
Heterogeneous Active Agents

Thomas Eiter� V.S. Subrahmaniany George Pickz
Abstract

Over the years, many different agent programming languages have been proposed. In this
paper, we propose a concept called Agent Programs using which, the way an agent should act
in various situations can be declaratively specified by the creator of that agent. Agent Programs
may be built on top of arbitrary pieces of software code and may be used to specify what an
agent is obliged to do, what an agent may do, and what an agent may not do. In this paper, we
define several successively more sophisticated and epistemically satisfying declarative seman-
tics for agent programs, and study the computation price to be paid (in terms of complexity) for
such epistemic desiderata. We further show that agent programs cleanly extend well understood
semantics for logic programs, and thus are clearly linked to existing results on logic program-
ming and nonmonotonic reasoning. Last, but not least, we have built a simulation of a Supply
Chain application in terms of our theory, building on top of commercial software systems such
as Microsoft Access and ESRI’s MapObject.

�Institut für Informatik, Universität Gießen, Arndtstraße 2, 35392 Gießen, Germany, and TU Vienna, Austria. E-mail:
eiter@informatik.uni-giessen.de, eiter@dbai.tuwien.ac.atyInstitute for Advanced Computer Studies, Institute for Systems Research and Department of Computer Science, Uni-
versity of Maryland, College Park, Maryland 20742. E-mail: vs@cs.umd.eduzDepartment of Computer Science, University of Maryland, College Park, Maryland 20742. E-mail:
george@cs.umd.edu

Contents

1 Introduction 1

2 Motivating Examples 4

2.1 Supply Chain Example . 4

2.2 Tax Auditing Example . 5

3 Software Code Access 7

3.1 Code Calls and Code Call Atoms . 7

3.2 Integrity Constraints . 11

4 Agent Actions 12

4.1 Action Base . 12

4.2 Action Constraints . 19

4.3 Agent Programs: Syntax . 19

5 Semantics for Agent Programs 22

5.1 Feasible status sets . 24

5.2 Rational status sets . 27

5.2.1 Reading of rational status sets . 31

5.3 Reasonable status sets . 32

5.4 Violating obligations: weak rational status sets 36

5.4.1 Characterization of weak rational status sets 38

5.5 Expressing action constraints in an agent program 40

5.6 Preferred and Complete Status Sets . 41

5.6.1 Preference . 42

5.6.2 Complete Status Sets . 43

5.7 Optimal Status Sets . 44

6 Algorithms and Complexity Issues 46

6.1 Underlying assumptions . 46

6.2 Problems Whose Complexity is Studied / Overview of Complexity Results 47

6.2.1 Bottom Line for the Computation Problem 48

6.3 Different Complexity Classes . 50

7 Complexity Results and Algorithms for Agent Programs: Basic Results 53

7.1 Positive programs . 53

I

7.1.1 Weak rational status sets . 55

7.2 Programs with negation . 57

7.2.1 Feasible status sets . 57

7.2.2 Rational status sets . 59

7.2.3 Reasonable status sets . 62

7.2.4 Weak status sets . 63

7.3 Preferred status sets . 68

7.3.1 Action reasoning . 71

8 Complexity Impact of Integrity Constraints 72

8.1 Feasible status sets . 73

8.2 Rational status sets . 74

8.3 Reasonable status sets . 76

8.4 Weak status sets . 77

8.4.1 Positive programs . 77

8.4.2 Programs with negation . 80

8.5 Preferred status sets . 84

9 Relation to Logic Programming 87

9.1 Feasible Status Sets and Models of Logic Programs 87

9.2 Rational Status Sets and Minimal Models of Logic Programs 90

9.3 Reasonable Status Sets and Stable Semantics . 90

9.4 Discussion . 92

10 Supply Chain Example, Revisited 93

11 Related Work 94

12 Conclusions and Future Work 100

References 101

A Appendix: Complexity of S- and F -Concurrent Executability 107

B Appendix: QBF 110

C Appendix: Table of Notation Used in the Paper 112

II

1 Introduction

Over the last few years, there has been intense work in the area of intelligent agents [57, 110]. Ap-
plications of such agent technology have ranged from intelligent news and mail filtering programs
[75], to agents that monitor the state of the stock market and detect trends in stock prices, to intelli-
gent web search agents [36], to the digital battlefield where agent technology closely monitors and
merges information gathered from multiple heterogeneous information sources [4, 67, 68, 100, 108].

In the long run, a platform to support the creation and deployment of multiple software agents
will need to interoperate with a wide variety of custom-made, as well as legacy software sources.
Any definition Def of what it takes for a software package S (in any programming language) to be
considered an agent program, must come accompanied with tools to augment, modify, or massageS into an agent according to the definition Def.

Figure 1 shows the architecture of our IMPACT System for the creation and deployment of mul-
tiple interacting agents. IMPACT is a joint project between the University of Maryland, Bar-Ilan
University (Israel), the Technical University of Vienna, and the University of Gießen (Germany). In
IMPACT, an agent consists of two parts:

1. A body of software code (built in any programming language) that supports a well defined
application programmer interface (either part of the code itself, or developed to augment the
code). In general, we will assume that a piece of software S is represented by a pair S =(TS ;FS) where:� TS is the set of all data types manipulated by the software package S. TS is assumed to

be closed under sub-types, i.e. if � is a subtype of a type in TS , then � must also be inTS .� FS is the set of all pre-defined functions of the package S that are provided by the pack-
age’s application programmer interface.

In other words, in the strict sense of object systems, S is definable as a collection (or hierarchy)
of object classes in any standard object data management language such as ODL [21]. Almost
all existing servers used in real systems, as well as most commercial packages available on the
market are instances of the above definition.

