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Information entropy measured from acoustic emission (AE) waveforms is shown to 

be an indicator of fatigue damage in a high-strength aluminum alloy. Several tension-

tension fatigue experiments were performed with dogbone samples of aluminum 

alloy, Al7075-T6, a commonly used material in aerospace structures. Unlike previous 

studies in which fatigue damage is simply measured based on visible crack growth, 

this work investigated fatigue damage prior to crack initiation through the use of 

instantaneous elastic modulus degradation. Three methods of measuring the AE 

information entropy, regarded as a direct measure of microstructural disorder, are 

proposed and compared with traditional damage-related AE features. Results show 

that one of the three entropy measurement methods appears to better assess damage 

than the traditional AE features, while the other two entropies have unique trends that 

can differentiate between small and large cracks.  
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Chapter 1 – Introduction 

1.1 Motivation and Background 

 Virtually all engineered structures undergo some form of cyclic fatigue. For 

example, mechanical gears can experience tooth fracture while rotating mechanical 

shafts can fail due to repeated torsional loading. Systems with such components are 

often permitted to fail when the safety risk is minimal and the components can be 

replaced at a relatively low cost. However, structures such as bridges and aircraft 

include critical components where extensive safety risks and monetary losses are a 

concern upon failure. In turn, estimating when a failure may occur is imperative and 

inspecting these structures for fatigue damage is common practice.  

 Specifically for aircraft, decades of research and experience have produced 

guidelines for estimating ideal service life. There are two main approaches for 

determining retirement time of military aircraft referred to as damage tolerant and 

safe-life. The United States Air Force adheres to the damage tolerant approach which 

assumes the structure has inherent defects and predicts the instance when these 

defects grow to become cracks of critical length [1]. In contrast, the safe-life 

approach assumes a new structure has no flaws and retires an aircraft based on 

recorded loading data and estimated crack initiation time. The United States Navy 

uses this approach because of the extreme loading conditions of taking off and 

landing on aircraft carriers with relatively short runways. Aircraft are retired once a 

crack is estimated to initiate and extend to a 0.25 mm length based on extensive and 

time-consuming, full-scale fatigue tests [1]. While the lower damage threshold of the 

safe-life approach reduces the likelihood of catastrophic failure, the high safety 
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factors tend to lead to premature retirement and a lower return on investment for 

aircraft owners [2].  

Rather than basing retirement time solely on estimated crack initiation and 

full-scale testing, structural health monitoring (SHM) and nondestructive evaluation 

(NDE) methods can be used to estimate the actual material damage due to fatigue. 

While SHM is most desirable in that the entire structural health is continuously 

monitored, NDE methods that evaluate structural health during discrete inspection 

periods are more practical and often implemented. Traditional NDE methods include 

visual, eddy current, ultrasonic, and radiographic testing [3]. Each of these inspection 

techniques can assess damage within a structure to a degree of certainty when the 

probable damage location is known.  

Another technique that can be used is acoustic emission (AE). Acoustic 

emission is a technique by which elastic stress waves that propagate through a 

material at sources of stress are recorded as electrical signals [4]. In contrast to the 

other NDE methods which detect geometric discontinuities when actively positioned 

in anticipated damage locations, AE is a potential SHM technique that passively and 

continuously records microstructural movements even prior to a visible crack. 

Despite this advantage, however, AE is susceptible to extraneous noise. 

Distinguishing between noise and damage-related signals is a critical obstacle that has 

limited the practical SHM application of AE. Instead, AE can be used as an NDE 

method when noise signals can be filtered in a controlled testing environment.  

While AE research over the past few decades has proven effective in 

estimating visible cracks and crack growth rate, detecting fatigue damage at the 
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earliest instance using AE is most desirable. This goal motivated the current research 

which is the first of two stages. The first stage is identifying AE precursors attributed 

to cyclic slip and microcracks prior to visible damage. These precursors are then 

characterized as damage increases within a structure during constant high-amplitude 

loading. Once damage precursors and their behaviors are completely investigated 

during normal conditions, the second stage seeks to quantify the changes in these 

behaviors during a short-term, high-frequency excitation loading referred to as a 

Short-Term Loading Process (STLP). The STLP concept is depicted in Figure 1 

where dα/dN is the evolution of the precursor’s behavior. In these experiments, a 

constant high-amplitude load will be applied to a structure. This loading will then be 

interrupted at several instances throughout the fatigue life to measure the known 

changes in the identified fatigue damage precursors due to the STLP. By knowing the 

evolution of precursor behavior during a STLP at various degrees of damage, the 

fatigue damage of a structure with unknown loading history could potentially be 

estimated by a simple STLP.  

 

Figure 1: Proposed Short-Term Loading Process (STLP) where constant high-amplitude loading 

is interrupted by small excitation loading to observe response of damage precursor parameter 
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1.2 Research Objectives and Methodology 

 The objectives of this work are listed as the following: 

1. Assess the validity of using instantaneous elastic modulus as a measure of 

the true microstructural damage in metallic structures. 

2. Develop quantitative statistics that reflect the information carried within 

AE signals. 

3. Investigate how features and information from AE signals correlate to 

fatigue damage prior to a visible crack and compare the utility of these 

various AE damage parameters. 

4. Discuss advantages and limitations of AE damage parameters and suggest 

damage precursors to be used in STLP testing. 

In order to achieve these objectives, a series of fatigue experiments were 

performed on Al7075-T6, a commonly used material in aerospace structures. The 

local strain around a semicircular notch and the acoustic signals emitted from 

microstructural damage were measured during the experiments. Unlike previous 

studies in which fatigue damage is easily measured based on visible crack growth, 

this work assumes that instantaneous elastic modulus can be an estimate of the 

unobservable microstructural damage. Subsequently, AE features and information 

from AE signals are correlated to modulus degradation in order to estimate damage 

prior to a visible crack.  

Both traditional AE features like AE counts and AE energy are investigated as 

well as various formulations of information entropy from AE signals to correlate to 

fatigue damage. Information entropy is the measure of the disorder of any probability 

distribution. In turn, it is hypothesized that the information entropy from probability 
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distributions of AE signals reflect microstructural disorder and therefore fatigue 

damage. Several different methods of representing AE signals as probability 

distributions are developed from which several measures of information entropy are 

derived. The strengths and weaknesses of each of these measures in regards to 

correlating with true fatigue damage are discussed.  

1.3 Contributions 

 The contributions of this work are listed as the following: 

1. Techniques to reduce extraneous AE noise through development of 

mechanical damping apparatus and justified post-process filtering. 

2. A procedure to measure damage based on elastic modulus degradation. 

3. Processes to derive three different proposed information entropy 

measurements from individual AE signals. 

4. Comparison of the traditional AE features and information entropy 

formulations in regards to fatigue damage. 

1.4 Outline of Thesis 

 The rest of this thesis is divided into five chapters. First, Chapter 2 details 

theory, background, and previous research related to fatigue damage in metals, AE, 

and information entropy. Chapter 3 describes the experimental procedure including 

specimen design, data measurement systems, the mechanical damping apparatus, and 

the characteristics of each fatigue experiment performed. Next, Chapter 4 explains the 

post-processing methods to reduce AE noise, calculate instantaneous elastic modulus, 

and derive three different formulations of AE information entropy. Then, results 

pertaining to crack behavior, stress-life analysis, measured damage from elastic 
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modulus degradation, AE features, and AE information entropy metrics are discussed 

in Chapter 5. Finally, conclusions and recommendations for future work are provided 

in Chapter 6.  
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Chapter 2 – Literature Review 

2.1 Fatigue Damage in Metals 

2.1.1 Stages of Fatigue 

 Fatigue is the gradual degradation and eventual failure of a material that 

occurs due to cyclic loading lower than the material’s static strength. Research 

pioneered by August Wöhler during the mid-19
th

 century led to the conclusion that 

materials can fail due to repeated stresses that are below the yield strength [5]. Since 

this time, many other instances of fatigue in mechanical components have been 

documented and inspired subsequent investigations. An extensive history of fatigue in 

metals between 1837 and 1994 is given by Schütz [6]. 

 Fatigue is often characterized as three phases of damage: crack initiation, 

stable crack growth, and unstable crack growth until fracture. This fatigue process is 

illustrated in Figure 2 and thoroughly explained by Schijve [7]. Fatigue damage 

begins very early in fatigue life as invisible microcracks nucleate at persistent slip 

bands (PSBs). These PSBs are a result of moving dislocations within the material due 

to applied stress. Dislocations move along the direction with greatest shear stress, 

which varies within a material based on size, shape, crystallographic orientation, and 

elastic anisotropy of grains [7, 8]. Also, because surface grains are less constrained 

than subsurface grains, slip bands are more likely to occur at surface grains where the 

shear stress is often more significant and where dislocations move towards. Once a 

slip band occurs at a surface grain and a new surface is exposed to air, oxygen is 

absorbed causing local decohesion of the slip step [8]. This phenomenon causes sites 

for microcrack initiation.  
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Figure 2: Crack development and phases of fatigue life 

The initiated microcrack will grow depending on the surrounding 

microstructure.   As a crack grows through the first grain, it will approach an adjacent 

grain with its own crystalline orientation and ideal slip system direction. The crack in 

the first grain will then deviate from its original propagation direction based on the 

second grain’s slip system. Because each grain impedes the crack growth to a varying 

degree, crack growth rate for microcracks is erratic and dependent on grain 

boundaries. The microcrack will continue to grow through subsequent grains and 

inclusions changing its propagation path each time.  

Once the microcrack has created a large crack front spanning numerous 

grains, the crack will propagate at a more consistent rate. This is when a crack 

transitions from a small crack to a large crack. This transition is often determined 

based on whether the crack growth rate can be characterized by Paris’ law [9]. 

Introduced in 1961, Paris [9] proposed that the crack growth rate is related to the 

material’s stress intensity factor range by means of a power relationship. This 

relationship is recounted in Equation (2.1) where da/dN is the crack growth rate, ∆K 
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is the stress intensity factor range, and C and m are constants dependent on the 

material. Once a large crack reaches a certain length, the crack will rapidly propagate 

and cause fracture. 

 
𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚 (2.1) 

2.1.2 Literature on Crack Nucleation, Initiation, and Small Cracks   

A main research topic related to fatigue in metals is differentiating between 

small cracks and large cracks and attempting to model crack initiation and small 

crack growth. Crack growth rates for large cracks can be predicted by linear elastic 

fracture mechanics (LEFM) models including Paris’ law. For LEFM to be valid, the 

plastic zone around the crack tip should be small relative to the entire crack length. 

Moreover, this plastic zone should enclose a sufficient number of grains and 

inclusions for the crack growth rate to be stable [10, 11, 12]. Other sources have 

further differentiated small cracks into microstructurally small and physically small. 

While the exact differentiation between small crack phases is unclear, most agree that 

microstructurally small cracks are about the size of a few grain diameters and 

physically small cracks are those between several grain diameters and 1 mm. Table 1 

summarizes multiple sources’ definitions of crack phases. As previously mentioned, 

the U.S. Navy retires aircraft once a small crack exceeds 0.25 mm [1]. In turn, this 

work will focus on fatigue damage prior to a 0.25 mm crack to match U.S. Navy 

criteria as well as until such a crack reaches 1 mm to agree with common small crack 

length definitions.   
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Table 1: Various definitions of crack phases 

Source Crack phases 

[5] 

Short cracks Long cracks 

 Length = less than 1 mm 

 Inclusions and grain boundaries influence 

growth 

 Length = greater than 10 mm 

 Microstructure and loading ratios have 

little influence 

[7] 

Crack nucleation 
Microstructurally 

short cracks 

Mechanically 

short cracks 
Macrocracks 

 Length = 1 nm – 1 

µm 

 Influenced by 

surface roughness 

and 

microstructure 

 Length = 1 nm – 

100 µm 

 Crack growth is 

stunted by 

microstructural 

barriers  

 Length = 100 µm 

– 1 mm 

 Crack growth is 

stunted by 

changes in crack 

tip stress field 

 Length = 

greater than 1 

mm 

 Bulk material 

phenomenon 

[8] 

Microstructurally 

short cracks 

Mechanically short 

cracks 

Physically short 

cracks 
Long cracks 

 Length = a few 

grain diameters 

 Strong influence 

of microstructure 

and surface 

roughness 

 Length = several 

grain diameters 

 Little influence of 

the microstructure 

 Large plastic zone 

ahead of crack 

 Length = less 

than 0.5 mm 

 Small plastic 

zone ahead of the 

crack tip relative 

to crack length 

 LEFM is 

applicable 

 Length = 

greater than 0.5 

mm 

 Completely 

developed  

 Paris’ law is 

applicable 

[11] 

Crack nucleation 
Microstructurally 

small cracks 

Physically small 

cracks 

Dominant long 

cracks 

 Length = 

Unspecified 

 Crack propagation 

through zone of 

the micro-notch 

root influence 

 Length = less than 

3 times the 

characteristic 

length scale of 

microstructural 

interactions (MS) 

 Affected by the 

grain orientation 

 Length = 300-

800 µm, between 

3MS and 10MS 

 Affected by the 

grain orientation 

 Length = less 

than greater 

than 20MS 

 Cyclic plastic 

zone is small 

relative to crack 

length 

 LEFM is 

applicable 

[10, 22, 

24] 

Microstructurally short 

cracks 
Physically short cracks Long cracks 

 Length = similar to grain 

size 

 Continuum mechanics is 

questionable 

 Length = on the order of 

a grain or less 

 Reduced crack-closure 

effect 

 Length = greater than 

0.5-1 mm 

 Paris’ law holds 

[14, 15] 

Small cracks Long cracks 

 Length = less than 1 mm 

 Nonlinear crack growth so LEFM is not 

applicable 

 Length = greater than 1 mm 

 LEFM is applicable 

[16] 

Small cracks Long cracks 

 Length = on the order of a grain or less 

 LEFM is not applicable 

 Length = larger than a few grains 

 LEFM is applicable 
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Researchers have continually attempted to model the erratic behavior of crack 

initiation and small crack growth. One notable researcher in this field is James C. 

Newman, a former NASA engineer. He developed the FASTRAN software that 

predicts fatigue life using plastically-induced crack-closure models [13]. In 1998 and 

1999, Newman, Wu, and their coworkers [14, 15] published work on small crack 

growth, defined as between 10 µm and 1 mm in length, and fatigue life predictions 

for Al 7075-T6 and LC9cs clad alloy. The objective was to determine a “single 

analysis method that was applicable to all crack sizes”. Fatigue experiments along 

with finite element analyses and weight function analyses assessed the validity of 

estimating small and large crack growth rates with the FASTRAN software. In turn, 

the proposed model was able to predict fatigue life to an acceptable degree of 

accuracy. Newman [16, 17, 18] has continued researching small crack growth using 

FASTRAN models over the past decade.  

While FASTRAN software has proven to be a vital tool for predicting fatigue 

life, greater accuracy is achieved when the current microstructural damage is known. 

FASTRAN is based on fatigue experiments where cyclic loading was paused so that 

the material’s surfaces could be replicated. The size and shape of small cracks were 

then identified from scanning electron microscope images of the replicas. This 

process, however, cannot be implemented on a large scale. Observing fatigue damage 

on a microstructural level is ideal, but the replica method cannot easily be 

implemented as an NDE method.  This limitation encourages investigations of other 

practical NDE methods that can estimate the fatigue damage on a microscopic level.  
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Another prominent researcher of fatigue and fracture mechanics of small 

cracks is Hael Mughrabi. Similar to Newman, he focuses on estimating fatigue 

damage based on microstructural changes. Several of his papers [12, 19, 20] discuss 

microstructural fatigue mechanisms such as cyclic irreversibilities and PSBs in α-iron 

polycrystals and α-brass single crystals. In addition, other authors have been 

published notable works [10, 21, 22, 23, 24, 25] that discuss microscale fatigue 

damage in Al7075-T6 and Ti-6Al-4V, both materials used in aerospace structures. 

Despite progress in microstructure-based models of fatigue, Mughrabi [12] noted that 

“a full understanding of the underlying damage mechanisms and the relationship to 

the fatigue life is difficult to achieve and still lacking”. Again, while a 

microstructurally-based fatigue model for crack nucleation, initiation, and small crack 

growth is desired, it is best to develop more practical methods of measuring 

microstructural fatigue damage through NDE techniques.  

2.2 Acoustic Emission Background 

2.2.1 AE Theory 

 AE has become a recognized NDE method commonly used to detect flaws in 

mechanically loaded structures. Other NDE procedures such as ultrasonic and 

radiographic testing measure a component’s response to an actively applied external 

source. In contrast, AE is a passive method that senses minute surface displacements 

due to propagating internal elastic waves from sources of stress as shown in Figure 3. 

Theoretically, acoustic waves due to damage are continuously propagating through a 

structure when under repeated stress. Once the applied stress causes permanent 

deformation, stored elastic strain energy is released partly in the form of an acoustic 
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wave. For each instance of deformation, an acoustic wave is emitted. Consequently, 

AE has the potential to measure fatigue damage from dislocation motion to crack 

initiation and to large crack propagation. However, the ability to measure AE is 

limited by noise. Noise can come from many sources including mechanical vibrations 

from the testing machine and electrical interference with the instrumentation [4]. In 

turn, an amplitude threshold is often established. While this threshold allows the 

system to reject unwanted noise signals, AE signals related to damage and below the 

noise amplitude will not be detected. As a result, AE transducers cannot monitor in-

flight aircraft structural health, but they can rather be used as an inspection method 

used in a controlled environment.  

 

Figure 3: AE sensor recording surface displacement waves from damage region 

2.2.2 AE Instrumentation and Terminology 

 The measurement of acoustic emissions began with Joseph Kaiser in 1950 [4]. 

Since then, standardized AE instrumentation including sensors, preamplifiers, and 

acquisition systems have been developed. Sensing the elastic wave within in the 

structure is the first step in measuring and recording AE signals. Most AE sensors are 

piezoelectric transducers which utilize the piezoelectric effect. These sensors contain 

a piezoelectric crystal that produces a change in electrical voltage when under 

mechanical strain. Therefore, when these materials are fastened to a deforming 

surface, the mechanical wave is transformed into an electrical signal. While the 
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electrical signal’s size and shape is dependent on the elastic wave, it is also 

influenced by the frequency behavior of the piezoelectric sensor. There are two 

general types of sensors; resonant and wideband. Resonant sensors operate in a 

narrow band near the sensor’s resonant frequency while wideband sensors are 

damped in order to detect a broader range of AE signal frequencies. Resonant sensors 

are often preferred because they are generally more sensitive and less expensive than 

wideband sensors [26]. While wideband sensors are able to reconstruct the elastic 

wave more accurately in regards to frequency spectrum, they are less sensitive.  

 Once an AE piezoelectric sensor converts a surface displacement into an 

electrical voltage signal, the signal is passed through a preamplifier and band-pass 

filter. The preamplifier should be set to properly amplify the signals, and frequency 

filter characteristics should be selected to match the sensor’s attributes. Typically, the 

preamplifier is set between 20 dB and 60 dB, and the band pass filter is set between 1 

kHz and 2 MHz [26]. The filter will be able to reject noise signals that often have a 

low frequency and capture damage-related AE signals which typically have 

frequencies in the range of 150-300 kHz [4].  

Also, it is important to note that the recorded AE signals will have a 

drastically different waveform shape compared to the actual elastic wave. This 

phenomenon is due to the transformations between an AE source and the acquisition 

module and is referred to as the signal shaping chain as depicted in Figure 4 [4]. The 

source of the elastic wave is assumed to be one sudden peak with a smooth frequency 

distribution. The wave within the structure then attenuates and reflects off of the 

structure’s boundaries, distorting the wave in the time and frequency domains. Then, 



 

 15 

 

because the AE sensor has its own time and frequency response, the electrical signal 

is an altered form of the propagating elastic wave. Finally, the signal is transformed 

again after being amplified and filtered. Even though the recorded AE signal is not in 

fact the exact AE wave within the structure, one can deduce aspects of the AE source 

from the recorded signal since all AE waves go through the same transformation. 

 

Figure 4: Transformation of AE signal due to signal shaping chain. Adapted from [4]. 

