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Anisotropic particles are those having different properties (physical or chemical) 

along different directions; in contrast, isotropic particles are identical in all directions. The 

technical importance of anisotropic structures relies on the fact that a unit with two 

different characteristics can also exhibit two different functionalities. Such particles have 

attracted attention due to their potential applications in microrobotics, sensor technologies, 

drug delivery, and as components in optical devices. In this study, we focus on using 

microfluidic devices to create anisotropic microcapsules with advanced functionalities. 

Microfluidic platforms enable the generation of uniform liquid droplets, and we configure 

these platforms such that the droplets are converted into capsules, i.e., particles with a 

liquid core and a solid shell. Three different platforms are described, which each generate 

a unique type of anisotropic capsule.  

 

In our first study, we describe the microfluidic assembly of Janus-like dimer 

capsules by the fusion of individual capsules with distinct properties. Microscale aqueous 



 
 

droplets bearing the biopolymer chitosan are generated in situ within a chip and, as they 

travel downstream, pairs of droplets are made to undergo controlled crosslinking and 

coalescence (due to a channel expansion) to form stable dimers. These dimers are very 

much like Janus particles: the size, shape, and functionality of each individual lobe within 

the dimer can be precisely controlled. To illustrate the diverse functionalities possible, we 

have prepared dimers wherein one lobe encapsulates paramagnetic nanoparticles. The 

resulting dimers undergo controlled rotation in an external rotating magnetic field, much 

like a magnetic stir bar.  

  

In our second study, we describe a new way to create patchy spherical particles. 

Here, we generate droplets of a chitosan solution containing nanoparticles with an iron (Fe) 

core and a platinum (Pt) shell. The collected droplets are placed on top of a neodymium 

magnet to draw the Fe-Pt nanoparticles to their bottom side. The droplets are then 

crosslinked to convert them into capsules, with the nanoparticles localized on one end as a 

“patch”. The resulting capsules possess both magnetic and catalytic properties. When the 

capsules are placed in a solution of hydrogen peroxide (H2O2), the H2O2 is catalytically 

decomposed by the Pt to generate oxygen bubbles, which cause the capsule to move. Thus, 

our patchy capsules can act as “micromotors” and their motion can also be controlled by 

an external magnet. 

 

In our final study, we employ a pulsed-air microfluidic droplet generator to create 

multi-compartment polymer capsules. These are capsules that have smaller capsules within 

them. Our technique uses no oil, and is thus very compatible with biological payloads such 

as proteins or cells. We can also place different payloads within each individual 

compartment. To demonstrate the unique capabilities of this setup, we have encapsulated 

different kinds of bacteria in different compartments. Furthermore, we show that the two 



 
 

bacteria engage in bacterial cross-talk through small molecules known as autoinducers. 

Specifically, one bacteria produces autoinducer 2 (AI2), which then diffuses across its 

compartment into the adjacent one, where the second bacteria imbibes the AI2 and in turn, 

produces a fluorescence response.  
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Chapter 1 
 
Introduction and Overview 
 

1.1. Problem Description and Motivation 

Janus, the Roman god of gates and doors, is depicted with two fused heads, each 

facing in the opposite direction. We use the term Janus to describe one type of anisotropic 

particles: spheres having two halves (hemispheres), each with a different property.1 More 

generally, anisotropic particles are those with different properties (physical or chemical) 

along different directions. In contrast, isotropic particles have identical properties along all 

directions. The technical importance of anisotropic structures, such as Janus particles, 

relies on the fact that a single unit can exhibit two or more different, independent 

functionalities. For example, one hemisphere of a Janus particle may be designed to be 

responsive to magnetic fields whereas the other hemisphere may have the ability to target 

specific biological molecules or species. Such dual or multi-functional capabilities are of 

much interest for applications. For example, anisotropic particles are already used in 

applications such as flexible electronic displays (e.g., the technology behind the Amazon 

Kindle reader),2 drug delivery,3-5 sensors,6,7 and microrobotics.8-13  

 

Recently, many methods have been published to make anisotropic or Janus particles 

using conventional batch synthesis14-19 or using microfluidic routes.20-23 Microfluidic 

platforms are routinely used to generate highly uniform droplets of controlled size (this 

sub-field is called “droplet microfluidics”). These platforms need to be modified to allow 

the synthesis of anisotropic particles.5,6,12,22-28 While several methods have been published, 
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researchers continue to seek new routes that can either (a) synthesize a particular class of 

anisotropic particles in a simpler manner or at lower cost; or (b) synthesize anisotropic 

particles with a novel structure or shape that was not possible by earlier techniques. The 

search for such new routes is at the heart of the present dissertation.    

 

Figure 1.1. The different types of anisotropic microcapsules synthesized in this work. (a) 
dimer capsules (Chapter 3); (b) patchy capsules (Chapter 4); and (c) multicompartment 
capsules (Chapter 5). In each case, a different microfluidic platform is used. 

 

1.2. Proposed Approach 

 In this dissertation, we will describe three routes for synthesizing different types 

of anisotropic particles (Figure 1.1). We refer to these structures as “capsules”, i.e., they 

have a core that is typically liquid or semi-solid, and a more rigid shell. The three 
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approaches each use a different type of microfluidic platform (either a chip or capillary 

tubing). Moreover, these result in three different and unique types of capsules, as shown 

Figure 1.1, and this is further described below. 

 

1.2.1. Janus-Like Dimer Capsules  

Our first study (Chapter 3) is on the microfluidic assembly of Janus-like dimer 

capsules (Figure 1.1a). Here, we demonstrate the continuous assembly of “dimers” using a 

microfluidic chip. Soluble precursors are fed into the chip, and two droplets, slightly 

differing in size are generated. These droplets are then crosslinked on-chip and fused at 

their interface to form a dimer. The dimers are very much like Janus particles: the size, 

shape, and functionality of each lobe within the dimer can be precisely controlled. We 

demonstrate applications for these dimers by incorporating different nanoparticles in each 

of the dimer lobes. It is notable that all the steps for forming dimers are accomplished 

continuously on-chip without manual intervention. This aspect mimics the series of unit 

operations that take place in a chemical factory, and we thus refer to our microfluidic 

platform as a “microfactory”.  

 

1.2.2. Patchy Capsules as Micromotors 

In Chapter 4, we present a new class of patchy spherical capsules synthesized off-

chip from microfluidically generated droplets (Figure 1.1b). First, nanoparticles with an 

iron (Fe) core and a platinum (Pt) shell are synthesized in-house using readily available 

chemicals. These nanoparticles are then encapsulated in a biopolymer solution, and 

droplets of the mixture are generated using a microfluidic setup. The collected droplets are 
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placed on top of a neodymium magnet to draw the Fe-Pt nanoparticles to their bottom side. 

The droplets are then crosslinked to convert them into capsules, with the nanoparticles 

localized on one end as a “patch”. The resulting capsules possess both magnetic properties 

due to the Fe and catalytic properties due to the Pt. In particular, the capsules can act as 

micromotors, i.e., they can move in the presence of a chemical fuel (hydrogen peroxide) 

and they can also be steered by an external magnet.  

 

1.2.3. Multi-Compartment Capsules 

In Chapter 5, we employ a pulsed-air microfluidic droplet generator to create multi-

compartment polymer capsules (Figure 1.1c). These are capsules that have smaller capsules 

within them, and the design of these structures is inspired by the structure of a eukaryotic 

cell. Our technique uses no oil, and is thus very compatible with biological payloads such 

as proteins or cells. We can also place different payloads within each individual 

compartment. To demonstrate the unique capabilities of such capsules, we encapsulate two 

different bacteria in their respective compartments, and we show that the two strains 

engage in bacterial cross-talk through small molecules known as autoinducers. Specifically, 

one bacteria produces autoinducer 2 (AI2), which then diffuses across its compartment into 

the adjacent one, where the second strain imbibes the AI2 and in response turns on a gene 

that expresses a fluorescent protein.  
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1.3. Significance of This Work 
 

We believe the significance of this work lies in the use of simple approaches to 

develop new kinds of anisotropic microcapsules. Our approaches are versatile and can 

generate capsules with diverse functional properties. Some of the structures we have 

created, such as the multi-compartment capsules in Chapter 5, have been made for the first 

time. Numerous applications are likely to emerge for these multi-compartment structures, 

including their use in investigating cross-kingdom signaling (e.g., bacteria to fungi),24 and 

also their application as antibacterial agents that can disrupt bacterial cross-talk. In other 

cases, such as Chapter 3, our technique itself is noteworthy, such as the idea of continuously 

generating microstructures on-chip in a microfactory. Also, in Chapter 4, the micromotors 

that we describe, are biodegradable and soft structures, which are unlike other micromotors 

that have been reported in the past.   

 

Overall, we anticipate that the new directions we set forth in this field will be further 

explored by other researchers, and will ultimately lead to practical applications in both 

existing as well as emerging technologies. 
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Chapter 2 
 
Background 
 

This dissertation is focused on the microfluidic generation of anisotropic microcapsules. In 

this chapter we will discuss the basics of droplet microfluidics, current techniques used to 

create anisotropic capsules, different approaches to creating micromotors, and the basics 

of quorum sensing, which will be used in Chapter 5 in the context of a particular class of 

capsules.  

 

2.1. Droplet Microfluidics 

Droplets are created in a microfluidic device by bringing two immiscible phases 

into contact at a geometry such as a T-junction (Figure 2.1a). Two separate syringe pumps 

control the injection of the dispersed phase at a flow rate Qd (shown in blue; e.g., aqueous) 

and the continuous phase, typically at a higher flow rate Qc (shown in yellow; e.g., oil). At 

the intersection of the T-junction, droplets of the dispersed phase are formed and these 

move down the channel. Three key dimensionless groups are of interest for droplet 

microfluidics: the capillary number Ca cUµ σ= , the flow rate ratio of the dispersed to 

continuous phase, and the viscosity ratio of the dispersed to the continuous phase. Here U 

is the droplet velocity [length/time], σ is the interfacial or surface tension [energy/unit area 

or force per unit length], Q is the volumetric flow rate [length3/time], and µ is the fluid 

viscosity [force/length3·time]. Because the length scale and flow rates are generally small 

in microfluidics, the effects of inertia and gravity can be ignored. Thus, other dimensionless 
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groups, such as the Reynolds number Re DUρ µ= , which is a ratio of inertial to viscous 

forces (D is the channel diameter, ρ is the fluid density), remain low as viscous forces 

dominate at smaller length scales. For similar reasons, the Weber number (ratio of inertial 

forces to interfacial tension), and Bond number (ratio of gravity to interfacial tension) are 

also less significant. The important forces are the viscous and interfacial tension forces and 

Ca captures their relative contributions. Note that the ratio of surface area to volume is 

generally large for droplets on the micron scale, which is why surface forces are important. 

The value of Ca ranges from 10-3 to 101 depending on the droplet generation device.25 

 

 

 
Figure 2.1. Droplet generation at a T-junction (a) and alternating droplet generation in a 
cross-channel geometry (b). 
 

The flow rate ratio (FRR = Qd / Qc) of the dispersed to the continuous phase also 

greatly affects droplet generation. In a regular T-junction depicted in Figure 2.1a, at flow 

rate ratios below 1, increases in the dispersed phase flow rate Qd does not affect droplet 

size.26  Also, increasing the viscosity of the continuous phase µc has no effect on the droplet 

size. This droplet generation regime corresponds to a low Ca around 10-3, and in this case, 

(a) (b) 
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droplet formation is dominated by interfacial tension.26 Garstecki et al. termed this the 

“squeezing” regime,26 and explained that the breakup of the droplet depends on the balance 

of hydrostatic pressure built up when the aqueous droplet fills up the channel. This means 

that as the emerging droplet blocks the channel, the upstream pressure towards the inlet of 

the continuous phase increases. The increased pressure leads to a “pinching pressure” 

which pushes the interface of the two immiscible phases downstream, leading to a thinned 

“neck” of the aqueous droplet. This “neck” eventually breaks off and a droplet within the 

continuous phase is formed.26 

 

 

 
Figure 2.2: (a) Effect of flow rate ratio FRR and continuous phase viscosity on droplet size 
in a T-junction. The x-axis is the FRR = Qwater/Qoil = flow rate ratio of the dispersed aqueous 
phase to the continuous oil phase. L is the length of the droplet in the channel, and w is the 
width of the channel26 (b) Effect of capillary number Ca and flow rate ratio FRR on droplet 
generation in a cross-channel droplet generator.27 
 

The dispersed phase flow rate so far has not been mentioned since the capillary 

number concerns the continuous phase flow rate Qc and viscosity µc. Once the FRR 

increases above a certain value, increases in the dispersed flow rate Qd does have a linear 

I

II

III

IV

V

(a) (b) 
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effect on the size of the droplet, as shown in Figure 2.2a. However, even in this regime, 

changes in continuous phase flow rate Qc and viscosity µc have no effect on droplet size, 

as seen in Figure 2.2a. 

