SRC TR 88-43

BACK PROP: A TOOL for LEARNING
ABOUT CONNECTIONIST
ARCHITECTURES

by

J. Pollack, M. Evett and J. Hendler

BackProp: A Tool for Learning about
Connectionist Architectures

Jordan Pollack
Computer Research Lab
New Mexico State University

Matthew Evett and James Hendler
Systems Research Center
University of Maryland

March 26, 1988

Abstract

This paper provides an implementation, in Common Lisp, of an
"epoch learning algorithm,” a simple modification of the standard
back-propagation algorithm. This implementation is not intended to
be a general purpose, high powered back-propagation learning
system. Rather, this paper seeks only to provide a simple
implementation of a popular and easily understood connectionist
learning algorithm. It is intended to be a teaching tool for Al
researchers wishing to familiarize themselves or their students
with back-propagation in a language with which they are
comfortable.

BackProp: Evett, Pollack, Hendler 2

There is currently a great amount of interest in the AI community about connectionist
learning algorithms. Back-propagation is among the most readily understood and easily
studied of these algorithms. For this reason, researchers interested in exploring
connectionist algorithms for the first time might well choose the implementation of a back-
propagation algorithm as a starting point. In fact, this algorithm has been implemented at
dozens of different labs and colleges across the country. Most of the published
implementations, however, are in some language other than Lisp, usually C. Back-
propagation is a computationally intensive algorithm, involving lots of number crunching,
and that is not usually viewed as Lisp's forte. For those wishing merely to tinker with
back-propagation, this is a problem. Most of the interest in these techniques is in the Al
community, where the language of choice is Lisp, or in engineering groups, where
programming expertise may be lacking.

This paper provides an implementation, in Common Lisp, of an "epoch learning
algorithm," a simple modification of the standard back-propagation algorithm. We
emphasize that the implementation is not intended to be a general purpose, high powered
back-propagation learning system. Rather, this paper seeks only to provide a simple
implementation of a popular and easily understood connectionist learning algorithm, and is
intended to be a tool for researchers wishing to familiarize themselves with back-
propagation in a language with which they are comfortable.

The code is carefully documented and easily modified. Users may run the code as is -
- there are functions for creating and running several simple network topologies ('"2-2-1
XOR", "4-2-4 1dentity", etc.). Utilities are provided for examining the contents and
performance of the network. Alternatively, there are several functions for creating new
topologies.

The implementation in this paper is an adaptation of Jordan Pollack's InterLisp
version. The code was ported, cleaned up and annotated by Evett at the University of
Maryland. In addition, several new statistical utilities were added.

Description of Back-Propagation:

The back-propagation algorithm used in this code is a simple modification of that
described in Chapter 8 of [Rumelhart & McClelland, 1986] (hereafter referred to as
"PDP"), using the "generalized delta rule" as its learning procedure. This section makes
several references to the terms and variable names of the PDP description of the algorithm.
These references are meant to serve as reference points for readers familiar with PDP's
treatment, and such familiarity would be helpful for understanding this system. Readers
seeking a fuller understanding of the back-propagation algorithm should see PDP. What
follows is only a brief outline of the algorithm.

Back-propagation refers to a class of learning algorithms used to train associative
networks to yield certain output patterns when corresponding input patterns are applied to

BackProp: Evett, Pollack, Hendler 3

the net. It is a supervised, iterative, gradient-descent, learning technique. With each
presentation of the input patterns, the algorithm alters the weights of the links of the net in
such a way as to (hopefully) cause the net to react more correctly (i.e., make the output
more similar to the desired output patterns) to the inputs.

Our implementation works only on strictly feed-forward nets. The activation function
of the nodes of the nets is sigmoid [PDP, equation 15], mimicking a threshold function
with cross-over at 0.0.

The algorithm works as follows: an input pattern is asserted as the output signal of the
input nodes of the net. This signal propagates forward through the net until the activation
levels of the output nodes stabilize. The activation level of each node is proportional to the
sum of the signals received from the nodes inputting to it, and to the weights of the links
connecting the node to its inputs.

The actual output pattern is now compared to the desired one. If the difference
between the two is "acceptable" (as defined by the user), then no learning occurs.
Otherwise, the back-propagation algorithm is used. For example, say the input pattern is
[00 1] and the desired output pattern is [1 0] (that is, there are three input nodes in the net,
and when their activation levels are locked at 0.0, 0.0, and 1.0 respectively, we desire that
the two output nodes' activation levels be 1.0 and 0.0.) If the actual output pattern is [0.9
0.15], and "acceptable" is defined as no output value differing by more than 0.2 from its
desired value, then the net has performed adequately, and no learning occurs. If the
acceptable difference had been only 0.10, though, then learning would occur.

Learning is effected by lessening the weights of incoming links if a node's activation
level was too high, or increasing the weights if the level was too low. The difference
between the desired and actual activation levels is called the "error signal" (dpj, in PDP).
Back-propagation is used to propagate the error signals from the output nodes to the hidden
layers of the net so as to determine the error signals of those nodes. This propagation is
necessary because the user does not specify the desired activation levels of the intermediate
nodes, but only of the output nodes. Back-propagation numerically "assigns blame" to
hidden units. The error signal of an internal node is proportional to its own activation
level, the error signals of the nodes it outputs to, and the weight of the links to those nodes
[PDP, pp. 329-330.]

Because of the form of the equations that calculate the error signals of internal nodes,
the back-propagation process is iterative: the error signals are calculated for the output
nodes, then for the nodes inputting to the output nodes, then for the nodes inputting to
those, etc. Eventually the propagation reaches the input nodes and stops.

After the error signals have been calculated for all the nodes of the net, the algorithm
determines by how much to change the weights of the net's links. For a link, this amount
(ij » in PDP--we'll call it "delta-w" from now on) is proportional to a constant learning
rate (h, in PDP), the error signal of its output node, the activation level of its input node,
and a momentum term--a combination of a momentum constant (a, in PDP) and the

BackProp: Evett, Pollack, Hendler 4

amount of change to the link's weight in previous presentations of the input patterns. See
[PDP, eqn. 15].

In our implementation the link weights are not changed until each of the input patterns
has been presented to the nets and the corresponding delta-w's calculated. The presentation
of all the input patterns is called an epoch. The delta-w's are accumulated at each link with
each presentation, and the links are updated by the total after each epoch. (This is different
from the standard algorithm, which updates the links after each presentation.)

The learning process continues until the net performs acceptably, or the net runs for a
preset number of epochs, at which point the algorithm "breaks" to prevent wasting CPU
cycles in an (evidently) infinite loop.

Using BackProp:
The Pre-Packaged System:

BackProp provides facilities that allow users to create and train system-defined
networks with a minimum of effort. First-time users may find it helpful to work with one
of these pre-defined networks first, to become comfortable with back-propagation, before
moving on to creating and manipulating their own networks.

Using the pre-defined networks is simple. The user merely calls one of the functions
that creates one of these nets: SetUp424, SetUpXOR211, or SetUpXOR221. These
functions create the node and link objects of the net, and initialize the weights of the links
with small random values as a symmetry breaking measure (as discussed in [PDP, pg.
330]). These functions also define the globals *inPatts* and *outPatts™ to contain the
input and corresponding output patterns on which the network is to be trained.

SetUp424 -- Creates a 4-2-4 network (a three layer network: four input nodes, two
nodes in the hidden layer, and four output nodes. The layers are fully
connected). *inPatts* and *outPatts* are set to the same list of patterns: {[1 00
0],[0100],[0010],[00011}. Le., Learn will train the net to effect a subset
of the identity relation.

SetUpXOR221 -- Creates a 2-2-1 network, also fully connected. *inPatts* is set to
contain: {[0 01, [0 1], [1 O], [1 1]}, and *outPatts* contains: {[0], [1], [1], [0]}.
Le., Learn will train the net to effect the exclusive-or relation.

SetUpXOR211 -- Creates a 2-1-1 network, also fully connected. *inPatts* is set to
contain: {[0 0], [0 1], [1 O], [1 11}, and *outPatts* contains: {[0], [1], [1], [0]}.

Le., Learn will train the net to effect the exclusive-or relation.

To train the network, the user calls the Learrn function (see below for a full

BackProp: Evett, Pollack, Hendler 5

explanation of Learn). This function iteratively applies each of the input patterns to the
input nodes of the net, forward-propagates this input signal to the output nodes, and then
compares the output signal to the corresponding output pattern. If the output isn't
acceptable, back-propagation learning takes place. When the network responds acceptably
to all the input pattems, Learn exits.

During the learning process, Learn outputs diagnostic messages. The user controls
the level of detail of these diagnostics (via the SetVerbosity function, explained below).
The briefest diagnostics are of the form: "Epoch: <n> Error: <m> ", where <m> is a rough
approximation of the sum of the error signals generated by each of the input patterns during
the <n>th epoch. During training, <m> should tend toward 0.0, and should serve to give
the user a rough indication of how well the training is progressing. (<m> is actually the
sum of the squares of the differences between the actual and desired output values of each
of the output nodes for all of the input/output patterns for which the network did not
perform acceptably.)

When Learn exits, the user may test the network's training by using the
ShowBehavior utility. This function applies each of the input patterns in *inPatts* to the
net and compares the actual to the expected outputs. These results are printed in an easy-
to-read table so that the user can see how well the net is performing for each of the
input/output pattern pairs.

Monitoring the Net's Progress:

BackProp provides several utilities that allow the user to monitor the progress of the
network as it trains. In order to use these utilities, though, the training process has to be
suspended. Learn takes an optional key parameter, ":breakAt <n>", which if provided
causes Learn to "break" every <n> epochs. (The Common Lisp continue function will
restart the training at the point where the break occurred.) With the training suspended, the
user may use the utilities (these are fully explained in the "Interesting Routines" section of
this paper):

ShowBehavior -- As described above, this function prints a table detailing the
current responses of the net to each of the input patterns, and compares these
responses to the desired ones.

ShowLinks -- Prints a list of every link in the net, containing the current weighting
of the links, and other information germane to links.