For example, consider the well known Oracle DBMS. This may be viewed as a body of soft-
ware code S = (TS ;FS) where:� TS consists of the following types: a set of attribute domains, tuples over different com-

binations of these attribute domains, and relations (sets of tuples) over different attribute
domains.� FS consists of the classical relational operations: select, project, cartesian product, joint,
union, intersection, difference and aggregate operations, together with combinations of
these.

At any given point t in time, the state of an agent will refer to a set OS(t) of objects from
the types TS , managed by its internal software code. An agent may change its state by tak-
ing an action – either triggered internally or by processing a message received from another
agent. However, one agent cannot directly change another agent’s state, though it might do so

1

indirectly by shipping the other agent a message issuing a change request. The precise defini-
tions of messages and message management, as well as actions and action management, will
be described in detail below.

2. A semantic wrapper that contains a wealth of semantic information. Such information in-
cludes, but is not restricted to the following:

(a) A service description expressed in some tightly specified language. While a multiplicity
of languages may be used for this purpose, in IMPACT [5] we have developed an HTML-
like language for creating and manipulating service descriptions. This language has been
characterized with a formal declarative semantics, as well as sound and complete algo-
rithms for matching requests for services with an archive of service descriptions. Such
matches are “correct” only w.r.t. an underlying similarity measure.

(b) A message manager that (a) manages the data structures associated with an IMPACT
agent’s mailbox, and (b) specifies and implements policies on how commonalities be-
tween requests may be exploited to reduce the load on the agent.

(c) An action module that will take as input, a newly read message (which will constitute
an event), and use this to trigger zero, one, or many actions. For this purpose, the action
module will require a specification of:

i. (Action Base) The actions that the agent may take in principle, and the conditions
that the agent state must satisfy for these actions to be executable, as well as the
effects on the agent state of taking such actions;

ii. (Action Requirements) The conditions (on the agent state) under which the agent is
either obliged or forbidden to take certain actions, as well as the conditions under
which an agent is permitted (at its discretion) to take an action;

iii. (Action Policy) The conditionson the agent state that determine how to choose which
of several permissible actions should in fact be executed.

(d) A metaknowledge module that provides the agent valuable information both about itself,
as well as about other existing agents in the world. Such metaknowledge may include sta-
tistical information on the reliability of other agents, the speeds with which other agents
provided certain services, and the financial charges (if any) levied for such transactions.
It may also include self-knowledge – such self-knowledge may include statistics about
its own performance, as well as analyses of operations on which it has performed well
or badly.

The IMPACT architecture contains a set of replicated, mirrored IMPACT servers that provide a
variety of services. Such services include agent yellow-page location services (to find agents that
provide a requested service), an agent ontology service, as well as type/thesaurus services. The
locations of all mirrored replicas of the IMPACT servers are known to all agents – mirroring and
replication guarantee that the system infrastructure will survive “downtimes” experienced by one
or more servers. A synchronization layer guarantees that different IMPACT servers will reflect the
same state, propagating changes at one server to other mirrored sites. Due to space concerns, the
reader interested in details of the IMPACT architecture is referred to [5].

With this background in mind, we are now ready to go into the main aim of this paper – which is
to design a theory and implementation of methods by which an agent may decide what actions it is
obligated to take in a given state, what actions it is permitted to take (in a given state), and how it
chooses which actions to in fact perform, given such a state of the world. Such choices are expressed

2

Figure 1: IMPACT Architecture

by an agent program developed in a logical agent programming language that we introduce in this
paper. We are not the first to propose agent programming paradigms – several others, notably [97,
55, 45], have done so before us. Our work builds upon these previous, pioneering efforts, in the
following ways:

1. We will formally define the concept of an Agent Program that allows agents (of the sort de-
scribed above) to be built on top of arbitrary software code with application programmer in-
terfaces;

2. We will show that using such Agent Programs, we can access legacy software as well as cus-
tom built software;

3. We will provide several alternative declarative semantics specifying the meaning of such Agent
Programs. In particular, this declarative semantics will specify what actions an agent will per-
form, given a currently prevailing agent state, and how the execution of these actions will mod-
ify the agent state.

4. We will develop results on the computational cost of these alternative semantics, giving rise
to a hierarchy of increasing complexity.

5. We will establish relationships between some of these semantics and existing semantical char-
acterizations of non-monotonic logic programs.

6. We will report on an application we have built based on a simulation of our Agent Program
Language and experimental results based on this implementation. This application involves
specifically building agents on top of commercial software packages including Microsoft AC-
CESS and ESRI’s MapObjects.

The organization of this paper is as follows. Section 2 presents a brief example of a multiagent
system used for automated ordering of supplies by a company. A simulation of this system, adher-
ing to the principles described in this paper, has been implemented by us. Section 3 specifies how

3

agent reasoning may be built on top of existing legacy software and how this may be used to de-
fine the concept of an agent state. Section 4 specifies the language within which agents’ actions are
specified, and the language of agent programs which specifies the conditions governing an agent’s
behavior. Section 5 forms the main contribution of this paper, and describes the semantics of agent
programs. In fact, Section 5 gives a set of successively more desirable semantics. We discuss the
advantages and disadvantages of these semantics. Section 6 introduces the reader to the assumptions
under which our complexity results (presented in detail in Section 7 and 8) are obtained, and also
present an overview of these results. The reader who is not interested in details of the complexity
results may safely skip Sections 7 and 8, but still understand the gist of the results by reading Section
6. However, Sections 7 and 8 do contain descriptions of algorithms to compute the semantics, which
the reader who is not interested in complexity may wish to read. More efficient and sophisticated al-
gorithms that we have developed and we are currently implementing in IMPACT will be reported
on in a companion paper currently in preparation [35]. Section 9 shows the relationship between
our semantics and well known semantics in logic programming. As the relationship between logic
program semantics and nonmonotonic reasoning semantics (for default logic, autoepistemic logic
and truth maintenance systems) is well known, this section also shows the relationship between our
semantics and classical nonmonotonic logic semantics.