 

It is possible to modify the T-junction geometry to add an additional inlet, such as 

in Figure 2.1b, and still maintain two distinct droplet streams. These conditions are satisfied 

when the Ca of the system is around a value of 10-2 and the combined dispersed flow rate 

(Qd1 + Qd2) is small compared to the continuous phase flow rate Qc.27 Droplet formation 

still occurs in the “squeezing” regime.27-29 A stable sequence of alternating droplets can 

thus be generated (Figure 2.2b-II). In contrast, for Ca below a critical value, the two 

dispersed phases meet head on and coalesce (Figure 2.2b-I). At higher Ca, the system 

becomes unstable (Figure 2.2b-IV,V). Also, increasing the combined dispersed phase flow 

rates causes the two streams to coalesce instead of forming alternate droplets, as seen in 

Figure 2.2b-III. 

 

2.2. Microfluidic Device Fabrication 

In this work, we fabricated microfluidic devices from thermoplastic substrates. 

Thermoplastic devices can be much more cost-effective than making devices using 

polydimethylsiloxane (PDMS) via soft lithography. Thermoplastic materials are at least a 

100 times cheaper than PDMS. For use at the laboratatory scale, channels on thermoplastic 

chips with dimensions approaching 50 µm can be directly machined by micro-milling 

(Figure 2.3, bottom), obviating the need for photolithographic mold production, elastomer 

casting, and polymer curing. If the same chips have to be mass produced at moderate 
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volumes, thermoplastics can be rapidly patterned by embossing from a micro-machined 

mold with cycle times on the order of 10 min (Figure 2.3, top).  

 

 

Figure 2.3: Schematic of the fabrication of thermoplastic microfluidic devices. Top route: 
hot embossing method; bottom route: direct micro-machining.30 
 
 

We also used microfluidic (co-flow) devices assembled from commercially 

available tubing and glass capillaries, to generate aqueous droplets within an oily 

continuous phase. By using epoxy resins to seal the open parts, co-flow devices can be 

made very easily. The schematic for the co-flow device and a photograph of an actual 

device are shown in Figure 2.4. Here, we insert a glass capillary into Tygon tubing. The 

Tygon tubing is used for the continuous phase (oil) whereas the dispersed phase (aqueous) 

is injected into the glass capillary. For water-in-oil droplet formation, the device is used as-

is due to the hydrophobic nature of the Tygon tubing. In the case of oil-in-water droplets 

(not done in this dissertation), a glass capillary must be threaded over the dispersed phase 

capillary to prevent aggregation of oil droplets at the outer collector.  
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Figure 2.4: Schematic illustration of a co-flow device used for droplet generation (left), 
and an image of the actual device made with Tygon tubing and glass capillaries. 

 
 
 
2.3 Anisotropic Particles and their Microfluidic Synthesis 
 

As mentioned in the Introduction, anisotropic particles are those with different 

properties (physical or chemical) along different directions. Several microfluidic and 

lithographic approaches have been used to synthesize such particles.14,17,19,31 The simplest 

kind are frequently referred to as Janus particles, i.e., a spherical particle that has two 

hemispheres of different materials or properties. The term Janus was first coined by 

Casagrande and used to describe a spherical glass capsule with a hydrophilic hemisphere 

and a hydrophobic hemisphere.32 In addition to spheres, Janus particles can also have other 

shapes, as shown in Figure 2.5a and 2.5b. For example, the barcode particles in Figure 2.5a 

have a pill-like shape,6 with one half having a particular sequence of dots, i.e., a bar code. 

Anisotropy can also be imparted to the interior of a particle, e.g., due to 

compartmentalization, as shown in Figure 2.5c.33,34 

 

We now discuss some of the microfluidic techniques that have been used to make 

anisotropic (Janus or other) particles. These are classified into three categories in Figure 

Continuous 
Phase Qc

Tygon tubing (W/O)
Glass capillary (O/W)

Dispersed 
Phase Qd

Dispersed 
Phase Qd

Continuous 
Phase Qc Glass capillary

Tygon tubing
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2.5, including: (a) Flow lithography; (b) Laminar fluidics; and (c) Double and multiphase 

flows. Each of these is described in further detail below.   

 

 
Figure 2.5. Microfluidic techniques for making anisotropic particles. (a) Flow lithography, 
either continuous35 or stop flow lithography, which is a process where UV-polymerizable 
monomers with photoinitiator flow through a device. A mask with the desired particle 
shape cut out is placed over the UV source on the microscope. Particles are formed through 
UV crosslinking and collected downstream. (b) Laminar fluidics refers to the laminar flow 
with minimum mixing between two streams of miscible fluids. This has been exploited to 
create Janus and tertiary particles and dumbbell shaped particles20 (c) microfluidics is the 
only approach where double and multi emulsions can be created with precision.36 With this 
approach, oil (o) and water (w) fluids can be combined to create o/w/o or w/o/w droplets 
with defined internal compartments. Double emulsions have also been used to make 
polymerosomes37 and giant vesicles.33  
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Microfluidics coupled with lithography, in cases such as stop-flow and continuous-

flow lithography, produces particles that have shapes according to the mask covering the 

UV lamp (Figure 2.5A).35  Monomer solutions with initiator are flowed through a PDMS 

microfluidic device. PDMS is oxygen permeable, which thereby creates a boundary layer 

at the wall edge resulting in oxidation that prevents UV cross-linking at the bottom wall. 

This prevents the cross-linked shapes from being immobilized in the channel. Laminar 

flow behavior can further enhance the functionality of this technique, where different 

monomer streams that flow in parallel can be crosslinked. Such techniques have been used 

to create anisotropic “barcode” particles for multiplex protein detection,6 where one region 

of the barcode contains antigens for antibody attachment, and the other contains a unique 

shape based barcode identifier specific to the antigen.  

 

Figure 2.5B shows the typical way to take advantage of the laminar flow behavior 

in a microfluidic device to make anisotropic particles. Essentially, two or more streams of 

monomers can be injected in parallel with minimal convective mixing at the interface. The 

combined stream can then be emulsified into droplets where the different monomers 

maintain their discrete location even in the droplet. The droplets can then be crosslinked 

into particles. Microfluidics also makes compartmentalization of internal volumes possible 

(Figure 2.5C). Double and multiple emulsions are examples of unique morphologies that 

can be easily achieved by microfluidics, but not in bulk methods.  Applications for double 

emulsions consist of evaporating the middle organic layer to form giant unilamelar 

vesicles33 or dewetting the two phases to form polymersomes.37 One disadvantage with 
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current methods to form multi-compartment structures is that they all involve two 

immiscible liquid phases, i.e., oil and water.  
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2.4. Micromotors 
 

The first example of a micromotor was a PDMS plate with a platinum (Pt) rod 

inserted on one side; this was shown to undergo autonomous motion (self-propulsion) in a 

solution of hydrogen peroxide (H2O2).38 This study has spurred a field of research into nano 

and microscale structures capable of self-propulsion. These structures are termed 

“microrockets”,5,39 “micromotors”,8,10,11,40-42 “microswimmers”,43 or “microengines”.13 

With the variety of names comes an even greater variety of approaches in fabrication. 

Current designs include bimetallic spheres,11,44 bimetallic rods,43,45 tubular structures,13,39 

polymeric capsules,4,5,46 and other complex shapes.46,47 All these designs use Pt or another 

inert metal as a catalyst, while the most common chemical fuel is H2O2. When catalyzed 

by Pt, H2O2 decomposes into water and oxygen gas by the reaction in eq 2.1.  

 2H2O2 Pt→  2H2O + O2  ............................................... (2.1) 

The oxygen is released in the form of bubbles, which power the motion of the micromotor 

by an action-reaction mechanism. 

 

Several groups have focused on advancing micromotor technology.16-19,53-57 The 

current fuel source, i.e., H2O2 is toxic to biological systems. If an alternative fuel source 

can be found, micromotors could be used for biological applications, such as those 

envisioned in the movie Fantastic Voyage, where a miniaturized spaceship swims through 

a patient’s veins and delivers medicine to the intended site. Micromotors have been shown 

to be able to identify a target, pick it up, transport it through a body of liquid, and then drop 

the target off at a designated location. Micromotors can also isolate circulating tumor cells 

from biological fluids,48 cleanup an oil spill from an aqueous solution,49,50 or move cargo 
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to form superstructures.9 Recently, polymeric micromotors have been reported that are also 

capable of releasing drug in a responsive manner.4,5  

 
 
Figure 2.6: Summary of materials and methods used to create different micromotors. 
Citations from top: Au-Pt-Ni nanorods;45,51 templated micromtor;41 polymer based;4,5 
rolled-up;9 bimetallic spheres;44 dimers.8 
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Selecting the method and the material for micromotor synthesis is especially 

important. A simple synthesis method allows researchers from other disciplines to tackle 

the problems of finding an alternative fuel or discovering new applications. Current 

methods require either photolithography or electrochemistry in order to deposit the Pt or 

other metal on a substrate. A summary of the popular approaches to synthesis is shown in 

Figure 2.6. Most of these approach require specialized equipment not readily available to 

traditional chemistry and polymer based facilities. Thus, a flexible, simple, and inexpensive 

scheme for making micromotors would be beneficial to researchers.  

 

2.5. Biopolymers Used for Making Capsules 
 

 

Figure 2.7: Structure of chitosan (left) and a schematic of chitosan being crosslinked by 
dialdehydes such as glutaraldehyde.52 
 

 

Biopolymers such as alginate and chitosan are frequently explored as vehicles for 

capsule formation and encapsulation. Chitosan is a polysaccharide with amine groups 

(structure in Figure 2.7). It is soluble at pH below 5.5, and has a net positive charge due to 

the protonated free amine group. The free amine group can easily be accessed and 
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chemically crosslinked with dialdehydes, such as glutaraldehyde (GA) (Figure 2.7).52 This 

allows a droplet containing chitosan to be transformed into a capsule or bead when 

contacted with a solution of GA. Note that GA is soluble in both aqueous as well as 

nonpolar media. Chitosan can also form capsules through electrostatic interactions with 

negatively charged surfactants and polymers, such as alginate. Sodium alginate is a linear 

unbranched polymer made up of blocks of 1,4-linked β-D mannuronic (M) and α-L 

guluronic (G) residues (Figure 2.8a). It is an anionic biopolymer due to its carboxylate 

groups. The G-blocks can interact with positively charged multivalent cations (e.g. Ca2+, 

Sr2+, or Cu2+). Specifically, adjacent linear chains can be cross-linked through formation 

of “egg-box” junctions with these cations, as shown in Figure 2.8. Thus, a droplet 

containing sodium alginate can be crosslinked either by contact with positively charged 

chitosan or by contact with cations like Ca2+.   

 

 

Figure 2.8. (a) structure of alginate with (1-4)-linked β-D-mannuronate (M) and its C-5 
epimer α-L-guluronate (G) residues. (b) Schematic demonstrating gelation of alginate upon 
addition of calcium ions. The zones where crosslinking occurs are called “egg-box” 
junctions.53 
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2.6. Particle Tracking from Images  
 

Particle tracking from time-lapse microscopy images is of key importance for 

quantitative analysis of dynamic processes. Several software packages exist for tracking of 

single or multiple particles.54 In general, a video of the moving particle(s) is converted to 

a series of stacked images. From the stacked images, the user specifies the first point (p1) 

and follows the movement of the particle through a series of images. At the conclusion of 

the tracking session, a trajectory map is presented of the particular particle in 2-dimensional 

space. A few nuances of particle tracking are elaborated here.  

