.  

The evidence set can affect the amount of information gathered. The nature includes the size of 

the evidence set and the observation methodology. For example, should the sensors detect 

failure, then they may either record the time at which failure was detected or allow the test 

engineer to identify the failure of sub-systems on routine inspections. The first framework will 

yield exact failure times (T = t), while the latter will yield upper limits on failure times (T ≤/> t). 

For on-demand systems, evidence will always be of the form of k failures from r demands or 

equivalent. To assess the expected information utility of sensor placements, the number of 

demands, r, needs to be assumed. An outcome of an analysis of the nature of the evidence is 

naturally the likelihood function, ( )| ,L E εθ . 

8.6.6. Deriving structure functions.  

The state detected by each sensor is a function of the component state vector, x , which is a 

vector that contains the state of each component in the system. The output of the structure is the 

sensor information vector, Sx . 

i.e. { } ( )1 2, ,..., ,...,S S S S S S
i mx x x x= =x x

 φ  ---(68) 

where S
φ  is the vector of the structure functions for all sensors, 1 2{ , ,..., ,..., }S S S S

i mφ φ φ φ . 
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8.6.7. Simulation of evidence for on-demand systems. 

The possible evidence sets along with their probabilities need to be simulated from the prior 

distribution of unknowns of interest, π0(θ). There are multiple approaches to this, but an 

approach utilizing Monte-Carlo simulation is detailed below. 

a. Sampling unknowns of interest – θ. Monte-Carlo simulation can be used to randomly draw 

joint samples of the unknowns of interest. 

b. Simulation of component state vectors - x̂ . Each randomly drawn set of the unknowns of 

interest will define component state probabilities. Monte-Carlo simulation can then be used 

to randomly draw component state vectors. The resultant set of component state vectors is 

shown in equation (200). 

 { }1 2 3
ˆ ˆ ˆ ˆˆ , , ,..., d=x x x x x        where d is the number of samples.   ---(200) 

noting that x̂  will probably contain multiple instances of the same component state 

vector. 

This set allows probabilities for all component state vectors to be estimated. 

 ( )0

ˆ ˆnumber of times  occurs in ˆPr |
d

π ≈
xxx



    ---(201) 
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c. Probabilities of sensor information vectors - ˆ Sx . Each component state vector, x̂ , will 

define a sensor information vector as shown in equation (68). The probability of each 

simulated sensor information vector is approximated in equation (202). 

 ( ) ( )0 0
ˆ ˆˆ( )

ˆ ˆPr | , Pr |
S
l

S
l ε π π

∀ ∈ →
≈ ∑

xx x
x x

 

     ---(202) 

d. Sampling combinations of sensor information vectors – ˆSv . Monte-Carlo simulation using 

the probabilities for sensor information vectors given in (202) can be used to randomly 

draw combinations of sensor information vectors. The number of sensor information 

vectors in each combination is r, an assumed number of demands. 

 { }1 2 3
ˆ ˆ ˆ ˆˆ , , ,...,S S S S S

d=v v v v v     ---(203) 

where d is the number of samples, and each combination of sensor information 

vectors, ˆSv , is defined in equation (204), noting that ˆ Sv  will probably contain 

multiple instances of the same combination of sensor information vectors. 

 

{ }1 2 3
ˆ ˆ ˆ ˆ, , ,...S S S Sv v v=v  ---(204) 

where ˆS
lv  is the number of times the sensor information vector ˆ S

lx , appears in the 

combination ˆSv  noting that 1 2 3ˆ ˆ ˆ ...S S Sv v v r+ + + = . 
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The probability of each combination of sensor information vectors, ˆSv , occurring can be 

approximated from equation (203). 

 
( )0

ˆ ˆnumber of times  occurs in ˆPr | ,
S

S

d
ε π ≈

vvv


    ---(205) 

e. Simulation of evidence sets. Each combination, ˆSv , implies a particular evidence set, Ê . 

 { }1 2 3ˆ ˆ

ˆ ˆ ˆ ˆ ˆˆ , , ,..., ,...,S S

S S S S S
i mE =

v v
k k k k k





       ---(206) 

where ˆÊ
v

 is the evidence set implied by the combination of sensor 

information vectors, ˆSv ; 

{ }(1) (2) (3) ( 1)
ˆˆ

ˆ ˆ ˆ ˆ ˆ, , ,..., SS

S S S S S z
i i i i ik k k k −=

vv
k





  ---(207) 

ˆ

ˆ
S

S
i

v
k



  is the vector of states detected by the ith sensor implied by the 

combination of sensor information vectors, ˆSv ; and 

( )( )
ˆ 1,2,3,...

