THESIS REPORT
Ph.D.

An Architectural Framework for VLSI Time-
Recursive Computation with Applications

by E. Frantzeskakis
Advisor: J. Baras

Ph.D. 93-6

INIR

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

ABSTRACT

Title of Dissertation: An Architectural Framework
for VLSI Time-Recursive Computation

with Applications

Emmanuel Frantzeskakis, Doctor of Philosophy, 1993

Dissertation directed by: Professor John Baras
Department of Electrical Engineering

The time-recursive computation model has been proven as a particularly useful
tool in audio, video, radar and sonar real-time data processing architectures. Unlike
the FFT based architectures, the time-recursive ones require only local communi-
cation, they imply linear implementation cost ‘and they operate in a single-input
multiple-output (SIMO) manner. This is appropriate for the above applications
since the data are supplied serially. Also, the time-recursive architectures are mod-
ular and regular and they allow high degree of parallelism; thus they are very
appropriate for VLSI implementation.

In this dissertation, we establish an architectural framework for parallel time-
recursive computation. We consider a class of linear operators (or signal transform-
ers) that are characterized by discrete time, time invariant, compactly supported,
but otherwise arbitrary kernel functions. We specify the properties of linear op-
erators that can be implemented efficiently in a time-recursive way. Based on
these properties, we develop a systematic routine that produces a time-recursive
architectural implementation for a given operator. We demonstrate the use and
effectiveness of this routine by means of specific examples, namely the Discrete
Cosine Transform (DCT), the Discrete Fourier Transform (DFT) and the Discrete
Wavelet Transform (DWT).

By using this architectural framework we obtain novel architectures for the
uniform-DFT QMF bank, the cosine modulated QMF bank, the 1-D and 2-D
Modulated Lapped Transform (MLT), as well as an Extended Lapped Transform
(ELT). Furthermore, the architectural implémenta.tion of the Cepstral Transform
and a Short Time Fourier Transform are considered based on the time-recursive
architecture of the DFT. All of the above designs are modular, regular, with local
communication and linear cost in operator counts. In particular, the 1-D MLT
requires 2N + 3 multipliers, 3N +3 adders and N — 1 rotation circuits, where N
denotes the data block size. The 2-D MLT requires 3 1-D MLT circuits-and no
matrix transposition. The ELT has basis length equal to 4N and it requires 3N +4
multipliers, 4N + 4 adders and N +2 rotation circuits. These results are expected
to have a significant impact on real-time audio and video data compression, in

frequency domain adaptive filtering and in spectrum analysis.

An Architectural Framework

for VLSI Time-Recursive Computation

with Applications

by

Emmanuel Frantzeskakis

Dissertation submitted to the Faculty of The Graduate School
of The University of Maryland in partial fulfilliment
of the requirements for the degree of
Doctor of Philosophy
1993

Advisory Committee:

Professor John Baras, Chairman/ Advisor
Assistant Professor Ix.J. Ray Liu
Professor Joseph Jaja

Associate Prolessor Steven Tretter
Associate Professor Nariman Farvardin
Associate Professor Ahmet Oruc

DEDICATION

To my wife loanna, my son Nicholas

and my parents Nicholas and Vassiliki.

1

ACKNOWLEDGMENTS

I would like to express my gratitude to my thesis advisor Dr. John Baras
for providing an abundance of opportunity to explore diverse areas of research
and for his encouragement, guidance and inspiration throughout the course of
my graduate studies. Especially, I appreciate the academic freedom I was given.
I am indebted to Dr. Ray Liu who gave me the opportunity and inspiration
to broaden my interests and research in many ways and served as a constant
source of encouragement. I thank the other members of my advisory committee
Dr. J.J4j4, Dr. N.Farvardin, Dr. S.Tretter and Dr. A.Oruc for the unforgetable
experience | have had collaborating with them.

A number of fellow students also merit special acknowledgment for serving
as sounding boards for ideas, offering suggestions, comments and support over
the years. I thank Bernie Frankpitt, Yan Zuang, Zeev Berman, and certainly
my old colleague Babis Karathanasis.

I would like to thank the Institute for Systems Research and the Electrical
Engineering Department for the excellent resources and the stimulating research
environment.

I wish to thank my loving wive loanna for her devotion, love and contin-
uous assistance especially at the most difficult moments, that allowed me to
pursue this work with pleasure. A special acknowledgment goes to my joyful
son Nicholas, who is as old as this thesis. Also, I would like to thank my parents
Nicholas and Vassiliki and my sister Pepi for their unlimited confidence and sup-
port since my early school years. I would like to take this opportunity to express

my gratitude for two of the most inspiring teachers I have had the chance to

i

meet Ms Irini Iconomacou and Mr Dimitri Karandreas. Before I close, I cer-
tainly need to acknowledge the fellow greek students at UMCP and the Digenis
association for making the past few years more enjoyable.

This research was supported in part by the National Science Foundation’s

Engineering Research Centers Program: NSFD CDR 8803012.

v

TABLE OF CONTENTS

Section

Listof Tables
List of Figures

1 Introduction

1.1 Historical Background and Motivation
1.2 Problem Identification and Contribution

1.3 Thesis Organization.

2 Architectural Framework

2.1 Preliminaries L.
2.1.1 Definitions oo oL
2.1.2 Linear Time-Invariant Systems

2.2 Design of a Time-Recursive Algorithm
2.2.1 The Shift Property
2.2.2 Time-Recursive Implementations
2.2.3 On a Systematic Design I
2.2.4 Mapping Operator Decomposition
2.2.5 On aSystematicDesign II
2.2.6 The Difference Equation Property

W Ur = e

2.3 Design of a Time-Recursive Architecture 23

2.3.1 Lattice Architecture Design for Mapping Operators . . . 23
2.3.2 The Periodicity Propert}; 25
2.3.3 1IR Architecture Based on the Shift Property 26
2.3.4 IIR Architecture Based on the Difference Equation Property 30
2.3.5 IIR Architecture Design for Mapping Operators 32
2.4 Implementing Sliding and Block Transforms 33
2.5 Conclusion e 35
Design Procedure 37
3.1 Generic Design Procedure 37
3.2 Example A: Discrete Cosine Transform 40
3.2.1 SIMO Architecture for the Forward DCT 40
3.2.2 MISO Architecture for the Inverse DCT 44
323 CostlIssues 48
3.3 Example B: Discrete Fourier Transform 53
3.3.1 SIMO Architecture for the Forward DFT 53
3.3.2 MISO Architecture for the Inverse DFT 54
3.3.3 SIMO Architecture for the Inverse DFT 58
334 Costlssues Lo 99
3.3.5 Cepstral Transform Architecture 60
3.4 Example C: Discrete Wavelet Transform 62
3.4.1 Architecture for the DWT/IDWT 63
342 CostlIssues 66
3.5 Conclusion e 68
Application on QMF Banks and Data Transforms 70
4.1 Uniform-DFT Filter Banks 71
4.1.1 Background 0o 71
4.1.2 Time-Recursive IDFT in the Uniform-DFT Filter Bank . 74
4.2 Cosine Modulated Filter Banks 76
4.2.1 Background oo oo 76

vi

4.2.2 Time-Recursive Computation of the Cosine Modulation

Matrix 77

4.2.3 Modified Implementation of the Cosine Modulated Filter
Bank 78
4.3 Short Time Fourier Transform with Hanning Window 80
4.3.1 Architecture for the STFT with Hanning window 81
432 CostIssues oo 83
4.4 Modulated Lapped Transform 85
4.4.1 Architecture for the Forward MLT 86
4.4.2 Architecture for the Inverse MLT 88
443 CostIssues 92
4.5 Extended Lapped Transform with Basis Length = 4N 92
4.5.1 Architecture for the Forward ELT 93
452 CostlIssues 94
5 An Example in Processing of 2D Data 96
5.1 Algorithm oo 97
5.2 Architecture L 100
5.3 Implementation Issues 103
6 Conclusions and Further Research 104
Appendix A Proofs 108
References 118

vii

Number

3.1

3.2

3.3

LIST OF TABLES

Implementation cost for sliding DFT.

Implementation cost for DFT.

Implementation cost of a mapping operator, based on a kernel
group of size M: Case a, the operator does not satisfy the peri-
odicity property and it is utilized by a sliding transform. Case
b, the operator satisfies the periodicity property and it is utilized
by a sliding transform. Case c, the operator is utilized by a block

transform. o e

Cost metrics for the architectural implementation of block trans-
fdrrns. Mp, Ap and Rp denote the time delays associated with a
bit-parallel implementation of the multiplier, the adder and the
rotation circuit respectively. Ms, As and Rs denote the corre-
sponding time delays for a bit-serial implementation.
Cost metrics (multiplication and addition counts) for the unipro-
cessor implementation of sliding transforms.
Example of wavelet filter coefficients and the associated architec-

ture parameters. Lo Lo oo

viii

24

49

49

4.1

4.2

Cost metrics for the architectural implementation of block trans-
forms. Mp, Ap and Rp denote phe time delays associated with a
bit-parallel implementation of the multiplier, the adder and the
rotation circuit respectively. Ms, As and Rg denote the corre-
sponding time delays for a bit-serial implementation.
Cost metrics (multiplication and addition counts) for the unipro-

cessor implementation of sliding transforms.

ix

84

LIST OF FIGURES

Number Page
1.1 Pertain to the time-recursive computation. 3
2.1 Lattice architecture for kernel group of size M =2. 15
2.2 Architecture for kernel group of size M =1. 18
2.3 Lattice architecture for kernel group of size M =3. 24

2.4 Part of lattice architecture if the periodicity property is satisfied. 25
2.5 IIR architecturefor M =2. 29
2.6 IIR architecture for M = 2 if the periodicity property is satisfied. 29
2.7 1IR architecture for M = 3 if the periodicity property is satisfied. 29

2.8 1IR architecture for M = 2 for an operator used in block trans-

form. 35
2.9 Lattice architecture for M = 2 for an operator used in block

transform. L. 35
2.10 Overview of the architecture design procedure. 36
3.1 Architecture design procedure. 38
3.2 The magnitude responses of the DCT filter bank for N =16. . 41
3.3 IR architecture for the DCT kernel function. 43
3.4 Recursive architecture for the DCT. 44
3.5 Inverse transform module. 0000 47
3.6 Recursive architecture for the IDCT. 48

3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8

4.9
4.10

4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1

Lattice architecture for the DFT module.
Recursive architecture for the DFT.
IDFT module for complex input.
Details for real input IDFT module.
Recursive architecture for the IDFT.
Cepstral transform architecture based on fast logarithm circuit.

Cepstral transform architecture based on slow logarithm circuit.
The architectural modules used for DWT.
Architecture for the DWT filters specified in table 3.

N-channel QMF bank: a. analysis system, b. synthesis system.
Typical frequency responses of uniform-DFT filters.
The uniform-DFT bank using polyphase decomposition.

The noble identity. oL
Decimated uniform-DFT bank using polyphase decomposition
and time-recursive implementation for the IDFT.
QMF analysis bank based on cosine modulation.
PR analysis bank based on cosine modulation.
PR QMF analysis bank using time-recursive approach for imple-
menting the cosine modulation matrix.
The Shift Array (SA) used in the PR QMF structure.
The spectrum of a. the rectangular window and b. the Hanning
window of length N =16.
Time-recursive architecture of the STFT for N=8.
The magnitude responses of the MLT filter bank for N = 8.
Lattice architecture for the MLT module.
Time-recursive architecture for the MLT.
Lattice architecture for the IMLT module.
Time-recursive architecture for the IMLT.

Time-recursive architecture for the ELT.

Recursive architecture for the 2-D MLT.

Xi

72
72
73
73

75
7
7

79
80

5.2 The Circular Shift Array: a. the architecture, b. the contents for
the special case N.=4.
5.3 The Delay Add Array.

xii

CHAPTER

1

Introduction

1.1 Historical Background and Motivation

Since the revolutionary publication by Cooley and Tukey [11] the fast Fourier
transform (FFT) has been playing a key role in digital signal processing (DSP)
in a wide range of applications, including transform coding, data filtering and
spectral estimation [44, 51, 39]. Nevertheless, the increasing demand of pro-
cessing huge volumes of data in real time, especially in audio, radar, sonar and
video applications, suggests that the FFT-like fast algorithms (see for exam-
ple [44, 59, 30, 36, 39, 48, 57]) may not be considered as the main building
block in a number of modern DSP applications. The same is true for the VLSI
architectures based on these algorithms. Three different reasons corroborate to

this conjecture:

o Global Communication: The flow graphs of the FFT and the FFT-like
fast algorithms exhibit a common structure composed of a series of log, N
alternating butterfly interconnection and multiplier stages. The butterfly
communication scheme requires global communication links if a parallel

implementation is to be considered.

o Block Processing: The fast algorithms require buffering of blocks of data,
and then block processing. This is not the natural way of processing for
a number of applications such as audio, radar, sonar and video, where the

input data are supplied in a sequential manner.

e Sliding Transform Computational Complexity: The FFT has been widely
used for the transformation of windowed data, where the frequency con-
tent of the data is extracted for each displacement of a sliding window.
This phenomenon appears in the transform domain adaptive filtering prob-
lem [12, 41, 43, 51]. The Discrete Fourier Transform used in such appli-
cations is referred to as the sliding DFT [51]. The FFT implementation
of the sliding DFT requires the repetitive processing of neighboring data

samples when the window slides.

We can observe that the problem of computing the transform coefficients
has appeared in two forms: in the first, one needs to compute the transform
coefficients of the input data vector [z(t — N + 1), z(t = N +2), ---, z(t)] for
each time instant ¢ = 0,1, -, where N is the size of a sliding window. In
the second, one computes the above coefficients only at the time instants ¢ =
0,N,2N,---. For the sake of clarity throughout this thesis, we use the name
sliding transform to describe the former situation and we reserve the term
block transform for the latter one.

A number of authors have proposed a time recursive approach (either as a
DSP programmable algorithm or VLSI architecture) for implementing sliding
transforms in the context of the transform domain adaptive filtering, (7, 10, 42,
43, 61). Within the time-recursive approach, the 8 x 8 Discrete Cosine Trans-
form is viewed as eight linear operators that function independently from each
other: given a common input sequence they produce eight coefficient sequences.
These frequency coefficients are evaluated at time instant ¢ + 1 based on their
values at time instant ¢ and the input sample with time indices t — N + 1 and
t +1 (see Fig. 1.1). The motivation behind the time-recursive implementation
of a sliding transform is the fact that the above update computation involves
O(N) operations instead of O(N log, N) implied in the FFT based implemen-

tations. This is reflected in the asymptotic cost expressions on Table 1.1 .

1The expressions under ”throughput” denote the number of operations on the critical paths
of the corresponding flow graphs that need to be carried out before the next block of data
can be processed; in this case, before the window slides over the next position. A thorough

Time-recursive computation of sliding transforms has also found application in

spectral analysis (32, 1] and frequency domain data filtering [47].

t-N+1 t-N+2 t o t+1 time
. [p [[« —

¢

t+1 . .
sliding window

Figure 1.1: Pertain to the time-recursive computation.

parallel architecture criteria uniprocessor criteria
operators throughput communic. operations per latency
output point per block

direct O(N*) O(N) local O(N) O(N?)

pipelined direct O(N?) o(1) local
FFT based O(NlogN) O(log N) gioval O(log N) O(N log V)

pipelined FFT | O(N log V) o(1) global

time-recursive O(N) 0(1) local o) O(N)

Table 1.1: Implementation cost for sliding DFT.

More recently, time-recursive designs have been successfully used in archi-
tectures for real-time computation of block transforms applied in data compres-
sion [9, 33, 34]. On Table 1.2, we display the asymptotic expressions of cost
metrics used for the comparison of the time-recursive implementations with
the FFT-like ones. Obviously, the algorithmic implementation of the FFT on
a uniprocessor outperforms the corresponding one of the time-recursive imple-
mentation. At the architectural level though, the constant factors hidden by the
asymptotic expressions are affected by the implementation details, thus leaving
space for interesting cost trade-offs. The time-recursive implementation involves
O(N) operators and local communication as opposed to O(N log N) operators.
and global communication for a fully parallel and pipelined FFT architecture.

In other words, less area and shorter internal clock cycle can by employed by

discussion on throughput requirements is pursued in Subsection 3.2.3.

the time-recursive architecture. A relevant asymptotic optimality result is for-
mally proved in [34]. Note also that the locality property allows a bit-parallel
implementation of the operators unlike the case of the architectures based on
fast algorithms, where the global communication suggests a bit-serial imple-
mentation. Furthermore, the time-recursive architectures are very efficient for
separable multi-dimensional data transforms. In particular, the implementa-
tion cost is linear in terms of the operators and the communication requirement
remains local. The induction procedure for designing multi-dimensional archi-
tectures based on the one-dimensional ones is described in [34], while a detailed

example is described in [9].

parallel architecture criteria uniprocessor criteria

operators throughput communic. | operations per latency

output point per block
direct O(N?) oY) local O(NY) O(N?)
pipelined direct O(N?) 0o(1) local
FFT based O(Nlog N) O(log V) global O(log N) O(N log V)

pipelined FFT | O(N log V) o) global .

time-recursive O(N) O(N) local O(N) O(N?)

Table 1.2: Implementation cost for DFT.

The subtle point in the time-recursive architectural implementation of the
block transforms hinges on the fact that (as we will see in Chapter 2) the op-
erators need to evaluate one result per time unit, while an operator in the fully
parallel and pipelined FFT needs to produce one result every N time units
(or equivalently, perform 1/N operation per time unit). The time unit is the
time that lapses between two adjacent input data. Apparently, this is the rea-
son that has discouraged the research and use of time-recursive computation
for block transform implementation until recently [9, 33]. This situation has
been changed due to the advances in VLSI technology that penalize more the
global communication than the requirement for short internal clock cycle. As
a side effect, the speed of a (VLSI implemented) operator can match the input
data rate, by adjusting the length of the clock cycle. As long as this constraint

is satisfied for a real-time application the area minimization becomes the only

concern in the design. Under this light, the success of the time-recursive VLSI
circuits in computing block transforms and the promise they show are mainly
justified, apart from the modularity, regularity and scalability of the resulted
designs, by virtue of the area optimality property [34] and the communication

locality property.

1.2 Problem Identification and Contribution

We have seen in Section 1.1 that a number of time-recursive expressions have
been used for implementing diverse computations in different application areas.
Also, we have briefly explained why time-recursive computation can be expected
to play a more dominant role in high throughput real-time applications in the
near future. It is therefore very desirable to know what kind of computations
can be carried out in an efficient manner by a time-recursive formulation, so
that we can explore the full potential of the time-recursive computation model.
Furthermore, one will question: given a computation in this class, does it trans-
late to a unique architecture 7 If not, what are the alternatives and which is
the best one ? Can we derive this best architecture in an easy step-by-step,
routine, or even automated way ? Providing answers to the above questions,
exploiting the implications in a number of real-time computation applications
and revealing the common infrastructure of such computations in diverse areas
constitutes the subject of the present thesis.

More specifically, we establish an architectural framework for parallel time-
recursive computation. We consider a class of linear operators that is charac-
terized by discrete time, time invariant, compactly supported, but otherwise
arbitrary kernel functions. We introduce a shift property and show that
this property underlies the time-recursive realization of the above operators.
We show that the shift property dictates the parameter values of a parametric
architectural structure, the lattice structure, that is a generalization of the
structure that has appeared in the literature with the same name (see [9, 33, 42]).

We show that the information carried by the shift property is equivalent to the

information carried by the parameters of a linear difference equation. The
latter is a generalization of the order-2 difference equation introduced in [34]
and it dictates an IIR structure for the time-recursive architecture. We intro-
duce a periodicity property and show how it affects the choice among the
lattice and the IIR architecture, as well as the complexity of the architecture
itself. We show that an arbitrary mapping operator can be implemented in a
time-recursive way and we provide an optimal implementation (in the class of
time-recursive implementations). We conclude that given a mapping operator
the efficiency of the time-recursive architecture depends on the eigenfunctions
of an appropriate Linear Time Invariant (LTI) system.

Based on the above analysis, we obtain the flow graph of a design procedure
that routinely produces the time-recursive architecture for a specified mapping
operator. This design procedure can also be viewed as the back bone of a CAD
tool that can take a high level description of a computation (for example an
algebraic formula) and produce VLSI layout for the appropriate time-recursive
architecture. The efficiency and potential of this design procedure is demon-
strated by means of specific design examples: the Discrete Cosine Transform
(DCT) [34], the Discrete Fourier Transform (DFT) [32] and the Discrete Wavelet
Transform (DWT) [2]. Furthermore, the architecture design of the Short Time
Fourier Transform with Hanning windowing is demonstrated. Among the above,
the inverse DCT we propose, the DWT and the inverse DWT are novel designs.

A brief description of four more advanced designs follows:

1. Cepstral Transform: The size-N complex Cepstral transform y(t),t =
0,1, of a real valued sequence z(t),t = 0,1, - is defined as [46]

y(t) = IDFT{log(DFT{z(t)})}, t=0,1,---,

where IDFT denotes the inverse DFT. The architectural implementation
involves two fast Fourier transforms and a bank of logarithm circuits. We
propose two architectures for the Cepstral transform, in which we imple-

ment DFT and IDFT in a time recursive way. We are not concerned about

the implementation details of the logarithm circuits, nevertheless we are
concerned about the speed of this circuit. In the first architecture, we
assume that logarithm circuits which can perform one operation per time
unit are available. The cost of the resulted time-recursive architecture is
3N — 1 adders, N — 2 rotation circuits, and N "fast” logarithm circuits.
In the second one, we assume that the logarithm circuits can perform one
operation every N time units. In this case, the resulted cost is 6N —1
adders, 3N — 6 rotation circuits and N ”slow” logarithm circuits. Both

designs may employ very efficient rotation circuits [52].

. N-Band Modulated Quadrature Mirror Filter (QMF) bank: There
are two common versions of the modulated QMF bank [54]: the uniform-
DFT QMF bank and the cosine modulated QMF bank. They both
find applications in audio data processing and they enjoy substantial ad-
vantages over alternative designs of both Perfect Reconstruction (PR)
QMF banks and pseudo QMF banks [54]. In particular, they are eas-
ier both to design and to implement. The cosine modulated QMF bank
has the additional advantage that given a real input sequence the pro-
duced output is also real. These filter banks are implemented by using the
polyphase components of a prototype filter [54, 39] followed by a transform
matrix. The latter is the N x N IDFT matrix for the case of the uniform-
DFT QMF and a N x 2N matrix of cosines for the case of the cosine
modulated QMF. These matrices are typically implemented by fast algo-
rithm techniques that require global communication. Here, we propose the
substitution of the fast algorithm implementation by using a time-recursive
approach. The resulting circuits involve only local communication, while

the cost of the modulation matrices becomes linear.