 

Time lapse between frames is important in determining speed related parameters. 

It is important to note the output of the camera in terms of frames per second (fps). Also, 

when saving files, no compression should be used to distort the metadata. Between point 1 

(p1) and point 2 (p2), for a 10 fps video, only 0.1 s should have transpired. Video pixels are 

also important in determining distance travelled, as image data will track in pixels and a 

conversion will need to be made between pixels and length. It is helpful to keep all settings 

the same when recording experiments. 

 

For distance calculations, one should note the differences between net distance and 

net displacement. The former is a scalar where the magnitude of each step is summed up. 

The latter is a vector based on the initial vs. final position. The instantaneous speed of the 

particle is given by the segment distance divided by the time lapse between segments.  
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2.7. Bacterial Quorum Sensing 
 

Quorum sensing is the phenomenon by which unicellular organisms like bacteria 

coordinate their activities (i.e., act like multicellular organisms) by communicating with 

each other using small molecules. This can affect bacterial motility, biofilm formation, 

toxin production and virulence. Many of these multicellular phenotype responses are 

undesirable to the host environment, especially biofilm formation which is linked to 

increased antibiotic resistance.55 Typically, Gram-negative and Gram-positive bacteria 

communicate via different classes of signaling molecules. However, it was discovered that 

both types of bacteria also use another molecule called autoinducer-2 (AI-2) for signaling, 

and hence AI-2 has been dubbed as the universal signaling molecule.55,56 

 

 

 
Figure 2.9: Synthesis, secretion, uptake and transduction of AI-2 in E.coli Producer 
and Reporter strains. In AI-2 Producer: AI-2 precursor SAH is overproduced. Enzymes 
Pfs and LuxS convert SAH to SRH and DPD, which cyclizes to form AI-2. Also, the Lsr 
transporter is genetically knocked down. In AI-2 Reporter: AI-2 from the environment is 
taken up via the Lsr transporter. The imported AI-2 begins a cascade of reactions which 
include expression of a gene that was inserted into the bacteria, Venus. Venus is a 
fluorescent protein that is expressed on the surface of the E.coli.  
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Different groups57,58 have rewired bacteria’s quorum sensing circuits to produce 

genetically engineered strains that are capable of producing AI-2 or sensing AI-2. For our 

studies in Chapter 5, we chose a pair of E.coli strains, one of which is capable of producing 

AI-2 and the other of reporting AI-2 through fluorescence. In the AI-2 producer strain, the 

AI-2 precursor (S-adenosyl homocysteine) (SAH) is overproduced. Enzymes Pfs and LuxS 

convert SAH to S-ribosylhomocysteine (SRH) and 4,5-dihydroxy-2,3-pentanedione (DPD), 

which cyclizes to form AI-2. The AI-2 importer of the producer is removed to avoid self-

uptake of the exported AI-2 molecules. In the AI-2 reporter strain, AI-2 from the 

environment is taken up via the AI-2 importer. The imported AI-2 begins a cascade of 

reactions which include expression of a gene called Venus that was inserted into the 

bacteria. Venus is a fluorescent protein that is co-expressed with AIDA-1, which serves as 

the surface anchor protein; thus, Venus is expressed on the surface of the reporter bacteria.  
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Chapter 3 
 
Microfluidic Synthesis of Dimer Microcapsules  
 
 
The results presented in this chapter have been published in the following journal article: 

A.X. Lu, KQ. Jiang, D.L. DeVoe and S. R. Raghavan, “Microfluidic Assembly of Janus-

Like Dimer Capsules.” Langmuir, 29 (44), 13624-13629 (2013)  

 
3.1. Introduction 

The promise of microfluidic and “lab-on-a-chip” systems is predicated on their 

ability to miniaturize operations that occur at the macroscale. In particular, a microfluidic 

chip could be envisioned as a “microfactory”59 that takes in soluble chemical precursors, 

builds solid “parts” out of them, and further assembles these parts into a complete object 

with a specified function. Ideally, such a “microfactory” would operate in a continuous 

mode without requiring manual intervention. The throughput of completed objects would 

then be controlled simply by the flow rates of fluids moving through the microfluidic 

channels. This throughput could then be enhanced by parallel operation of numerous chips. 

We explored the above concept in a previous study where we used a microfluidic chip to 

create flexible magnetic chains of microcapsules.60 However, the process used to make the 

chains required manual intervention to block and unblock the end of a channel at precise 

junctures. In the present study, we have developed a scheme that enables continuous 

synthesis of “dimer capsules”, which are two individual biopolymer capsules fused into 

one stable structure (see Figure 3.1). Our method leverages both the fluid dynamics at the 

microscale (to induce droplet coalescence within a microchannel) as well as the chemistry 

of biopolymer crosslinking (to fix the dimer structure).  
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The dimer structures we create are reminiscent of Janus microcapsules, which have 

attracted much attention recently.14,17,20,61 Janus capsules are those having one half with a 

certain physical or chemical property while the other half has a different property. They 

derive their name from the Roman god of gates and doors, Janus, who is depicted with two 

fused heads, each facing in the opposite direction. Most Janus capsules synthesized thus 

far are spherical in nature and in turn have two distinct hemispherical halves.17,18 Various 

microfluidic-assisted synthesis methods have been explored for the synthesis of spherical 

Janus capsules.20,21,23,34,36,62-64 For example, the laminar co-flow of two adjacent fluid streams 

in a microchannel can be broken up into discrete droplets by an immiscible phase, and the 

resulting droplets can be rapidly photopolymerized in situ to give Janus capsules.20,62-64 In 

addition to single capsules with distinct halves, others have also used bulk routes to create 

dimers of distinct solid colloids15,19,65 (micro- or nanoparticles) and shown that such dimers 

can have a Janus-like morphology. The widespread interest in Janus capsules has arisen 

due to their multifunctional nature:1 potential applications for these capsules have been 

demonstrated or envisioned in a variety of areas, including targeted drug delivery66, 

emulsion stabilization67, etc.   

        

Our approach to synthesize Janus-like dimers is quite different from those in 

previous studies. We use a microfluidic chip to generate aqueous droplets bearing the 

biopolymer chitosan. Two droplet generators are employed to produce alternating droplets 

of distinct composition (see Figure 3.1). These droplets are then induced to meet and 

coalesce downstream by means of an expansion region in the channel. At the same time, 
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the droplets are also contacted by a continuous flow of glutaraldehyde (GA), which is a 

known crosslinker for chitosan. The GA converts the droplets into solid capsules and also 

arrests their coalescence; in effect, the capsules are connected by a neck region to form a 

stable dimer with each half of the dimer retaining its distinct identity. The entire process 

of dimer formation is completed within 30 s, with the final structures collected 

continuously at the channel outlet. Overall our study illustrates how a “microfactory” can 

be engineered to accomplish a series of steps: droplet formation, fluidic assembly, and 

chemical linkage, all of which take place on-chip without any manual interruption or 

manipulation. Two external “handles” are available to tune the morphology of the dimers: 

the flow rates of each stream, and the channel geometry, specifically the expansion ratio 

between the expanded and main channels. Stable dimers are obtained only for a subset of 

these variables, and we will present these results in terms of a “phase diagram” for dimer 

formation. 

 

3.2. Experimental Section 
 
Materials and Chemicals. Chitosan (medium molecular weight, 190–310K; degree of 

deacetylation ~ 80%), the nonionic detergent, sorbitan-monooleate (Span 80), hexadecane, 

and glutaraldehyde solution (grade  I,  70% in water), were obtained from Sigma-Aldrich. 

Magnetic γ-Fe2O3 nanoparticles (average surface area ≈ 42 m2 g−1 ) were purchased from 

Alfa Aesar. All chemicals were used as received.  

 

Solution Preparation. 2 wt% chitosan was dissolved in a 0.2 M acetic acid solution, from 

here on referred to as dispersed phase. For the preparation of magnetic dimers, 0.5 wt% of 
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γ-Fe2O3 nanoparticles were added into the 2 wt % chitosan solution. The “continuous” 

phase was prepared by dissolving 2 wt% of Span 80 in hexadecane. Finally, the 

“incubation” phase was a solution in hexadecane containing 0.2 wt% of Span 80 and 4 wt% 

of glutaraldehyde. The above mixture was vortexed and sonicated for 30 min before use. 

 

Image Analysis. Bright-light field images were taken by a Nikon Eclipse LV-100 

Profilometer Microscope. Capsule sizes (length and radius) were determined using the 

Nikon Microscope software. Optical monitoring of dimer formation process was 

performed using an inverted fluorescent microscope (Nikon Eclipse TE2000s).  

 

Chip Fabrication. Microfluidic chips were fabricated from poly(methyl methacrylate) 

(PMMA) as described previously. PMMA sheets (FF grade; 4" x 4" x 1/16") were 

purchased from Piedmont Plastics. Microchannels were fabricated by direct mechanical 

milling onto a PMMA substrate using a 125-µm-diameter end mill (Performance Micro 

Tool, TR-2-0050-S) on a Roland MDX-650 CNC milling machine with a depth of 90 µm. 

Holes for the needle interface and access reservoir were drilled into the substrate plate 

using a 650 µm drill bit and a 2 mm diameter drill bit, respectively. The machined PMMA 

plate was then sequentially cleaned by deionized (DI) water and isopropyl alcohol, then 

sonicated for at least 1 h to remove milling debris, followed by a 24 h conservation in a 

40 °C vacuum oven to remove the residual solvents. After the vacuum drying, both the 

processed PMMA and a raw PMMA chip were oxidized by an 8 min exposure to ultraviolet 

(UV) light in the presence of ozone. The oxidized PMMA wafers were immediately mated 

together and thermo-bonded at 85°C using a Carver AutoFour hot press under a pressure 
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of 3.45 MPa for 15 min. The world-to-chip interfaces were established by inserting 

hypodermic stainless steel needles into the 650 µm diameter mating holes. Precision 

syringe pumps (PHD 2000, Harvard Apparatus) were used to control the infusion of fluids 

into the chip.  

    

 

Figure 3.1. Schematic of the microfluidic setup for generating Janus-like dimer capsules. 
In the cross-channel geometry, two aqueous dispersed phases are contacted by an oily 
continuous phase. The dispersed phases are aqueous solutions of the biopolymer chitosan 
(with appropriate payloads). At the T-junction, alternating droplets of the dispersed phases 
are formed. Dispersed phase 1 flows at a higher flow rate Q1 and thus generates a larger 
droplet compared to dispersed phase 2 (flow rate Q2). As the droplets move down the 
channel, they are met by a flow of the incubation phase, which contains the crosslinker GA. 
Subsequently, the droplets enter an expanded channel region, with the expansion inducing 
the droplets to meet. The droplets are partially crosslinked by GA when they begin to 
coalesce and the result is that they merge to form a crosslinked dimer. Photographs of the 
droplets merging into a dimer are shown at the top of the figure. Note that the two lobes of 
the dimer retain their distinct identity (no mixing of their internal contents) and are 
connected by a neck region. Ultimately, the dimers are collected in the reservoir at the end 
of the channel. 
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Chip design for dimer formation is described in Figure 3.1 and the accompanying 

text. In addition to the elements shown in Figure 3.1, one optional element was used in 

some cases to further facilitate droplet formation. This was to introduce a geometric 

constriction68 in the shape of a toothcomb structure to the channel at the end of the 

expanded region and prior to collection in the reservoir. The constriction segment ensured 

that any capsule pairs that did not merge in the straight channel would merge in this region 

before leaving the outlet. Note that the toothcomb was not an essential element in the 

design: dimers could be formed without the toothcomb. However, the constriction is a 

helpful element for coalescence, as noted by other researchers.68-70 

 

3.3. Results and Discussion 

The microfluidic chip used in our study has the design shown in Figure 3.1. 

