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Abstract

Over the years, many different agent programming languages have been proposed. In this
paper, we propose a concept called Agent Programs using which, the way an agent should act
invarious situations can be declaratively specified by the creator of that agent. Agent Programs
may be built on top of arbitrary pieces of software code and may be used to specify what an
agent is obliged to do, what an agent may do, and what an agent may not do. In this paper, we
define severa successively more sophisticated and epistemically satisfying declarative seman-
ticsfor agent programs, and study the computation price to be paid (in terms of complexity) for
such epistemic desiderata. We further show that agent programs cleanly extend well understood
semantics for logic programs, and thus are clearly linked to existing results on logic program-
ming and honmonotonic reasoning. Last, but not least, we have built a simulation of a Supply
Chain application in terms of our theory, building on top of commercia software systems such
as Microsoft Access and ESRI’s MapObject.
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1 Introduction

Over the last few years, there has been intense work in the area of intelligent agents[57, 110]. Ap-
plications of such agent technology have ranged from intelligent news and mail filtering programs
[75], to agents that monitor the state of the stock market and detect trendsin stock prices, to intelli-
gent web search agents[36], to the digital battlefield where agent technology closely monitors and
merges information gathered from multi pl e heterogeneousinformation sources[4, 67, 68, 100, 108].

In the long run, a platform to support the creation and deployment of multiple software agents
will need to interoperate with a wide variety of custom-made, as well as legacy software sources.
Any definition Def of what it takes for a software package S (in any programming language) to be
considered an agent program, must come accompanied with tools to augment, modify, or massage
S into an agent according to the definition Def.

Figure 1 shows the architecture of our IMPACT System for the creation and deployment of mul-
tiple interacting agents. IMPACT is ajoint project between the University of Maryland, Bar-llan
University (Israel), the Technical University of Vienna, and the University of Gief3en (Germany). In
IMPACT, an agent consists of two parts:

1. A body of software code (built in any programming language) that supports a well defined
application programmer interface (either part of the code itself, or developed to augment the
code). In general, we will assume that a piece of software S is represented by apair S =
(7s,Fs) where:

e s istheset of al datatypes manipulated by the software package S. 7s is assumed to
be closed under sub-types, i.e. if 7 isasubtype of atypein 7s, then 7 must also bein
Ts.

e Fsistheset of al pre-defined functionsof the package S that are provided by the pack-
age’s application programmer interface.

In other words, in the strict sense of object systems, S isdefinableasacollection (or hierarchy)
of object classesin any standard object datamanagement language such asODL [21]. Almost
all existingserversused inrea systems, aswell asmost commercia packages availableon the
market are instances of the above definition.

For example, consider the well known Oracle DBMS. Thismay be viewed as abody of soft-
warecode § = (7s, Fs) where:

e 7 consistsof thefollowing types: a set of attribute domains, tuples over different com-
binationsof these attribute domains, and rel ations (sets of tuples) over different attribute
domains.

e Fs consistsof theclassical relational operations: select, project, cartesian product, joint,
union, intersection, difference and aggregate operations, together with combinations of
these.

At any given point ¢ in time, the state of an agent will refer to a set Os(t) of objects from
the types 75, managed by itsinterna software code. An agent may change its state by tak-
ing an action — either triggered internally or by processing a message received from another
agent. However, one agent cannot directly change another agent’s state, though it might do so



indirectly by shipping the other agent a message issuing a change request. The precise defini-
tions of messages and message management, as well as actions and action management, will
be described in detail below.

2. A semantic wrapper that contains a wealth of semantic information. Such information in-
cludes, but is not restricted to the following:

(8) A servicedescriptionexpressedin sometightly specified language. Whileamultiplicity
of languagesmay beused for thispurpose, inIMPACT [5] wehavedevelopedan HTML-
likelanguagefor creating and manipul ating service descriptions. Thislanguagehas been
characterized with aformal declarative semantics, as well as sound and complete algo-
rithms for matching requests for services with an archive of service descriptions. Such
matches are “correct” only w.r.t. an underlying similarity measure.

(b) A message manager that (a) manages the data structures associated with an IMPACT
agent’s mailbox, and (b) specifies and implements policies on how commonalities be-
tween requests may be exploited to reduce the load on the agent.

() An action module that will take as input, a newly read message (which will constitute
an event), and use thisto trigger zero, one, or many actions. For this purpose, the action
module will require a specification of:

i. (Action Base) The actions that the agent may take in principle, and the conditions
that the agent state must satisfy for these actions to be executable, as well as the
effects on the agent state of taking such actions;

ii. (Action Requirements) The conditions(on the agent state) under which the agent is
either obliged or forbidden to take certain actions, as well as the conditions under
which an agent is permitted (at its discretion) to take an action;

iii. (ActionPolicy) Theconditionsonthe agent statethat determine how to choosewhich
of several permissible actions should in fact be executed.

(d) A metaknowledge modulethat providesthe agent valuableinformation both about itself,
aswell asabout other existing agentsintheworld. Such metaknowledgemay includesta-
tistical information on the reliability of other agents, the speedswith which other agents
provided certain services, and the financial charges (if any) levied for such transactions.
It may also include self-knowledge — such self-knowledge may include statistics about
its own performance, as well as analyses of operations on which it has performed well
or badly.

The IMPACT architecture contains a set of replicated, mirrored IMPACT servers that provide a
variety of services. Such services include agent yellow-page location services (to find agents that
provide a requested service), an agent ontology service, as well as type/thesaurus services. The
locations of all mirrored replicas of the IMPACT servers are known to all agents — mirroring and
replication guarantee that the system infrastructure will survive “downtimes’ experienced by one
or more servers. A synchronization layer guarantees that different IMPACT serverswill reflect the
same state, propagating changes at one server to other mirrored sites. Due to space concerns, the
reader interested in details of the IMPACT architectureisreferred to [5].

With this background in mind, we are now ready to go into the main aim of this paper —whichis
to design a theory and implementation of methods by which an agent may decide what actionsitis
obligated to take in a given state, what actions it is permitted to take (in a given state), and how it
chooseswhich actionsto in fact perform, given such astate of theworld. Such choicesare expressed
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by an agent program developed in a logical agent programming language that we introduce in this
paper. We are not the first to propose agent programming paradigms — several others, notably [97,
55, 45], have done so before us. Our work builds upon these previous, pioneering efforts, in the
following ways:

1

We will formally define the concept of an Agent Program that allows agents (of the sort de-
scribed above) to be built on top of arbitrary software code with application programmer in-
terfaces;

We will show that using such Agent Programs, we can access legacy software aswell as cus-
tom built software;

. Wewill provideseveral aternativedecl arative semantics specifying the meaning of such Agent

Programs. In particular, this declarative semanticswill specify what actions an agent will per-
form, givenacurrently prevailing agent state, and how the execution of these actionswill mod-
ify the agent state.

We will develop results on the computational cost of these aternative semantics, giving rise
to ahierarchy of increasing complexity.

Wewill establish relationshipsbetween some of these semanticsand existing semantical char-
acterizations of non-monotonic logic programs.

We will report on an application we have built based on a simulation of our Agent Program
Language and experimental results based on thisimplementation. This application involves
specifically building agents on top of commercia software packagesincluding Microsoft AC-
CESS and ESRI’s MapObjects.

The organization of this paper is as follows. Section 2 presents a brief example of a multiagent
system used for automated ordering of suppliesby acompany. A simulation of this system, adher-
ing to the principles described in this paper, has been implemented by us. Section 3 specifies how
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agent reasoning may be built on top of existing legacy software and how this may be used to de-
fine the concept of an agent state. Section 4 specifies the language within which agents’ actionsare
specified, and the language of agent programs which specifies the conditions governing an agent’s
behavior. Section 5 forms the main contribution of this paper, and describes the semantics of agent
programs. In fact, Section 5 gives a set of successively more desirable semantics. We discuss the
advantages and disadvantages of these semantics. Section 6 introducesthe reader to the assumptions
under which our complexity results (presented in detail in Section 7 and 8) are obtained, and also
present an overview of these results. The reader who is not interested in details of the complexity
resultsmay safely skip Sections7 and 8, but still understand the gist of theresultsby reading Section
6. However, Sections7 and 8 do contai n descriptionsof agorithmsto compute the semantics, which
thereader who isnot interested in complexity may wishto read. More efficient and sophisticated al-
gorithms that we have devel oped and we are currently implementing in IMPACT will be reported
on in a companion paper currently in preparation [35]. Section 9 shows the relationship between
our semantics and well known semantics in logic programming. As the relationship between logic
program semantics and nonmonotonic reasoning semantics (for default logic, autoepistemic logic
and truth maintenance systems) iswell known, this section also showsthe relationship between our
semantics and classical nonmonotonic logic semantics.

Assumption. As this paper islong and contains a fair amount of notation, Appendix C contains a
table summarizing the notation, as a handy reference for the reader.

2 Motivating Examples

In this section, we present two very simple multiagent scenarios—thefirst can be used for automated
supply chain management. Thesecond may be used by atax agency to takerel evant actionsonwhich
tax returns should be audited, how these audits will be conducted, etc. Aswe go through the paper,
we will revisit these examples many times.

2.1 Supply Chain Example

Supply chain management [17] isone of the most important activitiesin any major production com-
pany. Most production companiesliketo keep their productionlinesbusy and on schedule. To ensure
this, they must constantly monitor their inventory to ensure that components and items needed for
creating their product are available in adequate numbers.

For instance, an automobile company is likely to want to guarantee that they always have an ad-
equate number of tires and spark plugsin their local inventory. When the supply of tires or spark
plugsdropsto acertain predetermined level, the company in question must ensure that new supplies
are promptly ordered. This may be done through the following steps.

¢ In most large corporations, the company has “standing” contracts with producers of different
parts (also referred to as an “open” purchase order). When a shortfall occurs, the company
contacts suppliersto see which of them can supply the desired quantity of theitem(s) in ques-
tion within the desired time frame. Based on the responses received from the suppliers, one
or more purchase orders may be generated.

e The company may also have an existing purchase order with a large transportation provider
or providers. The company may then choose to determine whether the items ordered should
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be: (a) delivered entirely by truck, or (b) delivered by a combination of truck and airplane.

Thisscenario can be made significantly more sophisticated than the above description. For exam-
ple, the company may request bids from multiple potentia suppliers, the company may use methods
toidentify aternativesubstitutepartsif the onesbeing ordered are not availabl e, etc. We have chosen
to keep the scenario relatively simplefor pedagogical purposes.

The above automated purchasing procedure may be facilitated by using an architecture such as
that shownin Figure 2. In thisarchitecture, we have an Inventory-Agent that monitorsthe available
inventory at the company’s manufacturing plant. We have shown two suppliers, each of which have
associated agents that monitor two databases:

¢ An ACCESS database specifying how much uncommitted stock the supplier has. For exam-
ple, if thetuple(wi dget - 50, 9000) isinthisrelation, thenthismeansthat thesupplier has
9000 pieces of widget-50 that haven't yet been committed to a consumer.

¢ An ACCESS database specifying how much committed stock the supplier has. For example, if
thetuple(w dget - 50, 1000, conpany- A) isintherelation, thismeansthat the supplier
has 1000 pieces of widget-50 that have been committed to company-A.

Thus, if company-B were to request 2000 pieces of widget-50, we would update the first relation,
by replacing the tuple (wi dget - 50, 9000) by thetuple (wi dget - 50, 7000) and adding the
tuple (wi dget - 50, 2000, conpany- B) to the latter relation — assuming that company-B did
not aready have widget-50 on order.

Once the Plant Agent places orders with the suppliers, it must ensure that the transportation ven-
dorscan deliver theitemsto the company’slocation. For this, it consultsa Shipping Agent, whichin
turn consultsa Truck-Agent (that provides and manages truck schedules using routing a gorithms)
and an Airplane-Agent (that provides and manages airplanefreight cargo). Asdescribed later in Ex-
ample 4.1, the Truck Agent may in fact control a set of other agents, onelocated on each truck. The
Truck Agent we have built is constructed by building on top of ESRI’s MapObject system for route
mapping. These databases can be made more realistic by adding other fields— again for the sake of
simplicity, we have chosen not to do so.

In this paper, we will work out exactly how the behavior of these different agents can be repre-
sented, and how they communicate with each other through messaging (though messaging is not
discussedin detail in this paper). Rather, this paper focuses on how an agent takes decisionswhen it
receives messages from another agent. Thetheory in this paper has been simulated through a proto-
type implementation of this supply chain example. (In fact, for space reasons, we have chosen not
to describe severd features of thisimplementation as just afew of them are enough to illustrate the
concepts provided in this paper).

2.2 Tax Auditing Example

An dternative example involves a situation that may be used by a tax agency to determine which
returns to audit. Tax agencies are usually required to follow some explicit rulesin who to audit (so
that tax officers cannot audit ex-spouses against whom they hold agrudge, or unfairly prosecute one
or another racial/ethnic group, €tc.).
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Figure 2: Agentsin Supply Chain Example

A simpletax application may in fact have several agents. For the sake of simplicity, we will con-
sider just one agent, which we shall call the Audit-Agent that determines which users should be au-
dited. 1t may do so by monitoring two relations:

e Thefirstrelation, caledr et ur ns, containsarelational representation of the returnsfiled by
tax-payers.

e Thesecond relation, called enpl oyer _decl ar at i ons, specifies the payments to various
individualsthat have been reported by employers.

Theagent monitorsdiscrepanci esbetween theamountsreported by individual taxpayers, and amounts
reported by all employers who have made payments to that person. Based on these discrepancies,
it may either be obliged to take some audit actions, or forbidden to do so, or permitted to do so at
its discretion. Based on the actions this agent takes, it may be forced to take other actions (such as
notifying the taxpayer that he is required to explain his return, or to appear in person in tax court,
etc.).

Asin the case of the Supply Chain example, this scenario is a simplified scenario, that permits
pedagogical clarity whenit isused to illustrate the theories and definitionsintroduced in this paper.
In fact, we will use this example extensively throughout this paper.



3 Software Code Access

Inthissection, wefocusonthe“internal” datamanaged by the softwarecodeunderlyingan agent. As
mentioned in the Introduction, we may characterize the code implementing an agentto beapair S =
(Zs, Fs) where 75 isthe set of all datatypes provided by S and F isa set of predefined functions
S which makes access to the data objects in the agent’s state Os availableto external processes.

This characterization of a piece of software code isawell accepted and widely used specification
—for example, the Object Data Management Group’s ODMG standard [21] and the CORBA frame-
work existing industry standards that are consistent with this specification.

3.1 CodeCallsand Code Call Atoms

In this section, we introduce the reader to the important concept of a code call atom — this concept
forms the basic syntactic object using which we may access multiple heterogeneous data sources.
Before proceeding to this definition, we need to introduce some syntactic assumptions.

The content of Section 3.1 is not new work. It builds upon a previous effort called HERMES by
one of the authors on heterogeneous data and software integration [1, 19, 74, 73, 76]. The reader
familiar with that syntax may skip this section.

Suppose we consider abody § = (7Zs, Fs) of software code. Given any typer € 75, we will
assume that thereis a set Var(7) of variable symbols ranging over 7. If X € Var(7) issuch a
variable symbol, and if 7 isacomplex record typehavingfields£, . . ., £,,, thenwerequirethat X.£ ;
be avariable of type r; where ; isthetype of field £;. Inthesame vein, if £; itself hasasub-field ¢
of typev, thenX.f;.g isavariableof type~, and so on. In such acase, wewill call Xaroot-variable,
andthevariablesX.f;, X.f;.g, etc. path-variables. For any path variableY of theform X.path, where
X isaroot variable, we refer to X as the root of Y, denoted by root(Y)); for technical convenience,
root(X), where X isaroot variable, refers to itself.

An assignment of objectsto the variablesis a set of equations of theform Vy = o4,..., Vi = o
where the V;’s are variables (root or path) and the o;’s are objects — such an assignment is legal if
the types of objects and corresponding variables match.

Definition 3.1 (code call) SupposeS = (7s, Fs) issome software codeand £ € F isapredefined

functionwith » arguments, and d,, . . ., d, areobjectsor variablessuch that each d; respectsthetype
requirements of the:'th argument of £. Then S : £(dy,...,d,) iscaled acodecall. A codecall is
ground, if adl thed;’s are objects. O

In general, as we will see later, code calls are executable when they are ground. Thus, non-ground
code calls must be “instantiated” prior to attemptsto execute them.

In general, each function £ € F has a signature, specifying the types of inputsit takes, and the
types of outputsit returns. Here are some examples of code callsthat we have implemented:

e oracle: select(emp.rel, salary, >, 150000).
Consider adomain called or acl e representing the Oracle Universal Server. Oneof therela-
tionsin such a database may be called enp. r el . The above code call executes a select op-
eration ontheenp. r el table, and returns as output, the set of all tuplesinenp. r el whose
sal ary field isover 150,000 (dollars).



¢ face :match(mugshotdb, queryface).
Consider adomain caled f ace implementing aface recognition program. Thisprogram may
manage a mugshot archive called nugshot db of individuals whose identities are known.
Themat ch functiontakesapictureof someonewhoseidentity isto be determined, and matches
it against the mugshot database, returning aranked set of pairs ( Fi | e, Nane) , of faces and
associated names that match the query face.

e terrain: planroute(mapi, 97,97,102,103).
Consider adomain called t er r ai n representing a terrain reasoning system. mapl may be
one of severa maps in this system. The function pl anr out e plans an optimal route (ac-
cording to some trafficability criteriawe will not go into here) from a given origin to a given
destination. The above code call asks the terrain reasoner to plan an optimal route from the
point (97,97) on map1l to the point (102, 103) on mapl.

Assumption. We will assume that the output signature of any code call is a set. Thereisno loss of
generality in making thisassumption—if afunction doesnot return a set, but rather returns an atomic
value, then that value can be coerced into a set anyway — by treating the value as shorthand for the
singleton set containing just the value.

Definition 3.2 (code call atom) If cc isacodecal, and X iseither a variable symbol, or an object
of the output type of cc, then in(X, cc)isacode call atom. a

Code call atoms, when evaluated, return boolean values (i.e. they may bethought of as specia types
of logical atoms[96]). Intuitively, acode call atom succeedsjust in case Xisintheresult set returned
by cc (when Xisan object), or when X can be made to point to one of the objects returned by exe-
cuting the code call. Let usreturn to the code calls we introduced earlier, and see examples of some
code call atoms.

e in(X,oracle: select(emp.rel,salary, >,150000)).
Here, this code call atom would succeed, instantiating X to any single tuplein relation enp
that has a salary field of over 150,000.

¢ in(X,face: match(mugshotdb, queryface)).
Thiscode call atom would succeed, instantiating X to any record R (havingaf i | e and nane
fields) whose R.f i1e image matchesthequer yf ace imageas determined by theimage pro-
cessing code implementing the mat ch operation.

e in(X, terrain: planroute(mapl,97,97,102,103)).
This code call atom would succeed, instantiating X to some optimal route (as deemed by the
route planner code) between points (97,97) and (102,103).

Definition 3.3 (code call condition) A code call conditionisdefined asfollows:

1. Every code call atomisacode call condition.
2. If s, t areeither variables or abjects, then s = t isacode call condition.
3. If s, t are either integers/real valued objects, or are variables over the integers/reds, then

s<t,s>1t,8>1t,s <t arecodecall conditions.

8



4. If y1, x2 are code call conditions, then vy, & y» isacode call condition.

A code call condition satisfying any of thefirst three criteriaaboveis an atomic code call condition.
O

An example of acode cal conditionis:

i n( X, oracl e: sel ect (enp.rel,salary, > 150000)) & D
i n(Y, face: findpictureof (mugshotdb, X. nane))

This condition may be viewed as aquery requesting that wefind al X, Y such that X isaperson who
makes over 150K (as determined by querying an Oracle relation called enp. r el ), and finding all
picturesY of such a person from the mugshot database.

Oneaspect tokeepin mind about code callsisthat whilecode call syntax allowsvariabl esto appear
in acode call, it is usually impossible to evaluate a code call when it has uninstantiated variables.
Thus, any time we attempt to actually execute a code cal, the code call must be fully instantiated.

Definition 3.4 (safecodecall) A codecal S : £(dy,...,d,) issafeiff each d; isground. A code
call condition x; & ... & ., n > 1issafe, if and only if there existsapermutation = of y1, ..., x»
such that for every i« = 1, ..., n thefollowing holds:

1. |fX7T(¢) hastheforms = tors < t,s < t,s > t,s > t,thenoneof s,t (or both) iseither
aconstant or one of the X, (;y'sfor j < i; let X, (;) denote apossible new variable;

2. If xr(;) isacode cal atom in(X, (1), ccr(s)), then for each variable Y occurring in cc,;),
root(Y) isfromthe set {root(X.(5)) | j < i}. a

For example, the code call (1) described earlier in this section is safe. However, the code call

i n(X, oracl e: sel ect(enp.rel,salary, > 150000)) &
in(Y, face: findpictureof (mgshotdb, Z. nane))

isnot safe. Thereasonisthat if theordering of code call atomsaboveisused, thentheface databaseis
lookingfor aninstantiatedargument, Z. name, whichit doesnot find. Thereader can easily ascertain
that reordering the literalsin the example does not establish the safety property either.

Definition 3.5 (code call solution) Suppose x is a code cal condition involving the variables X,
andS = (7s, Fs)issomesoftwarecode. A solutionof y w.rt. Zs in astate(?s isalegal assignment
of objectso tothevariables X inX,written asacompound equatlonX = 0, suchthat theapplication
of the assignment makes y truein state Os.

We denote by Sol(x)7.,0. (omitting subscripts Os and 7s when clear from the context), the set
of al solutions of the code call condition x in state Os, and by O_Sol(x)7,,0. (Where subscripts
are occasionally omitted) the set of all objectsappearing in Sol(x) 7.0 O



For example, consider the Oracle/Face database code call discussed earlier. A valid solution to
this code call may be the assignment

X = John Smith,Y = john_smith.gif.

We are now ready to introduce an important assumption we make in our paper. Asthereader surely
knows, most legacy programsthat manipulateacertain datastructure have existing codetoinsert and
delete objectsfrom that data structure. Thisis certainly true of most commercia relational DBMSs,
geographicinformation systems (e.g. Arcinfo, ArcView), spatia databases (quadtrees, R-trees), face
databases (e.g. Informix face data blade), scheduling systems (e.g. Microsoft Schedule), etc.

Assumption. Throughout this paper, we assume that the set Fs associated with a software code
package S contains two functions described below:

¢ Afunctioninss, which takesasinput aset of objects O manipulated by S, and astate Og, and
returns anew state 0% = inss(O, Os) which accomplishes theinsertion of the objectsin O
into Og, i.e. insg iSan insertion routine.

¢ A functiondels, which takes asinput aset of objects © manipulated by S and astate Os, and
returns anew set of objects O = dels( O, Os) which describesthe deletion of the objectsin
O from Og, i.e. dels isadeletion routine.

In the above two functions, it is possible to specify the first argument, O, through a code-call atom
or a code-call condition involving a single variable. Intuitively, suppose we execute the function,
iNSquaatree( X[X ]) Where y[X ] is acode call involving the (sol€) free variable X. This may bein-
terpreted as the statement: “Insert, using a quadtree insertion routine, all objects o such that x[X]is
truew.r.t. the current agent state when X' = 0.” In such a case, the code call condition, y isused to
identify the objects to be inserted, and the insguaqtree fUNCtion specifies the insertion routine to be
used. Assuming the existence of such insertion and del etion routinesisvery reasonable—amost all
implementations of data structuresin computer science includeinsertion and deletion routines!

Asasingleagent program may manage multipledatatypesry, . . ., 7,, ech with itsown insertion
routine, ins~, ..., ins;,_, respectively, it is often more convenient to associate with any agent «, an
insertionroutine, ins,, that exhibitsthe following behavior: given either aset O of objects (or acode
call condition x[ X | of the abovetype), ins,(x[X ], Os) isageneric method that selectswhich of the
insertion routinesins..,, associated with the different data structures, should be invoked in order to
accomplish the desired insertion. A similar comment applies to deletion as well. Throughout the
rest of this paper, wewill assume that an insertion functionins, and a deletion function del, may be
associated with any agent « in thisway. Where « is clear from context, we will drop the subscript.

At this point, we have briefly shown how the mechanism of code-cals, and code-call atoms, pro-
videsaunified syntax withinwhich different software packages and databases may be accessed through
their application programmer interfaces. All theabove codecall mechani sms have beenimplemented
by us.

Code calls, and code call atoms, form the basic theoretical mechanism through which an agent
may access itsinternal code. In addition, using the code call mechanism, an agent A might send a
request to agent B, with full assurance that agent B will be ableto execute what isbeing requested by
agent A. The service description layer of the IMPACT architecture will include descriptions of the
code-callsprovided by each agent —thiswill also beincludedin the Yellow Pages server contained as
part of the IMPACT Server. These sources can be used by agent A to structureits code call message
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to agent B. Wewill not go into the description of the service description component of IMPACT here
—that isdonein acompanion paper [5].

3.2 Integrity Constraints

In addition to code-calls, each agent also has an associated set of Integrity Constraints. Agent in-
tegrity constraints specify propertiesthat states of the agent must satisfy. For example, if we have
an Oracle agent maintai ning an employee database, we may have an integrity constraint of theform:

in(X,oracle: select(emp.rel, salary, >,100000)) = X.grade > 6.

Thisintegrity constraint on the Oracle software states requires that the enp. r el relation must al-
ways ensure that individualswith salaries over 100K are at salary grade 6 or higher.

Similarly, consider an agent whose internal state is determined not just by one package, but by a
hybrid of two packages — aface recognition system and an image processor. Here, we may want to
use an integrity constraint which statesthat:

i n( X, face: mat ch( nugshot db, queryface)) &
in(Y,oracl e: sel ect (convicts.rel, nane, =, X. nane) &
=( X. sex, nal e)

=
i n( X, face: mat ch(nugshot db_mal e, quer yf ace)) .

This constraint says that if X is returned by matching a query face using a face recognition pro-
gram, and we know that the person shownin X isamale convict (using arelationa database), then
it should be the case that X is aso returned by executing the match on just male mugshots.

Definition 3.6 (integrity constraint) Anintegrity constraint isan expression of the form

v = Xa

where v isa safe code call condition, and y, is an atomic code call condition such that every root
variablein y, occursin . a

Notethat the safety requirement on the precondition of an integrity constraint guarantees a mech-
anism to evaluate the precondition of an integrity constraint whose head is grounded.

Definition 3.7 (integrity constraint satisfaction) A state Os satisfiesan integrity constraint ZC of
the form ¢» = y,, denoted Os |= IC, if for every legal assignment of objects from Os to the
variablesin I'C, either ¢ isfalse or y, istrue.

Let ZC be a (finite) collection of integrity constraints, and let Os be an agent state. We say that
Os satisfiesZC, denoted Os |= ZC, if Og satisfies every constraint IC' € ZC. O
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4 Agent Actions

Every agent’s actionsare completely determined by three parameters that theindividual creating the
agent must specify:

e An*“Action Base” specifying a set of actions that the agent can execute (under the right con-
ditions),

o A setof “Action Constraints’ that specify, for example, mutual exclusion between actions, etc.

e An“Agent Program” that determineswhich of the (instances of) actionsin the agent base the
agent is abligated, permitted, or forbidden to execute, together with a mechanism to actualy
determine what actions will be taken. Actionsare triggered by events. For example, reading
amessage may be an event that triggers one or more actions. A clock-event (e.g. the clock
reaching 0800 hours) may be another event that triggers another action.

In this section, we will introduce the concepts of an Action Base, Action Constraint, and Action
Program, and discuss how they work together.

41 Action Base

In this section, we will introduce the concept of an action and describe how the effects of actionsare
implemented. Inmostwork in Al [82, 44, 90] and logical approachesto action[11], itisassumed that
states are sets of ground logical atoms. Inthefertile area of active databases, it isassumed that states
reflect the content of arelational database. However, neither of these two approachesis adequate for
our purpose because the state of an agent which uses the software code § = (7Zs, Fs) is described
by theset Os. Thedataobjectsin Os could belogical atoms (asisassumed in most Al settings), or
they could be relational tuples (asis assumed in active databases), but in all likelihood, the objects
manipulated by S are much more complex, structured data types.

Definition 4.1 (action; action atom) An action a: consists of five components:

¢ A name, usualy written (X4, . .., X, ), wherethe X,’sare root variables;

e A schema, usualy written as (y, . . ., 7, ), of types. Intuitively, this says that the variable X;
must be of type ;, foral 1 < i < n.

¢ acode-call condition x, called the precondition of the action, denoted by Pre(«);

aset Add(a) of code-call conditions;

e aset Del(a) of code-call conditions.

The precondition Pre(a) must be safe modulo the variablesXy,...,X,,. Thismeansthat Pre(a)
is a safe code-call condition if every variable Y in Pre(«) such that root(Y) € {X; | 1 < i < n}
were considered as an instantiated object (constant) from the domain. Furthermore, every code-call
condition y in Add(a) U Del(a) must be safe modulo the union of X;,...,X,, and the root vari-
ablesYy,...Y,, occurring in Pre(«), i.e, itis safe if every variable Y in y such that root(Y) €
{Xy ...,%X,,Yy,...Y,, } wereconsidered as though it were a constant.
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Anactionatomisaformulaa(ty,...,t,), wheret; isaterm, i.e., an object or avariable, of type
m,fordli=1,...,n. a

L et usnow consider some exampl es of action and their associ ated descriptionsin specific domains.

Example 4.1 (Routing Agent Example) Consider the Truck Agent described in Section 2. This
agent may coordinate the route plans and routes of multiple trucks. For each truck, it may have an
intended route (sequence of points). Typicaly, this route will be a schedule (and hence will have
temporal attributes), but we shall ignorethat for the sake of simplicity. Thisagent may have several
associated actions one of which is shown below.

Replace(Truckl,Locl, Truck2,Loc2).

This action might be executed when atruck has suffered abreakdown. Thetruck gets replaced by a
new truck. Thisaction may be specified as follows.

¢ Name: Replace(Truckl,Locl,Truck2,Loc2)
e Schema (Truck,Place, Truck,Place)where Pl ace isapair of integers.

o Pre
i n(T1, oracl e: sel ect (truckstatus, trucki _id, = Truckl)) &
=(T1.location, Locl) &
in(T2,oracl e: sel ect (truckstatus, trucki _id, = Truck2)) &
=(T2.location, Loc2) &
=(T1. status, down(Locl)) &
=(T2.status,free).

o Add:
=(T3.truckstatus, enroute(Loc?2, Locl)) &
=(T3.location, T2. 1 ocation) &
=(T3.truck.id, T2. truck_.id).

o Dd:
in(T2,oracl e: sel ect (status,trucki _id, = Truck2)) &
=(T2.location, Loc2) &
=(T2.status,free).

In the above, we are assuming that al trucks have an associated status — free or enroute or down.
Furthermore, we are assuming that thet r uckst at us relation has only threefields—t r uck_i d,
status andl ocat i on. If it had additional fields, then for each additional field f, we would need
to add a conjunct of theform = (T2.f, T3.f) inthe “Add” list above. Intuitively, in the above add-
list, T3 isidentical to T2 in al respects except for the st at us field. O

In our framework, we assume that any explicit state change initiated by an agent is an action. For
example, sending messages and reading messages is an action. Similarly, making an update to an
internal data structureis an action. Performing a computation on the internal data structures of an
agent is a'so an action (as the result of the computation in most cases is returned by modifying the
agent’s state).
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Example 4.2 (M essage Box) Throughout this paper, we will assume that each agent’s associated
software code includes a special type called nsgbox (short for message box). The message box
is a buffer that may be filled (when it sends a message) or flushed (when it reads the message) by
the agent. In addition, we assume the existence of an operating-systems level messaging protocol
(e.g. socketsor TCP/IP[109]) that can fill in (with incoming messages) or flush (when amessageis
physically sent off) this buffer.

We will assume that the agent has the following functions that are integral in managing this mes-
sagebox. Notethat over theyears, we expect awidevariety of messaging languagesto be devel oped
(examples of such messaging languages include KQML [68] at a high level, and remote procedure
callsat amuch lower level). In order to provide maximal flexibility, we will merely specify below,
the “core” interface functions available on the nsgbox type. Note that this set of functionsmay be
augmented by the addition of other functions on an agent by agent basis.

e SendMessage( Src, Dest, Msg) : Thiscausesaquintuple(o, Sre, Dest, M sg, Time)to
be placed in rsgbox. The o signifies an outgoing message. When SendMessage( Sr ¢,
Dest , Msg) isexecuted, thestateof nsgbox changesby theinsertion of the abovequintuple
denoting the sending of a message from the source (Sr c) agent to a given destination agent
(Dest ) involving the message body Msg; Ti me denotes the time at which the message was
sent.

e Cet Message( Src) : Thiscausesacollectionof quintuples(i, Sre, agent-id, M sg, Time)
to be read from msgbox. The i signifies an incoming message. Note that all messages from
the given sourceto theagent agent - i d whose message box isbeing examined, are returned
by this operation. Ti me denotes thetime at which the message was received.

e Ti nedGet Message( op, Val ) : Thiscausesthecollectionof al quintuplestup = (¢, Sre,
agent-id, M sg, Time)toberead fromnmsgbox, wheretup.TimeopV al holds; op isrequired
to be any of the standard comparison operators <, <, >, >, =. a

Agentsinteract with the external world through the msgbox code — in particular, external agents
may update agent A’'snsgbox, thusintroducing new objectsto agent A’s state, and triggering state
changes which are not triggered by agent A.

Throughout this paper, we will assumethat every agent has as part of its state, the specialized type
nmsgbox defined here, together with the code calls on thistype defined here.

Example 4.3 (Java Agents) Intoday’sworld, theword “agent” is often considered (in certain non-
Al communities) to be synonymous with the Java applets. What is unique about an applet isthat it
ismobile. A Java applet hosted on machine H can “move” across the network to a target machine
T, and executeits operationsthere. The actionstaken by a Java agent agent - i d, may be captured
within our framework as follows.

1. Name do( Op, Host, Tar get, Argunent Li st)

which says “Perform the operation op on thelist Ar gunent Li st of arguments located at
the Tar get address by moving there from the Host address.

2. Precondition:

14



in(Host, java: location(agent-id)) &
in(“ok”, security :authorize(agent-id, Op, Target, ArgumentList).

This says that the Java implementation recognizes that the agent in question is currently at
theHost machine and that the security system of the remote machine authorizes the agent to
download itself on the target and execute its action.

3. Add/Delete-Set: This consists of whatever insertions and deletions must be doneto datain
the Host 'sworkspace. O

We are now ready to define an action base. Intuitively, each agent has an associated action base,
consisting of actionsthat it can perform on its object state.