BackProp: Evett, Pollack, Hendler 6

ShowNodes -- Prints a list of every node in the net. This function is mostly useful
as the conjunct of ShowLinks, to see which links emanate from which nodes.
The function prints the values of some of the fields of the node objects, but
because these values are updated with each pattern presentation (unlike the links
weights, which are updated only every epoch), the printed values are germane
only to the most recently applied input pattern. ShowBehavior is a better means
of evaluating the performance of the nodes.

Biasing

Use of ShowLinks yields output that might be confusing to first-time users.
BackProp provides a "biasing" facility that is utilized by two of the SetUp functions. In
the networks defined by these functions, each of the non-input nodes (nodes not in the
input layer) is connected by an incoming link to a "bias" node. The bias node acts much
like an extra input node whose output value is always 1.0. ShowLinks, then, will display
more links than would exist in an unbiased net. For example, SetUp424 will create a net
with 11 nodes (one is the bias node) and 22 links: 8 between each layer, and 6 to the non-
input nodes from the bias node. During training, the links from the bias node are altered
like any others, incorporating the bias into the net's reactions. (The use of biasing is
discussed some in [PDP]).

Appendix B contains an example session in which a network is created via
SetUp424, and then trained.

Advanced Usage of BackProp

The Learn Function:

The Learn function provides several "key" parameters with which the user may alter
the training process.

:inPatts inputPatterns

:outPatts outputPatterns -- The SetUp functions define the default input/output
pairs in the globals *inPatts* and *outPatts*. The user may use these key
parameters to supply different patterns on which to train the net. (Alternatively,
the user could setq *inPatts* and *outPatts*.) InputPatterns and
outputPatterns should each be a list of patterns, where each pattern is a list of
floating point values. The cardinality of the patterns in inputPatterns should be
the same as number of nodes in the input layer of the net. The patterns in
outputPatterns should be of a cardinality equal to the number of output nodes.
InputPatterns and outputPatterns should be of the same cardinality.

BackProp: Evett, Pollack, Hendler 7

:learningRate rate -- With this parameter the user may specify the learning rate
constant ("h" in PDP). This value defaults to 0.3, but may be any value above
0.0.

:momentum momentum -- With this parameter the user may specify the momentum
constant ("a" in PDP). This value defaults to 0.9, but may be any value above
0.0.

:outputVerbosity verbosity -- If verbosity = 1, diagnostic messages will be longer
than if verbosity= 0, the default.

:acceptableDiff diff -- For any input pattern, if the activation level of each of the
output nodes differs by no more than diff from its expected value, then the net's
output is acceptable for that pattern and no learning occurs. This value defaults to
0.2.

:breakAt breakInterval -- If provided, causes Learn to enter a "break" loop every
breakinterval epochs. The default is 0, meaning the loop will never break.

:outputAt epochs -- Diagnostic output detailing the effectiveness of the system will
be printed every epochs epochs. The default is 20.

:maxlters limit -- Learn will break with an explanatory message after limit epochs.
This is intended to prevent the training from infinite looping when the system
"fails" to train in a "reasonable" amount of time. The value defaults to 5000
epochs--a value that is adequate for most small nets, providing acceptableDiff
isn't too close to 0. If limit <= 0, "loop detection" is disabled.

Example (use of Learn):

(SetUp424)

(setq myInPatts '((0.0 0.0 0.0 0.0) (1.0 0.0 0.0 0.0} (1.0 1.0 0.0 0.0) (1.0 1.0 1.0 0.0)))

(setq myOQutPatts '((0.0 0.0 0.0 0.0) (0.0 0.0 0.0 1.0) (0.0 0.0 1.0 0.0) (0.0 0.0 1.0 1.0)»))

(Learn :inPatts myInPatts :outPatts myOutPatts :learningRate 0.2 :momentum 0.5 :acceptableDiff 0.25
:breakAt 50 :infiniteLoop 1500)

In this example, the user wants to train a 4-2-4 network (with biasing) to effect a
"counting" relation: the output of the net should be a binary representation of the number of
input nodes that are "on". An output is considered acceptable if no output node's activation

BackProp: Evett, Pollack, Hendler 8

level is more than 0.25 from its expected value. (Le., for the second input/output pair, the
output [0.1 -0.1 0.82 0.23] would be considered acceptable.) Learn will break every fifty
epochs, allowing the user to examine the performance of the net at those times (probably
via the ShowBehavior function). Lastly, the user expects the net will be trained within
1500 epochs.

Some of Learn’s parameters also can be set at run time via the following set of access
functions:

SetBreakCount [n] -- Sets to n the :breakAt parameter of Learn. Learn will break
every n epochs. If no n is given, the call merely resets the :breakAt counter
to the value previously set via SetBreakCount or the :breakAt parameter of
Learn.

SetOutputCount [n] -- Sets to n the :outputAt parameter of Learn. Learn will
print diagnostics every n epochs. If no n is given, the call merely resets the
:outputAt counter to the value previously set via SetOutputCount or the
:outputAt parameter of Learn.

SetMaxItersCount [n] -- Sets to n the :maxIters parameter of Learn. Learn will
break after the nth epoch. If no n is given, the call is a no-op. If n <0,
loop detection is disabled.

SetVerbosity [n] -- If n = 0, subsequent diagnostics will be in a brief format. If n
= 1, the diagnostics will be in a longer format.

The Set..Count calls are particularly useful for accessing BackProp's diagnostic
routines during a learning session. For example, if the user was interested in the behavior
of the learning algorithm after the 200th epoch, she might originally set :outputCount to 20,
and :breakCount to 200. Then at the break on the 200th epoch, the user could use
SetOutputCount to increase the frequency of output diagnostics.

Multiple learning session:

After Learn has successfully returned, the user may want to retrain the network,
perhaps to compare the link weightings reached in different training sessions. Such
comparisons are particularly interesting in network topologies having more than one
minima in their "error surface".

To clear a net of the effects of a previous training, the user should call the
PurifyLinks function (see description in "Interesting Routines", below). Then, to prepare
the net for another training session, Noise should be called to initialize link weights to
small random values, and thereby avoid a "symmetry breaking problem" [PDP, pg. 330].

BackProp: Evett, Pollack, Hendler g

Of course, the user doesn't have to use PurifyLinks and Noise between sessions;
given enough epochs, the learning process will eventually overcome any initial weighting.
However, the training time for a network increases as the initial weighting becomes more
extreme.

Constructing your own nets (for fun & profit!)

The easiest way to explain how to create nets is to explain the workings of one of the
SetUp functions. Explained in detail below, is the code for SetUpXOR.

(defun SetUpXOR221
(&aux in hid out) ; Tmp variables holding the nodes of the
; input, output, & hidden layers of the net.

"Creates a 2-2-1 network, intended for learning the XOR encoding:
00-->0, 11-->0, 01-->1, and 10-->1.
These input and output patterns are stored in '*inPatts*' and *outPatts*"."

(setq *inPatts* '((0.0 0.0) (1.0 1.0} (0.0 1.0) (1.0 0.0)))
(setq *outPatts* '((0.0) (0.0) (1.0) (1.0)))

(ClearNet)

(setq in (DefGroup 2 t))
(setq hid (DefGroup 2))
(setq out (DefGroup 1))
(InterConnect in hid)
(InterConnect hid out)

(Noise .2)
(setq *levels* (list in hid out))
(quote 'XOR-2-2-1-Net))

(ClearNet) -- This call erases any existing nodes and links from previously defined
networks. The space occupied by the deleted objects is returned to the free heap.
ClearNet should always be called before creating a new net.

(setq *inPatts*....) (setq *outPatts*) -- The default input and output patterns are
defined.

(setq in (DefGroup....)) , etc. -- in, hid, and out are holding variables for the nodes of
the input, hidden, and output layers of the network being defined. DefGroup returns
a list of the specified number of nodes. The second parameter specifies whether the
nodes should be biased. If the second parameter is "nil" (the default), then links are
created between the bias node and the retumed nodes. These links are appended to the
global *links*.

(InterConnect) -- This call creates links fully connecting the given two sets of nodes.
In this example, adjacent levels are fully connected. This is the primary means of
creating links in the net. The links are appended to the global *[inks*.

BackProp: Evett, Pollack, Hendler 10

(Noise ...) -- This function effects the symmetry-breaking strategy outlined in [PDP, pg.
330]. The weight of every link in the net (i.e., all the elements of *links*) is
initialized to a random number in the given range.

(setq *levels* ...) -- Lastly, the global *levels* must be a list of the levels of the
network. Each "level" is in turn a list of node objects. Note! The input layer must
be the first element of *levels*, and the output layer must be the last element.

Provided all goes well, a network should now exist, ready for a call to Learn. The
globals *links* and *levels* are referenced throughout the program, so it is important that
they be properly initialized. Using the functions described guarantees this.

Another example (creating a different XOR net):

A different kind of XOR net is described in [PDP, pp. 331-335] and it is illustrative to
describe how such a net can be created using the methods outlined above. The net is a
modified 2-1-1, but with the two input nodes connecting to both the hidden layer and the
output layer (each with only one node). Here we give the commented code for
SetUpXOR211, a pre-defined function that creates such a network. Differences between
the 2-1-1 and the 2-2-1 XOR nets are noted in the function's comments.

(defun SetUpXOR211
(&aux in hid out) ; Tmp variables holding the nodes of the
; input, output, & hidden layers of the net.

"Creates an unbiased 2-1-1 network, intended for learning the XOR encoding:
00-->0, 11-->0, 01-->1, and 10-->1.

These input and output patterns are stored in *inPatts* and '*outPatts™'.
The input layer is connected to both the hidden and output layers."

(setq *inPatts* '((0.0 0.0) (1.0 1.0) (0.0 1.0) (1.0 0.0)))
(setq *outPatts* '((0.0) (0.0) (1.0) (1.0)))

(ClearNet)

(setq in (DefGroup 2 t))

(setq hid (DefGroup 1 t)) ;Note that we aren't biasing the non-input nodes.

(setq out (DefGroup 1 t))

(InterConnect in hid) ; Just like 2-2-1, but...

(InterConnect inout) ;The input layer is also connected directly
;to the output layer.