Assumption. As this paper is long and contains a fair amount of notation, Appendix C contains a
table summarizing the notation, as a handy reference for the reader.

2 Motivating Examples

In this section, we present two very simple multiagent scenarios – the first can be used for automated
supply chain management. The second may be used by a tax agency to take relevant actions on which
tax returns should be audited, how these audits will be conducted, etc. As we go through the paper,
we will revisit these examples many times.

2.1 Supply Chain Example

Supply chain management [17] is one of the most important activities in any major production com-
pany. Most production companies like to keep their production lines busy and on schedule. To ensure
this, they must constantly monitor their inventory to ensure that components and items needed for
creating their product are available in adequate numbers.

For instance, an automobile company is likely to want to guarantee that they always have an ad-
equate number of tires and spark plugs in their local inventory. When the supply of tires or spark
plugs drops to a certain predetermined level, the company in question must ensure that new supplies
are promptly ordered. This may be done through the following steps.� In most large corporations, the company has “standing” contracts with producers of different

parts (also referred to as an “open” purchase order). When a shortfall occurs, the company
contacts suppliers to see which of them can supply the desired quantity of the item(s) in ques-
tion within the desired time frame. Based on the responses received from the suppliers, one
or more purchase orders may be generated.� The company may also have an existing purchase order with a large transportation provider
or providers. The company may then choose to determine whether the items ordered should

4

be: (a) delivered entirely by truck, or (b) delivered by a combination of truck and airplane.

This scenario can be made significantly more sophisticated than the above description. For exam-
ple, the company may request bids from multiple potential suppliers, the company may use methods
to identify alternative substitute parts if the ones being ordered are not available, etc. We have chosen
to keep the scenario relatively simple for pedagogical purposes.

The above automated purchasing procedure may be facilitated by using an architecture such as
that shown in Figure 2. In this architecture, we have an Inventory-Agent that monitors the available
inventory at the company’s manufacturing plant. We have shown two suppliers, each of which have
associated agents that monitor two databases:� An ACCESS database specifying how much uncommitted stock the supplier has. For exam-

ple, if the tuple(widget-50,9000) is in this relation, then this means that the supplier has
9000 pieces of widget-50 that haven’t yet been committed to a consumer.� An ACCESS database specifying how much committed stock the supplier has. For example, if
the tuple (widget-50,1000,company-A) is in the relation, this means that the supplier
has 1000 pieces of widget-50 that have been committed to company-A.

Thus, if company-B were to request 2000 pieces of widget-50, we would update the first relation,
by replacing the tuple (widget-50,9000) by the tuple (widget-50,7000) and adding the
tuple (widget-50,2000,company-B) to the latter relation – assuming that company-B did
not already have widget-50 on order.

Once the Plant Agent places orders with the suppliers, it must ensure that the transportation ven-
dors can deliver the items to the company’s location. For this, it consults a Shipping Agent, which in
turn consults a Truck-Agent (that provides and manages truck schedules using routing algorithms)
and an Airplane-Agent (that provides and manages airplane freight cargo). As described later in Ex-
ample 4.1, the Truck Agent may in fact control a set of other agents, one located on each truck. The
Truck Agent we have built is constructed by building on top of ESRI’s MapObject system for route
mapping. These databases can be made more realistic by adding other fields – again for the sake of
simplicity, we have chosen not to do so.

In this paper, we will work out exactly how the behavior of these different agents can be repre-
sented, and how they communicate with each other through messaging (though messaging is not
discussed in detail in this paper). Rather, this paper focuses on how an agent takes decisions when it
receives messages from another agent. The theory in this paper has been simulated through a proto-
type implementation of this supply chain example. (In fact, for space reasons, we have chosen not
to describe several features of this implementation as just a few of them are enough to illustrate the
concepts provided in this paper).

2.2 Tax Auditing Example

An alternative example involves a situation that may be used by a tax agency to determine which
returns to audit. Tax agencies are usually required to follow some explicit rules in who to audit (so
that tax officers cannot audit ex-spouses against whom they hold a grudge, or unfairly prosecute one
or another racial/ethnic group, etc.).

5

Figure 2: Agents in Supply Chain Example

A simple tax application may in fact have several agents. For the sake of simplicity, we will con-
sider just one agent, which we shall call the Audit-Agent that determines which users should be au-
dited. It may do so by monitoring two relations:� The first relation, called returns, contains a relational representation of the returns filed by

tax-payers.� The second relation, called employer declarations, specifies the payments to various
individuals that have been reported by employers.

The agent monitors discrepancies between the amounts reported by individual taxpayers, and amounts
reported by all employers who have made payments to that person. Based on these discrepancies,
it may either be obliged to take some audit actions, or forbidden to do so, or permitted to do so at
its discretion. Based on the actions this agent takes, it may be forced to take other actions (such as
notifying the taxpayer that he is required to explain his return, or to appear in person in tax court,
etc.).

As in the case of the Supply Chain example, this scenario is a simplified scenario, that permits
pedagogical clarity when it is used to illustrate the theories and definitions introduced in this paper.
In fact, we will use this example extensively throughout this paper.

6

3 Software Code Access

In this section, we focus on the “internal” data managed by the software code underlying an agent. As
mentioned in the Introduction, we may characterize the code implementing an agent to be a pair S =(TS ;FS) where TS is the set of all data types provided by S and F is a set of predefined functionsS which makes access to the data objects in the agent’s stateOS available to external processes.