Definition 4.2 (action base) An action base, .AB, isany finite collection of actions. O

The above definition states what an action is, but allows the possibility that an action should si-
multaneously add and and delete some object. Classical Al systemslike STRIPS aso alow thisto
happen in the syntax (e.g. in aSTRIPS rule, an atom could occur in both the Add and Delete lists)
and handle potentia problems of thissort by first doing deletionsand then insertions. We mimic this
aswell. Later, in Section 4.1, we will show that it is possible using a simple syntax to be introduced
in Section 4.1 to forbid execution of any action whose add and del ete sets have an overlap.

A difference between our work and classical Al systems, isthat in the latter, change is modeled
solely asthe insertion and deletion of logical atoms from astate which isaset of logical atoms[82].
In thereal world, however, states are usually instances of fairly complex data structures. Therefore,
in our case, changes affect components of objectsin Os where S is the software code manipul ated
by the agent in question. The following definition shows what it means to execute an action in a
given state.

Definition 4.3 (6, v )-executability) Leta(X)beanaction,andletS = (75, Fs ) beanunderlying
software code accessible to the agent. A ground instance (X ) of a(X) issaid to be executable
in state O, if and only if there existsa solutiony of Pre(a(X))f w.rt. Os. Inthiscase, a(X) is
said to be (6, )-executablein state O, and (a(X ), 8, ) is afeasible execution triplefor Os. By
OI'(a(X), Os) we denote the set of al pairs (6, ~) such that (a(X), 6, ~) is afeasible execution

triplein state Os. O

Intuitively, in o(X), the substitution § causes al variablesin X to be grounded. However, it is
entirely possiblethat the precondition of « has occurrences of other free variablesnot in X. Appro-
priate ground values for these variables are given by solutions of Pre(a(X)8) with respect to the
current state Os. These variables can be viewed as * hidden parameters” in the action specification,

whose valueis of lessinterest for an action to be executed.
Thefollowing definition tells us what the result of (6, v )-executionis.

—

Definition 4.4 (action execution) Suppose («(X ), 8,~) is afeasible execution triplein state Os.
Then theresult of executing a( X ) w.r.t. (8,~) isgiven by the state

apply((a()z)v 07 7)7 OS) = ins(Oaddv deI(Odelv OS))v
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where Q0,04 = O_Sol(Add(a(X)8)y) and Oy = O_Sol(Del(a(X)8)7); i.e., the state which
resultsif first all objectsin solutionsof call conditionsfrom Del(a(X )8)y on Os are removed, and
then all objectsin solutions of call conditionsfrom Add(a( X )8)y on O areinserted. a

Wereiterate here that ins refers to theinsertion routine associated with the agent whose actions are
being discussed above. The ins function may in turn call specific insertion routines associated with
each data structure manipulated by the agent in question.

Furthermore, observe that in the above definition, we do not pay attention to integrity constraints.
Possible violation of such constraints due to the execution of an action will be handled later in the
definition of the semantics of agent programsthat we are going to devel op, and will of course prevent
that integrity-violating actions from being executed on the current agent state.

While we have stated above what it means to execute a feasible execution triple on an agent state
Ogs, there remains the possibility that many different execution triples are feasible on a given state,
which may stem from different actions (X ) and a(X"), or even from the same grounded action
a()?)e. Thus, in general, we have aset A5 of feasible execution triples which should be executed.
It is natural to assume that A5 isthe set of all feasible execution triples. However, it is perfectly
imaginable that only a subset of al feasible execution triples should be executed. E.g., if only one
from many solutions v is selected —in a well-defined way— such that (a(f, 6,~) isfeasible, for a
grounded action o( X )6; we do not discussthis any further here.

Suppose then we wish to simultaneously execute a set of (not necessarily al) feasible execution
triples AS. There are many ways to define this. We present three possible definitions bel ow, and
assess their merits and disadvantages.

Definition 4.5 (weakly-concurrent execution) Suppose A5 isaset of feasible execution triplesin
the agent state Os. The weakly-concurrent execution of A5 in Og, is defined to be the agent state

apply(AS, OS) - ins(Oaddv deI(Odelv OS))?

where
Ouia = U O_Sol(Add(a(X)8)7),
((X),0,v)€AS
Oyt = U O_Sol(Del(a( X)8)7).
((X),0,v)€AS

For any set A of actions, the execution of A on O isthe execution of theset {(a(X),0,v) | a(i) €
AS, a(X)0 = a()0 ground, (8,7) € OT'(a( X))} of al feasible execution triples stemming from
some grounded actionin A5, and apply( A, Os) denotes the resulting state. O

Asthe reader will note, thisis adefinition which doeseverything in parallel —it first doesall dele-
tions and then al insertions. While weakly-concurrent executions work just fine when the set A of
actionsinvolve no “conflicts’, they are problematic when the actionsin A compete for resources.
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Example 4.4 (Grid) Suppose we have a two-dimensiona grid and an object is placed at location
(5,7)onthegrid, and supposetwo actionsgo- r i ght and go- | ef t are both possible. If we de-
finego-right (X, Y) and go-1eft (X Y) inthe obviousway, then on the execution of both
left(5,7) andgo_ri ght (5, 7), thefina result saysthat the object is at both locations (6, 7)
and (4, 7) whichis clearly absurd! ]

Thus, before attempting to perform a weakly-concurrent execution of a set of actions, we must
ensure that the set of actions satisfy some consistency criteria, otherwisethere is a danger of doing
something absurd.

The following definition, called sequential-concurrent execution, (or 5'-concurrent execution for
short) removes some, but not all of these problems, and in turn, introduces some new problem. In
effect, it saysthat a set of actionsis 5-concurrently executableiff there is some way of ordering the
actions so that they can be sequentially executed.

Definition 4.6 (sequential-concurrent execution) Supposewehaveaset AS = {(a;(X;, 6, 7)) |
1 <i < n} of feasibleexecutiontriplesand an agent state Os. Then, A5 issaidtobe S-concurrently
executable in state Og, if and only if there exists a permutation = of A.S" and a sequence of states
0%, ..., 0% suchthat:

° Og:Osand

o forall < i < n,theaction a,)(X,a) IS (6.3, ¥x()-executable in the state O ', and
Ok = apply(Xo(iys Or(i)s Tr(i))» O -

Inthiscase, AS issaid to be m-executable, and O% is the final state resulting from the execution
AS[r].

A set A of actionsis S-concurrently executable on the agent state O, if the set {(a(X), 6,7) |
a(t) € AS, a(X)8 = a(1)0 ground, (8,7) € OT (a(X))} is S-concurrently executableon Os. O

S'-concurrent executions eliminate the problems of consistency that plague the weakly-concurrent
executions. For instance, inthego-ri ght , go- 1 ef t example above, if the two moves are made
one after the other, then the object endsupinonelocation, whichisinthiscase (5,7) (i.e., theorigina
one). However, thisaso introduces two weaknesses:

o First, wewouldliketo deterministically predict the result of executing a set of actions concur-
rently. Weakly-concurrent executions allow such predictions, but .5'-concurrent ones do not.

¢ Second, the problem of checking whether a set of feasible execution triplesis 5-concurrently
executable is NP-hard (see below), and the intractability shows up aready in rather simple
settings.

The notion of full-concurrent execution (#'-concurrent execution given below), removes the first
of these problems, but not the second. It removes the first problem by saying that a set of feasible
execution triplesis F'-concurrently executable iff each and every sequence of triplesfrom thissetis
serially executable and the results of each of these serial executionsisidentical.
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Definition 4.7 (full-concurrent execution) Supposewe haveaset AS = {(ay(X;, theta;, v:)) |
1 <i < n} of feasibleexecutiontriplesand an agent state Os. Then, AS issaidtobe F'-concurrently
executablein state Og, if and only if the following holds:

1. For every permutation =, AS' is w-executable.

2. For any two permutations 1, 5 of A5, thefinal states resulting from the executions A.S|[r]
and AS[ry] areidentical.

A set A of actions is F-concurrently executable on the agent state O, if the set {(a(X),6,7) |
a(t) € AS, a(X)8 = a(1)6 ground, (,7) € OT(a( X))} is F-concurrently executableon Os. O

For instance, the go-ri ght, go-1 eft example from above is an F-concurrently executable
action set, since regardless in which order we execute the actions, we aways end up in the same
location as moves on the grid commute. However, like .5'-concurrent execution, F-concurrent exe-
cution also suffers from intractability.

The following result specifies the complexity of weakly-concurrent executability, S'-concurrent
executability, and F-concurrent executability of a set of feasible execution triples. In generdl, it
showsthat only weakly-concurrent executability istractable, while the other notionsare intractable.

For deriving this result, we assume that we have a set of feasible execution triples A5 to be exe-
cuted on agiven state Og, such that following operations are possiblein polynomial time:

1. testingwhether the grounded precondition Pre(a(X )8~ for any triple(a(X),6,7) € AS is
satisfied in an agent state;

2. determining all objectsin solutionsof Add(a(X )6y)andin Del(a(X )8v) onan agent state,
aswell asinsertion/deletion of objectsfrom an agent state;

3. construction of any object that may be involved in the state evolving from execution of A5
on Ogs under any permutation 7.

Such a setting applies e.g. in the case where the agent state is a collection of ground facts, whichis
maintained under the domain closure axiom.

Theorem 4.1 Let AS bea given set of feasible execution triples, and let Os be a given object state.
Then, under the previous assumptions, deciding whether A5’ is

¢ weakly-concurrently executableis polynomial;
¢ S-concurrently executable is NP-complete; and

e F-concurrently executable is co-NP-complete. |

The polynomial time result for weakly-concurrent execution is immediate from the assumptions
that we made. The other results are established in Appendix A. In fact, NP-hardness (resp. cONP-
hardness) is present already in avery ssmple and relevant setting, in which the software package S
isarelational database, and the actionsinsert and del ete tuples from tables, while the preconditions
of actions are simple conjunctive queries.

18



4.2 Action Constraints
As we have already seen in the preceding section, concurrent execution of multiple actionsis of-

ten difficult. An action constraint is an explicit statement saying that a given set of actionsis not
concurrently executable if certain conditions are met.

Definition 4.8 (action constraint) An action constraint AC" has the syntactic form:

{or(X1), - ap(Xp)} = x 2
where ay(X1),. .., ax(X}) are action names, and y isacode call condition. O
The above constraint saysthat if condition y istrue, thenthe actionsay (X1), . . ., (X ) arenot

concurrently executable.

Example 4.5 (Grid cont’d) Returningto our simplego- | ef t and go-ri ght actionsonagrid,
we may have an action constraint of the form:

{go_left(Ol,Xl,Yl),go_right(Og,Xg,Yg)} — X1—-1=Xo+4+1&Y; =Y5.

This says that two objects cannot be simultaneously moved onto the same grid location. O

Definition 4.9 (action constraint satisfaction) A set 5 of ground actions satisfies an action con-
straint AC' asin (2) onastate Os, denoted S, Os |= AC, if thereisno legal assignment 6 of objects
in Os to the variables in .AC such that y6 istrueand {a; (X)), ..., ax(X)f} C S holds(i.e, no
concurrent execution of actionsexcluded by AC' isincludedin 5). We say that 5 satisfiesa set AC
of actions constraintson O, denoted 5, Os |= AC, if 5,0s | AC for every AC' € AC. O

Clearly, action constraint satisfaction is hereditary w.r.t. the set of actionsinvolved,i.e, 5, Os |=
AC impliesthat 57, Os |= AC, forevery 5" C S.

The reader might notice that the action constraint in the previous example can also be simulated
by an integrity constraint which says that the agent state cannot allow two objectsto simultaneously
occupy the same grid location. Aswe will seelater in Section 5.5, various action constraints can be
simulated with the machinery aready in place. In particular, it will turn out that action constraints
merely provide syntactic sugar for operations that can be executed within our existing framework.
Hence, we do not go into further detail on them for now.

4.3 Agent Programs. Syntax

So far, we have introduced the following important concepts:

¢ Software Code Calls — this provides a single framework within which the interoperation of
diverse pieces of software may be accomplished,;
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o Software states — this describes exactly what data objects are being managed by a software
package at a given point in time;

¢ Integrity Constraints— this specifies exactly which software states are “valid” or “legal”;

e Action Base—thisisaset of actionsthat an agent can physically execute (if the preconditions
of the action are satisfied by the software state);

¢ Action Constraints— this specifies whether a certain set of actionsisincompatible.

However, ingeneral, an agent must have an associated “ action” policy or action strategy. Incertain
applications, an agent may be obliged to take certain actions when the agent’s state satisfies certain
conditions. For example, an agent monitoring a nuclear power plant may be obliged to execute a
shut down action when some dangerous conditions are noticed. In other cases, an agent may be
explicitly forbidden to take certain actions — for instance, agents may be forbidden from satisfying
requests for information on US advanced air fighters from Libyan nationals.

In thissection, weintroduce the concept of Agent Programs— programsthat specify what an agent
must do (in a given state), what an agent must not do, and what an agent is permitted to do, and
how the agent can actually select a set of actionsto perform that honor its permissions, obligations,
and restrictions. Agent Programs are declarative in nature, and have a rich semantics that will be
discussed in Section 5.

Definition 4.10 (action status atom) Suppose a(7) is an action atom, where 7 is a vector of terms
(variablesor objects) matching thetype schemaof a. Then, theformulasP(a(1)), F(«a(1)), O(a(t)),
W (a(t)), and Do(a(?)) are action status atoms. Theset AS = {P,F,0, W, Do} iscaled the
action status set. O

We will often abuse notation and omit parentheses in action status atoms, writing Pa(7) instead
of P(a(?)), and so on.

An action status atom has the following intuitive meaning (a more detailed description of the pre-
cisereading of these atomswill be provided later in Section 5.2):
¢ Pa meansthat the agent is permitted to take action «;
¢ Fa meansthat the agent is forbidden from taking «;
¢ Oa meansthat the agent is obliged to take action «;
¢ W a means that obligation to take action « iswaived; and,

¢ Doa meansthat the agent does take action «.

Notice that the operators P, F', O, and W have been extensively studied in the area of deontic
logic [79, 3]. Moreover, the operator Do isin the spirit of the “praxiological” operator £, A [62],
which informally means that “agent « seesto it that A isthe case” [79, p.292].

We borrow from thefield of deonticlogic the syntax of deontic statements; however wedo not lay
down the semantics of action programs on the basis of one of the numerous deontic logical systems
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(e.g., Standard Deontic Logic (SDL), which amounts to the modal logic K D [3, 79]). We discuss
the relationship between our approach and deontic logicin detail in Section 11.

Another reason for not building upon existing deontic logic systemsisthat actionsin deonticlogic
typically do not have effects — hence, the fact that aset of actionsmay all beindividually permitted,
but mutually impossibleto be concurrently executed is not addressed in deontic logic.

Definition 4.11 (action rule) Anactionrule (rule, for short) isaclause r of the form

AHLl,...,Ln (3)
where A is an action status atom, and each of L+, ..., L,, iseither an action status atom, or a code
call atom, each of which may be preceded by a negation sign (—). O

We requirethat every root variable which occursin thehead A of arule r and every root- or path-
variable occurring in anegative atom a so occurs in some positiveatom in the body (thisisthe well-
known safety requirement on rules[102]).

A rule r isto be understood as being implicitly universally quantified over the variablesin it. A
ruleis caled positive, if no negation sign occursin front of an action status atom in its body.

Definition 4.12 (agent program) An agent programP isafinite collection of rules. An agent pro-
gram P ispositive, if al itsrules are positive. O

Example 4.6 (Smple Tax Audit Agent) Here are some examples of a simple agent program P,
that may be used by a tax agency. As described in Section 2, this agent uses two relations — one
caledr et ur ns that contains arelational representation of the returnsfiled by tax-payers, and an-
other relation called enpl oyer _decl ar at i ons which specifies the payments to various indi-
viduals reported by employers. The agent monitors discrepanci es between the amounts reported by
individual taxpayers, and amounts reported by all employers who have made payments to that per-
son. If the amount reported by the individual is less than 70% of the employer-reported income,
then triggering an audit program is mandatory. If the amount reported by the individua islessthan
80% of the employer-reported income, then triggering an audit program is permitted. However, if
the amount reported by theindividual isover 80% then it isforbidden to run the audit program. This
is captured by the following agent program:

O(r un_audi t (Person)) — in(R,taxdb:sel ect(returns,name,=,Person)) ,
is(AllRecs taxdb:sel ect(empl oyer_decl arations,name,=,person)) ,
is(Tota I nc,taxdb:sum(AllRecs,amount)),
R.amount < 0.7x Totallnc.

P(r un_audi t (Person)) < in(R,taxdb:sel ect(returns,name,=,Person)),
is(AllRecs taxdb:sel ect(empl oyer_decl arations,name,=,person)) ,
is(Tota I nc,taxdb:sum(AllRecs,amount)),
R.amount < 0.8x Totallnc.

F(r un_audi t (Person)) < in(R,taxdb:sel ect(returns,name,=,Person)),
is(AllRecs taxdb:sel ect(empl oyer_decl arations,name,=,person)) ,
is(Tota I nc,taxdb:sum(AllRecs,amount)),
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R.amount > (0.8 x Totalnc.
Do(r un_audi t (Person)) < P(r un_audi t (Person)),
in(R,taxdb:sel ect(returns,name,=,Person)) ,
iS(AllRecs taxdb:sel ect(empl oyer_decl arations,name,=,person)) ,
is(Tota I nc,taxdb:sum(AllRecs,amount)) ,
Totallnc > 200, 000.

O(send_notification(Person)) — Do(r un_audi t (Person)).

The second last rule says that audits are run on all people making over 200K (according to em-
ployer filed returns) on whom an audit run is permitted. The last rule saysthat if the agent decides
to run an audit program on the person’stax return, then the agent is obliged to notify the person that
such an audit has been run. The second last rule causes a change in object state — something that
classical deontism does not do asit reasons about actionsthat cause such state changes, but does not
trigger them directly. O

Before we complete our discussion of the syntax of agent programs, we add some useful notation.
For any ruler of theform (3), wedenoteby H (r) theatominthehead of », and by B(r) thecollection
of literalsin the body; by B~(r) we denote the negative literals anong them, and by B*(r) the
positiveones. Moreover, by —. B~ (r) wedenotethe atoms of thenegativeliteralsin B~ (r). Finaly,
theindex as (resp., cc) for any of these sets denotes restriction to the literalsinvolving action status
atoms (resp., code call atoms).

Example4.7 Forruler

Doa — Pa,—Dov,p(X,Y),-s(Y),
we have H(r) = Doa, B(r) = Bt (r)U B~(r) where BT(r) = {Pa,p(X,Y)}, B~(r) =
{-Do~, -s(Y)}. Furthermore, B,; = B1.U B,,where B}, = {Pa}, B;, = {-Doy}and B.. =

as?

Bt U B, where B = {p(X,Y)} and B, = {-s(Y)}. Likewise,~.B~(r) = ~.B,, U —.B_,

cct

where=. B, = {Doy}and -.B__ = {s(Y)}. O

Having defined the syntax of agent programs, we are now ready to turn to developing a formal
semantics for agent programs.

5 Semanticsfor Agent Programs

If an agent uses an action program P, the question that the agent must answer, over and over again
is: What is the set of all action status atoms of the form Do« that are true with respect to P, the
current state, Os, theunderlying set AC of action constraints, and the set ZC of underlyingintegrity
constraints on agent states? This defines the set of actionsthat the agent must take. In this section,
wewill providea seriesof successively more refined semanticsfor action programsthat answersthis
guestion.

In Section 5.1, wewill introduce the concept of afeasible status set. Feasible status sets do not, by
themsel ves constitute a semanticsfor agent programs, but they form the basi ¢ construct upon which
all our semantics will be built.

In Section 5.2, we will define the semantics of Agent Programs to be thosefeasibl e status setsthat
are deemed to satisfy certain rationality requirements. In Subsection 5.3, we add a further require-
ment —the semanti cs of an agent program P is characterized by a subset of rational statussets—those
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F-preferential SS

P-preferential SS

feasible SS

weak rationa SS

complete SS

reasonable SS

Figure 3: Relationship between different Status Sets (SS)

that satisfy an additional reasonable-ness condition. Thisisfurther refined in Section 5.6.1, where
two alternative policiesfor selecting the “right” reasonabl e status sets are provided. Asfeasible sta-
tus setsmay allow certain actionsto be neither permitted nor forbidden, we introduce the notation of
acomplete status set in Section 5.6.2. Two policiesare alowed — one of these policiesis akin to the
closed world assumptionin databases[85] (all actionsthat are not explicitly permitted are forbidden)
and the other is akin to the open world assumption (all actionsthat are not explicitly forbidden are
alowed).

All the preceding semantics describe ways of syntactically selecting one or more feasible status
setsas somehow beingthe“right” feasiblestatussets. For example, rational statussetsare all feasible
status sets, but not vice-versa. Reasonable status sets are al so feasible status sets (and in fact rational
status sets) but not vice-versa. The same appliesto the other types of status sets. In Section 5.7, we
use numerical cost measures to select status sets. Given a semantics Sem where Sem € { Feasible,
Rational, Reasonable, F-preferential, P-preferential, Weak Rational }, Section 5.7 shows how to as-
sociate a*“cost” with each Sem-status set. An optimal .5'em-status set is one which minimizes cost.
A status set’s cost may be defined in terms of (1) the cost of performing the Do actionsin that sta-
tus set, and/or (2) the “badness’ value of the state that results, and/or (3) amix of the previous two
criteria. Section 5.7 will define these expressionsformally.

Figure 3 captures the relationship between these different semantic structures. The definition of
Sem-status setsis layered on top of the definitions of the other semantics — hence, to avoid clutter,
we do not include them in thisfigure.
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5.1 Feadblestatussets

In this section, we will introduce the important concept of afeasible statusset. Whilefeasible status
setsdo not constituteasemanticsfor agent programs, every semanticswe define for Agent Programs
will build upon this basic definition.

Intuitively, a feasible status set consists of assertions about the status of actions, such that these
assertions are compatible with (but are not necessarily forced to be true by) the rules of the agent
program and the underlying action and integrity constraints.

In what follows, we assume the existence of a body of software code S = (7Zs, Fs), an action
base .AB, and action and integrity constraints AC and ZC, respectively, in the background. Thefirst
concept we introduce are status sets.

Definition 5.1 (status set) A statusset isany set 5 of ground action status atoms over S. For any
operator Op € {P,Do,F, 0, W}, wedenoteby Op(5) theset Op(5) = {a | Op(a) € S}. O

Informally, astatus set .5 represents information about the status of ground actions. If some atom
Op(a) occursin ', then thismeans that the status O p istruefor . For example, Do(«), F(3) € S
meansthat action o will betaken by theagent, whileaction 5 isforbidden. Of course, not every status
set is meaningful. For example, if both F(«) and P(«) arein 9, then S isintuitively inconsistent,
since « can not be simultaneously permitted and forbidden. In order to characterize the meaningful
status sets, we introduce the concepts of deontic and action consistency.

Definition 5.2 (deontic and action consistency) A statusset S iscalled deontically consistent, if it
satisfies the following rulesfor any ground action «a:

e IfOa € S, thenWa ¢ §
e IfPac S, thenFa ¢ §

o IfPa € 5,thenOs | Pre(a) (i.e, a isexecutablein the state Og).

A status set S is called action consistent, if 5, Os |= AC holds. a

Besides consistency, we also wish that presence of particular atomsin 5 entails the presence of
other atomsin 5. For example, if Oa isin S, thenweexpect that Paisdsoin 5, andif Oaisin g,
thenwewould liketo have Do« in S'. Thisiscaptured by the concept of deontic and action closure.

Definition 5.3 (deontic and action closure) Thedeonticclosureof astatus .S, denoted DCI(5),is
the closure of S under the rule

If Oa € 5, thenPa € §

where a isany ground action. We say that 5 isdeontically closed, if S = DC(.5) holds.
The action closure of astatus set .5, denoted AC(.5), isthe closure of S under therules

If Oa € 5, then Doa € 9
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If Doa € §,thenPa c 9

where a is any ground action. We say that astatus S is action-closed, if S = ACI(.S) holds. O

Thereader will easily notice that status sets that are action-closed are also deontically closed, i.e.

o ACI(S)= SimpliesDCI(5)= 5

o DCI(S)C ACI(S),forall S.
A statusset 5 whichis consistent and closed is certainly ameaningful assignment of a statusto each
ground action. Notice that we may have ground actions « that do not occur anywhere within a status

set — this means that no commitment about the status of « has been made. The following definition
specifies how we may “close” up a status set under the rules expressed by an agent program P.

Definition 5.4 (Operator Appp 0.(5)) SupposeP isan agent program, and O is an agent state.
Then, Appp 0.(5) isdefined to be the set of al ground action status atoms A such that there exists
arulein P having aground instance of theformr : A — L4,..., L, suchthat

Bi(r)yCSand-.B (r)n S =0,and
every codecal y € BX(r) succeedsin Os, and

every codecall y € —.B_(r) does not succeed in Os, and

A WD PF

for every atom Op(a) € Bt (r)u{A} suchthat Op € {P, O, Do}, theaction « isexecutable
instate Ogs. O

Note that part (4) of the above definition only appliesto the “positive’ modes P, O, Do. It does
not apply to atoms of theform F« as such actionsare not executed, nor doesit apply to atoms of the
form W« because such actions are executed only if Do« istrue.

Our approachisto basethe semanticsof agent programs on consistent and closed status sets. How-
ever, we haveto takeinto account therules of the program aswell asintegrity constraints. Thisleads
us to the notion of a feasible status set.

Definition 5.5 (feasible status set) Let 7 be an agent program and let Os be an agent state. Then,
astatusset 5 isafeasiblestatus set for P on Og, if the following conditionshold:

S1) (closure under the programrules)  Appp 0. (5) C 5

(:51)
(52) (deontic and action consistency) S is deontically and action consistent;
(53) (deontic and action closure) S is action closed and deontically closed;
(:54)

S4) (state consistency) O = ZC, where O5 = apply(Do(5), Os) isthe state which results
after taking al actionsin Do(.5) on the state Os. ]
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Noticethat condition(.52) ishereditary, i.e., if astatusset 5 satisfies(.52), then any subset 5" C .5
satisfies (52) as well.
In general, there are action programs that have zero, one or severa feasible status sets.

Example5.1 (Tax Audit Agent Revisited) Let usreturntotheTax Example(cf. Example4.6). Let
us consider the case where the tax database system, t axdb, containsthe following relations:

Relationr et ur ns Relation enpl oyer _decl ar ati ons
Name Amount Name Company | Amount
John Smith 50,000 John Smith ABCInc. | 46,000
Jane Shady 78,000 John Smith DEFInc. | 35,000
DenisRumble | 35,000 Jane Shady DEF Inc. | 100,000

DenisRumble | ABC Inc. | 34,000

It is easy to seethat of these individuals, John Smith has declared under 70% of hisincome (as
reported by ABC Inc. and DEF Inc.). By therules, it is obligatory to audit him, i.e. if we take P
to be the set of rulesin Example 4.6, then Orun_audit(John Smith) isimplied by the program. In
the same vein, Prun_audit(Jane Shady) istrue. Last but not least, Frun_audit(Denis Rumble)

istrue.

If we assume there are no integrity constraints and no action constraints, then this leads to the
following two possiblefeasible status sets:

FS5S5; ={ Orun_audit(John Smith), Dorun_audit(John Smith),
Prun_audit(John Smith), Frun_audit(DenisRumble),
Prun_audit(Jane Shady)},

(
(
(
FS5S, ={ Orun_audit(John Smith), Dorun_audit(John Smith),
(
(

Prun_audit(John Smith), Frun_audit(DenisRumble),
)

Prun_audit(Jane Shady), Dorun_audit(Jane Shady) }.

(Other feasible status sets exist, though.) The two feasible status sets differ on whether Jane Shady

isactually audited or not. a
Example 5.2 The program P containing the rules
Pa
Fa
O

clearly does not have any feasible status set.

The following are immediate consequences of the definition of a feasible status set, which con-
firm that it appropriately captures a “possible” set of actions dictated by an agent program that is
consistent with the obligations and restrictions on the agent program.
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Proposition 5.1 Let 5 be a feasible status set. Then,

If Do(a) € 9, then Os |= pre(a);
IfPa ¢ 5, thenDo(a) ¢ 5,
If Oa € §,then Os |= Pre(a);

If Oa € S,thenFa ¢ 5; |

The reader may be tempted to believethat Condition 4. in Definition 5.4 is redundant. However, as
the following agent program 7> amply demonstrates, thisis not the case.

Example 5.3 Consider the agent program P given by:
Pa —

Assume that « is not executable in state Os. Then, under the current definition, no feasible status
set S containsPa; eg., S = () isafeasible status set. If we drop condition 4 from Definition 5.4,
then no feasible status set 5 exists, as Pa must be contained in every such 5, which then violates
deontic consistency. O

5.2 Rational status sets

Intuitively, afeasible status set describesa set of statusatomsthat are compatiblewith the state of the
software, the obligationsand restrictionsimposed on the agent by its associated Agent Program, and
the deontic consistency requirements. Nevertheless, we note that feasible status sets may include
Doing actions that are not strictly necessary.

For example, let usreturn to our tax audit scenario. Our system may have the following rules.

Example 5.4 (Expanded Tax Audit Agent) For some reason, the tax agent has decided that it is
obliged to sue an unfortunate individual called Jim Black. However, thereisarule that saysthat if
it hasfailed to previously interview the person and failed to previously issue a notice to the person,
thenit isforbiddento sueto thetaxpayer. Thiscan berepresented asthefollowingset of rules. These
rules may be added to the Agent Program described in Example 4.6.

Osue(JimBlack, 7' + 1)
Fsue(Person,T) «— -—Doissuemnotice(P,T1), Ty < T,
—Dointerview(P,T3), To < T.

The action sue( Person,T') has no preconditions and no effects on the state of the system (except
to send amessage to another agent that initiatesthe lawsuit). Thisagent program hasthe following
feasible statussets. (We assumethat the only time pointswe areinterestedin are now and (now +1)
—furthermore, for notationa simplicity, we do not explicitly list implied action status atoms of them
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form Wea and Pe).

FS55y = {Osue(JimBlack, now + 1),
Dosue(Jim Black, now 4 1), Doissue notice( P, now),...}.

FSS,; = {Osue(JimBlack, now + 1),
Dosue(Jim Black, now + 1), Dointerview(Jim Black, now), .. .}.

FS5S; = {Osue(JimBlack, now + 1), Dosue(Jim Black, now + 1),
Dointerview(Jim Black, now), Doissue notice(Jim Black, now), .. .}.

Here, we only show O and Do atoms in the feasible status sets; each status may be completed by
adding appropriate further atoms involving other modalities.

Thefirst status set saysthat to sue Jim Black at time (now + 1), the tax agent must issue a notice
to him now. The second status set says that to sue Jim Black at time (now + 1), the tax agent must
interview him now. Thelast status set says that we should both interview him and issue a notice to
him now. (The reader can easily see how this example may be expanded to accommodate a larger
time window, allowing Jim Black some extratime to respond, etc.)

If one examines F'5.53, thisis a perfectly valid feasible status set. However, it takes one action
that is not strictly necessary. To meet the obligation of suing Jim Black at time (now + 1), either
he should be issued a notice now, or should be interviewed now —thereisno need for both. Surely,
then, F'5'5's represents a case where the agent is doing “too much” ? O

The notion of arational status set is postulated to accommodate this kind of reasoning. It is based
on the principle that each action which is executed should be sufficiently “grounded” or “justified”
by the agent program. That is, there should be evidence from the rules of the agent program that a
certain action must be executed. For example, it seems unacceptable that an action « is executed, if
« does not occur in any rule of the agent program at all.

Thisway, we a so have to make sure that execution of an action must not be driven by the need to
preservethe consistency of the agent’sstate. Rather, theintegrity constraints should serveto prevent
executions which appear to be rational if no integrity constraints were present. This motivates the
following formal notion of groundedness.

Definition 5.6 (groundedness; rational statusset) A status set 5 is grounded, if there exists no
status set 5" different from .5 such that 5/ C 5 and 5’ satisfies conditions (51)—(.53) of afeasi-
ble status set.

A statusset S isarational statusset, if 5 isafeasible status set and .5' is grounded. a

Noticethatif S isafeasiblestatusset, thenevery 5’ C 5 satisfiesthe condition (.52) of feasibility.
Therefore, the requirement of (.52) for .57 in the definition of groundednessis redundant. However,
it seems more natural to have this condition included in the definition of groundedness. Moreover,
if we did not have hereditary action consistency, then inclusion of action consistency would be in-
dispensable.

Example 5.5 (Tax Example Continued) The program P of Example 5.4 has two rational status

sets: F557 and F'SS;. Inthis case, as no integrity constraints ZC are specified, the rational sta-
tus sets happen to be the minimal feasible status sets with respect to set inclusion. O
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Example 5.6 (Simple Driving Example) Suppose we want an agent which selects — in a simpli-
fied setting — the driving lane for a car. The action base contains the two actionsgo _ri ght and
drive( Lane) . The precondition of the former is empty, while the precondition of the latter is
free(Lane). The agent program contains the following rules:

O(goright) —
O(drive(right lane)) < Do(go.right)
F(drive(Lane)) — —free(Lane)
Do(drive(left lane)) < F(drive(right lane))

Here, we supposethat there aretwo lanes, aleft laneand aright lane. Thefirst rule saysthat we must
go on theright side, and the second that we must drive on theright laneif we actually go on theright
side. Thethirdruletellsthat it isforbidden to usealaneif it isnot free, i.e,, it is blocked, while the
last rules says that we go on theleft lane if we can not use theright lane.

Depending on the status of the lanes (free or blocked), the program has different rational status
sets.

In each of the four possible cases, the program has a unique rational status set. All of them con-
tain O(go_right), Do(go_right), and P(go_right). If theright lane is free, then it contains
Do(drive(right_lane)), and if theright lane is blocked but the |eft oneis free, then it contains
Do(drive(left_lane)). Only in the case where both lanes are blocked, no Do-atom with action
dri ve isintherational statusset. Thisis perfectly as desired. O

Observe that the definition of groundedness does not include condition (.54) of afeasible status
set. A moment of reflection will show that omitting this condition isindeed appropriate. Recall that
theintegrity constrai nts must be maintained when the current agent state i s changed into anew agent
state. If weweretoincludethecondition(.54)ingroundedness, it may happen that the agentisforced
to execute some actionswhich the program does not mention, just in order to maintain the integrity
constraints. The following example illustratesthis point.