ˆif ...ˆˆ
...0 otherwise

S
i

S

S SS
l iS x l ii

l

xvk
=

 == 


∑
v

x




  ---(208) 

where ( )ˆ S
l i

x  is the ith element of ˆ S
lx , or the state implied by ith sensor in the 

sensor information vector, ˆ S
lx . 



 

 186 
 

At this stage, the probabilities of all combinations of sensor information vectors, 

0
ˆPr( | , )S ε πv , have been approximated, and each possible evidence set, Ê , can be 

calculated as a function of ˆSv  through equations (206), (207) and (208). This allows the 

probability of possible evidence sets to be calculated as shown in equation (209). 

 ( ) ( )0 0
ˆ ˆˆ( )

ˆˆPr | , Pr | ,
S S

j

S
j

E
E ε π ε π

∀ ∈ →
≈ ∑

vv
v



  ---(209) 

where ˆ
jE  is the jth evidence set that is permissible from the entire set of simulated 

combinations of sensor information vectors, ˆ Sv . 

8.6.8. Simulation of evidence for continuous time based systems. 

The steps for continuous time based systems are analogous to those explored above for on-

demand systems. 

a. Sampling unknowns of interest – θ. Monte-Carlo simulation can be used to randomly draw 

joint samples of the unknowns of interest. 

b. Simulation of component failure times - t̂ . Each randomly drawn set of the unknowns of 

interest will define the time to failure probability distributions for each component. Monte-

Carlo simulation can then be used to randomly draw component failure times using the 

inverse (or approximate inverse) of each component’s CDF. These simulations will yield 

exact times, but need to be rounded down to the nearest multiple of the pre-selected 
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measurement accuracy, t̂∆ . For example, for a system with three components, randomly 

drawn times to failure {1.78462...  ,  9.34289...  ,  10.32791...} become {1.78 , 9.34 , 

10.33} for a measurement accuracy of ˆ 0.01t∆ = . This measurement accuracy can 

subjectively be made larger to limit the computational resources required in subsequent 

steps .The resultant set of component failure time vectors is shown in equation (210). 

  { }1 2 3
ˆ ˆ ˆ ˆˆ , , ,..., d=t t t t t        where d is the number of samples.   ---(210) 

noting that t̂  will probably contain multiple instances of the same component 

failure time vector. 

This set allows probabilities for all component state vectors to be estimated. 

  ( )0

ˆ ˆnumber of times  occurs in ˆPr |
d

π ≈
ttt



    ---(211) 

c. Probabilities of time to sensor failure detection vectors - ˆSt . Each component failure time 

vector, t̂ , will define a time to sensor failure detection vectors  ˆSt  based on system logic 

such as that represented in structure functions in equation (68). The probability of each 

simulated sensor information vector is approximated in equation (212). 
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  ( ) ( ) ( )0 0 0
ˆ ˆˆ( )

ˆ ˆˆPr | , Pr | , Pr |
S

SE ε π ε π π
∀ ∈ →

= ≈ ∑
tt t

t t
 

     ---(212) 

   noting that the simulated evidence set, Ê , is simply ˆSt . 

8.6.9. Simulation of posterior distributions.  

As discussed previously, the information utility of each simulated evidence set requires the 

posterior distribution of the unknowns of interest to be calculated. Each simulated posterior 

distribution is defined by Bayes’ Theorem: 

( ) ( ) ( )
( ) ( )

0
1

0

ˆ | ,ˆˆ | , ˆ | , '
ja

j
j

L E
E

L E d

ε π
π ε

ε π
∀

≈
∫
θ

θ θ
θ

θ' θ' θ
 ---(213) 

8.6.10. Expected Information Utility.  

The information utility function in equation (199) along with the probability and posterior 

distribution of each evidence set,  equations (209) and (213) respectively can then be substituted 

into equation (193) to derive the expected information utility of the experimental framework, ε 

(i.e. the sensor placement). 
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Example 22.  Expected information utility for various sensor placement arrangements for 

an on-demand system. 