This characterization of a piece of software code is a well accepted and widely used specification
– for example, the Object Data Management Group’s ODMG standard [21] and the CORBA frame-
work existing industry standards that are consistent with this specification.

3.1 Code Calls and Code Call Atoms

In this section, we introduce the reader to the important concept of a code call atom – this concept
forms the basic syntactic object using which we may access multiple heterogeneous data sources.
Before proceeding to this definition, we need to introduce some syntactic assumptions.

The content of Section 3.1 is not new work. It builds upon a previous effort called HERMES by
one of the authors on heterogeneous data and software integration [1, 19, 74, 73, 76]. The reader
familiar with that syntax may skip this section.

Suppose we consider a body S = (TS ;FS) of software code. Given any type � 2 TS , we will
assume that there is a set V ar(�) of variable symbols ranging over � . If X 2 V ar(�) is such a
variable symbol, and if � is a complex record type having fields f1; : : : ; fn, then we require that X:fi
be a variable of type �i where �i is the type of field fi. In the same vein, if fi itself has a sub-field g
of type
, then X:fi:g is a variable of type
, and so on. In such a case, we will call X a root-variable,
and the variables X:fi, X:fi:g, etc. path-variables. For any path variable Y of the form X:path, whereX is a root variable, we refer to X as the root of Y, denoted by root(Y)); for technical convenience,root(X), where X is a root variable, refers to itself.

An assignment of objects to the variables is a set of equations of the form V1 = o1; : : : ; Vk = ok
where the Vi’s are variables (root or path) and the oi’s are objects – such an assignment is legal if
the types of objects and corresponding variables match.

Definition 3.1 (code call) Suppose S = (TS ;FS) is some software code and f 2 F is a predefined
function with n arguments, and d1; : : : ; dn are objects or variables such that each di respects the type
requirements of the i’th argument of f. Then S : f(d1; : : : ; dn) is called a code call. A code call is
ground, if all the di’s are objects. 2
In general, as we will see later, code calls are executable when they are ground. Thus, non-ground
code calls must be “instantiated” prior to attempts to execute them.

In general, each function f 2 F has a signature, specifying the types of inputs it takes, and the
types of outputs it returns. Here are some examples of code calls that we have implemented:� oracle : select(emp:rel; salary;>; 150000).

Consider a domain called oracle representing the Oracle Universal Server. One of the rela-
tions in such a database may be called emp.rel. The above code call executes a select op-
eration on the emp.rel table, and returns as output, the set of all tuples in emp.rel whose
salary field is over 150,000 (dollars).

7

� face : match(mugshotdb; queryface).
Consider a domain calledface implementing a face recognition program. This program may
manage a mugshot archive called mugshotdb of individuals whose identities are known.
Thematch function takes a picture of someone whose identity is to be determined, and matches
it against the mugshot database, returning a ranked set of pairs (File,Name), of faces and
associated names that match the query face.� terrain : planroute(map1; 97;97; 102;103).
Consider a domain called terrain representing a terrain reasoning system. map1 may be
one of several maps in this system. The function planroute plans an optimal route (ac-
cording to some trafficability criteria we will not go into here) from a given origin to a given
destination. The above code call asks the terrain reasoner to plan an optimal route from the
point (97; 97) on map1 to the point (102; 103) on map1.

Assumption. We will assume that the output signature of any code call is a set. There is no loss of
generality in making this assumption – if a function does not return a set, but rather returns an atomic
value, then that value can be coerced into a set anyway – by treating the value as shorthand for the
singleton set containing just the value.

Definition 3.2 (code call atom) If cc is a code call, and X is either a variable symbol, or an object
of the output type of cc, then in(X; cc) is a code call atom. 2
Code call atoms, when evaluated, return boolean values (i.e. they may be thought of as special types
of logical atoms [96]). Intuitively, a code call atom succeeds just in case X is in the result set returned
by cc (when X is an object), or when X can be made to point to one of the objects returned by exe-
cuting the code call. Let us return to the code calls we introduced earlier, and see examples of some
code call atoms.� in(X; oracle : select(emp:rel; salary; >;150000)).

Here, this code call atom would succeed, instantiating X to any single tuple in relation emp
that has a salary field of over 150,000.� in(X; face : match(mugshotdb; queryface)).
This code call atom would succeed, instantiatingX to any record R (having a file and name
fields) whoseR:file image matches thequeryface image as determined by the image pro-
cessing code implementing the match operation.� in(X; terrain : planroute(map1; 97;97;102;103)).
This code call atom would succeed, instantiating X to some optimal route (as deemed by the
route planner code) between points (97,97) and (102,103).

Definition 3.3 (code call condition) A code call condition is defined as follows:

1. Every code call atom is a code call condition.

2. If s,t are either variables or objects, then s = t is a code call condition.

3. If s,t are either integers/real valued objects, or are variables over the integers/reals, thens < t; s > t; s � t; s � t are code call conditions.

8

4. If �1; �2 are code call conditions, then �1&�2 is a code call condition.

A code call condition satisfying any of the first three criteria above is an atomic code call condition.2
An example of a code call condition is:

in(X,oracle:select(emp.rel,salary,>,150000)) & (1)
in(Y,face:findpictureof(mugshotdb,X.name))

This condition may be viewed as a query requesting that we find all X,Y such that X is a person who
makes over 150K (as determined by querying an Oracle relation called emp.rel), and finding all
pictures Y of such a person from the mugshot database.

One aspect to keep in mind about code calls is that while code call syntax allows variables to appear
in a code call, it is usually impossible to evaluate a code call when it has uninstantiated variables.
Thus, any time we attempt to actually execute a code call, the code call must be fully instantiated.

