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Autonomous vehicles(AVs) play a lead role in the future of transportation. They 

provide a safe travel mode by eliminating human driving error. The reduced reaction 

time lag associated with AVs will bring significantly more capacity to the current traffic 

network and help people travel more efficiently and comfortably. AVs also liberate 

drivers’ hands, creating more opportunities for drivers to make use of travel time. With 

the rapid development of machine-learning technology, it is predicted that autonomous 

vehicles will appear in the automobile market within two decades. This thesis integrates 

AVs into an existing four-step transportation model by modifying the model parameters 

and conducting an impact analysis on what autonomous vehicles bring to the model. 

Since originally there is no AV component in the model, this thesis has applied a 

feasible way to integrate AV behavior into the model and develop five different future 

scenarios to see the possible impact. 
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Chapter&1:&Introduction&
 

Background 

 
 Autonomous vehicles (AVs) are first mentioned in the early 1920s, conceived 

as remote-control automobiles. Over the next 50 years, AV development was very slow, 

as pre-directing control had stalled. In 1980, the development of AVs began speeding 

up; over the next 20 years, industries and academics began using vision control. Today, 

with the development of computers, sensors and control algorithm, AVs are becoming 

more realistic for use by the general public. From as early as the DARPA Grand 

Challenge in 2007 to today, technology companies such as Tesla, Uber and Google 

announced their own autonomous vehicles, predicting that even though we may not 

have seen AVs on the road yet, we can expect them within two decades. Therefore, we 

need to foresee AVs possible benefits for the general public and their influence on the 

traffic network. 

 AVs could help people travel more safely and comfortably. Due to their pre-

programmed driving behavior, they are able to eliminate human factors, such as driving 

while drinking, which may cause accidents. In addition, computers could make better 

decisions to avoid obstacles and, after detecting a possible collision, decelerate earlier 

than human drivers. Armed with a better reaction time than humans and amounted 

sensors, AVs are able to detect and handle more serious situations and sometimes, may 

be able to avoid dangers that humans could not predict. People may also have incentives 

to own an autonomous vehicle because it drives better than the typical human driver; 

AVs will accelerate and decelerate smoother because the short reaction time allows 

them more time to accelerate or decelerate. 
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 Besides the improvements of safety and comfort, AVs also give the driver a 

chance to liberate their hands. This will allow drivers/passengers to get more value from 

in-vehicle travel drive time by allowing them to switch their attention from driving to 

other activities, such as using a cellphone, taking a nap, enjoying entertainment or 

working. Because of this benefit, the utility of choosing AVs to travel will increase and 

that will make this travel mode more attractive. The travel distance and number of trips 

will also benefit from the increased utility of AVs. Passengers are more likely to take 

additional trips—trips that they originally did not have time to take—if they could use 

this in-vehicle travel time to get other things done. 

 Although AVs will likely bring more trips to the traffic network, they may still 

help reduce the congestion on the road. Benefiting from their computers and sensors, 

AVs can operate with a lower the reaction time, thus allowing a shorter distance with 

others on the road. AVs may also reduce the influence of shock wave due to their 

smooth acceleration and deceleration. 

 

Motivation 

!
 With all these distinguishing benefits, AVs will certainly be a dominant 

personal travel choice in the future. However, the data of AVs are rare so that we do 

not know how they really affect the traffic network. Very little work has been conducted 

in this field. Recent research published by the Transportation Research Board in 2016 

(Lavasani, Jin and Du) presents an AV market penetration model to estimate the AV 

adoption rate in future years based on previous technology adoption experience. This 

model predicts that we shall see AVs on the road within 20 years and they will penetrate 

the market heavily within 30 years. In addition, several cities in the U.S. and around 

the world have issued permission for AVs to test drive. The U.S. federal government 
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also issued an AV policy, including their regulation and guidance. Therefore, to 

evaluate those AV passengers’ behaviors, the AV impact to the traffic network is 

needed in a long-term planning model. 

 AVs are not like today’s typical vehicles in that they have certain characteristics, 

like auto-driving, that will not appear in the current traffic model. Those different 

characteristics will result in changes in the model parameters. The travel demand may 

very likely increase due to several benefits that come with AVs. First, the in-vehicle 

travel time cost reduction will increase the utility of choosing AVs; travelers are likely 

shift their travel mode to AVs if they could. Since AVs may have ability to auto-park, 

travelers’ parking costs may lessen. Also, the government may pass legislation to allow 

AVs the use of traffic facilities, such as the toll lanes, for free. The above three benefits 

will result in travel demands that increase traffic congestion. However, due to the 

shorter car-following distance and better driving performance, AVs may help decrease 

traffic congestion, even though the travel demand increases. Those characteristics will 

need to be modeled thoroughly in the planning model to accurately capture their impact. 

 A four-step planning model is still a popular transportation model worldwide, 

although some more advanced models, such as agent based model (ABM), have been 

established. The traditional four-step model has some inevitable disadvantages that will 

essentially miss some characteristics of AVs. It is not a dynamic model, so researchers 

are not able to repeat the re-routing functionality of AVs. It also models on trips based 

on a gravity model but not individual characteristics, so it will not achieve any 

individual results; this eliminates the ability of imitating AV’s car sharing ability. 

Despite these disadvantages, many agencies and governments are still working with a 

four-step model.  
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 This thesis models the AV’s behavior in an existing four-step model of the 

Maryland region, the Maryland Statewide Transportation Model (MSTM). The 

objective is to integrate the AV as a new travel mode in the model and assess the impact 

that AVs bring to the entire network system. Beyond that, this thesis also seeks to 

approach the objective with an easier but reasonable way. Currently, this four-step 

model doesn’t have an AV mode in the mode choice part. It is generally in prior 

preparation to integrate AV travel mode into this model before we do any further impact 

analysis. However, it is a massive effort to integrate one mode into a four-step model, 

especially a large regional model like MSTM. To avoid time-consuming work and to 

make this approach benefit other regions, this thesis introduces a simpler way to address 

this issue. 