. One-Dimensional Lapped Transforms: The Modulated Lapped Trans-
form (MLT) operates on data segments of length 2N, z(t + n — 2N +
1),n =0,1,---,2N — 1 and it produces N output coefficients X (t),k =

0,1,---,N — 1 as follows [36]:

Xa(t) = /B £ sin 7 (n+) cos [& (k+1) (n+ 1+)]
z(t+n—2N +1),

where t = 0,1,--- and ¢, = (—=1)*+?/2 for even k and ¢, = (—1)(~1/2
for odd k. The MLT is a special case of PR cosine modulated QMF
bank, where the polyphase components mentioned above are FIR filters
of length equal to 2. The MLT has been proved very useful in audio data
coding because it alleviates the blocking effect [36]. Here, we propose a
time-recursive implementation of the MLT. The implied cost is 2N + 3
multipliers, 3N + 3 adders and N — 1 rotation circuits.

Furthermore, we design a circuit for an Extended Lapped Transform (ELT)
with basis function length equal to 4N [38]. This ELT is equivalent to a
PR cosine modulated QMF bank with polyphase components of length 4.
The implementation cost is 3N + 4 multipliers, 4N + 4 adders and N + 2

rotation circuits.

We would like to highlight the importance of these results by mention-
ing that the MLT and ELT have been incorporated by the ISO-MPEG
and ASPEC standards for audio coding with the name Modified DCT
(MDCT).

4. Two-dimensional MLT: The 2D MLT is used for image data coding.
Compared to 2D DCT, at the same coding rate it implies considerably
less blocking effect and slightly higher Signal to Noise Ratio [39]. Here,
we propose the time-recursive implementation of the 2D MLT, for which
we need three one-dimensional MLT circuits, with an overhead of shift
registers and linear number of adders. The resulting design is modular,

regular, scalable and it requires local communication.

All of the above designs are original and are the best known to date in terms of

operator counts.

Although throughout the thesis we focus on architectural implementations
for either sliding transforms or block transforms, the designs we present are

useful for algorithmic implementations of sliding transforms too.

1.3 Thesis Organization

In this thesis, we establish a framework for parallel time-recursive computation,
we explain the subtle points by means of specific examples and we propose novel
designs for some important real-time computations.

In Chapter 2, we expose the main ideas of the time-recursive computation,
we derive the various representations of a time-recursive computation and we
generate the basic architectural structures that will serve as the building modules
in later chapters.

In Chapter 3, we introduce a generic design procedure for time-recursive ar-
chitectures and explain its use by designing architectures for the Discrete Fourier
Transform (DFT), the Discrete Cosine Transform (DCT) and a dyadic Discrete
Wavelet Transform (DWT). Furthermore, based on the DFT architecture, we
propose a novel design for the Cepstral Transform.

In Chapter 4, we consider a number of problems related to modulated QMF
banks: introducing the time-recursive computation in the uniform-DFT QMF
bank and the cosine modulated bank, implementing the Short Time Fourier
Transform (STFT) with a non-rectangular window, the one-dimensional Modu-
lated Lapped Transform (MLT) and an Extended Lapped Transform (ELT).

In Chapter 5, we derive the architecture of the two-dimensional MLT.

In Chapter 6, we summarize the results of this dissertation and we suggest
some directions for future research.

In Appendix A, we give the proofs of some lemmas that are stated in the

course of our presentation.

9

CHAPTER

2

Architectural Framework

In this Chapter, we exploit the structure underlying time-recursive computa-
tion and we use this knowledge to construct the tools necessary for a systematic
design of time-recursive architectures.

In Section 2.1, we introduce some terminology that will be used throughout
the thesis. Also, for easy reference, we highlight some principles from linear sys-
tems theory. In Section 2.2, we study the time-recursive algorithmic structures
and their properties. In Section 2.3, we focus on the architectural implementa-
tion of time-recursive architectures. In Section 2.4, we briefly discuss the special

features pertinent to block data transforms. We conclude with Section 2.5.

2.1 Preliminaries

2.1.1 Definitions

In many signal processing applications the key computation consists of a map-
ping operator [hg hy -+ hn-1] : z(-) — X(-), which operates on the semi-
infinite sequence of scalar data z(-) and produces the sequence X(-) as follows:
N-1
X(t)=> huz(t+n-N+1), t=0,1,---. (2.1.1)
n=0
Note that all FIR filters can be considered as this type of computation. This
is also true for a number of data transforms. For example, the kth frequency

component of the N-point Discrete Fourier Transform (DFT) is obtained for

10

We can specify a mapping operator [ho hy -+ hy_1] with a function f(-), for
which the values at the points 0,1, -, N—1 are the prescribed coefficients: h, =
f(n), n =0,1,---, N—1. In the sequel, we will use the term kernel function or
simply kernel for this function f(-). For example, the kernel f(n) = 1 is associ-
ated to the mapping operator [h, = 1,n = 0,1,---, N — 1] and similarly, the ker-
nel f(n) = e*" is associated to the operator [e**,n =0,1,---, N — 1]. Further-

more, we will call kernel group a vector of kernel functions fo(-), fi(+), -+, fm-1

£) = [fol) i) -+ ST

A time-recursive implementation of a mapping operator [k, k1 -+ hy_i]

is the one that is based on an update computation of the type
X(t+1)=UX@),z(t = N+1),z(t+1)).

For example, if we have [h, = 1,n =0,1,---,N — 1], X(t) will be the sum of
the last N values in the input stream. The time-recursive algorithmic imple-

mentation of this operator will simply be the computation
Xit+1)=X)+z(t+1)—z(t—N+1).

2.1.2 Linear Time-Invariant Systems

In this Section, we make a brief review of some basic concepts from the linear
system theory. This will be helpful for a better understanding of the material in
Chapter 2. For a comprehensive presentation of these concepts the reader may
refer to [27].

A single-input single-output discrete-time Linear Time Invariant (LTI) sys-

tem of order M can be described by the state space equations

x(n + 1) = Ax(n) + bu(n)
y(n) = cx(n),

11

where x(-) is the length-M state vector and u(-),y(-) are the input and output
variables respectively. Also, A is the M x M system matrix, while b is a
length- M column vector and c is a length-M row vector. {A,b,c} is an order-
M state space description of the LTI system and it provides information for
both the input/output behavior and the internal structure of the system.
The quantities
h, = cA"b, (2.1.2)

n = 0,1,---, are the Markov parameters of the linear system and they are
sufficient to describe completely the input/output (i/o) behavior of this system.
Consequently, providing an i/o description for a system is equivalent to providing
the Markov parameters, while the state space description for this system 1s non-
unique.

Two different order-M state space descriptions that yield a common i/o

behavior are related with a similarity transformation specified as follows
{A,b,c} — {T7'AT, T 'b,cT},

where T is an invertible M X M matrix. One can easily verify that the trans-
formed state space description has the same Markov parameters with the original
one.

There is a number of standard state space description forms. Two of the

most commonly used ones are:

1. Controller canonical form: A and b are in the form

-y —ay - —apm-o1 —Oam 1
1 0o --- 0 0
A = 0 1 , b=]01, (21.3)
0 0 1 0 0
while a3, as,- -+, ap are non-zero parameters. The output vector ¢ does

12

not have any specific structure.

2. Modal canonical form: Let B;e*®, + = 0,1,---,I be the eigenvalues of
the system matrix A in polar representation. Note that for real eigenvalues
we have ; = 0. A linear system is in modal canonical form if the system

matrix A is block diagonal with block elements in the form

cosq; sinq;
i
cos q; — SIn @y

The above reduces to 3; if a; = 0.

Given the Markov parameters hg, hq,---, of an LTI system a state space
description {A,b,c} of order M specifies a minimal order realization if
(2.1.2) holds with n = 0,1,--- and furthermore (2.1.2) does not hold for any
state space realization of order M — 1.

Given the Markov parameters hg, hy,---,hAn-1, of an LTI system, a state
space description {A,b, c} of order M specifies a minimal order partial re-
alization if (2.1.2) holds with n = 0,1,---, N — 1 and furthermore it does not
hold for any state space description of order M — 1. The problem of finding a
minimal order partial realization is addressed in detail in [29]. An illustrative

example is discussed in [27, pp.491-492].

2.2 Design of a Time-Recursive Algorithm

2.2.1 The Shift Property

In the course of our study we will see that all mapping operators specified in
(2.1.1) can be implemented in a time-recursive way. Nevertheless, the implemen-
tation cost not always justifies the time-recursive computation. In the following
Lemma, we specify a family of kernels and kernel groups that can be imple-
mented time-recursively in a way that will be determined shortly.

Shift Property: A kernel group f(-) = [fo(:) fi(:) --- fM_l(-)]T, satisfies the

13

shift property (SP) if it satisfies the (matrix) difference equation
f(n—1)=Rf(n), n=12,---,N, (2.2.1)

with a specified final condition f(/N), where R is a constant matrix of size
M x M. Furthermore, we will say that a kernel function ¢(-) satisfies SP if
there is a kernel group f(-) that satisfies SP and ¢(-) is an element of f(-). O

Lemma 2.1 A time-recursive implementation of a kernel group f(-) is feasible
if this kernel group satisfies the shift property.
Proof: (2.2.1) gives:
M-1
foln=1)= Z rpofe(n), n=112,--- N, p=0,1,--- .M —1,

9=0

where 7,4,p,¢ = 0,1,---, M — 1 are the elements of the matrix R. Let
pr t(t+n—-N+1), p=0,1,---,M~1 (2.2.2)

Suppose this is available at the time instant ¢ 4+ 1. For the quantities X,(t +
1), p=0,1,---,M — 1 we have:

N-1 N
Xp(t+1)= > 2(t+n+1-N+1)fy(n)=> z(t+n-N+1)fp(n—1)
n=0 n=1
N M-1 M-1 N
Z t+n—N+1)erqfq Z’"Pq(a:(t+n—N+1)fq(n)>
n=1 =0 =0 n=l1
and therefore we obtain the algorithm:
M-1
X(t+1) = 3 rpg[Xy(t) = 2t = N+ 1)£,(0) +2(t+ V(N (223)
q=0
where p = 0,1,---,M — 1. If we assume knowledge of the boundary values

{£:(0), fe(N), ¢=0,1,---, M —1}, the algorithm specified in (2.2.3) will become
the update computation we were after. (2.2.1) implies that knowledge of f(V)

14

yields f(0). Furthermore, note that if R is nonsingular, knowledge of f(0) yields
f(N).]

X(t)

X, (t7 1)

~N

— X ()

Figure 2.1: Lattice architecture for kernel group of size M = 2.

Corollary 2.1 A kernel group f(-) that satisfies SP can be implemented time-

recursively as follows:
1. Compute the matrix R by evaluating f(n — 1) and using (2.2.1).
2. Evaluate f(n) at the points n =0 and n = V.
3. At each time instant ¢ evaluate (2.2.3). O

Note that the first two steps of the above algorithm belong to the initializa-
tion phase (off-line computation). The architectural implementation will have
a lattice structure if the size of the kernel group is M = 2 (see Fig. 2.1). An
example of this architecture appears in [33]. In an abuse of terminology, we will
call lattice architectures the architectures that implement (2.2.3) regardless

of the size of the kernel group.

2.2.2 Time-Recursive Implementations

The issue of specifying a family of kernel groups that satisfy SP is addressed by

Lemma 2.2:

Lemma 2.2 The shift property is satisfied by:

15

1. The singleton kernel group [cb"], where b and ¢ are non-zero free parame-

ters.

2. The kernel group [cood™ + co1b™", c10b™ + cllb'"]T, where b is a non-zero pa-
rameter and the coefficients are free parameters, such that cgpc11 — co1¢10 #

0.

T .
3. The kernel group |co, c1m, -+ -, car—1n™ ™1} | where the coefficients are non-

zero parameters.
4. The union of two kernel groups that satisfy SP.
5. The cartesian product of two kernel groups that satisfy SP. O

The proof of this Lemma can be found in the Appendix.
Suppose now that we are given a mapping operator [ho hy -+ hy_i] for

which we have the following linear decomposition:
hn=a¢(n)+/@'¢](n)’ n=0,1,---,N—1,

and ¢(-), ¥(-) are kernel functions that satisfy SP. One may verify that h, can
not be proved to satisfy SP based on the above linearity property. Nevertheless,

we have
N-1 N-1
X(t) = Z hozx(t+n—N+1)= 2 [ad(n) + B(n)]z(t+n— N +1)

n=0

N-1 N-1
=a Z¢(n)x(t+n-N+1)}+5[Z¢(n)x(t+n—N+1) or

n=0

X (1) = aXo(t) + BXy(1),

where X4(t) and X, () have the obvious definitions. Therefore, we can obtain
an efficient time-recursive implementation for the linear combination of two (or
more) kernels that satisfy SP, by properly combining the output points of the

implementations of the latter. The mapping operators generated by this linearity

16

property supplement the family of the operators that can be computed in a
recursive way based on Lemma 2.2.
Now we will discuss some of the most interesting examples of the time-

recursive computation, under the light of Lemma 2.2.

1. We may observe that for 6 = ¢ = 1 the kernel group in Lemma 2.2,
Statement 1 specifies the mapping operator that computes the sum of the

last N values in the input stream.

2. If b = €/%*"/N and ¢ = 1 the same case of kernel group specifies the kth

frequency component of the DFT. From Fig. 2.2, we conclude that the
recursive implementation requires one complex multiplier. Consequently,
no more than N complex multipliers are required for the computation of
the N point DFT. This result was obtained in [47, pp.175-179] and [7].
It was rediscovered and used in the real-time architecture context in [32],
where it is also pointed out that N rotation circuits [52] suffice for the

computation of the DFT.

3. Another interesting special case of kernel group is obtained from Lemma 2.2,

Statement 2 for

Leishk le=ifk
Coo Co 5€°2N Se 2N Jkm
= f Cer f e and b=¢'N. (2.2.4)
100k Lo-igw
C10 Cn 2je 2 2]'6 2N
For this choice of our constants we obtain fo(n) = cos %’—’(n + 1) and

fi(n) = sin®(n 4+ 1). One can recognize the kernels of the DCT and
the DST. The algorithm for computing the DCT/DST in a time-recursive
manner was proposed by [61] and was suggested for the sliding transform
computation. In [33] it was realized that time-recursiveness results an
efficient architectural design for the DCT/DST. It was shown that such

an implementation requires less than 6V real multipliers.

4. The fact that the kernel group in Lemma 2.2, Statement 3 can be im-

plemented time-recursively was independently observed in [16] and in (1],

17

where it is used for estimating the energy spectral density of a noisy wave-

form via Taylor series.

5. One can use Lemma 2.2, Statement 5 in order to design a lattice ar-
chitecture for the Lapped Orthogonal Transform (LOT) [36, 38, 39, 62].
The feasibility of such a design is due to the fact that some LOT kernel
functions are products of two sinusoidal kernels. The time-recursive imple-
mentation of the LOT first appeared in [34]. The implementation of two
interesting special cases of the LOT, the Modulated Lapped Transform
(MLT) [36] and an Extended Lapped Transform (ELT) [38] are considered
in detail in Chapter 4.

x(t)

Figure 2.2: Architecture for kernel group of size M = 1.

2.2.3 On a Systematic Design I
Surprisingly, we can realize that:

Lemma 2.3 Every mapping operator of finite length N can be implemented in

a time-recursive way. O

The proof is given in the Appendix.

A reasonable question follows from this existence result regarding the time-
recursive implementation of a given mapping operator. We will proceed with a
design procedure that partially answers this question. To do so we will make

the assumption that a given operator can be expressed by inspection (and use

18

of Lemma 2.2) as a linear combination of kernel functions that satisfy SP. For
example, the kernel functions of the discrete sinusoidal transforms belong in this
class of operators (cf. Lemma 2.2, Statement 2).
Design Procedure
Input:

he = cidi(n), (2.2.5)

where {¢i(n)} is a set of kernel functions that satisfy the shift property SP and

{c;} is a set of known constants.

Step 1.1:

Specify the kernel groups f;(-) to which the kernel functions ¢;(-) belong. For
example, if ¢;(n) = n? then, according to Lemma 2.2, Statement 3, we get
fi(n) = [1 n n?]".

Step 1.2:

For each kernel group f;(-) use (2.2.1) in order to compute the matrix of param-
eters R; and evaluate f;(n) at the points n =0 and n = N.

The outcome of this design procedure is the following algorithm:

1. Evaluate (2.2.3) in order to obtain X,(t), defined as X;(t) = SN ¢i(n)x(t+
n—N+1).

2. Evaluate

X(t) = 3 aXi(t). (2.2.6)

The kernel group associated to the mapping operator is the union UJ; fi(-). O
Detailed examples along the lines of this procedure are given in later Chap-

ters.

2.2.4 Mapping Operator Decomposition

In Subsection 2.2.3 we introduced a design procedure for the time-recursive
implementation of a class of mapping operators. In this class, the operator
coefficients are specified in by a close form description that can be manipulated

easily by inspection and compared to the kernel functions in Lemma 2.2. If this

19

is not feasible, an elaborate technique must be employed to obtain the linear
expression required as the input of the design procedure. This is the subject of
this Subsection.

One can easily verify that for a given mapping operator a number of different
recursive architectural implementations exist. Given a mapping operator, we
would like to obtain the optimal time-recursive implementation in terms of the
architectural cost. Unfortunately, this is not an easy problem, since a variety of
ad-hoc designs may exist for a specified operator. Here, we address the question
of optimality with respect to the number of kernels that are used in a linear
decomposition of the given mapping operator. We show that this question is
equivalent to finding the minimal order partial realization of a proper linear
time-invariant (LTI) system. With this approach, we do not assume any prior

knowledge of the structure of the coeflicients of the given operator.

Lemma 2.4 The size of the smallest kernel group that can be used to implement
the mapping operator [hg hy -+ hy_1} in a time-recursive way is equal to the
size of the minimal order partial realization of the LTI system with the N first

Markov parameters being equal to the coefficients of the specified operator.

Proof: Given a mapping operator [hg hy -+ hy_1], we can have the following

coefficient expansion:
h, =cA"b, n=0,1,--- N -1, (2.2.7)

where A is the system matrix of size M x M and b, c are the input and output

vectors respectively [27, 29]. Let
f(n) = A™b (2.2.8)

be a kernel group of size M. Since f(n — 1) = A™'b = A~!f(n), this kernel
group satisfies the shift property with

R=A" and f(0)=Db. (2.2.9)

From (2.2.7) and (2.2.8) we get the linear decomposition of the mapping operator
coefficients h, = cf(n). Therefore, the time-recursive implementation of the
mapping operator can be based on the kefnel group f(-). In our construction, the
size of the kernel group M is equal to the order of the realization {A, b, c}. Thus,
minimizing the number of the decomposition kernels is equivalent to minimizing
the order of the the partial realization of the LTI system, for which the first N
Markov parameters are equal to the coefficients of our operator. O

The importance of Lemma 2.4 stems from the fact that the problem of the
minimal partial realization has a well known solution [27, 29] (see for an exam-
ple [27, pp.491-1492]). By using this result in combination with Lemma 2.4 we
can obtain a time-recursive algorithm for an arbitrary mapping operator based
on the minimum number of kernels. The extended algorithm design procedure

is described in the following Subsection.

2.2.5 On a Systematic Design II

For the time-recursive implementation of an arbitrary mapping operator [ho h;
-+« hpy_y] three steps need to be added at the beginning of the design procedure
in Subsection 2.2.3:
Design Procedure Supplement
Input:
The mapping operator [hg hy -+ hn_1].
Step 0.1:
Use the algorithm for the minimal order partial realization in order to compute
the quantities A,b and c in (2.2.7) [27, 29].
Step 0.2:
Use the similarity transform that will yield {A,b,c} in the modal canonical
form.
Step 0.3:
Calculate the close form expression for the operator coefficients. O
The expression specified in Step 0.3 can be used as the input in the design

procedure described in Subsection 2.2.3.

Note that the algorithm we refer to in Step 0.1 returns a state space descrip-
tion of an LTI system in the controller canonical form (see Subsection 2.1.2). By
transforming this system in the modal canonical form we are able to compute
the close forms of the elements in matrix A™ (since this is a block diagonal ma-
trix where the blocks are either rotation matrices or real scalars). Consequently,

Step 0.3 can be carried out by simple algebraic manipulations.

2.2.6 The Difference Equation Property

A fundamental property of the Markov parameters {h, = cA™b, n =0,1,---}
of LTI systems dictates:

hnir + apthpypm—r + -+ arh, =0,

where a,, p = 1,2,---, M are the constants specified in (2.1.3) [27]. Equiva-

lently, this can be written in a difference equation format as follows:
hy = YMmhno1 + -+ M hnem, (2210)

where

T»=—0, p=12--- M. (2.2.11)

Let e, be the row vector of length M, for which the pth element is unity and all
other elements equal zero. If vector ¢ equals e, then (2.2.7) implies that h, is
the pth kernel function of the kernel group f(-). Suppose now that A and b are
of the form specified in (2.1.3). Then, all kernel functions in (2.2.8) satisfy the
same difference equation (2.2.10). The upcoming Lemma 2.5 states that this is
true even if A and b do not have any special structure. Thus, it introduces the
following property of a kernel group:

Difference Equation Property : A kernel group f(-) = [fo(-) fi(-) -
fM_l(-)]T, satisfies the difference equation property (DEP) if there are scalars
Yp,p = 1,2,---, M, independent of n, such that the kernel functions f,(-), ¢ =

0,1,---, M — 1 satisfy the following difference equation
fom) =mfan =14 +mfoln—M) n=12-- N (2212

with some specified initial conditions f,(n),n = —-1,-2,---,—-M. O
Lemma 2.5 A kernel group satisfies DEP if and only if it satisfies SP. O

The proof of this Lemma is given in the Appendix.

2.3 Design of a Time-Recursive Architecture

2.3.1 Lattice Architecture Design for Mapping Operators

In the previous Section, we have seen how we can specify the kernel group
of minimal size that is associated to a given mapping operator and how we
can implement this operator by evaluating (2.2.3) and (2.2.6). The algorithm
resulted by the design procedure in Subsections 2.2.3 and 2.2.5 can be realized by
the lattice architecture introduced in Section 2.1 that evaluates (2.2.3), followed
by a simple weighted-sum circuit that evaluates (2.2.6). The lattice architecture
that implements a kernel group of size M = 2 is shown in Fig. 2.1, while the
one that implements a kernel group of size M = 3 is depicted in Fig. 2.3. We
can observe that this architecture consists of M 2-tap FIR filters and a M x M
weighted interconnection network with M feedback loops. The total cost of this
structure is M? 4+ 2M multipliers and M(M — 1) + 2M = M? + M 2-input
adders. The weighted-sum circuit consists of M multipliers and M — 1 adders.
The cost of the overall implementation is given on Table 2.1.

The M x M weighted interconnection network is characterized by the matrix
R specified in (2.2.9). If we follow all five steps of the design procedure described
in Subsections 2.2.3 and 2.2.5 the matrix R will be block diagonal with blocks
consisted of plain rotations. Consequently, we can implement the interconnec-
tion network very efficiently, with locally interconnected rotation circuits. The
latter can be realized either with CORDIC processors [23] or with distributed

arithmetic techniques [52]. The cost for implementing a mapping operator with

23

this approach is shown on Table 2.1. Furthermore, with this setup we can exploit
the fact that the absolute values of the eigenvalues of a normalized paraunitary
system [54] are all equal to 1 [54, 55]. The Discrete Wavelet Transform imple-
mentation presented in Chapter 3 takes advantage of this fact to reduce the

number of multipliers to be implemented.