 An example of an AE waveform is given in Figure 5. As one can see, the 

beginning of the signal has a voltage that oscillates close to 0 volts identified as 

background noise. After a damage-related elastic wave propagates to the AE sensor, 

the AE signal’s amplitude then increases to a peak amplitude. Subsequently, the 

signal attenuates back to the background noise behavior. 

 
Figure 5: AE voltage waveform with labelled features  
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Two important duties an AE acquisition needs to perform is 1) to divide the 

continuous and complex AE signal into individual waveforms that can be processed 

and 2) to extract relevant features from these waveforms. For the first task, a series of 

parameters is often set depending on the structure’s material and geometry. These are 

described in Table 2 [27].  

Table 2: User defined AE parameters and their descriptions [27] 

User-Defined AE 

Parameters 
Description 

Threshold 

Voltage value in units of dB that records an AE waveform as 

a hit when the waveform exceeds this value. Variable that 

controls the sensitivity. 

Sampling rate 

The rate at which the acquisition board samples waveforms 

on a per second basis. Value is described in units of 

megasamples per second (MSPS) where 1 MSPS means a 

sample is taken for every 1 µs. 

Pre-trigger 

Value that tells the software how long to record the AE 

waveform prior to the first voltage threshold crossing. Units 

are in microseconds. Can be set from 0 µs to the hit length 

divided by the sample rate.  

Hit length 

Value that determines the waveform length. This value can 

range between 1k and 15k where k = 1024 values. The length 

of time recorded over the hit is found by dividing the hit 

length by the sampling rate. For example,  k for a 1 MSPS 

sampling rate means 1024 values will be measured, 1 for 

every µs, and the waveform will span a time of 1024 µs. 

Peak definition time (PDT) 

Ensures correct identification of the signal peak for rise time 

and peak amplitude measurements. For small metal 

specimens, the recommended value is 300 µs. 

Hit definition time (HDT) 

Ensures each AE signal from the structure is reported as one 

and only one hit. For small metal specimens, the 

recommended value is 600 µs. 

Hit lockout time (HLT) 

Extraneous measurements during the signals decay are 

excluded based on this value. For small metal specimens, the 

recommended value is 1000 µs. 

 

For the second duty of an acquisition system, numerous AE features are now 

common place. These features are labeled in Figure 5 and described below in Table 3 

[4, 27]. 
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Table 3: Commonly extracted AE features and their descriptions [4, 27] 

Commonly Extracted AE 

Features 
Description 

Amplitude 

The largest voltage value present in the waveform and measured in 

dB using Equation (2.2). For a signal to be recorded, the amplitude 

needs to be above the threshold. 

Counts 

The number of times the voltage signal crosses the threshold. One of 

the easiest measurements of the signal and often used in analysis. 

Value usually is between a single count to a few hundreds. 

Duration 

Length of time from the first count to the last count and measured in 

microseconds. A long duration means the signal is drawn-out while a 

short duration implies a burst-type signal. 

Rise time 
The time between the first count and the count with the greatest 

amplitude. Units are in microseconds. 

Energy 
The area under the voltage-time envelope. This feature is a common 

measure for discussing AE signals in regards to structural damage. 

Absolute energy 

Measured value of the squared voltage signal divided by a reference 

resistance over the duration of the AE waveform used by particular 

AE acquisition systems. Units are in attojoules (10
−18

 joules). 

Average frequency 
A calculated feature reported in kHz that measures the number of 

counts over the duration of the signal. 

Frequency centroid 
Reported in kHz, this value is derived in real time from the Fast 

Fourier Transform of each signal. 

Peak frequency 
Frequency of the signal when the maximum amplitude occurs. This 

frequency feature is also reported in kHz. 

 

 𝑑𝐵 =  20 log10 (
𝑉𝑚𝑎𝑥

10−6 𝑣𝑜𝑙𝑡𝑠
) − 𝑃𝑟𝑒𝑎𝑚𝑝𝑙𝑖𝑓𝑒𝑟 𝐺𝑎𝑖𝑛 𝑖𝑛 𝑑𝐵 (2.2) 

Within this section, the theory and instrumentation for the AE method has 

been detailed. Now that AE background has been covered, recent literature on 

estimating structural damage with AE can be summarized.  

2.2.3 Estimating Fatigue Damage with AE 

Over the past few decades, researchers have had success correlating AE 

signals and their features to fatigue crack propagation in metals. Specifically, many 

people have been able to relate AE count rate to crack propagation rate using a power 

relationship similar to Paris’ law. This relationship is given as Equation (2.3) where a 

is crack length, c is AE counts, the derivatives of a and c with respect to N cycles are 

the crack growth rate and AE count rate, and α1 and α2 are model parameters.  
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𝑑𝑎

𝑑𝑁
= α1

𝑑𝑐

𝑑𝑁

𝛼2
 (2.3) 

In 1973, Morton [28] tested this relationship on Al 2024-T831. He concluded 

that dc/dN appeared to be better correlated to the stress intensity range, ΔK, than 

between dc/dN and da/dN or da/dN and ΔK. Bassim [29] performed fatigue tests on 

several railway steels to test this hypothesis in 1994 while Berkovits and Fang [30] 

performed their own experiments on Incoloy 901 a year later. Both studies looked to 

correlate AE features to the earliest instance of fatigue but had more success relating 

AE hits once a crack was propagating. Berkovits and Fang noted that “conventional 

test methods, based on the crack propagation test, cannot accurately measure the 

initial length of the initial crack because of the impossibility of determining the 

critical initiation onset in real time”. In the end, both studies countered Morton’s 

claim and supported a strong relationship between dc/dN and da/dN that followed 

Equation (2.3). Since this time, other researchers [31, 32, 33, 34, 35, 36, 37] have 

looked to expand on relating AE counts to crack growth rate.  

In addition to correlating AE counts to fatigue damage, studies have 

investigated how other AE features such as energy, rise time, duration, and frequency 

transform as fatigue damage progresses. Results presented by Han [35] show AE hits 

that occur during stable crack propagation generally have higher rise times and lower 

amplitudes compared to AE hits during unstable propagation and fracture. 

Vanniamparambil and coworkers [38] performed tensile tests on Al2024 specimens 

and reported that amplitude, absolute energy, counts, and count rate were the most 

sensitive AE features to crack growth. Vanniamparambil [39] continued investigating 

these AE features and concluded that the onset of a crack is associated with a shift 
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from low frequency to high frequency waveforms.  AE signals can also be classified 

based on rise time, amplitude, energy, and average frequency where all of these 

features increase near 90% of fatigue life [40]. In addition, Keshtgar [36] proposed 

that the ratio between the signal amplitude and the threshold amplitude scaled by the 

number of counts in the signal could be used as another AE damage-related feature. 

Because several AE features have proven to be able to classify AE signals throughout 

structural damage, this current study will also consider these features during fatigue 

tests.  

While estimating crack growth rate based on AE signals is a profound 

accomplishment, estimating crack damage at the smallest possible scale is most 

desirable. This idea has motivated many people to look at possible AE sources at the 

atomic scale to better understand wave dynamics within measured AE signals. One 

technique is to perform tensile and compression experiments on crystals and compare 

results with theoretical wave equations. James and Carpenter [41] were two such 

researchers who investigated AE count rate during compression tests on several 

different crystals. They reported AE counts were generated from dislocation 

breakaway from pinning points and that AE count rate could be related to dislocation 

velocity. Polyzos and Trochidis [42, 43, 44] modeled the interaction between 

dislocations and transverse acoustic waves in copper crystals during tensile tests. 

They concluded that both nonstationary dislocation motion and annihilation of 

dislocation kink-antikink pairs are mechanisms for AE signals. Researchers at the 

Institute of Thermomechanics [45, 46] developed molecular dynamic simulations to 

calculate stress and local kinetic energies during dislocation motion and twinning in 
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body-centered cubic iron crystals. Overall, studies have confirmed that AE waves 

within structures propagate due to dislocation motion.  

While observing and modeling acoustic waves within single crystals is vital to 

understanding AE mechanisms, studying AE sources within impure, polycrystalline 

materials is far more challenging but more applicable to real world situations. Due to 

precipitates, inclusions, and various grain orientations in metallic alloys, pinpointing 

the exact AE mechanism is often hypothesized but rarely proven. Despite the 

difficultly, many researchers have looked to correlate AE signals to microstructural 

changes.  

AE mechanisms within variously-aged 9Cr-1Mo steel during crack initiation 

and growth were investigated by Chaswal [47]. This work suggested that crack 

nucleation took place at the precipitate-matrix interfaces, sudden bursts of hundreds 

of low amplitude AE signals in a short time correspond to micro-cleavage of 

ligaments, and extended periods of inactivity correspond to dislocation pile up. 

Rahman [48] performed rolling contact fatigue tests on rail steel with AE and 

concluded AE count rate can detect incipient damage and is related to damage size 

and confirming previous findings [49].  Similarly, Elforjani and Mba [50] concluded 

there is a relationship between AE counts, energy, and amplitude to detecting 

incipient cracks in slow speed shafts. During tensile tests of Al7075, Lugo and 

coworkers [51] reported that much AE activity was recorded in the initial stage 

compared to later stages and hypothesized that most inclusions cracked in the early 

deformation stages. Finally, other recent studies [35, 36, 39, 52, 53, 54, 55] 

hypothesized when crack initiation occurred based on AE signals, but they did not 
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directly correlate early damage to a microstructural level. Overall, researchers 

concluded that AE activity is present during initial damage due to microcracks and 

dislocation movement, and various AE features can be correlated to damage.  

Researchers studying AE over the past six decades have investigated how AE 

signals and their features correlate to microstructural damage. Some promising 

damage-related features include counts, count rate, amplitude, rise time, energy, and 

frequency. These features provide information about the structural damage measured 

by AE. Rather than using AE features as sources of information, one can rely on the 

actual information content, a scientifically defined term, carried within the signal. The 

measure of information, referred to as information entropy, from AE signals will be 

further investigated, and its effectiveness of detecting fatigue damage will be 

compared with commonly used AE features. In the following section, background 

and applications of information entropy will be summarized.  

2.3 Information Entropy Background 

2.3.1 Understanding Information Entropy  

 Entropy refers to the amount of disorder within a system. Often times, a 

reader’s first exposer to entropy is to thermodynamic entropy which is the amount of 

energy not available to do work and related to temperature of a system. However, 

there are other forms of entropy including information entropy. Rather than having 

origins in thermodynamics, information entropy is founded on probability, statistical, 

and communication theory. Connections between information entropy and 

thermodynamic entropy have been researched, but no concrete conclusion has been 
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made [56]. Fundamentals of information theory and their applications can be found 

from several reference books [57, 58].  

Information theory began in 1948 after Claude E. Shannon proposed limits on 

data compression for transmitting and recording communication signals in his paper, 

“A Mathematical Theory of Communication” [59]. Within this paper, he proposed 

information entropy, also referred to as Shannon entropy, as a measure of disorder or 

uncertainty in a message that is calculated based on Equation (2.4). In this equation, 

H is the information entropy, K is a constant that dictates the units, and p(xi) is the 

probability a certain value, xi, present within the message with n possible values. It 

should be noted that the probabilities need to sum to 1 meaning a probability 

distribution should be defined for the signal. In addition, we will let K = 1/log(2) so 

that the logarithm will have a base of 2 to yield entropy in units of bits [58]. 

 𝐻 = −𝐾∑ 𝑝(𝑥𝑖) ∗ log  (𝑝(𝑥𝑖))
𝑛
𝑖=1   (2.4) 

 To better understand the information entropy of a signal, it’s best to see a few 

examples of calculating information entropy from various probability distributions. 

Two examples will be presented: 1) flipping fair and biased coins and 2) rolling fair 

and weighted dice. The examples are depicted in Figure 6 and Figure 7, respectively.  

First, consider the probability distribution of flipping a fair coin where 

flipping heads or tails is equally likely. A person flipping this coin has little 

information and is very uncertain about whether the outcome will be heads or tails. 
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Figure 6: a) Probability mass function (PMF) of flipping a fair coin and calculated information 

entropy. b) PMF of a biased coin with probability of flipping tails as 0.70 and calculated entropy. 

c) PMF of a biased coin with probability of flipping tails as 0.99 and calculated entropy. 

Let heads be outcome x1, tails be outcome x2, and the probabilities for each 

outcome be p(x1) = 0.5 and p(x2) = 0.5. From this probability distribution, the 

information entropy can be calculated based on Equation (2.4). Subsequently, the 

entropy is found to be 1.000 bits. This is depicted in Figure 6a. Now consider a biased 

coin that results in tails 70% of the time. A person flipping the coin now has a bit 

more information and is less uncertain about the possible outcomes. A new 

probability distribution can be constructed to reflect the biased coin and the entropy 

of this distribution is less than before at 0.8813 bits as recorded in Figure 6b. Finally, 

consider a biased coin that is tails 99% of the time when flipped. A person flipping 

the coin is now almost certain that the outcome will be tails. This probability 

distribution is represented in Figure 6c and results in an even lower entropy of 0.0808 

bits. This scenario exemplifies that more uniform probability distributions 

representing a highly disordered and more uncertain variable will result in a higher 
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value for information entropy. In other words, the greater the uncertainty and 

disorder, the greater the entropy will be.  

 

Figure 7: a) PMF of a rolling a fair die and calculated information entropy. b) PMF of a 

weighted coin with greater probability of rolling a 4. c) PMF of coin 97.5% likely to result in a 4 

and calculated entropy. 

Similarly, one can see how information entropy varies with different 

probability distributions of fair and weighted dice. First, consider a fair die where 

rolling any number 1 through 6 is equally likely with probability of 1/6. This 

distribution is pictured in Figure 7a and results in an entropy value of 2.5850 bits. 

This value is greater than the entropy for a fair coin. This is because a die with 6 

outcomes has greater disorder and uncertainty than a coin with 2 outcomes. 

Therefore, it can be concluded that the entropy value is dependent on the number of 

possible outcomes; when more outcomes are possible, entropy will be greater. Now, 

consider an unevenly weighted die that has the following probability distribution: 

p(1) = p(2) = p(5) = p(6) = 1/12, p(3) = 1/6, p(4) = 1/2 meaning 3 and 4 are more 

favored outcomes. The entropy calculated from this distribution is 2.1258 bits, a 
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lower value than if all outcomes were equally likely and reflects less disorder. This is 

shown in Figure 7b. Lastly, for a die that results in a 4 for 97.5% of the rolls, the 

person rolling is almost certain that the outcome will be a 4. Therefore, the entropy 

should be lower and is calculated to be 0.2267 bits as shown in Figure 7c. 

 In the end, given any variable or signal that is represented by a probability 

distribution, one can calculate information entropy using Equation (2.4) as a measure 

of the disorder or uncertainty carried within this signal. The maximum entropy will be 

from a distribution with equally likely outcomes while the minimum entropy of 0 bits 

will be from a distribution when only one outcome from a sample space is possible.  

2.3.2 Application of Information Entropy to Fatigue and AE  

 The disorder measured by information entropy can be calculated from any 

probability distribution and has found applications in signal processing and 

communication [57, 60]. In addition, attempts have been made to apply information 

entropy techniques to fatigue damage. 

 Several studies have estimated fatigue damage models with information 

entropy since it is a measure of uncertainty. One common idea in the modeling field 

is the principle of maximum entropy referred to as MaxEnt. First pioneered by Jaynes 

[61, 62] in 1957, MaxEnt suggests that when selecting a model to fit a probability 

distribution, the one that best represents the current knowledge is the one with 

maximum entropy. The model with maximum entropy is the one with the most 

uncertainty, is the “least biased given the information”, and “is maximally 

noncommittal with regard to missing information” [61]. Recently, fatigue damage 
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prognosis models with limited or uncertain data have been developed by utilizing the 

MaxEnt principle and Bayesian inference with much success [63, 64, 65].  

Other researchers have implemented information entropy techniques to 

estimate structural damage unrelated to MaxEnt. Li [66] identified damage in 

infrastructure using artificial neural networks, Dempster-Shafer evidence theory, and 

information entropy. Unlike MaxEnt, Li selected decisions within the neural network 

that had smallest entropy and the lowest uncertainty. In the end, the accuracy 

improved when this information entropy technique was employed. Another study [67] 

implemented information entropy in order to estimate optimal maintenance time of 

pipeline systems. For a new pipe, the maximum pressure the pipe can accommodate 

is often known with little uncertainty. As a pipeline corrodes, however, the burst 

pressure decreases and the uncertainty about this critical value increases. In turn, 

information entropy was used to measure this uncertainty and led to deriving the 

optimal maintenance intervals during instances with maximum entropy. 

So far, several papers have been presented that use information entropy as a 

measure of model uncertainty in structural damage prognosis. These methods, 

however, do not measure the disorder within a structure that is subjected to damage 

but only model uncertainty. First, microstructural disorder should be defined in terms 

of fatigue damage. 

As previously explained, fatigue damage progresses as dislocations move and 

create microcracks near inclusions which coalesce to form macrocracks. A structure 

with minimal damage prior to fatigue loading would then have a series of defects. 

These defects and microcracks are considered to be disorder within the structure and 



 

 27 

 

thus, fatigue damage will be synonymous with microstructural disorder throughout 

this work. This correlation is exemplified in Figure 8 where microstructural disorder 

is equated to fatigue damage. Initially, a metallic material has minimal defects among 

its grains, inclusions, and precipitates. Then, as more cyclic stresses are applied, 

inclusions crack, microcracks nucleate, and microcracks coalesce to form 

macrocracks. In the end, the microstructural disorder increases as fatigue damage 

increases and is attempted to be quantified by AE signals in this work as well as in 

previous studies.  

 

Figure 8: Microstructural disorder as defined by fatigue damage evolution 

A few researchers have looked into estimating information entropy of AE 

signals during fatigue experiments. Unnthorsson and coworkers [68] estimated two 

time-domain entropies and two frequency-domain entropies from AE signals 

recorded during composite fatigue tests. The entropies were calculated from discrete 

probability distributions of the amplitude and frequency measured for 1 fatigue cycle 
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every 5 minutes of testing. In the end, the entropy evolutions were similar to AE 

count trends, and it was proposed that entropy from AE signals could be used a 

measure of microstructural disorder.  

Qi [69] also focused on deriving entropy from AE amplitude distributions to 

be used as a measure for microstructural damage. Tensile tests were performed on 

various cements and the updating distributions of AE amplitudes for recorded signals 

were used when calculating entropy. In this study, the entropy value was calculated 

based on Equation (2.4) without the negative coefficient before the summation. 

Therefore, entropy values were reported as negative with a minimum possible value 

of -2.3 when all AE signals are of a single amplitude and a maximum value of 0 when 

amplitudes are uniformly distributed. Results showed that the entropy from the AE 

amplitude spectrum became less negative as the stress increased and then remained 

constant or decreased slightly near fracture. This is because AE signals often have 

low amplitudes initially and then more signals at various and higher amplitudes are 

recorded as damage progresses. Thus, this study proved that measured disorder from 

AE amplitude distributions increases as damage also increases.  

 Modarres and coworkers [70,71] built off of these studies to estimate entropy 

from AE counts during fatigue tests of aluminum and titanium alloys. Results showed 

that information entropy derived from counts mirrored the evolution of counts 

throughout the test [70], and the cumulative information entropy from counts may be 

constant at failure [71]. The commonality between this research and Unnthorsson’s 

and Qi’s work is that the entropy was calculated from AE feature distributions over 

certain intervals of time where several AE signals have been collected. Rather than 
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using features from several AE hits at a time, one could look at the amplitude 

distributions of each individual AE waveform. This method would theoretically 

utilize more information carried in an AE signal compared to summary statistics like 

the number of counts, the peak amplitude, or the average frequency. This is the 

fundamental basis of this thesis; to extract information entropy from every individual 

AE signal during fatigue tests in order to estimate damage evolution. The 

effectiveness of this method to detect damage both prior to and after an observable 

crack will be explored.  

 Three different topics were reviewed in this chapter in regards to background 

and previous literature; fatigue damage in metals, acoustic emission methods and 

instrumentation, and information entropy as a measure of uncertainty and disorder. 