Consider the binary-state on-demand system illustrated in Figure 49. A more detailed 

understanding of the unknowns of interest  (the component failure probabilities p1, p2 and p3) is 

desired but the placement of sensors within the system involves some costs. The system is always 

monitored at the ‘top-event’ level (i.e. systemic failure is always detected on occurrence) and 

there is scope to place additional sensors at the locations denoted ‘Possible Sensor #2’ and 

‘Possible Sensor #3’ in Figure 49. 

 

Figure 49: 4 component (3 component type) binary-state on-demand system 

In this instance, prior uniform distributions are assumed for all component failure probabilities. 

i.e. ( ) ( ) ( )
3

0 0 1 2 3 0
1

, , i
i

p p p pπ π π
=

= = ∏θ    where ( )0
1, 0 1
0,

i
i

p
p

otherwise
π

≤ ≤
= 


 ---(214) 

p2 

System (Sensor #1) 

1 

Possible Sensor #2 

3  

Possible Sensor #3 

Component Failure  
Probabilities (parameters) p1 

 

4
 

p3 

2 

A 
B 

B C 

Components 2 and 3 are the 
same component type, B, 
and hence share the same 
failure probability, p2 
 
 
 
 
No of component types, n = 3 
No of components, n' = 4 
 

The letters A, B, and C 
denote the three 
different types of 

components 
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The information utility used to assess the value of various sensor placements is selected to be the 

inverse of the sum of the posterior variance of all parameters (row three of Table 21) is 

developed in equation (215). 

 ( ) ( ) ( )0 1 0 1
2

1

1, | |  ... where | ,

j

I I
n

j

U E U E
θ

ε π π π π ε
σ

=

= =
∑

θ ~ θ   ---(215) 

The possible sensor arrangements are: 

 ε1 = {1} … (i.e. systemic level failure detection only) ---(216) 

 ε2 = {1,2} … (i.e. systemic level and sensor #2 failure detection) ---(217) 

 ε3 = {1,3} … (i.e. systemic level and sensor #3 failure detection) ---(218) 

 ε4 = {1,2,3} … (i.e. systemic level, sensor #2 and #3 failure detection) ---(219) 

The likelihood function for this on-demand system is expressed in equation (220), noting that a 

full explanation and demonstration of the likelihood function is included in previous chapters. 

 
( ) ( ) ( ) ( ) ( )42 4 1(( ) )

1 1

1| , 1
!

l a
b lb l

bb
a E

v
xx

jj
l bl a

L E p p
v

ε
 − 

∀ ∈ = =

     ∝ −       
∑ ∏ ∏

v
p

v
 ---(220) 

where the unknown of interest, p = {p1 , p2 , p3} is the set of 3 lower level component type 

failure probabilities, pjb is the failure probability of the bth component (which is the failure 

probability of jb
th component type), av  is the ath combination of r state vectors (each state 

vector comprises of n' component states), (vl)a is the number of occurrences of the lth state 
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vector in av  and (xb)l is the state variable of the bth component in the lth state vector. 

For the purposes of this scenario, the sensor placement information utility will be base on r = 5 

demands. The structure functions for each possible sensor location are based on where x1, x2, x3 

and x4 (the state variables of all four components), and are shown in equations (221), (222), and 

(223). 

 Sensor #1: ϕ1 = ϕ2 + x3x4 - ϕ2x3x4 ---(221) 

 Sensor #2: ϕ2 = ϕ3x2 ---(222) 

 Sensor #3: ϕ3 = x1 ---(223) 

Using on Monte-Carlo simulation, the set {p1 , p2 , p3} is drawn a large number of times based 

on the prior distribution in equation (214). Each draw defines the state probabilities of each 

component, each draw equivalent to a component state vector, x̂ . This process yields the 

component state vectors and their probabilities in Table 22. 

( )0
ˆPr |πx  ≈ 1

12
 1

12
 1

24
 1

24
 1

24
 1

24
 1

12
 1

12
 1

12
 1

12
 1

24
 1

24
 1

24
 1

24
 1

12
 1

12
 

x̂  

Com 1: 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
Com 2: 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
Com 3: 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
Com 4: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

Table 22: All possible component state vectors with probabilities of occurrence 
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The dependence between the states of components 2 and 3 (which are the same component type) 

is clearly seen in Table 22. All state vectors where components 2 and 3 have the same state (i.e. 

either both 0 or both 1) have a higher probability of occurring. All other state vectors where the 

states of components 2 and 3 are different have a lower probability of occurring. This means that 

component 2 is more likely to be in the same state as that of component 3 and vice versa. This 

stems from a common failure probability, p2. 