N

J‘
-
8

x(t) — X (1)

f(o(t)
f,(N) f, (N)ia fz(N)iE
Z_N X ‘)’
I | A R
Y X,

3 X, (1)

— X ,(1)

A T2

Figure 2.3: Lattice architecture for kernel group of size M = 3.

multipliers adders rotations

lattice architecture M?* 4+ 3M M?*4+3M -1 -
Case a. | lattice / modal 2M |5M/2 + 1] M
IIR architecture 3M 3M -1 -
lattice architecture | M +2M +1 M?* +2M -2 -

Case b. | lattice / modal 2M [5M/2 + 1] M/2
IIR architecture 2M 2M -
lattice architecture | M2 +2M +1 M?*+2M -3 -

Case c. lattice / modal 2M |5M/2] M/2
ITR architecture 2M 2M —1 -

Table 2.1: Implementation cost of a mapping operator, based on a kernel group
of size M: Case a, the operator does not satisfy the periodicity property and it
is utilized by a sliding transform. Case b, the operator satisfies the periodicity
property and it is utilized by a sliding transform. Case c, the operator is utilized
by a block transform.

24

2.3.2 The Periodicity Property

A class of special case architectures with important implications to the imple-
mentation of the sinusoidal data transforms will be considered. With regard to
the structure depicted in Fig. 2.3, suppose that there are two constants D; and

D, such that the relation

X,(t) = D,Xo(t), (2.3.1)
is true for p = 1,2 and ¢t = 1,2,---. Then, one can verify that the 3 2-tap

filters on Fig. 2.3 can be replaced by the structure shown on Fig. 2.4.a. The

corresponding circuit for M = 2 is given on Fig. 2.4.b.

x(t)

£,(N)

- fo(o)

a b

Figure 2.4: Part of lattice architecture if the periodicity property is satisfied.

In this way, M — | multipliers and an equal number of adders are saved.
Obviously, the same trick can be used for a kernel group of arbitrary size. The
resulted cost metrics are depicted on Table 1.2. In Lemma 2.6 that follows, we
state a condition on the kernel functions that imply (2.3.1) and consequently
the savings mentioned above can be obtained. We will see that this condition
amounts to satisfaction of the following property:

Periodicity Property: A kernel group f(-) = [fo(-) fi(:) --- fM_l(-)]T, satls-
fies the periodicity property (PP) if the following relation holds:

fo(N) _ A(N) _ _ fua(N) 1 (2.3.2)

f0) — AO) T fuaa(0) TS

for some non-zero constant S. O

Lemma 2.6 Given a kernel group f(-) relation (2.3.1) holdsforp = 1,2,--- , M —
landt =0,1,--- if f(-) satisfies the periodicity property. O

The proof is given in the Appendix.
The name "periodicity property” is justified by the following special case:
Consider the kernel group specified by Statement 2 in Lemma 2.2, that is,

bn b—n
fo(n) _ | o + co1 ’ (2.3.3)

fi(n) c10b™ + 1167

where b is a non-zero parameter and the coefficients are free parameters, such

that cooci; — co1¢10 # 0. In the Appendix we prove the following Lemma:

Lemma 2.7 If the parameter b of the kernel group (2.3.3) is of the form b = e/#,
then (2.3.3) satisfies the periodicity property if and only if 3 = Jkﬁ", that is, if
the kernel functions are periodic with period equal to N. Furthermore, if PP is

satisfied the ratio value in (2.3.2) is equal to 1/S = (=1)*. D

An example of kernel group that satisfies PP is fi(n) = [cos %(n + 1)sin %(n-k
1

T
5)} . This is a special case of (2.3.3) for which the values of the constants are

specified in (2.2.4). We can implement the pair of DCT and DST based on
this kernel group. The importance of the periodicity property will be further
appreciated when we see the implications it has on the IIR architecture discussed

in the following Subsections.

2.3.3 IIR Architecture Based on the Shift Property

The lattice architecture we have seen in Subsection 2.3.1 constitutes a direct
translation of (2.2.3) into an architectural implementation. If a transfer func-
tion approach is adopted instead, we obtain an IIR filter structure implemen-
tation for (2.1.1) [34]. In this Subsection, we show how we can specify the IIR
implementation of a kernel group based on the shift property, while the IIR ar-
chitecture design based on the difference equation property is the subject of the

following Subsection. The IIR architecture often involves less implementation

26

cost in comparison to the lattice one, especially if the associated kernel group

exhibits the periodicity property we have seen in the previous Subsection.

Lemma 2.8 Let f,(-) be a kernel function in the kernel group f(-) = [fo(-) fi(*)
fM_l(-)]T of size M. If f(-) satisfies SP, the kernel function f,(-) can be

implemented by an IIR filter with transfer function H,(z)
b(2) by(2)

Hy(z) = 2= — ;N2

a(z) a(z)’

p=0,1,---,M—1, (2.3.4)

where a(z) is a polynomial in z™! of degree M and b;, i = 0,1 are polynomials in

z71 of degree M —1, defined as follows: a(z) = |A(z)], bi(z) = |B;(z)1 ,1=0,1,

—1 4 rgoz™" ro1z”! e ro,p-17""
-1 -1 -1
102 —1+ri2 T1,P-1%
a(z) = _“ ne (2.3.5)
r 271 r N | -1
P-10 P-1,1% +rp_1,p-127" |
B;(z) is an M x M matrix that is formed by substituting the pth column of
o , T
A(z) with [96 sy - s}v,_l] ¢ = 0,1, where
M-1 M-1
0
sp= = 2 rafa0), sp== 3 tefo(N), p=0,1,-- ML
q=0 q=0

Note that |X| denotes the determinant of the matrix X. O

The proof is given in the Appendix.

As a direct consequence of this Lemma we have:

Corollary 2.2 Let f(-) = [fo(+) fi(*) -~ fr-1()]" be a kernel group of size M
that satisfies PP. Then, the transfer function H,(z) of the linear system that
models (2.2.3) is:

by(2)

Hy(2) = (S = =) 25

P =:0717"'5A4-_'1, (2;}6)

27

where a(z) and by(z) are specified in Lemma 2.8 and S is the constant specified

n (2.3.2). O

For the sake of clarity, we will consider the special case of a kernel group of
size M = 2 in detail. Let H,(z) be the transfer function of the linear system

that models the mapping operators

[fp(o) fp(l) fp(N— 1)]»

for p = 0,1. From (2.3.5), for M = 2 we get:

—1 4+ rgoz7! ro1z !
a(z) = _1 .
0<% -1 + 117
Furthermore, we have
i -1 -1 i
i S0 To12 ; —1 +rgez™" 8§
bo(z) = | bi(z) =
0 i -1 |7 1 -1 i |’
31 -1+ 12 102 $

where

Sg = —1,0f0(0) — 7,1 f1(0) and s; = —rpofo(N) —rpfi(N), p=0,1

The architectural implementation resulted from (2.3.4) is shown in Fig. 2.5,
while for the case where the periodicity property is satisfied, the architecture
associated to (2.3.6) is depicted on Fig. 2.6. We observe that the IIR architecture
consists of a feedback structure with M = 2 delay elements. The parameters

d;,1=1,2 and n;;,1 =0,1,5 = 0,1,2,3 are given by the following expressions:

dy = —reo— T noo = fo(N)roo + fi(N)ror niwo = fo(0)reo + f1(0)ror

noz = fo(N)rio + fi(N)ri1 ni2 = fo(0)rio + f1(0)rn
)d2

)
dy = To0oT11 — To1T10 No1 = —fo(N)d2 nn = fo(O)

)

(0

No3 = _fl(N)d2 ms = —fi
(2.3.7)

28

\
.
Y

Figure 2.6: IIR architecture for M = 2 if the periodicity property is satisfied.

X0
»ID
>3)D >
-A

X ,(0

e

Figure 2.7: IIR architecture for M = 3 if the periodicity property is satisfied.

29

2.3.4 IIR Architecture Based on the Difference Equation Property

An alternative approach to the problem of designing the IIR architecture is based
on the defining equation of X,(t) (2.2.2) and the difference equation property
of the kernel group specified in Lemma 2.5. In more concrete terms, we can
compute the Z transform of a kernel function f,(n) based on the difference
equation (2.2.12) and then calculate the transfer function of the system specified
by (2.2.2). The following lemmas describe how we can obtain the desired transfer
function if we are specified the difference equation parameters. The special case
of a difference equation of order M = 2 is first considered, the reason being both

its importance for a number of practical applications [34] and its simplicity.

Lemma 2.9 Let the kernel function f,(-) satisfy the second order difference

equation

fo(m) =mfoln =) +72fp(n-2), n=12,---,N. (2.3.8)
The transfer function H,(z) of the system specified in (2.2.2) is

(N =1) + = fo(N)z70 | fo(=1) + 52 £p(0)27!
iy = LB EE T 0 s
Y2 Y2 Y2 Y2

The proof of this Lemma was originally given in [34]. In Appendix, we present
a proof with more elaborate formalization that suggests the generalization con-
sidered in Lemma 2.10.

The parameter values of the associated IIR architecture in Fig. 2.5 is a direct

outcome of Lemma 2.9:

=

dy = —’71/72 Moo = fo(- 1) Nip = fo(“l)
dy=—=1/v2 no=fo(N)/v2 nu=fo(0)/r (2.3.10)
n()2=f1(N—1) n12=fl(—1)
(

nos = fr N)/’Yz i3 = —fl(O)/’Yz

30

The generalization of Lemma 2.9 for arbitrary values of the order M of the

difference equation follows:

Lemma 2.10 Let the kernel function f,(-) satisfy the M order difference
equation (2.2.12). Then, the transfer function H,(z) of the system specified in
(2.2.2) is given by the expression in (2.3.4), where

N 1
a(z) = 1+) ——z"-— —M
n=0 M ™
M1 M
W(z) = Y |— Yo vWfp(N+M—-n—q-1)|z7" (23.11)
n=0 _’7" g=M-n
M-1[1 M
b;(z) = — Z YofolM —n—¢g—1)| 27" O
n=0 _7" g=M-n

Lemma 2.10 gives a means for computing the IIR parameter values that is
considerably easier from the alternative way of carrying out the algebraic com-
putations involved in (2.3.4). Finally, as a direct consequence of Lemma 2.10

we have:
Corollary 2.3 Let the kernel function f,(-) satisfy:
1. The M*P order difference equation (2.2.12).

2. The condition

fp(N) fp(N_l) fP(N_M+1)
= == =G5, (2.3.12)
£»(0) fr(=1) fo(=M +1)
for some constant S.
Then, the transfer function H,(z) of the system specified in (2.2.2) is given by

(2.3.6), where a(2) and by(z) are specified in (2.3.11) and § in (2.3.12). O

We may observe that (2.3.12) has the same effect on the IIR architecture with
(2.3.2), the defining equation of the periodicity property for a kernel group. This
fact suggests the following extension of the definition of the periodicity property:

31

Periodicity Property (extension): We shall say that a kernel function ¢(-)
satisfies the periodicity property (PP) if there is a positive integer M and a

non-zero constant S such that

d(N) (N -1) _9(N-M+1)

$(0) — B(=1) T (-M+1)

is satisfied. O

A direct consequence of (2.3.2) and (2.3.12) is the following corollary:

Corollary 2.4 If a kernel group satisfies the periodicity property, then the ratio
value S in (2.3.2) will be either S =1or S=~1.0

2.3.5 IIR Architecture Design for Mapping Operators

So far, we have discussed the procedure for computing the transfer function that
is associated to a given kernel group. We have shown how this transfer function
is determined from two different starting points: the matrix difference equation
(2.2.1) and the scalar difference equation (2.2.12). In the sequel, we will consider
the implementation of the associated mapping operator, which is the goal of our

construction. As a direct consequence of (2.2.6), the desired transfer function

H(z) is

where H,(z),p=0,1,---, M —1 are the transfer functions of the members of the
associated kernel group and c,,p = 0,1,--+, M —1 are specified by the algorithm

design procedure. Based on Lemmas 2.8 and 2.10 one can show that

H(z)-—LM_lcbO()— -v L MZ—:lcbl() (2.3.13)
—G(Z),,=oppz z =) & py(2), 3.

where the expressions of a(z),b3(z) and b}(z) are described by Lemma 2.8 or by
Lemma 2.10, depending on the specifications we are given. In a similar way,
based on Corollaries 2.2 and 2.3, one can show that for the case where the

associated kernel group satisfies the periodicity property the transfer function

32

we were after is:
M-1

H(z) = (S - z-N);(lz_) ,,; cpbl(2), (2.3.14)
where the expressions of a(z) and b}(z) are specified as above.

We conclude our discussion on IIR architectural implementations with some
comments on the implementation cost !. For the denominator a(z) in (2.3.13) we
need M multipliers and M adders. For the two numerators of this expression we
need 2M multipliers and 2(M — 1) adders. An additional adder is needed for the
addition in (2.3.13). If the periodicity property is satisfied, the implementation
of the numerator in (2.3.14) requires M multipliers and M — 1 adders. Note
that no multiplier is needed for the factor S, since the constant S takes values in
{1, —1}. The overall cost is shown on Table 2.1. A comparison of the lattice and
the IIR architectures on the basis of the costs on Table 2.1 will yield the following
conclusion: The IIR architecture is better if the periodicity property is satisfied
by the underlying kernel group, while the lattice architecture is appropriate for
the cases where the above property is not satisfied.

Note that the implicit assumption we have made is that only one kernel
function from the associated kernel group participated in the linear expression
that specifies the mapping operator in consideration (cf. Eqn. (2.2.5)). A

decision rule that encounters all the different factors affecting the proper choice

of the architecture is provided in Chapter 4.

2.4 Implementing Sliding and Block Transforms

An N x N data transform can be viewed as a bank of N mapping operators of
length N. A time-recursive implementation of these operators yields a locally
interconnected, modular, regular, scalable with N design, with linear cost O(NV)
(in terms of operator counts). In particular, the constant term underlying the

asymptotic cost expression can be made linear in terms of the associated kernel

}The IIR structure we consider throughout this paper is the well known type-1 realization
and the cost analysis that follows is based on this fact. Nevertheless, any one of the known filter
realizations can be used for implementing the transfer functions we specify in this Subsection.

33

group size M, as manifested by the figures in Table 2.1. In the introductory
Chapter, we have distinguished between the sliding and the block transforms.
We observe on Table 2.1 that such classification reflects different implementation
costs. This 1s justified as follows.

The output of the operators that implement a block transform are sampled
at the time instances t = 0, N,2N,---. Consequently, between two adjacent
sampling instances we compute N — 1 pieces of data that are neglected. The
only purpose of this computation is to have a transition phase to computing the
data output at the next time instance that is a multiple of N. Consider now the
computation of the first valid output that is at time instant ¢ = N. The scenario
for producing this output amounts to initializing the memory elements of the
time-recursive structure at + = 0 and feeding the N first input samples. If we
set to 0 the memory elements periodically, with period N, we can periodically
imitate the computation of the initialization phase, while being able to produce
all the useful output data. The consequence of this observation is a simplification
of the time-recursive design for the operators in block transforms: the delay
element 2=V will never deliver a non-zero quantity and therefore it should be
replaced by 0 in (2.3.13) and (2.3.14) (as well as in (2.3.4), (2.3.6), (2.3.9) and
(2.3.11)). The architecture designs need to be changed accordingly. For example,
both IIR structures in Fig. 2.5 and 2.6 reduce to the one in Fig. 2.8. Similarly,
the lattice structure in Fig. 2.1 reduces to the one in Fig. 2.9.

A specific instance of this class of circuits, namely the DFT IIR structure,
is the well known Goertzel filter {19, 3, 4].

Observe that the periodicity property has an interesting interpretation in
this context: If the mapping operators that implement a data transform satisfy
PP, the implementation cost of the block transform is almost identical (it differs
by one adder) to the one of the sliding transform.

Note finally that the decimation in Fig. 2.8 lets a substantial part of the
circuitry operate at minimum rate (that is N times lower than the input data

rate).

34

x(t))?)@)&OO XO(NI)

d)D X, (NY)
Y Noa

e

A
=

. X, (Nt)

x(t)

. X,(Nt)

TXO(I— 1)
-1

Figure 2.9: Lattice architecture for M = 2 for an operator used in block trans-
form.

2.5 Conclusion

In this Chapter, we studied the architectural implementation of the class of
discrete time, time invariant, compactly supported, linear (mapping) operators.
We showed that the implementation of a given mapping operator is based on the
implementation of an associated kernel group and we introduced three properties
of kernel groups that are instructive for our design: The shift property (SP), the
difference equation property (DEP), and the periodicity property (PP).

35

We demonstrated the design of a lattice architecture based on SP and the design
of an IIR architecture based on either SP or DEP. We realized that PP yields
certain cost reduction and it can be used to affect the choice between the two
candidate architectural options. We considered the architectures associated to

both sliding and block data transforms.

IIR Architecture

Lemmas 2.9, 2.10
Coraollary 2.3

Lemma 2.8
Corollary 2. DifferenceEquation

of order P Tabulated properties

(e.g.[5)

Lemma 2.5
Numerical Data Modal)
Lemma 2.4 Decomposmon Analytic Data
[hg. by hy-] {A,b,c} Representation _ ZC o ()
i
Lemma2.5
Lemma 2.1
PxP-Matrix

Difference Equation

Corollary 2.1

Lemma 2.3 Lattice Architecture

Figure 2.10: Overview of the architecture design procedure.

A comprehensive overview of the design procedure that summarizes the
above results is given on Fig. 2.10. The algorithm design procedure suggested
in Subsections 2.2.3 and 2.2.5, along with the cost figures on Table 2.1 can be
used as design guides. The latter provide an estimate of the constant factor un-
derlying the asymptotic expressions in Tables 1.1 and 1.2 in Chapter 1. Based
on this background, an architecture design procedure is developed in Chapter 3
that can be used for routinely obtaining the time-recursive architecture of a

given mapping operator.

36

CHAPTER

3

Design Procedure

The purpose of Chapter 3 is two-fold. First, to integrate the background
provided in Chapter 2 into a Generic Architecture Design Procedure and
second, to demonstrate its usage with applications in real-time SIMO (single-
input multiple output) and MISO (multiple-input single-output) architectures
for data transforms.

In Section 3.1, we draw a Generic Design Procedure for time-recursive archi-
tecture design. In Section 3.2, we discuss an example of the IIR architecture:
the Discrete Cosine Transform (DCT) and the inverse DCT. In Section 3.3, we
draw the architecture for the Discrete Fourier Transform (DFT), as an example
of lattice architecture. Based on the DFT architecture a design for the Cepstral
Transform is also derived. For both cases of DCT and DFT the transform kernels
can easily be expressed as linear combinations of the kernel functions specified in
Lemma 2.2, thus simplifying considerably the design procedure. In Section 3.4,
we present an example for which such simple manipulation is not possible and
therefore, the systematic approach presented in Subsection 2.2.5 is employed:

the Discrete Wavelet Transform (DWT). We conclude with Section 3.5.

3.1 Generic Design Procedure

In this Section, we introduce a Generic Design Procedure for the time-recursive
architectures. This is a routine that integrates the distinct parts of the design
vehicle we have studied in Chapter 2. The input specification can be either

the coefficient vector [hg Ay -+ hy-;] or a kernel function of the form ¢(-) =

37

S cidi(+), where the functions {¢;(-)} belong in the class of functions specified
in Lemma 2.2. In Fig. 3.1, we present the flow diagram of the Generic Design
Procedure that addresses the architecture~ design problem for both of these cases.
For the majority of interesting applications the specified input expression can
be manipulated so that kernel groups of size M = 2 suffice for the architecture
design. This is desirable, since it implies locality and low complexity in the
resulted design. Therefore, the design procedure will be focused on kernel groups
of size M = 2, that also serves the purpose of simplicity and clarity in this
presentation. Nevertheless, we believe it deserves the name ”generic” since it
considers all different factors that affect the architectural structure. Also, 1t
conveys basic notions, so that the design rules and procedures in Fig. 3.1 can

be easily modified to accommodate arbitrary values of M.

Step 0 (§2.2.5)

| Step 1.1 (§2.2.3)

>

Both Yes
TaBL;I;ted functions in f,(- Periodicity
a eeded 7 ?

DEP

y Step 1.2 (§2.2.3)

Corollary 2.3 SP >»i Step 1.2(§2.23)

Corollary 2.2

Lattice Architecture

1IR Architecture

Figure 3.1: Architecture design procedure.

38

In the sequel, we follow the flow diagram in Fig. 3.1. If the input is specified
in the coefficient vector format the preprocessing described in Subsection 2.2.5
has to be employed, resulting an expressibn of the mapping operator coeflicients
in terms of sine, cosine and exponential functions. This is labeled with Step 0
in the flow graph in Fig. 3.1. The mapping operator specified as a linear expres-
sion of kernel functions (regardless whether this is the output of Step 0 or the
provided input) is fed to Step 1.1 described in Subsection 2.2.3. In this step of
the design procedure we determine the kernel groups {fi(-)} that are associated
to the functions {¢;(-)}. For each kernel group f; we question the periodicity
property (PP). If PP is not satisfied the lattice architecture is decided and it
is determined by Step 1.2. Otherwise, we question whether both members of f;
participate in the expression ¢(-) = Y; ¢;¢:(+). If this is the case, then the lat-
tice architecture is preferable, since it performs the computation pertinent to the
second kernel function at no additional cost. Furthermore, the resulted lattice
structure often comprises of a rotation circuit that can be implemented very effi-
ciently by using a CORDIC processor [23] or distributed arithmetic [52]. On the
other hand, the IIR architecture is recommended if one of the kernel functions in
f; is to be implemented. If this kernel function ¢; satisfies the difference equation
property (see Subsection 2.2.6) the IIR architecture parameters can easily be de-
termined by using Corollary 2.3 (see also Fig. 2.5 and Eqn. (2.3.10)). Although
given a kernel function one can construct the associated difference equation, we
suggest this path only if this equation can be found in tabulated form (see for
example [5]). Otherwise, a less painful way to determine the IIR architecture pa-
rameters is to determine first the corresponding lattice parameters by following
Step 1.2 and then using Corollary 2.2 (see also Fig. 2.5 and Eqn. (2.3.7)).

In the following Sections we give a number of architecture design examples

of the above design procedure.

39

3.2 Example A: Discrete Cosine Transform

In this Section, we use the DCT as the first demonstration example of the design
procedure we have developed in the previous Section. The latter dictates an IIR
architecture. Also, with a novel derivation for the Inverse DCT (IDCT) we show
that the basic building module used in the forward DCT can also be used in the
implementation of the IDCT.