(InterConnect hid out)

(Noise .2)
(setq *levels* (list in hid out))
(quote 'XOR-2-1-1-Net))

BackProp: Evett, Pollack, Hendler 11

Implementation Notes:
Memory Usage & Garbage Collection:

BackProp was developed on a Tektronix 4405 with a relatively small amount of heap
space (~2.5 Megs), using Tektronix's implementation of Common Lisp. Early on it was
noticed that during training the machine seemed to do garbage collections rather frequently.
Analysis of this occurrence revealed that in the implementation of Common Lisp that we
were using, the floating-point operations allocated memory from the free heap upon every
invocation. This was true regardless of whether the program was compiled or interpreted.
For example, each floating-point multiplication used eight bytes of heap space! This
problem has existed on all the machines the authors have yet run this program on, including
TI Explorers, and Sun 3.0's running Kyoto Lisp.

With even small nets, such as the ones defined by the SetUp functions, the number of
numerical computations executed in a training session is quite high. Thus, a warning is in
order: if your implementation of Common Lisp allocates heap space to effect floating-point
calculations, you should expect fairly frequent garbage collection (how "frequent" would
depend on the size of your heap, of course). If the reader wishes to avoid this problem, the
authors suggest altering the code so as to use scaled bignums instead of floating-point
values. This is really nothing but a poor man's implementation of fixed-point technology.
On our machines, though, the fixed-point calculations had the same memory-chomping
problem as the floating-point, while the bignum calculations did not.

For example, a bignum version of BackProp might scale all floating-point values by
1000, so that 10.015 became 10015, etc. This scheme might result in some loss of
precision, especially for floating-point values particularly near to, or far from zero. If the
user doesn't mind the garbage collections, then these steps obviously aren't necessary.

Coding Style
Naming Conventions:

The case of the characters in symbol names is significant. The first character of
function names are always capitalized. The first character of all other symbol names are
lower case.

In most symbol names, capitalization is used to delineate word boundaries.
Occasionally, an underbar character is used. For example, "aVariableName" versus
"a_variable_name".

Globals are identified by bracketing asterices, or a "g" prefix. For example, "*links*"
or "gBPOutputCount”. (The "*...*" form is reserved for truly application-wide globals,
whereas the "g-" form is typically used for symbols that would better be scoped to just a
small set of routines. Lisp is somewhat lacking in such scoping capabilities, however.)

BackProp: Evett, Pollack, Hendler 12

The names of constants (defined via defconstant) are prefixed with a "c¢". For
example, "cBPBreakCount".

Documentation:

The "header comments" for each function are given in their documentation field as
provided by Common Lisp. This documentation may be referenced at run-time by the doc
function. (Some implementations of Common Lisp have built-in methods for accessing
documentation fields.) Usage of doc is described below, in the "Important Routines"
section of this paper. For most BackProp symbols, "(doc <symbolName>)" will suffice.
For example: "(doc 'doc)" will print a description of doc.

Important Routines of BackProp:

The following function descriptions are intended to be brief. Fuller descriptions of
most of the routines can be found in their "documentation” field.

MakeSigmoid -- Creates a set of look-up tables used to approximate a sigmoid function.

Sigmoid value -- This routine acts in concert with Set/nput to effect the activation
function of the network. Returns the (approximated) value of the standard sigmoid
function for the given value. The accuracy of the function is greatest for values
around 0.0.

SetInput node -- Sets the input field of the given node object, node, to the sum of the
weighted outputs of the nodes inputting to node. During a forward propagation pass,
the output field of every non-input node, i, is set to Sigmoid(SetInput(i)).

DefGroup numNodes [unbiased-p] -- Returns a list of numNodes newly generated
node objects. If unbiased-p is nil (the default), this function will create link objects
connecting the bias node and the returned node objects. These links are stored in
links.

InterConnect fromNodes toNodes -- Creates and adds to *links* link objects
connecting every node object in the list of nodes fromNodes to those in toNodes
(typically, created by DefGroup).

ClearNet -- The *links* and *levels* globals are cleared and other actions are taken to
insure that the memory allocated to the existing links and nodes will be freed during
the next garbage collection.

BackProp: Evett, Pollack, Hendler 13

Noise [maxNoise | -- Sets the weight of every link in *links* to a random value between
-maxNoise and maxNoise. If no parameter is given, maxNoise defaults to 0.2.
This function should be called before every learning session.

PurifyLinks -- Clears in every link object in */inks* all fields that affect the learning
process of a training session. (le., this routine does not clear fields used to store
temporary values.) Should be called between training sessions of a network, usually
followed by a call to Noise.

AcceptablePerformance nodes acceptable-diff -- Returns true if the error signals of the
list of node objects, nodes, is acceptable.

BackProp node -- Propagates the error signal of the given node to the nodes that input to
node.

ForwardPass inputs -- Effects a forward-propagation pass through the network. The
activation levels of the nodes in the input layer are locked to the values in the list of
floating-point numbers, inputs. Then the standard forward pass is executed,
propagating activation levels to the output nodes. The cardinality of inputs should
equal the number of input nodes in the network.

BackwardPass desired-output acceptable-diff -- Effects a backward-propagation pass
through the network, but doesn't effect actual training (UpdateWeights does that).
The activation (output) levels of the nodes in the output layer of the network are
compared against the corresponding values in the list desired-output. If an output
node's activation level is less than acceptable-diff, then that node's error signal is
zero. Unless all the output nodes have zero error signal, the error signals are
propagated backwards through the net in the manner described above in "Description
of Back Propagation”.

UpdateWeights learningRate momentum -- This routine applies to the weight of every
link in *links* the "delta-w's" (changes to link weights) calculated by BackwardPass
and accumulated (in the delta field of each link object) during an epoch. For each
link, new weight -= (learningRate * <summed deltas>) + (momentum * <prev
delta>), where <prev delta> was the link's delta-w at the previous call to
UpdateWeights.

Learn [:inPatts inPatts] [:outPatts outPatts] [:learningRate 1] [:momentum m]
[:acceptableDiff d] [:outputVerbosity v] [:breakAt b] [:outputAt o]
[:maxIters z] -- This function is described in detail in "Advanced Usage", above.

BackProp: Evett, Pollack, Hendler 14

Doc symbolName [symbolType] -- Returns the documentation field associated with the
given symbol, symbolName. SymbolType may be any of the values accepted by the
Common Lisp function documentation. Standard values are 'function, 'structure,
'variable, and 'constant. If symbolType is not given, Doc first searches for
documentation for a function of the given name, then a "struct”, then a "defvar"-ed
symbol, and lastly a "defconstant"-ed symbol. If no such symbol is found, returns
nil.

OutputToFile file -- Opens for writing the file named file. If no such file exists, one is
created. Any existing data in the file will be overwritten. All subsequent output will
be directed to that file. A useful function for those of us who work on systems where
output cannot be redirected via a system call!

OutputToScreen -- Subsequent output will be directed to the screen. If output was
previously directed to a file via the OutputToFile command, this command closes that
file.

FindLink aLinkName -- Returns the link object with the given name, aLinkName. If no
such link exists in */inks*, the function returns nil. Link names are displayed by the
ShowLinks function.

FindNode aNodeName -- Similar to FindLink. Returns the node object corresponding
to the given name. If no such object exists in *levels*, the function returns nil.

Node names are displayed by the ShowNodes function.

ShowLinks -- Prints a listing of all the link objects in the net and the values of their
various fields.

ShowLink link -- Prints the current values of the fields of the given link object, link.

ShowNodes [verbose-p] -- Prints a listing of all the node objects in the net (except the
bias node), and the current contents of their fields.

ShowNode node [verbose-p] -- Prints the current values of the fields of the given node
object, node. If verbose-p is non-nil, gives a more detailed description.

SetUp424 -- Erases any existing network and creates a 4-2-4 network, Defines
inPatts and *outParts*. Described in detail in "The Prepackaged System", above.

BackProp: Evett, Pollack, Hendler 15

SetUpXOR221 -- Erases any existing network and creates a 2-2-1 network. Defines
inPatts and *outPatts*. Described in detail in "The Prepackaged System", above.

SetUpXOR211 -- Erases any existing network and creates a 2-1-1, non-standard
network. Defines *inPatts* and *outPatts*. Described in detail in "The
Prepackaged System", above.

ShowBehavior [:acceptable-diff n] [:inputs in] [:outputs out] [:verbose-p v]
-- Prints diagnostics on the performance of the network. Each element of the list in
should be a list of j numeric values, where j is the number of nodes in the input
layer. Out should be of the same format, but where j is the number of output nodes.
N is the acceptable difference between the actual and desired (those in out) values of
the activation levels of the output nodes. If v is non-nil, the diagnostics will be in a
longer format. In defaults to *inPatts*, out to *outPatts*, n to
gBPAcceptableDiff (set by the racceptableDiff parameter to Learn), v to true.

For each element of in (out should be of the same cardinality) ShowBehavior
locks the activation levels of the net's input nodes to the values of the element (a list of
numeric values). The activation levels are forward-propagated to the output nodes,
and compared against the values of the corresponding element of out.
ShowBehavior prints the inputs, the desired and actual activation levels and the error
signals of the output nodes.

SetBreakCount [iters] -- Sets the "break counter” to iters. This counter is decremented
with each epoch. When the counter reaches 0, Learn breaks. Upon a continue the
counter is reset to iters. Thus, Learn will break every iters epochs. If iters <0,
Learn never breaks (except, perhaps, for the action of SetMaxItersCount). If iters is
not given, the counter is reset to the most recent value explicitly given via
SetBreakCount, or via the :breakAt key parameter of Learn.

SetOutputCount [iters] -- Sets the "output counter” to iters. The operation is identical
to SetBreakCount. When the counter reaches 0, Learn prints diagnostics. The level
of detail of these is controlled by SetVerbosity.

SetMaxItersCount [iters] -- Sets the limit on the number of epochs in current learning
session to iters. Upon finishing the iters-th epoch, Learn will break with the
message, "BREAKing because of too many epochs. (Non-stabilizing net?)" If iters
< 0, Learn disables loop detection. If iters is not given, the call has no effect.

