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The ideal photovoltaic technology for global deployment must exhibit two key

attributes: (i) high power-conversion efficiency, enabling a solar panel with a large

power output per area and, (ii) low-cost/W, due to either being derived from earth-

abundant materials and/or ease of fabrication. For the past two decades, extensive

efforts have been made to boost the efficiency of some of the most promising high per-

formance and low-cost photovoltaic materials, such as CdTe, Cu(In,Ga)Se2 (CIGS),

and hybrid organic-inorganic perovskites, to achieve higher efficiency devices. How-

ever, improvement in the overall performance is still limited by the open-circuit

voltage (Voc). All of the solar cell materials listed above are composed of grains

and grain boundaries on the order of micro- and nanometers, respectively, and their

nanoscale interfaces can cause electrical charge carriers to become trapped and re-

combine non-radiatively, reducing the Voc. Therefore, in this thesis, I implement

high spatial resolution functional imaging techniques to resolve the local voltage

variations in the thin-film polycrystalline and hybrid perovskites materials for pho-



tovoltaic applications.

First, I spectrally and spatially resolve the local photovoltage of CIGS solar

cells through confocal optical microscopy to build a qualitative voltage tomography.

From these photovoltage results, I discover variations in the electrical response of

>20% that are also on the same length scale as the grains composing the CIGS ma-

terial. Therefore, by enhancing the spatial resolution beyond the diffraction limit,

the electronic properties of individual grains and the interfaces between the grains

can be fully resolved. For this, I implement Kelvin probe force microscopy (KPFM),

and demonstrate a universal method to directly map the Voc of any photovoltaic ma-

terial with nanoscale spatial resolution. Next, we extend this ability of KPFM to

rapidly image (16 sec/map) the real-time dynamics of perovskite solar cells, which

are notorious for their slow and unstable electrical output. Through fast-KPFM

imaging, we discover regions within a single grain that show a residual Voc response

which pervades for ≈9 min, likely caused by a slow ion migration process. Finally,

to understand how different perovskite compositions influence the behavior of the

nanoscale electrical response, I utilize KPFM to realize both irreversible and re-

versible Voc signals. Compiling all these results discussed above, throughout my

Ph.D. I have yielded the following contributions: (i) evidence that the photovoltage

of polycrystalline solar cell materials varies at the same length scale as the grains

composing them, (ii) a nanoscale imaging platform to directly map the Voc with

unprecedented spatial resolution, and (iii) a technique to map the real-time voltage

response of many perovskite compositions, ultimately indicating that the elements

constituting the perovskite cation and halide positions are both directly related to



their reversible vs. irreversible electrical nature. From these contributions, I foresee

the functional imaging methods developed in this thesis to be widely implemented

as a diagnostic tool for the rational design of photovoltaics with enhanced electrical

performance and lower cost.
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Chapter 1: Introduction to Photovoltaics

1.1 The need for photovoltaics

To swiftly and effectively replace of fossil energy-based technologies we re-

quire a high-efficiency, low-cost, and ubiquitous photovoltaic (PV) technology. For-

tunately, renewable energy is expected to become a significant percentage of the

global energy sources as the total amount of power consumed globally continues

to increase each year. According to the National Renewable Energy Laboratory

(NREL) Renewable Electricity Futures Study, 80% of the power generated in the

United States could be from renewable sources by 2050. [1] For this to occur PV

electricity generation must increase beyond 10% in the US, [2] as only 1-2% of our

electricity is currently produced from solar power today. [3] In general, single crys-

talline PV materials generally outperform their polycrystalline counterparts, [4] yet

the extremely high cost associated with monocrystalline epitaxial fabrication meth-

ods does not outweigh the benefits of efficient PV devices, hindering implementation.

Non-epitaxial compounds, such as hybrid perovskites and thin-film polycrystalline

materials are very promising alternatives, but improvement in device stability and

power-conversion efficiency (η) are still required for successful deployment, as will

be discussed in detail throughout this dissertation.
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1.2 Pursuing high-performance and low-cost PV

Polycrystalline materials such as CuInxGa(1−x)Se2 (CIGS), CdTe, or hybrid

organic-inorganic perovskites are a potential alternative for low-cost PV, but im-

provement η is required to ensure low-cost/W, see Figure 1.1. The efficiency chart [5]

displays each PV technology’s record performance as a function of time. CIGS,

CdTe, and perovskites all produce η >22%, however Silicon, which represents ∼90%

of the solar cell market, boasts η >25%. Extensive efforts have been made to in-

crease the short circuit current density (Jsc) of thin-film polycrystalline solar cells.

Yet, the performance of the best solar cells is still limited by the open-circuit volt-

age (Voc), the maximum voltage available from a PV device, which is related to the

radiative recombination (photon emission) within the material. The Voc of both well-

established and emerging polycrystalline materials is considerably below theoretical

predictions. [6–13]
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Figure 1.1: NREL 2018 efficiency chart. Accessed online from ref [5].

The key pathway to achieve higher efficiency is through minimizing the non-

radiative recombination processes within the semiconductor. [14–23] Therefore, I

suggest investigating the Voc, as it is related to the amount of carrier recombination

in the material and it plays a key role in the overall performance of solar cells.

1.3 Fundamentals of solar cells

Solar cells are fundamentally governed by the diode equation, where the Voc

depends on the dark current (I0) and on the short-circuit current (Isc) as:

Voc =
nkT

q
ln

[
Isc
I0

+ 1

]
≈ nkT

q
ln

[
Isc
I0

]
(1.1)

n is the diode ideality factor, k is Boltzmann’s constant, T is the temperature, q is
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the electronic charge, and I0 depends on recombination events within the material.

Figure 1.2 shows the most common macroscopic characterization technique for PV

devices: a dark and light current-voltage (J-V ) curve. At zero bias in the dark, a

solar cell does not generate any current and will act as a diode, only allowing charge

carriers to flow in a specific direction. When excited by photons, the light-absorbing

PV material utilizes the energy from the light to produce charge carriers. Ideally, the

generated electrons and holes are efficiently separated, swept toward and collected

by the electrical contacts, with minimal losses. This process introduces a light-

generated current, indicated as Jsc in Figure 1.2. The solar cell power-conversion

efficiency is calculated by maximum power point (Mpp) divided by the incident

power.

Figure 1.2: Dark and light J-V curves. Black curve: Dark J-V, the curve matches
that of a standard diode. Blue curve: Light J-V, here the solar cell produces a light-
generated current, therefore, performing work at specific external voltage biases. Jsc:
short-circuit current density, Voc: open-circuit voltage, Mpp: maximum power point.

For an ideal PV device, the Voc is only limited by radiative recombination pro-

cesses and is equal to the material bandgap term (Eg

q
) in volts minus the thermody-

namic losses: Voc ≈ (Eg

q
)−0.4. [6,24–27] This equation was first derived by Shockley
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and Queisser in 1961, and is so-called the Shockley-Queisser limit. [6] Generation

and recombination are electronic excitation and relaxation processes that increase

and reduce the number of free charge carriers, respectively. The most relevant type

of generation in PV is the absorption of a photon. For every generation process

there is an equivalent recombination process, which is typically the loss of a carrier

through the decay of an electron to a lower energy state. When the energy associ-

ated with this decay is released by the emission of a photon that has an equivalent

energy to the material bandgap (Eg), the event is termed radiative recombination,

see Figure 1.3(a). This thermodynamically necessary process is dominant in direct

Eg materials, such as GaAs, perovskites, CIGS, and CdTe, and is not necessar-

ily harmful to the device. [24] Nevertheless, in non-radiative recombination, Figure

1.3(b), electron-hole pairs recombine at defect states, inhibiting the collection of a

charge carrier, generating heat, and unavoidably degrading the performance. There

are other types of non-radiative recombination events, such as Auger, but here I am

highlighting only the most relevant processes for multi-crystalline solar cell materi-

als.
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Figure 1.3: Radiative and non-radiative charge carrier recombination. Pos-
sible recombination events that may occur after a incident photon is absorbed by
a solar cell material. (a) Radiative recombination: an electron directly recombines
with a hole and emits a photon the same energy as the semicondutor’s bandgap.
(b) Trap-assisted non-radiative recombination: an electron relaxes to a defect energy
state and emits a photon with an energy much lower than the bandgap.

Polycrystalline light-absorbers are composed of micron-sized grains, and thus,

consist of many interfaces or defects, all of which could potentially be sites of trap-

assisted recombination. Therefore, while macroscopic light J-V measurements are

useful for determining the average device performance, a nanoscale imaging spec-

troscopy method to spatially resolve the local optical and electrical properties to

access charge carrier recombination processes within polycrystalline materials for

PV is still missing and is critical for understanding device deficiencies. Throughout

this dissertation I advance our understanding of materials for PV by resolving the

charge generation and collection with nanoscale resolution. For this, I have imple-

mented novel nanospectroscopic imaging metrologies, such as scanning photovoltage

and Kelvin probe force microscopies.
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Chapter 2: Research Objectives

In this dissertation I accomplish the following research objectives by developing

and implementing functional imaging techniques to map the local electronic charge

carrier processes (i.e. generation, recombination, and collection) within promising,

next-generation PV materials.

(i) Photovoltage tomography in polycrystalline solar cells. By selecting

the wavelength of the local source of illumination, I build a photovoltage tomography

of the PV material, based on its absorption coefficient and the wavelength-dependent

SPCM. Our results using scanning confocal microscopy (with a 100× objective lens)

show spatial variations in the generation of carriers. The light penetration depth

is directly related to the experimentally determined material absorption coefficient

(α = (4πk
λ

)) which establishes a tomography of photovoltage in three dimensions.

(ii) Nano-imaging of open-circuit voltage in photovoltaics. Using

Kelvin probe force microscopy (KPFM) I locally probe the open-circuit voltage

(Voc) with nanoscale resolution of solar cells through a series of dark and illumi-

nated KPFM scans. Since KPFM is a variant of scanning probe microscopy, both

the morphology and electrical properties of the solar cell material are simultaneously

acquired. KPFM measures the work function difference between the cantilever tip
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and sample surface. Upon solar cell illumination, the work function shifts, and the

local Voc is calculated from this change. Here, I reveal new insights about how the

grain boundaries within polycrystalline devices affect the overall performance.

(iii) Real-time nanoscale open-circuit voltage dynamics of perovskite

solar cells. A variant of KPFM is utilized to rapidly image a specimen with

temporal resolution on the order of seconds, more than two orders of magnitude

faster than conventional frequency modulated KPFM. By using a scanning probe

technique with such high spatial and temporal resolution we realize how the material

changes electrically with time. This is especially interesting for perovskite solar

cells, as they are known for their electrical instability when exposed to air and/or

moisture. Here, I will image the dynamics of perovskite devices in real-time.

(iv) Imaging fully reversible and stable perovskites at the nanoscale.

With the wide variety of perovskite materials available for PV applications, it is

crucial to determine which composition will have the highest electrical stability and

moisture tolerance. I leverage my expertise in KFPM and probe multiple perovskite

thin-films to measure both irreversible and reversible voltage responses. I further use

Fast-KPFM, described in Objective (iii), to track the irreversible electrical signal.
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Chapter 3: Scanning Probe Microscopy of Energy Harvesting Sys-

tems

Our scientific understanding of the nanoscale world is continuously growing

ever since atomic force microscopy (AFM) has enabled us to “see” materials at this

length scale. Beyond morphology, functional imaging is becoming standard practice

as new AFM-based techniques are continuously extending its capabilities. Resolving

material properties with high spatial accuracy is now extremely critical, as future

next-generation energy harvesting systems are comprised of complex and intricate

nanoscale features. Here, we provide a literature review of recent research discover-

ies that implemented AFM methods to measure and determine how the electrical,

chemical, and/or optical properties influence the overall device behavior. We dedi-

cate a portion of this chapter to perovskite solar cells, which are of primary interest

to photovoltaic research, and highlight the remarkable progress made towards un-

derstanding and controlling their instabilities. We conclude with a summary and

outlook anticipating the most pressing materials related challenges associated with

solar cells, and how they will likely be overcome in the near future by nanoimaging

through AFM. This chapter is adapted from E.M. Tennyson et. al, ACS Energy

Letters, 2 2761-2777 (2017) Front Cover [28]
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3.1 Introduction to scanning probe microscopy

Imagine gently gliding along the surface of an object with the tip of your index

finger — what types of information can you obtain? Most likely, you will feel the texture

(surface roughness), temperature, shape, hardness, etc., of the item. All this information is

acquired in less than one second by neurons firing from your fingertip to your brain. Atomic

force microscopy (AFM) is analogous to this situation; except, replace your fingertip by

a nanoscale probe and the neuron reactions with the microscope detection system. AFM

is, thus, an extremely powerful tool that probes the morphological, electrical, magnetic,

mechanical, chemical, and optical properties of the sample under examination. Since its

first implementation in the 1980’s, [29] AFM has revolutionized our understanding of a

variety of nanoscale PV systems, [30,31], as will be presented in this Chapter.

In most AFM-based setups there is a probe with a radius ranging from 1-100 nm

that is positioned very close to or in contact with the surface of a sample, illustrated in

Figure 3.1. The spatial resolution of AFM imaging methods is, then, primarily limited

by the size of the probe. The interaction between the AFM tip and sample is detected

by a photodiode that collects laser light deflected off the back of the cantilever. The

photodiode is calibrated with specified x-y coordinates and continuously keeps track of

the laser position. Therefore, any minute movement of the probe, whether caused by

a small change in sample height or electronic carrier concentration, is detected. The

feedback loop system adjusts the cantilever accordingly, depending on the measurement

mode of interest. There are many forces and interactions, such as electrostatic, capillary,

or chemical potential, that can excite the tip and/or sample causing the deflection laser’s

x-y coordinates to change. Beyond the surface roughness, [32, 33] properties such as the

10



local electrical, chemical, and optical spatial variations are imaged, which will be discussed

in detail later.

deflection laser

control and 
analysis

AFM controller + 
feedback

photodiode

Figure 3.1: Principle of AFM operation. Illustration of an AFM probe scanning
the surface of a textured, non-uniform sample. A laser is deflected from the back of
the probe onto a photodiode and any change in the tip-sample interaction is translated
as the laser’s coordinates on the photodiode. As a consequence, the feedback system
within the AFM adjusts itself accordingly. Out of scale for clarity.

Here, we introduce the remarkable progress made in determining the properties and

performance of materials for energy harvesting by AFM through functional and correlative

nanoscale imaging. The micro- and nanostructure of heterogeneous photovoltaic (PV) and

materials is well known to influence their overall performance. [34, 35] Therefore, under-

standing the electrical and chemical processes that harm device operation is crucial for

future renewable energy generation, conversion, and storage systems. We choose to focus

on AFM methods because they encompasses key desirable features such as: the ability

to perform measurements in operando conditions with 3D nanoscale spatial resolution, is

non-destructive, and requires very little sample preparation. Further, AFM is undoubt-

edly a versatile tool to image the functionality of energy harvesting materials, and its

full potential has yet to be realized, as new techniques will shed light on faster, dynamic

processes. We target selected AFM-based methods that are specifically implemented to
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investigate the nanoscale properties of energy conversion systems that translate into device

performance, such as the electrical and optical response of solar cells (through measure-

ments of photovoltage, photon-induced current, and charge carrier lifetime), and chemical

composition. In the realm of photovoltaics, we provide an in-depth discussion of each

imaging method that has been utilized to probe relevant properties of next-generation

solar cells. In particular, we focus on performance mapping and perovskite dynamics as

it is at the forefront of interest for scientists and engineers working on PV. These novel

scanning methods have the potential to elucidate key open questions about the physical

behavior of perovskite devices.

3.2 AFM for energy harvesting systems

The most promising emerging PV materials consist of micro-structured semicon-

ductors with boundaries and interfaces that can lead to undesirable non-radiative re-

combination of charge carriers, reducing the power-conversion efficiency (η) of the device

significantly below its theoretical limit. [34,35] The applications of these heterogeneous ma-

terials, including perovskites, CdTe, Cu(In,Ga)Se2 (CIGS), Cu2ZnSnS4 (CZTS), quantum

dots, organics, dye-sensitized, etc., are aimed toward lower-cost and/or higher-efficiency

solar markets. Often, the devices are fabricated as thin-films (≤3 µm thickness), which

can be deposited on a variety of surfaces with distinct mechanical properties, including

flexible substrates. Despite the potential low cost ($/kW) of these devices, it is currently

not well understood how their structure affects charge carrier generation, recombination,

and collection at the nanoscale. Thus, imaging the key physical and chemical properties

of these materials is crucial to their further development. In this section of the Thesis

I describe how AFM methods have been realized to probe the electrical, chemical, and
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optical properties of non-epitaxial materials for PV.

3.2.1 Hybrid perovskites and thin-film materials for PV: opportunities

and current limitations

The absorbing layer of halide hybrid perovskites and of most polycrystalline mate-

rials for PV (CdTe, CIGS, CZTS, and polycrystalline GaAs) is composed of grains in the

microscale range, as shown in Figure 3.2, with well-defined facets, interfaces, and bound-

aries. The macroscopic performance of the devices strongly depends on these mesoscale

constructs, where the behavior of the average density of atoms corresponding to length

scales of 5-50 nm (and to a volume commonly comprised of thousands of atoms) is more

relevant than the contribution of the individual atoms themselves. [36] Thus, it is imper-

ative to resolve the performance of the device at similar, relevant length scales. While

conventional electrical characterization methods are extremely useful, they do not provide

information about how each grain and interface contributes to/affects the electrical and

optical responses of the PV devices. Scanning probe microscopy (SPM) and scanning

(transmission) electron microscopies (STEM and SEM) have been successfully applied to

characterize materials for solar cells with high spatial resolution. [37–39] Recently, mi-

croscopic techniques have been combined to investigate the structural, optical, chemical,

and electrical properties of a variety of relevant materials. [40,41] However, the nanoscale

functional imaging of critical mesoscale phenomena in PV materials and in operando de-

vices is still missing. The performance of PV devices is defined by its main figures-of-merit:

open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and η. Thus,

the ability to map these quantities with nanoscale spatial resolution will likely unravel the

intricate physical and chemical processes that define device functionality at the mesoscale,
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elucidating the origin of the modest performance of some technologies, and of the light-

induced chemical reactions that take place in perovskites. Below we summarize the major

advantages and challenges of the selected non-uniform solar cell materials.

(d) CZTS (e) Polycrystalline GaAs(b) CdTe (c) CIGS(a) Perovskite

3 μm

Figure 3.2: SEM images of selected polycrystalline materials for photo-
voltaics: (a) hybrid perovskites, reprinted from ref [42], (b) CdTe, (c) CIGS, (d)
CZTS, reprinted from ref [43], and (e) polycrystalline GaAs, reprinted from ref [44].
In all cases, the absorbing layer is composed of micron sized grains or smaller, where
their optical and electrical responses vary in the same length scale.

3.2.1.1 Hybrid organic-inorganic perovskites

Since 2009, the research community has witnessed the rise of hybrid halide per-

ovskites as a competitive PV technology. [7,45,46] The perovskite material has the chemical

formula ABX3, where A is an organic cation (most commonly used is methyl ammonium,

MACH3NH3), B is an inorganic cation (typically Pb or Sn) [47], and X is a halide (typ-

ically iodine, but chloride and bromide have also been used). The interchangeability of

elements within the compound enables bandgap energy (Eg) tuning from 1.6 eV to 3.2

eV, very appropriate for multi-junction designs. At present, perovskites hold a record

power-conversion efficiency similar to CdTe and CIGS, at η = 22.7 ± 0.8%. [35] However,

stabilizing the high performance has proven to be a challenge and is one of the main ongo-

ing focuses of research in the field. [48] Scientists have observed PV characteristics change

in a matter of seconds [39,49] and the primary processes that cause this instability point

towards ion migration. [50] Most perovskites are composed by sub-micron scale grains
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(Figure 3.2(a)), where spatial variations in their chemical composition resulting from the

spin coating deposition process during the device fabrication are possibly responsible for

the spatial electrical variations reported in the literature, [39,51] as well as ion migration.

Therefore, imaging electronic charge separation and collection at the numerous interfaces

could elucidate the pathways for carrier transport within the material. [52] Full compre-

hension and control of the time-dependent physical and chemical processes responsible for

the commonly observed degradation of perovskites will likely lead to stable, high-efficiency

devices. Additionally, by probing the local electrical response of new lead-free perovskite

alternatives [53] the community will ultimately identify which materials are stable under

PV operation conditions and, thus, suitable for device development, which is currently

unknown.
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material Eg (eV) Voc,theory (V) Voc,meas (V)
Voc,meas

Voc,theory
Jsc,theory (mA/cm2) Jsc,meas (mA/cm2)

Jsc,meas

Jsc,theory
η (%)

perovskite 1.58 1.325 1.105 0.86 27.2 25.0 0.92 22.7 ± 0.8

CdTe 1.45 1.168 0.887 0.76 30.5 30.25 0.99 22.1 ± 0.5

CIGS 1.15 0.89 0.741 0.83 42.1 87.8 0.90 22.6 ± 0.5

CZTS 1.13 0.884 0.513 0.58 43.3 35.2 0.81 12.6 ± 0.3

poly-GaAs 1.42 1.160 0.994 0.89 31.7 23.2 0.73 18.4 ± 0.5

Table 3.1: Theoretical vs Experimental Solar Cell Parameters
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3.2.1.2 CdTe

CdTe/CdS heterojunction solar cells are a mature technology, available on today’s

PV market. Thus, improving devices’ performance for a well-established technology can

significantly impact the associated industry. At present, the power-conversion efficiency

record of CdTe solar cells is η = 22.1 ± 0.5% and typical module performance is η =

18.6 ± 0.6%. [4] While the Jsc of world record devices has practically achieved its maxi-

mum, there is a 25% gap between the theoretical and the measured Voc of polycrystalline

CdTe solar cells, see Table 3.1. It has been recently shown that single crystalline CdTe

devices (boundaries free) can achieve Voc as high as 1.096 V, [54] corresponding to ∼20%

voltage improvement over the best values ever obtained for polycrystalline CdTe solar

cells (limited at ∼0.9 V, as shown in Table 3.1). This result strongly indicates that the

grain boundaries do indeed negatively impact the recombination rate of charge carriers.

However, fabricating monocrystalline CdTe thin films is an extremely slow and expensive

process. Therefore, identifying and controlling where carrier recombination events take

place within polycrystalline CdTe will facilitate the design of devices with suppressed non-

radiative recombination, higher Voc and, thus, performance. It has been recently suggested

that not every CdTe GB results in voltage reduction; [37, 55] therefore, the response of

individual grains (with ∼1 µm in diameter, as shown in Figure 3.2(b)) and its interfaces

must be resolved, which requires high spatial resolution electrical measurements.

3.2.1.3 Cu(In(1−x)Gax)Se2 (CIGS)

The extensive characterization of CIGS/CdS heterojunction devices strongly indi-

cates that this material can become a marketable PV technology. Currently, CIGS is the

17



second highest performing thin-film solar cell at η = 22.6± 0.5%. [4] The CIGS Eg can be

tuned from 1.02 to 1.68 eV as a function of Ga/In content (useful for multi-junction ap-

proaches), has high optical absorption, is compatible with flexible substrates, and has the

potential for low-cost/W installation. [56] Nevertheless, the Voc and the Jsc of these devices

can still be improved, as shown in Table 3.1. Note that, recently, the Jsc of small cells (0.51

cm2) reached >41 mA/cm2 (uncertified), [57] approaching the theoretical value. However,

its Voc is still >20% below the theoretical prediction. The p-doped CIGS absorbing layer

is composed of grains with approximately 1 µm in diameter, see Figure 3.2(c). Voltage

variations of >20% have been observed, shown in the next Chapter, despite the uniform

chemical composition of the grains. [40] Therefore, enhanced power conversion efficiencies

will require mapping how the different grains and interfaces composing the CIGS layer

affect charge carrier generation, recombination, and collection. In particular, the possible

correlation between the physical behavior of in operando CIGS devices and its structural

properties (resulting from a distribution of grain orientations) is still unclear. [56]

3.2.1.4 Cu(Zn,Sn)(S,Se)2 (CZTS)

CZTS belongs to a class of material similar to CIGS (see Figure 3.2(d) for grain

morphology). The main difference, as the chemical formula suggests, is that the elemental

compound does not contain possibly scarce elements like In or Ga, and is purposefully

restricted to using earth-abundant elements. Here, the Zn and Sn atoms replace the group

III elements (In and Ga), producing a structure with charge neutral valence state. [58,59]

Although extensive efforts to increase the performance of CZTS solar cells, its Voc is 50%

below the theoretical prediction for this material (Table 3.1). Moreover, improvements in

the Jsc are also still necessary. As a result of its modest Voc, the record device efficiency is
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η = 12.6±0.3%. [4,60] This lower performance is primarily associated with the fabrication

of films with high void density or impure phases within the Cu2ZnSnS4, such as SnxSy, [61]

despite multiple attempts to optimize the thin film deposition parameters. Determining

how these variations in chemical composition affect the local electrical response of CZTS

thin films could aid in the fabrication of higher efficiency devices.

3.2.1.5 Polycrystalline GaAs

Single crystalline GaAs offers near-ideal optical and electrical properties. As a re-

sult, today’s world record single junction devices are made of monocrystalline GaAs, with

power-conversion efficiency of η = 28.8 ± 0.9% under AM1.5 global illumination. [4] More-

over, this semiconductor compound, together with InP and other III-V alloys, has been

successfully implemented in high-efficiency multi-junction solar cells for concentrator sys-

tems and space applications. [62–64] However, the epitaxial fabrication methods required

for manufacturing monocrystalline III-V semiconductor modules have prohibitive costs

for terrestrial applications. Polycrystalline GaAs is, thus, an attractive alternative to

monocrystalline compounds [44] as they can be fabricated both n- and p-type by close-

spaced vapor transport (CSVT), see Figure 3.2(e). [65, 66] The record cell efficiency for

multicrystalline GaAs is η = 18.4 ± 0.5%, [4] which is significantly below its single crys-

talline counterpart and likely due to either the structural defects in the GaAs polycrystals

or surface recombination within the distinct facets. By spatially resolving the Jsc and Voc

of the GaAs mesoscale constructs we can measure the local response of each crystal facet

independently. For instance, it is well known that the GaAs substrate orientation affects

the density of defects. [67,68] Yet, an analysis of the contribution of the individual GaAs

polycrystals to charge carrier recombination and collection and, therefore, to the overall
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device performance is critical and still missing.

From Table 3.1, it is evident that there is an opportunity for material scientists, elec-

trical engineers, physicists, and chemists to advance the state-of-knowledge of perovskites

and polycrystalline materials for PV. As the mesoscale constructs strongly influence the

efficiency of charge carrier generation, recombination, and collection events, it is imper-

ative to resolve the relevant performance properties of these materials/devices at similar

length scales.