Example5.7 Supposethatinthe Tax Audit Agent example, thetableenpl oyee _decl ar ati ons
has attached the integrity constraint /' which saysthat for each person P and company ', a most
onerecord for thisperson and that company isfiled. Furthermore, assumethat actionsadd_ed( P, C, A)
and del _ed(P, () for adding and deleting a record from enpl oyee_decl ar at i ons, respec-
tively, are available, and an agent program has the simplerule:

Doadd_ed(JohnSmith, ABC Inc.,30,000) — .

However, inthestatereported in Example5.1 thereisalready arecord (John Smith,ABC Inc.,46,000)
in the table, and thus adding the record (John Smith,ABC Inc.,30,000) violates the integrity con-
straint /C'. Therefore,

S1 = {Doadd_ed(John Smith,ABC Inc.,30,000), Padd_ed(John Smith,ABC Inc.,30,000) }

is not afeasible status set. However, the status set

Sy = {Doadd_ed(JohnSmith, ABC Inc., 30,000), Padd_ed(John Smith,ABC Inc.,30,000),
Dodel_ed(John Smith,ABC Inc.,46,000), Pdel_ed(John Smith,ABC Inc.,46,000)}
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isafeasiblestatus set, and it iseasily seen that no smaller feasible status set .53 existssuch that 55 C
S5. The implicit execution of del _ed(John Smith,ABC Inc.,46,000) may be unwanted, however,
and thus 5 isintuitively not acceptable as the “right” set of actionsto take by the agent. Thisis
expressed by the fact that the smaller status set 51 C 5% issound with the rules of the program, and
no extra actions for maintaining the integrity constraints should be taken by the agent.

Observethat automatic maintenance of integrity constraintsisan ongoingresearch i ssuesin databases,
and asimple, declarative solution to this problem is by no means clear [51]. Therefore, we do not
delveinto the intricated and complex more general problem here. |

The fact that the program in Example 5.6 aways had a unique rational status set in each of the
possible scenarios, was not accidental. In fact, as will be shown bel ow, positive programs enjoy the
benign property of having a uniquerational status sets, if any rational status set exists. Observe that
this property does not hold for non-positive agent programs in general.

It ispossibleto giveacharacterization of the uniquerational statusset in terms of afixpoint opera-
tor, akinto theleast fixpoint of logic programs|[70, 2]. For that, we definefor every positiveprogram
P and agent state Os an operator 1I'’p », Which maps a status set .5’ to another status set.

Definition 5.7 (I'r 0, Operator) Suppose P isan agent program and Os an agent state. Then, for
any status set .5,

Tp.0s(8) = Appp.og(S) U DCIUS)U ACI(S). .

Notethat as DC'1(.S) C ACI(.S), we may equivaently writethisas
TP,OS(S) = Appp()S(S) U ACI(S).
The following property of feasible status setsis easily seen.

Lemmab5.2 Let P bean agent program, let Os be any agent state, and let 5 be any status set. If
satisfies(.51) and (.53 ) of feasibility, then S is pre-fixpoint of T o, i.€., Tp 0. (5) C 5.

Clearly, if the program P is positive, then T’» . iS @ monotone operator, i.e, S C S’ implies
Tpos(5) C Tpog(S5), and hence, it has aleast fixpoint [fp(1Tr o). Moreover, since I'p o isin
fact continuous, i.e., Tr 0. (2o So) = U2y Ip,0.(5;) for any chain S5 C 5y C 55 C ---of
status sets, the least fixpoint is given by

lfp(TP7Os) = U T%,Osv
=0
where Tp . = D and T35 = Tp o (Th o), foral i > 0 (seeeg. [70, 2]). We then have the
following result.

Theorem 5.3 Let P bea positiveagent program, and let Os bean agent state. Then, S isarational
status set of P on Og, ifand only if 5 = Ifp(Tp o) and S is a feasible status set.
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Proof. (=) Suppose S = Ifp(1p 0.) arational status set of P on Os. Then, S isfeasible by
definition of rational status set. By Lemma5.2, S isapre-fixpoint of T'p .. Since T’p o ismono-
tone, it has by the Knaster-Tarski Theorem aleast pre-fixpoint, which coincideswith ifp( 1% o) (cf.
[2,7Q]). Thus, Ifp(Tp,0.) C 5. Clearly, ifp(T'p o) satisfies(51) and (.53); moreover, Ifp(Tp o)
satisfies (.52), as 5 satisfies (.52) and this property is hereditary. By the definition of rational status
set, it follows Ifp(Tp.0,) = 5.

(<) Suppose S = Ifp(Tp 0, ) isafeasible status set. Since every status set S* which satisfies
(51)—53)isaprefixpointof T'p o, and Ifp(Tp o, ) istheleast prefix point, 5' C S implies S = 5.
It followsthat S isrational. |

Noticethat in case of apositiveprogram, Ifp(1p o) dwayssatisfiesthe conditions(,51) and (.53)
of afeasible status set (i.e., al closure conditions), and thusisarational statusset if it satisfies (52)
and (54), i.e, the consistency criteria. The uniqueness of the rational status set isimmediate from
the previous theorem.

Corollary 5.4 LetP bea positiveagent program. Then, on every agent state Og, therational status
set of P (if oneexists) isunique, i.e,, if 9, $” arerational statussetsfor P on Og, then 5 = 5’.

Asshown by Example 5.4, Corollary 5.4 isno longer true in the presence of negated action status
atoms. We postpone the discussion of the existence of auniquerationa status set at this point, since
we will introduce a stronger concept than rationa status sets below for which this discussion seems
more appropriate. Nonethel ess, we notethe following property on the existence of a(not necessarily
unique) rational status set.

Proposition 5.5 Let P be an agent program. If ZC = (), then P has a rational status set if and only
if P has a feasible status set.

Moreover, we remark at this point that the unique rational status set of a positive program (if it
exists) can be computed in polynomial time, if we adopt reasonable underlying assumptions (see
Section 7.1).

5.21 Reading of rational status sets
We are now ready to return to the question “ Exactly how should we read the atoms Op(« ) for Op €
{P,F,W,0,Do} appearingin arational statusset ?" In Section 4.3, we had promised a discus-
sion of thisissue. It appears that an interpretation:

Op(a) = “Itisthecasethat « isOp*,”
where Op™ is the proper verb corresponding to operator Op (forbidden, permitted, etc), is not the
onewhichisexpressed inherently by rational statussets. Rather, astatusatomin arational statusset
should be more appropriately interpreted as follows:

Op(a) = “Itisderivable that o should be Op*.”

where“derivable’ —without giving aprecise definition here—meansthat O p(« ) isobtained from the
rules of the agent program and the deontic axioms, under reasonabl e assumptions about the status

31



of actions; the groundedness property of therational status set ensuresthat the adopted assumptions
are as conservative as possible.

Furthermore, aliteral ~Op(«) in aprogram should be interpreted as:
=0p(a) = “Itisnot derivable that o« should be O p*.”

It isimportant to emphasi ze that there isno reason to view arational status set as anideadly ratio-
nal agent’s three-valued model of a two-valued reality, in which each action is either forbidden or
permitted. For example, the agent program

Pa
Fa « Pg
Fa « Fp

has auniquerational status set, namely S = {P«}. A possible objection against thisrational status
set (which arises naturaly from similar arguments in logic programming with incomplete informa-
tion) isthe following.

1. g iseither forbidden or permitted.
2. In ether of these two cases, « isforbidden.

3. Therefore, therational statusset 5 = {Pa} is“wrong.”

“Complete’ status sets, defined in Section 5.6 remedy thisproblem (at a cost, as we shall seelater
when complexity issues are discussed).

This brings us back to our interpretation of Opa. The falacy in the above argument is the im-
plicit equivalence assumed to hold between the statement “ 5 is either forbidden or permitted” and
the statement PG5 v F3. Thelatter statement isread “It iseither derivablethat 3 is permitted, or it
isderivablethat 7 isforbidden” which is certainly very different from the former statement.

Inaddition, we believethat deonticlogicisdifferent from the setting of reasoningwith incomplete
information because the true state of affairs need not be one in which the status of every particular
actionisdecided. In fact, the statusmay be open—and it may even beimpossibleto refine it without
arriving at inconsistency. For example, this applies to the legal domain, which is one of the most
fertile application areas of deontic logic.

5.3 Reasonable status sets

A more serious attack against rational status sets, stemming from the authors' background in non-
monotonic logic programming is that for agent programs with negation, the semantics of rational
status sets allows logica contraposition of the program rules. For example, consider the following
program:

Do(a) — -Do(p).

This program has two rationd status sets: 57 = {Do(a),P(«a)},and S; = {Do(3),P(5)}. The
second rational status set is obtained by applying the contrapositiveof therule:

Do(8) < -Do(a)
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However, the second rational set seems less intuitive than the first as there is no explicit rulein the
above program that justifies the derivation of thisDo(3).

This observation leads us to the following remarks. First, in the area of logic programming and
knowledge representation, the meaning of negationin rules has been extensively discussed and there
is broad consensusin that area that contraposition is a proof principle which should not be applied:
rather, derivation should be constructivefrom rules. Theseobservationsled to thewell known stable
model semantics for logic programs due to Gelfond and Lifschitz [40] which in turn was shown to
have strong equivalenceswith the classical nonmonotonic reasoning paradigms such as default logic
[86] and auto-epistemic logic[80] (see[41, 78]), as well as numerical reasoning paradigms such as
linear programming and integer programming [13, 14].

Second, the presence of derivation by contraposition may have a detrimental effect on the com-
plexity of programs, since it inherently simulates disjunction. Therefore, it is advisable to have a
mechanism which cuts down possiblerationa status setsin an effective and appealing way, so that
negation can be used without introducing high computational cost.

For these reasons, weintroduce the concept of areasonablestatus set. The reader should notethat
if he really does want to use contraposition, then he should choose the rational status set approach,
rather than the reasonabl e status set approach.

Definition 5.8 (reasonable status set) Let P be an agent program, let Os be an agent state, and let
S be a status set.

1. If P isapositiveagent program, then .5’ is areasonable status set for 7 on Og, if and only if
S isarationa status set for P on Ogs.

2. Thereduct of P w.rt. S and O, denoted by red®(P, Os), is the program which is obtained
from the ground instances of therulesin 7 over Os asfollows.

(@) First, remove every ruler suchthat B, (r) N .S # 0;
(b) Removeal atomsin B, (r) from the remaining rules.

Then S isareasonable status set for P w.r.t. Og, if itisareasonable status set of the program
red®(P, Os) with respect to Os. m

Let us quickly revisit our Tax Audit Agent scenario to see why reasonable status sets reflect an
improvement on rational status sets.

Example5.8 (Tax Audit Agent Example, Revisited) Suppose we reconsider the tax audit agent
example, as described in Examples 4.6 and 5.1. However, we merely consider the two rules listed
below.

Fsend refund(Person) <« Dorun_audit(Person),

—in( Person, taxdb : re fund_authorized()).
Dosend refund(Person) «— -Fsend refund(Person),

in( Person,taxdb : re fund_authorized()).

Thefirst rule above saysthat sending arefund to an audited person isforbidden unlesstherefund has
been explicitly authorized. One may think of a situation where all audit results are sent to a human

33



being who examines the audit result and determines whether to authorize a refund or not. In the
former case, he explicitly updates alist of people to whom refunds may be sent - thislist of people
isretrieved by ther ef und_aut hori zed() call. The second rule saysthat we may send arefund
to anyone who is not explicitly forbidden from receiving a refund. Here, the preconditions of the
actionssend_r ef und andr un_audi t are assumed to be void for the sake of simplicity.

Rational Status Sets; Consider now the case of an individual, John Doe, who has been audited, and
whose refund has been authorized by ahuman being. In thiscase, the precondition of thefirst ruleis
not true. It isimportant to note that the reduct of this program does not affect thefirst rule, because
the negation (in the body of thefirst rule) isin front of acode call and not in front of an action status
atom.

Now consider the second rule —we have two rational status sets— one in which John Do€' srefund
issent, whilein the other, it isforbidden. However, thelatter isclearly incorrect. Thereason for this
isbecause in rational status sets, the second ruleis treated as equivalent to its converse:

Fsend refund(Person) « -—Dosend refund(Person),
in( Person,taxdb : re fund_authorized()).

Reasonable Status Sets: Now consider the sets S; = {Fsend_refund(JohnDoe)} and 5; =
{Dosend_refund(John Doe)}. Assume that the only individual we are interested in for our pro-
gram P isJohn Doe. Consider 55. Thereduct of P w.r.t. 55 consistsof therules:

Fsend refund(JohnDoe)) — Deorun_audit(JohnDoe)),
—=in(John Doe), taxdb : re fund_authorized()).
Dosend_refund(JohnDoe)) — in(John Doe), taxdb : re fund_authorized()).

Itiseasy to seethat the reduct has auniquerational status set, viz. 55 itself.

Now consider 5. Thereduct of P w.r.t. 57 consistsof just thefirst rule above, from which wecan-
not derive Fsend_refund(John Doe)) because the body of that ruleisnot true w.r.t. the agent state.
Thus, in contrast to the rational status set semantics, the reasonabl e status set semantics eiminates
thisunintuitiverationa status set, sending John Doe his (well deserved) refund check. O

A more simplistic example is presented bel ow.
Example5.9 For the programP:
Do «— -Doa,
thereduct of P wir.t. 5 = {Dog, P} on agent state Os isthe program
Dol —
Clearly, 5 is the unique reasonable status set of redS(P, Os), and hence S is a reasonable status

set of P. O
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The use of reasonabl e status sets has a so some benefits with respect to knowledge representation.
For example, therule

Doa «— —-Fa 4

intuitively expresses that action « is executed by default, unlessit is explicitly forbidden (provided,
of course, that its precondition succeeds). This default representation is possible because under the
reasonabl e status set approach, the rule itself can not be used to derive F«, which isinappropriate
for adefault rule.

Thisbenefit does not accrue when using rational status sets because the singlerule hastwo rational
status sets: 57 = {Do(a), Pa} and S; = {Fa}. If we adopt reasonabl e status sets, however, then
only 5 remainsand « isexecuted. If rational statussets are used, then the decision about whether o
is executed depends on the choice between 57 and 5. (Noticethat if the agent would execute those
actions a such that Do(«) appearsin dl rational status sets, then no action istaken here. However,
such an approach is not meaningful in general, and will lead to conflicts with integrity constraints.)

The definition of reasonable status sets does not introduce a compl etely orthogonal type of status
set. Rather, it prunesamong therational status sets. Thisis shown by the following property.

Proposition 5.6 Let P be an agent programand Os an agent state. Then, every reasonabl e status
set of P on Qs isarational status set of P on Os.

Proof. In order to show that areasonable status set S of P isarational status of P, we have to
verify (1) that 5 isafeasible status set and (2) that .5 is grounded.

Since 5 is areasonable status set of P, it is arationa status set of P/ = redS(P, Os), ie, a
feasible and grounded status set of P’. Since the conditions (.52)—(.54) of the definition of feasible
status set depend only on .5 and O but not on the program, thismeans that for showing (1) it remains
to check that (.51) (closure under the program rules) is satisfied.

Let thus  be aground instance of arulefrom P. Suppose the body B(r) of » satisfiesthe condi-
tions 1.—4. of (51). Then, by the definition of red”(P, Os), we have that the reduct of the rule r,
obtained by removing all literalsof B, (r) from thebody, isin P’. Since S is closed under therules
of P/, wehave H(r) € S. Thus, S isclosed under therules of P, and hence (51) issatisfied. Asa
consequence, (1) holds.

For (2), we suppose S is not grounded, i.e., that some smaller 5/ C S satisfies(51)—.53) for P,
and deriveacontradiction. If 5" satisfies(.51) for P, then S” satisfies (5'1) for P’. For, if r isarule
from P’ such that 1.—4. of (,5'1) hold, then thereisaground rule »’ of P such that  is obtained from
r' inthe constructionof red®(P, Os) and, aseasily seen, 1.-4. of (S1) hold. Since 57 satisfies (51)
for P,wehave H(r) € 5. Itfollowsthat 5/ satisfies (.51) for P’. Furthermore, since(,52) and (.53)
do no depend on the program, also (.52) and (.53) are satisfied for S w.r.t. P’. Thismeansthat S is
not arational statusset of P/, which isthe desired contradiction.

Thus, (1) and (2) hold, which proves the result. |
In afollow-up paper [35], we are devel oping implementation techniques for agent programs that
implement a syntactically restricted class of agent programs called regular agent programsthat are

guaranteed to have at |east one reasonable status set. Existence of reasonable status sets cannot al-
way's be guaranteed because (as we have seen), some programs may have no feasible status sets.
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5.4 Violating obligations. weak rational status sets

So far, we have adopted a semantics of agent programs which followed the principle that actions
which the agent is obliged to take are actually executed, i.e., therule

If O« istrue, then Do« istrue

is strictly obeyed. Thisis known as regimentation [65], and reflects the ideal behavior of an agent
in anormative system.

However, the essence of deontismisin capturingwhat should be donein a specific situation, rather
than what finallyisto be done under any circumstances[3, 79, 54]. Takingthisview, the operator O«
isasuggestionfor what should be done; it may bewell the case, that in asituationan obligationO« is
true, but « isnot executed asit would beimpossi ble (dueto aviolation of some action constraints), or
lead to inconsistency. Such abehavior, e.g. inthelega domain, isaviolation of a normative codex,
which will be sanctioned in some way.

Example5.10 (conflicting obligations) Suppose an agent A is obliged to serve requests of other
agents A; and A,, represented by facts O(serve(A4;)) and O(serve(A3)), respectively, but there
isan action constraint which statesthat no two service requests can be satisfied simultaneously. This
is scenario isdescribed by the program P:

O(serve(4;))
O(serve(A43))

-
-
and the action constraint

AC :  {serve(A;),serve(Az)} — true.

The program P has no rational status set (and even no feasible status set exists). The reason is that
not both obligations can be followed without raising an inconsistency, given by a violation of the
action constraint AC'. O

Thus, inthe above example, the programisinconsistent and the agent does not take any action. In
reality, however, wewoul d expect that the agent servesat | east one of therequests, thusonly violating
one of the obligations. Theissue of which request the agent should select for service may depend on
additional information —e.g., priority information, or penalties for each of the requests. In absence
of any further directives, however, the agent may arbitrarily choose one of the requests.

Thisexample and the sketched desired behavior of the agent prompts usto introduce another gen-
eraization of our approach, to a semantics for agent programs which takes into account possible
violations of therule

If O« istrue, then Do« istrue
in order to reach aconsistent status set. Animportant issueat this point iswhich obligationsan agent

may violate, and how to proceed if different alternatives exist. We assume in the following that no
additional information about obligationsand their violationsis given, and develop our approach on
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thisbasis. Weak rational status sets introduced below allow obligationsto be “dropped” when con-
flictsarise. Later, Section 5.7 discusses how to build more complex structuresinvolving cost/benefit
information on top of weak rational status sets.

Our intent isto generalize therational status set approach gracefully, and similarly the reasonable
status set approach. That is, in the case where a program P has arational status set on an agent state
Ogs, then this status set (resp., the collection of al such status sets) should be the meaning of the
program. Ontheother hand, if no rational statusset exists, then we arelooking for possibleviolations
of obligationswhich make it possibleto have such astatusset. In thisstep, we apply Occam’s Razor
and violate the set of obligationsas little as possible; i.e., we adopt a status set .5 which isrational,
if aset Ob of rulesO« = Doa isdisposed, and such that no similar status set 5’ for some disposal
set O’ existswhich isaproper subset of Ob. We formalize thisintuitionnext in the concept of weak
rational (resp., reasonable) status set.

Definition 5.9 (relativized action closure) Let.S beastatusset, andlet A beaset of ground actions.
Then, the action closure of .5 under regimentation relativized to A, denoted AC'14(.5), isthe closure
of .S under therules

Oa € 5 = Doa € S, for any ground actiona € A

Dop € 5§ = Pp € 9, for any ground action /3.

A set S isaction closed under regimentation relativized to A, if 5 = AC14(.5) holds. ]

The following exampleillustrates this definition.

Example5.11 Supposewe have:

Al = {Oé,’)/}
Ay {8}
S = {0a,0p5,Dov}.

Then the action closure of .S under regimentation relativized to A, is given by:
ACl4,(S) = S U {Doa,Pa,Py}.

Note that AC4,(5) is constructed by only examining obligations of actionsin A; (in particular,
action 3 is not considered), and closing 5 under the two closure rules in the preceding definition.

On the other hand, the action closure of .5 under regimentation relativized to A, is given by:

ACl4,(S) = 5 U {Doj,P3,Py}. O

Notice that ACl = AClqs4, where GA is the set of all ground actions. Using the concept of
rel ativized action closure, we defineweak versionsof feasible (resp., rational, reasonabl €) statussets.
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Definition 5.10 (relativized status sets) Let P be a program, let Os be an agent state, and let A
be a set of ground actions. Then, a status set 5 is A-feasible (resp., A-rational, A-reasonable), if
S satisfies the condition of feasible (resp., rational, reasonable) status set, where the action closure
AC' isreplaced by the relativized action closure AC'l 4 (but D'l remains unchanged). O

Definition 5.11 (weak rational, reasonable status sets) A statusset 5 isweak rational (resp., weak
reasonable), if there exists an A such that 5 is A-rational (resp., A-reasonable) and there are no
A" #+ Aand 5" suchthat A C A’ and 5’ isan A’-rational (resp., A’-reasonable) status set. O

An immediate consequence of this definition is the following.

Corollary 5.7 Let P be an agent program. If P hasarational (resp., reasonable) status set on an
agent state O, then the weak rational (resp., weak reasonable) statussetsof P on Os coincidewith
the rational (resp., reasonable) status sets of P on Os.

Thus, the concept of weak rational (resp., reasonable) status set is a conservative extension of ra-
tional (resp., reasonable) status set as desired.

Example5.12 (conflicting obligations- continued) The program P has two weak rational status
sets, namely

Wi ={O(serve(A;)), O(serve(Ay)), P(serve(A;)), P(serve(A;)), Do(serve(A;)},
Wy ={O(serve(A;)), O(serve(Ay)), P(serve(A;)), P(serve(A;)), Do(serve(Ay)}.

Theset W, isa{serve(A,))}-rationa statusset, while symmetrically W, isa{serve(A;))}-
rational status set. Both 14/, and W, are also weak reasonabl e status sets of P. O

As the previous example shows, even a positive agent program may have more than one weak
rationa status set. Moreover, in other scenarios, no weak rational status set exists. To cure the first
problem, one could impose a total preference ordering on the weak rational status sets. The second
problem needs a more sophisticated treatment which is not straightforward; after all, the presence
of some conflicts which can not be avoided by violating obligationsindicates that there is a major
problem, and we must question whether the agent program P is properly stated by the individual
describing the agent.

5.4.1 Characterization of weak rational status sets

By generalizing the definitionsin Section 5.2, it is possible to characterize the weak rational status
sets of apositive agent program P using afixpoint operator.

Definition 5.12 (operator T» 0. 4) Suppose P is an agent program, Os an agent state, and A isa
set of ground actions. Then, for any ' status set 5,

TP,OS,A(S) = Appp7oS(S)UDCl(S)UACZA(S). a
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Note that with respect to T'» ».(.5), the action closure AC is replaced by the relatived action
closure AC'l 4; however, DC(.S') may not be dropped, since DCI(.S) € AC14(.5) in general.

Clearly, dso T'p 0,4 ismonotone and continuousif P is positive, and hence has aleast fixpoint
Pp(Tp05,4) = UiZo Tp o4 Where TR o 4 = 0andT;'s 4 = Tp.05,a(Th o 4) forali > 0.

The following characterization of A-rational status setsisthen obtained.

Theorem 5.8 Let P be a positive agent program, let A be a set of ground actions, and let Os be
an agent state. Then, a statusset 5 isan A-rational status set of P on Og(’, if and only if 5 =
Ifp(Tp o4.4) and S isan A-feasible status set.

Proof. The proof isanalogousto the proof of Theorem 5.3; observe that any status set 5’ which
satisfies the conditions (5'1) and (.53 ) of A-relativized feasibility, isapre-fixpointof 7r 0. 4. 1

From the previous theorem, we obtain the following result.

Theorem 5.9 Let P be a positive agent program, and let Os be an agent state. Then, a status set
S isaweak rational statusset of 7 on Og, if and only if 5 = Ifp(1p 04,4) and S is A-feasible for
some maximal A wi.r.t. inclusion.

Proof. S iswesk rational, if and only if S is A-rationa for some A such that for every A" # A
suchthat A C A’, no A’-rationa status set exists. Thisis equivaent to the fact that A isamaximal
set of ground actions such that some A-rational status sets exist. By Theorem 5.8, astatus set S’ is
A-rational iff S = lfp(Tp 04,4) and S is A-feasible; the result follows. |

In general, this criterion does not enabl e efficient recognition of aweak rational statusset (which
is, infact, intractable). Thestatusset A for 5 inthetheoremisunique, and can be detailed asfollows.

Definition 5.13 (A(5)) For any statusset 5, denote A(.5) = Do(5) U{a | a ¢ O(S)}. |

Proposition 5.10 Let P be any agent program, and let Os be any agent state. Suppose a status
set S is A-feasiblefor some A. Then, 5 is A(.S)-feasible,and A C A(5), i.e, A(SS) isthe unique
maximal set of ground actions A such that 5’ is A-feasible.

Proof. Clearly, 5 is A(.5)-feasible. Supposethat A(.5) isnot the unique maximal set A such that
S is A-feasible. Then, thereexistsaset A" # A(.5) and aground actiona € A"\ A(5) such that
S is A'-feasible. From the definition of A(.9), it follows O« € S and Do« ¢ S; sincetherule
O« = Doa appliesw.r.t. A, it followsDoa € 5, whichisa contradiction. |

Thus, if S isaweak rationa status set, then A = A(.S) isthe unique maximal set suchthat S is
A-feasible. From Theorem 5.9, we obtain the following corollary.

Corollary 5.11 Let 57, S, be weak rational status set of a positive agent program 7 on an agent
state Os. Then, O(51) = O(S;) implies Sy = S5.

Asaconseguence, for every choice of amaximal set of obligationswhich can be obeyed, theresult-
ing wesak rational statusset isuniquely determined, if 7 ispositive. Thismeans that the commitment

39



to aset of obligationsdoes not introduce further ambiguities about the status of actions, which isa
desired feature of the semantics.

It iseasy to seethat the operator 7» o 4 iSmonotonein A, i.e., enjoysthe following property.

Proposition 5.12 Let P be a positive agent program, let Os be an agent state, and let A, A, be
sets of ground actions such that A; C A,. Then, for any statusset S, 7r 0,4, (5) C Tp 04, 4,(5)
holds, and lfp(Tp7oS7A1) C lfp(Tp7oS7A2).

For the case where no integrity constraintsare present, we obtain the following result from Theo-
rem 5.9 and Proposition 5.10.

Theorem 5.13 Let P be a positive agent program, where ZC = (), and let Os be an agent state.
Then, a status set S' is a weak rational status set of P on Og, if and only if (i) S = Ifp(Tp.0..4)
and S5 is A-feasiblefor A = A(5), and (z7) for each ground action o ¢ A(.5), thestatusset 54/ =
Ifp(Tp o 4r) isnot A'-feasible, where A’ = A(S) U {a}.

Proof. (=) If S isweak rational, then (¢) followsfrom Theorem 5.9 and Proposition 5.10. Sup-
posefor some A" in (ii), S4r = lfp(T'p 0, 41) is A’-feasible. Then, by Theorem 5.8, theset 54/ is
A’-rational, which contradictsthat ' is aweak rational status set.

(<) Suppose (¢) and (z¢) hold. Then, by Theorem 5.8, .5 is A-rational. Suppose $' is not aweak
rationa status set; hence some A’ # A exists, A C A’, for which some A’-rational status set 5"
exists. Since property (.52 ) of thefeasibility conditionis hereditary, it followsfrom Proposition5.12
that for every A” C A thestatusset S4» = lfp(Tp o, av) Satisfies (52). Moreover, S 4 satisfies
(51)and (53). SinceZC = (), we havethat 54 is A”-feasible. Let o € A"\ A andset A” =
A U {a}. Thisraises a contradiction to (i7). Consequently, an A’ as hypothesized does not exist,
which provesthat .5 isweak rational. |

For afixed program P, this criterion implies a polynomial time agorithm for the recognition of a
weak rational statusset inthiscase. Moreover, deciding whether someweak rational statusset exists
and actually computing oneis then possiblein polynomial time (see Section 7.1.1).

5.5 Expressing action constraintsin an agent program

As we have mentioned above, action constraints do not add to the expressive power of our frame-
work, and provide syntactic sugar which is however convenient. We discuss this now alittle more
in detail.

For every action constraint of the form
{or(X1), - ap(Xp)} = x (5)
in AC, include in the program P the clause
F(nil) — Do(a1(X1)), Do(ay(X2)),. .., Do(ar( X)), x

whereni | isadistinguished new action which has no preconditions and empty add and del ete set;
moreover, includein P therule

P(nil) — .
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Let P*(.AC) be the resulting program. Then, the following property can be established.

Proposition 5.14 Let P bean agent program, given an action base A5, action constraints.AC, and
integrity constraintsZC, and let Os be an agent state. Then, therational (resp., reasonable) status
setsof P on Os correspond 1-1 to the rational (resp., reasonable) status sets of P*(.AC) on O for
actionbase AB* = AB U {nil}, AC* = 0),and ZC* = ZC.

For feasiblesets, asimilar correspondence (but not 1-1) exists. Therefore, we can alwayseliminate
action constraints by introducing new rulesin the program.

In the definition of weak action execution, a possibleoverlap of theadd set Add(«) and the delete
set Del(3) of two actionswhich should be executed isignored. If the programmer feels unpleasant
with thissituation, then (s)he may add rulesto the program which take care of such acheck. Namely,
we add therules

F(nil) — CC,,CC3,Doa,Dofj

foral CC, € Add(a)and CCys € Del(3), whereni | is the distinguished action from above.
Then, the joint execution of « and 5 is prohibited. In asimilar way, we can add rules for nonground
actions o( X1 ) and 5( X ;).

Having to add such overlap rulesin the program comes at the benefit of higher flexibility and better
control of overlap checking, which also leads to faster computation in general. We think that thisis
a big advantage which outweighsthe stricter definition.

Anaogously, this applies to more complex action constraints than joint action executability. If,
for example, execution of an action 3 requires execution of another action «, then we can add rules

Do(3) «— Doa,
F(nil) <~ Doa,—-Dop.

Then, for every rational (resp., reasonable) status set 5, it holdsthat Doj € 5 iff Doa € S. Ina
similar fashion, more complex action constraints can be emul ated.

5.6 Preferred and Complete Status Sets

In this section, we study what happens when we consider three classes of rational status sets.

e A rational statusset 5 is F-preferred if thereis no other rational status set whose set of for-
bidden atomsis a strict subset of 5’s set of forbidden atoms. Intuitively, such status sets are
per missive— most things are allowed unless explicitly forbidden.

e A rational status set 5 is P-preferred if there is no other rational status set whose set of per-
mitted atoms is a strict subset of 5”s set of permitted atoms. Intuitively, such status sets are
dictatorial —most things are alowed unless explicitly permitted.

e Thenotionof astatusset doesnot insist that for each action «, either Pa or Fa bein 5. How-
ever, for any action «, either « must be permitted or must be forbidden. Compl ete status sets
insist that this additional condition be satisfied.
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56.1 Preference

As we have briefly mentioned in the previous section, it may be desirable to use a preference pol-
icy for cutting down of status sets. In particular, the issue whether an action should be considered
forbidden or allowed ishighly relevant.

It appears that there is no straightforward solution to this problem, and that in fact different ap-
proaches to using defaults are plausible. For example, the following two are suggestive:

o (weak preference) Thefirst approach takesthe view that an action should, if possible, be con-
sidered as being not forbidden. According to thisview, action sets are preferred in which the
part of forbidden actionsis small. Note that due to the three-valued nature of the status of an
actionin an action set (which can beforbidden, permitted, or neither), thisdoes not necessarily
mean that the part of explicitly permitted actionsin apreferred action set islarge. Thispolicy
isthus aweak default about the status of an action.

¢ (strong preference) Another approachisto enforce adeontic completion about whether actions
arepermissionor forbidden, and to request that in an action set, every actioniseither forbidden
or permitted, and such that permission is preferred over forbiddance. This approach requires
aredefinition of the notion of a grounded consistent action set, however (keep the permission
and forbidden-parts fixed). It anountsto a kind of strong default rule that actions which are
not forbidden are explicitly permitted.

These two approaches aim at treating forbidden actions. Of course, one could foster approaches
which symmetrically aim at permitted actions, and implement (weak or strong) default rules about
such actions. Likewise, default rules for other status operators may be designed. Which approach
isin fact appropriate, or even amixed use of different default for different actions, may depend on
the particul ar application domain. In the following, we take a closer look to weak defaultsrules on
forbidden actions.

It would be useful if ruleslike
Do(a) — -Fa

may be stated in an agent program, with the intuitive reading that action « is executed by default,
unlessit isexplicitly forbidden (provided, of course, that its precondition succeeds).

Thissingle rule has two feasible status sets which are grounded: 4; = {Do(a),Pa} and 4; =
{Fa}. Under the policy that by default, actions which are not explicitly forbidden are considered
to be permitted, A, is preferred over A, and « is executed. If no such default policy istaken, then
no set is preferred over the other, and it depends on the choice between A, and A,, whether « is
executed. (If the agent executes those actions a such that Do(«) appearsin all rational status sets,
then no action is taken here.)) Adopting the view that actions should not be considered forbidden
unless explicitly stated motivates the following definition.

Definition 5.14 (F-preference) A set S of action statusatomsis F-preferred, if S isarationa status

set, and there exists no other rational status set .5’ which has a smaller forbidden part than 9, i.e.,
F(S5") C F(5) holds. o

Example5.13 For the singlerule program

Do(a) — -Fa
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from above, theset A; = {Do(«a), Pa} istheunique I'-preferred status set of P.
On the other hand, therule
Do(a) — Pa

has aunique F'-preferred status set, which isthe empty set. Assuming by weak default that « isnot
forbidden, we can not conclude Do( ), though, since an assumption P« isnot supported. O

Dual to F-preference, we can define preference for P. Intuitively, F-minimality amounts to a
“brave’ principle from the view of action permission, while P-minimality amountsto a*cautious”
one. Both F'- and P-minimality are the extremal instances of a more general preference scheme,
which allowsto put individua preference on each action « from the action base.

5.6.2 Complete Status Sets

As we have encountered in the examples above, it may happen that a feasible status set leaves the
issue of whether some action « is permitted or forbidden open.

It may be desirable, however, that thisissueis resolved in a status set which is acceptable for the
user; that is, either Pa or Fviscontainedin the statusset. Thismay apply to some particular actions
o, aswell asto dl actionsin the extremal case.

