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The LHCb experiment at the Large Hadron collider is a unique laboratory for

studying the properties of heavy quarks. The physics program of the experiment

includes studies of CP violation, measurements of CKM matrix parameters, searches

for rare decays, quarkonia studies, and other flavor physics, forward physics, and new

physics topics. This thesis presents an analysis of the semitauonic branching fraction

B(B+
c → J/ψτ+ντ ) of the doubly-heavy B+

c meson, which serves as a powerful probe

of the universality of the couplings of leptons (e, µ and τ) in electroweak interactions.

The ratio of this branching fraction to the semimuonic branching fraction B(B+
c →

J/ψµ+νµ) is measured to be R(J/ψ) = 0.71 ± 0.17 (stat) ± 0.18 (syst). A second

topic of the thesis is the creation of a new algorithm for tagging the flavor of neutral

mesons in CP violation studies, and a powerful method for calibrating these flavor

tagging algorithms via binomial regression.
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Chapter 1: The Standard Model

1.1 Particles and forces of the Standard Model

The Standard Model (SM) is the quantum field theory of three gauge forces

(the electromagnetic, weak, and strong forces) that act on quarks and leptons,

the particles that comprise matter. The matter particles of the SM are all spin-

1/2 fermions, and come in three families (or generations) with increasingly higher

masses. There are two classes of matter particles: quarks and leptons. In each gen-

eration, there are two quarks and two leptons, shown in Table 1.1. The vast bulk of

everyday matter is made up of fermions from the first and lightest generation: the

up and down quarks (u and d), which combine to form protons and neutrons, and

the electron (e). The particles of the second and third generation are essentially

identical, except that they are more massive (with the possible exception of the

neutrinos, whose masses are very small and have not yet been directly measured).

The top quark is nearly five orders of magnitude more massive than the up and

down quarks, while the tau is over three orders of magnitude more massive than

the electron [1]. These higher mass particles are generally unstable and decay into

first-generation particles. There is, so far, no confirmed explanation for this pattern.

The SM also contains force carrying particles, which are all vector bosons.

The particle that carries the electromagnetic force is the massless photon. The

weak force is transmitted by massive particles called the W± and Z (which have

about 80 and 90 times the mass of the proton). The strong force is transmitted by
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Table 1.1: The matter particles of the SM

First Second Third

Quarks
Up-type u(p) c(harm) t(op)

Down-type d(own) s(trange) b(ottom)

Leptons
Massive e µ τ

Neutrinos νe νµ ντ

massless particles called gluons. All these forces are described by non-abelian local

gauge theories [2]. The gauge structure of the SM is SU(3)C × SU(2)L × U(1)Y .

The SU(3)C component is responsible for the strong force, and its gauge theory

is known as quantum chromodynamics (QCD). The SU(2)L × U(1)Y component

for the electroweak force. The SM contains a scalar field called the Higgs that is

responsible for breaking the electroweak gauge group SU(2)L × U(1)Y down to the

electromagnetic abelian subgroup U(1)γ through a mechanism called spontaneous

symmetry breaking [3]; the gauge theory of this abelian symmetry is known as

quantum electrodynamics (QED). Symmetry breaking simultaneously generates the

masses of all the elementary particles, including, in particular, the masses of the

W± and Z bosons, which is responsible for the eponymous weakness of the weak

force. The Higgs particle was the last particle of the SM to be discovered [4, 5].

1.2 The electroweak force and CP violation

Historically, the theoretical development of the electroweak force tracked ex-

perimental findings regarding radioactive decay, flavor changing currents, and parity

and charge–parity (CP ) violation, in a complicated fashion. Parity violation was

first discovered in the beta decay of cobalt-60, after predictions made by Lee and

Yang [1] motivated by observations of kaon decays. In the beta decay process, a neu-

tron changes to a proton via the process d→ u e− ν̄e. Eventually it was learned that

this process was due to the coupling of a charged vector boson W+ to the u, d and
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e−, ν̄e pairs. The parity violation observed in cobalt-60 beta decay was complete —

the process involved only the left-handed components of fermions and right-handed

components of antifermions [1]. In later experiments, such as the detection of certain

neutrino scatterings in 1973 and forwards-backwards asymmetry in e+e− collisions,

evidence was found for the neutral Z boson. In contrast to processes involving W±,

the parity violation arising from Z interactions was found to be only partial. A the-

oretical explanation for these effects, termed the weak force, was eventually found

in a chiral SU(2)L×U(1)Y gauge theory, which also encompasses electromagnetism.

1.2.1 The SU(2)L × U(1)Y electroweak force

Before spontaneous symmetry breaking, the coupling terms in the SM La-

grangian of fermions ψ to the SU(2)L × U(1)Y electroweak force are

− g
(
ψ̄γµT iψ

)
W i
µ − g′

(
ψ̄γµY ψ

)
Bµ (1.1)

where T i = τ i/2 are the generators of the two-dimensional representation of SU(2).

The operators T i and Y act on the fields, and their eigenvectors and corresponding

eigenvalues are shown in Table 1.2. Notably, the eigenvectors are not simply the

SM particles, but are instead the left-handed and right-handed chiral components

of the particles. The pairs (uL, dL) and (νeL, eL) transform as doublets, while the

right-handed chiral states transform as singlets (the same pattern and eigenvalues

hold in the second and third generations of quarks and leptons). The handedness

of these couplings accounts for the experimental observation of parity violation.

In this gauge theory, the parity violation from each of the the charged W±
µ =

W 1
µ ∓W 2

µ and neutral W 3
µ bosons is maximal. This contrasts with the experimen-

tal observations of maximal parity violation in processes involving weak charged

currents but partial parity violation in ones involving weak neutral currents. This
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discrepancy is explained by spontaneous symmetry breaking, after which the mass-

less photon field Aµ and massive Z boson field Zµ, eigenvectors of the mass matrix

MW 3B, are orthogonal linear combinations of W 3
µ and Bµ. The SO(2) rotation



Z

A


 =




cos θW − sin θW

sin θW cos θW






W 3

B




replaces the kinetic terms in the Lagrangian for Z and A with covariant ones for B

and W 3. Defining tan θW = g′/g, called the Weinberg mixing angle, the coupling

terms after the rotation become

− eJµγAµ − gZJµZZµ −
g√
2

{
J†µW+

µ + JµW−
µ

}
(1.2)

where gZ =
√
g2 + g′2 and e = gg′/

√
g2 + g′2. The terms Jµγ , JµZ , and Jµ are the

electromagnetic current, the weak neutral current, and the weak charged current,

given by

Jµγ = ψ̄γµQψ (1.3)

JµZ = − 1

sin2 θW
ψ̄γµQψ + ψ̄γµT 3PLψ (1.4)

Jµ = Ψ†σ̄µτ−Ψ (1.5)

J†µ = Ψ†σ̄µτ+Ψ (1.6)

where Q = T 3 + Y is the electric charge operator (Table 1.2). The weak charged

current is written in Weyl notation, where Ψ is a doublet wavefunction that stands

for (uL, dL) or (νeL, eL), and τ± = (τ 1 ± iτ 2)/2 are the 2 × 2 projection matrices

with a single non-zero entry 1 in the upper right (+) or lower left (−) corner. The

coupling of Aµ to Jµγ reproduces QED, while Zµ-to-JµZ produces a partial parity

violating effect. Because the Z is massive while the photon γ is massless, the QED
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Table 1.2: Electroweak eigenvalues for first-generation fermions [6].

T T 3 Y Q
uL

1
2

1
2

1
6

2
3

dL
1
2
−1

2
1
6
−1

3

uR 0 0 2
3

2
3

dR 0 0 −1
3
−1

3

T T 3 Y Q
νeL

1
2

1
2
−1

2
0

eL
1
2
−1

2
−1

2
−1

eR 0 0 −1 −1

Table 1.3: C, P , and CP transformations of operators appearing in the La-
grangian [6, 7]. Here ψcL,R = ∓iσ2ψ∗R,L and (−1)µ = 1 for µ = 0 and −1 for µ =
1, 2, 3. Both operations also transform four-vectors as x = (x0, ~x) → x′ = (x0,−~x).
This table ignores phases that cancel in the Lagrangian.

Object C P CP
ψL,R ψcL,R ψR,L ψcR,L
W±µ W∓µ −(−1)µW±µ −(−1)µW∓µ

Aµ A†µ −(−1)µAµ −(−1)µA†µ

force is long-range and in general much stronger, while the weak neutral force is

suppressed at low energies by a factor 1/M2
Z and the charged weak force by a factor

1/M2
W .

1.2.2 CP symmetry

The simple one-generation electroweak force described in the previous para-

graphs violates parity, but is invariant under the combined charge-parity, or CP , op-

eration. Recall that the W i bosons couple left-handed particles and right-handed an-

tiparticles. The parity operator P transforms left-handed particles to right-handed

particles. Since the latter do not couple to W±, P is not a symmetry of the weak

force. Subsequently performing the charge conjugation operator C, however, trans-

forms these right-handed particles to right-handed antiparticles. Thus, the com-

bination of these two operators is a symmetry of the weak force. The explicit

transformations caused by C, P , and CP are given in Table 1.3.

For now, consider only the first and lightest generation of quarks and leptons,
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ignoring their heavier cousins. Since CP takes ψL,R → ψcR,L, the left-handed weak

charged current for Ψ = (ψ1L, ψ2L) transforms into

Jµ = ψ†2Lσ̄
µψ1L −→

CP
ψc†2Rσ̄

µψc1R = −ψ†1Lσµψ2L = −(−1)µJ†µ, (1.7)

where the penultimate equality is due to an identity derivable from the Fierz identi-

ties [6]. Similarly, J†µ is transformed to −(−1)µJµ by the CP operator. Simultane-

ously, the CP transformation also exchanges the charged bosons W+ and W− and

flips their parity (W±µ → −(−1)µW∓µ), so the coupling terms simply exchange:

J†µW+
µ ←→

CP
JµW−

µ (1.8)

Meanwhile, the weak neutral current (1.4) and electromagnetic current (1.3)

are both Hermitian, i.e., J†µZ = JµZ and J†µγ = Jµγ . Consequently JµZ → −(−1)µJµZ

and Jµγ → −(−1)µJµγ under CP . Since the neutral vector bosons transform as

Zµ → −(−1)µZµ and Aµ → −(−1)µAµ, the weak neutral and electromagnetic

coupling terms are unchanged under CP :

JµZZµ −→
CP

JµZZµ, J
µ
γAµ −→

CP
JµγAµ (1.9)

The entire electroweak Lagrangian as presented so far is invariant under the CP

operation. The neutral coupling terms (involving the γ and Z) are unchanged while

the charged terms trade places.

1.2.3 Quark mixing and CP violation

The simplest incorporation of the two heavier generations of quarks and lep-

tons into the theory would be achieved by triplicating all the first-generation terms
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in the Lagrangian. The weak charged current would then be

J†µ =
3∑

i=1

u†i σ̄
µdi (1.10)

where u1, u2, and u3 represent the left-handed up-type quarks (up uL, charm cL,

top tL); similarly d1, d2, and d3 represent the left-handed down-type quarks (down

dL, strange sL, and bottom bL). Conservation laws would then imply the existence

of a host of stable mesons and hadrons containing strange and bottom quarks.

However, all matter containing second or third generation quarks decays quickly.

The semileptonic decay of charged kaons, for example, is mediated by the process

s → u e− ν̄e, in which the s quark takes the place of a d quark in a flavor changing

charged current (FCCC).

This quark mixing can be explained if the three eigenstates of the down-type

quarks that couple to the electroweak force are slightly skewed from the three mass

eigenstates. In principle, the weak eigenstates of the up-type quarks could be skewed

as well, but a simultaneous unitary rotation of both the up-type and down-type

families leaves all the weak coupling terms invariant, so there is always freedom to

redefine the quark fields so that all mixing occurs in the down-type family. The

mass eigenstate s would then not be completely orthogonal to the weak eigenstate

d′, allowing for a FCCC as in charged kaon decays. Cabibbo used this basic idea

to explain strangeness-violating decays before it was known that there were three

generations of quarks. In this model, the weak eigenstates d′, s′ are related to the

mass eigenstates d, s by



d′

s′


 =




cos θc sin θc

− sin θc cos θc






d

s


 (1.11)

where θc is the Cabibbo angle and experimentally sin θc ∼ 0.23 [6]. This mechanism
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introduces a factor of sin θc into the amplitude for the strangeness-violating decay

s→ u e− ν̄e, so the probability of this decay is suppressed relative to d→ u e− ν̄e by

a factor of 1/ sin2 θc ∼ 20.

Denoting the down-type quark mixing matrix by Vij, the skewed weak charged

current becomes

J†µ =
∑

i,j

u†i σ̄
µVijdj (1.12)

Meanwhile, the electromagnetic and weak neutral currents are unchanged, since

they do not couple up-type quarks to down-type quarks; because of the unitarity of

Vij, the down-down couplings are

JµZ,γ =
∑

i,j,k

d†iV
†
ijσ̄

µVjkdk =
∑

i

d†i σ̄
µdj. (1.13)

The crucial consequence is that the weak neutral current is entirely flavor diagonal

and cannot be responsible for tree-level flavor changing neutral currents (FCNCs).

As an example, a decay of a neutral kaon K0 = |s̄d〉 like K0 → µ+µ− or K0 → ππ(π)

changes flavor (∆S = 1). If the Z boson could couple to s̄d, the branching fraction of

the decay K0 → µ+µ− would be enhanced beyond experimental bounds (Fig. 1.1a).

Instead, this FCNC must be mediated by loop-level box diagrams (Fig. 1.1b) with

a much-suppressed amplitude. Furthermore, even this suppressed amplitude for

K0 → µ+µ− appeared to large originally, leading to the proposed existence of the

c, which would resolve the discrepancy via the GIM mechanism.1

This quark mixing is a change of basis in the down-type family, and to preserve

the normalization of the eigenstates it must be unitary. So, with N generations

of quarks, it is accomplished by an N × N unitary matrix, called the Cabibbo-

1The amplitude of each box diagram is proportional to the mass of the quark in the loop. Still,
the remnant FCNC is too large if the only quarks in the theory are the u, d, and s, because only
the u can appear in the box loop due to charge conservation. The existence of the charm quark was
proposed by Giorgi, Iliopoulos, and Maiani because it introduces a box diagram with opposite sign,
partially cancelling the u amplitude [1, 6]. This cancellation is referred to as the GIM mechanism
after its creators.
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K0



 Z̃?
d

s̄

µ−

µ+

(a) Hypothetical (vanishing) tree level
FCNC

K0





c

W−

νµ

W+

d

s̄

µ−

µ+

Vcd

V ∗cs

(b) Box diagram FCNC

Figure 1.1: FCNCs in K0 decay

Kobayashi-Maskawa (CKM) matrix VCKM [8] when N = 3. In general, an N × N

unitary matrix has N2 real parameters, but some of these do not represent physical

degrees of freedom. Without skewing flavor states, there is freedom to redefine the

2N quark flavors by 2N − 1 relative phase differences. Eliminating these artificial

degrees of freedom that can be absorbed by quark fields, just (N−1)2 real parameters

in left the CKM matrix [7]. For N = 2, this is just one — the Cabibbo angle θc. For

N = 3, there four irreducible real parameters. The 3× 3 CKM matrix is generally

labelled

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




(1.14)

There are various parameterizations that relate these coefficients to the four inde-

pendent paramete.lkprs, e.g., the Wolfenstein parametrization (see [6]). As shown

by Kobayashi and Maskawa, the matrix can be parametrized by three real constants

and one complex phase [8]. The weak charged current can be written as a sum over

quark flavor pairs:

J†µ =
∑

i∈{u,c,t}
j∈{d,s,b}

u†i σ̄
µVijdj

Eq. (1.7) now only holds only if Vij = V ∗ij . Only in that case does the CP transforma-

tion simply exchange J†µW+
µ and JµW−

µ . This was the case for the two-generation

Cabibbo matrix. Unless the phase parameter is exactly zero, this is not the case
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K0





c

W−

c

W+

d

s̄

s

d̄

Vcd

V ∗cs 


K̄0

Figure 1.2: K0–K0 mixing receives contributions from internal loops with the three
up-type quarks (q = u, c, t) and shows CP violation due to the phase differences
between VqsVqs

∗ and Vqs
∗Vqs.

for the three-generation CKM matrix. Each charge-raising vertex in a Feynman

diagram for some process M → f is associated with a Vab coefficient, while each

charge lowering current comes with a V ∗ab coefficient. The amplitude has an overall

factor that can be complex, and the argument of this factor is the weak phase of the

diagram. In the CP conjugate Feynman diagram representing the process M → f ,

the charge-raising vertices become charge-lowering vertices, and vice versa. Thus,

the weak phase of M → f is the opposite of the weak phase of M → f , and CP

violation is introduced to the Standard Model.

This alone does not cause CP violation — though the amplitudes of the CP -

conjugate processes differ by a phase, their magnitudes (and hence probabilities)

are equal. Instead, there must be interference between different possible diagrams

for a process A → B to have CP violation. Chapter 5 discusses several different

mechanisms by which such interference might appear in B meson decays. In general,

experimentally measured asymmetries in CP conjugate processes can be used to

determine the complex coefficients of the CKM matrix.

1.2.4 CP violation in the neutral kaon system

The discovery of CP violation in decays of neutral kaons in 1964 [9] predated

the proposal of the CKM matrix in 1973. Since the CKM mechanism requires three

generations to produce CP violation, this discovery partly motivated the prediction

of the bottom and top quarks, eventually discovered in 1977 and 1995 [10,11]. The
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study of neutral mesons has historically been very fruitful, and research continues

today with the study of neutral D0 mesons, B0 mesons, and B0
s mesons.

A neutral kaon is a bound state K0 = |s̄d〉, and its antiparticle is K0 = |sd̄〉.

Both are uncharged under all SM forces and are free to mix due to couplings in the

effective Hamiltonian generated by weak interaction diagrams such as in Fig. 1.2.

Without CP violation, the mass eigenstates would be the orthogonal combinations

|K1,2〉 =
1√
2

(
|K0〉 ∓ |K0〉

)
. (1.15)

These were originally identified with the short-lived K0
S state and long-lived K0

L

state that are observed experimentally. “Short” and “long” here are relative terms

because both particles are quite long-lived when compared to other particles, with

lifetimes of 90 ps and 51 ns respectively [12]. Assuming no CP violation, the two

states would be CP eigenstates, with corresponding eigenvalues 1 for the K0
S state

and −1 for the K0
L state.

Two final states that the K0
S and K0

L could potentially decay into are ππ

(or 2π) and πππ0 (or 3π), where ππ could be π+π− or π0π0. The 2π state is

a CP eigenstate with eigenvalue 1, while the 3π state has eigenvalue −1 (except

when the pion system has internal angular momentum, in which case the decay is

suppressed). According to CP invariance, the K0
S should decay predominantly to

2π (and occasionally to P-wave 3π) while the K0
L should decay exclusively to 3π.

Since the K0
L is much longer-lived than the K0

S , a pure K0
L beam can be created out

of a mixed neutral kaon beam (produced by scattering pions on a beryllium target)

by letting the beam propagate some sufficient distance — after 300 decay lengths of

the K0
S , only about 40% of the K0

L mesons in the beam will have decayed. In their

seminal experiment, Christenson, Cronin, Fitch, and Turlay found unambiguous

evidence of the CP violating decay K0
L → 2π [9].
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This unexpected discovery inspired the development of the CKM mechanism

and the proposal of a third generation of quarks. The phenomenology of CP violation

in the neutral kaon system has been studied in great detail. The real K0
S and K0

L

are not simply the K1 and K2 states but instead [6]

|KS,L〉 =
|K1,2〉+ ε̃|K2,1〉√

1 + |ε̃|2
(1.16)

where ε̃ is a parameter measuring CP violation that occurs in the mixing of neutral

kaons. The source of this CP violation in mixing comes from complex phases in

the box diagrams responsible for K0–K0 mixing (Fig. 1.2). Now K0
L is allowed to

decay to 2π because it contains a small K1 admixture. This is the dominant cause

of CP violation in neutral kaons; however, a smaller source of direct CP violation

arises from interference between tree-level and loop-level decay amplitudes. These

manifestations of CP violation — indirect (via mixing), direct (via decay), and via

the interference between mixing and decay — define the broad types of CP violation

for all neutral meson systems, including D0–D0, B0–B0, and B0
s–B

0
s. They are

described in more detail in Chapter 5.

1.3 Lepton flavor universality

In the Standard Model, the couplings of all flavors of leptons to the gauge

bosons are identical, with the three distinguished only by their masses (i.e., by

their couplings to the Higgs boson). Due to lepton universality, differences between

decays with electrons, muons, or taus in the decay final state arise only because

of the different masses of the three leptons. The effects of these masses are often

considered to be reliably calculable, allowing experimental tests of lepton flavor

universality. Many studies have looked for signs of lepton flavor non-universality,

and several have turned up possible signs of tension. Most relevant to this thesis
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Table 1.4: Measurements of semitauonic B → D(∗)τν branching fractions. The Belle
measurement marked sl is performed with semileptonic tagging, and the other with
hadronic tagging. The measurements marked † are performed using hadronic decay
modes of the τ .

Experiment R(D) R(D∗)
BaBar [16] 0.440± 0.058± 0.042 0.332± 0.024± 0.018
Belle [17] 0.375± 0.064± 0.026 0.293± 0.038± 0.015
Bellesl [18] – 0.302± 0.030± 0.011
Belle† [19] – 0.270± 0.035+0.028

−0.025

LHCb [20] – 0.336± 0.027± 0.030
LHCb† [21] −− 0.285± 0.019± 0.029
Average [13] 0.407± 0.039± 0.024 0.304± 0.013± 0.007
SM [22,23] 0.300± 0.008 0.252± 0.003

are the observables R(D) and R(D∗), defined by

R(D(∗)) =
B(B(0,−) → D(∗−)τ+ν̄τ )

B(B(0,−))→ D(∗−)µ+ν̄µ)
, (1.17)

which have been measured by the BaBar, LHCb, and Belle collaborations. Ac-

counting for their correlations, the combined measurements of R(D) and R(D∗)

differ from the SM predictions by 4.1σ according to the HFLAV group [13]. These

measurements and predictions are shown in Table 1.4, and a graphical representa-

tion is shown in Fig. 1.3. Other recent LHCb measurements with hints of new flavor

physics include comparisons of the branching fractions of the decays B → K(∗)µ+µ−

and B → K(∗)e+e− [14, 15].

Many models of beyond the standard model (BSM) physics produce explicit

lepton flavor non-universality. Extra Higgs doublets, present in BSM theories such

as supersymmetry, increase the number of processes that involve the lepton Yukawa

couplings and can lead to lepton flavor non-universality. Couplings to a charged

Higgs boson H+ have been discussed as a possible cause of deviations in R(D(∗)).

A popular suggestion for sources of lepton flavor non-universality are lep-

toquarks, a moniker for any hypothetical bosons compatible with the SM gauge

14



R(D)
0.2 0.3 0.4 0.5 0.6

R
(D

*)

0.2

0.25

0.3

0.35

0.4

0.45

0.5 BaBar, PRL109,101802(2012)
Belle, PRD92,072014(2015)
LHCb, PRL115,111803(2015)
Belle, PRD94,072007(2016)
Belle, PRL118,211801(2017)
LHCb, FPCP2017
Average

SM Predictions

 = 1.0 contours2χ∆

R(D)=0.300(8) HPQCD (2015)
R(D)=0.299(11) FNAL/MILC (2015)
R(D*)=0.252(3) S. Fajfer et al. (2012)

HFLAV

FPCP 2017

) = 71.6%2χP(

σ4

σ2

HFLAV
FPCP 2017

Figure 1.3: Measurements of semitauonic B → D(∗)τν branching fractions, repro-
duced from Ref. [13].

symmetries that carry both baryon and lepton number [2,12]. Many BSM theories,

in particular supersymmetry and grand unified theories, generate different variety

of leptoquarks: scalar or vector, color singlet or color triplet, and weak singlet,

doublet, or even triplet. Irrespective of their origin, leptoquarks would couple di-

rectly to lepton–antiquark anti-lepton–quark pairs, with different couplings for the

three generations of quarks and leptons. If the leptoquarks couple directly to the

quark mass eigenstates, no lepton flavor non-universality is created. However, if

the couplings were to a different eigenbasis of quarks, in the same manner as the

weak couplings, lepton flavor non-universality would be generated indirectly by lep-

toquark mediated four-fermion couplings. Leptoquark models that explain recent

flavor anomalies without violating other experimental bounds are possible [24].

Another class of models turn Lµ−Lτ into a gauge symmetry, directly violating

universality [25,26]. In the SM, the conserved quantities Le−Lµ, Le−Lτ , and Lµ−Lτ
correspond to anomaly-free global U(1) symmetries. It is possible to promote one

of these three to a local symmetry mediated by a heavy neutral boson Z ′. 2 Of the

2In fact it is a common philosophical position (originally promoted by Yang and Mills) that all
possible anomaly-free symmetries should be local; one impetus for this belief is that the promotion
of all possible U(1) anomaly-free global symmetries leads to hypercharge (and thus electric charge)
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three possible choices, Lµ−Lτ has the least stringent experimental bounds. The new

Z ′ gauge boson would acquire mass through the spontaneous symmetry breaking of

U(1)Lµ−Lτ , via a new electroweak singlet Higgs field carrying an Lµ − Lτ quantum

number (preventing Z–Z ′ mixing). The breaking of this symmetry does not break

the global symmetries responsible for the separate conservation of the lepton family

numbers Le, Lµ, and Lτ . Fermions of the SM would couple to the Z ′ with a charge

Lµ − Lτ (i.e., the new particle would only couple µ, νµ, τ , and ντ ). Each vertex

conserves charge and the lepton family numbers (e.g., it can only couple to µ+µ− or

τ+τ−). However, the new couplings available to µ and τ but not to e destroy lepton

flavor universality.

quantization, which is accidental within the SM [25].
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Chapter 2: The LHC and LHCb detector

2.1 The Large Hadron Collider

The LHCb detector is located at the point 8 interaction area of the Large

Hadron Collider (LHC), a proton-proton collider at CERN [27]. CERN, founded

in 1952, is an intergovernmental organization dedicated to nuclear and high en-

ergy physics, located in Meyrin, Switzerland, a suburb of Geneva.1 At 26.7 km in

circumference, the collider itself straddles the Franco-Swiss border, about a hun-

dred meters underground (Fig. 2.1). The LHC is a roughly circular synchrotron

that circulates two parallel beams of protons in opposite directions. It was built

in the preexisting tunnel dug for the Large Electron Positron (LEP) collider. Pro-

tons enter the LHC with an energy of 450 GeV from the Super Proton Synchrotron

(SPS), an older synchrotron that now serves as the final injector for the LHC.2 The

magnetic field that guides the protons around the LHC ring is provided by super-

conducting dipole magnets placed around the LHC ring and cooled to < 2 K by

liquid helium. Since the proton beams have the same charge and must be circulated

in opposite directions to collide, the LHC ring contains two separate beampipes in

which the dipole magnets produce oppositely oriented fields. As the protons are

injected, the magnets maintain about a 0.54 T field. The protons are accelerated

1CERN was originally an acronym for Conseil Européen pour la Recherche Nucléaire, but its
official long name is now European Organization for Nuclear Research.

2Built in 1976, the SPS was originally a particle collider, and the site of the UA1 and UA2
experiments where the first signals of the W and Z bosons were found. Protons are injected into
the SPS at 25 GeV from the Proton Synchrotron (PS), built in 1959, itself in turn originally a
final-stage collider.
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Figure 2.1: The LHC collider [28].

in several straight radio-frequency (RF) cavities, and the dipole magnet fields are

correspondingly ramped up. The RF cavities also compensate for losses from syn-

chrotron radiation. In the first two years of operation (2011 and 2012), known as

Run I, the LHC dipole magnets operated at 4.1 T and 4.7 T, producing pp collisions

at center-of-mass energies of 7 TeV and 8 TeV, respectively. After a brief pause for

maintenance and upgrades, in 2015 the LHC reached its maximum collision energy,

ramping the dipole magnetic fields up to 7.7 T and producing 13 TeV pp collisions

(Run II).

The protons travel around the LHC in a few thousand bunches, separated

by 50 ns during Run I and by 25 ns in the current Run II. The rate at which pp

interactions occur is the product of the pp collision cross section and the luminosity

of the collisions, which can vary for the different experiments located at the collider.

The luminosity is proportional to the product of the number of protons in the

two colliding bunches, and to the average collision rate of bunches (equal to the

number of bunches per beam times the revolution frequency). The luminosity is also
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inversely proportional to the square of the transverse profile (i.e., width) of the beam;

focusing the beam is critical to achieve a high luminosity. The LHC has reached

a peak luminosity of 1× 1034 cm−2 s−1 for the CMS and ATLAS experiments and

4× 1032 cm−2 s−1 for the LHCb experiment. The luminosity at LHCb is intentionally

lowered by focusing the beams to a wider transverse profile, and by separating the

beams and reducing the area of their overlapping profiles. During the fill, while

the number of circulating protons decreases due to collisions with each other and

with the accelerator material, the beams at the LHCb interaction point are brought

closer together to maintain a roughly constant luminosity.

The LHC’s magnetic optics system also includes a large number of quadrupole

and sextupole magnets used for focusing and controlling the proton beams. As the

beams are injected into the LHC, their transverse profile has a width of a few cen-

timeters. Before accelerating the protons to their maximum energy, the beams must

be focused to a transverse profile of a few millimeters. At the interaction points, the

beams are further focused to a transverse profile on the order of 50 µm (for CMS

and ATLAS) to reach the target luminosity for physics data-taking. Furthermore,

the counter-circulating beams must be precisely guided to intersect at several in-

teraction points where the various detectors are located. In the interaction regions

of the experiments, the beams share the same beampipe. To prevent bunches from

colliding at locations other than the desired interaction point, they are displaced to

the left and right of the beampipe’s central axis except at the interaction point.

2.2 The LHCb Detector

The LHCb detector is a single-arm forward spectrometer located around the

beampipe at interaction point 8 of the LHC (see Fig. 2.2). The acceptance of the

detector covers the angular ranges 10 mrad to 250 mrad in the vertical direction and

10 mrad to 300 mrad in the horizontal direction, corresponding roughly to pseudo-
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Figure 2.2: The LHCb detector [29]. In the center lies the dipole bending magnet
(blue). Upstream (decreasing z) lie the Vertex Locator (VELO) and TT tracking
stations, and the RICH1 station. Downstream (increasing z) lie the IT and OT
trackers (in three layers labelled T1, T2, and T3), RICH2 station, ECAL, HCAL,
and muon chamber.

rapidities in the range 1.6 < η < 4.9. Though not a general purpose detector like

its CMS and ATLAS counterparts, the LHCb detector operates during p–p, p–Pb,

and Pb–Pb collisions and the data collected is used for several categories of physics

studies. The primary focus of the LHCb collaboration is flavor physics: the study

of the decays of b-hadrons and c-hadrons. The collaboration also conducts research

in soft QCD and electroweak physics, for which the forward acceptance of LHCb is

complementary to the acceptances of CMS and ATLAS. Finally, the collaboration

has an active group studying heavy-ion collisions.

A complete overview of the entire LHCb detector is found in Ref. [30]. Pre-

sented here is a brief overview of the physics of bb production at the LHC and the

various components of the detector. LHCb is primarily a tracking detector, with

stations upstream and downstream of a dipole bending magnet. Behind these last

tracking stations are an electromagnetic and a hadronic calorimeter, and finally
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a muon detector, which figure prominently in LHCb’s trigger system. For particle

identification, particularly important for flavor physics, two ring-imaging Cherenkov

(RICH) detectors (one upstream and one downstream of the magnet) help distin-

guish charged pions, kaons, and protons. The calorimeters also help distinguish

electrons from other charged tracks and photons from neutral pions; the muon de-

tector separates muons from hadrons. These components are shown in Fig. 2.2. The

LHC beampipe is located along the central axis of the detector. The conventional

coordinate system used to describe the geometry of the detector calls the direction

of the beam z, while the vertical direction is y and the horizontal direction (perpen-

dicular to the cross section in the figure) is x. Particular attention will be paid to

how these components contribute to the analysis of the decay B+
c → J/ψτ+ντ and

to flavor tagging and CP violation measurements.

2.2.1 bb̄ production at a proton-proton collider

The production of b-hadrons in proton–proton collisions at the LHC (or, pre-

viously, in proton–antiproton collisions at the Tevatron), via the production of bb

pairs, is complex. The momentum and energy of the proton are carried not just by

the valence quarks but also by the sea of gluons and qq̄ pairs that bind the valence

quarks together. Each momentum-carrying element of a proton is termed a par-

ton, and pp collision is typically a scattering between two partons (double parton

interaction occurs more rarely).

Several tree level diagrams for bb production are shown in Fig. 2.3; these

are heavily modified by soft QCD effects. For
√
s = 7 TeV collisions, the total

σ(pp→ bbX) cross section at the LHC is about 250 µb, and approximately doubles

at 13 TeV collisions. The prompt charm cross section σ(pp → ccX) is about an

order of magnitude larger, around 1.5 mb at 7 TeV, and again about double that at
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Figure 2.3: Tree-level bb̄ pair production in pp collisions

13 TeV.3 In comparison, the total inelastic cross section σ(pp→ X) is approximately

60 mb at 7 TeV and [32,33] and 75 mb at 13 TeV [34,35].

The bb pairs produced at the LHC are concentrated in the region of high

pseudorapidity [30]. Despite covering just 4% of the solid angle around the inter-

action point, LHCb’s acceptance includes about 25% of all bb pairs produced. The

LHCb collaboration has measured bb and prompt cc cross sections inside LHCb’s

acceptance of (75± 14) µb and (1.4± 0.1) mb at 7 TeV [36, 37]. Recent measure-

ments show that both cross sections have approximately doubled at 13 TeV, to

(154± 14) µb and 2.8 mb, respectively [38,39].

2.2.2 Tracking system

The LHCb tracking system measures the paths and momenta of charged tracks

emanating from the pp interaction point. A series of silicon and straw tube track-

ers detect the transverse positions of tracks at several locations along the beam

axis. To enable measurement of the tracks’ momenta, the detector features a non-

superconducting dipole magnet with a bending power of 4 T m to 5 T m [30]. Mo-

menta of particle tracks are calculated by measuring their deflection within the field.

The geometry of the magnet is unique: two saddle-shaped aluminum coils are yoked

inside an iron return, and face each other across a gap that serves as a window

3These approximate calculations were made using the MadGraph simulation software [31], re-
quiring the b and c quarks to have a pT > 1 GeV and η < 5.
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for the passage of the charged tracks downstream. In the cross section shown in

Fig. 2.2, the aluminum coils are colored silver, and the iron return blue. During

data taking, the polarity of the magnet can be flipped, exchanging the way posi-

tively and negatively charged tracks bend in the field. This allows the measurement

of differences in the acceptance efficiencies for oppositely-charged tracks that are

due to the geometry of the detector, an important control factor in measurements

of CP violation.

Tracking technologies in LHCb

There are two basic tracking detector technologies used at LHCb: silicon mi-

crostrip detectors and several variants of proportional counters. A silicon microstrip

detector is created from a silicon wafer doped in a p+-on-n or n+-on-p configura-

tion, forming a semiconductor junction. A high reverse bias voltage, up to 500 V,

is applied across the wafer, accentuating the depletion region inside the junction

and reducing leaking current. A high-energy charged particle passing through the

silicon wafer liberates a large number of electron-hole pairs; the typical ionization

energy required to create a single pair is just 3 eV [40]. In the influence of the high

electric field, these electrons and holes travel to the opposite collection surfaces of

the wafer. The collection time for a silicon sensor is typically on the order of 10 ns.

The silicon sensor is etched with microstrips of a given width, or pitch, typically on

the order of 50 µm to 200 µm. These are electrically insulated from each other and

are read out separately. This provides a measurement of one coordinate of the hit’s

position. The baseline resolution of such a measurement is equal to the pitch of the

sensor divided by
√

12. Charged particles often deposit energy into several adjacent

strips; examining this charge-sharing can improve the baseline resolution. In short,

silicon microstrip detectors take up a small volume in the detector (a benefit but

also a limitation in terms of coverage) and have excellent position precision.
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In a proportional counter, the role played by the solid silicon bulk in a silicon

detector is played instead by a gas, and role of the electrons and holes are given

to free electrons and ions. A charged particle passing through gas ionizes the gas

molecules to produce electron-ion pairs. Because of the low density of the gas,

and because the required ionization energy is typically 30 eV [40], the number of

free electrons can be quite small. In the presence of a large electric field, as high

as 1× 106 V m−1, however, these free electrons accelerate to high enough energies

to ionize further gas molecules, creating an avalanche of charge carriers. With a

prudent choice of gas and electric field strength, the signal created by the avalanche

is amplified, but remains proportional to the original signal. The potential difference

between an anode wire and a closely-located cathode creates a large enough electric

field to produce an avalanche, while localizing the avalanche near the anode.4 When

instrumented and operated as a drift tube, the spatial resolution of the tube is

determined by its measurement of the drift time — the elapsed time between the

initial ionization and the arrival of the signal at the anode. This timing measurement

is made in concert with a measurement of the expected arrival time of a charged

particle at the tube, and with appropriate calibration can provide a measurement

of the drift distance with good resolution.

This drift time varies considerably depending on the geometry of the counter,

but is typically much longer than for a silicon sensor. Because they are lighter and

cheaper, proportional counters can cover a larger volume than silicon detectors, but

with poorer spatial resolution.

Several variants of proportional counters are used at LHCb: straw tube drift

chambers, multi-wire proportional counters, and gas electron multipliers. In straw

tube drift chambers, each anode wire is surrounded by its own cathode tube, created

by winding a thin strip of foil like a tennis racket grip [40]. These straw tubes are

4The electric field created by this arrangement is typically inversely proportional to the distance
from the anode.
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then grouped into closely-packed arrays.

In a multi-wire proportional chamber (MWPC), an array or arrays of anode

wires are sandwiched in a plane between two cathode plates. With no walls sepa-

rating the separate anodes, the ionization from a charged track produces a signal on

several anodes, with the largest signal at the wire closest to the track. The achiev-

able spatial resolution is on the order of the distance between neighboring wires,

usually a few millimeters. A MWPC is typically used in settings where superior

resolution is not needed, such as in a muon detector where the path of the tracks

is already smeared due to multiple scattering. Because it is constructed from less

material and is cheaper, a MWPC can cover yet more volume than a straw tube

drift chamber.

A gas electron multiplier (GEM) is sometimes used in place of a MWPC when

the event rate is very high [40]. A GEM foil consists of two parallel conducting

plates on either side of an insulator, with a lattice of holes through all three layers.

Typically the thickness of this foil and the diameter of the holes are both on the

order of 100 µm. When a high voltage is applied across the two plates, a very large

electric field can be created inside the holes. A number of these foils (typically three,

known as a triple-GEM arrangement) are placed in a sequence along the z axis inside

a gas chamber with a smaller potential difference between the opposite ends. Free

electrons created on the left end by ionization drift in the z direction to the right,

and are squeezed through the high-field holes in the first GEM foil, producing charge

avalanches. This process repeats at the remaining GEM foils, leading to large gains.