3.2.2 Probing electrical properties

Understanding the nanoscale electrical characteristics of solar cells is the next step

towards realizing devices with controlled response and, thus, enhanced performance. In

AFM based techniques, the electrical signal is the main diagnostic tool used to indicate

whether the local voltage and/or current of a PV device is affected by the materials mor-

phology and how its spatial variation compares with the average, macroscopic device re-

sponse. Nanoscale electrical characterization can help answer critical, still not fully solved

questions such as: “How do the aggregates in perovskite thin films affect overall device

morphology and performance?”, [69] “Does the lifetime of charge carriers vary as a func-

tion of incident wavelength in organic PV?”, [70] and “What is the specific contribution of

grain boundaries in CIGS and CdTe solar cells′ to the local electrical signal?”. [37,71] we

review the most relevant AFM methods that have made contributions towards revealing

the effect of the light-absorbing microstructure on the electronic response.
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Figure 3.3: Nanoimaging electrical properties by AFM. (a) Topography and
KPFM of two perovskite solar cells, with and without the incorporation of 5.7 mol%
of PbI2 as function of voltage bias. Illumination conditions: 500 nm incident light and
photon flux = 0.3 kW/m2. Adapted with permission from ref [69]. c©2015 WILEY-
VCH Verlag GmbH & Co. KGaA, Weinheim. (b) AFM and corresponding EFM
images of a MDMO-PPV:PCBM (1:4) polymer blend thin film acquired at different
applied biases. Far right: differential map of the two biased EFM maps. Adapted
from ref [72]. Copyright 2016 The Japanese Journal of Applied Physics. (c) Top:
trEFM map overlaid with topography in a polymer half-processed solar cell in a 1.5
× 1.5 µm2 region. Bottom: Profile of topography and relative charging rate acquired
for two different photon excitations. Adapted from ref [70]. (d) cAFM maps of the
local current signal for both non-passivated and passivated CdTe solar cells in a 10
× 10 µm2 area. Adapted from ref [71]. (e) SCM on the cross-section of a CIGS solar
cell defines the location of the p-n junction and qualitatively shows the density of
dopants in each respective layer. Adapted with permission from ref [73]. c©2014 IOP
Publishing Ltd.

A variant of AFM that measures local voltage with nanoscale spatial resolution is

called Kelvin probe force microscopy (KPFM), which we have recently demonstrated to

map the open-circuit voltage in solar cells [37,39] (a detailed discussion is presented in the

next section and in Chapter 5). KPFM measures the work function difference between a

conductive probe and the sample surface, termed the contact potential difference (VCPD).

KPFM was theorized by Lord Kelvin in 1898 [74] and first implemented a couple of decades

ago to characterize the local electrical signal of metal and semiconductor surfaces. [75,76]
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The work function (W ) is the energy level difference between the vacuum and Fermi level

(EF ). The probe, typically Si coated with a thin conductive metal layer, is assumed to have

a constant W in non-contact scanning mode. In equilibrium (no light), the solar cell’s W

at the surface stays constant; however, in the case of non-uniform, heterogenous materials

the work function may vary locally depending on grain orientation, [77] EF pinning, [78,79]

charge trapping, [80] and chemical composition, among other factors. When the sample

is illuminated, it generates charge carriers and is, thus, in a non-equilibrium state.

KPFM is frequently used as a diagnostic tool to image the voltage response before

and after specific deposition steps, relevant for optimizing the fabrication parameters of the

films. In Figure 3.3(a), Seidel’s group compared how the electrical signal of (FAPbI3)0.85

(MAPbBr3)0.15 (FA = formamidinium, MA = methylammonium) perovskite compounds

with and without an additional (5.7 mol%) PbI2 reacts locally when an external voltage

bias (inducing ion migration) is applied, by KPFM. [69] It was found that the VCPD of

the sample without the extra treatment step presents a dramatic change as a function of

bias, particularly at the grain boundaries, while the VCPD of the device with excess PbI2

remains constant at both the grain interiors and grain boundaries. These observations

were attributed to ionic migration suppression due to the incorporation of excess PbI2,

which in turn improves the overall electrical properties of the solar cell.

A derivative of KPFM, called either intensity-modulated or illuminated-assisted

KPFM, measures the decay of the surface photovoltage (SPV), which is the subtraction

between an illuminated- and a dark- KPFM scan in the same location. Here, the VCPD

depends on the frequency of the laser pulse, and a transient SPV signal resolved on the

order of sub-milliseconds is observed. [81, 82] The decay rate of the SPV is related to the

minority charge carrier lifetime, as shown in refs [83, 84]. Briefly, when the illumination
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source is in OFF mode, the PV voltage decays exponentially and is proportional to e−1/τ ,

where τ is the minority carrier lifetime. These pioneer works yield insights that link the

local photovoltage, lifetime, and topography, especially useful for correlating the role of

the microstructure to a specific type of recombination mechanism.

Electrostatic force microscopy (EFM), of the same family as KPFM, also measures

the electrical signal of the tip-sample interaction while applying a voltage to the tip in

non-contact mode. The deflection of the AFM probe is linked to the electrostatic force

(FES) between the sample surface and tip. [85, 86] That is, the oscillation path (z -axis)

of the cantilever changes depending on the electrical charge distribution located at the

sample surface. The electrostatic force is described as:

FES =
1

2

dC

dz
V 2 (3.1)

where z is the distance between the tip and sample, C is the tip-to-sample capacitance,

and V is a voltage term that encompasses all voltages flowing within the AFM experimen-

tal setup. The amount of tip deflection is related to the charge carrier density; therefore,

by utilizing EFM one can map electrical properties such as capacitance, surface voltages,

or electrostatic potentials. [87] The capability of this technique is exemplified in Fig-

ure 3.3(b), where the surface charge of a poly[2-methoxy-5-(3A,7A-dimethyloctyloxy)-1,4-

phenylenevinylene] (MDMO-PPV):phenyl-C61-butyric-acid-methyl ester (PCBM) poly-

mer blend thin film is mapped as a function of external voltage. [72] Here, Takuya’s group

was able to determine how the electrostatic properties of an organic PV system influence

device performance. Both the permanent (addition of two EFM maps set at different

voltage bias values) and field-induced (differential of two biased EFM maps) charge com-

ponents were acquired. While the permanent portion of the EFM signal did not affect
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performance, the differential map shows sharp, dark contrasts, which could be related to

charge trapping.

Time-resolved EFM (trEFM), an extension of traditional EFM, measures the charg-

ing rate by tracking the resonance frequency shift that occurs between the probe and the

sample due to charge accumulation. [88,89] Under illumination or external voltage bias a

solar cell generates electrons and holes at a specific rate. A faster charging rate implies

an increase in charge buildup under the probe, shifting the cantilever frequency further

away from its equilibrium resonance peak, dependent on both the incident photon energy

and quantum efficiency. Each of these quantities are known for varying spatially in or-

ganic heterogenous PV materials. Figure 3.3(c) shows a 3D topography map overlaid with

trEFM data on a MDMO-PPV:PCBM (wt/wt 1:4) organic blend cast from toluene. [70]

The black curve denotes topography, while the green and red ones are the normalized

charging rates under 532 nm (above bandgap) and 850 nm (below bandgap) illumination,

respectively. The trEFM line scans present similar spatial trends and, thus, are indepen-

dent of the incident wavelength. This result suggests that the internal quantum efficiency

of the polymer material is equal across a wide range of photon energies. Ginger’s group

observed that segregated regions of PCBM have lower charging rates than if the film were

to have a completely uniform blend.

One way to measure the current of a PV device at the nanoscale is to probe the

sample using conductive- or photoconductive-AFM (cAFM or pcAFM). Here, a conductive

AFM probe in contact with the sample surface acts as a local electrode that collects the

solar cells dark (cAFM) and/or light-generated current (pcAFM). This mature method

has been widely used to image a variety of materials for solar cells, such as perovskites,

[51, 90–92] thin-film polcrystalline, [71, 93, 94] and others. [95–99] One pressing question
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that cAFM can help answer is: What is the specific role of the CdCl2 treatment on

the electrical properties of CdTe solar cells? It has been ubiquitously demonstrated, at

a macroscopic level, that the CdCl2 improves PV performance by passivating the CdTe

grains and interfaces; [100] yet, resolving how it affects the local electrical signal is still not

well understood. Thus, cAFM has been applied to elucidate how this extra fabrication

step enhances CdTe performance — see in 3.3(d). [71] Here, Rockett’s group imaged two

CdTe solar cells, with and without CdCl2 treatment, under multiple external voltages

using a Pt-coated Si probe. Both the top-left and bottom-right maps were obtained at a

bias of +6 V while the top-right and bottom-left were acquired at -6 V. Under positive

bias the p-n junction of the CdTe solar cell experiences reverse breakdown voltage due to

the geometry of the measurement. In this case, the current contrast between the grains

and grain boundaries in Figure 3.3(d) is accentuated for the CdCl2 treated sample, caused

by injection of electrons into the grain boundaries from the probe. This indicates that

the grain boundaries are less p-type than the grain interiors in the treated sample. While

applying a negative voltage, the sample undergoes forward bias and the current flow in

this regime is due to electron injection from the p-n junction into the CdTe layer. The

magnitude of the current under negative applied bias is limited by the electron collection of

the AFM tip and/or by the recombination of charge carriers at the back Schottky contact.

While this technique is a great approach to directly map the current generated by a solar

cell with nanoscale spatial resolution, much care should be taken when acquiring images,

as the thin conductive coating of the probe can be easily removed, producing artifacts in

the electrical signal.

Scanning capacitance microscopy (SCM) maps the differential capacitance (δC/δV),

enabling dopant concentration imaging in microelectronic systems such as solar cells.
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Briefly, the capacitance of a semiconductor can be tuned by applying an alternating elec-

tric field to a conductive-coated tip, and is subsequently measured by tracking the third

harmonic frequency of the cantilever. [101] The type of doping (n or p) can be deduced

based on the sign of δC/δV, while the magnitude of the capacitance is based on carrier

concentration. [102] Further, there has been some research effort to quantitatively link

δC/δV to charge carrier concentration in different types of semiconductors materials, such

as Si, GaN, and others. [103] Daisnke’s group imaged a cross-sectional SCM map of a CIGS

solar cell, Figure 3.3(e), showing the qualitative carrier concentration at the CdS/CIGS

n-p junction. [73] Both the accumulation and depletion regions were directly mapped, im-

portant for determining where the electrons and holes are generated throughout the PV

films.

3.2.2.1 Attributing electrical properties to performance

While standard electrical property mapping is an extremely informative way to gain

fundamental insights about PV materials and devices, quantifying and relating nanoscale

charge carrier phenomena back to device performance is a critical next-step that will

lead to the rational design of solar cells with high power-conversion efficiencies. There

has been novel research that links the acquired electrical output to a relevant solar cell

parameter, namely photovoltage and photocurrent. We recently modified illuminated-

KPFM to quantify the local open-circuit voltage (Voc), [37] one of the most important

figures-of-merit that define PV performance, discussed in depth in Chapter 5. For this,

the AFM probe must be grounded with respect to the bottom electrode of the solar cell

and the experimental setup calibrated. In this way, when both a dark and an illuminated

KPFM map are acquired on the same region of a sample, and subsequently subtracted,
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the remaining value is the quasi-Fermi level (∆µ). As seen in Equation 3.2, ∆µ is directly

proportional to the Voc of the PV device:

∆µ = Voc × q (3.2)

where, q is the elementary charge. Figure 3.4(a) shows a Voc map containing two grain

boundaries in a CdTe solar cell with distinct and contrasting electrical behavior. The

defect highlighted on the left locally reduces the Voc by 60 mV while the grain boundary on

the right acts similar to the grain interiors, maintaining a voltage response comparable to

its surrounding grains. Here, we determined the quantitative contribution of CdTe grains

and grain boundaries to the local Voc. We also revealed local voltage variations in CIGS

solar cells as high as 250 mV, demonstrating the large influence that the microstructure can

have on the recombination of charge carriers, consistent with other KPFM measurements

on CIGS. [104] Overall it was demonstrated that this powerful nanoimaging approach is

a universal tool to directly map the local Voc of mono-, polycrystalline, and perovskite

solar cell devices, and works in ambient environment. [37, 39] For more information see

Chapters 5 and 6.
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Performance imaging
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Figure 3.4: Photovoltaic performance at the nanoscale. (a) Illuminated-KPFM
on a CdTe solar cell results in direct imaging of the local Voc by subtracting an
illuminated scan by a dark one. Adapted with permission from ref [37]. c©2015
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) A variant of cAFM,
conducting tomographic AFM, biased near Voc. A tough diamond-coated probe was
used to etch away the top surface layer after each current map of a CdTe solar
cell. Adapted by permission from Macmillan Publishers Ltd: Nature Energy [93],
copyright 2016.

AFM-based techniques are often limited to imaging properties at the sample surface;

however, a method recently developed, conducting tomographic AFM, maps the photocur-

rent in 3D, demonstrated in Figure 3.4(b). [93] In pcAFM mode, a diamond-coated probe

with a high toughness value, iteratively etches away the top few nanometers of the surface

to reveal CdTe grains and their respective photo-generated current. While this technique

is destructive in the scanned region, charge carrier transport pathways previously hidden,

are measured. Using this method, Huey’s group identified inter- and intra-grain planar

defects attributed to local wurtzite and zincblende structure variations, consistent with

stacking faults imaged with transmission electron microscopy (TEM) of the same sample.

Further, by scanning the region biased, grain boundaries with n-type characteristics were

resolved.
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3.2.3 Imaging local chemical properties

Very recently, researchers have extended AFM to map the chemical information of

materials for PV at the nanoscale. [105] Now, more than ever, identifying the elemental

distribution with nanoscale spatial resolution is relevant for heterogenous, next-generation

PV technologies to improve the state-of-knowledge of crucial unanswered questions, such

as: “Where do the Br3, Cl3, or I3 ions segregate in mixed perovskite materials upon

illumination?”, [106,107] “Is the non-uniform electrical response of perovskites related to

variations in chemical composition?”, [39,51] “Is it possible to chemically resolve where the

different species in a block co-polymer thin film preferentially accumulates/segregates?”,

[108] “What is the primary substance limiting the electrical conductivity in polymer solar

cells?”, [109] and “Are the majority of grain boundaries in CZTS thin-film solar cells of

Cu-rich or Cu-poor composition?”. [59]

Tip-enhanced Raman spectroscopy (TERS) is an effective method to image the

chemical composition of materials. [110–112] The experimental setup for TERS requires

a high-intensity polarized light focused on the apex of a metal-coated AFM probe (e.g.

Ag or Au) held ∼20 nm above the sample surface. The interaction between the inci-

dent far-field photons and the tip induces a large electromagnetic near-field enhancement,

capable of exciting Raman vibration modes. The amplification effect is attributed to local-

ized surface plasmons that are generated by the incident photon energy, which is usually

near the resonant peak of the metal coating on the AFM cantilever. [110, 113, 114] The

strong excited optical field is coupled into a spectrometer, where each pixel in a TERS

map corresponds to a spectrum. TERS is particularly useful when analyzing systems

with inhomogeneous chemical composition distribution, such as perovskite and organic
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solar cells, as the agglomeration or separation of elemental compounds can deteriorate

the electrical performance of the devices. Figure 3.5(a) shows the topography (top) and

corresponding TERS image (bottom) of a PCBM (acceptor) and poly-(3-hexylthiophene)

(P3HT, donor) polymer solar cell. [109] Meixner′s group attributes the bright red feature

in the center of the chemical map to a PCBM aggregate that formed on the surface of

the polymer due to an unoptimized annealing step. PCBM was identified by both the

Raman and photoluminescence (PL) spectra in this region, and the spatial distribution

of the chemical trace was only discernable in the TERS imaging. Confocal microscopy

was attempted in the same location and no change in the Raman signal was detected.

This PCBM aggregate is responsible for the limited electron transfer observed in these

polymeric solar cells, resolved by TERS measurements.
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Chemical property imaging
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Figure 3.5: Nanoimaging chemical properties in solar cell materials by
AFM. (a) Topography (top) and near-field TERS map (bottom) of a polymer
material, wavenumber range from 283 to 2926 cm−1 was integrated. Region III
indicates the agglomeration of PCBM molecules. Adapted with permissions from
ref [109]. c©2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) PiFM
images acquired at two distinct wavenumber excitations showing the two phases of
a co-block polymer material. Reprinted/adapted from [107]. c©The Authors, some
rights reserved; exclusive licensee American Association for the Advancement of Sci-
ence. Distributed under a Creative Commons Attribution NonCommercial License
4.0 (CC BY-NC) http://creativecommons.org/licenses/by-nc/4.0/. (c) Topography
and PTIR absorption map acquired at 3054 cm−1 of a PDPB nanofiber. Correspond-
ing PTIR absorption spectrum of the C-H stretching modes both before and after
catalysis. Adapted by permission from Macmillan Publishers Ltd: Nature Materi-
als [115], copyright 2015.

Photo-induced force microscopy (PiFM) is an emerging approach that was developed

in 2010. [116] Here, the near-field Raman signal is detected in noncontact mode. Thus,

changes in the time averaged force gradient of the tip-sample interaction are measured,

rather than a spectrum. [117] During the experiment one (tunable) or two lasers (of

different wavelengths) are focused onto the sample; they modulate at frequencies that

are selected based on the first and/or second resonance of the cantilever. The external

excitation generates a unique response in the force curve that is captured by a lock-in

amplifier. [118] In general, the experimental setup is compatible with bottom-illumination

with a high numerical aperture objective lens. The spatial resolution of the PiFM image

is slightly better than the simultaneously acquired topography map because the PiFM is
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both excited and detected in the near-field regime. The signal-to-noise ratio of PiFM is

substantially larger than the one of TERS because the latter is detected in the far-field

regime. These advantages extend chemical imaging spatial resolution, which can be used

to reveal nanoscale domains within composites, or to determine the specific segregation

regions in mixed perovskites. [106, 119] As a proof of concept and to demonstrate the

power of this technique, Park′s group imaged a block co-polymer material, poly(styrene-b-

methyl methacrylate) (PS-b-PMMA), with very well defined Raman molecular signatures

and identified each chemical compound with <10 nm resolution, see Figure 3.5(b). [108]

A point-by-point PiFM response spectrum is shown on the left, executed by sweeping

a quantum cascade laser at the given wavenumber and recording the magnitude of the

cantilevers deflection. On the right side of Figure 3.5(b), two PiFM images in the same

location are acquired by consecutively exciting the sample at wavenumbers 1492 cm−1

(for PS), and 1733 cm−1 (for PMMA), where both polymers are clearly resolved. Regions

of PS appear brighter in the map using the 1492 cm−1 excitation because its near-field

Raman signal is stimulating the cantilever at its resonance frequency, detected by lock-in

amplification. Note that it is necessary to know the Raman spectrum of the sample under

investigation before performing PiFM to ensure appropriate selection of the excitation

wavenumber. PiFM is, thus, a very promising AFM-based tool to probe materials for PV

ranging from perovskites to CIGS, where local variations in chemical composition might

affect carrier recombination and collection.

Photothermal induced resonance (PTIR) microscopy, or AFM-IR, combines precise

IR spectroscopy with the spatial resolution of an AFM. [120,121] Here, an external, tunable

IR laser is pulsed while the AFM cantilever is in contact mode. This photon excitation

induces local heating of the sample faster than the acquisition of the AFM feedback
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and proportional to the thermal expansion coefficient of the material. As each chemical

species has a unique thermal expansion coefficient, chemical identification is attainable at

the nanoscale. [122,123] In most cases, devices or thin films under investigation are placed

on top of a glass prism, where the incident light is reflected up to the sample by total

internal reflection. [124] This method has been applied to resolve ferro-elastic domains

[125] and the distribution of Cl as a function of wavelength and annealing time, [107]

in perovskites. In Figure 3.5(c), both topography and PTIR maps are presented on a

UV- and visible-light photocatalytic energy harvesting material, poly(diphenylbutadiyne)

(PDPB). [115] Here, the conductive polymer was fabricated as a nanofiber, because the

photocatalytic reaction of the one-dimensional design was more efficient than its bulk

counterpart. One major challenge with current light harvesters is their long-term stability,

thus, Remita′s group investigated PDPB, a promising material that does not require any

precious metal nanoparticle co-catalyst. Nanoscale PTIR measurements demonstrated the

polymer reusability, as any composition degradation would be visualized in the absorption

map. Further, the spectra on the right side of Figure 3.5(c) show the reproducible C-

H stretching vibration modes at 3054 cm−1 both before and after undergoing catalysis.

The overlap in the spectra indicates that there was no change in chemical composition,

indicative of a stable, photocatalytic material. This chemical mapping technique could

also extend to metallic nanostructures for energy harvesting, [126] not possible with TERS

or PiFM, as many metals (e.g. Ag and Au) do not have a clear Raman response.

3.2.4 Optical properties at the nanoscale

Combining the information gained from a traditional optical microscope with the

spatial resolution of an AFM yields a highly impactful imaging approach that can reveal
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optical phenomena (i.e. reflection, absorption, and transmission), and electrical properties

of materials for energy harvesting. Acquiring an optical response at the nanoscale requires

a small antenna (or probe) that either excites and/or collects the near-field optical signal,

entitled near-field scanning optical microscopy (NSOM, or SNOM). Here, the optical infor-

mation obtained is beyond the diffraction limit of light, restricted instead to the diameter

of the NSOM probe. [127] Through NSOM measurements scientists are beginning to an-

swer questions such as: “Does the migration of MA+ and I− ions in perovskites impact the

index of refraction of the material?”, [128] “How can one efficiently couple far- to near-field

light in order to image radiative recombination in nanoscale structures of optoelectronic

devices?”, [129] “What is the spectral dependence on the local photocurrent enhancement

in CdTe and CZTS grain boundaries?”, [130, 131] and “What is the correlation between

the facets of GaAs polycrystals and their carrier radiative emission rate?”. [44,66]
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Figure 3.6: Nanoimaging optical properties in solar cell materials by AFM.
Clockwise: (a) PL maps acquired with a near-field campanile probe and confocal ob-
jective, respectively, of an InP nanowire in a 2 × 2 µm2 region. From [129]. Reprinted
with permission from AAAS. (b) Illustration of NSOM in collection mode utilizing
an aluminum-coated glass fiber tip to compare the near-field optical resonance of
nanopatterned region vs. a flat region on an a-Si device. [132] (c) Effective EQE map
measured at 850 nm (top) and average spectrally-dependent EQE graph (bottom)
calculated from NSOM-LBIC images of a CdTe solar cell. Adapted from ref [130].
(d) Left: schematic of s-NSOM. Right: s-NSOM measurements on a perovskite mi-
crowire under different poling conditions, used to measure ion migration; scale bar
is 500 nm. In the s-NSOM amplitude maps: red = high signal, blue = low signal.
Adapted from ref [128].
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In near-field optics the distance between the illumination/collection source (the

NSOM probe) and the sample surface is significantly less than the wavelength of light

(∼10 nm). The theoretical description of the near-field effect was introduced in the 1920’s

[133] but was realized more than half a century later. [134, 135] The major experimental

innovations that led to the successful implementation of NSOM are: (i) depositing a thin

metal coating over the NSOM probe to help guide light into the nanoscale aperture, and

(ii) including a feedback loop to continuously monitor/adjust the tip-sample distance.

NSOM can be performed in multiple configurations, [136] ranging from excitation-only to

reflection+collection. Below, we review the two most useful NSOM modes for solar cells:

(i) collection and/or excitation and (ii) apertureless, where there is a discussion about

how these methods can be extended to determine relevant information about PV device

performance.

In NSOM-PL, also detailed in Chapter 8, the probe acts as both a collection and

an excitation source. For this, incident light passes through the small hole in the NSOM

probe and the subsequent photon emission caused by the radiative recombination of charge

carriers in the solar cell is collected back through the same aperture. One example of high-

efficiency, bidirectional far-to-near field coupling is presented in Figure 3.6(a), [129] where

Weber-Bargioni’s group employed a new probe design shaped similar to a campanile bell

tower, to promote a more effective waveguide for far-to-near field coupling in a wide spec-

tral range. In Figure 3.6(a), NSOM and confocal PL maps of an InP nanowire (NW) are

compared; each pixel represents the amplitude of the emission signal at 802 nm. It is

immediately apparent that the image acquired with the campanile probe has much higher

spatial resolution, elucidating the spatial distribution of PL within a single NW. The

non-uniform emission is associated to trap-state modifications of the localized excitons,
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an important discovery if InP NWs are to be implemented into light-harvesting devices.

Since this study, there have been more NSOM-PL investigations [137] of the optoelectron-

ics properties of solar cell materials including perovskites [138] and InGaN/GaN, [139]

each presenting novel insights about the local distribution of radiative and non-radiative

recombination mechanisms.

NSOM using an aperture in the collection-only configuration illuminates a large

region of the sample and gathers the evanescent fields of photons propagating through

the surface of the device. The NSOM probe is maintained at a distance of ∼20 nm above

the sample, close enough to allow tunneling of the guided photons. In the example shown

in Figure 3.6(b), [132] Paetzold et al. have used NSOM in collection mode to resolve

the near-field enhancement induced by patterned nanostructures within a solar cell as a

function of both wavelength and light polarization. [132] Their results complement the

macroscopic measurements of external quantum efficiency (EQE) improvement due to the

addition of metallic nanostructures. [140]

One application of NSOM in excitation-only mode is light beam induced current

(LBIC) microscopy, where the photogenerated current can be spatially resolved at the

nanoscale. [141] A spot size equivalent to the diameter of the aperture illuminates a solar

cell and locally generates a flow of charge carriers. The photocurrent signal is typically

detected by using the macroscopic contacts of the device. Resolving the light-generated

current at the nanoscale is relevant when the feature size that composes a solar cell material

is of a similar dimension, e.g. grain boundaries. [131] In Figure 3.6(c) spectrally-dependent

NSOM-LBIC is applied to a CdTe solar cell. [130] Nanoscale spatial variations of the EQE

(calculated from photocurrent measurements) at grain boundaries (GB) vs. grain cores

(GC) were measured. Overall, Leite et al. found that GBs generate more photocurrent,
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hypothesized to be a local reduction in bandgap. One advantage of this optical technique

over pcAFM is that it is performed in non-contact mode. Thus, contact artifacts from the

tip are reduced. However, the signal-to-noise ratio is substantially lower in NSOM-LBIC,

and more sensitive current detectors are required.

Apertureless NSOM or scattering-NSOM (s-NSOM) follows similar operating prin-

ciples as collection-only mode, i.e. excitation uses far-field light and the optical response

from the sample is collected in the near-field. [142] However, here, the probe is not hol-

low, but instead a sharp, metallic tip (most cases an AFM probe) kept <20 nm from the

illumination spot. The apex enhances and disperses the near-field interaction induced by

the incident light occurring at the sample surface, the signal is then acquired with far-

field detectors. To further increase the near-field enhancement effect, it is suggested to

use an AFM probe that is coated with a thin layer of Au. [143] Because in s-NSOM the

tip no longer wields an aperture, the spatial resolution is equivalent to standard AFM.