Each component state vector generates a corresponding sensor information vector. Based on the 

data in Table 22, all possible sensor information vectors along with their probabilities can be 

calculated as shown in Table 23. 

( )0
ˆPr | ,S

l ε π ≈x  3
8

 5
24

 1
4

 1
8

 1
24

 

ˆ Sx  

Sensor 1: 0 0 1 1 1 
Sensor 2: 0 0 1 0 0 
Sensor 3: 0 1 1 0 1 

Table 23: All possible sensor information vectors with probabilities of occurrence 

The sensor information vectors in Table 23 are used for Monte-Carlo Simulation of evidence 

sets, Ê . In this example, 100 000 simulations with 90 distinct evidence sets are generated. Each 

simulated evidence, set along with equation (220), can be substituted into equation (188) to yield 

a posterior distribution as shown in equation (213). The utility function for each posterior 

distribution is given in equation (215), which is simply the inverse of the sum of the variances of 

each unknown of interest. The ten most probable of these evidence sets when considering sensor 
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arrangement ε4 (three sensors installed) are listed in Table 24, along with the utility of each. 

Evidence 
Set 

Number,  
j 

Approximate 
probability of 
evidence set 
occurring, 

0
ˆPr( | , )jE ε π   

Evidence set, ˆ
jE  (based on  r = 5 demands) 

Utility, 
I
jU  

Number of 
observed 

failures by 
Sensor #1 

Number of 
observed 

failures by 
Sensor #2 

Number of 
observed 

failures by 
Sensor #3 

1 0.065918 2 1 2 22.061 
2 0.054932 2 2 3 21.745 
3 0.054932 1 1 2 20.090 
4 0.048828 2 1 3 23.576 
5 0.047607 3 2 3 23.856 
6 0.045776 1 1 3 21.104 
7 0.032959 2 1 1 21.972 
8 0.032959 2 2 2 22.884 
9 0.032959 3 2 2 23.800 
10 0.032043 1 0 2 23.912 

…  

Table 24: Possible evidence sets with probabilities of occurrence (10 most probable of 90 

evidence sets simulated) 

Equation (193) can then be used to generate the expected utility of the sensor placement 

arrangement. This is demonstrated in equation (224) for sensor arrangement ε4. 

 ( ) ( )1 0 0| Pr | ,I I
j j

j
U U Eε π ε π

∀
= •∑

0.065918 22.061
0.054932 21.745

23.746
0.054932 20.090

...

• 
 + • = = + • 
  

 ---(224) 

The same process is used for all other sensor arrangements. The resultant expected utility for 

each is summarized in Table 25. 
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ε i Expected Information Utility, ( )0|I
iU ε π  

none 11.964 
{1} 14.838 

{1,2} 17.558 
{1,3} 20.645 

{1,2,3} 23.746 

Table 25: Expected information utility for each sensor arrangement. 

It can be seen that as expected, using all three possible sensor locations yields the most 

information. However, if the total number of sensors that could be used is limited to two, than it 

is clearly most beneficial for locations 1 and 3 to be used, as opposed to locations 1 and 2. This is 

because sensors at locations 1 and 3 can still yield significant information about component 2 in 

addition to yielding more detailed information about component 1. 

Example 23. Expected information utility for various sensor placement arrangements for a 

continuous time-based system. 

Consider the same binary-state on-demand system illustrated in Figure 49 in Example 22, 

however the system is now continuous, time based. Only one sensor can be placed on the system: 

sensor #1 location (for a cost of $1 000) or sensor #2 location (for a cost of $ 100). Component A 

has a constant failure rate, λ1. Components B and C have a constant failure rate, λ2. Component 

D’s time to failure is described by a normal distribution with mean μ3 and standard deviation σ3. 

The set of unknowns of interest is listed in equation (225). 

 { }1 2 3 3, , ,λ λ µ σ=θ  ---(225) 
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Prior information consists of limits on the parameters in (226), (227) and (228); and the Bayesian 

inference of a single test with evidence in equation (229). 