Among the transform coding schemes the Discrete Cosine Transform is widely
adopted in a variety of real-time applications, including data compression 26,
58, 31] and transform domain adaptive filtering [41, 43]. Due to the advances
in ISDN network and high definition TV (HDTYV) technology, the need of
an efficient implementation of the DCT has become a very important ques-
tion [24]. Many different approaches have been proposed for the implementa-
tion of DCT [22, 30, 33, 34, 42, 57, 59]. The time-recursive approach has been
proposed for the sliding version of the DCT by [43, 61, 42]. For the sliding
DCT the transform coefficients are computed for all displacements of a sliding
window over the data stream. This is the situation for the transform domain
adaptive filtering [12, 41, 43, 51]. Similar computational structures have re-
cently been proposed for the architectural implementation of the block DCT

with application on real-time data compression [33, 9, 34].

3.2.1 SIMO Architecture for the Forward DCT

The N-point Discrete Cosine Transform of a semi-infinite sequence of (real,
scalar) data z(-) consists of N semi-infinite sequences Xpcr(k,-),k =0,1,---,
N — 1 defined as follows:

Rl km 1
Xper(k,t) = ¢ Z cos (n + 5) z(t+n—-N+1),t=0,1,--- (3.2.1)

n=0

40

where ¢p = \/%— and ¢x = \/%,k = 1,2,---,N — 1. Consequently, the kth
frequency component of the DCT is specified by the mapping operator

[hn:ckcos%r(n—*—%),n=O,1,---,N——l .

The magnitude responses of the DCT filter bank for N = 16 is given in Fig. 3.2.

10 T T
B 0 Koottt
=
(4]
Rel
2
2710 b VA S
€
<
- 20 . - - :
0 /4 /2 3w /4 T

Frequency
Figure 3.2: The magnitude responses of the DCT filter bank for V = 16.

Since we have

{cos%(n_l'{'%)}:[cos 5 sin%}{cos%(n+%)} (39‘75

sin Z(n—-1+1 —sink coskz sin &2 (n + 1
N 2 N N N 2

fro(n) | _
fra(n)

satisfies the shift property. Thus, the mapping operator is specified by the

the kernel group

(3.2.3)
N

cos & (n + 1)
sin 8%(n + 1)

expression h, = ct#(n) = cifro(n). This completes the first Step 1.1 of our

design procedure. From (3.2.3) we obtain

fr0(0) _ cos;—l’\',- nd
fe1(0) sinf—l’\'—,

Consequently, the periodicity property is satisfied and S in (2.3.2) is S = (=1)*.

Jro(N)
fea(N)

= (=1)* { ;""’Eg; } . (3.24)
k,1

Note that the same result can be obtained in an easier way by using Lemma 2.7.

41

Thus, the IIR architecture is recommended (cf. Fig. 3.1).
We have determined two different ways to compute the parameters of this

architecture:

1. (3.2.2) yields:

km s km
COS =7 sSin
R = A: LV . (3.2.5)
ke kr
— sin N COS N

Note that (3.2.4) and (3.2.5) provide the lattice architecture parameters.
Based on Corollary 2.2 and more specifically on (2.3.7) we can compute

the IIR architecture parameters.

o

The kernel functions in (3.2.3) satisfy the difference equation (2.2.12) with
M =2,v=—-1and v, = 2cos % [5]. The initial conditions for fxo(-) and
fe1(:) are fro(—1) = fro(0) = cos ;—1’\', and fi1(—1) = —fk1(0) = —sin %
respectively. The architecture parameters can now be computed based on

Corollary 2.3 and consequently on (2.3.10).
Both approaches yield the following parameter values:

kw kw
d, = —2cos N dy=1, ny=—ny = cos—.

2N

The resulted architecture is shown on Fig. 3.3. The circuit that computes the
N = 8—point sliding DCT is depicted on Fig. 3.4. The block version of the
DCT is obtained by introducing downsampling modules at the points A and B
in Fig. 3.3, as dictated by the structure in Fig. 2.8 and by omitting the delay
element z~" at the input.

Note that the DCT circuit can be viewed as a normalized paraunitary sys-
tem [55, 54]. Consequently, the associated realizations have their poles on the
unite circle [55, 54]. Such phenomenon may cause instability on the resulted IIR
implementation. This subtle point can be handled by quantizing the coefficients

involved in the design, so that the poles locate inside the unit circle [32].

2 cos Xn
X VN 2N
X CT(k.b)

x(t) (-1) C A 3
Z-l
B
Z-l
Module M, , k#0
N X (0D
C A N DCT
-
Z~1
B

- 2
G)?((shift left)

Module M,

Figure 3.3: IIR architecture for the DCT kernel function.

43

X perlov
R M,
Xpertt)
—>> M,
X oer@ ()]
x(t)
DCT(3 t)
; M 3
s _Y _ Xperét)
Z > M 4
T XDCT(S.t)
—>> M >
Xpor6D
> o My
X 1)
petY
—>» M, ——3

Figure 3.4: Recursive architecture for the DCT.

3.2.2 MISO Architecture for the Inverse DCT

The N-point inverse DCT (IDCT) reconstructs the input sequence points z(N(t—
1)+1),z(N(t—=1)+2),---,z(Nt) at the time instants Nt, Nt+1,--- ,Nt+ N1

as follows:

s(N(t—1)+n+1) %; kcos[<n+ %)] Xpor(k,Nt), t=1,2,---
= (3.2.6)
This formulation reflects the data model of the block DCT (that is, the DCT
coefficients are decimated by a factor equal to N). Before we proceed with

the treatment of this case, we would like to consider the simpler but rather

44

unrealistic case where all the coefficients { Xpeor(k, 1) sz'Ol, t=1,2, - produced
by a sliding DCT are available. In such case, the reconstruction of the original

data sequence z(t),t = 1,2, -+ is trivially obtained as follows
k=
z(t) = chcos—ADCT(k t), t=12,---

Nevertheless, the information carried by the coefficients { Xper(k, 1)} oo, ¢ =
1,2, is highly redundant, thus usually not all the coefficients are available.
In the sequel, we consider the more realistic case of the decimated set of

DCT coefficients { Xper(k, Nt)}2oo, t = 1,2,---. (3.2.6) is equivalent to

2

e(N(t-1)+n+1)= Z ko Nt+n+1), t=0,1,---, n=0,1,---,N-1,

where
Yro(Nt + n+1) = fro(n)Xper(k,Nt), k=0,1,--- ,N -1 (3.2.7)

and fio(-) is defined in (3.2.3).

In this Subsection, we show how we can evaluate the expression in (3.2.7)
in a time-recursive way. We consider first the general case of a kernel group of
size M = 2: £(:) = [fo(-) f1(-)]T. Both the lattice and the IIR architectures are
discussed.

Suppose that the kernel group f(-) satisfies SP. Then, (2.2.1) yields
f(n+1)=R7'f(n), n=0,1,---,N -1 (3.2.8)
Let y(-) be

y(Nt+n+1)=f(n)Xpcr(0,Nt), t=12,---, n=0,1,--- N1,

45

or
y(Nt+n)=f(n—1)XDCT(O,Nt), i=1,2,---, 1’1,=1,2,"-,N, (329)

where Xper(0,t),t = 0,1, - - is the transform sequence that corresponds to the

0th kernel function of f(-). (3.2.8) implies:
y(Nt +n+1)= R'lf(n — 1)XDCT(O, Nt)

and therefore, the quantities y(Nt+n+1),n=0,1,---, N — 1 can be evaluated

by the following recursive algorithm:
y(Nt + 1) = f(O)XDCT(O,Nt) (3.2.10)

y(Nt+n+1)=R7'y(Nt+n), n=1,2,---,N—-1 (3.2.11)

This algorithm is implemented by the lattice architecture in Fig. 3.5.a. Note
that the parameters 7;, ¢ = 0,1, j = 0,1 are the elements of the matrix R-L
An IIR implementation of the same algorithm is obtained if we consider the

transfer function of the system specified by (3.2.10) and (3.2.11):

Lemma 3.1 Let f(-) be a kernel group of size 2 that satisfies SP. Then, there
is an IIR structure with two delay elements that can implement the algorithm

in (3.2.10)-(3.2.11). Furthermore, the coefficients of the transfer function

ng + 7’L12'—1

T 14d; + dyz?’

H(z)

of the system with input Xper(0, Nt),t = 1,2,--- and output yo(Nt + n + 1),
t=12-, n=01,---,N —1 (that is the sequence of the oth elements of

vector y) are specified by the expressions

dy = — [Foo + T da = FooT11 — TroTo1

(3.2.12)
ng = fo(N) ny = fl(N)F()l - fo(N)Fu

46

where 7,1 = 0,1,7 = 0,1 are the elements of the matrix R-!. O

The IIR architecture is depicted in Fig. 3.5.b.

The circuit that computes y,o(-) for the IDCT can be designed by a simple
parameter substitution in the structure of Fig. 3.5.b. Surprisingly, we realize
that the IIR module for the IDCT is identical to the one for the direct DCT.
N such modules are needed for the computation of the N—point IDCT. The
resulted design for the 8—point block IDCT is shown on Fig. 3.6.

yo(Nt+n+1)
27! €

XO(Nt)>

X 5(Nt) yo(Nt+ n;)

b

Figure 3.5: Inverse transform module.

47

X o080 —> 18 > M

X {08)—> 18 —> M,

X 08)—> 18 —> M,

X 08—l 18 |—> M,

X 08— 18 —> M,

Xoq(0:8) —>1 18 > M

X (080 —> 18 —> M

x(t)

X or08)—> 18 —>{ M,

Figure 3.6: Recursive architecture for the IDCT.

3.2.3 Cost Issues

Only two multipliers are needed for the computation of the kth frequency com-
ponent (k # 0) of the DCT (cf. Fig. 3.3). The implementation cost for the
N-point DCT is 2N — 1 multipliers and 3N + 2 adders. These expressions are
shown also on Table 3.1. The implementation cost and the throughput expres-
sion for a fully pipelined implementation of a fast algorithm proposed in [59] are

also given on Table 3.1 1.

!We deliberately have chosen this algorithm as an example of implementation based on a
fast algorithm. For a more detailed comparison of DCT algorithms the interested reader may
refer to [33].

rate constraint implementation cost
(mult, add, rotation)
time-rec.,sliding Mp+Ap=u 2N —-1,3N +2,0
DCT | time-rec.,block Mp+Ap=u 2N -1, 3N 0
fast algo.,sliding Ms+As=u Llog, N —2)+4,
fast algo.,block Ms+ As = Nu N (log, N — 1) +4,0
time-rec.,sliding Ap+Rp=u 0, N N =1
DFT | time-rec.,block Ap+ Rp=u 0O ON-—-1,N -1
fast algo.,sliding Ms+As=u S(log, N =3)+2,
fast algo.,block Ms+ As = Nu -121(3log2 N-—-5)+4,0
DWT | time-rec.,sliding || 2Mp + 7TAp + Rp = u | 15log, N,20log, N,4log, N

Table 3.1: Cost metrics for the architectural implementation of block transforms.
Mp, Ap and Rp denote the time delays associated with a bit-parallel implemen-
tation of the multiplier, the adder and the rotation circuit respectively. Ms, As
and Rg denote the corresponding time delays for a bit-serial implementation.

time-recursive FFT-like,sliding

(mult,add) (mult, add)
DCT 2N —1,3N +2 N(log, N —2) +4, Z(logy, N — 1) +4
DFT | 3N —-3,3N -2 Z(log, N —-3)+2, (3log2N—5)+4
MLT | 5N —-3,5N +3 > (log2 N +5), %—V—(log? N +1)
DWT | 31log, N,28log, N

Table 3.2: Cost metrics (multiplication and addition counts) for the uniprocessor
implementation of sliding transforms.

For the derivation and proper interpretation of the throughput rate expres-
sions on the same Table, we need to consider the data model from a closer
perspective. In the applications of interest, such as communication of audio,
video, sonar and radar data, the input is provided in a serial way. Let us denote
with u the time-unit, that is the time lapsing between two adjacent input data.
Let us recall also, that the locality property of the time-recursive design makes
the bit-parallel implementation of the arithmetic operators feasible. We will
denote with Mp and Ap the time required for a multiplication and an addition

respectively, as opposed to Ms and As that will denote the time needed for the

49

same operations when implemented in a bit-serial way. The latter must be em-
ployed for the architectures based on fast algorithms, since they require global
communication. For real-time applications the throughput rate th, that is the
number of data samples to be processed per time-unit, needs to be equal to
th = 1. Otherwise, if th < 1, the circuit will not be able to handle all the arriv-
ing data, so storage of data and off-line processing will be needed. On the other
hand, if th > 1, the circuit will be periodically idle since no input data will be
available. Under this light of timing information and throughput requirements
we will next consider the DCT implementation.

First, for the time-recursive architecture of the sliding DCT circuit the data
flow of the structures in Fig. 3.3 and Fig. 3.4 dictate that between two adjacent
output data samples two multiplications and four additions have to be per-
formed. By introducing buffers at the points A, B,C and D in Fig. 3.3 pipeline
processing is possible, so that the computation time is specified by one multi-
plication and one addition. Consequently, the real-time processing requirement

is equivalent to
u

th= — =1
Mp + Ap

In other words, the implementation should meet the constraint
Mp + Ap = u. ' (3.2.13)

Furthermore, if this is true the latency of the circuit will be equal to 3Nu.
Consider now the fast algorithm design for the sliding DCT that has an inher-
ently parallel-input parallel-output nature. At each time instant an input data
arrives, and a sliding window of length N moves to the next position. The real-
time processing requirement dictates that before the next input data arrives an
N x N DCT must be performed. An architecture based fast transform consists
of a sequence of log, N alternating stages of multiply-add pairs and butterfly
interconnection networks. The latency time from input to output for a fully
parallel structure will be equal to log, Nu. For a fully parallel and pipelined

structure each stage can operate on a different set of data, so at a time interval

50

equal to the latency time above log, N output data sets will be available. In

conclusion, the real-time processing requirement will be equivalent to
Ms + As = u. (3.2.14)

A comparison of (3.2.13) with (3.2.14), as well as the latencies of the time-
recursive and the architecture based on a fast algorithm yields a strong superi-
ority to the former. In other words, (3.2.13) is substantially easier to meet than

(3.2.14). There are two reasons for this:

1. The locality property of the time-recursive architecture allows a shorter
internal clock cycle than the one employed by the architecture based on a
fast algorithm since the latter makes extensive use of global interconnec-

tions.

2. Even if the same clock cycle intervals are used for the two circuits, the ratio

—))% will be of the order of the wordlength used in the finite word length
implementation [21]. Here, Xs and Xp denote the time necessary to carry
out an operation (either addition or multiplication) with a bit-serial and a
bit-parallel implementation respectively. It worths mentioning that the use
of distributed arithmetic [60, 52] in implementing bit-parallel operations
has been proved to be very effective in the applications of interest [9]. In

particular, it is possible to execute one multiplication per clock cycle with

this approach.

For the time-recursive implementation of the block DCT the architecture
depicted in Fig. 3.3 and Fig. 3.4 needs some modifications as we have mentioned
already: the output of the circuit is decimated by a factor equal to N, while the
delay element z~V at the input of the structure is not needed, as explained in
Subsection 2.4. If the decimation is performed at the points A and B in Fig. 3.3
only one multiplier and two adders need to operate at input data rate, while
one multiplier and one adder operate at rate N times lower. By employing

the pipeline processing described above we obtain the time lapsing between

o1

two adjacent output samples: N(Mp + Ap). For real-time data processing the
time available for this computation is equal to Nu. Consequently, the real-time
processing requirement is again specified by (3.2.13). Also, the latency time 3Nu
as in the case of the sliding DCT. On the other hand, an architecture based on
a fast transform will operate as follows. The data will arrive serially, and stored
in a buffer of length N. If we assume the buffer feeds the fully parallel and
pipelined structure described above. This structure will produce a new set of
output data in a time interval equal to Mg + As. The available time for this

computation is equal to Nu. Consequently, the real-time processing requirement

dictates
Nu
th=——=1,
' Ms + As
or
Ms + As = Nu. (3.2.15)

The latency time in the pipelined structure will be log, N(Ms + Ag). We need
to add on this the waiting time of the data in the input buffer. This ranges from
lu to Nu with an average (approximately) —12! In total, the (average) latency
time is N(log, N + %)u Apparently, the constraint in (3.2.15) is substantially
easier to meet from the corresponding one of the sliding DCT (3.2.14). On the
other hand, a comparison with (3.2.13) under the light of the comments on the
implementation of arithmetic operators made above, yields the conclusion that
the two constraints have comparable difficulty. Nevertheless, this comparison
should not be viewed in isolation from the companion problem of area minimiza-
tion, as well as the properties of modularity, regularity and scalability in V. In
this perspective, the time-recursive approach suggests very competitive designs
for block transform circuits [33, 9], that have been proved to be asymptotically

optimal [34].

52

3.3 Example B: Discrete Fourier Transform

In this Section we present the design of a lattice architecture for the DFT. The
time-recursive implementation of the DFT has been considered both in the con-
text of adaptive filtering [7, 10, 43] and spectrum analysis [32, 47]. Here we also
consider the architecture of the Inverse DFT (IDFT). Finally, we demonstrate
how these architectures can be incorporated by an architectural implementation

of the Cepstral Transform [46].

3.3.1 SIMO Architecture for the Forward DFT

The N-point DFT of a semi-infinite sequence of (real, scalar) data z(-) consists

of N complex semi-infinite sequences Xpprr(k,-),k =0,1,---, N — 1 defined as
follows

Xprr(k,t) = Z(‘N r(t+n—-N+1), t=0,1,---.
So

1 o
RA{Xprr(k,t)} = Zcosﬁkn z(t+n—-N+1)
1 N2 or
I{Xprr(k,t)} = N Z sin Nkn z(t+n—N+1),

where R{-} and Z{-} denote the real and the imaginary part of the bracketed
quantity. Consequently, we seek the implementation of the following two map-
ping operators

— 1 27 1.
hin = Ncos £ kn

Gkn — —\/ sm ~

fro(n) _ | cos %kn
frea(n) sin %kn

(3.3.1)

k=0,1,---,N —1. Let

53

specify the associated kernel groups fix(n),k = 0,1,---, N — 1. For the kernel
group fi(-) we have fy(n — 1) = Rfi(n), where

R, — cos % sin 2]’;" (33.2)
S sin 28T cos 21 | o
N N
We also have ‘
S | [ey][533
fr1(0) fia(N) 0

where S = 1. Therefore, the periodicity property is satisfied. Since both member
functions of the kernel group appear in the mapping operator decomposition
(3.3.1), the lattice architecture is recommended (cf. Fig. 3.1). In Fig. 3.7, we
provide the lattice architecture module that is used as the building block of the
DFT architectural implementation. The latter is depicted on Fig. 3.8 for the
case of N = 8. Observe that the lattice structures specify rotation operations.

3.3.2 MISO Architecture for the Inverse DFT

For the inverse discrete Fourier transform of a sequence of complex N-vectors

Xprr(k,Nt),k=0,1,---N —1and t=0,1,--- we have

c(N({t—1)+n+1) = ,/ ZX’DFT k,Nt)ed ¥k n=0,1,---,N—1, (3.3.4)

The time-recursive realization of (3.3.4) can be obtained in a way similar to the

one followed for the IDCT (see Subsection 3.2.2). From (3.3.4) we get

z(Nt—-1)+n+1)=

= (2ol N(t = 1) 4 n+ 1) + jza(k, N(t = 1) + 1+ 1)), (3.3.5)

54

where

zo(k,N(t —1)+n+1)
Yi(k, N(t—1)+n+1)

= Xo(k, Nt)

fro(n) + X, (k, NY) ~fi1(n)
fea(n) fro(n)
(3.3.6)

and Xo(k,t) and X;(k,t) are the real and imaginary parts of Xprr(k, Nt).

N
Module M , k# 0,3

27! je———
I oos 3
~ Fany
<> -0 > X, (k)
N 7 -
N < . 2kX
Rotation > YN/ N
CIrCUlt/ , ,}/_\sz_;lt
s - \I
{ ‘ /\’_zﬂ >0 > X, (k1)
COS =+
N
!

> X, ()

L, k=0
c={
—1 k=

vz

—> X (k)

N
Module M , k=0,5

Figure 3.7: Lattice architecture for the DFT module.

55

> 3 (X, (0)

— M,
——> R {X__(1,1)}
I - XorT
= > 5 {X, (1))
| R (X (20)
TRV, *54 M
P =3 X)
> R{X (3.0}
M e s (80
x(t)

——>R{X__(4.1)}
N M4 ~ XDFT
= >3 {X, (4.1}
F——% (X, (5.}

—> M _
——33 (X, (5:1)
% (X (6.0))

—> M, _
>R X, (7.0}
L L] w %
3 {X i (7.1)

Figure 3.8: Recursive architecture for the DIF'T.

The computation in (3.3.6) can be implemented by the scheme in Fig. 3.9.
The details for the modules Mk,k = 0,1,---,N — 1 are given in Fig. 3.10.

The latter are capable of evaluating the summands in (3.3.4) for the real input

56

Xi(k,t),1 € {0,1}. This is justified by the fact that (for real input X;(k,1)):

zo(k, N(t=1) +n+1)

= Xi(k,t)fi(n
e (b, N(t —1) +n+1) Xi(k,t)fi(n)

zo(k, N(t = 1)+ n+1)
o (k,N(t —1)+n+1)
X;(k, Nt)f,.(0), n=0.

Xi(k, NOR;Mi(n — 1) = R;!] , 1<n<N

The resulting time-recursive architecture for the size N = 4 IDFT is shown in

Fig. 3.11.

Xo(k,Nt)—-—> My

- :iv_) X, (K,N(t-1)+n+1)

X (N)—f §, B
xo(k,N(t-1)+n+1)

Figure 3.9: IDFT module for complex input.

VN X (KN(-1)+n41)
>

—){&v—)&

X(k,Nt)

VN xt(k.N(t-1)+n+1)
>

Module M, k=0, ,N-1

Figure 3.10: Details for real input IDFT module.

57

R (Xper (00} —>1 Mg

3 (Xorr (00} = M, _ %

R (10} M,

X (10— M, _ % 1

RGO M,
J’eu 2

3 X201 M, _ ¥)(

R Ko (B0} M,

i)i)é——) 3{x(1)}
3Ky B M, i -)é__)é >9z{{x(t)}

Figure 3.11: Recursive architecture for the IDFT.