As previously mentioned, ion migration in perovskite materials is hypothesized to in-

duce instabilities and degradation in the overall electrical performance. In Figure 3.6(d),

Bao’s group implemented apertureless NSOM to nanoimage, in situ, how the electric-field

poling direction of a perovskite device influences MA+ and I− ion migration. [128] A mi-

crowire is used to isolate and confine the direction of the ions. Near-field optical maps

were obtained under mid-IR (11.7 µm) illumination to map the index or refraction and

free-charge carrier distribution. On the left of Figure 3.6(d) an illustration of the exper-

imental setup is shown. The top portion of the right three images displays a schematic

of the observed phenomenon occurring in the microwire under pristine (no applied volt-

age), positive poling (+10 V), and negative poling (-10 V) conditions. The topography,

near-field optical amplitude, and phase images under these three conditions are presented
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for comparison, respectively. According to the topography maps, the perovskite material

expands in the poling direction, which is also in the same orientation as the migration of

the MA+ ions. The authors calculate that the material expansion is 4.4%; the measured

shrinking-swelling effect in the perovskite structure could be one source of device degra-

dation. Further, the near-field amplitude (here, representing the local carrier density)

response is uniform under pristine conditions, but during poling the distribution of charge

carrier changes: MA+ ions accumulate near the negative side and I− shifts toward the

positive electrode, possibly generating a temporary p-i-n junction. In the near-field phase

maps (related to the perovskites refractive index), the negative electrode has a much larger

signal, indicating a decrease in absorption due to the swelling of the perovskite. Although

very informative, this microscopy method suffers from high background noise due to the

far-field excitation. Therefore, double lock-in or other background-suppression methods

should be implemented to extract the near-field signal. [136]

3.3 Probing dynamic processes in perovskite solar cells

Due to the high interest in perovskites for energy harvesting, this Chapter section

is dedicated to cutting-edge research that investigates the electrical, chemical, and/or

optical properties of these intriguing materials with nanoscale spatial resolution. With

promising, single-junction power conversion efficiencies >22% [4] and a new record tandem

perovskite/Si solar cell of 23.9%, [144] the prospect for commercializing this PV technology

is approaching fruition. Moreover, there has been a recent article by Nazeeruddin’s group

announcing a one-year stable perovskite solar cell, [145] indicating that our ability to

optimize and control these complex materials is increasing. Yet, there are still many

challenges that lie ahead and we are continuing to discover answers to important scientific
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questions such as: “Can we capture the real-time effects of light illumination on the local

Voc of perovskites?”, [39] “How do the radiative recombination distributions of charge

carriers in MAPbI3 vs. MAPbBr3 perovskite compounds differ?”, [138] “Are Cs-containing

triple-cation perovskites more stable than conventional ones?”, [146, 147] “What is the

role of humidity on the perovskite local electrical response?”, [50,148] and “What are the

perovskite material options that are stable upon illumination?”. [149,150]

Perovskite solar cells experience performance instabilities caused by transient pro-

cesses upon material illumination, [151] and exposure to humidity and oxygen. [152, 153]

Imaging these dynamical events at relevant length scales have become an important next-

step towards identifying stable materials and devices. Rapid temporal mapping will likely

elucidate the transport of charge carriers after excitation, spatially identifying where trap-

states are located. In Figure 3.7(a), our group measured the real-time, photo-induced

voltage response of a MAPbI3 perovskite solar cell before, during, and after illumination

with fast-KPFM. [39] More details will be discussed in Chapter 6, but briefly, each KPFM

map (left of image) is acquired in 16 seconds (two orders of magnitude faster than con-

ventional methods), therefore, it is possible to capture how the electrical signal changes

as a function of time. Immediately after the light is turned OFF the photo-generated

voltage ceases. However, the charge distribution is very different from the initial dark

scan, as seen by comparing both the KPFM map and the voltage histograms (right side

of panel). In fact, the perovskite’s electrical performance remains out of equilibrium for

nine minutes, until finally stabilizing and returning to its initial dark conditions. While

perovskite performance instability on the time scale of several minutes has been observed

macroscopically, [49] by imaging with nanoscale spatial resolution, two distinct regions

with contrasting voltage decay rates were found to coexist within a single MAPbI3 grain,
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resulting from ion migration. [39] The next step is to identify the relationship between

this dynamic electrical response with local chemical composition variations. This point

will be addressed in more detail in the future work portion of this thesis.

(a) Garrett, J.L., et al. Nano Lett. 2017 doi: 10.1021/acs.nanolett.7b00289 

(c) Vrucinic, M. et al., Adv. Science 2015 doi: 10.1002/advs.201500136
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(b) Chae, J. et al., Nano Lett 2015 DOI: 10.1021/acs.nanolett.5b03556

Figure 3.7: Imaging electrical, chemical, and optical dynamics in perovskite
solar cells by AFM. (a) Sequence of fast KPFM on a perovskite solar cell under
dark and illuminated conditions; each map takes 16 seconds. Right graph shows volt-
age histograms for 42 fast-KPFM maps. [39] (b) Topography and three PTIR maps
measured at different annealing temperatures of a thin-film perovskite, where the
blue regions of the map refer to high Cl concentration; scale bar is 1 µm. Adapted
from [107]. (c) NSOM topography and simultaneous PL images of two perovskite
compositions, MAPbBr3 and MAPbI3, scale bar = 4 µm. Reproduced with permis-
sion. [138] Copyright the authors, published under CC-BY 4.0 license 2015.

Mapping the local elemental distribution in perovskites is of major interest for the

PV community to help determine where ions are segregating and/or migrating. For ex-

ample, in Figure 3.7(b), a MAPbI3−xClx sample is annealed in situ and the AFM (top

left) and PTIR signals are acquired during each thermal step. By identifying the PTIR

proportion between high and low incident photon energies, local changes in the perovskite

bandgap are distinguished. It is well understood that the addition of Cl increases the

bandgap energy of the MAPbI3, therefore, regions of high Cl concentration are discerned
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(blue in the PTIR maps, red indicates Cl-poor areas). Local increases in bandgap in the

as-prepared sample as high as 0.3 eV were measured. However, upon further annealing the

bandgap continuously decreases, indicating that Cl content is reduced with temperature,

likely caused by MACl sublimation. Additional spectrally-dependent PTIR imaging with

high spatial resolution on the wide variety of perovskite materials would be extremely in-

formative, particularly to determine the role of absorption of different elements causing the

instabilities of solar cell efficiency. Recently, a novel AFM-based chemical imaging method

called peak-force infrared microscopy mapped the distribution of methylammonium in a

MAPbBr3 nanocrystal. [154]

To image the radiative recombination centers in perovskite materials, Deschler’s

group implemented NSOM-PL on both MAPbI3 and MAPbBr3 thin films. Figure 3.7(c)

displays the simultaneously acquired topography and PL maps for each sample. The

sample containing Br3 has a more homogenous morphology, while the I3 film has needle-

like features with 25% of the scanned region comprised of voids. The PL signal shows

localized hot spots (two orders of magnitude increase) in the Br3 sample that are not

correlated with the topography. However, the I3 containing thin film displays some PL

variation, but the brighter regions are not nearly as dramatic as in the Br3 one. Their

results, in combination with time-resolved PL measurements on the same samples, revealed

that regions of high radiative recombination for both thin films have slower charge carrier

decay rates. The authors concluded that the areas with higher PL emission are decoupled

from the low PL regions through either a slow diffusion process or energy barrier that

prevents the charge carriers from moving laterally in the perovskite layer. It is also

hypothesized that higher luminescent sites are regions of enhanced structural order and

better crystalline quality. AFM is a vital tool set for advancing the state-of-knowledge
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of the dynamic responses of perovskites when exposed to ambient environment, where

measurements prior to full device development are extremely important for the screening

and classification of stable alternatives.

3.4 Summary

In this introductory chapter, we presented selected AFM methods that led to re-

cent discoveries related to the electrical, chemical, and optical responses of materials and

devices for the most promising polycrystalline PV materials. Revealing the fundamen-

tal properties of these systems is crucial to increase our understanding of the underlying

mechanisms that define device performance at the nanoscale. Ultimately, we envision that

high spatial resolution investigations will lead to the redesign of materials with improved

performance, as well as devices.

In this summary section we provide an outlook of how AFM can be further imple-

mented to address pressing problems in materials for photovoltaics and energy storage.

First, we speculate how fast AFM methods could be used to help elucidate the role of the

ambient environment onto the degradation of perovskites. Then, we discuss the need for

advancing NSOM-based methods which, to date, are not widely implemented. Measure-

ments using NSOM are particularly relevant to tackle open questions in polycrystalline

PV.

Nanoscale mapping of performance through KPFM and cAFM can potentially de-

convolute the role of humidity, oxygen, illumination, bias, and temperature on perovskites

degradation, including their effect on both grains and grain boundaries. These measure-

ments are likely to redefine the design of solar cells using conventional and emerging

perovskites, considering their contact interfaces. We anticipate the nanoimaging of per-
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ovskites through “fast” AFM techniques, such as heterodyne-KPFM [34, 39, 155], KPFM

G-mode extension, [156] or 2ω D-KPFM [157] to elucidate their dynamic electrical behav-

ior at relevant length scales, critical to identify the driving forces behind its instabilities.

In particular, we expect researchers to correlate the changes in the optoelectrical proper-

ties (photovoltage, photocurrent, and PL) with possible chemical composition variations

through correlative microscopy (KPFM + cAFM + PiFM) on the very same grains. AFM

experiments where one can elucidate the effects of ambient environment on the local elec-

trical and optical properties will probably focus on correlative microscopy, in order to

define how each parameter affects charge carrier generation, recombination, and collec-

tion, all critical for device performance. We also expect NSOM-PL, KPFM, and TERS

to help us identify which perovskites compositions are stable under illumination. While

extensive effort has focused on determining the ideal synthesis parameters for optimized

device performance, substantial work lies ahead to identify what triggers ion migration

and/or material segregation upon sample illumination and exposure to ambient condi-

tions. This class of material has ∼100 options, [149] thus, measurements on thin films will

accelerate a high throughput and effective material selection, prior to device processing

development.

Concerning polycrystalline materials for PV, direct measurements of light-matter

interactions through underutilized NSOM-based techniques are critical for tackling rel-

evant open questions. For local optical measurements, better NSOM probes are being

designed and engineered to optimize the far-to-near field light coupling, as the current

transmission loss is still 3-6 orders of magnitude. [158,159] More efficient probes will allow

for mapping on a broader variety of low-emission materials, including CIGS and CZTS.

NSOM-PL will further impact polycrystalline GaAs fabrication, [160] as the dependency
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of radiative recombination on different types grain facets could be resolved. We also antic-

ipate KPFM measurements combined with scanning electron microscopy to become more

common, [161] where one can correlate, in situ, the electrical response of grains and grain

boundaries with their crystalline orientations. To probe the p-n junction in inorganic solar

cells, such as CdTe and CIGS, KPFM and cAFM should be applied in cross-section after

cleaning the sample in an oxygen-free environment, to prevent surface recombination due

to the material’s exposure to air. For that, it’s best practice to operate the AFM inside a

glove box, where the samples can also be cleaved.

In the past three decades AFM has become the standard characterization tool to

image the morphology of a specimen. In the years following its conception, scientists

have modified the instrumentation to image beyond its typical measurement mode, and

unleashed an array of new research opportunities to map other material properties. We

have no doubt that novel adaptations will continue to develop, as speculated above. It’s

all at the tips of our fingers!
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Chapter 4: Photovoltage Tomography in Polycrystalline Solar Cells

To date, the performance of all polycrystalline photovoltaics is limited by

their Voc, an indicator of charge carrier recombination within the semiconductor

layer. Thus, the successful implementation of high efficiency and low-cost solar cells

require the control and suppression of non-radiative recombination centers within

the material. In this Chapter, we spectrally and spatially resolve the photovoltage

of polycrystalline thin-film CIGS solar cells. Micro-Raman and EDX maps obtained

on the same grains showed that the chemical composition of the CIGS layer is very

uniform. Surprisingly, we observed concurrent spatial variations in the photovoltage

generated across the device, strongly indicating that structural properties are likely

responsible for the non-uniform mesoscale behavior reported here. We build a to-

mography of the photovoltage response at 1-sun global illumination, mimicking the

operation conditions of solar cells. Further, we spatially resolve the voltage within

the CIGS grains, where we found variations >20%. Our functional characterization

could be implemented to identify where non-radiative recombination preferentially

takes place, enabling the implementation of non-uniform materials for future devices

with higher Voc. This chapter is adapted from E.M. Tennyson et. al, ACS Energy

Letters, 1 899905 (2016) [40]
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4.1 The need for tomography in thin film photovoltaic de-

vices

This chapter investigates thin film Cu(In,Ga)Se2 (CIGS) solar cells, as they are a

practical alternative to commercially available Si photovoltaic (PV) devices due to their

low cost and high efficiency. [162, 163] Further, these technologies have the advantage of

being fabricated on top of either a rigid or flexible substrate, extending solar cell devices

towards a variety of applications. To date, the record CIGS device has an efficiency of η

= 22.6% and open-circuit voltage of Voc = 741 mV, which was fabricated using the well-

established multi-stage co-evaporation technique. [164] However, the sequential deposition

steps substantially increase the overall production cost of CIGS, preventing its wide com-

mercialization. [165,166] An alternative fabrication technique is the sputter deposition of

CIGS through a single quaternary target. [167–169] This method can be implemented in

large-scale applications and also avoids a necessary but toxic post-deposition selenization

step. [170] Despite the advantages of the quaternary target method, the typical Voc of the

PV devices is ∼500 mV, well below the Shockley-Queisser theoretical limit (∼813 mV

for CIGS with Eg = 1.213 eV). [6, 7] Thus, as discussed in Chapters 1 and 3, the Voc is

currently restricting the performance of CIGS solar cells. Because the CIGS absorbing

layer is inhomogeneous and composed of micro-scale grains, it has been speculated that

the electrical response of the material could be limited either by composition variations

within the grains or by the different interfaces throughout the thin film polycrystalline

layer. [56, 171]

In order to probe the local structural and electrical characteristics of materials for

PV, scanning probe and electron microscopies have been widely implemented. [56,172,173]
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The local electrical response of these inhomogeneous materials have been determined

by laser-beam [95, 174–176] and electron-beam induced current, (EBIC) [55, 177–179]

conductive-atomic force microscopy, [180–183] Kelvin probe force microscopy, (KPFM)

[37, 180, 184] scanning probe microwave capacitance, [185] near-field scanning optical mi-

croscopy, [130–132,186,187] cathodoluminescence, [188,189] and photoluminescence. [190–

195] Further, spectroscopic methods, including electron energy loss spectroscopy (EELS)

[196] and X-ray microscopy, [197, 198] have been implemented to reveal how chemical

composition variations within the active layers affect the electrical response of the de-

vices. Recently, micro-Raman mapping also became a tool to link material composition to

optoelectronic properties. [11, 199] Nevertheless, a high spatial resolution (<1 µm) spec-

troscopic imaging platform to resolve possible photovoltage variations of polycrystalline

solar cells that does not require special sample preparation or an inert environment is still

missing.

Here, we spectrally and spatially resolved the photovoltage of polycrystalline thin

film CIGS solar cells from a quaternary target, which is related to the charge carrier recom-

bination events within the absorbing layer of the device. Micro-Raman maps obtained on

the same grains revealed that the chemical composition of the CIGS layer is very uniform,

in agreement with our energy-dispersive X-ray spectroscopy (EDX) results. Surprisingly,

we observed concurrent spatial variations in the photovoltage generated across the device,

strongly indicating that structural properties are likely responsible for the non-uniform

mesoscale behavior reported here. We built a qualitative tomography of the photovoltage

through a sequence of spectrally dependent voltage scans at low photon injection level,

mimicking realistic operation conditions of photovoltaic devices. The mesoscale electri-

cal response of the material varied at the same length scale as the grains, and different
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sites (interfaces and groups of grains) showed distinct photovoltage, depending on wave-

length (λ), where voltage variations >20% were measured. These results demonstrate that

the of CIGS solar cells is limited by the types of interfaces existing between the grains

composing the active layer of the devices. Further, we provide a universal and direct

method to map voltage with high spatial resolution without the use of a scanning probe

or vacuum environment that can be applied to other optoelectronic devices, such as LEDs,

photodetectors, etc.

4.2 Experimental methods

4.2.1 CIGS solar cell fabrication

The CIGS solar cell samples were fabricated via sputtering from a quaternary tar-

get. [167] The substrate for all samples was soda lime glass coated with 700 nm of Mo.

coated with 2.0 µm thick p-type CIGS films deposited by RF magnetron sputtering. Then,

a chemical bath deposition of 50 nm thick n-type CdS layer was performed, and a 500

nm transparent conductive top contact with ZnO and Al:ZnO was sputter deposited to

enhance current collection. Lastly, Ni/Al grids were evaporated to serve as the top con-

tact. The samples were scribed by hand to obtain individual cells, each with an area of

approximately 0.54 cm2. Figure 4.1(a) shows a schematic of the CIGS devices. The inset

of Figure 4.1(b) is a photograph of six electrically isolated CIGS devices on a single 1 ×

1 in2 glass substrate.
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Figure 4.1: CIGS polycrystalline solar cells fabricated by sputter deposition
from a quaternary target. (a) Schematic of CIGS solar cell, out of scale for clarity.
(b) Representative light J-V curve for device illuminated with AM1.5G at 1-sun,
yielding Voc = 490 mV and η = 7.77%. The inset shows a photograph of six solar
cells electrically isolated on a single 1 × 1 in2 glass substrate. (c) EQE measurement
of the same device shown in (b).

4.2.2 Device macroscopic characterization

Light J-V curves were acquired using a Xenon lamp solar simulator, with 2.0 × 2.0

in2 (50.8 × 50.8 mm2) output, and an Air Mass 1.5G filter (see Figure 4.1(b) for light J-V

curve). The output power of the lamp was set to 1.0-sun (100 mW/cm2). The light source

was calibrated with a 20 × 20 mm2 reference monocrystalline Si solar cell with a fused

silica window. For the EQE measurement Figure 4.1(c), a xenon arc lamp was directed

into a monochromator. Two silicon diodes were initially used: one as a reference and the

other for calibration. A beam splitter guided half of the light to the fixed reference diode;

the remaining light was directed through another optical path and collected at the position

of either the calibration diode or the solar cell sample. Independent measurements using

the silicon calibration diode were performed before each EQE measurement was acquired.

The ratio of the spectral responses between the solar cell and the calibration diode was

computed every 10 nm. The EQE for CIGS was determined between 390 nm and 1100

nm. The low EQE for wavelengths <500 nm results from the expected light absorption
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by the ZnO (with Eg ∼3.3 eV) layer and the CdS n-layer (with Eg = 2.4 eV) [200].

4.2.3 Raman spectroscopy mapping

A 532 nm laser beam was focused onto the sample using a 100×microscope objective

lens (0.75 NA), the scattered light was collected and collimated by the same objective.

The scattered signal was then collected by a spectrometer and detected with a liquid

nitrogen-cooled charge-coupled-device (CCD). The sample was mounted on an x-y piezo

scan stage for the map acquisition. Thus, a Raman spectrum was obtained for each pixel

in an image. By applying selective wavenumber filters we produced Raman maps for the

relevant vibrations of CIGS.

4.2.4 Photovoltage imaging

Incident light was coupled in to a 25 µm multimode fiber attached to the optical

microscope and transmitted through a 100× objective lens, NA = 0.75, focusing a ∼1

µm diameter spot onto the surface of the solar cell. The incident photon flux was 1.9 ×

1023 photons/m2/s for the photovoltage maps shown in Figures 4.4, 4.6, and 4.13, and

>1025 photons/m2/s for Figures 4.8, 4.9, and 4.14. The charge carriers generated by the

controlled illumination were collected through their corresponding contacts, one connected

to ground, and the other connected to a lock-in amplifier, used to read the electrical output

directly from the device at a high signal-to-noise ratio. In all cases, the top contact was<25

µm away from the scanned region. Here, the lock-in amplifier inherently subtracted the

dark current signal from the illuminated scans [174]; thus, the acquired voltage maps refer

to an effective open-circuit voltage. A piezo scanner was used to acquire the photovoltage

maps for each position of the solar cell, with high spatial resolution. Figure 4.2 displays

50



a schematic of the experimental setup described here. Because the acquisition of each

voltage map took ∼1 hr, we corrected the drift after each scan to ensure the validity of

our wavelength dependent analysis, where the center of the scanned area was recalibrated

with the spatial resolution of the piezo scanner (<100 nm). The average between two

neighboring points was taken for all maps shown in this Chapter.

Figure 4.2: Scanning photovoltage experimental setup. Incident light is cou-
pled in to a 25 µm multimode fiber attached to the optical microscope. The light is
transmitted through a 100× objective, NA = 0.75, focusing a ∼1 µm diameter spot
onto the surface of the solar cell. The charge carriers are collected by their corre-
sponding macroscopic contacts, one connected to ground, and the other connected
to a lock-in amplifier, which reads the electrical output directly from the device at a
high signal-to-noise ratio. A piezo scanner is used to map the voltage signal for each
position of the device, resulting in a map with lateral spatial resolution <500 nm,
defined by the beam spot size.

4.3 Correlating chemical and electrical maps in CIGS

We utilize standard characterization methods to obtain the macroscopic photovoltaic

performance of the CIGS solar cells investigated here as described in the Experimental

Methods section and in ref [167]. The CIGS layer is composed of grains with ∼1 µm in

size, preferentially orientated along the 〈112〉 direction (see Figure 4.3 for a representative

SEM and electron back scatter diffraction (EBSD) map).
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Figure 4.3: CIGS electron backscatter diffraction pattern. (a) SEM image of
CIGS grains. (b) EBSD map along the normal direction of the CIGS surface showing
preferential grain orientation along 〈112〉 direction, as indicated by the color scale on
the right.

We investigate the relationship between the chemical composition and the electrical

properties of the CIGS devices by micro-Raman imaging and EDX in conjunction with

scanning photovoltage microscopy on the same grains. For the scanning photovoltage

measurements a 100× objective lens is used to focus the local source of excitation, see

Experimental Methods.

Remarkable variations in the photovoltage were measured with high spatial reso-

lution, as shown in Figure 4.4. Note that the average voltage signal is small (<2 mV)

because of the confined volume of excitation during the measurements (spot area equal

0.95 µm2 compared to the total area of the device, equal to 0.54 cm2), causing a voltage

drop to occur between the dark and light regions of the cell. [201, 202] Yet, the electrical

variation in the scanned area is 0.5 mV, considerably higher than the noise (<10 µV). The

representative Raman spectrum with both the strong Cu2−xSe and the chalcopyrite peaks

is presented in Figure 4.4(c) (Raman shifts at 295 cm−1 and 172 cm−1 highlighted in gray

and brown, respectively), [203,204] where the inset refers to the optical micrograph of the

region mapped. The micro-Raman images corresponding to the Cu2−xSe and chalcopyrite

peaks were acquired on the same location as the voltage map and exhibit uniform surface
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chemical composition (despite surface segregation of Cu2−xSe); see Figure 4.4(d,e) (see

Figure 4.5 for additional Raman maps). The EDX maps of Cu, Ga, In and Se presented

in Figure 4.4(f)-(i) show very uniform elemental distribution in all cases (within the spa-

tial resolution of the SEM probe used). Our chemical composition measurements strongly

indicate that the spatial variation observed in the CIGS electrical response is likely due to

the distribution of grain orientation or grain boundary types, which could result in areas

of high rates of charge carrier recombination. [55,205]

Figure 4.4: Chemical composition and local electrical response of CIGS so-
lar cells. (a) SEM image of CIGS. (b) Photovoltage map showing spatial variation
>15%; illumination conditions: 100× objective, λ = 575 ± 3 nm and incident power
= 298 ± 3 µW. (c) Representative Raman spectrum. Inset: optical micrograph indi-
cating the region where EDX, photovoltage, and Raman measurements were acquired
(white box). Raman maps of (d) Cu2−xSe peak (grey filter in (c)) and (e) chalcopy-
rite peak (brown filter in (c)). Illumination conditions for Raman: λ = 532 nm and
incident power = 100 ± 5 µW. EDX maps showing (f) Cu, (g) Ga, (h) In, and (i) Se
uniform distribution.
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Figure 4.5: Raman microscopy on CIGS: additional region.(a,e) Optical mi-
crographs of CIGS solar cell. The white box refers to the 10 × 10 µm2 region where
micro-Raman imaging measurements were performed. (b,f) Chalcopyrite peak with
Raman shift = 172 cm−1 and (c,g) Cu2−xSe peak with Raman shift = 295 cm−1,
where each pixel in the images is a spectrum within the brown and gray highlighted
region in (d) and (h), respectively. (d,h) Single Raman spectra extracted from the
center pixel of its corresponding Raman map.

4.4 Spectrally dependent photovoltage imaging results and

discussion

We performed a test measurement to verify the photovoltage signal. For this, the

incident laser light was switched ON and OFF, see Figure 4.6. Furthermore, to prove

that the voltage variation in these photovoltage measurements were representative and

reproducible we acquired maps on a variety of CIGS solar cells as shown in Figure 4.7.

Here, we imaged three similarly fabricated devices that all show voltage variations at the

same length scale as the composing CIGS grains.
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Figure 4.6: Laser ON/OFF photovoltage signal verification. (a) Optical mi-
crograph of CIGS solar cell; the white square indicates the region where the voltage
scan was performed. (b) Scanning photovoltage map of a typical CIGS solar cell
showing spatial variation in voltage. Illumination conditions: 600 nm laser; incident
power = 1.44 µW; objective lens: 100×, NA = 0.75.

Figure 4.7: Additional photovoltage mapping on CIGS solar cells.(a)-(c) Op-
tical micrographs of three different CIGS solar cells where the white square indicates
the corresponding scanned photovoltage map below. The bright white region in each
micrograph is the top electrical contact; here the black dashed line is a guide for the
eye to emphasize the interface between the metal and the semiconductor layers. To
ensure effective charge carrier collection we scanned regions <25 µm away from the
top macroscopic contact. (d)-(f) Photovoltage maps acquired for solar cells 1, 2 and
3, respectively, with spatial variation on the same length scale as the CIGS grains.
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To understand the contribution of the photovoltage generated within the CIGS

grains to the overall performance of the solar cell as a function of light penetration depth

we spectrally resolve the electrical response of the CIGS sample while mimicking the

illumination conditions of a working device. See Figure 4.8(a) and (c) for the 1-sun spec-

trum at AM1.5G illumination [206] and the EQE, respectively, where the colored dots

represent the wavelengths at which the microscopic photovoltage measurements were per-

formed. Figure 4.8(b) shows an optical micrograph of a selected region of the CIGS solar

cell. We acquire the photovoltage maps using the same number of incident photons in all

cases (Figure 4.8(d)-(u)). The electrical signal continually increases with the wavelength,

reaching a maximum value at 950 nm (Figure 4.8(r)), approaching the bandgap of the fab-

ricated CIGS layer (equal to 1.15 eV, as determined by photoluminescence). As expected,

beyond the semiconductor bandgap (corresponding to wavelength λ >1000 nm) the elec-

trical signal drops dramatically (Figure 4.8(t) and (u)), indicating that the very modest

photogenerated voltage is likely due to trap states within the polycrystalline layer [131].