 [ ]1 2 and ~ 0,10λ λ  ... [ ]3 ~ 10,15µ  ... [ ]3 ~ 0,5σ  ---(226)(227)(228) 

 { }1 2 3
ˆ ˆ ˆ ˆ0.8, 0.7, 0.5S S SE t t t= = = =

 

... noting that the timing uncertainty is ∆t = 0.1 ---(229) 

The resulting state of knowledge yields has marginal distributions for the unknowns of interest 

illustrated in Figure 50. 

 

Figure 50: Marginal distributions of the unknowns of interest generated by our current state of 

knowledge (prior distributions from equations (226), (227), (228) and evidence set (229)). 

Component  F  failure rate , ( λ F ) 
Component  G  failure rate , ( λ G ) 
Component  H  mean time to failure , ( µ H ) 
Component  H  standard deviation of time to failure , ( σ H ) 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0 5 10 15 
parameter value 

π 
| 

( 1 x E ) 



 

 196 
 

The same state of knowledge yields the following time to failure distributions for each 

component, illustrated in Figure 51. 

 

Figure 51: Time to failure distributions for components 1, 2, 3 and 4 based on the state of 

knowledge represented in Figure 50. 

The information utility used to assess the value of various sensor placements is selected to be the 

inverse of the sum of the posterior variance of all parameters (row three of Table 21): 

 ( ) ( ) ( )0 1 0 1
2

1

1, | |  ... where | ,

j

I I
n

j

U E U E
θ

ε π π π π ε
σ

=

= =
∑

θ ~ θ   ---(230) 

The possible sensor arrangements are listed in equations (231) and (232) . 
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 ε1 = {1} … (i.e. systemic level failure detection only) ---(231) 

 ε2 = {2} … (i.e. sensor #2 failure detection) ---(232) 

From chapter 7, the likelihood function for this on-demand system is expressed below. 

 
( ) ( )1 1
ˆ ˆ ˆ| , { ,..., } | ,..., ,S S S

m nL t L t t t∆ = ∆θtθ θ  



 

  
( )

1

ˆˆ ˆPr ( ) | ,
m

S S S S S
i i i i i

i
t T t t ⊂ ⊂

=
= ≤ < + ∆∏ θ t



 

  
( ) ( )

1

ˆ ˆˆ ˆ| , | ,
m

S S S S S S S S
i i i i i i i i

i
F t t F t⊂ ⊂ ⊂ ⊂

=

 ≡ + ∆ −  ∏ θ t θ t 

 

 

  ˆ ˆ1
S S
i i

m
S S
i it t t t ti

p p
= +∆ ==

 = −  
∏  ---(178) 

where Δt is the time increment used in measuring time to failure detection, ˆSt  (as opposed 

to St ) represents the vector of failure detection times with an inherent uncertainty, ∆t, and 

ˆ S
i
⊂t  is the set of all uncertain failure detection times of sensors that are inferentially 

subordinate to the ith sensor (i.e. the failure detection times of all sensors ∈ S
i
⊂S ). 

The structure functions for each possible sensor location remain unchanged from Example 22 

where failure probabilities can be used in place of state variables (not all structure functions can 

use failure probabilities, but those in Example 22 are constructed to allow this to happen). 

Using Monte-Carlo simulation, the set {λ1 , λ2 , μ3 , σ3} is drawn a large number of times based 

on the state of knowledge that is represented by marginal distributions illustrated in Figure 50. 
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Each draw defines the PDF and CDF of each component. This allows component failure times 

and hence sensor failure detection times, ˆS
it , to be randomly drawn again. This process yields the 

simulated sensor detection times for each sensor placement arrangement in Table 26, using an 

assumed time measurement accuracy of ˆ 0.5t∆ = . 

ε1 = {1} … Sensor# 1  ε2 = {2} … Sensor # 2 

Failure Detection Time ( )1 0
ˆPr | ,St ε π ≈  Failure Detection Time ( )2 0

ˆPr | ,St ε π ≈  

1̂0 0.5St≤ <  0.4373 2̂0 0.5St≤ <  0.4369 

1̂0.5 1.0St≤ <  0.2517 2̂0.5 1.0St≤ <  0.251 

1̂1.0 1.5St≤ <  0.1172 2̂1.0 1.5St≤ <  0.1172 

1̂1.5 2.0St≤ <  0.0618 2̂1.5 2.0St≤ <  0.0618 

1̂2.0 2.5St≤ <  0.0363 2̂2.0 2.5St≤ <  0.0364 
… … … … 

Table 26: Simulated failure detection times based on current state of knowledge (five most 

probable evidence sets displayed … based on 100 000 simulations) 

Each simulated evidence set along with equation (178) can be substituted into equation (188) to 

yield a posterior distribution. The utility function for each posterior distribution is given in 

equation (230). Equation (193) can then be used to generate the expected utility of each sensor 

placement arrangement, and the data is summarized in Table 27. 