The following chapter details the experimental procedure in order to measure the 

fatigue damage and information entropy from AE signals. 
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Chapter 3 – Experimental Procedure 

3.1 Specimen Preparation 

 Specimens used for this study were aluminum alloy 7075-T6 referred to as 

Al7075-T6 throughout this work. This specific alloy is used in aerospace structures 

such as stringers, skins, bulkheads, rivets, and extruded sections [3]. The supplied 

material from Kaiser Aluminum came from the same lot number ensuring maximum 

microstructural continuity between all fatigue specimens. The material’s composition 

and mechanical properties were provided by the manufacturer and presented in Table 

4. To confirm the mechanical properties such as elastic modulus, yield strength, 

ultimate yield strength, and percent elongation, two tensile tests were performed. 

Results from these tests implied that the specimens may have slightly higher strength 

and more ductility than reported by the manufacturer.  

Table 4: Composition and mechanical properties for Al7075-T6 

Element Al Zn Mg Cu Cr Fe Mn Si Ti V Zr Other 

Composition 

(wt %) 
89.72 5.7 2.6 1.4 0.20 0.15 0.08 0.06 0.02 0.01 0.01 0.05 

  

Material Property 
Ultimate 

Strength (MPa) 

Yield Strength 

(MPa) 
% Elongation 

Modulus of 

Elasticity (GPa) 

Manufacturer-

Provided Value 
579 513 13.7 Not given 

Measured Value 

from Tensile Tests 
587 538 24.0 67.8 

 

 The raw material was machined into specimens designed according to ASTM 

standard E466 [72]. Several iterations of the geometries were performed in order to 

accommodate an extensometer, sensors, and mechanical damping apparatus, which 

will be explained in subsequent sections. In the end, five different geometries were 

designed until the final design was selected. The dimensioned geometry is shown in 
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Figure 9. A 1 mm radius edge notch is located at the center of the gauge length and 

acts as a stress concentrator. This intentional flaw ensures that fatigue damage and 

crack initiation will occur at this location. Based on a stress concentration handbook 

[73], the stress concentration factor of the notch is estimated to be 2.61. Within this 

work, the specimens are referred to as 5A1 through 5A26 where 5 represents the 

geometry iteration number, A means the grain direction is parallel to loading 

direction (as opposed to B which means the grain direction is perpendicular to 

loading direction), and the proceeding numbers are the specimen numbers.  

 

Figure 9: Fatigue specimen geometry 

Once the specimens were machined, one side of the specimen’s gauge length 

was polished so that grain boundaries could be seen under an optical microscope. In 

addition, crack initiation is influenced by surface roughness so it is best to ensure all 

specimens had similar surface roughness values. The polishing process began by 

sanding the surface with 1000 grit sandpaper followed by 2000 and 3000 grit 

sandpaper. Then a 3 µm alumina solution was used followed lastly by etching the 

surface with Keller’s etchant solution. In turn, the grain boundaries could be seen 
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clearly under magnification. The distribution of the grain sizes were estimated by 

measuring the area of 125 grains from three dogbone specimens and deriving the 

average diameter for the total 375 grains. Figure 10 displays the distribution where 

the grains varied between 0.04 mm and 0.27 mm with a mean of 0.124 mm and 

standard deviation of 0.037 mm. According to ASTM standard E112-12 [74], the 

grain size number is approximately 3.0. 

 

Figure 10: Probability distribution of grain diameter for 375 measured grains 

3.2 Loading Conditions 

 A servo-hydraulic Materials Testing System (MTS) machine retrofitted with 

an Instron 8800 controller was used to perform the fatigue tests. The machine’s 

maximum load is 100 kN and the load cell used has an uncertainty between 0.13% 

and 0.54% of the applied load. A computer connected to the load frame is used to 

specify the loading conditions within the WaveMatrix software program. The load 

frame is pictured in Figure 11. 
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Figure 11: Servo-hydraulic MTS machine 

A total of 26 tension-tension fatigue experiments were performed with loading 

ratio of 0.1 and loading frequency of 5 Hz. The maximum applied load varied 

between 8 and 15 kN in order to see the differences between low-cycle and mid-cycle 

fatigue on detecting microstructural damage prior to a visible crack. The theoretical 

maximum applied stress can be estimated by dividing the load by the gauge-length 

cross-sectional area, 57.15 mm
2
, and multiplying by the stress concentration factor, 

2.61. The maximum applied load and estimated applied stress at the notch for each 

experiment is listed in Table 5. Similarly, the tests for each loading condition are 

listed in Table 6.  
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Table 5: Loading conditions for each experiment 

Specimen 

Name 

Max. Applied 

Load (kN) 

Est. Notch 

Stress (MPa) 
 

Specimen 

Name 

Max. Applied 

Load (kN) 

Est. Notch 

Stress (MPa) 

5A1 13 593.7  5A14 8 365.4 

5A2 12 548.0  5A15 12 548.0 

5A3 11 502.4  5A16 12 548.0 

5A4 11 502.4  5A17 8.5 388.2 

5A5 10 456.7  5A18 8.5 388.2 

5A6 10.5 479.5  5A19 14 639.4 

5A7 9 411.0  5A20 15 685.0 

5A8 10.5 479.5  5A21 10 456.7 

5A9 10.5 479.5  5A22 13 593.7 

5A10 11 502.4  5A23 9 411.0 

5A11 13 593.7  5A24 12 548.0 

5A12 9 411.0  5A25 9 411.0 

5A13 9 411.0  5A26 10 456.7 

 

Table 6: Experiments for each loading condition 

Max. Applied Load (kN) Est. Notch Stress (MPa) Specimen Names 

15 685.0 5A20 

14 639.4 5A19 

13 593.7 5A1, 5A11, 5A22 

12 548.0 5A2, 5A15, 5A16, 5A24 

11 502.4 5A3, 5A4, 5A10 

10.5 479.5 5A6, 5A8, 5A9 

10 456.7 5A5, 5A21, 5A26 

9 411.0 5A7, 5A12, 5A13, 5A23, 5A25 

8.5 388.2 5A17, 5A18 

8 365.4 5A14 

 

However, it was found that a crack grew away from the notch for low loading 

conditions. Crack initiation location can be determined based on the brittle regions of 

a crack’s surface. A crack will initiate and grow due to brittle fracture until the crack 

reaches unstable growth where ductile failure will occur. Figure 12a shows the crack 

surfaces of 5A26 that properly failed at the notch while Figure 12b depicts 5A18 

crack surfaces that failed away from the notch. It can be seen the brittle region for 

5A26 is at the edge of the notch while the brittle region for 5A18 was near the 

specimen’s face. This finding suggests the maximum stress was in fact at the face 

rather than at the notch.  
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Figure 12a: Crack initiated as expected at 

notch edge for 5A26 

 
Figure 12b: Crack initiated unexpectedly at 

specimen face for 5A18 

Figure 12: Crack surfaces for 5A26 and 5A18 

One possible reason to explain this anomaly is that there seems to be is a 

slight misalignment between the testing grips which most likely applies a small 

bending moment on all specimens. At higher axial loads, the notch is the predominant 

stress concentrator and the bending moment has little effect on crack growth location. 

However, when the axial loading is low, the bending moment causes a greater stress 

then the notch. The experiments that failed away from the notch (5A14, 5A17, 5A18) 

are marked in Table 9 and were discarded. 

3.3 Strain Measurement  

 In order to measure the strain around the edge notch, an extensometer was 

used. The Epsilon 3542 extensometer has a gauge length of 25 mm, and can measure 

between -10% and 10% strain. For the first 3 experiments (5A1, 5A2, 5A3), the 

Crack 

initiated 

Crack initiated 
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extensometer slipped slightly on the specimen because it was not securely fastened. 

In order to prevent this sliding or rubbing during testing, rubber bands were used to 

fasten the extensometer to the specimen for subsequent experiments. The 

extensometer slipped for a few subsequent experiments (5A4, 5A6, 5A10, 5A13). In 

addition, the extensometer was not applied for 4 other tests (5A8, 5A9, 5A11, 5A12) 

and confirmed that unusual AE signals were not due to the extensometer sliding on 

the surface. These tests are also marked in Table 9. One drawback to the 

extensometer is it measures the strain over 25 mm of gauge length as opposed to 

exactly and only the area around the notch. Because the notch acts as a stress 

concentrator, most of the deformation is expected to be around the notch, but the 

extensometer measures a greater area. In turn, the extensometer is assumed to be less 

sensitive than a strain measurement technique that is more localized.  

Other techniques to measure strain were also investigated. First, strain gauges 

were used and placed near the middle of the notch. While the strain gauges seemed to 

be quite accurate and had the ability to measure localized strain around the notch, the 

gauges were susceptible to detaching from the specimen as a crack initiated and grew. 

In addition, as soon as a strain gauge began to detach, unwanted AE signals were 

produced. Another technique tested for its effectiveness was Digital Image 

Correlation (DIC). DIC calculates strain based on how a surface pattern changes on a 

loaded structure due to applied stress. While this technique had the potential to 

measure strain around the notch more closely than the extensometer and not cause AE 

noise signals, the image processing speed of the DIC system used was too slow to 

capture strain accurately and frequently. Fatigue tests were performed at 5 Hz and the 
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maximum sampling rate of the available DIC was 10 Hz meaning at most 2 

measurements of strain were saved per cycle. For this testing, a 10 Hz strain sampling 

rate was too low compared to the 200 Hz extensometer sampling rate. In addition, the 

DIC prevented the optical microscope from being used to capture crack initiation and 

growth. Compared to the optical microscope images, the DIC images of crack 

initiation were far less clear. The advantages and disadvantages of the strain 

measurement techniques are summarized in Table 7. 

Table 7: Strain measurement techniques and associated attributes. Advantages are in green, 

disadvantages are in red. 

 Extensometer Strain Gauge DIC 

Strain region around 

notch 
+/- 12.5 mm +/- 1mm or greater +/- 1 mm and greater 

Sampling rate High, 200 Hz used High, 200 Hz used Low, less than 10 Hz 

Measure strain through 

crack initiation? 
Yes No Yes 

Effect on AE No to little interference High interference No interference 

Effect on crack 

monitoring 
No interference No interference High interference 

3.4 Crack Monitoring System  

 In order to monitor the initiation of a crack and its growth, an optical 

microscope with an attached time-lapse camera captured images throughout testing. 

An external Meiji dual-arm fiber optic light source illuminated the specimen. The 

microscope encompassed about a 1.5 mm by 2.0 mm area around the notch where a 

circular segment of the notch is shown on the left side of each image. In order to 

measure the small crack length, ImageJ software was used to estimate the picture 

scales (the number of pixels per millimeter) and the number of pixels the crack 

spanned based on the circular segment. The geometric relationship between the 

radius, chord length, and height of the segment was employed to estimate the picture 

scales. This relationship is depicted in Figure 13. By measuring the chord length, c, 
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and height of the segment, h, in pixels, the radius in pixels can be estimated. Since the 

radius is known to be 1 mm, the picture scale can therefore be estimated using 

Equation (3.1). Finally, crack length is then measured in millimeters by measuring the 

number of pixels spanned and converting to millimeters with the picture scale. 

 

Figure 13: Circular segment dimensions 

 

 𝑃𝑖𝑐𝑡𝑢𝑟𝑒 𝑆𝑐𝑎𝑙𝑒 =
𝑅 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠

𝑅 𝑖𝑛 𝑚𝑚
 =

(
𝑐2

8ℎ
+
ℎ

2
) 𝑝𝑖𝑥𝑒𝑙𝑠

1 𝑚𝑚
 (3.1) 

 

Pictures were taken every 5 seconds. However, because the specimen was 

moving during cyclic fatigue loading, about one-half of the images were too blurry 

and had to be discarded. Figure 14 shows four typical images captured from the 

optical microscope. Figure 14a shows the area around the notch before cyclic loading 

was applied. Figure 14b and Figure 14c show slightly blurry and very blurry images, 

respectively, during the fatigue process before a crack initiated. Finally, Figure 14d is 

an image once a crack has grown. The crack monitoring system worked well except 

for one test (5A5) in which the camera stopped recording images. This experiment is 

marked in Table 9. 

S c 

h d 
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a) Before cyclic loading begins, grain 

boundaries and inclusions are visible 

 

 
b) Less blurry image during cyclic loading 

used for crack monitoring 

 
c) Very blurry image that cannot be used 

 

 
d) Image after crack has initiated 

 

Figure 14: Optical microscope images during fatigue of specimen 5A26 



 

 40 

 

3.5 Acoustic Emission Instrumentation  

 AE signals were recorded with a PCI-2 Based AE system supplied by the 

MISTRAS Group. Two resonant Micro30s AE sensors with a frequency range of 

150-400 kHz and resonant frequency of 225 kHz were used. The sensors were 

mounted to one side of the specimen 23 mm above and below the center of the notch. 

Ultrasonic gel was used as a couplant, and electrical tape fastened the sensors to the 

surface. The AE signals passed through a 40 dB preamplifier before reaching the data 

acquisition module where AEwin software then plotted and extracted the AE signals. 

The AE acquisition system also received load and extension data as analog inputs 

from the testing machine. This feature enabled the AE signals to be paired with the 

applied load and is crucial to post-process filtering. AE signals are recorded as 

voltage values ranging between -10 and +10 volts with smallest divisions of 0.000305 

volts. Other user-defined settings that control how the AE signals are collected are 

summarized in Table 8. These parameters were selected based on pencil lead break 

tests [75], a common standard that produces repeatable artificial AE waves with 

similar characteristics to damage-related AE signals.  

Table 8: AE software settings 

Parameter Value  Parameter Value 

Peak definition time (PDT) 300 µs  Pre-trigger length 256 µs 

Hit definition time (HDT) 600 µs  Hit length 2048 µs 

Hit lockout time (HLT) 1000 µs  Band pass filter 1 kHz – 3 MHz 

Sampling rate 1 MSPS    

3.6 Mechanical Damping Apparatus 

3.6.1 Why Mechanical Damping?  

 A crucial part of the fatigue experiments is collecting AE signals. One of the 

first AE settings to be prescribed is the amplitude threshold. As previously explained, 
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only AE signals that exceed the threshold will be collected, and the threshold should 

be set to slightly above the noise amplitude. During initial experiments, the 

background noise reached amplitudes of 65 dB. Typically, an acceptable AE 

threshold is about 45 dB while lower thresholds of 40 dB or 35 dB are desirable. In 

this case, the threshold would have had to be greater than 65 dB meaning most, if not 

all, AE damage signals would not be detected.  

Servo-hydraulic machines are known to produce AE background noise of 

similar frequency and amplitude to damage-related AE signals making filtering the 

noise a difficult process. Researchers have filtered noise based on signal arrival times 

[51, 54] and on frequency [35, 52], but neither of these methods proved effective for 

this particular test setup. Instead, attempts were made to actively limit the noise 

signals from propagating through the specimens. In turn, a mechanical damping 

apparatus inspired from Miller’s work [76] and numerous damping configurations 

was designed.  

3.6.2 Damping Techniques 

 When a specimen was fixed to the machine and AE was recorded, the AE 

amplitude seemed to decrease when two fingers pinched the specimen. In addition, 

Dr. Ron Miller, an expert in AE and former engineer at the MISTRAS Group, 

implemented a damping technique for servo-hydraulic fatigue tests during his 

graduate work at Purdue University [76]. Thus, fastening damping materials to the 

specimen seemed to be a promising method. Several different configurations and 

materials were tested and the AE background noise amplitude was observed. In the 
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end, the specimen geometry was altered several times to allow sufficient room for 

damping material and a final damping design was selected.  

 The final apparatus consists of four sets of clamped, 1/4" thick, styrene-

butadiene rubber blocks and four tightly-wrapped, 1/16” thick, neoprene strips 

attached to areas between the testing grips and specimen gauge length. These 

elastomers inhibit mechanical vibration and reduced the background noise to below 

41 dB for an AE sensor attached on the surface above the notch allowing for a 

threshold of 45 dB. For these experiments, a second AE sensor was attached on the 

surface below the notch but experienced noise of 45 dB and the threshold had to be 

set slightly higher than 45 dB. Only AE signals from the upper sensor were analyzed 

while the AE signals from the lower sensor were used to validate the upper sensor’s 

behavior. The amplitude spectrum during 20 seconds of recorded AE noise signals 

with and without the damping material is depicted in Figure 15 showing a 20 dB 

decrease in noise amplitude.  

 

Figure 15: AE noise amplitude with and without mechanical damping 

The schematic of the damping apparatus on the specimen is pictured in Figure 

16a, and the entire test setup is depicted in Figure 16b. In addition, several of the first 
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experiments did not have the final damping apparatus applied but instead preliminary 

iterations. Therefore, the damping configurations initially used did not damp the noise 

amplitude to below 45 dB and the threshold was set to values ranging between 46 and 

52 dB. Table 9 lists the AE threshold values applied for each test. 

 

Figure 16: a) Mechanical damping method. b) Complete experimental setup.  

  

In the future when an AE sensor system is developed for NDE of aircraft 

structures, reducing and filtering the noise will inevitably be a problem that would 

need to be solved. In these experiments, the noise was damped by constraining 

material away from the inspection sites with viscoelastic materials. Likewise, the use 

of dampers may have to be considered to effectively use AE as an NDE technique.  

3.7 Details of Individual Fatigue Experiments 

 Of the total 26 experiments, several had slightly different experimental setups. 

Three specimens failed away from the notch during low loading, eleven experiments 

1. Specimen 

2. Clamped styrene-

butadiene rubber 

3. Wrapped neoprene strip 

4. Acoustic sensor 

5. Extensometer 

6. Optical microscope 

7. External light source 

8. Testing grip 
3 

2 

4 

1 
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did not have the extensometer fastened securely or was not attached, and the optical 

microscope camera failed to record images for one experiment. These 15 experiments 

were discarded and not used in data analysis. In addition, because of the damping 

apparatus iterations, the AE threshold setting varied for initial experiments. The AE 

threshold has an effect on AE results, but tests with an AE threshold greater than 45 

dB are discarded due to extensometer performance. The details for each experiment 

are noted in Table 9.  

Table 9: Experiment details. Tests with any detail in red are discarded. 

Specimen 

Name 

Max. 

Applied 

Load (kN) 

Est. Notch 

Stress 

(MPa) 

Crack 

Location 

Extensometer 

performance 

Images of 

Crack? 

Upper 

Sensor AE 

Threshold 

5A1 13 593.7 Notch Slipped Yes 52 dB 

5A2 12 548.0 Notch Slipped Yes 52 dB 

5A3 11 502.4 Notch Slipped Yes 52 dB 

5A4 11 502.4 Notch Slipped Yes 46 dB 

5A5 10 456.7 Notch Nominal No 48 dB 

5A6 10.5 479.5 Notch Slipped Yes 48 dB 

5A7 9 411.0 Notch Nominal Yes 47 dB 

5A8 10.5 479.5 Notch Not attached Yes 46 dB 

5A9 10.5 479.5 Notch Not attached Yes 47 dB 

5A10 11 502.4 Notch Slipped Yes 47 dB 

5A11 13 593.7 Notch Not attached Yes 47 dB 

5A12 9 411.0 Notch Not attached Yes 47 dB 

5A13 9 411.0 Notch Slipped Yes 47 dB 

5A14 8 365.4 Grip Nominal Yes 47 dB 

5A15 12 548.0 Notch Nominal Yes 48 dB 

5A16 12 548.0 Notch Nominal Yes 45 dB 

5A17 8.5 388.2 Extensometer Nominal Yes 45 dB 

5A18 8.5 388.2 Sensor Nominal Yes 45 dB 

5A19 14 639.4 Notch Nominal Yes 45 dB 

5A20 15 685.0 Notch Nominal Yes 45 dB 

5A21 10 456.7 Notch Nominal Yes 45 dB 

5A22 13 593.7 Notch Nominal Yes 45 dB 

5A23 9 411.0 Notch Nominal Yes 45 dB 

5A24 12 548.0 Notch Nominal Yes 45 dB 

5A25 9 411.0 Notch Nominal Yes 45 dB 

5A26 10 456.7 Notch Nominal Yes 45 dB 
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Chapter 4 – Post-Processing Methods 

4.1 Noise Reduction 

 Despite reducing the AE background noise to amplitudes below 45 dB with 

the mechanical damping method, it became evident during the 26 experiments that 

AE noise signals were still collected during some tests. Again, even though others 

have had success filtering AE signals based on frequency and arrival times [35, 51, 

52, 54], this technique proved ineffective. Instead, another filtering technique based 

on applied load at the instant of AE signals was implemented. AE signals are emitted 

due to fatigue damage, and it is assumed that the AE signals will most likely occur 

when a structure is applied with maximum stress [28, 34, 36, 52]. For a fatigue cycle 

with minimum load of 1 kN and maximum load of 10 kN, this means that an AE 

signal would tend to occur between 7 and 10 kN rather than 1-7 kN. Five cycles with 

instances of potential AE hits are depicted in Figure 17 with hits marked in red to be 

likely AE hits and those in blue to be unlikely. 