Rather than grouping the charges together at the locations of the holes, the left-

right symmetry of the electric fields ensures that after passing through the holes, the

charges return to roughly their original xy position. The charge avalanches finally

reach the readout plane on the far end, where their positions are recorded, with a

spatial resolution on the order of the hole diameter. The large surface area of the
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readout plane is better equipped to handle large charge depositions than the many

thin wires in a MWPC.

An essential consideration for the design of the LHCb detector was to strike the

appropriate balance between maximizing the tracking efficiency and precision and

minimizing the amount of material between the interaction point and the calorime-

ters (and, of course, cost). Charged particles passing through matter lose energy

and can be rescattered, changing their direction. This can result in a loss of energy,

pointing resolution, and tracking efficiency (should the track become unrecogniz-

ably distorted). The LHCb’s design, in particular the number of tracking stations

and combination of detector technologies in use, reflects this balance. Two silicon

tracking stations are located upstream of the magnet: the Vertex Locator (VELO)

and the Tracker Turicensis (TT). Another silicon station, the Inner Tracker (IT), is

placed downstream of the magnet close to the beampipe. The TT and the IT are

together known as the Silicon Tracker (ST). The final tracking station is the Outer

Tracker (OT), a straw tube drift chamber located downstream of the magnet, at the

same z position as the IT, but further away from the beampipe. The muon system,

located behind the calorimeters, is not considered part of the tracking system, but

uses multi-wire proportional chambers.

VELO

The Vertex Locator (VELO) is a silicon microstrip detector located very near

the interaction point. It plays a key role in resolving vertices and measuring track

impact parameters (IPs) with high precision [30]. The shape of each VELO silicon

microstrip sensor is roughly a semi-annulus, with an inner radius of 8 mm and an

outer radius of about 4.2 cm in diameter. The opposite surfaces of each sensor are

etched with microstrips along the r and φ coordinates, respectively, and so the sensor

measures the polar coordinates of track hits. The inner gap of the annulus acts as
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an interaction region of the colliding proton beams. The detector consists of 42

of these sensors staggered along alternating sides of the beampipe over a distance

of about 1 m. The arc measure of each sensor is 182◦, so that when viewing the

xy profile of the VELO, the alternating sensors partially overlap each other [41].

Thus there is no gap in φ that a track can pass through without leaving hits. The

geometry of the VELO ensures that any track in LHCb’s angular acceptance window

(15 mrad < θ < 300 mrad) passes through at least three of its sensors.

A novel requirement of the VELO detector is that it must mechanically move

into place after the injection of the LHC beams and before operation. When the

collider is being filled with protons, the effective diameter of the proton beam, or

aperture, is wider than at operating conditions, and is eventually focused by the

LHC’s optics system. The final position in xy of the beam center after focusing

varies within a few millimeters. In operation, the innermost reach of the VELO

sensors is just 8 mm from the beam center. During the fills, the two halves of the

VELO must retract a distance of 3 cm from the beamline. Then, after the fill, the

two halves converge to the new proper position to within a tolerance of 20 µm to

100 µm (depending on the degree of freedom). The VELO successfully meets this

engineering challenge.

Silicon Tracker and OT

The second upstream tracking detector is the Tracker Turicensis (TT), not a

physics term, but instead derived from the Latin name for Zurich. This detector

consists of four planar layers of silicon microstrip sensors in x, u, v, and x configu-

rations [30]. The x planes measure the x-coordinate of track hits, while the u and

v planes measure coordinates along axes that are rotated ±5◦ with respect to the

x axis. Each plane contains a large number of silicon microstrip sensors, grouped

into 17 or 19 vertical modules (depending on the layer) containing 14 sensors each.
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Each sensor is approximately 100 cm2 in area and 500 µm thick, and etched with

512 silicon microstrips along the (mostly) vertical axis, with a pitch of 183 µm. As

a result, the TT is able to measure the x and y coordinates of a track with about

50 µm and 600 µm resolution, respectively [42].5

The IT and OT geometrically (though not electronically) make up one detector

located downstream of the LHCb magnet. The IT/OT assembly is divided into three

stations, T1, T2, and T3, each of which consists of x-u-v-x planar layers, like the

TT. Each plane has an IT and an OT component. The silicon IT component is cross-

shaped and placed nearest the beampipe, where the number of tracks and detector

occupancy are highest. The OT component making up the rest of the plane is a

straw tube drift chamber.

The cross shape of each IT layer is made of four panels, above and below and

to either side of the beampipe. Each panel is divided vertically into seven modules;

each module of the upper and lower panels contains one silicon sensor while each

module of the left and right panels contains two silicon sensors. The design of the

IT’s silicon sensors and their performance is very similar to that of the TT, with

a spatial resolution of about 50 µm. Each sensor is rectangular and approximately

80 cm2 in area, giving the full IT panel an area of about 0.35 m2. The angular

acceptance of the IT extends from 10 mrad to 13.3 mrad in the vertical direction

and 80 mrad in the horizontal direction.

The OT layers surround the IT layers and extend away from the beampipe

out towards LHCb’s maximum angular acceptances (250 mrad and 300 mrad in the

vertical and horizontal directions). Each layer of the OT contains two arrays of

straw tubes, about 5 mm in diameter and staggered to eliminate gaps. The straw

tubes contain a mixture of argon and carbon dioxide [30]. The low electronegativ-

ity of argon prevents the capture of free electrons, while carbon dioxide acts as a

5The y coordinate is calculated from the x, u, and v coordinates and its resolution is worse by
a factor of ∼ csc 5◦.
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quench gas, absorbing photons produced during the avalanche that could otherwise

propagate and create displaced avalanches. A 1700 V potential difference is applied

between the cathodes and anodes. In these conditions, the drift time of free elec-

trons in the straw tubes is less than 50 ns. The OT’s drift time resolution provides

an effective spatial resolution of around 200 µm.

Tracking performance

Tracks of charged particles at LHCb are divided into several categories. Tracks

that pass through at least the VELO and the IT or OT are known as long tracks;

those that pass through only the VELO and TT are upstream tracks; those that

pass through only the TT and IT or OT are downstream tracks; those that only

leave hits in the IT or OT are T tracks; and finally those that only leave VELO hits

are VELO tracks. Preferably, all charged particles created at the interaction point

should leave long tracks, while those created during the decay of long-lived KS and

Λ particles are typically downstream tracks at best. The hits from different stations

are combined to produce tracks during track reconstruction. For charged particles

in LHCb’s acceptance with a momentum in the range 5 GeV to 200 GeV, the track-

finding efficiency is 96% [42]. About 6.5% of long tracks are fakes, or ghosts, created

by joining hits from the VELO and IT or OT that were not created by the same

particle. A high-performing neural network classifier is used to decrease this fake

rate.

The momentum of the track is measured by its deflection when passing through

LHCb’s magnetic field. The mass of a composite particle that decays into charged

particles is given by the invariant mass of the sum of its decay products’ four-

momenta. A number of particles decay to a muon pair µ+µ−, including the J/ψ

and ψ(2S), the Υ(nS) states, and the much heavier Z boson, providing a clean

probe of the momentum resolution, mass resolution, and other attributes of LHCb’s
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(a) J/ψ resonance (b) ψ(2S) resonance

(c) Υ(1S), Υ(2S), and Υ(3S) reso-
nances (d) Z boson

Figure 2.4: Fits to the invariant mass distributions of the J/ψ , ψ(2S), Υ(nS), and
Z dimuon resonances [42].

tracking system. Plots of the fits to the invariant mass distributions of these decays

are shown in Fig. 2.4.

The momentum resolution, δp/p, is found to be about 0.5% for low momentum

particles and degrades at higher momenta, plateauing at about 1.1% for momenta

greater than 200 GeV. Similarly, the mass resolution is about 0.5% for the light and

middleweight particles, and jumps to about 1.9% for the massive Z [42].

Finally, the precise location of the primary vertex (PV) where the protons col-

lide and any secondary vertex (SV) where an unstable particle decays are important

observables in many analyses performed at LHCb. These pieces of information are

used to separate tracks coming from an SV from background tracks coming from the

PV, and to calculate the flight distance and decay time of unstable particles. These

latter quantities are especially crucial to analyses of time-dependent CP violation

and the study of the decay B+
c → J/ψτ+ντ , both discussed in this thesis.
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(a) IP resolution dependence on trans-
verse momentum.

(b) PV resolution dependence on the
number of tracks used in reconstruction.

Figure 2.5: IP and PV resolutions.

The resolution of the PV location, impact parameter (IP) of charged tracks

— which is their distance of closest approach to the PV — and decay time are

important metrics of the performance of the tracking system. The resolution on the

x and y coordinates of the PV depends strongly on the number of tracks used to

reconstruct the PV, and ranges between 7 µm to 35 µm, with the worst performance

for PVs created from only 5 to 10 tracks and much better resolution (15 µm or

better) when more than 20 tracks are used [42]. The resolution of the z coordinate

is worse by a factor of 5 or 6. The IP resolution is nearly inversely proportional

to the pT of the track, and plateaus at 13 µm for the highest transverse momentum

tracks. For the lowest pT tracks reconstructed by LHCb, the IP resolution is about

80 µm. A plot of the IP resolution is shown in Fig. 2.5a. The decay time of an

unstable particle is calculated from its separation from the PV and its momentum,

and so uncertainties in both the PV and SV positions and momenta of its decay

products contribute to decay time uncertainty. For decays of neutral B0 and B0
s

mesons studied in time-dependent CP violation analyses, the decay time resolution

is typically about 50 fs. Relative points of comparison are the lifetime of B mesons

(around 1.5 ps), the B+
c meson lifetime (around 0.5 ps), the B0 oscillation period

(about 12 ps), and the B0
s oscillation period (about 350 fs) [12].
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2.2.3 Particle identification

LHCb’s particle identification (PID) systems consist of the ring-imaging Cherenkov

(RICH) detectors, calorimeter system, and muon detector. These systems work to-

gether to discriminate various species of charged and neutral particles. Moreover,

the calorimeter system and muon detector are important inputs to LHCb’s hard-

ware level trigger. The performance of the PID systems depends critically on the

amount of material inside the LHCb detector. In particular, the energy resolution

of the calorimeter systems depends on their ability to completely contain the elec-

tromagnetic and hadronic showers produced by interactions, and so it is critical

to maximize their instrumented material while minimizing interfering material up-

stream. Conversely, the muon system identifies µ± by maximizing the shielding of

all other charged particles; for the trigger, though, it also must measure pT with

some acceptable resolution, which requires limiting the amount of shielding and the

consequent multiple scattering it produces. The proper balance of these various con-

cerns is considered in the material budget of each subdetector. An important figure

of merit is the size of the component in radiation lengths. The radiation length X0

of a material, which is the characteristic length scale of high energy electron and

photon energy loss in the material, and also of the resulting electromagnetic (EM)

showers as they traverse matter [12]. A average path through the tracking system

traverses about 0.25 radiation lengths [30].

The RICH detectors are designed to distinguish charged tracks, primarily pions

and kaons, by exploiting the Cherenkov effect. When a charged particle travels

through a medium with refractive index n at a speed β faster than the speed of light

1/n, it radiates at an angle cos θc = 1/βn with respect to its velocity [12, 40]. This

light cone shines onto a ring on a transverse detector, which allows measurement

of the velocity β of the particle. Together with the momentum p measured by
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the tracking system, the mass m of the particle can be inferred. There are two

RICH detectors at LHCb, one located before the magnet (RICH1) and one after

(RICH2). RICH1, located between the VELO and the TT, is optimized for lower

momentum tracks (1 GeV to 60 GeV) and RICH2, between the IT/OT and the

first muon station, for higher momentum tracks (15 GeV to 100 GeV) [30]. Lower

momentum tracks can be bent out of the LHCb cone, so measuring their velocities

must be done upstream of the magnet.

The range of speeds β at which a radiator is sensitive is limited. At the low

end, a particle’s velocity β must be above the threshold value βt = 1/n to produce

Cherenkov radiation at all. At the high end, θc quickly approaches a maximum value

cos−1(1/n) as β → c and discriminating power is lost. To increase its sensitivity

range, RICH1 uses both solid aerogel and gaseous C4F10 radiators, with n = 1.03

and n = 1.0014 respectively for λ = 400 nm. The typical θc produced in the aerogel

radiator is 50 mrad to 242 mrad, while that in C4F10 is 20 mrad to 50 mrad. RICH2

uses as its readiator CF4, with n = 1.0005 at the same wavelength. These different

choices reflect the requirement that the RICH1 have greater sensitivity at lower

momenta and the RICH2 at higher momenta.

The geometries of RICH1 and RICH2 are similar and are designed to min-

imize their material budget, resulting in radiation lengths of 0.08X0 and 0.15X0

respectively. The acceptances of the detectors are 25 mrad to 300 mrad in the hor-

izontal plane and 25 mrad to 250 mrad in the vertical plane for RICH1 (limited on

the low end by the beampipe) and 15 mrad to 120 mrad in the horizontal plane

and 15 mrad to 100 mrad in the vertical plane for RICH2. Inside their acceptances,

tracks encounter only the radiators, spherical mirrors, and gas-tight entrance and

exit windows, in that order. Cherenkov radiation produced in the radiators travels

upstream to the spherical mirrors placed immediately around the beampipe, where

it is reflected at an angle backwards out of the acceptance region. In this outer re-
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(a) Dependence of Cherenkov angle θc
on particle species and momentum, for
C4F10

(b) K+–π+ classification curve, showing
dependence on track multiplicity

Figure 2.6: RICH kaon identification performance [43]

gion, the radiation is reflected forwards by flat mirrors onto hybrid photon detector

(HPD) enclosures.6 The custom HPDs used at LHCb are similar to photomultipli-

ers, consisting of a photocathode followed by a vacuum acceleration region under a

potential difference of 20 keV, and finally by a pixelated silicon detector. The HPDs

require that the RICH1 and RICH2 be encased in substantial magnetic shielding,

except at the entrance and exit windows.

The calorimeter system, located behind RICH2 (and the first muon station

M1), consists mainly of the electromagnetic calorimeter (ECAL) followed by the

hadronic calorimeter (HCAL). Several auxiliary components are placed in front of

the ECAL: the scintillator pad detector (SPD), a thin lead converter, and the pre-

shower (PS).

With momenta greater than about 10 MeV, electrons (and positrons) travers-

ing through matter lose the great majority of their energy via brehmsstrahlung,

while photons are converted to e+e− pairs. Brehmsstrahlung is not an important

affect for the more massive µ± and π± until energies over 100 GeV, and even higher

energies for K± and p±. So, the electromagnetic interactions in the ECAL are most

relevant for photons and electrons, while other particles passing through suffer only

6This double-reflection allows the detector to be narrower in the z-direction and taller in the
less constrained y-direction.
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from ionization deposits and multiple scattering.7 The characteristic scale of the

transverse spread of an EM shower is its Molière radius, which is related to the ra-

diation length and to the atomic number of the material. Typical Molière radii are

on the order of several centimeters, and the bulk of the shower’s energy is deposited

within two Molière radii.

Of the remaining types of tracks, all but µ± are hadrons and have poten-

tially large hadron-nucleon cross-sections σ(hN). The nuclear interaction length λi

measures the characteristic length scale of hadronic showers. Typically λi is much

greater than X0, making it much more difficult to completely contain hadronic show-

ers than EM showers, given the same space constraints. In the transverse plane, the

bulk of the energy of the shower is deposited within a radius of a single interaction

length, again larger than the transverse size of an EM shower. Many photons and

electrons are produced in the hadron shower and produce subsidiary EM showers,

carrying a large fraction of the shower’s total energy. Additionally, much of the

shower’s energy is spent towards nuclear binding energies in inelastic collisions and

is not observable. These effects can make it more difficult to achieve good energy

resolution in a hadron calorimeter.

The ECAL detects EM showers produced by photons and electrons, informa-

tion which is used for the L0 hardware trigger and for offline analysis. It is a sam-

pling, shashlik type calorimeter, consisting of alternating planes of lead absorbers

2 mm thick and scintillating tiles that are segmented into a grid in the xy planes and

run through with transverse fibers that carry scintillation light to photomultiplier

tubes. There are in total 66 lead/scintillator layers. The total radiation length of

the ECAL, due mostly to the lead absorbers, is 25X0 (about 42 cm). The nuclear

interaction length of the ECAL should be small to limit hadronic backgrounds in

the ECAL and to avoid impeding the performance of the HCAL; it is 1.2λi.

7Neutral pions decay via π0 → γγ before the ECAL and are reconstructed as resolved candi-
dates, with two distinct photon showers, or merged candidates, where the two showers overlap.
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The scintillating tiles in the ECAL are mainly made of polystyrene, with small

concentrations of fluors that shift the wavelength of the UV light that is initially

produced down into the blue spectrum. The emitted scintillation light is collected

by wavelength-shifting (WLS) fibers that further shift its wavelength down from the

blue spectrum to the green spectrum and carry it downstream through the ECAL

to an array of photomultiplier tubes (PMTs) that collect the light.

The ECAL provides information for the hardware-level triggers on high trans-

verse energy (ET ) electrons and photons. The trigger must separate electron showers

from photon showers and also must suppress a few backgrounds. The main back-

grounds for the electron trigger are high energy π0 → γγ decays with merged photon

showers and π± interactions; the former is also a background for the photon trigger.

The auxiliary SPD and PS detectors in front of the ECAL provide electron–photon

separation and suppress these backgrounds.8 The SPD and the PS are two scin-

tillator pads located on either side, respectively, of a lead converter 2.5 radiation

lengths thick (about 15 mm). The SPD identifies an ECAL deposit as an electron

shower by detecting charged particles that produce scintillation light in the SPD pad

upstream of an ECAL shower. Similarly, SPD hits are used to reject π0 background

for the electron trigger. Meanwhile, the PS rejects π± background by detecting EM

showers produced in the lead converter; in the same way, it also partially rejects π0

background for the hardware-level photon trigger. The readout of the SPD and PS

is similar to that of the ECAL: they are segmented into an xy grid and transverse

WLS fibers bring the signal downstream to PMTs. The principle difference is that

multi-anode PMTs (MAPMTs) are used, in which multiple PMTs with relatively

smaller anodes are enclosed in the same housing for increased spatial resolution.

Charged pions, kaons, protons, and neutrons are absorbed by the HCAL. The

technology of the HCAL is similar to that of the ECAL. The HCAL uses iron as the

8A residual background γ → e+e− pair conversions induced by material upstream of the ECAL
cannot be rejected at the hardware level.

36



absorber material. The scintillating tiles, WLS fibers, and PMTs used in the HCAL

are similar to those of the ECAL. The geometric structure of the HCAL, however, is

quite different from the ECAL. While the ECAL tiles and absorbers are perpendic-

ular to the beampipe, the HCAL layers are parallel to the beampipe. A longitudinal

path through the HCAL traverses just three absorber/scintillator layers, largely be-

cause of space limits in the LHCb chamber; the total nuclear interaction length

of the HCAL is 5.6λi. However, the large transverse spread of a hadronic shower

passes through many such layers. This layout optimizes the HCAL’s sensitivity to

hadronic shower shape given its size constraints.

The ECAL and HCAL extract several types of information from EM and

hadron showers. Primarily, the amount of the scintillation light collected is pro-

portional to the energy of the shower; since the number of photons (in the ECAL

case) produced follows Poisson statistics, up to Fano corrections, this means that the

calorimeters have energy resolutions that scale like σ(E)/E ∼ 1/
√
E, plus constant

systematic factors. The total energy E of the shower and its location in η on the

calorimeter determine its transverse energy ET , defined as

ET =
√
m2 + p2

T (2.1)

where some standard mass assumption is made. The quantity ET is very useful in

the hardware-level trigger. Finally, the overall shape of the shower can reveal infor-

mation on the species of the incident particle. In particular, in offline analysis the

shape can be analyzed to separate neutral pion showers from photon showers in the

ECAL. Figure 2.7 shows that data from the calorimeter system provide moderate-

to-good discrimination between neutral pions and photons; eliminating 95% of pions

requires a cut that keeps only 60% of photons.

The muon system consists of five stations M1 through M5, the first of which
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Figure 2.7: Discrimination of γ and merged π0 showers in the ECAL

is located in front of the calorimeters and the remainder behind, separated from

each other by iron absorbers [30]. Because they are largely located behind the

calorimeters and iron filters, few charged electrons or hadrons penetrate into the

muon stations. The ECAL and HCAL material in front of the M2-M5 muon sta-

tions corresponds to 25 electromagnetic radiation lengths and 5.6 nuclear interaction

lengths, and the total material of muon stations contributes another 13 interaction

lengths. Therefore, muon detector hits are a powerful way to distinguish muons

from hadrons. A muon with a momentum of at least 6 GeV is able to penetrate all

the way to M5 and leave hits at each station. Because M4 and M5 have the fewest

number of non-muon hits out of the muon stations, and because muons reaching

them are most subject to energy loss and multiple scattering, they are designed

primarily to identify penetrating muons and have relative relaxed spatial resolution.

M1 through M3, on the other hand, provide better spatial resolution for the muon

detector hits. Their spatial resolution is good enough to measure the pT of a muon

track with a resolution of around 20%, quickly and accurately enough for use in

LHCb’s trigger system. Each station uses multi-wire proportional chambers (MW-

PCs) to record muon track hits, though M1, located in front of the calorimeters,

uses triple-GEM chambers in the high-occupancy region nearest the beampipe. The

MWPC and GEM chambers are filled with a mixture of argon, carbon dioxide, and

38



methane gas, where the latter two serve as quenchers. The muon system provides

an L0 hardware level trigger on high transverse momentum muons and dimuons

and higher level triggers on reconstructed J/ψ mesons, used in the B+
c → J/ψτ+ντ

analysis.

The large number of components in the PID subsystem provide a wealth of

information for each charged track passing through the LHCb detector. To simplify

the use of this information by analysts, a high-performing neural network assigns a

score to each track for each particle hypothesis; for example, a purified kaon sample

may be selecting by requiring a high kaon score and low pion or proton score. These

PID scores are used frequently in LHCb analyses and are referenced throughout this

thesis.

2.2.4 Trigger system

The trigger system at LHCb is divided into a hardware level (L0) and two

software levels — the High Level Trigger 1 (HLT1) and High Level Trigger 2 (HLT2).

The L0 hardware trigger processes information directly from the VELO, calorimeter

system, and muon system to produce a real-time trigger decision. Given the 50 ns

bunch crossing time in Run I, and 25 ns in Run II, this requires very fast data

collection and processing via the electronics system — the L0 trigger must operate

at 40 MHz. After making its trigger decisions with a 2.5% retention rate, it outputs

data at 1 MHz, which is the maximum rate possible due to the time required to read

out the detector.

The L0 trigger has five channels: muon, dimuon, photon, electron, and hadron

[42]. The muon trigger identifies the highest pT muon and requires pT > 1.48 GeV,

while the dimuon trigger identifies a pair of muons with a geometric mean pT greater

than 1.30 GeV. These muon triggers lean on M4 and M5 to identity the muons and

M1 through M3 to provide a pT measurement. The photon and electron triggers
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identify the highest ET ECAL electron and photon showers (with crucial background

rejection provided by the SPD and PS), and require their ET to be greater than

2.50 GeV. Finally, the hadron trigger requires the ET of hadron showers to be greater

than 3.50 GeV (adding in the ET of the matching deposit in the ECAL). The VELO

system provides a pile-up veto when there are multiple detectable PVs; the r–φ

geometry of the VELO microstrips is crucial to the quick counting of PVs [30].

With a 40-fold increase in available processing time, the high level triggers pro-

cess additional information from the tracking system and RICH detectors, retaining

just 0.2% of events and outputting data at 5 kHz in Run 1 [44]. The first level, HLT1,

largely refines the L0 trigger lines, defining several streams for different event types.

For each stream defined in HLT1, there is a large number of HLT2 trigger lines,

which range from broad general purpose lines to analysis-specific lines. Taking ad-

vantage of tracking information requires performing track reconstruction. Because

of time constraints during Run I, simplified reconstruction software, in comparison

to the full offline reconstruction software, was used in the HLT. For LHC’s Run II,

LHCb has switched to a novel online trigger alignment and calibration system [45].

While the bunch crossing time in Run II has decreased to 25 ns, the LHC collider

is still in downtime between fills about 70% of the time. A large data buffer (about

5.5 PB) allows the HLT to run during this downtime, and with the extra processing

time available it can use the same reconstruction software as is used offline. This

also requires calibration and alignment to be performed online. Interpretation of

the data collected at LHCb depends on the detector’s runtime conditions, includ-

ing the beam conditions and detector positions; recall that the beam’s xy center

varies on the order of 1 mm from fill to fill and that the VELO’s position varies

in response to this. Other variable conditions such as temperature and pressure

affect the gases in the RICH detectors, OT, and muon system. The calibration and

alignment procedure corrects for these affects. During Run I, this was performed
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offline using unbiased data collected via calibration trigger lines, but in the current

run is performed automatically between the HLT1 and HLT2.

2.2.5 Simulation

Particle physics processes are simulated by a chain of software collectively re-

ferred to as Monte Carlo (MC) generators. The simulated data produced by this

software is called Monte Carlo data, as well. The first stage of the simulation

generation is the simulation of pp collisions, performed using the Pythia genera-

tor [46, 47]. Pythia uses measured parton distribution functions to simulate the

quark and gluon contents of colliding protons. It then simulates 2 → 1, 2 → 2,

and 2 → 3 QCD and QED scattering processes and models the showers of the

resulting quarks and gluons, producing detector-stable final particles (e.g., various

hadrons, mostly). While the parton collision itself is modeled using leading order and

next-to-leading order matrix elements, the simulated hadronization relies heavily on

measured properties of pp collisions rather than directly simulating soft QCD. A

special configuration of Pythia tunes this experimental input to optimize the event

generation for the soft, high pseudorapidity region studied by LHCb [48]. Several

plugin tools exist to improve Pythia’s modeling of the production of rare, exotic,

or hypothetical particles in showers. In particular, Bcvegpy modifies the produc-

tion of the relatively rare B±c mesons to better explain more recent experimental

findings. Pythia does not model the decays of the hadrons produced as a result of

the parton showers. This is achieved by the EvtGen package [49], which models

hadron decays using analytic expressions derived from QFT, but with numerical

factors like masses, branching fractions, and some distribution shape parameters

(e.g., form factors) taken from experimental measurements. EvtGen also uses the

Photos [50] tool to model final-state radiation generated during decays. After the

decay process, the final state particles are a mixture of leptons and some long-lived
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hadrons (e.g., pions, kaons, Λ). These pass through and interact with the material

of detector, leaving signals in their wake, but also being affected in turn through

loss of energy, multiple scattering, neutral kaon regeneration, γ → e+e− conversion,

decay in flight, etc. The interaction with matter in the detector system is modeled

by the Geant4 toolkit [51, 52]. Geant4 requires a detailed model of the LHCb

detector, described in Ref. [53].

The output of the simulation after Geant4 is a physical model of pp collisions

and the resulting response of the LHCb detector. This is not yet analogous to the

raw electronic data collected by the LHCb subdetectors. For this purpose, the

Boole software simulates the electronic response of the LHCb subdetectors to an

simulation event. After processing by Boole, simulation data is stored in the same

format as real data and can be processed using the same tools.

2.2.6 Computing

The LHCb collaboration participates in a globally distributed computing net-

work used for the storage and analysis of particle physics data [54,55]. Several tiers

of clusters store and replicate data collected by the LHC experiments, as well as

simulated simulation datasets, and provide computational nodes for the analysis of

the data. The raw data collected by LHCb (or produced during simulation) is first

stored at CERN’s Tier-0 storage center. This raw data is replicated to a number

of Tier-1 storage centers located across Europe. The full offline reconstruction of

particle tracks is eventually performed on this raw data, a procedure known as strip-

ping. The computational resources for this stripping are provided by the Tier-0 and

Tier-1 centers, as well as a number of Tier-2 computing-only centers. The stripped

data is also replicated across the grid. The grid’s storage and computing resources

are also used for simulation and for user analyses that process the stripped data,

searching for the signatures of various particle decays and event types.
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Part II

Semitauonic B+
c decays
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Chapter 3: Theoretical background

The goal of this analysis is the first measurement of the branching fraction

ratio

R(J/ψ ) =
B(B+

c → J/ψτ+ντ )

B(B+
c → J/ψµ+νµ)

, (3.1)

which is sensitive to new physics.1 In constructing the Standard Model (SM), the

electroweak couplings of all flavors of leptons are taken to be identical, with the

three distinguished only by their couplings to the Higgs sector. This feature is

known as lepton flavor universality, and implies that differences between branching

fractions involving the three leptons differ only due to their separate masses (see

Section 1.3). The direct effect of these masses in electroweak processes is reliably

calculable, and the semileptonic decay is well-approximated by the simplest tree level

diagram. Moreover, factors with experimental uncertainties, such as |Vcb|2, cancel

in the ratios of branching fractions such as Eq. (3.1). However, the ratio R(J/ψ )

also depends on non-perturbative QCD effects encoded in the B+
c → J/ψ hadronic

form factors. Current models predict R(J/ψ ) to be in the range 0.25–28 [56–59].

The observable R(J/ψ ) is analogous to the ratios

R(D(∗)) =
B(B(0,−) → D(∗−)τ+ν̄τ )

B(B(0,−))→ D(∗−)µ+ν̄µ)
, (3.2)

discussed in the introduction.

The chapter gives an overview of the necessary theoretical background for the

1Here and throughout, charge conjugate modes are implied.
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description of the analysis presented in the next chapter. This begins with a brief

summary of the properties of the B+
c meson and of semileptonic decay branching

fractions to tree-level in the weak force. This is followed by a discussion of theoretical

models for the form factors of semileptonic B+
c decays and of generic parametrized

models for these form factors. Finally, there is a discussion of the mathematical

method used to approximation the rest frame of the B+
c meson, relying on the fact

that this spinless meson is not produced in a polarized state.

3.1 The B+
c meson and its decays

The B+
c meson consists of valence b and c quarks, together with the typical

sea of qq̄ pairs and gluons. With a mass of 6.277 GeV/c2 [12], it is too heavy to

be produced in Υ(nS) decays at the e+e− B factory experiments. Evidence for

the B+
c was seen at OPAL, and subsequently it was first observed by the CDF

experiment at the Tevatron collider in the decay B+
c → J/ψµ+νµ [60, 61]. Because

the b quark is more stable than the c quark, the B+
c is expected to decay to BsX

around 70% of time [58]; one such decay has been observed at LHCb [62]. To

a good approximation, when either the b or c decays via a weak transition, the

other acts as a spectator quark, and thus the B+
c width should be roughly the sum

of D+ and B+ meson widths (plus the partial width for b̄c annihilation, which is

suppressed by the decay constant fBc and helicity factors). Neglecting annihilation,

this approximation predicts a lifetime of 0.637 ps, which is not far off the world

average lifetime 0.507(9) ps [12].

3.2 B+
c → cc̄ form factors

The matrix element of the semileptonic decay of a particle of mass M to a

three-body X`ν state is the product of two tensors describing the leptonic and
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Figure 3.1: Semileptonic B+
c decays in the SM
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Figure 3.2: Semileptonic B+
c decays beyond the SM

hadronic portions of the process. It is most easily computed by summing over the

helicity states of the virtual W± mediating the decay. These are

Mλ`
λX

=
1√
2
GFVcb

∑

λW

ηλWL
λ`
λW
HλX
λW

where ηλW is 1 for the ±1 and 0 helicity states and −1 for the timelike scalar (s)

helicity state. The helicity components of the tensors are:

Lλ`λW = εµ(λW ) 〈`ν̄|¯̀γµ
(
1− γ5

)
ν|0〉, (3.3)

HλX
λW

= ε∗µ(λW ) 〈X|c̄γµ
(
1− γ5

)
b|B〉. (3.4)

The components of the leptonic tensor are quite simple. Because of the weakness of

the electroweak force, b→ c decays can be treated perturbatively, and the tree-level
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c rest frame

J/ψ

`

ν`

ẑ
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Figure 3.3: Diagram of the semileptonic decay of a B+
c into a hadronic part (J/ψ )

and leptonic part (` and ν`). As shown, θ is the angle between the lepton and the
leptonic (i.e., lepton-neutrino) flight direction in the leptonic rest frame.

decay through a single off-shell W± is a good approximation. Thus, the leptonic

tensor is described entirely by the lepton mass, the off-shell W± mass-squared q2,

and the angular parameter cos θ, shown in Fig. 3.3. However, the initial and final

state bottom and charm mesons are bound states of the strong force, and the long

range details of their destruction and creation depend non-perturbatively on strong

dynamics. Conservation of azimuthal spin does mean thatHλX
λW

is largely “diagonal.”

For a spin-0 decay product X, whose only helicity state is 0, only H0
0 and H0

s are

non-zero. For a spin-1 decay product, with additional ±1 helicity states, H+
+ and

H−− are also non-zero. A spin-2 decay product has ±2 helicity states, but these are

not accessible from any W helicity state. So, without any ambiguity, the non-zero

hadronic tensor helicity components can be denoted H±, H0, and Hs, where only

the last two are non-zero for scalar decay products.

After integrating over the available phase space, the doubly differential decay

rate with respect to q2 and the helicity angle θ is proportional to the square of the

matrix element:

dΓ

dq2 d cos θ
=
|~pX | (q2)

256π3M2
|M|2

=
G2
F |Vcb|2 |~pX | (q2)q2

256π3M2

(
1− m`

q2

)2

×
[
(1− cos θ)2H2

+ + (1 + cos θ)2H2
− + 2 sin2 θH2

0

+
m2
`

q2

(
sin2 θ

(
H2

+ +H2
−
)

+ 2 (Hs −H0 cos θ)2
)]
,

(3.5)
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where |~pX | (q2) is the momentum of the decay product X in the rest frame of the B

parent B, which is equal to

|~pX | (q2) =

√√√√
(
M2 +M2

X − q2

2M

)2

−M2
X . (3.6)

Integrating the doubly differential decay rate over cos θ gives the differential decay

rate as a function of q2:

dΓ

dq2
=
G2
F |Vcb|2 |~pX | (q2)q2

96π3M2

(
1− m`

q2

)2

×
[(

1 +
m2
`

2q2

) [
H2

+ +H2
− +H2

0

]
+

3m2
`

2q2
H2
s

] (3.7)

Various symmetries constrain the tensor form of the matrix element

〈X|c̄γµ (1− γ5) b|B〉 (and thereby the hadronic tensor helicity components) to a

sum of several distinct components, each of which has a scalar magnitude with

functional dependence on q2, known as a form factor. This tensor form depends on

the spin (and parity) of the decay product X. In the following, let the momentum

of the B be pµ, that of its decay product X be kµ, and let P = p+k and Q = p−k.

Scalar X: For a scalar or pseudoscalar decay product, the tensor form of the matrix

element must be of the form

〈X|c̄γµ
(
1− γ5

)
b|B〉 = A(q2)P µ +B(q2)Qµ. (3.8)

When X is a scalar, this transition is actually entirely through the vector chan-

nel (cγµb) — since Bs are pseudoscalars — and conversely is entirely through

the axial vector channel (cγµγ5b) when X is a pseudoscalar. Projecting this

form into its helicity components according to Eq. 3.4, the helicity components
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are

H0 =
2M |~pX | (q2)√

q2
A(q2)

Hs =
M2 −M2

X√
q2

A(q2) +
√
q2B(q2).

The form factors are typically recast as

〈X|c̄γµ
(
1− γ5

)
b|B〉 =

(
P µ − M2 −M2

X

q2
Qµ

)
f+(q2)

+

(
M2 −M2

X

q2
Qµ

)
f0(q2)

(3.9)

so that H0 and Hs are proportional to f+(q2) and f0(q2), respectively:

H0 =
2M |~pX | (q2)√

q2
f+(q2), (3.10)

Hs =
M2 −M2

X√
q2

f0(q2). (3.11)

Vector X: For a vector or pseudovector X, the tensor form must be

〈X|c̄γµ
(
1− γ5

)
b|B〉 = iA(q2)εµνρσε∗(λX)νPρQσ

−B(q2)ε∗(λX)µ

− C(q2) (ε∗(λX) ·Q)P µ

−D(q2) (ε∗(λX) ·Q)Qµ.

When X is a vector, A corresponds to the vector channel ((cγµb) and B,C,D

to the axial vector channel ((cγµγ5b), and vice versa when X is a pseudovec-

tor. To simplify their relationship to the helicity components, and also to

give them the same units as the scalar form factors f+ and f0, the standard
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parameterization of the vector form factors is

〈X|c̄γµ
(
1− γ5

)
b|B〉 =

2iV (q2)

M +MX

εµνρσε∗νpρkσ

− 2MXA0(q2)
ε∗ · q
q2

Qµ

− (M +MX)A1(q2)

(
ε∗µ − ε∗ ·Q

q2
Qµ

)

+
1

M +MX

A2(q2)(ε∗ ·Q)

(
P µ − M2 −M2

X

q2
Qµ

)
.

(3.12)

With minor differences, this convention is followed by many theory papers [16,

49,63]. In terms of these form factors, the hadronic tensor helicity components

are: [16]

H±(q2) = (M +MX)A1(q2)∓ 2M

M +MX

|~pX | (q2)V (q2), (3.13)

H0(q2) = − 1

2MX

√
q2

[
4M2 |~pX | (q2)2

M +MX

A2(q2)

− (M +MX)
(
M2 −M2

X − q2
)
A1(q2)

]
, (3.14)

Hs(q
2) =

2M |~pX | (q2)√
q2

A0(q2). (3.15)

Tensor X: For a tensor X, the tensor form is quite similar to that of a vector X,

with the substitution

ε∗(λX)µ →
ε∗(λX)µνP

ν

M
. (3.16)

Viewing the spin-2 tensor particle as a superposition of two spin-1 vector par-

ticles, the polarization tensors can be built up out of the polarization vectors

via Clebsch-Gordan coefficients:

ε(λX)µν =
∑

λi,λj

〈2λX |1λi1λj〉ε(λi)µε(λj)ν . (3.17)
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Explicit calculation reveals that the polarization tensors of interest are:

ε(±1)µνP
ν =

√
1

2

|~pX | (q2)

MX

ε(±1)µ, (3.18)

ε(0)µνP
ν =

√
2

3

|~pX | (q2)

MX

ε(0)µ. (3.19)

This extra factor of |~pX | (q2)/MX can be interpreted as a consequence of the

P -wave decay that is required for a scalar (B) decaying to a tensor (X) and a

vector (W ). Thus, given an otherwise identical parameterization of the matrix

element in terms of form factors A, B, C, and D, the effect of spin-2 final state

particle is accounted for by the substitution

H±|spin-2 =

√
1

2

|~pX | (q2)

MX

H±|spin-1 , (3.20)

H0,s|spin-2 =

√
2

3

|~pX | (q2)

MX

H0,s|spin-1 (3.21)

in the doubly differential decay rate formula (Eq. (3.5)).