Nevertheless, spatial variations are still observed and are well above the noise level (20

nV) of the photovoltage measurements introduced here. The in depth electrical response

of the CIGS layer is obtained without cross-sectioning (destroying) the sample. Although

the surface of the sample is being probed, the electrical response of the subsurface grains

and interfaces was acquired due to the absorption coefficient of the material. By compar-

ing the spatial variation in photovoltage of individual scans (e.g. Figure 4.8(g) and (n)),

one notices that the behavior changes as a function of wavelength, demonstrating that the

photovoltage signal is resulting from the electrical response within the material (and not

its surface only). Thus, through our imaging method we acquire a tomography of the elec-

trical characteristics of the absorbing material where each scan corresponds to a snapshot
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of the mesoscale behavior of the grains composing the CIGS layer. The word tomography

is used here to emphasize that the device is imaged in ’sections’ by illuminating it with

different wavelengths, which, by definition, corresponds to a distinct penetration depth

within the CIGS layer.

Figure 4.8: Spectrally dependent voltage maps on CIGS solar cell. (a)
1-sun AM1.5G spectrum as a function of wavelength. (b) Optical micrograph of
CIGS solar cell acquired with 100× objective, NA = 0.75, spot size ∼1 µm. The
white box highlights the 7 × 7 µm2 area where the photovoltage measurements were
performed. (c) EQE measurements. The colored dots in (a) and (c) represent the
wavelengths where the microscopic measurements were performed. (d)-(u) Spectrally
dependent scanning photovoltage microscopy scans. For each scan: the label indicates
the wavelength, and the color scale bar is in µV.

The spatial distribution of the voltage for each scan is used to quantify the occur-

rence of preferential charge carrier generation/collection sites as a function of wavelength

57



and, thus, light penetration depth within the CIGS layer. As shown by the histograms

in Figure 4.9, the voltage average value and distribution for each map vary as a function

of wavelength. While the absorption coefficient is larger for shorter wavelengths (Figure

4.10), a smaller average value of the voltage is obtained. This behavior suggests that car-

riers generated near the top surface are more likely to recombine non-radiatively, leading

to a smaller voltage. This observation is corroborated by the EQE data (Figure 4.1(c)),

which also shows a decrease in carrier collection. For longer wavelengths, the absorption

occurs deeper within the CIGS layer and leads to increased photovoltage until the bandgap

is reached, where the voltage again decreases due to lack of photon absorption. The pre-

cise cause of the broadening of the voltage distribution with wavelength is unknown and

is currently being investigated.

Figure 4.9: Spectrally dependent voltage histograms. 3D plot of voltage his-
tograms (normalized) as a function of wavelength for CIGS solar cell, obtained from
scanning photovoltage microscopy (shown in Figure 4.8).
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Figure 4.10: CIGS optical properties. (a) Index of refraction n and extinction
coefficient k as a function of wavelength, as measured by ellipsometry on the polished
CIGS sample. (b) Absorption coefficient, α, as a function of wavelength.

The possible contribution of surface roughness and consequent light reflection and

scattering to the voltage signal was excluded by a detailed comparison between as-is

and polished grains, where spatial variations in photovoltage to occur irrespective of the

morphology of the grains. The CIGS sample was chemically polished with aqua regia using

a method described in ref [207]. The sample was immersed in a 1:3 solution of HCl:HNO3

at room temperature for nine seconds, followed by a rinse in DI water. Figure 4.11 shows

a cross-section SEM of both as-is and polished grains while Figure 4.12 shows a top-view

SEM, optical micrographs, atomic force microscopy scans, and line profiles.

Figure 4.11: SEM images of as-is vs. polished CIGS grains. Cross-section
SEM images of (a,c) as-is and (b,d) polished CIGS samples.
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Figure 4.12: Electron, optical, scanning probe microscopy of as-is and pol-
ished CIGS grains. SEM, optical and AFM images and line scans of (a-d) as-is
and (e-h) polished CIGS grains post-sputter fabrication.

In Figure 4.13 the voltage distribution maps for both the as-is and polished samples

are shown along with their macroscopic light J-V curves. The non-uniformity of the

voltage signal in both as-is and polished CIGS samples demonstrates that different charge

carrier dynamics are taking place at the distinct grains. Note that there is no correlation

between the spatial variation in the voltage signal and the optical micrographs (reflected

light). Light J-V curves of Figure 4.13(c) as-is and Figure 4.13(f) polished solar cells were

tested under AM1.5 global illumination (1-sun, 100 mW/cm2). Here, the low voltage

from the polished sample results primarily from parasitic shunt resistance (Rsh) that

reduces the amount of current flowing through the solar cell, which most likely results

from surface recombination within the CIGS layer after the chemical polishing. Note that

the series resistance (Rs) in both samples is similar, which is not related to the voltage

of the device. Although the polished sample has surface roughness of ∼100 nm (Figure

4.12), we were unable to acquire reliable information about the grains crystallographic

orientation by EBSD due to the ZnO 500 nm layer (Figure 4.1(a)). Thus, the precise
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correlation between the spatial variations in Voc and the structural properties of the CIGS

requires the implementation of a selective chemical etching for removing the oxide layer.

Nevertheless, this etching would necessarily be destructive and the exposure of the n-CdS

would favor surface recombination, which directly affects the Voc of the device.

Figure 4.13: Voltage distribution of a polished CIGS sample. Optical image
of (a) as-is and (d) polished CIGS grains imaged under the same illumination con-
ditions. Scanning photovoltage images for (b) as-is and (e) polished grains, using
100× objective, NA = 0.75. In both cases, the scans were acquired <25 µm from the
electrical contacts, and were illuminated with 600 ± 3 nm laser source at a power =
1.44 µW.

To further evaluate the spatial inhomogeneity of charge carrier dynamics within

the CIGS layer we analyze the voltage enhancement for the set of maps shown in Figure

4.8. Figure 4.14(a) shows a photovoltage scan acquired at 750 nm overlaid on the SEM

image for the same 7 × 7 µm2 region. Despite the fact that the scanning photovoltage

measurements are limited by diffraction, notable spatial variations were consistently ob-

served. Figure 4.14(b) displays the voltage enhancement as a function of wavelength for

the positions (pixels) indicated by the colored circles in Figure 4.8(a). Here, we define

the enhancement as the voltage of a pixel, Vx,y, divided by the average value of the entire

region, 〈V〉, (52.1 µV in this case). Note that both Vx,y and 〈V〉 change for each incident
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wavelength (due to the CIGS absorption coefficient, see Figure 4.10).

Surprisingly, some regions of the sample showed a modest voltage improvement of

10% for short wavelengths (400-500 nm), and a remarkable enhancement of 40% close

to CIGS bandgap. The low electrical signal (black and cyan circles in Figure 4.14(b))

approaches the average value (green solid line) as the energy of the incident source of

excitation nears the bandgap of CIGS. Interestingly, certain regions of the CIGS layer

(red points in Figure 4.14(b)) present local voltage that varies 10% below and above the

average response of the device, for wavelengths <550 nm and >600 nm, respectively. Near

the material bandgap the voltage enhancement reaches 20%. By spectrally and spatially

resolving the photovoltage generated by the CIGS solar cell we obtain a qualitative tomog-

raphy of the local electrical characteristics of the device and probe their limiting factor:

the Voc (see Figure 4.14(c)). Here, the maps are displayed on the same voltage scale to

emphasize the spatial variations as a function of the incident wavelength, which are likely

due to the structural properties of the CIGS layer, instead of composition inhomogeneities

between different grains. The longer wavelength voltage maps encompass the near-surface

strong light absorption, and the qualitative tomography displays the influence of the each

wavelength’s light absorption on the photovoltage.
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Figure 4.14: Mapping voltage with high spatial resolution in polycrystalline
solar cells. (a) Voltage map overlaid with SEM image, acquired at λ = 750 ± 3
nm and incident power of 59 ± 1 nW. (b) Voltage enhancement as a function of
wavelength for selected regions of the map shown in (a). The green line corresponds
to the average voltage value of each map, and the error bars refer to the standard
deviation of each λ-dependent scan. (c) Qualitative tomography of photovoltage
showing spatial variation as a function of λ. For each measurement: 100× objective
lens (NA = 0.75).

Through a sequence of spectrally dependent photocurrent scans we determine the

∆Voc map for the polished CIGS device under 1-sun illumination (Figure 4.15). This map

is obtained by adding the contribution of each photocurrent scan to the overall short-

circuit current map Isc,total of the device, weighted by the number of photons incident into

the sample at AM1.5G illumination, as:

Jsc,total =
∑
λn

Jsc,λn (4.1)

Jsc,λn = Imeasuredsc,λn ×
∫ (λn+1+λ)/2

(λ+λn−1)/2
(φ1−sun × λdλ)/(Pinc × λn) (4.2)

where Jsc,λn is the short-circuit current density for each wavelength λn where a scan was

acquired, Imeasuredsc,λn
is the short-circuit current measured (a map), φ1−sun is the irradiance

corresponding to 1-sun AM1.5G illumination (from Figure 4.8(a)), and Pinc is the incident
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power for each measurement (wavelength dependent). Then, the Voc map is determined by

using the diode equation, where the ideality factor and the dark saturation current density

(Jdark) were obtained from macroscopic measurements. The spatially resolved Voc map

combines the contribution of the surface and the bulk properties of the grains, weighted

by the sun spectrum, mimicking the performance of a solar cell under realistic operation

conditions.

Figure 4.15: Characterization of the mesoscale behavior of CIGS solar cells.
Voc map for CIGS solar cell, with sub-micron spatial resolution, obtained from a
sequence of spectrally dependent scans.

4.5 Conclusion

Here, we have implemented a universal, non-destructive imaging method to map

the spatial variation of the electrical response of optoelectronic devices in situ that en-

abled a tomography of the generated photovoltage within the solar cell absorbing layer.

The spatial resolution of the diffraction-limited method described in this chapter could

be improved by using near-field scanning optical microscopy probes as the source of illu-

mination, [131] which can achieve resolution <100 nm. Nevertheless, the interpretation

of the data in these cases often requires the consideration of near-field effects, and possi-

bly the need for 3-dimensional simulations to help us understand the primary near-field
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light-matter interactions taking place. This functional characterization reveals how the

electrical response of CIGS devices from a quaternary target changes spatially, considering

light penetration depth. Further, the sub-micron spatial resolution of the photovoltage

scans presented here elucidates a pressing open question in the field of photovoltaics: does

the Voc of polycrystalline CIGS devices from a quaternary target vary spatially? Yes.

We demonstrated that the photovoltage of CIGS solar cells from a quaternary target

varies locally in >20%, a behavior mapped here for the first time. We used micron-

Raman imaging and EDX to determine the chemical composition of the grains. While the

distribution of Cu, In, Ga and Se was found to be uniform at the micron-scale, the Voc of

these devices is still considerably lower than expected. Scanning photovoltage microscopy

was implemented as an in situ functional characterization tool to resolve the local electrical

response of CIGS, where remarkable variations in voltage were measured. A sequence of

wavelength dependent voltage scans were used to build a tomography of the photovoltage

distribution within the CIGS layer; where some regions of the material outperform the

average, macroscopic behavior, potentially affecting the performance of the device. Finally,

we presented a micron-scale resolved Voc map under broadband illumination, revealing

the spatial distribution of voltage for the CIGS solar cell under 1-sun global illumination

operation conditions. This functional imaging framework provides a novel tool to map the

electrical response of inhomogeneous materials for photovoltaics with micron-scale length

grains, such as perovskites, CdTe, and CZTS. Further, this non-destructive method can

be expanded to other optoelectronic devices, such as photodetectors and LEDs.

65



66



Chapter 5: Nano-imaging of open-circuit voltage in photovoltaics

For most photovoltaic devices, the current density is near its maximum value;

however, achieving a large open-circuit voltage has proven difficult for nearly all

photovoltaic technologies. Understanding the carrier recombination processes on the

nanoscale that lead to this voltage reduction is critical, yet no technique exists to

microscopically map recombination and the resulting open-circuit voltage. Here we

present a novel metrology to image the open-circuit voltage with spatial resolution

<100 nm, more than five orders of magnitude better than previous methods, using

a variant of illuminated Kelvin Probe Force Microscopy. We apply this technique

to several materials (GaAs, Si, CdTe, and CIGS), and find that the open-circuit

voltage varies locally by more than 200 mV, suggesting that spatial variation of

non-radiative recombination strongly affects the overall device performance. This

technique enables new insights into the loss mechanisms that hinder solar cells and

provides a new platform to image device performance with nanoscale resolution.

This chapter is adapted from E.M. Tennyson et. al, Advanced Energy Materials, 5

1501142 (2015) Front Cover [37]
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5.1 Introduction to local voltage mapping in thin-film solar

cells

For most photovoltaic devices, the record short-circuit current density (Jsc) is near

its theoretical limit; however, achieving a large open-circuit voltage (Voc) has proven dif-

ficult for nearly all photovoltaic technologies. [7, 208] Understanding the carrier recombi-

nation processes, caused by structural or compositional variations at the nanoscale, that

lead to this voltage reduction is critical, yet no technique exists to quantitatively map re-

combination and the resulting Voc at the nanoscale. Here we present a novel metrology to

image the Voc with spatial resolution <100 nm, more than five orders of magnitude better

than previous methods, using a variant of illuminated Kelvin Probe Force Microscopy. We

apply this technique to several materials (GaAs, Si, CdTe, and CIGS), and find that the

Voc varies locally by more than 200 mV, suggesting that spatial variation of non-radiative

recombination strongly affects the overall device performance. This technique enables new

insights into the loss mechanisms that hinder solar cells and provides a new platform to

image device performance with nanoscale resolution.

The Voc of a solar cell is a measurement of the maximum voltage generated by the

device under illumination, which is proportional to the quasi Fermi level splitting of the

semiconductor p-n junction. This generated voltage and the overall electrical behavior of

a device strongly depend on the non-radiative recombination rate of the charge carriers

within a material, as described in Chapter 1, which is affected by the defects inherently

present within the semiconductor. Despite all the effort in developing higher perfor-

mance thin-film polycrystalline solar cells, such as CdTe, CuInxGa(1−x)Se2 (CIGS), and

Cu2ZnSnS4 (CZTS), the difference between the theoretically predicted and the best exper-
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imentally achieved Voc is still considerably large, as shown in Chapter 3. For Si, extensive

research has been dedicated to design and implement nanostructured light-trapping ar-

chitectures to boost light absorption [209–212] however, there are very few experiments

showing how the Voc is affected. Thus, for any micron- and nano-scale structured PV

device, assessing variations in Voc with nanoscale resolution and spatially resolving where

recombination occurs within the material can potentially change the pathway for designing

higher performance devices.

Imaging methods based on atomic force microscopy (AFM) techniques have been ex-

tensively used to characterize the structural and electrical properties of PV materials and

full devices. [172,182,213–222] In particular, Kelvin probe force microscopy (KPFM) has

been implemented to probe the electrical characteristics of a variety of PV materials and

devices, ranging from organic materials [223–226] and oxides [227] to III-V semiconduc-

tors for multijunction designs [228–230] and polycrystalline thin-films. [184, 219,231–236]

The local optoelectronic properties and changes in material composition have also been

mapped using near-field scanning optical microscopy (NSOM) probes as local sources of

excitation. [130,131,186,237–240] Recently, photoluminescence has emerged as a promising

tool to map charge recombination [129,241,242] and carriers diffusion [194] with high spa-

tial resolution. At low-temperature (70 K), photoluminescence imaging with sub-micron

resolution has been implemented to map a 10 meV quasi-Fermi level splitting in CIGS

solar cells, where variations in the intensity signal were attributed to changes in the ma-

terial composition. [190] Nevertheless, none of these imaging techniques provide a direct

measurement of Voc within the material at operating conditions. A straightforward, uni-

versal, and accurate method to measure the Voc (and hence non-radiative recombination

processes) with high spatial resolution in PV materials is still missing.
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Here we present a new imaging technique based on illuminated-KPFM to map the

Voc of optoelectronic devices with nanoscale resolution <100 nm. We map the contact po-

tential difference of a half or fully processed solar cells in the dark and under illumination

to determine the quasi Fermi level splitting of the p-n junction. We spatially resolve the

Voc of different PV materials, including III-V direct bandgap semiconductors, monocrys-

talline Si, and polycrystalline thin-films, demonstrating the universality of our platform

for imaging devices performance. While single crystalline GaAs and Si solar cells show

very uniform Voc maps, CdTe and CIGS present dramatic variations in Voc, larger than 0.2

V, which have never been resolved by other microscopy methods. We find that the local

variations in the Voc are due to the fact that different grain orientations can act as distinct

centers for recombination within the material. Although KPFM measurements under illu-

mination (named surface photovoltage - SPV) have been realized in a variety of solar cells

technology [84, 243–253], here a direct correlation between KPFM measurements (light-

minus dark-KPFM) and the Voc of photovoltaic devices, through the measurement of the

quasi-Fermi level splitting is demonstrated for the first time. This nanoscale metrology is

non-destructive and can be implemented in ambient conditions, allowing for the diagnosis

of how the different processing steps can affect the recombination within the material and,

therefore, the ultimate performance of an optoelectronic device. For non-uniform semi-

conductor materials, mapping local variations in Voc is extremely useful to identify which

types of interfaces can suppress non-radiative recombination processes.
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5.2 Experimental methods

5.2.1 Solar cell fabrication

The GaAs solar cell was obtained from M-Comm. The cells were grown on an n-type

GaAs wafer (300 µm thick, 5 × 1018 cm−3), and the active regions were cladded by AlGaAs

(Eg = 1.80 eV, 3 × 1018 cm−3) passivation and back surface field layers. The GaAs solar

cell used for system calibration was extremely small (1 × 3 mm2). As a consequence,

the ideality factor of the device is particularly high, due to edge surface recombination

effects. [254] The monocrystalline Si solar cell is a commercially available device, formed

by n- and p-doped Si layers, with pyramidal texturing to enhance light trapping. The

commercially available CdTe solar cell measured was formed by the following layers (from

top to bottom): 4.0 mm of glass substrate, 550 nm of a bilayer transparent conductive

oxide, 50 nm of n-type CdS, and 3.5 µm of p-type CdTe, which was submitted to the

standard CdCl2 treatment. Due to the geometry of the device, the illuminated-KPFM

measurements were performed on the exposed p-doped CdTe grains with the original back

contact. The CIGS solar cell sample was fabricated by sputtering from a quaternary

target, which consistently produces polycrystalline, highly oriented grains with controlled

stoichiometry, and a bandgap of 1.1 eV. [167] Soda lime glass coated with 500 nm of Mo

was used as the substrate. P -doped CIGS films with 2.0 µm in thickness were deposited

by RF magnetron sputtering. A 50 nm thick n-type CdS layer was deposited by chemical

bath deposition. For all samples, no anti-reflection coating was added.
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5.2.2 KPFM measurements

It has been shown that AM-KPFM is susceptible to internal AC-signal couplings

which can lead to a topography-dependent offset in the applied voltage. [255] Thus, to en-

sure no topography pick-up we measure the cantilever response to electrostatic excitation

in both the in- and out-of-phase channels across the entire resonance. The response is that

of a simple harmonic oscillator, without any sign of AC coupling. Because the coupling

scales with frequency, a cantilever with a low resonance frequency is chosen. Furthermore,

the coupling is independent of illumination, so it does not affect the results pertaining to

the change in surface potential caused by incident light intensity. The cantilever spatially

averages the tip-sample interaction due to the long-range nature of the electrostatic inter-

action, [256] reducing the spatial voltage variation signal, [257] importantly, this does not

change the voltage shift due to illumination.

5.2.3 Macroscopic characterization of devices

Dark and light J-V curves were acquired using a full spectrum solar simulator,

with 2.0 × 2.0 in2 (50.8 × 50.8 mm2) collimated output, and an Air Mass 1.5G filter.

The output power of the xenon lamp was independently controlled, ranging from 0.1 to

1.0-sun (100 mW/cm2). The light source was calibrated using a 20 × 20 mm2 reference

monocrystalline Si solar cell with a fused silica window. Light J-V measurements for all

the devices measured here are presented in Figure 5.1. A dark J-V measurement of the

GaAs solar cell was used to determine the dark current of the device in Figure 5.2.
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Figure 5.1: Light J-V curves for four solar cell devices. (a) GaAs (Voc = 0.83
V), (b) monocrystalline Si (Voc = 0.59 V), (c) CdTe (Voc = 0.56 V), and (d) CIGS
(Voc = 0.50 V). Inset: active layers of each device (out of scale for clarity). For all
samples, no anti-reflection coating was added.

Figure 5.2: Dark J-V for GaAs solar cell. (a) Semilog dark J-V and (b) linear
fit used to determine Jdark.
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Figure 5.3: Angle dependence of external quantum efficiency for the GaAs
solar cell. EQE measurements at normal incidence (black) and 77.5o (red) using
polarized light, in the same geometry of the illuminated-KPFM measurements.

5.2.4 EQE measurements of GaAs

A xenon arc lamp was directed into a monochromator. Two identical silicon diodes

were used to regulate the spectral response of the EQE measurements; one as a reference

and the other for calibration. A beam splitter guides half of the output light to the fixed

reference diode, the other half was directed through an optical path and collected at the

position of the calibration diode or solar cell sample. The ratio of the spectral responses

between the reference and calibration diode was computed in 10 nm increments. The EQE

of the solar cell was measured from 390 nm and 900 nm. Independent calibrations were

performed before each EQE measurement. A polarizer was used to match the polarization

of the incident light with the illuminated-KPFM measurements. Figure 5.3 shows the EQE

measurement taken on GaAs solar cell used to calculated the calibration constant.
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5.2.5 Voc image analysis

The SPV images were corrected for drift using a correlation function which computes

the similarity between two topographical scans as they shift in time. The function outputs

a value that corresponds to the magnitude in which the image is shifted in x and y

directions. Once the topography correction was complete the potential maps of the dark-

and illuminated-KPFM scans were subtracted.

5.3 Direct imaging of Voc at the nanoscale: results and dis-

cussion

We implement illuminated-KPFM as a new tool to directly map the Voc of photo-

voltaic materials with nanoscale resolution. In KPFM, the contact potential difference

(CPD) is proportional to the work function difference between the tip and the surface

of the material under investigation (qVCPD = Wtip −Ws). For a solar cell, as shown in

Figure 5.4(a) and (b), the CPD signal depends on the illumination conditions as:

qV d
CPD = W d

tip −W d
s (in the dark), (5.1)

and

qV il
CPD = W il

tip −W il
s = qV d

CPD + ∆µ (under illumination) (5.2)

where q is the electron charge, the superscripted d and il refer to dark and illuminated

conditions, respectively, and ∆µ is the quasi Fermi level splitting. The Voc of the device

is:

Voc =
∆µ

q
= V il

CPD − V d
CPD (5.3)
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Figure 5.4: Energy diagram of KPFM measurements. Band profile of n-p
junction (a) in equilibrium (dark) and (b) under illumination. Evac, Ec, Ev, and εF
refer to the energy of the vacuum level, the conduction band, the valence band, and

the Fermi level, respectively. W
d(il)
n and W

d(il)
p are the work function for the dark

(illuminated) n- and p-type layers. EFn, and EFp refer to the Fermi level splitting ∆µ
upon illumination. (c) Cross-sectional illustration of illuminated-KPFM setup, used
to map open-circuit voltage Voc of photovoltaic materials with nanoscale resolution.
The metrology is implemented in ambient environment and only requires the bottom
contact of the device. For each scan, the probe passes over the surface twice: in the
first one topography is acquired, and in the second one the potential difference is
recorded at a height ∆H from the first pass. The illumination source is a 660 nm
continuum laser (represented by the red arrow). The surface photovoltage (SPV),
difference between the illuminated- and dark-KPFM signals, is proportional to the
Voc of the solar cell.

Note that this technique does not require the preceding knowledge of the work function of

the sample or the tip, because ∆µ is determined by measuring the difference between these

two quantities under distinct illumination conditions. Thus, the nanoscale maps of the Voc

of partially processed devices are determined from a pair of dark- and illuminated-KPFM

images.

Amplitude-modulated (AM) KPFM is implemented using metal-coated Pt probes

with mechanical resonance ω
2π = 86.7 kHz in ambient conditions - see schematic setup

in Figure 5.4(c). For each scan, the probe passes over the surface twice. On the first

pass, a feedback loop controls the sample height in order to maintain constant cantilever

oscillation amplitude; and topography is acquired in non-contact mode. On the second

pass, the cantilever is held at a constant height (∆H) relative to the path it traced on

the first pass − see Figure 5.4(c). The tip oscillates slightly below resonance during
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the topographic scan, to maintain stable tapping mode. [258] The amplitude of the tip

oscillation is ∼60 nm (though this value varies slightly from scan to scan, depending on

the optical lever sensitivity of the probe).

The Voc of a photovoltaic device is given by:

Voc =
nkT

q
ln

(
Iil
Idark

+ 1

)
∼=
nkT

q
ln

(
Iil
Idark

)
(5.4)

where n is the ideality factor, k is Boltzmann’s constant, T is the temperature, and Iil and

Idark are the light generated and the dark saturation current, respectively. For a partially

illuminated solar cell the Voc can be written as:

V partial
oc (φ) =

nkT

q
ln

(
q ∗ φ ∗ EQEo

Jdark

)
+ ln

(
τ ∗Ail ∗ EQEλ,Θ
Acell ∗ EQEo

)
= V full

oc (φ) + β (5.5)

where Iil = q∗φEQE(λ,Θ)∗Ail, φ is the number of photons per area per time from the light

source, EQEo and EQEλ,Θ are the external quantum efficiencies at normal incidence and

at an incident angle Θ for illumination at wavelength λ, Jdark is the dark current density,

τ is the transmission fraction of the optical setup, Ail is the area of the solar cell being

illuminated, Acell is the total area of the solar cell, and β is a calibration constant (<0),

given by:

β =
nkT

q
ln

(
τAilEQEλ,Θ
AcellEQEo

)
(5.6)
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Note that for illumination of the full device, as is the case for a solar simulator measure-

ment, β = 0. With KPFM, the solar cells are only partially illuminated, and the light

generated current is very small compared to the situation of full cell illumination. To

determine the expected Voc for full illumination using KPFM:

V full
oc (φ) = V partial

oc (φ) + β (5.7)

where V partial
oc (φ) is the illuminated- minus dark-KPFM voltage signal, i.e. the surface

photovoltage (SPV) of the cell. Alternatively, if V full
oc (φ) is determined by an independent

method, e.g. from solar simulator measurements, for the same photon flux as the KPFM

measurements, β can be experimentally determined as:

β ∼= V partial
oc (φ)− V full

oc (φ). (5.8)

For our calibration of β, φ corresponds to 1-sun illumination (see Figure 5.6).