Droplets are generated by contacting an aqueous dispersed phase and an oily continuous 

phase at a T-junction. Two dispersed phases are used in a cross geometry to produce 

alternating droplets with different composition and sizes. Both dispersed phases contain 2 

wt% of the aminopolysaccharide, chitosan dissolved in 0.2 M acetic acid. Different 

materials such as magnetic or metallic nanoparticles or fluorescent dyes can be included in 

the dispersed phases to provide distinct functional properties to each of the droplets. By 

controlling the flow rates of the dispersed phases, we can dictate the sizes of the droplets.27-

29 For our purpose, it is essential that the droplets sizes be different, and more specifically, 

we ensure that within each pair of droplets, the leading droplet is larger than the trailing 

one. The larger droplet radius is designated as R1 and the flow rate of its dispersed phase 

is Q1; similarly the smaller droplet corresponds to a radius R2 and a flow rate Q2. 
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To convert the chitosan-bearing droplets into stable capsules, a stream of 4 wt% 

glutaraldehyde (GA) dissolved in oil is introduced downstream. GA is a bifunctional 

molecule that crosslinks the free amines on chitosan. Given enough contact time, the 

crosslinking by GA will result in a shell around each droplet. However, in the present case, 

we induce the droplets to pair up (partially coalesce) before they are fully crosslinked. This 

is done by introducing an expansion zone in the downstream portion of the channel. As 

pairs of droplets travel down the expanded channel, they both slow down, but the leading 

droplet is slowed more than the trailing one. As a result, the droplets (which are semi-

crosslinked at this stage) meet and partially coalesce within this zone. Simultaneously, the 

GA continues to crosslink the chitosan and thereby the overall merged structure is fixed 

into a doublet or dimer. Note that there is negligible mixing between the two halves (lobes) 

of the dimer because the individual droplets are rapidly “frozen” (by GA crosslinking) 

midway through the coalescence event. Thus, dimers can be created with tunable lobes 

containing distinct functional materials. The dimers are then collected in the reservoir. The 

total on-chip residence time for the two droplets from their generation to collection as a 

dimer in the reservoir is approximately 30 s. With typical flow rates (0.15 to 0.35 µL/min 

for the dispersed phases and 1.5 to 2 µL/min for the continuous phase), we generate on 

average 1 dimer every 1.4 s. From the reservoir, the dimers are pipetted into a collection 

vial containing 2 wt% Span 80 and 2 wt% GA, where they are further crosslinked for 30 

min. The dimers are then sequentially washed in hexadecane and ethanol, and then 

redispersed in water, where they remain stable and free of aggregation. 
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We now discuss the conditions for stable dimer formation. Note that the two 

droplets initially have elongated plug shapes because their volume is larger than can be 

accommodated in a sphere that spans the initial width of the channel. However, once the 

droplets reach the wider expansion zone, they relax into more spherical shapes, which is 

the one that minimizes surface energy. In the absence of GA crosslinking, the two droplets 

will meet and then fuse into a larger structure. One factor in stable dimer formation is the 

concentration of GA because it controls the kinetics of crosslinking. The crosslinking has 

to be rapid enough to fix the dimer shape before the droplets can fuse. This is why it is 

necessary to use 4 wt% GA (a relatively high concentration). We originally tested 2 wt% 

GA, but in this case the GA-induced crosslinking was too slow to prevent partial droplet 

fusion (see Figure 3.4 below).  

 

Two other key variables are involved in dimer formation and these are: (a) the ratio 

of the initial droplet sizes (R1/R2) measured in the expanded channels and (b) the extent of 

channel expansion. Note that R1 corresponds to the larger droplet and so R1/R2 > 1 in all 

our experiments. The channel expands from an initial width W1 to a higher width W2 and 

we define a channel expansion parameter as CEP = (W2 – W1)/W1. Figure 3.2 is a plot of 

CEP vs. R1/R2 and it shows the conditions that correspond to stable dimer formation 

(indicated by purple circles, collectively encompassed by the dashed oval) as well as the 

conditions that do not lead to stable dimers (indicated by red diamonds and blue triangles). 

Figure 3.2 is thus a “phase diagram” for dimer formation. We consider the three cases 

below.  
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Figure 3.2. “Phase diagram” for dimer formation. This is a plot of the channel expansion 
parameter (CEP) as a function of the radius ratio R1/R2 between the two droplets that form 
the dimer. The plot shows that stable dimers are formed only for a subset of the conditions 
studied, which are depicted by green circles. Under these conditions, the droplets meet in 
the expansion channel and bind to form stable dimers. In contrast, for the conditions 
marked by red diamonds (typically at low R1/R2), the droplets are too similar in size and 
do not meet in the expansion channel. On the other hand, for the conditions marked by blue 
triangles (typically at high R1/R2), the droplets meet in the expansion channel but do not 
bind.   
 

First, the red diamonds in Figure 3.2 correspond to the case where R1/R2 is not much 

greater than 1 and the CEP is low. In this case, successive droplets simply do not meet in 

the expansion zone and therefore no dimer is formed. To understand this, we elaborate on 

the reason why channel expansion forces the droplets to meet. Before entering the 
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expansion zone, the plug-like droplets fill up the entire channel and both droplets travel at 

the same velocity (if there was no expansion, the droplets would never meet). As the 

droplets move from the normal to the expanded channel, they slow down by the law of 

continuity. Moreover, in the expansion zone, the inset in Figure 3.1 shows that the larger 

leading droplet (radius R1) spans the channel whereas the trailing droplet (radius R2) travels 

along the center line but occupies only a portion of the channel. From Poiseuille flow for 

laminar flow71 between parallel planes, it is known that the fluid velocity assumes a 

parabolic profile, with a maximum vmax at the center line, and zero velocity (no-slip 

condition) at the channel walls. The mean velocity for this flow profile is 2/3 vmax. Thus, a 

droplet that spans the channel will have a velocity ≈ 2/3 vmax, whereas a very small droplet 

that is close to the center line will have a higher velocity that is ≈ vmax. More generally, the 

smaller trailing droplet will have a higher velocity than the larger one ahead of it, and this 

allows the two to catch up. However, if R1 and R2 are very close, the velocity difference is 

not enough to ensure that the droplets will be able to catch up within the length of the 

expanded channel. This explains why no dimers are formed for the conditions marked by 

the yellow diamonds.     

 

Next, we consider the conditions marked by the blue triangles in Figure 3.2, which 

correspond to high R1/R2 at each CEP. In these cases, the leading droplet (R1) is much 

larger than the trailing one (R2). We observe that the droplets meet in the expansion zone, 

but do not merge. The reasons for this are not clear. One possible factor is that the smaller 

droplet experiences hydrodynamic lift forces due to inertia, which introduce a component 

to the droplet velocity that is perpendicular to the primary streamlines. If so, this droplet 
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will meet its counterpart at an angle and not along the center line of the channel. These 

conditions may not be conducive to merging of droplets. (An equivalent viewpoint is to 

assume that the lift forces serve to undo the droplet-droplet bonds.) All in all, we observe 

stable dimers for moderate values of R1/R2 (not too low or high) at each CEP and these 

conditions are marked by the purple circles. As shown by the inset in Figure 3.1, a stable 

dimer typically has a neck region between the two adjacent lobes.  

 

Other factors to consider in dimer formation are the lengths of the microfluidic 

channel segments. In our design (Figure 3.1), the expansion channel is placed close to the 

GA inlet stream. This is done to ensure that the droplets do not get substantially crosslinked 

by GA before they meet. That is, dimerization can only occur for droplets that have not 

been fully converted into capsules. In addition, the expansion channel must be of sufficient 

length to provide enough time for the dimer to fully form. After the droplets first meet, the 

film between the droplets has to drain completely for the droplets to merge and crosslink 

into a dimer. For this, our experiments show that the droplet pair has to remain in contact 

for about 13 s in the expansion channel before merging is completed. Note that this time is 

rather large compared to the time required for film drainage in previous droplet coalescence 

studies, which have been reported to be on the order of 10-2 s.72-74 Evidently, the present 

case is more complex as it involves a combination of droplet merging as well as chemical 

crosslinking of each droplet and also of the neck region between the droplets. The 

crosslinking reaction reduces the mobility of the fluid between the two droplets and thus 

the film drainage rate,28,29 which is why the merging process takes a longer time.  
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Figure 3.3. Dimers of different morphologies by adjusting the channel geometry and 
dispersed flow rates. Three different sizes of the expansion channel: (a) 165 µm, (b) 185 µm, 
and (c) 200 µm were tested, with the main channel maintained at 125 µm. In (a) the dimers 
assume a “bowling-pin” morphology, with one lobe elongated and the other spherical. In (c) 
the dimers take on a “snowman” morphology with two nearly-spherical lobes. In (b) the 
morphology is intermediate between the other two. Scale bar represents 200 µm. 
 

Figure 3.3 shows the morphology of dimers corresponding to different sizes of the 

expansion channel (with the main channel maintained at 125 µm). For an expansion 

channel size of 165 µm (the smallest tested), we found that among each pair of droplets, 

the larger leading one remains plug-shaped in the expansion channel while the smaller 

trailing one relaxes to a spherical shape. Dimers formed from such pairs of droplets have 

an elongated shape reminiscent of a “bowling pin” (Figure 3.3a). Note that the bowling 

pins have a short spherical lobe attached to a longer plug-shaped lobe. If the expansion 

channel is made wider (185 or 200 µm), then both the leading and trailing droplets relax to 

spherical shapes in the expansion channel. The resulting dimers have a rounder 
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morphology and the shape in Figure 3.3c is reminiscent of a “snowman”. In this case, the 

two lobes of the dimers have nearly equal lengths.   

 

 

 
Figure 3.4. Magnetic dimers with MNPs in one lobe. The lobe with MNPs shows a dark 
color relative to the other lobe. These Janus-like dimers were created by using two dispersed 
phaes, one of chitosan+MNPs and the other of chitosan alone. The dimers in (a) were formed 
with 4% GA as the incubation phase: in this case, the contents of the lobes are well-separated. 
On the other hand, the dimers in (b) were formed with 2% GA as the incubation phase. At 
this lower concentration of the GA crosslinker, the contents of the two lobes undergo partial 
mixing and there is no neck region separating the lobes. Scale bar represents 200 µm. 
 

In addition to creating dimers of various morphologies, we are interested in 

engineering the functional properties of these dimers. As an initial demonstration, we 

incorporate magnetic nanoparticles (MNPs) into one lobe of our dimer to create Janus-like 

dimers with an overall magnetic moment. Specifically, we combined 0.5 wt% of the MNPs 

with the 2 wt% chitosan solution and used this mixture as the dispersed phase for one inlet, 

whereas the other inlet was just the 2 wt% chitosan solution. Optical micrographs of the 

resulting snowman-shaped magnetic dimers are shown in Figure 3.4a. The MNP-bearing 

lobe has a dark brown color whereas the other lobe is colorless. Note the clear separation 

between the two lobes, which shows that the inner contents of the two lobes do not mix 

Incubation Phase: 4% GA

(a) (b)

Incubation Phase: 2% GA
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during dimer formation. Such dimers were produced using 4 wt% GA as the crosslinker. 

If the GA concentration was reduced to 2 wt%, we obtained the dimers shown in Figure 

3.4b. As noted earlier, at this lower GA, crosslinking is not rapid enough to prevent the 

droplets from partial fusion. Thus, the MNP-bearing droplet and the bare droplet partially 

fuse, as seen from the dark brown color pervading through most of the pill-shaped dimers 

in Figure 3.4b. Also, these dimers have no intervening “neck” region between their 

respective lobes.   

 

The magnetic response of the anisotropic (Janus-like) dimers in Figure 3.4a was 

tested by placing a Petri dish containing the dimers in water on a standard magnetic stir 

plate. The rotating magnetic field produced by the stir plate caused the dimers to rotate, 

much like a microscale magnetic stir bar. This occurs because the dimer acquires a 

magnetic moment due to the MNPs being localized in one lobe. Note also that the axis of 

rotation is located within the MNP-bearing lobe, i.e., it is eccentric with respect to the 

whole particle. The rotation of the dimer induces significant convective mixing in the 

surrounding fluid close to the dimer. This suggests the possibility of using magnetic dimers 

for the micro-mixing of fluids within microscale and lab-on-a-chip devices. 
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Figure 3.5. Dimer capsules as micromotors. These have PtNPs in one lobe. (a) Schematic 
depicting the mechanism for self-propulsion in a solution of H2O2. (b) 2-D plot of capsule 
trajectories for three cases. The unimer with PtNPs shows negligible net displacement, 
whereas the dimers move significantly. (c), (d), (e) Images of dimer capsules moving in H2O2 
solution. Note that the direction of motion is opposite to that of bubble ejection. In (d), a large 
bubble accumulates on the surface of the dimer, and in (e), this bubble bursts, which propels 
the capsule at 20 times its average speed.  
 