 AVs are likely to be on the road within 20 to 30 years. However, what the future 

of this region may look like is unknown. In order to better assess the impact of AVs, 

this thesis introduces four different future scenarios. This method shows us the overall 

impact of AVs to the network and differences between different scenarios. 

 

Problem Statements 
 

 This thesis answers the designed questions listed below: 

1.! How can researchers integrate AVs into the current four-step model without 

changing the model structure? The current four-step model includes trip 

generation, trip distribution, mode choice and traffic assignment. As a new 

travel mode, AVs will not just affect those four steps but also the car 

ownership model; adopting this new mode requires the change of every code 

line and input file in the model. It is very important to address this problem 

for both simplicity and to make this method applicable for other regions. 
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2.! How does travel mode, vehicle miles of travel (VMT) and traffic congestion 

change if AV’s penetration rate changes? AVs will potentially increase 

utility for travelers. Their attractive features will increase travel demand. 

AVs may also decrease traffic congestion because of less following distance. 

Accurately modeling AV characteristics and predicting its impact will be 

important for future planning. 

3.! How do AVs influence different scenarios? Different future scenarios will 

give more references for policy making and infrastructure investment. They 

are important indicators and reflect the sensitivity of AVs to certain 

assumptions or infrastructure demands. 

 

Contributions 

 
This thesis introduces a way to integrate a new travel mode into the existing four-step 

model without changing model structure. This method is cost efficient in terms of time 

and could easily apply to any other four-step network with less coding ability. Due to 

the complexity of this four-step model, this thesis divides the integration of the AV 

mode into four steps. First, an external car ownership model has been considered to 

determine future year AV penetration. Second, two different trip generation models 

have been applied to AVs and regular vehicles separately. Third, two different mode 

choice models have been used to accommodate different characteristics of AVs and 

regular automotive. Fourth, trips from both AVs and regular automotive with mode 

choices are calculated and applied to the traffic assignment model. These steps will be 

described in detail below. After the model parameter modification, four different 

comprehensive scenarios will be considered as possible futures to conduct analysis. 



! 6!

 
AV penetration rate  
 

 In the original MSTM, there is no car ownership model. Instead, this model 

directly distributes generated trips into different travel modes with a logit model. Due 

to this limitation, the only way to add another vehicle type into this model is to pre-

determine the AVs’ penetration rate. To estimate the adoption rate, previous work done 

by Lavasani et al. (2016) has been considered as a reference. They predicted the AVs’ 

adoption rate with a generalized bass diffusion model based on other technology 

adoption experiences. 

 

Trip generation separation 
 

 MSTM uses census data for trip generation purposes. Since the AVs penetration 

rate has been pre-determined, the proportion of AV is applied into the model by 

dividing the census data correspondent to the AV portion and regular vehicle portion. 

Based on the possible increase of travel demand incurred by AV, the trip generation 

step will be modified for the AV portion to better reflect the characteristics of AV. In 

the most recent research, Long T. Truong et al. (2017) has estimated the trip generation 

impacts of AV by assuming that AV could fill the travel gap that people could not drive 

by themselves. However, this assumption has some limitations in that it did not consider 

the car’s accessibility. This thesis will introduce a simple model to modify the 

additional trips by different income groups and trip purposes. 

 

Mode choice 
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 Two different sets of parameters are applied to two mode choice models. In 

those two models, the transit portion remains the same to ensure AVs owners and non-

AVs owners have the same utility while choosing the transit as travel mode. 

 

Traffic assignment 
 

 In this section, two sets of trip origin-destination(OD) tables, which include the 

travel mode choices, are combined into one trip OD table. The capacity will increase 

due to introducing AVs. Patel et al. (2016) have conducted work on how AV behavior 

will influence the network; they applied the classic green shield model in a simulation 

and obtained the capacity with different AV market penetration rate. This thesis takes 

that analysis as reference in capacity change and then conduct the assignment work. 

 

Organization 
 

 The remaining part of this thesis is organized as follows: Chapter 2 discusses 

the literature review of relating papers to traffic models, AV characteristics and future 

planning. Chapter 3 introduces the current four-step model and the necessary 

modifications to integrate the AV behavior into the traffic model. Chapter 4 discusses 

the scenarios build. Chapter 5 presents the results of each scenario and analyze the AV’s 

impact to different scenarios. The conclusion is discussed in Chapter 6.  
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Chapter&2:&Literature&Review&
 

Introduction 
 

 This chapter will provide an overview of literature related to integrating AV 

behavior into the four-step model. Next section will illustrate the previous work related 

to AVs modeling as well as autonomous vehicles’ behavior and impact prediction. The 

last section will discuss the previous work on modeling AV’s characterization. 

 

Autonomous Vehicles 
 

 Autonomous vehicles(AVs) have garnered a lot of attention in the last few years, 

although industries are still testing AVs. Recent research on AV modeling and impact 

predictions have became more and more mature. From the time when vehicles in the 

DARPA challenge were attempting to avoid obstacles until now, few states in the U.S. 

have issued permission for test driving of autonomous vehicles; but the potential 

benefits of AVs have pushed people to pay more attention. The U.S. is a country built 

on wheels; with over 261 million registered passenger cars (Hedges Company 2016), it 

is obvious that people in the U.S. like to have their own cars. Zhang et al. (2015) 

presented research that simulated the performance of shared autonomous vehicles 

(SAV) in an agent-based model with a dynamic ridesharing method. Their results 

indicate that SAVs could reduce trip delays, trip costs and vehicle miles traveled (VMT). 