3.2.1 B+
c form factor models

Measurements of decay rates can be used to determine semileptonic form fac-

tors. Though naively these are arbitrary functions of q2, theoretical models taking

advantage of exact and approximate symmetries in QCD (for example the CLN pa-

rameterization [64]) determine them up to a finite number of parameters; these can

be extracted in a fit to experimental data. This has been done for the B → D(∗)

transitions by the ALEPH, CLEO, OPAL, DELPHI, Belle, and BaBar collabora-

tions, whose results were rescaled and combined by the HFLAV group [13]. It has

not yet been possible to do this for the B+
c → J/ψ transitions because of limited

experimental data. Therefore, Monte Carlo simulations of these decays must rely on

entirely theoretical models of the form factors. Many authors have produced models
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of the B+
c → J/ψ form factors, in a large array of parameterizations and theoretical

models. Among these are models by Kiselev [57] and Ebert, Faustov, and Galkin

(EFG) [63] models of B+
c → ψ transitions, which are among the most recent and

have been adopted as the “default” parameterizations by LHCb. However, neither

of these papers derives form factors for the three χc final states (scalar, vector, and

tensor). One model of the form factors for all the B+
c → χc transitions is given

by Wang, Wang, and Lu (WWL) [65], and was chosen to model these decays for

this analysis. The study of B+
c semileptonic decay form factors, to the above fi-

nal states and others, has also been considered in various formalisms: relativistic

and non-relativistic Bethe-Salpeter equation based models [66–68]; light-front quark

models [56, 69]; and various other models [58,70].

The Kiselev model of form factors is derived from a non-relativistic QCD

(NRQCD) treatment, in which the QCD Lagrangian is expanded in powers of

Λ/mb, as in heavy quark effective theory, and also in v/c. The model uses Shifman-

Vainshtein-Zakhorov QCD sum rules to evaluate the B+
c → J/ψ form factors, ac-

counting for Coulomb-like corrections. The QCD sum rule technique evaluates QCD

correlation functions by complex analysis techniques that give their value in terms

of their poles; in turn these poles are identified as hadronic resonances, allowing

input from experimental data on the hadron properties [71]. Kiselev’s form factors

have 5 free parameters, shown in Table 3.1. The paper computes the values of the

form factors as a function of q2 numerically, but fits them with a parameterization

function proportional to

k(q2) =
1

1− q2/M2
pole

. (3.22)

The four form factors FV (q2), F+
A (q2), F 0

A(q2), and F−A (q2), which are closely related

to the standard parametrization V (q2) and An(q2), are all proportional to k(q2),

and their values at q2 = 0 are parameters of the model. In the helicity components
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Table 3.1: Parameters of the Kiselev form factor model for both B+
c → J/ψ and

B+
c → ψ(2S) transitions.

Quantity J/ψ value ψ(2S) value
Mpole 4.5 GeV/c2 4.5 GeV/c2

FV (0) 0.11 0.030
F+
A (0) -0.074 -0.013
F 0
A(0) 5.9 1.4
F−A (0) 0.12 0.044

parameterization, the Kiselev model is:

H±(q2) =
[
∓F 0

A(0) + FV (0)
(
2mBc |~pX | (q2)

)]
k(q2), (3.23)

H0(q2) =

[
F 0
A(0)

(
q2

max − q2

2

)
+ F+

A (0)
(
2m2

Bc |~pX | (q2)2
)] k(q2)

mψ

√
q2
, (3.24)

HS(q2) =

[
F 0
A(0)

(
2m2

Bc

mBc +mψ

|~pX | (q2)

)
+ F−A (0)

(
mBc |~pX | (q2)q2

)] k(q2)

mψ

√
q2
.

(3.25)

Examining the parameterization, it is clear that F 0
A(0) (the largest of the parameters)

is the main parameter controlling the normalization of the Kiselev form factors. The

small parameter F 0
V (0) controls the difference between H+ and H−, which would

otherwise be oppositely signed but have identical magnitude. Similarly, the small

F+
A (0) and F−A (0) are responsible for adjusting H0 and HS, whose magnitudes would

otherwise be fixed relative to H±.

The Kiselev model can also be mapped onto a CLN-like parameterization [64],

with an Isgur-Wise function ξ(w) and three functions R0(w), R1(w), and R2(w).

This allows the extraction of the slope at zero recoil and curvature implied by the

model, related to the parameters ρ2 and σ. The Isgur-Wise function implied by the
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Kiselev form factor model is

ξ(w)

ξ(1)
=

2

w + 1
× A1(q2(w))

A1(q2
max)

=
4

(1 + w)(2 + (2ρ2 − 1)(w − 1))

= 1− ρ2(w − 1) +

(
1− 2ρ2 + 4ρ4

4

)
(w − 1)2 +O((w − 1)3),

(3.26)

where ξ(1) and ρ2 are parameters related to those of the Kiselev model. Interestingly,

the slope parameter ρ2 is directly related to the Kiselev pole mass:

1− 2ρ2 =
4mBcmψ

q2
max −M2

pole

. (3.27)

Given the nominal values of the Kiselev parameters, this slope is ρ2 = 4.336 for the

B+
c → R(J/ψ ) transition. Since the Kiselev pole mass was taken to be 4.5 GeV/c2

by fiat, the slope parameter is not particularly constrained by the Kiselev model

(nor, by extension, the nearly identical EFG model, at least in the B+
c → J/ψ case).

The rest of the CLN-like form factors are quite simple:

R0(w) =
RA0(q2(w))

ξ(w)
= R0(1)× 1 + w

2
+
[
R2 −R0(1)

] mBcmψ

q2
max

, (w2 − 1) (3.28)

R1(w) =
RV (q2(w))

ξ(w)
= R1(1)× 1 + w

2
, (3.29)

R2(w) =
RA2(q2(w))

ξ(w)
= R2(1)× 1 + w

2
, (3.30)

where R0,1,2(1) are the three remaining parameters of the model and R is the ratio

of the charmonium mass to the B+
c mass. The values of these parameters are shown

in Table 3.2.

The Ebert-Faustov-Galkin (EFG) model of Ref. [63] is derived from a relativis-

tic constituent quark model, following the work of Logunov and Tavkhelidze [72] and

Martynenko and Faustov [73]. The meson system (for both B+
c and the decay prod-
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Table 3.2: CLN-like parameters of the Kiselev form factors for both B+
c → J/ψ and

B+
c → ψ(2S) transitions.

Quantity J/ψ ψ(2S)
ρ2 4.336 4.336
σ2 33.77 33.77
R 0.493 0.587
ξ(1) 2.548 0.362
R0(1) 0.168 0.248
R1(1) 0.399 0.721
R2(1) 0.268 0.307

ucts J/ψ and ψ(2S)) is treated as a bound state in the center-of-mass frame with

a relativistic reduced mass µr and relative momentum pon-shell (equal in magnitude

and opposite in direction for each quark), both functions of the phenomenological

quark masses and total meson mass. In the off-shell relative momentum basis, the

wavefunction for the meson M is governed by the Schrödinger like equation

(
p2

on-shell

2µr
− p2

2µr

)
ψM(p) =

∫ d3q

(2π)3
V (p,q;M)ψM(q). (3.31)

The quasipotential V (p,q) is derived from the QCD scattering amplitude, and con-

tains a one-gluon exchange term and a phenomenological linear confining potential;

it also contains retardation and one-loop radiative corrections, along with other

small adjustments as required. While Eq. 3.31 resembles the Schrödinger equation,

it is derived by algebraically manipulating a Green’s function relationship, together

with some approximations; the formalism somewhat resembles the Bethe-Salpeter

equation. The parameters of this model are determined by fits to experimental data

(chiefly regarding the charmonium and bottomonium states) and by comparison to

HQET [74]. The form factors of the EFT model are extracted from the matrix

elements

〈J/ψ (k)|c̄γµ(1− γ5)b|B+
c (k′)〉 =

∫ d3p d3q

(2π)6
ψJ/ψ (p; k)Γµ(p,q)ψB+

c
(q; k′), (3.32)

55



where the wavefunction ψM(p; k) derived from the Schrödinger-like quasipotential

equation is boosted out of the center-of-mass-frame by the momentum k and Γµ is

a two-particle vertex function containing the V − A coupling term and corrections

from the quasipotential (essentially subleading Feynman diagrams involving a single

scattering between the quarks before or after the V − A vertex). The EFG model

uses the standard form factor parameterization given in Eq. 3.12. Unfortunately,

however, the paper does not present a simple analytic approximation for the form

factors, instead only providing plots and an unwieldy integral formula that are

impractical to fully implement. This means that the only obvious way to implement

the model is by scanning and numerically fitting their plots2.

For B+
c → J/ψ , the biggest difference between the Kiselev and EFG form fac-

tors are their magnitudes, which only control the partial widths of the decays and

therefore their different branching fractions. Normalizing away their magnitudes,

the form factors are quite similar. Fig. 3.4 shows the differential decay rates vs.

q2 for B+
c → J/ψµ+νµ and B+

c → J/ψτ+ντ . There is encouraging agreement be-

tween the two models’ q2 distributions. Larger differences are found in the angular

distributions predicted by the models. Fig. 3.5 shows the differential decay rates

vs. E∗` for B+
c → J/ψµ+νµ and B+

c → J/ψτ+ντ , which is affected by the predicted

angular distribution. There is still good agreement between the Kiselev and EFG

models, but they are noticeably different, with the Kiselev parameter tending to

predict smaller values of E∗` . Additional plots of the individual Kiselev and EFG

form factors are shown in Figs. A.1 and A.2 in Appendix A.

Kiselev and EFG also give form factor models for the B+
c → ψ(2S) transition,

2A typo in Fig. 8 of Ref. [63] implies that the maximum q2 available in B+
c → ψ(2S) is 5.8,

while in reality it is 6.7, a mistake likely due to using 3.86 for the ψ(2S) mass in rather than the
correct value 3.686. This was not caught and was absorbed by LHCb’s implementation of the EFG
model. Strange behavior of the form factors in the region 5.8 GeV2 < q2 < 6.7 GeV2 (particular
evident in A2 and H0) is attributable to this bug. The effect of the mistake on the q2 spectrum was
noticeable, but is much smaller than the difference between the true EFG model and the Kiselev
model.
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(a) µ mode (b) τ mode

Figure 3.4: The Kiselev and EFG q2 distribution for B+
c → J/ψ`+ν` are nearly

identical, for both the muonic and tauonic channels.

(a) µ mode (b) τ mode

Figure 3.5: The Kiselev and EFG E∗` distribution for B+
c → J/ψ`+ν` are also very

similar; the Kiselev form factors predict a slightly softer E∗` .
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(a) µ mode (b) τ mode

Figure 3.6: The Kiselev and EFG q2 distribution for B+
c → ψ(2S)`+ν` disagree

completely.

following the same conventions used for the J/ψ transition. Plots of the individ-

ual Kiselev and EFG form factors and q2 distributions are shown in Figs. 3.6, A.3

and A.4. While the two models are in good agreement for the B+
c → J/ψ transi-

tion, the corresponding models of B+
c → ψ(2S) transitions differ dramatically. The

Kiselev model is parametrically identical to that for the J/ψ final state, with only

changes in the values of the numerical parameters3. On the other hand, one im-

portant consequence of the EFG model is that the ψ(2S) meson, being an n = 2

radially excited charmonium state, has a node in its wavefunction, causing a dra-

matic change in the q2 spectrum of the B+
c → ψ(2S) decays in comparison to the

B+
c → J/ψ decays.

The simulation for this analysis was generated using the EFG model for both

B+
c → J/ψ and B+

c → ψ(2S). However, the form factors for the former are modified

using corrections derived from data following the BCL parametrization. This pa-

rameterization is described below in Section 3.2.2, and the data-driven correction is

described in Section 4.3.1. The form factor model for B+
c → ψ(2S) is given a small

amount of freedom in the fit, corresponding to variations in the CLN-like ρ2 param-

3This is, in fact, an assumption of the model: the transition to the excited 2S state is difficult to
extract from the QCD sum rules, and so instead finite energy QCD sum rules and the “principal
of stability” are used to determine scale factors to transform the B+

c → J/ψ form factors into
B+
c → ψ(2S) form factors
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eter representing the slope of the Isgur-Wise function, using a method described in

Section 4.2.1

3.2.2 BCL parameterization

An increasingly popular set of parameterizations for semileptonic form factors

are known as z-expansions. These parameterizations are defined via the aid of the

conformal mapping

z(q2) =

√
t+ − q2 −√t+ − t−√
t+ − q2 +

√
t+ − t−

, (3.33)

where t± = (MBc ±MJ/ψ )2. Figure 3.7 representing the mapping of the q2 plane

into the z plane. There are several useful properties of this mapping related to the

analytic properties of form factors. In the z plane, this branch cut is mapped to

the unit circle; the path just below the branch to the upper semicircle and the path

just above the branch to the lower semicircle. The threshold value t+ is mapped to

−1 and t− to 0, and the regions with <(q2) in-between or outside t± are mapped to

various regions within the unit circle, as shown in Fig. 3.7. In a z-expansion, a form

factor F (q2) is expanded into

F (q2) = P (q2)
K∑

k=0

bkz(q2)k. (3.34)

The form of the initial term P (q2) depends on the particular z-expansion framework.

One particular such parameterization has been proposed by Bourrely, Caprini,

and Lellouch (BCL) [75] and recently used for the lattice computation of B →

D`ν form factors [76]. The motivation of this parameterization is to naturally

encode constraints on semileptonic decay form factors arising from general physical

principles. For building a fit model, the principal feature of the BCL expansion

is that P (q2) is a pole mass term 1/(1 − q2/M2
pole), for a pole mass Mpole that

corresponds to an excited resonance whose quantum numbers correspond to the
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form factor. For A0(q2), whose quantum numbers are 0−, the pole mass is the

B+
c mass itself. For A1(q2) and A2(q2), whose quantum numbers are 1+, the B+

c

resonance has not been measured but is predicted to have a mass of approximately

6.73 GeV. For V (q2) (1−) the predicted mass of the resonance is 6.33 GeV [74].

A form factor F (q2) is required to be analytic in the complex q2 plane, save for

a branch cut along the real axis for q2 greater than the threshold value t+. Below this

threshold, and on the real q2 axis, the form factor must be real and analytic, save

for a few possible isolated poles. Above this threshold, the scattering process `ν →

W ∗ → B+
c J/ψ , related by crossing symmetry to B+

c → J/ψ`+ν`, is kinematically

possible. Its decay cross section is a function of q2 and the W ∗ polarization. For

the scalar polarization, the decay must be p-wave but above the threshold picks

up an imaginary value. For q2 > t+, there are extra constraints on some of the

form factors due to angular momentum conservation. The optical theorem requires

that the imaginary part of the form factor scales as =(F (q2)) ∼ (q2 − t+)3/2. The

BCL parameterization uses this constraint to reduce the number of coefficients from

K + 1 to K. The parameterization is only completely specified for scalar-to-scalar

transitions (i.e., B → D), and it is not completely clear how to apply this result to

a scalar-to-vector transition. Consequently, we do not use this aspect of the BCL

parameterization.

The four form factors A0,1,2(q2) and V (q2) can be represented by BCL expan-

sions to linear order in z. The pole corresponding to the A0(q2) form factor is that

from a b̄c state with JP = 0−, which is just the B+
c meson itself. The A1(q2) and

A2(q2) form factors have a pole contribution from Jp = 1+ states, the lowest lying

of which is predicted to have a heavy mass near 6.73 GeV [57,63]. Finally, the pole

mass for V (q2) is a JP = 1− state, with a predicted pole mass of about 6.332 GeV.

Each form factor has an zero-th parameter b0 and a linear parameter b1. The Ebert

model can be approximated with this BCL expansion. The b0 and b1 parameters of

60



={q2}

<{q2}
t+M2

∗t−

(a) q2 plane

<{z}

={z}

−1 z∗

(b) z plane

Figure 3.7: Analytic properties of semileptonic form factors in the q2 and z planes.
The branch cuts are represented by dashed lines and the threshold points by solid
circles. The pole is represented by an open circle, and the reference point q2 = t−
by a cross.

this approximation are shown in Table 4.4.

3.3 B+
c rest frame approximation

We wish to measure the momentum vector of the B+
c candidate. With this, we

can boost into the rest frame, in which there are several variables which discriminate

B+
c → J/ψµ+νµ and B+

c → J/ψτ+ντ , τ → µνν decays from each other and from

background. At LHCb, the observables in the semileptonic B+
c decays that might

allow a measurement of the B+
c momentum are the flight vector of the B+

c meson

and the energy and momentum of the visible part of the final state, Y = J/ψµ. The

flight vector, which is the physical vector pointing from the B+
c ’s production vertex

(at a PV) to its decay vertex, is measured by information from LHCb’s tracking

system, especially the VELO. The decay vertex is determined by a fit to the three

muon tracks, and the B+
c candidate is matched to its best PV (the one where the

χ2 of a fit requiring the B+
c to come from the PV is minimized).

These observables and the known B+
c mass do not uniquely determine the

four-momentum of the B+
c candidate. Consider the boosted frame whose z axis is
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aligned in the B+
c ’s lab flight direction and in which the momentum of the Y = J/ψµ

(i.e., the visible subsystem of the final state) is perpendicular to that of the B+
c .

For the direct semimuonic decay, where there is one massless neutrino, there are

two solutions for the B+
c momentum in this frame, one pointing parallel to the z

axis and the other antiparallel. For the semitauonic decay, whose three-neutrino

subsystem can have any invariant mass in the range [0,mBc−mJ/ψ −mµ], there is a

continuum of possible solutions. Instead, theB+
c momentum must be estimated from

the available observables. This can be done with a technique developed originally

to study the B → D(∗)τν decays at LHCb [20]. Consider the decay of the B+
c into

a visible system Y and invisible neutrino system, as shown in Fig. 3.8 in both the

B+
c rest frame (or the center of mass (CM) frame) and lab frame. ϑCM is the angle

in the rest frame between the visible momentum and the B+
c flight direction, and

pY,CM is the four-momentum of the Y system in the rest frame. The four-momenta

of the B+
c and Y system in the lab frame, meanwhile, are denoted simply pBc and

pY , and ϑ is the angle between them. The Lorentz transformation between these

two frames shows that

pBc =
mBc

EY,CM

p
‖
Y − EBcβY,CM cosϑCM, (3.35a)

p⊥Y = pY,CM sinϑCM, (3.35b)

where the parallel and perpendicular components of pY are relative to the flight

direction of the B+
c (i.e., pY cosϑ and pY sinϑ, respectively). Conservation of energy

and momentum in the decay limits the speed βY,CM to be less than

βmax =
m2
Bc − (mψ +Mµ)2

m2
Bc + (mψ +Mµ)2

≈ 0.587.

The distribution of βY,CM peaks between 0 and βmax, and dies towards βY,CM = 0
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B+
c

Y

νµ(ντ ν̄τ )

ẑ
ϑCM

pY,CM

(a) B+
c rest frame

B+
c

Y

νµ(ντ ν̄τ )

ẑ

pBc

ϑ
pY

(b) Lab frame

Figure 3.8: Semileptonic B+
c decay into a visible J/ψµ system and invisible neutrino

system

and βY,CM = βmax where there is less available phase space.

Since the B+
c meson is spinless, the Y direction in the rest frame is isotropically

distributed and uncorrelated with both βY,CM and the lab energy of the B+
c (ignoring

acceptance and selection effects). Therefore, cosϑCM will be zero on average, and

mBc

EY,CM

p
‖
Y

would be an unbiased estimator of pBc if EY,CM were a measured quantity. Note

that taking the expectation cosϑCM → 0 is equivalent to assuming that ϑCM = π/2.

With this assumption, Eq. 3.35 allows an estimate of the B+
c momentum from the

measured momentum and energy of the Y and B+
c flight vector:

pest = pBc |ϑCM=π
2
=

mBcp
‖
Y√

M2
Y +

(
p⊥Y
)2
. (3.36)

It follows from Eq. 3.35 that the fractional error on this estimate is

pest − pBc
pBc

=
βY,CM

βBc
cosϑCM + A

(
1 +

βY,CM

βBc
cosϑCM

)
, (3.37)

where the quantity A, which is small at typical values of βY,CM, is given by

A =
1√

1− β2
Y,CM cos2 ϑCM

− 1 ≈ 1

2
β2
Y,CM cos2 ϑCM +O

(
β4
Y,CM

)
. (3.38)
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(a) Fractional error on the B+
c momen-

tum
(b) Ratio of squared kinematic error
(from Eq. (3.37)) to the total squared
error

Figure 3.9: The B+
c momentum resolution, determined in a Monte Carlo simulation

and including effects from detector resolution, is approximately 17%, and is domi-
nated by the kinematic approximation rather than by detector resolution effects.

The first term on the right-hand side of Eq. 3.37 is zero on average and is roughly

bounded by βmax ≈ 0.587, since βBc ∼ 1 for the highly boosted B+
c mesons at

the LHC. The second term is non-zero on average, producing a positive bias in the

estimated momentum. However, it is a higher order correction in the relatively small

parameter βY,CM.

This analysis of the estimation method does not take into account detector

resolution or acceptance effects. However, simulation verifies that Eq. (3.37) repre-

sents the fractional error well. Fig. 3.9 plots the distribution of the fractional error

of the estimated B+
c momentum. This error, which includes resolution effects as well

as kinematic effects, is dominated by the kinematic terms in Eq. 3.37. In fact, while

the standard deviation of the complete fractional error is σ(pBc)/pBc = 17.09%,

the standard deviation of the dominant kinematic terms in Eq. (3.37) is actually

marginally larger — σ(pBc)/pBc = 17.22%. This small difference indicates that

detector effects contribute negligibly to the momentum resolution.

The momentum estimate given by Eq. (3.36) is nearly equivalent to a simpler
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estimation technique:

(pest)z =
mBc

MY

(pY )z. (3.39)

The x- and y-components of the momentum are fixed by the B+
c flight direction.

Since the B+
c flight direction is close to parallel to the z axis in LHCb’s acceptance,

and p⊥Y is small, this is very similar to rescaling p
‖
Y . Simulation shows that the

difference in resolution between Eq. (3.36) and Eq. (3.39) is negligible. For the

record, this analysis uses Eq. (3.36).
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Chapter 4: Measurement of R(J/ψ ), the ratio of B(B+
c → J/ψτ+ντ)

to B(B+
c → J/ψµ+νµ)

This analysis measures the value R(J/ψ ) through an analysis of data cor-

responding to 3 fb−1 collected by LHCb in 2011 and 2012. The strategy of the

analysis is to select from the data a sample of events containing B+
c → J/ψµ+νµ

and B+
c → J/ψτ+ντ decays (as well as several backgrounds) and determine their

relative yield by fitting the distribution of the m2
miss, q

2, E∗µ, and decay time using

templates derived from simulation and data control samples. The method results of

this analysis, published in Ref. [77], are described in greater detail here.

Candidates from the signal decay mode B+
c → J/ψτ+ντ and normalization

decay mode B+
c → J/ψµ+νµ, where J/ψ → µ+µ− and τ+ → µ+νµντ , have the same

trimuon final state. A sample of trimuon candidates containing these two modes,

as well as a number of backgrounds, is selected from the LHCb data, as described

in Section 4.1.

For these selected candidates, the technique described in Section 3.3 is used

to to approximate the B+
c momentum; Fig. 3.3 shows a schematic diagram of a

B+
c → J/ψ`+ν` decay in the B+

c in the center-of-mass and lab frames. Using

this momentum pBc , several useful variables can be computed that discriminate

between signal and background. The missing mass squared, m2
miss, is the norm of

the four-vector difference between the approximated B+
c four-momentum and the
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Figure 4.1: Definition of the categorical variable Z in the q2, Eµ plane.

four-momentum of its visible decay products, or

m2
miss =

(
pB+

c
− pJ/ψ − pµ

)2
. (4.1)

This represents the invariant mass of the set of decay products of the B+
c that are

not included in the candidate. For the normalization decay, this is a single neutrino,

while for the signal decay it is a system of three neutrinos, and in general various

backgrounds may have decay products missing from the final state (or may not

correspond to the decay of B+
c , or any other, meson). Another useful variable is the

squared four-momentum transfer q2, defined as (pB+
c
− pJ/ψ )2, which is equal to the

invariant mass squared of the off-shell W±; this variable also plays an important

role in the B+
c → J/ψ`ν form factors, as described in Section 3.2. The helicity angle

θ between the lepton momentum and the axis anti-parallel to the J/ψ momentum

in the W± rest frame is also related to the form factors. Another variable is the

energy of the muon in the B+
c rest frame, or muon rest-frame energy, denoted E∗µ.

These four variables are not algebraically independent: there are three underlying

degrees of freedom, and E∗µ can be determined as a function of m2
miss, q

2, and θ, as

described in Appendix B. Moreover, even an algebraically independent set of these

variables (in particular, m2
miss, q

2, and E∗µ, the set used in the fit) are not statistically

independent, but instead exhibit non-trivial correlations.
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The parameter R(J/ψ ) is measured in a three-dimensional binned maximum

likelihood fit. The first variable is the missing mass squared of the B+
c candidate, as-

suming a transition to J/ψµX, with m2
miss bins in the range −5 (GeV)2 to 10 (GeV)2.

The second is the decay time of the B+
c candidate, with 5 bins in the range 0.3 ps to

2.18 ps. The third is a quasi-categorical variable, denoted Z for convenience, with

8 values covering the allowed space of E∗µ and q2 values for the decay.1 The first

four values correspond to E∗µ between the bin edges [0, 0.68, 1.15, 1.64,∞) GeV for

q2 < 7.15 (GeV)2. The next four values correspond to E∗µ in the same regions, but for

q2 ≥ 7.15 (GeV)2. This is represented graphically in Fig. 4.1. This set of variables

provides good discrimination between the signal, normalization, and backgrounds.

The categorical variable Z, and to a lesser extent the missing mass, is also sensitive

to the B+
c → J/ψ form factor parameters. Other details of the fit model itself are

described in Section 4.2.

The three-dimensional distributions of the various components of the sample

in the fit variables have no simple analytic descriptions. Therefore, histogram tem-

plates are created for the fit for the signal, normalization, and each background

contribution, and are constructed from data, Monte Carlo, and data-driven control

samples. The two principal components of the fit are templates for the signal mode

B+
c → J/ψτ+ντ and the normalization mode B+

c → J/ψµ+νµ Ṫhe modeling of these

components is described in Section 4.3.

Other templates represent the important background modes that have suffi-

ciently similar signatures to pass the selection. These are briefly listed here, sum-

marized in Table 4.1, and discussed in more detail throughout this chapter. The

first of these are the feed-down backgrounds, described in Section 4.4, in which a

B+
c decays semileptonically to a heavy charmonium state that in turn decays down

to a J/ψ . Other backgrounds coming from B+
c decays are B+

c → J/ψDX decays in

1This procedure is equivalent to a four-dimensional fit with two bins in q2 and four in E∗
µ, but

this cannot be done directly because of limitations in ROOT.
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which the D decays leptonically or semileptonically.2; these are described in more

detail in Section 4.5.

The largest background arises from inclusive decays of B+, B0, and Bs mesons

to J/ψ + hadrons in which a pion or kaon (or, less frequently, proton or electron)

from the decay is misidentified as a muon. Though the muon misidentification rate

at LHCb is low, the cross sections of the B mesons are very large relative to that

of the B+
c . The primary signature of this background is that the B+

c candidates

from this background source follow a B-like lifetime distribution and peak high in

missing mass and q2. The techniques involved in modeling this background, using

a data-driven control sample made by combining J/ψ mesons with tracks fail to

penetrate the muon chamber, is described in Section 4.8

Additionally, there are several other non-negligible backgrounds. The largest

of these is combinatorial background, wherein a J/ψ from a b-hadron decay is com-

bined with true muon from the rest of the event. Since b-hadrons are typically

produced in pairs, a b-hadron or its decay products usually has a partner b-hadron

from the “opposite-side” of the diagram of the collision; because of the PV separa-

tion requirements, the muon in the combinatorial background generally originates

from the decay of the opposite-side b-hadron. This background is modeled by a

Monte Carlo cocktail of Bu,d,s → J/ψX decays, described in detail in Section 4.6.

There is also a small background from combinatorial J/ψ candidates. This is

modeled using data from the m[J/ψ ] sidebands, as described in Section 4.7. This

assumes that the fit variables are uncorrelated with the J/ψ mass, which is true to

a good approximation across the J/ψ mass window (which is only a few percent of

the total J/ψ mass).

Many of the above backgrounds are produced using simulation. A number

of corrections are required to improve the agreement between simulation and data.

2Here and in the following, D refers to any of D+, D0, or D+
s .
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Table 4.1: Characteristics of major signal and physics background channels

Mode Topology Signature

Signal
B+
c → J/ψτ+ντ J/ψ dimuon, unpaired µ
⇒ J/ψ → µµ Large missing mass (3ν)
⇒ τ → µνν Short B+

c lifetime

Normalization
B+
c → J/ψµ+νµ J/ψ dimuon, unpaired µ
⇒ J/ψ → µµ Smaller missing mass (1ν)

Short B+
c lifetime

feed-down
B+
c → (cc̄)∗µν J/ψ dimuon, unpaired µ
⇒ (cc̄)∗ → J/ψX Large missing mass (1ν +X)

Short B+
c lifetime

J/ψDX
B+
c → (cc̄)DX J/ψ dimuon, unpaired µ
⇒ (cc̄)→ J/ψ (X) Small to large missing mass (1ν, (X), (Y ))
⇒ D → (µ, τ)ν(Y ) Short B+

c lifetime

Combinatorial
B → J/ψX, B → µX J/ψ dimuon, 1 real OS µ
⇒ J/ψ → µµ Broad missing mass distribution

Mimics B+
c lifetime

Mis-ID
B → J/ψµ(fake)X J/ψ dimuon, 1 fake µ
⇒ J/ψ → µµ Large missing mass (X)

Long B lifetime

These are described in Section 4.9.

4.1 Selection of B+
c → J/ψµ+X candidates

This analysis uses the full LHCb dataset from Run 1, which occurred during

the years 2011 and 2012., consisting of runs in 2011 at
√
s = 7 TeV and 2012 at

√
s = 8 TeV. The 2012 data corresponds roughly 2 fb−1 collected at

√
s = 8 TeV,

while the 2011 data corresponds to roughly 1 fb−1 collected at
√
s = 7 TeV.

Candidate B+
c → J/ψ (→ µ+µ−)µ+ decays are reconstructed from a subset

of events flagged for the presence of detached J/ψ mesons during the stripping of

LHCb’s data (see Section 2.2.6). This stripped data requires the presence of two op-

positely charged µ candidates with pT > 550 MeV. These tracks should not originate

at the primary vertex (PV) where the proton collision occurs. A typical discrimi-

nant for this is the impact parameter (IP) χ2, defined as the increase in the primary
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vertex fit χ2 when this track is included3; this IP χ2 is required to be greater than 4

for each muon with respect to any PV. The distance of closest approach (DOCA) of

the two muons is determined in a fit, and must have a χ2 < 30, and a vertex is also

fit from the track parameters, which must have χ2 < 20; the vertex location must

also be significantly separated from the PV, by three standard deviations given their

uncertainties. The measured invariant mass of the J/ψ candidate must be within

55 MeV/c2 of its true mass, and the candidate must have a significant decay length

(more than 5 standard deviations away from the nearest PV given its tracking un-

certainties) to remove prompt background It is additionally required that this J/ψ

candidate be the signature that triggered the LHCb detector to save the event, at

the hardware and both software (HLT1 and HLT2) levels; this is usually the case,

but is important to enforce strictly to remove effects on the measured efficiency

ratio.

From this sample of events, the J/ψ meson candidates are paired with muon

tracks to form B+
c candidates, with a set of selection requirements summarized

in Table 4.2). Some of these are further individual cuts on the allowed J/ψ and

unpaired muon candidates: the J/ψ is required to have a high pT (> 2 GeV/c); the

unpaired muon µB must be moderately detached from its PV (with an IP χ2 greater

than 4.8) and have pT greater than 750 MeV/c. This muon candidate must also pass

strict PID requirements. The resulting vertex fit must have a χ2 significance less

than 75, while the fit determining the J/ψ and unpaired muon distance of closet

approach (DOCA) must be less than 0.15 mm and have a χ2 significance less than 30.

A selection is made to reduce partially reconstructed backgrounds using a boosted

decision tree examining all the tracks in the event, described in Section 4.1.1.

The B+
c candidate formed from combining the J/ψ and unpaired µ− must

3The LHCb detector fits various vertices using a Kalman-filter algorithm [78]. The figure of
merit for this fit is denoted χ2 = rTV −1r, where r are the residuals of the measured data in the
fit model and V is the covariance matrix of the measured data.
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Table 4.2: Main selection requirements. If more than one candidate is present in
the event after this selection, one is chosen randomly.

Object Selection
Event number of identified tracks < 600

µ± p > 3 GeV/c, pT > 550 MeV
— IP χ2 > 4
— moderate PID criteria

J/ψ pT > 2 GeV/c
— DOCA χ2 < 30
— vertex fit χ2 < 20
— mass within 55 MeV of mJ/ψ (3095 MeV)

unpaired µ+ p > 3 GeV/c, pT > 750 MeV/c
— η < 3.6 or p ≥ 15 GeV
— IP χ2 > 4.8
— strict PID criteria

J/ψ + µ+ vertex χ2 < 75
— DOCA < 0.15 mm
— DOCA χ2 < 30
B+
c invariant mass less than the B+

c mass
— cos(θXY ) between J/ψ , µ+ > −0.8
— maximum isolation BDT < 0.2
— missing mass squared in range −5–10 GeV2/c4

— decay time in range 0.3–2.18 ps
unpaired µ+ + µ− mass not within 50 MeV of mJ/ψ

unpaired µ+ + µ+ cos(θlab) > 1− e−8 ≈ 0.9997

have an invariant mass less than the B+
c mass, since energy is lost to the neutrino

system for the signal and normalization decays. The approximation method is used

to calculate the rest frame variables, which are required to be in the ranges used in

the fit; in particular, −5–10 GeV2/c4 for the missing mass squared and 0.3–2.18 ps

for the decay time.

A few selection requirements targeted specific backgrounds without signifi-

cantly affecting the signal efficiency. Two cuts target combinatorial background by

limiting the DOCA of the J/ψ and µ+ and requiring that the J/ψ and µ+ not travel

in nearly opposite directions in the XY plane (characteristic of decays where they

are produced by boosted opposite-sign b-hadrons). Two small backgrounds are pos-
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sible because the trimuon final state can contain a double counted muon track or

two swapped same-sign muons. In the first of these, one of the muon tracks from

the J/ψ is accidentally identified as two separate particles by LHCb’s reconstruction

software, and together these three tracks form a candidate. This background is ex-

cluded by vetoing candidates where the angle between the unpaired muon and the

same-sign muon in the lab frame is sufficiently close to zero. The latter background

occurs in an ambiguous region of phase space where both pairs of opposite-sign

muons have an invariant mass in the J/ψ window, and when the wrong pair has

been chosen as the J/ψ candidate; this is vetoed by a veto in a window around

the J/ψ for these combinations. A veto is made for candidates whose unpaired

muon has η ≥ 3.6 and p ≤ 15 GeV/c. This criterion is over 99% efficient for signal

and normalization decays, with respect to the rest of the selection, and reduces the

amount of mis-ID background while significantly improving overall data–simulation

agreement.

In events with at least one candidate passing the final selection, there is such

a single candidate greater than 98% of the time. The primary source of multiple

candidates in an event is a single J/ψ meson combined with several bachelor muon

candidates. In the rare events containing multiple candidates, a single candidate is

randomly retained.

4.1.1 Isolation BDT

Many of the backgrounds in this analysis (particularly the mis-ID and double

charm backgrounds) are partially reconstructed from b-hadron decays that produce

more than three charged tracks. The presence of extra charged tracks that are

associated with the B+
c candidate’s vertex differentiates these backgrounds from the

signal and normalization modes.

This analysis makes use of the isolation boosted decision tree (BDT) devel-
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LHCb simulation

Figure 4.2: The distributions of the isolation BDT score for B+
c → J/ψµ+νµ (blue)

and for mis-identified background template, before applying the PID selection (red)

oped in Ref. [20]. This BDT is trained using simulation to distinguish associated

tracks, i.e., those originating from the same B meson as the candidate tracks, from

unassociated tracks, e.g., those originating from PVs or other secondary decays. Its

input variables include the transverse momentum of the track, its IP χ2 with respect

to both the PV and the J/ψµ+ vertex, the angle between its flight direction and

the J/ψµ+ momentum, and the significances of the separation of the J/ψµ+ and

J/ψµ+ + track vertices from the associated PV. The output of the isolation BDT is

used to rank every track in the detector. Figure 4.2 shows the distributions of the

maximum BDT score for the B+
c → J/ψµ+νµ normalization mode and the misiden-

tified background. The selection requires the BDT score of the most associated-like

track (i.e., the highest BDT score of all the tracks) to be less than 0.2.

4.1.2 Efficiency ratio

The raw ratio of the number of observed B+
c → J/ψτ+ντ events to B+

c →

J/ψµ+νµ events that is measured by the fit does not represent the actual ratio of

branching fractions. This ratio must be corrected by the overall selection efficiency

for the two decay modes and the τ+ → µ+νµν̄τ branching fraction. This selection

efficiency includes contribution from the detector acceptance efficiency (measured at

the generator level and labelled GEN); the reconstruction and preliminary selection

efficiency (REC); the efficiency of the final selection proper, without isolation or

74



bachelor muon PID cuts (SEL); the efficiency of the isolation cut (ISO); the efficiency

of the PID requirement for the bachelor muon (PID); and the L0 hardware and first

level HLT1 software triggers (both labelled L0) and second level HLT2 software

trigger (HLT2). The overall ratio of efficiencies for the two modes is broken down

into

ετ
εµ

=
εGEN
τ

εGEN
µ

× εREC
τ

εREC
µ

× εSEL
τ

εSEL
µ

× εISO
τ

εISO
µ

× εPID
τ

εPID
µ

× εL0
τ

εL0
µ

× εHLT2
τ

εHLT2
µ

. (4.2)

The relative efficiency ratios are evaluated using the simulation samples for the

different years of data taking and magnet polarities. There is good consistency

between the various samples. Most of the relative efficiency ratios are found to

be very close to 100%. The exceptions are the reconstruction efficiency, selection

efficiency, and PID efficiency, which are found to be roughly 74%, 72%, and 93%,

respectively. The total efficiency ratio is found to be (52.4± 0.4) %.

4.2 Fit strategy for the measurement of R(J/ψ )

The parameter R(J/ψ ) is measured in a maximum likelihood fit to the binned

distributions of the missing mass squared (m2
miss), decay time, and rest frame vari-

ables q2 and E∗µ (through the variable Z) in the data sample passing the selection

described in the above selection. The fit model assumes that these distributions are

a mixture of the distributions of the signal and normalization decay modes and vari-

ous background processes. Their separate distributions bear no simple parametrized

descriptions, and so are described using histogram templates derived from simula-

tion and data, as described in the following sections. The relative fractions of the

various components are allowed to vary in the fit, with some constraints, to find the

fractions maximizing the likelihood of the observed number of events in each event

under a Poisson distribution.

The fit is performed using the HistFactory package, part of the RooStats
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project [79]. This framework allows several specializations that improve the fit

model. In addition to the contribution fraction of each component, the fit framework

allows extra degrees of freedom that parametrize changes in the histogram shapes,

known as shape systematics, described in Section 4.2.1. The tool package also

implements the Beeston-Barlow method [80] to evaluate the effect on the fit of

the statistical uncertainty in the template distributions, which are derived from

simulation and data samples of finite size. This is described in Section 4.2.2 and

is used to determine the nominal value of R(J/ψ ) and to evaluate an important

systematic uncertainty.