Our framework for agent programsisrich enough to handlethisissuein thelanguagein anatural,
simpleway. Namely, by including arule

Fa — —Pa

in a program, we can ensure that every feasible (and thus rational) status set includes either Fa
or Pa; we cal thisrule the F'/ P-completion rule of a. For an agent program 7, we denote by
Comppp(P) the augmentation of P by the '/ P-completion rules for al actions « in the action
base.

Cal astatusset 5 F'/ P-complete, if for every ground action «, either Pa € 5, 0or Fa € 5.
Then, we have the following immediate property.

Proposition 5.15 Let 7> bean agent program. Then, every feasiblestatusset ' of Comp -/ p(P) is
F'/ P-complete.

Example5.14 The program

Pa
Fa « Pg
Fa « Fp

hasaunique rational status set. However, the program Comp -, p(P) has no feasible status set, and
thus also no rational status set.

Thisisintuitive, if we adopt the view that the status of each action being permitted or forbidden
is complete, since there is no way to adopt either P 5 or F 3 without raising an inconsistency. O
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Example5.15 Consider the program P :
Do(a) — —Fa.
Here, we have two rational status sets, namely 51 = {Do(a),Pa} and S; = {Fa}. Both are

F'/ P-complete, and are the rational status sets of Compp -
On the other hand, the program P,:

Do(a) — Pa,

has the unique rational status set S = {}, whileits /'/ P-completion has the two rationa status
sets 51 and 53 from above. Thus, under F'/ P-completion semantics, the programs P, and P, are
equivalent. O

In fact, the following property holds.

Proposition 5.16 Let P, and P, be ground agent programs and Os a state, such that P, results
by replacing in P; any literals £Opa in rules bodies by FOpa, where Op € {P, F} and Op is
the deontic status oppositeto Op. Then, Compp;r(P1) and Comp p;r(P2) have the same sets of
feasible status sets.

Hence, under F'/ P-completion, — F amountsto P and similarly - P to F'.
Further completion rules can be used to reach a complete state on other statusinformation as well.
For example, a completion with respect to obligation/waiving can be reached by means of rules
Wa — =0«

for actions ««. Such completion rules are in fact necessary, in order to ensure that the rational status
sets can be completed to atwo-valued deontic “model” of the program. Applying #'/ P-completion
does not suffice for this purpose, as shown by the following example.

Example5.16 Consider the program P:

Pa
Fa «— 0fj
Fa — Wg

Theset S = {Pa, P} isafeasiblestatusof Compp,p(P). However, S can not be completed to a

deontic model of P, inwhich O and W« are true or false, respectively, and such that the deontic
axiomWa — —Oa« is satisfied. o

5.7 Optimal Status Sets
Thusfar, we have discussed thefollowing semanticsfor agent programs: feasible status sets, rational

status sets, reasonabl e status sets, weak rational status sets, F-preferential status sets, P-preferential
statussets, and compl ete status sets. Let Sem beavariableover any of these semantics. Sem chooses
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certain feasible status sets in keeping with the philosophical and epistemic principles underlying
Sem.

However, inthereal world, many choices are made based on the cost of a certain course of action,
aswell asthe benefits gained by adopting that course of action. E.g., if we consider the Supply Chain
Example, it is quite likely that Suppliers 1 and 2 charge two different prices for the item that the
Plant Agent wishesto order. Furthermore, as the two suppliers are likely to be located at different
locations, transportation costs are also likely to vary. If one supplier can supply the entire quantity
required, the Plant Agent will in al likelihood, select the one whose total cost (cost of items plus
transportation) is lower. Note that this cost is being described in terms of the costs of the actions
being executed in a status set.

However, yet another parameter that needs to be taken into account is the desirability of the fina
state that results by executing the Do-actionsin a Sem-status set. For example, the time at which
the supplies will arrive at the company is certainly pertinent, but is not accounted for by the cost
parameters listed above. If Supplier 2 will provide the supplies one day before Supplier 1, then the
Plant Agent may well choose to go with Supplier 1, even if Supplier 2'soverall costislower.

What the preceding discussion tells usis that we would like to associate with any Sem-status set,
anotion of acost, and that this cost must take into account, the set of Do-status atoms in the status
set, and the final state that results. This motivates our definition of a cost function.

Definition 5.15 (cost function) Suppose S = (7s, Fs) isabody of software code, and States is
the set of all possible states associated with this body of code. Let .AB be the set of al actions. A
cost function, cf, is amapping from ( States x 245 to the non-negative real numbers such that:

[(Vs1,52) (VA) cf(s1, A) = cf(sg, A)] — [(Vs) (VA, A ) (A C A" — cf(s, A) < cf(s,4"))]. O

The precondition of the above implication basicaly reflects state independence. A cost functionis
state-independent iff for any set A of actions, and any two arbitrarily chosen states s, , s9, the cost
function returnsthe same valuefor cf (s, A) and cf (s, A). State-independenceimpliesthat the cost
function’svalues are only affected by the actionstaken, i.e. by the set of actions A.

The above axiom saysthat for cf to be acost function, if it is state-independent, then the values it
returns must monotonically increase asthe set of actionsisenlarged (i.e. as more actions are taken).

One might wonder whether cost functions should satisfy the stronger condition:
(x) (Vs)(VA,A"). AC A" — cf(s, A) < cf(s, A').

The answer is“no” —to see why, consider the situation where executing the actionsin A is cheaper
than executing the actionsin A’, but thisis offset by the fact that the state obtained by executing the
actionsin A’ isless desirable than the state obtained by executing the actionsin A.

Alternatively, one might wonder whether cost functions should satisfy the condition:
(k) (Vs1,82)(VA). 51 C 59 — cf(s1,4) < cf(sg, A).

Again, theanswer isno. Executingall actionsin A in state s; may lead to amore desirable state than
doing so in state s,. As an example on the lighter side, consider the action ent er (r oo . State
sy isempty, state s, ={ i n(room pyt hon) } . Clearly, s; C s5. For most of us, executing the
actionent er (r oom) isvastly preferable to executing the action ent er (r oom) instate s,.
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However, even though not all cost functions should be required to satisfy () and (), therewill
certainly be applicationswhere either () and/or () are satisfied. In such cases, it may turn out to
be beneficial computationally to take advantage of properties () and () when computing optimal
Sem-status sets defined below.

Definition 5.16 (weak/strong monotonic cost functions) A cost functionissaid to be weakly mo-
notonic, if it satisfies condition () above. It is strongly monotonic, if its satisfies both conditions
() and (). O

We are now ready to come to the definition of optimal status sets.

Definition 5.17 (Optimal Sem-status set) Suppose S = (7s, Fs) isabody of software code, and
Ogs isthecurrent state. A Sem-status set X is said to be optimal with respect to cost function cf iff
thereis no other Sem-status set Y such that

cf(Os,{Doa | Doa € Y}) < cf(Os, {Doa | Doa € X }). O

Note that the above definition induces different notions of status set, depending on what Sem is
taken to be.

6 Algorithmsand Complexity | ssues

In this section, we address the computational complexity of agent programs. We assume that the
reader is familiar with the basic concepts of complexity theory, in particular with NP-compl eteness
and the polynomial hierarchy, and refer to [37, 61, 83] for background material on this subject and
for concepts and notation that we use in the remainder of this paper.

Our aim isasharp characterization of the complexity of different computational taskswhich arise
in the context of agent programs. Such a characterization is useful in many respects. First of all,
it tells us whether certain problems are tractable or intractable in the worst case. However, beyond
such a coarse classification, the precise complexity gives us a hint of which type of algorithmis ap-
propriate for implementing solutionsto a problem, and how many sources of complexity haveto be
eliminated in order to ensure tractability.

Intherest of thissection, we statethe assumptionsthat we make for our analysis, and we present an
overview and adiscussion of theresultsthat we derive. Theresultsare then establishedin Sections7
and 8.

6.1 Underlying assumptions

Any reasonable measurement of the computational complexity of agent programs must be based on
underlying assumptions. We consider here the eval uation of afixed agent program P in the context
of software code S, an action base A5, action constraints AC, and integrity constraints ZC, each
of which is fixed, over varying states Os. This corresponds to what is commonly called the data
complexity of aprogram [104]. If we consider varying programswherethe agent stateisfixed (resp.,
varying), we would have expression (or program) complexity and combined complexity, which are
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typically one exponential higher than datacomplexity. Thisalso appliesin many casesto theresults
that we derive below; such results can be established using the complexity upgrading techniquesfor
expression complexity described in [50].

Of coursg, if we use software packages S = (7s, Fs) with high intrinsic complexity, then the
evaluation of agent programswill a so betime consuming, and leaves us no chance to build efficient
algorithms. We therefore have to make some general assumptions about the software package used
such that polynomial time algorithms are not a priori excluded.

We adopt a generalized active domain assumption on objects, in the spirit of domain closure; al
objects considered for grounding the program rules, evaluation of the action preconditions, the con-
ditionsof the actions constraintsand theintegrity constraints must befrom Og, or they must be con-
structible from objects therein by operations from a fixed (finite) set in a number of stepswhichis
bounded by some constant, and such that each operationisefficiently executable (i.e., in polynomial
time) and involves only a number of objects bounded by some other constant. Noticethat the active
domain assumption is often applied in the domain of relational databases, and similar domain clo-
surein thecontext of knowledgebases. In our framework, creation and use of tuplesof bounded arity
from values existing in a database would be a feasible object construction process, while creation of
an arbitrary relation (as an object that amounts to a set of tuples) would be not.

Under this assumption, the number of objectswhich may be relevant to afixed agent program P
on agiven state Os isbounded by apolynomial in the number of objectsin O, and each such object
can be generated in polynomial time. In particular, this also means that the number of ground rules
of P which are relevant is polynomial in the size of Os, measured by the number of objectsthat it
contains.

Let usfurther assume that the evaluation time of code condition calls y over astate Og, for any
particular legal assignment of objects, is bounded by apolynomial in the size of Os. Moreover, we
assume that given an agent state Os and a set of ground actions A, the state O which results under
weakly-concurrent execution of A on Og (see Definition 4.5) is constructiblein polynomial time.

As a consequence of these assumptions, the action and integrity constraints are evaluable on an
agent state Os under the generalized active domain semanticsin polynomial time, and the integrity
constraints on the agent state 0% resulting from the execution of a set of actions A grounded in the
active domain, are checkable in polynomial timein the size of Og 1

Noticethat these assumptionswill be met in many software packages which support the use of in-
tegrity constraints(e.g., arelational database). If evaluation of the code condition callsor constraints
were not polynomial, then the evaluation of the agent program would not be either.

6.2 Problems Whose Complexity is Studied / Overview of Complexity Results

The complexity results we derive may be broken up into two parts. In thefirst part, we assume that
fixed positive agent programs are considered. In the second part, this assumption is relaxed, and
generd, i.e., not necessarily positive agent programs are considered.

Inthispaper, we study four typesof complexity problems. For each concrete semanticsintroduced
in the paper, we study the complexity of these four problems. Thisleadsto Tables 1 and 2 which
summarize the results, under different assumptions on the syntax of the agent programs considered.
The computational problemsthat we study are listed below. Let Sem be any kind of status sets.

This would remain true if the integrity constraints where arbitrary fixed first-order formulas (evaluated under active
domain semantics).
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(consistency) Deciding the consistency of the program on a given agent state, i.e., existence of an
Sem-status set;

(recognition) the recognition of a Sem-status set;
(computation) the computation of an arbitrary Sem-status set; and

(action reasoning) reasoning about whether the agent takes an action o under Sem-status sets, both
under the

¢ possibility variant (decide whether « is executed according to some Sem-status set), and
the

e certainty variant (decide whether « is executed according to every Sem-status set).

Therange of Sem for which these problems have been analyzed islisted in the | eftmost column of
Tables1 and 2. Particular attention has been paid to the presence or absence of integrity constraints.

Table 1 specifies the complexity of thefour problemsthat we study when positive agent programs
are considered, while Table 2 specifies their complexity when arbitrary agent programs are consid-
ered. AsTables1 and 2 contain many complexity classes that the casual Al researcher may not be
familiar with, we present in Figure 4 agraphical representation of these classes—thereader interested
in amore detailed discussion of these classes will find them in Section 6.3. Generally speaking, in
Figure 4, we draw an arc from complexity class C1 to complexity class C2, if the hardest problems
inC; are“easier” to solvethan the hardest problemsin C2 (assuming that the classesin question do
not collapse). Thus, for instance, the existence of an edge from the class P to the class NP indicates
that the hardest problemsin P, which are those complete for P, are easier to solve as compared to
the hardest problemsin NP, i.e., the NP-compl ete problems (unlessP = NP).

Noteon Tables: Theentriesfor decision problemsin Tables1 and 2 stand for completenessfor the
respective complexity classes. In case of P, hardness may implicitly be present with costly object
construction operations. However, we remark that for al problems except recognition of afeasible
status set, hardness holds even if no new objects are introduced and the agent state consists merely
of arelationa database. Proof of these results are not difficult, using the well-known result that in-
ference from a datalog program (Horn logic program) is P-complete, cf. [28].

The entries for the computation problem are the classes FC from the literature considered e.g. in
[83, 23, 24] (i.e., compute any arbitrary solution to a problem instance; see subsection 6.3 for more
details). Unless stated otherwise, they stand for completeness under an appropriate notion of poly-
nomial timereductionasusedin [83, 23]. Observethat we have aimed at characterizing inthis paper
the complexity of agent programs in terms of existing classes from the literature, rather than intro-
ducing new classes to precisely assess the complexity of some problems.

6.2.1 Bottom Linefor the Computation Problem

Of al thefour problems described above, from the point of view of the IMPACT system (and in gen-
era, for any systemthat attemptsto determine which actionsan agent must take), the most important
problem, by far, is the problem of Computation — given an agent program, a current agent state, a
set of integrity constraintsand action constraints, determine a set of actionsthat the agent must take.
Thistask forms the single most important task that an agent must take, over and over again.
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action reasoning
IC = (| ZC arbitrary | consistency computation recognition possible certain

feasible P | NP FP| FNP P NP co-NP
rational P FP P P P
= reasonable

= F'-pref. rationa

= [I'-pref. reasonable

wesk rational P| NP  FP| FNP/log* P | co-NP NP co-NP | TI¥
= weak reasonable

* .. hard for both FNP and FPﬂIP

Table 1: Complexity of fixed positive agent programs

action reasoning

IC =0 | ZC arbitrary | consistency computation recognition  possible certain
feasible NP FNP P NP co-NP
rational NP | ©F FNP//log* | FL¥ co-NP DI co-NP | 1%
reasonable NP FNP P NP co-NP
F-pref. rational NP | ~f  FNP/log | FP>* coNP|TI¥ =P |xf nl|nk

N

RP - FP* {
F-pref. reasonable NP FNP//log co-NP )Y g
wesk rational NP | P  FNP/llog | FP>% co-NP | TI¥ xP | P 1P |nk

N SP

RP-FP*
weak reasonable NP FNP//log co-NP »P ny

* ... hard for both FNP and FP}™

i ... hard for both F:f and F'P}*

Table 2: Complexity of fixed agent programs with negation
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When considering the different semanticsfor agent-programs, we easily notice (by examining the
column “computation” in both Tables 1 and 2), that the easiest semantics to compute are given as
follows:

¢ When positive agent programs with no integrity constraints are considered, the rational,
weak rational, reasonable, weak reasonable, I'-preferential, and P-preferential semantics are
the easiest to compute, al falling into the same complexity class. The other semantics are
harder to compute. Thus, in this case, we have some flexibility in choosing that out of the
rational, weak rational, reasonable, weak reasonable, F-preferential, and P-preferential, that
best meets the agent’ sepistemic needs. Notethat different agentsin IMPACT can usedifferent
semantics.

¢ When positive agent programs with integrity constraints are considered, the best seman-
tics, from the point of view of computational complexity, aretherational, reasonable, F-preferential,
and P-preferential semantics. Note that unlike the previous case, the weak rational and weak
reasonabl e semantics are harder to compute when integrity constraints are present.

¢ When arbitrary agent programswith nointegrity constraintsare considered, thenthe eas-
iest semanticsto computeare thefeasible set semanti csand the reasonabl e status set semantics.
All other semantics are harder to compute.

e When arbitrary agent programs with integrity constraints are considered, the same con-
tinuesto be true.

In general, when considering how to compute akind of statusset, the reasonabl e status set semantics
is generaly the easiest to compute, irrespective of whether agent programs are positive or not, and
irrespective of whether integrity constraints are present or not. Aswe have argued earlier on in the
paper, reasonable status sets have many nice properties which might make them epistemologically
preferable to feasible status sets and rational status sets.

6.3 Different Complexity Classes

In thissubsection, we briefly describe the various complexity classes encountered earlier in this sec-
tion. We a so analyze the causes for the various complexity trends we notice.

The classes that we use in our characterizations are summarized in Figure 4. An edge directed
from class (' to class €5 indicatesthat all problemsin 'y can be efficiently transformed into some
problemin 5, and that it is strongly believed that areduction in the other direction is not possible;
i.e., the hardest problemsin €', are more difficult than the problemsin (.

The decision classes are from the polynomial hierarchy, which isbuilt on top of the classes P and
NP (=X1), by alowing the use of an oracle (i.e., a subprogram) for deciding problems instanta-
neously. The class C' to which this oracle must belong is denoted in a superscript; e.g., PN (resp.,
NPNP) isthe class of problems solvablein polynomial time on a deterministic (resp., nondetermin-
istic) Turing machine, if an oraclefor aproblemin NP may be used. For the decisional classes, the
arcsin Figure 4 actually denoteinclusions, i.e., the transformation of problemsin €y to problemsin
C'y isby means of theidentity.

The classes for search problems, which are often also called function classes, can be found in
[83, 24]. A search problem is a generaization of a decision problem, in which for every instance
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Figure 4: Decision (left) and search (right) problem complexity classes

of the problem a (possibly empty) set of solutions exists. To solve such a problem, an algorithm
must (possibly nondeterministically) compute an arbitrary solution out of thisset, if it is not empty.
Decision problems can be viewed as particular search problems, in which the solution set is either
empty or the singleton set {yes}. More formally, search problemsin the classes from Figure 4 are
solved by transducers, i.e., Turing machines equipped with an output tape. If the machine haltin an
accepting state, then the contents of the output tape is the result of the computation. Observe that a
nondetermini stic machine computes a (partial) multi-valued function. Thus, not all arcsin Figure 4
mean inclusion, i.e., trivial reducibility by the identity.

The concept of reduction among search problems I1; and 11, is also obtained by a proper gener-
alization of the respective concept for decision problems. 11, is (polynomial-time) reducibleto 1I,,
if (7) from every instance I of 11, an instance f(1) of 11, is constructiblein polynomial time, such
that f(1/) has some solution precisely if I has; and (i7) from every solution S of f(/), asolution of
1 can be constructed in time polynomial in thesize of S and 1.

For both decision and search problem classes (', a problem is complete for €, if it belongsto C'
andishard for (', i.e, every problemin C' reducesto it.

The search problem counterparts of the classes €' in the polynomial hierarchy are often denoted

by a prefixed “F’; some of them appear in Figure 4. The other classes FPﬂIP and FP?D are the

search problem counterparts of the classes P)'F and PEéD, respectively, which are not shown in the
figure. Theseclasses containthe problemswhich can be solvedin polynomial timeon adeterministic
Turing machine which has accessto an oraclein NP (resp., ©), but where all queriesto the oracle
must be prepared before issuing thefirst oracle call. Thus, the oracle calls are nonadaptive and must
essentially take placein paralld; it is commonly believed that this restricts computational power.

FNP/llog is short for the class FNP/OptP[O (log n)] [24], which is intuitively the class of prob-
lems for which a solution can be nondeterministically found in polynomial time for an instance 1,
if the optimal value opt( ') of an NP optimization problemon I is known, where opt( 1) must have
O(log |1]) bits. E.g., computing a clique of largest sizein agiven graph isaproblemin FNP//log.
The class FNP//log reduces to FPN and roughly amounts to arandomized version of FPﬂIP. Due
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to its nondeterministic nature, it contains problems which are not known to be solvablein FPﬂTP.
The most prominent of these problems is the computation of an arbitrary model of a propositional
formula[59], whichisthe prototypical problem completefor theclassFFNP. Few natural FNP//log-
complete problems are known to date; our analysi s contributes some new such problems, which are
from the realm of practice rather than artificially designed.

In the context of action programs, computing aweak rational status set for a positiveprogramisin
FNP/Nog, sinceif we know the maximum size s of aset A of ground actionssuch that an A-rational
status 5 set exists, then we can nondeterministically generate such an 5 in polynomial time. The
computation of s amountsto an NP optimization problem, and thusthe overall agorithm places the
problemin FNP//log.

TheclassRP - FP Xy [24] contains, intuitively speaking, those problems for which a solution on
input 7 can befound y arandom polynomial time agorithm with very high probability, by using a

problemin FP|| : assinglecall subroutine. Thisclassisabove FP x5 . Chen and Toda have shown
that many optimization problems belong to this class whose solutions are the maximal sol utions of
an associated problem for which solution recognition is in co-NP. Computation of an F'-preferred
rational and aweak rational status set matches this scheme, which means that the problems are in

RP - FP||

The results show that the complexity of agent programs varies from polynomia up to the third
level of the polynomial hierarchy. Observe that in some cases, there are considerable complexity
gaps between positive agent programs and agent programs which use negation (e.g., for F'-preferred
rational status sets).

Thereasonfor thisgap are three sources of complexity, whichlift the complexity of positiveagent
programsfrom P upto ©X and 1%, respectively (inthecases of F-preferred and weak rational status
sets):

1. an (in general) exponential number of candidates for a feasible (resp., weak feasible) status
Set;

2. adifficult recognition test, which involves groundedness; and

3. an exponential number of preferable candidates, in terms of F'-preference or maximal obedi-
ence to obligations.

These three sources of complexity act in away orthogonally to each other; al of them have to be
eliminated to gain tractability.

For the canonica semantics of positive agent programs, therational status set semantics, all com-
putational problemsare polynomial. Thiscontrastswith feasible status sets, for which except recog-
nition, al problemsareintractable. Onthe other hand, under the weak statusset semantics, the prob-
lemsapart from action reasoning are polynomial, if no integrity constraintsare present; intractability,
however, isincurred in al problems as soon as integrity constraints may be used.

It isinteresting to observe that for programs with negation, rational status sets are more expen-
sive to compute than reasonabl e status sets in general, and thisistrueif no integrity constraints are
present, except for consistency checking and cautious action reasoning. A similar observation ap-
pliesto the F-preferred and weak variants of rational and reasonabl e status sets in the general case;
here, therationa variants are always more complex than the reasonabl e ones. However, somewhat
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surprisingly, if no integrity constraints are present, then the complexities of the rationa and rea-
sonable variants coincide! Thisisintuitively explained by the fact that in absence of integrity con-
straints, the expensive groundedness check for rational status sets can be surpassed in many places,
by exploitingthe property that in thiscase, every feasible status set must contain somerational status
set.

Another interesting observationisthat for programswith negation, the preferential and weak vari-
ant of rational status sets have the same complexity characteristics, and similar for reasonable status
sets. These semantics have a dual computational nature; preference effects minimization of the F-
part of the status set, while weakness effects maximization of the Do-part.

Presence of integrity constraints, even of the simplest nature which is common in practice (e.g.,
functiona dependencies[102] in a database), can have a detrimental effect on (variants of) rational
status sets and raises the complexity by one level in the polynomial hierarchy. However, the com-
plexity of reasonable status sets and their variantsis immune to integrity constraints except for the
weak reasonable status sets on positive programs. Intuitively, thisis explained by the fact that the
refutation of a candidate for areasonabl e status set basically reducesto the computation of the ratio-
nal status set of apositiveagent program, and thereintegrity constraintsdo not increasethe complex-
ity. In the case of weak reasonable status sets for positive programs, we have an increase since the
weakness condition may create an exponential number of candidatesif the program isinconsistent.

Wefinally remark that we have omitted here an analysisof the complexity of optimal status setsas
proposed in Section 5.7, in order to avoid an abundance of complexity results. Based on theresults
presented above, coarse bounds are staightforward. The sources[23, 24, 59] and references therein
provide suitable complexity classes for a more accurate assessment.

7 Complexity Resultsand Algorithmsfor Agent Programs. Basic Re-
sults

This section contains the first part of the derivation of the complexity results which have been pre-
sented in Section 6. Thefocusin thissectionison the base case, in which we have programs without
integrity constraints (though cases where results on integrity constraintsfollow asimmediate exten-
sionsof the no-integrity-constraint case are al so included). Asthe Table1 and 2 show, in general the
presence of integrity constraints has an effect on the complexity of some problems, while it has not
for others. For thelatter problems, we discussthiseffect in detail in the next section. In thissection,
as complexity results are discussed, we also devel op algorithmsfor various status set computations.

7.1 Positive programs

The most natural question iswhether afeasible status set existsfor program P on agiven state Os.
Aswe have seen, thisis not always the case. However, for fixed positive programs, we can always
efficiently find afeasible statusset (so one exists), and moreover, even arationa status set, measured
inthesizeof theinput Os. Thisispossibleusing theagorithm ComPUTE-P-RSS below, wherethe
program P and possibly integrity and action constraints are in the background.

Theorem 7.1 Let P be a fixed positive agent program. Then, given an agent state O, the unique
rational statusset of P on Os (so it exists) is computed by COMPUTE-P-RSS in polynomial time.
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Algorithm CoMPUTE-P-RSS

Input: agent state O (fixed positive agent program P);

Output: theuniquerational statusset of P, if it exists; “No”, otherwise.
Method

Step 1. Compute S = Ifp(Tp 0,);
Step 2. Check whether 5 satisfies conditions (.52) and (54) of afeasible status set;
Step 3. If 5 satisfies (.52) and (54), then output S'; otherwise, output “No”. Halt.

Moreover, if ZC = (), then deciding whether P has some feasible status set on Os as well as com-
puting any such status set, is possiblein polynomial time using CompPUTE-P-RSS.

Proof. By Theorem 5.3 and the fact that ' satisfies (.51) and (.53 ), gorithm correctly computes
the unique rational status set of P on Os.

By the assumptionsthat we made at the beginning of thissection, Step 1 can be donein polynomial
time, since a fixed P amounts to a ground instance which is polynomial in the size of Og, and we
can compute S = Ifp(Tp o) bottom up by eval uating the sequence T;;’OS, ¢ > 0, until the fixpoint
isreached.

Observethat, of course, checking (.52 ) (action and deontic consistency) —or part of thiscriterion—
in algorithm ComPUTE-P-RSS can be done at any time while computing the sequence T;;’OS, and
the computation can be stopped as soon as an inconsistency is detected.

Step 2, i.e., checking whether 5 satisfies the conditions (.52) and (.54) is, by our assumptions,
possiblein polynomial time. Therefore, for fixed P (and tacitly assumed fixed action and integrity
constraintsin the background), algorithm ComPUTE-POS-RATIONAL-SS runsin polynomial time.

If ZC = (), then by Proposition 5.5, P has a feasible status set on O iff 5 isafeasible status set.
Therefore, deciding the existence of a feasible status set (and computing one) can be done by using
CoMPUTE-P-RSS in polynomia time ZC = . |

Corollary 7.2 Let P be a fixed positive agent program. Then, given an agent state Os and a status
set 9, deciding whether S isa rational status set of 7 on Og is polynomial.

Sincefor every positive agent program P, the rational status set, the reasonabl e status set, and the
preferred one among them coincide, we have the following easy corollary.

Corollary 7.3 Let P be a fixed positive agent program. Given an agent state Ogs, the unique F-
preferred rational (resp., reasonable) status set of 7 (so it exists) can be computed and recognized
in polynomial time.
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7.1.1 Weak rational status sets

In this subsection, we address the problem of computing a weak rational status set for a positive
program. Aswe have mentioned in Section 5.4, for afixed positive agent program P, it is possible
to compute a weak rational status set on a given agent state O in polynomial time, provided that
the no integrity constraints are present.

In fact, thisis possible by using the following al gorithm.

Algorithm CoMPUTE-P-WEAK-RSS

Input: agent state O (fixed positive agent program P; ZC = ()

Output: awesk rational statusset of P on Og, if one exists; “No”, otherwise.
Method

Step 1. Set A := (), GA := set of dl ground actions, and compute S := Ifp(Tr 0. 4);

Step 2. If S isnot A-feasible, then output “No” and halt; otherwise, set A := A(S) and
GA:= GA\ A(S);

Step 3. If GA = (), then output S and halt;
Step 4. Choose some ground actiona € GA, andset A’ := AU {a};

Step 5. If 57 := Ifp(Tp o, ar) is A'-feasible, thenset A 1= A(S'), GA := GA\ A(S),
and S := S’; continue at Step 3.

The next result statesthat thisalgorithmis correct and worksin polynomial time.

Theorem 7.4 Given a positiveprogram? and an agent state O, algorithmCompPUTE-P-WEAK -
RSS correctly outputs a weak rational status set of 7 on Og (so one exists) if ZC = (). Moreover,
for fixed P, COMPUTE-P-WEAK-RSS runsin polynomial time.

We remark that this simple algorithm can be speeded up by exploiting some further properties. In
Step 5 of the agorithm, the computation of .5 can be done by least fixpoint iteration starting from
S rather than from the empty set (cf. Proposition 5.12).

The previous result shows that we can compute an arbitrary weak rational status set in polyno-
mial time under the asserted restrictions. However, this does not mean that we can decide efficiently
whether a given status set isaweak rationa status set. The next result showsthat thisisin fact pos-
sible.

Theorem 7.5 Let P be a fixed positive agent program, and suppose ZC = (. Let Os be an agent
state, and let 5’ be a status set. Then, deciding whether 5" is a weak rational statusset of P is poly-
nomial.

Proof. By Proposition5.10, S mustbe A(.5)-feasibleif itisawesk rational statusset; sincefor any
set of ground actions A, testing A-feasibility isnot harder than testing feasibility, by Proposition 7.7
we obtain that this condition can be tested in polynomial time.
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If 5 is A(.5)-feasible, then, since P ispositiveand ZC = (), by Theorem 5.13 5 isaweak rational
statusset, iff for every ground action o ¢ A(5), thestatusset S = Ifp(Tp o 47) isnot A'-feasible,
where A’ = A U {a}. For each such «, this condition can be checked in polynomial time, and
there are only polynomially many such «; hence, the required time is polynomial. Consequently,
the overall recognitiontest is polynomial.

We remark that a gorithm CoMmPUTE-P-WEAK-RSS can be modified to implement the recogni-
tion test; we omit the detail s, however. |

Sinceingeneral, multipleweak rational statussetsmay exist, it appearsimportant to know whether
some action status atom A belongsto all (resp., some) weak rational statusset. This correspondsto
what is known as certainty (resp., possibility) reasoning in databases [102], and to cautious (resp.,
brave) reasoning in the area of knowledge representation [47]. In particular, this question isimpor-
tant for an atom Do(«), sinceit tells us whether « is possibly executed by the agent (if (s)he picks
nondeterministically someweak rational status set), or executed for sure (regardless of which action
set is chosen). Unfortunately, these problems are intractable.

Theorem 7.6 Let P be a fixed positive agent program P, and suppose ZC = (). Let Os bea given
agent state and let o be a given ground action atom. Then, deciding whether o € Do(5) holds
for (7) some weak rational status set (resp., (7¢) every weak rational status set) of 7 on Os is NP-
compl ete (resp., co-NP-complete).

Proof.  For (7), observe that algorithm CoMPUTE-P-WEAK-RSS is nondeterministically com-
plete, i.e., every weak rational statusset 5 isproduced upon proper choicesin Step 4. Therefore, by
checking Do(a) € 5 (resp., Do(«) ¢ 5) before termination, we obtain membership in NP (resp.,
co-NP).

For the hardness part, we present a reduction from the complement of arestricted version of the
satisfiability problem (SAT) for (7¢); asimilar reduction for (7) is|eft as an exercise to the reader.

Supposethat ¢ = AL, C; isconjunction of propositional clauses such that each clause C; isa
disunctionC; = L;1 vV L; 2 V L; 5 of threeliteralsover aaloms X = {z4,...,z,}. Then, deciding
whether ¢ is satisfiableis awell-known NP-complete problem. Thisremainstrueif we assume that
for each clause (;, either dl literalsin it are positiveor al are negative; thisrestriction is known as
monotone 3SAT (M3SAT).

In our reduction, we store the formula ¢ in adatabase D. For this purpose, D is supposed to have
two relations POS( V4, Va3, V) and NEG( V4, V3, V3), in which the positive and negative clauses of
¢ are stored, and arelation VAR(V) which containsall variables. For each positiveclause C';, there
existsatuplewiththevariablesof C; inPOS, e.g., for z1 Va4V thetuple(zy, 24, z2), andlikewise
for the negative clauses a tuple with the variables in NEG, e.g., for —23 v -2y V -4 the tuple
($3, T, $2).

Theaction base AB containsthe actionsset ¢(.X ), set 1 (X ), and a; here, we assumethat every
action has empty precondition and empty Add and Del-Set. Define now the program P asfollows.

O(seto(X)) — VAR(X)
O(sety(X)) < VAR(X)
Doa «— Do(seto(X1)), Do(seto(X2)), Do(seto( X3)), POS( X1, X2, X3)
Doa <~ Do(sety(X1)),Do(seti(Xz)), Do(sets(X3)), NEG( X1, X2, X3)
Here, and throughout the rest of this paper, code call atoms accessing arelation in adatabaseare for
simplicity represented by the facts to be accessed.
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On this program, we impose the following action constraint
AC : {seto(X),sety(X)} — VAR(X).

Thus, AC = {AC'}. Let furthermorebe ZC = 0.

Then, for a given database instance D describing a formula ¢, it is easily seen that every weak
rational statusset of P on D contains Do« if and only if the corresponding M3SAT instance ¢ isa
No-instance. Since P is easily constructed, the result is proved. |

Before closing this subsection, we remark that tractability of both problems can be asserted, if a
total prioritization on the weak rational status setsis used, which technically is derived from atotal
orderinga; < ap < --- < «, ontheset of all ground actions. In thiscase, apositiveagent program
P has aunique wesk rational statusset 5 (if one exists). Thisset 5 can be constructed by selecting
in Step 4 of agorithm CoMPUTE-WEAK-RSS aways theleast action from (G A with respect to the
ordering <. Thus, in the absence of integrity constraints, the unique weak rational status set can be
computed in polynomial timein this case.