 

Figure 17: Likely and unlikely AE hits based on applied load 
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Of the 11 experiments that had no errors in regards to extensometer 

performance, crack monitoring, or crack location, AE signals were inspected for 

unwanted noise signals based on load. The expected AE signal behavior can be 

described in accordance with the stages of fatigue damage. First, the initial few 

fatigue cycles are assumed to cause sudden dislocation realignment within the 

structure which emit a few AE events. These events, while likely to occur during the 

upper half of the loading cycle, are often sporadic and can occur at any point in a 

loading cycle. Then, fatigue damage continues to progress and is believed to cause 

sparse and erratic AE signals at various applied loads. Eventually, the accumulated 

microstructural damage will result in a crack initiating and growing at an unstable 

rate. During this stage, more AE signals are expected to occur especially at high 

loads. Finally, several hundreds of AE signals are anticipated as a crack grows 

towards final fracture. This final series of hits can occur at any load because a crack 

can grow at any applied stress once it reaches a certain length and crack surfaces rub 

against one another during unloading. 

Two of the 11 “good” experiments (5A25 and 5A26) exhibited the expected 

AE behavior with no apparent noise signals. The AE signals at the associated applied 

load are shown as red points in Figure 18 for one of these experiments, 5A26. AE 

signals occur sporadically and at various loads for the first three-quarters of fatigue 

life. These signals are most likely due to dislocation stacks unpinning and suddenly 

releasing stored strain energy. Damage continues to grow and more AE signals are 

recorded at high loads as a crack initiates. Then, AE signals occur at both high loads 

and middle-low loads during crack growth and specimen fracture. 



 

 47 

 

 

Figure 18: AE signals at their associated loads versus time for 5A26. No apparent AE noise. 

 The other 9 experiments of the 11 “good” tests showed both the expected AE 

behavior and another behavior that is believed to be unwanted noise. This unwanted 

behavior is characterized by AE signals continuously occurring at mid-range loads 

forming clusters when plotted against their associated load and arrival time. These 

clusters suggest either strain energy is released consistently away from the maximum 

load or that mechanical noise is generated at certain points of the loading cycle. The 

latter is assumed to be more likely, and therefore, these signals should be excluded. A 

possible cause of the mechanical noise could be the servo-hydraulic piston rubbing 

against another component or changes in piston acceleration at specific points during 

a loading cycle. This phenomenon could develop later in a fatigue test and then 

dissipate resulting in clusters or trends on AE associated applied load versus arrival 

time scatter plots.  

Of the 9 experiments tainted with AE noise signals, seven could be filtered 

(5A16, 5A19, and 5A21–5A24). The scatter plot of applied load at the instant of AE 

signals and their arrival times for one such test, 5A22, is pictured in Figure 19. Too 

many noise signals were recorded for the other three tests (5A7, 5A15, and 5A20) and 
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the expected AE behavior and noise could not be confidently differentiated. Figure 20 

shows the applied load at AE hits versus time for 5A20 as an example of noise that 

proved impossible to separate from the assumed damage-related AE hits. Scatter plots 

of AE signal arrival time and associated applied for all 11 of these tests are given in 

Appendix A – Applied Load vs. Signal Arrival Time Scatter Plots. 

 
Figure 19: Applied load at instant of AE signals at their arrival times for 5A22. Filterable noise. 

 
Figure 20: Applied load at recorded AE signals and their arrival times for 5A20. Unfilterable AE 

noise. 

 Table 10 lists the 11 tests with no previous experimental errors and 

summarizes the recorded AE signal behaviors. The table also notes the number of AE 

signals collected from the upper AE sensor for tests with no noise and tests after 

possible filtering. Each test with no or filterable noise has less than 2700 AE signals 
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while tests that were not filtered had more than 22,000 signals. Therefore, it is 

believed that at least 87% of the signals from the unfilterable tests were due to noise. 

Table 10: AE noise behavior for each test with an acceptable test setup 

Specimen Name 
Max. Applied 

Load (kN) 

Est. Notch Stress 

(MPa) 
AE Noise? 

No. of AE 

Signals Collected 

5A7 9 411.0 Unfilterable noise 160024 

5A15 12 548.0 Unfilterable noise 55445 

5A16 12 548.0 Filterable noise 2108 

5A19 14 639.4 Filterable noise 1915 

5A20 15 685.0 Unfilterable noise 22087 

5A21 10 456.7 Filterable noise 2617 

5A22 13 593.7 Filterable noise 1222 

5A23 9 411.0 Filterable noise 2311 

5A24 12 548.0 Filterable noise 2403 

5A25 9 411.0 No noise 1478 

5A26 10 456.7 No noise 1865 

 

Of course, significant assumptions were made during the filtering process. 

Other researchers may disagree with whether specific AE signals should be attributed 

to noise or are in fact damage related. However, the filtering method was kept 

consistent in that clusters of AE signals at low loads were removed. Tests that would 

have required questionable noise filtering were discarded. 

4.2 Instantaneous Elastic Modulus Calculations 

Another post-processing step to perform is to estimate the elastic modulus for 

each fatigue cycle. Crack length is the common metric for fatigue damage. However, 

the goal of this work is to estimate damage prior to an observable crack where 

microscopic cracks are unnoticeable during fatigue loading even with the aid of an 

optical microscope. Microstructural damage could be accurately quantified if fatigue 

loading was repeatedly interrupted and the notch was examined under higher 

magnification. This is undesirable though because many testing conditions could 

differ including specimen alignment, precise AE sensor location, and AE background 
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noise behavior. Instead, it is assumed that structural degradation is reflected as a 

decrease in the structure’s elastic modulus. Dislocations move and microcracks grow 

such that the material becomes less stiff and will elongate more for the same applied 

load as fatigue loading progresses. Initial moduli values are expected to differ slightly 

between specimens but should all be near the anticipated elastic modulus of 67.8 GPa 

as noted in Table 4. Despite variations, a consistent modulus decline and degradation 

trend between specimens is expected.  

The modulus degradation is approximated by Equation (4.1). Here, E is the 

modulus, ∆P is the difference between the maximum and minimum applied load, Lo 

is the extensometer gauge length, ∆l is the difference between the extension at the 

maximum and minimum loads, and A is the cross-sectional area. The MATLAB code 

for calculating the cyclic modulus from the loading data recorded by the testing 

machine is given in Appendix B – Code for Modulus Evolution. 

 𝐸 = 
∆𝜎

∆𝜀
= 

∆𝑃×𝐿𝑜

∆𝑙×𝐴
 (4.1) 

The measurement uncertainty in instantaneous elastic modulus can be 

estimated from the uncertainty in extension, load, and cross-sectional area and by 

utilizing error propagation equations, Equation (4.2) and Equation (4.3). The 

uncertainty in the extensometer and the load cell are taken from the calibration 

records while the uncertainty in the cross-sectional area comes from the uncertainty 

of the calipers used to measure the specimens’ thicknesses and widths. With this 

information, the elastic modulus uncertainty can be estimated with Equation (4.4). 

Table 11 provides a summary of the error propagation results while all intermediate 

steps are shown in Appendix C – Error Propagation. In the end, the initial modulus 
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values vary between 67.6 and 71.0 GPa with an uncertainty of between 2.6 and 3.7 

GPa.  

 𝐹𝑜𝑟 𝑐 = 𝑎 + 𝑏 𝑜𝑟 𝑎 − 𝑏, 𝛿𝑐 =  √(𝛿𝑎)2 + (𝛿𝑏)2 (4.2) 

 𝐹𝑜𝑟 𝑐 = 𝑎 ∗ 𝑏 𝑜𝑟
𝑎

𝑏
, 𝛿𝑐 =  |𝑐|√(

𝛿𝑎

|𝑎|
)
2

+ (
𝛿𝑏

|𝑎|
)
2

 (4.3) 

𝐹𝑜𝑟 𝐸 =
∆𝑃 ∗ 𝐿𝑜

∆𝑙 ∗ 𝐴⁄ , 𝛿𝐸 =  |𝐸|√(
𝛿∆𝑃

|∆𝑃|
)
2

+ (
𝛿𝐿𝑜

|𝐿𝑜|
)
2

+ (
𝛿∆𝑙

|∆𝑙|
)
2

+ (
𝛿𝐴

|𝐴|
)
2

 (4.4) 

Table 11: Measurement uncertainty for 11 experiments 

Specimen 

Name 

Area, A 

(mm^2) 

Change in 

Load, ∆P  

(kN) 

Change in 

extension, ∆l 

(mm) 

Original 

length, L0 

(mm) 

Initial Elastic 

Modulus, E 

(GPa) 

5A16 57.1 ± 0.18 10.8±0.037 0.070 ± 0.0026 25 ± 0.002 67.6 ± 2.6 

5A19 57.3 ± 0.18 12.6±0.043 0.079 ± 0.0026 25 ± 0.002 69.6 ± 2.3 

5A21 56.9 ± 0.18 9 ± 0.031 0.057 ± 0.0026 25 ± 0.002 69.4 ± 3.2 

5A22 56.8 ± 0.18 11.7±0.040 0.073 ± 0.0026 25 ± 0.002 70.6 ± 2.6 

5A23 57.1 ± 0.18 8.1 ± 0.028 0.052 ± 0.0026 25 ± 0.002 68.2 ± 3.2 

5A24 57.1 ± 0.18 10.8±0.037 0.069 ± 0.0026 25 ± 0.002 68.5 ± 2.6 

5A25 57.1 ± 0.18 8.1 ± 0.028 0.050 ± 0.0026 25 ± 0.002 71.0 ± 3.7 

5A26 57.2 ± 0.18 9.0 ± 0.031 0.056 ± 0.0026 25 ± 0.002 70.2 ± 3.3 

4.3 Discrete Information Entropy Formulations 

 After AE noise has been filtered and elastic modulus degradation has been 

estimated, the disorder of AE signals representing fatigue damage can be quantified. 

Multiple methods of estimating AE signal disorder with information entropy will be 

presented and discussed. All of the formulations have one commonality; a probability 

distribution is formed based on voltage readings in individual AE waveforms. Again, 

this compares to AE features such as counts and energy that are acquisition system 

outputs that summarize AE waveforms. It is also believed that because information 

entropy is a measure of a random variable’s disorder as described by its probability 

distribution, the AE information entropy directly reflects microstructural changes due 

to cyclic loading. 
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There are two general steps to estimating information entropy from AE 

signals no matter the formulation. A probability distribution of a random variable 

describing the AE signals must first be formed followed by quantifying the 

distribution’s disorder via Shannon’s entropy equation. Most of the effort is devoted 

to developing the probability distribution. In this case, the chosen random variable is 

the signal amplitude expressed in units of voltage. The idea is that the AE voltage 

probability distribution represents the microstructural disorder, and the distribution is 

evolving as fatigue damage progresses. The underlying continuously-changing 

probability distribution is estimated based on received AE signals. 

During the beginning of a fatigue experiment, the “true” AE voltage 

probability distribution is completely unknown until a first AE signal is recorded. Let 

this AE signal be described by its 2048 voltage readings which are 2048 samples 

from the current underlying voltage probability distribution. Because we do not know 

the true AE voltage probability distribution, an imprecise distribution can be 

estimated from these 2048 voltage values. The disorder of this distribution can then 

be quantified by Shannon’s equation in Equation (2.4).  

When a second AE signal is received, the new set of 2048 voltage values 

provides new information about the voltage probability distribution and needs to be 

considered. Three different methods to account for this new information about the 

probability distribution have been investigated and yield three formulations of AE 

information entropy.  



 

 53 

 

4.3.1 Feature Entropy  

First, one can assume that the underlying AE voltage distribution is constantly 

changing and independent between all time steps. Therefore, a new probability 

distribution of the second AE signal’s 2048 voltage values should be created to 

estimate the true distribution at that particular instant. With every new AE signal, a 

new probability distribution is constructed to represent the constantly-changing 

underlying distribution. The information entropy calculated from each of these 

distributions is referred to as feature entropy.  

The framework to calculate feature entropy is depicted in Figure 21. It can be 

seen that for each signal received, the voltage value is recorded at every microsecond 

for 2048 microseconds (Step a). The 2048 voltage values are then taken to form a 

normalized histogram or, in this case, a discrete probability distribution (Step b). 

Because the 16-bit data acquisition system can output values between -10V and +10V 

producing a resolution of 0.305 mV, the bin widths are set to 1 mV to encompass 3 or 

4 possible voltage values. One could set the bin widths smaller or larger which would 

alter the entropy value but not the entropy trends. From this distribution, the entropy 

is calculated based on Equation (2.4) where xi are the 1 mV bin ranges between -10V 

and +10V and p(xi) is the probability of receiving a voltage value within the specific 

bins. The entropies from these distributions are then plotted against the signal arrival 

time (Step c). 
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Figure 21: Feature entropy calculation from AE signals 

The feature entropy of the three example signals in Figure 21 quantifies the 

signals’ disorders. One can predict that the second signal reflects an event during low 

microstructural disorder while the first and third signals are during higher disorder 

microstructural changes. Entropy quantifies this disorder in that the first signal has 

2.29 bits, the second has 1.99 bits, and the third has 2.95 bits of entropy. In addition, 
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the cumulative form of feature entropy can be thought of as the total microstructural 

disorder as fatigue damage progresses. This form will be discussed in the results. 

4.3.2 Updated Entropy 

The second formulation is based on the theory that the underlying probability 

distribution changes very slowly, and the second AE signal received is from 

approximately the same distribution as the first AE signal. In turn, the 2048 voltage 

values from the first and second signal are combined, and a distribution is formed 

from the total 4096 values. As more AE signals are received, the new and previous 

AE voltage values are concatenated and the estimated probability distribution of the 

true underlying distribution is essentially updated. Another way to explain this 

process is that every AE signal’s distributions are combined and have equal effect on 

the estimated distribution. The information entropy calculated from these updated 

distributions is referred to as updated entropy. 

Figure 22 shows the process to calculate the updated entropy from AE signals. 

Similar to the feature entropy procedure, AE signals are received and saved as voltage 

values per microsecond for 2048 microseconds (Step a). Then, rather than forming a 

normalized histogram for each individual signal, the current voltage values are first 

concatenated with all the previous voltage values (Step b). From this series of 2048*i 

voltage values for i AE signals currently received, a normalized histogram with bin 

widths of 1 mV are constructed (Step c). Finally, Equation (2.4) is employed to yield 

entropy and can be plotted against signal arrival time (Step d).  
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Figure 22: Updated entropy calculation from AE signals 

The updated entropy of the three example signals in Figure 22 quantifies the 

disorder of the approximated underlying AE voltage distribution. One can predict that 

the first and third signals advocate for a wider, more-disordered true voltage 

distribution while a thinner, less-disordered true distribution is more probable 

according to the second signal. Subsequently, the updated entropy values for the first, 

second, and third signals are 2.29, 2.15, and 2.45 bits, respectively. Compared to 

feature entropy, updated entropy values are dependent on the previous distributions 
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and are therefore more inertial rather than sporadic. Because of the dependency 

between current and previous signals, one cannot simply relate the cumulative 

updated entropy to cumulative fatigue damage and it is best to analyze the scatter plot 

of updated entropy versus arrival time. 

4.3.3 Temporally Weighted Entropy 

Finally, the third formulation is based on a slowly-evolving true probability 

distribution of AE voltage values similar to updated entropy, but assumes recent AE 

signals are more representative of the underlying distribution than past AE signals. 

When a second AE signal is received, a distribution of the 2048 voltage values is 

formed similar to the procedure for feature entropy. Then, the first and second 

signal’s distributions are combined in such a way that the second signal’s distribution 

is weighted more than the first. When subsequent AE signals are received, new 

distributions are formed where the most recent AE signal has the greatest weight on 

the updated distribution. The specific weights are determined based on arrival time 

and are calculated using Equation (4.5) where the weight vector, w, and arrival time 

vector, AT, are 1 x n vectors and n is the current number of recorded AE signals. For 

example, if the first AE signal occurs at 2 seconds and the second is recorded at 4 

seconds, then the first signal’s distribution will have one-half of the weight of the 

second signal’s distribution. The information entropy calculated from these weighted 

and updated distributions is referred to as temporally weighted entropy. It should be 

noted that references in literature to weighted entropy or temporal entropy are not 

related to this proposed formulation.  
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 𝑤⃗⃗ = 𝐴𝑇
→ 

∑ 𝐴𝑇𝑖
𝑛
𝑖=1

 (4.5) 

The procedure to find temporally weighted entropy from AE signals is shown 

in Figure 23. As with the other methods, the first step is to record AE signals as time 

and voltage data (Step a). Then, the probability distributions of each of the signals are 

found by creating normalized histograms with 1 mV bin widths (Step b). Next, the 

temporal weights are found based on arrival time following Equation (4.5) in which 

the sum of the weights is 1. The individual signal distributions are then multiplied by 

their appropriate weights and added together to form an estimate of the true voltage 

distribution (Step c). The entropy of this temporally weighted distribution is then 

calculated using Equation (2.4) and plotted against signal arrival times (Step d). 

Updated entropy equally weighs all signal distributions and combines them 

into an estimate of the underlying voltage distribution while temporally weighted 

entropy weighs current signals more than past signals. Of many possible methods to 

determined distribution weights, the weighting used in this configuration is simply 

linearly proportional to signal arrival time. The temporally weighted entropy of the 

three example signals in Figure 23 quantifies the disorder of the approximated 

underlying AE voltage distribution as signals are received. Subsequently, the 

temporally weighted entropy values for the first, second, and third signals are 2.29, 

2.11, and 2.48 bits, respectively. Temporally weighted entropy seems to be very 

similar, yet slightly less inertial than updated entropy. This is expected because 

previous signals will have less of an effect on the estimated distribution.  
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Figure 23: Temporally weighted entropy calculation from AE signals 

4.3.4 Summary of Entropy Formations 

Three methods to estimate information entropy from AE signals have been 

proposed; feature, updated, and temporally weighted entropy. All procedures seek to 

quantify the microstructural disorder due to fatigue damage as reflected in an 

evolving AE voltage distribution. While the exact underlying AE voltage distribution 

is unknown, estimates of this distribution are assumed to be the voltage distributions 

from collected AE signals. The particular procedure to incorporate newly received 

AE signals into the voltage distribution estimate is dictated by the specific entropy 
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formulation. The MATLAB code to derive the entropies from the AE signals is 

provided in Appendix D – Code for AE Entropy Formulations. 

An explicit comparison of the entropy results depending on formulation 

method is shown in Figure 24 for the three example signals. Feature entropy which 

produces independent entropy values is the most erratic, updated entropy has the most 

inertial trend, and temporally weighted entropy is similar to updated entropy with 

more significance placed on current signal’s feature entropy. Table 12 summarizes 

assumptions and best estimate for the AE voltage distribution for each formulation.  