Finally, the maximum likelihood analysis used for the fit is not guaranteed

to be unbiased. In fact, a sizeable bias is found to exist due to the presence of

empty and nearly-empty bins, and their interplay with statistical fluctuations in

the fit templates. This bias is evaluated using a new toy study method utilizing

kernel density estimation for resampling data and fit templates, and is described in

Section 4.2.3.

4.2.1 Shape systematics

Using the HistFactory framework, alternative templates for the various B+
c

decay modes, evaluated with certain parameters adjusted higher and lower, provide

the basis for shape systematic parameters that float in the fit. For a given value of

a shape systematic, HistFactory creates an interpolated template based on the bin

contents of the nominal template and the templates with higher and lower values of

the corresponding parameter. Typically this is done to assign systematic uncertainty

to a measured value due to the imprecisely known value of some parameter affecting

the template shapes. It can also be used to measure the shape parameter values

themselves.

Several shape systematics are introduced in the fit. In particular, the B+
c
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lifetime is not yet a precisely measured quantity. The default value of the B+
c

lifetime used in simulation is set to the out-of-date value 0.453 ps, reported by CDF

and D0. Recent measurements by LHCb have indicated a slightly higher value,

closer to 0.510 ps, and the new PDG average value is 0.507(9) ps. The various B+
c

decay simulation samples are reweighted to have a lifetime equal to 0.5113 ps, a value

picked before the recent PDG update but compatible with it. A shape systematic,

corresponding to an uncertainty in the lifetime of 0.0094 ps, is included in the fit.

As described in the sections below, several form factor parameters for

B+
c → J/ψ`+ν`, for V (q2), A1(q2), and A2(q2), are determined in an auxiliary fit

normalization-rich region using shape systematic parameters (see Section 4.3.1).

Several remaining form factor parameters are allowed to vary in the main fit, includ-

ing those for A0(q2), which affects the signal decay B+
c → J/ψτ+ντ but not the nor-

malization decay B+
c → J/ψµ+νµ, and some for B+

c → ψ(2S)`+ν` and B+
c → χcµ

+νµ,

described below in Section 4.4.1.

4.2.2 The Beeston-Barlow algorithm

Since no simple analytical shapes are expected for the distributions of these

variables, it is prudent to use a binned maximum template likelihood fit with signal

and background histograms taken from Monte Carlo and data driven samples. It is

also necessary to evaluate the statistical error resulting from the finite statistics used

to produce these templates with the Beeston-Barlow method. This can be easily

done with the HistFactory package.

4.2.3 Assessing bias in the fit model through pseudo-experiments

A maximum likelihood estimate (MLE) of a physical parameter produced using

a dataset of a finite number of events is not guaranteed to be unbiased. The canonical

example is the MLE estimate of the variance of a normal distribution fit to a set
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of N events; its 1/N factor must be replaced with 1/(N − 1) (known as Bessel’s

correction) to produce an unbiased estimate. Similarly, a maximum likelihood fit

has no mathematical guarantee that it’s estimates of event counts are not biased.

The canonical procedure for estimating this potential bias is the bootstrap.

In an unbinned maximum likelihood fit, where analytic PDFs for the various fit

components are available, the parametric bootstrap is applied. Values are sampled

from the various PDFs (typically with parameters near the best-fit point) to produce

a series of psuedo-datasets. The fit procedure is applied to each pseudo-dataset to

produce estimates of the parameter(s) of interest. Comparing these estimates to the

generated values produces a measurement of the bias in the MLE estimator. In the

most general case, the bias may depend on the value of the parameter of interest

(or on the multi-dimensional space of values of all fit parameters).

On the other hand, a binned maximum likelihood fit often makes use of discrete

histogram templates (technically, probability mass functions or PMFs) in place of

analytic PDFs, such as in this analysis. The total template, constructed from a

sum of the histogram templates for the various signal and background modes, is

typically quasi-parametric, containing parameters representing the fractions of its

component modes (as well as others corresponding to template shape systematics).

The above procedure can be extended by sampling binned pseudo-datasets from the

total histogram template. Indeed, this approach has been used in assessing bias for

several analyses using binned maximum likelihood template fits.

However, there is a subtle but crucial difference in the case of binned likelihood

fits. While sampling from an analytic PDF can produce pseudo-data in any physi-

cally allowed region, sampling from histogram templates cannot impute pseudo-data

of some component type in regions where the histogram template of that component

is empty. When the true underlying distributions have sparse regions (especially the

case for multi-dimensional fits), the histogram templates are likely to have certain
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Figure 4.3: The true distributions fi,1(x) (top) has support everywhere, but the
high statistics histogram template (bottom) has sparse bins in the tail regions.

patterns of empty and nearly-empty bins in these regions; moreover, these patterns

are bound to differ by component. Since these patterns are preserved when sampling

pseudo-data from the total template, they serve as artificial features identifying the

various components. The space of pseudo-datasets is thus quite constrained, and

the toy studies can both overestimate the ability to measure certain components

(because they preserve artificial features) and ignore possible biases induced by the

nature of the histogram templates in these sparse regions.

An ideal toy study would instead sample pseudo-datasets directly from the

true distributions underlying the various component modes, thereby generating re-

alistic pseudo-data in sparse regions and preventing the introduction of artificial

features. However, the very reason that these analyses use binned fits with his-

togram templates is that the true underlying distributions are unknown; or rather

that they are un-parametrizable: the fastest method available for sampling from

them is simulation generation. So, in cases where the available simulation statistics

are limited and the number of bins large, allowing sparse regions, this “typical”
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straight-forward toy study method can be insufficient.

KDE pseudo-experiments

The problem can be solved by performing the toy study with an approximated

set of underlying distributions obtained via kernel density estimation (KDE). These

are similar to the simulation distributions on which they are based, but have support

where these templates are empty and permit fast sampling via random number

generation (RNG).

Each component i in the fit has a true underlying distribution, or first gen-

eration distribution fi,1(x), which describes both the generated simulation sample

and the corresponding class of events in data (assuming no important data/MC

differences). The available simulation sample for i, sampled from the first genera-

tion distribution fi,1(x), can be used to produce an estimated distribution through

kernel density estimation. In this technique, the model for the true distribution

f̂i,1(x) is assumed to be a mixture of gaussians, each centered around one of the

simulation events. The width of each gaussian is known as the bandwidth of the

kernel density estimator. A popular implementation is the adaptive kernel density

estimate, in which this width is narrower in highly populated regions and wider in

sparser regions of the simulation dataset.

The resulting estimated distribution f̂i,1(x) is not an unbiased estimate of the

true distribution in any sense — in particular, it tends to broaden sharp features.

However, it is similar enough to the true distribution to be useful for toy studies. So,

it is denoted the second-generation distribution fi,2(x) = f̂i,1(x). New simulation his-

togram templates can be sampled from fi,2(x) with equivalent statistics to the origi-

nal simulation templates, as well as a series of pseudo-datasets (see Fig. 4.4). Fitting

these second-generation pseudo-datasets with the second-generation histogram tem-

plates is analogous to the ideal but impractical toy study in which pseudo-datasets
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Figure 4.4: Applying a kernel smoothing procedure to sampled simulation data pro-
duces second-generation distributions fi,2(x) (top right), which can quickly sampled
via RNG (bottom right).

sampled directly from the true first-generation distributions fi,1(x) is fit with the

nominal histogram templates sampled from the same.

KDE pseudo-experiment validation

As simulation statistics increase, the histogram templates become better rep-

resentations of the underlying distributions, with fewer and fewer sparse or empty

regions. In the limit of infinite simulation statistics, in fact, the histogram tem-

plates become exact PMF shapes. In this case, sampling from the templates itself

(as in a “typical” toy study) is equivalent to sampling directly from the underlying

distribution.

This correspondence suggests a closure test that can be applied to the KDE

toy-study method. On one hand, extremely high statistics histogram templates

can be sampled from the second-generation distributions fi,2(x) and used to fit
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Figure 4.5: Nesting the kernel-smoothing procedure produces third generation distri-
butions fi,3(x) (top right) — indexed by the set of the second-generation histogram
templates used to produce them.

second-generation pseudo-datasets (which are nearly equivalent to being resampled

directly from the high-statistics templates). On the other, a “typical” toy study

can be performed, where the first-generation histogram templates are resampled

to produce first-generation pseudo-datasets (in effect, assuming them to be exact

representations of fi,1(x)). These separate toy studies are analogous, with the crucial

difference that one takes place in the space of kernel-smoothed distributions fi,2(x),

while the other takes place in a space of empirical distributions determined by the

nominal histogram templates (which are statistically representative of fi,1(x)). In

essence, a comparison of the two tests for biases introduced by the kernel smoothing

procedure itself.

KDE pseudo-experiment systematics

The closure test validates the KDE toy study method by exploiting the infinite

statistics limit, where biases are typically very small. A second procedure validates
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the method at finite simulation statistics levels by extending the KDE procedure to

yet one more generation, in effect nesting it within itself. Since the method exploits

performing toy studies with second-generation distributions fi,2(x) to represent im-

practical toy studies with the first-generation distributions fi,1(x), a new set of toy

studies can be performed using third-generation distributions fi,3(x). Such third-

generation distributions can be created for a number of histogram templates sampled

from fi,2(x) via kernel-smoothing (see Fig. 4.5).4 Just as the second-generation dis-

tributions are systematically smeared from the true first-generation distributions,

so are the third from the second. Based on this analogy, the discrepancy between

the second- and third- generation distributions approximates the discrepancy be-

tween the first- and second-generation distributions, motivating a test to measure

the effect of this discrepancy on the bias estimation.

The exact procedure of the test is to produce a number (say 25) of sets of

second-generation histogram templates by sampling from fi,2(x). Each of these can

be used to fit a pseudo-datasets sampled from fi,2(x) as well. Simultaneously, each

set is used as the basis for the creation of kernel-smoothed third-generation distribu-

tions fi,3(x). From each of these a number of third-generation histogram templates

and pseudo-datasets are created (say 25 again). The net result is a collection of

25 second-generation fits, each with an associated 25 third-generation fits. To ex-

plore possible dependence of any systematic on R(J/ψ ), it is convenient to use a

different value of R(J/ψ ) for each of the 25 groups (1 second-generation and 25

third-generation) of pseudo-datasets. Then the bias of the 25 second-generation fits

can be compared to the bias of the 625 third-generation fits, both as a function

of R(J/ψ ). The agreement (or lack thereof) of these bias estimates measures the

accuracy of the second-generation toy studies in estimating the true bias, and can

4Since the third-generation distributions depend on the pseudodata sampled from the second-
generation distributions, they could be more precisely labeled fki,3(x) where k labels the second-
generation pseudo-dataset.
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be used to assign a systematic uncertainty to the bias correction.

Application of KDE pseudo-experiment procedure

As mentioned above, an unexpected bias was discovered in the fit after the

first unblinding (first noticed as a dependence of fit yields on the number of bins

used in the fit). As “typical” toy studies had not anticipated this bias, we now apply

our KDE toy study technique. For each histogram template i in the fit, we produce

a second generation density fi,2(x) via KDE. For computational efficiency, and to

maximize the support of the distribution in the multidimensional space, we perform

one-dimensional KDE along m2
miss in the 40 separate bins of decay time and Z.

We then proceed to sample second-generation templates and 1500 pseudo-datasets

from these distributions. Before unblinding the value of R(J/ψ ), we are interested

in the relationship between its measured value and its true value, and therefore

we generate these datasets with a range of values for R(J/ψ ) (ranging from zero

to absurdly large values). Figure 4.6 shows the results of this toy study. In these

tests, the same second-generation templates are used in each fit; subsequent tests

involving alternate template sets do not show any increased variance or change in

the overall bias.

Given a true value θ for a parameter (i.e., R(J/ψ )) measured to be θ̂ via

likelihood maximization, the bias is the quantity E[θ̂ | θ]− θ, where E is the statis-

tical expectation operator. In the measurement scenario, however, θ is an unknown

quantity and instead only θ̂ is known. The desired quantity is E[θ | θ̂], which by

Bayes’ theorem is equal to

E[θ | θ̂ = ϑ̂] =

∫
ϑfθ̂,θ(ϑ̂, ϑ) dϑ
∫
fθ̂,θ(ϑ̂, ϑ) dϑ

=

∫
ϑfθ̂|θ(ϑ̂ | ϑ)fθ(ϑ) dϑ
∫
fθ̂|θ(ϑ̂ | ϑ)fθ(ϑ) dϑ

. (4.3)

where the quantities f are joint or conditional densities of the variables θ and θ̂. The
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Figure 4.6: A significant bias exists in the fit for a range of value of R(J/ψ ). The
generated and measured values of R(J/ψ ) are shown in the x- and y-axes. The blue
curve shows the conditional mean generated value as a function of the fit value.
The sharp increase at large values is an artifact of the cut-off value used in the prior
distribution of R(J/ψ ).

KDE toy studies provide a direct evaluation of this bias (under the assumption that

the kernel smoothing does not significantly alter the bias, which is a addressed by

a systematic uncertainty). The dataset of toy study results contains pairs (θ, θ̂) of

generated and measured values, with the generated values sampled uniformly from

a large non-negative range. Assuming that any positive value of θ is equally likely a

priori, the quantity in Eq. (4.3) is equal to the conditional mean of θ (the generated,

x-axis quantity) at fixed θ̂ (the measured, y-axis quantity). This conditional mean

is computed by producing a lowess curve (a locally linear regression) representing θ

as a function of θ̂.

We perform the closure test described above, which compares the typical (pure

bootstrap) toy study to a KDE study using extremely high statistics histogram

templates. Its results are shown in Fig. 4.7. As expected, there is no discrepancy in

the relationship between the generated and fit values between the two toy studies.

A systematic uncertainty on the bias correction is derived using the procedure
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(a) Typical toy study (b) High statistics KDE toy study

Figure 4.7: There is good agreement in the closure test comparing the high-statistics
KDE toy study to the typical toy study. For ease of comparison, the blue curve shows
the conditional mean fit value as a function of the generated value.

described above. In brief summary, from the second-generation distributions fi,2(x)

a small number (25) of sets of second-generation templates and pseudo-datasets are

sampled, equal in size to the nominal templates and dataset, respectively. From each

of these sets, indexed by k, KDE is used to create corresponding third-generation

distributions fki,3(x), and a number (25) of third-generation templates and pseudo-

datasets are sampled (again equal in size to the corresponding nominal templates

and dataset). For each k, a unique value of R(J/ψ ) is used in the creation of the

single second-generation pseudo-dataset and 25 associated third generation pseudo-

datasets. A fit is performed using each of the 650 sets of templates and pseudo-

datasets, with results shown in Fig. 4.8. The mean bias of the 625 third-generation

fits differs from that of the 25 second-generation fits, in a manner largely independent

of R(J/ψ ). The net difference, equal to 5.4% after correcting for the efficiency ratio,

is assigned as a systematic uncertainty.

4.3 Signal and normalization modeling

The projections of the templates for the signal and normalization mode are

shown in Fig. 4.9. The normalization mode B+
c → J/ψµ+νµ is characterized by
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(a) Tinker toy study results (b) Difference between 2nd-gen. and 3rd-
gen. measurements

Figure 4.8: The tinker toy test compares a second-generation KDE toy study (pur-
ple) to a third-generation study (black). The fits in the third-generation toys gen-
erally produce slightly higher estimates than their corresponding second-generation
fits, leading to a systematic uncertainty.

a small missing mass squared, which is only non-zero because of the resolution of

the estimated B+
c momentum. The missing mass squared of the signal mode has

a broader distribution, reflecting the invariant mass lost to the neutrino system.

The decay time distributions of the two modes are similar, following a roughly

exponential distribution with the B+
c decay time modified by lifetime acceptance

parameters. The q2 distribution of the normalization mode tends toward lower

values than the signal, while its E∗µ distribution tends toward higher values.

The signal decay B+
c → J/ψτ+ντ , where τ+ → µ+νµν̄τ , is characterized by a

higher missing mass. Its distribution in Z differs from the normalization because

the τ+ is produced through the scalar polarization of the W ∗ much more frequently

than the µ+, and this affects the E∗µ and q2 distributions of the final state µ+.

The expected ratio of signal to normalization events is R(J/ψ )B(τ+ → µ+νµν̄τ ) ≈

0.044%, taking the lower range of SM predictions R(J/ψ ) = 0.25 [57].

4.3.1 Form factor correction

The distribution of the fit variables for these modes are sensitive to the semilep-

tonic decay form factors for the B+
c → J/ψ transition, which have not yet been

88



]4/c2 [GeVmiss
2m

5− 0 5 10

A
rb

itr
ar

y 
un

its

0

1000

2000

3000

4000

5000

6000

7000

LHCb simulation

decay time [ps]
0.5 1 1.5 2

A
rb

itr
ar

y 
un

its

0

2000

4000

6000

8000

10000

12000

14000

16000

LHCb simulation

)
*

µ,E2Z(q
0 1 2 3 4 5 6 7

A
rb

itr
ar

y 
un

its

0

2000

4000

6000

8000

10000

LHCb simulation

Figure 4.9: Fit templates for normalization B+
c → J/ψµ+νµ; the signal template is

shown in red for comparison.

measured and whose theoretical models cannot be trusted completely. A general

overview of the treatment of form factors in this analysis is presented above in

Section 3.2.

To account for the unknown true form factors of the B+
c → J/ψ`ν decays,

the signal and normalization templates are reweighted using a BCL expansion (see

Section 3.2.2) with parameters determined in two stages within the fit. In the first

stage, the parameters for the form factors A1(q2), A2(q2), and V (q2) (which describe

the B+
c → J/ψµ+νµ normalization decay) are determined by a fit to a region of the

phase space that is dominated by the normalization channel, hereafter referred to

as normalization-rich region.5 The normalization mode is not appreciably sensitive

to the scalar form factor A0(q2), which predominantly affects the semitauonic decay

and whose parameters are determined in the main fit (described in Section 4.2.1).

5The definition of this region can be found later, in Section 4.9.1.
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The fit procedure itself borrows largely from the fit used in the main analy-

sis, using this as the basis for an iterative procedure to determine the form factor

parameters. Given a set of BCL z-expansion parameters bi for each form factor,

the differential decay rate dΓ/dq2 d cos θ is calculated as a function of the MC-truth

momenta of the B+
c and its decay products via Eq. (3.5). The ratio of this quan-

tity to the differential decay rate of the EFG model (with which the simulation

was generated) is used to weight the MC. This ignores the effect of the form fac-

tors on angular correlations involving the J/ψ decay (which would be corrected by

a quadruply-differential decay rate d4Γ/dq2 d cos θ dχ d cosφ), but is an acceptable

approximation because this analysis does not rely on precise angular variables and

correlations.

Uncertainties in the form factor values are added as degrees of freedom in the

fit using the shape systematic framework of HistFactory, described in Section 4.2.1.

To avoid higher-order effects induced by the interpolation procedure ’s interpolation

procedure, we employ an iterative procedure where in each step the fit templates

are regenerated at the new values and ±nσ values of the shape parameters. The

scaling n starts at 2 for the first iterations, so that the fit does not over-converge,

and decreases to 1 at the end of the iterations. Table 4.4 shows the measured

values of the parameters. Figure 4.12 compares the Kiselev, Ebert, and fitted BCL

form factors to several preliminary lattice QCD results. The fitted BCL results

are uncertain up to an overall scaling that cannot be determined in the fit. The

fitted form of the A0(q2) is included here for convenience, although these parameters

are not determined until the nominal fit to the full dataset. Based on the limited

information available, the fitted values agree better with the lattice predictions than

either the Ebert or Kiselev models.

The parameters for the form factor A0(q2), specific to theB+
c → J/ψτ+ντ signal

decay, are determined in the main fit, as nuisance parameters alongside R(J/ψ ).
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Table 4.4: The updated values of the BCL parameters after an iterative fit procedure
to the normalization-rich region.

Form factor Parameter Starting value Ending value

A1(q2)
b0 0.652 fixed
b1 −5.631 −2.36± 1.56

A2(q2)
b0 1.01 1.40± 0.18
b1 0 fixed

V (q2)
b0 0.884 1.29± 0.18
b1 −14.5 −15.7± 9.5

Normalized residual
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C
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nt
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Figure 4.11: Histogram of the normalized residuals in each un-projected bin of
the fit to the normalization-rich region. The red curve plots a standard normal
distribution.
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Figure 4.12: Plots of Kiselev (blue), EFG (orange), and fitted BCL form factors
(black with green error bars); the black points show preliminary lattice QCD results.

(a) µ mode (b) τ mode

Figure 4.13: The Kiselev, EFG, and BCL q2 distribution for B+
c → J/ψ`+ν` show

that the fit to the data prefers a slightly softer q2 spectrum.
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(a) µ mode (b) τ mode

Figure 4.14: The Kiselev, EFG, and BCL E∗` distribution for B+
c → J/ψ`+ν` show

that the data prefers a slightly harder E∗µ.

These signal and normalization templates are also subject to more generic data–

MC differences discussed in Section 4.9, e.g., corrections to the lifetime acceptance

efficiency and the track multiplicity and impact parameter χ2 distributions.

4.4 Feed-down background

Decays of B+
c to charmonia states heavier than the J/ψ , which in turn pro-

duce a J/ψ in their decay chains, are an important, though as it turns out small,

background source. Little is known about these decays experimentally; on the other

hand, the charmonium spectrum is well-understood and constrains the structure of

possible feed-down backgrounds. In particular, only charmonium states with a mass

below the DD threshold have an appreciable branching fraction to states including

the J/ψ . The predominant feed-down channels are thus ψ(2S) → J/ψππ, consid-

ered in Section 4.4.1, and χc{0,1,2}(1P )→ J/ψγ, considered in Section 4.4.2. Possible

smaller feed-down backgrounds involving the ψ(3770) state and X(3872) state are

considered in Section 4.4.3. A fit to a control sample enriched in feed-down decays

is described in Section 4.4.4.
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Figure 4.15: Fit templates for feed-down B+
c → ψ(2S)µ+νµ and B+

c → ψ(2S)τ+ντ ;
the signal template is shown in red for comparison.

4.4.1 Feed-down from B+
c → ψ(2S)`ν

The available phase space for the pions in the principle feed-down chain

ψ(2S)→ J/ψππ is constrained; consequently, the missing mass squared distribution

of this process rises steeply at at the π+π− threshold. As a B+
c decay, its decay time

distribution mirrors that of the signal and distribution quite closely. Its q2 distribu-

tion is heavily biased towards lower values than the signal. The projections of the

template for this background are shown in Figure 4.15.

Predictions for the branching fraction ratio

B(B+
c → ψ(2S)µ+νµ)

B(B+
c → J/ψµ+νµ)

(4.4)

vary significantly. The EFG model predicts a ratio of 2.5% [63], while the Kiselev

model predicts 4.9% [57]. Accounting for the 61% ψ(2S) → J/ψX branching frac-
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tion, the expected contribution is in the range 1.5− 3%, but with large uncertainty.

There is not much literature on the ratio R(ψ(2S)); the Kiselev model predicts it

to be 8.5% [57]. We conservatively take R(ψ(2S)) = 8.5% in the fit, and assign a

corresponding systematic uncertainty (see Section 4.11.11).

There is not enough statistical sensitivity to these background modes to war-

rant a full BCL parameterization a la B+
c → J/ψ`+ν`. Instead, the slope of the

effective Isgur-Wise function (corresponding to a CLN-like ρ2) is allowed to vary.

We place a generous constraint on this value, allowing it to increase or decrease by

2.3 at a 1σ penalty (this allows a change in sign at little penalty). This is the width

of a uniform distribution between ±4, roughly ±100% variations in the parameter.

Similarly, ρ2-like parameters for the χc1 and χc2 feed-down backgrounds are allowed

to vary within the same constraints.

4.4.2 Feed-down from B+
c → χc`ν

The projections of the combined template for the χc decay modes is shown in

Fig. 4.16. Its distributions in all the physical fit variables it quite similar to those

of the ψ(2S) feed-down background, including a sharp rise in missing mass squared

and a q2 distribution biased towards lower values than the signal.

There are few theoretical treatments of the branching fractions to χc states.

Hernandez et al. [59] predict

B(B+
c → χc(0,1,2)(1P )µ+νµ)

B(B+
c → J/ψµ+νµ)

= (7.1%, 4.3%, 8.6%), (4.5)

while the WWL model [65] predicts

B(B+
c → χc(0,1,2)(1P )µ+νµ)

B(B+
c → J/ψµ+νµ)

= (13.6%, 9.1%, 11.2%). (4.6)

The inclusive χc(0,1,2)(1P )→ J/ψX branching fractions are (1.27± 0.06)%, (33.9±
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Figure 4.16: Fit templates for muonic feed-downB+
c → χc1µ

+νµ andB+
c → χc2µ

+νµ;
the signal template is shown in red for comparison.

1.2)%, and (19.2 ± 0.7)%, respectively [12]. Thus, the χc0 feed-down mode can be

safely ignored, with a branching fraction relative to the normalization of 0.1 %–0.2 %.

The expected relative branching fractions of the χc1 and χc2 feed-down modes are

in the ranges 1.5 %–3.1 % and 1.7 %–2.2 %, respectively, for a total contribution of

3.2 %–5.3 %. Given their kinematic similarity and similar kinematic distributions,

the template representing this background is constructed from an equal proportion

of these two decay modes.

Hernandez et al. also predict R(χc(0,1,2)(1P )) = (12%, 11%, 7%), while the

WWL model predicts (11%, 11%, 6%). Combined with the 17.7% muonic branching

fraction of the τ , a reasonable expectation for the fraction of such tauonic feed-down

decays relative to the normalization is 0.05 %–0.09 %. This is entirely negligible, and

so this semitauonic background is omitted from the fit; a corresponding systematic

uncertainty is assigned in Section 4.11.11.
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4.4.3 Exotic feed-down background

In general, charmonium states above the DD threshold decay very rarely to

J/ψX and present a negligible background. A typical case is given by the ψ(3770).

The branching fraction ψ(3770) → J/ψX is approximately ∼ 0.002 level. Conser-

vatively, the B+
c to charmonium branching fractions are (roughly) inversely propor-

tional to the width of the charmonium state; e.g.,

B(B+
c → ψ(2S)X)

B(B+
c → J/ψX)

∼ Γ(J/ψ )

Γ(ψ(2S))
∼ 1

3
.

This holds reasonably well in the B system. For the ψ(3770), this ratio is ∼ 1/300. If

the branching fraction to ψ(3770)µν were 1/300 of the branching fraction to J/ψµν

(in comparison, a theoretical estimate of this ratio is 3 × 10−5 [63]), and every

ψ(3770) event were identified as a J/ψτν event, this would lead to just a relative

0.02% increase in the measured value of R(J/ψ ).

An atypical case is the X(3872), with an anomalously small width and large

branching fraction to J/ψX. Estimating B(B+
c → X(3872)µν) is highly dependent

on whether the X(3872) is a charmonium state or some DD threshold effect or

molecule. This meson is quite similar to the ψ(2S), both in its mass and its inclusive

decay modes to J/ψX. So, B+
c → X(3872) feed-down should have a similar missing

mass distribution to B+
c → ψ(2S) feed-down, and is potentially absorbed by the

same fit template. We have explicitly searched for X(3872) → J/ψπ+π− feed-

down decays in our dataset and set a limit on its contribution; this is described in

Section 4.4.4.

4.4.4 ψ(2S) enriched control sample

To better understand these feed-down backgrounds, a cross-check fit is per-

formed on a control sample enriched in ψ(2S) feed-down, relative to other back-
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grounds, to determine if the ψ(2S) yield is compatible with the yield from the

nominal data sample. In this control region, we require two oppositely charged

tracks that look like secondary vertex (SV) tracks with an isolation BDT score

> 0.2, with the third most SV track having a BDT score < 0.1, to reconstruct

ψ(2S) → J/ψπ+π− fee-down decays. We fit this sample with corresponding tem-

plates from our simulation and data-driven samples, defined in the same manner —

information from the two charged pions does not enter into the fit. Plots of the fit

projections and residuals are shown in Figs. 4.17 and 4.18. This fit quality is not

spectacular but is acceptable for this control region.

The number of ψ(2S) events is 383± 772 in the nominal sample and 45± 71

in the (relatively) enriched region. A data–MC comparison plot of the different in

invariant mass between the J/ψπ+π− and J/ψ (Fig. 4.19) shows a clear peak from

ψ(2S) feed-down that is well modeled by the simulation and mis-ID templates. Most

of the ψ(2S) candidates are due to mis-ID background and not from B+
c decays. The

selection efficiency of the ψ(2S) feed-down decays is a factor of about 10 lower in the

“enriched” control region. So, the ψ(2S) yields in the two samples are compatible,

though the large uncertainties make this a weak test. There is no indication that

the fit to the signal sample is underestimating the contribution of feed-down from

B+
c → ψ(2S)µ+νµ (the small tension would correspond to an overestimate).

Potential background from X(3872) → J/ψX should also shows up in this

control sample. The mass of this state is 775 MeV greater than the J/ψ . No visible

peak at this value is evident in Fig. 4.19; however, one is revealed with finer binning.

Figure 4.20 shows the fits to the ψ(2S) and X(3872) yields in this isolated region.

The number of X(3872) decays is about 8.0% ± 2.4% of the number of ψ(2S) de-

cays. Performing the same fits in a larger sample without the strict unpaired muon

PID criteria and anti-isolation requirements, we find a ratio of about 4.6% ± 2.2%

Figure 4.21 shows the fits to the ψ(2S) and X(3872) yields in this large dataset.
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Figure 4.17: Projections of fit to the ψ(2S) enriched sample (including data and the
non-signal component templates) onto m2

miss (top), t (middle), and Z (bottom).

100



Normalized residual
4− 2− 0 2 4

C
ou

nt

0

5

10

15

20

25

30

LHCb

Figure 4.18: Histogram of the normalized residuals in each un-projected bin of the
fit to the anti-isolated data. The red curve plots a standard normal distribution.

Figure 4.19: Comparison of the invariant mass in the ψ(2S) window in data and
in the simulation model corresponding to the best fit point, for the ψ(2S) enriched
control sample. The invariant mass of the J/ψ candidate is subtracted to sharpen
the ψ(2S)→ J/ψπ+π− peak.
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(a) Fit to the mass difference in the
ψ(2S) mass window

(b) Fit to the mass difference in the
X(3872) mass window

Figure 4.20: Fits to the m(J/ψπ+π−) − m(J/ψ ) distribution in the ψ(2S) and
X(3872) regions in the anti-isolated dataset.

(a) Fit to the mass difference in the
ψ(2S) mass window

(b) Fit to the mass difference in the
X(3872) mass window

Figure 4.21: Fits to the m(J/ψπ+π−) − m(J/ψ ) distribution in the ψ(2S) and
X(3872) regions in the entire (no-PID or isolation) dataset. The X(3872) yield
is still a small fraction of the ψ(2S) yield in this expanded dataset.

Both of these charmonium populations originate from Bc decays and (mis-

IDed) B decays. If the X(3872) is a charmonium state, a reasonable assumption is

that

B(B+
c → X(3872))

B(B+
c → ψ(2S))

∼ B(B+ → X(3872))

B(B+ → ψ(2S))
∼ 4.6%± 2.2%.

This is well within the statistical uncertainty in the amount of ψ(2S) feed-down

background (25%, relatively), and is expected to be kinematically similar. Therefore,

the uncertainty in the treatment of the ψ(2S) already covers the presence of any

X(3872) component.
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4.5 Double-charm B+
c → J/ψDX backgrounds

Potentially important backgrounds from B+
c → J/ψDX decays, mediated by

b→ cc̄s transitions, are currently not well studied in the literature nor well measured

experimentally, and must be carefully considered in this analysis. In particular,

B+
c → J/ψD(∗)

s followed by Ds → τν or Ds → µν have very similar final states

to the signal and normalization events. In analogy with B decays, there may be

contributions from three-body B+
c → J/ψDK decays, though theoretical predictions

have not been made for these decays.

Recent measurements of the B(B+
c → J/ψD(∗)

s ) branching fractions relative

to B(B+
c → J/ψπ+) by LHCb and ATLAS, shown in Table 4.5, help to clarify the

situation [81, 82]. However, these are just one of a class of decays that presumably

also includes B+
c → J/ψD∗∗s decays and three-body B+

c → J/ψDK decays. Turning

to the B system as a model, these decays are analogous to the relatively better

measured B → D∗DX decays. Using data from the PDG, the relative branching

fractions of these cocktail modes are shown in Table 4.6. The measured branching

fractions of the D+
s1 meson have not been normalized and are only known relative

to each other, so we assume here that the only relevant branching fractions are 50%

each to D∗+K0 and D∗0K+, ignoring the small non-resonant D+π−K+ mode. A

few decays are not completely analogous for the B±, B0, and B+
c parents, because

B decays to charmonium states above the DD threshold can produce these final

states. For example, B0 → (ψ(3770) → D−D+)K0 contributes to the D−D+K0

final state, and no analogous resonance exists for the corresponding final states of

B± and B+
c decays. The small affect of these differences on the cocktail composition

is ignored.

Several simulation cocktails have been prepared and used to generate simula-

tion for this analysis. The first cocktail represents two-body decay modes to J/ψD
(∗)
(s) .
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Table 4.5: Measurements of relative B(B+
c →MD(∗)

s ) branching fractions.

Experiment B(B+
c →J/ψD+

s )

B(B+
c→J/ψπ+)

B(B+
c →J/ψD∗+s )

B(B+
c →J/ψD+

s )

LHCb 2.90± 0.57± 0.24 2.37± 0.56± 0.10
ATLAS 3.8± 1.1± 0.4± 0.2 2.8+1.2

−0.8 ± 0.3
Average 3.35± 0.67 2.59± 0.59

Table 4.6: Relative branching fractions of b → cc̄s decays of B mesons. M is a
D̄∗0, D∗−, or J/ψ meson for the three species. B(µX) is the semimuonic branching
fraction of D meson produced in the B+

c decay. The final column is the branching
fraction of the B+

c decay mode followed by the semimuonic decay of the D, relative
to that for the MD+

s mode.

Decay B(µX) B± B0 Relative BF
MD+

s (8.0± 0.4%) 1 1 1
MD∗+s (8.0± 0.4%) 2.09± 0.52 2.21± 0.35 2.17
MD+ (17.6± 3.2)% 0.08± 0.03 0.08± 0.01 0.08
MD∗+ (10.2± 1.1)% 0.10± 0.03 0.10± 0.02 0.10
MD+K0 (17.6± 3.2)% 0.26± 0.08 0.40± 0.06 0.35
MD0K+ (6.7± 0.6)% 0.28± 0.06 0.31± 0.05 0.30
MD∗+K0 (10.2± 1.1)% 1.12± 0.27 1.01± 0.16 1.04
MD∗0K+ (6.7± 0.6)% 1.37± 0.32 1.33± 0.21 1.34
MD∗+s0 (8.0± 0.4%) 0.11± 0.09 0.19± 0.08 0.15
MD+

s1 (8.0± 0.4%) 1.28± 0.39 1.23± 0.30 1.25

MD
′+
s1 (8.0± 0.4%) 0.12± 0.04 0.09± 0.03 0.10

MD∗+s2 (8.0± 0.4%) < 0.06 < 0.03 0.03
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Figure 4.22: Fit templates for B+
c → J/ψDX cocktail; the signal template is shown

in red for comparison.

A second cocktail represents the quasi-two-body decays that proceed through a D∗∗s ,

while a third cocktail represents potential non-resonant three-body decay. By the

analogy to B± and B0 decays, the expected contributions of the two-body and

quasi-two-body decays are nearly identical, Thus, the template for this background

is a combination of the two-body and quasi-two-body templates, in equal propor-

tion. Its projections are shown in Fig. 4.22. Notably, its missing mass and decay

time distributions are both quite similar to the signal; only the distinctly different

distribution in q2 (and to some extent E∗µ) allows differentiation of this component

and the signal.

4.6 Combinatorial J/ψ + µ+ background

The combinatorial background present in the reconstructed data comes pre-

dominantly from events containing a Bu,d,s → J/ψX decay, where the secondary
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J/ψ is paired with a muon coming from the rest of the event. Unfortunately, there

is no simple data-driven way to obtain a sample of combinatorial background —

for example, the three muon final state precludes the formation of a “wrong-sign”

control sample.

Instead, the combinatorial background is modeled by simulation. The Bu,d,s

decay cocktails include many possible decays to J/ψ , ψ(2S), χc1, and χc2 Ẇhere

possible, measured branching fractions reported by the PDG group are used, either

from the B meson species in question or analogous decays of other meson species.

This still leaves out many possible B decays with a J/ψ in the final state. Heuristic

SU(3) flavor symmetry guidelines, together with phase space ratios, were used to

produce rough estimates for the branching fractions of the missing decays.

The total normalization of the templates representing the B±, B0, and B0
s

decays is allowed to vary in the fit, while the fraction belonging to each are con-

strained to 0.4353 : 0.4446 : 0.1200 within 20%, in accordance with the production

cross sections of each species. The projections of the combined template for this

background in shown in Fig. 4.23.

4.7 Combinatorial (µ+ + µ−)µ+ background

A second source of combinatorial background comes from fake J/ψ candidates

created by combining random muons that happen to have an invariant mass in the

narrow J/ψ window. This background can be modeled using data from the J/ψ

invariant mass sidebands. While the nominal selection requires the J/ψ mass to be

within 55 MeV of 3095 MeV, the upper sidebands from 3150 MeV to 3190 MeV is

kept to model the combinatorial J/ψ background (the lower sideband has a much

larger contamination of real J/ψ decays due to final state radiation). The projections

of the resulting template are shown in Fig. 4.24, and are broadly similar to those of

the combinatorial background involving true J/ψ mesons combined with opposite-
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Figure 4.23: Fit templates for combinatorial background from (B0, B+, B0
s ) →

J/ψX; the signal template is shown in red for comparison.

side muons.

To determine the expected amount of this background, a fit is performed to the

J/ψ mass spectrum of the data sample using a double Crystal Ball shape for the true

J/ψ → µµ component and an exponential shape for the combinatorial background.

The exponential slope of the background is found to be −2.59(89)× 10−4 MeV−1.

The corresponding ratio of combinatorial events within the signal region to com-

binatorial events in the sideband is 2.90, very nearly the simple ratio of widths

110/40 = 2.75. An alternative fit modeling the signal distribution by a Cruijff

shape (a type of bifurcated gaussian with wide tails) yields a slightly different re-

sult. In this case ratio of events within the signal region to those in the sideband is

3.360 91. Other modifications to the fit model (e.g., a wide signal gaussian) could

conceivably cause similar decreases in this ratio. There is thus a large systematic

uncertainty on this scaling factor. The nominal value of this scaling is set to 2.9.
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Figure 4.24: Fit templates for combinatorial J/ψ candidates; the signal template is
shown in red for comparison.

The systematic uncertainty on this scaling is thus 16%. The effect of this systematic

uncertainty on the value of R(J/ψ ) is considered in Section 4.11.9.

4.8 Misidentification background

The predominant background in this analysis arises from b-hadron decays to

J/ψX in which some hadron is misidentified as a muon. These decays occur fre-

quently enough to compensate for the low rate at which non-muons pass muon PID

criteria. This is referred to as the misidentification, or mis-ID, background.

A data-driven model for the background is created by repeating the signal

reconstruction, but with the unpaired muons replaced with tracks not identified

as muons. This control sample is enriched in various hadron and lepton species

— pions, kaons, protons, and electrons. With proper weights, representing the

probabilities for hadron and electron tracks to pass muon PID criteria, this sample
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would be representative of the mis-ID background in the nominal data sample.