7.2 Programswith negation

If we alow unrestricted occurrence of negated status atoms in the rule bodies, then the complexity
of evaluating agents programsincreases. Thisisnot very surprising, since this way, we can express
logical disunction of positivefacts. For example, therule

Poa «— -Fa

leads to two rational status sets: 51 = {Pa} and 53 = {Fa}. Informaly, this clause expresses
under rational status semantics the disunction Fa v P«. Notice that under the reasonable status
semantics, the above rule has only a singlereasonable status set, namely .5;. However, if weadd its
contrapositive

Fa — -Pa,

then the resulting program has the two reasonabl e status sets 57 and 5. Thus, in the genera case,
both rational and reasonabl e status set semantics allow for expressing disunction, and are for this
reason inherently complex. We now analyze the precise complexity of these semantics.

7.2.1 Feasiblestatus sets

A relevant computational problem, for any of the semantics defined above, isthetest whether agiven
status set is among those which are acceptable under the chosen semantics. This problem corre-
spondsto the task of model checking in the area of knowledge representation and reasoning, which
has been addressed e.g. in [53, 20, 69].

We note here that for feasible status sets, the recognition problemis tractable under the assump-
tions that we made; this can be easily seen.

Proposition 7.7 Let P be a fixed agent program (where ZC may be nonempty), let Os be a given
state, andlet S bea statusset. Then, decidingwhether S isafeasiblestatusset of 7 on Og ispossible
in polynomial time.
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However, asthefollowing result shows, the search for feasible status setsisintractablein the gen-
eral case.

Theorem 7.8 Let P be a fixed agent program. Then, given an agent state Og, deciding whether
P has a feasible status set is NP-complete, and computing some feasible status set is compl ete for
FNP. Hardness holdseven if Z7C = 0.

Proof. By Proposition7.7, we can guess and check afeasible status set of P on O in polynomial
time. Hence, the existence problemisin NP, and the computation problemisin FNP.

To show that the existence problem is NP-hard, we describe areduction from M3SAT. The reduc-
tionissimilar to the onein the proof of Theorem 7.6. Asthere, we supposethat an M3SAT instance
¢ onvariablesz; € X isstored in relations POS (positive clauses) and NEG (negative clauses),
and we assume that all variables z; are stored in VAR. Moreover, we assume that P has arelation
AUX(Var,Val), which containsin theinitial database D al tuples(z;,0), for all variables z;.

Now construct the following agent program P:

P5 —

Fﬁ — FO[(Xl),FOé(XQ),FOé(Xg),POS(Xl,XQ,Xg)

Fﬁ — PO[(Xl),POé(XQ),POé(Xg),NEG(Xl,XQ,Xg)
Pa(X,) — -Fa(X;),VARX))

Theactionbase.AB containstwo actionsa and 3, which have both empty preconditionsand empty
add and delete sets. Thus, these actions do not have any effect on the state of the database. The sets
AC and ZC of action and integrity constraints, respectively, are both assumed to be empty.

Then, itis easy to see that P possesses a feasible status set over Og, if and only if the formula ¢
is satisfiable; the satisfying truth assignments of ¢ correspond naturally (but not 1-1) to the feasible
status sets of P on Os. (Observe that every feasible status set must either contain Pa(z;) or con-
tain Fa(z;), for every z;, but not both; intuitively, Pa(z;) represents that z; istrue, while Fa(z;)
representsthat z; isfalse) Sincefor agiven formula ¢ the databaseinstance D of D isclearly con-
structible in polynomial time, it follows that the decision problem is NP-hard. Moreover, by the
correspondence between feasible sets status of P and the satisfying assignmentsof ¢, it followsim-
mediately that the feasible status set computation problem is hard for FNP.

Observe that we can replace in the construction the positiveatoms Fo( X; ) intherulewithF 3 in
the head by -P «( X} ), and we would get the same feasi bl e status sets; moreover, thelast rule could
then also be removed, and still afeasible status existsiff ¢ is satisfiable. |

This negative result raises the issue of how we can achieve tractability of programs. There are
different possibilities.

Onepossibility isthat weidentify syntactic constraintsunder which programs are guaranteed to be
tractable. However, astheform of the program in the proof of the previoustheorem indicates, rather
strict conditions on negation must be imposed, in order to exclude possibleinconsistencies. Still, a
number of different feasibleand rational status setsmay exist, dueto theinherentlogical disunction.
In particular, the reduction in the proof of Theorem 7.8 worksfor rationa status setsaswell.

Another possibility isthat we use an alternative semantics which ismore amenable to cutting dis-
junctivecases. In particular, under reasonabl e status set semantics, the program in the proof of The-
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orem 7.8 either has no reasonabl e status set, or a unique such status set, which can be efficiently de-
termined in polynomial time; noticethat Fa(a;) isnot contained in any reasonable status set, since
there is no possibility for deriving Fa(a;) by means of the head of a program rule or by deontic
closure. However, if we add therule

Fa(X;) — -Pa(Xy)

to the program, then the reasonabl e status sets of the resulting program P’ coincide with the rational
status sets of P. Hence, aso the computation of areasonable status set isintractablein general. We
will deal with reasonable status set in detail in Subsection 7.2.3.

From Theorem 7.8, the following result on action reasoning on the feasible status sets is easily
derived.

Theorem 7.9 Let P be a fixed agent program. Then, given an agent state Os and a ground action
a, deciding whether a € Do(.9) for (7) every (resp., (i¢) some) feasible statusset 5 of P on Og, is
co-NP-complete (resp., NP-compl ete).

7.2.2 Rational status sets

For the existence problem, we obtain from Proposition 5.5 and Theorem 7.8 immediately the fol-
lowing result.

Theorem 7.10 Let P be a fixed agent program, and suppose ZC = (. Then, given an agent state
Ogs, deciding whether P has a rational statusset on Ogs is NP-complete.

The condition that a feasible status set is grounded requires a minimality check. It turns out that
thisminimality check is, in general, an expensive operation. In fact, the following holds.

Theorem 7.11 Let P be a fixed agent program, and suppose ZC = (). Then, given an agent state
Os and a feasible status set S’ for P on O, deciding whether ' is grounded is co-NP-complete.

Proof. Inorder to refute that .5 is grounded, we can guess a status set S’ such that S’ C S and
verify in polynomial timethat S” satisfies the conditions (.51)—(.53) of afeasible status set.

To show that the problem is co-NP-hard, we use a variant of the construction in the proof of The-
orem 7.8. For the CNF formula ¢ there, we set up the following program P:

P5 —

F3 — =Pv,-Pa(Xy),"Pa(Xz), "Pa(X3),POS X1, Xz, X3)

F3 — -Pv,Pa(X1),Pa(Xs), Pa(Xs),NEG( X1, X, X3)
Pa(X)) — Pv,VARX))

Here, v isanew action of the same typeas a and 3, i.e., it has empty precondition and empty add
and delete sets.

Itiseasily seenthat S = {P3, Py} U {Pa(a;) | i = 1,...,n} isafeasible status set of P.
Moreover, .5 is grounded, if and only if formula ¢ is not satisfiable. This proves co-NP-hardness.
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The reduction even alowsto derive another result. In fact, observe that any rational status set of
P iscontainedin §: if Py € S’ for astatus set .5’ which satisfies (51)—(.53), thenclearly 5’ O 5
holds; otherwise, if Py ¢ 5, then S’ C .S must hold.

Assumew.l.o.g. that either ¢ is unsatisfiable, or it has at |east two satisfying assignments. Then,
S istheuniquerational set of P, iff ¢ isunsatisfiable. Asa consequence, deciding whether a non-
positive agent program has a unique rational status set is co-NP-hard as well. |

The complexity of the recognition problem is an immediate consequence of the previoustheorem
and Proposition 7.7.

Corollary 7.12 Let P be a fixed agent program, and suppose ZC = (). Then, given an agent state
Os and a status set 5, deciding whether S isarational statusset for 2 on Os isco-NP-complete.

In the absence of integrity constraints, the rational status sets coincide with the minimal feasible
status sets. Using an NP oracle, we can compute arational status set as follows.

Algorithm COMPUTE-RATIONAL-SS

Input: agent state Os (fixed agent program P, ZC = 0);
Output: arational status set of P, if one exists; “No”, otherwise.
Method

Step 1. Set 5 := () and At := set of al ground action status atoms.
Step 2. Check if S isafeasible status set; if true, then output S and halt.
Step 3. If At = (), then output and halt.

Step 4. Choose some atom A € At and query the oracle whether a feasible status set 5’
existssuchthat 5 C 5" C SU(At\{A}); If theansweris“no”,then S := SU{A};

Step 5. set At := At \ {A} and continue at Step 2.

This algorithm correctly outputs a rational status set (so one exists) in polynomia time modulo
callsto the oracle. Hence, the problemisin FPNF. Thisupper bound can beimproved to FNP//log,
since we can nondeterministically compute arational status set as follows.

1. Compute the smallest size s of afeasible status set 5;

2. nondeterministically generate, i.e., guess and check afeasible status set .5 such that | 5| = s,
and output it.

Step 1 amountsto an NP optimization problem, since s can be computed in abinary search on the
range of possiblevalues, and s hasin binary O(log |7|) many bits, where I isthe instance size.

Thetimefor Step 2 isaso polynomia time (cf. Proposition 7.7).

Hence the overall algorithm proves that computing arationa statussetisin FNP//log, if ZC = (.
We obtain the following result.
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Theorem 7.13 Let P be a fixed agent program, and suppose ZC = (. Given an agent state Ogs,
computing any rational status set of 7 on Os isin FNP//log and hard for both FNP and FPﬂIP.

Proof. By the previous discussion, it followsthat the problemisin FNP//log. Hardness for FNP
follows from the proof of Theorem 7.8.

Thus, it remains to show hardness for FPﬂIP. We establish this by a reduction of computing a
minimal model of a propositional CNF formula ¢, i.e., find amodel M (satisfying truth assignment
to the variables), such that no model M’ existswith M’ C M, where amode isidentified with the
set of variableswhich aretrueiniit. FPﬂTP-hardness of thisproblem, even if all clausesin ¢ have at
most threeliterals, follows easily from theresultsin [24] (Lemma 4.7).

The reduction is an extension of the one in the proof of Theorem 7.11 (note the observations on
rational status sets of the program P there, and that arational status set always exists).

Weusesix further 3-ary relations 'y, . . ., Cg for storing the clauseswhich are neither positive nor
negative, and add respectiverulesderiving F' 5. More precisely, if weset Cy = NEGand C'; = POS,
then the relation C; storesthe clausesC' = L; vV Ly V Ls such that the string p( L1 )p(L2)p(Ls) of
the polarities of the literalsyields: in binary, where p( L) = 1if L ispositive,and p(L) = 0, if L is
negative; thus, e.g. theclause z1 v z5 V —z3 isstored astuple (z1, 25, #3) in therelation C, since
p(a1)p(xs)p(—as) = 110,

Then, the rational status set of the resulting program P’ on the database for ¢ correspond 1-1 to
the minimal modelsof ¢, if ¢ issatisfiable, and the set .5 from there isthe unique rational status set
iff ¢ isunsatisfiable. Moreover, from any rationa status set, the corresponding minima model M
iseasily computed.

Hence, the computation of a minimal model reduces to the computation of a rational status set.
Thisimplies FPﬂIP-hardn&ss, and the theorem is proved. 1

An improvement of these bounds, in particular completeness for F'NP//log, seems to be difficult
to achieve. In fact, it can be shown that computing arational statusset ispolynomial time equival ent
to computing aminimal model of a CNF formula, which is not known to be complete for FNP//log,
cf. [24].

Action reasoning becomes harder in the brave variant if we userational status setsinstead of fea-
sible status sets. The reason isthat we have to check groundedness of a status set, which is a source
of complexity and adds another level in the polynomial hierarchy. However, for the cautiousvariant,
thereis no complexity increase.

Theorem 7.14 Let P be a fixed agent program P, and suppose ZC = (. Let Os be a given agent
state and let o be a given ground action atom. Then, deciding whether o € Do(.5') holds for (7)
every (resp., (ii) some) rational statusset of P on Os isco-NP-complete (resp., ¥4’ -complete).

Proof.  For (i), observethat to disprove o € Do(.5) for every rational statusset 5, we can guess
afeasible status set .5 suchthat « ¢ 5 and verify the guessin polynomial time by Proposition 7.7.
Hence, the problemis in co-NP. Hardness follows from the reduction in the proof of Theorem 7.8;
there, Do(3) belongsto every rational status set of the constructed program P, if and only if P has
no feasible status set.

(i7). The membership part iseasy: A guessfor arational statusset 5 suchthat o € Do(.5) can be
verified by Proposition 7.7 and Theorem 7.11 in polynomial time with an NP oracle.
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The hardness part is shown by areduction from a syntactical fragment of quantified Boolean for-
mulas whichis 25 -hard, and combines the reductions in the proofs of Theorems 7.8 and 7.11 in a
suitable way.

Telling whether a quantified Boolean formula (QBF) V.X'3Y.¢, where ¢ = V7., C; isa CNF
formulaof clausesC; = L;, VvV L;» V L;3 whoseliterals L; . are over propositional variables
(atoms) X U Y, isnot trueis awell-known Y1’ -complete problem [37]. This remains true even if
each clause C'; is either positive or negative (i.e., ¢ isaM3SAT instance).

We extend the database D from the proofs of Theorems 7.8 and 7.11, by adding two further rela
tions XVAR and Y VAR for storing the variables of X and Y, respectively. Construct aprogram P,
using the actions «, 3, and v from above as follows.

Ps
Fg — =Pv,-Pa(Xy), Pa(Xz),-Pa(X3), POS X1, X2, X3)
Fg — =Pv,Pa(Xy),Pa(X;3),Pa(X3), NEG( X1, X2, X3)
Pa(X,) — —Fa(X1),XVAR(X;)
Pa(X,) < P, YVAR(X,)
Doy — Py

Clearly, every feasible status set S must contain either Pa(z) or Fa(z) (but not both), for every
z € X. Moreover, if Py € 9,then Doy € S andforal y € Y,wehavePa(y) € 5.

Let y be achoice among theatoms Pa(z) and Fa(z), for al 2 € X. Then, define

Sy = xU{P3,Py,Doy} U{Pa(y) |y € Y}

Itiseasy toseethat 5, isafeasiblestatusset, for every choice y. We claim that every rational status
set 5 of P must be contained in some of the 5, .

To see this, notice that no atoms with status W or O can bein 5, since there is no possibility to
derive such an atom. For the same reason, no atoms Doa(v), Dog, Fy and Fa(y) canbein S, for
every v € X UY andy € Y. Hence, by the observation on P(«a(z)) and F(a(z)) from above, S
must be a subset of some 5., .

Itiseasy to set that 5, isnot grounded, if and only if Py can be removed from it, such that .5, \
{P~, Do~} containsafeasible status set. Thishappensto bethecaseif theformuladY.¢[x] istrue,
where ¢[x] is ¢ with 2 € X being replaced by true, if Pa(z) € 5,, and by false, if Fa(z) € 9,
foralz € X.

Thus, it follows that some rational status set of 7 contains Do~, if and only if 5, is arational
status set of P for some y, if and only if for some y the formula¢[y] isunsatisfiable, if and only if
YX3Y.¢isnot true. |

Of course, for positive agent programs, action reasoning is easier. In fact, in this caseit is poly-
nomial for both (¢) and (z¢) since arationa status set, if it exists, is unique.

7.2.3 Reasonablestatus sets

Our first result on reasonable status sets is positive: the recognition problem, even in the general
setting where we have negation and integrity constraints, istractable.
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Theorem 7.15 Let 7 be a fixed agent program (where ZC is not necessarily empty). Then, given
an agent state Os and a status set .5, deciding whether ' is a reasonable status set of P on Og is
possiblein polynomial time.

Proof. Indeed, by our assumptions, the ground instance of > over the agent stateis constructible
in polynomial time, and, moreover, the reduct red® (P, Os) is computable in polynomial time. By
Theorem 7.1, the unique rational status set S’ of red® (P, Os) is computable in polynomial time,
and it remains by Theorem 5.3 and the definition of a reasonable status set to check whether 5 = 5’
(s0 5" exists). Overal, thisyields a polynomial-time agorithm. |

Computing a reasonabl e status set, however, isclearly intractable in the general case, eveninthe
absence of integrity constraints. We note for completeness sake the complexities of deciding the
existence of areasonable status set and computing one, which are immediate from Proposition 7.7
and the discussion after Theorem 7.8.

Theorem 7.16 Let P beafixed agent program (where ZC isnot necessarily empty). Then, given an
agent state O, deciding whether P has a reasonable status set on Os is NP-compl ete, and comput-
ing some reasonable status set 5 of P on Og iscompletefor FNP. Hardnessholdseven if Z7C = (.

It is clear in the light of this result that for nonpositive programs with no integrity constraints,
action reasoning on the reasonabl e status setsisintractable. However, compared to therational status
sets, the complexity of the brave variant is lower; thisis explained by the absence of an expensive
groundednesstest for reasonabl e status sets, which alowsfor an efficient recognition.

Theorem 7.17 Let P be a fixed agent program P (where ZC is not necessarily empty). Let Os be
a given agent state and let « be a given ground action atom. Then, deciding whether o € Do(\5)
holds for () every (resp., (i) some) reasonable status set of P on Os is co-NP-complete (resp.,
NP-complete). Hardness holds even if ZC = (.

Proof.  For (7) (resp., (7)), we can guess a reasonable status set .5 of P such that « in Do(.5)
(resp., @ ¢ =Do(a)) and verify the guessin polynomial time (Proposition 7.15).

Hardness for (7) and (7¢) can be easily shown by modifying the reduction in the proof of Theo-
rem 7.8 as discussed (add F(a( X)) — P(a(X1))) questioning about 3, where we add in (i7) the
rueDo(j3) — . |

7.24 Weak status sets

In Subsection7.1.1, we have aready considered the computation of weak rational (resp., reasonabl €)
status sets for positive programs. In the presence of negation, the concepts of weak rationa status
sets and weak reasonable status set do no longer coincide. Also, the complexities of the different
concepts of status sets are different.

Compared to rational (resp., reasonable) status sets, we have here to deal with relativized action
closure AC'l 4, where A isaset of ground actions; recall that A-feasibility, A-rationality etcisdefined
like A-feasibility, withthe only only differencethat action closureisfixed to actionsin A, rather than
all ground actions. Therelativizationto A does not affect the complexity.
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Proposition 7.18 Let P beany program, andlet Os be an agent state. Then, given S and A, testing
A-feasibility of S (resp., A-rationality, A-reasonability), has the same complexity as testing feasi-
bility (resp., rationality, reasonability) of .5'.

Since under our assumptions, aweak rationa (resp., weak reasonable) status set existsif and only
if an A-rationa (resp., A-reasonable) status set existsfor some A, we easily obtain from the proofs
of Theorems 7.8 and 7.16 the following result.

Theorem 7.19 Let P be a fixed agent program, and suppose ZC = (. Then, given an agent state
Ogs, deciding whether P has a weak rational (resp., reasonable) status set on Og is NP-complete.

The computation of any weak rational status set can be accomplished using the algorithm Comp-
WEAK-RATIONAL-SS described below.

Algorithm CoMP-WEAK-RATIONAL-SS

Input: agent state O, (fixed agent program P, ZC = ()
Output: awesk rational statusset of 7 on Og, if one exists.
Method

1. Compute themaximum size s of aset A suchthat P hasan A-feasible status set on
Os;

2. Computeaset A suchthat |A| = s and some A-feasible status set exists,

3. Compute the smallest size s’ of any A-feasible status set .5;

4. Compute an A-feasible status set .S suchthat | 5| = s, and output 5.

The steps 1.-4. can be donein polynomial time with the help of an NP oracle. Therefore, comput-
ing aweak rationa status set isin FPNF in the absence of integrity constraints. Notice by Proposi-
tion 5.10, Steps 1 and 2 can be combined by computing a status set S which is A(.5')-feasible and
such that | A(.9)] is maximal.

For weak reasonabl e status sets, we can apply an adapted version of CompP-WEAK-RSS, inwhich
“ A-feasible” is replaced by “ A-reasonable’; Notice that existence problem for A-feasible and A-
reasonabl e status sets has the same complexity.

Thus, for both kinds of status sets, the computation problem is polynomial if an NP oracle may be
consulted. We can improve on this upper bound and give an exact characterization of the problem
in terms of the complexity class FNP//log, which comprises computation problems with an adjunct
NP optimization problem (see Section 6.3 and [24]).

In our case, this NP optimization problem consists in the computation of the numbers s and s/,
respectively. It is possibleto combine these two stepsinto a single NP optimization problem, such
that we can generate, given its solution, nondeterministically in polynomial time a weak rational
(resp., reasonable) status set.

Theorem 7.20 Let P beafixed agent programand supposethat ZC = (). Then, computing any weak
rational (resp., weak reasonabl e) status set of P on a given agent state O iscompletefor FNP//log.
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Proof. Let G'A bethe set of all ground action atoms. Associate with every status set .5’ the tuple
ts = (|A(9)|,|GA| —|S]),if S is A(S)-rational, and t; = (—1,0) otherwise, and impose on the
tuplests the usua lexicographic order. Then, the following holds: Any statusset 5 suchthat ¢ is
maximal isawesk rational status set, if and only if ts # (—1,0).

Given amaximal tupletg, it is clearly possible to generate a weak rationa status set .5 nonde-
terministically in polynomial time, so one exists. Moreover, the tuples ts can be easily encoded
by polynomial size numbers z(ts), such that z(ts) > z(ts:) iff ts > tg; eg., define z((i, j)) =
(|JGA| + 1)t + j. Computing the maximum z(t¢g) is an NP optimization problem, and from any
z(ts), thetuplets iseasily computed. Hence, it followsthat computing awesk rational statusset is
in FNP/llog.

It remains to show hardnessfor this class. For this purpose, we reduce the computation of an X -
maximal model [23, 24] to thisproblem. Thisproblemis, given a propositional CNF formula ¢ and
asubset X of the atoms, compute the X -part of amodel M of ¢ suchthat M N X ismaximal, i.e,
no model M’ of ¢ existssuchthat M’ N X > M n X, where M isidentified with the set of atoms
truein it. Hardness of this problem for FNP//log isshownin[23, 24] .2

Thereduction is as follows. Without loss of generality, we assume that ¢ isan M3SAT instance.
Indeed, we may splitlarger clauses by introducing new variables, and exchange positive (resp., neg-
ative) literalsin clauses by using for each variable » a new variable & which is made equivalent to
—-z. (All new variablesdo not belong to the set X'.)

Thereductionissimilar totheoneintheproof of Theorem 7.6. We usethe action baseand database
from there, and introduce a further relation XVAR for storing the variablesin X . Consider the fol-
lowing program P:

O(set;(X)) — XVAR(X)
Do(seto(X)) «— -Do(sets(X)), VARX)
Pa
Fa «— Do(seto(X1)),Do(seto(X32)), Do(seto(X3)), POS( X1, X3, X3)
Fa «— Do(set;(X1)),Do(set;(X3)),Do(set;(X3)), NEG( X1, X2, X3)

and impose on it the action constraint AC":
AC : {seto(X),sety(X)} — VAR(X).
Thefirst rule statesthat every variablein X should be set to true, and the second rule together with

AC effectsthat z; is either set to true or to false, but not both.

It is easily seen that the weak rational status sets 5 of P on the input database D for an M3SAT
instance ¢ correspond 1-1 to the X -maxima models of ¢, and from every such 5, the X -part of the
corresponding X -maximal model is easily obtained.

Since D is efficiently constructed from ¢ in polynomial time, it follows that computing a weak
rational status set is hard for FNP//log.

The proof of hardness for computing a weak reasonable status set is similar (use an additional
clause Do(set (X)) «— —Do(seto( X)), VAR(X)). Thisprovestheresult. |

2Infact, the authorsusein [24] aslightly stronger form of reduction among maximization problemsthanin[23], which
requiresthat the transformed instance must always have solutions; our proofs of FNP//log hardness can be easily adapted
to this stronger reduction.
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Likein the case of positive programs, recognition of awesk rational status set .5 is no harder than

computation, even if programs are nonpositive. The recognition problemis solved by thefollowing
algorithm.

Algorithm REC-WEAK-RATIONAL

Input: statusset .S on agent state O (fixed agent program P, ZC = ()
Output: “Yes’, if S isaweak rational statusset of P on Og, “No” otherwise.
Method

1. Check whether S is A(.S)-feasible;
2. Check whether thereisno A(.5)-feasible status set .5’ such that 5" C 5;
3. Check whether thereisno 5" such that 5* is A(.S”)-feasibleand A(S5) C A(S7).

The correctness of this algorithm follows from Proposition 5.10. However, it is not clear how
to implement it in polynomia time. The next theorem establishes that such an implementation is
unlikely to exist, nor that any polynomial time algorithm for this problem is known.

Theorem 7.21 Let P beafixed agent programand supposethat ZC = ). Then, given an agent state
Os andastatusset 5, deciding whether 5 isa weak rational statusset of 72 on P isco-NP-compl ete.

Proof. Algorithm REC-WEAK-RATIONAL can be easily rewritten as a nondeterministic polyno-
mial time agorithmfor refuting that .5 is aweak rational status set. Hardnessis immediate from the
proof of Theorem 7.11. |

A wesak reasonable status set can be recognized in a similar way; see algorithm REC-WEAK-
REASONABLE below. The correctness of this algorithm follows from Proposition 5.10. We obtain
the following result.

Algorithm REC-WEAK-REASONABLE

Input: agent state Og, status set 5 (fixed agent program P)

Output: “Yes’, if S isaweak reasonable status set of P, “No” otherwise.
Method

1. check whether S is A(5')-reasonable, and output “No” if not;
2. Check whether thereisno 5’ such that 5" is A(.5”)-reasonableand A(5) C A(S5”).

Theorem 7.22 Let P be afixed agent program (where ZC isarbitrary). Then, given an agent state
Os and a statusset .5, deciding whether 5 isaweak reasonabl e status set is co-NP-complete. Hard-
ness holdseven if ZC = 0.
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Proof. Clearly, algorithm REC-WEAK-REASONABLE can beturnedintoaNP-algorithmfor show-
ing that 5" is not aweak rational status set.

The hardness part follows by an easy modification to the proof of Theorem 7.8. Add the rules
Fa(X;) — -Pa(X1), VAR(X1), and replace therule P35 — by therule O3. Moreover, assume
w.l.0.g. that the assignment in which all variables z; have value false does not satisfy ¢.

Then, S = {F(z1) | 2, € X} U{F3,043} is A(S)-reasonable. It iseasily seenthat 5 isawesk
reasonable status set, if and only if ¢ is not satisfied by any assignment which sets some variable
true. (If such an assignment exists, then the obligation O3, which isviolated in .5, can be obeyed,
and thus a reasonabl e status set exists). |

When we switch from rational (resp., reasonable) status setsto weak versions, the complexity of
action reasoning is partialy affected in the absence of integrity constraints.

Itiseasy to seethat for the brave variant, the complexity for the weak and the ordinary version of
rational status setsisthe same. In both cases, the straightforward Guess and Check algorithmyields
the same upper bound, and the result for brave rational action reasoning has been derived without
involving obligations.

For the cautious variant, we find a complexity increase, even if the complexity of the recognition
problem has not changed. The reason is that the beneficial monotonicity property of finding just
some feasible status set which does not contain the action « in question as a proof that « does not
occur in al rational status sets, can (in a suitable adaptation) no longer be exploited.

Theorem 7.23 Let P be a fixed agent program P, and suppose ZC = (. Let Os be a given agent
state and let o be a given ground action atom. Then, deciding whether o € Do(.5') holds for (7)
every (resp., (i) some) weak rational status set of P on O is 114 -complete (resp., ©5 -complete).

Proof.  The proof for the brave variant isin the discussion above.

For the cautious variant, observe that awesk rational status set 5 such that o« ¢ Do(.5') can be
guessed and checked with an NP oracle in polynomial time.

For the hardness part, we adapt the constructionin the proof of Theorem 7.14 for areduction from
QBF formulas 3X VY ¢, where ¢ isin M3DNF form.

We use the action base .AB from there and extend it with another action 3 of the same type as a.
Moreover, we usetherelations POS and NEG for storing the disjunctsof ¢ as described in the proof
of Theorem 8.2, and replace VAR by the relations XVAR and Y VAR for storing the variablesin X
and Y, respectively.

Then, we set up the following program:

O(seto(X)) — XVAR(X)

O(set;(X)) — XVAR(X)

Do(seto( X)) «— —-Do(sets(X)), XVARX)
F3 — Do(seto(X1)),Do(seto(X3)), Do(seto(X3)), POS( X1, X3, X3)
F3 — Do(seti(X1)),Do(seti(X3)), Do(seti(X3)), NEG( X1, X3, X3)
O(a) —
P(3) <« Do(a)

We modify the action constraint AC' to

AC": {seto(X),sety(X)} — XVAR(X).
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In the above program, the agent isinformally obliged by the first two clauses to set every variable
x € X toboth true and false, which is prohibited by AC’. The next clause forces him/her to assign
each variablein X U Y atruth value. By the maximality of weak rational status sets, then agent
follows one of the two obligationsfor each variable in X', which creates an exponential number of
possibilities.

The next two clauses check whether the formula ¢ is satisfied. If so, then F3 is derived. By the
next clause, the agent should take «, but if F 3 is derived, she cannot execute «; hence, s/he must
violate this obligation in that case. Thus, if for achoice y from O(seto(z)), O(sety(z)), for all
x € X, theformulaVY ¢[X = ] istrue, then there exists aweak rational status set 5 such that
Doa ¢ 5; conversely, if there exists such a status set, then a truth assignment y to X exists such
that VY ¢[ X = x]istrue.

Consequently, decidingwhether o € Do(.5') for every weak rational statusset of 7 on the database
D for IXVY ¢ is1I% -hard.

We remark that ©:£’-hardness of the brave variant can be obtained by adding arule
Doy «— Do«
and querying about . |

For action reasoning with weak reasonabl e status sets, we obtain similar complexity results.

Theorem 7.24 Let P be a fixed agent program. Let Os be a given agent state and let o be a given
ground action atom. Then, deciding whether o € Do(.5') holdsfor () every (resp., (7¢) some) weak
reasonablestatusset of P on Oy sl -complete (resp., ©5 -complete). Hardnessholdsevenif 7¢ =

0.

Proof. A weak reasonable status set 5 such that o ¢ Do(.5) (resp., o € Do(.5)) can be guessed
and checked in polynomia time with an NP oracle by Theorem 7.22.

Hardness followsfor both problems by a slight extension of the construction in the proof of The-
orem 7.23. Add to the program P there the clause

Do(set1(X)) «— —-Do(seto(X)), YVARX)

Then, the weak reasonable status sets of the resulting program P’ coincide with the weak rational
status sets of P/, which coincide with the weak rational status sets of . This proves the result for
(ii). For (¢), add therule Doy — Do« and query about +. |

7.3 Preferred status sets

Intuitively, adding a preference on rational or reasonabl e status sets does increase the compl exity of
the semantics. Evenif we have checked that astatusset S isrationa (resp., reasonable), then westill
have to verify that there is no other rational (resp., reasonable) status set 5’ which is preferred over
S'. This check appears to be expensive, since we have to explore an exponentia candidate space
of preferred rational (resp., reasonable) status sets 57, and the test whether 5’ isin fact rational is
expensive as well.
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However, as it turns out, for rational status sets, preference does not lead to an increase in the
complexity of action reasoning if no integrity constraints are present. On the other hand, preference
does increase the complexity of action reasoning for reasonable status set. Thisis explained by the
fact that for rational status sets, an increase in complexity is avoided since for deciding preference,
it issufficient to consider feasible status setsfor ruling out acandidate S for a preferred rational set,
and feasible status sets have lower complexity. For reasonable status sets, a similar property does
not apply, and we enface the situation of being obliged to use reasonabl e status setsfor eliminating
acandidate.

In therest of thispaper, wefocuson F-preferred status sets. Similar results can be derived for the
dual P-preferred status sets by dualizing proofs.

Theorem 7.25 Let P be a fixed agent program, and suppose ZC = (. Then, given an agent state
Os and astatusset .5, decidingwhether S'isa F'-preferred rational status setsof 7 on Og isco-NP-
complete.

Proof. By Proposition 7.7, one can decide in polynomial time whether .5’ is afeasible status set.
Now we exploit the following property: A feasible status set 5 of P isnot a F'-preferred rationa
status set of P, if and only if there existsafeasible statusset S’ of P suchthat F(.5") C F(.9) holds.

Therefore, we can refute that S isa F-preferred rational status set by guessing a status set .5* and
checking in polynomia time whether either ' is not a feasible set, or whether 5’ is feasible and
satisfiesF(.5") C F(.5). Hence, the problemisin co-NP.

Hardnessisan immediate consequenceof the proof of Theorem 7.11, asthe candidate set .S’ defined
there satisfies F(\5) = (), and isthus F-preferred, if and only if it is grounded. |

The computation of an F-preferred rational status set is possible using a variant of the algorithm
CoMPUTE-RATIONAL-SS as follows. After Step 1, compute in a binary search the size s of the
smallest possible F-part over all feasible status sets of P on Og; then, in the remaining steps of the
agorithm, constraintheoraclequery to existenceof afeasiblestatusset 5/, 5 C 5" C SU(A\{A4}),
suchthat |F(.S")| = s. Thisisapolynomia agorithm using an NP oracle, and hence the problemis
in FPNT,

A refined analysisunveilsthat the complexity of thisproblemis, likethe one of computing aweak
rational status set, captured by the class FNP//log.

Theorem 7.26 Let P be a fixed agent program, and suppose ZC = (). Then, given an agent state
QOs, computing an arbitrary F'-preferred rational status set of P on Og is complete for FNP/log.

Proof.  The proof of membership is similar to the one of computing a weak rational status set.
Indeed, the F-preferred status sets are those status sets 5 for which the tuple ¢’y = (JF(.5)], [5])
is minimal under lexicographic ordering, where infeasible status sets 5 have associated the tuple
ts = (|GA|+1,|GA|), where G A isthe set of all ground action statusatoms. From aminimal ¢, a
F-preferred rational status set can be nondeterministically constructed in polynomial time. Hence,
the problemisin FNP//log.

The proof of hardnessis by areduction from the problem X -maxima model in the proof of The-
orem 7.20, which isw.l.0.g. in M3SAT form.

We modify the program in the proof of Theorem 7.8 to the following program P’:

P5 —
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Fﬁ — ﬁPOé(Xl),—'POé(XQ),—'POé(Xg),POS(Xl,XQ,Xg)
Fﬁ — PO[(Xl),POé(XQ),POé(Xg),NEG(Xl,XQ,Xg)
Fa(Xy) — -Pa(X1),XVAR(X;)

Here, XVAR storesthevariablesin X. Therational status sets of P’ on the database D for ¢ corre-
spond 1-1 to themodels M of ¢ such that for the X -part fixed to X N M, the part of the remaining
variablesisminimal, i.e., to themodels A/ such that no A7’ existssuchthat A/'N X = M N X and
M c M.