ε i Expected Information Utility, ( )0|I
iU ε π  

{1} 1.141 
{2} 1.128 

Table 27: Expected information utility for each sensor arrangement. 
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It can be seen that the expected utility for each sensor is very similar. This is because based on 

our current state of knowledge, component 4 will almost certainly fail after all of the other 

components (as illustrated in Figure 51). Therefore, sensors at locations 1 and 2 will almost 

certainly detect failure at the same time due to the system logic. The sensor at location 1 has 

higher expected information utility as it is predicated on the nature of component 4, and in effect 

is improving the understanding of the component 4 failure characteristics as it will suggest that 

component 4 hasn’t failed when sensor #2 would otherwise detect failure. The sensor at location 

2 yields information directly onto the remaining 3 components only.  

Notwithstanding the slight difference in information utility, the cost of installing a sensor at the 

second possible location is significantly less than that for the first possible location. Therefore, it 

is probably most valuable (in both an information utility and cost/benefit perspective) to install 

the sensor at the second possible location. 

8.7. SUMMARY 

Optimizing experimental design is a well documented and researched topic, and is used in a wide 

array of applications such as dynamic systems to neuroscience. [34, 35] The ability to maximize 

the expected gain of information through constraining the data gathering process in specific ways 

is generally desirable. With concepts developed in this dissertation that allow Bayesian analysis 

of overlapping data drawn from  systems with multiple sensors, the concept of experimental 

design (often associated with research and development) can extend to the act of sensor 

placement (often associated with operational use). 
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Presented in this chapter is a method of measuring the information utility of various sensor 

placement arrangements in a Bayesian construct of both on-demand and time based continuous 

systems. Prior information is used to simulate evidence sets, which are then used to simulate 

posterior distributions. Information utility is derived from these posterior distributions, and an 

expected information utility can then be attributed to sensor placement. An example was 

generated that highlighted this process. 
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Chapter 9: Conclusion 

The fundamental problem that this dissertation addresses is the reliability analysis of multiple 

overlapping data sets that are simultaneously drawn from the same system or process.  

9.1. OVERLAPPING-DATA 

It is often the case that higher level data sets that are used to assess lower level parameters of 

systems will be overlapping or dependent in nature. For instance, if the data is derived at various 

component, sub-system and assembly levels from the same system at the same time, they are 

overlapping. Furthermore, there may be relationships between higher level data and multiple 

manifestations of the same lower level parameter. Such instances demand special considerations 

and concepts in order to fully infer all aspects of available information. Chapter 1 explains why 

data sets from the same system drawn simultaneously are fundamentally different to their non-

simultaneous counterparts through introducing and examining the concept of overlapping data. 

Sets of overlapping data need to meet the following criteria: 

a. Simultaneity - the data sets occur at the same time; and 

b. Correspondence – the data sets are resultant from the same system or process. 

Chapter 2 outlined how in the context of Bayesian analysis of data sets drawn from multiple 

sensors from the same system, the majority of previous techniques centred around on-demand 

systems and were unable to take into consideration overlapping data sets. Whilst fully Bayesian 
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methodologies have been developed to incorporate data at various levels within on-demand 

systems, all but one has been constrained to treat all data as non-overlapping. The single latter 

technique is limited to binary-state on-demand systems and is prescriptive in terms of the type of 

data it can draw. Treating overlapping data as non-overlapping ignores the dependencies 

between the data sets and effectively removes inherent information.  

9.2. OVERLAPPING DATA ANALYSIS 

Chapters 3 to 7 developed methodologies to analyse overlapping data on various system 

scenarios. Several examples were developed to highlight the effect of the additional information 

overlapping data sets contain and how it can be used to correctly improve the state of knowledge 

(which is the set of component reliability characteristics). The flexibility of the likelihood 

functions were also generalised to incorporate multiple instances of the same component 

occurring in the system. Through state of knowledge dependence, the resultant Bayesian 

overlapping data method completely incorporates all information and evidence that can possible 

be generated or observed by complex systems.  