Definition 3.4 (safe code call) A code call S : f(d1; : : : ; dn) is safe iff each di is ground. A code
call condition �1& : : :&�n, n � 1 is safe, if and only if there exists a permutation � of �1; : : : ; �n
such that for every i = 1; : : : ; n the following holds:

1. If ��(i) has the form s = t or s < t, s � t, s > t, s � t, then one of s, t (or both) is either
a constant or one of the X�(j)’s for j < i; let X�(i) denote a possible new variable;

2. If ��(i) is a code call atom in(X�(i); cc�(i)), then for each variable Y occurring in cc�(i),root(Y) is from the set froot(X�(j)) j j < ig. 2
For example, the code call (1) described earlier in this section is safe. However, the code call

in(X,oracle:select(emp.rel,salary,>,150000)) &
in(Y,face:findpictureof(mugshotdb,Z.name))

is not safe. The reason is that if the ordering of code call atoms above is used, then the face database is
looking for an instantiatedargument, Z.name, which it does not find. The reader can easily ascertain
that reordering the literals in the example does not establish the safety property either.

Definition 3.5 (code call solution) Suppose � is a code call condition involving the variables ~X,
andS = (TS ;FS) is some software code. A solution of �w.r.t. TS in a stateOS is a legal assignment
of objects o to the variablesX in ~X , written as a compound equation ~X = ~o, such that the application
of the assignment makes � true in stateOS .

We denote by Sol(�)TS ;OS (omitting subscriptsOS and TS when clear from the context), the set
of all solutions of the code call condition � in state OS , and by O Sol(�)TS ;OS (where subscripts
are occasionally omitted) the set of all objects appearing in Sol(�)TS ;OS 2

9

For example, consider the Oracle/Face database code call discussed earlier. A valid solution to
this code call may be the assignmentX = John Smith; Y = john smith:gif:
We are now ready to introduce an important assumption we make in our paper. As the reader surely
knows, most legacy programs that manipulate a certain data structure have existing code to insert and
delete objects from that data structure. This is certainly true of most commercial relational DBMSs,
geographic information systems (e.g. ArcInfo, ArcView), spatial databases (quadtrees, R-trees), face
databases (e.g. Informix face data blade), scheduling systems (e.g. Microsoft Schedule), etc.

Assumption. Throughout this paper, we assume that the set FS associated with a software code
package S contains two functions described below:� A function insS , which takes as input a set of objectsO manipulated by S, and a stateOS , and

returns a new stateO0S = insS(O;OS) which accomplishes the insertion of the objects in O
intoOS , i.e. insS is an insertion routine.� A function delS , which takes as input a set of objectsO manipulated by S and a stateOS , and
returns a new set of objectsO0S = delS(O;OS) which describes the deletion of the objects inO fromOS , i.e. delS is a deletion routine.

In the above two functions, it is possible to specify the first argument, O, through a code-call atom
or a code-call condition involving a single variable. Intuitively, suppose we execute the function,insquadtree(�[X]) where �[X] is a code call involving the (sole) free variable X . This may be in-
terpreted as the statement: “Insert, using a quadtree insertion routine, all objects o such that �[X] is
true w.r.t. the current agent state whenX = o.” In such a case, the code call condition, � is used to
identify the objects to be inserted, and the insquadtree function specifies the insertion routine to be
used. Assuming the existence of such insertion and deletion routines is very reasonable – almost all
implementations of data structures in computer science include insertion and deletion routines !

As a single agent program may manage multiple data types �1; : : : ; �n, each with its own insertion
routine, ins�1 ; : : : ; ins�n , respectively, it is often more convenient to associate with any agent a, an
insertion routine, insa, that exhibits the following behavior: given either a setO of objects (or a code
call condition�[X] of the above type), insa(�[X];OS) is a generic method that selects which of the
insertion routines ins�i , associated with the different data structures, should be invoked in order to
accomplish the desired insertion. A similar comment applies to deletion as well. Throughout the
rest of this paper, we will assume that an insertion function insa and a deletion function dela may be
associated with any agent a in this way. Where a is clear from context, we will drop the subscript.

At this point, we have briefly shown how the mechanism of code-calls, and code-call atoms, pro-
vides a unified syntax withinwhich different software packages and databases may be accessed through
their application programmer interfaces. All the above code call mechanisms have been implemented
by us.

Code calls, and code call atoms, form the basic theoretical mechanism through which an agent
may access its internal code. In addition, using the code call mechanism, an agent A might send a
request to agent B, with full assurance that agent B will be able to execute what is being requested by
agent A. The service description layer of the IMPACT architecture will include descriptions of the
code-calls provided by each agent – this will also be included in the Yellow Pages server contained as
part of the IMPACT Server. These sources can be used by agent A to structure its code call message

10

to agent B. We will not go into the description of the service description component of IMPACT here
– that is done in a companion paper [5].

3.2 Integrity Constraints

In addition to code-calls, each agent also has an associated set of Integrity Constraints. Agent in-
tegrity constraints specify properties that states of the agent must satisfy. For example, if we have
an Oracle agent maintaining an employee database, we may have an integrity constraint of the form:in(X; oracle : select(emp:rel; salary; >;100000))) X:grade � 6:
This integrity constraint on the Oracle software states requires that the emp.rel relation must al-
ways ensure that individuals with salaries over 100K are at salary grade 6 or higher.

Similarly, consider an agent whose internal state is determined not just by one package, but by a
hybrid of two packages – a face recognition system and an image processor. Here, we may want to
use an integrity constraint which states that:

in(X,face:match(mugshotdb,queryface)) &
in(Y,oracle:select(convicts.rel,name,=,X.name) &
=(X.sex,male))
in(X,face:match(mugshotdb male,queryface)).