BackProp: Evett, Pollack, Hendler 16

Work in Progress....

Currently, we are writing code that will allow users to define their own activation
functions for the network. The authors feel that users would find it very informative to be
able to train the same network on the same inputs but using different activation functions.
(Some examples can be found in [PDP, Chapter 10].)

By next Fall, the authors hope to have a graphic-oriented, tutorial version of this
package running on Apple's Macintosh II. As planned, the system will utilize the strong
capabilities of the Mac II's color graphics, and will be implemented in Allegro's Coral
Common Lisp. Such a system should be ideal for teaching some of the basic concepts of
connectionist theory.

References

Rumelhart, D.E., & McClelland, J.L. (1986). Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Volume 1: Foundations.
Cambridge, MA: MIT Press.

Jones, W.P., & Hoskins, J. Back-Propagation, a Generalized Delta Learning Rule.
Byte, October, pp. 155-162.

Appendix A: The code!

(defconstant ¢cBPLearningRate .3)
(defeconstant cBPMomentum .9)
{defconstant cBPAcceptableDiff .2)
(defeconstant ¢cBPOutputCount 10)
(defconstani ¢cBPBreak Count 0)
(defconstant cBPMaxIterCount 10000)

(defvar gCurNode 0 “*Narme’ of the last node created. See BPNode.")
(defvar gCurLink 0 *’Name’ of the last link created. See BPLink.")

(defvar gBPBreakCount ¢cBPBreak Count
“BP will break every <> epochs. See SetBreakCount.")
(defvar gBPOutputCount ¢cBPOutputCount
"BP will output diagnostics every <> epochs. See SetOutputCount.")
(defvar gBPMaxIterCount cBPMaxIterCount
"BP will break on the < >th epoch, as prevention against infinite looping.")
(defvar gBPlterCntr 0 "Number of epochs so far executed.")
(defvar gBPOutputCntr gBPOutputCount "Counts epochs for <gBPOutputCount>.")
(defvar gBPBreakCntr gBPBreakCount "Counts epochs for <gBPBreakCount>.")

(defvar gBPVerbosity 0
"Controls verbosity of output messages. Can be 0,1. See Check KpochCounts.")
(defvar gBPLearningRate cBPLearningRate
“Learning rate of the net.")
(defvar gBPMomentum ¢BPMomentum
“Momentum factor of learning alg for net.")
(defvar gBP AcceptableDiff ¢cBPAcceptableDiff
“Response of output node is acceptable if within this amount of the
desired response.")

(defvar *stdio* t "Most Format calls direct their output to this stream. [f
value is ’t’, output goes to StdlO.")

(defstruct (BPLink)
“Represents a link between two nodes in the network. Contains the
weight of the link, the delta from the last time the weight was updated,
ete.

See BPNode."

(fromNode nil) s Link goes from this node to...

(toNode nil) S this node.

(weight 0 :type short float)

(delta 0 :type short float), Amount the weight will be changed during

D this pass.
(prevDelta 0 :type short float), Amount the wyht changed during prev pass.

1 (¢) Pollack, Evett, and Hendler, March, 1988,
For more inforination sabout BackProp contact Matt FEvett (evett@mimsy mnd.edu) or Jim Hendler
(hendler@mimsy.umd.edu), Dept of Computer Seience, University of Maryland.

(name ; Boery tome a BPLink is created, gCurNode
Sl be cnermented, so cach link will have
Janique name.
(setq gCurliink (+ 1 gCurLink))))

(defstruct (BPNode)

"The other major data structure in BackProp (see BPLink for other). These
objects represent the nodes of the net (including the bias node).

See BPLink."

(inLinks nil)

(outLinks nil)

(input 0.0 :type short float)
(output 0.0 :type short-float)

(errSig 0.0 :type short float)
(incomingErrSig 0.0 :type short float)
(name

(setq gCurNode (+ | gCurNode))))

(defvar *links* nil "List of the link objects comprising the network")

(defvar *levels* nil "Each elem of this list is a list of nodes
a group comprising one level of the net.")
(defvar *biasNode* nil "The weights of the links from this node to the
input nodes are added to the input of those nodes.")

(defvar *inPatts* nil "List of input patterns for the net.")

(defvar *outPatts* nil "List of output patterns corresponding to *inPatts*.
When an input pattern is asserted on the net’s input nodes, the net’s output
should be within an acceptable range of the corresponding output pattern.")

{defvar c¢Sig table coarse size 200)
"The number of elements of the coarse Sigmoid array for each of the pos &
neg vals defined by the table. l.e., 'coarse’ table will use ’size’ elts
for the (0,max] range, and ’size’ for [max,0), and one elt for the val of
the Sigmoid fnet at 0.0."

(defvar ¢Sig table coarse max 20.0)
(defvar cSig -table coarse scale
(/ ¢Sig table coarse max cSig table coarse size))

(defvar ¢Sig table -fine size 250)
(defvar cSig table fine max 5.0)
(defvar cSig table -fine scale
(/ ¢Sig table fine max cSig table fine size))

(defvar cSig table extra-fine size 100)
(defvar cSig table- extra-fine max 1.0)
(defvar cSig table extra fine scale
(/ ¢Sig table extra fine max cSig table extra fine-size))

(defvar gSigCoarseArray nil) . The look up tables for the Sigmoid function.
(defvar gSigFineArray nil) ; See Sigmoid.
(defvar gSigExtralineArray nil)

{defun MakeSigmoid ()

"Creates the sigmoid lookup tables, using the ¢Sig- table consts.
See: CreateSiglookup, Sigmoid"

(setq gSigCoarseArray
(CreateSiglookup
(* 2 ¢Sig- table coarse size) cSig table coarse max))
(setq gSigkineArray
(CreateSigl.ookup
(* 2 ¢Sig table fine size) cSig table -fine - max))
(setq gSigExtraFineArray
(CreateSigl.ookup

(* 2 cSig table extra fine size) cSig- table extra-fine max))

{defun CreateSiglLookup

(size ; Determines the granularity of the array.
. This will be the # of elems in the array.
maxVal ;o mazVal, marVal) is the *domain" of the
; table.
&aux
sigmoidTable) . The table we're creating.

"Creates a look up table of the values of a ’sigmoid’ function. The
table’s granularity is specified implicitly by the given cardinality of
the table and the min and max domain values the table is to index. The
Oth element of the array will be the val of the sigmoid function at
< maxVal>, and the <size> 1th element will be the val at <maxVal>."

(setq sigmoidTable (make array (+ size 1) :element type ’single- float))
(do

((eurElem 0 (+ curKElem 1))
(curDomainVal
(coerce (maxVal) ’single float)
(+ curDomainVal increment))
(increment (/ (* 2.0 maxVal) size)))

((> curElem size) ; Loop for each elem of the table. ..
sigmoidTable)

(setf (aref sigmoidTable curklem) : Set cach table elem to val of sigmoid
; Junction
(/ 1.0

(+ 1.0
) {exp (curDomainVal)})))

(defun Sigmoid
(x) . The val we're to coal the signoid fuct on.
"Returns an approximation of the value of the sigmoid function for a
given value. The sigmoid function is approximated with a table lookup.
The lookup is actually done on one of three tables: A ’coarse’ table is
used for the values fairly far from the cross over point of the sigmoid
function, where the slope of the function is gentle. A ’fine’ table is
used for the values near the cross over, and an ’extrafine’ table is

used for those values very near the cross over, where the slope of the
function is quite steep. See MakeSigmoid."

(cond
({(> x cSig-table coarse max) 1.0); For distant vals, rin asymptotes

((< x (cSig table coarse max)) 0.0)

((> (abs x) cSig table-fine max),; Fuirly distant vals ref coarse th
(elt gSigCoarseArray
(+ ¢Sig - table coarse size
(round (/ x cSig-table coarse scale)))))

((> (abs x) cSig -table extra fine max); Nearer vals

(elt gSigFineArray
(+ cSig table-fine size
(round (/ x cSig table fine scale)))))

(v . Nearest vals
(elt gSigkxtralineArray

(4 cSig -table extra fine size
(round (/ x cSig table extra fine scale)))))

)
)

(defun DefGroup
(size
& optional
(in-input -levelP nil), 7
&aux
(the- new group ’()))

; The # of nodes in the group.
-~ group’s nodes are (nput nodes.
; The newly created group of nodes.

"Creates a group of nodes and returns them in a list.

SIDE- EFFECT: If the group is to be a non input’ group, then the function
will create links (and so added to *links*) from *biasNode* to the

nodes of the new group. It might be better to move this functionality

elsewhere, perhaps into its own function...."

(dotimes (numCreated size)
(setq the new group (cons (make BPNode) the new group)))

JSIDE BERFECTH! Af the group 15 not (v
S the mnput level, then we create Links from
; *biasNode* to the nodes of the group.
(InterConnect (list *biasNode*) the new group))

(if (not in input levelP)

(return from
DefGroup the new group), Result of this function is the new group

(defun InterConnect

(from group ; Links are created from every node in this

S group to every node in....

to group) ;. this group.

"Fully links the given groups of nodes. Links are FROM the first group’s

nodes TO the second group’s nodes.
SIDE EFFECT: Note that this function alters *links* and several fields of

the nodes of the given groups.*®
{dolist (from node from group)

(dolist (to—node to group)
(AddLink from node to- node)
)

(defun AddLink

(from node ; Link will go from this node to...
to-node ;. dhis mode.

&aux

the-new link) ; The link created.

*AddLink(fromNode, toNode) creates a link between the two nodes and adds
it to *links*. Also alters the outlinks field of fromNode and the

inLinks field of toNode to contain the newly created link. The function
returns the newly created link."

(setq the—new -link
{make- BPLink :fromNode from node :toNode to node))
(push the--new-link *links*)
(push the-new-link (BPNode-outlinks from node))
(push the- new-link (BPNode inLinks to node))

ormat “stdio™ "created link <"d> from to 0"
f *stdio™* d link <"d> ¢ ~d ~d]"%
gCurLink (BPNode name from node) (BPNode name to node))

the--new--link

)

(defun ClearNet ()

"Disconnects all links (so gc will work properly on them) and nodes, and
resets the *biasNode* to have no links."