 

Figure 24: Entropy evolution for three examples of AE signals for each formulation 

 
Table 12: Summary of entropy formulations 

Entropy Formulation 
Assumption about “true” AE 

voltage distribution 

How best to estimate “true” 

AE voltage distribution 

Feature entropy 
Ever-changing and independent 

between time steps 

Independent distributions from 

each received AE signal 

Updated entropy 

Slowly changing where changes 

are assumed to occur with 

received AE signals 

Combine all received AE signal 

distributions such that all 

signals have equal weight on 

estimate  

Temporally weighted entropy 

Slowly changing where changes 

are assumed to occur throughout 

fatigue life 

Combine received AE signal 

distributions such that recent 

signals have more weight on the 

estimate than previous signals 
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Chapter 5 – Results and Discussion 

5.1 Crack Growth and Fracture Surface Images 

 As mentioned in Section 2.1.1 beginning on page 7, fatigue crack growth is 

known to follow three stages of growth: crack initiation, stable crack growth, and 

unstable growth to fracture. Depending on the microstructure and loading conditions, 

cracks may grow through inclusions, grains, or grain boundaries [7]. Small cracks 

grow at persistent slip bands after crack initiation and form a brittle fracture surface 

with fatigue striations [8]. Once a crack is of a sufficient length, the crack will 

propagate rapidly and cause ductile fracture.  

These assumptions were investigated with high-magnification images. First, 

an optical microscope captured images of one of the specimen faces to determine how 

fatigue cracks grew through the microstructure. Figure 25 is an example of three 

stitched images that show a crack grew through the grains and often through 

inclusions. This phenomenon was found for all imaged specimens.  

 

Figure 25: Crack growth through grains and inclusions 

Next, fracture surface differences between brittle and ductile crack growth 

were captured with a scanning electron microscope. Figure 26 depicts the two 

different regions with 77x magnification. Even higher magnification images in these 

250 µm 
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two different regions were then taken. Figure 27 in fact shows the fatigue striations in 

the brittle region at 5740x magnification while Figure 28 shows a more disordered 

fracture surface during final ductile fracture. Overall, these images proved that cracks 

generally grew through grains and inclusions and orderly and consistent fatigue 

striations are present in the brittle fracture region.  

 

Figure 26: Brittle and ductile regions of fatigue crack growth 

 
Figure 27: Fatigue striations in the brittle 

region 

 
Figure 28: Highly disordered ductile region 

with no striations 

 

Ductile region 

Brittle region 

Crack 

Growth 

Direction 
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5.2 Stress-Life Analysis 

 The experiments performed were stress-controlled, constant-amplitude 

sinusoidal fatigue tests. The specific loading conditions varied between experiments 

in order to study microstructural damage for low-cycle and mid-cycle fatigue tests. 

The stress life can be summarized by plotting the nominal stress amplitude against the 

cycles to failure known as an S-N curve. As mentioned before, 26 tests were 

performed while issues with the extensometer, crack monitoring system, and AE 

noise reduced the number of analyzable tests down to eight. However, the cycles to 

failure were not affected by these errors other than the three tests that failed away 

from the notch at low loads. Therefore, all tests excluding the three that failed away 

from the notch can be used to form the experimental S-N curve. 

It is assumed that the S-N curve follows a power relationship between the 

cycles to failure and the stress amplitude given by Equation (5.1) where σf
’
 is the 

stress amplitude for failure near 0 cycles, Nf are the cycles to failure, and m is the 

exponential parameter. Here, m is related to stress intensity factor (Kt), notch 

sensitivity (q), surface roughness (kSF), loading factor (kL), and effective diameter 

(ksize) of a notched specimen and is approximated by Equation (5.2) – Equation (5.6) 

[77].  

 𝑆𝑡𝑟𝑒𝑠𝑠 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =  
∆𝜎

2
= 𝜎𝑓

′(𝑁𝑓)
𝑚 (5.1) 

 𝜎𝑓
′ = 1.62 ∗ 𝜎𝑢 (5.2) 

 𝑚𝑛𝑜𝑡𝑐ℎ = 𝑚𝑛𝑜 𝑛𝑜𝑡𝑐ℎ −
log(

𝐾𝑓

𝑘𝑆𝐹𝑘𝐿𝑘𝑠𝑖𝑧𝑒
)

log (𝑁𝐹𝐿)
 (5.3) 

 𝐾𝑓 = 1 + (𝐾𝑡 − 1)𝑞 (5.4) 
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 𝑞 =  
1

1+
0.5 𝑚𝑚

𝜌

 (5.5) 

 𝑘𝑠𝑖𝑧𝑒 = (
𝑑

7.62 𝑚𝑚
)
−0.1133

 (5.6) 

The theoretical S-N curve can be determined for the particular specimen 

geometry and material used in this study. All parameters used to find the theoretical 

S-N curve are listed in Table 13 after implementing Equation (5.2) – Equation (5.6). 

Here, the theoretical curve has an intercept of 950.5 MPa and an exponential 

parameter of -0.242.  

Table 13: Parameters for theoretical S-N curve for particular Al7075-T6 specimen 

Parameter Name Parameter symbol Value 

Intercept 𝜎𝑓
′ 950.5 MPa 

Exponential parameter with notch 𝑚𝑛𝑜𝑡𝑐ℎ  -0.242 

Exponential parameter without notch 𝑚𝑛𝑜 𝑛𝑜𝑡𝑐ℎ -0.176 

Ultimate tensile strength 𝜎𝑢 587 MPa 

Stress concentration factor 𝐾𝑡 2.61 

Notch radius 𝜌 1 mm 

Notch sensitivity factor 𝑞 0.667 

Notch factor 𝐾𝑓 2.073 

Effective diameter 𝑑 18 mm 

Size factor 𝑘𝑠𝑖𝑧𝑒 0.907 

Surface roughness factor for polished surface 𝑘𝑆𝐹 1.000 

Axial loading factor 𝑘𝐿 0.923 

Assumed fatigue limit cycles 𝑁𝐹𝐿  10
6
 

 

The experimental S-N curve was determined by plotting the nominal stress 

amplitude against cycles to failure for the 23 experiments that had a crack grow at the 

notch. Then, a power relationship was fit to the data to yield an experimental S-N 

relationship. Figure 29 displays the experimental S-N plot along with theoretical and 

experimental curves. In the end, the experimental data agreed well with the 

theoretical curve and only slight differences are evident between the theoretical and 

experimental equations.  
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Figure 29: Experimental S-N plot with theoretical and experimental S-N curves 

 

 

5.3 Measured Damage from Modulus Degradation 

5.3.1 Modulus Trends 

The statistic assumed to quantify true fatigue damage and therefore the 

parameter that AE features and entropy will be correlated to is elastic modulus 

degradation. Unlike visible crack growth where AE counts and features have often 

been correlated to crack length or crack growth rate, elastic modulus is expected to 

reflect the fatigue damage prior to crack initiation. First, the relationship between 

elastic modulus and fatigue cycles should be understood. Figure 30 shows the trends 

for the 8 experiments that had consistent experimental setups with the exception of 

the loading conditions. The figure is divided into four different plots showing the 
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modulus degradation at crack initiation, when a crack grows to 0.25 mm, then to 1 

mm and then when the specimen fractures.  

From this chart, three conclusions can be made. First, modulus does not 

decrease for the majority of life. In order to utilize elastic modulus as a measure of 

fatigue damage prior to a visible crack, the elastic modulus should change prior to 

crack initiation. However, this phenomenon is not apparent. In the first plot of Figure 

30, it is proven that four experiments show a decrease in modulus at crack initiation 

while the other four do not. When a crack reaches 0.25 mm, the US Navy’s retirement 

crack length [1], still there are two experiments that do not show a decrease in 

modulus. It is not until a 1 mm crack, defined as the transition between small and 

large cracks as noted in Table 1, that all tests prove to have a decrease in modulus. 

 

Figure 30: Raw modulus degradation for 8 experiments at various damage levels 
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A more sensitive measure of modulus may be achieved if the strain was 

measured within a smaller gauge length near the notch rather than the 25 mm 

extensometer gauge length. Despite this drawback, the measured damage from 

modulus degradation will be used to correlate AE features after a 1 mm crack.  

The second finding, as expected, is modulus decreases near the cycles to 

failure as seen in the last plot of Figure 30. Of course, the particular number of cycles 

where modulus decreases is dependent on the applied load. For example, a 110 MPa 

stress amplitude was applied to 5A19 which experienced rapid damage near 10,000 

cycles while 5A23 had a lower amplitude of 71 MPa with rapid damage occurring at 

a higher 44,000 cycles.  

Finally, one can compare the final value of modulus. Theoretically, modulus 

should decrease towards zero as a specimen fractures. However, the modulus depends 

on the final extensometer extension immediately prior to when the specimen breaks. 

With the exception of 5A25, it seems the final modulus value is related to the cycles 

to failure where tests that last longer will have a lower final modulus value. This 

result is attributed to the idea that a crack grows more slowly for lower stress 

amplitudes with more cycles to failure. In this case, more elongation and therefore 

lower modulus is apparent prior to sudden ductile fracture.  

Throughout the plots in Figure 30, 5A25 proved to have a greater change in 

modulus at all stages of fatigue prior to fracture than the other experiments. The 

reason to why the 5A25 modulus behaved in this manner can be explained by 

observing the fracture surface pictured in Figure 31. Typically, a fracture surface will 

be relatively flat and smooth at the site of crack initiation. However, two fracture 
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surface regions at the notch can be clearly seen. This suggests that a crack initiated at 

a notch corner but propagated along the specimen width rather than the thickness. In 

turn, this uneven crack propagation surface may have caused the specimen to 

elongate more prior to fracture. 

 

Figure 31: 5A25 fracture surface showing two displaced regions at notch 

5.3.2 Normalizing Modulus to Produce Measured Damage 

 The raw modulus trends can be transformed into a normalized metric of 

damage referred to as measured damage. The correlation between AE parameters and 

this statistic allows data from all tests to be combined and analyzed together. In this 

case, damage is calculated based on Equation (5.7) where Einstant is the modulus at 

each cycle, E0 is the initial modulus, and Ef is the final modulus. This equation 

ensures the variations between the initial and final modulus of the experiments are 

reduced to near zero. A measured damage value of 0 refers to a pristine specimen 

while 1 is associated with specimen fracture.  

 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐷𝑎𝑚𝑎𝑔𝑒 =  
𝐸𝑖𝑛𝑠𝑡𝑎𝑛𝑡−𝐸0

𝐸𝑓−𝐸0
 (5.7) 

Rather than plotting the raw measured damage data that has some scatter, 

curves can be fit to the data and approximate the trend between damage and cycles. 

Region 2  

 

Region 1  

 

Lower half of 

specimen 

 

Upper half 
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Because the measured damage stays approximately constant and then sharply 

increases near failure, the exponential model fits the data well. The general formula 

for the exponential model is given as Equation (5.8), where D is measured damage, N 

is cycles, and a and b are fitted parameters in this case. Fitted curves of each data 

series were found using MATLAB’s built-in curve fitting toolbox. Fitted model 

statistics are noted in Table 14.  

 

 𝐷 = 𝑎 ∗ 𝑒𝑏∗𝑁 (5.8) 

 

Table 14: Fitted models for measured damage 

Test Name a b SSE R-square 

5A16 3.01E-18 0.00166 3.240 0.981 

5A19 1.82E-13 0.00324 0.965 0.989 

5A21 4.32E-40 0.00266 0.796 0.994 

5A22 1.79E-30 0.00413 0.615 0.994 

5A23 9.28E-36 0.00184 0.600 0.997 

5A24 1.46E-30 0.00353 0.482 0.995 

5A25 1.93E-12 0.00135 2.057 0.992 

5A26 2.68E-34 0.00239 0.233 0.999 

 

The damage trends against cycles can be plotted for all experiments from 

these exponential models. Rather than observing the raw modulus degradation as in 

Figure 30, Figure 32 shows the damage trends up until crack initiation, a 0.25 mm 

crack, a 1 mm crack, and then final fracture. Since the fatigue damage trends are 

scaled so that the initial and final damage values are the same for all tests, one can 

more clearly observe that it is not until a 1 mm crack when all experiments prove to 

have a measurable increase in damage.  

Another point of discussion is the value of damage at specific crack lengths. 

The measured damage should intuitively be the same for all tests at a consistent 
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damage level and crack length regardless of the paths (i.e., applied loading) to that 

damage. However, Figure 32 proves that the damage values vary between 

experiments at crack initiation, a 0.25 mm crack, and at a 1 mm crack. This 

unexpected outcome can potentially be attributed to measurement errors.  

 

Figure 32: Measured damage for 8 experiments at various damage levels 

There are two main variables that are uncertain; the cycles at which cracks 

reach 0.25 mm and 1 mm and the measured damage values at these cycles. First, 

accurately estimating the cycles is dependent on properly estimating the crack length. 

The exact points when a crack is at precisely 0.25 mm and 1 mm are most likely 

missed since crack monitoring images are taken every 25 cycles. Therefore, the 

nominal crack length measurement is assumed to be imprecise. Also, measuring the 

length of a crack from crack monitoring images has an uncertainty due to pinpointing 

the proper beginning and end of a crack as well as estimating the picture scale as 

introduced in Section 3.4. Table 15 shows a summary of the error propagation in 
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measuring the length of a 0.25 mm and 1 mm crack while more detailed steps are in 

Appendix C – Error Propagation. In the end, the average measurement for a 0.25 mm 

crack is about 0.258 mm ± 0.021 mm while the average measurement for a 1 mm 

crack is about 1.062 mm ± 0.083 mm from these inaccuracies.  

Table 15: Error for crack length measurements 

Specimen 

Name 

Picture Scale 

(pixels/mm) 

0.25 mm Crack 

(mm) 

% Error at 

0.25 mm 

1 mm Crack 

(mm) 

% Error at 

1 mm 

5A16* 24.7 ± 2.0 0.268 ± 0.084 31.3 1.078 ± 0.120 11.1 

5A19 672.8 ± 46.3 0.272 ± 0.020 7.2 1.036 ± 0.072 6.9 

5A21 725.8 ± 57.6 0.239 ± 0.020 8.3 1.011 ± 0.080 8.0 

5A22 714.3 ± 51.3 0.249 ± 0.019 7.5 1.100 ± 0.079 7.2 

5A23 651.0 ± 43.4 0.258 ± 0.018 7.1 1.041 ± 0.070 6.7 

5A24 682.3 ± 76.5 0.262 ± 0.030 11.4 1.065 ± 0.120 11.2 

5A25 600.8 ± 43.5 0.256 ± 0.020 7.7 1.094 ± 0.080 7.3 

5A26 713.2 ± 52.2 0.260 ± 0.020 7.6 1.074 ± 0.079 7.3 

* The DIC was used to monitor the crack growth in 5A16 and resulted in higher uncertainty 

measurements 

 

With uncertainties in crack length, the cycles at which cracks reach such 

lengths are also uncertain and can be estimated from the approximate crack growth 

rate. For simplicity, the crack growth rate at a 0.25 mm crack is found by dividing the 

measured length by the difference in cycles between the 0.25 mm crack and initiation. 

Similarly, the growth rate at a 1 mm crack is found by dividing the difference 

between the measured 1 mm and 0.25 mm length by the difference in cycles between 

the 1 mm and 0.25 mm crack. Then, the uncertainty in cycles at the 0.25 mm and 1 

mm crack are calculated by dividing the uncertainty in the measurement by the crack 

growth rate as shown in Equation (5.9). Table 16 displays the results of this process 

where the error in cycles at 0.25 mm is on average 110 cycles and the cycle 

uncertainty at 1 mm is about 170 cycles. Because the error in the cycles is relatively 

small compared to the failure cycles between 0.9x10
4
 and 4.5x10

4
, the uncertainty in 
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crack length measurement in fact does not cause a significant change in measured 

damage. 

 𝛿𝑐𝑦𝑐𝑙𝑒𝑠 =  
𝛿 𝑐𝑟𝑎𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑚𝑚

𝑐𝑟𝑎𝑐𝑘 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 𝑖𝑛 𝑚𝑚/𝑐𝑦𝑐𝑙𝑒𝑠
 (5.9) 

Table 16: Error in cycles at measured crack lengths 

Specimen 

Name 

Cycles at 

Initiation 

Cycles 

at 0.25 

mm 

Cycles 

at 1 

mm 

da/dN at 

0.25 mm 

(mm/cyc) 

da/dN at     

1 mm 

(mm/cyc) 

Error in 

Cycles at 

0.25 mm 

Error in 

Cycles at 1 

mm 

5A16 21000 21150 22050 0.00179 0.00090 47.0 162.1 

5A19 7910 8485 8785 0.00047 0.00255 41.5 29.1 

5A21 24750 28060 31715 0.000072 0.00021 273.6 392.2 

5A22 15650 15725 16155 0.00332 0.00198 5.6 41.1 

5A23 31645 36380 40495 0.000054 0.00019 335.1 378.3 

5A24 17100 17525 18505 0.00062 0.00082 48.6 150.4 

5A25 18190 18410 19695 0.00116 0.00065 16.9 125.6 

5A26 29110 30335 31110 0.00021 0.00105 93.5 77.4 

 

Another instance where significant measurement error is introduced is 

monitoring the crack length from only one side of the specimens. In a pure axial 

loading condition, a crack would grow evenly such that the crack length is the same 

on both specimen faces. However, cracks often grow unevenly due to a slight bending 

moment when the specimen is not perfectly aligned and can initiate on the side of the 

specimen opposite from the optical microscope. In this case, the modulus may 

significantly decline due to a propagating crack while a smaller crack length is 

measured. This situation is believed to be the main reason why the damage value is 

not comparable between tests at similar crack length measurements based on the 

previous discussion on 5A25 fracture surfaces. Experiments with measured damage 

near zero at certain crack lengths (5A16, 5A21, 5A23, 5A24, and 5A26) suggest the 

crack grew evenly or on the microscope specimen side while those with higher 

measured damage at these crack lengths (5A19, 5A22, and 5A25) suggest the crack 

grew unevenly or on the opposite side. In the end, the measured damage level that is 
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most certain is at fracture. Thus, the measured damage was normalized so that all 

experiments had a consistent value here while the other damage values vary between 

experiments and are assumed to be uncertain. 

In summary, modulus was estimated for each cycle based on maximum and 

minimum values of stress and strain for all tests. The measured damage was then 

derived from normalizing the modulus data and fitted with exponential relationships 

using MATLAB’s curve fitting toolbox. Measurement error was investigated to 

reconcile differences between experiments in measured damage at specific crack 

lengths. In the end, it is believed that there is high uncertainty in measured damage 

due to monitoring the crack growth on only one side of the specimen. As such, AE 

parameters including AE counts, energy, and entropy statistics will be compared to 

this normalized metric at specimen fracture where there is less uncertainty. 

Comparisons will be drawn between the AE parameters’ correlations to measured 

damage. 

5.4 AE Parameter Cyclic Trends 

A first step to understanding AE parameter behaviors is to observe the trends 

with respect to fatigue cycles. In this section, the time-dependent trends for AE 

cumulative counts, AE cumulative energy, cumulative feature entropy, updated 

entropy, and temporally weighted entropy will be presented and discussed. 

5.4.1 AE Counts 

 AE cumulative counts is an AE feature commonly correlated to fatigue 

damage. To reiterate, counts are the number of times an AE signal crosses the 

prescribed amplitude threshold. In this case, all tests had the same threshold of 45 dB 
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and specimens were fatigued until fracture producing comparable count results. 

Because of the uncertainty of measured damage during fatigue life, it is best to see the 

cumulative counts behavior until specimen fracture as reported in Figure 33. This 

graph shows that cumulative counts slightly increases initially, stays constant for the 

majority of life, and then begins to increases near 80% to 90% of fatigue life until 

final fracture. This trend proves to be similar to fatigue stages in which crack growth 

is relatively constant for almost the entirety of fatigue and then sharply increases once 

a crack has initiated.  

 

Figure 33: Cumulative AE counts versus fatigue cycles until fracture 

Another point to consider from cumulative counts is the total cumulative 

counts at fracture. Theoretically, measures of damage should be approximately the 

same between identical structures that have been exhibited to the same level of 

fatigue loading. In other words, any metric that represents the cumulative fatigue 

damage within a structure should be similar for all specimens with cracks of equal 

lengths and at fracture. This idea as first discussed in terms of final modulus 

degradation at fracture can also be applied to cumulative AE counts, cumulative 

energy, and cumulative feature entropy.  
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It appears that the final cumulative AE counts for the experiments are similar 

with values ranging between 9,000 and 16,000 counts. The spread of this value can be 

quantified by the coefficient of variation (CV). The CV measures the relative 

standard deviation of a set of random numbers assumed to have come from a normal 

distribution. Equation (5.10) shows how to calculate the CV in percent, where σ is the 

sample standard deviation and µ is the sample mean. A CV of 0 suggests all values 

are the same with no variability (i.e., no uncertainties) while wider data scatters will 

have larger CV values. In this case, the mean and standard deviation of the final 

cumulative counts are 12,360 and 2,245 producing a CV of 18.2%. 