Krueger et al. (2016) presented an SAV adoption model based on the stated choice 

survey in Australia. Their results show that SAVs may be more attractive to young 

travelers and that their acceptance is very sensitive to service attributes.  
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 However, what those services will look like is very unclear to travelers, 

especially if they haven’t even experienced AVs. Cools et al. (2017) proposed a logistic 

regression model to estimate the interest variables to SAVs from a stated adaptation 

experiment. They found that travelers are not very sensitive to those variables, which 

indicate that the current market is not paying attention to SAVs. Even though this study 

focused on estimating the market response of autonomous taxis in Belgium, people 

seemed to not like the idea of using SAVs, which may also occur in U.S. Besides, SAVs 

are more like a public transit system; it will need a large amount of initial investment 

from the government. The deployment for SAVs will definitely require more time than 

AVs. For simplicity purposes, this thesis will assume all the AVs are owned by 

individual travelers. 

 

Autonomous vehicles model  
!
 Although a lot of research has addressed the objective of AVs, very few have 

been examined the integration of AVs into a traffic planning model. In 2015, Levin et 

al. first proposed to evaluate the influence of AV ownership on trip, mode and route 

choice in a classic four-step planning model in Austin, Texas. They made assumptions 

that AVs are going to appear in 20 to 30 years with increasing network capacity and 

self-parking ability. They divided car ownership by different value of time (VOT) and 

introduced a Boolean variable to determine whether this class uses AVs entirely or not 

at all. Though the issue of not achieving convergence in traffic assignment may occur 

with multi-class formulation, they are still able to produce reasonable results since this 

issue is common within all models that use multi-class VOT. However, one main 

challenge of integrating AVs into a current model is how to decide the penetration rate 

overall and by different groups of people. Levin’s way of achieving that was to divide 
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them into different income groups. The disadvantage of this is that not everyone in a 

high-income group will own an AV and conversely in a low-income group.  

 Kroger et al. (2016) introduced a traffic demand model for the U.S. and 

Germany to model the impact of AVs. This model has a similar procedure as a four-

step model, except it only runs the first three steps. They apply an AV diffusion model 

as an external model in order to model different scenarios with different AV proportions. 

The core model uses NHTS data to conduct the trip generation and mode choice part 

together, followed by a trip distribution procedure. Their results showed that AVs both 

in Germany and U.S. will likely increase the VMT and the travelers’ travel mode will 

likely shift from transit to cars. This research was conducted on AV impact analysis 

and a comparison between Germany and U.S. by using a very simplified four-step 

model. This trend will also become more distinct with the AV penetration rate 

increasing. It significantly reduced the computational work on calculating user 

equilibrium by ignoring the traffic assignment step. However, this makes them lose the 

ability to look into the potential impact of AVs in the traffic network. 

 Since the agent-based model (ABM) is now very popular in the transportation 

field, a few studies are also looking at the impact of AVs. Azevedo et al. (2016) 

proposed an extended ABM to simulate the AV system with three different time-scale 

simulation levels. They specifically simulated the AV system on short-term and mid-

term levels to capture its impact on travel behavior. The main difference between a 

four-step model and ABM is that one is mainly served as a long-term planning model 

and the other one is a simulation-based model that mainly serves to see short-term or 

mid-term impact. The advantage of using ABM is that ABM can collect individual 

travel information, which allows researchers to do more individual-level research, such 

as average waiting time (Azevedo et al., 2016).  
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 However, ABM has disadvantages compared to the traditional four-step model. 

First, it requires more computational time than the four-step model because of 

individual-level computation. Second, it is better to use it with the already existing 

travel mode since it requires more characteristics of each travel mode. AVs are still in 

the testing stage and their behaviors are mostly predictions. With more predicted inputs, 

the uncertainty of the results may become greater than the traditional four-step model. 

After all, the main goal of assessing AVs’ impact is to see the approximation trends of 

how AV behavior changes will influence the traffic network. This thesis chose to 

integrate AVs’ behavior in MSTM to better present the impact of AVs with fewer 

required resources.  

 

Adoption rate of autonomous vehicles 
 

 Most researchers believe that AVs will appear in the market between 2020 to 

2030, but it is uncertain when and how AVs will penetrate the market. In recent years, 

research has been done on the adoption trends of AVs. 

Litman (2015) proposed an AV adoption rate based on previous vehicle 

technology deployment experience. He assumed that AV’s deployment might follow 

the pattern of automatic transmission if without mandates, which took nearly five 

decades to reach market saturation. Lavasani et al. (2016) proposed a Bass diffusion 

model, which was also based on previous technologies adoption data. They used 

indicators, including innovation factor and imitation factor, to predict the AV market 

penetration. They also included some social economic data as external indicators to 

modify the base model into a generalized model. Along with those efforts, a sensitive 

analysis of market size and price ratio was conducted to better understand the possible 

impact of those two indicators on AV market penetration. Their results demonstrate 
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that the market size has a dominant impact on AV market penetration, but the initial 

AV cost relative to conventional vehicles seems irrelevant compared with the market 

size. This conclusion is surprising, because generally, the cost of a product is one of the 

most important factors that will influence its attractiveness to buyers. Bansal et al. 

(2016) proposed a simulation-based framework to forecast long-term adoption levels 

of connected autonomous vehicles (CAV). They developed different scenarios based 

on different annual increments in Americans’ willingness to pay (WTP) and annual 

drops in technology prices. They designed a survey to collect respondents’ WTP for 

CAV technologies, their social demographics and social economics data. A Monte 

Carlo simulation-based model was proposed based upon those data. It used probabilities 

generated by estimating a multinomial logit (MNL) model in BIOGEME to assess the 

vehicle transaction and technology adoption choice of each respondent every year. 

Their results suggest that WTP, technology cost and government regulations all play 

important roles in the adoption of CAVs. The adoption rate varies from 24.8% to 87.2%, 

depending on different annual price drop and increased annual WTP. 

 Most research related to AV impact analysis uses different market penetration 

rates directly to build different scenarios to forecast impact under different situations.  

 

Autonomous vehicles characterization 
 

 The previous section discussed AV modeling in various ways. This thesis is 

using MSTM, an existing four-step model for the Baltimore-Washington metropolitan 

area, to integrate AVs and analyze the potential impact that may occur in this region. 