3.3.3 SIMO Architecture for the Inverse DFT

A different input data model is considered in this Subsection. Suppose that
the sequence of N-vectors Xppr(k,Nt),k=0,1,---N -1 and t=0,1,--- are
supplied in a serial manner, so that the input consists of a semi-infinite sequence

of data y(t),t = 0,1, --. For the sake of simplicity assume real valued data. The

58

function of the ktP IDFT operator is specified as follows:

N-1 :
Yiprr(k,t) = 3 ¥ y(t+n—N+1), t=01,--.

n=0

So, the real and the imaginary parts of the output data respectively are:

R{YIDFT(k»t)} = 21}:;_01 fk,O(n)y(t +n—N+ 1)7 t= Oa Ie--
I{YIDFT(kat)}:: nN=—-01 fk,l(n)y(t+n—N+1)a t:0a17“'7

where

Jeo(n) o8 %’kn = fi(n).

fe1(n) sin # kn
The time-recursive implementation of the kernel group fi(n) is already studied
in Subsection 3.3.1. More specifically, Fig. 3.7 depicts the lattice architecture
for the building module. The architecture for the IDFT differs from the DFT
architecture (see Fig. 3.8) only by the sign of the lower (imaginary) output of
the module. This is minus (=) for the DFT and plus (4) for the IDFT case.
Furthermore, observe that the input are transform coefficients associated with
non overlapping blocks of the original data. Consequently, this SIMO (single-
input multiple-output) architecture can operate only in the context of a block

transform (as opposed to the sliding transform).

3.3.4 Cost Issues

For the computation of the kth frequency component (£ # 0) of the DFT one
rotation circuit and one real adder are needed (cf. Fig. 3.7). The implementation
cost of the N-point DFT is N — 1 rotation circuits and N adders. By letting
v be the time unit, the real-time processing requirement is expressed by the
throughput rate constraint depicted in Table 3.1. The implementation cost and
the throughput rate constraint for a fully pipelined implementation of the split
radix FFT algorithm in [13] are also given on Table 3.1. All the comments we

have made in Subsection 3.2.3 for the DCT apply for the implementation of the

39

DFT as well.

3.3.5 Cepstral Transform Architecture

The size N Cepstral Transform y(t),t = 0,1,--- of a real valued sequence

z(t),t =0,1,--- is defined as follows [46]
y(t) = IDFT{log (DFT{z(t)})}, t=0,1,-. (3.3.7)

The discrete Fourier transform operates on N subsequent samples of the input
sequence z(t +n),n=0,1,--- N — 1.

The log operator in (3.3.7) denotes the complex logarithm of a complex ar-
gument. We do not address the question of implementing this log operator here.
We assume that we are provided a logarithm circuit that accommodates prop-
erly the phase wrapping requirements of the application that uses our Cepstral
transform design [54]. We believe that such a circuit can be built with one of

the following approaches:
1. Use a CORDIC processor.
2. Use a distributed arithmetic approach and ROM tables.
3. Use an analog nonlinearity.

The choice of the logarithm circuit will depend on the throughput requirements,
as we will see later.

With the use of the DFT and IDFT modules we presented in the previous
Sections, we can have two variations in the architecture for the Cepstral trans-
form depending on the speed the logarithm module can operate. First, suppose
that the latter can operate at a throughput rate equal to the data input rate,
that is it can perform one operation per time unit. This can be true for an
implementation of the logarithm based on distributed arithmetic, or an analog
nonlinearity. The resulted architecture of the Cepstral transform for N = 4 is

shown in Fig. 3.12. The DFT modules feed the logarithm elements with one

60

datum per time unit. This implies that the time variable n in (3.3.4) can always
be n = 0, since the t variable increments by 1 at every time instant. In this case,
the modules Mk, k=0,1,---,N—1 vanish. The implementation cost is N — 2
rotation circuits, 1 + N + 2(N — 1) = 3N — 1 adders and N "fast” logarithm

circuits 2.
x(t) —> M, > log
- —>
z
>
> M, log
>
>
—>» M, log
>
R{Cep(x(1)}
>
L5 M, log 3{Cep(x(t)}
> > >

Figure 3.12: Cepstral transform architecture based on fast logarithm circuit.

Second, suppose that the logarithm element can operate at a throughput rate
N times lower than the data input rate, that is, it can perform one operation
every N time units. This can be true for a CORDIC implementation of the
logarithm circuit. The resulted architecture for N = 4 is shown in Fig. 3.13.
The output of the DFT modules is fully decimated and fed to the logarithm
elements. The latter produce an output every N time instants which is fed
to the IDFT modules. In this case, the time variable n takes values in the
range n = 0,1,---, N — 1 and ¢ is incremented by N every N time instants
The implementation cost of this architecture is 3N — 6 rotation circuits, 6 N —1
adders and N "slow” logarithm circuits.

Both architectures are very suitable for VLSI implementation that can achieve

high operation speeds and they can be used for real-time computation of the

ZNote that the logarithm circuit needs to incorporate the /N factor associated with the
DFT and the IDFT. In other words, the logarithm circuit needs to implement the expression
ﬁ log(ﬁx), where = denotes a complex number.

61

Cepstral transform.

> M
x(t) ;E—) _'I—) ’
> > M, log
T e N
[-
SNV
M
I sl
> 1 Iog)L J'
—_)E—_) __) 1 > L ‘L >
' .:\/ ><J
g
g © b4 .
L.y N
MZ N - '\ ‘L N/
SNV Ny
g
4
» M, log R{Cep(x(t)}
. Y icenx(
_—l—) M; '\117\ JV\’\ @Cep(x(t))}
N NV »

Figure 3.13: Cepstral transform architecture based on slow logarithm circuit.

3.4 Example C: Discrete Wavelet Transform

The mapping operators considered in the first two examples, the DCT and
the DFT, were sinusoidal functions. Since these functions belong in the class
specified by Lemma 2.2, the time-recursive architecture was derived by following
the procedure described in Subsection 2.2.3. In this Section, we consider the

implementation of a pair of finite impulse response filters (FIR),
H = [Anv-1 hn-2 --+ ho] and G =[gn-1 gN-2 - 9o,

that are used in the implementation of the Discrete Wavelet Transform (DWT)
[35, 48, 50, 28]. We use the procedure described in Subsection 2.2.5 in order to

express the above coefficient vectors in terms of the kernel functions specified in

62

Lemma 2.2. The resulted linear expression is used as the basis for the design of

a time-recursive lattice architecture.

3.4.1 Architecture for the DWT/IDWT

Implementing the filters H and G is equivalent to implementing the mapping
operators

[ho h1 --- hn-1], and [go g1 -+ gn-1].

Since the input specification to our Generic Design Procedure is in coefficient
vector form, we follow the left branch of the flow diagram in Fig. 3.1.
Step 0.1: Consider the linear system with the N first Markov coefficients being

equal to the N columns of the matrix

ho hy -+ hn—y
go g1 -+ gnN-=1

We specify the partial realization {A,b, ¢} of minimal order M for this linear

system [27, 29], so that

hn
=cA"b, n=0,1,---,N—1. (3.4.1)

gn

Step 0.2: Bring the triplet {A,b,c} in the modal canonical form [27]. If our
system is a normalized paraunitary system {54] the magnitude of all the eigen-
values of the system matrix A will be equal to 1. For the sake of concreteness,
suppose that the order of the system is M = 3. The format of the matrix A

will be as follows:
cosa sina 0

A=| —sina cosa 0 |,

0 0 g

where o takes values in the interval [0,27) and § equals either 1 or —1. The

M x 1 vector b and the 2 x M matrix ¢ do not have any particular structure.

63

Step 0.3: By substituting the above expression of A in (3.4.1) and expanding

the matrix notation we obtain

cosan sinan 0 bo
h, Coo Cor Co2 .
= —sinan cosan by

gn 1o €11 Ci12
0 0 ok by

and consequently

hn coobo + co1by —co1bo + coobr)
= cos an -+ sin an +
gn c10bo + c11br c11bo + c10b

cozby } gm.

Cl2b2

(3.4.2)

Step 1.1: The kernel groups we need to implement are

fo(n) = [f‘“’(") } - [C‘)S a"} and fi(n) = fro(n) = 8.

for1(n) sinan

Step 1.2: For the kernel group fo(-) we have fy(n — 1) = Rfo(n) with

R =

—sina cos«

cosa sina jl

We also have

Joo(0) = ! and
fo1(0) 0

The resulted architecture implies module M in Fig. 3.14. As we have seen in

Chapter 2 (Lemma 2.7), the periodicity property is satisfied if o = %” with

cosalN

foo(N)
Jor(N)

sina/N

k being an integer, which is not true in general. On the other hand, for the
singleton kernel group f;(-) we have fi(n — 1) = Rfj(n) with R = 213- and also
f10(0) = 1, fio(N) = BN. The associated architecture is demonstrated by
module M; in Fig. 3.14. No multipliers are needed for the implementation of

f1(-) if the eigenvalues have unit magnitude. The architectural implementation

64

of the given pair of mapping operators for the case where M = 3 is shown in

Fig. 3.14.

x(t) x(t) 27! jEe— Coobotco b
CosS QO
|y Faa b,+c,,b
¢ Cosan Yéinan <;>|/ — ';?.u €10P0* €110
2N \\ ;\/—sina
Rotation ~ y

—Chnbatcob
x(t— N) 01207 “0o0"1

Curcuit , AN sina

- s /_\
j < RS
% *l

S le— | -
cyb gt €10b

Module M (@) z

e
}'_

x(t— N) Module M (B)

Figure 3.14: The architectural modules used for DWT.

For the general case of a system of an arbitrary order M with distinct, unit
magnitude eigenvalues we need to implement M kernel functions. Among these
functions no more than two are in the form of fi(-) seen above (since only two
distinct such functions exist with # = 1 and 8 = —1) and they are implemented
by module M;. The rest of the kernel functions will group into pairs of cosine-
sine functions specified by the parameter «, as dictated by fo(-) in the above
example, and they can be implemented by module M.

In the sequel, we consider the implementation of the pair of wavelet filters H
and G, whose coefficients, obtained in [2], are given on Table 3.3. The lengths
of the filters H and G are 9 and 7 respectively. The size of the kernel group we

have to implement (that is the order of the associated linear system) is M = 6.

65

The architecture involves two copies of module My and two copies of module
M;. The values of the parameters a and £, as well as the output weights are

given on Table 3.3. The resulted architecture is shown on Fig. 3.15.

h, gn aor f werght, weight,
0.0267 0.0000 1.0 0.1781 -0.0032
-0.0168 0.0456 -1.0 -0.0056 0.1778
-0.0782 -0.0287 || 1.1085 -0.0881 -0.0235

0.2668 -0.2956 -0.3089 -0.0781
0.6029 0.5575 | 2.0929 -0.0575 -0.1511
0.2668 -0.2936 0.0998 0.2673

-0.0782 -0.0287
-0.0168 0.0456
0.0267 0.0000

Table 3.3: Example of wavelet filter coefficients and the associated architecture
parameters.

For the inverse Discrete Wavelet Transform (IDWT) we have to implement
the mirror filters H and G of G and H respectively [2]. The architectural imple-
mentation of the IDWT is obtained from the corresponding DWT by replacing

the parameters a and # by 7 — a and —f3 respectively.

3.4.2 Cost Issues

The implementation of module My in Fig. 3.14 requires 2 multipliers, 3 adders
and one rotation circuit. For the implementation of module M; we need 2 adders.
We implement the desired pair of mapping operators as two weighted sums of the
outputs of the above described parts. If the size of the associated kernel group is
M the cost of this interconnection is 2M multipliers and 2(M — 1) adders. The
overall cost of the design is not higher from 3M multipliers, |7M/2] adders and
M /2 rotation circuits. For the example we consider in Fig. 3.15 the size of the
kernel group is M = 6 and the implementation cost is 15 multipliers, 20 adders
and 2 rotation circuits. Note that a rotation circuit can be implemented very

efficiently with a CORDIC processor [23] or a distributed arithmetic design [52].

66

N.1781
v

NS 0.0032
v

NS 0-0056
/0.1778

< 0.0881 ‘
00235
< 0.3089
< 0.0781

>0.0575 >€§

NS 0151)
v

NQ.0998 ¥ Xp)

/ *
0.2673 X ()
Sed

M, 1)

6_
Y

Y

M](— 1)

\VA
5

/L

M (@ 1. 1085)

Y Y

VAN

My (%= 2.0929)

YYYY‘LYVVlY¢Y

Figure 3.15: Architecture for the DWT filters specified in table 3.

Assume that N uniform subband divisions of a signal spectrum yield the
same resolution quality with log, N logarithmicly spaced subband divisions. For
example, suppose that the 16-point DFT yields the same resolution quality
with the DWT of with 4 H — G pairs 3[35]. The cost implied by using the
architecture in Fig. 3.15 as the building block for the DWT tree structure is
given on Table 3.1. Efficient FFT-based algorithms have been developed for
the implementation of the DWT on a uniprocessor [48]. Nevertheless, these
algorithms map on very expensive architectures. For concreteness, let us focus

on the example we considered in the previous subsection. The DWT filters have

3Knowles has implemented this scheme with only one filter pair but he uses feedback very
extensively [28].

67

lengths 9 and 7. For these lengths a 16-point FFT should be used, that yields
5.76 log, N multiplications and 14.72log, N additions per data sample [48]. This
algorithm maps on an architecture witH 144log, N multipliers and 368log, N
adders. The same numbers in multiplications and additions are needed for the
sliding version of the DWT per data sample. Smaller but still prohibitive is
the cost if the short length FIR filter technique is used instead [48]. On the
other hand, both the architectural implementation and the sliding version of
the DWT can be obtained by directly implementing the FIR filters H and G.
This straightforward implementation is the most efficient among the ones we

have discussed in this Subsection for both of the above cases.

3.5 Conclusion

The Generic Design Procedure we propose is an efficient tool for exploiting the
various design alternatives and obtaining time-recursive architectures. Research
areas that can be benefited by this tool include real-time data compression,
adaptive filtering and spectrum analysis.

The examples of time-recursive computation we have considered exhibit both
the strengths and the weaknesses of the time-recursive computation. More pre-
cisely, for the DCT and the DFT the proposed architectures compete very well
with different implementation schemes that appear in the literature. We con-
jecture that this is a consequence of the fact that our designs are composed by
linear, time invariant (LTI) components. It is well known that the eigenfunc-
tions (modes) of such LTI systems are exponential functions. As a result, the
mapping operators that can be expanded in a sum of only a few exponentials
(for example, 2 for the case of DCT and DFT and 4 for the case of MLT that is
studied in Chapter 4) can be implemented efficiently with a time-recursive com-
putation. Furthermore, the implementation cost is independent of the length
of the mapping operator. On the other hand, if the expansion involves a "fair”
number of exponential functions the resulted architecture will not be cost effi-

cient. This is the very case of the DWT, where the time-frequency locality of

68

wavelets guarantees that the expansion of the DWT filters involves a fair amount
of exponentials.

In conclusion, the time-recursive comi)utation is appropriate for implement-
ing narrowband FIR filters as well as a wide variety of data transforms, includ-
ing the discrete sinusoidal transforms like the Discrete Fourier Transform, the
Discrete Cosine Transform, the Discrete Sine Transform, the Discrete Hartley

Transform and some Lapped Orthogonal Transforms.

69

CHAPTER

4

Application on QMF Banks and Data Transforms

The Quadrature Mirror Filter (QMF) banks play an important role in multi-
rate system theory and design with an impact to numerous applications (see [54]
and the references therein). The connection of the QMF banks with a class of
data transforms, like the Short Time Fourier Transform (STFT), the Discrete
Wavelet Transform (DWT) and the Lapped Orthogonal Transforms (LOT) has
attracted a lot of interest lately, that gave rise to a number of novel trans-
form basis. The latter yield performance characteristics similar to the ones of
the QMF banks in addition to an easier design and cost efficient implementa-
tions [35, 39, 54].

In this Chapter, we propose the use of time-recursive computation as the sub-
stitute of fast algorithms used in the implementation of two kinds of filter banks:
the uniform-DFT filter bank and the cosine modulated filter bank. In
this way, the overall design involves local interconnections and therefore it be-
comes more appropriate for VLSI implementation, thus facilitating the single-
chip implementation of the QMF analysis and the QMF synthesis system. We
also consider the architectural implementation of some data transforms, namely
a Short Time Fourier Transform, the Modulated Lapped Transform (MLT) [36]
and an Extended Lapped Transforms (ELT) [38] that are special cases of the
above filter banks. The designs we propose for all three transforms are modular,
regular and they require local communication, thus they are very appropriate
for VLSI implementation. In addition, they are very efficient in terms of area

utilization because: first, they have linear requirements in operation counts,

70

second, a substantial part of the computation is carried out by rotation circuits
that can be implemented very efficiently [52] and third, the designs are based
on locally interconnected building modul‘es that are almost the same in number
and complexity with the corresponding ones of the DFT.

In Section 4.1, we provide some background information about QMF banks,
we describe the uniform-DFT QMF bank and we introduce some modification
to the existing scheme. In Section 4.2, after a short discussion on the cosine
modulated QMF bank, we introduce a time-recursive structure for computing
the modulation matrix. In Section 4.3, we introduce the time-recursive imple-
mentation of the STFT with Hanning windowing of the data. This design was
first outlined in [32]. In Section 4.4, we derive the time-recursive architectures
for MLT and inverse MLT. Finally, in Section 4.5, we derive the time-recursive
architecture for an ELT. It worths noting that although the basis functions of
this transform form an N-band QMF bank with filter length equal to 4N, the
implementation cost is only 3N +4 multipliers, 4 NV +4 adders and N +2 rotation
circuits.

We focus on the design of the analysis systems (with the exception of the

case of MLT). The synthesis counterparts can be derived in similar ways.

4.1 Uniform-DFT Filter Banks

4.1.1 Background

Consider the structure in Fig. 4.1.a, composed by a filter bank Ho(z), Hi(z)," - -,
Hpy_1(z) followed by decimators. Suppose that the filters have perfect bandpass
responses with equal bandwidths and they collectively cover all the frequency
range [0,27]. Then, the original signal z(#) can be recovered from the subband
signals zo(Nt), z1(Nt),- -, zn-1(Nt) by proper choice of the (perfect passband)
filters Fo(z), Fi(z), -+, Fn-1(z) in the synthesis system in Fig. 4.1.b. Never-
theless, if realizable filters are used the reconstructed signal Z(t) may suffer
from alias error, as well as magnitude and/or phase distortion. These analy-

sis/synthesis structures are well studied in the literature under the name Quadra-

71

ture Mirror Filters (QMF) (see for example [54] and the references therein).

XNty X0t
x_(i)__) Hy(z)] N — ———LTN—) F,(2) —

X0Nt) X (Nt
> S—LTN—> F(z) P>

—>» H @) [N

x(t)
™ —>» E,_,(2) >

X, MNt) X Ot
— H _(z) >IN }—> —>

a b

Figure 4.1: N-channel QMF bank: a. analysis system, b. synthesis system.

A set of N filters Hi(z),k =0,1,---,L — 1 forms a uniform-DFT filter bank

if the filters are related as follows:
Hy(z) = Ho(e 7 %*%2). (4.1.1)
In other words, the frequency responses of the filters are modulated versions of

the response of a prototype filter Hy(z), as shown in Fig. 4.2.

A
1] Ho H, H, H,_,
_ﬁ/) l r \ ' = o
N N N

Figure 4.2: Typical frequency responses of uniform-DFT filters.

Consider the polyphase decomposition of the prototype filter [54]:

+o0 N-1
Ho(z)) = h(l)z™' =) 2" En(2V), (4.1.2)
=0 n=0

72

where

E.(z)) = ioen(l)z‘l and e ()= h(Nl+n), 0<n<N-1

=0

For instance, if N = 2 we have the following polyphase representation:
Hy(z) = Eo(2¥)+27 E (2%), where eo(l) = h(20),e1(I) = R(21+1), [=0,1,---
-2 N .
Since (e"Wk) =1, from (4.1.1) and (4.1.2) we obtain:
Ze FenmE(2Y), k=01,---,N -1 (4.1.3)
Therefore, the N filters can be implemented by using the structure shown in

Fig. 4.3, where we have used the noble identity specified in Fig. 4.4 [54]. The

IDFT block denotes the N x N inverse discrete Fourier transform.

x(t) X,Nt)
> [N > E,) > —>
X,Nt)
NP> E¢&) —>>1 —
IDFT
4
X, 0VE)
L >t In > E_ &) > —>

Figure 4.3: The uniform-DFT bank using polyphase decomposition.

—>») vt = v |—» E@z >

Figure 4.4: The noble identity.

There is a number of advantages in this implementation [54]:

73

1. For the filter design process, only the prototype filter Hy(z) needs to be
optimized. This filter will be lowpass with bandedge at w = 7.

2. If Hy(z) is FIR with length L the implementation cost will be L multipliers,
L — N adders plus the cost of the IDFT. The total cost is much lower than
the implementation cost of N L multipliers and N(L — 1) adders that are
required by the corresponding traditional designs. Furthermore, if N is
a power of 2, then the FFT can be used to implement the IDFT in an

efficient manner.

3. The polyphase components operate at minimum rate, that is the input

data rate, as dictated by the transfer functions Ey(z), Ei(z),- -, En-1(2).

4.1.2 Time-Recursive IDFT in the Uniform-DFT Filter Bank

The IDFT module in the decimated uniform-DFT filter bank can be imple-
mented in a time-recursive way, either by using a MISO computation (see
Subsection 3.3.2) or a SIMO computation (see Subsection 3.3.3). The over-
all uniform-DFT filter bank structure utilizing the SIMO approach is depicted
in Fig. 4.5 and it operates as follows: the incoming signal and its delayed ver-
sions are decimated and filtered by the polyphase components Ey(z), E1(2),- - -,
En_1(z) at minimum rate that is N times lower than the input data rate. The
output of these components is loaded by the Shift Array (SA). Between two
adjacent loads SA shifts its data upwards and feeds the IDFT modules as shown
in Fig. 4.5. In this way, SA ensures that the data vector of length N which is
produced by the polyphase components will be fed to all of the IDFT modules.
The output of the latter is decimated by a factor of N.

Observe that the time-recursive implementation of the IDFT involves unit
delay elements. Consequently, we can not use the noble identity (see Fig. 4.4) in
order to obtain minimum operation rate for the polyphase components and the
IDFT modules. This problem is alleviated by the use of decimators and switches
at the input and the output of the polyphase components (see Fig. 4.5). In this

way, the polyphase components operate at minimum rate, that is N times lower

74

from the operation rate of SA and the IDFT modules (i.e. the input data
rate). We have seen that the IDFT modules can be implemented by a lattice
structure. This consists of a rotation (;ircuit that can be implemented very
efficiently by using distributed arithmetic [60, 52]. Consequently, the increased

rate requirement for the IDFT modules can be efficiently accommodated.

X,(Nt)

pse N> g o) —>] > M, L 3 v |—>

z—l

X, (N t)

bim% Be) > > M, >IN >

Y Sa _

Y

z” X _(Nt)

L3l IN > B, &) > > MN_I'-—)JrN—N)_I

Figure 4.5: Decimated uniform-DFT bank using polyphase decomposition and
time-recursive implementation for the IDFT.

In conclusion, the advantages in implementing the uniform-DFT filter bank

with the above described structure are:

1. Locality is maintained in the filter bank, that is very imporfant in VLSI
implementations, since bit-parallel operations and a fast circuit clock can

be used.