These probabilities differ for the separate species of particles, and also depend on

the kinematic properties of the tracks themselves and to some extant on the global

properties of the events in which they are present.

To this end, the LHCb collaboration produces and maintains high purity sam-

ples of each particle species that leaves observable tracks (e.g., muons, electrons,

pions, kaons, and protons) [83]. For example, muons are tagged in J/ψ → µ+µ− de-

cays, and pions and kaons are tagged in D0 → K−π+ decays. Hereafter referred to as

the particle identification (PID) samples, these are used to measure the efficiencies

of PID selection criteria and misidentification rates.

Additionally, it was discovered that presence of the dimuon pair from the

J/ψ in the final state of the decays studied in this analysis has an effect on the

muon PID criteria of the third track in the final state that is not reproduced in

the collaboration’s PID samples of pions and kaons. This effect is greatest at high

momenta, when the three particles are collimated. Then, the third track can “steal”

muon chamber hits from the two real muons, and is more readily identified as a

muon. This issue is circumvented by using an alternate PID sample of pions and

kaons tagged in B0 → J/ψK∗(892)0 events, where the K∗(892)0 undergoes the decay

K∗(892)0 → K+π−. This sample does not have the statistical power of the large

collaboration samples from D0 → K−π+. Fortunately, the muon PID efficiency can

be factored into a primary selection in which the above effect is pronounced and

a conditional secondary selection in which this effect cancels out; the custom PID

sample is used to evaluate the former probability while the collaboration samples

are used to evaluate the conditional latter probability.

Another necessary set of information is not provided by the collaboration

PID samples. The J/ψh+ control sample contains some fraction of ghost tracks

— artifacts of reconstruction that do not correspond to real particles. This class
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of tracks must be accounted for during the unfolding and weighting procedure.

Unfortunately, accurate models of the PID distributions for ghost tracks, to obtain

the probabilities P (ĥ | g), are difficult to produce or acquire, since there are no

pure samples of ghost tracks that can be taken from data. The best that can be

done is to take PID efficiencies for ghost tracks by fiat or from simulation. A large

sample of simulated J/ψh+ candidates, about 60 million such simulation events are

used across a representative range of detector simulation conditions, is collected,

combined from various sources, and processed with the nominal selection, save (for

now) for the PID criteria on the unpaired muon. Candidates where the h+ is a ghost

tracks are selected from this sample. The sample is split into a signal-like component,

where the ghost track is identified as a muon, as in the nominal candidate sample,

and a control-like component, where it is not. The rates at which ghost tracks pass

the muon PID criteria are obtained from the signal-like component, while the rates

at which they pass the loose criteria used to sort the h+ tracks into separate species

are obtained from the control-like component. Typically, about half the ghosts fall

into the ghost-tagged category ĝ, while the rest are split among mainly π̂ and K̂.

The rates at which they pass the muon PID criteria are comparable to the pion fake

rates P (π → µ̂), though slightly smaller. Since the fake rates from simulation are

certainly somewhat mismodeled, we make an alternative assumption for the purpose

of assigning a systematic uncertainty — that all ghost tracks fall into the ĝ category

rather than simply half, and that none pass the muon PID criteria. A systematic

uncertainty is assigned from examining the results of using these alternatives in the

fit (see Section 4.11.7).

From the efficiencies tabulated from these various sources of PID information,

weights are calculated for candidates in the control sample that appropriately repre-

sent the probability that a similar candidate’s unpaired hadron would fake the PID

requirements placed on the muon track. This procedure is not as straight-forward
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as directly applying probabilities for tracks to pass muon PID criteria taken from

the PID samples: the unpaired hadrons in the control sample belong to different

species, each of which have different mis-ID probabilities, and cannot be cleanly de-

composed. Instead, hadron PID criteria are used to break the control sample into six

categories: pion-enriched, kaon-enriched, proton-enriched, electron-enriched, muon-

enriched (contamination in the control sample), and ghost-enriched (any track failing

all other criteria). The PID criteria for this decomposition are disjoint, and produce

relatively pure enriched subsamples with small cross-contamination (save for the

ghost-enriched category). The matrix of probabilities for tracks from the six species

to fall into these six categories are obtained from the PID samples. A Bayesian un-

folding technique is then used to decompose the control sample of J/ψh+ candidates

into components representing each hadron species; only then are the muon mis-ID

probabilities for these hadrons applied. Another correction factor accounts for the

relative probabilities for the hadron tracks to end up in either the nominal fit sample

or the control sample. The mathematical details of the calculation of these weights

is described in detail in Appendix C.

The projection of the template for the mis-ID background derived from these

control samples is shown in Fig. 4.25. One important feature of this background

is that it contains the fully reconstructed B+ → J/ψK+ decay, whose distribution

peaks in invariant mass, missing mass, and E∗µ. Another is that, since it is made up

predominantly of J/ψ mesons from light b-meson decays, its decay time distribution

has a much longer tail than the B+
c decay modes, allowing discrimination in the fit.

No constraint is applied to the normalization of the mis-ID sample in the fit;

the number of mis-ID events is determined entirely by the distribution’s unique pro-

file. To account for systematic uncertainties that depend on the particle species (due

to both the PID samples and the fit selection, where particle species is correlated

with flight distance and thereby with decay time), the separate categories of tagged
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Figure 4.25: Fit templates for misidentification background; the signal template is
shown in red for comparison. The peaking structure evident in the missing mass
squared is B+ → J/ψK+ background.

species hypothesis (e.g., pion-like, kaon-like, etc.) are allowed to vary separately

in the fit. A common scale factor with respect to the expected number of events

is assumed for all categories. The scale factors for the non-pion-like categories are

allowed to deviate from this scale factor, under a Gaussian penalty with width 20%.

4.9 Corrections to Simulation

The simulated data produced for this analysis is corrected to better describe

real data in several different ways.

4.9.1 Empirical correction in normalization-rich region of data

The Monte Carlo generator BCVEGPY, an extension of Pythia6, does not ac-

curately model the event multiplicity of real pp collisions. An important factor in
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the performance of the muon PID selection is the event multiplicity, defined as the

number of reconstructed long tracks in the event. Events with high multiplicity are

noisier, and in general have poorer PID performance; an example of this effect is

shown in Fig. 2.6. The simulation must be weighted to match the event multiplicity

distribution in data so that the effects of the PID selection on the fit variables are

accurately modeled.

The analysis that led to the first measurement of R(D∗) [20] found that sim-

ulation mis-modeled the D0 impact parameter significance and transverse flight

distance, and that these variables were correlated with the measured q2 of the can-

didate. For this analysis, the J/ψ impact parameter significance is highly correlated

with the B+
c decay time. The unpaired muon impact parameter significance, also

correlated with the decay time, is expected to be similarly mis-modeled.

All of these potential mis-modelings are empirically corrected by comparing

B+
c → J/ψµ+νµ simulation and a normalization-rich region of data, defined by

m2
miss < 0 GeV2, decay time τ < 1.24 ps, and an isolation BDT score < 0. The data

sample contains a non-negligible amount of mis-ID background; this is subtracted

using the mis-ID template described in Section 4.8.6 The joint distributions of these

three variables and the B+
c decay time in both simulation and the normalization-

rich region of data are shown in Fig. D.1. As expected, there are strong correlations

between the impact parameter significances and the B+
c decay time, as well as a

slight correlation between the J/ψ and µ+ significances. In order to correct the

track multiplicity and IP significance distributions while not altering the decay time

distribution, all four variables must be considered in the reweighting.

Several issues must be considered when generating four-dimensional correc-

tions from the same datasets. While the track multiplicity is mostly uncorrelated

6The subtraction is performed with an overall scaling of 1.5, corresponding roughly to the
amount that the mis-ID template is scaled up in the fit; separate weightings are generated with
the mis-ID subtracted with scalings of 1 and 2 to assign a systematic uncertainty.
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with the other fit variables, creating separate weights from the same dataset runs

the risk of unwanted interference. Conversely, a simultaneous four-dimensional cor-

rection using binned data can suffer from low statistics. Instead, we use a boosted

decision tree tool for reweighting [84]. Reweighting a dataset with a single decision

tree is identical to a binned reweighting with an optimal binning scheme chosen by bi-

nary partitions. Reweighting via a boosted decision tree generates a weight through

a superposition of overlapping, coarse binary partitions, producing a smoother and

more robust response.

A three-fold cross validation strategy is employed to test the output of the

gradient-boosted reweighter. The B+
c → J/ψµ+νµ simulation and normalization-

rich data are each randomly partitioned into three parts. Using one third of the

data, the simulation decay time distribution is reweighted to the observed data

distribution. In the second third, a gradient-boosted reweighter is trained between

simulation and data using the decay time, event multiplicity, and IP significances;

the inclusion of the decay time is a constraint that forces the reweighting to be

unbiased. Then, the final third of the data is used as a test sample on which the

reweighting is applied. This process is repeated twice with the three data/MC

partitions permuted. Figures D.2 to D.5 in Appendix D show, for one fold, the

distributions of the four variables on the test sample before and after applying the

weights determined by the BDT (in each case with the one-dimensional decay time

reweighting applied first). The gradient-boosted reweighting successfully corrects

the three target distributions while leaving the decay time unaffected; no excessively

large weights are produced. The outputs of the three BDT algorithms are applied

to all the generated simulation and averaged.
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4.9.2 Lifetime acceptance correction

The simulation models not only the lifetime of the B+
c meson but also the

more complicated lifetime acceptance of the LHCb detector. The reconstruction

efficiency of B+
c meson decays is time-dependent, with separate effects at short

lifetimes and long lifetimes. At short lifetimes, selections requiring minimum IP χ2

for decay product tracks and the challenge of separating secondary vertex tracks

from primary vertex tracks leads to an efficiency that increases from essentially 0

at t = 0 to near unity after ∼ 1 ps. At longer lifetimes, secondary vertices are well

separated from the PV, but the reconstruction efficiency has a small linear trend.

To incorporate possible correlation of the decay time acceptance with the miss-

ing momentum in the partially reconstructed decay, the correction is made using

partially reconstructed B0 → J/ψK∗ decays. First the J/ψK pair is reconstructed

with the same kinematic and vertexing requirements as in the B+ → J/ψK+ case.

The selection requires that there be a soft pion that puts the decay into the B0 mass

window, with no vertexing requirement; loose pT and IP χ2 cuts on the pion are

unfortunate but necessary to reduce background. An offline selection cutting on the

angle between the momentum of the B0 and its flight direction (two largely inde-

pendent measurements by the tracking and vertexing systems, whose concordance is

characteristic of good signal candidates) and tightening the K∗ mass window reduces

background further. The invariant mass of the B0 is fit using a double Crystal Ball

shape, while the background is modeled using a second order polynomial, shown in

Fig. 4.26. Weights are extracted from the fit to separate signal and background,

using the sPlot technique [85]. The lifetime acceptance correction is performed in

bins of the momentum fraction p(π)/p(B+), which is bound between 0 and 0.5. This

quantity is analogous to pmiss/p(B
+
c ) in the simulation B+

c decays. The acceptance

function depends on p(π)/p(B+) in both data and MC, and the dependence is well
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Figure 4.26: Fit to the invariant mass distribution of the B0 → J/ψK∗ sample
selected from data.

represented by the MC. Projections of the acceptance onto the lifetime in the four

bins of missing momentum fraction are shown in Fig. 4.27. These samples are used

as the lifetime acceptance correction.

4.9.3 PID correction

The efficiencies of PID criteria for muons in simulation are known to be mis-

modeled. Rather than use these simulated rates, the efficiency of the PID require-

ment on the unpaired muon is computed using control samples produced by the

LHCb collaboration of muons tagged in J/ψ decays, and are applied as weights to

the simulation datasets.

4.10 Fit results

The results of the fit are presented in Fig. 4.28, showing the projections

of the nominal fit result onto the quantities m2
miss, decay time, and Z. The fit

yields 1400± 300 signal and 19140± 340 normalization decays, where the errors are

statistical and correlated. Accounting for the τ+ → µ+νµντ branching fraction and

the ratio of efficiencies gives an uncorrected value of 0.79 for R(J/ψ ). Correcting
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(a) pπ/pBc < 12.5% (b) pπ/pBc between 12.5% and 25%

(c) pπ/pBc between 25% and 37.5% (d) pπ/pBc between 37.5% and 50%

Figure 4.27: The acceptance of B0 → J/ψK∗ decays in simulation differ at short
lifetimes and as a function of the missing momentum.
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for the mean expected bias at this value, the measured value of R(J/ψ ) is

R(J/ψ ) = 0.71± 0.17 (stat)± 0.18 (syst), (4.7)

where the sources of systematic uncertainty are overviewed in the next section. The

significance of the signal, determined from a likelihood scan procedure and corrected

for the systematic uncertainty, is found to be 3 standard deviations.

Figures 4.30 and 4.31 show the projections of the nominal fit result onto

m2
missand decay time in the eight bins of the observable Z. A histogram of the

residuals is shown in Fig. 4.29 against a superimposed standard normal distribu-

tion. A table of fit results and the correlation matrix (excluding fixed variables) are

shown in Tables 4.7 and 4.9.

4.11 Systematic uncertainties

The systematic uncertainty on the measured value of R(J/ψ ) is broken down

by source in Table 6.5. A description of these sources and the methodologies used

to assess their corresponding uncertainties is presented in this section.

4.11.1 Simulation template statistical uncertainty

The finite simulation statistics leads to uncertainty in the template shapes and

thereby the resulting fit. The effect of this systematic uncertainty is folded into the

fit likelihood using the Beeston-Barlow-light procedure described in Section 4.2.2.

We separate it out by comparing the quadrature difference in the uncertainty in

R(J/ψ ) from the fits with and without the Beeston-Barlow procedure enabled. Af-

ter correcting for the relative selection efficiencies of signal and normalization, the

Beeston-Barlow estimate of the uncertainty due to finite simulation statistics is

8.0%.
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Figure 4.28: Projections of nominal fit onto m2
miss (top), t (middle), and Z (bottom).
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Table 4.7: Fit parameters, with statistical uncertainties that include the Beeston-
Barlow uncertainty

Parameter Value Constraint
Num. of J/ψµ+νµ 19140± 371 None
Num. of J/ψτ+ντ 1400± 300 None

Raw ψ(2S)µν-to-J/ψµν fraction 0.020± 0.040 ≥ 10−6

Raw χcµν-to-J/ψ fraction 0.111± 0.082 ≥ 10−6

Raw J/ψDX-to-J/ψµν fraction 0.002± 0.023 ≥ 10−6

R(ψ(2S)) 0.085 Fixed
Num. comb. bkg. 3135± 451 None

Comb. J/ψ scaling 2.9 Fixed
Multiplicative B+ correction 0.24± 0.92 Gaussian
Multiplicative B0 correction 0.07± 0.93 Gaussian
Multiplicative B0

s correction −0.37± 0.97 Gaussian
Mis-ID scale 1.862± 0.093 None

Kaon-like scale correction −3.27± 0.58 Gaussian
Proton-like scale correction 0.63± 1.01 Gaussian

Electron-like scale correction −0.20± 1.00 Gaussian
Muon-like scale correction 0.20± 0.98 Gaussian

Uncategorized scale correction 1.05± 1.03 Gaussian
B+
c lifetime (0.5087± 0.0034) ps N (0.5113 ps, (0.0094 ps)2) [12]

ψ(2S) ρ2 correction factor −0.10± 0.95 N (0, 12)
χc1 ρ

2 correction factor −0.45± 0.97 N (0, 12)
χc2 ρ

2 correction factor −0.25± 0.93 N (0, 12)

A0(q2)
b0 1.0± 1.0 None
b1 −9± 21 None

A1(q2)
b0 0.652 Fixed
b1 −2.36± 1.56 Fixed from norm. rich region

A2(q2)
b0 1.40± 0.18 Fixed from norm. rich region
b1 0 Fixed

V (q2)
b0 1.29± 0.18 Fixed from norm. rich region
b1 −15.7± 9.5 Fixed from norm. rich region
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Figure 4.29: Histogram of the normalized residuals in each un-projected bin of the
nominal fit. The red curve plots a standard normal distribution.

Table 4.8: Raw numbers of events of each category from the fit, with statistical
uncertainties that include the Beeston-Barlow uncertainty

Component Value Details
J/ψτν 1398± 332
J/ψµν 19140± 371

ψ(2S)µν 231± 464
ψ(2S)τν 3± 7 Constrained to 0.085× 0.177 of above

χcµν 731± 537 Half χc1, half χc2
J/ψHcX bkg. 10± 148 Half two-body and half quasi-two-body

Comb. bkg. 3135± 451
Comb. J/ψ bkg. 1210 Fixed

Mis-ID events 7437± 371
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Figure 4.30: Projections of the nominal fit in bins 0–3 of Z, i.e., individual bins of
q2 and E∗µ.
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Table 4.10: Systematic uncertainties in the extraction of R(J/ψ ). The errors in
the multiplicative uncertainties on the signal-to-normalization efficiency ratio are
evaluated at the benchmark value R(J/ψ ) = 0.25.

Model uncertainties Size (eff. corrected) (×10−2)
MC stat. uncertainty 8.0
B+
c → J/ψ form factors 12.1

B+
c → ψ(2S) form factors 3.2

Bias correction 5.4
B+
c → J/ψDX cocktail composition 3.6

Z binning strategy 5.6
Misidentification background strategy 5.4
Combinatorial background cocktail 4.5
Combinatorial J/ψ sideband scaling 0.9
Empirical reweighting 1.6
Semitauonic ψ(2S) and χc feed-down 0.9
Fixing A2(q2) slope to zero 0.3
Efficiency ratio 0.6
B(τ → µνν)w 0.2
B+
c lifetime included in stat.

Total systematic uncertainty 17.7
Stat. uncertainty 17.3

While the Beeston-Barlow-light procedure will be used in producing the final

unblinded fit result, it may underestimate the uncertainty. Since the light procedure

does not keep track of separate fluctuations for the individual templates, but only the

summed template, it accounts mainly for uncertainties in the largest fit components,

e.g., the normalization and mis-ID backgrounds. To this end, we perform a toy study

in which we create bootstrapped fit templates — sampling the individual templates

for the various modes with replacement to create alternative templates with equal

statistics but with Poisson fluctuations. Fitting the data using a sequence of these

bootstrapped templates, we find an uncertainty compatible with the Beeston-Barlow

estimate.

The finite simulation statistics also introduces a systematic uncertainty in

the signal-to-normalization efficiency ratio, since this ratio is evaluated using the

simulation samples. The statistical uncertainty on the absolute efficiency ratio is
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0.4%, which corresponds to a relative multiplicative uncertainty of 0.7%. At a “SM”

value for R(J/ψ ) of 25%, this would be an absolute uncertainty of 0.2%.

We investigated whether targeted simulation requests could reduce this sys-

tematic uncertainty. We fit our model to toy data generated from our fit templates

with five times the data statistics. In addition to fits with and without Beeston-

Barlow, which had consistent results, we performed fits in which various templates

were given simulated infinite statistics (by turning Beeston-Barlow off for this com-

ponent). The motivation was to see if more statistics in any one template would

have an outsize effect. However, the main effects of these modifications were changes

in the estimate of R(J/ψ ) (much greater than the change between fits with Beeston-

Barlow completely off and on) which obscured any pattern of improvements in the

Beeston-Barlow uncertainty. One possible explanation is that when templates are

given Beeston-Barlow uncertainties while others are not, the former are favored

in the likelihood maximization because of their extra degrees of freedom, warping

the result. In short, this study provided no insight into how a targeted simulation

request could be made.

4.11.2 B+
c → J/ψ form factors

The B+
c → J/ψ form factors that strictly govern the normalization B+

c →

J/ψµ+νµ decay, those pertaining to V (q2), A1(q2), and A2(q2), are determined in

a fit to a normalization-rich region, as described above in Section 4.3.1, and then

fixed in the main fit. (Two other parameters, related to the form factor A0(q2),

govern only the kinematics of the semitauonic signal decays and float in the main

fit). The systematic uncertainty is assessed by performing an alternate fit in which

all the form factor parameters are allowed to vary. In this alternate fit, the value of

R(J/ψ ) shifts by 6.3%, while the extra uncertainty in the parameter (in quadrature)

is 7.3%. We take the maximum of these two values as the systematic uncertainty.
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Another systematic uncertainty is due to the choice to fix the BCL slope pa-

rameter of A2(q2) to zero, as discussed in Section 4.3.1. An alternate fit is performed,

where this parameter is allowed to float in the full fit. The resulting shift in R(J/ψ )

is 0.6%, and so a systematic uncertainty of 0.3% is applied.

4.11.3 B+
c → ψ(2S) form factors

The theoretical predictions for the ratio of B(B+
c → ψ(2S)µ+νµ)) to B(B+

c →

J/ψµ+νµ) are in the range 2.5 % to 5 % [57, 63]. Accounting for the relative selec-

tion efficiency (65%) and inclusive ψ(2S)→ J/ψX branching fraction (60.8%), the

fraction of ψ(2S) feed-down events relative to normalization events is 1 % to 2 %.

In the nominal fit, using the EFG model, the measured ψ(2S) fraction is 2.0(40) %,

consistent with the above predictions. The Kiselev model for the B+
c → ψ(2S)µ+νµ

feed-down decay, however, is quite distinct. Since simply reweighting the simulation

cannot account for the difference, we perform resample generator-level simulation to

account for detector effects, as described in Section E.1. With the resulting Kiselev

model, the ψ(2S) fraction in the fit is measured to be 2.8(31) %. The corresponding

shift in the measured value of R(J/ψ ) is 6.3%, substantial though much less than

the statistical uncertainty. Half this value is assigned as a systematic uncertainty

(see Section 4.11).

4.11.4 Bias correction systematic

As described in Section 4.8, a “tinker toy” study compares second- and third-

generation fits. In particular, Fig. 4.8 shows the difference between third-generation

toy-study measurements with respect to parent second-generation toy-studies from

which their templates are derived. This difference is on average 5.4% and is indepen-

dently ofR(J/ψ ), and so 5.4% is assigned as a corresponding systematic uncertainty.
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4.11.5 B+
c → J/ψDX background

The B+
c → J/ψDX cocktail has several possible sub-components: two-body

J/ψD(∗) final states, three-body J/ψDK final states, and quasi-two body J/ψD(∗∗)

final states. The final two sub-components are not exclusive, and the relative fraction

of three-body final states are non-resonant or proceed through a D(∗∗) resonance is

not precisely determined, though in analogy with decays of lighter B mesons the

quasi-two-body decays is strongly expected to dominate. In the fit, 50% of the

contribution is assumed to come from quasi-two-body decays and the remainder

from direct two-body decays.

An earlier iteration assigned a very conservative systematic by replacing the

quasi-two-body component with a three-body component created with the unphys-

ical phase space decay model. However, with the coarser bins in the new fit

model, the fit cannot easily distinguish the three-body decays from mis-ID or other

components, and pushes their contribution up to produce an unrealistic fit. In-

stead, previous LHCb and ATLAS measurements constrain the expected amount of

B+
c → J/ψDX background as a fraction of the number of normalization events to

2.1(3) % [81,82,86]. The fit value of this fraction is near 0 but with large uncertain-

ties that make it compatible with the expectation. We now assign the systematic

uncertainty by this nominal fit to an alternative with the B+
c → J/ψDX fraction

constrained around the expected fraction. Half the shift in R(J/ψ ), or 3.6%, is

assigned as a systematic uncertainty.

4.11.6 Z binning strategy

The fit variable Z, which corresponds to four bins in E∗µ and two bins in q2,

is very coarse, and the value of R(J/ψ ) could be sensitive to the binning strategy.

Replacing the four bins in E∗µ with only two bins leads to a 4.1% shift in the value
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of R(J/ψ ), while replacing it with three bins leads to a 9.3% shift. Doubling the

number of E∗µ bins leads to an 11.1% shift. On the other hand, keeping the number

of bins constant but moving the bin boundaries, so that one E∗µ bin straddles the

lowest values and highest values, and ditto for one q2 bin, the shift in R(J/ψ ) is

0.8%. We assign half the larger shift as a systematic uncertainty of 5.6%.

4.11.7 Misidentification background strategy

Section 4.8 describes two ways of modeling the effect of ghost tracks. The fit

procedure is performed with templates from each of these methods, and a systematic

uncertainty is assigned from half the difference between the two fit minima.

4.11.8 Combinatorial background cocktail

The combinatorial background is produced entirely with simulation because

no data-driven model can be made. A cross-check can be made by performing a

fit in the high mass sideband. A combinatorial background enriched sideband re-

gion can be made by requiring the invariant mass of the J/ψ and µ+ to be greater

than 6400 MeV and eliminating several cuts in the normal selection designed to veto

combinatorial background (the cuts on the angle between the J/ψ and the µ+ in

the transverse plane and the DOCA between the two particles, and the requirement

that the missing mass squared be greater than −5 GeV2/c4). A fit to the invariant

mass distribution in this region is shown in Fig. 4.32. In the fit, a shape system-

atic is included that corresponds to weighting the simulation invariant mass (M)

distribution by

1 + α
M − 6277

4(10000− 6277)
. (4.8)

When the Beeston-Barlow algorithm is enabled, α is measured to be −1.3 ± 0.6.

This correction is applied to the nominal fit, and half the difference with the fit
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with no correction (4.5% after the efficiency correction) is assigned as a systematic

uncertainty.

4.11.9 Combinatorial J/ψ background

The combinatorial J/ψ background is modeled by data taken from the side-

bands of the J/ψ invariant mass distribution, as described in Section 4.7. A sys-

tematic uncertainty is assigned by varying this scaling around its central value by

its systematic uncertainty (16%). The average difference in the value of R(J/ψ ) be-

tween the nominal fit and fits with the number of combinatorial J/ψ events scaled

up and down by this uncertainty is 0.9% (absolute) after the efficiency correction.

This is assigned as the corresponding systematic uncertainty.

4.11.10 Simulation corrections

The joint distribution of the event multiplicity and J/ψ and unpaired muon

IP significances in simulation is reweighted using a data-driven correction derived

from a normalization-rich region of the signal sample (Section 4.9.1). There are

several arbitrary choices in the definition of this normalization-rich region. First,

the expected mis-ID contribution is subtracted from data using a scaling factor of

1.5, chosen by peaking ahead at the fit results, rather than using the a priori expected

normalization (i.e., no scaling factor). Subtracting the mis-ID with no scaling factor

leads to an absolute 0.25% shift in the value of R(J/ψ ). Other arbitrary choices are

the criteria used to define the normalization-rich region: the upper isolation BDT

value (0.0), missing mass squared (0.0 GeV2/c4), and lifetime (1.24 ps). Relaxing

the BDT cut to the cut used in the nominal fit (0.2) leads to an absolute 1.2%

shift in the value of R(J/ψ ); while relaxing the missing mass squared upper bound

to 0.4 GeV2/c4 leads to a 2.6% shift and relaxing the decay time upper bound to

2.18 ps leads to a 1.3% shift. Taking the half the sum in quadrature of these shifts,
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we assign an absolute 1.6% systematic uncertainty on R(J/ψ ).

4.11.11 Semitauonic ψ(2S) and χc feed-down

In the fit, we take R(ψ(2S)) = 8.5%, as described above 4.4.1. If this ratio

were increased by half and all the excess were included in the signal component of

the fit, the number of raw signal events would increase by at most 0.5× 8.5%× 3%

of the number of normalization events. The effect on R(J/ψ ), accounting for the

τ → µνν branching fraction, would be an absolute increase of 0.7%.

Similarly, for the χc states, whose semitauonic decays are ignored in the fit,

the total number of semitauonic decays as a fraction of the number of normalization

decays is less than 0.09%. The corresponding absolute increase in R(J/ψ ) were all

this to be included in the signal component would be 0.5%.

The combination in quadrature of these two possible increases, 0.9%, is added

as a systematic uncertainty.

4.11.12 B+
c lifetime

The B+
c lifetime is allowed to vary in the fit through the use of template

shape systematics. The simulation model is reweighted to the PDG average of the

B+
c lifetime and varies within its uncertainty. The systematic uncertainty could be

assessed by the difference in quadrature between a fit with the lifetime floating and

a fit with the lifetime fixed to its converged value. Currently, this effect is simply

included in the statistical uncertainty from the fit.

4.11.13 Toy studies

To investigate a possible bias or under/overinflation of the statistical uncer-

tainty from the maximum likelihood fit, we perform a study in which 500 toy datasets
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are generated from the nominal (i.e., best-fit) fit parameters, but with the blinded

R(J/ψ ) value replaced with the SM value 0.25 (or 0.15 after accounting for the

efficiency ratio). The fit, without the Beeston-Barlow procedure, is performed for

each of these toys. We record the pulls of R(J/ψ ) with respect to the SM value,

both for the symmetric Minuit uncertainty and the asymmetric MINOS uncertainty.

Histograms of these pulls and their quantile-quantile plots are shown in Figs. 4.33

and 4.34. These pulls show no significant bias. Their distributions are non-normal,

having thinner tails and standard deviations < 1, but this is to be expected. In

particular, R(J/ψ ) must be a positive quantity, severely constraining the lower tail.

These pulls indicate that a likelihood scan will possibly yield a narrower confidence

interval on R(J/ψ ) than the naive extrapolation from the statistical uncertainty.

4.12 Conclusion

A measurement of the ratio

R(J/ψ ) =
B(B+

c → J/ψτ+ντ )

B(B+
c → J/ψµ+νµ)

, (4.9)

is performed on the 3 fb−1 Run 1 LHCb dataset. The analysis uses a template fit

method, with templates taken from MC and data for the signal and backgrounds.

The measured value is 0.71± 0.17 (stat)± 0.18 (syst). This is the first measurement

of the decay B+
c → J/ψτ+ντ , and the significance of the measurement is about 3σ,

including the effects of the slightly non-quadratic likelihood profile and systematic

uncertainties. This value is excess of the range of SM predictions, 0.25–0.28, by 1.7

standard deviations. Though the strength of evidence that the SM prediction is low

is weak, the deviation is in the same direction as stronger deviations measured in

R(D) and R(D∗). More definitive results may be found in analyses of Run 2 data

collected by the LHCb detector in 2015–2017.
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Figure 4.31: Projections of the nominal fit in bins 4–7 of Z, i.e., individual bins of
q2 and E∗µ.
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Figure 4.32: Fit to combinatorial-rich high mass sideband region

(a) Histogram (b) Quantile-quantile plot

Figure 4.33: The Minuit pull distribution is unbiased and is close to normal between
-2 and 1. It has thinner tails than a standard normal distribution.
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(a) Histogram (b) Quantile-quantile plot

Figure 4.34: The MINOS pull distribution has a very small positive bias and is
somewhat close to normal between -1 and 1. It has thinner tails than a standard
normal distribution.
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Part III

CP violation and flavor tagging
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Chapter 5: Measuring CP violation at LHCb

Since the theoretical development of the CKM mechanism, a major exper-

imental effort has been undertaken to measure that parameters Vij of the CKM

matrix. Since the CKM matrix is unitary, its 9 measurable coefficients are over-

defined and are a function of four real quantities. This can be checked by forming

a unitarity triangle — three complex quantities that, if the CKM matrix is unitary,

form the vertices of a triangle. The two most common unitarity triangles are shown

in Fig. 5.1, and include a number of angles, most importantly α, β, γ, and βs, and

lengths. If the measured values are inconsistent with unitarity, this could indicate

physics beyond the Standard Model that predicts new sources of CP violation.1

1The simplest example is extra quark generation(s), in which case the CKM matrix would be
a 3× 3 submatrix of a unitary N ×N matrix

(0, 0) (1, 0)

(ρ̄, η̄)

∼ λ2(−ρ̄,−η̄)

∣∣∣∣
Vud V

∗
ub

V
cd
V ∗
cb

∣∣∣∣
∣∣∣∣
Vtd V

∗
tb

V
cd
V ∗
cb

∣∣∣∣

β ∼ 22.6◦

βs ∼ −1.1◦

α ∼ 90◦

γ ∼ 67◦

Figure 5.1: Standard unitarity triangles [87]
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B0



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d

d̄

t

W

b

W

t̄b̄

Vtd V ∗tb

VtdV ∗tb 

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B̄0

Figure 5.2: Diagram for B0–B0 mixing. A similar diagram exists wherein the top
quark in the box is replaced with an up or charm quark.

5.1 CP violation in B decays

The CKM mechanism only allows CP violation in processes where quarks

couple to charged weak bosons. These effects can be studied using specific decays of

neutral and charged mesons and baryons. The main focus of the LHCb experiment’s

CP violation program is the study of b- and c-hadrons.

There are three main categories of CP violation: direct CP violation in decay

amplitudes, indirect CP violation in mixing, and CP violation in the interference

between mixing and decay amplitudes [12]. Measurements of some of these effects

in neutral B or charm hadron decays require flavor tagging algorithms to provide

external measurements of the flavors of neutral B0 and B0
s mesons at production

time.

Neutral mesons have the interesting property that they can oscillate into their

own antiparticles in a process called neutral meson mixing. Neutral meson oscillation

is an excellent tool for probing CP violation; as recounted in Chapter 1, CP violation

was discovered in neutral kaon oscillation. In addition to neutral kaons K0 = |s̄d〉,

D0 = |cū〉, B0 = |b̄d〉, and Bs = |b̄s〉 mesons undergo oscillation. Figure 5.2 shows

the so-called box diagram, a fourth-order charged weak process, that causes a B0

meson to evolve into a B̄0 meson and vice versa. Due to mixing, the mass eigenstates

of the Hamiltonian are combinations

|BL,H〉 = p|B0〉 ± q|B̄0〉, (5.1)
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where the complex parameters p and q are normalized so that 〈BL,H | BL,H〉 = 1.2

The neutral B0 mesons are produced by strong interactions in the flavor definite

states B0 and B0, and thus as superpositions of the BL and BH states. Since these

have differing masses (and hence oscillation frequencies), a meson that is produced

as a B0 (or a B0) evolves into a superposition of a B0 and a B0. The evolution of

these physical states can be derived from the evolution of the mixing eigenstates BL

and BH [7]:

|B0
phys(t)〉 = e−imte−

1
2

Γt

{
cos

(
∆m

2
t
)
|B0〉+ i

q

p
sin

(
∆m

2
t
)
|B̄0〉

}
, (5.2)

|B̄0
phys(t)〉 = e−imte−

1
2

Γt

{
cos

(
∆m

2
t
)
|B̄0〉+ i

p

q
sin

(
∆m

2
t
)
|B0〉

}
. (5.3)

Just as the B-mesons are produced in flavor-definite states B0 and B0, they

can decay in flavor-definite states as well. An important category of B decays is the

set of those whose final state is common to both the B0 and B0, and which can be

used to measure CP violation in the interference between mixing and decay. Some

of these are CP eigenstates fCP , much like the two pion and three pion decays of

the K0
S and K0

L . There are thus two interfering amplitudes for the decay to fCP :

B0 → fCP , in which the B0 decays directly to fCP , and B0 → B0 → fCP , in which

its flavor oscillates before it decays [88].3 CP violation from interference can be

2The states BL,H are analogous to K0
S and K0

L , respectively (unfortunately the L subscript
has switched places). The KS and KL states have vastly different lifetimes, by a factor of about
600, because the K0

L → πππ decay allowed without CP violation has very little phase space and is
suppressed. The much heavier D and B mesons are protected against this sort of effect because
they are much more massive than their typical decay products.

3In the mass eigenstate basis, a B0 meson is produced as a superposition of BL and BH ,
either of which can decay to fCP . If p and q were both equal to unity, compatible with current
measurements [13], the BL and BH states would be CP -even and CP -odd eigenstates, respectively.
In this case, an alternative point of view is that CP violation is manifest the CP -even BL component
can decay to an odd final state and the CP -odd BH component to a CP -even final state. In this
case, an alternative point of view is that CP violation arises from the interference between the
decay amplitudes BL → fCP and BH → fCP for the neutral B0 with BL and BH components.
Were instead p 6= 1 or q 6= 1, the B0–B0 system would also exhibit CP violation in mixing.
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measured from the asymmetry

AfCP =
dΓ/dt(B̄0

phys → fCP )− dΓ/dt(B0
phys → fCP )

dΓ/dt(B̄0
phys → fCP ) + dΓ/dt(B0

phys → fCP )
. (5.4)

When |q/p| = 1, which is compatible with experimental evidence, this measurable

quantity is related to the decay amplitudes by [12]

AfCP =
2Imλf

1 + |λf |2
sin (∆mt)− 1− |λf |2

1 + |λf |2
cos (∆mt) , (5.5)

where λf is short for λfCP , defined as

λfCP =
q

p

〈fCP |H|B̄0〉
〈fCP |H|B0〉 . (5.6)

The B factory experiments, BaBar and Belle, have extensively studied CP

violation in B0 decays, helping to verify the CKM mechanism, which was celebrated

by the award of the 2008 Nobel prize in physics to Kobayashi and Maskawa. The

hadron collider experiments have extended this research program to the B0
s system.

The LHCb collaboration has measured CP violation in several decays: B0 → J/ψK0
S

[89] and B0 → J/ψπ+π− [90], which provide information on the CKM angle β; B0 →

π+π−, which provides information on the angle α [91]; and also B0
s → J/ψK+K−,

B0
s → J/ψπ+π− [90,92], and B0 → ψ(2S)K+K− [93], which provide information on

βs.

5.2 Flavor tagging

The time-dependent partial decay widths dΓ/dt(B0
phys) and dΓ/dt(B̄0

phys) for

states produced as B0 and B0 respectively can only be measured if the production

flavors of B0 (or B0
s ) mesons are known. For example, an experimental analysis

must determine whether a decay with the final state J/ψKS originated from a B0
phys
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or B̄0
phys. The methods used to provide this knowledge, which typically rely on

information in the event correlated with the flavor of the signal B0 or B0
s , are

known as flavor tagging algorithms. Flavor tagging has been used by the B-factory

experiments, notably BaBar [94–96] and Belle [97–100], as well as the pp collider

experiments CDF [101] and D0 [102, 103] at the Tevatron and ATLAS [104, 105],

CMS [106], and LHCb [89,107–110] at the LHC.

In the LHCb experiment, bottom quarks are predominantly produced in bb̄

pairs, producing a pair of hadrons with opposite bottom flavor. So, the parent B0
phys

or B̄0
phys has a partner b hadron with opposite flavor that is typically within LHCb’s

acceptance. The flavor of this hadron can be determined if it undergoes a flavor

specific decay, and so the flavor of the neutral B meson may be inferred indirectly.

This strategy is known as opposite-side (OS) flavor tagging. OS muon and electron

taggers look for leptons originating from semileptonic b → cW transitions of the b

hadron, and an OS kaon tagger looks for kaons coming from b→ c→ s transitions

[107]. A vertex-charge tagger reconstructs the decay vertex of the OS b hadron and

predicts its charge by weighting the charges of its decay products according to their

transverse momentum. Finally, the charm tagger, described below, reconstructs

secondary charm hadrons produced in b-hadron decays [108]. Alternatively, the

flavor of the neutral B can be determined from the particles produced alongside

it during the hadronization of its b-quark, a strategy called same-side (SS) flavor

tagging [111]. The d or s partner of the light valence quark of the signal B has

a roughly 50% chance of hadronizing into a charged pion or kaon. The LHCb

experiment uses several SS tagging algorithms examining same-side pions, kaons,

and protons [89,110,112].