 
 

In a second application of the dimers, we loaded one lobe of the dimer with 

platinum nanoparticles (PtNPs), which were synthesized using the Turkevich method. 

Platinum is known to catalyze the decomposition of hydrogen peroxide (H2O2) into oxygen 

(see eq 2.1 in Section 2.4). The oyxgen bubbles can cause autonomous motion (self-

propulsion) of microstructures. To test this possibility, we placed our dimers (with one lobe 
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containing PtNPs) in a solution of H2O2. As shown by the images in Figure 3.5, the dimer 

undergoes self-propelled motion. The schematic in Figure 3.5a describes the mechanism: 

the H2O2 diffuses into the PtNP-lobe, where the reaction occurs. The O2 is ejected out of 

this lobe in the form of bubbles. The dimer then moves in the opposite direction, showing 

that this is an action-reaction mechanism. 

 

Figure 3.5b compares the trajectories for two cases on a 2-D plot: (a) 2 anisotropic 

dimer capsules with PtNPs in one lobe; and (b) an isotropic monomer capsule with PtNPs. 

The net distance travelled by the latter is negligible; instead, this capsule mostly rotates 

about its own axis. This shows that the anisotropy due to the dimer structure is essential 

for directionality and motion. From the trajectory, the average speed for the 2 dimer 

capsules in Figure 3.5b is 150 µm/s over about 50 s of observation time. However, there 

are periods where a large bubble attaches to the surface of the dimer; this then accumulates 

further oxygen and grow to a size as large as the dimer itself (Figure 3.5d). Ultimately, this 

bubble bursts (Figure 3.5e), causing a sudden increase in the speed of propulsion to 2400 

µm/s, which is almost 20 times the average speed.  

 
 
3.4. Conclusions 
 

We have demonstrated the continuous micromanufacturing of Janus-like dimer 

capsules on a microfluidic chip. Our method involves generating alternating droplets of 

distinct composition (both based on the biopolymer chitosan) and inducing these 

droplets to meet downstream by means of an expansion region in the channel. At the 

same time, a flow of crosslinker (GA) converts the droplet pair into a stable dimer while 
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also arresting their coalescence. The overall process starting from soluble precursors 

and culminating in stable dimers takes about 30 s and occurs continuously on-chip 

without external manual control. Each lobe of the dimer retains its distinct identity 

giving the overall structure a Janus-like architecture. As an initial example, we create 

dimers that have a net magnetic moment by including MNPs in one lobe: these 

structures undergo rotation when placed on a magnetic stir plate. In a second example, 

we encapsulated PtNPs in one lobe. The PtNPs react with hydrogen peroxide to form 

oxygen bubbles which can propel the dimer in a directional trajectory. We refer to these 

as self-propelled micromotors. 

 

Our approach demonstrates that dimer structures can be achieved in a 

microfluidic device without templates and also without resorting to photo-

polymerization. The ability to easily incorporate different functional nanoparticles into 

each lobe of the dimer is an attractive feature of our approach. Overall, the dimers 

produced in this study could be explored for many applications such as drug delivery, 

microrobotics, micromixers and sensors.  
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Chapter 4 

Patchy Capsules as Micromotors 

   

4.1. Introduction 
 
Imagine a capsule that can maneuver through a body of contaminated liquid,4,5 pick 

out targets of interest and transport them to a different destination,44,75 followed by clean-

up of contaminants in the liquid.49 These are all envisioned applications for capsules that 

are capable of self-propelled motion. These self-propelled capsules, or micromotors, use 

only the chemical fuel in the environment to drive motion. Ideally, such a system will move 

without external manipulation, and will continue as long as there is fuel in the surroundings. 

The speed of the micromotor would then be controlled by changes in fuel concentration. 

The trajectory or the direction can be guided by an external force, usually by a magnetic 

field.9,10,76 Various types of micromotors have emerged in the past decade; however, these 

are typically synthesized through complex lithographic or electrochemical methods. 

Moreover, typical micromotors are hard, non-degradable structures. Recently, some 

researchers have attempted to design micromotors using soft materials such as synthetic 

polymers.4,5,46 Here, we report a micromotor that is built using a biocompatible 

polysaccharide, which makes it a soft and biodegradable structure. This micromotor is 

capable of all the functionalities of earlier micromotors, such as bubble propulsion, 

magnetically guided movement, and cargo pick-up and drop-off.  

 

The micromotors we create are spherical capsules with a “patch” of nanoparticles 

encapsulated at one end of the capsule (see Figure 4.2). The nanoparticles we use have an 
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iron-oxide core and a platinum (Pt) shell (termed FePt NPs) and are synthesized using the 

procedure outlined by Mori et al.77 A solution of the biopolymer, chitosan is combined 

with the NPs and this serves as the disperse phase in a co-flow microfluidic tubing device 

(Figure 2.4), with the disperse phase being an oil (hexadecane). The output of the device 

is an emulsion containing chitosan-FePt NP droplets emulsified in hexadecane. We exploit 

the magnetic character of the capsules (due to the iron-oxide core) to make patchy capsules. 

Specifically, the emulsion is placed on top of a neodymium magnet. The magnetic field 

draws the FePt NPs to the bottom of each droplet. We then use glutaraldehyde (GA), a 

known crosslinker for chitosan, to convert the droplets into capsules. Our approach is 

robust and simple; the resulting micromotors are capable of self-propulsion and also have 

magnetic properties. For self-propulsion, the micromotors are placed in a solution 

hydrogen peroxide (H2O2) (Figure 4.1). The Pt portion of the NPs catalyzes the 

decomposition of H2O2 (see eq 2.1), generating oxygen gas in the form of bubbles. The 

bubbles are ejected from the patchy capsules, and in turn, the capsules move in the opposite 

direction (Figure 4.1). 

 

 

 
Figure 4.1. Self-propulsion of a chitosan capsule bearing a patch of FePt NPs. The Pt 
in the NPs catalyses the conversion of H2O2 into oxygen. The oxygen gas is ejected as 
bubbles, thereby propelling the capsule in the opposite direction. 
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4.2. Experimental Section 
 

Materials and Chemicals. Chitosan (medium molecular weight, 190–310K; degree of 

deacetylation ~ 80%), the nonionic detergent, sorbitan-monooleate (Span 80), hexadecane, 

glutaraldehyde solution (grade  I,  70% in water), dibenzyl ether, iron pentacarbonyl, 

platinum(II) acetylacetonate, and oleylamine were obtained from Sigma-Aldrich. Oleic 

acid was purchased from Alfa Aesar. All chemicals were used as received without further 

purification.  

 

FePt Nanoparticle Preparation. Particles were made as described below.77 1.0 mmol of 

iron pentacarbonyl was mixed with 100 mL of dibenzyl ether in a 500 mL 3 neck flask. 

The solution was then degassed for 1 hour before heating to 260°C under a nitrogen blanket 

with vigorous stirring for 10 minutes. 1.0 mmol of oleic acid, 1.0 mmol of oleylamine, and 

0.5 mmol of platinum acetylacetonate was dissolved in 2 mL of dibenzyl either and then 

injected into the flask. The solution was then heated under reflux at 245°C for 1 hour and 

then left to cool to room temperature. Once cooled, the FePt NPs were centrifuged and 

washed with toluene and hexane, and the resulting NP were stored in hexane solution. 

Nanoparticle sizes were measured by dynamic light scattering on a Photocor-FC instrument. 

  

Solution Preparation. 2 wt% chitosan was dissolved in a 0.2 M acetic acid solution. For 

the preparation of capsules: approximately 10 mL of FePt/hexane solution was vacuum 

dried overnight which yielded 0.003 g of dry FePt NPs. 5 g of 2 wt% chitosan was directly 

added to the dry FePt NP, vortexed and sonicated for 30 min before use. The continuous 

phase was prepared by dissolving 2 wt% of Span 80 in hexadecane. Finally, the incubation 
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phase was a solution in hexadecane containing 2 wt% of Span 80 and 2 wt% of 

glutaraldehyde. This mixture was vortexed and sonicated for 30 min before use. 

 

Microfluidic Tubing Device Fabrication. 0.05 cm inner diameter (I.D.) x 0.08 cm outer 

diameter (O.D.) round glass capillaries (Fiber Optics Center, Inc) was inserted into 100 µm 

I.D. x 360 µm O.D. glass capillaries (Polymicro Technologies) and sealed with epoxy. The 

glued capillary was then threaded into1/32"ID x 1/16"OD PTFE tubing (Cole-Palmer) 

through an extruded hole in the middle of the tubing. The tip of the 0.05 cm I.D. x 0.08 cm 

O.D. capillary is slightly recessed within the PTFE tubing. A 0.004” I.D. PTFE Special 

Sub-Light Wall Tubing is then threaded onto the tip of the 0.05 cm I.D. x 0.08 cm O.D. 

capillary and also encased within the 1/32"ID x 1/16"OD PTFE tubing. Finally, all of the 

openings are sealed with epoxy, with the end of the 100 µm I.D. x 360 µm O.D. round 

glass capillary connected to a syringe filled with the aqueous chitosan FePt solution, and 

the end of the 1/32"ID x 1/16"OD PTFE tubing  connected to the oily hexadecane Span 80 

solution. 

 

Anisotropic Capsule Preparation. The flow rate of the chitosan dispersed phase is 1 

µL/min where as the continuous Span 80-hexandecane phase is 10 µL/min. The droplets 

are generated in a co-flow microfluidic device then collected in a plastic petri dish 

containing 2 wt% Span 80 hexadecane. After collection, the petri dish is carefully placed 

on top of a neodymium magnet for 1 hour until all of the FePt NP are concentrated to a 

point on the bottom of the chitosan droplet. Then, 2 wt% glutaraldehyde in Span 80 

hexadecane solution is carefully added to the petri dish. After approximately 10 min, the 
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anisotropy is fixed and the petri dish can be removed from the magnet and allowed to 

further crosslink overnight. Finally, in order to wash the crosslinked chitosan capsules, they 

are purged with nitrogen gas overnight. They are then washed with decanol and ethanol 

and resuspended in water.  

 

Image Analysis. Bright-field optical images of patchy capsules and movies were taken 

with a Nikon Eclipse LV-100 Profilometer Microscope. Capsule sizes (length and radius) 

were determined using the Nikon Microscope software. Mean speed and distance travelled 

were analysed using ImageJ’s MTrackJ plugin54,78, averaged over at least 10 s of recorded 

video. 

 

 

 
Figure 4.2. Generation of capsules having a patch of FePt NPs. (a) FePt NPs (iron-oxide 
core and a Pt shell) are initially dispersed in a chitosan solution. Because of the iron oxide 
core, the particles are attracted to a magnet. (b) the chitosan solution containing FePt is 
emulsified into an oily phase using a co-flow device built in-house using glass capillaries 
and PTFE tubing. The chitosan droplets are then collected in a container with the same oily 
phase; (c) the droplets are then placed on a neodymium magnet for 1 hour so that all of the 
NPs are pulled to one side of the droplet. Crosslinker (2 wt% glutaraldehyde) is then 
carefully added to the droplet solution. (d) Within 10 min incubation, the droplets are 
already fixed into capsules and can be removed from the solution. Further overnight 
incubation yields densely crosslinked capsules. 
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4.3. Results and Discussion 
 

We first synthesized FePt NPs that have magnetic and catalytic capabilities, as 

described above. This involved the thermal decomposition of iron pentacarbonyl (Fe(CO)5) 

and subsequent reduction of platinum acetylacetonate (Pt(acac)2) in the presence of oleic 

acid and oleylamine.77 In addition to being magnetic and catalytic, the core/shell structure 

provides the benefit of reduced material cost as opposed to using pure Pt nanoparticles. 

The diameter of the NPs was 84 ± 8 nm by DLS.  