This constraint says that if X is returned by matching a query face using a face recognition pro-
gram, and we know that the person shown in X is a male convict (using a relational database), then
it should be the case that X is also returned by executing the match on just male mugshots.

Definition 3.6 (integrity constraint) An integrity constraint is an expression of the form) �a
where is a safe code call condition, and �a is an atomic code call condition such that every root
variable in �a occurs in . 2

Note that the safety requirement on the precondition of an integrity constraint guarantees a mech-
anism to evaluate the precondition of an integrity constraint whose head is grounded.

Definition 3.7 (integrity constraint satisfaction) A stateOS satisfies an integrity constraint IC of
the form) �a, denoted OS j= IC, if for every legal assignment of objects from OS to the
variables in IC, either is false or �a is true.

Let IC be a (finite) collection of integrity constraints, and let OS be an agent state. We say thatOS satisfies IC, denoted OS j= IC, if OS satisfies every constraint IC 2 IC. 2
11

4 Agent Actions

Every agent’s actions are completely determined by three parameters that the individual creating the
agent must specify:� An “Action Base” specifying a set of actions that the agent can execute (under the right con-

ditions),� A set of “Action Constraints” that specify, for example, mutual exclusion between actions, etc.� An “Agent Program” that determines which of the (instances of) actions in the agent base the
agent is obligated, permitted, or forbidden to execute, together with a mechanism to actually
determine what actions will be taken. Actions are triggered by events. For example, reading
a message may be an event that triggers one or more actions. A clock-event (e.g. the clock
reaching 0800 hours) may be another event that triggers another action.

In this section, we will introduce the concepts of an Action Base, Action Constraint, and Action
Program, and discuss how they work together.

4.1 Action Base

In this section, we will introduce the concept of an action and describe how the effects of actions are
implemented. In most work in AI [82, 44, 90] and logical approaches to action [11], it is assumed that
states are sets of ground logical atoms. In the fertile area of active databases, it is assumed that states
reflect the content of a relational database. However, neither of these two approaches is adequate for
our purpose because the state of an agent which uses the software code S = (TS ;FS) is described
by the setOS . The data objects inOS could be logical atoms (as is assumed in most AI settings), or
they could be relational tuples (as is assumed in active databases), but in all likelihood, the objects
manipulated by S are much more complex, structured data types.

Definition 4.1 (action; action atom) An action � consists of five components:� A name, usually written �(X1; : : : ; Xn), where the Xi’s are root variables;� A schema, usually written as (�1; : : : ; �n), of types. Intuitively, this says that the variable Xi
must be of type �i, for all 1 � i � n.� a code-call condition �, called the precondition of the action, denoted by Pre(�);� a set Add(�) of code-call conditions;� a set Del(�) of code-call conditions.

The precondition Pre(�) must be safe modulo the variables X1,. . . ,Xn . This means that Pre(�)
is a safe code-call condition if every variable Y in Pre(�) such that root(Y) 2 fXi j 1 � i � ng
were considered as an instantiated object (constant) from the domain. Furthermore, every code-call
condition � in Add(�) [Del(�) must be safe modulo the union of X1,. . . ,Xn and the root vari-
ables Y1; : : :Ym occurring in Pre(�), i.e., it is safe if every variable Y in � such that root(Y) 2fX1 : : : ; Xn,Y1; : : :Ymg were considered as though it were a constant.

12

An action atom is a formula �(t1; : : : ; tn), where ti is a term, i.e., an object or a variable, of type�i, for all i = 1; : : : ; n. 2
Let us now consider some examples of action and their associated descriptions in specific domains.

Example 4.1 (Routing Agent Example) Consider the Truck Agent described in Section 2. This
agent may coordinate the route plans and routes of multiple trucks. For each truck, it may have an
intended route (sequence of points). Typically, this route will be a schedule (and hence will have
temporal attributes), but we shall ignore that for the sake of simplicity. This agent may have several
associated actions one of which is shown below.Replace(Truck1; Loc1; Truck2;Loc2):
This action might be executed when a truck has suffered a breakdown. The truck gets replaced by a
new truck. This action may be specified as follows.� Name: Replace(Truck1; Loc1;Truck2;Loc2)� Schema: (Truck; Place; Truck;Place)where Place is a pair of integers.� Pre:

in(T1,oracle:select(truckstatus,trucki id,=,Truck1)) &
=(T1.location,Loc1) &
in(T2,oracle:select(truckstatus,trucki id,=,Truck2)) &
=(T2.location,Loc2) &
=(T1.status,down(Loc1)) &
=(T2.status,free).� Add:
=(T3.truckstatus,enroute(Loc2,Loc1)) &
=(T3.location,T2.location) &
=(T3.truck id,T2.truck id).� Del:
in(T2,oracle:select(status,trucki id,=,Truck2)) &
=(T2.location,Loc2) &
=(T2.status,free).

In the above, we are assuming that all trucks have an associated status – free or enroute or down.
Furthermore, we are assuming that the truckstatus relation has only three fields – truck id,
status and location. If it had additional fields, then for each additional field f , we would need
to add a conjunct of the form = (T2:f; T3:f) in the “Add” list above. Intuitively, in the above add-
list, T3 is identical to T2 in all respects except for the status field. 2
In our framework, we assume that any explicit state change initiated by an agent is an action. For
example, sending messages and reading messages is an action. Similarly, making an update to an
internal data structure is an action. Performing a computation on the internal data structures of an
agent is also an action (as the result of the computation in most cases is returned by modifying the
agent’s state).