(dolist (x *links™*)
{setf (BPLink- fromNode x)
{setf (BPLink toNode x) nil)))
(dolist (group *levels*)
(dolist (node group)
(setf (BPNode -inLinks node)
(setf (BPNode outlinks node) nil))))
(setq *links* nil)
(setq *levels* nil)
(setq *biasNode* (make BPNode :output 1.0))

)

(defun Noise
(maxNoise) ; Noise is in range { morNoise,mazNoise).

"Sets the weight field of each link in the net to a randomly generated
value between < parm> and +<parm>."

;Actaally the random oals are tn the range | marNowse, maeNoise), but who's
[rouanting?

(dolist (link *links*)
(setf (BPLink weight link)
((random (* 2.0 maxNoise)) maxNoise))))

(defun PurifyLinks ()
"Clears the fields of all link objects."
(dolist (link *links*)
(setf (BPLink- weight link) 0.0)
(setf (BPLink prevDelta link) 0.0)
(setf (BPLink - delta link) 0.0)))

(defun SetInput
(node . We want to set the input of this node.
&aux
(cur -input 0.0))

"Sets the input of a given node to the sum of the outputs across the
incoming links to the node. The output of a link = weight of the link
* the output of the node at the other end of the link. The function
returns the calculated input value.”

(dolist (input- link (BPNode inLinks node))
{(incf cur—-input
(* (BPLink- weight input link)
(BPNode output (BPLink - fromNode input- link))}))
(setf (BPNode input node) cur input))

(defun AcceptablePerformance
(group ; Group of nodes, typically an outpat layer.
acceptable diff) ; Acceptable error signal.
"Returns ’t’ if the error signal of every node in the given list of nodes is
less than the given ’acceptable diff’ value. Typically the function is
called on the output layer of the net to determine if the output values of
the net are all within an acceptable limit of the desired output pattern.
SEE BackwardPass."

(dolist {node group)
{if (> (abs (BPNode incomingFrrSig node)) acceptable diff)
(return from AcceptablePerformance nil)))

t)

(defun BackProp
(node) ; The delta of this node 1s to be propogated
;to the nodes inputting to it
"Propogates a given node’s incoming error signal backwards to its incoming
nodes. The function first computes the error signal of the node using the
relation: errSig = incomingErrSig * (output * (1 output)), where
incomingkrrSig = {sum of error sigs of the nodes to which this node outputs}.
The error signal is propogated to the node’s incoming links and nodes thus:
The errorSignal (*delta w’ in PDP) of each incoming link gets the node’s
error signal, weighted by the node’s activ. value. (Thus the delta w’s are
only accumulated during a epoch. The links’ weights themselves aren’t
changed until after the epoch is completed).
The error signal is also propogated to inputting nodes. The node’s error
signal is accumulated in the ’incoming error signal’ field of each
inputting node. The signal is weighted by the weight of the connecting
link.*

(setf (BPNode -errSig node) . errSig incomingbreSig * (output * (1 output))
(* (BPNode incomingFrrSig node)
(BPNode output node)
(1.0 (BPNode output node))))

{(dolist (in link (BPNode-inLinks node)) ; Propogate delta to cach
;inputting node and link.
(incf (BPLink -delta in-link)
(* (BPNode--errSig node)
(BPNode -output (BPLink fromNode in link))))
(inef (BPNode incomingErrSig (BPLink fromNode in link))
(* (BPNode -errSig node)
(BPLink- weight in-link)))))

(defun ForwardPass

(inputs) ; The outputs of the input nodes will be

; bound to these values.
»Effects one forward pass through the network.
First, the input nodes’ outputs
are set to the values given in <parm>>, which should be a list of fixed
floating point numbers, one for each input node (the nodes of the 1st
group in *levels*, usually the nodes to which the *biasNode* is linked).
The the output values are propogated through the network,
level by level. The function returns as a list the output values of the
nodes in the final level."

(dolist (group *levels*) ; Set Input field of every node to 0.0.
(dolist (node group)
(setf (BPNode input node) 0.0)))

o Set Input fields of every 'biased’ mode to the "weight’ of the link from the
:FbiasNode* (i e.. activation value of the biusNode is 1.0). Le., the
cinputs of these nodes are "biused".

{dolist (link (BPNode -outLinks *biasNode*))
(incf (BPNode input
(BPLink toNode link))
(BPLink weight link)))

(LockOutputs (car *levels*) inputs) : Sef the input nodes’ output fields
;to the values specified in parm

c Now we actually do the propogation. We work through the net level by
Jlecel. For each node in a lecel we set its input to the sum of the
coutputs across the incoming links. Then we sel its output {o be

S Sigmodd{input).

(dolist (level (edr *levels™))
(dolist (node level)
(setf (BPNode output node)
(Sigmoid (SetInput node)))))

(mapcar # BPNode output Forms a list of the outpul fields of the
; nodes of the output level, & RETURNS «t.
(car (last *levels*))))

{defun BackwardPass
(desired" output ; The desired outpuat pattern.
acceptable diff Af each outpat differs from its desived value
S by no more than this wmount, then no
JAearning udll be dowe (0.0 returned).
& aux

levels r ;A reversed list of the net’s levels.
(squared error 0)) . Sum of the squares of the deltus of the
Joutput nodes.

"Effects the backward pass phase of back propogation. Starts at the output
level and calculates the difference between the desired and actual output
values of every node in the output level. These ’deltas’ are then propogated
backwards through the net. The function returns the sum of the squares

of the output nodes’ deltas."

(setq levels-r (reverse *levels*)) ; So we can go from output ~input...

(dolist ; Clear the incomingbrrSig fields of all nodes.
; This s necessary because tn hidden units
;this val s incremented, not setq'd.
(level *levels*)
(dolist
(node level)
(setf (BPNode incomingErrSig node) 0.0)))

; For each output node, set its incomingbrrSig field to the difference between the
; output node’s activation level and the desired level (as specified in the
, desired output parm).

(setq squared- error
(OutputResponse (car levels r) desired output)) ; Sets .incominghbrrSig's,

(if (AcceptablePerformance (car levels r) acceptable-diff)
(return from BackwardPass 0.0)) . If delta is acceptable. leave.

(dolist (level levels r) ; Level by level. propogate the deltas
cbackward al each node (n the level.
(dolist (node level)
(BackProp node)))

squared error) , RETURN sum of the squares of the deltas of the oulput nodes.

(defun Learn

(&key

(inPatts *inPatts*) s List of patterns we want the nel to
crorrelate fo....

(outPatts *outPatts*) ;these output patterns.

(learningRate gBPLearningRate), "mu". Degree to which weights are
saffected by their cale’d error signal.
(momentum gBPMomentum) JMalpha® . Degree to which link weights
gl continue to change by @mount of
Jprecious changes.
{acceptableDiff gBPAcceptableDiff) : Learning is done if net's outpuls from
. inPatts correspond to desired
coutPatts w o din this amount.
(outputVerbosity gBPVerbosity)
DLength of outpat msgs: 0 short, 1 long
(break At gBPBreakCount) ; Breaks coery breakAt dterations.
{outputAt gBPOutputCount) ; Prints diagnostic output every Caters.
(maxIters gBPMaxlterCount)) CAfter this many epochks of the learning
salgorithm, the widl terminate. Learnimg os
Seasily continaed by calling Learn again...

"Successively applies each of the input patterns to the net and does a
Forward Pass to generate an output pattern, then does a backward pass to
propogate the error signal across the network. During backward passes, the
links accumulate their deltas. Only after all the inputs have been applied
does the funection update the links’ weights by their accumulated deltas. The
routine returns if the net reacts within the ’acceptable difference’ for
each input pattern.”

(if (not gSigCoarseArray) ; Sigmoid look—up tables haven't yet
; been defined...
(MakeSigmoid)) ; ...then define them.

(setq gBPAcceptableDiff acceptableDiff), These might better be facts. ¢¢¢
(setq gBPMomentum momentum)
(setq gBPLearningRate learningRate)

(SetVerbosity outputVerbosity)

SetBreak Count break At S See CheckBEpochCounts. ...
4

(SetOutputCount outputAt)

(SetMaxltersCount maxlters)

(ResetEpochCount)

(do ((epoch 0 (+ 1 epoch)) ; Loop until net behavior is acceptable.
(error -1.0) ;Sam of errors of net for all input pats.
{(breaklters 0 (+ | breaklters)); Counter for breakAt -
(outputlters 0 (+ 1 outputlters))); Counter for outputAt
((= 0.0 error) "whew)

{(dolist (link *links*) ; Clear (delta fields of links.
(setf (BPLink delta link) 0.0))

(setq error 0.0) . Clear error arcumulator.

(do
{(remaininglnPatts inPatts (cdr remainingInPatts))
(remainingOutPatts outPatts (cdr remainingOutPatts)))
((not (and remaininglnPatts remainingOutPatts)) t)

(ForwardPass (car remainingInPatts)) ; Run on an input.
(incf error
(BackwardPass (car remainingOutPatts) acceptableDiff)))

At this point, we have acewmalated the error signals from each of the
Cimput Zoutpat pattern pairs. Also, the _delta fields of the links are the
caceumulation of the deltas calewlated for each such pair. We give the
cuser @ chanee to view the net, mow, before the link weights are updated by
S their acewmalated deltas

(UpdateWeights learningRate momentum)

(Check EpochCounts error)

(format *stdio* "Acceptable net successfully created! Epoch: “d~%"

gBPIterCntr))

(defun UpdateWeights

(learningRate ;See Learn for delails.
momentuin)

"Updates the weights of all the links. A weight’s change is proportional to
the sum of the deltas calculated during one epoch through all the input
patterns, and to the change made to that weight in the previous epoch. The
full equation:

weight = (learningRate * summedDeltas) + (momentum * prevDelta)
LearningRate and Momentum are referred to as 'mu’ and ’alpha’ in PDP."

(dolist (link *links*)
(inef (BPLink weight link)

(setf (BPLink- prevDelta link)
(+
(* learningRate (BPLink delta link))
(* momentum (BPLink prevDelta link))))))})

(defun LockOutputs
(nodesToLock ; List of nodes whose outpuls are to be
Jlocked
outputVals) ;. to these values.