However, the main challenge of integrating AVs is how to predict AVs’ characteristics. 

Fortunately, there is substantial literature with already published results that are 

considered relevant to this thesis. 
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Impact on trip generation 
!

 AVs will influence the mobility of traveling. Truong et al. (2017) proposed that 

AVs will possibly improve the mobility for those who couldn’t drive, such as 

individuals too young or too old. They measured this gap by generating entirely new 

trips for these groups. The study attempted to categorize the impact of AVs on travel 

demand into different age ranges. This is a reasonable assumption; in addition, other 

assumptions could be used in determining the AVs influence, such as categorizing them 

into different income groups or different regions. According to their results, around 

4.14% new trips were generated by AVs over all age groups and this did not consider 

the trips shift from other modes.  

 Besides the improvement of mobility with AV deployment, the benefit of 

enhancing a driver’s user experience may also increase their willingness to travel. 

Bierstedt et al. (2014) proposed an insight that enhancing user experience with AVs 

may make AV owners travel more than they do now. They list previous research about 

negative impacts of driving, such as mental stress while driving in urban areas 

(Automotive News, 2013) and physical damage like muscle cramps or back pain 

(Safety Services Company, 2009). According to the AV definition from NHTSA, a 

level three or level four automation may significantly reduce the responsibility for 

drivers. This research, conducted by Jane et al. (2014), suggested that AVs will 

significantly reduce the stress that drivers currently experience. 

 

Autonomous vehicles’ behavior 
!
 Benefiting from automation, AVs have several aspects that behave differently 

than conventional vehicles. Litman (2014) suggested that AVs could allow motorists to 
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rest and work while driving, reduce intersection stops and narrow lanes, and find 

parking by itself. These benefits could potentially reduce driver stress, increase road 

capacity and reduce parking costs due to more efficient parking.  

 Zhang et al. (2015) used a discrete event simulation (DES) approach to evaluate 

the impact of SAVs on urban parking. They used three different parking price scenarios 

to examine the tradeoffs between parking fees, VMT generation and average waiting 

time. Their results show that a 5% penetration rate of SAV will reduce approximately 

4.5% of parking land use. In addition, the parking demand would also be influenced by 

road congestion and average waiting time, which may result in parking shifts to 

adjacent travel analysis zones (TAZs). Kloostra et al. (2016) suggested that AVs might 

have different behaviors than traditional vehicles, such as self-parking. They generated 

additional trips in their model to assign AVs to park in the nearest space outside of the 

center area.  

 Levin et al. (2015) proposed a capacity based on the classic Greenshield’s 

speed-density relationship. They also assumed the jam density to be a function of the 

proportion of AVs on the road because AVs generally will require less car-following 

distance. Kim et al. (2015) followed the function of capacity related to headway to 

determine the capacity on the road with different proportions of AVs. This method was 

first presented by Yokota et al. (1998); they presented a conceptual model to reflect the 

influence of headway in a Q-V model. Since the AVs will potentially reduce the car-

following distance, different proportions of AVs on the road will have a different 

average headway, which means this headway Q-V model could apply to an AV 

scenario’s road capacity estimation. Patel et al. (2016) borrowed a car-following model 

from Levin and Boyles (2015) to predict the safe car-following distance as a function 
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of reaction time. According to their assumption of AV reaction time and vehicle length, 

a fundamental diagram of flow density relationship is shown in Figure 1.  

!

Figure 1 Flow density relationship with proportion of AVs (Patel et al., 2016). 

!
 Chen et al. (2016) proposed an extension version of the household activity 

pattern problem (HAPP) model. Their results show that the deployment of AVs will 

provide a wide range of activities to be performed in-home, out-of-home and potentially 

in-vehicle. Gwilliam (1997) mentioned a conceptual framework that yields important 

insights into the nature of travel time (TT) savings. He said that value of time (VOT) 

savings should be related to the value of activity with which it is associated; this could 

apply to AVs, in that different travel purpose could have different in-vehicle time 

reduction. 

 Nord et al. (2017) recommended developing similar policies to those of 

conventional vehicles, such as high occupancy (HOV) vehicle lanes and toll lanes, 

which allow jurisdictions to dedicate for special use.  
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Chapter&3:&Implementation&of&Autonomous&Vehicles&in&MSTM&
 

Introduction 
 

 The Maryland Statewide Transportation Model (MSTM) is a classic four-step 

model built for the Baltimore-Washington metropolitan area. This thesis will introduce 

a new method to integrate AVs as a new travel mode. This method will be more efficient 

in terms of time, compared with building a new model like those in the previous 

literature. A separation and aggregation of model runs is the core concept of this method, 

which essentially reproduces the four-step procedure for the combination of AVs and 

conventional vehicles. 

 

Methodology 
 

 Based on previous research on AV market penetration, experts believe AVs are 

likely to be on the road between the 2020 and 2030. This thesis integrates AVs into a 

four-step model with a predicted 2030 data set. However, the objective of this thesis is 

also interested in the impacts of different AV penetration rates. Thus, this thesis will 

consider three different penetration rates in the base scenario to compare the impact; 

then one penetration rate will be applied to different development scenarios.  

 To integrate AVs into the current four-step model, the first step is to integrate 

the AV’s characterization into the trip generation part. The travel demand will increase 

due to the benefits of AVs. As Truong et al. (2017) mentioned in their paper, total trips 

will increase approximately 4.14% if AVs replace traditional vehicles. This thesis will 

take their results as reference and modify the trip generation model. This model only 

takes the motorized trips share into consideration, since non-motorized trips, such as 
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walk and bike trips, are pre-determined by an external model. In-vehicle time change 

is pre-determined by different travel purposes and different income groups.  

 

Assumptions 
 

 As mentioned in the previous chapter, Lavasani et al. (2016) and Bansal et al. 