13

Example 4.2 (Message Box) Throughout this paper, we will assume that each agent’s associated
software code includes a special type called msgbox (short for message box). The message box
is a buffer that may be filled (when it sends a message) or flushed (when it reads the message) by
the agent. In addition, we assume the existence of an operating-systems level messaging protocol
(e.g. sockets or TCP/IP [109]) that can fill in (with incoming messages) or flush (when a message is
physically sent off) this buffer.

We will assume that the agent has the following functions that are integral in managing this mes-
sage box. Note that over the years, we expect a wide variety of messaging languages to be developed
(examples of such messaging languages include KQML [68] at a high level, and remote procedure
calls at a much lower level). In order to provide maximal flexibility, we will merely specify below,
the “core” interface functions available on the msgbox type. Note that this set of functions may be
augmented by the addition of other functions on an agent by agent basis.� SendMessage(Src,Dest,Msg): This causes a quintuple (o; Src;Dest;Msg; T ime) to

be placed in msgbox. The o signifies an outgoing message. When SendMessage(Src,
Dest,Msg) is executed, the state ofmsgbox changes by the insertion of the above quintuple
denoting the sending of a message from the source (Src) agent to a given destination agent
(Dest) involving the message body Msg; Time denotes the time at which the message was
sent.� GetMessage(Src): This causes a collection of quintuples(i; Src; agent-id;Msg; Time)
to be read from msgbox. The i signifies an incoming message. Note that all messages from
the given source to the agent agent-id whose message box is being examined, are returned
by this operation. Time denotes the time at which the message was received.� TimedGetMessage(op,Val): This causes the collection of all quintuples tup = (i; Src;agent-id;Msg; T ime) to be read frommsgbox, where tup:TimeopV al holds; op is required
to be any of the standard comparison operators�; <;�; >;=. 2

Agents interact with the external world through the msgbox code – in particular, external agents
may update agent A’s msgbox, thus introducing new objects to agent A’s state, and triggering state
changes which are not triggered by agent A.

Throughout this paper, we will assume that every agent has as part of its state, the specialized type
msgbox defined here, together with the code calls on this type defined here.

Example 4.3 (Java Agents) In today’s world, the word “agent” is often considered (in certain non-
AI communities) to be synonymous with the Java applets. What is unique about an applet is that it
is mobile. A Java applet hosted on machine H can “move” across the network to a target machine
T, and execute its operations there. The actions taken by a Java agent agent-id, may be captured
within our framework as follows.

1. Name: do(Op,Host,Target,ArgumentList)

which says “Perform the operation op on the list ArgumentList of arguments located at
the Target address by moving there from the Host address.

2. Precondition:

14

in(Host; java : location(agent-id)) &in(\ok”; security :authorize(agent-id; Op; Target; ArgumentList).
This says that the Java implementation recognizes that the agent in question is currently at
the Host machine and that the security system of the remote machine authorizes the agent to
download itself on the target and execute its action.

3. Add/Delete-Set: This consists of whatever insertions and deletions must be done to data in
the Host’s workspace. 2

We are now ready to define an action base. Intuitively, each agent has an associated action base,
consisting of actions that it can perform on its object state.

Definition 4.2 (action base) An action base, AB, is any finite collection of actions. 2
The above definition states what an action is, but allows the possibility that an action should si-

multaneously add and and delete some object. Classical AI systems like STRIPS also allow this to
happen in the syntax (e.g. in a STRIPS rule, an atom could occur in both the Add andDelete lists)
and handle potential problems of this sort by first doing deletions and then insertions. We mimic this
as well. Later, in Section 4.1, we will show that it is possible using a simple syntax to be introduced
in Section 4.1 to forbid execution of any action whose add and delete sets have an overlap.

A difference between our work and classical AI systems, is that in the latter, change is modeled
solely as the insertion and deletion of logical atoms from a state which is a set of logical atoms [82].
In the real world, however, states are usually instances of fairly complex data structures. Therefore,
in our case, changes affect components of objects in OS where S is the software code manipulated
by the agent in question. The following definition shows what it means to execute an action in a
given state.

Definition 4.3 ((�;
)-executability) Let�(~X) be an action, and letS = (TS ;FS) be an underlying
software code accessible to the agent. A ground instance �(~X)� of �(~X) is said to be executable
in stateOS , if and only if there exists a solution
 of Pre(�(~X))� w.r.t. OS . In this case, �(~X) is
said to be (�;
)-executable in state OS , and (�(~X); �;
) is a feasible execution triple for OS . By��(�(~X);OS) we denote the set of all pairs (�;
) such that (�(~X); �;
) is a feasible execution
triple in stateOS . 2

Intuitively, in �(~X), the substitution � causes all variables in ~X to be grounded. However, it is
entirely possible that the precondition of � has occurrences of other free variables not in ~X . Appro-
priate ground values for these variables are given by solutions of Pre(�(~X)�) with respect to the
current stateOS . These variables can be viewed as “hidden parameters” in the action specification,
whose value is of less interest for an action to be executed.

The following definition tells us what the result of (�;
)-execution is.

Definition 4.4 (action execution) Suppose (�(~X); �;
) is a feasible execution triple in state OS .
Then the result of executing �(~X) w.r.t. (�;
) is given by the stateapply((�(~X); �;
);OS) = ins(Oadd; del(Odel;OS));

15

where Oadd = O Sol(Add(�(~X)�)
) and Odel = O Sol(Del(�(~X)�)
); i.e., the state which
results if first all objects in solutions of call conditions fromDel(�(~X)�)
 onOS are removed, and
then all objects in solutions of call conditions from Add(�(~X)�)
 on OS are inserted. 2

We reiterate here that ins refers to the insertion routine associated with the agent whose actions are
being discussed above. The ins function may in turn call specific insertion routines associated with
each data structure manipulated by the agent in question.