It isnot hard to see that for every F-preferred rationa status set S of 2 on D, the corresponding
model M of ¢ is X-maximal. (Observe also that for every X -maxima model ¢, there exists some
F-preferred rational status set of P such that the corresponding model M’ of ¢ setisfies M' N X =
M n X.) Moreover, M iseasily constructed from 5. It follows that computing an arbitrary F-
preferred rational status set is hard for FNP//log. |

For F-preferred reasonabl e status sets, we obtain similar results. However, we may allow the pres-
ence of integrity constraints without a change in the complexity.

Theorem 7.27 Let P be a fixed agent program. Then, given an agent state Os and a status set .5,
deciding whether 5 isa F-preferred reasonable statusset of P on O isco-NP-complete. Hardness
holdseven if ZC = 0.

Proof. By Proposition 7.15, we can decide in polynomial time whether ' is areasonable status
set, and check that there is no reasonable status set 5" such that F(5”) C F(.5') with the help of an
NP oracle.

Hardness is shown by a proper maodification of the program P in the proof of Theorem 7.11. In-
deed, replace theclause Pa(X1) — P~ withtheclause Fa(X1) < F~, replace =P~ with=F~ in
the other clauses, and add the following clauses:

Pa(Xl) — ﬁFOé(Xl) F’)/ — —|P’}/
Fa(Xl) — ﬁPOé(Xl) P’)/ — —|F’)/

Then, theset S = {Fa(z;) | 2; € X} U {F~} isareasonable status set of the new program P’ on
the database D. It isthe (unique) F-preferred reasonable status set, if and only if the formula ¢ is
not satisfiable. Hence, deciding whether .S isa F'-preferred reasonabl e status set isco-NP-hard. i

An F'-preferred reasonabl e status set can be computed applying an agorithm anal ogousto the one
used for computing a F'-preferred rational status set. First, compute the minimum size s of the F-
part F'(.5') over all reasonable status sets 5, and then construct a reasonable status set .S such that
F(S)| = s.

This matches the solution scheme for problems in FNP//log; we obtain the following result.

Theorem 7.28 Let 7 be a fixed agent program (where ZC is not necessarily empty). Then, given
an agent state Og, computing any F-preferred reasonable status set of 7 on O is complete for
FNP//log. Hardness holdseven if ZC = §.

Proof. = The membership part isin the preceding discussion.
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The hardness part can be shown by a modification of the reduction in the proof of Theorem 7.26.
Add to the program from there the following rules:

Pa(X;) — -Fa(X;),XVAR(X;)
Pa(X;) — -Py(X1),YVAR(X;)
Py(X1) — -Pa(Xy),YVAR(X;)

here, Y VAR isarelation which storesthe variableswhich are not in X', and ~ isanew action of the
same typeas a.

It holdsthat the reasonable status sets of the described program P on the database D for ¢ corre-
spond 1-1 to the models of ¢; moreover, the F'-preferred reasonable status sets S correspond 1-1 to
the X -maximal models M of ¢. Since M iseasily computed from 9, it follows that computing an
arbitrary F'-preferred reasonable status set is F'N P//log-hard. |

7.3.1 Action reasoning

Theorem 7.29 Let P beafixed program, and supposethat ZC = (). Then, givenan agent status Os
and an action statusatom A, deciding whether A belongsto (¢) every (resp., (i:)some) F'-preferred
rational status sets is 115 -complete (resp., ¥4’ -complete).

Proof.  For the membership part, observethat aguessfor a F'-preferred rational status set 5 such
that A ¢ S (resp., A € 5), can be verified by checking that F' isfeasible, F' is grounded, and that
no feasible status set 5’ exists such that F(5”) C F(.5). By Proposition 7.7, and Theorem 7.11, it
followsthat these tests can be donein polynomial time with an NP oracle. Hence, the problemisin
1T} (resp., 37).

To show hardness, we employ aslight modification of the construction in the proof of case (i) of
Theorem 7.14. Add to the program P from there the clauses

Po*(X;) — Fa(X;),XVAR(X)
Fa*(X;) — Pa(X;),XVAR(X)

where a* isanew action of the sametypeas a. Theeffect of theseclausesistoincludePa*(z;)ina
rational status set, if Fa(x;) belongstoit, and symmetrically to include Fa*(z;), if Pa(x;) occurs
init. Thisway, the extended candidate set

5% =9 U{Fa™(2) | Pa(z) € Sy,x € X} U{Pa™(z)|Fa(z) € 5,z € X}

isnot a F'-preferred rational status set, if and only if the formula3Y.¢[x] istrue.

Since any rational status set S” which is F'-preferred over S must not contain Do, it follows
that Do~ iscontained in some F-preferred rational status set, if and only if the formulavV.X3Y.¢ is
false. This proves ¥4 -hardness of (7).

For (¢), wesimply add aclause Doé — =P~ to the above program, where ¢ isanother action of
thetype of a. Then, every rational status set 5" whichis /'-preferred to 57 contains Dod, while 57
doesnot contain Doé. Consequently, Do~ occursinall F-preferred rational statussetsfor P, if and
only if VX 3Y.¢ istrue. This proves I1% -hardness. |
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As discussed above, for reasonable status sets F-preference leads to a complexity increase, and
raisesit totheleve of rational status sets. However, as with the other problems on reasonabl e status
sets, thisincrease is independent of whether integrity constraints are present or not. For rational
status sets, thisis not the case, and the complexity thereis higher in the general case, aswewill see
in Section 8.5.

Theorem 7.30 Let P be a fixed program (where ZC may be nonempty). Then, given an agent state
Os andanaction statusatom A, decidingwhether A belongsto (7 ) every (resp., (i )some) I'-preferred
reasonable status set is 112 -compl ete (resp., ©¥ -complete). Hardness holdseven if ZC = ().

Proof. A F-preferred reasonable status set 5 such that A ¢ 5 (resp., A € 5) can be guessed and
checked in polynomial time with the help of an NP oracle (Proposition 7.15, Theorem 7.27).

For the hardnesswe empl oy areduction from avariant of Quantified BooleansFormulas, described
in Lemma 8.14: decide whether aformula® = VX 3Y # (. ¢ istrue, knowing that for every X,
the assignment y = 0 satisfiesthe formula.

We extend the reduction in the proof of Theorem 7.8 in the same way aswe have extended the one
in the proof of Theorem 7.14 for the proof of Theorem 7.29. We then have the program P:

P3 —
F§ — Fa(X,),Fa(X,),Fa(Xs), POSX], Xy, X3)
F§ — Pa(X1),Pa(X,),Pa(Xs),NEG(X], Xs, X3)

Pa(X:) « —-Fa(Xy)

Fa(X;) < -Pa(Xy)

Pa*(X;) — Fa(X;),XVAR(X))

Fo*(X;) — Pa(X;),XVAR(X))

The asserted property of ¢ impliesthat for each choicefrom F(a(z;)) and P(a(x;)), forall z; € X,
we have astatus set 5 containing al atoms F(a(y;)), forall y; € Y, suchthat S} isareasonable
status set of P.

Now, if we add therule
Do(v) — =Fa(X1), YVAR(X;)

where v isafresh action of the sametype as 7, then v is contained in every F'-preferred reasonable
status set of P, if and only if YX3Y # (. ¢ istrue. This proves 114’ -hardness of (i). For (4i), add
another rule

Do(é) — —=Do(v)

where 6 is another fresh action of the type of 5. Then, § belongsto some F'-preferred reasonable
status set of P, if and only if VX 3Y # (. ¢ isfase. This proves the theorem. |
8 Complexity Impact of Integrity Constraints

So far, we have focused in our complexity analysis mainly on agent programs where in the back-
ground no integrity constraints were present. We say mainly, since for positive programs and rea-
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sonabl e status sets, most resultsthat have been derivedin Section 6 do allow for integrity constraints,
and fortunately establish tractability for a number of important computation problems.

However, in the presence of negation, we have excluded integrity constraints. The reason is that
in some cases, the presence or absence of integrity constraints makes a difference to the intrinsic
complexity of aproblem, whilein other cases, thereis no difference. A systematic treatment of this
issue is suggestive; therefore, we analyze in this section the effects of integrity constraints on the
complexity of agent programs. An overview of the effects and a discussionis givenin Section 6.2.
In therest of this section, we devel op the technical results.

8.1 Feadble statussets

Asshownin the previoussection, finding arational or feasible status set of a positive agent program
is polynomial, if no integrity constraints are present. While adding integrity constraints preserves
polynomial time computability of rational statussets, it leadsto intractability for feasible status sets.
In fact, aready for a software package S = (7s, Fs) which isa simple relational database D in
which tuplesmay beinserted or del eted from tables, we face intractability if the integrity constraints
include functional dependencies (FDs for short) on the tables. Notice that FDs are one of the most
basic and important type of dependenciesin databases[102].3

Theorem 8.1 Let P beafixed agent program, where ZC may be nonempty. Then, deciding whether
P has a feasible status set on a given agent state Os is NP-complete, and computing an arbitrary
feasible status set is "N P-complete. Hardness holds even if P is positive and ZC holds functional
dependencies of a relational databaseD.

Proof. Theproblemisin NP, sinceafeasible status set .S can be guessed and checked in polyno-
mial time, according to our assumptions (cf. Proposition 7.7).

We show the hardness part for the particular restriction by areduction from the set splitting prob-
lem [37]. Givenacollection S = {51,...,5,} of setsover afinite set U, decide whether there
exists a partitioning (or coloring) (Cy, C3) of U suchthat every S; € S,¢ = 1,...,m, meets each
of ¢y and 5 inat least one e ement.

We construct from S an instance of the feasible status set test as follows. The database D has
four relations: COLL(Set, 1), SPLIT(LL, Color), Al(Set, El,Tag) and A2(Set, El,Tag). In-
tuitively, the collection S is stored in COLL by tuples (i, e) for every e € 5; and S; € S; thetable
SPLIT isused for placing each element e € U in C or C;, (i.e, coloring it), which isindicated by
tuples(e, 1) and (e, 2); thetables A1 and A2 hold the occurrences of elementsin sets, where each
set has some |abel.

Theactionbase A5 containsassign( X, Y)andtrigger(X, Y ), whichhaveempty precondition
and the following Add- and Del-Sets:

assign:  Add(assign(X,Y))
Del(assign(X,Y))
trigger: Add(trigger(X,Y))=

LIT(X,Y)},
AL(S, X, Y), A2(S5, X, Y) };
{AL(X,Y,0),A2(X,Y,0) }, Del(trigger(X,Y)) = 0.

={sP
=

3A functional dependency is a constraint ¢ : X — A on arelation r, where A is an argument of r and
X = {Xi, ..., X} is asubset of arguments of r; it holds, if any two tuples in r which agree on the ar-
guments in X agree also on A. In our framework, C' can be expressed as an integrity constraint e.g. as follows:
in(T1,db: select(r)&in(T2,db : select(r))&T.X; = T2.X1& - - - &T1.Xn = T2.Xa = T1.A = T2.A.
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The program P hasthe singlerule
Do(trigger(X,Y)) «— COLL(X,Y)

Let D bethe database instance such that COLL containsthe collection S, SPLIT isempty, and A1
(resp. A2) holdsfor each tuple (s, e) in COLL atuple(s,e, 1) (resp. (s, e,2)). Moreover, suppose
that theintegrity constraintsZC onD consist of thefollowing FDs: theFD El — C'olor on ASSIGN,
andthe FD Set — Tag on Aland A2.

Intuitively, the program forces the agent to add for every occurrence of an elementinaset 5; € S,
represented by atuple (¢, ) in COLL, atuple (7, e,0) to both A1 and A2. Thistriggersaviolation
of theFD Set — T'ag on Aland A2. Thisviolation must be cured by executing assign(e;,0) and
assign(egz, 1) actionsfor some ey, e3 which occur in the set S;; by the FD £ — Color on SPLIT,
e, must be different from es.

Hence, itis easy to seethat P has afeasible statusset on D, if and only if S is colorable by some
coloring (C1y, C3). Sinceacoloring (C, Cy) iseasily constructed from any feasible status set .5, the
result follows. |

This result is quite negative, since it tells that already for very simple programs and very basic
constraints, computing afeasible set is a hard problem. The reason is that the agent program P we
have constructed in the reduction does not say anything about how and when to use the assi gn
action, which does not show up in the program. If we had rules which tell the agent under which
conditionsa particular assi gn action should be taken or must not be taken, such a situation would
hardly arise. However, since the program is underconstrained in that respect, an exponentiality of
possibilities exists which must be explored by the agent.

The previoustheorem shows that we benefit from using rational status setsinstead of feasible sta-
tus sets on positive programs in different respects. First, on the semantical side, we have a unique
rational status set (if one exists) compared to a possible exponential number of feasible status sets,
and second, on the computationa side, we can compute the unique rational status set on an agent
state in polynomial time, compared to the intractability of computing any feasible status set. Unfor-
tunately, in the presence of negation, like on the semantical side, also on the computational side the
appealing properties of rational status sets vanish.

8.2 Rational status sets

In the presence of integrity constraints, the complexity of rational statussetsincreases. Thereasonis
that dueto theintegrity constraints ZC, afeasible set .5 may no longer necessarily contain arational
status set; deciding this problemisintractable.

Theorem 8.2 Let P beafixed agent program(not necessarily positive), supposeZC holdsfunctional
dependencies on a relational database D. Let Os be an agent state, and let S be a feasible status
set for Pon OgC'. Then, deciding whether 5 contains some rational status set (resp., .S isrational)
isco-NP-hard, even if 7C containsa single FD.

Proof. We provethisby areduction from the M3DNF problem, whichisarestriction of the DNF
TAUTOLOGY problem (cf. [37]): Given a propositional formula ¢ = \/!_; D; in DNF, where
the D,’s are conjunctions of literals on a set of propositional variables X = {zy,...,x,}, decide
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whether ¢ isatautology. M3DNF istherestrictioninwhich each D; hasthreeliteras, and such that
theliterals of D; are either all positive or all negative. For convenience, we allow repetition of the
same literal in the same disjunct.

ThedatabaseD containsthreerelations: POS(V7, V2, Vi) and NEG( Vi, Vs, Vi) for storing the pos-
itive and the negative disjuncts of ¢, respectively, and arelation VAR(Var, Value, T'ag), which
contains for each pair of variableax € X andavaluev € {0, 1} precisely onetuple. Thatis, the
FD Var,Value — Tag isaconstraint on VAR.

Theinitial database D containsthefollowingtuples. For each positivedisunct D; = x;, Az, Ay,
from ¢, thetuple (z;, , z,,, z;,) iISin POS, and for each negativedisjunct D; = —z;, A -z, A~y
the tuple (z;,, z;,, 2, ) isin NEG. Moreover, for each propositional varisbles z; € X, the tuples
(z;,0,0)and (z;,1,0) arein VAR.

The action base containsthethree actionsall, set( X, Y ) and addto_var(.X, Y, Z), which have
empty preconditions and the following add and delete sets:

all: Add(all) = Del(all) = {;
set (X,Y): Add(set(X,Y)) =0, Del(set(X,Y)) = {VAR(X,Y,0)};
addto_var (X,Y,7): Add(addtovar(X,Y,7))={VAR(X.,Y,Z)}, Del(X,Y,7Z) = 0.

The program P is as follows:

Do(set(X,Y))— Do(all), VAR(X,Y, 7).

Do(all) < Do(set(X,0)), Do(set(X, 1)), VAR(X,Y, Z).

Do(all)— -Do(set(X,0)), ﬁDo(set(X, )), VAR(X,Y, Z).
Do(all) < Do(set(X,0)), Do(set(Y,0)), Do(set(Z,0)), POS X,Y, 7).
Do(all) — Do(set(X, 1)), Do(set(Y, 1)), Do(set(Z,1)),NEG(X,Y, 7).
Do(addtovar(X,Y,1))— VAR(X,Y, 7).

b

Suppose that 7€ holdsthesingleFD Var, Value — Tag on VAR. Let S be the smallest status set
S whichisclosed under DC'l and AC'l and has the Do-Set

Do(5) = {all} U {set(a;, v),addtovar(z;,v,1)| 2; € X,v € {0,1}}.
Then, it can be checked that S is afeasible status set of P on theinitia database D.

We note that any feasible status set 5" C 5 must not contain Do(al1l), and must contain exactly
one of Do(set(z;,0)),Do(set(z;,1)), for every z; € X; but, any such 5 does never satisfy the
FD Var, Value — Tag on VAR, sinceeither thetuples(z;, 1,0),(z;, 1, 1) arein VAR, or thetuples
(24,0,0),(2;,0,1),and therefore the FD Var, Value — Tag isviolated on VAR.

It holdsthat .5 contains some rational status set (resp., that .S isrational), if and only if formula ¢
isatautology. Theresult follows. |

For the recognition problem, we thus obtain by Theorem 8.2 and Proposition 7.7 easily the fol-
lowing result.

Theorem 8.3 Let P be a fixed agent program. Then, given an agent state Os and a status set 5,
deciding whether S isarational statusset of P on Og, is co-NP-complete. Hardness holds even if
P ispositive.

The computation problem for rational status setsis harder than for feasible status sets, and is be-
yond the polynomial time closure of NP.
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Theorem 8.4 Let P be a fixed agent program. Then, given an agent state Og, deciding whether
P has a rational status set on O is ¥}’ -complete, and computing any rational status set is FX.%'-
complete.

Proof. Theproblemsarein ¥} and FX’, respectively, sincearational statusset S can be guessed
an verified in polynomial time with the help of an NP oracle (cf. Theorem 8.3).

To show that the problems are hard for £’ and FX.%, respectively, we extend the constructionin
the proof of Theorem 8.2, such that we encode the problem of computing, givenaQBF 3YV.X.¢, an
assignment y totheY -variables suchthat VX .¢[Y = x]isvalid, where ¢[Y = x] isthe application
of y tothe Y -variablesin ¢.

We use an additional relation Y VAR for storing the Y -variables, and add therule
Do(set(Y,1)) — —-Do(set(Y,0))

Thisrule enforces a choice between Do(set(y;,0)) and Do(set(y;,1)),forall y; € Y'; each such
choice x generates acandidate 5 for arational status set.

It holdsthat every rational status set of P on D must be of the form .5, , for some choice y; more-
over, therational statussetsof P on D correspond to the sets 5, suchthat theformulaV.X.¢[Y = x]
isvalid. Therefore, deciding whether P hasarational statusset on D is ¥4’ -hard, and computing any
rationa status set is hard for FE§ . Theresult follows. |

For action reasoning, we obtain from the preceding theorem easily the following result.

Theorem 8.5 Let P be a fixed agent program. Then, given an agent state Os and a ground action
a, deciding o € Do(.5) holdsfor (i) every (resp., (z¢) some) rational statusset of P on Og is (1)
1Y -complete (resp., (ii) B -complete).

Proof. Membership isimmediate from Theorem 8.3: A guessfor arationa status set 5 such that
a ¢ Do(5) (resp., a € Do(.5)) can be verified withan NP oracle.

For the hardness parts, observethat al | € Do(.5) for every rationd status set of the program P
in the proof of Theorem 8.4; thus, by querying about al | , hardness for () holds. For (i), query
about a, where o is afresh action which does not occur in P. |

8.3 Reasonable status sets

For reasonable status sets, we find in all cases better computational propertiesthan for rational status
sets. Thisisexplained by the fact that the criterion for areasonable status set is much stronger than
the onefor arational status set.

Indeed, this criterion is so strong, such that the presence of integrity constraints has no effect on
tractability vsintractability issue of recognizing areasonable status set. In both cases, a reasonable
status set can be recognized in polynomial time (Proposition 7.15). Therefore, the same compl exity
results hold for programs with and without integrity constraints. (see Section 7.2.3).
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84 Weak status sets
8.4.1 Positiveprograms

Therecognition problem is no longer known to be polynomial if no integrity constraints are present
in general. Thisis aconsequence of the proof of the previous theorem.

Theorem 8.6 Let P be a fixed positive agent program. Let Ogs be an agent state, and let S bea
status set. Then, deciding whether 5" isa weak rational status set of P is co-NP-complete.

Proof. Toshow that S isnot aweak rational status set, we can proceed asfollows. Check whether
S'isnot A(.S)-rational; if thisisnot the case (i.e., 5 is A(.S')-rational), then guess some status set 5’
such that 5" is A(5”)-rational and A(5”) O A()9). Since checking A-rationality is polynomial if P
is positive, it follows membership in co-NP.

For the hardness part, we can establish a reduction from the M3SAT problem similar to theonein
the proof of Theorem 7.6.

Asthere, we supposethat an M3SAT instance ¢ is stored in relations POS (positive clauses) and
NEG (negative clauses), and we assume that all variables are stored in VAR. Moreover, thereis a
relation AUX(V ar, Val), which containsin theinitial database D al tuples(z;,0), for al variables
Z;.

The action base A5 containsset (X ) and set (X ), which have both empty precondition, and
both the add sets { AUX(Y, 1)} and the delete sets { AUX( X, 0)}. Further, AB containsan action o
with empty precondition and empty add and delete sets. Define the program P as follows.

O(seto(X)) — VAR(X)

O(sety(X)) < VAR(X)
Fa — Do(seto(X1)),Do(seto(X32)), Do(seto(X3)), POS( X1, X3, X3)
Fa — Do(seti(X1)),Do(seti(X3)), Do(seti(X3)), NEG( X1, X3, X3)
Pa

In addition, we have the action constraint
AC : {seto(X),sety(X)} — VAR(X)
(this action constraint can be easily represented by additional positiverulesin P; see Section 5.5).

Moreover, 7C containsthe FD Var — Val on AUX. Clearly, theinitial D satisfiesthisFD.
Then, for agiveninitial database D, the status set

S = {O(seto(2;)), O(sety(2;)), P(seto(x;)), P(sety(z;)) | 2; € X} U{Pa}

isan {a}-set feasible status set. Moreover, it holdsthat 5 isawesk rational statusset, if and only if
there existsno status set 5" such that 5" is A(5”)-feasibleand A(,5") O {a}. Observethat any such
S" must contain Do(seto(x;)) or Do(sety(2;)), for every z; € X, and thus correspondsto atruth
assignment; indeed, tekingset _0(z;) or set _1(x;) for any =; addsthetuples(z;, 1) to AUX1, for
al variables z ;.

Thus, 5 is awesak rational status set, iff ¢ is aNo-instance; Since the database D is easily con-
structed from ¢, the result follows. |
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Aswe have seenin Section 7.1.1, aweak rational (resp., reasonable) status set of afixed positive
agent program can be computed in polynomial time using the algorithm CompPUTE-WEAK-RSS.
Unfortunately, a similar polynomia agorithm in the presence of integrity constraintsisunlikely to
exist. Thisisa consequence of the following result.

Theorem 8.7 Let P be a fixed positive agent program. Given an agent state O, deciding whether
P has a weak rational status set on Ogs is NP-complete.

Proof. Theproblemisin NP, sincewecan guessaset A of ground actions, compute S = Ifp(Tp 0., 4)
and check whether 5 is A-feasiblein polynomial time. If such aset A exists, then P has some weak
rational status set on Os.

NP-hardness can be shown by a slight extension to the reduction in the proof of Theorem 8.6.
Without loss of generality, the M3SAT formula ¢ from the reduction there is only satisfiable if a
designated variable z; is set to true. Thus, if we add the rule Doset;(z;) < to the program P,
then the resulting program has aweak rational statusset if and only if ¢ is satisfiable. |

For the computation problem, we have the algorithm CompPuTE-PI C-WEAK-RATIONAL-SS be-
low, which makes use of an NP oracle.

Algorithm CoMPUTE-PIC-WEAK-RATIONAL-SS

Input: agent state O (fixed positive agent program P; ZC is arbitrary)
Output: awesk rational statusset of P on Og, if one exists; “No”, otherwise.
Method

Stepl. Set A,., := 0, GA :=setof al ground actions.

Step 2. Query the oracle whether some A O A, existssuchthat 5" = Ifp(Tp 04,4) IS
A(S")-feasible.

Step 3. If theansweris“yes’, thenlet S := Ifp(Tr 0. 4,,., ) @ndset A,y := A(S),GA :=
G A\ Agyg; otherwise, if A, = 0, then output “No” and halt.

Step 4. If GA = (), then output S and halt.

Step 5. choosesome o € G A, and set A,cpy := Ayg U{a}, GA := GA\ {a}; continue
at Step 2.

This agorithm computes a weak rational status set in polynomia time modulo calls to the NP
oracle. Therefore, the problemisin FPNP. Observethat in case ZC = 0, the NP-oracle can bere-
placed by apolynomial time a gorithm, such that we obtain an overall polynomial agorithm similar
to ComPUTE-WEAK-RSS.

Likein other cases, the FPN upper bound for the computation problem can also be lowered to
FNP/Nog inthiscase.

Theorem 8.8 Let P be a fixed positive agent program. Then, computing a weak rational status set
isin FNP//log and hard for both FNP and FPﬂTP.
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Proof.  For computing a weak rational status set, we can proceed as follows. First, compute the
maximum size s = |A(.9)| over dl statussets S such that S is A(.9')-rational; then, generate nonde-
terministically a status set .S which is A(.9)-rational and such that | A(.5')| = s, and output this set
(so one exists).

The correctness of this algorithm follows from Proposition 5.10. Moreover, checking whether .5
is A(.S)-rational is polynomial if P is positive, as follows from Propositions 7.18 and 7.2. Conse-
quently, computing aweak rational statussetisin F'NP//log inthiscase. FNP-hardnessfollowsfrom
the proof of Theorem 8.7; the weak rational status sets of the program from the proof of thistheorem
correspond to the satisfying assignments of an M3SAT instance, whose computation is easily seen
to be FNP-complete by the FNP-completeness of SAT.

For the proof of FPﬂIP-hardn&ss, we use the fact that giveninstances /1, . . ., I,, of any arbitrary
fixed co-NP-complete problem 11, computing the binary string B = by - - - b,, whereb; = 1if I; isa
Yes-instance of II and b; = 0 otherwise, isFPﬂIP-hard (thisis easily seen).

We choosefor this problem the recognition of aweak rational statusset 5 of afixed positive agent
program P, which is co-NP-complete by Theorem 8.6.

We may assumethat P isthe program from the proof of thisresult, and 5 the status set constructed
over the database D constructed for aformula ¢. We observe that P has weak rational status set on
P, andthat S isthe uniqueweak rationa statusset, iff theformula¢ isunsatisfiable. Thus, from any
arbitrary weak rational statusset S’ of P over D, it isimmediate whether S isweak rationa or not.

Consequently, computing weak rational statussets S, . . ., S, of P over given databases Dy, . . .,
D, isFP)"-hard.

It remainsto show that thecomputationof 57, . . ., .5, can bereduced to thecomputation of asingle
weak rationa statusset .5 of afixed program P’ over adatabase D'.

For thus purpose, we merge the databases D; into asingledatabase. Thisisaccomplished by tag-
ging eachtuplein D; with s, i.e., add anew attribute A in each relation, and each tuple obtainsvalue
v onit; A isadded ontheleft hand side of each functional dependency. Moreover, an additiona argu-
ment 7" for the tag isintroduced in each action, and al literalsin arule have the same fresh variable
T inthetag position.

Then, the resulting program P’ has some weak rational statusset 5 on the union D’ of the tagged
D;’s, and from any such 5 weak rational status sets 54, . . ., 5, of P oneach D; are easily obtained
in polynomial time. On the other hand, D’ is polynomial-time constructiblefrom Dy, ..., D,. 1

We finally address the problem of action reasoning.

Theorem 8.9 Let P be a fixed positive agent programP. Let Os be a given agent state and let «
be a given ground action atom. Then, deciding whether o € Do(.5) holdsfor (7) every (resp., (i)
some) weak rational status set of P on O isII% -complete (resp., NP-complete).

Proof. Themembership part of (i) iseasy from Theorem 8.6. A guess for awesk rational status
set 5 suchthat A ¢ Do(.5) can be verified with an NP oracle in polynomia time.

For the membership part of (7), observethat under the assumptions, if 5 isan A rational status set,
then any A’-rational status set 5 such that A’ O A satisfies S O 5. Therefore, it suffices to guess
astatusset S such that S is A(.5)-rational and A € Do(.5); the guess can be verified in polynomial
time.
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Hardnessfor () followsfrom Theorem 7.6. The hardness part for (7) can be shown by asuitable
extension of the constructionin the proof of Theorem 8.6, such that validity of aquantified Boolean
formulaVY 4.X ¢, can be decided, where ¢ isin M3SAT form.

Assume without loss of generality that no clause of ¢ hasall itsvariablesfrom Y, and that ¢ can
only be satisfiedif aparticular variable z; € X isset to true. Weintroducetwo new relationsY VAR
for storing the variablesin Y (VAR stores X U Y') and AUX1(Var, Val), on which also the FD
Var — Val applies. Store in the database D for each variable z; € X atuple(z;,0)in AUX, and
for each y; atuple (y;,0) in AUX1.

The delete sets of seto(X) and set; (X ) are augmented by AUX(X,0). Moreover, we intro-
duce anew action add_t o_aux1(Y"), which has empty precondition, empty delete set, and add set
{ AUX1(Y,1) }.

Finally, add to the program P in the proof of Theorem 8.6 the following rule:
Do(add_to_aux1(}Y)) — YVAR(Y)

These modifications have the following effect. The added rules enforces that for each variable y; €
Y, thetuple (y;, 1) is added to AUX1, and either seto(y;) or set;(y;) must be executed, in order
to maintainthe FD Var — Val on AUX1. Thus, every weak rational status set of the constructed
program on [ containseither Do(seto)(y;) or Do(sety)(y;), foreachy, € Y.

On the other hand, for each such choice y, which embodies a truth assignment to Y, by the as-
sumption on ¢ aweak rationa status set exists; if al obligationsseto(z;), sety(2;), x; € X are
violated, thenwe obtain arespective A-feasiblestatusset .5, , and therefore, sincetheprogramis pos-
itive, awesk rationa statusset 5’ D 5, exists. It holdsthat .5 isweak rational, iff 3X ¢[Y = x]is
unsatisfiable.

By our assumptions, it followsthat set;(z1) € Do(.5) for every weak rational statusset .S of the
program on D, iff formula ¢ isvalid. This proves the hardness part for (¢¢) and the result. |

8.4.2 Programswith negation

Let us now consider programs with negation. In this case, weak rational and weak reasonable status
setsare no longer identical in all cases.

Weak reasonable status sets. For weak reasonable status sets, we can observe that integrity
constraints do not add on the complexity; under both presence and absence of integrity constraints,
we obtain the same resultsfor the worst case complexity. In particular, al the general upper bounds
that we havederived for weak reasonabl estatussetsin Section 7.2.4, apply to programswithintegrity
constraintsas well. It thus remains to consider weak rational status sets.

Weak rational statussets. Theexistence problem of an A-rational status set has the same com-
plexity as the existence problem of a rational status set (Proposition 7.18). Since a weak rational
statusset existsif and only if an A-rational status set existsfor some A, we obtain from Theorem 8.4
resp. its proof the following result.

Theorem 8.10 Let 7 be a fixed agent program. Then, given an agent state O, deciding whether
P hasa weak rational status set on P is X.£'-complete.

For the computation of awesak rational status set, we can use amodified version of the algorithm
COMPUTE-WEAK-RATIONAL-SS, by replacing A-feasiblesetswith A-rational sets. Thisincreases
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the complexity, as we haveto replace the NP oracle by a 24" oracle. We thus obtain that the problem
belongsto FP¥ . A slightly better upper bound can be given.

Theorem 8.11 Let P beafixed agent program. Then computing any weak rational statusset of P
on a given agent state O isin FP~ S ARP- FP|| 2 and hard for both F©” and FP||

Proof. Membershipin FP¥ was discussed above. Membershi pinRP- FP?D can be established
using results from [24]. In fact, the computation of a weak rational status set in the most general
setting can be easily expressed as a maximization problem (MAXP) as defi ned in[24], such that the

instance-sol ution relation is co-NP-decidable; for such problems, RP - FP|| s isan upper bound.

Hardnessfor FX1" isimmediate from the proof of Theorem 8.4 (existence of arational status set),
P
since O doesnot occur intheprogram constructed. Hardnessfor FPﬁ2 can beestablished asfollows.

Let 1T be any %4’ -complete problem. Then, computing, giveninstances I, . . ., I,, of II, the binary
string B = b1 --b, whereb; = 1if I; isaYest-instance and b; = 0 otherwise, is easily seen to be

hard for FP”2 .

From the proof of Theorem 8.4, we know that deciding whether afixed agent program P, inwhich
O does not occur, has arational status set on a given database D is X£’ complete. Thus, for given

P
databases D+, ..., D,, computing the string B is FPﬁ2 -hard.

The different instances can be combined into a singleinstance of anew fixed program asfollows.
Takeafresh action a, which doesnot occur in P suchthat Pre(a)isvoidand Add(a) = Del(a) =
(. Add the atom Do« inthebody of each rulein P, and add therule O« — . Then theresulting
program P, has some weak rational status set 5 on each D;, and for any such S itholdsa € Do(.5)
iff Py hasarational statusset on ;.

The databases D; can be merged into asingledatabase D’ for anew fixed program P’, in the same
way as described in the proof of Theorem 8.8, by tagging the databases D; with ¢ and taking their
union. This program P’ has some weak rational status set .5 on D’; moreover, for every such 9, it
holdsthat a(7) € Do(.9) iff P hasarationa statusset on D;; thus, froman ' thestring binary string
B iseasily computed.

Since the database D’ is polynomial-time constructi blefrom D4, ..., D,, it followsthat comput-
ing aweak rational status set is hard for FP|| . |

Next we consider the recognition problem. Here, the complexity increasesif integrity constraints
are alowed; the benign property that a A-feasible status set is A-rationa, if no smaller A-feasible
status set existsis no longer valid.

Theorem 8.12 Let P be a fixed agent program. Then, given an agent state Os and a status set .5,
deciding whether S isa weak rational status set of 7 on Oy is II%'-complete.

Proof.  For the membership part, consider the following agorithm for showing that S is not a
weak rational status set. First, check whether 5 is not an A(5)-rational status set. If S is found
A(S)-retional, then guess A’ O A(.5) and 5’ and check whether 57 is A’-rational. Since Checking
A-rationality of 5 isin co-NP, thisisan X2 algorithm for refuting 5 as awesk rational status set;
this proves the membership.
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For the hardness part, we adapt the construction in the proof of Theorem 8.2 for QBF formulas
JY' VX ¢, by adding the 3Y" quantifier block.

We usethe database D, the actionsbase A5, and theintegrity constraintsasthere, but add to D an-
other relation Y VAR for storing the Y -variables (the X -variablesare in VAR) and introduce another
action a, which has empty precondition and empty add and delete sets.