The performance of the simplest algorithms is described by their tagging ef-

ficiency εtag, the fraction of events for which they produce a decision, and their

mistag rate ω, the fraction of tagged events for which their decision is incorrect.
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These separate performance metrics are reflected in the tagging power, or effective

tagging efficiency,

εeff = εtag(1− 2ω)2, (5.7)

which measures the statistical sensitivity of an asymmetry measurement that uses

the tagging algorithm. It has long been recognized that the tagging power can be

increased by the use of a flavor tagging algorithm with a variable response. With

the range of responses indexed by k, with corresponding mistag probabilities ωk,

each event is weighted by the corresponding dilution factor 1 − 2ω. The tagging

power then becomes

εeff =
∑

k

εtagk(1− 2ωk)
2 (5.8)

This power is greater than the simple tagging power of Eq. (5.7) by an amount

proportional to the sample variance of ωk; a more in-depth discussion is provided

in Appendix F. Some implementations of this scheme split the tag decision into

a number of discrete, ranked categories, ranging from weak decisions with ω near

0.5 to stronger tags with a smaller ω [99,105]. Others instead produce a continuous

output, parametrized by a predicted mistag probability η [107–110]. Frequently this

output is the response of a multivariate algorithm (MVA), or statistical classifier,

trained using real or simulated data to distinguish between correct and incorrect

decisions [107].

In practice, no single flavor tagging algorithm has acceptable tagging power on

its own. To maximize the statistical power of an analysis, flavor tagging algorithms

are combined probabilistically, assuming that the taggers are uncorrelated. A further

calibration is applied to this combination, since the assumption is unlikely to be

completely correct. The typical combined tagging power of the current set of OS

tagging algorithms used by LHCb is approximately 2.5% [89,90,92,113]. Including

SS taggers, recent measurements have had tagging powers as high 5% or more [114].
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5.3 Flavor tagging calibration

The mistag probabilities ωk of the flavor tagging algorithm are measured using

data from a flavor specific B decay, whose decay mode identifies the flavor of the

B meson at decay time. For charged B± decays this is identical to the flavor at

production time, and can be directly compared to the production flavor predicted

by the tagging algorithm. In the case of B0 and B0
s decays, the decay flavor is

related to the unobserved (latent) production flavor through the dynamics of the

effective Hamiltonian of the B0–B0 of B0
s–B

0
s system, and the analysis becomes more

difficult. When the number of discrete categories is few, the tagging efficiency and

mistag rate can be evaluated separately in each independently; however, when the

number of categories is high or the output is continuous, there may not be enough

statistical power to perform these independent measurements. In this latter case,

the mistag probability must instead be determined as a function ω(η) fit to the data

using a calibration procedure.

A variety of calibration procedures are currently used in physics analyses. Dif-

ferent methods are in use for calibrations to decays of B± mesons and to decays of

neutral B0 and B0
s mesons. These methods typically suffer from two kinds of prob-

lems: they may introduce an arbitrary binning procedure that introduces unnec-

essary systematic effects, or they may use an unnecessary (and resource intensive)

time-dependent likelihood maximization fit.

The problem of calibrating flavor tagging algorithms can instead be solved

with binomial regression. This well-established statistical procedure is the canoni-

cal method for fitting functions π(x) to data (X, Y ) in which the bivalued response

variable y follows a binomial distribution with probability π(x) [115,116]; it is a close

cousin of linear (e.g., least squares) regression. For calibrations to decays of charged

B± mesons the application of binomial regression is straight-forward: simply regress
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ω(η) to the dataset of predicted mistag probabilities η and actual mistag outcomes.

An extension to the usual binomial regression procedure, described in described in

Section G.1, is required to calibrate to neutral B0 and B0
s decay modes because of

neutral meson oscillation. The ideal response variable, whether the algorithm’s pre-

diction is equal to the production flavor of the B0 or B0
s , is latent, and the regression

must instead compare the predicted flavor to the oscillated decay flavor. Because

of the precisely understood nature of neutral B meson mixing, the decay flavor can

be probabilistically related to the production flavor with negligible ambiguity, as

detailed in Section G.2. With this extension, binomial regression can be used for

both charged mode and neutral calibration. The procedure does not suffer from

arbitrary binning choices, and is less resource intensive than full time-dependent

likelihood maximization procedures.

Appendix G describes a new flavor tagging calibration method using binomial

regression. This procedure treats calibrations to B+, B0, and B0
s on an equal foot-

ing, and involves no binning procedure that would introduce additional systematic

uncertainties in CP violation measurements. The implementation of the tool in a

convenient command-line program called the EspressoPerformanceMonitor dra-

matically reduces the time required to perform calibrations to B0 and B0
s decays

down to a matter of hours or even minutes. Tables of calibration parameters and

performance metrics and publication quality diagnostic plots are created automat-

ically. Finally, the tool provides a broad set of generalized linear models (GLMs)

that can be used in the calibration procedure and introduces goodness-of-fit tests

for binomial regression described in the statistical literature, superior to the several

assessments made before.
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Chapter 6: Charm tagger

This chapter describes a new flavor tagging algorithm for the LHCb experiment

that reconstructs secondary charm hadrons produced in the decay of OS b hadrons.

6.1 Basic structure of the OS charm tagger

In events containing a signal B decay, opposite-side D+, D0, and Λ+
c charm

hadrons are primarily produced through the quark-level b → c transition, and the

charge of the D+ or Λ+
c tags the flavor of the b hadron parent. For Cabibbo-

favored D0 → K−X decays, the kaon charge tags the flavor of the charm hadron,

and thereby that of the parent B hadron. The OS charm tagging algorithm uses

charm meson candidates reconstructed in a number of decay modes, chosen for their

relatively large branching fractions. These include fully reconstructed (or exclusive)

hadronic modes with a single charged kaon in the final state, D0 → K−π+, D0 →

K−π+π+π−, D+ → K−π+π+, and Λ+
c → p+K−π+; a partially reconstructed (or

inclusive) hadronic mode with an unobserved neutral pion, Hc → K−π+X; and

partially reconstructed semileptonic modes, Hc → K−e+X and Hc → K−µ+X.1

The selection and reconstruction criteria of these charm modes are described below

in Section 6.2.

1The easily reconstructible charm decay modes all contain kaons. The pre-existing OS kaon tag-
ger also selects opposite-side kaons. However, the two algorithms have different selection strategies
and select different (though somewhat overlapping) sets of kaon tracks. Moreover, the algorithms
examine different features when producing their predicted mistag rates η: the OS kaon tagger
selects and makes its predictions based entirely on the individual kinematic properties of the kaon,
while the charm tagger’s decision is based on the properties of at least a pair of tracks.
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Even with perfectly reconstructed charm hadrons and no background, several

effects produce an inherent mistag probability for the OS charm tagging algorithm.

Chief among these are B0–B0 or B0
s–B

0
s oscillation on the opposite-side and “wrong

sign” charm hadrons produced in b→ ccq transitions. The impact of D0–D0 mixing

and doubly Cabibbo-suppressed decays such as D0 → K+π− is negligible. Account-

ing for relative production cross sections of b hadrons, neutral B0 and B0
s oscillation

rates, and b-hadron to c-hadron branching fractions, the inherent mistag probabili-

ties for D0, D+ and Λ+
c modes are estimated to be 23%, 19%, and 6%, respectively.

The input values used in these estimates, taken primarily from PDG and LHCb

measurements, are given in Table 6.1.

In addition to the inherent mistag probability arising from these physics effects,

the reconstructed charm hadron candidates are contaminated with combinatorial

and partially reconstructed b and c hadron backgrounds that can produce incorrect

flavor tags. Suppressing these backgrounds is crucial in optimizing the performance

of the OS charm tagger. For each mode, the charm tagger uses a multivariate algo-

rithm that combines geometric and kinematic properties of the c hadron candidate

and its decay products. The resulting discriminating variable is used both to sup-

press the combinatorial background and to predict the mistag probability of the

best surviving candidate. These multivariate algorithms are described in detail in

Section 6.3.

6.2 Reconstruction of charm candidates

The decay modes used by the charm tagger have been selected based on their

relatively large branching fractions and potentially low combinatorial backgrounds.

The most effective modes for flavor tagging are those with a single kaon and a few

pions. Modes containing a neutral pion, K0
S , or Λ suffer from low reconstruction

efficiencies and would not contribute significantly to the tagger.
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Table 6.1: Factors determining the inherent mistag probability of tagging by the
charm-hadron decay products of b-hadron decays. These include the relative pro-
duction cross sections of the b-hadrons, the average probability χ that they oscillate
before decaying, and their inclusive branching fractions to studied c-hadrons; † in-
dicates estimates.

Particle σ/σ(B+) χ B(D0) B(D0) B(D+) B(D−) B(Λ+
c ) B(Λ−c )

B+ 1 0 8.6% 79% 2.5% 9.9% 2.1% 2.8%
B0 ∼ 1 0.186 8.1% 47.4% 2.5% † 36.9% 2.1% † 5.0%
B0
s ∼ 1/4 0.499 8.2% † 30% † 2.5% † 9.9% † 2.1% † 2.4% †

Λ0
b ∼ 3/4 0 0% † 0% † 0% † 0% † 100% † 0% †

All of the current OS taggers use one or more tracks from a track list devel-

oped for the tagging algorithms (see, e.g., [117, 118]). The kinematic requirements

on these lists are too stringent for the reconstruction of the charm hadrons with

sufficient efficiency. To produce a clean set of charm hadrons without sacrificing

tagging efficiency, candidates are created by combining long tracks with relatively

loose kinematic requirements but tighter particle identification (PID) requirements.

Tracks corresponding to decay products of the reconstructed signal B are removed.

Charm hadron candidates are created from tracks passing a number of se-

lections designed to efficiently reduce background. In particular, they must have

at least a momentum of 1000 MeV/c and transverse momentum of 100 MeV/c, or

150 MeV/c for the especially background heavy Kπππ mode. The tracks also must

have an IP chi2 greater than 4 for each PV; this is raised for the Kπππ mode and

inclusive modes. Each track must also pass particle identification (PID) criteria,

using the PID scores provided for it by a high-performing neural network, to reduce

cross-contamination between the sets of selected pions, kaon, protons, and leptons.

The candidates built out of these tracks are required to pass further selection

requirements. These include requirements on vertex quality: a maximum distance

of closest approach between each pair of tracks and a maximum χ2 per degree of

freedom for the decay vertex fit. Each candidate is required to be well separated
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from its best associated primary vertex (BPV), with a minimum χ2 of the distance

separating the decay vertex from the BPV. The candidate is required to have a

trajectory that leads back to the PV, by imposing a minimum cosine of the angle

between the momentum and the flight direction from the BPV to the decay vertex.

The invariant mass of the charm hadron candidate is required to be consistent with

the known mass of the corresponding charm hadron, within 100 MeV/c2 for the

Λ+
c channel and 50 MeV/c2 for all other fully reconstructed D decay modes. For

the partially reconstructed D → K−π+X mode, the K−π− mass is required to be

no less than 400 MeV/c2 below the known D0 mass This invariant mass region is

favored by K−π+ pairs from the quasi-two body decay D0 → K−ρ+. Alternatively,

the K−π+ pair can be within 50 MeV/c2 window of the mass of the K∗0 resonance,

selecting D → K∗0X decays.

Fig. 6.1 shows the invariant mass distributions of the fully-reconstructed

opposite-side charm hadrons, in a control sample of B+ → J/ψK+ events taken

from 2011 and 2012 data (described in Section 6.4). These distributions show sig-

nificant remaining background, which must be reduced in order to lower the mistag

probability of the algorithm. A machine learning algorithm is employed to achieve

this.

6.3 Optimization of the flavor tagging algorithm

Charm hadron candidates contain several sources of backgrounds that can

dilute flavor tagging information. These include combinatorial background from

particles that did not originate from the same parent; partially reconstructed back-

ground, where a subset of decay products from a heavier parent particle have been

combined; mis-identified background, where the particle species of one or more de-

cay products has been incorrectly assigned; and ghost background, where one of the

tracks is created from hits that belong to several different tracks and/or electronic
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Figure 6.1: Charm hadron mass distributions in data.

noise.

The charm tagger employs a selection designed to reduce this background

and to calculate an estimated mistag probability for the tagging decision. First, a

machine learning algorithm calculates a score for each candidate that discriminates

between real charm hadron signals and background processes. This score is turned

into a predicted mistag probability for the decision. A final selection picks the best

candidate for each event with a predicted mistag probability below some maximum

threshold.

6.3.1 Signal and background discrimination

For each mode, a boosted decision tree (BDT) [119], adaptively boosted using

AdaBoost [120], is used to discriminate signal from background and thereby to

estimate mistag probabilities. The BDT algorithms are trained using simulations

of bb events containing B+→ J/ψK+, B0→ J/ψK∗0, and B0
s → J/ψφ decays on
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the signal side and inclusive decays of the b hadron on the opposite-side. These B

decays are used to model the various sources and relative amounts of background

when reconstructing OS charm hadrons recoiling against signal B decays. In total,

6.5× 106 such simulated events are available for training and optimization.

The input variables used in training the BDT are variables describing the

kinematics, vertex quality and location, and PID scores of the charm hadron decay

and its decay products:

Charm hadron candidate: its invariant mass, momentum, transverse momentum, a

pseudo decay-time,2 χ2 probability of the vertex fit, flight distance, flight dis-

tance χ2, angle between its flight direction and momentum, and the maximum

ghost score of all its decay products;

Any pion, kaon, or proton candidate: its pT, impact parameter χ2 with respect to

the BPV, and minimum impact parameter χ2 with respect to any PV, kaon

score, and proton score;

Electron or muon candidate: its electron score or muon score, respectively.

For modes where more than one pion is present, the minimum or maximum of each

variable is taken, as appropriate

For each mode, the BDT algorithm is trained using that mode’s simulation

truth-matched charm candidates as the signal sample, and the remaining candidates

as the background sample. The simulation truth-matching includes the requirement

that the candidate originate from a B decay. Each sample is randomly divided into

two equally size parts. One part is used for the algorithm training, while the other

is used to cross-check the final result.

The trained BDT provides a score corresponding to the probability for the

charm hadron candidate to be signal. This information is used to predict the mistag

2This is calculated from the distance between the c hadron’s decay vertex and the corresponding
best PV, and approximates the sum of the decay-times of the c hadron and its parent b hadron.
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for the candidate in a two-step process. First, an “estimated” mistag is computed in

ideal conditions, using a simplified model of the mistag due to the signal and back-

ground components. Second, the mistag observed in Monte Carlo is parameterized

as a function of this estimated mistag.

6.3.2 Final selection

Multiple tagging candidates may be present in the same event; in the Monte

Carlo dataset there are about 1.5 candidates per event, on average. In this case, the

candidate with the lowest predicted mistag is retained. This is typically equivalent

to picking the candidate most likely to be signal. The BDT algorithms are trained to

separate signal from background, with a higher BDT score corresponding to a higher

probability to be signal; the translation of this BDT score into the mistag probability

is usually a monotonically decreasing function. Keeping only one candidate is by

definition 100 % efficient, since the number of events tagged is unchanged. This

choice throws out 34% of the tagging charm hadron candidates in the Monte Carlo

dataset.

Applying this method to the Monte Carlo events, we find that ∼ 40% of events

have no candidate that has predicted mistag η < 45%, as shown in Figure 6.2. The

contribution of these candidates to the tagging power, which is proportional to their

predicted dilution squared, is small. Fig. 6.3 shows that the total tagging power

of the events vetoed by this cut is around 5% of the total tagging power in Monte

Carlo. Therefore, events with predicted mistag greater than 45% are vetoed and

removed from further consideration in tagging decisions. Removing candidates that

fail this criterion significantly reduces the computing time of the algorithm at little

cost to tagging performance.

The efficiencies of various selection criteria are evaluated on Monte Carlo

and data. It is found that the requirement η < 45% removes (46.6± 0.4) % and
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Figure 6.2: Distribution of predicted mistag η for the control sample in Monte Carlo
events; the requirement that η < 45% has been removed for illustrative purposes.

Figure 6.3: The y-axis shows the tagging power (evaluated on MC) as a function of
the upper bound on the estimated mistag (η); the requirement that η < 45% has
been removed for illustrative purposes.
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Table 6.2: Selection efficiencies for the best candidate requirement and the mistag
requirement η < 45%, measured in terms of tagging candidates retained and tagged
events retained, respectively.

Sample Best candidate cut η < 45% cut

2012 simulation (65.79± 0.04) % (58.99± 0.07) %
2011 (61.9± 0.2) % (53.4± 0.4) %
2012 (60.4± 0.2) % (52.0± 0.3) %

(48.0± 0.3) % of events in 2011 and 2012 data, respectively. Table 6.2 tabulates

the efficiencies of these selections in the Monte Carlo, 2011, and 2012 datasets. The

relative Monte Carlo background compositions of the charm hadron candidates at

various stages of the selection process are detailed in Section 6.3.3.

6.3.3 Background composition

In summary, there are two steps of candidate selection in the charm tagger.

The first is the reconstruction and pre-selection of the charm candidates from the

basic particle lists. The second is the final selection of a single candidate using

the BDT algorithms. Table 6.3 shows the background composition after each these

two steps of the charm hadron candidates belonging to the exclusive and inclusive

modes. For the inclusive modes, the K∗0 resonance and K`ν semileptonic decays

are counted as signal. After the preselection, there are large partially reconstructed,

reflection, ghost, primary vertex, and pileup backgrounds for the exclusive and inclu-

sive modes, with a smaller amount of low mass and combinatorial backgrounds. The

final selection significantly increases the signal to background ratio by reducing all

the major backgrounds, with the exception of partially reconstructed background.
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Table 6.3: Fractions of signal and significant backgrounds for the exclusive modes.

Category
Pre-selection Final selection

Exclusive Inclusive Exclusive Inclusive

Signal 11.7% 14.1% 41.8% 29.6%
Partially rec. 27.2% 38.4% 29.7% 44.2%
Low mass 3.0% 5.2%
Reflection 11.7% 1.4%
Ghost 10.2% 6.8% 6.0% 4.1%
PV 28.9% 15.4% 13.1% 9.3%
Pileup 18.5% 10.3% 1.9% 4.0%
Combinatorial 2.6% 4.9% 1.9% 2.2%

6.4 Calibration and performance

In order to evaluate its performance, the charm tagger must be calibrated to

collision data by comparing the algorithm’s predictions to the known flavors of signal

B candidates, according to the procedure detailed in . The calibration parameters

δp0, p1, ∆p0, and ∆p1 are defined by

ω = 〈η〉+ δp0 + p1 (η − 〈η〉)

∆ω = ∆p0 + ∆p1 (η − 〈η〉)

where 〈η〉 is the average predicted mistag probability, ω is the actual mistag probabil-

ity averaged over B+ and B− signal mesons, and ∆ω is the excess mistag probability

for B+ mesons with respect to B− mesons; equivalent definitions hold for B0/B0

signal.

Several calibrations of the charm tagger using older methods described in

Ref. [107] are detailed in the paper on the charm tagger, with corresponding es-

timates of systematic uncertainties [108]. Presented here instead are several cali-

brations of the algorithm performed using binomial regression via the EspressoP-

erformanceMonitor to the flavor self-tagged modes B+→ J/ψK+, B0→ J/ψK∗0,
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(a) B+→ J/ψK+ data (b) B0→ J/ψK∗0 data

Figure 6.4: Calibration of charm tagger on charmonium B decays.

B+ → D0π+, and B0 → D−π+. These calibrations use samples of these decays

created for common use in flavor tagging calibration studies. The signal candidates

have been selected from about 1.1 fb−1 and 2 fb−1 of data collected in 2011 and 2012.

Fits to the reconstructed B mass distribution have been used to separate signal and

background via the sPlot procedure, which computes signal and background weights

for each candidate [85]. Plots of the resulting calibrations are shown in Figs. 6.4

and 6.5.

The resulting calibration parameters are given in Table 6.4. These calibration

parameters show good agreement in general between the magnet up and magnet

down datasets and between the 2011 and 2012 datasets, with the exception of out-

lying discrepancies in the measurements of ∆p1 in the 2011 magnet up and magnet

down datasets. These are the two poorest determined calibration parameters, and

differ from each other by 3.0σ. The overall χ2/nd.o.f. between the eight parameters

in the magnet up and magnet down datasets (incorporating the correlation between

fit variables) is 2.23. Meanwhile, the χ2/nd.o.f. between the eight parameters in the

2011 and 2012 datasets is 2.20. These high χ2 values are mostly due to the ∆p1

outliers in 2011; neglecting ∆p1, they would be 0.71 and 1.25.
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(a) B+ → D0π+ data (b) B0→ D−π+ data

Figure 6.5: Calibration of charm tagger on open charm B decays.

Table 6.4: Calibration parameters as determined from the various control sample;
these parameters are defined in Section 6.4.

Sample 〈η〉 δp0 p1 ∆p0 ∆p1

B+→ J/ψK+ 0.3795 −0.0247(37) 1.015(76) 0.0102(73) 0.033(152)
B0→ J/ψK∗0 0.3794 −0.0213(76) 1.019(159) 0.0228(110) 0.322(232)
B+→ D0π+ 0.3764 −0.0221(54) 1.061(112)−0.0065(108) 0.110(224)
B0→ D−π+ 0.3777 −0.0212(58) 1.166(119) 0.0133(79) 0.073(165)
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Parameter Systematic

p0 0.0030
p1 0.017
∆p0 0.0043
∆p1 0.040

Table 6.5: Systematic uncertainties from simulation studies.

6.4.1 Systematic uncertainty

A calibration to the channel B0
s→ D−s π

+ was attempted; however, the smaller

production cross section of this decay, together with the low tagging rate of the al-

gorithm, made this channel statistically limited, meant that there were insufficient

data to perform the required lifetime analysis. Instead, in order to ensure that the

algorithm performs similarly for B0
s channels as well as B+ and B0 channels, separate

calibrations to simulated B+→ J/ψK+, B0→ J/ψK∗0, and B0
s→ J/ψφ events have

been performed. Where statistically significant differences between the calibration

parameters in the three channels were found, a systematic uncertainty, correspond-

ing to half of the maximum difference, have been assigned to the parameter. These

systematic uncertainties are roughly comparable to typical statistical uncertainties

for the parameters δp0 and ∆p0, but are negligible for p1 and ∆p1. The propagation

of these uncertainties results in a 0.011% absolute systematic uncertainty on the

tagging power, comparable to its statistical uncertainty.

6.4.2 Performance

The distribution of η after calibration for the B+ → J/ψK+ control sam-

ple is shown in Fig. 6.6. Table 6.6 reports the breakdown of the charm tagger’s

performance by decay mode. The relative rate and power of each mode are the

amounts that it contributes to the algorithm’s total tagging rate εtag and tagging

power εeff . These figures indicate room for future improvements. The rate of the
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Table 6.6: Decay modes used in the OS charm tagger. The symbol Hc stands for
any c hadron. The definition of the two right-most columns is given in the text.

Decay mode Relative rate Relative power

D0 → K−π+ 10.0% 24.0%
D0 → K−π+π+π− 5.9% 8.4%
D+ → K−π+π+ 10.3% 2.6%
Hc → K−π+X 69.7% 61.5%
Hc → K−e+X 0.5% 0.2%
Hc → K−µ+X 3.4% 0.3%
Λ+
c → p+K−π+ 0.2% 2.4%

D+ → K−π+π+ is outsized in proportion to its tagging power, and the semileptonic

modes make a negligible contribution. These could be addressed by reexamining the

selections and multivariate algorithms for these modes. In particular, the semilep-

tonic modes might benefit by adding further variables describing the leptons into

the corresponding BDTs.

The tagging efficiency, mistag fraction, and the tagging power of the charm

tagger are reported in Table 6.7 for the training sample of simulated B → J/ψX

decays and for each calibration channel. The propagated statistical uncertainty

of the calibration parameters dominates the statistical uncertainty of the tagging

power. As expected, the overall tagging power is slightly higher in simulation than

in data, due to differences in the distributions of input variables. The tagging powers

in the two B → J/ψX calibration channels are consistent. There is a significant

difference in the tagging efficiency, higher in the B0 → J/ψK∗0 channel, which

is offset by a slightly higher mistag rate. These differences are likely due to the

different signal selections of the B+→ J/ψK+ and B0→ J/ψK∗0 channels, which

can shape the kinematic distributions of the opposite-side b hadrons and secondary

charm hadrons.

The tagging efficiency for these samples is found to be higher than for the

samples of B → J/ψX decays, due to correlations between the kinematics of the
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(a) B+→ J/ψK+ (b) B0→ J/ψK∗0

Figure 6.6: Distributions of the predicted mistag η (after calibration) for the B →
J/ψX data samples.

Table 6.7: Tagging efficiencies (εtag), effective mistag fractions (ωeff), and tagging
powers (εeff) in the various data samples studied. The first uncertainties are statis-
tical and the second are systematic. The sample labeled Simulation is the training
sample of simulated B+→ J/ψK+, B0→ J/ψK∗0, and B0

s → J/ψφ decays. The
first uncertainties are statistical and the second are uncertainties due to the flavor
tagging calibration.

Sample εtag ωeff εeff

Simulated (4.88± 0.01)% (37.0± 0.0)% (0.33± 0.0)%
B+→ J/ψK+ (3.08± 0.02)% (34.70± 0.03± 0.355)% (0.288± 0.003± 0.013)%
B0→ J/ψK∗0 (3.26± 0.04)% (35.03± 0.05± 0.75)% (0.292± 0.004± 0.029)%
B+→ D0π+ (4.71± 0.05)% (34.60± 0.03± 0.54)% (0.448± 0.005± 0.031)%
B0→ D−π+ (4.85± 0.11)% (35.45± 0.12± 1.57)% (0.411± 0.011± 0.089)%

signal B and the opposite-side charm hadrons. The effective mistag fraction for

these samples is consistent with that on the B → J/ψX samples. The net effect is

an increased tagging power for these B → DX decays, similar to that observed for

other opposite-side tagging algorithms [92,121].

6.5 Combination with current OS taggers

To use the charm tagger in a physics analysis, the flavor tagging informa-

tion from the charm tagger can be combined with information from other tagging
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(a) B+→ D0π+ (b) B0→ D−π+

Figure 6.7: Distributions of the predicted mistag η (after calibration) for the B →
Dπ data samples.

algorithms. Assessing the actual gain in performance depends on the method of

combination and calibration, as well as on the set of tagging algorithms being com-

bined. Due to correlations with other tagging algorithms, in particular the OS kaon

and vertex-charge taggers, the maximum possible increase in tagging power after the

addition of the charm tagging algorithm is less than its individual tagging power.

However, beyond the added tagging power, the presence of an additional tagging

algorithm provides useful and necessary redundancy, which is important for robust-

ness of the flavor tagging performance against changes in detector conditions and

reconstruction algorithms.

The overall correlation of the charm tagger with the other OS taggers can be

determined by assigning each tagger’s decision a value 0 (if no decision is made) or

±1 (based on the predicted flavor). This procedure shows that the charm tagger is

most correlated with the OS kaon tagger, at about∼ 20%, and has small correlations

with the other OS taggers on the order of 5% total. This correlation is non-zero

because the two taggers can pick up the same kaon track to make their decisions;

however, it is still much less than 100%, and the greater part of the information

provided by the charm tagger is new.
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In the standard combination algorithm, the relative probability for either

charge hypothesis is calculated by multiplying the probabilities assigned by the tag-

ging algorithms. This combined tagger requires its own calibration, on top of the

calibration of each individual tagger. Furthermore, it is known to be sub-optimal,

because it does not take into account correlations between separate tagging algo-

rithms.

Assessing the actual gain in performance depends on the method of combina-

tion and calibration, as well as on the set of tagging algorithms being combined. We

have compared the performance of a calibrated combination of the OS muon, elec-

tron, neural-net kaon, and vertex charge taggers to a calibrated combination with

the addition of the charm tagger. Without the charm tagger, the tagging power of

the combination is about 2.8%, which is typical for the current set of OS tagging

algorithms. Using the standard combination algorithm leads to a net gain in tag-

ging power of 0.066%. The poor performance of the combination algorithm can be

partially compensated for by performing separate calibrations in three disjoint sets

of events. Given sets of events Ecomb and Echarm where the combination tagger and

charm tagger give a tag decision, respectively, these three sets are Ecomb ∩ Echarm,

Ecomb\Echarm, and Echarm\Ecomb. Then, the gain in tagging power becomes 0.113%.

6.6 Future improvements to the charm tagger

There are many possible ways in which the charm tagger could be improved

in the future. The most potential lies in improvements to the selections for the

charm decay modes, which might be improved to limit background contamination,

and in the discriminating variables supplied to the BDT, which could be augmented.

There could also be improvements to the training and machinery of the BDT and the

calculation of the predicted mistag η, that besides possibly increasing the tagging

power would streamline the algorithm. For example, the charm tagger currently uses
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(a) ROC curve for nominal BDTs (b) ROC curve using xgboost prototype

Figure 6.8: Possible improvement in charm tagger AUC using xgboost

seven different BDTs trained for each decay mode. To make better use of limited

simulation resources, a single pooled BDT could be created in which the decay

mode of the candidate is represented by a set of seven binary dummy variables.

Furthermore, the current parameterization procedure used to calculate the mistag

probability η from the BDT score is not very robust, and could be replaced with a

more standard technique, i.e., a logistic regression for each separate decay mode.

These potential improvements have been prototyped using the xgboost

boosted decision tree tool in place of TMVA [122]. The same input variables used

in the nominal charm tagger BDTs are used to train an AdaBoosted BDT using

xgboost. A significant increase in the AUC score is found over the effective AUC

score from the nominal BDTs.3

6.7 Conclusion

An algorithm has been developed that determines the flavor of a signal b

hadron at production time by reconstructing opposite-side charm hadrons from a

number of decay channels. The flavor tagger uses boosted decision tree algorithms

trained on simulated data, and has been calibrated and evaluated on data using

3It is possible that the raw outputs of the seven nominal BDTs are on different scales, so each
is converted into a corresponding signal purity fraction.
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the self-tagged decay B+ → J/ψK+. Its calibration and performance are found to

be consistent between magnet up and magnet down running conditions, as well as

between the 2011 and 2012 datasets. Its tagging power for data in this channel

is found to be (0.288 ± 0.003(stat) ± 0.013(cal)%. The calibration has been cross-

checked using the decay B0 → J/ψK∗0, giving consistent results. The tagging

power is found to be higher for the decays B0 → D−π+ and B0
s → D−s π

+, at

(0.411± 0.011(stat)± 0.089(cal)% and (0.39± 0.03)%, respectively.
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Part IV

Appendices
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Appendix A: More detailed form factor plots

Figure A.1: The Kiselev and EFG form factors do not seem to agree well in the
standard parameterization.

Figure A.2: In the helicity parameterization, closest to the differential decay rate,
the Kiselev and EFG hadronic tensor helicity components are in broad agreement,
with the biggest difference in H+.
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Figure A.3: None of the standard form factors of the Kiselev and EFG models of
the B+

c → ψ(2S) transition agree well.

Figure A.4: The huge difference in the Kiselev and EFG models of the B+
c → ψ(2S)

transition is due to their H+ and H− hadronic tensor helicity components.
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Figure A.5: Form factors for J/ψ and ψ(2S) (from EFG) and χc1 and χc2 (from
WWL).

Figure A.6: Helicity form factors for J/ψ and ψ(2S) (from EFG) and χc1 and χc2
(from WWL).
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Appendix B: Rest frame variables

Using the (approximated) B+
c momentum, several rest frame variables are used

in the fit, notably the missing mass squared (Eq. (4.1)), the squared four-momentum

transfer q2, the lepton helicity angle θ, and the muon energy in the rest frame E∗µ.

These are not all independent observables. When there is no missing mass, E∗µ is a

function of q2 and cos(θ):

E∗` =
MBc

2

[
(1−Rw)

(
1 +

m2
µ

q2

)
−R
√
w2 − 1

(
1− m2

µ

q2

)
cos θ

]
(B.1)

where w = vBc · vJ/ψ = (M2
Bc + M2

J/ψ − q2)/(2MBcMJ/ψ ) and R = MJ/ψ/MBc .

Neglecting the muon mass, this is approximately

E∗` =
MBc

2

(
1−Rw −R

√
w2 − 1 cos θ

)
. (B.2)

Given a joint distribution for q2 and cos(θ), the distribution of E∗` can be evaluated

numerically, which is useful when investigating the effect of the B+
c form factors.

For a given value of E∗` , the integration region covering the allowed values of q2

and cos θ is difficult to define analytically, except in the approximation mµ → 0.

However, the range of cos θ is unrestricted, and the extreme values of q2 lie along

the curves cos θ = ±1, and so the integration region can be evaluated numerically.

When instead the missing mass is nonzero, such as in the signal decay B+
c →
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J/ψτ+ντ , E
∗
µ instead depends on the missing mass as well:

E∗` =
MBc

2


(1−Rw)

(
1 +

m2
` −m2

miss

q2

)
−R
√
w2 − 1

√
X(q2)

q2
cos θ


 , (B.3)

where X(q2) is a completely symmetric polynomial of m2
` , mmiss, and q:

X(q2) = (m` +mmiss + q)(m` +mmiss − q)(m` −mmiss + q)(m` −mmiss − q)

=
(
q2 −m2

` +m2
miss

)2 − 4m2
` .

(B.4)

For tauonic decays, the energy E∗µ of the muon decay product of the tau is the

actual quantity measured in the analysis, together with a non-zero missing mass, and

neglecting experimental resolution they obey the above relationship. The true tau

energy Eτ in B+
c → J/ψτ+ντ , which is studied below in relation to the B+

c → J/ψ

hadronic form factors, is not measurable because the τ is not reconstructed. Its

distribution affects the observed m2
missand E∗µ distributions.

The above can be derived from Lorentz algebra. Alternatively, we observe

from Fig. 3.3 that the rest frame energy of a lepton with mass m` when the missing

mass is mν is equal to the energy of the neutrino system Eν when the missing mass is

m`, the lepton mass is mν , and θ 7→ π/2−θ. Moreover, conservation of energy in the

rest frame requires that E∗` +Eν = MBc(1−Rw). Together, these two observations

imply that the quantity

F (m`,mν , cos θ) = E∗` −
MBc

2
(1−Rw)

has a particular antisymmetric form, where

F (m`,mν , cos θ) = −F (mν ,m`,− cos θ).

Letting F = A(m`,mν) +B(m`,mν) cos θ, it follows that A(m`,mν) = −A(mν ,m`)
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and that B(m`,mν) = A(mν ,m`). That is, A is an antisymmetric function and B

a symmetric function of the two masses. Knowing their values at mν = 0, we can

obtain Eq. (B.3) by ansatz, ignoring higher order terms in m`mν .
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Appendix C: Mathematical details of misidentification unfolding

As described in Section 4.8, a control sample of J/ψh+ candidates disjoint to

the nominal data sample is created using hadron tracks that are not identified as

muons and then split into 5 categories enriched in pions, kaons, protons, electrons,

and contaminant muons, and one category of all remaining tracks which is relatively

rich in ghost tracks. A track that falls into the pion-enriched subsample is referred

to as a tagged pion; a similar convention is used for the other hadron species. The

index h refers to a generic true hadron or lepton species, while ĥ refers to a tagged

hadron or lepton species. Thus, the categorization sorts tracks of a number of species

{π,K, p, µ, e, g} into categories {π̂, K̂, p̂, µ̂, ê, ĝ}, where g stands for ghost tracks.

The PID samples (including samples produced by the collaboration as well as

several custom sources described in Section 4.8) are used to measure the probability

that a track of a given true species h that is not identified as a muon candidate

(typically by failing to penetrate the muon chamber and leave a muon track) will be

tagged as a member of the ĥ′ category (i.e., be an h′ candidate). This probability

depends on kinematic properties of the track and global properties of the event

and is calculated in several bins of a few relevant observables — the momentum

p, pseudorapidity η, and the number of tracks in the event, or track multiplicity.

The probability for a track of species h that fails muon identification to pass the

selection for ĥ′ is referred to as P (ĥ′ | h). The PID samples are also used to obtain

the probabilities that a track of the species h which is identified as a muon candidate
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passes the strict PID criteria used in the analysis, referred to as P (µ̂strict | h).1

In a particular region of momentum, pseudorapidity, and track multiplicity

phase where the various classification probabilities and mis-ID probabilities are

known, with Nh candidates of each hadron species h in the control sample, the

average numbers of tracks in the tagged categories, disregarding statistical fluctua-

tions, are related to the numbers in the true hadron categories through:




Nπ̂

NK̂

...

Nĝ




=




P (π̂ | π) P (π̂ | K) · · · P (π̂ | g)

P (K̂ | π) P (K̂ | K) · · · P (K̂ | g)

...
...

. . .
...

P (ĝ | π) P (ĝ | K) · · · P (ĝ | g)







Nπ

NK

...

Ng




, (C.1)

or more concisely

Nĥ′ =
∑

h

P (ĥ′ | h)Nh. (C.2)

This linear relationship in C.2 must be inverted to obtain the counts Nh given

the observed counts Nĥ. The exact solution is not appropriate because Eq. (C.1)

is a statistical, not exact, equality: matrix inversion in the presence of statistical

fluctuations can produce nonsensical results, where some very large positive Nh is

offset by a very large negative Nh′ .

A more stable solution makes use of the iterative Bayesian procedure, imple-

mented in the RooBayesUnfold tool provided by the RooUnfold package [123]. The

relationship in Eq. (C.2) is interpreted as an unfolding problem, with the matrix

of classification probabilities as the response matrix. In the first step, the prior

distribution of the species h of the tracks in the bin is taken to be uniform, i.e., it is

assumed that Nh/N = 1/6 for each species h. Then, using the observed counts and

the conditional probabilities P (ĥ′ | h), the posterior distribution is calculated. In

1By definition, P (µ̂strict | µ) = 0, because the counterpart of the muon tracks that fail muon
identification are not fake muons but actual muons passing muon identification.
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this subsequent step this posterior distribution is used as the new prior distribution,

and this is repeated for several iterations (seeking exact convergence in this iterative

procedure is known to produce overfit results; a small number of iterations around

5 is suggested).

The posterior distribution from the final iteration provides the inferred frac-

tions Punfold(h) = N̂h/N . One simple way to use these would be to argue that, since

the effective number of fake muons Nfake is related to the fake rates P (µ̂strict | h),

the weight

wfake,average =
∑

h

P (µ̂strict | h)Punfold(h), (C.3)

should be applied to all N tracks. However, this would assign equal weights to

tracks from different hadron species ĥ′, and so if the distribution of the fit variables

differs between the hadron species, this method would not accurately reproduce the

distribution of the misidentified background. This is in fact the case for this analysis:

a large subcomponent of the mis-ID background comes from fully reconstructed

B+ → J/ψK+ decays, which peak in missing mass squared, and so in this region

(which is not necessarily in correspondence with one of the kinematic bins in which

the unfolding is performed) the kaon component is a larger fraction than elsewhere.

Giving the tracks a weight that is the average fake rate for different species would

not reproduce the peak in missing mass well.