(2016) showed opposite results of AV pricing influence in their research. Since there 

are two different methods showing opposite results on the influences of AV prices and 

willingness to pay, this thesis will not take the willingness to pay or AV initial cost into 

consideration. Since AVs are still in the testing stage, their behavior may vary with the 

development of government regulations on AVs and their performance data has mostly 

remained confidential. Although some research has made predictions on AVs’ behavior, 

some benefits, like in-vehicle time utilization, have not been discussed yet. Therefore, 

the following assumptions about in-vehicle time utilization, road capacity and parking 

cost change have been made: 

 

1.! In order to avoid the uncertainty of semi-automated vehicles, where drivers 

may choose using the assistant system or not, in this thesis all the AVs are 

assumed to be level four (NHTSA) fully-automated vehicles.  

2.! The deployment of autonomous vehicles will liberate driver’s hands and 

allow them make use of the time they previously used to drive. Since the 

utilization of time is different for different people and may also be different 

under different trip purposes, the utility of the in-vehicle time has been 

divided for different income groups and different trip purposes. The use of 

in-vehicle time in the model is reflected to reduce the in-vehicle time cost 

in the utility function of each travel mode. There are 18 different trip 
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purposes in this model and most of them are assumed to have an average of 

50% reduction in in-vehicle time. Home-based work trips have a reduction 

of in-vehicle time from 50% to 80%, because drivers are allowed time to do 

their jobs during the work trip; this use of time usually has the most value, 

especially for the high-income group. However, this thesis only gives home-

based school trips a 20% reduction in in-vehicle time because during these 

trips, parents usually will be interacting with children; this interaction would 

not be influenced by whether they are driving or not. Therefore, the value 

of the time will be much less. 

3.! Due to the automation ability, AVs will be available to perform an 

additional trip to find a proper parking lot with less parking fees. The 

parking demand will decrease especially in the central area. This thesis 

makes an assumption to reduce parking fees 50% for AVs. 

4.! This thesis assumes the capacity will change accordingly with respect to 

different adoption rates of AVs. By introducing the AVs, the car-following 

distance has decreased; therefore, the road capacity will increase. In the 

original model, the headway including car length is 16 meters under the 

maximum flow situation. This model assumes that AVs will reduce reaction 

time by 50% compared with a human driver. The human is assumed to have 

a reaction time of 1.0 second. 

 

Method 
 

 A traditional four-step model has four major procedures: trip generation, trip 

distribution, mode choice and traffic assignment. Since AVs will potentially influence 

the trip demand, road capacity, parking demand and travel cost function, they need to 
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be integrated from the start of the model. This thesis applies a parallel model run 

method to easily integrate AVs.  

 First, two of the same models are created, which are assigned to AVs and 

conventional vehicles; everything is the same for both, including the inputs. Then, the 

trip generation model in the AV’s version is modified by adding a parameter to 

represent the AV; trip generation model in the conventional vehicle’s version also adds 

a parameter, respectively. The sum of those two parameters is equal to one, which helps 

divide the generated productions and attractions into two parts; together they will equal 

the original total trips. An additional travel demand parameter is added to AV’s version 

in order to represent the influence that AVs bring to the travel demand side. 

 Then, two-part productions and attractions go through the trip distribution 

separately. Since the trip distribution only distributes them by calculating the zone-to-

zone travel time cost, there is no need to change this procedure because productions 

and attractions are proportionally changed. This means the generated trips will also be 

proportional with respect to the AV penetration rate. 

 After the trip distribution, the trips again enter into two different mode choice 

models. One has the same parameters and model structure as the original one. Another 

one has added a new parameter into utility functions, which include drive along and 

shared drive (HOV2, HOV3+). Since parking cost is an input of mode choice model, 

the parking cost is also changed in the AV’s version of mode choice. This parameter 

serves as an in-vehicle time reduction indicator in utility function of all car modes. 

 Last, two sets of trip tables are shown as outputs after the previous three steps. 

Both of them contain trip tables by mode choice and trip tables by purpose and income 

groups. In this last procedure, two sets of trip tables are aggregated into one set that 

represents the total trips with a proportion of AVs. Then, this trip table set is applied to 
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the traffic assignment model and produces the final results after the model run. Figure 

2 will show the overview of the integration method. 

!

Figure 2 Method for AV's integration. 

 

Four-step Model Modification 
  

 MSTM is a regional planning model which includes Maryland, Washington, 

D.C., Delaware and a part of Virginia. In total, 18 different trip purposes and 11 

different travel modes have been defined in the model. Trip purposes include home-

based work (HBW) with five income groups, home-based shopping (HBS) with five 

income groups, home-based other (HBO) with five income groups, home-based school 
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(HBSc), non-home-based work (NHBW) and other-based other (OBO). Since this 

thesis is dedicated to integrating AVs, transit will remain within the same parameters, 

so no changes will be made. The travel mode related to cars are drive along (DA), 

shared drive (SR2) and shared drive (SR3+). 

 

Trip generation 
 

 In the MSTM trip generation model, trips are generated by different trip 

purposes and income groups. First, the activities density has been calculated for each 

zone, which are later used in trip attraction generation. Then, income shares of each trip 

purpose have been calculated by applying existing home-based work (HBW) attraction 

shares; other income shares by purpose are scaled by its own pre-defined rate and HBW 

attraction shares by income.  