We add the following clausesin the program:

O(a)

O(set(Y,0)) — YVAR(Y)

O(set(V,1)) — YVAR(Y)

Do(set(Y,0)), — Do(a),-Do(set(Y,1)),YVARY)
Do(a) «— Do(set(Y,0)), YVARY)
Do(a) «— Do(set(Y,1)), YVARY)

and we set up the action constraint
AC : {set(Y,0),set(Y,1)} — YVAR(Y).
(The use of AC' can be surpassed, but is convenient.) Let the resulting program be P’.

These rules state that the agent is obliged to execute « and to set every variable y; € Y totrue
and false, which however is prohibited by AC'. Moreover, each y; must have assigned avalueif « is
executed, and if some variable receives avaue, then « is executed; consequently. if « is executed,
then every y; getsprecisely onevalue, and if o isnot executed, then no y; gets avalue.

Let Sy be the status sets defined by
So = 5 U{Oa,Pa} U O(set(y, v)), P(set(y, v)) | y € V,v € {0,1}},
where $'is the status set from the proof of Theorem 8.2.

Then, S isan A(.S)-rational status set, in which al the obligations from the newly added rules
are violated.

It holdsthat 5, isthe (unique) weak rational status set of P’ iff VY 3X -¢ istrue.

(=) Suppose S, isweak rational. Then, itisimpossiblefor any choice xy fromset(y,0),set(y, 1),
y € Y, tofind an A-rational status set where the obligation followed in A correspond to .

In particular, the status set
Sy = 8o U {Do(set(y,v)) | set(y,v) € x} U {Doa}

is not weak rational. It holdsthat .5, is A(5, )-feasible; hence, there must exist some truth assign-
ment 7 to X suchthat ¢[7(X ), o(Y)] isfase, whereo isthetruth assignmentto Y suchthato(y) =
set(y, 1) € x. Hence, VX 3Y -¢ istrue.

(<) Suppose VY 3.X —¢ istrue. Consider any weak rational status set 5 of P’. Then, either ()
A(S) = A(Sp), or (i7) A(S) definesachoice y fromset(y,0),set(y,1),y € Y,anda € 5.

Assume (77 ) and consider the following two cases:

(1) Do(all) ¢ S. Then, exactly on of the actionsset(z,0), set(z, 1) must bein $, for every
x € X. But then, executing Do(.9) violatesthe integrity constraintsZC, which contradictsthat 5 is
aweak rational status set.
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(2) Do(all) € 5. Then, for some truth assignment 7 to X', we have that ¢[7(.X ), o(Y')] isfalse,
for o defined as previously. Consequently, thereisan A(.5)-feasible status set .5’ such that 5" C 9,
which contradicts A(.5)-rationality of 5.

Hence, case (1) isimpossible, and case (i) appliesto 5. Consequently, Sy isaweak rational status
set. It can beseenthat 5 = 55 must hold. This proves theresult. |

Thelast result that weturn to in this subsectionis action reasoning under weak rational status sets.
Here we face the full complexity of all conditionsthat we have imposed on acceptabl e status sets.

Theorem 8.13 Let P beafixed agent program’. Let Os beagiven agent stateand let o bea given
ground action atom. Then, deciding whether o € Do(.5') holdsfor () every (resp., (7¢) some) weak
rational statusset of P on O is 114 -complete (resp., X4’ -complete).

Proof. The membership part isroutine: A guessfor awesk rationa statusset S suchthat o ¢ 5
(resp., o € §) can be verified with an ©32” oracle in polynomial time (Theorem 8.12).

For the hardness part, we extend the construction in the proof of Theorem 8.12 to QBF formulas
VZ3Y VX ¢, by adding another quantifier block.

For that, we introduce a new relation ZVAR for storing the variablesin 7, and add the following
clausesto the program:

O(set(Z,0)) — ZVAR(Z),
O(set(7,1)) — ZVAR(Z),
Do(set(Y,0)), — -Do(set(Y,1)),ZVARX);

denote this program by P”. Moreover, we add another action constraint
AC":  {set(Z,0),set(Z,1)} — ZVAR(Z).

Similar astherulesfor thevariablesinY’, theserulesforce theagent to make achoice y fromDo(set(z,0),
Do(set(z,1)),fordl = € Z, in every wesk rationa status set. Upon such a choice, the program
P behaves like the program P’.

For any such v, it holdsthat aweak rational status set .S implementing this y satisfiesDoa € 5,
iff YVX ¢[o(Z)]istrue, where o isthe truth assignment to the Z-variables according to .

It holdsthat o € Do(.9) for every wesk rational status set of P”, iff VZ3Y VX ¢ istrue.
This proves I1% -hardness of (). For (i), we add therule

Do() — —-Do(a)

in the program, where 3 is a fresh action.

Then, it holds a status set ' such that 5 € Do(5) is awesk rational status set of the resulting
program P*, iff S = S\ {Doa«, Pa} isaweak rationd status set of P’

Hence, 5 € Do(.5) for some wesk rational status set of P*, iff a isnot a cautious consequence
of P, This proves ©:¥ -hardness of (i), and completes the proof of the theorem. |
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85 Preferred status sets

Let us now consider the effect of integrity constraintson F-preferred status sets. It appears that for
rational status sets, we have a complexity increase, while for reasonabl e status sets, the complexity
remains unchanged (see Section 7.3).

We start with the recognition problem for F'-preferred rational status sets. In the presence of in-
tegrity constraints, this problem migratesto the next level of the polynomia hierarchy. For the proof
of thisresult, we use the following convenient lemma.

Notation. Let ¢ be propositional formula, and et y € 2" be achoice from the subsetsof aset Y of
variables. Then, ¢[Y = y] denotestheformulaobtained by substitutingin ¢ thevauetruefor every
y € Y whichisin y, and thevaluefalsefor every y € Y whichisnotin x.

Lemma8.14 Let ¢’ = FY'VX'¢’ bea QBF suchthat ¢’ isin DNF. Then, aformula® = 3Y VX ¢,
where ¢ isin M3DNF (see proof of Theorem 8.2 for M3DNF) can be constructedin polynomial time,
such that

(1) for Y = 0, theformulaVX ¢[Y = 0] istrue;
(2) ' — (FY # 0)(VX)¢ holds.

Proof. See Appendix B. |

Theorem 8.15 Let P be a fixed agent program. Then, given an agent state Os and a status set .5,
decidingwhether 5 isa F-preferred rational statusset of P on O is 114 -complete. Hardnessholds
even if ZC holds functional dependencies on a relational database.

Proof. Checking whether S’ is arationa status set can be done with a call to an NP oracle (The-
orem 8.3), and arational statusset .5’ such that F(.5") C F(.5') can be guessed an checked in poly-
nomial time with an NP oracle; hence, showing that 5" is not a F'-preferred rational status set isin
L.

The proof of hardnessis an extension to the proof of Theorem 8.2. We encode the 3Y'V X ¢ QBF
problem, by adding an aternate block of quantifiersin the construction.

For convenience, we may start fromtheformuladY vV.X.¢ asin Lemma 8.14, and encode thefail-
ure of condition (2) of it; thisisa Il -hard problem.

As in the construction of the proof of Theorem 8.2, we assume that database tables POS(V ar1,
Var2, Var3) and NEG(Varl, Var2,Var3) contain the positive and negative disuncts of ¢’, re-
spectively, and that the table VAR(V ar, Value, T'ag, Tagl) containsall variables, but now has an
additional tag (T'ag1), which indicateswhether avariableisfrom X (value0) or from Y (value 1).

Thus, ZC holdstwo FDson VAR: Var, Value — Tag and Var — Tag]l.

Theaction base A5 isthesame, with the only differencesthat addt o_var hasafourth parameter
W, and that occurrence of VAR( X, Y, Z) hasto be replaced by VAR( X, Y, Z, W).

Modify and extend the program P to a program P’ as follows. First, the occurrences of every
aomVAR(X,Y, Z)havetobereplaced by VAR( X, Y, Z,0),and addto_var( X, Y, 1) isuniformly
replaced by addto_var(X,Y, 1,0). Then, add the rules

(1)  F(set(X,1)) — P(set(X,0)),VARX,Y,Z,1)
(2) Do(set(X,1)) — -Do(set(X,0)),VARX,Y,Z,1)
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For each choice y € 2¥ from the subsets of Y, we obtain a candidate S, which isafeasible status
set of P’. Thiscandidateisthe deontic and action closure of the set

{Do(set(yi,1) |y € x } U{Do(set(y;,0)),F(set(y;, 1)) |y: € Y \ x },

where $' is the feasible status set from the construction in the proof of Theorem 8.2.
For theassignmentY = (), 5, hasa“maxima” F-partontheF(set(X, 1))aomsover all x; this

isalso themaximal F-part possiblefor any rational status set of P’. Moreover, by Lemma 8.14 and
the construction of 7, this §,, isarational status set.

We claim that 5., is F-preferred, if and only if 3Y # 0 VX ¢ isfalse.

(=) Suppose 5, is F-preferred. Then, no rational statusset S” existssuch that F(,57) C F(9). In
particular, no candidate set 5, for some y # xo can amount to arational status set. Similar asin
the proof of Theorem 8.2, we conclude that the formulaVX.¢[Y = x] must be false. Hence, the
formulady # VX.¢ isfase.

(<) Suppose S, isnot F-preferred. Then, there existsarational set S such that F(.S") C F(.5).

The clause (1) ensures that there is at most one of Do(set(y,0)) and Do(set(y, 1)) in S’, for
every y € Y'; moreover, by the clause (2), precisely oneof themisin S’. ThisS” amountsto achoice
x from the subsetsof V" such that y # (), givenby y € x iff Do(set(y,1)) € S, forevery y € Y.

The program P’, under .5 and choice y, basically reduces to aprogram P for aformula¥.¢[Y =
x]. Notice that by the rationality of 5/, no atoms for status O or W are in 5, and neither atoms
Fa for irrelevant actions «. Moreover, rationaity of 5" implies that the formulaV.¢[Y = x] must
evauateto true. Thismeansthat 3Y # () VX.¢ istrue. ]

Since the recognition of F-preferred rational status sets is gets more complex in the presence of
integrity constraints, also the complexity of computing such astatus set increases; theincreaseisone
level in the polynomial hierarchy.

Theorem 8.16 Let P be a fixed agent program. Then, given an agent state Os, computing any F-
P
preferred rational statusset of P on Og (So oneexists), isin FP¥ ARP - FP|| 2 and hard for both

Fx! and FP”2 :

Proof.  We can use the same algorithm as for the computation where ZC = 0, in which we have
to repl ace the NP-oracle by a ©¥’-oracle. This proves membership in FpP¥: Membershipin RP -

FP|| 3 followsfrom the fact that computing a F'-preferred rational statusset can be easily expressed
as amaximization problem (MAXP) as defi ned in [24], whose instance-sol ution relation is co-NP-

decidable; as mentioned previously, RP - FP|| 2 isan upper bound for such problems.
Hardness for FX.2" isimmediate from the proof of Theorem 8.4 (compute a rational status set),
since each rational status set of the program P constructed thereis F-preferred. Thelower bound of
P
hardness for FPﬁ2 can be shown following the line of the proof of Theorem 8.11, where we reduce

the computation of the binary string B for instances I, . . ., I,, of the X:£’-compl ete complement of
the recognition problem for £'-preferred rational status sets.

We may supposethat the programis P’ from the proof of Theorem 8.15, and that the set 5’ to check
over database D isthe set 5., whichisrationa and hasthe maximal F-part over all rational status
sets. Similar as in the proof of Theorem 8.11, we tag databases D; by introducing a new column
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T in each table which is added on the | eft hand side of FDs, and we add for thetag avariable T" to
each action scheme. Then, the F'-preferred rational status sets S of the obtained program P” over
the union D of all tagged databases D;, are given by the union of the F-preferred rationa status
sets 5; of P" over each tagged database D;. Hence, from any F'-preferred status set 5 of P”, the
desired string B can be efficiently computed. Moreover, D isconstructiblein polynomial time from
Iy,..., I,. It followsthat computing a F'-preferred rational status set is FPﬁéD-hard, which proves
theresult. |

Thelast result of this subsection concerns action reasoning for F'-preferred rational status sets. It
showsthat thistask has the highest complexity of all the problems considered, and is located at the
third level of the polynomial hierarchy.

Theorem 8.17 Let P be a fixed program. Then, deciding whether an action statusatom A belongs
to some (resp., all) F-preferred rational status setsis :£’-complete (resp., 114’ -complete).

Proof. Themembership partissimilar asinthecasewherenointegrity are present (Theorem 7.29),
with the difference that we need a ©¥’ oracle instead of a NP oracle for checking whether an status
setisan F-preferred rational status set.

The hardness part is an extension of the construction in the proof of Theorem 8.15.

We add another block of quantifiersVZ in front of theformula ®; Lemma8.14 generalizesto the
case where free variables occur in ¢’.

The action base and the database is the same, and field T'ag1 has value 2 for identifying the 7
variables. We add to the program P’ the following clauses:

F(set(X,1)) «— P(set(X,0)),VARX,Y,Z,2)
F(set(X,0)) — P(set(X,1)),VARX,Y,Z,2)
Do(set(X,1)) <« -Do(set(X,0)),VARX,Y, Z,2)

These clauses effect a choice y of asubset of 7, which is passed to the rest of the program, similar
astherules for a choice from the subsets of Y'; however, here the choice entails that the F-parts of
candidates corresponding to different choices y and y’ areincomparable.

Furthermore, if we add to the program arule
Do(a) — P(set(X,0)),VARX,Y, 7, 1),

where « is some new action without effects, then Do(«) iscontained in every I-preferred rational
status set of the resulting program P”, if and only if the formula (V2)(3Y # 0)(VX )¢ istrue. To
see this, notice that this rule can be applied in a F'-preferred rational status set 5, if and only if
doesnot containfor al varisblesy € Y theatomsF(set(y, 1)). Do(«) iscontainedinall candidate
F-preferred rational status sets, and is dispensableif and only if the formulaVZ3Y # 0VX.¢ is
true.

If weadd arule
Do(5) — —-Do(a),

to P”, where 3 is an action of the same type as «, then Do(/3) belongsto some F'-preferred status
set of the obtained program P, if and only if theformulaVZ3Y # (VX .¢ isfase. Indeed, itisnot
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hard to see that astatus set 5 such that Do(/3), P(3) € S isa F-preferred status set of P, if and
only if theset ' = 5\ {Do(5),P(5)} isa F-preferred status set of P” such that Do(a) ¢ 5.

Thisimplies 14 -hardness (resp. X4 -hardness), and completes the proof of the theorem. |

9 Relation toLogic Programming

Thusfar in this paper, we haveintroduced several semanticsfor agent programs. In thissection, we
will show that these semantics for agent programs are specifically tied to well known semantics for
logic programs. In particular, we will show that three major semantics for logic programs may be
“embedded” within the concept of agent programs.

o First, we will exhibit atransformation, called AG, that takes an arbitrary logic program P as
input, and produces as output, an agent program, and an empty set of action constraintsand an
empty set of integrity constraints. We will show that the (Herbrand) modelsof P areina 1-1
correspondence with the feasible status sets of AG( P), if they are projected to their P-parts.

e Second, wewill show that theminimal Herbrand modelsof P areinal-1 correspondencewith
therational statussetsof AG( P). Thisautomatically implies, by resultsof Marek and Subrah-
manian [77], the existence of a 1-1 correspondence between supported models of P, rational
statussetsof AG( P), weak extensionsof adefault theory associated with P asdefined by [77],
and expansions of an auto-epi stemic theory associated with P [77]. Similar equivalencesalso
exist between rational status sets and disjunctivelogic programs[71].

¢ Third, we show that the stable models of P are in a 1-1 correspondence with the reasonable
statussetsof AG( P). Asaconsequence of known resultsdueto Marek and Truszczyhski [78],
it followsimmediately that there isa 1-1 correspondence between reasonabl e status sets and
extensions of default logic theories associated with P.

Throughout thissection, we assumethereader isfamiliar with standard logic program terminol ogy
as described by Lloyd [70] and nhonmonotonic logic programming terminology [78].

9.1 Feasble Status Setsand Models of L ogic Programs

In this subsection, we describe a transformation AG that takes as input, alogic program P, and pro-
duces as output:

e An action base, al of whose actions have an empty precondition, add list and del ete set,
¢ Anagent program AG(P),

¢ Anempty set of action constraints and an empty set of integrity constraints.

As all components other than the agent program produced by AG( P) are empty, we will abuse no-
tation slightly and use AG( P) to denote the agent program produced by AG.

For each ground instance of arule r in P of theform

aHblv"'vbmv_'Clv"'v_'Cn
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insert therule
P(a) — P(by), -, P(by), " Plc1),...,7P(cn) (6)

in AG(P). Here, theatoms a, b;, and ¢; of P are viewed as actions with description (0,0, 0), i.e.,
they have no precondition and their add and del ete sets are both empty. It isimportant to note that
the only types of status atoms that occur in AG(F) are of theform P(—).

Example 9.1 Consider thelogic program containing the two rules:

a —

b — a,—c.
The AG( P) isthe agent program:

P(a) <
P(b) — P(a),=P(c).

We observe that the logic program has three models. These are given by:

M1 = {a,b}
My = {a,c}
Ms = {a,b,c}

AG( P) happensto have more than three feasible status sets. These are given by:

k= {P(a),P(D)}.

Fy {P(a), P(b),Do(a)}.

Fy {P(a), P(b),Do(b)}.

Fy {P(a), P(b), Do(a), Do(b)}

Fs {P(a), P(c)}.

Iy {P(a),P(c),Dola)}.

Fr {P(a), P(c),Do(c)}

Iy {P(a),P(c),Do(a),Do(c)}

Fy {P(a), P(b),P(c)}.

I {P(a),P(b),P(c),Do(a)}.

iy {P(a),P(b),P(c),Do(b)}.

Iy {P(a),P(b),P(c),Do(c)}.

I3 {P(a),P(b),P(c),Do(a), Do(b)}.
Iy {P(a),P(b),P(c),Do(a), Do(c)}.
Fis = {P(a),P(b),P(c),Do(b),Do(c)}.
Fe = {P(a),P(b),P(c),Do(a),Do(b), Do(c)}.

Many further feasible status sets exist, if we take atoms with the other modalities F, O and W into
account.
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However, when we examine the above sixteen and all other feasible status sets, and if we ignore
the Do atomsin them, we find only three feasible status sets, viz. F, F5 and Fy. The reader will
easily notethat thefeasible statussets F5, F3, Fy reflect different ways of determining which actions
that are permitted in £y should actually be done. The same observation holdswith regard to 5 and
the feasible status sets F5, I, Fg. Likewise, the feasible status sets f7g, . . ., £17 are derived from
Fy in the same way.

The reader will note that in this example, M, M5, M3 stand in one one correspondence to the
projectionsof I, ..., Fig with respect to the modality P.i.e. My, M,, M5 stand in one one corre-
spondence with £y, F5 and Fy. O

The following result shows, conclusively, that thisisno accident.

Proposition 9.1 There existsa 1-1 correspondence between the models of P and the P-projection
of the feasible status sets of AG(P), i.e.

1. If M isamodel of the program P, then Ay; = {P(«a) | « € M} isafeasible status set of
AG(P).

2. If Aisafeasiblestatusset of AG(P), then M4 = {a | P(a) € A, a occursin P} isa model
of P.

Proof. (1) Suppose M isamodel of the program P. To show that A, isafeasible status set of
P(P), we need to show that Ay satisfies conditions(51)—(.54) in the definition of afeasible status
Set.

(51) Supposer isaground instance of arulein AG(P) whose body istruew.r.t. Ay;. Ruler must
be one of theform Pa — Pby,...,Pb,,,—Pcy,...,Pc,. ThenP(by),---,P(by) C Anm
and{P(cy),...,P(c,)} N Apr = 0. By definitionof Ay, itfollowsthat {ay,...,a,} € M.
By definition of Ay, wehave{cy,...,¢,} N M = (. As M isamode of P, a« € M, and
hence, by definition of Ay;, P(a) € Apy.

Thus, A, satisfies condition (.51) in the definition of feasible status set.

(52) It iseasy to see that the conditions defining deontic and action consistency (Definition 5.2)
are satisfied. Thereason isthat by definition, A,; only contains atoms of the form, P(—) and
hence, the first two bullets of Definition 5.2 are immediately true. The third bullet of Defini-
tion 5.2 is satisfied because al actionsin AG( P) have an empty precondition, and hence, the
consequent of the implication in the third bullet isimmediately true. The action consistency
requirement is satisfied trivialy as AG(P) contains no action constraints.

(53) The deontic and action closure requirements stated in Definition 5.3 are trivially satisfied be-
cause A, contains no status atoms of the form O(—) or Do(—).

(54) AsAG(P) containsno integrity constraints, it followsimmediately that the state consistency
requirement issatisfied by Ajy.

This completes the proof of (1) of the theorem.
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(2) Suppose A isafeasible status set of AG(P) and M 4 satisfies the body of a ground instance, r,
of arulein P. Let ruler be of the form

a — by, .. b, e, ..., 0.

As{by,...,b,} C My, wemust, by definition, have {P(b1),...,P(b,)} C M4. As{c1,...,cn}
N My = 0, wemust, by definition, have A N {P(¢1),...,P(c,)} = 0. By constructionof AG(P),
we havetherule

P(a) — P(by),....P(bp),~P(c1),...,~P(cy)

iNAG(P). As A isafeasiblestatusset, it must satisfy axiom (51). Hence, P(a) € A, whichimplies
that « € M 4. This completesthe proof. |

9.2 Rational Status Setsand Minimal Models of L ogic Programs

If we return to Example 9.1, we will notice that the logic program P shown there has two minimal
Herbrand models, corresponding to A, M, respectively, and the feasible status sets, Fi, F5 corre-
spond to therational statussetsof AG( ). Intuitively, minimal Herbrand models of alogic program
select modelsof P that areinclusion-minimal, whilerational status sets sel ect feasiblestatus setsthat
arealsoinclusion-minimal. Asthereisal-1 correspondence between modelsof P andthe P-partsof
the feasible status setsof AG( P), it followsimmediately that the inclusionminimal elements should
also bein 1-1 correspondence. The following result isin fact an immediate corollary of Proposi-
tion 9.1 and establishesthis 1-1 correspondence.

Proposition 9.2 There existsa 1-1 correspondence between the minimal modelsof P and theratio-
nal statussets of AG(P), i.e.

1. If M isaminimal model of the program P, then Ay; = {P(«a) | « € M} isarational status
set of P(P).

2. If Aisarational statusset of AG(P),then M4 = {a | P(a) € A, a occursin P} isaminimal
model of P.

When taken in conjunction with results of Lobo and Subrahmanian [72], the above result implies
that thereexistsatranslation 7" (given in [72]) such that therational status setsof AG( P) correspond
exactly to the extensions of apre-requisite free normal default theory 7'( P).

9.3 Reasonable Status Sets and Stable Semantics

In this section, we show that the reasonabl e status sets of AG( ) correspond to the stable models of
P. Before stating thismain result formally, let usreturn to the case of Example 9.1.

Example 9.2 Itiseasy to seethat thelogic program P of Example 9.1 has exactly one stablemodel,
viz. M. Itisessy to see that AG(P) program has a unique reasonable status set, viz. RS, =
{P(a),P(b)}. AsProposition 9.3 below will show, thisisnot an accident. a
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The following result explicitly statesthis.

Proposition 9.3 There existsa 1-1 correspondence between the stable models of P and the reason-
able statussetsof AG(P), i.e.

1. If M isastablemodel of theprogram P, then Ay; = {P(«a) | « € M} isareasonablestatus
set of AG(P).

2. If Aisareasonablestatusset of P(P),then M4 = {a | P(a) € A, a occursin P} isastable
model of P.

Proof. We show part (1). Part (2) isproved by an analogous (and somewhat simpler) reasoning.
Suppose M isastablemodel of P. Thenlet Q = red4 (AG(P), () bethe agent program obtained
asthereduct of AG(P) w.r.t. As and theempty object state. To show that A, isareasonable status
set of AG(P), we need to show that Ay, isarationa status set of ). For thiswe need to show that
each of conditions(.51)—54)istruefor A withrespect to ), and that A, isaninclusion-minimal
set satisfying this condition.

(51) Consider arulein ¢) having aground instance, r, of the form
P(a) — P(bi).....P(by)

such that {P(b1),...,P(b,)} C Aps. By definition, {b4,...,b,,} € M. Asr € (), there
must exist arulein AG(P) having aground instance, r/, of the form

P(a) — P(by),....,P(bp),~P(c1),...,~P(cy)

suchthat {P(c1),...,P(c,)} N Apr = (0. Thismeansthat thereisarulein P havingaground
instance, r*, of theform

a — bi,....bp,c, ..., 0,

suchthat {cq,...,¢,} N M = . Thusas M satisfiesthebody of * and as M isastable model
of P (and henceamodel of P), « € M whichimpliesthat P(a) € A; and this concludes
this part of our proof.

(52) Thefirst bulletin thedefinition of deontic consistency isimmediately satisfied as A, contains
no status atoms of theform W (—). The second bullet in the definition of deontic consistency
isimmediately satisfied as Ay contains no status atoms of the form F(—). Thethird in the
definition of deontic consistency is immediately satisfied as all actions have an empty pre-
condition, whichisimmediately satisfied. The action consistency requirement isimmediately
satisfied as the set AC of action constraints produced by AG is empty.

(53) Aps is deontically closed because, by definition, Ay, contains no status atoms of the form
O(—). Ay isaction-closed because Ay, contains no status atoms of theform O(—), Do(—).

(54) A satisfiesthestate consistency property becausetheset ZC of integrity constraintsproduced
by AG isempty.
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At thispoint, we have shown that A, isafeasiblestatusset of (). Toestablishthat it isarationa
status set of (), we need to show that it isinclusion-minimal. Suppose not. Then there exists a set
S C A suchthat S isafessiblestatusset of ). Let 5* = {a | P(a) € S}. Itisstraightforward to
show that 5™ isastable modd of P. But then .5* ¢ M, which isacontradiction, as no stable model
of any logic program can be a strict subset of another stable model [77]. |

It is important to observe that by this correspondence, we obtain alternative proofs for the com-
plexity resultsonreasonable statussetsin the previoussection. Thisisbecausethecomplexity results
known for non-monotonic logic programs with stable model semantics [47, 48, 49] directly imply
the above results.

9.4 Discussion

Thusfar, in this section, we have shown that given any logic program P, we can convert P into an
agent program , AG( P), (together with associated action base and empty sets of integrity constraints
and action constraints) such that:

1. The P-partsof feasible status setsare in 1-1 correspondence with the models of P;
2. Rational status setsarein 1-1 correspondence with the minimal models of P;

3. Reasonable status setsare in 1-1 correspondence with the stable models of P.

The above results, when taken in conjunction with known results linking logic programs and non-
monotonic reasoning, provide connections with well known nonmonotonic logics as well. For ex-
ample, thefollowing results are well known:

e Marek and Truszczynski [ 78] prove 1-1 correspondences between stable model s of logic pro-
grams and extensions of default logic theories.

e Marek and Subrahmanian [77] and Marek and Truszczynski [ 78] prove 1-1 correspondences
between stablemodel sof logic programs and appropriatetypes of expansionsof auto-epistemic
theories.

¢ Lobo and Subrahmanian [72] prove 1-1 correspondences between minima models of logic
programs, and extensions of prerequisite-free normal default logic theories.

¢ Ben-Eliyahu and Dechter [15] have proved that stable models and minimal models of logic
programs may be viewed as models of a suitablelogical theory.

An important topic that we have not addressed (due to space restrictions) is whether there existsa
transformation ¢ that takes as input, an agent state, action base, an agent program, a set of integrity
constraints, and aset of action constraints, and produces as output alogic program such that the above
equivalences hold. Thisis somewhat complicated to do because the use of arbitrary agent states
over arbitrary data structures means that classical model semantics, minimal model semantics, and
stable semantics cannot be used directly. Rather, the notion of models over arbitrary data structures
introduced by Lu et al. [74] must be used. For thisreason, we defer thisto further work.

However, we remark that for feasible and rational status sets, no 1-1 correspondence to the mod-
els and minimal models, respectively, of a polynomial-time constructible logic program similar as

92



above is possiblein general: An agent program may lack a feasible or rational status set (even in
absence of integrity constraints), whilealogic program always has some model and minimal model;
recall that existence of afeasible as well as arational status set for an agent program was shown to
be NP-hard, even for agent programs without integrity constraints. Furthermore, since computing
amodel (resp., minimal model) of alogic programisin FNP (resp., FNP//log), it is not possible
to polynomially reduce the FX.2’-hard computation of a rational status set of a general agent pro-
gram to the computation of amodel (resp., minimal model) of a polynomial time-constructiblelogic
program, unlessthe polynomial hierarchy collapses. In particular, no polynomial-time constructible
logic program exists whose minimal models correspond 1-1 to the rational status sets of a genera
agent program. Observe that from the complexity side, a 1-1 correspondency between reasonable
status sets of an agent program and the stable models of a polynomial-time constructiblelogic pro-
gram is not excluded; in fact, arather natura translation seemsfeasible.

10 Supply Chain Example, Revisited

In this section, we briefly revisit the supply chain exampleintroduced towards the beginning of this
paper, and see how this example works.

e ThePlant Agent, located at afactor in Forth Worth, monitors the status of its inventory. For
example, Figure 1 shows that the plant hasin its inventory, 200 copies of Iteml. Likewise,
there are two supplier agents, associated with vendors who supply parts to the factory. These
supply agents are located in Palo Alto and Washington, respectively. Their inventories show
500 and 300 copies of Iteml, respectively. Thetwo supplier agents and the plant agent are all
built on top of Microsoft Access.

¢ When theinventory for the plant agent falls below athreshold, the plant agent initiates an at-
tempt to procuretherelevant parts. Intheexample, it attemptsto procurelteml. Itisimportant
to notethat dropping of inventory levelstriggers this action.

e Thefirst actiontaken by the Plant Agent isto send messagesto thetwo supply agents. Figure5
shows various messages that are interchanged during the evolution of the supply chain exam-
ple. The reader should note that sending a message is an action. Determining what message
to send is a'so an action. For example, thefirst two rows of Figure 5 shows the Plant Agent
sending the message Quant i t yRequest (It eml) to both supplier agent 1 and 2.

e The supplier agents, on receiving this message, take actions. They determine the amount of
Item1 they have in stock by executing a query on the Access database, and send a response
suchasQuant it yAvai | abl e( Suppl i er Agent 1, I teni, 500).

¢ Oncethe Plant Agent has received affirmative responses from the Supply Agents, it contacts
the Shipping Agent in order to schedule shipment of theitems.

¢ The shipping agent comprisesthe flight agent and the truck agent. Thetask of the flight agent
isto determineif thereisan airport “near” the origin and destination of the shipment. In our
implementation, “near” is defined as a range query on top of ESRI’s MapObject geographic
information system. If the origin and the destination are very “near” then we merely truck the
shipment. Otherwise, if an airport exists“near” both the origin and the destination, then we
merely truck it to the airport, fly it to an airport near the destination, and truck it from there to
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W Supply Chain Example Messages W= E

From: Plant&gent, To: Supplieragent]. Message: QuantityRequest{itern]
From: Plantigent, To: Supplierdgent2, Message: QuantityRequest{ltem1]
From: Supplierdgent], To: Plantbgent. Message: Quantitwbeailable(Supplierdgentd . ltem1, 500)
From: Supplierdgent2, To: Plantdgent, Message: Quantitwdyvailable(Supplierdgent2, [tem1, 300)
From: Plantigent, Tao: Supplierdgent]. Message: Order(ltem, 200, 1/5/9813:33:15)
From: Plant&gent, To: Shipping&gent, Message: ShippingR equest(lternd, 200, 1/5/38 13:33:19)
From: Shippingdgent, To: Flighttgent, Meszage: FlightRiequest(ltem . Palo Alto, 1/5/98 13:33:23, Fort \Warth,
From: Flight&gent, To: Shippingtigent, Message: FlightFlight1, Item1, Palo Alto, 1/5/98 13:33:26. Fort Warth, ©
From: Shipping&gent, To: Truckagent, Message: TruckRequest(lter. Palo Alto, 1/5/98 13:33:32, San Franc
From: Truckégent, To: Shippinghgent, Message: TruckFoute(Route, lteml, Palo Alta, 1/5/98 13:33:35, San
From: Shipping&gent, To: TruckAgent, Message: TruckRequest(ltem, Dallas, 1/5498 13:33:28, Fort Worth, 1
From: Truckdgent, To: Shippinghgent, Message: TruckFoute(Foute2, lteml, Dallas, 1/5/38 13:33:28, Fort 'w/
Fraom: Shippingdgent, Ta: TruckAgent, Meszage: TruckRequestiitern, Palo Alta, 1/5/98 13:33:47, Fart ‘Warth
From: Truckagent, To: Shipping&gent, Message: TruckRoute(Route3, ltem1, Palo Alko, 1/5/98 13:33:50, Fort
From: Shipping&gent. To: Flightégent, Message: ReserveR equest(Flight1, tem1)
From: Flightgent, To: Shipping&gent, Meszage: Reservation(Flight1. [kerm)
From: Shipping&gent, To: Truckdgent, Message: ReserveRequest{Routel, ltem1)]
From: TruckAgent, Ta: Shippingfgent, Message: Reservation[Routel, Ikeml)]

: ReserveRequestBoute?, [kern]

ation[Foutes. [tem1]

Figure 5. Messages Exchanged by Agentsin Supply Chain Example

the destination. Otherwise, the shipping agent decides to truck it all the way from the origin
to the destination. (Note that more sophisticated shipping strategies are possible, but in fact,
this simple strategy isthe one used by some of the large transportation logistics compani s).

e Figure 5 shows several messages exchanged between the shipping agent, the flight agent, and
the truck agent, coordinating this task.

¢ Attheend of thisprocess, the shipping agent producesasimplemap, visualizing the shipment
of the items from the Supplier location to the destination. Figure 6(a),(b),(c) shows such a
visualization. In particular, Figure 6(a) shows the original flight path from San Francisco to
Dalas. Figure6(b) showshow our demonstration allowszooming, so that thetruck routefrom
Palo Alto to San Francisco airport is visualized, and Figure 6(c) shows the truck route from
Dadlas to the fina destination, Forth Worth. This visualization is produced by the shipping
agent by invoking appropriate code calls in the ESRI MapObjects system.

11 Related Work

During the last few years, there has been an explosionin the area of agent based research. Of this
plethora of research, the work reported in this paper is perhaps closest to that of the group in CWI,
Amsterdam, working on deontic logicsfor agent based programming [55, 31, 56] Below, we review
the work on agentsin avariety of arenas.