Instead, this posterior result is then one more time used as a prior distribution

to compute the inverted probabilities P (h | ĥ′) via Bayes’ rule:

P (h | ĥ′) =
P (ĥ′ | h)Punfold(h)

∑
h′′ P (ĥ | h′′)Punfold(h′′)

(C.4)

A track tagged as hadron species ĥ′ is then given the weight

wfake(ĥ
′) =

∑

h

P (µ̂strict | h)P (h | ĥ′). (C.5)
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Appendix D: Extra figures for data–simulation correction

(a) MC (b) Data

Figure D.1: Distribution of the track multiplicity and impact parameter significances
in simulation and in normalization-rich data. These are also compared to the B+

c

decay time. The distributions of the significances and decay time are shown in log
scale.
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(a) Before (b) Data

Figure D.2: Before training the gradient-boosted reweighter, the simulation and
data samples are weighted to have equivalent decay time distributions. Then the
decay time is included as a constraint in the reweighter so that its distribution is
not altered.

(a) Before (b) After

Figure D.3: The track multiplicity is corrected to match the higher activity distri-
bution observed in data.
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(a) Before (b) After

Figure D.4: The J/ψ impact parameter significance is shifted slightly higher to
match the data.

(a) Before (b) After

Figure D.5: The µ+ impact parameter significance distribution is weighted up
slightly at small values.
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Figure E.6: The q2 spectra of B+
c → ψ(2S)µ+νµ are completely distinct in the EFG

model (orange) and Kiselev model (blue).

E.1 ψ(2S) form-factor resampling

For the B+
c → J/ψµ+νµ decay, the Kiselev and EFG form factor models are

quite similar. Our BCL parameterization represents a compromise between them

(with freedom to vary in the fit to the normalization-rich region), and event-by-

event weights can easily model the difference between the two form factor models.

For the B+
c → ψ(2S)µ+νµ decay, however, the predictions of the two models are

very different, as shown in Fig. E.6. In the Kiselev model, unlike the EFG model,

the ψ(2S) decays populate the high q2 and moderate E∗µ region of phase space. A

simple reweighting of events generated with the EFG model (as our MC events are)

cannot accurately represent the distribution under the Kiselev model, because a

small number of events will be given very large weights.

Instead, to generate a representative sample of the ψ(2S) decay, we use a

fast MC technique. The distributions of the fit variables m2
miss, q

2, and E∗µ are

shaped by selection and detector resolution effects. Experience indicates that, apart

from the most important kinematic cuts, the latter dominate. With this in mind,

we apply a loose selection (including principally the pT cuts on the muons) to a

sample of 10k generator-level MC events produced with the Kiselev form factors.

This dataset contains the true values of m2
miss, q

2, E∗µ, and decay time under the

B+
c rest frame approximation. Meanwhile, our large sample of EFG-model ψ(2S)
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(a) m2
miss (b) q2

(c) E∗µ

Figure E.7: The distributions of the reconstructed parameters vs. their true values
in MC generated ψ(2S) events in the EFT model.
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(a) m2
miss (b) q2

(c) E∗µ

Figure E.8: The results of the kNN resampling closure test. Shown, from both the
EFG generator-level MC (green) and independent full MC (red), are the distribu-
tions of the true variables (solid line) and the resampled or directly reconstructed
distributions, respectively (dashed).

MC contains not only the true values of these variables but their reconstructed

values (whose relationship is partially shown in Fig. E.7), as well as the PID weight

and isolation BDT score that are used in the final selection and are correlated

with the fit variables. For each set of values of of m2
miss, q

2, E∗µ and decay time

in the Kiselev model generator-level MC dataset, we find the k events in the Ebert

model full-MC sample with the closest MC-truth values, as determined by k-nearest-

neighbors (kNN). Then, we randomly pick one event from these k events and assign

its reconstructed values and PID weight and isolation BDT score to the Kiselev MC.

The number k was chosen to be 5 through cross validation (maximizing the product

of one-dimensional Kolmogorov-Smirnov tests).

As a closure test, the above procedure was tested with an independent sample
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(a) E∗µ (b) E∗µ

Figure E.9: The results of the kNN resampling closure test, continued. Shown, from
both the EFG generator-level MC (green) and independent full MC (red), are the
resampled or directly reconstructed distributions, respectively, before (dashed) and
after (dotted) applying the PID and isolation BDT correction/selection.

of generator-level EFG model MC containing 10k events. The results of this are

shown in Figs. E.8 and E.9. From this closure test, we conclude that the kNN sam-

pling technique adequately smears the generator-level MC variables for the purpose

of evaluating the systematic uncertainty due to the unknown ψ(2S) form factors.

There are some remaining discrepancies due to acceptance effects, the largest of

which is the lifetime acceptance and which is manually corrected after-the-fact. The

results of the kNN smearing technique for the generator-level Kiselev MC are shown

in Figs. E.10 and E.11. As expected, the Kiselev model is still weighted towards a

higher q2 region than the Ebert model after resampling.
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(a) m2
miss (b) q2

(c) E∗µ

Figure E.10: The results of the kNN resampling. Shown, from both the Kiselev
generator-level MC (green) and EFG full MC (red), are the distributions of the
true variables (solid line) and the resampled or directly reconstructed distributions,
respectively (dashed).

(a) E∗µ (b) E∗µ

Figure E.11: The results of the kNN resampling, continued. Shown, from both the
Kiselev generator-level MC (green) and EFG full MC (red), are the resampled or
directly reconstructed distributions, respectively, before (dashed) and after (dotted)
applying the PID and isolation BDT correction/selection.
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Appendix F: Flavor tagging performance metrics

The usual goal of a CP analysis is often to measure asymmetries in the rates

of two CP -conjugate processes. For example, the processes might be the rates of

the decays B0 → J/ψKS and B0 → J/ψφ, decays subject to CP violation in the

interference between mixing and decay and whose different probabilities are related

to the CP -violating parameters sin 2β and φs. In most analyses at LHCb, these

processes involve decays of b-hadrons (especially B+, B0, and B0
s mesons), and the

flavor of the parent b-quark marks the population to which the process belongs. The

flavor of the process is labeled by d′, equal to +1 for b (e.g., B+, B0, and B0
s ) and

−1 for b (e.g., B−, B0, and B0
s). If the process exhibits mixing (e.g., for B0 and

B0
s decays) and there is a separate decay flavor, this is labeled by d′′ = ±1. If the

conjugate processes have different probabilities pd′ , the quantity measured in the

analysis is an asymmetry of the form

A =
p+1 − p−1

p+1 + p−1

(F.1)

Observed processes must be sorted into one of two CP -conjugate populations Pd′ . In

simple cases, such as studies of direct CP violation in B± decays, d′ is an observable,

but frequently it is not, as in the sin 2β example presented above where the final

state J/ψK0
S does not tag the flavor d′, and flavor tagging algorithms must be used

that produce a tagged (i.e., predicted) flavor d.
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F.1 Likelihood analysis of an asymmetry measurement

In practice, physics analyses measuring CP -violating asymmetries involve com-

plicated models describing the distributions of the processes in several variables

(such as invariant mass and decay time, typically) with many additional floating

parameters (∆m, ∆Γ, particle masses and resolutions, etc.). However, a simplified

model that ignores these complications can shed light on how the properties of the

flavor tagging algorithm impact the measurement of the asymmetry.

With either first-hand knowledge of d′ or a perfectly accurate tagging algorithm

(that always produce d = d′), the asymmetry in Eq. (F.1) can be measured directly

via the estimator

Â =
N ′+ −N ′−
N ′+ +N ′−

, (F.2)

whereN ′d′ count the number of events in the populations P ′d′ . Assuming uncorrelated

Poisson uncertainties on N ′d′ and defining the total number of events N ′ = N ′+ +N ′−,

the uncertainty on the measured asymmetry is

σ̂A =

√
1− Â2

N ′ (F.3)

Alternatively, the likelihood of obtaining the measured counts given an a priori

asymmetry is given by the binomial distribution pmf:

L(N ′+,N ′− | A) ∝
(

1 +A
2

)N ′+ (1−A
2

)N ′−
(F.4)

The maximum likelihood estimate is found by setting the derivative of the log-

likelihood

∂ logL(N ′+,N ′− | A)

∂A =
N ′+

1 +A −
N ′−

1−A (F.5)

to zero, recovering Eq. (F.2)) as expected. The canonical variance on the estimate
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is given by the second derivative

1

σ̂2
A

= − ∂2 logL(N ′+,N ′− | A)

∂2A

∣∣∣∣∣
Â

=
N ′+

(1 +A)2
+

N ′−
(1−A)2

∣∣∣∣∣
Â

=
N ′

1− Â2
, (F.6)

in agreement with Eq. (F.3)). Likelihood maximization is perhaps more formal than

required to obtain these results, but it is easier to apply to generalized situations

that will be encountered later.

It is more often the case that flavor tagging algorithms cannot tag observed

processes as d′ = +1 or d′ = −1 with perfect accuracy. A generic tagging algo-

rithm, besides producing a predicted flavor category d that an event belongs to,

also provides a per-event probability ω, called the mistag probability, that its tag

is incorrect. First take the simple case that the mistag probability is a constant Ω.

Call the numbers of events belonging to the population Pd of events tagged (possi-

bly incorrectly) as type d Nd. Then, the probability for the process to be tagged as

d = +1 is not (1 +A)/2 but rather

(1− Ω)× 1 +A
2

+ Ω× 1−A
2

=
1 +DA

2
(F.7)

where D = 1 − 2Ω is called the dilution of the tagger.1 Since Ω is the mistag

probability and 1 − Ω the success rate, the dilution is the difference between the

success and mistag probabilities, and counts the asymmetry between the numbers

of correctly and incorrectly tagged events. Likewise, the probability to be tagged as

d = −1 is (1−DA)/2. So, the log-likelihood function becomes

logL(N+,N− | Ω,A) = C +N+ log
(

1 +DA
2

)
+N− log

(
1−DA

2

)
. (F.8)

1This quantity is unfortunately named, because a tagger with large dilution (and thus low
performance) corresponds to a small value of D, and vice versa.
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The estimator for A and its variance become

ÂΩ =
1

D

N+ −N−
N+ +N−

(F.9)

and

σ̂AΩ
=

√
1−D2Â2

D2N (F.10)

To zero-th order in A (since DA is typically quite small), the effective statistical

size of the sample is reduced from N by a factor D2. This quantity is called the

tagging power of the tagging algorithm, and is usually denoted εeff .2

F.1.1 Incorporating per-event mistag probability

More generally, the predicted mistag probability varies from event to event;

some events are relatively clean and have a mistag probability as low as 10% to 15%,

but most are much more chaotic and have a mistag probability not much better than

50%. For a given event, there are probabilities p(d = +1 | d′ = +1) (p(+ | +) for

short) for the tag decision (i.e., the predicted flavor) to be d = +1 given that the

actual CP flavor is d′ = +1 and p(d = +1 | d′ = −1) (p(− | −) for short) for the tag

decision to be d = +1 given that the actual flavor is d′ = −1. Given an asymmetry

A, the likelihood of a tag decision d = +1 is thus

p(d = +1) = p(+ | +)
1 +A

2
+ p(+ | −)

1−A
2

(F.11)

The two quantities p(+ | +) and p(+ | −) are clearly related to the tag flavor

decision and predicted mistag ω: p(+ | +) = 1 − ω, since it is a correct tag, and

2In practice, a flavor tagging algorithm is not able to tag all signal decays. The fraction of
events tagged by an algorithm is called its tagging efficiency ε. For simplicity, in this document
ε is assumed to be 100%, or equivalently that the number of events N is the number of tagged
events.
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p(+ | −) = ω, since it is incorrect. In general, the likelihood of the tag d is

p(d) =
1

2
(1 + dDA) (F.12)

where the dilution D = 1 − 2ω now varies from event to event. Ignoring some

constants, the complete log-likelihood function3 is then

log(L(A)) = −N log(2) +
∑

i

log (1 + diDiA) . (F.13)

The estimator A can be solved by maximizing this log-likelihood, whose derivative

is

∂ log(L(A))

∂A =
∑

i

diDi

1 + diDiA
. (F.14)

Given an arbitrary number of events with arbitrary dilutions Di, there is no apparent

exact analytic solution to the above equation. Since CP -violating asymmetries are

typically quite small, an expansion of the solution in powers of A can be useful. To

first order, the score function of Eq. (F.14) is

∂ log(L(A))

∂A =
∑

i

diDi −A
∑

i

D2
i +A2

∑

i

diD
3
i +O

(〈
D4
〉
A3
)

(F.15)

, and the corresponding approximate solution is

Â =
〈dD〉
〈D2〉 +O

(〈
D3
〉
A2
)

(F.16)

3Here, the mistag probability ω is treated as fixed and known; in practice, however, the cal-
ibration of the tagging algorithm provides a standard error that can be incorporated into the
likelihood.
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Defining Nw
+ and Nw

− to be the weighted number of events tagged as d = +1

andd = −1, respectively, this can be recast as

Â =
〈D〉
〈D2〉

Nw
+ +Nw

−
Nw

+ −Nw
−

+O
(〈
D3
〉
A2
)

(F.17)

In this form the comparison to Eq. (F.2) and Eq. (F.9) is more obvious. The first

order estimate of Â is essentially a weighted asymmetry of the two counts, multiplied

by an overall factor accounting for the dilution. Given that the achievable dilution

D with LHCb’s flavor tagging algorithms is on average quite small, in the 0.2 to 0.4

range, and at most 0.5, the corrections to Eq. (F.16) are typically quite small.

To first order in A, the second derivative of the log-likelihood is

−∂
2 log(L(A))

∂A2
=
∑

i

D2
i − 2A

∑

i

diD
3
i +O

(〈
D3
〉
A2
)

=
〈
D2
〉
N + 2A

〈
dD3

〉
N +O

(〈
D3
〉
A2
)
.

The standard error on the estimator is the value of this second derivative at the

estimated value. To zero-th order, the standard error of the estimate is

σ̂2
Â ≈

1

〈D2〉N +O (A) , (F.18)

making the tagging power of the algorithm equal to the RMS value of the dilution:

εeff =
〈
D2
〉

+O (A) . (F.19)

F.1.2 A toy example of tagging power

To measure A exactly, the likelihood must be maximized numerically. Take

as a relatively simple example a tagger whose mistag probability is uniformly dis-

tributed between 0 and 0.5, and so whose dilution is uniformly distributed between
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0 and 1. The canonical tagging power in this case is simply
∫ 1

0 D
2 dD = 1/3. For

convenience define the continuous classifier δ = dD (not to be confused with the in-

tegration element). To produce an observed asymmetry Aobs in the tagged response,

the pdf of δ must be p(δ) = 1/2 +Aobsδ. Correspondingly, the quasi-moment gen-

erating function for the distribution is

hδ(t) =
∫ 1

2
+Aobsδ

1− tδ dδ =
(2Aobs + t) arctanh(t)− 2Aobst

t2

The solution to hδ(−A) = 1 and the associated variance in the estimator are simply

Â = 2Aobs (F.20)

σ̂2
Â =

Â3

N
(
arctanh(Â)− Â

) (F.21)

The limiting value of the variance as Â → 0 is 3/N , making the canonical tagging

power 1/3. In general, the real tagging power at finite values of the asymmetry is

εeff(Â) =
1

N σ̂2
Â

=
arctanh(Â)− Â

Â3
(F.22)

Figure F.1 shows the results of a toy study in which toy datasets of 10k events

were generated with a real asymmetry ranging between 0% and 95% and a uniform

dilution between 0 and 1. The asymmetry is estimated by numerical likelihood maxi-

mization, and the estimated asymmetry and corresponding tagging power agree with

Eqs. (F.20) and (F.22). Still, the canonical tagging power 1/3 is a good approxima-

tion up through 50% asymmetries.

The range of asymmetries in this toy study is much wider than the typical

asymmetries measured in CP violation studies are usually less than 1% and cer-

tainly much less than 10%. In this range, the canonical tagging power (Eq. (F.19))

evaluated at Â = 0 is an excellent approximation for the exact tagging power eval-
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(a) Estimated asymmetry (b) Tagging power of estimator

Figure F.1: The asymmetry and estimated numerically from samples of 10k events
and associated tagging power (black points) agree very well with the analytic es-
timates in the asymptotic limit (blue). For small asymmetries the tagging power
tends to the canonical tagging power, 1/3 (red).

Table F.1: Calibrated tag probabilities in the presence of tagging asymmetries.
Treating the calibrated mistag values ω± as givens, the probabilities for each of the
tag decisions d = ± depend on these probabilities and the true flavor d′.

d = +1 d = −1
d′ = +1 p(+ | +) = 1− ω+ p(− | +) = ω+

d′ = −1 p(+ | −) = ω− p(− | −) = 1− ω−

uated at finite Â This has only been demonstrated for the uniform dilution distri-

bution considered in the toy study, but it seems reasonable that this approximation

continues to hold even for more realistic dilution distributions.

F.1.3 Incorporating mistag probability asymmetries ∆ω

In the final analysis, asymmetries in the tagging algorithm itself make the

mistag probability different for processes with real flavors d′ = +1 and d′ = −1.

This means that there are separate mistag values ω+ and ω− when d′ = +1 and

d′ = −1, respectively. So, p(+ | +) becomes 1 − ω+, p(+ | −) becomes ω−, and so

on. A table of these probabilities is shown in Table F.1. Defining ∆ω = ω+ − ω−
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and ω = (ω+ + ω−)/2, the overall probability that the tag decision is d is

p(d) = p(d | d = +1)
1 +A

2
+ p(d | d = −1)

1−A
2

= 1− d∆ω + dDA. (F.23)

This slightly modifies the log-likelihood, making it

log(L(A)) = −N log(2) +
∑

i

log (1− di∆ωi + diDiA) (F.24)

To first order in A, the derivative of the log-likelihood is

∂ log(L(A))

∂A =
∑

i

diDi

1− di∆ωi
−A

∑

i

D2
i

(1− di∆ωi)2 +O(
〈
D3
〉
A2). (F.25)

This makes the corresponding first-order estimate of the asymmetry

Â =

〈
dD

1− d∆ω

〉
/

〈(
D

1− d∆ω

)2
〉

+O(
〈
D3
〉
A2) (F.26)

and the zero-th order estimate of the tagging power

εeff =

〈(
D

1− d∆ω

)2
〉

+O(
〈
D2
〉
A). (F.27)

F.2 Relationship between tagging power and AUC score

A tagging algorithm’s decision is a discrete classifier between two flavor cat-

egories, and its predicted mistag probability is a continuous classifier between two

tag categories (correctly tagged and incorrectly tagged). These can be put together

into a continuous classifer between the flavor categories: the signed dilution δ ≡ dD,

where d = ±1 is the tagged flavor (+1 for B and −1 for B̄) and D = 1− 2ω is the

predicted dilution.

A very common metric used to evaluate continuous classification algorithms in
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the AUC, which is the area under the receiver operating characteristic (ROC) curve.

The AUC score has a straight-forward interpretation. In the context of a tagging

algorithm’s mistag probability, it is the probability that a random B event will have

a larger δ than a random B̄ event. Letting g(δ) be the pdf of the algorithm’s signed

dilution δ, and g+ and g− the densities for + and − events, this modified AUC is

AUC ≡
∫
g+(δ1)dδ1

∫
g−(δ2)dδ2 I(δ1 > δ2),

where I(δ1 > δ2) is the indicator function equal to 1 when δ1 > δ2 and 0 otherwise.

Now we must rewrite g+ and g− in terms of g. Ignore differences ∆ω in the mistag

probability between + and − events. For an event with dilution D = ‖δ‖, there is a

probability (1 + ‖δ‖)/2 that it is tagged correctly and (1− ‖δ‖)/2 that it is tagged

incorrectly. The density g+ corresponds to events that are tagged correctly for δ > 0

and incorrectly for δ < 0, and so its density over the whole range is

g+(δ) =
1+δ

2
g(δ)

∫ 1+δ1
2
g(δ1)dδ1

In the denominator,
∫
δ1g(δ1)dδ1 is just the average value 〈δ〉 ∝ A. Since we only

need to work to zero-th order in A, we can assume A = 0, and so the above simplifies

to

g±(δ) = (1± δ)g(δ).

The AUC score becomes

AUC =
∫
g(δ1)dδ1

∫
g(δ2)dδ2 (1 + δ1)(1− δ2)I(δ1 > δ2).

Exchanging variables δ2 ↔ δ1 leads to an alternate expression for AUC over the rest

of the integration region, where δ1 < δ2, and taking the average of the two integrals
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yields

AUC =
1

2

∫
g(δ1)dδ1

∫
g(δ2)dδ2 (1 + ‖δ1 − δ2‖ − δ1δ2) .

The first term is 1 and the last 〈δ〉2 = A2, so to zero-th order in A

AUC =
1 + 〈‖δ1 − δ2‖〉

2
.

This is not directly related to the tagging power, unfortunately. However, if we

replace the mean absolute value with the RMS value, which should be similar, we

get

AUC mod =
1 +

√
〈(δ1 − δ2)2〉

2
=

1 +
√

2 〈D2〉
2

In other words, the AUC is not directly related to the tagging power, but there is a

sense in which they are complementary metrics, with the only difference being the

choice of an L1 or L2 norm. This does not guarantee that maximizing the ROC

score of a tagger is equivalent to maximizing its tagging power, but it does give

reason to be optimistic that this is usually the case.
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Appendix G: Flavor tagging calibration

G.1 Misclassified response within binomial regression

In the simplest flavor tagging calibrations to decays of charged B± mesons,

the production flavor of the meson is directly identified by the charges of one or

more of its decay products. In this case, applying binomial regression is entirely

straightforward: if the predicted flavor agrees (disagrees) with the observed flavor,

the tag is correct (incorrect); this response is regressed as a function of the predicted

mistag probability. In general, however, a binomial regression tool for calibrating

flavor tagging algorithms must work with decay modes of neutral B0 and B0
s mesons

where the production flavor is latent and only the decay flavor is observed. The

following Section G.2 describes the probabilistic relationship between the production

and decay flavors; for describing the regression procedure, it is enough to note that

there is a fixed probability $c(t) that a B0 or B0
s meson that decays at time t has

not oscillated from its original production flavor.

G.1.1 Definitions and formalism

As noted above, flavor tagging algorithms are often described in terms of the

predicted mistag probability η and true/calibrated mistag probability ω. Because

this definition in terms of negatives is somewhat awkward, this section will refer

instead to the predicted correct-tag probability $ = 1− η. A number of quantities

(some observable and others latent) are important in the calibration of flavor tagging
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algorithms. For each event tagged by a flavor tagging algorithm, these relevant pieces

of information (given the subscript k for the k-th event) are:

R (latent for B0 and B0
s modes): equal to 1 if the tagged flavor d equals the pro-

duction flavor d′, i.e., the decision made by the algorithm is correct; otherwise

equal to 0;

$: the uncalibrated probability that d = d′, i.e., 1− η;

$∗(θ) (to be regressed): the calibrated probability that d = d′, a function of the

uncalibrated probability $ and some calibration parameters θ;

Rc (latent for B0 and B0
s modes): equal to 1 if the production flavor d′ equals the

decay flavor d′′, i.e., if either the signal is a baryon or a charged meson, or, if

it is a B0 or B0
s , it has not oscillated; otherwise equal to 0;

$c: the probability that d′ = d′′, which is 1 for a baryon or a charged meson and

can be calculated from the decay time for a neutral B0 or B0
s meson;

Robs: equal to 1 if the tagged flavor d equals the observed decay flavor d′′; otherwise

equal to 0; since this can happen if either R = 1 (with probability $∗) and

Rc = 1 (with probability $c) or if R = 0 (with probability 1−$∗) and Rc = 0

(with probability 1−$c), it is equal to RRc + (1− R)(1− Rc). Interpreting

these as boolean variables, this is equivalent to R ↔ Rc, a symbol meaning

(R ∧Rc) ∨ (¬R ∧ ¬Rc);

π: the probability that d = d′′; following the same logic as above this is equal to

$∗$c + (1−$∗)(1−$c), or $∗ ↔ $c for short.

The calibration of the flavor tagging algorithm is a binomial regression problem

where π = $∗ ↔ $c is the predictor of the observable response Robs, wherein $∗ is

a function of the predicted value $.
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G.1.2 Generalized linear models for binomial regression

One particular class of binomial regression model is the generalized linear

model [116]. In such a model, the calibrated probability $∗ is related to the predic-

tion $ by

g ($∗(θ)) =
M∑

k=0

θkPk($) (G.1)

where Pk($) are a set of basis functions, θk are a set of calibration parameters

expected to be small, and g is called a link function. This is a very flexible class of

models. The set of basis functions Pk($) can include not just simple constant or

linear terms but also polynomial bases or various types of basis splines, especially

b-splines and natural cubic splines [124]. The link function g is required to be a

map from the range [0, 1] to the entire real axis, and so is typically the inverse of the

cumulative distribution function of a distribution defined over R. The most popular

link function is the logit link (in which case binomial regression is typically called

logistic regression).

G.1.3 Likelihood maximization

It is algebraically convenient to define C = 2R − 1, equal to ±1, and the

“dilution” D = 2$ − 1. In this basis the composition of probabilities is simplified:

Robs = R↔ Rc 7→ Cobs = CCc, (G.2)

π = $∗ ↔ $c 7→ D = D∗Dc. (G.3)

For each event in the dataset, the probability that Robs = 1 is

π($;θ) = $∗(θ)↔ $c =
1

2
(1 +D∗($;θ)Dc) (G.4)
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Ignoring the likelihood of getting a particular distribution of dilutions D∗($;θ) and

Dc, which are fixed a priori information, the relevant likelihood function is

L
(
θ; ~Robs

)
=

∏

events e

πe(θ)R
obs
e (1− πe(θ))1−Robs

e (G.5)

The log-likelihood is given by

`
(
θ; ~Robs

)
=

∑

events e

Robs
e log (πe(θ)) + (1−Robs

e ) log (1− πe(θ)) (G.6)

and typically notated simply `(θ). Taking advantage of the notation Cobs
e = 2Robs

e −

1, the log-likelihood is given by

` (θ) =
∑

events e

log

(
1 + Cobs

e D∗e(θ)Dc
e

2

)
. (G.7)

The canonical maximum likelihood estimate (MLE) of the calibration parameters

is given by the root of the score function, which is the first derivative of the log-

likelihood:

∂` (θ)

∂θi
=

∑

events e

2Cobs
e Pi($e)D

c
e

g′ ($∗(θ))
× 1

1 + Cobs
e D∗e(θ)Dc

e

(G.8)

The root of the system of equations can be found numerically using a Newton-

Raphson type algorithm.

G.1.4 Tagging asymmetry parameters

Another requirement for the flavor tagging calibration procedure is that it

measure parameters quantifying the dependence of the calibration parameters on

the actual flavor of the signal B0 or B0
s meson. There is no guarantee that the

out-of-the-box prediction from a flavor tagging algorithm equally well predicts B0

and B0 mesons. For example, the algorithm examining opposite side kaons might
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be trained on simulation or data where K+–K− detection asymmetries as a function

of pT are different from for the signal sample, so that when the signal is a B0, and

opposite side kaons are preferentially K+, the multivariate algorithm that predicts

the flavor and η is biased in a different way than if the signal were a B0. In practice

these tagging asymmetry parameters are quite consistent with 0, but it is important

to quantify them to form confidence intervals and to propagate their uncertainty to

an asymmetry measured in a flavor-tagged physics analysis.

Given that the two flavor states of the signal B0 or B0
s meson are labelled

by d′ = +1 and d′ = −1, there are two calibrated probabilities $∗(θ; d′). A tag

decision d can agree with the decay flavor d′′ in two ways: it can be correctly tag the

production flavor d′ (e.g., d = d′ and R = 1) while the B-meson has not oscillated

(e.g., Rc = 1), or it can incorrectly tag the production flavor but the B meson has

oscillated (e.g., R and Rc are both 0). If the tagged flavor is d = +1, the sum of

these probabilities (suppressing the dependence on θ) is

π(d = +1) = $∗(d′ = +1)$c + (1−$∗(d′ = −1))(1− ωc) (G.9)

while if the tagged flavor is d = −1 the sum is

π(d = −1) = $∗(d′ = −1)$c + (1−$∗(d′ = +1))(1− ωc) (G.10)

In general for a tagged flavor d, the probability that this is equal to the decay flavor

d′′ is

π(d) = $∗ ↔ $c +
d∆$∗

2
(G.11)

where $∗ is the average of $∗(d′ = ±) and ∆$∗ is the difference $∗(d′ = +) −

$∗(d′ = −).

A simple way to parameterize the separate calibration functions $∗(θ; d′) in
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a GLM is to simply add splitting terms to the parameters:

g ($∗k(θ; d′)) =
M∑

i=0

(
θi +

d′∆θi
2

)
Pi($k) (G.12)

Even though d′ is latent, these new asymmetry parameters can be maximized in

the same likelihood maximization, since the probability πd that the tag is correct

depends only on the known quantities d and $ and the calibration parameters. Note

that unless g is the identity link, ∆$∗ is not exactly equal to d′
∑

∆θkPk($). The

modification is to the algebra in the above and below sections is straight-forward.

G.1.5 Fisher Information and Cramer-Rao bounds

The variance of a statistical estimator has a minimum limit, given by the

Cramer-Rao bound [125] (as long as the estimator meets several regularity condi-

tions). For a set of quantities θ, with a corresponding likelihood function L
(
θ; ~Robs

)
,

the Fisher information matrix of the parameters θ is

i(θ)ij = Eθ

[
−∂

2`(θ)

∂θi∂θj

]
. (G.13)

The Cramer-Rao theorem then states that the covariance matrix of an unbiased

estimator θ̂ of θ that meets the necessary regularity conditions is bounded by

cov(θ̂) ≥ i(θ)−1 (G.14)

(where ≥ means that the matrix difference is positive semidefinite) and in particular

that the variance of any individual parameter is bounded by

var(θ̂i) ≥ i(θ)−1
ii . (G.15)
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This can be applied directly to the problem of extracting calibration parameters

from data. Ignoring the tagging asymmetry parameters, the Fisher information

matrix of the log-likelihood function Eq. (G.7) for the set of calibration parameters

θ is

i(θ)ij = 4
∑

events e

Pi($e)Pj($e)

g′ ($∗e(θ))2

(Dc
e)

2

1− (D∗e(θ)Dc
e)

2 (G.16)

When Dc = 1 for each event and there is no chance of misclassification, this matrix

is especially simple, and reduces to the standard form for binomial regression:

i(θ)ij =
∑

k

Pi($k)Pj($k)

g′ ($∗k(θ))2

1

$∗k(θ)(1−$∗k(θ))
. (G.17)

In the case of flavor tagging algorithms, an approximate set of values for the

calibration parameters is typically known, for instance from a previous calibration

to a simulation sample or an independent, separate dataset. The Fisher information

matrix can be evaluated for this set of values, providing a useful estimate of the

covariance matrix that will be obtained during calibration. When the off-diagonal

terms of the Fisher information matrix are small, the Cramer-Rao bounds on the

covariances between the parameters are suppressed. This estimated information

matrix can be used to transform the set of basis functions to minimize the correlation

between the calibration parameters during the MLE.

G.1.6 GLM link functions

Up to now no specification has been made for the link function η = g($),

other than that it is the inverse of a cdf $ = h(η) of a probability distribution over

the real axis. However, the link function implicit in previous LHCb flavor tagging

calibration is the identity g($) = $. This link has the benefit of being very simple,

but care must be taken that η(θ) does not stray outside the range [0, 1] — otherwise

there will be numerical issues in the likelihood maximization. In this case g′ = 1,
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making the Fisher information matrix (when there is no misclassification)

i(θ)ij =
∑

k

Pi($k)Pj($k)

$∗k(θ)(1−$∗k(θ))
. (G.18)

The most widespread link function in the statistical literature is the logistic

link, whose link function is variously called the logit or log-odds function:

g($) = logit$ = log($)− log(1−$) (G.19)

This has an appealing interpretation as the logarithm of the odds ratio $/(1−$).

The inverse of the link is the logistic or sigmoid function:

h(η) =
1

1 + e−η
(G.20)

The derivative of the link g′($) = 1/$(1 − $) takes the same simple form as

other terms in the likelihood function and its derivatives. Consequently the Fisher

information matrix is equally simple for the logit link:

i(θ)ij =
∑

k

$∗k(θ)(1−$∗k(θ))Pi($k)Pj($k). (G.21)

Other link functions are less commonly used. These include the probit link,

which is the inverse of the cdf of the standard normal distribution, and the cauchit

link, which is the inverse of the cdf of the Cauchy distribution. It is possible that

these alternative links might fit a certain dataset better; however, their analytic

expressions are messier than the two standard links detailed above.
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G.1.7 Binomial regression goodness-of-fit tests

Current methods of flavor tagging calibration do not have well studied

goodness-of-fit tests. In the binned procedure for calibrations to B± decays, the

reduced chi-squared statistic is often used as a goodness-of-fit test, but like the re-

sult of regression this test depends on the arbitrarily chosen binning scheme. The

time-dependent likelihood maximization procedure has related goodness-of-fit tests,

but these are sensitive to other sources of disagreement in this larger likelihood

function, such as the modeling of the lifetime acceptance efficiency.

Binomial regression, on the other hand, has well studied goodness-of-fit tests,

though none is considered is canonical [115, 116]. The binned Hosmer-Lemeshow

decile of risk tests are popular, though they as well depend on an arbitrary binning

procedure. A number of tests appropriate for continuous data are described in [126]

and its references.

G.2 Physical and experimental effects in the regression framework

In the mathematical formalism above, the quantity $c represents the proba-

bility that the observed decay flavor d of the b-hadron is the same as its production

flavor d′. This probability is only less than unity when the b-hadron is a B0 or

B0
s meson and oscillates. Then, several effects contribute to the value of $c: the

oscillation of the neutral meson, the decay time resolution of the LHCb detector for

the given mode, and possible b–b production asymmetries, which are constrained to

be small but are likely not nonzero.

G.2.1 Oscillation probability of a neutral B meson

To start with, the probability that a B with production flavor d′ will be decay

at time t with flavor d′′ = −d′ must be determined. The initial state of such a B
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meson is

|ψ(0)〉 = |d′〉 =
|BH〉+ d′|BL〉√

2
(G.22)

The evolution the BH and BL states are specified by the mean decay width Γ and

mass m and mean decay width difference ∆Γ and mass difference ∆m, and are

e−iHt|BH〉 = e−
1
2(Γ+ 1

2
∆Γ)t+i(m+ i

2
∆m)t

e−iHt|BL〉 = e−
1
2(Γ− 1

2
∆Γ)t+i(m− i

2
∆m)t

Therefore, the state evolves into

|ψ(t)〉 = e−
1
2

Γt+imt

[
cos

(
∆mt+ 1

2
i∆Γt

2

)
|d′〉

+i sin

(
∆mt+ 1

2
i∆Γt

2

)
|−d′〉

] (G.23)

Discounting the overall decay probability exp(−Γt), the probability that a B meson

that decays at time t will not oscillate into a different flavor is

Pd′′=d′(t) ≡ |〈d′|ψ(t)〉|2 =
1

2

(
1 + cos ∆mt sech

1

2
∆Γt

)
. (G.24)

This probability is independent of d′, as it should be, and from here on this d′

dependence will be dropped. The corresponding dilution due to oscillation is

Dosc(t) = 2Pd′′=d′(t)− 1 = cos ∆mt sech
1

2
∆Γt. (G.25)

It might be naively expected that $c(t) = Pd′′=d′(t), and this is close to the truth. In

particular, $c is the probability that that B0 or B0
s meson observed with decay flavor

d′′ was really produced with flavor d′ = d — symbolically P (d′ | d). The quantum

mechanical probability Pd′′=d′(t) is P (d′′ | d′), and a straightforward application of
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Bayes’ theorem shows that

$c(t) ≡ P (d′′, 0 | d′′, t)

=
P (d′′, t | d′′, 0)P (d′′, 0)

P (d′′, t)

=
Pd′′=d′(t)(1/2)

(1/2)

= Pd′′=d′(t) (G.26)

This confirms the naive expectation, and the total tagging dilution Dc(t) = 2$c(t)−

1 is equal to Dosc(t). In reality, however, experimental effects from decay time

resolution and production flavor asymmetries modify this simple result.

G.2.2 Decay time resolution effects

The finite decay time resolution at a particle detector can lead to extra dilution.

Its effect is suppressed in the limit where the resolution δt is � 1/∆m; however,

in the opposite limit where δt � 1/∆m, the ability to tag the oscillation correctly

is completely washed out by resolution effects. In practice, B0 decays belong to

the former case, while Bs decays are intermediate — decay time resolution is an

important effect, but does not dominate.

In general, the resolution function R(t, t′), which usually is equivalent to a

function R(t − t′), modifies the observed decay time distribution of the B mesons.

Because the true distribution is not uniform in the region around the observed

time (being biased towards shorter decay times), the effect of the resolution func-

tion cannot be exactly disentangled from the shape of the decay time distribution.

However, in practice, the width of the resolution function is much smaller than the

timescales over which the decay time distribution varies appreciably, with the ex-

ception of decay times near zero where the distribution is discontinuous. So, to a
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good approximation an a priori uniform decay time distribution can be assumed in

examining the effect of the decay time resolution.

In this simplification, the resolution function R(t, t′) modifies the oscillation

probability via the convolution

ωc(t) =
∫
Pd′′=d′(t)R(t, t′) dt′ (G.27)

Because convolution is a linear operation, this is equivalent to a convolution of

Dosc(t). In the simple case with no production asymmetry, this dilution is a product

of a cosine term and a hyperbolic secant term (Eq. (G.25)), but the latter varies

quite slowly within the decay time resolution (∆Γσ � 1, typically). When the

resolution function is a single gaussian, the only contribution to the convolution is

1

σ
√

2π

∫
cos (∆mt′) exp

(
−(t− t′)2

2σ2

)
dt′ = cos (∆mt) e−

1
2

∆m2σ2

Thus there is an effective dilution

Dres = exp
(
−1

2
∆m2σ2

)
. (G.28)

due to the finite decay time resolution. For a more general resolution function

R(t, t′), the effective dilution is the real part of the Fourier transform of G with

frequency ∆m with respect to t′. The total observed dilution due to oscillation is

therefore

Dc(t) = 2$c(t)− 1 = DresDosc(t). (G.29)

A more exact treatment must account for the slight non-uniformity of the

decay time distribution over the support of the resolution function. The observed

decay time distribution is given by the a priori decay time distribution p(t) (including
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acceptance effects) convolved with the resolution function:

pobs(tobs) =
∫
p(t)R(tobs, t) dt. (G.30)

The resolution function is just the conditional probability distribution, since

p(tobs | t) = R(tobs, t) (G.31)

Typically the resolution function R(tobs, t) = R(tobs− t), making the observed time

distribution simply the convolution pobs = R ∗ p. By Bayes’ theorem,

p(t | tobs) =
R(tobs, t)p(t)

pobs(tobs)
(G.32)

If the decay time distribution p(t) varied on a time scale much greater than the

width of the resolution function, the approximation made previously, then it would

cancel out in this fraction. No longer neglecting this effect, the expectation value of

a function f(t) of the true decay time is

E [f(t) | tobs] =
∫
f(t)p(t | tobs) dt =

1

pobs(tobs)

∫
f(t)p(t)R(tobs, t) dt (G.33)

Less compactly,

E [f(t) | tobs] =

∫
f(t)p(t)R(tobs, t) dt∫
p(t)R(tobs, t) dt

(G.34)

There are two possible effects to consider. The first is the possibility that p(t) does

appreciably vary over the support of resolution function. The second is that the

range of t is restricted to positive values. Assuming an exponential decay time

distribution p(t) = Γ exp(−Γt) with no acceptance effects and a gaussian resolution

function,

pobs(tobs) = Γe−Γtobs × Φ
(
tobs

σ
− Γσ

)
e

1
2

Γ2σ2

, (G.35)
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where Φ(x) = (1 + erf(x/
√

2))/2 is the cdf of the standard normal distribution.