 In the production and attraction generation portion, a modified model is 

introduced:  

 

!"# = %&' ∗ )*'&
+

',-

∗ ./0& ∗ 1 − 3 ∗ 4

5"& = 67"8 ∗ 9"# ∗ 4
6:;<6=& ∈ 1,5 6A ∈ 1,5  

 

!"# = %&B ∗ CADB&
E

B,F

∗ ./G& ∗ 4

5"& = 67"8 ∗ 9"# ∗ 4
6:;<6=& ∈ 6,10 6A ∈ 1,5  

!"# = %&B ∗ CADB&
E

B,F

∗ ./J& ∗ 4

5"& = 67"8 ∗ 9"# ∗ 4
6:;<6=& ∈ 11,15 6A ∈ 1,5  
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!"# = %&' ∗ )*'&
+

',-

∗ K./0& ∗ 4
E

6&,F
5"& = 67"8 ∗ 9"# ∗ 4

6:;<6=& = 17 

 

!"# = %&B ∗ CADB&
E

B,F

∗ ./GM.& ∗ 4 ∗ N
E

6&,F
5"& = 67"8 ∗ 9"# ∗ 4 ∗ N

6:;<6=& = 16 

 

!"# = %&B ∗ CADB&
E

B,F

∗ K./J& ∗ 4
E

6&,F
5"& = 67"8 ∗ 9"# ∗ 4

6:;<6=& = 18 

 

Where: 

 %&': coefficient of household (HH) in income group i, with worker count w; 

 )*'&: number of HH with worker count w in income group i; 

 ./0&, ./G& etc.: motorized share for each purpose in income group i; 

 D: trip production dampening coefficient; 

 4: autonomous vehicles coefficient; 

 N: coefficient to remove school bus trips; 

 7"8: total attractions of purpose p; 

 9"#: attraction share of income group i in purpose p; 

 %&B: coefficient of HH size in income group i with size count s; 

 CADB&: number of HH size with size count s in income group i. 

  

 The parameter 46 could change depending on different trip purposes and 

different income groups; however, no study has been done on how the influence will 
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vary from different trip purposes and income groups. Therefore, this thesis assumes 

parameter 4 to be 5%. 

 

Trip distribution 
 

 In the trip distribution step, a gravity model is used to determine the number of 

school trips between origins and destinations. This gravity model is formed by 

productions multiplying attractions and friction factors, as shown below: 

7&QR = !&R ∗ 5QR ∗ S&QR/ (5QR ∗ S&QR)
Q

 

Where: 

 7&QR: trips for purpose k between production zone i and attraction zone j; 

 !&R: productions for trip purpose k in zone i; 

 5QR: attractions for trip purpose k in zone j; 

 S&QR: fraction factors for trip purpose k between zone i and j. 

 The number of all other kinds of trips from each origin to destination is 

determined by a destination choice model, which has the same discrete choice model 

structure and utility function used in mode choice. The only difference is that they are 

using different parameters. Discrete choice model structure and utility functions are 

demonstrated in the mode choice part. After computing every exponent of utilities for 

each nest level, Log Sum is computed for each trip and is used to determine OD pairs 

for each trip. 

Mode choice 
 

 Mode choice procedure helps to assign personal trips to different travel modes. 

The MSTM uses a nested logit model to calculate the utility of each mode and 



! 24!

determine the mode choice for each trip. Travel modes are divided into two major nests 

as auto and transit, as well as one sub-nest under auto trip and two sub-nests under 

transit trips. The nested logit model structure is shown in Figure 3. 

!

Figure 3 Mode choice model structure. 

 

 In the utility function of cars, the cost of in-vehicle time and parking cost are 

considered. Therefore, changes have been made on utility functions to represent the 

AV’s characteristics. The modified utility functions for autos are: 

 

WXY = Z&[\ ∗ ]^_` ∗ % + Z\bcd ∗ 7&Q + Ze"feB\ ∗ 3^_` ∗ Me" + Z"feB\ ∗ (7;gg^_`

+ M'R"(A)) /Zhi 

W^jk = Z&[\ ∗ ]l_` ∗ % + Z\bcd ∗ (7&Q + 1.1) + Ze"feB\ ∗ 3l_` ∗
Me"
2 + Z"feB\

∗ 7;ggl_` +
M'R"(A)

2 + /^j /ZhBc/Zhi 

W^j+ = Z&[\ ∗ ]l_` ∗ % + Z\bcd ∗ (7&Q + 2.5) + Ze"feB\ ∗ 3l_` ∗
Me"
opq + Z"feB\

∗ 7;ggl_` +
M'R"(A)
opq + /^j + /^j+ /ZhBc/Zhi 

Where: 
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 Z&[\: coefficient of in-vehicle time; 

 ]^_`: SOV in-vehicle time; 

 %:in-vehicle time reduction rate; 

 Z\bcd: coefficient of terminal time; 

 7&Q: terminal time from origin i to destination j; 

 Ze"feB\: coefficient of auto operation cost; 

 3^_`: SOV travel distance; 

 Me": auto operation cost; 

 Z"feB\: coefficient of parking cost; 

 M'R"(A): parking cost of zone i; 

 /^j: bias of shared drive; 

 ZhBc/Zhi: nesting coefficient of shared drive/auto.  

 

 The in-vehicle time reduction rate is pre-determined by different trip purposes 

and income groups. Table 1 shows the reduction rate for each purpose with different 

income categories. 

Table 1 In-vehicle Time Reduction Rate 
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Traffic assignment 
 

 In the traffic assignment step, since transit networks and highway networks 

are two separate systems not affecting each other, this thesis only introduces the 

highway assignment.  

 There are two major steps in highway assignment. First, since the model is not 

a dynamic model, the travel time for each link is assumed to be the time in minutes 

needed to pass this link under congestion situations. All trips with different purposes, 

different income groups and travel modes have been assigned to four value of time 

(VOT) groups. The initial minimum travel cost has been calculated for each link and 

the facility type of links is classified into four classes. Then, trips have been respectively 

assigned to each link. The first step is shown below: 

7&e = 60 ∗ 3&/pf& 

M&i = 7&e +
M\err&
sJ7i

+ 0.25 ∗ 3& 

M&t = 7&e +
M\err&
sJ7t

+ 0.25 ∗ 3& 

M&b = 7&e +
M\err&
sJ7b

+ 0.25 ∗ 3& 

M&u = 3& ∗
60
pvv&

∗ 0.5 + 7&e ∗ 0.5 +
M\err&
sJ7u

+ 0.25 ∗ 3& 

Where: 

 7&e: travel time for link i; 

 3&: distance of link i; 

 pf&: congestion speed of link i; 

 M&i: travel cost of link i for VOT group a; 

 M\err&: toll cost of link i; 
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 pvv&: free flow speed of link i. 