2. Filter banks with large number of filters N can be implemented in VLSI.
This is a consequence of the fact that the design is scalable and it involves

linear implementation cost.

3. The design is efficient for arbitrary values of the filter bank size N, unlike
the FFT based designs that are more efficient for N being a power of 2.

75

4.2 Cosine Modulated Filter Banks

4.2.1 Background

The pseudo QMF banks are designed to achieve alias cancellation, approxi-
mate linear phase and minimum magnitude distortion of the reconstructed sig-
nal [45]. The filters Ho(2), Hi(z),- -+, Hn-1(2) are modulated versions of a pro-
totype filter Pp(z). A cosine matrix is used for performing the modulation

operation. More specifically, the analysis filters are:

2N-1

Hi(z) = z cknz—"En(—zzN), k=0,1,---,N -1,
n=0

where E,(z),n =0,1,--+-,2N —1 are the 2N polyphase components of a proto-
type filter Py(z) and the coefficients ¢, are

s 1 L—-1
Ckn = 2cOS [—]\7 (k + 5) (n -) + Gk] , (4.2.1)

&

where k=0,1,---,N—-1, n=0,1,---,2N —1 and 0, = (—1)"%. The resulting
QMF analysis structure is depicted in Fig. 4.6. This enjoys all the advantages of
the uniform-DFT filter bank (cf. Subsection 4.1.1); also, the modulation matrix
has real coefficients. Furthermore, if the length L of the prototype filter Py(z)
is an even multiple of the filter bank size N, then the modulation matrix can be
implemented based on fast Discrete Cosine Transform algorithms [54].

Perfect Reconstruction (PR) can be achieved by a cosine modulated filter
bank if on the already described cosine modulated filter bank we impose two
additional constraints: first, the prototype filter Fy(z) needs to be symmet-
ric and second, the pairs of the polyphase components Ei(z), Exyn(2),k =
0,1,---,N — 1 need to be pairwise complimentary ! [54]. The structure for

the cosine modulated PR analysis filter bank is shown in Fig. 4.7.

1Two filters Ho(z) and H;(z) are pairwise complementary if they satisfy the constraint

|Ho(e?®)|* + |Hy ()" =1, we [-m,7).

76

x(t)

1———)&1\1
¥

IN

y

!

L—>ix

3 E, (~27)
—>» E (-z°)
—>» E, ., (-z°)

Cosine
Modulation
Matrix

/

X, t)

:

X, (Nt)

Xy, 0N E)

Figure 4.6: QMF analysis bank based on cosine modulation.

E z°)
E, &2z°)

YY YV

E -2°)
E,., &2°)

N

X

Eya (_Zz)

Enat27)

-1

X, E)
>
X, (Nt)
Cosine
Modulation
Matrix
X, @V E)
-)
)/

Figure 4.7: PR analysis bank based on cosine modulation.

4.2.2 Time-Recursive Computation of the Cosine Modulation Ma-

trix

For the cosine modulation matrix specified by (4.2.1) we need to implement N

mapping operators ci of length 2V

Cp = [ckO Ck1 -

Ck,ZN—l])

17

k=0,1,---,N - 1.

The kernel group fi(n) needed for the time-recursive evaluation of the kth map-

ping operator is

fi(n) = Jroln) | _ | cos [%
fra(n) N

For this kernel group we have

fi(n — 1) = Rfi(n), where R =

and

f(0) = —f(2N) =

cos {% (k + %) L;—I — Hk]
—sin [Z (k+1) L5 -6 |

Consequently, fr(n) satisfies the periodicity property as this is defined in Chap-
ter 2. Also, since only one of the two kernel functions in fi(-) is sufficient for
our computation (that is fxo(-)), the flow graph in Fig. 3.1 dictates that the IIR
architecture should be adopted. This is shown in Fig. 2.8. Based on (2.3.7) we

obtain the following expressions for the parameters of this design:

b= 2en [(14 B)] = —en[3 (0 3) 220

d, =1 nm:cos[%(k-{-%)%—&]
ngy = — sin [ﬁ (k-i—%)%——ak]
Ng3 = sin [ﬁ (k+%) L2;1—9k]

4.2.3 Modified Implementation of the Cosine Modulated Filter
Bank

The cosine modulation matrix that appears in Fig. 4.6 and Fig. 4.7 can be
implemented with a bank of isolated modules described in Subsection 4.2.2.
The overall structure for the case of the PR cosine modulated filter bank is
depicted in Fig. 4.8. This structure operates very similarly to the one in Fig. 4.5.

The incoming signal and its delayed versions are decimated and filtered by the

78

2N polyphase components Eo(—z22), E;j(—2%), -+, Ean-1(—2%) that operate at
minimum rate. The output of these components is loaded by the Shift Array
(SA) that operates at the input data fate, that is NV times faster than the
polyphase components. At each time instant the 0th element of SA is fed to the
N modules My, My, -+, My_; that implement the 2N x N cosine modulation
matrix. Simultaneously, at each time instant the contents of SA are shifted

upwards one position.

x(t) 3 XM E)
lN—L—: E+27) T_) M, >N}
Z_I EN (-22) Z_l XI(N t)
- > M, >IN [—>
v 3 IN 3 Ez°}) p—————
¥ |-> By 2°) 2" SA
Xy, 0N0)
2" Lyt M ., 1IN
IN —[: R B
EZN-I(_Z) Z_l

Figure 4.8: PR QMF analysis bank using time-recursive approach for imple-
menting the cosine modulation matrix.

Note that for the pseudo QMF bank, the polyphase components are placed
in an increasing order (see Fig. 4.6). Consequently, SA can be implemented with
shift registers of length 2N. On the other hand, for the PR QMF the polyphase
components are placed according to the sequence 0, N,1, N+1,--- ,N—1,2N—1.
In this case, SA consists of two shift arrays of length N interconnected as shown
in Fig. 4.9.

The structure in Fig. 4.8 inherits all the advantages and the subtle points
about the nonuniform operation rate of the structure in Fig. 4.5. In addition,
the polyphase components in the PR QMF design in Fig. 4.8 can be realized
as cascades of interchanging unit delay elements and rotation circuits [55, 54].
The latter can be implemented in an area efficient manner with CORDIC pro-

cessors [23]. On the other hand, the IIR modules used for the realization of the

79

cosine modulation matrix, requires the implementation of five multipliers. Only
one of them needs to operate at the increased rate and it can be implemented
by fast distributed arithmetic as ROM léokup table [60]. In conclusion, we an-
ticipate that an efficient single-chip implementation of the cosine modulated PR

QMTF is feasible based on the architecture described above.

2N-1

Figure 4.9: The Shift Array (SA) used in the PR QMF structure.

4.3 Short Time Fourier Transform with Hanning Window

In this Section we consider the implementation of the Short Time Fourier Trans-
form with Hanning window. This is a special case of the uniform-DFT QMF
bank %, where the prototype filter Hy(z) is the length-N Hanning window. In
this case, the the polyphase components in Fig. 4.5 are scalar constants (length-1
FIR filters), equal to the window coefficients.

The use of the window originates from a weakness of the Discrete Fourier
Transform (DFT). Although the DFT has been used extensively in spectrum
analysis and adaptive filtering, its ability to resolve a weak signal in a presence
of a stronger one is limited. This constraint stems from the fact that the rectan-
gular window inherent in the DFT has the disadvantage that the peak sidelobe

of the associated spectrum is down only 13dB from the mainlobe level, as shown

2More accurately, the IDFT matrix in Fig. 4.5 should be replaced by the DFT matrix, that
amounts to a number of sign inversions as pointed out in Subsection 3.3.3.

80

in Fig. 4.10.a. The problem is alleviated by using non-rectangular windowing of

the data, yielding the Short Time Fourier Transform (STFT) [32].

— - 20 fw e aae. arved oo gfreNcanes, — - 20
3 : g \

- 40 S Teepenery | PRSPRTR ! ERISRINE | (EESOER [ARLEEER | SEield ° - 40 e
D
3 2
= - - = - [0 T R B f SO DR A LT ppenreey -
g g
< <

- 80 [1 T g R ...

=100 : =100

0 " /2. T 0 n/2
Frequency Frequency
a b.

Figure 4.10: The spectrum of a. the rectangular window and b. the Hanning
window of length N = 16.

A complete survey of the window functions and their properties can be found
in [20]. The windowing is traditionally implemented as a modulation operation
in the time domain. Nevertheless, it can also be implemented in the frequency
domain by reversing the order of the polyphase bank with the DFT module,
yielding a convolution operation. This approach gives efficient implementations
for the class of sum-of-cosine windows [6, 40]. One of the most common window
functions in spectrum analysis, that is also a sum-of-cosine type of window, 1s

the raised cosine or Hanning window wn(-)

2r

wn(n) = % <1 — cos —N—n> .

<

The latter has an 18dB per octave rolloff rate and a peak sidelobe level of -31dB
(see Fig. 4.10.b). In this Section, we design the time-recursive architectural
implementation of the windowed STFT with the Hanning window.

4.3.1 Architecture for the STFT with Hanning window

The N-point windowed STFT of a semi-infinite sequence of (real, scalar) data

z(-) consists of N semi-infinite complex sequences Xsrrr(k,),k =0,1,--- , N —

81

1 defined as follows

Xsrrr(k,t) = Z’wN kn:L‘(t-i—n——N-}-l), t=20,1,---

n=0

where wy (+) denotes the window function. For the choice of the Hanning window

we have

R{Xsrrr(k,t)} = \/‘ N_Ol ; (l — cos —n) cos Z—Ekn z(t+n—N+1)
I{Xsrrr(k,t)} = —\/_ N ; (— cos —n) sin Zkn z(t +n — N + 1),

where R{-} and Z{-} denote the real and the imaginary part of the bracketed
quantity. Consequently, we seek the implementation of the following two map-

ping operators
hen = % (1 — cos 21\—’,') cos —kn
Jkn = —% (1 — Cos ﬁ”n) sin Nk.n,
k=0,1,---, N—1. After some elaborations we obtain the equivalent expressions

that follow:
= —,I,'fk—l,o(n) + %fk,o(n) - %fk+1,0(n)

—4fe1a(m) + 3 fua(n) = §era(n),

fro(n) _ cos ¥ kn
fra(n) sin 27 kn

specifies the associated kernel group fi(-). The architectural implementation

(4.3.1)

where

of this kernel group was discussed in Chapter 3 (see Fig. 3.7). The resulting
architecture for the STFT is depicted in Fig. 4.11).

The IIR implementation for the building modules is also considered for the
sake of completeness. By substituting the expressions (3.3.2) and (3.3.3) in
(2.3.7) we obtain

dy = —2cos 2]’;” ngo = cos KT
d2 =1 Nop = -1

_ 2km

Nio = sin 5= N

ny = 0.

82

The resulted IIR module is obtained by substituting these expressions in Fig. 2.6.

A M, ‘
N R X700}
——2» 0
3 Xgpe(OD)
> M,
] M,
N . M 3
x(t)
> M,
Vs o>
———— M,
—o—>
R (Xrel7:0)
——>> M,
/ o> 3{X (7.
The symbol @ denotes
a Right Shift operation | M,

Figure 4.11: Time-recursive architecture of the STFT for N = 8.

4.3.2 Cost Issues

The overhead cost of the time-recursive implementation of the N-point STFT
with respect to the cost of the DFT (see Table 3.1) is equal to 2V adders (and an

equal number of shift registers). On the other hand, the corresponding overhead

83

for the FFT approach is equal to N multipliers. All the comments we have made
in Chapter 3 regarding the throughput rate of the DCT and the DFT apply for
the implementation of the STFT as wéll. The resulting cost metrics for the
multiprocessor implementation of the STFT are depicted on Table 4.1, while
the corresponding metrics for the uniprocessor implementation of the sliding

version of the transform are given on Table 4.2.

rate constraint implementation cost
(mult, add, rotation)
time-rec.,sliding Ap+ Rp=u 0,3N,N —1
STFT | time-rec.,block Ap+ Rp=u 0,3N-1,N -1
fast algo.,sliding Ms+ As=u %(logfz N-1)+2,
fast algo.,block Ms+ As = Nu 2(3log, N —5)+4,0
time-rec.,sliding Mp+Ap+Rp=u |2N+3,3N+3,N -1
MLT | time-rec.,block Mp+Ap+Rp=u |{2N +3,3N+2,N -1
fast algo.,sliding || Ms+ As+ Rs =u Z(log, N + 1),
fast algo.,block | Ms+ As+ Rs = Nu Qg(logQ N+1), %
time-rec. sliding Mp+ Ap+Rp=u | 3N +4,4N +4,N +2
ELT time-rec.,block Mp+ Ap+Rp=u |{3N+4,4N+3,N+2
fast algo.,sliding | Ms+ As+2Rs =u Bllog, N +1),
fast algo.,block || Mg+ As+ 2Rs = Nu %\?(log2 N+2), N

Table 4.1: Cost metrics for the architectural implementation of block transforms.
Mp, Ap and Rp denote the time delays associated with a bit-parallel implemen-
tation of the multiplier, the adder and the rotation circuit respectively. Mg, As
and Rgs denote the corresponding time delays for a bit-serial implementation.

time-recursive FFT-like,sliding
(mult,add) (mult,add)
STFT | 3N —=3,5N -2 [Z(log, N ~1)+2, Z(3log, N — 5) + 4
MLT | 5N —3,5N +3 B(log, N +5) , 2X(logy N +1)
ELT | 6N +10,5N +7 Z(log, N +8) , 2¥(log, N + 2)

Table 4.2: Cost metrics (multiplication and addition counts) for the uniprocessor
implementation of sliding transforms.

Observe that the choice of the window has a direct impact on the communi-

84

cation requirements of the resulted architecture. The Hanning window implies
communication links only among neighboring modules, while this is not true
for an arbitrary window. There is a trade-off between the number of terms
in the sum-of-cosine window and the locality of communication. On the other
hand, for the uniprocessor time-recursive implementation of the sliding DFT
the choice of the window affects the computational complexity. The discussion
on windows in [6, 40] can be helpful for the choice of window in a particular
application. In [40], some simple but efficient windows are presented, that yield
no multipliers if implemented in frequency domain. In [6], the design of optimal

sum-of-cosine windows in the least squares sense is reported.

4.4 Modulated Lapped Transform

In this Section, we consider the implementation of the Modulated Lapped Trans-
form (MLT) [36, 39]. The basis functions of the N-point MLT constitutes an
N-band PR cosine modulated QMF bank, for which the prototype filter is a
sinusoidal function of length equal to 2V {39]. This implies that the polyphase
components in Fig. 4.8 are length-2 FIR filters. In the following discussion, we
present an alternative design that can be viewed as the result of changing the
sequence of the polyphase component bank with the cosine modulation matrix,
in a way similar to the one we have seen in Section 4.3.1 for implementing STFT.

The magnitude responses of the MLT basis functions are given in Fig. 4.12.
The stopband attenuation is approximately 24dB, that is considerably better
from the 10dB worst case stopband attenuation of the DCT filter bank (cf.
Fig. 3.2). As long as the transform domain adaptive filtering is concerned, the
use of the MLT implies an increase of the rate of convergence in comparison with
the rate associated to the use of DCT [39], while the same frequency domain
characteristics corroborate for the use of MLT in subband coding for image
and audio data [24, 25, 39, 49, 56]. Furthermore, being a Lapped Orthogonal
Transform (LOT), MLT diminishes the blocking effect that appears at low bit

rate data coding with transform techniques. The blocking effect is a natural

85

consequence of the independent processing of each block. Variations of the LOT
have successfully been used in speech coding [36, 38, 39], image coding [37, 39]

and motion estimation [62].

10

! 1
A
8 5 o

Amplitude (dB)

|
")
o

—40

Frequency
Figure 4.12: The magnitude responses of the MLT filter bank for N = 8.

The above facts highlight the importance of the proposed time-recursive

architecture for both adaptive filtering purposes and data coding.

4.4.1 Architecture for the Forward MLT

The MLT operates on segments of data of length 2NV, z(t + n — 2N + 1),n =
0,1,---,2N—1 and it produces N output coefficients Xmrr(k,t),k=0,1,---,N—
1 as follows [36]:

Kol = T2 sy (n+ 1) co [(1 1) (4 3+ %)
z(t+n—2N +1),
(4.4.1)

where t = 0,1,--- and ¢cx = (—=1)*+2/2if k is even and ¢ = (—1)*~D/2if k is
odd. The sequence of the kth output coefficients Xppr(k,t),t =0,1,--- can be
thought of as the output of the mapping operator

2 T 1 T 1 1 N
hen = ,/—) in — = T z LA | B
- (ck N SIHQN(n+2)COS[N(k+2><n+2+2>} (4.4.2)

86

After a few algebraic manipulations, we derive the following decomposition of

the mapping operator:

hk,n="(\/2;,) fet10(n)— (Ck é}ﬁ fra(n), k=0,1,---,N-1, (4.4.3)

where

o | [g+ 0413]
N 1\ ¢ = fk(n)
fra(n) sm[k(n+) +(k+§) 5]
is the associated kernel group. For this kernel group we have fy(n—1) = Rifi(n),
where

N N

kx km
sm N COS -7 N

Ry = (4.4.4)

cos 5L gin &z]

We also have

N N
[SIEISTE

fea(0) fea(2N)

sin (52 + (k+1) 2]

where S = 1. Therefore, the periodicity property is satisfied. Since both member

2N

{ fro(0)] [feo(2N)

[cos [—1’\', + (k + %)] ‘ ’ (4.4.5)
T+

functions of the kernel group appear in the decomposition (4.4.3), the lattice
architecture is recommended (cf. Fig. 3.1). In Fig. 4.13, we provide the lattice
architecture module that is used as the building block in the MLT architectural
implementation. The latter is depicted on Fig. 4.14 for the case of N = 8.
Rotation circuits are used for the implementation of the lattice structure. The
IIR implementation for building the MLT modules is also considered for the sake
of completeness. By substituting the expressions (4.4.4) and (4.4.5) in (2.3.7)
we obtain
d, = -—2COSI;J Ngo = COS [(k—{—)% kn
dy =1 noy = —cos [(k+ 1) 5+ £%]
n10251n[(k+%)§—§—”
ny; = —sin [(/\ +%)§+§—“]

87

The resulted IIR module is obtained by substituting the above expressions in

Fig. 2.6.
27! fe——
1 [kn =
weTT 5111[2N+(k+ 2)2] — -
< ‘)ll\ g —5’?, %1()
N 7 -
~ < Cex
x(1) >0 Rotation xf\ /sinyg
* Circuit .\/_Smﬂ:
~| ¢ AT k
- 7 - = X (Kt
kx
7 COSy
1 k 1\« N
rmcos[3% + (k+ 3)3] T
Module M , k =0, 1..,N z”!

Figure 4.13: Lattice architecture for the MLT module.

4.4.2 Architecture for the Inverse MLT

The inverse MLT (IMLT) is specified by transposing the coefficient matrix of
the direct transform. In closed form, the IMLT is

z(Nt+n+1)=
2 . 7 1\ =2 T 1 1 N
\/; sing (4 3) 2, o cos [(k+3) (g 3)] ot

for t =1 and

sin 75 (n + %) EQ[;OI Cj COS {ﬁ- (k + %) (n + % + %)] Xnmrr(k,Nt) +

2
N
\/_%sinﬁ(nﬁ—%-i-%l-)
L ek cos [ﬁ (k + %) (n + % + %’!)] Xprr(k,N(t = 1)),
(4.4.6)

fort <2,

88

— M,
—79—> Xy 10D
——> M, B
j ﬁa ’ Xar{t)
s M2 [-
—?Bé X2
—> M, [
x(t) > _?__’ X0
Y EEN RV
216 —?}—} X4
SEE— M, _
—?}—))&M_T(S b
———> M, [-
?A XMLT(6't)
> M, [
ﬁ——» X170
> Mq [

Figure 4.14: Time-recursive architecture for the MLT.

Since we have

[l k0 3) (1S ot [k4 3) (2)

we obtain

z(Nt+n+1)=

89

\/%sm—(+%) SN ckyro(Nt +n 4 1), P
sin 5 (l) YNt eyro(Nt 4+ n+ 1)+

N1 , t>1,
sm—(n-’r +) o (=D gy (N = 1) +n + 1)

\/%
\/%
where

1 1 N
Yro(Nt+n+ 1) = cos [N <k+ 2) <n+ 5 + ?>] Xmrr(k, Nt)

and

1 1 N
= k -+ — | X k,Nt).
yea(Nt+n+1) = sm[N(+2) <n+2+2)] Xmrr(k, Nt)

Consider the kernel group

fun) = | ToM) | 2| o w (k+3)(nts+%) | (4.4.7)
Fea(n) z(k+1)(n+1+4)

For the kernel group fi(:) we have fi(n — 1) = Rifi(n), where

R | coF(k+y) smFle+3) | (4.4.8)
g rd) i+)

fip(0) | | cos (tl)x (k + %) "

[fea(0) } - { sin (0E0 (k4 1) (4.4.9)

From (4.4.8) we get

cos%(k-{-%) —sinﬁ(k—i—%)

S5 ol
R=R"= sinf (k+3) cosf (k+3)

The periodicity property is not satisfied by the kernel group in (4.4.7). Con-
sequently, the lattice architecture will be used as the building block for the
architectural implementation of the IMLT (see Fig. 4.15). The architectural
implementation of the IMLT is shown on Fig. 4.16.

90

X (ND) DTN

R ™4

xo(k,Nt+n+1)\

z
\- '\cos%(k +—;)

DR —-

~
= S -
'\\>|/

AN

-/
~ 1\/ siny (k *+3)

Figure 4.15: Lattice architecture for the IMLT module.

Rotation ~\ = 1
Circuits 7. \sinx(k +3)
s -~

\q>_a\—

3

(N+])K(+1)

in (N+])1t(+ 2)

x1(k,Nt+n+1L

Module M,, k=0,1,"" ,N-

1

[|
'—)~J—sm2N(n+)n—Ol 2N-1

er(ova‘)a TS > Mo
5
<(L&) _—) TB > Ml ‘)a
>
!
)QALT(ZB‘) - 18 > M2 _\)(
>
_Y
>
Xe38) —> 18 —>| M, Y]
>
>
Xar(4.8) —1 18— M, y
L av7)
Nur(58) —f 18— M Y Y
>
X 68)—> 18 —> M, v T
>
g
7,80 —> 18 > M, ;)5 o
A =

Figure 4.16: Time-recursive architecture for the IMLT.

'l/

VanN

x(t)

Y

91

/% sinf,;;(n+%+%). n= 04, .2N;-1_|

L1

4.4.3 Cost Issues

The cost of the time-recursive implementation of the MLT based on the lat-
tice module (cf. Fig. 4.13)) is N — 1 rotation circuits, 2N + 3 multipliers and
3N + 3 adders. The throughput of this architecture is given on Table 4.1. The
implementation cost and the throughput expression for a fully pipelined imple-
mentation of the FFT-like algorithm in [36] are also given on Table 4.1. All
remarks we have made in Chapter 3 for the throughput rate of the DCT apply
for the implementation of the MLT as well. The cost expressions of the unipro-
cessor time-recursive implementation on Table 4.2 concern the IIR design.