Agent Programming. Shoham [97] was perhapsthefirst to propose an explicit programming lan-
guage for agents, based on object oriented concepts, and based on the concept of an agent state. In
Shoham'’ s approach, an “agent isan entity whose stateis viewed as consisting of mental components
such as beliefs, capabilities, choices, and commitments’ [97]. He proposes alanguage, Agent-0, for
agent programming, that providesa mechanism to express actions, time, and obligations. Agent-0is
asimple, yet powerful language. There are several differences between our approach and Shoham's.
First, our language builds on top of arbitrary data structures, whereas Shoham’s languageis more or
less logical (though it uses a LISP-like syntax). For us, states are instantiations of data structures
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(8 Fight from San Francisco to Dallas (b) Truck route from Palo Alto to San Francisco

(c) Truck route from Dallasto Forth Worth

Figure 6: Maps Produced by Shipping Agent in Supply Chain Example
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managed by the program code associated with agents, while for Shoham, the agent state consists of
beliefs, capabilities, choices and commitments. This alows Shoham to focus on reasoning about
beliefs (e.g. agent A knowsthat agent B knowsthat agent A has no money), whereas our focusison
decision making on top of arbitrary data structures. Clearly both paradigms are needed for success-
fully building an agent.

Closely related to Shoham’swork isthat of Hindrikset al. [55] where an agent programming lan-
guagebased on BDI-agentsis presented (BDI standsfor “Belief, Desires, Intentionality”). They pro-
ceed upon the assumptionsthat an agent language must have the ability for updating beliefs, goals
and for practical reasoning. (finding meansto achieve goals). Hindrikset al. [55] argue that “Now,
to program an agent is to specify itsinitial mental state, the semantics of the basic actions the agent
can perform, and to write a set of practical reasoning rules’ [55, p.211].

In our framework, as decision layers can (in principl€) be embedded on top of arbitrary pieces of
software code, representationsof beliefs, goal s, such asthosedevel oped by researchersin“reasoning
about beliefs’ can be easily incorporated as modul esinto those data structures, though we have not
focused on thispart. We do not insist that all agents have an apriori goal. For instance, consider an
ACCESS database agent. Thisagent hasno real goal that requires Al planning, unlessone considers
thefact that it should respond to user queriesas agoal. Practical reasoning isachieved in our system
because each agent processes an explicit call through amethod used to processthat call. Hindriks et
al. [55] argue that “Now, to program an agent is to specify itsinitial mental state, the semantics of
the basic actions the agent can perform, and to write a set of practical reasoning rules’ [55, p.211].
In contrast to their framework, for us, an initial state is any set of (instantiated) data types — they
assume thisis a set of logical atoms. Likewise, practical reasoning rules for us are implemented as
methods (or code-calls), but the decision about which of these actionsis to be taken is represented
through rules.

ConGolog [45] isalogic programming language for concurrent execution of actions. ConGolog
creates static plansfrom a set of goalsand primitive actions. ConGolog is built on the framework of
Cohen and Levesque [25] who develop alogic of rationa agents based intentionality using speech
acts as a starting point. Their work has subsequently been used for a variety of other multiagent
frameworks — we do not go into these extensions here, as they are not directly related to our effort.

In general, the approach in this paper builds upon the approaches of [97] and [55] in the follow-
ing sense: first, we agree with these earlier approachesthat the behavior of agents should be encoded
through an agent program, and second, that actionstaken by agentsshould modify agent states. How-
ever, we differ from these approaches in the following sense. First, our notion of an agent state is
built on top of arbitrary data structures, rather than on top of statesrepresented in logic. Asa conse-
guence, our approach complements thework of [97, 55] wherethey focus onlogical representations
of agent state, describing beliefs, capabilities, commitments, and goals. In addition, [97] describes
temporal action scheduling which our language does not currently support, though ongoing work
will extend it to do so [35]. If these modes of reasoning can be expressed as data structures, then
the notion of agent proposed in our paper can benefit from the contributionsin [97, 55]. Second, we
proposeaset of increasingly more satisfying declarative (epistemic) formal semanticsfor our work —
[55] proposes an el egant proof theoretic operational semantics. Our semantics has the advantage of
being neatly related to existing well-understood semanticsfor logic programs. Third, we anayzethe
tradeoffs between the adopting an epistemically satisfying semantics, and the computational com-
plexity of these semantics. The complexity resultsal so contain algorithmic approachesto computing
these semantics.
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Deontic Logic. Inmany applications (e.g. thetax application, and various lega applications), the
administratorsof an application have certain legal obligations (that is, they are required to take cer-
tain actions), aswell ascertainrestrictions(that is, they are forbiddento takecertain actions) if certain
conditionsaretrue. However, not all actionsare either forbidden or obligatory. The vast majority of
actionsfall withina“gray” area— they are permitted, but neither abligatory or forbidden. To date,
no active database system has provided aformal semanticsfor obligatory, permitted, and forbidden
actions. In this paper, we have done so, building on top of classical deontic logic syntax [3, 79].

We have added to deontic logic aswell in several ways: first, we haveintroduced the Do operator
which standard deontic logic does not contain. Second, classical deontic logic does not account for
interference between multipleactions(i.e., do actions «, 5 have mutually inconsi stent effects, or can
actions «, 3 be simultaneously executed), while our framework takes into account, both effects of
actions, and providesdifferent notionsof concurrent executability. Third, our framework also alows
nonmonotonic inference through the negation operator in rule bodies— this nonmonotonic negation
operator does not occur in classical deontic logic model theory. The need for non-monotonic op-
erators has been well argued by Reiter [86]. Last, but not least, the semantics of classical deontic
logicis given in terms of a classical Hintikka-Kripke style model theory. Due to the introduction
of the new features described above, and due to the fact that most deontic logic model theory leads
to one or another deontic paradox, we chose to develop an aternative semantics that incorporates
nonmonotonicity, concurrent actions, and the Do operator proposing the concepts of feasible, ratio-
nal and reasonabl e status sets, and their variants, through which many desirable deontic desiderata
(e.g.- regimentation, relaxing obligations when the cannot be satisfied)) can be incorporated. Pre-
cisely how various other deontic assumptions can be captured within our semantics remains to be
worked out.

Theapproach of Hindrikset al. [55] isbased on such logicsand has already been discussed earlier.
Dignum and Conte [31] have used deontic logic extensively to devel op methods for goal formation
—in our framework, goa formation is one of several actions that an agent can take. Thus, we can
specificaly gain from the work of Dignum and Conte [31], through explicitly plugging-in such a
framework as an action called f or m goal s implemented through the elegant work they report.

Agent Decision Making. There has been asignificant amount of work on agent decision making.
Rosenschein [88] was perhaps the first to say that agents act according to states, and which actions
they take are determined by rules of theform “When Pistrue of the state of the environment, thenthe
agent should take action A.” Asthe reader can easily see, our framework builds upon thisintuitive
idea, though (i) our notion of stateisdefined very generally and (ii) agent programs have aricher set
of rulesthan those listed above. Rosenschein and Kaelbling [89] extend this framework to provide
abasisfor such actionsin terms of situated automata theory.

Bratman et al. [18] define the IRMA system which uses similar ideas to generate plans. In their
framework, different possible courses of actions (Plans) are generated, based on the agent’s inten-
tions. Theseplansare then eval uated to determinewhich onesare consi stent and optimal withrespect
to achieving these intentions.

Verharen et al. [ 105] present alanguage-acti on approach to agent decision making, which hassome
similaritiesto our effort. However, they do not develop any forma semantics for their work, and
their language for agent programs uses a linguistic rather than a logical approach. Schoppers and
Shapiro [92] describe techniquesto design agents that optimize objective functions- such objective
functions are similar to the cost functions we have described.

One effort that is close to oursis Singh’s approach [98]. Like us, he is concerned about hetero-
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geneity in agents, and he develops atheory of agent interactionsthrough workflow diagrams. Intu-
itively, in this framework, an agent is viewed as afinite state automaton — asis well known, finite
state automata can be easily encoded in logic. This makes our framework somewhat more general
than Singh’s, instead of explicitly encoding automata (hard to do when an agent has hundreds of
ground actionsit can take). Sycara and Zeng [101] provide a coordinated search methodology for
multiple agents. Haddadi [52] devel ops adeclarativetheory of interactions, as do Rao and Georgeff
[84], and Coradeschi and Karlson [27] who build agents for air traffic simulation.

There has been extensive work on negotiation in multiagent systems, based on theinitial idea of
contract nets, dueto Smith and Davis[99]. In this paradigm, an agent seeking a service invitesbids
from other agents, and selects the bid that most closely matches its own. Schwartz and Kraus [93]
present amodel of agent decision making where one agent invitesbids (thisisan action!) and oth-
ers eva uate the bids (another action) and respond; thiskind of behavior is encodable through agent
programs together with underlying data structures. This body of work iscomplementary to ours: an
agent negotiates by taking certain actionsin accordance with its negotiation strategy, while we pro-
vide the “hooks” to include such actions within our framework, but do not explicitly study how the
negotiation actions are performed, as this has been well done by others[99, 93].

Coalition formation mechanisms where agents dynamically team up with other agents has been
intensely studied by many researchers[94, 91, 111]. Determining which agentstoteam withisasort
of decision making capability. Inverno et al. [58] present aframework for dIMARS based onthe BDI
model. Like us, they assume a state space, and the fact that actions cause state transitions. Labrou
and Finin [68] devel op the semantics of KQML, but do not explicitly present an action language.

Reasoning About Actions. Several works[42, 8, 9, 10] have addressed the problem of modeling
the logic of actions by means of logic programming languages. In this section, we briefly address
these, one by one. Gelfond and Lifschitz[42] propose a logic programming language called A us-
ing which, users may express knowledge about actions and their effects. This framework was later
extended by Baral, Gelfond and others in a series of elegant papers[9, 10, 6, 7]. The language A
allows users to make statements of the form

[ after ay,...,a,
initially f
a causes [ if pi,...,p,.

Intuitively, the first statement says that executing actions a4, . .., a,, makes f true (afterwards).
Likewise, the second statement says f wastrueintheinitia state, and the third statement describes
the effect of « on f if certain preconditions are satisfied.

The key differences between our approach, and this genre of work are the following. (1) First
and foremost, our approach appliesto heterogeneous data sources, whilethisbody of work assumes
all data is stored in the form of logical atoms. (2) Second, the modalities for determining what is
permitted, what is forbidden, what is obligatory, what is done, are not treated in the above body of
work. (2) Third, in our approach, we use the semantics to determine which set of firable actions (in
a state) must actually be fired, and this policy of choosing such sets of actions in accordance with
the policies expressed in an agent program and the underlying integrity constraintsis different from
what isdonein[42, 9, 10, 6, 7].

Collaborative Problem Solving. There has also been extensive work on collaborative problem
solving and negotiation in multiagent systems (e.g., [26, 60, 64, 87, 107]). As our approach alows
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arbitrary decisions, and as negotiation is one form of decision making, our work provides a frame-
work within which various negotiation strategies described in the literature can be encoded. Agents
can collaborate if they wish, but again, collaboration is an explicit action, and the rules governing
such collaborations can be encoded as rules within agent programs.

Agent Architectures. For anexcellent anthology of classicworkson agent systems, see[57]. There
have been numerous proposalsfor agentization in the literature (e.g., [38, 46, 16]) which have been
broadly classified by Genesereth and Ketchpel [43] into four categories: in the first category, each
agent has an associated “transducer” that converts all incoming messages and requests into a form
that isintelligibleto the agent. Thisis clearly not what happensin IMPACT —as noted in [43], the
transducer has to anticipate what other agents will send us and tranglate that — something which is
clearly difficult to do. The second approach is based on wrappers which “inject code into aprogram
to alow it to communicate’ [43, p.51]. The IMPACT architecture provides alanguage (the service
description language) for expressing such wrappers, together with accompanying agorithms. The
third approach described in [43] isto completely rewrite the code implementing an agent which is
obviously avery expensive aternative. Last but not least, there is the mediation approach proposed
by Wiederhold [108], which assumesthat al agentswill communicate with amediator whichinturn
may send messagesto other agents. In contrast, our framework allows point to point communication
between agents without having to go through a mediator. Of course, none of these efforts explicitly
address agent decision making in heterogeneous environments, which is the focus of our effort.

Matchmaking. First, there has been substantial work on matchmaking, in which agents advertise
their services, and matchmakers match an agent requesting a servicewith one (or more) that provides
it. Kuokkaand Harada [66] present the SHADE and COINS systems for matchmaking. Decker,
Sycara, and Williamson [30] present matchmakers that store capability advertisements of different
agents. Arishaet al. [5] present a theoretical foundation for matchmaking as well. This paper, in
contrast, merely focuses on how an agent makes decisions, rather than determining how one agent
“matches’ up with another.

Relationship to Heterogeneous Data I ntegration in the Database Community. Thereisnow a
great deal of work in mediated systems techniques. In this paragraph, we merely explain the rela-
tionship between code call conditions and existing work on data and software integration.

For example, there have been several efforts to integrate multiplerelational DBMSs[29, 81] and
relational DBMSs, object-oriented DBMSs and/or file systems [39, 63, 95]. However, to date, the
semantics of mediators that take actions has not been explored. The work in this paper builds upon
mediation efforts reported upon in our HERMES effort described previously in[19, 74, 74, 100, 76].
The Stanford TSIMMIS project [22] effort aimed at integrating a wide variety of heterogeneous
databases, together with afreetext indexing system. In contrast, HERMES integrated arbitrary soft-
ware packages such as an Army Terrain Route Planning System, Jim Hendler’s UM Nonlin nonlin-
ear planning system, aface recognition system, a video reasoning system, and various mathematical
programming software packages are integrated currently into Hermes. As a consequence, TSIM-
MIS was able to take advantage of itsfocus on integrating databases to perform some optimizations
which HERMES was unabl e to incorporate, but conversely, HERMES was abl e to access many data
sources that TSIMMIS could not. Query optimization methods applicable to both TSIMMIS and
HERMES were studied in [1]. The SIMS system[4] at USC uses a LI1SP-like syntax to integrate
multiple databases aswell. It isclosely related to the HERMES effort. HERMES used minimalistic
versions of logic to integrate data and software, while SIMS used a somewhat richer language. Asa
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consequence, HERMESwas abl e to take advantage of very efficient caching and query optimization
methods [73, 1], but may have not been able to easily express some of the more sophisticated rea-
soning tasks desired by the authors of SIMS. Other important later directions on mediation include
the InfoSleuth effort [12] system, at MCC.

12 Conclusionsand Future Work
In this paper, we have argued the following two simple points:

(1) Agentsinthe real world manipulate not just logical formulas, but complex datatypes, that vary
from one application to another.

(1) Agentsmust be ableto act in accordance with a specific, declarative action policy that governs
their actions. It must be possibleto build such a declarative policy on top of the existing data
structures that the agent’simplemented i mper ative software code manipul ates.

Towards this end, we have devel oped the concept of an agent state, that can consist of instantia-
tions of arbitrary data structures. We then devel op the concept of an agent program, building on top
of work in deontic logic. Agent programs allow the designer of an agent to specify how an agent
should act, and take into account the following aspects. What is the agent obliged to do? What is
the agent permitted to do? What is the agent forbidden from doing? and so on. We have devel oped
atheoretical framework within which agent programs can be built on top of arbitrary pieces of soft-
ware code, and we have developed a series of successively more refined declarative semantics for
agent programs. As the declarative semantics for agent programs become intuitively more appeal -
ing, they (with some exceptions) also become computationally more complex. We have devel oped
results showing the relationship between the declarative semantics and computational complexity.
Our complexity results also, for the most part, include algorithmsto compute the relevant semanti-
cal structures.

Our semantical resultsare closely related to other research in thefield of artificial intelligence. In
particular, we have demonstrated that three well-known semantics for logic programs, namely the
model semantics, minimal model semantics, and the stable model semantics, are captured within
our agent program framework. These semantics are well-known to correspond to certain fragments
of advanced knowledge representation frameworks such as default logic and circumscription.

Last, but not least, we have devel oped a simulation of the working of our agent framework in the
area of supply chain management. In the simulation, we have built several agents on top of legacy
commercia software including Microsoft Access database agents, and ESRI MapObject agents as
well.

Our current and ongoing efforts focus on the following subjects:

¢ We are extending the semantical framework described here to accommodate the following
types of reasoning not currently included: (a) reasoning about uncertain agent states, (b) rea
soning about temporal actions, where an agent makes decisions on taking an action in the fu-
ture, (c) reasoning about other agent’s reasoning. All of these modes of reasoning are well
recoghnized in the Al community, and expanding our semantical framework to accommodate
these modes of reasoning is an important semantical issue.
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¢ We are currently developing a compiler for agent programs — in particular, in a future paper
[35], wewill report upon aclassof agent programscalled regular agent programsthat are guar-
anteed to possess reasonabl e status sets— regul arity of agent programsisasyntactically easily
verifiable property, and regular agent programs possess many nice computational properties.
The paper [35] will report upon several experiments eval uating the ease of computing the sev-
era diverse semantics described in this paper. Thisimplementation builds upon our existing
HERMES Heterogeneous Reasoning and Mediator System, reported onin [19, 76, 100].

¢ We are studying the problem of whether all agent programs (under different semantics) can be
embedded into logic programs. In other words, isthere atranslation g that takes as input, an
agent program P, and produces as output, alogic program o(P) such that thereis a one one
correspondence between appropriate status sets of 7 and appropriate models of o(P)?

¢ Suppose we choose to use Sem-status set semantics for agent programs, where Sem is any of
the semantics introduced in this paper. At any given point ¢ in time, the agent program has a
Sem-status set, 5 that it acts on. When new events occur (e.g. new messages arrive), these
events may be viewed as updates to the current agent state. We would like to incrementally
compute a new status set 5,1 from S, the object state immediately after the Do-actionsin
Sy are executed, and the updates. We are developing algorithmsfor this task.
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A Appendix: Complexity of S- and F-Concurrent Executability

We assume that we have a set of feasible execution triples A5’ to be executed on a given state Og,
such that following operations are possiblein polynomial time:

1. testingwhether the grounded precondition Pre(a( X )8 for any triple (a(X),6,v) € AS is
satisfied in an agent state;

2. determining all objectsin solutionsof Add(a(X )8y)andin Del(a(X )8) on an agent state,
aswell asinsertion/deletion of objects from an agent state;

3. construction of any object that may be involved in the state evolving from execution of A5
on Ogs under any permutation 7.

Such asetting applies e.g. in the case where the agent state isarel ational database maintained under
active domain semantics.

Theorem A.1 Let AS = {(a1,01,71), ..., (an, 0., 7,) } Deagiven set of feasible execution triples
(a, 8;,7v:) onagiven agent state Os. Then, under the previous assumptions, testing whether AS'is
S'-concurrently executableis NP-compl ete.

Proof.  The problem is NP, since we can guess an appropriate permutation = and check in poly-
nomial timewhether A5 ist-feasible. Indeed, by our assumptionswe can aways eval uate the pre-
condition Pre(a()?r(i))eﬂ(j)%(i)) in polynomial time on %, and we can construct the state O™
in polynomial time from O, forall : = 0,...,n — 1; overall, thisis possiblein polynomial time.

To show NP-hardness, we provide a reduction from monotone 3SAT (M3SAT) [37] to the S'-con-
current execution problem, for a setting where the software code S provides access to a relational
database D5 and an agent state Os isarelational database instance D.

Let 7 bean instance of M3SAT, consisting of clauses C'y, . . ., (', over variables zy, . . ., x,, such
that each C; is either positive or negative.

Thedatabase DB hasfour relations: VAL (V ar, BV'), which storesaBoolean value for each vari-
able; SV(Var), which intuitively holds the variables which have assigned avaue; SAT(C') which
intuitively stores the clauses which are satisfied; the O-ary relation INIT.

Theinitial database D B holdsall possibletuples, in particular, both tuples (z;,0) and (z;, 1) are
in VAL for every atom z;. Thiswill ensure that every execution triplein A5 isfeasible.

The execution triplesin A5 are designed such that a feasible schedule must have the following
phases:

Initialization. Anactioni ni t must be executed here, which clears al relations except VAL.

Choice. Inthisphase, for each atom z; atruth valueis chosen by removing from VAL either (z;,0)
(which sets z; to 1), or (z;, 1) (which sets z; to 0).

Checking. Inthisphase, itischecked for every single clause C'; independently whether C; is satis-
fied.
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Success. In this phase, the single tests for the C'; are combined; if the result is positive, i.e., the
assignment sel ected in the choi ce phase sati sfiesevery C';, then asuccess action sat isexecuted
which enables to gracefully execute the remaining actions.

Clearance. In this phase, which is entered only if the Success phase had a positive result, al re-
maining actions which have not been executed so far are taken. Moreover, we add an ac-
tion which completely clears the database, such that every feasible permutation 7 leadsto the
empty database.

The actions and their descriptionsare givenin the following table:

Phase Action Precondition
Init init INIT
Choice set;(X) VAL(X, 1)A VAL(X,0)
seto(X) VAL(X, 1)A VAL(X,0)
Checking | checki j | SV(z1) A---ASV(z,) A Aty 5
Success sat SAT(c1) A~ A SAT(ep)
Clearance | clear 0
Phase Action Add Set Delete Set
Init init 0 { SV(V), SAT(C), INIT }
Choice sety(X) {SV(X)} {INIT, VAL(X,0) }
seto(X) {SV(X)} {INIT, VAL(X,1) }
Checking | check; ; { SAT(¢;) } {INIT }
Success sat {VAL(#;,0),VAL(z;, 1) |i=1,...,n} {INIT }
Clearance | clear 0 al relations

Here At; ; = VAL(xy, 1) if the j-thliteral of clause C; isxy, and At; ; = VAL(z,0)if itis—ay.
Observethat al variablesin the preconditions of the above actions « are action parameters. Thus,

— —

v isvoidinevery solutionof Pre(a(X )#), andthusfor every o( X ) and # at most onefeasibletriple
(a(X),8,~)may exist,inwhich v isvoid; we hene write simply a( X )6 for thistriple. Let the set
AS beasfollows:

AS = {sety(a;),seto(z;) |1 <i<n}U
{check; ;|1 <i¢<m,1<j<3}U{init,clear,sat}.

Notice the following observations on afeasible permutation 7 for A5

init must be executedfirst,i.e., ar1) = init, and clear must beexecuted asthelast action.

Clause checking can only be doneafter somechoiceactionset,(z;), v € {0, 1}, hasoccurred,
foreveryi =1,...,n.

In the choice phase, execution of at most one of the actions set; (z;), seto(x;) is possible,
foreveryi =1,...,n.

o Successisonly possible, if for each clause C; at least one action check; ; has been executed.
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¢ After the Success phase, first every remaining action set,(z;) can be executed, then dl re-
maining actions check; ; are possible, and finally clear can be done.

It holdsthat A5 is.5-concurrently executable, i.e., there exists some permutation = such that AS is
w-feasible, if and only if I isa Yes-Instance of M3SAT.

Remark. The construction can be extended so to obtain afixed action base . AB such that theset A5
in the construction is an instance of .AB, by adding further relations to the schema describing the
clausesin 7. Moreover, strict typing of the values occurring in the relationsis possible. |

Theorem A.2 Let AS = {(a1,01,71), ..., (an, 04, 7,) } Deagiven set of feasible execution triples
(a, 8;,7v:) onagiven agent state Os. Then, under the previous assumptions, testing whether AS'is
F-concurrently executable is co-NP-compl ete.

Proof. Theproblemisinco-NP, sincewecan guesspermutationss and ’ suchthat either AS[r] =
(1)« s Q) OF AS[T'] = @iy, - ., @y NOt feasible, or AS[x] and AS[7'] yield adifferent
result. By our assumptions, the guess for II and II’ can be verified in polynomial time (cf. Proof of
Theorem A.1).

To show that the problem is co-NP-hard, we consider the case where S isarelational database D
and an agent state Os isarelationa databaseinstance D.

We reduce the complement of M3SAT to F'-concurrent executability checking. Let / be anin-
stance of M3SAT, consisting of at least one positive clause and at least one negative clause. Here,
each clause is supposed to have three (not necessarily different) literals.

Let I’ betheinstance of I which resultsif every positive clause is made negative and vice versa,
andif every atomz; isreplaced by =, ;. Clearly, I’ isaYes-instanceif andonly if 7 isaYes-instance,
if andonly if 7 U I’ issatisfied by sometruth assignment to 4, . . ., 22, inwhich 2; hasthe opposite
valuetothevaueof z,;, forevery i = 1,...,n.

Therelational database D we construct has four relations: POS( V7, V2, Vi) and NEG( V7, V3, Vs),
which serve for storing the positive and negative clauses of I U I, respectively; VAL(Var, BV),
which stores a truth value assignment to the variables, st. variable z; istrueif (z;,1) € VAL, and
x; isfaseif (2;,0) € VAL, forevery i = 1,...,2n; and, a0-ary relation UNSAT.

Theinitia database D containstherelationsPOSand NEG storingtheclausesof 71U 1, therelation
VAL which holdsthetuples(z;,0) and (z,,4;, 1), forevery: = 1,...,n and therelation UNSAT is
empty.

The action base contains the actions switch( X, Y) and eval, where

switch: Pre(switch(X,Y)) =10,
Add(switch(X,Y)) = { VAL(X, 1), VAL(Y,0)},
Del(switch(X,Y)) = {VAL(X,0),VAL(X, 1)};

eval . Pre(eval) = { E'Vl,Vz,Vg.POS(Vl,VQ,Vg)/\VAL(Vl,O)/\VAL(Vz,O)/\VAL(Vg,O)/\
NEG(Vi, Vo, Vs) A VAL(Vi, 1) A VAL(Va, 1) A VAL(Vs, 1) },
Add(eval) UNSAT },

=
Del(eval) = 0.
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Observethat likein the proof of Theorem A.1, al unbound variablesin preconditions of actionsare
action parameters; we thus write analogously (a(.X )#) for (a( X)), 8,~) where v isvoid.

Theset AS of execution triplesis
AS = {switch(z;,2,4;) |1 <7 <n}U{eval}.

Intuitively, a switch action switch(x;, 2,,4,) flips the value of z; from O to 1 and the value from
2,4, from1to0. The eval action checks whether for the truth assignment to z+, . . ., x5, givenin
the database, there is some positive clause and some negative clause which are both violated.

For any permutation 7 on A5, the actions o) scheduled before a;.(;) = eval flip the values of
some variables; notice that flipping ; is simultaneously done with flipping z,,+;. The precondition
Pre(eval) istrue, precisely if there exists some positive clause P and some negative clause N in
T'u I’ which are both violated; thisis equivalent to the property that the current assignment o stored
in D does not satisfy 1.

To see this, if P isfrom I, then I isnot satisfied by o, and if P isfrom I’, then thereis a corre-
sponding negative clause N (P) in I such that N(P) is not satisfied. On the other hand, if o does
not satisfy 7, then there existseither apositiveclause P € I or anegativeclause N € I whichisnot
satisfied, and thus the corresponding negative clause N (P) € I’ (resp. positiveclause P(N) € I')
isnot satisfied by o; thismeans Pre(eval) istrue.

Clearly, all actionsin AS are executable on the initial database D B, and every feasible permu-
tation AS[x] yields the same resulting database. Hence, it followsthat AS is F-concurrently exe-
cutable, if and only if 7 isa Yes-Instance. This proves the result.

Remark. We can derive A5 from asimplefixed program, if westorethe pairsz;, z,,+; in aseparate
relation. result extendsto the data complexity of an tion set. |

Remark A.1 The F-concurrent execution problem in the above database setting is polynomial, if
the precondition is a conjunction of literals and there are no free (existential) variablesin it. Then,
the condition amounts to the following property. Let AS be aset of action execution triples, and
denoteby Pret(a) (resp., Pre™(a)) the positive (resp., negated) ground atomsin the precondition
of a. Moreover, let Add | () and Del | («) be the ground instances of the atomsin Add(«) and
Del | (a) over the database, respectively.

(1) Add|(a)n Pre=(3)=10,forevery a # € AS;
(17) Del|(a)n (Pret(B)U Add|(3)) = 0,forevery o # 3 € AS;
(7i7) Add| ()N Del|(a) =0, forevery a € AS.

(Condition (77 ) isactually not needed, but avoids philosophical problems.) An alternative, lesscon-
servative approach would be to limit change by « to theatoms notin Add | (o) N Del | (). |

B Appendix: QBF

Lemma8.14 Let &' = 3Y'VX'¢' bea QBF suchthat ¢’ isin DNF. Then, aformula® = 3YVX ¢,
where ¢ isin M3DNF (see proof of Theorem 8.2 for M3DNF) can be constructedin polynomial time,
such that
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(1) for Y = 0, theformulaVX ¢[Y = 0] istrue;

(2) ® — (3Y # 0)(VX )6 holds.

(As aremark to the interested reader, 3Y # () is, strictly speaking, a second-order generalized
quantifier.)
Proof.  Without loss of generality, &’ is aready monotone. SupposeY”’ = {y1,¥2,...,¥,} and
letY = Y'U {yo}. Consider the formula

Y LY ((~yr A+ A =yn) VD). (7)
Thisformulaisclearly equivalent to ®’. Construct next theformula

HY/VX[VZ(—@/O A 2’1) V (‘!2’1 A=y A 2’2) V ("2’2 A —ya A 2’3)\/
(8
(7201 A Y1 A 2n) V(220 Ay V &,
where 7 = {zy, ..., z,}. Theformula(8) is equivalent to (7). Indeed, observe that the subformula
[VZ.... of (8), denoted by V7.4, isequivalentto —y; A - - - A —y,,. To seethis, supposefirst V2.1
istrue. Then, for every: = 0,...,n consider avalueassignment y; to Z suchthat z; = 0, for every
Jj<i,andz; = 1,foral j > i. Then, ¥[Z] — —x;. Hence, the only-if direction holds. Suppose
now that —yo A --- A vy, iStrue. Towards a contradiction, suppose /[ 7] is false for some value
assignment y to 7. Hence, by thefirst disjunctin > z; isfalsein y, which means by the second that
zy isfasein vy, ..., that z, isfasein y. However, thelast digunctin ¢ is—z, A —z,. Thus, this
disjunctistrue, which is a contradiction.

By elementary quantifier pulling, formula (8) is equivaent to the formula
Y £ WX Z(pV ), 9)

andVX Z(¢Vo)[Y = (]istrue. By usingfurther universally quantifiedvariables 72’ = {z1, ..., 2.},
we obtain

Y £ WY ZZ'\/ (2 Az A2V N (22 A=z A2 V O[Z)=Z]V ¢ (10)

k3 k3

where ¢[Z/—~Z'] means the obvious substitution of 7’ literalsfor Z literals such that the formula
is monotone (observe that z; resp. —z; are for convenience replicated in disuncts). Clearly, (10) is
equivalent to (9). Thisprovesthelemma. |
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C Appendix: Table of Notation Used in the Paper

In the following tables, all numbers refer to Definition numbers, unless explicitly stated otherwise.

Notation Location Description

S Sec. 1 beginning | Software Code

Ts Sec. 1 beginning | Set of datatypesfor software code S
Fs Sec. 1 beginning | Set of predefined functionsfor software code &
Os Sec. 1 beginning | Agent State

T€Ts Sec. 1 beginning | Object type

Var(r) Sec. 3.1 beginning | Variable symbolsranging over ©
Xfi.g Sec. 3.1 beginning | Path variable

S :£(dy,...,dp) 3.2 Codecall

cc 32 Codecdll

i n(X cc) 3.2 Code call atom

<, >, <, >, =& 3.3 Code call condition operators

b% 3.3 Code cal condition

Sol(X) 71,05 35 Set of code call solutions
O_50l(X)15,05 35 Set of al objectsin acode call solution
insgs After 3.5 Inserts objectsin astate

dels After 3.5 Deletes objectsfrom a state

P = Xq 3.6 Integrity constraint

Os = IC 3.7 Integrity constraint satisfaction

e 3.7 Finite collection of integrity constraints
a 4.1 Action

(T1yeeesTh) 4.1 Action schema

Pre(a) 4.1 Precondition for action a

Add(a) 4.1 Add list for action a

Del(a) 4.1 Deletelist for action «

(8, )-Executability 4.3 Action execution under substitutions
OT(a(X),Os) 43 Set of &l §,~y making an action a( X ) executable
apply(A, Os) 45 Weak-concurrent execution
S'-concurrently executable | 4.6 Sequential-concurrent execution
F-concurrently executable | 4.7 Full-concurrent execution

AC 4.8 Action constraint

S,0s = AC 4.9 Action constraint satisfaction

Pa 4.10 Agent is permitted to take action «

Fa 4.10 Agent isforbidden to take action «

O« 4.10 Agent isobliged to take action «

Wa 4.10 Obligation to take action « iswaived
Do« 4.10 Agent doestake action «
A—1Li,....,L, 3 Actionrule

P 4.12 Agent program

(continued next page)
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Notation Location Description

H(r) parabefore Ex. 4.7 | Head of rule r

B(r) parabefore Ex. 4.7 | Body of ruler

B~(r) parabefore Ex. 4.7 | Negativeliteralsin the body of rule r

Bt (r) parabefore Ex. 4.7 | Positiveliteralsin the body of rule »

=.B7(r) parabefore Ex. 4.7 | Atomsof thenegative literalsof rule r

B(1r)as, B(T)ec parabefore Ex. 4.7 | Body of rule r restricted to action status atoms

B(r)ee parabefore Ex. 4.7 | Body of rule r restricted to code call atoms

B™(7)as parabefore Ex. 4.7 | Negativeliteralsin the body of rule r
restricted to action status atoms

B7(7)ee parabefore Ex. 4.7 | Negativeliteralsin the body of rule r
restricted to code call atoms

BY(7)us parabefore Ex. 4.7 | Positiveliteralsin the body of rule r
restricted to action status atoms

BT (r)ee parabefore Ex. 4.7 | Positiveliteralsin the body of rule r
restricted to code call atoms

=.B7(7)as parabefore Ex. 4.7 | Negationsof atomsin B~ (7 )4s

. B7(7)ee parabefore Ex. 4.7 | Negationsof atomsin B~ (7).

DCI(S) 5.3 Deontic closure

ACI(S) 5.3 Action closure

Appp os(5) 54 Application of program rules

Tp o, 5.7 Fixpoint operator

AC14(5) 5.9 Relativized action closure

A-feasible, A-rationd, | 5.10 Relativized status sets

A-reasonable

Tp og.4 512 Relativized fixpoint operator

A(S) 513

A(S)-feasible 5.10

F-preferred Sec.5.6 beginning Preferred set

F'/ P-completion 5.6.2 F'/ P-completion rule of «

Compp/p(P) Sec. 5.6.2 beginning | Augmentation of P

F'/ P-complete 5.6.2

Sem 5.7 Semantics variable

cf 5.15 Cost function
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