 

The synthesis of patchy capsules containing these NPs is shown in Figure 4.2. We 

use a capillary co-flow device to make chitosan droplets bearing FePt NPs. First, 0.01 wt% 

FePt NPs are dispersed in a 2 wt% chitosan solution (Figure 4.2a). This aqueous solution 

serves as the dispersed phase, and it is sent through the inner capillary of the microfluidic 

device. The oil phase is hexadecane containing the nonionic surfactant, Span 80 (2 wt%) 

and it is the outer (continuous) phase injected through the PTFE tubing. Both flow rates 

are controlled by syringe pumps, with typical flow rates of 10 µL/min (inner) and 1 µL/min 

(outer) flow. The droplets generated by the microfluidic device are collected in a plastic 

petri dish, as shown schematically in Figure 4.2b. A photograph of these droplets is shown 

in Figure 4.3a. The petri dish is placed on top of a neodymium magnet (Figure 4.2c). Within 

1 h, all of the FePt NPs are concentrated as a patch at the bottom of each drop (closest to 

the magnet). (photograph in Figure 4.3b). Glutaraldehyde (GA), a common chemical 

crosslinker for chitosan, is then added drop wise to the petri dish to permanently fix the 

magnetically induced anisotropy. After 10 min, the petri dish can be removed from the 

magnet and the droplets are left to crosslink overnight.  
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Figure 4.3. Optical micrographs of (a) emulsion of aqueous chitosan droplets bearing FePt 
NPs; (b) above droplets placed on top of a magnet after 1 h – all the FePt NPs have migrated 
to a point at the bottom of the droplets; (c) chitosan capsules post crosslinking and washing, 
redispersed in water; (d) close up image of a chitosan capsule from (c) showing its patchy 
nature. Scale bars: (a) 500 µm (b) 200 µm, (c) 250 µm, and (d) 50 µm. 
 
 

The patchy capsules are then washed with decanol and ethanol and redispersed in 

water. While the surfactant in the oil retards coalescence of the droplets, some coalescence 

is inevitable during the contact time with the magnet. Therefore, the washed chitosan 

capsules are filtered using 160 µm Nylon filters to remove any coalesced capsules. The 

optical micrograph in Figure 4.3c shows that the final capsules are relatively monodisperse 

and discrete. The closeup in Figure 4.3d reveals the patchy nature of the capsule, with all 

the NPs collected in a single patch at one end. The above method for preparing patchy 

capsules is similar to that in recent reports (where the focus was on patchy magnetic 

particles);22,79 to our knowledge, this is the first time this method has been coupled with 

catalytic NPs to make micromotors. 

 

To study the self-propulsion of the micromotors, we placed individual capsules in 

a petri dish containing a solution of H2O2 at a given concentration. All micromotors showed 

autonomous motion by the mechanism in Figure 4.1 and a series of images showing such 

motion are provided in Figure 4.4a. Interestingly, four different trajectories were observed 

for the same batch of micromotors. The majority of the trajectories were either circular or 

linear. Circular motion in the clockwise and counterclockwise rotation were frequently 
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observed, as were linear trajectories. We also observe the occasional switch between linear 

and circular motion, but we did not observe alternating trajectories between 

counterclockwise and clockwise circular motion. The stochastic nature of micromotor 

trajectories is because its motion is driven by ejected bubbles, and this has been observed 

elsewhere.12 Specifically, the initial direction of bubble ejection from the micromotor (or 

the initial pinned position of the bubble on the micromotor), determines the subsequent 

path of the micromotor. Note that the patch of FePt NPs inside the capsule can have 

different orientations, which can dictate the direction of ejected bubbles.  

 
 

Figure 4.4. Self-propulsion of micromotors in H2O2 solution. (a) Images taken from a 
video demonstrating self-propulsion. (b) Average speed of the micromotors in varying 
concentrations of H2O2. Trajectories of 10 micromotors were sampled at each 
concentration over a period of 60 s. The error bars are standard deviations of the average 
speed of the 10 micromotors.  
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A key parameter that affects self-propulsion is the concentration of H2O2. We found 

a monotonic trend between this concentration and the speed of the micromotors (Figure 

4.4b). At the lowest H2O2 concentration tested (3%), the speed was ~ 200 µm/s, or ~ 1 

body length/s. In contrast, the same capsule is capable of moving at 2400 µm/s, or 10 body 

lengths/s at the highest H2O2 concentration (16%). Thus, a 5-fold increase in H2O2 

concentration causes the speed to increase by an order of magnitude. The higher speed at 

higher concentrations visually correlated with an increase in the frequency of oxygen 

bubble generation.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Magnetic response of the micromotors. (a) Due to the magnetic nature of the 
FePt NPs, the micromotors have a permanent magnetic dipole. This is demonstrated by 
placing a magnet near the self-propelling micromotors, whereupon, all the micromotors 
collectively move towards the magnet; (b) Collective trajectories of multiple micromotors 
under the influence of an external magnet; trajectories are drawn with MTrack; (c) The 
total distance travelled and the end-to-end distance of micromotors in 8% H2O2 solution 
with and without an external magnetic field. The total distance travelled is unchanged (n 
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=5), however, the end-to-end distance is much greater under a magnetic field (p<0.05), 
indicating an increase in directionality, proving that the micromotor travel in a more linear 
trajectory. The measured time for all micromotors is the same (6 s, 60 frames). 
 

Due to the ferromagnetic nature of the iron oxide core in the FePt NPs, the 

micromotors also exhibit sensitivity to a magnetic field (Figure 4.5a). This is demonstrated 

by placing a permanent magnet near the micromotors that are already moving randomly in 

an H2O2 solution, whereupon, all the micromotors collectively move towards the magnet. 

When the polarity of the magnet is reversed, the micromotors swim away from the magnet. 

This indicates that the micromotors have magnetization with defined polarity, either being 

attracted toward the permanent magnet or being repelled by it. We hypothesize that the 

reason for the polarity is because during capsule synthesis, the neodymium magnet orients 

the magnetic domains of the FePt.10  

 

Figure 4.5b traces the trajectories of micromotors being controlled by an external 

magnet. The magnet can be used to change the direction of the micromotors. Some 

micromotors enter and leave the field of view, but the path taken by the micromotors when 

in view are moving in unison due to the external magnetic field. To confirm that the 

micromotors are not moving purely due to magnetic actuation, we measured the total 

distance travelled for 6 seconds with and without an external magnet, and found that this 

is nearly the same (Figure 4.5c). On the other hand, the end-to-end distance is significantly 

higher (3 times, p<0.05) in the presence of the magnet. Similar observations were made in 

previous studies.10,51 We conclude that the magnet only provides directionality and does 

not exert a significant force on the micromotors.  
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We further demonstrate this magnetized behavior by isolating a micromotor that is 

moving counterclockwise in the absence of a magnet. Then, when we place the magnet 

(magnet on), the micromotor starts moving in a linear trajectory toward the magnet (to the 

right of the microscope, not imaged). Next, the magnet is briefly removed (magnet off), 

whereupon the micromotor resumes its original counterclockwise motion. Finally, the 

magnet is placed again with its polarity reversed (magnet on), and the micromotor reverts 

to a linear trajectory, but in the opposite direction. An additional point is that the 

micromotor always moves away from the bubbles, i.e., it is the bubble ejection that propels 

the micromotor forward. Note that the patch of FePt NPs does not face toward the magnet. 

This substantiates the idea that the magnet does not exert a significant force on the 

micromotor. The magnet simply allows us to control the trajectory of the micromotor.  

 

 

 
Figure 4.6. Pick up and drop off capability of a micromotor. Under magnetic control, 
micromotors can travel towards a particular load, which in this case is an empty chitosan 
capsule. When directed to meet the load head on, the micromotor sticks to the load due to 
the soft nature of the two. This allows the load to be picked up. After travelling a certain 
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distance, the micromotor can then drop off the load. This is done by flicking the magnet so 
that the micromotor can have a sudden change in direction. 
 

Being able to magnetically control the micromotor allows them to be used for 

directional maneuvering and target pick up. Because chitosan capsules are soft materials, 

we found that they have an inherent tendency to stick to one another when they come into 

contact. We use this to demonstrate the ability of our micromotor, under the control of an 

external magnet, to pick up another chitosan capsule (with no FePt NP), shown in Figure 

4.6 (a), traversing a distance (b) with the plain chitosan capsule before the micromotor 

drops off the chitosan capsule (c). We achieve the drop off by flicking the magnet in the 

opposite direction of the micromotor’s path to induce a “slide off” from the chitosan 

capsule cargo.  

 
4.4. Conclusions  
 

We have demonstrated the ability to create a chitosan based microswimmer that is 

capable of self-propelled motion in a hydrogen peroxide solution. These anisotropic 

micromotor capsules are capable of generating oxygen due to the platinum in the 

nanoparticles catalysing the reaction of hydrogen peroxide to water and oxygen. At 

different concentrations of hydrogen peroxide, the rate of bubble production, or speed of 

the overall microswimmer, increases with increasing hydrogen peroxide. The direction of 

the microswimmer can also be controlled by a magnet. During the crosslinking process, 

the polarity of the nanoparticles becomes fixed. This allows us to control the direction of 

the microswimmer by changing the rotation of the magnet, instead of physically placing 

the magnet at the desired location. We have also demonstrated the possibility of picking 

up another soft material and transporting it a certain distance before dropping it off. Overall, 
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we have put forward a new method for creating a biopolymer based microswimmer that is 

capable of all the aforementioned traits found in its predecessors.  An attractive feature of 

this method is that the micromotors are biodegradable and can be potentially used in 

applications such as environmental clean-up and decontamination.  



 

52 

Chapter 5 
 
Multicompartment Capsules and Their Use to Study Bacterial Signaling 

 
5.1. Introduction 
 

Containers with separated inner compartments that can perform simultaneous or 

cascade reactions, while keeping encapsulated reactants separated from the products freely 

diffusing in the same environment, is extremely attractive for applications of catalysis,80-83 

drug delivery,84,85 and tissue engineering.86-89 Such multicompartment containers on the 

micron scale are considered artificial cells, due to the overall structure being similar to 

organelles enclosed in discrete, functional membranes within the cell. Much similar to the 

cell, multicompartment containers should be aqueous, with the internal structures separated 

by membranes that allow transport of small molecules. The concept of artificial cells have 

long existed in the realm of therapeutic cell culture and tissue engineering.86,87,89 On the 

simplest scale, an artificial cell is merely an encapsulation scheme used to protect the 

enclosed materials from the external environment.86 Typical approaches to making 

multicompartment structure have either used inhomogeneous phase emulsions, such as in 

double emulsion methods,90 or using layer-by-layer techniques81,84,91 to create multilayer 

shells around a core capsule. In tissue engineering, it is common to further protect the 

encapsulated material with a second bounding layer to prevent any contact of the internal 

encapsulants from the external environment.86 Recently polymerosomes and liposomes 

have been encapsulated80,82,83,92 in larger containing capsules through self-assembly, which 

provide a promising step toward synthetic cell containers and have demonstrated 

possibilities of enzymatic cascade reactions.  However, no system have demonstrated the 

ability to use microfluidics to create multicompartment capsules with controlled size and 
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shape, and most importantly, with a purely aqueous, biocompatible system. Here, we 

conceptualize our vision toward an artificial cell like multicompartment capsule by using 

alginate in a two-step microfluidic process.  

 

Our multicompartment capsule, in its entirety, consist of the negatively charged 

polyelectrolyte alginate. Using polysaccharides such as alginate is advantageous due to the 

many positive attributes of the biopolymer, such as biocompatibility, low toxicity, simple 

capsule formation, and ease of complexation with other positively charged polysaccharides 

to form bounding membranes. The bounding membrane in our capsule is formed by 

electrostatic complexation with the positively charged polyelectrolyte chitosan, and the 

membrane is the only separation between the inner compartments and the bounding capsule. 