 %𝐶𝑉 =
𝜎

𝜇
∗ 100% (5.10) 

There are several potential causes of this variation in the final cumulative 

counts as well as other AE parameters at fracture. First, as discussed throughout this 

work, AE is susceptible to background noise. Despite applying a novel mechanical 

damping apparatus to the specimens to damp background noise, noise signals were 

filtered based on applied load during post-processing. However, this procedure was 

somewhat subjective given that only clusters of AE signals on the applied load versus 

fatigue cycle graphs were removed rather than a more consistent set of criteria (e.g., 

load threshold, frequency band). Therefore, damage-related signals within these 

clusters could have been unintentionally discarded or stand-alone noise signals were 

accepted without indication they were due to noise. Thus, the AE features could vary 

due to inaccuracies in classifying damage and noise signals.  

Another reason why cumulative AE features could differ between specimens 

at failure is due to the sensor placement and attachment method. AE signals are 
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generated due to a sudden release of elastic strain energy which produces a 

propagating acoustic wave. Prior to reaching the AE sensor, the wave attenuates 

within the structure. If an AE sensor was placed closer to the fatigue notch, higher 

amplitude signals with generally more counts may be recorded since there would be 

less distance for the signal to travel and attenuate. In addition, the sensor is coupled to 

the specimen surface with an ultrasonic gel. If there were to have been any changes in 

the gel application method between experiments, the AE signal features may differ 

between specimens. 

Finally, inherent microstructural differences may cause differences in AE 

signals and their features. AE signals are emitted as a crack grows through grains and 

inclusions. As dislocations pile up at grain boundaries and a crack suddenly 

overcomes obstacles, more elastic energy is expected to be released causing a high 

count, high energy AE signal. Specimens with more crystallographic variation where 

slip system orientations often change may have more significant AE signals. 

Likewise, structures with smaller and therefore higher grain density could be 

expected to have more significant AE signals. 

 Overall, cumulative counts as well as cumulative energy and cumulative 

feature entropy are expected to have similar final values at fracture with variation due 

to inaccurate AE noise reduction, variable sensor configuration, and microstructural 

differences. 

5.4.2 AE Absolute Energy 

Another commonly used AE feature to detect fatigue damage is absolute 

energy. Absolute energy is derived from the squared voltage signal and the signal’s 
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duration. In addition, the cumulative form of absolute energy can be thought of as the 

total measureable acoustic energy expelled during cyclic fatigue. Figure 34 shows the 

cumulative absolute energy plotted against cycles until specimen fracture. Cumulative 

absolute energy, when plotted on a log scale, follows a similar trend to AE 

cumulative counts in that the energy initially increases, remains approximately 

constant, and then begins to increase once a crack initiates.  

 

Figure 34: Cumulative AE energy versus fatigue cycles until fracture 

 Similar to cumulative counts, the final cumulative energy can be assessed. 

The mean of the final cumulative energy is 9.21x10
8
 aJ and the standard deviation is 

1.87x10
8
 aJ resulting in a CV of 20.2% using Equation (5.10). This value suggests 

cumulative energy at the point of fracture is slightly more variable compared to the 

CV of cumulative counts at 18.2% meaning energy may be more susceptible to 

experimental inconsistencies that affect AE signals. 

5.4.3 Feature Entropy 

Feature entropy proposed in this thesis is calculated from AE signals by 

forming independent and new distributions of each individual AE signal’s voltage 
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values and employing Shannon’s equation to estimate the distributions’ disorders. 

This entropy method is believed to reflect the disorder in each AE signal as well as 

the microstructural disorder due to fatigue damage. As such, the total disorder from 

AE signals is assumed to be measured by cumulative feature entropy. Cumulative 

feature entropy is plotted against cycles until fracture in Figure 35. Yet again, this 

statistic seems to be congruent with AE cumulative counts, AE cumulative energy, 

and fatigue damage stages where the disorder is found to increase initially, remain 

constant, and then increase sharply prior to a 1 mm crack and final fracture. 

 

Figure 35: Cumulative feature entropy versus fatigue cycles until fracture 

 As with the two previous AE cumulative features, the final feature entropy at 

specimen fracture can be discussed. It is expected that the cumulative microstructural 

disorder at fracture is similar between specimens with some variation. The mean of 

the final cumulative feature entropy is 4221.6 bits and the standard deviation is 945.2 

resulting in a CV of 22.4% from Equation (5.10). As such, this value suggests that 

cumulative feature entropy has the most variability at fracture as compared to 

cumulative counts and cumulative energy. Therefore, one could say feature entropy 

may be most susceptible to experimental differences compared to the other two 
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traditional AE features. While it may seem advantageous for a parameter to have a 

lower CV, the higher variation for feature entropy means that is it more sensitive to 

slight differences in AE signals. In other words, it could potentially be a better, more 

sensitive measure of damage if variations between experiments were reduced. 

5.4.4 Updated Entropy 

Rather than estimating the individual and independent disorders from each AE 

signal, the updated entropy was introduced in this thesis as the disorder that describes 

the current and underlying AE voltage probability distributions. An estimate of the 

true AE voltage distribution is continuously updated as new AE signals are received 

by weighing all AE signal distributions evenly. The disorders of the estimated 

distributions are then calculated based on Shannon’s equation to yield updated 

entropy. Since updated entropy is found from a continuously updated distribution that 

utilizes all currently received AE signals, it is not necessarily logical to view updated 

entropy in a cumulative form. Instead, updated entropy should be plotted in its 

singular form. In turn, the final value of updated entropy is not expected to be 

consistent between experiments. 

 Updated entropy is meant to estimate the current distribution of possible AE 

voltage values. If significant and unique microstructural damage occurs within the 

structure, then it is expected that AE signals with large voltage amplitudes will be 

received and therefore the probability distribution will grow wider. In contrast, when 

small microstructural damages occur and emit small amplitude AE signals, the 

estimated voltage distribution will become thinner and concentrate at 0 volts. 
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The trend of updated entropy can be predicted based on this logic. First, 

signals received during crack initiation are assumed to be infrequent due to 

dislocation pile up [47] and have high disorder from the sudden release of energy 

when dislocations break away [41]. In addition, AE signals are received from 

numerous locations around the notch since a crack has not yet initiated and the exact 

location of crack initiation is uncertain. Therefore, it is hypothesized that the updated 

entropy prior to crack initiation will be relatively high-valued and sporadic due to the 

high energy and inconsistent AE sources. After a crack begins to initiate, previous 

work [47] suggests sudden bursts of low amplitude AE signals due to micro-cleavage 

will then be received. It is believed that these AE signals are of low amplitude 

because most AE signals now are emitted from the particular microcrack causing 

initiation rather than from multiple potential crack initiation sources leading to 

frequent, low-disordered AE waveforms. Thus, the entropy trend will decrease as a 

crack initiates and grows in an orderly manner. Finally, high amplitude AE signals 

are expected to be received once the crack propagates to a critical length and causes 

fracture. In turn, updated entropy will then increase near fracture.  

 To test this hypothesis, the updated entropy is plotted against cycles until both 

a 1 mm crack and until fracture in Figure 36. Results validate the hypothesized 

entropy trend. The updated entropy varies for the first few signals since the voltage 

distribution is not yet inertial and heavily dependent on these first initial signal 

distributions. Then, sporadic AE signals are received for the majority of life as 

dislocation pileups and breakaways occur at multiple potential crack initiation 

sources. After a crack initiates and continues to grow to 1 mm, the first plot of Figure 
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36 shows that the updated entropy sharply decreases. This finding confirms that 

entropy decreases after a crack has initiated and AE signals are more frequent and 

less disordered. The trend then increases as the crack grows towards fracture as seen 

in the second plot of Figure 36, again agreeing with the hypothesis. Thus, this entropy 

trend may be able to dictate when a crack initiates and grows to a small length 

characterized by a sharp decrease and when a specimen is near fracture described by a 

sharp increase.  

 

Figure 36: Updated entropy versus fatigue cycles until a 1 mm crack and fracture 

5.4.5 Temporally Weighted Entropy 

Finally, the last entropy statistic introduced in this thesis as a possible measure 

of microstructural disorder for AE signals is the temporally weighted entropy. This 

entropy is calculated based on the same idea as updated entropy where the underlying 

AE voltage distribution is estimated from all measured AE signals. Rather than 

weighing the individual signal distributions evenly, the signal distributions from 

recent signals are weighed more heavily than past signals. The weights are linearly 

proportional to the signal arrival times. Then, once the estimated underlying 
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distribution is updated as new signals are collected, Shannon’s equation is employed 

to quantify the disorder. 

 

Figure 37: Temporally weighted entropy versus fatigue cycles until a 1 mm crack and fracture 

Temporally weighted entropy is expected to follow the same trend as updated 

entropy yet be more influence by individual AE signal disorder. This thought is 

validated when plotting the temporally weighted entropy versus cycles for a 1 mm 

crack and fracture in Figure 37. The weighted entropy has the same general trend as 

updated entropy in all graphs but is more erratic during initial fatigue cycles. This is 

because few AE signals are collected prior to crack initiation and a 1 mm crack. 

When a signal is received 200 cycles after the most recent signal, for example, the 

disorder of the current signal will have a greater influence on the estimated 

distribution that the signal 200 cycles before. When two signals received are 

separated by only a few cycles, their contributions to the estimated distribution will 

be approximately the same and weighted entropy will change very slightly. In the 

end, there are slight differences between updated entropy and temporally weighted 

entropy, but both show a noticeable decrease prior to a 1 mm crack followed by an 

increase as the specimen fractures. 
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5.5 Normalized AE Parameters Compared to Measured Damage 

 The overall goal of this work is to investigate the ability of AE parameters to 

predict or correlate to fatigue damage. Now that each of the AE parameter trends with 

respect to cycles has been discussed, comparisons between the parameters with 

respect to damage can be drawn. The parameters will be normalized so that the 

variability between experiments is reduced and metrics are no longer scale-

dependent. Parameters are normalized by Equation (5.11) where p is any AE 

parameter. As such, comparisons between the cumulative parameters (counts, energy, 

and feature entropy) with respect to measured damage will be first discussed followed 

by a comparison between updated and temporally entropy against damage. MATLAB 

code used to match the measured damage to the AE parameters at AE hits and to 

normalize AE parameters is given in Appendix E – Code for Matching Modulus and 

AE Hits Data. 

 𝑝𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 
𝑝𝑖−𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛
 (5.11) 

5.5.1 Cumulative Counts, Energy, and Feature Entropy 

 Counts, energy, and feature entropy are assumed to reflect damage in a similar 

way. Progressing fatigue damage causes elastic strain energy to be suddenly released 

resulting in measured AE signals. When more significant microstructural changes 

occur, AE signals with higher counts, energy, and disorder are recorded. In turn, the 

cumulative forms of these parameters are expected to be metrics of cumulative 

fatigue damage.  

While these three parameters are similar, one may ask what the differences 

between them are and which one represents the damage “better”. These questions can 
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be answered by considering the normalized parameters against the normalized metric 

of modulus degradation, measured damage. Based on the cyclic trends, it is expected 

that each parameter increases more at the beginning and end of damage and increases 

less for the majority of damage. However, normalized cumulative AE parameters 

with a constant relationship with measured damage would be ideal and suggest 

“perfect correlation”. For every increase in damage, it is assumed in this case that 

there is an equal increase in cumulative AE damage parameters. In other words, it is 

assumed that cumulative AE features are best to predict damage if they have a one-to-

one relationship on normalized scales in this specific context. 

Figure 38 presents these graphs for the 8 experiments until specimen fracture 

along with the desired one-to-one relationship. All features show a greater increase at 

the beginning and end of damage compared to the middle damage values and deviate 

from the ideal relationship. More specifically, about 60% of the total increase in 

counts occurs near the point of fracture while about 50% of the cumulative energy 

occurs at initial damage. This result suggests that counts may be more responsive at 

the end of fatigue life and energy may be more responsive during initial damage. In 

contrast, feature entropy seems to be more equally responsive for all fatigue damage 

stages. This means that feature entropy may be better correlated to measured damage 

and has an advantage over counts and energy. 
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Figure 38: Normalized cumulative counts, energy, and feature entropy with respect to measured 

damage where a one-to-one relationship is desired 

The differences between the cumulative AE parameters damage trends can be 

quantified by measuring the deviations from the one-to-one ideal relationship. The 

deviations are measured at each instance of an AE signal. Examples of several 

deviations are shown in Figure 39 for 5A16’s normalized cumulative counts versus 

damage.  
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Figure 39: Example of deviations between ideal and experimental trends 

The summation of these deviations, referred to as the deviation factor, can 

then be used as a goodness metric of the one-to-one model and compared between the 

AE parameters for each test. The AE parameter with the lowest deviation factor can 

be assumed to be a better representation of damage. It should be noted that the 

deviation factors can only be compared because all AE features are normalized to the 

same scale and the number of deviations are equal between parameters for each 

experiments. The deviation factors for each of the experiments and for each of the 

cumulative AE parameters were calculated and plotted in Figure 40. Results show the 

deviation factor for feature entropy is lowest for all but one experiment while 

deviation factors for counts and energy are inconsistently greater and less than one 

another. This means one could argue feature entropy may be a better statistic of 

measure damage compared to counts and energy.  
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Figure 40: Deviation factor for AE counts, energy, and feature entropy for all experiments 

Uncertainty in measured damage and the normalized AE parameters play a 

role in the experimental results and conclusions. However, if measurement errors 

were to be reduced in the future, feature entropy may remain a potentially better 

damage statistic than counts and energy. Overall, each of these cumulative AE 

parameters show different trends with measured damage meaning each feature 

contributes different information during various stages of fatigue damage. Therefore, 

improvements could be made if these three parameters were somehow combined into 

one metric in the future.  

5.5.2 Updated and Temporally Weighted Entropy 

The final two AE parameters, updated and temporally weighted entropy, can 

also be plotted on a normalized scale and compared to measured damage. Because 

these two types of entropy do not have monotonically increasing trends, it is not 

expected for these parameters to have a one-to-one relationship with damage. Rather, 

these plots show a further comparison between the two entropies as well as their 
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behavior against a normalized damage scale. As such, the plots are shown in Figure 

41. One conclusion is that both entropies decrease near zero damage. This decrease is 

associated with damage prior to a 1 mm crack. Both entropies then increase 

throughout most of the measured damage which reflect the periods between a 1 mm 

crack and fracture. In addition, one can see there is more variability between 

experiments for temporally weighted entropy than updated entropy. This is attributed 

to temporally weighted entropy being influenced more by the current AE signal 

voltage distributions and therefore is generally more erratic.  

 

Figure 41: Normalized updated and temporally weighted entropy against measured damage 

One could expect these trends to be consistent but more sensitive for future 

tests that have less measurement uncertainty. For example, if the extensometer was 

more sensitive to the strain around the notch during crack initiation, then a larger 

percentage of measured damage would be related to crack initiation rather than crack 

growth. Thus, the decrease in updated and temporally weighted entropies associated 

with fatigue damage prior to a 1 mm crack may be more apparent at low measured 

damage. In the end, updated and temporally weighted entropy are similar to one 
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another but provide a unique damage trend than the other previously discussed AE 

parameters. 

5.6 Summary of Results 

 Several conclusions have been made from the experimental results. The 

following list summarizes all points discussed throughout this chapter. 

1. Crack grew through grains and inclusions and caused fatigue striations 

during stable crack growth.  

2. The stress-life trend of the fatigue experiments was fairly similar to the 

theoretical trend. 

3. The instantaneous modulus degradation and its normalized form proved to 

be a measure of the true fatigue damage, but its utility is limited due to the 

measurement uncertainty. 

4. Cumulative counts, energy, and feature entropy displayed similar cyclic 

trends with variable final values at specimen fracture. Overall, feature 

entropy had the most variation which could mean it is a more sensitive 

damage parameter. 

5. Updated and temporally weighted entropy provide unique damage trends 

and may potentially be used to differentiate between small and large 

cracks. 

6. When normalized and plotted against measured damage, the cumulative 

feature entropy seems to be better correlated with damage compared to the 

cumulative counts and energy.   



 

 90 

 

Chapter 6 – Conclusions  

6.1 Summary 

 Cyclic fatigue experiments were performed on Al7075-T6 to investigate 

potential damage indicators from AE signals prior to the presence of a crack. The 

experimental procedure was iteratively refined to reduce AE noise and ensure usable 

data. Two separate theories to measure fatigue damage prior to crack initiation were 

presented. First, it was assumed that elastic modulus degradation could reflect fatigue 

damage prior to crack initiation. Second, rather than correlating summary AE features 

such as AE counts and energy to fatigue damage, more formal measures of disorder 

inherent in the AE signals, known as information entropy, were developed.  

Results showed that the modulus degradation was not significantly responsive 

to early fatigue damage and was susceptible to measurement errors. However, 

because AE signals were collected prior to crack initiation, it is likely that AE 

parameters may act as damage precursors, but their utility is limited by the accuracy 

in quantifying damage before a visible crack appears. If a more sensitive and more 

accurate measure of true damage were to be used, it is believe that the presented AE 

parameters could in fact be damage precursors. 

Comparisons between information entropy metrics and traditional AE features 

concluded that the cumulative feature entropy is similar to cumulative counts and 

energy, but it may be a more sensitive parameter to experimental variations and be 

better correlated to damage throughout fatigue life. In addition, updated and 

temporally weighted entropy produce unique trends that can potentially differentiate 

between small and large cracks. Since all AE parameters proved to have unique 
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trends at various damage levels, combining all parameters into one damage metric in 

the future could be useful. In the end, all of these parameters should be considered in 

the future stage of STLP testing with more emphasis on feature entropy. 

6.2 Contributions  

 Through the numerous cyclic fatigue experiments performed in this work, 

several findings were concluded in regards to estimating damage with novel 

information entropy measures derived from AE signals. The contributions of this 

work are listed as the following: 

1. A major obstacle with using AE signals as an NDE technique is it’s 

susceptibly to extraneous noise. As such, in this research a high-amplitude AE 

noise was effectively damped below a desired threshold by means of a 

mechanical damping apparatus and filtered with post-process noise reduction 

techniques. 

2. The use of modulus degradation as a measure of damage prior to a crack was 

investigated and found to be unresponsive to damage prior to crack initiation. 

However, the sensitivity of elastic modulus depended on measuring notch 

strains with a 25 mm gauge length extensometer. As such, modulus 

degradation as a measure of damage remains a feasible option if a more 

sensitive method to measure strain was employed in the future. 

3. Three different methods to estimate the information content or the disorder 

from AE signals were proposed. Rather than accepting AE summary statistics, 

such as counts and energy as fully informative damage measures, information 

entropy is calculated based on the raw voltage data from each recorded AE 



 

 92 

 

signal. In turn, it is shown that the proposed feature entropy better correlates 

with the fatigue damage than the AE counts and energy, while the proposed 

updated and temporally weighted entropy methods provide a unique damage 

trend that could differentiate between small and large cracks.  

6.3 Future Work  

 Numerous directions are possible to extend this research pertaining to both 

conclusively determining AE damage precursors as well as the second stage of the 

project. These are outlined below. 

1. Damage prior to crack initiation needs to be accurately and repeatedly 

measured or estimated. While still acting on the idea that modulus 

degrades prior to crack initiation, improvements could be made to 

measuring the strain around the notch. This can be done with an 

extensometer with a smaller gauge length, using strain gauges if they are 

ensured to not interact with AE signals or detach during the tests, or a 

highly accurate and fast DIC. The uncertainty in measured damage at 

certain damage levels would decrease if the crack length could be better 

monitored by monitoring the crack from multiple perspectives. 