It worths noting again the fact that the MLT constitutes a perfect recon-
struction QMF bank that can be used in subband coding schemes. An N—band
coding scheme may involve up to 6 N—tap FIR filters [26] and therefore it im-
plies an implementation cost of the order of 6 N? (in multipliers and adders),
while the use of the MLT in subband coding implies linear cost if the latter is

implemented time-recursively (cf. Table 4.1).

4.5 Extended Lapped Transform with Basis Length = 4N

In Section 4.4, we discussed the importance of MLT in data coding and adaptive
filtering that highlight the impact of the efficient VLSI architecture we propose.
In fact, the implementation cost is comparable with the costs of the (already
very efficient) time-recursive DCT (see Table 3.1 and 4.1). The performance
characteristics of MLT can be further enhanced by using an Extended Lapped
Transform (ELT) with longer kernel functions [38, 39], for example with length
4N or 6N instead of 2N. Such basis functions can be viewed as PR cosine
modulated QMF banks generated by a prototype filter of length 4N or 6N
respectively, so that the corresponding FIR filters in the polyphase bank of
Fig. 4.8 have lengths equal to 4 or 6. Apparently, a long prototype filter implies
high implementation cost. However, prototype filters that generate the ELT
transforms are sum-of-cosine type filters. For the filters in this class, the penalty

for the length of the prototype filter translates mostly in communication cost

92

than in operator counts if a time-recursive implementation is considered. This
is the exact analog of the situation with the sum-of-cosine windows in STFT
(see Section 4.3). |

In this Section, we consider the time-recursive architectural implementation
for a specific ELT with basis length equal to 4N. In other words, this ELT
produces N transform coefficients based on 4N consequent input data samples.
The time-recursive implementation of this transform retains the locality prop-
erty and the implementation cost is slightly higher from the one of MLT. Con-
sequently, we anticipate that based on the proposed implementation this ELT
will become an important candidate in applications such as transform domain

adaptive filtering and real-time data coding [24, 56].

4.5.1 Architecture for the Forward ELT

The ELT under consideration operates on segments of data of length 4N, z(t +
n—4N+1),n =0,1,---,4N—1 and it produces N output coefficients Xgrr(k,1),
k=0,1,---,N —1 as follows [39):

Xerr(k,t) = \/% 11:51 {_ﬁa + %cos N (n + %)] cos [7’{]— (k + %) <n + % + %)]
z(t+n—4N +1),
(4.5.1)

where t = 0,1,---. The sequence of the kth output coefficients Xgrr(k,t),t =
0,1,--- can be thought of as the output of the mapping operator

b= 5 (o 2008 5 (4 3)| eon [T (54 5) (n+5) + (k4 3) 3]
bn =5 aN N\"T3)] N 2)\" T2 2) 2}
(4.5.2)

where a = —/2. After a few algebraic manipulations, we derive the following

decomposition of the mapping operator:

1
hin = N [—fi-11(n) + afro(n) + fey11(n)], k=0,1,---,N -1, (4.5.3)

93

where

[fk.om}:{cos[(k+%)(n+%)+(k+%)%]}

fra(n)

is the associated kernel group fi(n). For this kernel group we have fy(n — 1) =

R, fx(n), where

(4.5.4)

We also have

fr0(0) _g fro(4N)
fr1(0) fea(4N)

=|:COS§(1+)(k-’r%)}’ (4.5.5)

8 (ke)

where S = 1. Therefore, the periodicity property is satisfied. Since both member
functions of the kernel group appear in the decomposition (4.5.3), the lattice
architecture is recommended (cf. Fig. 3.1). In Fig. 4.17, we provide the time-
recursive architecture for the case of N = 8. The details of the lattice modules

in Fig. 4.17 can be obtained by a simple parameter substitution.

4.5.2 Cost Issues

The cost of the time-recursive implementation of this ELT is N 4 2 rotation
circuits, 3N + 4 multipliers and 4N + 4 adders. All remarks we have made in
Chapter 3 for the throughput rate of the DCT apply for the implementation
of the MLT as well. The cost metrics for the multiprocessor implementation
are summarized on Table 4.1. Observe that the implementation cost of the
ELT is very close to the one of the DCT and the MLT, thus enabling the VLSI
implementation of high fidelity audio coding schemes [39, 56, 25]. The cost
metrics for the uniprocessor implementation of the sliding version of the ELT

are given for completness on Table 4.2.

94

D X1 (0)

D X, (10)

D—> X120

ARV vV

> D Xe 1(3)
— M,
x(t) >0 -
- > D X r(4)
Y > M,
7732
o -
—'_) ‘== XELT (57‘)
3 Mg
o
>> D X, 7 (6.
——>> M,
VA
> 1 7.
I M, |~/ XeLr

L 3 M,

Figure 4.17: Time-recursive architecture for the ELT.

95

CHAPTER

5)

An Example in Processing of 2D Data

Insofar, we have discussed the design of the building modules in time-recursive
architectures (either lattice or IIR) and the implications to several applications
in one-dimensional data processing.

The generalization of the time-recursive computation in separable, multi-
dimensional data transforms has been introduced very recently [32, 9, 34], yield-
ing very attractive architectures. These architectures exhibit all the advantages
of the one-dimensional counterparts: they are modular and regular, they require
local communication and they have linear cost (in terms of operation counts). In
particular, they have been proved asymptotically optimal in area and speed [34].
Furthermore, they do not require any matrix transposition and they operate in
a SIMO (single-input multiple-output) way, that is very appropriate in most
applications with real-time computation requirements. In [34], the structure of
the time-recursive architecture for a multi-dimensional separable transform is
derived. Based on this, given the building module of the one-dimensional trans-
form, one can design the architecture of the multi-dimensional transform in an
inductive way. The combination of this result with the discussion we have made
on the module design in Chapters 2 and 3 yield a powerful architecture design
tool for multi-dimensional transforms with arbitrary dimensionality.

In this Chapter, we present the time-recursive computation of the 2-D Mod-
ulated Lapped Transform (2D MLT). Within this example, we present the basic
concept of the induction process that develops the architecture of a higher-

dimension data transform (in our case 2) based on the architecture of the lower-

96

dimension transform (in our case 1). Furthermore, we handle a number of
subtleties mainly due to the communication of neighboring modules in the 1D
MLT. Such communication is common in the time-recursive implementation of
a number of interesting transforms as we have seen in Chapter 4. Finally, the
architecture we propose for the 2D MLT has an interest in its own right, since
the 2D MLT finds application in image coding [38, 49]. In Section 5.1, we de-
rive the algorithm for computing the 2-D MLT. In Section 5.2, we present the

architectural implementation. In Section 5.3, we discuss the implied cost.

5.1 Algorithm

In Chapter 4, we have seen that the one-dimensional MLT operates on segments
of data of length 2N, z(t + m),m = 0,1,---,2N — 1 and it produces N output
coefficients Xpyp7(k,t),k=0,1,---, N — 1 according to the formula:

2N -1
Xmrr(k, t) \/g Z [fr+1,0(m) + fea(m)]z(t + m), (5.1.1)

fort =0,1,---, where

fk,O(m cos [% () (k+ %) %] g fk(m), k =0,1,"',N
Jealm) | | sin [Fk (m+4) + (k+13) 3]

and c; are constants that take values in {—1,1}.

The two-dimensional MLT operates on data blocks of size 2N x 2N, z(t +
m,s+n),m,n =0,1,---,2N—1 and it produces N? output coeflicients Xprp1(k,
It,s),k,1=0,1,--- N — 1 as follows:

2N-12N-1

Xmrr(k,l,t,s) = o CkCl Yo Y [ferr0(m) firro(n) + frpr0(m) fia(n)

m=0 n=0

+ fk,l(Vfir10(n) + fea(m) fia(n)] z(t + m,s + n). (5.1.2)

97

So, Xarr(k,1,t,s8) can be evaluated as

Xumrr(k,l,t,s) = cper[Xoolk+ 1,14+ 1,4,8) + Xoqa(k +1,1,1,s)
+ Xio(k, L+ 1,8,8) + Xpa(k, 1, 1,5)], (5.1.3)

where
1 aN—12N~1
qu(]“’l’t 3 = o Z Z ka flq) (t+m,s+n), P—_—O’l» (120,1

m=0 n=0

and k,l=0,1,---, N. If we define

Xoo(k,l,t,s) Xoi(k,l,t,
X(k 11,5 2 | Toolbbtis) Xoa(kLt,s) (5.1.4)
Xio(k,l,t,s) Xia(k, 1,2, s)
we obtain the following expression for the 2D MLT
2N-12N-1
X(k, l,t,s——z ka Je(t+m,s+n), p=0,1, ¢=0,1.
m=0 n=0
(5.1.5)

The algorithm for computing the 2-D MLT consists of two steps: first, we com-
pute the four two-dimensional transforms in (5.1.4) and then add the outcomes

according to (5.1.3). Since

fk(m—l)szfk(m), k=0,1,"',N, (516)
where
cos & sin &
R, = N N (5.1.7)
—sin ’;\’,' cos ﬁ\’,'
the 2N vectors
2N 1

Y(k,n,t,s) = ka z(t+m,s+n), n=0,1,---,2N =1

98

can be computed in a time-recursive way as follows:

Y(k,n,t+1,s) = Ry [Y(k,n,t,5) — f(0)z(t, s + n) + fu(2N)z(t + 2N,s + n)]
(5.1.8)

where
cos 2= 4 (k+1)Z
f.(0) =fi(2N) = | [i’;’ (f) j] . (5.1.9)
sin [+ (k+) 3]
From (5.1.9) and the fact that
2N -1
X(k,It,s)= > Y (k,n,t,s)ff (n)
n=0

we can derive the following time-recursive algorithm for computing X(k, [, +

m,s), m=1,2,---:
X(k, Lt +1,5) = Re [X(k, 1,2, 5) + £(0)87 (L, 1, 5)] , (5.1.10)

k,1=0,1,---,N, where

2N-1
§(Lt,s) 2 3 F(t,s+n)fi(n), 1=0,1,---,N
n=0
and
Z(t,s) = z(t + 2N, s) — z(t, 5). (5.1.11)

Based on (5.1.6) we derive a time-recursive algorithm for computing 6(,¢,s +

n), n=0,1,---,2N — 1

§(Lt,s+1) = Ry [6(,,5) + £1(0) (3(, s + 2N) — &(t,5))], (5.1.12)

for{=0,1,---,N.
In the perspective of the discussions on block transform implementations
in Chapter 2, we can easily see that the term Z(t¢,s) in (5.1.11) reduces to

z(t,s) = x(t + 2N, s) if the block MLT is considered (as opposed to the sliding

99

? Mo XHU(O,I,I,S)
.—.———9
> M,
> A, X,r (L4, s)
.) MO ') - o > MZ
o e Circular {_L_ | M.
z > M Shift :
Array Delay
: ' — L Add
. . 5(l.t:s] : . * | Array
> M, P
MN—l
X, -(N-1115)
] My, wLr
- MN %

Figure 5.1: Recursive architecture for the 2-D MLT.

one). Similarly, the term Z(¢,s) in (5.1.12) can be disregarded. Consequently,
for the case of the block MLT the expression (5.1.12) becomes:

§(Lt,s+1) =Ry [6(1,¢,s) + 1(0)z(t + 2N,s +2N)], 1=0,1,---,N. (5.1.13)

In summary, the time-recursive algorithm for computing the 2-D MLT of the
data strip z(t + m,s+n),m,n=0,1,---,2N -1l and ¢t =0,1,---, s =fixed, is
given by (5.1.3), (5.1.10) and (5.1.12) for the case of the sliding 2-D MLT, while
for the block 2-D MLT the latter can be replaced by (5.1.13).

5.2 Architecture

The architectural implementation of the block 2-D MLT is demonstrated in
Fig. 5.1. The computational core consists of a cascade of two 1-D MLT stages. -
The first one is responsible for evaluating (5.1.13), that is transforming the input
sequence with the proper cosine and sine kernels at the frequencies indexed by
[=0,1,---,N—1. This stage is composed of N modules that need not exchange

any information. The structure of these modules is depicted on Fig. 4.13.

100

A Circular Shift Array (CSA) (Fig. 5.2.a) of size 2N x 2 is used to feed
each module of the second 1-D MLT stage with the output sequence of the first
stage. The lower N X 2 entries of the CSA are loaded every N time instants.
At this point, the (N + l)th entry with / = 0,1,---, N — 1 contains the 2 x 1
term 6(/,t,s). Then, the CSA rotates the data upwards and at each clock cycle
it feeds the 1-D MLT modules of the second stage with the upper N + 1 pairs of
CSA entries. The contents (1,t) of the CSA (viz. frequency of the first stage,load
time instant) are shown in Fig. 5.2.b for the case of N = 4.

The second stage of 1-D MLT modules evaluates (5.1.10). At this stage, we
need 2N modules that differ from the one in Fig. 4.13 only at the delay elements.
The latter will be z=" instead of z=!. This happens because for each vertical
frequency component k the associated module needs to store and compute N
transform coefficients that correspond to the frequencies (k,1),{ = 0,1,---, N—1.
The double copies of these modules are needed for transforming both terms of
the 2 x 1 sequence of §(1,¢,s). Finally, the module with k¥ = N is used for
computing the terms Xoo(k + 1,1 + 1,%,s), Xoa(k + 1,1,¢,s) in (5.1.3) with
t = N — 1. If we disregard the data skew introduced by the CSA, the output
of the second 1-D MLT stage at a fixed time instant will consist of the terms
Xpo(k, 1, t,8),p=0,1, ¢=0,1, k=0,1,---, N for some values of /,¢ and s in
the ranges {0,1,---,N — 1}, {0, N,2N,---} and {0, N,2N,-- -} respectively.

The Delay Add Array (DAA) (see Fig. 5.3) is responsible for synchronizing
the skewed data and evaluating (5.1.3). Note that the elements denoted by Dy
store the terms Xoo(k +1,0,1,5s), X10(k, 0,1, s) at the beginning of each period
of N cycles. These terms are equal to Xgo(k + 1, N,t,s) and Xy0(k, N,t,s)
respectively and they are utilized at the last cycle of each N cycle period.

The architecture in Fig. 5.1 can be modified to avoid the need of the delay
elements that handle the data skew. This can be achieved by feeding all the
modules in the second 1-D MLT stage with the same pair of entries of the
CSA, for instance the first one. In this case, the segments of delay elements

g7k z7HD) g7k z=(HD] £ =0,1,-+, N in the DAA will be replaced by N +1

copies of the segment {1 27 1 z71].

101

? >

_____+
2 —>
3 > >
Nr\'l'l — 3
N+1 ———>——__? >
oN-1 T2 5]

Time: 3x4 11 10 9 2x4 7 6 5 1x4 3 2 1
CSA 0

20| 13 12 11 10| 03 02 01 00
21§ 20 13 12 11|10 03 02 01| 00

22| 21 2013 12} 11 10 03 02} 01 00

23| 22 2120 13|12 11 10 03| 02 01 0O

WN ~ O

30| 23 22 21 20|13 12 11 10} 03 02 01 00
31{ 10 23 22 21 | 00 13 12 11 03 02 01
32| 11 10 23 22101 00 13 12 03 02
331 12 11 10 23] 02 01 00 13 03

~No b

b.

Figure 5.2: The Circular Shift Array: a. the architecture, b. the contents for
the special case IV = 4.

X,0.1ts) —>» 2 _)|

%, (0,158 — 7!

Xo(LLts) = z! __)[D > Xya(0,189)
Xy(LLts) — 27
Xo(,Lts) — 5!

X,(Llts) — 7 G

Xo(2Lts) —f 2 —*IDN > Xyl 169
Xy 2,159 —> 2

Xplklts)— ot . N " >
Xy (KLEs)—pd ks 5

Xo(klts)—>f Z* _)| D,
X“(k,lt,s)—) Z_““l)

el
el

> Xkl

(N -11e9 —3 > '
Xy (N =116 9 — 70 Cuat
(N, 169 = 7%]
Xy (N, 169 —pf v

> X (N-11t9

Figure 5.3: The Delay Add Array.
5.3 Implementation Issues

The proposed 2D MLT architecture is built using 3N basic processing elements,
the 1D MLT modules, arranged in two linear stages, and avoiding the matrix
transposition which is common in most of the separable 2D transform architec-
tures. Overall, the 2D MLT architecture requires O(N) processing elements,
and O(N?) storage elements (one word each). Moreover. the architecture is reg-
ular and modular, using only local communications. and thus suitable for VLSI

implementation.

103

CHAPTER

6

Conclusions and Further Research

In this dissertation, we have introduced an architectural framework for time-
recursive computation that is particularly useful in developing efficient VLSI
architectures for a variety of problems demanding real-time computation. Fur-
thermore, based on this framework, we have obtained novel architectures for
a number of data transforms and QMF banks. The resulted architectures are
modular, regular, scalable, they require local communication and linear cost
(in terms of operator counts). Real-time processing of audio, video, sonar and
radar data can be benefited by these results. In what follows, we summarize
our contributions in the perspective of the general setup of the three mappings
computation specification-to-algorithm, algorithm-to-architecture and
architecture-to-VLSI implementation and we suggest directions for further
research.

The most important contribution in our work is the architectural framework
for time-recursive computation. We have embodied the traditional two step
approach of the computation specification-to-algorithm and the algorithm-to-
architecture into a single step computation specification-to-architecture,
for certain class of computations (namely the class of linear. discrete-time,
time-invariant and compactly supported operators) and a class of architectures
(namely the time-recursive architectures). We have revealed the common in-
frastructure of the time-recursive computations that have appeared in diverse
areas in the literature, such as adaptive filtering, real-time data compression

and spectrum analysis. We have introduced the shift property, the differ-

104

ence equation property and the periodicity property and we have shown
how these dictate first, whether a time-recursive architecture is appropriate for a
given computation, second, which is the best time-recursive architecture for this
computation and third, what are the values of the parameters of the architec-
ture. We have incorporated the appropriate tests and procedures into a Generic
Design Procedure that can address the above issues in a routine way. The use
and effectiveness of this Generic Design Procedure is further demonstrated by
means of specific examples, namely the Discrete Cosine Transform (DCT), the
Discrete Fourier Transform (DFT) and the Discrete Wavelet Transform (DWT).
We have highlighted the implementation differences between the sliding data
transforms and the block data transforms. We have discussed in detail the
interpretation of cost and time requirements in the design of time-recursive ar-
chitectures for real-time data transformation, by taking into account the SIMO
(single-input multiple-output) nature of the computation. This model of com-
putation is very useful in communication applications, where the data arrive in
a serial way.

By using this architectural framework we have obtained novel architectures
for the uniform-DFT QMF bank, the cosine modulated QMF bank, the 1-D
and 2-D Modulated Lapped Transform (MLT), as well as an Extended Lapped
Transform (ELT). These results are particularly important since MLT and ELT
have been incorporated by the ISO-MPEG and ASPEC standards for audio
coding with the name Modified DCT (MDCT). Furthermore, the architectural
implementation of the Cepstral Transform and a Short Time Fourier Transform
are considered based on the time-recursive architecture of the DFT. All of the
above designs are modular, regular, with local communication and linear cost
in operator counts. In particular, the 1-D MLT requires 2N + 3 multipliers,
3N + 3 adders and NV — 1 rotation circuits, where N is the data block size. The
2-D MLT requires 3 1-D MLT circuits and no transposition. The ELT requires
3N +4 multipliers, 4N +4 adders and N +2 rotation circuits. These results have
an impact in real-time audio and video data compression, in frequency domain

adaptive filtering and in spectrum analysis.

105

Finally, it note the trade-off of the two alternative architectures we have
proposed for the Cepstral Transform: one requires 3N —1 adders, N —2 rotation
circuits and N "fast” logarithm circuits, while the other requires 6/N — 1 adders,
3N — 6 rotation circuits and N "slow” logarithm circuits. We anticipate that
the "fast” logarithm circuits can be implemented with an analog nonlinearity,
while the "slow” logarithm circuits can be implemented digitally. Consequently,
we conjecture that a mixed digital-analog design is substantially better from the
purely digital counterpart.

The work in this dissertation stimulates some important questions in three
main directions: first, implementing the Generic Design Procedure by a CAD
(Computer Aided Design) tool. The input data of this tool can be in the form of
an algebraic formula. The output can be either a description of the architecture
(for example the structure of the elementary building modules. the values of
the module parameters and a netlist associating these modules) or even the
layout of the circuit. Such tool should incorporate finite wordlength simulation
capabilities, as well as detailed information about implementing the arithmetic
operators. Particularly, the distributed arithmetic schemes and/or the CORDIC
processor architectures to be used should be studied more carefully.

Second, identifying the applications for which the time-recursive computa-
tion is appropriate. This is a very important issue since real-time computation
is an emerging need in data communication systems, especially for multidimen-
sional data processing. The SIMO nature of computation, the local communi-
cation and the linear cost of the time-recursive architectures suggest that the
time-recursive computation can play a key role in the close future.

The third research direction is concerned with the development of two addi-
tional frameworks for time-recursive computation. Both originate from modifica-
tions to the equation specifying the shift property (2.2.1). Consider substituting
the linear expression at the right hand side by a nonlinear one. One will chose
the nonlinearities that can be implemented in hardware in an efficient way, for
example by an analog circuit. The implied questions concern the scope of the

computations that can be implemented by the modified time-recursive archi-

106

tecture, as well as the resulted implementation cost. A second modification of
(2.2.1) is obtained if we replace the difference equation by a differential equa-
tion. The result will be the (‘OI]i,i]’ll.lOUS;til'ne counterpart of the discrete-time
framework we have presented. The implementation will involve analog circuits.
The question of interest is again about the scope of this computational model

and the potential applications.

107

APPENDIX

A

Proofs

Proof of Lemma 2.2:

1. The size of the kernel group is M = | and the one kernel is fo(n) = cb".

We have

, 1 1
foln = 1) = cb™ ! = [—f(n), which gives 7oy = 7
}

and consequently SP is satisfied. The architecture that is implied by (2.2.3)

is depicted in Fig. 2.2. Note that f5(0) = ¢ and fu(N) = cb?.

2. We have M =2 and

f(n) = f_"("‘) _ | oo o BT (1.0.1)
fi(n) Cio €11 h"

{ Too Tot } _ % [—corc10b + coocri bt cgocor (b= b71) (1.0.2)

-1 . -
—C10C11 (b -) (,00(7111) - C()lClob !

108

where é§ = cgoc11—co1c10 and consequently SP is satisfied. The architectural

implementation of the kernel group is shown in Fig. 2.1.

. The size of the kernel group is M. For the pth kernel function, 0 < p <

M — 1, we have f,(n)/c, = n?. Therefore,

Jo(n —1) :2;): (P)(_l)p—u Mﬁ

which gives
Tpg = q

Consequently, SP is satisfied.