 

 Then, the travel time for each link in different classes is recalculated based on 

current assignment. After that, the new travel cost for each link is recalculated. The 

second step is shown below: 

7F& = wAx{7&e ∗ 1 + 0.7 ∗
s
M

z

, 7&e ∗ 100} 

7k& = wAx{7&e ∗ 1 + 0.7 ∗
s
M

z

, 7&e ∗ 100} 

7+& = wAx{7&e ∗ 1 + 0.7 ∗
s
M

z

, 7&e ∗ 100} 

7|& = 7&e 

Where: 

 7F: travel cost of link i in class 1; 

 s: total volume of link i; 

 M: capacity of link i. 
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Chapter&4:&Scenarios&Build& 
  

 This thesis has utilized a draft base scenario built at the University of 

Maryland’s National Center for Smart Growth (NCSG). In total, six scenarios have 

been introduced by this thesis, including base scenario 2030 (Base), base scenario with 

10% AV (Base10), base scenario with 30% AV (Base30), base scenario with 50% AV 

(Base50), base scenario with 70% AV (Base70), and base scenario with 90% AV 

(Base90). The following portion of this chapter discusses the background of the 

scenario build and the further development for AV deployment.  

 

Draft Scenario Description 
  

 The base scenario 2030 is the original MSTM set up for 2030, which uses the 

census data in 2000 and other social demographic and social economic data to generate 

trips for the year 2007. In the base scenario 2030, the network has been changed with 

respect to the current network situation and forecast network modification, based on 

the Maryland Statewide Transportation Investment Plan. The social demographic and 

social economic data have also been revised to predict the situation in 2030.  

 

Further Development 
!

! This! thesis! is! dedicated! to! integrating! AVs! into! MSTM! and! to! analyze! the!

impact!of!AVs!with!different!market!penetration.!There!are!four!different!timeLofLday!

choices!for!travelers!to!conduct!their!trips.! In!order!to!simplify!the!model!runs!and!

make!the!results!more!representative,!this!thesis!only!considers!the!PM!peak!period.!

The! reminder! of! this! section! will! introduce! the! newly! set! up! for! base! 2030! with!
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different!market!penetration!rate,!and!the!set!up!for!other!scenarios!with!onLmarket!

penetration!rate.!

!

Base 2030 scenarios with AVs 
!

! The base scenarios with AVs are built up based on the base 2030 scenario 

with additional assumptions. !

! Lavasani et al. (2016) predict that AVs will be available for purchase by 2025 

and the AVs adoption rate will reach approximately 87% by 2060. Litman (2014) 

predict that AVs may be available for purchase as early as 2020 and the AVs adoption 

rate may vary from 70% to 90% by 2060 to 2070. This thesis chooses three different 

AVs adoption rates, which are 10%, 40% and 90%, to predict the potential impacts of 

AVs in base scenario. 

 Since this thesis use a method to generate trips for AVs and conventional 

vehicles separately, on the demand side, the trip generation for AVs’ portion could be 

assumed as 100% adoption rate. A 5% demand increase for AV trips has been applied 

to the model, which is equivalent to 0.5%, 2% and 4.5%, increasing in total travel 

demand for 10%, 40% and 90% of AVs adoption rate.  

 Zhang et al. (2017) predicts that a 5% adoption rate of SAVs will decrease 4.5% 

of parking land in Atlanta, which means SAVs only require 10% of parking lots, 

compared to conventional vehicles. Since SAVs could serve multiple individuals that 

keep them operating on the roads, the dramatic decrease in parking demand is 

reasonable. However, AVs cannot reduce the parking demand except to park 

themselves somewhere cheaper, which will end in reducing the parking cost. This thesis 

assumes parking cost for AVs will reduce 50% due to their ability to self-park. 
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! As!Chen et al. (2016) predicted, the benefit of AVs may potentially provide 

travelers the possibility to conduct in-vehicle activities. The value of the utilization of 

in-vehicle time is reflected as in-vehicle time reduction in this thesis. Since the value 

of time (VOT) will be different for different income groups and may potentially be 

different for different trip purposes, the reduction rate is defined in Table 1.  

 A } = ~ ∗ s relationship has been used to estimate the capacity change due to 

the impact of AVs. The results have been rounded to easily reflect the relationship of 

capacity change between different AVs adoption rate. This thesis only considers the 

capacity change on highways; the capacity of other types of facilities will remain the 

same because the benefit of AVs may be weakened due to the complex traffic situations. 

As a result, capacity will increase 5% while the adoption rate is 10%. Capacity will 

increase 15% while the adoption rate is 30% and will increase 25% while the adoption 

rate is 50%, etc.  

 

 The scenarios build for all scenarios is shown in Table 2. 

!

Table 2 AV Scenarios Build 

Scenarios! Base!2030!

Adoption!

Rate!

10%! 30%! 50%! 70%! 90%!

Road!

Capacity!

+5%! +15%! +25%! +35%! +45%!

Demand! +0.5%! +1.5%! +2.5%! +3.5%! +4.5%!

Parking!

Cost!(AV)!

L50%! L50%! L50%! L50%! L50%!

! !
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Chapter&5:&Numerical&Results&and&Analysis&
 

 In this chapter, the results from scenarios are presented and the analysis is 

discussed. This chapter is organized as follows: Section 5.1 introduces an experiment 

to test the method. Section 5.2 analyzes the results from base scenarios to assess the 

impact of different adoption rate of AVs.  

 

Model Validation 
 

 This method of integrating AVs by dividing a four-step model into two parts is 

unconventional, compared with other methods. With a deep understanding of the model 

structure of Maryland Statewide Transportation Model, this method is proven to be 

theoretically correct. However, in order to make sure this method works correctly, an 

experimental test is set up to evaluate this method. 