2. Other methods of estimating damage prior to a fatigue crack could be 

explored. The replica method employed by Newman [16,17,18] could be 

an option in which cyclic loading is repeatedly paused, the notch region is 

replicated with silicon-rubber, and then observed under high 

magnification. Another method, which was based on replicas, is to model 

fatigue damage with FASTRAN software. This software was developed 



 

 93 

 

for small cracks, so while damage prior to a crack may not be able to be 

estimated, very small cracks can be modeled. Finally, simulations similar 

to those proposed in [25, 45, 46] could be used to model the atomic 

interactions during fatigue and those estimate damage prior to a crack.  

3. Error in the measured damage at supposedly consistent damage levels at 

certain crack lengths is mainly attributed to measuring crack lengths on 

one side of the specimen as cracks propagating unevenly. This 

phenomenon is believed to be caused by a slight bending moment applied 

to the specimens due to misalignment of test grips. To limit the bending 

moment effect on crack growth behavior in axially-loaded fatigue tests, 

thicker specimens could be designed and tested in the future. 

4. Once one or a few accurate measures of damage prior to a crack are found, 

then experiments should be performed while damage is measured and AE 

signals are collected. Then, the various information entropy metrics should 

be calculated and correlated to the more accurate measured damage. 

5. Rather than using resonant sensors to detect AE signals, wideband sensors 

could be used in the future. Wideband sensors better reconstruct the 

received acoustic wave with respect to the frequency behavior. Therefore, 

more analysis could be performed in the frequency domain similar to 

those in previous work [35, 39, 52]. 

6. Other damage precursors could be investigated along with AE signals 

including strain energy dissipation and thermodynamic entropy. These two 
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measures proved to be correlated to fatigue damage at crack initiation [78] 

and could be combined and compared with all AE damage parameters.  

7. Fatigue damage precursors could be combined into one damage statistic in 

the future. One possible method is to use an extended Kalman filter which 

utilizes recursive Bayesian estimation to reduce uncertainty. It has been 

used successfully in combining AE counts and crack length inspections to 

better estimate crack growth rate [79].  

8. Finally, altering the current experimental setup used for coupon testing to 

be used for larger-scale testing should be considered. Most notably, the 

damage apparatus was designed to limit the mechanical noise from the 

servo-hydraulic testing machine. However, in a different experimental 

configuration, one should expect that the AE background noise to be 

different and would need to consider how to account for noisy AE signals.   
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Appendices 

Appendix A – Applied Load vs. Signal Arrival Time Scatter Plots 

 This appendix shows the applied load and time for each AE hit. These plots 

were used to filter noise. For tests with no filtering or unfilterable noise, only one plot 

is presented. For tests with filtering, before and after graphs are provided. 

5A7 – Unfilterable 

 
 

5A15 – Unfilterable 
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5A16 – Before Filtering 

 
 

5A16 – After Filtering 

 
 

5A19 – Before Filtering 
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5A19 – After Filtering 

 
 

5A20 – Unfilterable 

 
 

5A21 – Before Filtering 
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5A21 – After Filtering 

 
 

5A22 – Before Filtering 

 
 

5A22 – After Filtering 
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5A23 – Before Filtering 

 
 

5A23 – After Filtering 

 
 

 

5A24 – Before Filtering 
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5A24 – After Filtering 

 
 

5A25 – No Filtering Needed 

 
 

5A25 – No Filtering Needed 
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Appendix B – Code for Modulus Evolution 

 
%% Strain and Modulus Calculation 
clear all 

 
%% Load Raw Data 
% Experiments to find modulus degradation from 
testLabels = [16 19 21 22 23 24 25 26]; 
% Find number of tests to be analyzed 
numOfTests = length(testLabels); 
% Pre allocate arrays 
MTS = cell(1,numOfTests); 
timeA = cell(1,numOfTests); 
cyclesA = cell(1,numOfTests); 
posA = cell(1,numOfTests); 
loadA = cell(1,numOfTests); 
extenA = cell(1,numOfTests); 

  
% The data from the MTS machine is set up so that the first 5 seconds, the 
% specimen is fully unloaded to 0 kN. Then the specimen is loaded to the 
% minimum load. Then fatigue begins. Therefore, need to find the exact time 
% when cyclic fatigue begins. This is done by plotting the data and finding 
% the start time. 
peakTimeMTS = [10.36 10.36 10.44 10.35 10.39 10.35 10.37 10.40]; 

  
% Load data from raw csv files 
for j = 1:numOfTests 
    begName = 'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\5_StrainCalc\Test1.steps.tracking_5A'; 
    fileIndex = num2str(testLabels(j)); 
    fileName = strcat(begName,fileIndex,'.csv'); 
    MTS{1,j} = csvread(fileName,1,0); 
    timeA{1,j} = MTS{1,j}(:,1)-peakTimeMTS(j); 
    cyclesA{1,j} = MTS{1,j}(:,6); 
    posA{1,j} = MTS{1,j}(:,7); 
    loadA{1,j} = MTS{1,j}(:,8); 
    extenA{1,j} = MTS{1,j}(:,9); 
    % Display the test as it has finished loading data 
    disp(testLabels(j)) 
end 

  
%% Input Constants 
% Average thickness for each specimen found after three measurements around 
% the notch with calibers 
t = [3.157 3.157 3.15 3.15 3.163 3.16 3.157 3.167]; % mm 
% Average width of specimens after three measurements 
w = [18.07 18.137 18.057 18.027 18.053 18.067 18.073 18.063]; %mm 
% Maximum applied load for each test 
maxLoad = [12 14 10 13 9 12 9 10]; %kN 
% Extensometer gauge length 
localGaugeL = 25; %mm 
% Estimated times when a crack initiated, was 0.25 mm, and was 1 mm from 
% crack growth images. Went picture by picture until a crack of these 
% lengths were measured with ImageJ. 
crackInitTime = [4200 1582 4950 3130 6329 3420 3638 5822]; %s 
crack025mmTime = [4260 1697 5612 3145 7276 3505 3682 6067]; %s 
crack1mmTime = [4410 1757 6343 3231 8099 3701 3939 6222]; %s 

  
%% Calculate stress, strain, modulus, measured damage 
% Put specimen names into cell array Preallocate 
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maxim = cell(1,length(testLabels)); 
minim = cell(1,length(testLabels)); 
maxLoc = cell(1,length(testLabels)); 
minLoc = cell(1,length(testLabels)); 
posInv = cell(1,length(testLabels)); 
maxInd = zeros(1,length(testLabels)); 
minInd = zeros(1,length(testLabels)); 
firstMaxLoc = zeros(1,length(testLabels)); 
firstMinLoc = zeros(1,length(testLabels)); 
redPosMaxim = cell(1,length(testLabels)); 
redPosMinim = cell(1,length(testLabels)); 
redLoadMaxim = cell(1,length(testLabels)); 
redLoadMinim = cell(1,length(testLabels)); 
redExtenMaxim = cell(1,length(testLabels)); 
redExtenMinim = cell(1,length(testLabels)); 
graphTimeInd = cell(1,length(testLabels)); 
deltaPos = cell(1,length(testLabels)); 
deltaLoad = cell(1,length(testLabels)); 
deltaExten = cell(1,length(testLabels)); 
deltaStress = cell(1,length(testLabels)); 
localStrain = cell(1,length(testLabels)); 
modulus = cell(1,length(testLabels)); 
modTime = cell(1,length(testLabels)); 
changeInMod = cell(1,length(testLabels)); 
damage =  cell(1,length(testLabels)); 
initModulus = zeros(1,length(testLabels)); 
indCrackInitTime = zeros(length(testLabels),1); 
indCrack025mmTime = zeros(length(testLabels),1); 
indCrack1mmTime = zeros(length(testLabels),1); 

  
for i = 1:length(testLabels) 

     
    % Finding the max and min position values and their indices 
    [maxim{1,i},maxLoc{1,i}] = findpeaks(posA{1,i}); 
    posInv{1,i} = 1.01*max(posA{1,i}) - posA{1,i}; 
    [minim{1,i},minLoc{1,i}] = findpeaks(posInv{1,i}); 
    minim{1,i} = posA{1,i}(minLoc{1,i}); 

     
    % Need to "line-up" the max and min position values with their cycles. 
    % If there are a different number of maxs and mins, need to figure out 
    % which ones should line up. This is what the next few lines and the if 
    % loop do. 

     
    % Getting the length of each max and min position vector 
    maxInd(i) = length(maxLoc{1,i}); 
    minInd(i) = length(minLoc{1,i}); 
    % Getting the indice for the first max and min values 
    firstMaxLoc(i) = maxLoc{1,i}(1); 
    firstMinLoc(i) = minLoc{1,i}(1); 
    % Ensure you get matching minimums and maximums during increasing part 
    % of the cycle. Then calculate the deltaPosition and deltaLoads based 
    % on the "matched-up" maxs and mins. Also identify the time for each 
    % start of the cycle (time at the minimum values) 
    if maxInd(i)> minInd(i) && firstMaxLoc(i) < firstMinLoc(i) 
        redPosMaxim{1,i} = maxim{1,i}(2:end); 
        redPosMinim{1,i} = minim{1,i}(1:end); 
        redLoadMaxim{1,i} = loadA{1,i}(maxLoc{1,i}(2:end)); 
        redLoadMinim{1,i} = loadA{1,i}(minLoc{1,i}(1:end)); 
        redExtenMaxim{1,i} = extenA{1,i}(maxLoc{1,i}(2:end)); 
        redExtenMinim{1,i} = extenA{1,i}(minLoc{1,i}(1:end)); 
        graphTimeInd{1,i} = minLoc{1,i}(1:end); 
        disp([i,1]) 
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    elseif maxInd(i) == minInd(i) && firstMaxLoc(i) < firstMinLoc(i) 
        redPosMaxim{1,i} = maxim{1,i}(2:end); 
        redPosMinim{1,i} = minim{1,i}(1:end-1); 

        redLoadMaxim{1,i} = loadA{1,i}(maxLoc{1,i}(2:end)); 

        redLoadMinim{1,i} = loadA{1,i}(minLoc{1,i}(1:end-1)); 

        redExtenMaxim{1,i} = extenA{1,i}(maxLoc{1,i}(2:end)); 

        redExtenMinim{1,i} = extenA{1,i}(minLoc{1,i}(1:end-1)); 

        graphTimeInd{1,i} = minLoc{1,i}(1:end-1); 

        disp([i,2]) 

    elseif maxInd(i) < minInd(i) && firstMaxLoc(i) > firstMinLoc(i) 

        redPosMaxim{1,i} = maxim{1,i}(1:end); 

        redPosMinim{1,i} = minim{1,i}(1:end-1); 

        redLoadMaxim{1,i} = loadA{1,i}(maxLoc{1,i}(1:end)); 

        redLoadMinim{1,i} = loadA{1,i}(minLoc{1,i}(1:end-1)); 

        redExtenMaxim{1,i} = extenA{1,i}(maxLoc{1,i}(1:end)); 

        redExtenMinim{1,i} = extenA{1,i}(minLoc{1,i}(1:end-1)); 

        graphTimeInd{1,i} = minLoc{1,i}(1:end-1); 

        disp([i,3]) 

    elseif maxInd(i) == minInd(i) && firstMaxLoc(i) > firstMinLoc(i) 

        redPosMaxim{1,i} = maxim{1,i}(1:end); 

        redPosMinim{1,i} = minim{1,i}(1:end); 

        redLoadMaxim{1,i} = loadA{1,i}(maxLoc{1,i}(1:end)); 

        redLoadMinim{1,i} = loadA{1,i}(minLoc{1,i}(1:end)); 

        redExtenMaxim{1,i} = extenA{1,i}(maxLoc{1,i}(1:end)); 

        redExtenMinim{1,i} = extenA{1,i}(minLoc{1,i}(1:end)); 

        graphTimeInd{1,i} = minLoc{1,i}(1:end); 

        disp([i,4]) 

    end 

    deltaPos{1,i} = redPosMaxim{1,i}-redPosMinim{1,i}; 

    deltaExten{1,i} = redExtenMaxim{1,i}-redExtenMinim{1,i}; 

    deltaLoad{1,i} = redLoadMaxim{1,i}-redLoadMinim{1,i}; 

     

    % From deltaPos, deltaExten, and deltaLoad, get stress, strain, 

    % modulus, change in modulus, and measured damage 

    deltaStress{1,i} = deltaLoad{1,i}./(t(i)*w(i))*1000; %MPa = 

kN/mm/mm*1000 

    localStrain{1,i} = deltaExten{1,i}./localGaugeL; %mm/mm 

    modulus{1,i} = deltaStress{1,i}./localStrain{1,i}; 

    modTime{1,i} = timeA{1,i}(graphTimeInd{1,i}); 

    % Normalize modulus 

    initModulus(1,i) = mean(modulus{1,i}(180:480))/1000; 

    damage{1,i} = (modulus{1,i}(180:end-20)./1000-

initModulus(i))./(modulus{1,i}(end-20)/1000-initModulus(i)); 

  

     

    % Find the time indices for modulus where crack initiates, grows to 0.25 

    % and to 1 mm. 

    indCrackInitTime(i) = find(modTime{1,i}>crackInitTime(i),1); 

    indCrack025mmTime(i) = find(modTime{1,i}>crack025mmTime(i),1); 

    indCrack1mmTime(i) = find(modTime{1,i}>crack1mmTime(i),1); 

    stopInd4(i,1) = length(modTime{1,i}); %Fracture 

end 

 

  



 

 104 

 

Appendix C – Error Propagation  

C.1 Initial Elastic Modulus 

 𝐹𝑜𝑟 𝐴 = 𝑡 ∗ 𝑤, 𝛿𝐴 =  |𝐴|√(
𝛿𝑡

|𝑡|
)
2

+ (
𝛿𝑤

|𝑤|
)
2

 (C.1) 

Test t (mm) δt (mm) w (mm) δw (mm) A (mm
2
) δA (mm

2
) 

5A16 3.16 0.01 18.07 0.01 57.05 0.183 

5A19 3.16 0.01 18.14 0.01 57.26 0.184 

5A21 3.15 0.01 18.06 0.01 56.88 0.183 

5A22 3.15 0.01 18.03 0.01 56.79 0.183 

5A23 3.16 0.01 18.05 0.01 57.10 0.183 

5A24 3.16 0.01 18.07 0.01 57.09 0.183 

5A25 3.16 0.01 18.07 0.01 57.06 0.183 

5A26 3.17 0.01 18.06 0.01 57.21 0.183 

 

 𝐹𝑜𝑟 ∆𝑃 = 𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛, 𝛿∆𝑃 =  √(𝛿𝑃𝑚𝑎𝑥)2 + (𝛿𝑃𝑚𝑖𝑛)2 (C.2) 

Test 
Pmax 

(kN) 

δPmax 

(kN) 

Pmin 

(kN) 

δPmin 

(kN) 
∆P (kN) δ∆P (kN) 

5A16 12.0 0.036 1.20 0.0096 10.80 0.037 

5A19 14.0 0.042 1.40 0.0112 12.60 0.043 

5A21 10.0 0.03 1.00 0.008 9.00 0.031 

5A22 13.0 0.039 1.30 0.0104 11.70 0.040 

5A23 9.0 0.027 0.90 0.0072 8.10 0.028 

5A24 12.0 0.036 1.20 0.0096 10.80 0.037 

5A25 9.0 0.027 0.90 0.0072 8.10 0.028 

5A26 10.0 0.03 1.00 0.008 9.00 0.031 

 

Test 
Lo 

(mm) 

δLo 

(mm) 

lmax 

(mm) 

δlmax 

(mm) 

lmin 

(mm) 

δlmin 

(mm) 

5A16 25 0.002 0 0.00186 -0.07 0.00186 

5A19 25 0.002 0.084 0.00186 0.005 0.00186 

5A21 25 0.002 -0.025 0.00186 -0.082 0.00186 

5A22 25 0.002 -0.02 0.00186 -0.093 0.00186 

5A23 25 0.002 0.034 0.00186 -0.018 0.00186 

5A24 25 0.002 -0.009 0.00186 -0.078 0.00186 

5A25 25 0.002 0.038 0.00186 -0.012 0.00186 

5A26 25 0.002 0.014 0.00186 -0.042 0.00186 

 

 

 𝐹𝑜𝑟 ∆𝑙 = 𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛, 𝛿∆𝑙 =  √(𝛿𝑙𝑚𝑎𝑥)2 + (𝛿𝑙𝑚𝑖𝑛)2 (C.3) 
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 𝐹𝑜𝑟 ∆𝜀 =
∆𝑙

𝐿𝑜
, 𝛿∆𝜀 =  |∆𝜀|√(

𝛿∆𝑙

|∆𝑙|
)
2

+ (
𝛿𝐿𝑜

|𝐿𝑜|
)
2

 (C.4) 

 𝐹𝑜𝑟 𝐸 =
∆𝑃 ∗ 𝐿𝑜

∆𝑙 ∗ 𝐴⁄ , 𝛿𝐸 =  |𝐸|√(
𝛿∆𝑃

|∆𝑃|
)
2

+ (
𝛿𝐿𝑜

|𝐿𝑜|
)
2

+ (
𝛿∆𝑙

|∆𝑙|
)
2

+ (
𝛿𝐴

|𝐴|
)
2

 (C.5) 

Test ∆l (mm) 
δ∆l 

(mm) 

∆Strain 

(mm/mm) 

δDeltastrain 

(mm) 
E (GPa) δE (GPa) 

5A16 0.070 0.00263 0.00280 0.000105 67.6 2.6 

5A19 0.079 0.00263 0.00316 0.000105 69.6 2.3 

5A21 0.057 0.00263 0.00228 0.000105 69.4 3.2 

5A22 0.073 0.00263 0.00292 0.000105 70.6 2.6 

5A23 0.052 0.00263 0.00208 0.000105 68.2 3.5 

5A24 0.069 0.00263 0.00276 0.000105 68.5 2.6 

5A25 0.050 0.00263 0.00200 0.000105 71.0 3.7 

5A26 0.056 0.00263 0.00224 0.000105 70.2 3.3 

 

C.2 Measured Crack Length 

*The DIC was used for crack monitoring of 5A16 where the notch was in full view 

and the picture scale could be directly estimated  

 

 𝐹𝑜𝑟 𝑐2, 𝛿𝑐2 =  2 ∗ 𝑐 ∗ 𝛿𝑐 (C.6) 

Test 
R 

(mm) 

δR 

(mm) 

c 

(pixels) 

δc 

(pixel) 

h 

(pixels) 

δh 

(pixels) 

c
2
 

(pixels/mm) 

δc
2
 

(pixels) 

5A16* 1 0.05 - - - - - - 

5A19 1 0.05 774.7 4 122.7 4 600160 6198 

5A21 1 0.05 712 4 93.3 4 506944 5696 

5A22 1 0.05 768 4 112 4 589824 6144 

5A23 1 0.05 786 4 132 4 617796 6288 

5A24 1 0.05 546 4 57 4 298116 4368 

5A25 1 0.05 695 4 110.7 4 483025 5560 

5A26 1 0.05 754.7 4 108 4 569572 6038 

S c 

h d 

R 
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 𝐹𝑜𝑟 
𝑐2

8ℎ
, 𝛿

𝑐2

8ℎ
= |

𝑐2

8ℎ
| √(

𝛿𝑐2

|𝑐2|
)
2

+ (
𝛿ℎ

|ℎ|
)
2

 (C.7) 

 𝐹𝑜𝑟 
𝑐2

8ℎ
+
ℎ

2
, 𝛿 (

𝑐2

8ℎ
+
ℎ

2
) =  √(𝛿

𝑐2

8ℎ
)
2

+ (𝛿ℎ)2 (C.8) 

 𝐹𝑜𝑟 𝑆𝑐𝑎𝑙𝑒 =
(
𝑐2

8ℎ
+
ℎ

2
) 𝑝𝑖𝑥𝑒𝑙𝑠

𝑅 𝑚𝑚
, 𝛿𝑆𝑐𝑎𝑙𝑒 = |𝑆𝑐𝑎𝑙𝑒|√(

𝛿(
𝑐2

8ℎ
+
ℎ

2
)

|(
𝑐2

8ℎ
+
ℎ

2
)|
)