9.2.1. Binary-state on-demand systems 

Chapter 3 dealt with overlapping data analysis of binary-state on–demand systems. On-demand 

systems, where components are considered to be either ‘functional’ or ‘failed’, had a likelihood 

function developed to allow incorporation of overlapping data into Bayesian analysis.
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The likelihood function in equation (53) allows complete generalisation of the evidence: all that 

is needed is the total number of demands the system is subjected to, and the total number of 

failures observed at each sensor. This generalisation separates it from all other techniques and 

makes it the most flexible. 

9.2.2. Multi-state on-demand systems 

Chapter 4 covered a methodology to deal with overlapping data from multi-state on-demand 

systems. Multi-state on-demand systems where components are considered to be ‘functional’, 

‘failed’, or one of any number of degraded states in between utilise the following likelihood 

function for Bayesian analysis of overlapping higher-level data. The same property that is 

observed in the likelihood function for binary-state on-demand systems (that of evidence 

generalisation) is also observed in equation (64). The evidence can be of the form of total 

demands the system is subjected to, and the total numbers of particular states observed at each 

sensor. 

9.2.3. Overlapping  data analysis of on-demand systems: Algorithm 

Chapter 5 outlined the algorithm that rapidly solves the likelihood functions in equations (53) 

and (64). Both functions revolve around the generation of combinations of component state 

vectors that match the evidence and subsequently calculate the sum of the probabilities of each. 

The number of possible combinations that must be considered increases exponentially as the 

number of components and possible states increases, significantly affecting computational time.  
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The algorithm instead considers sensor information vectors instead of component state vectors, 

By doing this, it exploits the fact that there will always be fewer sensors than components, and 

hence fewer combinations to consider. Sets of constraints and limits are generated, thereby 

creating a rule based of systemic rejection of each sensor information vector. An example was 

developed where the algorithm simplified the solution of the likelihood function by being able to 

consider 9 different combinations of 4 sensor information vectors as opposed to the completely 

trivial method of individual consideration of a possible 3 724 680 960 combinations of 10. 

9.2.4. Continuous Life Metric Systems 

Continuous time-based systems were considered in chapter 6 where components whose time to 

failure is a random variable utilise the following likelihood function for Bayesian analysis of 

overlapping higher-level data. Whilst the term ‘time-based’ was used, the methodology is 

equally applicable to a system with any continuous life metric (such as distance). The 

methodology is based on considering each sensor in isolation, where subordinate sensor data is 

used to contextualise the failure data of each sensor in question. 

9.3. BAYESIAN ANALYSIS OF UNCERTAIN DATA 

Chapter 7 dealt with generalising the likelihood functions developed above to incorporate 

uncertain data, thereby realising several computational efficiencies. Several existing 

methodologies for Bayesian analysis of uncertain data were examined. Each methodology relied 

on a probabilistic relationship between observed and actual evidence. This relationship (or error) 

involved this conditional probability distribution of observed on actual evidence, or vice versa.  
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9.3.1. On-demand systems 

This examination found that the likelihood functions in equations (53) and (64) inherently 

involve classical error in their derivation, which is the conditional probability of observing a 

specific evidence set based on the actual evidence set.  

9.3.2. Continuous time-based systems 

The examination of Bayesian analysis of uncertain data for continuous time-based systems 

allowed exploitation of the inherent inaccuracies that always exist in measurement devices (such 

as the accuracy of a clock or timer). The likelihood function in equation (178) is based on 

uncertain data for continuous time-based systems that not only reflects the reality of inherent 

timing inaccuracies for all timing devices, but is much more computationally efficient. 

9.4. SENSOR PLACEMENT: MAXIMISING INFORMATION FROM BAYESIAN 

ANALYSIS OF COMPLEX SYSTEMS 

At the heart of Bayesian analysis is the concept of updating or improving state of knowledge or 

information. This is formally implemented by observing a process or system, gathering evidence 

and incorporating it through Bayes’ Theorem to modify a joint distribution of the ‘unknowns of 

interest. Typically, improving information through Bayesian analysis is in itself the only desired 

outcome. However, in some instances it may be beneficial to quantify the amount of information 

‘improvement’. Reliability data can be gathered by placing sensors at various levels or places 

throughout the system (e.g. at all sub-systems), but there are practical and resource limitations to 
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the number and locations of these sensors. It may be beneficial to assess the probable 

improvement in information based on various permutations of sensor placement. 