Similar to the nuclear envelope, the polyelectrolyte shell keeps the encapsulated material 

in place while still allowing small molecules to diffuse freely between the 

membranes.87,92,93 The flexible shell formed between the two oppositely charged polymers 

has been shown to act as a cytoprotective layer94 and reduce bacterial leakage,95 while the 

inner alginate matrix have been reported to encapsulate a variety of biological materials, 

such as enzymes,82,83 adsorbents,96 tissues,89 islets,86 bacterial cells.65,90,97  

 

The novelty in our multicompartment capsule is that we employ a microfluidic 

pulsed air technique to generate our alginate capsules. Microfluidically generated capsules 

have sizes that can be easily controlled by changing two parameters, syringe pump flow 

rate and pulse frequency. Using microfluidics to control the size and shape of the 

microencapsulated environment has shown new interesting behaviors for mammalian and 
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bacterial cells.98-100 In particular, microencapsulation of bacteria has led to new 

understanding of the way bacteria regulate quorum sensing.98,101 Quorum sensing is a 

density dependent cell behavior that allows bacteria to use small diffusible molecules, such 

as autoinducers, to communicate with neighboring bacteria. Using microenvironments to 

study quorum sensing between bacteria has taught us unexpected behaviors. For example, 

single bacteria can exhibit quorum sensing phenotypes when encapsulated in a small 

droplet.102 Sender and receiver systems have also been encapsulated in droplet emulsions 

and show that quorum sensing molecules can diffuse from a reservoir droplet to turn on 

bacteria encapsulated in neighboring droplets.97 Here, we show that our multicompartment 

capsule can encapsulate AI-2 producer and genetically engineered reporter bacteria in the 

inner compartments. AI-2 producer bacteria can produce autoinducer-2 (AI-2), a quorum 

sensing molecule that is associated with nearly 70 different species of bacterial, many of 

which are pathogenic. The AI-2 producer BL21(LuxS+) strain overproduces AI-2 

molecules, thereby increases the concentration of the AI-2 in the microenvironment. Once 

the reporter cells senses the AI-2, the cells turn on the gene to produce a fluorescent protein, 

which can be observed microscopically. We believe our system is not only useful to study 

quorum sensing between bacteria, but also present an opportunity to bring two un-

coinhabitable organisms into one microenvironment. This encapsulation scheme can be 

used to further explore cross kingdom communication or co-culturing of competitive 

species.  
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5.2. Experimental Section 
 
Materials and Chemicals. Alginate (alginic acid sodium salt from brown algae; medium 

viscosity), calcium chloride dihydrate, chitosan oligosaccharide lactate (low molecular 

weight chitosan, Mn~5,000; degree of deacetylation > 90%), the nonionic surfactant, 

Pluronic F-127, were obtained from Sigma-Aldrich. 1x PBS (Dulbecco’s phosphate-

buffered saline; no calcium, magnesium, phenol red), 1x LB broth, were obtained from 

Life Technologies and used without further modifications. Water soluble magnetic 

nanoparticles (EMG 304, 10 nm) was purchased from Ferrotec and diluted 10x with 1x 

 

Figure 5.1. Schematic of pulsed air flow droplet generation system. Alginate solution is injected 
by a syringe at a flow rate controlled by a syringe pump. A pulsed gas is generated by the function 
generator and the gas pressure is adjusted by the pressure control unit. Alginate droplets are generated 
by the pulsed gas flow and collected in a reservoir solution containing oligo-chitosan, calcium 
chloride, and surfactant. Chitosan forms shell with alginate due to electrostatic interactions and the 
calcium forms egg-box junctions with alginate core, forming a crosslinked network. 
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PBS. Fluorescently labeled green and red capsules (0.7-0.9 µm, 1.0% w/v) was purchased 

from Spherotech and used without further modifications.  

 

Solution Preparation. Stock solution of 1 wt% and 4 wt% alginate was dissolved in 1x 

PBS and filtered with 0.45 µm Millipore Cellulose Syringe Filters. For non-cell 

encapsulated droplet generation, 0.4 g of 1 wt% alginate solution, 0.4 g of EMG 304 

dilution, and 0.2 g of fluorescently labeled capsules was added to 1 g of 4 wt% alginate 

solution to yield a final concentration of 2.2 wt% alginic acid. For cell encapsulated droplet 

generation, 0.5 g of 1 wt% alginate was added to 0.5 g of the cell pellet and then added to 

1 g of 4 wt% alginate to yield a final concentration of 2.25 wt% alginic acid. Reservoir 

solution consist of 1 wt% chitosan oligosaccharide lactate, 1 wt% calcium chloride 

dehydrate, and 0.3 wt% Pluronic F-127. 

 

Device Fabrication. Droplet generation device is fabricated in-house and show in Figure 

2.7. 0.5” of a severed seven barrel glass capillary (World Precision Instruments) is inserted 

into the male of the Luer adapter tee (Cole-Parmer, EW-45508-85). 0.5” of a 

hydrophobically modified 50 µm inner diameter (ID) glass capillary (Vitrocom, CV0508) 

is threaded and epoxied into a 50 mm 200 µm ID square capillary (Vitrocom, 8320). The 

square capillary is then inserted into the center of the multibarrel capillary. The extruded 

square capillary on the side of the female connector is then inserted and epoxied into a 

piece of tygon tubing (Cole Parmer, EW-06509-13). A male luer syringe connector with 

1/16” hose barb is then inserted into the tygon tubing (Cole Parmer, EW-45518-00), with 

the exposed male luer capable of connecting to any female syringe. A P1000 plastic pipette 
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is cut to encase around the capillary apparatus to focus the gas stream, then sealed with 

epoxy. 

 

Image Analysis. Bright-light field images and fluorescence microscopy was performed 

with MVX10 MacroView fluorescence stereomicroscope (Olympus, Center Valley, PA) 

equipped with a DP72 Camera. Images were taken with FITC and TRITC filter sets and 

were overlaid using the Adobe Photoshop to visualize both colors simultaneously.  

 

Cell culture. Two types of e. coli reporter strains were used: W3110 (ΔluxS) + pCT6 + 

pET-dsRed for red fluorescent expression and W3110 (ΔluxS, ΔlsrFG) + pCT6 + pET-

GFPuv for green fluorescent expression. BL21 (LuxS+) was used as AI-2 producers, and 

W3110 (ΔluxS, ΔlsrFG) + pCT6 + pET-Venus was used as reporters of AI-2. Plasmid 

constructs are described by Tsao et al. All E.coli strains were grown in LB medium; W3110 

(ΔluxS, ΔlsrFG) + pCT6 + pET-Venus was supplemented with kanamycin and ampicillin 

(50 µg mL-1 per antibiotic) at 37C and 250 rpm until an optical density (at 600 nm) of 0.4 

was reached. Subsequently, cultures were centrifuged at 3,900 rpm for 7 min and 

resuspended in 0.5 g of  1x PBS. The final concentration of the E.coli in the alginate 

suspension is the same as initial E.coli concentration in the LB medium. Once encapsulated, 

the capsules are shaken at 37C to fully express the fluorescent protein VENUS. 
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Chapter 5.3. Results and Discussion 

 

The first component of our double encapsulation scheme is to create the smaller 

alginate capsules that serve as the inner compartments of our multicompartment capsule. 

Starting with our homemade microfluidic droplet generator (Figure 5.1, Supplemental for 

device setup), we feed a 2.5 wt% filtered alginate solution using a syringe pump and 

droplets are generated at the tip of our droplet generator. A pulsing compressed air stream 

envelops the tip of the droplet generator and impinges and dislodges one droplet at every 

pulse. The droplets are then collected in a reservoir solution composed of 1 wt% 

oligochitosan, 1 wt% CaCl2, and 0.3 wt% Pluronic F-127. The positively charged chitosan 

forms a thin shell on the negatively charged alginate capsule through electrostatic 

interactions, while the calcium ions quickly diffuse into the alginate core and forms a 

capsule through the egg-box junction crosslinking. The nonionic surfactant F-127 prevents 

 

Figure 5.2. (a) Alginate droplets are generated using the gas pulse generator at 1 Hz to 
7 Hz and at syringe pump flow rates from 1 ul/min to 0.25 ul/min. Capsule diameter 
decreases with increasing frequency and decreasing flow rate, portrayed by estimated 
and experimental results. Capsules generated at 7 Hz are no longer 1 per pulse. (b) Image 
of collected capsules at different gas pulse generator frequency and different syringe 
pump flow rate. 
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aggregation and coalescence of the capsules once in the reservoir. Because of the 

microfluidic nature of the droplet generation scheme, our capsules are extremely 

monodispersed, with droplet size variation <2 µm. Once the alginate capsules are made, 

they are washed with PBS three times and resuspended in PBS. 

 

The size of the alginate capsules are controlled by two key parameters: flow rate of 

the syringe pump and the frequency of the function generator, which controls the frequency 

of the air pulse generated per second and therefore the number of droplets generated per 

second.  The droplet generation frequency can be controlled by the function generator and 

is varied from 1 to 7 hertz in our experiments. As seen in Figure 5.2, as the frequency of 

the function generator is increased, the size of the droplets is decreased. An estimation of 

the droplet diameter can be made by calculating the volume of alginate ejected by the 

syringe pump (feed flow rate), and divide by the number of droplets generated per second. 

With Voldrop = (feed flow rate) x 1/freq and equating 𝑉𝑉𝑉𝑉𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐 ×

 

Figure 5.3. Schematic of multicompartment capsule generation process. (a) Alginate 
capsules are washed and resuspended in alginate solution. This capsule suspension is then 
injected into a device with a larger diameter tip. Droplets from this device are collected in the 
reservoir solution. (b) Microscopic images of multicompartment capsules with different 
arrangement of internal alginate compartment. 
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�𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑉𝑉𝑟𝑟 = 0.81� , we can set diameter of the capsules to Diacapsule = 

(6Volcapsule/π)1/3, which provides a relationship of flow rate of the syringe pump to the 

estimated capsule size. We find that the estimated capsule size from our calculations 

closely match our experimental results, except at high pulse frequencies. At frequencies 

past 6 Hz, droplets were no longer generated one per pulse, yielding capsules with a large 

size distribution. It should be mentioned here that the pulse generator in our schematic (Fig 

1) controls the air pressure that is used to dislodge the droplet forming at the tip of the 

hydrophobically modified glass capillary, and can be adjusted accordingly. However, once 

tuned to the right pressure, it is not changed further to affect the size of the droplets. 

 

The second part to our multicompartment capsules is to re-encapsulate the smaller 

alginate capsules. This is accomplished by adding alginate to the washed alginate capsules 

suspended in PBS to a final 2.2 wt% alginate solution. This technique of double 

encapsulation has previously been used to prevent any contact of the encapsulated cells 

from the external environment. A larger diameter droplet generator is used to ensure that 

the smaller alginate capsules can flow freely without clogging the device. We typically use 

a hydrophobically modified 300 µm capillary for the second encapsulating process. The 

droplet generation scheme is repeated as in Figure 5.3(a) and the desired multicompartment 

capsule can be picked out with a pipette for visualization. Because the internal arrangement 

of each capsule is random, the resulting multicompartment capsules have a variety of 

different arrangement of internal alginate compartments. We show several arrangements 

in Figure 5.3(b). Despite not being able to control the arrangement of each capsule, our 
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device effectively mixes the inner compartments and we are able to combine more than 

one type of inner capsule in our multicomparment capsule.   

 

The flexibility of the two step encapsulation process gives us great control on how 

we want the morphology of the internal compartments to look like. Two different species 

of biologics encapsulated in smaller alginate capsules can be incorporated into the larger 

alginate capsule to maximize the function of our design. Because alginate is a 

biocompatible polymer commonly used to encapsulate a variety of components, we have 

chosen to demonstrate the utility of our multicompartment capsules first by encapsulating 

green and red fluorescent capsules, seen in Figure 5.4(a). Two alginate solutions were 

separately prepared, where we loaded each with green and red fluorescent capsules. Each 

type of red and green alginate capsules were first generated, washed, and then combined 

to make the 2.2 wt% alginate solution that will be injected into the larger diameter device, 

with resulting capsules shown in top row of Figure 4. We repeat the same procedure for 

encapsulating two strains of bacterial cells, as seen in Figure 5.4(b). We demonstrate the 

concept of culturing two genetically engineered reporter bacterial strains, W3110 (ΔluxS) 

+ pCT6 + pET-dsRed for red fluorescent expression and W3110 (ΔluxS, ΔlsrFG) + pCT6 

+ pET-GFPuv for green fluorescent expression. The strains are typically used to detect and 

respond fluorescently to the quorum sensing molecule, AI-2. However, the bacteria are 

luxS mutants, meaning they cannot synthesize their own AI-2. LuxS converts S-

ribosylhomocysteine (SRH, a precursor of AI-2) to homocysteine and 4,5-dihydroxy-2,3-

pentanedione (DPD); DPD can then spontaneously cyclize to active AI-2. Without luxS, 

E.coli can only sense AI-2 being produced elsewhere. Fluorescence of both strains were 
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induced with synthetically produced AI-2. We demonstrate that both populations of 

bacteria can be successfully encapsulated within the same environment but remains 

separated from contact. If supplemented with LB media and shaken at 37, the encapsulated 

bacteria eventually forms colonies within the multicompartment capsule, using the alginate 

matrix as support.  