2

+ (
𝛿𝑅

|𝑅|
)
2
 (C.9) 

Test c
2
/8h (pixels) 

δc
2
/8h 

(pixels) 

Numerator 

(pixel) 

δNumerator 

(pixels) 

Scale 

(pix/mm) 

δScale 

(pix/mm) 

5A16* - - - - 24.65 2 

5A19 611.4 20.9 672.8 31.9 672.8 46.3 

5A21 679.2 30.1 725.8 44.8 725.8 57.6 

5A22 658.3 24.5 714.3 36.8 714.3 51.3 

5A23 585.0 18.7 651.0 28.7 651.0 43.4 

5A24 653.8 46.9 682.3 68.4 682.3 76.5 

5A25 545.4 20.7 600.8 31.5 600.8 43.5 

5A26 659.2 25.4 713.2 38.1 713.2 52.2 

 

 𝐹𝑜𝑟 𝐶𝑟𝑎𝑐𝑘 𝐿𝑒𝑛𝑔𝑡ℎ =
𝐶𝐿 (𝑝𝑖𝑥𝑒𝑙𝑠)

𝑆𝑐𝑎𝑙𝑒 (
𝑝𝑖𝑥𝑒𝑙𝑠

𝑚𝑚
)
, 𝛿𝐶𝐿 = |𝐶𝐿|√(

𝛿(𝐶𝐿)

|𝐶𝐿|
)
2
+ (

𝛿𝑆𝑐𝑎𝑙𝑒

|𝑆𝑐𝑎𝑙𝑒|
)
2
 (C.10) 

Test 
0.25 mm 

crack (mm) 

δ0.25 mm 

crack  (mm) 

1 mm crack 

(mm) 

δ1 mm 

crack (mm) 

%error in 

0.25 mm 

% error in 

1 mm 

5A16 0.268 0.084 1.078 0.120 31.3 11.1 

5A19 0.272 0.020 1.036 0.072 7.2 6.9 

5A21 0.239 0.020 1.011 0.080 8.3 8.0 

5A22 0.249 0.019 1.1 0.080 7.5 7.2 

5A23 0.258 0.018 1.041 0.070 7.1 6.7 

5A24 0.262 0.030 1.065 0.120 11.4 11.2 

5A25 0.256 0.020 1.094 0.080 7.7 7.3 

5A26 0.26 0.020 1.074 0.080 7.6 7.3 
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Appendix D – Code for AE Entropy Formulations 

%% Entropy From AE Signals 
clear all 
clc 

  
% Used as a reference for chooseTestInd 
% 1 | 5A4 
% 2 | 5A6 
% 3 | 5A10 
% 4 | 5A16 
% 5 | 5A19 
% 6 | 5A21 
% 7 | 5A22 
% 8 | 5A23 
% 9 | 5A24 
% 10 | 5A25 
% 11 | 5A26 

  
%% Setup 
% Choose which test to get entropy from 
chooseTestInd = 1; % out of 11 
channel = 2; % 1 or 2 
sizeOfWaveform = 2*1024; 
freq = 5; 
% Smallest division is 20V/65536 = 0.00030518, so choosing 0.001 
binwidth = 0.0010; 

  
testsStr = 

{'5A4','5A6','5A10','5A16','5A19','5A21','5A22','5A23','5A24','5A25','5A26'}

; 
% Assumes waveform files are in one folder. Input the folder location 
testNames = {'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\5A4_102915\AE\Filtered_5A4_test1_'; 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\5A6_111915\AE\Waveforms\ampAndCountAndLoadF_5A6_test1_'; 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\5A10_120215\AE\test1_5A10_'; 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\5A16_040516\AE\Waveforms\F_Test1_5A16_'; 
    'C:\Users\Lab Admin\Documents\AAAFiles, 040816\5A19_041916\AE\Waveforms 

2\loadF_test1_5A19_'; 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\5A21_042516\AE\Waveforms\timeF_test1_5A21_'; 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\5A22_042616\AE\Waveforms\loadF_test1_5A22_' 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\5A23_042716\AE\Waveforms\loadF_test1_5A23_'; 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\5A24_042916\AE\Waveforms\loadF_test1_5A24_' 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\5A25_050216\AE\Waveforms\test1_5A25_'; 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\5A26_050216\AE\Waveforms\test1_5A26_'}; 

  
% Number of waveform files in the form of [ch1# ch2#; next test;...] 
chNumberOfFiles = [141 408; 137 164; 140 520; 1157 2108; 934 1795;... 
    653 2617; 958 1222; 888 2311; 863 2403; 658 1478; 418 1865]; 
% Specified threshold values 
thresholds = [52 46; 53 48; 52 47; 50 45; 50 45;... 
    50 45; 50 45; 50 45; 50 45; 50 45; 50 45]; 



 

 108 

 

  
% Test name, label, number of waveform files, specified threshold 
% for particular test 
testName = testNames{chooseTestInd}; 
testStr = testsStr{chooseTestInd}; 
numberOfFiles = chNumberOfFiles(chooseTestInd,channel); 
thresholdDB = thresholds(chooseTestInd,channel); 
%Changes channel number to string for file name 
channelIndex = num2str(channel);             
%Text files 
fileType = '.txt';                         
% Preamp gain in dB 
preamp = 40; 
%Threshold gain in dB, equation from AEWin manual 
thresholdVolt = (10^((thresholdDB+preamp)./20))*(10^-6); 

  
% Preallocate 
entropy1 = zeros(numberOfFiles,2); 
entropy2 = zeros(numberOfFiles,2); 
entropy3 = zeros(numberOfFiles,2); 
maximum = zeros(numberOfFiles,2); 
countsFromWaveforms = zeros(numberOfFiles,2);  
time = zeros(1,numberOfFiles); 
mat1 = zeros(sizeOfWaveform,1); 
% Histogram bin edges and middle points for temporally weighted entropy 
edges = -10:0.001:10; 
mid = -10+0.0005:0.001:10-0.0005; 
mat2 = zeros(sizeOfWaveform,1); 
allProb = zeros(sizeOfWaveform,length(mid)); 
weightedProb = zeros(numberOfFiles,length(mid)); 

  

  
%% 3 different entropies as new signals are received 
for i = 1:numberOfFiles 

     
    %%% Loading data from iterative text files 
    % Indexes through waveform numbers 
    fileIndex = num2str(i);          
    % Entire file name 
    fileName = strcat(testName,channelIndex,'_',fileIndex,fileType); 
    % Open file 
    fileID = fopen(fileName); 
    % Imports file to strings 
    wholeWaveform = textscan(fileID,'%s','Delimiter','\n');       
    timeWaveform = wholeWaveform{1,1}(11); 
    workForTime= sscanf(timeWaveform{1,1},'%s%s%s%f'); 
    % Signal arrival time 
    time(i) = workForTime(12); 
    % AE signal voltage data in strings 
    waveformData = wholeWaveform{1,1}(13:end); 
    % AE signal voltage data in values 
    for k = 1:sizeOfWaveform 
        mat1(k) = sscanf(waveformData{k}, '%f');      
    end 
    %Close file 
    fclose(fileID); 

     
    %%% Indexing 
    entropy1(i,1) = i; 
    entropy2(i,1) = i; 
    entropy3(i,1) = i; 
    maximum(i,1) = i; 
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    countsFromWaveforms(i,1) = i; 
    % Maximum voltage value from AE signal 
    maximum(i,2) = max(mat1); 
    % Counts directly from raw AE signal 
    countsFromWaveforms(i,2) = sum(mat1>thresholdVolt); 

     
    %%% 1) Feature Entropy from each waveform 
    % Finding probability distribution with auto binning rules 
    [prob1, Edge1] = 

histcounts(mat1,'BinWidth',binwidth,'Normalization','probability');     
    % Preallocate 
    S1 = zeros(length(prob1),1);                        
    for q = 1:length(prob1) 
        % Calculate individual terms of Shannon's equation for each 
        % possible outcome (in this case, histogram bar) 
        if prob1(q)>0 
            S1(q) = -prob1(q)*log2(prob1(q)); 
        end 
    end 
    % Sum terms to get entropy 
    entropy1(i,2) = sum(S1); 

  
    %%% 2) Updated entropy from waveforms 
    % Want histogram to be mobile with constant bin width. This means the 
    % waveforms need to be put into one array and then passed to 
    % histcounts. 
    % Making one very large array with all waveforms together 
    mat2(sizeOfWaveform*(i-1)+1:sizeOfWaveform*i) = mat1;            
    % Finding probability distribution of all received voltage values 
    [prob2, Edge2] = 

histcounts(mat2,'BinWidth',binwidth,'Normalization','probability');    
    % Preallocate 
    S2 = zeros(length(prob2),1); 
    for j = 1:length(prob2) 
        % Calculate individual terms of Shannon's equation for each 
        % possible outcome (in this case, histogram bar) 
        if prob2(j)>0 
            S2(j) = -prob2(j)*log2(prob2(j)); 
        end 
    end 
    % Sum terms to get entropy 
    entropy2(i,2) = sum(S2); 

     
    %%% 3) Temporally weighted entropy from waveforms 
    % Want to devise a way so that the probability distribution of the 
    % current signal has a greater effect on the system probability 
    % distribution than the previous signals 
    % Making one very large array with all waveforms together 
    [prob, edge1] = 

histcounts(mat1,'BinEdges',edges,'Normalization','probability'); 
    allProb(i,:) = prob; %  
    % Get the current vector of arrival times 
    current = time(1:i);  
    % Get the temporal linear weights 
    weights = current./sum(current);  
    % Multiply probably distributions by weights 
    weightedProb(i,:) = weights*allProb(1:i,:);  
    % Preallocate 
    S3 = zeros(length(weightedProb(i,:)),1); 
    for j = 1:length(weightedProb(i,:)) 
        % Calculate individual terms of Shannon's equation for each 
        % possible outcome (in this case, histogram bar) 
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        if weightedProb(i,j)>0 
            S3(j) = -weightedProb(i,j)*log2(weightedProb(i,j)); 
        end 
    end 
    % Sum terms to get entropy 
    entropy3(i,2) = sum(S3); 

  
    % Checking all pdf's always sum to 1 
    checkFor1_1 = sum(prob1); 
    if checkFor1_1 > 1.0001 || checkFor1_1 < 0.9999 
        str = sprintf('ERROR: PDF for %d does not sum to 1', i); 
    end 
    checkFor1_2 = sum(prob2); 
    if checkFor1_2 > 1.0001 || checkFor1_2 < 0.9999 
        str = sprintf('ERROR: PDF for %d does not sum to 1', i); 
    end 
    checkFor1_3 = sum(allProb(i,:)); 
    if checkFor1_3 > 1.0001 || checkFor1_3 < 0.9999 
        str = sprintf('ERROR: PDF for %d does not sum to 1', i); 
    end 
    disp(i) 
end 
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Appendix E – Code for Matching Modulus and AE Hits Data 

%% Matching modulus to entropy and features at AE hits 
clear all 
clc 

  
% Load AE features and modulus data 
load('C:\Users\Lab Admin\Documents\AAAFiles, 

040816\00_Thesis\Results\5A1619212223242526_hitdata_061516.mat'); 
load('C:\Users\Lab Admin\Documents\AAAFiles, 

040816\00_Thesis\Results\modulus_062216.mat'); 

  
% Already in loaded data 
% testsStr = {'5A16','5A19','5A21','5A22','5A23','5A24','5A25','5A26'}; 
% testNumber = [16,19,21,22,23,24,25,26]; 
% numOfTests = length(testNumber); 
% crackInitTime = [4200 1582 4950 3130 6329 3420 3638 5822]; %s 
% crack025mmTime = [4260 1697 5612 3145 7276 3505 3682 6067]; %s 
% crack1mmTime = [4410 1757 6343 3231 8099 3701 3939 6222]; %s 
% peakTimeMTS = [10.36 10.36 10.44 10.35 10.39 10.35 10.37 10.40]; 
% peakTimeAE = [10 10.16 10.68 10.36 9.82 10.54 10.56 10.26]; 
% Coefficients for damage models stored in coeff 

  
% Preallocate 
featureEntropy = cell(numOfTests,1); 
updatedEntropy = cell(numOfTests,1); 
tempEntropy = cell(numOfTests,1); 
countsFromWaveformsA = cell(numOfTests,1); 
timeFromWaveforms = cell(numOfTests,1); 

  
% Load entropy data 
workspaceNames = {'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\00_Thesis\Results\5A16_entropy_061316.mat';... 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\00_Thesis\Results\5A19_entropy_061316.mat';... 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\00_Thesis\Results\5A21_entropy_061316.mat';... 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\00_Thesis\Results\5A22_entropy_061316.mat';... 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\00_Thesis\Results\5A23_entropy_061316.mat';... 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\00_Thesis\Results\5A24_entropy_061316.mat';... 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\00_Thesis\Results\5A25_entropy_061316.mat';... 
    'C:\Users\Lab Admin\Documents\AAAFiles, 

040816\00_Thesis\Results\5A26_entropy_061316.mat'}; 
for I = 1:length(testsStr) 
    clearvars countsFromWaveforms entropy1 entropy2 maximum maxLoad time 

thresholdDB chooseTestInd testStr freq 
    load(workspaceNames{I}); 
    featureEntropy{I,1} = entropy1(:,2); 
    updatedEntropy{I,1} = entropy2(:,2); 
    tempEntropy{I,1} = entropy3(:,2); 
    countsFromWaveformsA{I,1} = countsFromWaveforms(:,2); 
    timeFromWaveforms{I,1} = time; 
end 

  
% Concatenate AE feature data 
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hitdata = {hitdata_5A16_mat;hitdata_5A19_mat;hitdata_5A21_mat; 

hitdata_5A22_mat;hitdata_5A23_mat;hitdata_5A24_mat;hitdata_5A25_mat;hitdata_

5A26_mat}; 
labels = {'Time','Load','Exten','Risetime','Counts','Duration','Amplitude', 

'Abs Energy','Updated Entropy','Feature Entropy','Temporally-Weighted 

Entropy'}; 

  
% Preallocate 
time = cell(numOfTests,1); 
load = cell(numOfTests,1); 
exten = cell(numOfTests,1); 
risetime = cell(numOfTests,1); 
counts = cell(numOfTests,1); 
duration = cell(numOfTests,1); 
amp = cell(numOfTests,1); 
energy = cell(numOfTests,1); 
channel1 = cell(numOfTests,1); 
channel2 = cell(numOfTests,1); 
cycles = cell(numOfTests,1); 
changeInModAtHit = cell(numOfTests,1); 
damage = cell(numOfTests,1); 
cumuFeat = cell(numOfTests,1); 
cumuEnergy = cell(numOfTests,1); 
cumuCounts = cell(numOfTests,1); 
normCounts = cell(numOfTests,1); 
normEnergy = cell(numOfTests,1); 
normFeat = cell(numOfTests,1); 
normUp = cell(numOfTests,1); 
normTemp = cell(numOfTests,1); 
diffCounts = cell(numOfTests,1); 
diffEnergy = cell(numOfTests,1); 
diffFeat = cell(numOfTests,1); 
stopInd1 = zeros(numOfTests,1); 
stopInd2 = zeros(numOfTests,1); 
stopInd3 = zeros(numOfTests,1); 
stopInd4 = zeros(numOfTests,1); 
endD = zeros(numOfTests,1); 
finalCounts = zeros(numOfTests,1); 
finalEnergy = zeros(numOfTests,1); 
finalFeat = zeros(numOfTests,1); 
devCounts = zeros(numOfTests,1); 
devEnergy = zeros(numOfTests,1); 
devFeat = zeros(numOfTests,1); 

  
for i = 1:numOfTests 
    counter1 = 1; 
    counter2 = 1; 
    % Divide hit data into channel 1 and channel 2 
    for j = 1:length(hitdata{i}) 
        if hitdata{i}(j,4) == 1 
            channel1{i}(counter1,:) = hitdata{i}(j,:); 
            counter1 = counter1 + 1; 
        else 
            channel2{i}(counter2,:) = hitdata{i}(j,:); 
            counter2 = counter2 + 1; 
        end 
    end 

    
    % Get rid of hits that don't match up between entropy code and hit code 
    hitLength2 = length(channel2{i}); 
    waveformLength2 = length(updatedEntropy{i,1}); 
    if hitLength2 > waveformLength2 
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        channel2{i}(end,:) = []; 
    elseif hitLength2 < waveformLength2 
        featureEntropy{i}(end) = []; 
        updatedEntropy{i}(end) = []; 
        tempEntropy{i}(end) = []; 
        countsFromWaveformsA{i}(end) = []; 
        timeFromWaveforms{i}(end) = []; 
    end 

  
    time{i,1} = channel2{i}(:,1)-peakTimeAE(i); 
    load{i,1} = channel2{i}(:,2); 
    exten{i,1} = channel2{i}(:,3); 
    risetime{i,1} = channel2{i}(:,5); 
    counts{i,1} = channel2{i}(:,6); 
    duration{i,1} = channel2{i}(:,7); 
    amp{i,1} = channel2{i}(:,8); 
    energy{i,1} = channel2{i}(:,9); 
    cycles{i,1} = time{i,1}*5; 
    stopInd1(i,1) = find(time{i,1}>crackInitTime(i),1); 
    stopInd2(i,1) = find(time{i,1}>crack025mmTime(i),1); 
    stopInd3(i,1) = find(time{i,1}>crack1mmTime(i),1); 
    stopInd4(i,1) = length(time{i,1}); %Fracture 

     
    % Find estimated modulus at AE hits 
    % Exp model: change in modulus = a*exp(b*Cycles) 

     
    endD(i) = coeff(i,1)*exp(cycles{i,1}(end).*coeff(i,2)); 
    % Need to divide by damage value of final AE signal so the final damage 
    % value at fracture is 1 
    damage{i,1} = coeff(i,1)*exp(cycles{i,1}.*coeff(i,2))/endD(i); 
    cumuCounts{i,1} = cumsum(counts{i,1}); 
    cumuEnergy{i,1} = cumsum(energy{i,1}); 
    cumuFeat{i,1} = cumsum(featureEntropy{i,1}); 
    % Normalize all AE parameters 
    normCounts{i,1} = (cumuCounts{i,1}-cumuCounts{i,1}(1))./ 

(cumuCounts{i,1}(end)-cumuCounts{i,1}(1)); 
    normEnergy{i,1} = (log10(cumuEnergy{i,1})-log10(cumuEnergy{i,1}(1)))./ 

(log10(cumuEnergy{i,1}(end))-log10(cumuEnergy{i,1}(1))); 
    normFeat{i,1} = (cumuFeat{i,1}-cumuFeat{i,1}(1))./(cumuFeat{i,1}(end)-

cumuFeat{i,1}(1)); 
    normUp{i,1} = (updatedEntropy{i,1}-min(updatedEntropy{i,1}(10:end-

200)))./(max(updatedEntropy{i,1})-min(updatedEntropy{i,1}(10:end-200))); 
    normTemp{i,1} = (tempEntropy{i,1}-min(tempEntropy{i,1}(1:end-

200)))./(max(tempEntropy{i,1})-min(tempEntropy{i,1}(1:end-200))); 
    % Difference between actual and ideal relationships 
    diffCounts{i,1} = normCounts{i,1}-damage{i,1}; 
    diffEnergy{i,1} = normEnergy{i,1}-damage{i,1}; 
    diffFeat{i,1} = normFeat{i,1}-damage{i,1}; 
    % Sum of the total deviations 
    devCounts(i,1) = sum(abs(diffCounts{i,1})); 
    devEnergy(i,1) = sum(abs(diffEnergy{i,1})); 
    devFeat(i,1) = sum(abs(diffFeat{i,1})); 
    % Final values for all parameter 
    finalCounts(i,1) = cumuCounts{i,1}(end); 
    finalEnergy(i,1) = cumuEnergy{i,1}(end); 
    finalFeat(i,1) = cumuFeat{i,1}(end); 
end 
% Coefficients of variation 
covCounts = std(finalCounts)/mean(finalCounts); 
covEnergy = std(finalEnergy)/mean(finalEnergy); 
covFeat = std(finalFeat)/mean(finalFeat); 
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