9.4.1. Bayesian Experimental Design 

Bayesian Experimental Design provides a framework through which permutations of sensor 

locations can be assessed against the expected value of a utility function. The utility function 

defines the ‘worth’ or ‘value’ of a particular permutation in a theoretical probabilistic Bayesian 

construct. Bayesian inference allows the utility function to incorporate both the meaning or 

information contained by observing a given set of evidence and any prior information that exists 

about the parameters or the unknowns of interest. This allows a robust approach to be taken to 

sensor placement in complex systems that incorporate implied information within overlapping 

data sets, permitting the engineer to make an informed decision about sensor location. 

9.5. FURTHER WORK 

The methodologies covered within this dissertation can be developed further in the following 

ways or fields: 

a. Overlapping environmental data. The data considered has been strictly limited to 

reliability data. It is possible that overlapping environmental data (such as 

temperature or humidity) is gathered, further contextualising the analysis. 
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b. Multi-state continuous life metric systems. The methodology developed in chapter 6 

is limited to binary-state continuous life metric systems. Further generalisation to 

multi-state systems has not been developed. 

c. Uncertain data analysis of continuous life metric systems: inconsistent measurement 

inaccuracies. The methodology considered in chapter 7 where inaccuracies in life 

metrics are incorporated (such as the tolerance of a digital stopwatch) require these 

inaccuracies to be uniform. However, further development could allow analysis 

where the inaccuracies vary across sensors. 

d. Network and chain modelling analysis. Bayesian belief networks (BBN) and Markov 

Chains were not modelling methodologies considered in this dissertation. These 

methodologies (which are generally used for multi-state continuous life metric 

systems) can have specific overlapping data techniques developed. 
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Appendix A 

 

Consider a likelihood function of the form shown in equation (A1). 

 ( ) ( )
1

|
n

i
i

i

dH t x
L E x B A

dx=

−
= + ∑  ---(A1) 

 where Ai and B are functions of x (for i = 1 … n), the evidence set E = {x1 , x2 , … , xi} 

and H(x) is the Heaviside step function (which is defined as 0 when x < 0, and 1 when  

x > 0). 

By definition, the derivative of the H(x) is 0 when x ≠ 0, as H(x) is constant in this region. 

Therefore, the terms in the summation in equation (A1) where x ≠ xi can be excluded. 

i.e. ( ) ( )| i
i

i

dH x x
L E x B A

dx∀ ∈

−
= + ∑

i
 ---(A2) 

 where { }i= ∀i  such that x = xi. 

Therefore, if = ∅i  (i.e. there are no instances where x = xi) or Ai = 0 for all i ∈ i , then the 

likelihood function reduces to: 

 ( )|L E x B=  ---(A3) 
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Otherwise, more manipulation is required. A centralized definition for a derivative is 

 
( ) ( ) ( )1 1

2 2

0
lim
x

f x x f x xdf x
dx x∆ →

+ ∆ − − ∆
=

∆
 ---(A4) 

Therefore, equation (A1) can be rewritten as 
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( ) ( )1 1

2 2
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A H x x x H x x x
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∆

∑
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 ∆ 

∑
i

 since x = xi for all i ∈ i  

 [ ]
0

1 0
lim i
x i

A
B

x∆ → ∀ ∈

− 
= + ∆ 

∑
i

 since ( )
1 0
0 0

x
H x

x
>

=  <
 

 
0

lim i
x i

AB
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 ---(A5) 

When evaluated in isolation, equation (A5) is undefined. However, the normalizing factor of 

Bayes’ Theorem can be exploited. Substituting equation (A3) into Bayes’ Theorem yields: 

 ( ) ( ) ( )
( ) ( )
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|
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| ' ' '
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=
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It can be seen from inspection of equation (A6) that the likelihood function is now equivalent to 

the sum of all Ai where x = xi. Therefore, the likelihood function written in equation (A1) can be 

expressed as equivalence when used in Bayesian Analysis: 

 given { }i= ∀i  such that x = xi  … ( )
 and 0

|
otherwise

i i
i i

A A
L E x

B
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 ≠ ∅ ≠≡ 
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i i
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 ---(A7) 
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