Figure 5.5 shows the macroscopic characterization of a GaAs solar cell, without

an anti-reflection coating, used to calibrate and test this new metrology; a schematic of

the solar cell is presented in Figure 5.5(a). Figure 5.5(b) shows the external quantum

efficiency (EQE) measurement for the device under normal incidence illumination. The

dark and light J-V macroscopic measurements were performed using a conventional solar

simulator, where we adjust the light intensity to mimic different numbers of suns. The

electrical characterization of the device shows good diode behavior, with Voc = 0.83 ± 0.01

V under 1-sun illumination (see Figure 5.5(c)). From the intensity-dependent light J-V

curves we infer the Voc dependence with illumination (see Figure 5.5(d)), where the photon
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Figure 5.5: Macroscopic characterization of GaAs. (a) Schematic of the solar
cell. (b) External quantum efficiency measurement. (c) Light J-V curves as a func-
tion of illumination (incident power). At AM 1.5G 1-sun illumination, Voc = 0.83±
0.01 V. (d) Open-circuit voltage Voc as a function of incident power (photon flux).

Figure 5.6: Voc vs. photon flux. Voc as a function of photon flux (φ) obtained
from solar simulator (black) and nanoscale KPFM measurements (green) for a GaAs
solar cell. (a) Voc of a fully (solar simulator) and partially (KPFM) illuminated
device. (b) Voc after correction for calibration factor β = −0.73 V, to compare with
fully illuminated devices. Note that both measurements were performed at the same
injection level, allowing for the direct comparison of the voltage dependence on the
incident light. The ideality factor, n, equals 1.9 ± 0.2.
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Figure 5.7: Comparison of macro- and nanoscale Voc measurements. (a) AFM
topography image (peak to valley = 5 nm). (b)-(i) KPFM images (VCPD) for different
incident powers (light source: 660 nm laser). (j) Voc determined by macroscopic J-
V measurements (black) and by nanoscale KPFM (green) as a function of incident
power from the light sources. For the KPFM measurements, the Voc was obtained by
averaging over the scanned area, and the error bars refer to the standard deviation.
Inset shows uniform Voc map with nanoscale resolution.

flux corresponds to the AM1.5 global illumination, from 0.1 to 1.0-sun (100 mW/cm2).

Figure 5.7 shows a sequence of intensity-dependent KPFM measurements. The

GaAs solar cell is ideal to test this method because it is a very uniform sample (single

crystal) with minimum height variation (roughness is 5 nm, see Figure 5.7(a)). The CPD

(voltage signal) of the device increased with the incident laser power (photon flux) - see

Figure 5.7(b)-(i) - indicating that more carriers are generated upon increasing illumination,

as expected. In all cases, the voltage was very uniform because the epitaxial GaAs solar

cell has an extremely low density of recombination centers. [24] The uniform colored scans

shown in Figure 5.7(b)-(i) confirm the constant CPD signal of the cell, expected for a GaAs

monocrystalline device with extremely low density of defects. Therefore, the uniform color

of the scans indicates that the CPD does not vary within the spatial resolution of the

AFM probe (30 nm in diameter). Figure 5.7(j) shows the macroscopic Voc (from solar
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simulator measurements) and the Voc signal determined by KPFM, both as a function of

the photon flux. For the KPFM measurements, the Voc is the averaged signal obtained

from the scans shown in Figures 5.7(b)-(i). The calibration constant is β = -0.73 V (see

Figure 5.6). The KPFM measurements are in excellent agreement with the solar simulator

ones: the ideality factor obtained from KPFM is n = 1.9 ± 0.2, which is within 10% (see

Experimental Methods). According to the KPFM measurements, the average Voc of the

solar cell at 1-sun illumination is Voc = 0.83 ± 0.02 V (spatially resolved in the inset

of Figure 5.7(j)). These results demonstrate that by illuminated-KPFM the macroscopic

value of the Voc for a device can be determined, and local variations in Voc can be measured

with nanoscale resolution. This can be applied to any PV material.

The illuminated-KPFM metrology is extended to a variety of solar cell devices,

allowing for direct imaging of local variations in Voc (i.e. ∆Voc) with nanoscale resolution.

The ∆Voc maps do not require system calibration; i.e. β is not needed. Figure 5.8 shows

the SEM, AFM, dark- and illuminated-KPFM measurements for all samples investigated

in this work: GaAs, monocrystalline Si, CdTe and CIGS, with morphologies ranging from

epitaxial to granular surfaces. GaAs presents a very uniform Voc (Figure 5.8(q)), with

spatial variations within the noise level of the KPFM measurements (∼10 mV).

The Voc map for Si (Figure 5.8(r)) is also very uniform, as expected for a monocrys-

talline material. Yet, we investigate the influence of shadowing effects on the Voc values

for the textured Si sample − see Figure 5.9. Briefly, we find that to compensate the shad-

owing effects of the textured facets we simply need to measure illuminated-KPFM under

two illumination conditions.

For CdTe (Figure 5.8(s)), different grain interfaces displayed unique Voc responses,

indicated by the dashed areas. This result suggests that the grain boundaries act as dis-

81



5

4

3

2

1

0

µm

543210
µm

250

200

150

100

mV

5

4

3

2

1

0

µm

543210
µm

250

200

150

100

mV

1.0

0.8

0.6

0.4

0.2

0.0

µm

1.00.80.60.40.20.0
µm

-4

-2

0

2

4

nm
(e)	  

200 nm 

10 

0 

S
E

M
 

A
FM

 

5 µm 

(a)	  

GaAs 

5 µm 

(c)	  

5 µm 

(d)	  

5 µm 

(b)	  

CdTe Si CIGS 

10

8

6

4

2

0

µm

1086420
µm

520

500

480

460

440

mV

4200 

0 

10

8

6

4

2

0

µ
m

1086420
µm

480

460

440

420

400

mV0.53 

10

8

6

4

2

0

µm

1086420
µm

-2

-1

0

1

2
µm

10

8

6

4

2

0

µm

1086420
µm

520

500

480

460

440

mV

0.43 

(f)	  

(j)	  

(n)	  

2 µm 

2 µm 

2 µm 

5

4

3

2

1

0

µm

543210
µm

1.28

1.26

1.24

1.22

1.20

1.18

1.16

1.14

V

5

4

3

2

1

0

µm

543210
µm

1.28

1.26

1.24

1.22

1.20

1.18

1.16

1.14

V

1300 

0 
500nm 

(e)	  
5

4

3

2

1

0

µm

543210
µm

-400

-200

0

200

400

nm

10

8

6

4

2

0

µ
m

1086420
µm

480

460

440

420

400

mV1.29 

1.14 

(o)	  

(k)	  

(g)	  

2 µm 

2 µm 

2 µm 

 250.00 mV

 -170.00 mV

0.07 

-0.02 

 250.00 mV

 -170.00 mV

0.07 

-0.06 
2 µm 

(r)	   (s)	  

2 µm 

Topography	  (nm
)	  

Voltage	  (V)	  

0 

10

8

6

4

2

0

µ
m

1086420
µm

480

460

440

420

400

mV0.26 

0.07 

(p)	  

(l)	  

(h)	  

 250.00 mV

 -170.00 mV

0.11 

-0.07 

(t)	  

Voltage	  (V)	  

400 

1.0

0.8

0.6

0.4

0.2

0.0

µm

1.00.80.60.40.20.0
µm

1.05

1.00

0.95

0.90

0.85

0.80

0.75

V

1.0

0.8

0.6

0.4

0.2

0.0

µm

1.00.80.60.40.20.0
µm

1.05

1.00

0.95

0.90

0.85

0.80

0.75

V

 250.00 mV

 -170.00 mV

10

8

6

4

2

0

µ
m

1086420
µm

480

460

440

420

400

mV1.07 

0.72 

200 nm 

(i)	  

200 nm 

0.25 

-0.17 
200 nm 

(m)	  

(q)	  

Δ
V

oc
 

D
ar

k-
K

P
FM

 
Li

gh
t-K

P
FM

 

2 µm 

2 µm 

2 µm 

2 µm 

Figure 5.8: KPFM performed on four solar cell devices.(a)-(d) SEM images
of GaAs, monocrystalline Si, CdTe and CIGS solar cells. (e)-(h) AFM topography
images of the same samples. (i)-(l) Dark-KPFM images. (m)-(p) Illuminated-KPFM
images using 660 nm laser source with power output = 1 mW, which corresponds
to 1-sun illumination (100 mW/cm2). For Si sample, laser output = 10 mW. (q)-(t)
Open-circuit voltage variation (∆Voc) maps with nanoscale resolution. Dashed areas
indicate grains and interfaces with local Voc variations only resolved by illuminated-
KPFM.
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Figure 5.9: Directional independent KPFM imaging on Si. (a) Schematic
showing two directions of illumination for KPFM measurements on Si solar cells. (b)
AFM topography image. ∆Voc maps obtained from two distinct illuminated-KPFM
measurements (power out of the light source = 10 and 50 mW) for sample positioned
at (c) [100] and (d) [010] directions with respect to the AFM probe. (50 mW-10 mW)
voltage signal is equal to 0.152 ± 0.016 V and 0.125 ± 0.012 V, respectively. Image
(d) is rotated 90 degrees counter-clockwise to facilitate comparison with (c).

tinct recombination centers. The CIGS grains present remarkable variations in Voc (>200

mV), independent of the material topography, see dashed regions in Figure 5.8(t). Despite

the fact that the different facets of a crystal can present distinct work functions, [259] the

difference is taken into account because both the light- and dark-KPFM voltage signals are

measured for the same facets of the crystal. The analysis of the role of the grain interfaces

on the performance of the device is beyond the scope of this paper; however, these mea-

surements demonstrate that nanoscale analysis of Voc in non-uniform materials can resolve

and quantify the recombination processes that currently limit the performance of polycrys-

talline solar cells. [208] Controlled growth of grains with crystal orientation corresponding

to the high values of ∆Voc (∼0.15 V) could potentially boost the overall Voc of the device.

Despite the fact that CIGS grains grow preferentially along the 〈112〉 orientation, [167]

a distribution of grains is usually observed, and to the best of our knowledge there is no
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systematic study correlating different grain orientations with device performance. Note

that while the voltage signal increases with illumination for GaAs, it decreases for Si and

CdS/CIGS because the scanned layers are p- and n-doped, respectively. For the p-type

CdTe surface, the voltage signal decreases with illumination because the work function of

CdTe (∼5.9 eV) is larger than the work function of the Pt-coated probe (∼5.1 eV) used

in the measurements, modifying the band diagram configuration presented in Figure 5.4.

The possible influence of major experimental artifacts was carefully analyzed, and no

significant contribution to our measurements was found. A detailed study of the influence

of ∆H (and therefore topography) on the SPV signal was performed and is presented in

Figure 5.10. In order to minimize the effect of topography on the SPV signal, ∆H was

kept constant for all dark and illuminated measurements presented here. Unless indicated

otherwise, the probe passed at ∆H = 20 nm above the topographic scan on the second

pass.
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Figure 5.10: Influence of ∆H on voltage response. (a)-(c) AFM images of GaAs
solar cell and (d)-(f) corresponding KPFM showing topography influence on voltage
signal as a function of the difference in sample-probe distance between AFM and
KPFM passes (∆H). Illuminated-KPFM using incident power = 10 mW. At ∆H =
-60 nm the topography signal clearly contributes to the voltage scan even for the
case of a smooth sample. At ∆H = 80 nm the probe is too far from the surface and
the variation in the voltage signal is negligible because this situation is similar to a
macroscopic Kelvin probe measurement. (g) Average surface photovoltage (SPV) as
a function of ∆H.

We resolve local variations in Voc with spatial resolution <100 nm. Figure 5.11(a)

shows a ∆Voc map for the CdTe solar cell, showing a few interfaces that have reduced Voc

and, most likely, act as non-radiative recombination centers. The full-width-half-maximum

(FWHM) of the line profiles shown in Figures 5.11(b)-(d) for the lateral variation in ∆Voc is

consistently below 100 nm. This set of KPFM measurements was acquired using Pt probes

with 30 nm in diameter, demonstrating that we can accurately measure and resolve the Voc
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Figure 5.11: Quantifying KPFM spatial resolution. (a) ∆Voc map for CdTe
solar cell. (b)-(d) Line scans showing consistent spatial resolution <100 nm. The
full-width-half-maximum that defines the lateral resolution of the method is indicated
in each line profile.

with truly nanoscale resolution. Higher spatial resolution can be achieved by using smaller

probes; such as high aspect ratio tips with gold nanoparticles on standard Si tips [260] or

Si probes with 2 nm in diameter. [261]

For polycrystalline PV materials, the direct correlation between the structural prop-

erties of different grains and the Voc maps can be used to identify the types of grains which

should be favored during the thin-film deposition or growth. Further, nanostructured

PV can tremendously benefit from this new technique because the identification of non-

radiative recombination centers can guide the design of the next generation nano-enabled

devices. It is well known that the Voc of a PV device can strongly depend on surface

passivation, and therefore spatial variations in the surface properties can lead to local

variations in the Voc, which can be accurately measured with our technique. Further, a
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recombination center, which corresponds to a region with very small diffusion length, can

be accurately measured by our imaging method. Although the carrier minority diffusion

length of inorganic PV materials is greater than 100 nm, it is an average of the distance

a carrier can move from point of generation until it recombines. Illuminated-KPFM does

not require the preceding knowledge of the sample nor the probe work function because

the difference between the work function of the material surface and the probe under

illumination and in the dark suffices to determine local variations in Voc.

5.4 Conclusion

In this chapter, we presented a new method to spatially resolve and image the Voc

in partially and fully processed optoelectronic devices with nanoscale resolution, <100

nm. The Voc is a key figure of merit to determine the performance of a device; it is an

indirect measurement of the recombination processes that take place within the material.

The illuminated-KPFM technique is demonstrated in a variety of photovoltaic materials,

ranging from epitaxial GaAs to polycrystalline CIGS, where we can resolve Voc variation

larger than 200 mV at the nanoscale. This metrology, introduced here for the first time,

can be applied to any optoelectronic device, including photovoltaics, LEDs, and photode-

tectors, does not require full device processing, is non-destructive and works in ambient

environment. Moreover, it can be used to determine if specific device processing steps are

beneficial or harmful for the ultimate performance of a functional semiconductor material.
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Chapter 6: Real-time nanoscale open-circuit voltage dynamics of

perovskite solar cells

Hybrid organic-inorganic perovskites are an emerging material with great po-

tential for high-performance and low-cost photovoltaics. However, for perovskites to

become a competitive and reliable solar cell technology, their instability and spatial

variation must be understood and controlled. While the macroscopic characteriza-

tion of the devices as a function of time is very informative, a nanoscale identification

of their real-time local optoelectronic response is still missing. Here, we implement

a 4D imaging method through illuminated heterodyne KPFM to spatially (<50 nm)

and temporally (16 seconds/scan) resolve the voltage of perovskite solar cells in a

low relative humidity environment. Local Voc images show nanoscale sites with volt-

age variation >300 mV under 1-sun illumination. Surprisingly, regions of voltage

that relax in seconds and after several minutes consistently coexist. Time-dependent

changes of the local Voc are likely due to intragrain ion migration and are reversible

at low injection level. These results show, for the first time, the real-time transient

behavior of the Voc in perovskite solar cells at the nanoscale. This chapter is adapted

from J.L. Garrett, E.M. Tennyson et. al, Nano Letters, 17 2554-2560 (2017) [39]
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6.1 Introduction to nano-imaging in perovskite solar cells

Recent improvements in power conversion efficiency of perovskite solar cells have

brought this class of materials to the same performance level as thin-film CdTe and CIGS

photovoltaics, demonstrating its promise as a large-scale technology. [262–265] To date,

the world record single-junction perovskite device has a power conversion efficiency of η

= 22.7%. [35] Moreover, perovskites are ideal for composing dual-junction designs with a

Si or a CIGS bottom subcell. [266, 267] The remarkable performance of perovskite solar

cells is primarily attributed to their high absorption combined with extremely long carrier

diffusion lengths, [268] including one literature report of >175 µm. [269] Despite the rapid

progress of the field, there is still a lack of understanding of why and how the material

is changing/degrading when exposed to light and humidity. [50, 270] Thus, there is a

pressing need in the scientific community to elucidate what causes the perovskite active

layer to change when the device is operating [271] (exposed to light). Macroscopic electrical

measurements, such as light J-V curves as a function of time, are extremely useful to track

the device instabilities; [272,273] however, one cannot infer how much variation exists from

grain to grain and within one grain in the perovskite layer, which is needed to determine

how the local changes affect the overall device performance.

Microscopy measurements provide a powerful framework for correlating the mor-

phology of the active layers of the solar cells with fundamental physical processes and

device performance. [37, 40, 130, 131] In particular, scanning microscopy techniques are

ideal for investigating heterogeneity at the nanoscale, [51, 90, 138] such as the spatial do-

mains on MAPbI3. [51] Recently, micron-scale photoluminescence has been applied to

resolve charge carrier recombination and ion migration in perovskite grains. [41, 138, 274]
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Through piezo force microscopy, the ferroelectric domains of the perovskites have been

observed. [275,276] By time-dependent Kelvin probe measurements it has been suggested

that the hyterisis behavior commonly observed in perovskite devices could be related to

trapped charges and ion migration across the light absorbing layer. [277] Kelvin probe force

microscopy (KPFM) [278,279] has been used to map the electrostatic potential across mul-

tiple layers of active devices, [151, 280] to measure work function changes during device

poling, [281] and to probe the effect of grain boundaries on MAPbI3. [282] Further, KPFM

has been applied to investigate the possible origins of the hysteresis commonly observed in

light J-V measurements. [69] Despite these advances, traditional high-resolution variants

of atomic force microscopy (AFM) operate too slowly to spatially analyze dynamic events,

such as structural changes, light induced chemical reactions, and ion migration.

Here we image, in real-time, the dynamics of perovskite solar cells with nanoscale

spatial resolution (<50 nm) by mapping local changes in the open-circuit voltage (Voc)

through high-speed illuminated-KPFM (16 seconds/scan), see Figure 6.1(a). For that, we

implement a novel KPFM method that preserves the spatial sensitivity while increasing the

scan speed by >100 times when compared to conventional frequency-modulated-KPFM,

where we map nanoscale voltage domains that vary by >300 mV under 1-sun illumina-

tion. The voltage within a perovskite grain changes substantially (both spatially and

temporally) post light exposure, where regions out of and in equilibrium co-exist, and

are attributed here to intragrain ion migration. We determine the spatial distribution of

the local photogenerated voltage, how it varies as a function of time, and we quantify its

dynamic behavior as the perovskite solar cell reaches its steady state: over 9 minutes. A

time-dependent residual Voc that lasts for minutes is found, resulting from migration, even

under dark conditions. Our results demonstrate, for the first time, the transient electrical
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behavior of perovskite solar cells with nanoscale spatial resolution.

6.2 Experimental methods

6.2.1 Perovskite solar cell fabrication

The solar cells are fabricated by the sequential spin-coating deposition of the per-

ovskite layer (CH3NH3PbI3) and the [6,6]-phenyl C61-butyric acid methyl ester (PCBM)

layer. The perovskite layer is fabricated from lead (II) iodide (PbI2) and methyl ammo-

nium iodide (MAI), each deposited on a glass/ITO/PEDOT substrate by spin coating at

6000 rpm for 35 seconds. After deposition, the sample is thermally annealed at 100◦C in

a nitrogen dimethylformamide environment, as described elsewhere. [283] A 20 nm layer

of PCBM is then deposited on top of the perovskite via spin coating at 6000 rpm for 35

seconds, and the device is annealed at 100◦C for 60 minutes. This annealing process is

implemented to passivate the perovskite and minimize photocurrent hysteresis. A 20 nm

layer of C60 is then thermally evaporated to further aid the passivation of the active layer

of the device. The macroscopic characterization of the devices (light J-V and EQE) is

performed under nitrogen environment to prevent material degradation. The band dia-

gram for the device is presented in Figure 6.1(b), where the approximate values of the

energy gaps were obtained from refs [264,284–288]. Here, the PCBM layer functions as the

electron transport material (ETM), while the PEDOT layer is the hole transport material

(HTM), where the holes are preferentially collected through the indium tin oxide (ITO)

electrical contact. The perovskite absorbing layer with nominal thickness of 300 nm is

sandwiched by the PEDOT and the PCBM (see Figure 6.2). The perovskite films are

composed of grains ≈1 µm in size and with a low density of pinholes, with Voc = 1.02 ±
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Figure 6.1: Real-time nanoscale measurements of voltage dynamics in per-
ovskite solar cells. (a) Schematic of hybrid perovskite solar cells measured by
illuminated-KPFM, out of scale for clarity. The local voltage is overlaid with topog-
raphy, and the green arrow indicates the illumination direction. (b) Energy diagram
of perovskite device and AFM probe illustrating the charge separation mechanism
within the hybrid solar cell under illumination. Evac refers to the vacuum energy
level, and all energy values are in units of eV. The ITO layer is grounded with respect
to the KPFM probe; thus, the subtraction of an illuminated- from a dark-KPKM scan
provides a map of the open-circuit voltage of the device. ETM electron transport
material; HTM hole transport material.

0.02 V (see Figures 6.2 and 6.3 for macroscopic device characterization and SEM images).

6.2.2 Illuminated Kelvin-probe force microscopy Voc derivation

Kelvin probe force microscopy is a scanning probe method based on atomic force

microscopy (AFM) that measures surface potential at nanometer length-scales and utilizes

AFM to maintain small tip-sample separation, as reviewed in depth in Chapter 3. An AC

voltage is applied to a conductive AFM probe, which in turn causes the probe to oscillate,

generating a signal proportional to the difference between the voltage of the probe and

the surface. A feedback loop then applies a DC voltage (contact potential difference,

VCPD) to the probe in order to minimize the KPFM signal, which originates from the

cantilevers oscillation. The contact potential difference is defined to be VCPD = Vprobe-

Vsample. We followed the calibration procedure described in Ref [155] to determine the
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Figure 6.2: Macroscopic characterization of perovskite solar cell device. (a)
Cross-section schematic of perovskite solar cell (out of scale for clarity). (b) Light
J-V performed under 1-sun AM1.5G illumination in reverse bias. Voc = 1.02 V,
Jsc = 17.72 mA/cm2, FF = 71.56%, η = 12.91%. Inset: device Voc variation as a
function of time, where t = 0 refers to the first light J-V measurement acquired, just
after device fabrication. (c) External quantum efficiency (EQE) measurement for the
same device.

Figure 6.3: SEM images of perovskite thin film. (a,b) Scanning electron mi-
croscopy images of PCBM layer.
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KPFM setpoint, avoiding topographical imprint on the KPFM data. [255] Here, the in-

plane spatial variation of VCPD is equal to the spatial variation of the surface potential,

because Vprobe does not depend on probe position.

Two KPFM techniques are used throughout the results presented here: heterodyne

(H-) KPFM and frequency modulation (FM-) KPFM. H-KPFM is a newer technique,

first developed to increase the sensitivity of KPFM in vacuum, while retaining the spa-

tial resolution of FM-KPFM, [155] but it has recently been shown to operate quickly in

air, reaching scan speeds of several frames a minute. [289] Here it is used in single pass

mode, to map dynamic processes. It acquires each (128)2 pixel image in 16 seconds and

achieves a per-pixel signal standard deviation of about 30 mV. The sequential fast H-

KPFM measurements are acquired by alternating top-bottom and bottom-top scans, and

no correlation between the scan direction and the voltage signal is detected. FM-KFPM

is used to scan rougher regions of the sample, which are observed to disturb the H-KPFM

signal. It is configured in the side-band implementation with a modulation frequency of

800 Hz, [278] in the two-pass lift mode; topography is measured on the first pass and the

probe is lifted 15 nm above to record the surface potential. The KPFM loop error signal,

and 2f-KPFM signal, which is proportional to VAC [155] are also collected, to verify proper

functioning of the KPFM loop (see Figure 6.4). Lift mode helps to maintain stability of

the FM-KPFM signal on rough topography. Each FM-KPFM image takes about 30 min-

utes to record, and contains (256)2 pixels. The standard deviation per-pixel due to noise

of FM-KPFM is ≈20 mV, whether estimated by sensitivity measurements or by sampling

a uniform region of the potential.

The Voc map is obtained using the following analysis, as discussed in ref [37] and

the previous chapter:
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Figure 6.4: Monitoring all relevant signals during FM-KPFM measure-
ments. (a) AFM topography shows a homogenous texture of grains. (b) Kelvin
probe voltage (VCPD) detected by a feedback loop at a frequency fmod = 800 Hz
from the first resonance. (c) Error signal in the feedback loop showing extremely
small variations (∼2 mV), which demonstrates the reliability of the method. (d)
In FM-KPFM, a second signal at twice the modulation frequency (2fmod) is also
recorded and is proportional to the tip-sample capacitance. The scan shows how the
sensitivity of the KPFM signal varies spatially.
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Here, the superscripts partial and full refer to the illumination conditions, n (=

1.34) is determined from the slope of Figure 6.7(f), Jsc and Jdark are the short-circuit and

the dark current densities, respectively, and β
′

(φ) depends on the illumination conditions

(photon flux, φ) of the measurements. At 1-sun (φ= φ(1-sun)), the short-circuit current

term is given by: Jsc = q(EQE)φ(1− sun), which is determined by a light J-V measure-
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Figure 6.5: Controlling the environmental conditions during in situ imag-
ing of device performance. Average value of voltage (VCPD) for a sequence of
alternating dark- and illuminated-KPFM scans as a function of time (red). The rela-
tive humidity (light blue) and the temperature (navy) of the environment inside the
AFM chamber were both precisely controlled and monitored while performing the
KPFM measurements.

ment (see Figure 6.2). When the device is under full illumination: β
′
= 0, as Ail = Acell

and Jdark << Jsc.

6.2.3 KPFM implementation

For the measurements presented here, a Cypher AFM (Asylum Research) is used,

with HQ:CSC37/Pt-B probes (Pt-coated Si-doped probe with <30 nm in radius and 0.3

N/m force constant, µmasch). Dry air is pumped into the microscope to maintain a low

relative humidity (<15%) and constant temperature (see Figure 6.5). The topography

of the PCBM layer is observed to be stable during the time scale of our measurements

(Figure 6.6). The ITO layer (bottom contact) is grounded with respect to the conductive

probe for the KPFM measurements. A supercontinuum laser (WhiteLase, Fianium) with

variable power density is used for the illuminated measurements at 500 nm wavelength,

and neutral density filters are used for the smallest illumination intensities (<30 nW). FM-

KPFM was used to acquire Figures 6.1, 6.7, and 6.8(b), while H-KPFM is implemented

for Figures 6.8(c)-(h), 6.10, and 6.11.
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Figure 6.6: AFM topography images. (a)-(f) The morphology of the PCBM
layer does not change within the time interval of the fast H-KPFM measurements
(corresponding to Figure 6.8(c)-(h)).