 Two models are set up to do the validation work; one is divided into 10% of 

original households and 90% of original households, while another is divided into 40% 

of original households and 60% of original households. Everything else remains the 

same and both models use the method of this thesis to run. The numerical results are 

shown below in Table 3.  

 

Table 3 Experimental Results 

  Base   
 Original 10% 50% MAX. 

Difference 
Total Trips 66098126 66098126 66098126 0% 

Transit Trips 3618074 3618074 3618074 0% 

VMT 119530423 119530423 119530423 0% 
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 The results show that there is no difference between all scenarios among all the 

statistic results. Since the difference is 0%, it is safe to say that this method could 

produce the same results as the original four-step model. Thus, the results of integrating 

AVs by using this method could represent the results from a four-step model that 

originally has AVs in its mode choice.  

!

Base Scenarios Analysis 
 

 The statistic results of base 2030 scenarios are shown in the Table!4.!!

Table 4 Base 2030 AV Scenarios Statistic Results of Changes 

Scenario! Base!2030!

Adoption!
Rate!

10%! 30%! 50%! 70%! 90%!

VMT! +0.71%! +2.40% +4.01% +5.51% +7.49% 
VHT! -3.96% -9.10% -12.54% -15.27% -18.64% 

VMT 
Highway 

+1.75% +5.04% +7.96% +10.80% +14.37% 

VHT 
Highway 

-1.20% -3.87% -5.24% -5.86% -6.69% 

Transit Trips -2.53% -5.05% -7.06% -8.52% -10.16% 
Total Trips +0.27% +0.97% +1.89% +2.99% +4.51% 

Avg. Distance +0.43% +1.41% +2.07% +2.44% +2.85% 
Avg. Travel 

Time 
-4.22% -9.98% -14.16% -17.73% -22.15% 

Avg. Speed +4.86% +12.65% +18.92% +24.52% 32.12% 
Avg. 

Highway 
Speed 

+2.99% +9.26% +13.94% +17.69% +22.57% 

 
  

 In order to better interpret the results, three sets of results have been chosen to 

visualize below. 
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Figure 4 Changes in number of trips 

 

 

Figure 5 Changes in VMT & VHT 
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Figure 6 Changes of vehicle performance in the network 

 

 From Figure 4, we can see that the changes in total trips are linear with the 

adoption rate of AVs increasing. This result shows that trips will increase more when 

AV adoption rate become higher. The curve of transit trips shows that transit trips were 

constantly shifting to auto trips with the increase of AVs adoption rate. However, the 

slope is obviously becoming smaller when AV adoption rate become larger. This is 

because the network first has a larger base number of transit trips; since transit trips 

constantly shift to auto trips, the base number of transit trips has decreased so less transit 

trips will shift to auto trips. In addition, number of transit trips with less utilities will 

always be larger than the number of transit trips with more utilities. This will result in 

decreasing influence from AV’s benefits to remaining transit riders when the AV 

adoption rate is increasing.  

 From Figure 5, we can see some of the same results from Figure 4. It is obvious 

that with an increasing AVs adoption rate, Vehicle Mile Traveled (VMT) will also 

increase respectively and Vehicle Hour Traveled (VHT) will decrease respectively. The 

traffic condition was assumed to be better since AVs will increase road capacity and 
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results match the assumptions. These results demonstrate that people will tend to travel 

longer distances if they have AVs. 

 In Figure 6, we can observe that average travel distance increases constantly, 

which indicates that AVs surely will attract people to travel longer because of the 

assumption that people will have more value while traveling in AVs. We can also 

observe that average travel speed increases constantly due to the benefit of increasing 

capacity. One interesting result is that the average speed overall has a larger increasing 

slope than average highway speed. This result shows us that the capacity change due to 

the benefit of decreasing car-following distance by AVs will have a larger impact on 

local roads than on highways. This is because local roads will be more congested in 

most situations, which makes capacity increasing more important. We will be able to 

improve the results after we get more precise behavior data from AVs and modified 

network capacity.  

 Over all, the comparison of six scenarios with different AV adoption rates show 

that AV will increase travel demand and bring better traffic conditions when the 

adoption rate becomes higher. The average travel speed will increase with the AV 

adoption rate increasing. 

 The network congestion maps are shown in Figure 7. 
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!

Figure 7 Base scenarios congestion map 

!
!
 From the congestion map we can see that base10 does not improve much with 

respect to the base scenario. However, as the AVs adoption rates increase, the traffic 

conditions will improve respectively. In order to better show what consequences AVs 

may bring to network, these congestion maps only draw highway networks with volume 

over capacity ratio. Thus, AVs will increase traffic conditions in highways because we 

increase their capacity. 
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!
!
!
!

Chapter&6:&Conclusion&and&Discussion&
 

 The method this thesis uses can help generate relatively accurate results to 

assess the impact of AVs. Despite the disadvantages of a four-step model, we can still 

assess the impact with a different proportion of AVs on the road. 

 In general, AVs will increase travel demand, which will result in increasing trips 

and VMT.  The average travel distance will increase when AVs adoption rate increases, 

because AVs will attract travelers to travel longer. The average speed will increase 

when the AV adoption rate increase. The VHT will decrease due to the implementation 

of capacity increasing and traffic conditions will improve, especially when the AV 

adoption rate reach a high level. With the increase of the AV adoption rate, transit trips 

will shift to auto trips and the total trips will increase due to the demand increasing. 

Overall, AVs will eventually help improve the traffic conditions and will increase 

traveler’s willingness to drive.  

 A critical step in the future research is to better modify AVs’ characteristics 

with more real data from industries or technology companies. Thus, the impact of AVs 

can be predicted more precisely than now. More information of AVs’ behavior in urban 

areas can help to better predict their performance on local roads, which can tell us more 

accurately at which point of the AV adoption rate will the entire traffic network perform 

better. The efforts in this thesis can also shift to an advanced traffic model, such as 

ABM, which can provide better prediction. 
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