"Sets the output field of each of the given list of nodes to the
corresponding value in the given list <parm2>, which perforce should be
the same length as <parml>."

(do ((nodes nodesTol.ock (cdr nodes))
. (node)

(remaining outputVals (¢dr remaining))
(

(

outputVal))
((not (and nodes remaining))

(setq node (car nodes))
(setq outputVal (car remaining))

(setf (BPNode output node) outputVal))

(defun SimpleNet
(&aux
in hid out) [Temporaries.
(ClearNet)
(setq in (DefGroup 2 t))
(setq hid (DefGroup 3))
(setq out (DefGroup 1))
(InterConnect in hid)
{InterConnect hid out)
(setq *levels® (list in hid out))
(PurifyLinks)
(print "A simple 2 3 | net created."))

(defun DirectOutput (fileName)

(setq *stdio*
(open fileName :direction :output
:if exists :overwrite
:if does- not exist :create)))

(defun OutputToFile (fileName)

"Subsequent output will be directed to the file with the given name. If such
a file doesn’t exist, it will be created. The contents of an existing file

will be erased. See OutputToSecreen."

(DirectOutput fileName))

{defun OutputToScreen ()
“Subsequent output will be directed to the screen (stdio)."
(if (streamp *stdio™*)
(close *stdio*))
(setq *stdio* t))

(defun FindLink (aLinkName)
"Returns the link object having the given name."

(do {(curList *links* (cdr curl.ist)))
((not curList) nil)
(if (= aLinkName (BPLink name (car curl.ist)))
(return (car curl.ist)))))

(defun FindNode (aNodeName)
“Returns the node object having the given name.
See ShowNode, ShowNodes."

(dolist (curGroup *levels* nil)
(dolist (curNode curGroup)
(if (= aNodeName (BPNode name curNode))
(return from FindNode curNode)))))

{defun ShowLinks ()

“Outputs a listing of all the links in the net. This includes any biasing
links.

See ShowLink."

(format *stdio* "Current contents of *links*:"%")
(dolist (x *links*)

(ShowLink x))
(terpri *stdio*))

(defun ShowLink (thelink)
“Qutputs diagnostic info. for a given link object.
See FindLink, Showlinks."

(if (eq (BPLink fromNode thelink) *biasNode*)
(format *stdio*

"Link <"d>: [Bias >"d], weight, delt, prevDelt = ~f ~f “f" %"
(BPLink -name theLink)
(BPNode -name (BPLink toNode thel.ink))
(BPLink weight theLink)
(BPLink -delta thel.ink)
(BPLink prevDelta theLink))

{format *stdio*

“Link <~d>: [d- >"d], weight, delt, prevDelt = ~f ~“f “t%"
(BPLink name thelink)

(BPNode name (BPLink -fromNode theLink))

(BPNode name (BPLink- toNode thel.ink))

(BPLink weight thel.ink)

(BPLink -delta theLink)

(BPLink prevDelta thelink))))

(defun ShowNode (theNode &optional (verbose- p nil))

"Qutputs diagnostic info. for a given node object. If given a second
{(optional) non- nil parameter, gives a long description.

See ShowNodes, ShowGroupsNodes."

(format *stdio*
*Node [*d]: input, output = ~f, "7 % ErrorSig, IncomingErrSig = ~f, "~ %"
(BPNode name theNode)
(BPNode - input theNode)
(BPNode -output theNode)
(BPNode errSig theNode)
(BPNode incomingErrSig theNode))

(cond
(verbose p
(format *stdio™* " InLinks: ")
(dolist (x (BPNode inLinks theNode))
(if (BPLink -fromNode x)
(format *stdio® "<“d>["d] *
(BPLink name x) (BPNode name (BPLink- fromNode x)))
(format *stdio* *<NIL> ")))
(terpri *stdio*)

(format *stdio* " OutLinks: ")
(dolist (x (BPNode outlinks theNode))
(if (BPLink- toNode x)
(format *stdio* "<"d>["d] *
(BPLink name x) (BPNode name (BPLink toNode x)))
(format *stdio* " <NIL> ")))

(terpri *stdio™*)))

)

(defun Show(GroupsNodes (theGroup &optional (verbose p nil))
"Prints diagnostic info. for the given list of nodes. Given a second
{(optional) non nil parameter, gives a long description.

See ShowNode, ShowNodes."

(dolist (x theGroup)
(ShowNode x verbose -p)))

(defun ShowNodes (&optional (verbose- p nil))
"Prints diagnostic info. for all the nodes in the net, except the bias node.

The output is separated into separate sections for each grouping of nodes in
the net. If an optional second parameter is given with non nil value, a long
description is given.

See Show(GroupsNodes, ShowNode."

{do ((level list *levels* (cdr level list))
(cur level)
(level counter 0 (+ I level counter)))

((not level list) ¢)

(setq cur level (car level-list))
(format *stdio* ""%====> LEVEL "d <<======="090" level -counter)
(ShowGroupsNodes cur-level verbose p)))

(defun SetUp424
(&aux in hid out) . Tmp variables holding the nodes of the
;input, output, & hidden lagers of the net.

“Creates a 4-2-4 network, intended for learning a simple identify encoding:
0001 >0001, 0010-->0010, 0100--- > 0100, 1000- - > 1000,
These input and output patterns are stored in "*inPatts*’ and **outPatts*’."

(setq *inPatts* *((0.0 0.0 0.0 1.0) (0.0 0.0 1.0 0.0) (0.0 1.0 0.0 0.0) (1.0 0.0 0.0 0.0)))
(setq *outPatts* *inPatts*)

(ClearNet)

{setq in (DefGroup 4 t))
(setq hid (DefGroup 2))
(setq out (DefGroup 4))
{InterConnect in hid)
(InterConnect hid out)

(Noise .2)
(setq *levels* (list in hid out))
(quote *424Net))

efun SetUp]
defun SetUpXOR221
{&aux in hid out) . Tmp variables holding the nodes of he
Jtnput, output, & hidden layers of the net.

"Creates a 2--2 -1 network, intended for learning the XOR encoding:
00 >0,11 >0,0L >1,and 10 >1.
These input and output patterns are stored in **inPatts*’ and "*outPatts*’."

(setq *inPatts™ ’((0.0 0.0) (1.0 1.0) (0.0 1.0) (1.0 0.0)))
(setq *outPatts* ’((0.0) (0.0) (1.0) (1.0)))

(ClearNet)

(setq in (DefGroup 2 t))
(setq hid (DefGroup 2))
(setq out (DefGroup 1))
(InterConnect in hid)
(InterConnect hid out)

(Noise .2)
(setq *levels* (list in hid out))
(quote ’XOR 2 2 1 Net))

(defun SetUpXOR211
(&aux in hid out) o Tmp variables holding the nodes of (he
Jinpuat. output, & hidden layers of the net.

"Creates a 2 L | network, intended for learning the XOR encoding:

00 ->0,11 ->0,01 >1,and 10. >1.

These input and output patterns are stored in **inPatts*’ and **outPatts*’.
The input layer is connected to both the hidden and output layers.”

(setq *inPatts* *((0.0 0.0) (1.0 1.0) (0.0 1.0) (1.0 0.0)))
(setq *outPatts* *((0.0) (0.0) (1.0) (1.0)))

(ClearNet)

(setq in (DefGroup 2 t))
{(setq hid (DefGroup 1))
(setq out (DefGroup 1))
(InterConnect in hid)
(InterConnect in out)
(InterConnect hid out)

(Noise .2)
(setq *levels* (list in hid out))
{quote "XOR-2-1--1 Net))

(defun FlushOutput (stream)
(if (typep stream ’stream)
(force———output stream)
(force - output)))

{(defun doc (varName &optional (varType function)

&aux result)
"Abbreviated version of ’documentation’, returns the doc field associated
with the functions of BackProp. Can also be used to access the doc field
of defvar’d variables and defstruct’d data types, but for these the user
must give a second parameter of either ’variable or ’structure."”

(cond
((setq result (documentation varName varType)) result)
((setq result (documentation varName ’function)) result)
((setq result (documentation varName ’structure)) result)
((setq result (documentation varName ’variable)) result)
(t (setq result nil) nil))

result)

(defun ShowBehavior

(

&key
(acceptable diff gBPAcceptableDiff) > See Learn f/descript. of this parm.
(inputs *inPatts*) ; The nel will be run on each of these input

; patterns.
(outputs *outPatts*)

(verbose-p t) ; Flay outputl should be verbose.

&aux

totError ;Sum of squares of error sigs of oubput
[layer.

outputl.ayer) . The last level of the net.

"ShowBehavior < acceptable diff> :inputs <*inPatts* > outputs <*outPatts*>
:verbose p <nil>.

Outputs a table detailing the responses of the net to each of the given

input patterns. The net’s output is compared to the given patterns and the

results tabulated. If verbose flag is turned on, the listing will be more

detailed."

{setq outputlLayer (car (last *levels*)))
(setq totError 0.0) ; Clear error aceamalator.

(format *stdio* "~ % Response of net at epoch “d :7%* gBPlterCntr)

(PrintALine *stdio™)
; Now we print the results for each input pattern.

(do
((remainingInPatts inputs (cdr remaininglnPatts))
(remainingOutPatts outputs (cdr remainingQutPatts))
(curError 0.0)

(curInPatt nil)
(curOutPatt nil))
((not (and remainingInPatts remainingOutPatts)) t)

(setq curlnPatt (car remainingInPatts))
(setq curOutPatt (car remainingOutPatts))
(ForwardPass curlnPatt) . Run on an input.
(setq curError ; Cale response correctness (& set
;incomingSigErr fields).
(OutputResponse outputLayer curOutPatt))

(incf totError curError) ; Accumulate error signals.