We implement two types of KPFM to spatially resolve nanoscale changes of the

voltage in the perovskite solar cell. KPFM measures the contact potential difference

voltage signal (VCPD), which is proportional to the difference between the work function

of the conductive probe and the surface of the sample being scanned. To map the local

voltage response in large areas of the device, frequency-modulated KPFM [290–292] can

be used. To increase the scan speed of AFM techniques, common approaches include the

use of polymeric cantilevers [293] or to reduce the size of the cantilevers while imaging

the sample in an aqueous solution. [294] Although these methods are extremely useful to

probe the topography of a variety of materials, they cannot be implemented to accurately

measure voltage. Thus, to investigate the perovskites electrical properties in real-time

upon illumination, we realize a variant of heterodyne-KPFM, which enables fast scanning

(16 seconds/scan) while maintaining high spatial resolution. [155] Briefly, the frequency

at which the voltage is detected is separated from the frequencies of both the topography

98



feedback loop and the applied voltage [155, 289] (see Figure 6.4 for maps of all relevant

signals).

6.2.4 Image analysis

The KPFM images are analyzed using Igor Pro software. We used a linear drift

correction software code, [295] based on the correlation of topography scans for the calcu-

lations of Voc.

6.3 Fast-KPFM results and discussion

In order to better understand the voltage changes that occur under illumination, we

perform light intensity dependent in situ measurements of the photogenerated voltage on

a large, 16 µm2, area of the perovskites using KPFM. Figure 6.7(b)-(e) shows a sequence

of illuminated-KPFM images from 2 nW to 54 µW (corresponding to low injection level).

As the power of the incident light increases, so does the magnitude of the average VCPD

(despite the local variations in voltage, as discussed later in this manuscript). Figure 6.7(f)

shows the expected linear increase of the averaged change in VCPD under illumination, as

a function of light intensity.

As derived in the Experimental Methods section, KPFM has been recently demon-

strated as a novel method to map the local Voc of half and fully processed photovoltaic

devices with nanoscale spatial resolution, where Voc is the voltage across a solar cell at

open-circuit condition. In the illuminated- and dark-KPFM measurements presented here,

the voltage on the conductive probe is referenced to the grounded ITO bottom contact.

As a result, when the device is illuminated the splitting of the quasi-Fermi level (propor-
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Figure 6.7: Imaging nanoscale variations in the Voc of perovskite solar cells.
(a) Dark-KPFM and (b-e) intensity dependent illuminated-KPFM scans measured on
a perovskite device showing local variations in voltage. (f) Scan-averaged illuminated
minus dark voltage (V il

CPD -V dark
CPD) as a function of incident power (light intensity).

The error bars refer to the standard deviation of the averaged values, the green line
is the best fit, and the green region represents two deviations from the mean. (g)
Absolute Voc map with nanoscale spatial resolution at 1-sun illumination, overlaid
with topography.

tional to the Voc of the solar cell) is directly measured by subtracting an illuminated- from

a dark-KPFM scan. Here, we illuminate a well-defined area of the solar cell at normal

incidence and, thus, the local Voc can be expressed as: [37]

Voc(x, y) = [V il
CPD(x, y)− V dark

CPD(x, y)]− β′ , (6.4)

where (x,y) are the spatial coordinates, il and dark refer to illuminated and dark condi-

tions, respectively, and

β
′

=
nkT

q
ln

(
Ail
Acell

+
Jdark
Jsc

)
, (6.5)

at 1-sun illumination, where n is the ideality factor (obtained from the slope of the curve

shown in Figure 6.7(f)), k is Boltzmann’s constant, T is the temperature, and Acell = 1.0

cm2, Ail = 2.0 × 10−3 cm2 are the total cell and illuminated areas, respectively, and Jdark

100



and Jsc are the dark current and short-circuit current densities. The coefficient β
′

(=

-0.22 ± 0.03 V) is a calibration factor that depends on the illumination conditions and on

the area of the device being probed. Note that when the whole cell is illuminated: β
′
=0,

as Ail = Acell and Jsc >> Jdark. Figure 6.7(g) shows a representative Voc map for the

perovskite solar cell under 1-sun local illumination, which exhibits spatial variations >300

mV. These remarkable changes in photovoltage demonstrate that the materials electrical

characteristics vary locally from grain to grain and within a single grain. The average value

of the Voc measured by KPFM is smaller than the initial value obtained by macroscopic

light J-V measurements immediately after fabrication (Figure 6.2), which primarily results

from the Voc decay of the sample at a rate of ∼5% per day (see the inset of Figure 6.2).

Figure 6.8(a,b) show representative topography and KPFM scans in a 16 µm2 region

of the perovskite device in the dark (at equilibrium). The VCPD varies spatially with a

standard deviation of 80 mV (substantially greater than the noise) and is independent of

the morphology of the sample. These spatial variations could be due to inhomogeneities

either within the perovskite or within the PCBM layer, caused by the spin coating de-

position process used to fabricate the sample. During all measurements presented here,

the temperature was kept at 28-29 oC and the relative humidity <15% inside the AFM

enclosure, see Figure 6.5 for stability of the environment inside the AFM chamber during

dark and illuminated measurements. Figure 6.8(c)-(h) show the in situ changes in the

voltage before, during and after illumination, obtained by fast-KPFM (16 seconds/scan),

with 54 µW of incident power at wavelength of 500 nm. According to the KPFM initial

dark scan, areas of both high and low surface potential co-exist (Figure 6.8(c)), with an

average VCPD of 0.2 V. Upon illumination, Figure 6.8(d), the surface potential increases

substantially, to 0.4 V on average, as a result of the photogenerated voltage. No change
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Figure 6.8: Dynamics of perovskite solar cells at the nanoscale. (a) Topogra-
phy and (b) dark-KPFM measurements on a representative area of a perovskite pho-
tovoltaic device. A sequence of fast-KPFM measurements were acquired on the region
highlighted by the white dashed square in (a,b): (c) dark-KPFM, (d) illuminated-
KPFM, (e-h) dark-KPFM scans as a function of time. Note that after exposure to
light (scan (d)), it takes the material ≈ nine minutes to return to equilibrium (scan
(h)). (i) Histograms of voltage distribution as a function of time for 42 KPFM scans
(dark and illuminated) showing reversible dynamics upon a sequence of dark scans.
Illumination conditions: 500 nm laser light at 54 µW. Relative humidity <15%.

in topography is observed during the KPFM scans (see Figure 6.6), indicating that these

perovskite devices are morphologically stable during this time frame, under the illumina-

tion conditions and the environment used in this experiment. Surprisingly, after turning

the light back OFF, a transient decay of the voltage is observed, see Figure 6.8(e)-(h).

Over time, the voltage returns towards its initial profile, where it takes ≈9 min for the

material to achieve its original surface potential spatial distribution (Figure 6.8(h)).

Through the voltage histograms displayed in Figure 6.8 we quantify this complex

transient behavior of the perovskite’s voltage. Each pixel in a 128 × 128 pixel map is

binned according to its voltage value to produce the histograms. Note how the spatial
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distribution of the voltage changes with time until the device reaches equilibrium again. In

particular, the histograms reveal that the initial dark voltage distribution (blue) is quite

broad, with a peak around 0.2 V, and under illumination this distribution increases to

0.4 V (green curves). However, after turning the laser OFF, the potential immediately

becomes a single, fairly narrow Gaussian (light grey curve). As time progresses, the

VCPD broadens again, primarily by extending to higher voltages (dark grey curves). This

behavior is also observed after exposing the perovskite to different illumination intensities

(ranging from 2.0 nW to 4.2 mW, see Figure 6.9). These results demonstrate that after

exposing the perovskite to light, its voltage changes as a function of time even under dark

conditions.

Another striking observation about these perovskite solar cells is that upon removing

the illumination, the Voc does not immediately return to zero. Instead, a non-zero average

voltage persists for several minutes, with a sign is opposite of the Voc under illumination.

This behavior is consistent with trap filling and subsequent ion migration, which have

been observed to take minutes to equilibrate on the macroscale. [49, 296] To quantify the

time-dependent voltage response within the perovskite solar cell, we analyze the spatial

variation of this residual Voc obtained by subtracting the equilibrium dark-KPFM image,

Figure 6.8(h), from the post-illumination dark-KPFM scans, see for example Figure 6.8(e)-

(g). Figure 6.10 displays the residual Voc images for the perovskite solar cell for a series

of snapshots. The dark measurement immediately after turning the laser OFF shows

a transient electrical behavior (Figure 6.10(a)), most likely resulting from a reversible

electronic process within the material. The representative scans shown in Figure 6.10(a)-

(e) have two very distinct regions, with initial Voc = - 0.2 V (red) and Voc = 0 V (blue),

revealing a strong bimodal voltage distribution on the electrical response of the device,
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Figure 6.9: Voltage profile for fast H-KPFM illumination scans. Histogram
of VCPD for sequential H-KFPM scans showing signal variation as a function of
illumination, using 500 nm (green curves) and under dark conditions (grey/black
curves). Each histogram corresponds to one scan, acquired in 16 seconds in the
same 1.0 µm2 area. The incident illumination power is listed on the right. Lines
representing dark (light) scans become darker (lighter) the longer the light is OFF
(ON), as shown in grey and green, respectively.
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not resolved by conventional macroscopic electrical measurements or by standard AFM-

based methods. As the system approaches equilibrium, the Voc in the initially red region

approaches zero, see voltage scans in Figure 6.10(b)-(e), while the blue regions remain

unchanged. Figure 6.10(f) shows the averaged Voc as a function of time for the entire

scanned area shown in (a)-(e) (black curve) and the voltage for the regions highlighted

by the white squares (red and blue curves). Each point on the graph corresponds to the

averaged value (either within the white squares or for the entire scanned region). Here, the

variance is calculated by considering each pixel in each box as an individual measurement

with 30 mV standard deviation, and it is plotted at three standard deviations. The

blue curve is constant under dark conditions (laser OFF), indicating that either some

regions of the PCBM layer do not suffer any post-illumination driven electrical changes

or that these regions return to equilibrium in less than 16 seconds. Nevertheless, the red

curve shows that an out-of-equilibrium state persists for several minutes. These time-

dependent measurements reveal that the voltage equilibration has a spatial dependence

at the nanoscale that could be responsible for the light-dependent instability observed in

perovskites. [297]

Because no net current flows out of the device at open-circuit conditions, an addi-

tional current term must balance the diode dark current (Idark) to enable a residual voltage

to exist without illumination. We explain this behavior using a simple diode model with

an additional time-dependent current term, Iion(t), which could arise as a result of ion

migration and/or a change in the density of trap states:

I(V ) = IL − Idark
(
e

qV
nkT − 1

)
+ Iion(t), (6.6)

where IL is the light-generated current of the solar cell. In the dark (IL = 0), and at
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Figure 6.10: Spatial and temporal variation of the residual photogenerated
voltage within perovskite solar cells. Topography and Voc scans acquired after
the solar cell is illuminated and brought back to dark conditions after (a) 16 s, (b) 65
s, (c) 164 s, (d) 328 s and (e) 541 s. Note that immediately after illumination, two
distinct regions are observed, one with Voc equal zero (blue) and another with Voc =
-0.2 V (red). (f) Averaged Voc as a function of time for the entire scanned area shown
in (a-e) (black), and for regions 1 and 2 (highlighted by the white squares). The error
bars refer to three standard deviations from the averaged values. The vertical grey
dashed lines correspond to the time interval where the scans (a-e) are performed. (g)
Ratio of current due to ion migration (Iion) and dark current (Idark) as a function
of time. Black line is an exponential fit to the experimental data resulting in a time
constant of 185 ± 27 s.
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open-circuit conditions, we have

Iion(t) = Idark

(
e

qVoc(t)
nkT − 1

)
, (6.7)

where Voc(t) is the time-dependent residual open-circuit voltage. Post-illumination, Iion(t)

opposes the original dark current and tends toward zero on the time scale of minutes.

Figure 6.10(g), shows the decay of Iion(t) as the device reaches equilibrium, resulting in a

time constant of 185 ± 27 s.

As one of the primary limiting factors of perovskite photovoltaics is the material

instability when exposed to light, we also measure the time-dependent local changes in

Voc under illumination, as presented in Figure 6.11. Here, we determine ∆Voc by the

difference between two illuminated KPFM maps, where each resulting scan corresponds

to an instant of time subtracted from the last illuminated one in Figure 6.8(i), in light

green. The sequence of ∆Voc maps show the local spatial variation in the photogenerated

voltage. As previously observed, [296] when the perovskite material is illuminated, the

trap states due to vacancies are filled by electrons. As a result, the ions move away

from these sites (due to electrostatic repulsion). We track this ion migration process,

in real-time, by spatially resolving changes in the local voltage (∆Voc) that take place

during material illumination. We hypothesize that ions migrate away from the PCBM

layer (electron transport layer) due to the built-in electric field. Regions with ∆Voc > 0

and <0 co-exist, strongly indicating that there is an accumulation of ions and vacancies

within the illuminated area of the cell, which varies in time. At low injection level,

this migration process is reversible and does not lead to material degradation. Yet, it

changes the electrical behavior of the device locally, which ultimately affects the overall

performance of the solar cells.
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Figure 6.11: Real-time nanoscale Voc dynamics of perovskite photovoltaics.
Sequence of ∆Voc maps as a function of time after (a) 16 s, (b) 32 s, (c) 48 s, (d)
64 s, and (e) 80 s of illumination. Each scan is subtracted from an illuminated one
after 96 s (from 6.8i). The blue and red dashed areas highlight regions with transient
voltage response. The scans size is 1 × 1 µm2.

We attribute the dynamic behavior of the local electrical response of the perovskite

solar cell mapped here to intragrain ion migration: [41, 282] charge accumulation takes

place when the material is illuminated, and charge migration when the solar cell is no

longer in operation (dark conditions). This photo-induced ion migration is primarily

driven by the movement of to regions with depleted ions, as observed in prior photolu-

minescence experiments. [41] We demonstrate that this phenomenon is fully reversible at

low illumination injection level (Figure 6.7) and does not result in permanent material

degradation. Further, the spatial variations in the local electrical response are not accom-

panied by any changes in morphology (see Figure 6.6 for sequence of topography maps

during material illumination), but the nanoscale time-dependent variations are most likely

responsible for macroscopic instabilities observed in these perovskite solar cells. The diffu-

sion of ions under dark conditions leads to a time-dependent local residual Voc(t), mapped

here for the first time. Our results indicate that free carriers are probably responsible for

the observed transient voltage. Once the material is under dark conditions again, some

ions continuously move until the perovskite layer achieves an equilibrium state, which
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takes place in several minutes for the material probed in this work (as shown in Figure

6.8).

6.4 Conclusion

The real-time functional imaging method reported here can be combined with

other scanning probe microscopies and big data analysis [298] to probe additional rel-

evant phenomena that currently describes the unique illumination dependent behavior

of perovskites, such as structural transformation, [299] ferroelectric domains, [275, 300]

poling, [296] and piezoelectric behavior. [275] For instance, to map structural and chemi-

cal composition changes, fast-KPFM could be combined with tip-enhanced Raman spec-

troscopy. Likewise, to investigate the possible effects of long lived traps [301] on the devices

local electrical response, our novel imaging method could be combined with pump-probe

EFM/KPFM techniques, [302, 303] which measures voltage at microsecond timescales.

Further, spectrally dependent fast-KPFM could help elucidating the mechanism respon-

sible for light-induced self-poling in perovskites.

In summary, we imaged and quantified the real-time voltage dynamics of perovskite

solar cells at the nanoscale (<50 nm) under illumination and post-illumination conditions

by fast KPFM (16 seconds/scan) in a low relative humidity environment. 1-sun local Voc

maps of the perovskites revealed absolute variations >300 mV between and within grains.

Under illumination, the photogenerated voltage of the perovskite varied spatially within

one grain. After illumination, it took the material ≈9 min to reach its equilibrium state.

This transient electrical behavior, most likely resulting from reversible ion migration within

the perovskite layer, cannot be revealed by conventional macroscopic electrical measure-

ments. The real-time nanoscale imaging experiments presented here demonstrate that the
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Voc of perovskite photovoltaics varies locally, and that light-induced reversible ion migra-

tion could be responsible for the time-dependent transient behavior of most perovskite

photovoltaics. Substantial effort lies ahead to acquire a full picture of the mechanism(s)

responsible for the light-induced physical and chemical processes frequently observed in

this class of materials, and their effects on the maximum attainable Voc. Nevertheless, our

nanoscale time-dependent measurement represents a new imaging method to diagnose the

local electrical response of perovskites, ranging from lead-free CsBrIxBr3−x alternatives to

mixed cation and halide compositions for optimized dual-junction solar cells. Thus, map-

ping the spatial and time dynamics of perovskite materials will likely impact the design

of next-generation stable perovskite solar cells with reliable voltage response.
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Chapter 7: Perovskite composition-dependent nanoscale voltage re-

sponse

Perovskite solar cells that incorporate small concentrations of Cs in their A-

site demonstrate a boost in both stability as well as overall device performance.

Yet, how the Cs cation influences the electrical properties at the nanoscale of the

photovoltaic material is still unknown. In this chapter, we determine how the com-

position affects the short- and long-term electrical stabilities of three perovskites

under 1-sun illumination, MAPbBr3, MAPbI3, and Cs-mixed, with <50 nm spatial

resolution. An anomalous irreversible electrical signature on MAPbBr3 is mapped

at the mesoscale, which results in entire grains with no contribution to the Voc.

These measurements verify the necessity of high spatial resolution mapping. Con-

versely, Cs-mixed perovskites exhibit fully reversible voltage, ultimately proving

that the desired electrical output of this composition persists even at the nanoscale.

Further, this material presents no spatial variation in Voc as a function of illumi-

nation, as ion motion is restricted. Finally, we reveal that the performance of the

Cs-mixed thin film remains stable as a function of four weeks. These results show

that the nanoscale electrical behavior of the perovskites is intimately connected to

their chemical composition and macroscopic response.
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7.1 Introduction

The remarkable progress and research effort that has happened to improve per-

ovskite solar cells in the past decade is unprecedented. [153, 304] This PV material has

now achieved power-conversion efficiencies (η) for both single-junction [35, 305] and tan-

dem devices containing perovskites [144, 306] >22%. These advancements demonstrate

researchers ripening comprehension of perovskites, and thus, the fabrication processes for

higher quality materials, such as electronic charge carrier transport layers and film inter-

faces, are being refined. [307–309] While such advances are necessary to develop commer-

cial PV devices, short- and long-term stability under realistic atmosphere environments

and perovskites inability to pass accelerated ageing tests remain challenging. [152]

The heterogeneity and dynamics of the electrical behavior in perovskites begin at

the nanoscale, [28, 34, 39, 151] and locally revealing the primary performance parame-

ters with high spatial resolution can potentially be correlated to the beneficial, parasitic,

and/or transient response and the overall device performance. For instance, under il-

lumination, perovskites have local variations in Voc, [37, 39, 90] photocurrent, [51] and

photoluminescence signal [41,310,311] as a function of both space and time. The primary

culprit of the heterogeneity is still under debate, but the strongest hypothesis thus far sug-

gests halide ion migration. [49,106,312–314] Recently, triple-cation perovskites containing

methylammonium (MA), formamidinium (FA), and Cs have been presented as a promising

alternative, due to experimental evidence that Cs incorporation improves thermal, [315]

moisture, [316, 317] and photoelectrical stabilities. [318] Simultaneously, the devices can

maintain its output η, suitable for the future, large-scale deployment of this PV material.

It has been lately observed that the addition of Cs affects the structural properties of the
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absorbing layer by decreasing its lattice constant, while simultaneously preventing ion mi-

gration. [319] Nevertheless, it is currently unknown how the electrical signal of the grains

constituting these perovskites changes upon illumination and if this composition suffers

from ion motion at the nanoscale.

Here we elucidate how the presence of Cs-incorporated triple cations lead to a fully

reversible nanoscale voltage response in perovskite solar cells for both short- and long-term

stabilities. By implementing Kelvin probe force microscopy (KPFM), one can directly im-

age spatial variations in Voc under 1-sun illumination of three perovskites with different

compositions. The sample that incorporates Cs yields a uniform and steady Voc upon light

treatment, irrespective of grains and grain boundaries. The MAPbBr3 composition shows

an anomalous, non-reversible light-induced electrical behavior. For this material, illumina-

tion under 1-sun results in >10% of the material with “zero-voltage” regions ranging from

single grains to clusters, while no morphological variations are observed. Further, through

spatially and temporally resolving the light-induced changes in the MAPbBr3 sample, we

demonstrate the effect of ion motion in these solar cells Voc, which is responsible for the

observed dynamics. These results show that the Cs-mixed perovskite is the only stable

composition measured here at both the nano- and macroscale. The Voc measurements

presented can be applied to other perovskites, with alternative chemical compositions to

track material degradation, and can be used in different atmospheres.
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7.2 Experimental methods

7.2.1 ToF-SIMS characterization

Using a focused Ga+ ion beam and scanning electron microscope dual-beam sys-

tem, depth profiles are acquired, presented in Figure 7.1. Both the positive and negative

secondary ions were generated by ionizing the species from the sample using a 20 keV

Ga+ ion beam with current at ∼1.1 nA. The ToF-SIMS signals were recorded by a mass

spectrometer. During the measurements, the vacuum level was kept below 10−4 Torr at

all times. Three distinct locations were measured for each perovskite sample for statistical

purposes. Areas of 20 × 20 µm2 were sputtered while 10 × 10 µm2 central regions were

analyzed to avoid any edge effect.

7.2.2 Raman spectroscopy and microscopy

Raman spectra and maps for the MAPbBr3 sample were acquired with a 650 nm

laser excitation source and spectrometer, using a 100× objective lens in a confocal optical

microscopy setup. The Cs-mixed and MAPbI3 samples were measured with a NT-MDT

atomic force microscope, using an excitation source of 532 nm laser. Each pixel in the

Raman map represents the integrated area under the peak, highlighted in Figure 7.2. All

Raman maps are 5 × 5 µm2 and were performed after the KPFM maps were measured.

7.2.3 Solar cell synthesis

Fluorine doped tin oxide coated glass slides (Sigma-Aldrich, 7Ω/�) were cleaned

by sonication in 2% Hellmanex solution for 15 minutes. After rinsing with deionized

114



water and ethanol, the substrates were again sonicated with isopropanol for 15 minutes

and rinsed with acetone. The substrates were treated with UV-ozone for 5 minutes, and

a 50 nm thick TiO2 electron selective layer was deposited by spray pyrolysis at 450◦C

from a precursor solution of titanium diisopropoxide bis(acetylacetonate) (0.6 ml) and

acetylacetone (0.4 ml) in anhydrous ethanol (9 mL). After the spraying, the substrates

were left at 450◦C for 30 min and left to cool down to room temperature. Mesoporous

TiO2 films were spin-coated (4000 rpm, 20 s) from a 1:10 solution of TiO2 paste (30 NR-D,

Dyesol) in anhydrous ethanol. The films were annealed on a programmable hotplate (2000

W, Harry Gestigkeit GmbH) using a 45 minute ramp to 450◦C followed by a dwell time of

30 minutes. Perovskite films were deposited from a precursor solution; MAPbBr3: MABr

(1.2 M) and PbBr2 (1.2 M) in anhydrous DMF:DMSO 4:1 (v:v); MAPbI3: MAI (1.2 M)

and PbBr2 (1.2 M) in DMSO; Cs0.06(MA0.17FA0.83)0..94Pb(I0.83Br0.17)3: FAI (1 M), PbI2

(1.1 M), MABr (0.2 M), PbBr2 (0.2 M) and CsI (0.075 M) in anhydrous DMF:DMSO

4:1 (v:v). The perovskite solution was spin-coated in a two-step program at 1000 and

6000 rpm for 10 and 20 s respectively. During the second step, 100 µl of chlorobenzene

was poured onto the spinning substrate five seconds prior the end of the program. The

substrates were then annealed at 100◦C for one hour in a N2 glove box. Subsequently,

the substrates were cooled down for a few minutes and a PTAA (EM Index) solution (10

mg/ml in chlorobenzene) doped with bis(trifluoromethylsulfonyl)imide lithium salt (Li-

TFSI, Aldrich) and 4-tert-butylpyridine (TBP, Aldrich) was spun at 4000 rpm for 20 s,

as according to the literature. [146, 320] For the solar cells, 80 nm of Au was thermally

evaporated under high vacuum for the top contact of the devices.
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7.2.4 Macroscopic measurements

For the power conversion efficiency measurements, a solar simulator from ABET

Technologies (Model 11016 Sun 2000) with a xenon arc lamp was used, and the solar cell

response was recorded using a Metrohm PGSTAT302N Autolab. The intensity of the solar

simulator was calibrated to 100 mW/cm2 using a Si reference cell from ReRa Solutions

(KG5 filtered). J-V curves were measured in ambient environment at room temperature,

and under reverse bias (from high to low voltages) conditions, at a scan rate of 10 mV/s.

The active area of the cells was 0.09 cm2 and cells were measured two days after their

preparation.

7.2.5 Kelvin probe force microscopy experiments

The KPFM measurements were performed using an atomic force microscope (AFM).

A conductive Pt-coated Si probe is used with a 35-nm tip to measure the work function

difference and topography of each sample simultaneously. Due to the geometry of the

perovskite half-devices, in all cases the surface of the 50-nm thick PTAA hole transport

layer was scanned. To neglect the influence of moisture during the KPFM measurements,

piping connected to a dry air source was fed into the AFM chamber, which maintained a

humidity level within the microscope to <10% relative humidity, see Figure 7.5. The sam-

ple’s were illuminated with a power-tunable 532 nm laser (1-sun), directed into the AFM.

A small glass prism was placed underneath the perovskite thin film, and reflected light up

toward the sample, producing a spot with 0.5 mm in diameter. Heterodyne-KPFM mode

was implemented during the experiment, which measures the contact potential difference

(VCPD) of the tip-sample at the second resonance of the cantilever; see refs [39,155] for de-
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tails. The line-noise of 50 mV was quantified by examining voltage line profiles. Between

experiments, the perovskite samples were stored in a low-humidity desiccant chamber,

with the average humidity level between <10%.