 

Quorum sensing is an important process in bacterial communication that changes 

the phenotype of an entire population. We hypothesize that because our multicompartment 

capsules allow small molecules to diffuse freely, AI-2 produced from one internal 

compartment can control the behavior of bacteria in a different compartment. We 

encapsulate AI-2 producer E.coli and genetically engineered receiver bacterial system in 

our multicompartment capsule to demonstrate the possibility of using our capsules to study 

 

Figure 5.4. Top row: different microscopic images of multicompartment capsules with 
internal alginate compartments that contain green and yellow fluorescent particles. 
Bottom row: different microscopic images of multicompartment capsules with 
encapsulated reporter E.coli. Two types of E. coli reporter strains were used: W3110 
(ΔluxS) + pCT6 + pET-dsRed for red fluorescent expression and W3110 (ΔluxS, ΔlsrFG) 
+ pCT6 + pET-GFPuv for green fluorescent expression. Both strains were synthetically 
induced by artificially produced AI-2 to express their fluorescent proteins. 

 



 

63 

quorum sensing between two different strains of bacteria, portrayed in the schematic in 

Figure 5.5 (top left). Here we encapsulate E.coli BL21 (luxS+) and W3110 (ΔluxS, ΔlsrFG) 

+ pCT6 + pET-Venus in our small alginate capsules. BL21 (luxS+) overproduces AI-2. 

AI-2 responsive e. coli strain, W3110 (ΔluxS, ΔlsrFG) + pCT6 + pET-Venus, was used to 

detect AI-2 in the environment. This strain responds to a significantly lower AI-2 

concentration than wild type W3110 and does not synthesize its own AI-2 (luxS mutant), 

but produces a fluorescent protein Venus in response to AI-2. VENUS is a yellow 

fluorescent protein (VENUS) shown green due to the filter settings on our fluorescent 

microscope. For identifying purposes, we encapsulated the reporter strain in a slightly 

larger diameter alginate capsule than the producer strain of E.coli; this allowed us to 

quickly identify the identity of the internal compartments before the sensing event began.  

 

The multicompartment capsules are then placed in LB media for 24 hours, shaken 

at 37. After 24 hours, we examine the capsules and find that the bacteria have formed 

colonies within the internal capsules, and the capsules with reporter bacteria is brightly 

fluorescent, whereas the capsules containing BL21 sender bacteria are dark, in Figure 5.5 

(bottom). The background adjusted fluorescent intensity is measured and shown in Figure 

5.5 (top right), where fluorescent intensity of the reporter capsules are statistically higher 

than the fluorescent intensity of the producer capsules. We present a small sample 

population of the different combination of inner compartments in Figure 5.5 (bottom). The 

colonies in the outer encapsulating alginate are bacteria that either contaminated the 
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alginate solution before it was encapsulated or bacteria that leaked during the incubation 

process and formed its own separate colonies. 

 

5.4. Conclusions 
 

 We have demonstrated the ability to create alginate based multicompartment 

capsules that have discrete, controllable, biocompatible inner compartments that are 

capable of encapsulating AI-2 producer and reporter bacterial strains. The encapsulated 

 

Figure 5.5. Quorum sensing scheme of AI-2 producer and reporter (top left) AI-2 
producer E.coli is encapsulated in one set of alginate capsules while AI-2 reporter E.coli is 
encapsulated in a different set of alginate capsules. When combined into a multicompartment 
capsule, the AI-2 producer produces AI-2 that diffuses into the compartment, where AI-2 is 
sensed by the AI-2 reporter strain. After 24 hours, the AI-2 reporter strain expresses the 
VENUS protein, which causes the entire capsule containing the AI-2 reporter strain to 
fluoresce green. Top right: fluorescent intensity of Bottom: Different combination of internal 
compartments of the multicompartment capsule encapsulating AI-2 producer (P) and AI-2 
reporter (R) strains of bacteria. Scale bar represent 250 µm. 
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bacteria can form colonies within 24 hours in their alginate microenvironment and secrete 

and detect quorum sensing molecules. Our method involves a two-step process which 

allows us the flexibility to load different components into the solution before capsule 

formation. This is the first time aqueous based multicompartment capsules have been made 

and used for bacterial communication. We believe our system is capable of studying 

quorum sensing of bacterial population that are unfavorable to co-culturing environments, 

and plan to study cross kingdom quorum sensing using our multicompartment capsules 
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Chapter 6 
 
Conclusions and Recommendations 

 

6.1. Project Summary and Principal Contributions 
 

In this dissertation, we have shown three different kinds of anisotropic 

microcapsules.  These microcapsules were developed by adapting three different 

microfluidic platforms to create three different genres of anisotropy, i.e. shape anisotropic 

dimer microcapsules in chapter 3, surface/Janus anisotropic microcapsules in chapter 4, 

and multicompartment volume anisotropy in chapter 5. These microcapsules were 

imparted with different functionalities, such as magnetic micro stir bar for dimer 

microcapsules, self-propelled micromotors for Janus anisotropic microcapsules, and 

bacterial encapsulation and quorum sensing for multicompartment capsules. 

 

In Chapter 3, we describe the micromanufacturing of Janus-like dimer chitosan 

microcapsules. These microcapsules were created by bringing two droplets together 

through coalescence and binding them using chemical crosslinking. This is the first time 

chemical crosslinking (vs. UV crosslinking) has been used to make anisotropic capsules in 

microfluidics. Magnetic nanoparticles were embedded in one lobe of the microcapsules to 

give them properties of magnetic anisotropy so they can rotate when placed on top of a 

rotating magnetic field.  

 

In Chapter 4, we reported a simple process for inducing anisotropy in a 

microcapsule. We synthesized magnetic and catalytic nanoparticles to be encapsulated in 



 

67 

the soluble chitosan solution. The chitosan solution was then emulsified into droplets using 

a microfluidic device. These droplets are then incubated on top of a magnet to localize all 

of the magnetic nanoparticles. Chemical crosslinking is used to permanently fix the 

anisotropy of the microcapsules. These microcapsules can self-propel in hydrogen 

peroxide and respond to magnetic force in hydrogen peroxide. The process for synthesizing 

the self-propelled micromotors can replace current methods that require metal deposition 

techniques. Furthermore, the chitosan based micromotors are biodegradable, and can be 

explored for environmental remediation.  

 

In Chapter 5, we use a gas microfluidic system to create alginate multicompartment 

capsules. The multicompartment capsules have alginate inner compartments enveloped by 

an alginate outer capsule. The multicompartment capsules were used to encapsulate E.coli 

that was capable of communicating with eachother through secretion and detection of the 

small molecule, autoindcuer-2 (AI-2). The multicompartment capsules demonstrate the 

first purely aqueous microfluidic encapsulation technique. The capsules can be further 

explored for studying how biological materials interact through small molecules in a 

microenvironemt.  

We believe the introduction of these microfluidic platforms for generation of anisotropic 

microcapsules will find a wide range of applications. 
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6.2. Recommendations for Future Work 

The concepts that we have reported in this dissertation can be extended to explore 

and envision new applications and utilities. Here, we briefly describe the outline for the 

future work.  

 

6.2.1 Multicompartment Capsules  

In chapter 5, we describe multicompartment capsules which can encapsulate 

different strains of bacteria in its inner compartments. Bacteria encapsulated in one 

container can secret small molecules that diffuse to another container in the same capsule. 

However, it was visible that bacteria from the inner compartments can leak from the inner 

compartments and colonize in the outer membrane of the capsule. Cell leakage from 

alginate capsules have been previously reported.86,89,103 Many researchers have tried to 

reduce cell leakage by coating the alginate capsules with the addition of a cytoprotective 

membrane, such as oppositely charged chitosan,94 polydopamine,103 and also alginate 

itself86. The most common approach is to complex the negatively charged alginate with 

positively charged chitosan to form an electrostatic membrane. This membrane has been 

reported to reduce cell leakage of yeast cells104compared to regular alginate capsules. We 

have replicated the electrostatic complexation to  in our multicompartment capsules, but 

singular bacteria can still leak and colonize the external membrane.  
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As an alternative to using alginate in alginate multicompartment capsules, we 

propose a similar system that uses alginate as the inner compartments and chitosan as the 

outer containing capsule. By introducing chitosan as the outer containing capsule rather 

than just the membrane between the inner and outer compartments, we believe bacterial 

leakage as well as bacterial viability in the outer membrane will be greatly reduced due to 

the antibacterial properties of chitosan. Chitosan can form capsules by simple coacervation 

with a negatively charged surfactant. Typically, Sodium dodecylbenzenesulfonate (SDBS) 

or Sodium Triphosphate (TPP) are used to form chitosan capsules. However, since TPP is 

a strong calcium chelator due to its three negatively charged phosphate groups, we chose 

the surfactant SDBS for our coacervation system. The multicompartment capsules made 

with alginate inner capsules and chitosan/SDBS outer capsules. (a) Chitosan capsules 

formed by complex coacervation with SDBS. Various concentrations of SDBS were tested. 

1-4 wt% SDBS resulted in soft capsules that eventually collapsed on itself. 5 wt% SDBS 

yielded the most robust capsules. Long term storage in SDBS (>20 min) resulted in 

 

Figure 6.1. Multicompartment capsules made with alginate inner capsules with iron 
nanoparticles and chitosan/SDBS outer capsules. (a) chitosan capsules formed by 
complex coascervation with SDBS. (b) alginate capsules formed by coascervation with 
chitosan and calcium chloride. Magnetic nanoparticles were dispersed within the 
alginate capsules for separation and imaging. (c) multicompartment capsules made with 
alginate inner capsules and chitosan outer capsule. 
 

(a) (b) (c)
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shriveling of the capsules. Stable capsules were formed after the chitosan turned a 

translucent white color, shown in above image. (b) Alginate capsules formed by 

coacervation with chitosan and calcium chloride. Magnetic iron nanoparticles were 

dispersed within the alginate capsules for separation and imaging. (c) Multicompartment 

capsules made with alginate inner capsules and a chitosan outer capsule. Long term storage 

in SDBS resulted in shrinking of both the inner and outer capsules.  

 

We demonstrate the possibility of macroscale alginate and chitosan 

multicompartment capsules. However, two preliminary experiments must be performed. 

We propose using the same micro-dropper used in chapter 5 to reduce the size of our 

capsules. Bacteria viability must be tested in both the macroscale capsules as well in the 

microscale multicompartment capsules. Electrostatic interaction between the chitosan shell 

and bacteria could become a larger problem on cell viability since it is undetermined 

whether the antibacterial properties of chitosan is a result of electrostatic interactions 

(bacteria are typically negatively charged) or a physiological interaction(killing through 

contact).  

 

6.2.2 Automated control of micromotors 

In chapter 4 we describe the synthesis of micromtors by inducing anisotropy of the 

disbursed FePT NP. Micromotors are capable of self-propelled movement through the 

reaction between platinum and hydrogen peroxide. The generated oxygen bubbles are used 

to drive the micromotor forward. Studies have shown that zinc in acidic environments can 

produce similar hydrogen bubbles for bubble propelled motion. Nanoparticles composed 
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of zinc and iron oxide (Zn/Fe) have been reported in literature. We believe that by using 

our two step method to induce anisotropy, micromotors with the ability to react with zinc 

can be synthesized. Such micromotors have been theorized for drug delivery in acidic 

environments, such as low pH environments like the human stomach.  

 

Additional work has been proposed to automatize controlling micromotor direction. 

We have demonstrated that micromotors can be controlled with an external magnet. 

Magnetic rotation can also be automated by using a computer controlled software and a 

turning platform, such as an Arduino system. Arduino systems can be programmed to turn 

in simple circular directions. With an attached magnet, we show that Arduinos can be used 

to control the direction of the micromotor, without human manipulation. We believe with 

image tracking that feeds back information to the ardruino, the micromotor trajectory can 

be controlled with more precision.  
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