(PrintLevelStats curlnPatt "IN: TR v #identity)

(PrintLevelStats curOutPatt "OUT (desired): * ""E " #’identity)
(PrintLevelStats outputLayer "OUT (actual): " ""E " #’BPNode -output)
(PrintLevelStats outputlayer "Difference: " ""E * # BPNode incomingErrSig)
(format *stdio* "Error (summed squares): “E~%" curError)

(if (AcceptablePerformance outputLayer acceptable -diff)

(write line "The response to this input was acceptable!" *stdio*))

(PrintALine *stdio*)
) DO (for each input pattern).

(format *stdio* "Total error, for all inputs: "E~%~%" totError))

(defun PrintALine (outputStream)

(format outputStream " - - T%")
(defun PrintlevelStats
(nodes . Prints stals on this group of nodes.
prefixString . Preficing 1st line of stats w/this str.
formatString ;#format string for printing results of
statFunction
statFunction ; Apply this function to each node fo get

;the statistic to be printed.
&aux
prefixSize) J# of chars in the prefic.

(setq prefixSize (length prefixString))
(format *stdio® "“A" prefixString)

(do ({remaining nodes nodes (cdr remaining nodes))
(curNode)
(curOutput)
(curCursorPos prefixSize))

{{(not remaining nodes))
(setq curNode (car remaining nodes))

(when (> curCursorPos 72)
(terpri *stdio*)
(write- string "
*stdio® :start I :end prefixSize)
(setq curCursorPos prefixSize))

(setq curOutput
(format nil formatString
(funcall statFunction curNode)))

(inef curCursorPos (length curOutput))
(write- string curOutput *stdio*))
(terpri *stdio™*)

)

(defun OutputResponse
; List of nodes in output layer.

(outputLayer

desiredOutput c Desired outpat of given nodes.

&aux

error) ; Sum of squares of err stgs of each node.

"Calculates the correctness of a layer’s (usually the output layer)
response. The activation values of the nodes of the given layer are
compared against the values in <desiredOutput>, and the differences are
placed in the incomingErrSig field of each node.
SEE: BackwardPass, ShowBehavior."

(setq error 0.0) . Clear error arcumulator.

(do ((output- nodes outputLayer (edr output nodes))
(output node) ; Output node we're currently examining.
(outputs remaining desiredOutput (cdr outputs remaining))
(output) ; Bapected (desired) actio val f/cur node.
(curErrSig)) ;Errosig of carrent node.
({not (and output nodes outputs remaining))

nil)

(setq output node (car output n()des))
(setq output (ca.r outputs remaining))

o Set the incoming error signal field of earh output node to the difference
s between the desired and actual outpal ealues. Actually, the square of it

(setq curErrSig
(setf (BPNode incomingkrrSig output node)
{ (BPNode output output node) output)))
(inct error (* curErrSig curErrSig))) ;Aceam error of all nodes.

error CRETURN sum of squares of error sigs.

)

(defun SetBreakCount

(&optional

{numlters gBPBreakCount)) ; Wil break ecery epochs.

"Sets the ’break’ counter to the given value. BackProp will enter a break
loop every < > epochs. See CheckEpochCounts. If no parameter is given, the
counter is reset to its default value. If parameter is <<= 0, there’ll be no

breaks."”

(when (> numlters 0)
(format *stdio* "Will break every ~“d epochs.” %" numlters)

(FlushOutput *stdio*))

{setq gBPBreakCount (setq gBPBreakCntr numlters)))

(defun SetOutputCount
(&optional

(numlters gBPOutputCntr)) . Will break every - - epochs.

"Sets the ’output’ counter to the given value. BackProp will print output

a brief diagnostic message every << > epochs. [f the given value is <= 0, no
such messages will be printed. If no parameter is given, the

output counter is reset."

{when (> numlters 0)

(format *stdio™®
"Will print brief diagnostics every ~“d epochs.”%" numlters)

(FlushOutput *stdio*))
(setq gBPOutputCount {setq gBPOutputCntr numlters)))

(defun SetMaxItersCount

(&optional
(numlters gBPMaxlterCount)) . Wil break after - epochs.

"Will break with a warning message after << > epochs, intended as a detector
for ’infinite loops’, i.e., nets that won’t stabilize. Defaults to value
already stored in gBPMaxIterCount. If given value <<= 0, there will be no

limit to number of epochs.
See: CheckEpochCounts.™

(cond ((> numlters 0)

(format *stdio*
"“Will break at epoch “d to avoid non stabilizing nets.”%%" numlters)

(FlushOutput *stdio*))

(¢

(format *stdio* "WARNING: Running with no epoch limitation.”%")))

(setq gBPMaxIterCount numlters))

(defun ResetEpochCount

()
"Resets the epoch counting variable. This DOES NOT affect the Output and
Break counters.

See: CheckEpochCounts.™

(format *stdio™ "Resetting epoch count to 0.7%")
(FlushOQutput *stdio*)
(setq gBPIterCntr 0))

(defun CheckEpochCounts

(curkrror) ; Total error accumulated during last epoch.

"Checks the Break, Qutput, and infinite loop detector counters. If the

break counter has decremented to 0, BackProp enters a break loop, allowing

the user to examine the program’s variables. If the output counter has

decremented to 0, BackProp outputs a brief diagnostic message. If the total

number of epochs exceeds the MaxIterCount, BackProp enters a break loop with

a message indicating that the net may not be stabilizing.

SIDE EFFECT: All these

counters are decremented {or incremented, depending) by this function. This

function MUST be called after each epoch.

SEE: SetQutputCount, SetBreakCount, SetMaxlItersCount, ResetE.pochCount.

GILOBALS: gBPBreakCount, gBPOutputCount, gBPMaxIterCount, gBPIterCntr,
gBPOutputCntr, gBPBreakCntr."

(incf gBPIterCntr) J 1
(decf gBPBreakCntr)
(decf gBPOutputCntr)

(when (== gBPOutputCntr 0)

(setq gBPOutputCntr gBPOutputCount); Reset rounter

(cond
((= 0 gBPVerbosity)
{format *stdio* "Epoch: “d Error: “{"%" gBPIlterCntr curFrror)

; Outpat diagnostics.

(FlushOutput *stdio*))
((= 1 gBPVerbosity)
(ShowBehavior))

)

(when (= gBPBreakCntr 0)
(setq gBPBreakCntr gBPBreakCount) : Reset counter
(format *stdio* "Entering a break loop on epoch “d, as per orders....” %"
gBPlterCntr)
(FlushOutput *stdio*)
(break))

(when (= gBPIterCntr gBPMaxlterCount)
(format *stdio* "BREAKing because of too many epochs {7d)....” %"
gBPIterCntr)
(break)
(format *stdio* "Iey, it’s your CPUI"%")))

(defun SetVerbosity

(newVerbosityLevel) ;The new verbosity level. 0 brief. | lonyg.
"Sets the verbosity of most of the diagnostics. 0==> brief, | ==>long."
(cond

((== newVerbosityLevel 0)
{format *stdio* "Diagnostics will be brief. (SetVerbosity).”%")
{(setq gBPVerbosity newVerbosityLevel))

((= newVerbosityLevel 1)
(format *stdio* "Diagnostics will be verbose. (SetVerbosity).”%")
{setq gBPVerbosity newVerbosityLevel))

(v

(format *stdio* "SetVerbosity [0 or 1].7%"))))

Appendix B: Example Session

>(load "backprop")
L.oading backprop.o
Finished loading backprop.o
28656

> (SetUp424)

created link <1> from [1] to (7]
created link <2> from [1] to [6]
created link <3> from [1] to [11]
created link <4> from (1] to [10]

[

[
created link <5> from [1] to [9]
created link <8> from [1] to [8]
created link <7> from [5] to [7]
created link <8> from [5] to [8]
created link <9> from [4] to [7]
created link <10> from [4] to [B]
created link <11> from [3] to [7]
created link <12> from [3] to [6]
created link <13> from [2] to [7]
created link <14> from (2] to [6]
created link <15> from [7] to [11]
created link < 18> from (7] to [10]
created link < 17> from [7] to [9]
created link <18> from [7] to [8]
created link <19> from [8] to [11]
created link <20> from [6] to [I 0]
created link <<21> from [8] to {9]
created link <22> from [B] to [8]
424NET
> (Learn)

Diagnostics will be brief. (SetVerbosity).

Will print brief diagnostics every 10 epochs.
Will break at epoch 10000 to avoid non stabilizing nets.
Resetting epoch count to 0.

Epoch: 10 Error: 3.2069

Epoch: 20 Error: 3.0399

Epoch: 30 Error: 2.9335

Epoch: 40 Error: 2.5888

Epoch: 50 Error: 1.8478

Epoch: 80 Krror: 1.3047

Epoch: 70 Frror: 1.0190

Fpoch: 80 Error: 1.0000

Epoch: 90 Error: 0.9782

Epoch: 100 Error: 0.9296

Epoch: 110 Error: 0.8595

Epoch: 120 Error: 0.7012

Fpoch: 130 Error: 0.5147

Kpoch: 140 Error: 0.3697

Epoch: 150 Error: 0.1473

Acceptable net successfully created! FEpoch: 154

> (ShowBehavior)

Response of net at epoch 154

IN: 0.0000 0.0000 0.0000 1.0000
OUT (desired): 0.0000 0.0000 0.0000 1.0000
OUT (actual): 0.1854 0.0802 0.0010 0.8787
Difference: 0.1854 0.0802 0.0010 0.1213
Error (summed squares): 0.0555

The response to this input was acceptable!

IN: 0.0000 0.0000 1.0000 0.0000
OUT (desired): 0.0000 0.0000 1.0000 0.0000
OUT (actual): 0.1625 0.1708 0.8053 0.0010
Difference: 0.1625 0.1708 0.1947 0.0010
Error (summed squares): 0.0935

The response to this input was acceptable!
IN: 0.0000 1.0000 0.0000 0.0000
ouT (desired): 0.0000 1.0000 0.0000 0.0000
ouT (actual): 0.0050 0.8292 0.0210 0.0584
Difference: 0.0050 0.1708 0.0210 0.0584
Error (summed squares): 0.0331

The response to this input was acceptable!

IN: 1.0000 0.0000 0.0000 0.0000
OUT (desired): 1.0000 0.0000 0.0000 0.0000
OUT (actual): 0.8146 0.0072 0.1598 0.0832
Difference: -0.1854 0.0072 0.1598 0.0832
Error (summed squares): 0.0669

The response to this input was acceptable!