7.3 Composition analysis of perovskites

Perovskites are, in most cases, an organic-inorganic hybrid material blend with a

chemical formula of ABX3 (A = monovalent cation, B = inorganic cation, and X = halide

anion). The constituents of this structural form have been researchers primary tuning knob

used to alter the optoelectronic properties of perovskites as well as improve the thermal,

structural, and photo stability. [119,150,321,322] The most common compounds for each

lattice position are: A-site: methylammonium (MA = CH3NH3
+), formamidinium (FA =

HC(NH2)(2)+) and inorganic Cs+; B−site: Pb2+, which has the best performance in this

location (although very recent studies show that a partial substitution of Co2+ or Bi3+

could boost output power) [321,323]; and X3 site: I−, Br−, and/or Cl−.

We investigate three perovskite thin-films with different compositions. First, the

conventional MAPbI3 (with bandgap = 1.58 eV) is selected because its electronic proper-

ties are well documented, and therefore, it is an ideal candidate for systematic testing of

the chemical composition contribution to the nanoscale electrical response. Another pure

halide, MAPbBr3, is analyzed; this perovskite has a higher bandgap (2.2 eV) and, thus,

larger Voc and limited photocurrent, and it could be utilized in tandem PV devices. The

overall electrical performance (macroscopic) of pure-halide perovskites has been observed

to degrade with exposure to either light and/or moisture, especially when the sole A-site

compound is MA. [153, 324, 325] Cation engineering is implemented by adding a small

amount of an inorganic component, Cs+, to a mixture of MA and FA, and also use a
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Figure 7.1: Chemical composition analysis of perovskites by ToF-SIMS.
Schematic and real-color photographs of perovskite samples: (a) MAPbBr3, (b) Cs-
mixed, and (c) MAPbI3. Samples size = 1.2 × 1.5 cm2. (d)-(f), Representative depth
profiles of ToF-SIMS measurements acquired for each sample.

mixture of halide atoms. This approach has been observed to improve the stability in

ambient environments substantially. [146, 318] The third sample investigated here has a

mixed A-site and X-site perovskite material: Cs0.06(MA0.17FA0.83)0.94Pb(I0.83Br0.17)3 (i.e.

Cs-mixed, also with bandgap ≈ 1.58 eV). [146, 326] See the Methods section for detailed

information about the perovskite thin film/device fabrication steps. Half-devices are fab-

ricated, which are composed of PTAA/perovskite/TiO2/FTO/glass, to perform nanoscale

electrical measurements through KPFM, as will be presented later in this chapter.

To confirm the existence of each species within all perovskite compositions, time-of-

flight secondary ion mass spectroscopy (ToF-SIMS) are performed and the depth profiles

of the relevant elements are collected. Figure 7.1 displays a schematic of the perovskite

samples and their corresponding thicknesses, plus the respective real color photographs

(Figure 7.1(a)-(c)), which are an indicator of their bandgaps. The elemental depth profiles

obtained by ToF-SIMS (Figure 7.1(d)-(f)) validate the presence of the constituent elements

in the perovskite films with minimal diffusion throughout the other thin-film layers, see

the experimental methods.
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Br-Pb-Br stretching, asymmetric MAYBE: MA torsion Pb-I stretching, symmetricFigure 7.2: Raman microscopy on perovskite thin films. (a)-(c), Raman spec-
tra and (d)-(f), their corresponding Raman maps. Each pixel in the 5 × 5 µm2.
Raman map is the integration of the Raman peak highlighted by gray in the spec-
trum above, where the range in cm−1 is indicated within the maps. Raman peak
identification (a)-(c): Br3-Pb-Br3 stretching, asymmetric; MA torsion, and Pb-I3
stretching symmetric, respectively. [327,328]

As desired, Br (two isotopes shown as Br-1 and Br-2 in Figure 7.1), Cs, and I are

all confined to the perovskite layer of the samples. Further, the chemical composition

is uniform throughout each layer. This uniform distribution in the composition is in

agreement with our Raman microscopy chemical imaging, see Figure 7.2.

7.4 Probing perovskites’ electrical response at the nanoscale

Each perovskite thin-film investigated here also has a full device counterpart. Light

J-V curves and η vs. time plots are presented in Figure 7.3, detailing the average per-

formance parameters of the investigated films (see Methods for parameter specification).

From the macroscopic measurements, it is clear that the Cs-mixed sample has the highest

η at 18.6% while concurrently having excellent short-term performance stability (Figure
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Figure 7.3: Macroscopic performance and short-term stability of perovskite
solar cells. (a) Light J-V curves for all the perovskite solar cells investigated here
(color-coded). For Cs-mixed, MAPbI3, and MAPbBr3: Voc = 1.11, 1.02, and 1.36 V,
Jsc = 22.1, 18.1, and 5.5 mA/cm2, FF = 76, 85, and 76%, and η = 18.6, 15.7, and
5.7%, respectively. (b) η vs. time for each perovskite device. The Cs-mixed sam-
ple shows the highest performance and stability while the MAPbI3 device degrades
rapidly with time.

7.3(b)). The MAPbBr3 solar cell has the lowest efficiency at 5.7% despite having the

largest Voc (due to its wide bandgap) and also maintains an unchanged electrical output

with time, see Figure 7.3(b). Yet the MAPbI3 device, which initially has a promising η =

15.7%, rapidly falls to <13% in two minutes, signifying that this perovskite composition is

the least electrically stable. Furthermore, despite the larger fill factor (FF), the MAPbI3

light J-V curve contains an undesirable bump between 0.8-0.9 V, which is attributed to

charge build-up close to the electrical contacts. [49] For these reasons, we have chosen

to focus these high-resolution mapping experiments on the MAPbBr3 and Cs-mixed per-

ovskite compositions, to understand how their nanoscale voltage behavior influences the

materials electrical stability.

The nanoscale, real-time Voc response of the perovskites is imaged by Kelvin-probe

force microscopy (KPFM) under 1-sun illumination conditions and extremely low humid-

ity. A schematic of the KPFM experimental setup is presented in Figure 7.4. The samples
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are illuminated from the bottom using a 532-nm laser beam incident on a glass prism,

which reflects an equivalent photon flux of 1-sun up towards the sample. Briefly, KPFM

measures the work function difference between the atomic force microscope (AFM) probe

and the sample surface. [28] Upon illumination, the perovskite absorbs photons, which

generate charge carriers, introducing quasi-Fermi level splitting (directly proportional to

the Voc) [37] and thus, changing the work function of the material. By subtracting an

illuminated KPFM scan by a dark one performed in the same location, and maintaining

a common electrical ground between the probe and the perovskite samples back electrode

(FTO in this case), we image Voc with spatial resolution <50 nm. [37, 39] The relative

humidity in the AFM chamber is held <8% (Figure 7.5) by continuously flowing dry air

into the microscope through a piping system. See the experimental methods section for

more details on experimental parameters. The nanoscale voltage response of perovskite

samples before, during, and after illumination are mapped, termed here Dark(1), Light,

and Dark(2), respectively.

7.4.1 Irreversible nanoscale electrical response in MAPbBr3

Figure 7.6 displays measurements of the nanoscale voltage response of the MAPbBr3

perovskite under 1-sun illumination, where an irreversible response is observed upon the

material’s first exposure to light. During the entirety of our experiments, no topography

changes are observed (Figure 7.6(a)-(c)), indicating that any variations in the electrical

signal are due to non-morphological properties of the perovskites. It also demonstrates that

during the scans the AFM probe is kept intact (and all changes in tip-sample interactions

are due to changes in the electrical output of the perovskites). The MAPbBr3 perovskite

presents extraordinary, irreversible light-induced electrical behavior at the nanoscale, with
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Figure 7.4: Imaging the Voc response in perovskites at the nanoscale.
Schematic of the illuminated-KPFM experimental setup, where the perovskite sam-
ples are back illuminated, and the local voltage signal is measured by an AFM probe
using Kelvin-probe force microscopy. Because the perovskite back contact is grounded
with respect to the tip, the data acquired under illumination is proportional to the
Voc of the solar cell.
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Figure 7.5: Relative humidity during KPFM measurements. The humidity
level inside the AFM chamber was monitored every 30 seconds during the exper-
iments. A constant dry air flow was pumped into the chamber to maintain low
moisture content.
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no morphological changes. Before this sample is exposed to light, the voltage is nearly

uniform, see Dark(1) image in Figure 7.6(d), with an average voltage equal to 1.04 V.

Upon illumination (Figure 7.6(e)), the an inhomogeneous photovoltage response which

differentiates itself from the distribution of the initial dark scan. After sample illumination

(Figure 7.6(f)), a new electrical and reversible state emerges, termed as Dark(2). There

are two distinct regions within the MAPbBr3 voltage maps in Figure 7.6(d)-(f): (i) the

background, where the light-induced voltage shows the largest increase (very light green,

voltage = 1.84 V), and (ii) unique perovskite grain and grains clusters which have become

inactive photovoltage sites, viewed as the medium-green color in Figure 7.6(e) and (f)

(voltage = 1.49 V in both cases). Note that after the initial illumination of the MAPbBr3

sample (shown in Figure 7.6(e)) the voltage responses, both Light and Dark, become

reversible.

To quantify the actual effect of the high and low voltage regions on the Voc of

MAPbBr3, we subtract a Dark(x) image from a Light-KPFM scan, and obtain V
′
oc maps,

as indicated in Figure 7.6. Here V
′
oc is defined as an effective Voc because it results from the

partial illumination of the perovskite (laser is focused and, thus, the excitation of carriers

is localized) using a single wavelength, and considers the dark current contribution of the

entire sample area. Thus, as expected, V
′
oc differs from the macroscopic Voc, where the

volume of carriers excited is much larger. Two contrasting areas are immediately appar-

ent when comparing the V
′

oc(1) and V
′

oc(2) maps (Figure 7.6(g) and (h), respectively), as

locally, the V
′

oc(2) value drops to zero (dark red regions). Because the electrical response

does not change post-illumination, the photovoltage generation is now inactive at these

sites, harming the local and, thus, macroscopic performance of devices. These parasitic

regions cover approximately 12% of the scanned area shown here. Surprisingly, despite the
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Figure 7.6: Nanoscale irreversible voltage response in MAPbBr3 per-
ovskites. (a)-(c) AFM topography maps of the MAPbBr3 sample and their respec-
tive (d)-(f) voltage images under sequential dark, illuminated, and dark conditions.
Here, despite consistent topography, an irreversible electrical process occurs within
the MAPbBr3 perovskite film. (g,h) Spatial variation in open-circuit voltage under
local illumination where: V

′

oc(1) = Light minus Dark(1), and V
′

oc(2) = Light minus

Dark(2). For all measurements relative humidity <8%, and for all light-KPFM scans
the illumination conditions are a 532-nm laser under 1-sun incident photon flux.
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zero-voltage grains in the V
′

oc(2) map, the average V
′
oc value of the entire scanned region

(〈V ′oc(x)〉), quoted underneath Figure 7.6(g) and (h)) increases by 30 mV after illumination.

Note that a macroscopic measurement would not capture such irreversible behavior and

could inadvertently lead to the conclusion that there is an overall enhancement in per-

formance, when this is not the full story. We hypothesize that this irreversible electrical

process is caused by Br− ion motion within the perovskite film. [329–331] Because Br is

a negatively charged ion, it tends to move towards the electron transport material during

operation conditions (meaning, during illumination). The movement of these ions away

from the surface (i.e. PTAA, the hole transport layer) is likely the reason for the observed

heterogeneous depletion of voltage at the tip-sample junction.

Through fast-KPFM we determine the immediate changes that take place in the

perovskites electrical response upon illumination in two representative regions within the

scanned area of Figure 7.6, see Figures 7.7 and 7.8. Briefly, in fast-KPFM, the real-

time voltage is measured, where each map is acquired in 16 seconds. [155] As the laser

is turned ON/OFF, the transient and asymmetric voltage response of this perovskite is

captured, as displayed in the maps presented in Figure 7.7 and in the corresponding voltage

histograms. Once the sample is illuminated under 1-sun (Figure 7.6(c)) the electrical

signal changes substantially, corresponding to the photo-generated voltage. Here, the

‘slow’ voltage increase that takes place in ∼2-3 minutes (red-color histograms) results

from ion motion within the perovskite. As the material is illuminated the electrons fill in

the existing trap states.12 Consequently, the Br− anions now have a preferential motion

direction — away from these filled states. Upon turning the laser OFF a residual positive

voltage response is meaasured for ∼10 min (see gradual change in signal from Figure 7.7(f)

to (i) and red to purple histograms in Figure 7.7(j)). Here, the dynamic voltage signal
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Figure 7.7: Dynamic, reversible electrical response after the first illumi-
nation of MAPbBr3. (a) Topography map. (b)-(i) Fast Dark- and Light-KPFM
scans (16 sec/scan) shown in chronological order, demonstrating the slow reversibility
of the voltage response in 10 minutes post illumination. During scan (c) the 532 nm
laser at 1-sun is turned ON, scan direction bottom to top. During scan (f) the illumi-
nation source is turned OFF, scan direction from top to bottom. (j) Corresponding
voltage histograms for the entire fast KPFM series.

at open-circuit conditions results from the now reversible electron and Br- motion. Yet,

there is a hysteresis in the nanoscale voltage, where it takes more than 2× longer for

the voltage to equilibrate under dark conditions. Note that this time-dependent voltage

behavior could not be resolved by conventional KPFM methods, as they would not capture

the short-time voltage changes.

7.4.2 Fully reversible and stable Cs-incorporated triple cation perovskites

The macroscopic electrical performance and stability of solar cells, shown in Figure

7.3, can be traced down to their nanoscale constructs. Therefore, revealing the relevant

local voltage responses will help answer the open-question of: “Why does Cs-incorporation

significantly improve overall device efficiency and stability?” Thus, we dedicate this sec-

tion to the effect of cation engineering on the material at short- and long-term time scales.
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Figure 7.8: Dynamic electrical response after illumination of MAPbBr3
region 2. (a) Topography map. (b)-(i) Fast Dark- and Light- KPFM scans (16
sec/scan) acquired, shown in chronological order, demonstrating the slow reversibil-
ity of the voltage response in ∼10 minutes post illumination. During scan (c) the
532 nm laser at 1-sun is turned ON, scan direction bottom to top. During scan
(f), the illumination source is turned OFF, scan direction from top to bottom. (j)
Corresponding voltage histograms for the entire fast KPFM series.

In Figure 7.9 the morphology (which is constant as a function of time and illumination,

Figure 7.9(a)-(c)) and electrical signal of Cs-mixed composition at the nanoscale is shown.

We measure a very uniform voltage distribution (Figure 7.9(d)-(f)) under both dark and

light conditions, irrespective of the interfaces between the grains. This is desirable for

large-scale solar cell deployment, and a distinct difference from the behavior of MAPbBr3.

The Cs-mixed sample also presents fully reversible voltage response (under the experi-

mental conditions tested here) determined by extracting the difference between the V
′

oc(1)

and V
′

oc(2) maps (= 9 mV), see Figure 7.9(g)-(h), which is well within the line-noise level

of our KPFM measurements. The ion motion suppression in the Cs-mixed perovskites is

further confirmed by applying fast-KPFM, as shown in Figure 7.10. As a region consist-

ing of several grains undergoes illumination cycling, the nanoscale voltage response is fully

reversible, and it immediately changes upon turning the laser ON/OFF. It is important
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Figure 7.9: Nanoscale reversible voltage responses in Cs-mixed perovskites.
(a)-(c), Topography and (d)-(f), KPFM maps of the Cs-mixed sample showing fully
reversible voltage and no significant spatial variations. (g,h) V

′

oc maps, where the
difference in the average value between the two images is within the noise level of the
KPFM measurements. For light-KPFM scans, the illumination conditions = 532-nm
laser at 1-sun incident photon flux. All measurements held relative humidity <10%.

to reiterate that, as expected, the absolute value of the V
′
oc for the Cs-mixed sample is

lower than the MAPbBr3 one due to its smaller bandgap energy, see Figure 7.3. Yet, the

differences in the perovskites electrical behavior can only be attributed to their composi-

tions, as the experimental parameters, grain morphology, and thin film stacking layers are

all similar. Through our scanning probe microscopy experiments we elucidate that the

presence of Cs prevents the degradation of the perovskites at the nanoscale, ultimately

leading to the stable macroscopic response observed in this system. [317,318]

Figure 7.11 shows the stability of all samples investigated here after four weeks of

KPFM experiments. As described in other reports, [146, 319, 326] by incorporating Cs

into the A-site position (which has a smaller radius than both MA and FA), [332] halide
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Figure 7.10: Dynamic electrical response after illumination of Cs-mixed
perovskite. (a) Topography map. (b)-(s), Fast Dark- and Light- KPFM scans (16
sec/scan) acquired, shown in chronological order, demonstrating the reversible and
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distribution during a given illumination state.
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migration is inhibited because both MA and FA are compressed in these cases. The

histograms in Figure 7.11 display the time-dependence of the Voc of all the perovskite

compositions obtained by the KPFM maps, where the error bars correspond to the line-

noise level of the measurements. It is clear that the MAPbI3 perovskite decays week-after-

week, signifying material degradation. Meanwhile, the MAPbBr3 and Cs-mixed samples

remain stable throughout the entirety of the experiments, although MAPbBr3 does show

higher volatility. This phenomenon could be related to the measured irreversible electrical

signal and zero-voltage sites in the MAPbBr3, which in this case, are likely caused by

light-induced, mobile organic cation and/or bromine ions. [329, 330] In comparison with

the other pure halide options, the Cs-mixed perovskite has superior electrical behavior.

The significance of spatially resolving the Voc of inhomogeneous materials, such as

perovskites, lies in revealing changes in the optoelectronic behavior of grains and within

grains related to charge carrier recombination that dominates the overall device stability

and performance. Ultimately, elucidating the driving forces for material degradation upon

exposure to light (in this case), moisture, oxygen, temperature and bias will advance our

understanding of what triggers the dynamic response commonly observed in perovskites.

To date, microscopic measurements of perovskites through scanning probe and electron

microscopy-based methods have shown significant spatial variations in the photocurrent

and photovoltage generated by MA and FA perovskites, and are likely related to physical

and chemical processes that take place once the material is exposed to ambient environ-

ment or operation conditions. Thus, identifying the response of novel perovskites, such as

(RbCsMAFA)PbI3 and Bismuth-halide double perovskites, [333] to the parameters above-

mentioned is critical to elucidate which chemical compositions can be implemented as solar

cell modules.
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Figure 7.11: Analysis of perovskites nanoscale electrical stability. Histograms
of Voc, extracted from the nanoscale KPFM experiments, normalized as a function
of the first week for each perovskite sample. The superior long-term voltage stability
of the Cs-mixed composition is evident by its steady Voc signal over four weeks.

7.5 Conclusion

We determined the influence of chemical composition on the nanoscale Voc stability

for three types of perovskites: MAPbI3, MAPbBr3, and Cs-mixed. By performing KPFM

imaging under 1-sun illumination conditions we discovered an irreversible photovoltage

response within the MAPbBr3 perovskite, demonstrating the need for high spatial res-

olution mapping. Regions of zero-photovoltage coexist with active areas upon material

illumination. The MAPbI3 conventional perovskite presented the lowest stability among

the three compositions at multiple time scales. Meanwhile, we measured a fully reversible

and uniform voltage response in Cs-mixed perovskites, which is linked to the suppression

of ion motion. The differences between the three samples’ Voc behavior are due to the ex-

istence and suppression of ion migration: as Cs is incorporated into the perovskite lattice,

the movement of ions is inhibited due to strain. As a result, the nanoscale Voc is homo-

geneous at the length scale of individual grains. Yet, for the MAPbBr3 perovskite, the
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motion of Br− ions causes a hysteresis on the Voc response as a function of illumination.

This nanoscale Voc imaging/analysis can be expanded to probe the real-time response

of emerging perovskites, including options for multi-junction solar cells [306] and light-

emitting devices. For instance, by implementing fast-KPFM one can identify the role

of different atmospheres, such as N2, O2, and H2O, on the dynamic electrical properties

of these materials. Moreover, the KPFM measurements can be combined with other

AFM-based methods, such as photoconductive-AFM, to provide a complete picture of the

electrical (voltage and current) characteristics of the perovskites. As the search for reliable

perovskites accelerates, defining the chemical compositions that lead to stable devices is

key for the future deployment of high-performance and low-cost optoelectronics based on

this class of material. Because they are composed by nanoscale constructs, resolving their

individual contribution to the overall material behavior through microscopic methods will

enable the understanding of the relevant processes responsible for the dynamic response

often observed in perovskites.
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Chapter 8: Perspective on functional imaging of PV materials

Further global adoption of photovoltaic energy conversion technologies is con-

tingent on sustained progress towards widespread grid-parity. For that, solar cell

materials composed of micro-scale grains and nanoscale boundaries show the highest

potential due to their large theoretical efficiency and low-cost fabrication methods.

Here we outline the current challenges facing hybrid perovskites and prevalent thin

film polycrystalline materials for photovoltaics. We offer an perspective on how

mesoscale functional imaging can enable a complete understanding of the physi-

cal and chemical processes restricting their performance, completing the materials

science structurepropertiesprocessingperformance tetrahedron. We provide a dis-

cussion about how novel imaging methods based on electron and scanning probe

microscopies can be realized to provide quantitative information about the relevant

parameters (figures-of-merit) that define solar cell performance. Finally, we offer our

vision for the upcoming years, wherein correlative functional microscopy will lead to

a complete narrative of the electrical, optical, structural, and chemical properties of

these materials, including their surface and bulk properties. This chapter is adapted

from E.M. Tennyson et. al, ACS Energy Letters, 2 1825 (2017) [34]
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8.1 Introduction

In this chapter, we provide insight about how cutting-edge functional nano-imaging

methods can be implemented to advance our understanding of the fundamental physical

and chemical processes governing these non-uniform materials, including the use of both

electrons and photons as the excitation source for charge carriers. Second, we discuss the

need for real-time microscopic methods to probe the degradation mechanisms of perovskite

solar cells, still not well understood. Finally, we briefly analyze the relevance of big data

to effectively correlate the information acquired by a set of microscopic methods.

We suggest the implementation of high spatial resolution microscopy methods be-

yond their standard operation mode as a functional imaging platform to directly resolve

the role of the grains and interfaces on solar cell performance. To emulate PV device

operation conditions, both electrons and photons can be employed as the carrier exci-

tation source. Therefore, we discuss the primary advantages and limitations of selected

microscopy approaches and how they can be modified to offer quantitative information

about device figures-of-merit at the nanoscale.

8.2 Electrons as a source of excitation

Electron microscopy has proven to be an indispensable tool to acquire structural,

electrical, and chemical information of PV materials with nanoscale and atomic spatial res-

olution. SEM-based measurements are typically performed in a high vacuum atmosphere,

minimizing sample contamination. The interaction of the electron beam (e-beam) with

the material can generate secondary and back-scattered electrons, X-rays, and cathodo-

luminescence (CL), portrayed in Figure 8.1(a). A commonly used electrical measurement
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in a SEM is termed electron-beam-induced current (EBIC), where the e-beam acts as a

local source of excitation of carriers. As the e-beam rasters across the sample, it pro-

duces a map of the generated current with spatial resolution primarily determined by the

beam size. [196] This characterization method is frequently performed on cross-sections

to determine the relative changes in charge carrier collection across p-n junctions and

other important interfaces. These measurements are especially important for perovskite

devices, as they do not have a conventional, well-defined p-n junction. However, the use of

electrons as the carrier excitation source is prone to severe image artifacts, mainly caused

by: (i) e-beam penetration path and depth, and (ii) damage to the sample.
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Figure 8.1: Electrons as a source of excitation for high-resolution functional
imaging of solar cells. (a) Illustration of the main radiation signals generated
from an e-beam upon interaction with a material. (b) Schematic of e-beam induced
current (EBIC), where the generated current is spatially resolved. (c) Illustration
of cathodoluminescence (CL) resulting from the radiative recombination of charge
carriers.

Cathodoluminescence (CL) is the physical phenomenon defined by the emission of

photons (electromagnetic radiation) within the UV-IR range, occurring when electrons re-

lax to their fundamental state, resulting from a material excitation by an e-beam [334,335]

- see Figure 8.1(c). Thus, information about where radiative recombination takes place

within a PV material can be obtained by CL. The spatial resolution is, in principle, defined

by the size of the e-beam in the SEM. CL imaging has been implemented in the investi-

gation of a variety of solar cell materials. [336–339] The successful acquisition of reliable
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data heavily depends on the instrumentation used for light detection. A parabolic mirror,

inserted between the specimen and the pole piece, focuses the photons emitted from the

solar cell into a well-defined point on the detection system. Then, the collected radiation

is spectrally analyzed/resolved for every e-beam position using a high sensitivity CCD

detector and a two-dimensional emission map is recorded. In this manner, the spectrally

and spatially resolved optical response is acquired. CL has recently been implemented

to probe the optical response of the fully processed device. As an example, the CdCl2-

treatment during CdTe fabrication has been shown to reduce non-radiative recombination

in all types of GBs, as the overall intensity of the CL spectrum increases after this pas-

sivation step. [55] One unique feature of CL is the fact that it does not require device

processing. In other words, electrical contacts are not required for mapping the radiative

recombination rate of carriers within a thin film. Nevertheless, analogous to EBIC, CL

suffers from the similar limitations (see Table 8.1), due to the excitation source.
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imaging technique applications limitations

Electons as a source of excitation

EBIC maps of generated current E-beam induced artifacts due to sample damage,

strong dependence on accelrating voltage, pri-

marily a surface signal.

CL radiative recombination of charge carriers Resolution is limited to e-beam volume interac-

tion and excess carrier diffusion.

Photons as a source of excitation

pcAFM photocurrent, relative nanoscale J-V

characterization

Removal of conductive coating on probe due to

sample contact, slow scan speeds, and effect of

contact size.

illuminated-KPFM quantitative, nanoscale Voc Topographic artifacts due to surface roughness.

NSOM LBIC photocurrent beyond diffraction limit Decouple the evanescent field around probe aper-

ture and near-field sample-probe iteractions.

NSOM PL radiative recombination of charge carriers

beyond diffraction limit

Tr-PL through NSOM minority carrier lifetime with subwave-

length spatial resolution

Table 8.1: Selected nanoscale functional imaging methods performed on PV materials along with their primary applications and limitations
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Though the imaging methods described above have been extensively used to char-

acterize non-uniform solar cell materials, a combinatorial SEM-based functional imaging

platform is necessary to describe the full picture of the fundamental physics of charge

carriers. Thus, both EBIC and CL are beginning to be used in conjunction with other

SEM-based imaging capabilities to gain information about additional material properties

(e.g. chemical or structural). X-rays produced by the e-beam (Figure 8.1(a)) are used

for compositional mapping, by employing energy dispersive X-ray spectroscopy (EDX).