. Suppose the kernel groups f(:) = [fo(*) fi(-) -+~ fp_l(')]T and g(-) =
[90(-) 92(+) -~ gM_l(-)]T satisfy SP. We will have f(n — 1) = R/f(n)
and g(n — 1) = Ryg(n), where R; and R, are constant matrices of

proper dimensionality. For the union of the two kernel groups {{f,(-) ;D;Ul,

{gp(-)}ﬁ)‘ﬁgl} we have

f(n—-1) Ry 0 f(n)

and consequently, SP is satisfied.

5. We will consider the special case of two kernel groups that both are of

size M = 2, [fo(+) fl()]T and [go(+) gl(-)]T. The cartesian product kernel
group is [fo(-)go() f1(-)go(-)fol)gr(+) fi(-)gr(1)]7. Since (2.2.1) holds for

the two kernel groups we have

foln = 1) = rpofo(n) + rufiln). p=0,1

109

and

g‘l(” —_ l) = ..‘3,,()_(/(](77) + .S{I]l(/l(ll). q = 0.1

for some constant coefficients r,,.5,,. p,¢ = 0.1. From the above we get

fo(n = 1)gy(n— 1) =
120540 fo(n)go(n) + 10851 fo(n) g1 (n) + 71800 f1(n)go(n) + rp1841 f1(n)gi(n)

for p,q = 0,1. Therefore, SP is satisfied by the cartesian product kernel
group. Obviously, the procedure described here applies for the cartesian

product of kernel groups with arbitrary sizes.

Proof of Lemma 2.3: The proof consists of two steps: First we show that
all the discrete mapping operators of finite length can be expressed as linear
combinations of exponential functions. Second, we show that such expressions
can be implemented in a time-recursive way:

Given a mapping operator of length N we can express the coefficients of this
operator as linear combinations of exponeutial kernel functions by taking the
N-point DFT of the coefficients.

From Lemma 2.2, Statement 1, every exponential kernel function can be
implemented recursively. From Lemma 2.2, Statement 4, the set of all the nec-
essary exponential kernel functions can be implemented recursively. From the
linearity property, the linear combination of the exponential kernel functions

can be implemented recursively.

Proof of Lemma 2.5: We will proceed with this proof by showing that there

are algorithms for the following computations:

—

. Compute {A,b} based on knowledge of R and f(0).

(S

. Compute {R.f(0)} based on {A.b}.

w

. Compute {A,b} based on {f(=1),f(=2), - . f(=M), 71,72 .M }-

N

. Compute {f(—1),f(=2), - -, f(=M),v1,7v2, - .7m} based on {A.b}.

110

The first two algorithms are straightforward implications of relation (2.2.9).
Note the implicit nonsingularity assumption we have made for the matrix R.
For the computation in 3 we {ollow foﬁr steps: First, compute the quantities
f(n), n =0,1,---,M — 1 based on f(n), n = —1,=2.---. =M and (2.2.12).
Since f(n) = A"b, the controllability matrix specified by the unknown quantities

{A,b} will be [27]
C=[bAb - AM1b| = [£(0) £(1) -+ £(M = 1)].

Second, by using relation (2.2.11) find the controller canonical form system
matrix A. and output vector b, specified in (2.1.3). So. the controllability

matrix of the controller canonical form is obtained:
Co=[be Acb. -+ AM7'b].
Third, compute the matrix T that defines the similarity transform
{A,b.} — {A=T"'AT b=T"b.} (1.0.3)

by using the relation [27]
T=CC".

Forth, the quantities {A, b} are computed by the relations specified in (1.0.3).

The computation in 4 is as follows: From knowledge of {A,b} obtain the
corresponding pair in controller canonical form {A., b.} [27]. The desired coeffi-
cients vy, v, * -, Ym can be obtained from the elements of the first row of the ma-
trix A. by using (2.2.11). The initial values f(—1),f(=2),---,f(—M) can be ob-

tained by simply evaluating the expression f(n) = A*bforn = —1,-2,.--, =M.

Proof of Lemma 2.6: We will consider the special case of M = 3. The
proof can be easily generalized for arbitrary values of M.

One can verify that the transfer functions from the input to Xo(1). X1(1) and’

X,(t) in Fig. 2.3 respectively are
~fo(0)27N + fo(N), —fi0)="N + [i(N) and = £(0)=7N 4 [o(N).

Consequently, from the Z transform of (2.3.1) we get

A ~

Xo(z) = DpXolz) or —f,(0)z"N+f,(N) = Dy [— fo(0)=7N + fo(N)] . p=1,2.
Since this is true for every = in some open interval. the latter implies

L) | _ | o) Do)

fo(N) "1 el

for p = 1,2, or equivalently

HO) _ L(N) o SV) f(N)
fo(0) fo(NV) fo(0) £(0)

3 [) = 1727
which in turn is equivalent to (2.3.2).

Proof of Lemma 2.7: If we have b = ¢/'¥ one can verify that (2.3.2) holds
with ratio value 1/S = (—1)*, by simply substituting the above expression of b
in (2.3.3).

On the other hand, suppose that (2.3.2) is satisfied by a kernel group specified
by (2.3.3) with b = ¢/?. If 1/5 is the value of the ratio in (2.3.2), then the latter
implies:

AN BN
Cpo€’" e = z((‘p(, +cn). p=0.1

The left hand side expression can also be written as

cpo(cos BN + 7sin N) + ¢p(cos BN — ysin gN) =

cos SN (cpo + ¢p1) + 7 sin BN (cpo — ¢1)s p=20,1

Therefore we have either ¢, = ¢, p=0,10r 4 =]A,T'r Since the first condition

yields cooc11 — corcio = 0, the alternative must be true.

In turn, the above result implies

’ —

= cos AN = cos kr = (—=1)".

1

()

Proof of Lemma 2.8: Let X,(1), t = 0,1,--- be the output data of the

mapping operation defined by the operator

[f-p(o) fp(l) e f‘p(N - 1)} :

From (2.2.3) we get
M-1 R
Xp(t) = 3 g [Xy(t =)+ Xy(0)] p=0,1- M=l 1=1.2,--- (1.0.5)
¢=0
where
R,() = —f(0)a(t = N)+ f(N)a(t), q=0,L-.M=1. (1.06)

Consider the unilateral Z, transform, defined as

+oo
X(z) = Ze{a(t)} = D a(t)="" (1.0.7)
t=0
Since
Z{a(t —m)} = z""X(z), forevery integer m >0, (1.0.8)

the Z, transform of (1.0.5) and (1.0.6) gives
M-1

Xp(2) = 3 my [FTX () + Xy(5)] . p =000 M -, (1.0.9)

q=0

113

where
Xy(2) =[S0 + L(N] X(2) g=0.1 M= 1. (1.0.10)

From (1.0.9) we have

M-1)
S s T X () (=L T)XG(2)
q=0,9%p
M-1 . M -1 v
= - Z rpq-\,q(:) = —‘Y(:) Z rpq [_./q(o):_r + ffl(N)])
=0 g=0

p=0,1.--- .M — 1. If we solve the above system of equations for X,(z).p =

0,1,---, M — 1, we obtain

X,(z)=Hy(2)X(2), p=0,1,---,M—1,

where H,(z) can be brought into the form specified in Lemma 2.8 after a few

algebraic manipulations.

Proof of Lemma 2.9: First. we define the Zx transform of a discrete time

function f(n) over the time segment {0,---. N — 1}
N-1
Zlfm) = 3 fn)="" (.0.0)
n=0

This variation of the Z transform is appropriate for the frequency domain rep-
resentation of the kernel functions we consider here, since these functions are
defined on a bounded segment of the time axes. On the other hand, we will
use the unilateral Z, transform as the frequency domain representation of the
input signal x(t) and the output signal X (#), since these signals are defined on

the semi-infinite sequence of time instances t = 0,1,---.

Let F(z) = Zny{fs(n)}. Based on (1.0.11) we can show that
Z{foln =)} = ""F(z) + fp(=1) = =" f,(N = 1) and

Z{fon=2)} = 2 2F(2)+ f =)+ 27 (= 1) = =TV f(N =2) = 2N (N = 1),
(1.0.12)

Also, we have

F(z) ="V R, (1.0.13)

where
F(z) = ZA,\'{_E,(N)} and [(n) = fAN=1=n), n=01.--.N-1

By taking the Zy transform of both sides of (2.3.8), using (1.0.12) and solving

for F(z), we obtain:

0) 4 ahy(= D)z = = V) £ 9,V = 1)=)

F(z)= (1.0.14)
=2t = e
From (2.2.2) we have
N-1
X(t+N-1)= Z fo(m)a(t 4+).
n=0
or equivalently
N-1 ~
y(t) = Z a(t=n)f(n) (1.0.15)
n=0

where y(1) = X(+ N —1). By taking the Z, transform of both sides of (1.0.15)

and using (1.0.8) we obtain:

)"(:):NZ__:lf(n [X (=] Z:: fﬂ T = ’(:)F(:).

By substituting (1.0.13) we get

183
-
!
Z
+
_
3
—
vy
-
—
o
—
Ly
—

Y

L5

and therefore, the transfer function we were after is
H(z) = z"NT1p(z). (1.0.16)

If we substitute the expression (1.0.14) of F'(z) in the above we obtain the trans-

fer function specified in (2.3.9).

Proof of Lemma 2.10: One can verify that

4q

Ev{fyn—)} = =7 F(E) 4 X [Rl=n)sm f(N = m)z N] (L07)

n=1

where the Zy transform is defined by (1.0.11) and /'(z) = Zx{/,(n)}. By taking

the Zy transform of (2.2.12),using (1.0.17) and solving for [7(z) we obtain:

M : . — g+ -N : g L=N=—qg+
Zq:] ‘7([[Z(:lzl B P(_”): et — Z‘{/I::l B I»’(‘\ - ”)“‘. v I+”]

F(z) =
I = ZQ,\il Yot

By substituting this expression in (1.0.16) we obtain (2.3.11).
Proof of Lemma 3.1: Consider the Zy transform of a discrete time function
f(n) over the time segment {0,---, N — 1}

N-=-1

Zv{fn)} = Y fm)=m

This variation of the Z transform is appropriate for the frequency domain repre-
sentation of the kernel functions we consider in this paper, since these functions
are defined on a bounded segment of the time axes. Let Y(z) be the Z; trans-
form of y(Nt + n):

o

Y(z)= Z y(NI +n)z"

n=0

One can show that

Z{y(Nt+n+1)} ==[Y(:) —y(NI +0)]. (1.0.18)

116

By taking the unilateral Z, transform of both sides of (3.2.11), substituting

(1.0.18) and solving for Y(z) we obtain:
Y(z) = (I - :_IR—I)_1 y(Nt),

or

Y(z) = <I _ :‘]R'])_l y(N(1 - 1)+ N). (1.0.19)

From (3.2.9) we get
V(N —-1)+ N)=f(N)X(0,N(t —1)).

By substituting the above expression in (1.0.19) we can derive the transfer func-

tion H(z) specified in Lemma 3.1 after a few simple algebraic manipulations.

1]

REFERENCES

Anderson, L.A. and Yau, H.(' and Manry. M.T., Recursive Approximation
of the Energy Spectral Density, IEEE Trans. on Signal Processing. Vol. 40,
No. 12, pp. 3059-3062, Dec. 1992.

Image Coding Using Wavelet Transform, Auntonini, M. and Barlaud, M. and

Mathieu, P. and Daubechies, 1., IEEE Trans. on Signal Processing, 1992.

Beraldin, J.A. and Aboulnasr, T. and Steenhart, W., Efficient one-
dimensional systolic array realization of the discrete Fourier transforn,

IEEE Trans. on Circuits and Systems, Vol. 36, pp. 95-100, 1989.

Beraldin, J.A. and Steenhart, W., Oveflow analysis of a fixed-point imple-
mentation of the Goertzel algorithm, IEEE Trans. on Circuits and Systems,

Vol. 36, pp. 322-324, 1989.

Chihara, T.S.. An Introduction to Orthogonal Polyvnomials. Gordon and

Breach Science Pub.. New York, 1978.

Babic, H. and Temes, G.C., Optimum Low-Order Windows for Discrete
Fourier Transform Systems, IEEE Trans. on Acoustics, Speech, and Signal

Processing, Vol. ASSP-24, No. 6. pp. 512-517, Dec. 1976.

Bitmead, R.R. and Anderson, B.D.O., Adaptive Frequency Sampling Fil-
ters, I[EEE Trans. on Circuits and Systems, Vol. 28, No. 6, pp. 524-534.
June 1981. .

(8]

[9]

[10]

[13]

[14]

[15]

[16]

Canaris, J.. A VLSI Architecture for the Real-Time Computation of Dis-
crete Trigonometric Transforms. Journal of VLSI Signal Processing. Vol. 5.

No. 1, pp. 95-104, Jan. 1993.

Chiu, C.T. and Liu, K.J.R., Real-Time Parallel and Fully Pipelined Two-
Dimentional DCT Lattice Structures with Application to HDTV Systems,
IEEE Trans. on Circuits and Systems for Video Technology, Vol. 2, No. I,

pp. 25-37, March 1992.

Clark, G.A. and Soderstrand, M.A. and Johnson, T.G., Transform Domain
Adaptive Filtering Using a Recursive DFT, Proc. IEEE ISCAS, pp. 1113-

1116, June 1985.

Cooley, J.W. and Tukey, J.W.. An algorithm for machine computation of

complex Fourier series. Math. Comput.. Vol. 19, pp. 297-301. 1965,

Dentino, M. and McCool, J. and Widrow. B.. Adaptive Iiltering in the
Frequency Domain, Proceedings of the IEEL, Vol. 66, No. 12, pp. 1658-

1659, Dec. 1978.

Duhamel, P.. Implementation of Split-Radix FFT Algorithms for Complex.
Real. and Real-Symmetric Data, IEEE Trans. on Acoustics, Speech. and

Signal Processing, Vol. ASSP-34, No. 2, pp. 285-295, April 1936.

Frantzeskakis, E. and Baras, J.S. and Liu. K.J.R.. Time-Recursive Compu-
tation and Real-Time Parallel Architectures, Part [: Framework. submitted

to IEEE Trans. on Signal Processing, July 1993.

Frantzeskakis, I£. and Baras, J.S. and Liu, K.J.R., Time-Recursive Com-
putation. Part II: Methodology and Application on QMF Banks and ELT.

submitted to IEEE Trans. on Signal Processing. July 1993,
g g)

Frantzeskakis, E. and Baras. J.S. and Liu, K.J.R.. Time-Recursive Archi-

tectures and Wavelet Transform, Proc. IEEE TICASSP, pp. 445-448, 1993.

119

[17]

Frantzeskakis, E. and Baras, J.S. and Liu, K.J.R.. Time-Recursive Com-
putation and Real-Time Parallel Architectures, with Application on the
Modulated Lapped Transform, Proc. SPIE. International Symposium on

Optical Applied Science and Engineering. San Diego, July 1993.

Frautzeskakis, E. and Karathanasis. ., On Computing the 2-D Modulated
Lapped Transform in Real-Time, 1993 [EEL Workshop on VLSI Signal
Processing, Oct. 1993.

Goertzel, G., An algorithm for the evaluation of finite trigonometric series,

Amer. Math. Monthly, Vol. 65, pp. 34-35, 1958.

Harris, F.J., On the Use of Windows for Harmonic Analysis with the Dis-

crete Fourier Transform, Proceedings IEEE, Vol. 66, pp. 51-83, Jan. 1978.

Hayes, J.P., Computer Architecture and Organization, McGraw-Hill,Inc.,

New York. 2nd Edition, 1988.

Hou, H.S., A Fast Recursive Algorithm for Computing the Discrete Cosine
Transform, IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol.

ASSP-35. No. 10, pp. 1155-14G1. Oct. TYST.

Yu Hen Hu, CORDIC-Based VLS| Architectures for Digital Signal Pro-
cessing, IEEE Signal Processing Magazine, Vol. 9, No. 3, pp. 18-35, July

1992.

Jayant, N., Signal Compression: Technology Targets and Research Direc-
tions, IELE Journal on Selected Areas in Communications, Vol. 10, No. 5,

pp. 796-818, June 1992.

Javant, N., Digital Coding of Wideband Audio, IEEE ICASSP 1993, Tuto-

rial No3 (Lecture Notes).

Jaynant, N.S. and Noll, P.. Digital Coding of Waveforms. Preutice Hall,
Englewood Cliffs. N.J. 19384.

[27]

[28]

[31]

[32]

[33]

(36]

Kailath, T., Linear Systems, Prentice Hall, London. 1930.

Knowles, G., VLSI Architecture for-the Discrete Wavelet Transform, Elec-

tronics Letters, Vol. 26, No. 15, pp. 1184-1185, July 1990.

Kung, S.Y., Multivariable and Multidimentional Systems: Analysis and

Design, PhD Thesis, Stanford University, June 1977.

Lee, B.G.. A New Algorithm to Clompute the Discrete C'osine Transform,
IEEE Trans. on Acoustics. Speech. and Signal Processing. Vol. ASS5P-32.
No. 6, pp. 1243-1245, Dec. 1984.

LeGall. D.J.. The MPEG Video Compression Algorithm. Comm. ACNM.
Vol. 34, No. 4, pp. 46-58, April 1991.

Liu, K.J.R., Novel Parallel Architectures for Short Time Fourier Transtform.
To appear in I[EEE Trans. on Circuits and Systems II: Analog and Digital

Signal Processing, 1993.

Liu, K.J.R. and Chiu, C.T., Unified Parallel Lattice Structures for Time-
Recursive Discrete Cosine/Sine/Hartley Transforms. IEEE Trans. on Signal

Processing, Vol. 41, No. 3, pp. 1357-1377. May 1993.

Liu, K.J.R. and Chiu, C.T. and Kolagolta, R.IX. and Jaja, J.F., Optimal
Unified Architectures for the Real-Time Computation of Time-Recursive
Discrete Sinusoidal Translorms, Submitted to IEEE Trans. on Circuits and

Systems for Video Technology, 1992,

Mallat, S.G., A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation, IEEE Trans. on Pattern Analysis and Machine

Intelligence, Vol. 11, No. 7, pp. 674-693, July 1989.

Malvar, H.S.. Lapped Transforms for Efficient Transform/Subband Coding.
IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-38,
No. 6, pp. 969-978, June 1990.

[37]

[38]

[43]

[45]

[46]

[47]

Malvar. H.S. and Staclin. D.H.. The LOT: Transform Coding Without
Blocking Effects, IEEE Trans. on Acoustics. Speech. and Signal Processing,

Vol. ASSP-37, No. 4, pp. 553-559, April 1939.

Malvar, H.S., Extended Lapped Transforms: Properties, Applications. and
Fast Algorithms, IEEE Trans. on Signal Processing, Vol. 40, NO. I1. pp.
2703-2714, Nov. 1992.

Malvar, H.S., Signal Processing with Lapped Transforms, Artech

House,Inc., Boston 1992.

Marchall, F.C. Il and Temes, G.C.. Binary Windows for the Discrete

Fourier Transform, Proceedings of the IELL, pp. 1370-1371, Sep. 1975.

Marshall. D.IF. and Jenkins, W.N. and Murphy. J.J.. The Use of Orthogonal
Transforms for Improving Performance of Adaptive Filters. IEFE Trans. on

Circuits and Systems, Vol. 36. No. 4, pp. 474-484, April 1989.

Murthy, N.R. and Swamy, M.N.S., On the Computation of Running Dis-
crete Cosine and Sine Transforms, IEEE Trans. on Signal Processing., Vol.

40, No. 6, pp. 1430-1437, June 1992.

Narayan, S.S. and Peterson, A.M. and Narasimha, M.J., Transform Domain
LMS Algorithin, IEEE Trans. on Acoustics, Speech. and Signal Processing,
Vol. ASSP-31, No. 3, pp. 609-6G15, June 1983.

Nussbaumer, H.J.. Fast Fourier Transform and Convolution Algorithms.

Springer, Berlin, 1981.

Nusshbaumer, H.J., Pseudo QMF Filter Bank. IBM Tech. Disclosure Bul-
letin, Vol. 24. pp. 3031-3087. Nov. 1931.

Oppenheim, A.V. and Schafer, R.W.. Discrete-Time Signal Processing,

Prentice Hall.Inc., Englewood Cliffs, N.J. 1989.

Papoulis, A., Signal Analysis. McGraw-Hill.Inc. New York. 1977.

(48]

[51]

52)

156]

[57]

58]

Rioul. O. and Duhamel, P.. Fast Algorithms for Discrete and Continuous
Wavelet Transforms. IEEE Trans. on Information Theory, Vol. 33, No. 2,

pp- 569-586G, March 1992,

Rubino, E.M. and Malvar, H.S., Improved Chen-Smith Image Coder. Proc.

IEEE ISCAS, 1993.

Edited by Ruskai, M.B. et al., Wavelets and their Applications, Johnes and

Barlett Publishers, Inc., Boston, 1992.

Shynk. J.J., Frequency-Domain and Multirate Adaptive Filtering. IEEE
Signal Processing Magasine, Vol. 9, No. 1. pp. 14-37. Jan. 1992.

Smith, S.QG.. and White, S.A., Hardware Approaches to Vector Plane Rota-

tion, Proc. IEEE ICASSP, pp. 2128-2131, 1988.

Ullman, J.. Computational Aspect of VLSI. Computer Science Press.

Rockville, MD. 1984.

Vaidvanathan. P.P.. Multirate Filters and Filter Banks. Prentice Hall. Egle-

wood Cliffs, NJ, 1993.

Vaidyanathan, P.P. and Doganata, Z., The Role of Lossless Systems i
Modern Digital Signal Processing: A Tutorial, IEEE Trans. on Education,
Vol. 32, No. 3, pp. 181-197, Aug. 1989.

Vargas, L.F.C.. and Malvar. H.S., ELT-Based Wavelet Coding of High-
Fidelity Audio Signals, Proc. IEEE ISCAS. 1993,

Vetterli. M. and Naussbaumer, H.. Simple FFT and DCT Algorithms with
Reduced Number of Operations, Signal Processing, Vol. 6, No. 4, pp. 207-

278, Aug. 1984.

Wallace. G.IN.. Overview of the JPEG Still Picture Compression Algorithm.
Comm. ACM. Vol. 31. No. 1. pp. 30-HE April 1991,

[59]

[60]

[61]

Wang, Z., Fast Algorithms for the Discrete W Transform and for the Dis-
crete Fourier Transform, IEEE Trans. on Acoustics, Speech, and Signal

Processing, Vol. ASSP-32, No. 4, pp. 803-816, Aug. 1984.

White, S.A., Applications of Distributed Arithmetic to Digital Signal Pro-
cessing: A Tutorial Review, IEEE Signal Processing Magasine, Vol. 6. No.
1, pp. 4-19, July 1989.

Yip. P. and Rao, K.R.. On the Shift Property of DCT's and DST's, IEEE
Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-35, No. 3,

pp. 404-406, March 1987.

Young, R. and Kingsbury, N., Motion Estimation using Lapped Transforms,

Proc. IEEE ICASSP, pp. 111 261-264, March 1992.