Total error, for all inputs: 0.2489

> (ShowLinks)
Current contents of *links*:
Link <22>:
Link <21>:
Link <20>:
Link <19>:
Link <I18>:
Link <17>:
Link <18>:
Link <15>:

Link <13>:
Link <12>:
Link <IiI>:
Link <10>:
Link <9>:
Link <8>:
Link <7>:
Link <6>:

Link <4>:
Link <3>:
Link <2>:
Link <i1>:

NIL

2 >17], weight, delt, prevDelt
, weight, delt, prevDelt =
, weight, delt, prevDelt
4 >8], weight, delt, prevDelt

Bias > 11}, weight, delt, prevDelt
Bias >6], weight, delt, prevDelt =
Bias >7], weight, delt, prevDelt = 0.2942 0.0000 0.0054

3

= 1

2

>8], weight, delt, prevDelt = 5.3143 0.0000 0.0217
>9], weight, delt, prevDelt =

6.2999 0.0000 0.0131

(6

6
[6-- ->10], weight, delt, prevDelt = 2.8547 0.0000 -0.0080
[6 - >11], weight, delt, prevDelt = -3.4233 0.0000 0.0510
[7 >8], weight, delt, prevDelt = -4.6973 0.0000 0.0020
[7 >9], weight, delt, prevDelt = 2.8009 0.0000 0.0302
[7 >10], weight, delt, prevDelt = 4.4978 0.0000 0.0040
[7 > 11], weight, delt, prevDelt = -4.2838 0.0000 0.0277

Link <14>: [2 >8], weight, delt, prevDelt
[
(
[
[
4

.8240 0.0000 0.0068
2.8634 0.0000 -0.0039
4.2436 0.0000 0.0042
.9860 0.0000 0.0148
.3509 0.0000 0.0031

[4 - >7], weight, delt, prevDelt = 4.1783 0.0000 0.0021
[> >8], weight, delt, prevDelt = 1
[65 ->7], weight, delt, prevDelt = 3
[Bias >8], weight, delt, prevDelt =
Link <5>: [Bias >9], weight, delt, prevDelt =
[
[
[
[

.8103 0.0000 0.0095

5220 0.0000 0.0153
3.0178 0.0000 0.0028
0.8548 0.0000 0.0210

Bias- >10], weight, delt, prevDelt = 5.4162 0.0000 0.0198
= 2.0358 0.0000 0.0034

0.0296 0.0000 0.0038

> (ShowNodes)

====> LEVEL 0 <====
Node {5]: input, output = 0.0000, 1.0000

ErrorSig, IncomingErrSig = 0.0000, 0.0000
Node [4]: input, output == 0.0000, 0.0000

ErrorSig, IncomingErrSig = 0.0000, 0.0000
Node [3]: input, output = 0.0000, 0.0000

ErrorSig, IncomingkrrSig = 0.0000, 0.0000
Node [2]: input, output = 0.0000, 0.0000

ErrorSig, IncomingErrSig = 0.0000, 0.0000

=====>> LEVEL | <====
Node [7]: input, output — 3.8162, 0.0215

ErrorSig, IncomingErrSig = 0.0017, 0.0000
Node [8]: input, output = 1.8399, 0.1371

ErrorSig, IncomingErrSig = 0.0035, 0.0000

======> [EVEL 2 <====
Node [11]: input, output = 1.4747, 0.8148

ErrorSig, [ncomingErrSig = 0.0323, 0.1854
Node [10]: input, output = -4.9284, 0.0072

ErrorSig, IncomingErrSig = 0.0081, 0.0072
Node [9]: input, output = - 1.8581, 0.1598

FrrorSig, IncomingErrSig = 0.0000, 0.1598
Node [8]: input, output = 2.3903, 0.0832

ErrorSig, IncominglirrSig = 0.0138, 0.0832
T

> (PurifyLinks)
NIL

> (Noise .2)
NIL

>(setq *inPatts™ (1 £t 1 1) (1 1 00){(0011)(0000)))
(111 1)(1100)(0011)(0000))

> (setq *outPatts* *((1000) (0 1 00) (00 10) (000 1))
((1000)(0100)(0010)(000 1))

> (LeSetOutputCount 20)
Will print brief diagnostics every 20 epochs.
20

> (SetBreakCount 50)
Will break every 50 epochs.
50

> (Learn)

Diagnostics will be brief. (SetVerbosity).

Will break every 50 epochs.

Will print brief diagnostics every 20 epochs.

Will break at epoch 10000 to avoid non stabilizing nets.
Resetting epoch count to 0.

Epoch: 20 Error: 3.0557

Epoch: 40 Error: 2.8431

Entering a break loop on epoch 50, as per orders....

Break.

Broken at EVAL. Type :H for Help.
> >(ShowBechavior)

Response of net at epoch 50 :

IN: 1.0000 1.0000 1.0000 1.0000
OUT (desired): 1.0000 0.0000 0.0000 0.0000
ouT (actual): 0.3521 0.3143 0.2953 0.2387
Difference: 0.6479 0.3143 0.2953 0.2387
Error (summed squares): 0.6628

IN: 1.0000 £.0000 0.0000 0.0000
OUT (desired): 0.0000 1.0000 0.0000 0.0000
OUT (actual): 0.3185 0.3682 0.2387 0.2769
Difference: 0.3185 0.6318 0.2387 0.2769
Error (summed squares): 0.6330

IN: 0.0000 0.0000 1.0000 1.0000
OUT (desired): 0.0000 0.0000 1.0000 0.0000
OUT (actual): 0.2210 0.1571 0.4354 0.2973
Difference: 0.2210 0.1571 0.5646 0.2973
Error (summed squares): 0.4807

IN: 0.0000 0.0600 0.0000 0.0000
OUT (desired): 0.0000 0.0000 0.0000 1.0000
OUT (actual): 0.1795 0.2423 0.2911 0.3775
Difference: 0.1795 0.2423 0.2911 0.6225
Error (summed squares): 0.5631

Total error, for all inputs: 2.3396

> >

FEpoch: 60 Error: 1.5805
Epoch: 80 Krror: 0.6113
Epoch: 100 Error: 0.1748 .
Entering a break loop on epoch 100, as per orders....

Break.

Broken at KVAIL. Type :H for Help.
> >ur
Acceptable net successfully created! Epoch: 104

> (ShowBehavior)
Response of net at epoch 104 :

IN: 1.0000 1.0000 1.0000 1.0000
our (desired): 1.0000 0.0000 0.0000 0.0000
OUT (actual): 0.8115 0.1519 0.0998 0.0110
Difference: 0.1885 0.1519 0.0998 0.0110
Error (summed squares): 0.0687

The response to this input was acceptable!

IN: 1.0000 1.0000 0.0000 0.0000
OUT (desired): 0.0000 1.0000 0.0000 0.0000

OuUT (acbual): 0.1256 0.8284 0.0033 0.1785
Difference: 0.1256 0.1736 0.0033 0.1765
Error (summed squares): 0.0771

The response to this input was acceptable!

IN: 0.0000 0.0000 1.0000 1.0000
OUT {desired): 0.0000 0.0000 £.0000 0.0000
OUT (actual): 0.1947 0.0025 0.8320 0.0962
Difference: 0.1947 0.0025 0.1680 0.0962
Error (summed squares): 0.0754

The response to this input was acceptable!

IN: 0.0000 0.0000 0.0000 0.0000
OUT (desired): 0.0000 0.0000 0.0000 1.0000
OUT (actual): 0.0037 0.0731 0.1016 0.8053
Difference: 0.0037 0.0731 0.10168 0.1947
Error (summed squares): 0.0538

The response to this input was acceptable!

Total error, for all inputs: 0.2747

> (ShowLinks)

Current contents of *links*:

Link <22>: [8 >8], weight, delt, prevDelt
(6 >9], weight, delt, prevDelt
[6 >10], weight, delt, prevDelt
[8 >11], weight, delt, prevDelt
[7 >8], weight, delt, prevDelt
[7 >9], weight, delt, prevDelt
Link <18>: [7 >10], weight, delt, prevDelt
[
{
[
[
[
[

Link <21>:
Link <20>:
Link <19>:
Link <18>:
Link <17>:

Link <15>:
Link <14>:
Link <13>:
Link <12>:

Link <11>: [3 >7], weight, delt, prevDelt
Link <10>: [4-- >6], weight, delt, prevDelt
Link <9>: [4 7], weight, delt, prevDelt

Link <8>:
Link <7>:
Link <6>:

>
5 >8], weight, delt, prevDelt
5 >17], weight, delt, prevDelt

Link <4>:
Link <3>:
Link <2>:
Link <I1>:

NIL

], weight, delt, prevDelt
2 >7], weight, delt, prevDelt
3 >8], weight, delt, prevDelt
¥],

]

7 >11], weight, delt, prevDelt

[

[

[

[Bias >8], weight, delt, prevDelt
Link <5>: [Bias >9], weight, delt, prevDelt =

[

[

[

[

Bias >8], weight, delt, prevDelt
Bias >7], weight, delt, prevDelt

e

=2
5.3485 0.0000 0.0297

)

=1

1

2017 0.0000 0.0198

5.9742 0.0000 0.0289

2.8851 0.0000 0.0281
.7861 0.0000 0.00186
3.2883 0.0000 0.0092
2.8566 0.0000 0.0282

5.6822 0.0000 0.0321
9239 0.0000 0.0014
2.6946 0.0000 0.0009
.6558 0.0000 0.0014
2.8630 0.0000 0.0009
3.2085 0.0000 0.0086

1.3704 0.0000 0.0021
3.

1350 0.0000 0.00886
.2590 0.0000 0.0021
5.0176 0.0000 0.0366
3.3115 0.0000 0.0027

Bias >10], weight, delt, prevDelt = 0.4671 0.0000 0.0199
Bias > 11}, weight, delt, prevDelt = 2.1295 0.0000 0.0158

1.4857 0.0000 -0.0120
3.56992 0.0000 0.0158