[340] Alternative chemical imaging techniques include electron energy loss spectroscopy

(EELS), [341] and time-of-flight secondary-ion mass spectroscopy (ToF-SIMS). [41] Addi-

tionally, the orientation of the grains and the types of interfaces present in a sample can

be mapped by electron backscattering diffraction (EBSD). Recently, EBIC, transmission

electron microscopy with selected area diffraction (TEM-SAD), and atom probe tomog-

raphy (APT) were united to investigate the CdSexTe1−x alloy that forms upon annealing

of CdTe devices. [38] Here, the zinc blende phase showed superior photo-response of when

compared to wurzite. Although very informative, EBIC measurements do not provide

quantitative information regarding current collection, nor has the generated current been

compared to macroscopic light J-V measurements.

We foresee correlative SEM and TEM approaches becoming widespread over the

coming years, as the dynamics of the charge carrier processes responsible for high (low)

PV performance is strongly related to the structural and chemical characteristics of the

grains composing the thin-film devices. To date, most of the work using SEM techniques

has focused on capturing the relative variations in current; however, measurements of Jsc,

a key figure-of-merit for solar cells, are still missing. While a photon generates only one

electron-hole pair, an electron can generate up to thousands of electron-hole pairs. The
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volume in which the carrier excitation event occurs depends on the e-beam current and

voltage, the material density, band gap energy, its backscatter coefficient, atomic weight,

atomic number, and the quantum efficiency for generating an electron-hole pair. [342]

Thus, the volume of excitation, which is defined by the trajectory of the electrons within

the solid, must be calculated for a quantitative comparison between EBIC and Jsc. For

that, the role of the contact size must also be taken into consideration. [179] Although

the contribution of each individual atom is not as relevant as the mesoscale behavior of

the material, if atomic resolution becomes needed, we expect TEM-based EBIC to be

implemented. In this case, besides all considerations mentioned above, one must also

determine the possible overestimated contribution of surface recombination due to the

very large surface area-to-volume ratio of the samples (as a result of the lamella sample

size).

8.3 Photons as a source of excitation

The nanoscale functional imaging of PV using photons as the excitation source

requires researchers to use atomic force microscopy (AFM) or near-field scanning optical

microscopy (NSOM). Both platforms offer spatial resolution beyond the diffraction limit,

<100 nm, enabling the elucidation of the local electrical and optical properties of solar

cells. In this section, we summarize the operation principles of selected AFM- and NSOM-

based methods that provide invaluable insights about the material optoelectronic response

and focus on how they can provide quantitative information about the figures-of-merit of

the solar cells, with nanoscale spatial resolution.

Scanning probe microscopy methods have demonstrated exceptional versatility when

mapping the electrical response of PV with nanometer spatial resolution, as reviewed in
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Chapter 3. [37,71] A common AFM mode used to determine the electrical response of solar

cells is photoconductive (pc) AFM. Here, a conductive metal probe acts as the top local

electrical contact of the PV device, as illustrated in Figure 8.2(a). Upon device illumi-

nation by an external light source, the probe directly collects the generated photocurrent

while recording the topography of the sample in contact mode. The potential beneficial

role of grain boundaries in CdTe, CIGS, and CZTS devices as current collectors has been

broadly investigated through pcAFM. [94, 192, 343] However, it is still unknown how the

grain boundaries affect charge carrier recombination, which requires mapping Voc, as will

be discussed later. pcAFM has been applied to perovskites [344] and recently integrated

with voltage biasing to produce spatially resolved J-V curves of the devices. [51] In these

measurements, individual maps of J-V parameters can be obtained, extremely valuable to

estimate relative changes in all figures-of-merit, with nanoscale spatial resolution. In order

to translate this information into macroscopic device parameters, one needs to take into

consideration (1) the extremely small volume of excitation when light focusing is used, (2)

the effect of the probe size as a current collector and charge carrier diffusion length, (3) the

photon flux in single wavelength measurements, (4) spatial variations in the absorption

coefficient of the material under investigation (which will necessarily affect charge carrier

generation), (5) and the possible optical losses of the experimental setup.
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Figure 8.2: Photons as a source of excitation to nano-image PV functional-
ity through scanning probe microscopy. (a) In photoconductive-AFM (pcAFM)
a conductive probe acts as a local electrical contact. An external light source is used,
where the illumination direction, (i) or (ii), depends on device configuration. Both
surface topography and current are measured simultaneously. (b) Kelvin probe force
microscopy (KPFM) measures the work function (W ) difference (or contact potential
difference, VCPD) between the probe and the sample surface when grounded with re-
spect to one another. In the dark, d, the solar cell is in equilibrium and all the Fermi
levels are equal. Under illumination (il) there is a splitting of the quasi-Fermi level
(∆µ). The Voc is, thus, determined by subtracting dark- from light-KPFM scans.
Evac, Ec, EFn, EFp, and Ev denote the vacuum, conduction, the quasi-Fermi level
for e− and h+, and valence band energies, respectively. Adapted from [37]. (c) Near-
field scanning optical microscopy (NSOM) schematic showing two possible types of
measurements with spatial resolution beyond the diffraction limit: photoluminescence
(PL) and laser-beam-induced current (LBIC) microscopy.

While extensive efforts have been made to increase the Jsc of thin-film polycrys-

talline solar cells, higher efficiencies are still limited by the Voc (see Chapter 3). The local

variations of Voc within these materials can be determined by a much less explored and

equally powerful AFM-based method: Kelvin probe force microscopy (KPFM). [37, 39]

As previously explained, the work function difference between the sample surface and the

probe is measured, as illustrated in Figure 8.2(b). By subtracting an illuminated-KPFM

scan from a dark one, the quasi -Fermi level splitting (∆µ), and therefore, the local Voc gen-
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erated by the material is obtained. This universal approach only requires a half-processed

device and can be performed in ambient conditions. With proper system calibration, the

quantitative Voc obtained from focused illumination is converted into a 1-sun Voc map un-

der AM1.5 global illumination. We anticipate Voc mapping through KPFM to be combined

with pcAFM (on the very same grains and boundaries) to quantify where charge carrier

recombination and collection take place, respectively. Combined, these measurements en-

able the deconvolution of both processes, critical to identify which mechanism is limiting

the performance of the device under investigation. Further, by implementing a correl-

ative microscopy approach, where the SPM methods are combined with ex situ EBSD,

one can elucidate which interfaces and grain orientations in polycrystalline materials are

responsible for the modest Voc of the technologies discussed earlier.

Functional imaging through NSOM has been applied less frequently to solar cells

when compared to AFM-based methods. Here, evanescent waves are used to break the far-

field diffraction limit. By keeping the distance between the probe and the sample surface

considerably smaller than the wavelength of light (at least two orders of magnitude), it

is possible to map the solar cells optical response with true nanoscale spatial resolution.

In NSOM, a probe or an optical fiber with a hollow center (approximately 60-200 nm in

diameter) is used as the excitation and/or collection source, as depicted in Figure 8.2(c).

One electrical measurement option using NSOM is laser-beam induced current (LBIC).

In this configuration, the photons transmitted through the probe induce photocurrent in

a highly localized region of the solar cell. This method has been applied to identify the

diffusion of sulfur in CdTe, [237] to spatially resolve the external quantum efficiency (EQE)

of CdTe solar cells, determining the contribution of grains and boundaries to the overall

signal of the device, [130,131,345] and the photo-response of grain and GBs in CIGS. [238]
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For the quantitative comparison between the LBIC signal and the macroscopic Jsc of a

device, one must accurately determine the contribution of the dark saturation current of

the entire sample (whole device area), and extricate possible topographic artifacts due to

near-field light coupling. One attractive application of NSOM for perovskites is to realize

spectrally dependent LBIC scans to spatially monitor the existence of trap states within

the material, where ion migration seems to be a major contributor in their local electrical

response. [39]

A powerful alternative measurement is to use the NSOM probe for both the excita-

tion of carriers and the collection of emitted photons (photoluminescence, PL), resulting

from radiative recombination. The collection of the PL signal strongly depends on light-

probe coupling, and considerable effort has focused on designing optimized probes for

capturing the emitted photons. For instance, campanile tips have been identified as an

excellent geometry to enhance the coupling efficiency between far and near fields, allowing

for PL signal imaging of nanoscale features in InP nanowires for PV applications. [129]

PL microscopy with nanoscale spatial resolution can be realized to probe the impact of

GaAs polycrystals’ facets on carrier recombination. Note that device processing is not

required here. Different than InP, GaAs is a material that is not self-passivated. Thus,

one could use PL through NSOM to identify the effect of distinct surface passivation

processes (e.g. Na2S and Si3N4) to the recombination rate within the different facets com-

posing the GaAs polycrystals. Although unconventional, NSOM can also be integrated

into a SEM. In this dual probe approach the NSOM tip collects the near-field CL emission

caused by the e-beam to image the energy transport mechanisms without being limited

by photon recycling or excess carrier diffusion. [346] We foresee that combining LBIC and

PL signals with simulations of the electrodynamics at the near-field regime could enable a
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tomography of charge carrier generation, recombination, and collection, resolving the role

of the mesoscale constructs within polycrystalline solar cells to their macroscopic device

performance.

Time-resolved PL (tr-PL) is an extremely powerful method to quantify the minority

carriers lifetime within a material. Here, the carriers that recombine radiatively (PL

signal) are detected by a time-correlating photon counting system. tr-PL spectroscopy

has been widely implemented to resolve the effect of passivation methods on the lifetime

of polycrystalline materials for PV, [347, 348] as well as the role of precursor solution

concentration (and band gap) in halide perovskites. [349, 350] When combined with an

NSOM microscope, it provides maps of the temporal dynamics of the PL signal, with

sub-wavelength spatial resolution. tr-PL through confocal optical microscopy [351, 352]

or NSOM [353] could be implemented to investigate the spatial distribution of minority

carrier lifetimes in perovskite grains and its photo-instability. A primary advantage of

tr-PL microscopy is that it enables measurements in a film, not requiring any device

processing.

8.4 Probing the degradation of perovskite solar cells

The commonly observed degradation of perovskite solar cells is the main barrier for

this emerging material to become a reliable PV technology, as previously mentioned in

Chapters 6 and 7. Thus, measuring and controlling the physical and chemical processes

responsible for the transient electrical behavior of perovskites is critical for its widespread

deployment. [50] we foresee pcAFM and illuminated-KPFM being implemented to track

material degradation. For instance, MAPbX3 (X = Br or I) is unstable under illumina-

tion, and can suffer from structural phase transition at low temperatures (<60 oC), and
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often degrades upon exposure to moisture. [146] Thus, SPM under controlled illumination,

humidity, and temperature conditions will help elucidate the driving forces behind the ma-

terial degradation commonly observed in perovskites. For example, spectrally dependent

KPFM will likely reveal the possible presence of trap states within the material, and how

their density varies from grain to grain. The reversibility of the electrical response of

perovskites can also be probed by tuning the humidity (low, high, low) upon sequential

SPM measurements. Here, pcAFM and KPFM could resolve how both Jsc and Voc change

as the perovskite is exposed to moisture. The advantage of using microscopic methods to

probe perovskite solar cells lies in quantifying spatial variations within the samples, which

could be associated with chemical composition deviations from grain to grain.

The dynamic electrical behavior of the perovskites has been measured both in plane-

view and in cross-section by pcAFM [90] and KPFM. [39, 151] However, there is still a

pressing need for scientists to discover the driving forces responsible for the devices tran-

sient behavior when the material is exposed to light and humidity. This dynamic response

likely requires the further development of time-dependent functional microscopy methods

that will provide 4-dimensional (4D) information, space and time, at relevant length scales.

Mimicking realistic operation conditions (including the environment) of perovskite devices

during operando measurements is necessary to identify why and how the material is de-

grading. Preferably, these 4D measurements should be combined with chemical imaging

to establish a correlation between device behavior and the changes in chemical composi-

tion. The combination of illuminated-KPFM (as described earlier) with Raman imaging

and other AFM-based chemical mapping is a promising route to elucidate the effect of

photo-induced chemical reactions in device degradation. As recently demonstrated, [39]

fast-KPFM scans (16 second/frame) that allow real-time measurements of local Voc have
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revealed (1) substantial ion migration during perovskites illumination, and (2) a residual

post-illumination voltage resulting from a time dependent ion migration current never

measured before. These fast scans can be extended to lead-free perovskite films, [354] e.g.

MASnI3 [355] or Cs2BiAgCl6, [53] as well as new compounds for multi-junction PV, such

as Rb-FA0.75MA0.15Cs0.1PbI2Br, [356] to determine their dynamic response and, thus,

material stability when exposed to light.

8.5 Correlative microscopy and the need for big data ana-

lytics

We foresee that the use of combined functional imaging microscopies will produce

large amounts of data that must be effectively analyzed for an understanding of the mate-

rial behaviors under investigation. An emerging investigation pathway is big data, which

encompasses the analysis of all data to identify critical patterns and associations (e.g.

correlation between grain boundaries and low Voc). Big data analytics involves evaluating

the detected signals with approaches from multivariate statistics and machine learning to

identify meaningful relationships between material properties, obtained from a set of mi-

croscopy measurements in this case. [357] Ultimately, the main advantage of the available

paradigms [298] is to gain insight into complex phenomena while minimizing computational

time. For example, using principal component analysis (PCA), [358] one can determine

which dimensions of the data account for the most variance in an imaging dataset. Note

that in this situation, each physical quantity is assigned as one data dimension. This

method has already proven useful when combined with band excitation magnetic force

microscopy; PCA provided the same qualitative insight as the simple harmonic oscillator
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model while requiring ∼ 104 less computation time. [358] Machine learning approaches

will likely help scientists determine which defects and grain boundaries in polycrystalline

PV materials contribute most to performance deficiencies. For instance, a combination of

NSOM LBIC and ex situ EBSD data acquired at the same region of a sample could train

an algorithm to predict the electrical signal based solely on the angle between two adjacent

grain boundaries. Data mining may also identify degradation mechanisms in perovskite

solar cells. Namely, factor analysis can be applied to a combination of illuminated-KPFM

and tip-enhanced Raman spectroscopy under a controlled atmosphere to establish how the

electrical and chemical responses vary as a function of relative humidity. Further, time-

dependent photocurrent and photovoltage measurements of emerging lead-free perovskite

alternatives could provide a roadmap for stable materials. For the reasons outlined, we an-

ticipate the use of big data analytics on information produced by combinatorial functional

microscopy.

8.6 Outlook

In perovskites, device stability is currently the main barrier towards implementing

a reliable technology, followed by the pressing need to identify non-toxic lead-free, stable

options. The full potential of thin-film polycrystalline materials for PV is primarily lim-

ited by their Voc, which is strongly related to non-radiative recombination events within

the material. As the grains and boundaries forming the devices are acknowledged to affect

their electrical response it is imperative that we identify which types of grains and inter-

faces contribute to charge carrier non-radiative recombination. In order to determine the

local electrical properties of the mesoscale constituents of both perovskites and inorganic

thin-film PV, researchers must implement microscopy techniques beyond their standard
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operation modes, quantifying the figures-of-merit (and, hence, the device performance) at

relevant length scales. Further, the large amount of generated data must be analyzed in

an effective manner using approaches based on big data analytics, leading to quantitative

information about the devices under investigation.

We expect the realization of correlative microscopy and the functional imaging of

materials/devices at the mesoscale to finally elucidate some critical open questions in the

field, such as: What are the light-induced chemical reactions responsible for perovskites’

degradation under 1-sun illumination? What is the role of humidity in perovskite’s per-

formance? Which types of interfaces in CdTe, CIGS, and CZTS are responsible for the

low carrier radiative recombination rate that limits their Voc? How do the different facets

composing GaAs polycrystals affect charge carrier generation, recombination, and collec-

tion? Is the diode ideality factor for all grain boundaries the same in a polycrystalline

PV device? To answer these questions, among many others, it is essential to deter-

mine the physical behavior of the mesoscale constructs when the devices are in operando.

Functional imaging methods will likely act as the central “covalent bond” between the

materials science structure-properties-processing-performance tetrahedron cornerstones,

providing unprecedented correlative insights into materials for PV at the mesoscale. In

turn, these sophisticated measurements can potentially allow the rational design of higher

performance PV devices based on low-cost materials/methods.

8.7 Future work

An exciting next direction for this research project will be to implement correlative

microscopy, as described above, to investigate how the local chemical distribution within

a perovskite material effects the dynamic nanoscale voltage response, which we previously
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measured and quantified in Chapters 6 and 7. For this, I recently performed photother-

mal infrared resonance (PTIR) microscopy (also known as AFM-IR discussed in Chapter

3, Section 3.2.3), on a perovskite thin-film sample that contains an additional solution,

termed additive, see Figure 8.3. The inclusion of the additive shows an increase in the

macroscopic Voc, however, how it influences the electrical properties at the nanoscale is

still unknown.

Figure 8.3: Imaging the nanoscale chemical distribution of a perovskite
thin-film. AFM topography overlaid with the chemical map that was simultaneously
measured, here, the sample was excited by wavenumber = 1609 cm−1.

The preliminary measurements reveal ∼1 × 1 µm2 regions of distinct chemical

variations induced by the presence of the additive; this was proven by acquiring AFM-IR

on a sample without the additional solution (not shown here). A clear next step will be

to apply the illuminated-KPFM technique developed in this thesis on the same sample to

correlate the chemical variations to the nanoscale Voc.
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Systems at the Nanoscale, ACS Energy Letters, 2, 2761-2777 (2017) – invited review,
front cover
5. E. M. Tennyson, J. M. Howard, M. S. Leite, Mesoscale Functional Imaging
of Materials for Photovoltaics, ACS Energy Letters, 2, 1825-1834 (2017) – invited
perspective
4. J.L. Garrett, E. M. Tennyson, J.N. Munday, M.S. Leite, Real-time Nanoscale
open-circuit voltage dynamics of perovskite solar cells, Nano Letters, 17, 2554-2560,
(2017)
3. E. M. Tennyson, J.A. Frantz, J.M. Howard, W.B. Gunnarsson, J.D. Myers, R.Y.
Bekele, S. Na, M.S. Leite, Photovoltage tomography in polycrystalline solar cells, ACS
Energy Letters, 1, 899-905 (2016)
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2. E. M. Tennyson, J.L. Garrett, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera, J.N.Munday,
M.S. Leite, Nanoimaging of open-circuit voltage in photovoltaic devices, Advanced Energy Mat-
erials, 5, 1501142 (2015) – front cover

1. E. M. Tennyson, M.S. Leite, Mapping the performance of solar cells with nanoscale resolution,
SPIE Newsroom doi:10.1117/2.1201509.006097 (2015)

Conference Proceedings:

5. E. M. Tennyson, M.S. Leite, 44th IEEE PVSC Proceedings: Nano-imaging of Performance
in Photovoltaics (06/2017)

4. E. M. Tennyson, J. L. Garrett, J. N. Munday, M. S. Leite, 43rd IEEE PVSC Proceedings:
Mapping Voc in Polycrystalline Solar Cells with Nanoscale Spatial Resolution (06/2016)

3. E. M. Tennyson, J.L. Garrett, C. Gong, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera,
J.N. Munday, M.S. Leite, SPIE 9561, Thin Films for Solar and Energy Technology VII Pro-
ceedings: A novel method for mapping open-circuit voltage in solar cells with nanoscale resolu-
tion (10/2015)

2. E. M. Tennyson, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera, S. Na, M.S. Leite,
42nd IEEE PVSC Proceedings: Imaging EQE in CIGS solar cells with high spatial resolution
(06/2015)

1. E. M. Tennyson, J.L. Garrett, C. Gong, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera,
J.N. Munday, M.S. Leite, 40th IEEE PVSC Proceedings: Assessing local voltage in CIGS solar
cells by nanoscale resolved Kelvin probe force microscopy and sub-mircon photoluminescence
(06/2014)

A.3 Presentations

29. E. M. Tennyson, M. S. Leite, Functional Imaging of Photovoltaics at the Nanoscale: from
Perovskites to Polycrystalline Materials. Fall MRS 2017 (11/2017) talk and MRS Graduate
Student Silver Award winner

28. E. M. Tennyson, J. L. Garrett, J. N. Munday, M. S. Leite, Real-Time Mapping of Perovskite
Intragrain Instabilities at the Nanoscale. Fall MRS 2017 (11/2017) talk

27. E. M. Tennyson, M.S. Leite, Imaging photovoltaic functionality of polycrystalline and
perovskite solar cells at the nanoscale. ACS 254th National Meeting (08/2017) talk and poster

26. E. M. Tennyson, M.S. Leite, Nano-imaging of Performance in Photovoltaics. 44th IEEE
PVSC (06/2017) best student award finalist talk

25. E. M. Tennyson, M.S. Leite, Imaging the mesoscale electrical response of polycrystalline
and perovskite solar cells. UMD ResearchFest 2017 (06/2017) poster

24. E. M. Tennyson, M.S. Leite, Mapping the performance of polycrystalline and perovskite solar
cells with nanoscale spatial resolution. OSA poster competition (04/2017) poster

23. E. M. Tennyson, M.S. Leite, Open-circuit voltage mapping of next-generation solar cells.
IREAP Graduate Student Seminar (04/2017) talk

22. E. M. Tennyson, M.S. Leite, High spatial resolution performance mapping in thin-film solar
cells. IREAP Graduate Student Seminar (11/2016) talk

21. E. M. Tennyson, M.S. Leite, Mapping the local voltage response of polycrystalline solar cells
with nanoscale resolution. Frontier in Optics Conference (10/2016) poster

20. E. M. Tennyson, M.S. Leite, Spectrally dependent photovoltage tomography map for charge
carrier recombination study in CIGS solar cells. IREAP Graduate Student Seminar (04/2016)
talk

19. E. M. Tennyson, M.S. Leite, Imaging the electrical properties of thin-film solar cells with
high spatial resolution. UMD Nanoday (04/2016) poster

18. E. M. Tennyson, M.S. Leite, Spectrally dependent photovoltage tomography map for charge
carrier recombination study in CIGS solar cells. IREAP Graduate Student Seminar (04/2016)
talk
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17. E. M. Tennyson, M.S. Leite, Kelvin probe force microscopy: mapping the local open-circuit
voltage of solar cells with nanoscale resolution. NC Chapel Hill Seminar (03/2016) invited talk

16. E. M. Tennyson, J.L. Garrett, J.N. Munday, M.S. Leite Resolving local voltage variations in
opto-electronic devices with Kelvin probe force microscopy. APS Baltimore (03/2016) talk

15. E. M. Tennyson, M.S. Leite High resolution mapping of the local performance parameters in
solar cells. Center for Nanophysics and Advanced Materials Seminar (02/2016) talk

14. E. M. Tennyson, M.S. Leite Resolving electrical performance variations of polycrystalline
solar cells at the nanoscale. IREAP Graduate Student Seminar (10/2015) talk

13. E. M. Tennyson, J.L. Garrett, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera, J.N.
Munday, M.S. Leite, Mapping efficiency in solar cells with nanoscale resolution. SPIE Optics
and Photonics (08/2015) talk

12. E. M. Tennyson, J.L. Garrett, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera, J.N.
Munday, M.S. Leite High resolution mapping of the open-circuit voltage of solar cells using
Kelvin probe force microscopy. IEEE Photonics: Women in Photonics event (06/2015) invited
talk

11. E. M. Tennyson, J.L. Garrett, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera, J.N.
Munday, M.S. Leite Mapping the open-circuit voltage of solar cells with nanoscale resolution.
UMD ResearchFest 2015 (06/2015) poster and talk

10. E. M. Tennyson, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera, S.M. Na, A. Flatau,
M.S. Leite, Imaging EQE in CIGS solar cells with high spatial resolution. 42nd IEEE PVSC
(06/2015) talk

9. E. M. Tennyson, J.L. Garrett, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera, J.N.
Munday, M.S. Leite Mapping the open-circuit voltage of solar cells with nanoscale resolution.
Annual Science Fair and Graduate Student Poster Award Dinner for NCS-OSA and DC-N.
Virginia IEEE photonics societies (05/2015) poster

8. E. M. Tennyson, M.S. Leite, High resolution mapping of solar cell functionality. Electrical
and Computer Engineering Graduate Student Seminar (05/2015) talk

7. E. M. Tennyson, M.S. Leite, High resolution mapping of solar cell functionality. Institute of
Research in Electronics and Applied Physics Graduate Student Seminar (05/2015) talk

6. E. M. Tennyson, J.L. Garrett, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera, J.N.
Munday, M.S. Leite, Imaging open-circuit voltage and external quantum efficiency in solar cel-
ls with nanoscale resolution. Materials Research Society meeting (04/2015) talk

5. E.M. Tennyson, J.L. Garrett, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera, J.N.
Munday, M.S. Leite Quantitative imaging of open-circuit voltage in opto-electronic devices
with nanoscale resolution. SPIE Sensing Technology + Applications conference (04/2015) talk

4. E. M. Tennyson, J.L. Garrett, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera, J.N.
Munday, M.S. Leite, Mapping the open-circuit voltage of solar cells with nanoscale resolution.
OSA poster competition (04/2015) poster

3. E. M. Tennyson, J.L. Garrett, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera, J.N.
Munday, M.S. Leite, Kelvin probe force microscopy: Imaging open-circuit voltage in optoelec-

tronic devices. American Physical Society March Meeting (03/2015) talk
2. E. M. Tennyson, Characterization of solar cells with nano-scale resolution. IREAP Graduate

Student Seminar (10/2014) talk
1. E. M. Tennyson, J.L. Garrett, C. Gong, J.A. Frantz, J.D. Myers, R.Y. Bekele, J.S. Sanghera,

J.N. Munday, M.S. Leite, Assessing local voltage in CIGS solar cells by nanoscale resolved
Kelvin probe force microscopy and sub-micron photoluminescence. 40th IEEE PVSC (06/2014)
best poster
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Appendix B: Additional publications

2. Y. Xu, E. M. Tennyson, J. Kim, S. Barik, J. Murray, E. Waks, M. S. Leite, and J. N.
Munday, Active control of photon recycling for tunable optoelectronic device, Advanced Optical
Materials, (2018) DOI: 10.1002/adom.201701323

1. L. J. Krayer, E. M. Tennyson, M. S. Leite, J. N. Munday, Near-IR imaging based on hot
carrier generation in nanometer-scale optical coatings, ACS Photonics, (2018)
DOI: 10.1021/acsphotonics.7b01021 – front cover

155



156



Appendix C: University of Maryland service

C.1 Contributions

10. Vice President of OSA Student Chapter at UMD July 2017 - May 2018
9. Restricted research sub-committee member Aug. 2016 - Feb. 2017
8. Volunteer for Women in Engineering DREAM conference Years 2015, 2016, and 2017
7. Short talk (10 min) at Materials Science and Engineering alumni event April 2015
6. Presented at MSE open house for prospective PhD students March 2015
5. Participant in Women in Engineering day Years 2014, 2015, 2016, and 2017
4. Volunteer for Maryland Day Years 2014, 2015, 2016 and 2017
3. Socialized with prospective PhD students at open house dinners

Years 2014, 2015, 2015, and 2017
2. Organized UMD ResearchFest June 2014
1. President of Materials Science Graduate Society Spring 2014
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