The sharp discontinuity of the distribution at t = 0 is rounded off and distribution

extends into negative observed times. There are separate contributions to this ex-

pression from the restriction to positive values of t in the integral, the exponential

shape of the decay time distribution, and the interaction of these two properties.

The first can be identified in the limit Γ → 0 and the second in the limit σ → 0.

The effect of the interaction is present in the form of the term Γσ, which shifts the

center of the cdf.

On closer examination, this correction to the decay time distribution is only

relevant for observed times tobs within several resolution widths σ of 0. Not only

is this precisely where acceptance effects modify the posterior decay time distribu-

tion, selections often veto candidates below a minimum decay time equal to many

multiples of the resolution width. Even with perfect acceptance and a selection

that includes candidates at small decay times, much of the effect on the observed

decay time distribution cancels out in E [f(t) | tobs]. The quantity of most interest

is Dc(t), which (ignoring ∆Γ) is given by the expectation of f(t) = cos ∆mt. In this

case, the modification to the native convolution f ∗R is quite negligible for positive

observed times. The exact result is

Dc(t) = E [cos(∆mt) | tobs] = (<(X ) cos (Y)−=(X ) sin (Y))× e− 1
2

∆m2σ2

(G.36)

where

X =
Φ(t/σ − Γσ + i∆mσ)

Φ(t/σ − Γσ)
, Y = ∆mt− Γ∆mσ2. (G.37)

The exponential term simply reproduces the effective dilution due to resolution Dres

derived previously.

Both Γσ (∼ 0.03) and ∆mσ (∼ 0.025) are small for B0 decays. In particu-

lar, the exponential factor exp(−∆m2σ2/2) is indistinguishable from unity, and the
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(a) B0 (b) Bs

Figure G.1: A plot of the approximation of Dres cos ∆mt from Eq. (G.29) (blue)
is compared to the analytic result E [cos(∆mt) | tobs] from Eq. (G.36) (orange) for
B0 mesons (left) and Bs mesons (right). For each plot, the scale of the time axis is
chosen such that Γ = 1 and σ = 0.03 (corresponding to 50 fs decay time resolution),
while ∆m/Γ = 0.775 for B0 and 26 for Bs.

phase shift Γ∆mσ2 is less than 0.001. Consequently, Eq. (G.36) is essentially equal

to cos ∆mt, and the decay time distribution has a negligible effect in calibrations to

B0 decay modes and can be ignored. In B0
s decays, on the other hand, Γσ is again

about 0.03 but ∆mσ is quite significant (∼ 0.9). The phase shift Γ∆mσ2 ∼ 0.03

is still fairly small, and to a good approximation can be ignored. Fig. G.1 shows

plots of the exact value of Eqs. (G.29) and (G.36) for both B0 and Bs decays. The

only non-negligible effect of the exact analysis is that E [cos(∆mt) | tobs] quickly

approaches 1 for small and negative values of tobs (a kinematic region with typically

very low detector acceptance efficiency), rather than continuing to oscillate.

G.2.3 Production asymmetries

An initial flavor asymmetry A0 between B0 (B0
s ) and B0 (B0

s) mesons at

production evolves into an asymmetry

A(t) = A0Dosc(t) (G.38)
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for mesons decaying at time t. This changes the a priori probability for each flavor

at production and decay. Repeating the Bayesian logic above which demonstrated

that $c(t) = Pd′′=d′(t) with this new prior information instead shows that

$c(t) ≡ P (d′′, 0 | d′′, t)

=
P (d′′, t | d′′, 0)P (d′′, 0)

P (d′′, t)

= Pd′′=d′(t)×
(1 + d′′A0)/2

(1 + d′′A(t))/2

= Pd′′=d′(t)×
1 + d′′A0

1 + d′′A0Dosc(t)
(G.39)

As a sanity check, consider how this probability behaves in limiting cases of the

production flavor asymmetry. Without loss of generality, take the flavor at decay

to be positive. When A0 = 0 this reduces to Eq. (G.26) as it should. It becomes 0

when A0 = −1, since a positive flavor at decay is always oscillated if the flavor is

always negative at production. Finally, it becomes 1 when A0 = 1, since a positive

flavor at decay is always correct if the flavor is always positive at production.

Calculating the effective probability that the B candidate has oscillated re-

quires taking the convolution of Eq. (G.39), which would be analytically difficult. It

is much more practical, since the production asymmetry A0 is certainly quite small,

to approximate ω(d′, t) to first order in the asymmetry,

$c
d′(t) = Pd′′=d′(t) +

1

2
d′A0

(
1−Dosc(t)

2
)

+O
(
A2

0

)
, (G.40)

introducing a slight dependence of $c(t) on the production flavor d′. The correction

term is proportional to 1 − Dosc(t)
2, whose only non-negligible time dependence

comes through the term cos2 ∆mt, which has a simple convolution

∫
dt′

1

σ
√

2π
exp

(
−(t− t′)2

2σ2

)
cos2 (∆mt′) =

1

2

(
1 + cos (2∆mt) e−2∆m2σ2

)
.
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Figure G.2: A plot of the approximation Eq. (G.29) (blue) is compared to Eq. (G.41)
(orange) for B0 oscillation, when A0 = 20% and the observed flavor is B0. When
the observed flavor is B̄0 the sign of the correction flips.

When the secant term in Posc(t) can be ignored for simplicity (for B0 decays), the

total dilution becomes

Dc
d′(t) = DresDosc(t) +

1

4
d′A0

(
1−D4

res cos (2∆mt)
)

+O
(
A2

0

)
. (G.41)

Figure G.2 compares Eq. (G.29) with the approximation Eq. (G.29), for a B0

decay mode with a B0 production asymmetry to be 20% (much larger than experi-

mental bounds). Evidently the approximate result is still accurate to about 5% even

in this extreme case; in practice production asymmetries are constrained to be on

the order of 1% or less, and should have negligible effect. Detection asymmetries, on

the other hand, can be much larger, but since they are a function of the decay flavor

and not the production flavor they have no effect on the a priori flavor probabilities

and thus do not affect Dc(t).

G.3 Implementation in the EspressoPerformanceMonitor

Several popular tools are freely available for performing binomial regression.

The R programming language, for example, contains the tools glm and lrm, which

can perform binomial regression using logit, probit, and cauchit link functions

(among others). The scikit-learn package in Python, meanwhile, has an im-
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plementation of logistic regression. However, for a number of reasons, neither of

these tools is adequate for use in flavor tagging. Neither implementation provides a

mechanism to handle misclassification of response, necessary for calibrating to neu-

tral B0 and B0
s decay modes, and incorporating this requires large modifications to

the likelihood function being maximized. Calculation of the tagging asymmetry pa-

rameters also requires small modifications to the likelihood function. The data used

in flavor tagging calibration is primarily stored in the ROOT binary data format,

which has native interfaces in C++ and Python but not R, making use of the supe-

rior glm difficult without using an intermediate storage format. Finally, the datasets

used to calibrate flavor tagging algorithms usually require weights to separate signal

from background [85], and these have the unusual property that they are sometimes

negative; since this is usually ill-defined generic regression implementations like glm

require weights to be positive-definite.

A custom implementation of binomial regression, on the other hand, can read

flavor tagging data from its native ROOT file format, automatically account for

neutral meson oscillation and tagging asymmetry, and make use of other optimiza-

tions pertinent to flavor tagging. The EspressoPerformanceMonitor tool is writ-

ten in C++ and hosted on LHCb’s GitLab code repository. The tool uses the

ROOT libraries to read data stored in ROOT format [127]. Binomial regression

is implemented using a Newton-Raphson like algorithm provided by GSL [128], or,

alternatively, using the Minuit numerical maximization algorithm via ROOT [129].

The tool performs calibrations using one of a number of GLM models (polynomials,

b-splines, and n-splines) and link functions (identity, logit, probit, or cauchit). It

reports several goodness of fit metrics, including the Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC) [116, 124] and scores correspond-

ing to the Pearson X2 and le Cessie–van Houwelingen–Copas–Hosmer S test statis-

tics [115, 126]. The tool also produces a number of publication quality plots using
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ROOT’s graphics libraries.

G.3.1 Special GLM models for flavor tagging

The EspressoPerformanceMonitor implements three classes of GLM models:

polynomial models, b-spline models, and n-spline models. There are several unique

features of these classes that are tailored to the specific requirements of calibrating

flavor tagging algorithms.

Spline models

Two popular types of GLM spline bases are basis-splines, or b-splines, and

natural splines, or n-splines [124]. All splines are piecewise functions defined between

two boundary knots with several interior knots at which they are only C2 continuous.

In short, b-splines have no boundary constraints and are similar to bump functions,

defined in a way that limits the overlap of their supports, while n-splines are similar

to polynomials and are constrained to be linear at their boundaries knots. The

EspressoPerformanceMonitor chooses the knot locations for the b-spline and n-

spline models are via quantiles of the η distribution.

When extrapolating the calibration to values outside of the boundary knots (a

rare occurence), different choices must be made for b-splines and n-splines. Because

a b-spline is discontinuous at the boundary knots, no extrapolation can be made

beyond the boundary, and any value of η outside the boundary knots is pulled

back to the nearby boundary knot. For n-splines, constrained to be linear at the

boundaries, the linearly extrapolated value is taken.
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η-subtracted GLMs

Typically LHCb studies have dealt with the “mistag probability” of a tag-

ger, which is the probability that its tag decision is incorrect. The uncalibrated

mistag probability is denoted η = 1−$, while the calibrated mistag probability is

ω = 1−$∗. The probability of misclassification due to B–B̄ oscillation, 1− ωc, is

sin2 (∆mt/2), as described above, making δc = cos(∆mt). The real mistag proba-

bility ω tends to be approximately equal to the uncalibrated value η produced by

flavor tagging algorithms, typically because the flavor tagging algorithm is given a

default calibration using some Monte Carlo or actual dataset. This is quite unlike

the typical scenario in the literature of GLMs, and can be taken advantage of by

using an “η-subtracted” GLM in which

g(ω) = g(η) +
∑

k

θkPk(η). (G.42)

There are several advantages to this modification. First, if the tagger is already

perfectly calibrated, all the coefficients θ should be 0, and even if it is slightly

miscalibrated they should at least be close to 0. This provides a uniform starting

point for likelihood maximization, no matter what model or link function is used. It

also makes the coefficients themselves more meaningful — any non-zero coefficient

is a sign of mis-calibration. This is especially useful when the basis functions Pk(η)

are splines, in which case (unlike for simple polynomials) the linear combination

corresponding to ω = η is not obvious.

The fact that ω(η) ≈ η also has implications for polynomial and n-spline

regression models when a non-identity link is used. Rather than using polynomials

Pk(η) = ηk, the EspressoPerformanceMonitor uses polynomials Pk(η) = g(η)k, so

211



that the calibration model is (before the decorrelation described below)

g(ω) = g(η) +
∑

i

θkg(η)k. (G.43)

This make the model polynomial in the transformed space g(η); in particular the

linear term proportional to θ1 is indeed a slope correction to the default term g(η).

Much the same is true for n-spline models, which the EspressoPerformanceMonitor

creates in the space x = g(η), with knots at values g(ηq) for quantiles ηq of the

predicted mistag distribution. This way, the first two n-spline basis functions are

identical to the first two polynomials, and he term θ1 is again a slope correction.

Moreover, beyond the boundary knots the n-spline model has the form g(ω) =

a + bg(η). So, the tails of the calibration function are linear in the transformed

space (g(η), g(ω)).

Orthogonal GLM bases

With the good initial guess that the calibration values θ are approximately

zero, an estimate of the Fisher information matrix can be computed and an orthog-

onal basis can be chosen in which the calibration parameters are decorrelated. This

is particularly applicable to the polynomial and n-spline models, both of which fea-

ture a progression of increasingly higher curvature functions, beginning with 1 and

g(η). Because the supports of the basis functions overlap greatly, the calibration

parameters can be very highly correlated. Instead, a basis in which Eq. (G.16) is

diagonalized can be chosen via the Gram-Schmidt process. This can be done exactly

or, for convenience, by making some approximation to the information matrix.

One approximation that is made is ignoring the misclassification of flavor due

to B–B̄ oscillation and diagonalizing Eq. (G.17). Flavor tagging algorithms gener-

ally produce a mistag probability η whose distribution depends at most slightly on
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the species of B meson and decay mode being observed. The oscillation probability,

however, depends entirely on the species of B meson. It is convenient to use a ba-

sis that is more-or-less independent of the B species, up to statistical fluctuations.

Since calibrations to charged B decay modes are simpler, more common, and more

precise, calibrations to neutral B mesons should share the same basis.

Another approximation is made when using the identity link function to pre-

serve backwards compatibility with older models used in the calibration of LHCb’s

flavor tagging algorithms. Since flavor tagging algorithms have a fairly high mistag

rate η, D = 1 − 2η is typically small. Moreover, η and the oscillation probability

(related to the decay time) are typically uncorrelated. So, the Fisher information

matrix is approximately

i(θ)ij ≈ 4N 〈Pi($)Pj($)〉
〈
(Dc)2

〉
. (G.44)

and thus the Fisher information matrix is approximately diagonalized by the orthog-

onal polynomials 〈Pi($)Pj($)〉 ∝ δij. The first two such polynomials are P0(η) = 1

and P1(η) = η − 〈η〉. These are the basis polynomial historically used in LHCb’s

calibrations and analyses, and ω(η) = η + θ0 + θ1(η − 〈η〉). Calibrations are often

presented using the parameterization ω(η) = p0 + p1(η − 〈η〉, which is related via

θ0 = δp0 and θ1 = p1 The single non-unity coefficient is 〈η〉, which is simple to

calculate and interpret.

With these approximations applied, an inner product on the basis functions

is defined by 〈Pi, Pj〉 ≡ i(θ0)ij. This inner product extends naturally to linear

combinations Qk =
∑
qk`P`. Starting with initial values Qk = Pk, i.e., qk` =

δk`, the stabilized Gram-Schmidt procedure iteratively updates the values qk` until

〈QkQ`〉 = δk`. The only nonzero coefficients qk` are for ` ≤ k, so that Qk is a linear

combination of P0, . . . , Pk. The orthonormality is not needed for flavor tagging and
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can be discarded by dividing Qk by qkk. When P0(x) = 1 and P1(x) = x, the first

two basis functions created this procedure are always Q0(x) = 1 and Q1(x) = x−x0.

G.3.2 Goodness-of-fit tests

There is less consensus in the literature on the best goodness-of-fit tests for

logistic regression than there is for linear regression. One metric for comparing

separate models obtained via likelihood maximization is to compare the maximum

likelihoods that they achieve. This is typically expressed in terms of the deviance

G2 = −2 log(L), which smaller for a model with a greater likelihood. Introducing

more parameters into a model can always improve the deviance, however, and so the

Akaike information criterion (AIC) penalizes the deviance according to the number

of parameters in the model [116]:

AIC = G2 + 2k = −2 (log(L)− k) . (G.45)

An alternative to the AIC is the Bayesian information criterion (BIC), defined by

BIC = G2 + k log(N) = −2 log

(
L
√
N
k

)
. (G.46)

For large samples, this criterion more strongly punishes complex models. Assuming

a uniform prior probability for all calibration models, the BIC is related to the

posterior probability of the model: given two BIC values BIC1 and BIC2, the log-

odds of the two models is proportional to BIC1 − BIC2, motivating the choice of

the model with the minimum BIC [124]. The BIC is asymptotically consistent,

picking the correct model in the infinite statistics limit. Studies have shown that the

AIC selection criterion tends to select too complex models, while the BIC criterion

sometimes picks too simple models. These information criteria can be useful for

comparing separate models, but offer little guidance for the intrinsic quality of a
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single model.

The significance of extra parameters in nested models provides a similar com-

parison test: a model with a parameter θ provides a better fit than a smaller model

with this parameter fixed to θ0 if the estimated value θ̂ is significantly different from

θ0 , i.e., (θ̂ − θ0)2/σ̂2 is past some accepted threshold1 [116]. Concretely, if one or

several of the parameters in the fit model are not statistically distinct from 0, the

fit model might be too complex.

Goodness-of-fit tests that measure the intrinsic quality of models rely on ex-

amining the distribution of residuals. Three types of residuals are commonly used

for binomial regression: Pearson-like residuals, deviance residuals, and simple un-

weighted residuals [126]. These residuals are functions of the predicted probability

for the tag to be correct (a quantity that incorporates the predicted mistag, cali-

bration parameters and delta parameters, and B oscillation)

π(∗) = ω(∗) ↔ ωc =
1

2

(
1 + δ(∗)δc

)
(G.47)

and also the boolean Robs, which is 1 (0) if the tag is correct (incorrect) at decay

time.

The deviance residual is based on the actual likelihood function for the data

given a model, and is theoretically appealing —but has some numerical problems.

The residual for a particular tag is defined by:

rG2 =
√
−2 (Robs log(π) + (1−Robs) log(1− π)) (G.48)

Not surprisingly, the deviance residual is defined such that the sum in quadrature

1This is known as the Wald test. There are two common alternatives. The likelihood ratio
test examines the decrease in deviance ∆G2, which should follow a χ2 distribution with a degree
freedom for each extra parameter. The score test, based entirely on the likelihood function at θ0,
is a third test for the same situation. All three tests are asymptotically equivalent [116].
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of the deviance residuals is simply the deviance G2.

The Pearson residual is the direct analog of the standard residuals for a least-

squares regression:

rX2 =
Robs − π√
π(1− π)

(G.49)

The denominator is the standard deviation of a binomial distribution with probabil-

ity π. The Pearson residual has a few properties typically associated with residuals,

e.g., that the average value of the residuals is 0 and their variance is 1. Of course,

the distribution is not at all normal, with separate clusters below 0 and 1 for cor-

rectly and incorrectly tagged events. The sum in quadrature of the squared Pearson

residuals is known as the Pearson X2.

The unweighted residual is an unweighted version of the Pearson residual:

rS = Robs − π (G.50)

On the surface, there is not much theoretical justification for this residual; however,

it is quite popular. The sum in quadrature of these residuals is sometimes called

the le Cessie-van Houwelingen-Copas-Hosmer statistic S [126]. The mean-square

of the residuals S/N is known as the mean squared error (MSE) or, especially in

meteorological and machine learning contexts, the Brier score [130]. If the model is

perfectly specified, the expected value of the score is

E [MSE ] =
1

N

∑
E
[
(Robs − π)2

]
=

1

N

∑
π (1− π) =

1

4

(
1− 〈D2〉

)
(G.51)

Thus the MSE for a correctly specified model is directly related to its tagging power.

There are multiple methods of turning residuals into a test statistics. These

fall into two major categories: tests which divide the data into groups and exam-

ine the agreement between the model and the average outcome in each, and those
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which examine the agreement between the model and the outcomes at a per-event

level. The former, the canonical example of which is the Hosmer-Lemeshow proce-

dure [115, 126], are simpler and generally produce statistics that follow a χ2 distri-

bution. However, they have some interpretational issues that make them ill suited

for applying to the calibration of flavor tagging algorithms. For one, their results

depend on the number of groups that the data is binned into. Moreover, they have

only been studied in the context of simple linear fit models where the number of

bins g (typically 10) is much greater than the number of degrees of freedom in the

fit (2), in which case the test statistic asymptotically follows a χ2 distribution with

g−2 degrees of freedom. For polynomial or spline calibrations, where the number of

degrees of freedom might approach 4 or 5 (or double this if the tagging asymmetry

parameters are counted), it is unclear what the asymptotic distribution of these test

statistics would be.

Instead, the EspressoPerformanceMonitor applies unbinned tests based on

the sums of residuals G2, X2, and S. All three quantities belong to the family of

power-divergence statistics [116, 131].2 These statistics were developed primarily

with discrete data in mind, in which case the metrics follow χ2 distributions. When

the data is continuous, as is the case for flavor tagging via the predicted mistag η,

the power divergence statistics asymptotically follow normal distributions N(µ, σ),

and can be rescaled to get a test statistics following a standard normal distributions.

Their means and variances depend on whether the test is non-parametric, applied

to a data sample where the tagging algorithm is assumed to be well calibrated

already and no fit is performed, or parametric, performed after the tagging algorithm

has been calibrated on the dataset (in which case the agreement should be better

than random). A procedure for calculating these values is established in [132] for

X2 and G2 and in [133] for the entire family of power divergence statistics. In

2The Neyman modified X2 metric, defined for a general multinomial distribution, reduces to
the S metric in the binomial case.
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the non-parametric case, there are a fairly simple expressions for the means and

variances, while in parametric case each variance must be reduced by a quadratic

form involving the information matrix of the log-likelihood maximization and the

covariance between the metric and the score vector (the first derivative of the log-

likelihood).

The EspressoPerformanceMonitor calculates the AIC, BIC, and Brier score,

and implements the ungrouped tests corresponding to the G2, X2 and S statistics

(as well as the Cressie-Read test, a compromise between G2 and X2). In certain

contexts, the G2 and X2 tests do not work — in particular, the former does not

work when using the logit link and the latter when using the identity link. In these

cases, the tool prints a message stating that the test cannot be computed.

One final note is that the EspressoPerformanceMonitor uses weights gener-

ated by the sPlot technique [85], when calculating these tests. They are added as

multiplicative weights in any sum over all events, and where possible mean values

and their standard errors are replaced with weighted means and their standard er-

rors. There is no guarantee that this procedure is exactly correct, and it likely is

not given the negative weights produced by the sPlot technique. Pseudoexperiments

indicate that moderate background levels (up to 10% to 20%) do not significantly

affect the goodness-of-fit test scores.

G.3.3 Example output

Complete documentation for the EspressoPerformanceMonitor is provided

on its GitLab page. Here is a brief portfolio of output from the tool from various

calibrations applied to the OS Combination tagger in a very large B± → J/ψK±

dataset.

The simplest type of calibration that can be performed is a linear calibration

with the identity link function, the same model used in previous LHCb calibrations.
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(a) Binned data (b) Kernel smoothed data

Figure G.3: Linear calibration to B± → J/ψK±; the green and yellow areas rep-
resent 1σ and 2σ bands for the calibration, while the blue and light blue areas in
the right-hand plot represent 1σ and 2σ confidence intervals in the kernel-smoothed
data.

Plots of the calibration are shown in Fig. G.3. Since the outcome variables in logistic

regression are binary (0 or 1), plain scatter plots are not a good representation of

the fit. Instead, the EspressoPerformanceMonitor produces two kinds of plots.

In the first kind, the data is binned into deciles by the predicted mistag η, and

in each bin the average η and the fraction ω of incorrectly tagged candidates are

calculated. When the calibration mode is a B0 or B0
s decay, calculating the latter

requires factoring effects from misclassification due to oscillation. In the second

kind, a gaussian kernel smoother is used to create a continuous representation of

the data: instead of deciles, a value of ω is calculated for each η0 by considering all

candidates with η close to η0, weighting each according to the distance ‖η − η0‖.

These two plots for the linear calibration are shown in Fig. G.3.

It is visually quite apparent that the linear calibration is insufficient to de-

scribe the data. The output EspressoPerformanceMonitor also includes a table

of goodness-of-fit test results, whose values are included in the first column in Ta-

ble G.1. The X2 and S scores in the two bottom rows are related to the intrinsic
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(a) Binned data (b) Kernel smoothed data

Figure G.4: Cubic calibration to B± → J/ψK±; the green and yellow areas represent
1σ and 2σ bands for the calibration, while the blue and light blue areas in the right-
hand plot represent 1σ and 2σ confidence intervals in the kernel-smoothed data.

quality of the fit and, if the fit model is good, should follow standard normal dis-

tributions. The le Cessie-van Houwelingen-Copas-Hosmer score 3.5885 stands out,

since this corresponds to a p-value of 0.0003, and marks this as a poor fit. It is

important to note that the Pearson score, nearly 0, does not reject the fit. No

one goodness-of-fit test can reject all kinds of model mis-specifications in binomial

regression.

A more complicated cubic polynomial calibration, with 4 degrees of freedom,

can also be performed on the B± → J/ψK± sample. To keep the calibrated prob-

ability in the range 0 ≤ ω ≤ 1, the logistic link function is used, and the results

are shown in Fig. G.4. Visually, this model tracks the data much more closely than

the linear model. Its goodness-of-fit tests scores are also improved, equal to 2.2σ

and −1.7σ. Still, the Pearson score shows some evidence that the cubic model is

mis-specified, with a p-values equal to 0.028.

An even more complicated calibration is a b-spline model with 1 internal knot,

which as 5 degrees of freedom. Visually inspecting the fits, shown in Fig. G.5, this

220



(a) Binned data (b) Kernel smoothed data

Figure G.5: B-spline calibration to B± → J/ψK±; the green and yellow areas
represent 1σ and 2σ bands for the calibration, while the blue and light blue areas in
the right-hand plot represent 1σ and 2σ confidence intervals in the kernel-smoothed
data.

model tracks the data much more closely than the linear model. With goodness-of-

fit tests scores of −0.9 and −1.2, there is no evidence of any tension between the fit

model and the data. Visually, this fit looks quite similar to the cubic polynomial

fit, possibly with better agreement in the range 0.35 < η < 0.45, where there is a

noticeable kink in the data that the cubic polynomial cannot quite match.

An alternative n-spline model can also be fit to the data. Because of its

boundary conditions, an n-spline model with 5 degrees of freedom has three internal

knots (to the b-spline model’s one). This might allow better fit agreement for central

values of η, at the cost of worse agreement in the tails. Its goodness-of-fit tests scores

are also acceptable, and like the b-spline model it appears to do well in the ”kink”

region between 0.35 < η < 0.45 (Fig. G.6).

Finally, a yet more intricate n-spline model with four internal knots and six

degrees of freedom yields the fits shown in Fig. G.7. The visual difference between

this fit and the n-spline fit with 5 degrees of freedom is nearly imperceptible.

Selecting the best fit using the Akaike information criterion (AIC) or Bayesian
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(a) Binned data (b) Kernel smoothed data

Figure G.6: N-spline calibration to B± → J/ψK±; the green and yellow areas
represent 1σ and 2σ bands for the calibration, while the blue and light blue areas in
the right-hand plot represent 1σ and 2σ confidence intervals in the kernel-smoothed
data.

(a) Binned data (b) Kernel smoothed data

Figure G.7: Enhanced n-spline calibration to B± → J/ψK±; the green and yellow
areas represent 1σ and 2σ bands for the calibration, while the blue and light blue
areas in the right-hand plot represent 1σ and 2σ confidence intervals in the kernel-
smoothed data.
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Table G.1: Values of goodness-of-fit tests for various types of calibrations

Calibration Deviance AIC BIC X2 S
Linear polynomial 377322.84 377326.84 377350.36 0.0σ 3.6σ
Cubic polynomial 377264.22 377272.22 377319.27 2.2σ −1.7σ
B-spline 377253.02 377263.02 377321.83 −0.9σ −1.2σ
N-spline 377253.63 377263.63 377322.44 0.6σ 0.3σ
Enhanced N-spline 377248.06 377260.06 377330.63 −0.4σ −0.1σ

information criterion (BIC) is subjective. Each criterion penalizes the deviance ac-

cording to the number of fit parameters. The BIC penalty scales with the logarithm

of the number of events, reflecting the fact that a good extra parameter should im-

prove the likelihood across the board, and for large data samples the BIC is perhaps

a superior metric. However, it is not clear whether the number of parameters to use

should include the asymmetry parameters, which are not expected to differ signifi-

cantly from zero but are still needed for assigning systematic uncertainty. By fiat,

the EspressoPerformanceMonitor does not include penalties from the asymmetry

parameters. Table G.1 reports the goodness-of-fit test scores for the various calibra-

tions shown here. According the AIC score, the enhanced n-spline model is the best

model. According to the BIC score, on the other hand, the cubic model is the best,

by a slim margin. The extra degrees of freedom in the spline models, especially the

enhanced n-spline model, do not reduce the deviance enough to counter the penalty

that the BIC scores applies to them.
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[67] A Abd El-Hady, J Muñoz, and J Vary. Semileptonic and nonleptonic Bc

decays. Phys. Rev. D, 62(1):014019, June 2000.

[68] Chao Hsi Chang, Yu Qi Chen, Guo Li Wang, and Hong Shi Zong. Decays of
the meson Bc to a P wave charmonium state χc or hc. Phys. Rev. D, 65:014017,
2002.

[69] Ho-Meoyng Choi and Chueng-Ryong Ji. Semileptonic and radiative decays of
the B(c) meson in light-front quark model. Phys. Rev., D80:054016, 2009.

[70] P Colangelo and F De Fazio. Using heavy quark spin symmetry in semileptonic
B-c decays. Phys. Rev. D, 61(3), 2000.

[71] Pietro Colangelo and Alexander Khodjamirian. QCD sum rules, a modern
perspective. 2000.

[72] Logunov, A. A. and Tavkhelidze, A. N. Quasioptical approach in quantum
field theory. Nuovo Cim., 29:380–399, 1963.

[73] Martynenko, A. P. and Faustov, R. N. Relativistic Reduced Mass and
Quasipotential Equation. Theor. Math. Phys., 64:765–770, 1985. [Teor. Mat.
Fiz.64,179(1985)].

[74] D Ebert, R Faustov, and V Galkin. Properties of heavy quarkonia and Bc

mesons in the relativistic quark model. Physical Review D, 67(1):014027,
January 2003.

[75] Claude Bourrely, Irinel Caprini, and Laurent Lellouch. Model-independent
description of B πlν decays and a determination of |Vub|. arXiv.org, (1):013008,
July 2008.

[76] Heechang Na, Chris M Bouchard, G Peter Lepage, Chris Monahan, and Junko
Shigemitsu. B → D`ν Form Factors at Non-Zero Recoil and Extraction of
|Vcb|. arXiv.org, (5):054510, May 2015.

228



[77] R. Aaij et al. Bose-Einstein correlations of same-sign charged pions in the
forward region in pp collisions at

√
s = 7 TeV. 2017. in preparation.

[78] Wouter D. Hulsbergen. Decay chain fitting with a Kalman filter.
Nucl.Instrum.Meth., A552:566–575, 2005.

[79] Kyle Cranmer, George Lewis, Lorenzo Moneta, Akira Shibata, and Wouter
Verkerke. HistFactory: A tool for creating statistical models for use with
RooFit and RooStats. Technical Report CERN-OPEN-2012-016, New York
U., New York, Jan 2012.

[80] Roger J. Barlow and Christine Beeston. Fitting using finite Monte Carlo
samples. Comput. Phys. Commun., 77:219–228, 1993.

[81] R. Aaij et al. Observation of B+
c → J/ψD+

s and B+
c → J/ψD∗+s decays. Phys.

Rev., D87:112012, 2013.

[82] Georges Aad et al. Study of the B+
c → J/ψD+

s and B+
c → J/ψD∗+s decays

with the ATLAS detector. Eur. Phys. J., C76(1):4, 2016.

[83] Lucio Anderlini, Andrea Contu, Christopher Rob Jones, Sneha Sirirshku-
mar Malde, Dominik Muller, Stephen Ogilvy, Juan Martin Otalora Goic-
ochea, Alex Pearce, Ivan Polyakov, Wenbin Qian, Barbara Sciascia, Ricardo
Vazquez Gomez, and Yanxi Zhang. The PIDCalib package. Technical Re-
port LHCb-PUB-2016-021. CERN-LHCb-PUB-2016-021, CERN, Geneva, Jul
2016.

[84] A. Rogozhnikov. Reweighting with Boosted Decision Trees. J. Phys. Conf.
Ser., 762(1):012036, 2016.

[85] Muriel Pivk and Francois R. Le Diberder. sPlot: A statistical tool to unfold
data distributions. Nucl.Instrum.Meth., A555:356–369, 2005.

[86] R. Aaij et al. Observation of B+
c → J/ψD(∗)K(∗) decays. Phys. Rev.,

D95:032005, 2017.

[87] J. Charles, Andreas Hocker, H. Lacker, S. Laplace, F. R. Le Diberder, J. Mal-
cles, J. Ocariz, M. Pivk, and L. Roos. CP violation and the CKM matrix:
Assessing the impact of the asymmetric B factories. Eur. Phys. J., C41(1):1–
131, 2005.

[88] Ikaros I. Y. Bigi and A. I. Sanda. Notes on the Observability of CP Violations
in B Decays. Nucl. Phys., B193:85–108, 1981.

[89] R. Aaij et al. Measurement of CP violation in B0 → J/ψK0
S decays. Phys.

Rev. Lett., 115:031601, 2015.

[90] R. Aaij et al. Measurement of the CP -violating phase β in B0 → J/ψπ+π−

decays and limits on penguin effects. Phys. Lett., B742:38, 2015.

229



[91] R Aaij et al. Measurement of b-hadron branching fractions for two-body decays
into charmless charged hadrons. JHEP, 10:037, 2012.

[92] R. Aaij et al. Precision measurement of CP violation in B0
s → J/ψK+K−

decays. Phys. Rev. Lett., 114:041801, 2015.

[93] R. Aaij et al. Measurement of the CP violating phase and decay-width differ-
ence in B0

s → ψ(2S)φ decays. Phys. Lett., B762:253, 2016.

[94] Bernard Aubert et al. Measurement of B0−B0
flavor oscillations in hadronic

B0 decays. Phys. Rev. Lett., 88:221802, 2002.

[95] Bernard Aubert et al. A study of time dependent CP-violating asymme-
tries and flavor oscillations in neutral B decays at the Υ(4S). Phys. Rev.,
D66:032003, 2002.

[96] Bernard Aubert et al. Measurements of time-dependent CP asymmetries in
B0 → D(∗) +D(∗) - decays. Phys. Rev., D79:032002, 2009.

[97] Kazuo Abe et al. An Improved measurement of mixing induced CP violation
in the neutral B meson system. Phys. Rev., D66:071102, 2002.

[98] T. Tomura et al. Measurement of the oscillation frequency for B0 - anti-B0
mixing using hadronic B0 decays. Phys. Lett., B542:207–215, 2002.

[99] H. Kakuno et al. Neutral B flavor tagging for the measurement of mixing
induced CP violation at Belle. Nucl. Instrum. Meth., A533:516–531, 2004.

[100] M. Rohrken et al. Measurements of Branching Fractions and Time-dependent
CP Violating Asymmetries inB0 → D(∗)±D∓ Decays. Phys. Rev., D85:091106,
2012.

[101] T. Aaltonen et al. First Flavor-Tagged Determination of Bounds on Mixing-
Induced CP Violation in B0

s → J/ψφ Decays. Phys. Rev. Lett., 100:161802,
2008.

[102] V. M. Abazov et al. Measurement of Bd mixing using opposite-side flavor
tagging. Phys. Rev., D74:112002, 2006.

[103] V. M. Abazov et al. Measurement of B0
s mixing parameters from the flavor-

tagged decay B0
s → J/ψφ. Phys. Rev. Lett., 101:241801, 2008.

[104] Georges Aad et al. Flavor tagged time-dependent angular analysis of the
Bs → J/ψφ decay and extraction of ∆Γs and the weak phase φs in ATLAS.
Phys. Rev., D90(5):052007, 2014.

[105] Georges Aad et al. Measurement of the CP-violating phase φs and the B0
s

meson decay width difference with B0
s → J/ψφ decays in ATLAS. JHEP,

08:147, 2016.

230



[106] Vardan Khachatryan et al. Measurement of the CP-violating weak phase φs
and the decay width difference ∆Γs using the B0

s → J/ψφ(1020) decay channel
in pp collisions at

√
s = 8 TeV. Phys. Lett., B757:97–120, 2016.

[107] R. Aaij et al. Opposite-side flavour tagging of B mesons at the LHCb experi-
ment. Eur. Phys. J., C72:2022, 2012.

[108] R. Aaij et al. B flavour tagging using charm decays at the LHCb experiment.
JINST, 10:P10005, 2015.

[109] R. Aaij et al. Neural-network-based same side kaon tagging algorithm cal-
ibrated with B0

s → D−s π
+ and B∗s2(5840)0 → B+K− decays. JINST,

11:P05010, 2016.

[110] R. Aaij et al. New algorithms for identifying the flavour of B0 mesons using
pions and protons. Eur. Phys. J., C77:238, 2017.

[111] Michael Gronau, Alex Nippe, and Jonathan L. Rosner. Method for flavour
tagging in neutral B meson decays. Phys.Rev., D47:1988–1993, 1993.

[112] Optimization and calibration of the same-side kaon tagging algorithm using
hadronic B0

s decays in 2011 data, Nov 2012.

[113] R. Aaij et al. Measurement of the time-dependent CP asymmetries in B0
s →

J/ψK0
S . JHEP, 06:131, 2015.

[114] R. Aaij et al. Measurement of CP violation in B → D+D− decays. Phys. Rev.
Lett., 117:261801, 2016.

[115] David W. Hosmer, Jr., Stanley Lemeshow, and Rodney X Sturdivant. Applied
Logistic Regression. Wiley Series in Probability and Statistics. Wiley, 3rd
edition, 2013.

[116] Alan Agresti. Categorial Data Analysis. Wiley Series in Probability and
Statistics. Wiley, 3rd edition, 2013.

[117] K Kreplin, G Krocker, and S Hansmann-Menzemer. The opposite-side kaon
tagger: Datasimulationperformance comparison and optimization using neural
networks. LHCb-INT-2013-014, July 2013.

[118] Marc Grabalosa. Flavour Tagging developments within the LHCb experiment.
PhD thesis, Barcelona U., Mar 2012. Presented 15 May 2012.

[119] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
regression trees. Wadsworth international group, Belmont, California, USA,
1984.

[120] Robert E. Schapire and Yoav Freund. A decision-theoretic generalization of
on-line learning and an application to boosting. Jour. Comp. and Syst. Sc.,
55:119, 1997.

231



[121] R. Aaij et al. Measurement of the CP -violating phase φs in B0
s → D+

s D
−
s

decays. Phys. Rev. Lett., 113:211801, 2014.

[122] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
CoRR, abs/1603.02754, 2016.

[123] Tim Adye. Unfolding algorithms and tests using RooUnfold.
(arXiv:1105.1160):6 p, May 2011. Comments: 6 pages, 5 figures, pre-
sented at PHYSTAT 2011, CERN, Geneva, Switzerland, January 2011, to be
published in a CERN Yellow Report.

[124] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer Series in Statistics. Springer, 2001.

[125] Frederick James. Statistical Methods in Experimental Physics. Springer Series
in Statistics. Springer, 2nd edition, 2001.

[126] David W Hosmer, Trina Hosmer, Saskia Le Cessie, Stanley Lemeshow, et al. A
comparison of goodness-of-fit tests for the logistic regression model. Statistics
in Medicine, 16(9):965–980, 1997.

[127] R. Brun and F. Rademakers. ROOT: An object oriented data analysis frame-
work. Nucl. Instrum. Meth., A389:81–86, 1997.

[128] M. Galassi et al. GNU Scientific Library Reference Manual. Network Theory
Ltd., third edition, 2009.

[129] F. James and M. Roos. Minuit: A System for Function Minimization and
Analysis of the Parameter Errors and Correlations. Comput. Phys. Commun.,
10:343–367, 1975.
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