Furthermore, observe that in the above definition, we do not pay attention to integrity constraints.
Possible violation of such constraints due to the execution of an action will be handled later in the
definition of the semantics of agent programs that we are going to develop, and will of course prevent
that integrity-violating actions from being executed on the current agent state.

While we have stated above what it means to execute a feasible execution triple on an agent stateOS , there remains the possibility that many different execution triples are feasible on a given state,
which may stem from different actions �(~X) and �(~X 0), or even from the same grounded action�(~X)�. Thus, in general, we have a set AS of feasible execution triples which should be executed.
It is natural to assume that AS is the set of all feasible execution triples. However, it is perfectly
imaginable that only a subset of all feasible execution triples should be executed. E.g., if only one
from many solutions
 is selected –in a well-defined way– such that (�(~); �;
) is feasible, for a
grounded action �(~X)�; we do not discuss this any further here.

Suppose then we wish to simultaneously execute a set of (not necessarily all) feasible execution
triples AS. There are many ways to define this. We present three possible definitions below, and
assess their merits and disadvantages.

Definition 4.5 (weakly-concurrent execution) SupposeAS is a set of feasible execution triples in
the agent stateOS . The weakly-concurrent execution of AS in OS , is defined to be the agent stateapply(AS;OS) = ins(Oadd; del(Odel;OS));
where Oadd = [(�(~X);�;
)2ASO Sol(Add(�(~X)�)
);Odel = [(�(~X);�;
)2ASO Sol(Del(�(~X)�)
):
For any set A of actions, the execution ofA onOS is the execution of the set f(�(~X); �;
) j �(~t) 2AS; �(~X)� = �(~t)� ground, (�;
) 2 ��(�(~X))g of all feasible execution triples stemming from
some grounded action in AS, and apply(A;OS) denotes the resulting state. 2

As the reader will note, this is a definition which does everything in parallel – it first does all dele-
tions and then all insertions. While weakly-concurrent executions work just fine when the set A of
actions involve no “conflicts”, they are problematic when the actions in A compete for resources.

16

Example 4.4 (Grid) Suppose we have a two-dimensional grid and an object is placed at location(5; 7) on the grid, and suppose two actions go-right and go-left are both possible. If we de-
fine go-right(X,Y) and go-left(X,Y) in the obvious way, then on the execution of both
left(5,7) and go right(5,7), the final result says that the object is at both locations (6; 7)

and (4; 7) which is clearly absurd! 2
Thus, before attempting to perform a weakly-concurrent execution of a set of actions, we must

ensure that the set of actions satisfy some consistency criteria, otherwise there is a danger of doing
something absurd.

The following definition, called sequential-concurrent execution, (or S-concurrent execution for
short) removes some, but not all of these problems, and in turn, introduces some new problem. In
effect, it says that a set of actions is S-concurrently executable iff there is some way of ordering the
actions so that they can be sequentially executed.

Definition 4.6 (sequential-concurrent execution) Suppose we have a setAS = f(�i(~Xi; �i;
i)) j1 � i � ng of feasible execution triples and an agent stateOS . Then,AS is said to beS-concurrently
executable in state OS , if and only if there exists a permutation � of AS and a sequence of statesO0S ; : : : ;OnS such that:� O0S = OS and� for all 1 � i � n, the action ��(i)(~X�(i)) is (��(i);
�(i))-executable in the state Oi�1S , andOiS = apply((~X�(i); ��(i);
�(i));Oi�1S).
In this case, AS is said to be �-executable, and OnS is the final state resulting from the executionAS[�].

A set A of actions is S-concurrently executable on the agent state OS , if the set f(�(~X); �;
) j�(~t) 2 AS; �(~X)� = �(~t)� ground, (�;
) 2 ��(�(~X))g is S-concurrently executable on OS . 2S-concurrent executions eliminate the problems of consistency that plague the weakly-concurrent
executions. For instance, in the go-right, go-left example above, if the two moves are made
one after the other, then the object ends up in one location, which is in this case (5,7) (i.e., the original
one). However, this also introduces two weaknesses:� First, we would like to deterministically predict the result of executing a set of actions concur-

rently. Weakly-concurrent executions allow such predictions, but S-concurrent ones do not.� Second, the problem of checking whether a set of feasible execution triples is S-concurrently
executable is NP-hard (see below), and the intractability shows up already in rather simple
settings.

The notion of full-concurrent execution (F -concurrent execution given below), removes the first
of these problems, but not the second. It removes the first problem by saying that a set of feasible
execution triples is F -concurrently executable iff each and every sequence of triples from this set is
serially executable and the results of each of these serial executions is identical.

17

Definition 4.7 (full-concurrent execution) Suppose we have a set AS = f(�i(~Xi; thetai;
i)) j1 � i � ng of feasible execution triples and an agent stateOS . Then,AS is said to beF -concurrently
executable in stateOS , if and only if the following holds:

1. For every permutation �, AS is �-executable.

2. For any two permutations �1; �2 of AS, the final states resulting from the executions AS[�1]
and AS[�2] are identical.

A set A of actions is F -concurrently executable on the agent state OS , if the set f(�(~X); �;
) j�(~t) 2 AS; �(~X)� = �(~t)� ground, (�;
) 2 ��(�(~X))g is F -concurrently executable onOS . 2
For instance, the go-right, go-left example from above is an F -concurrently executable

action set, since regardless in which order we execute the actions, we always end up in the same
location as moves on the grid commute. However, like S-concurrent execution, F -concurrent exe-
cution also suffers from intractability.

The following result specifies the complexity of weakly-concurrent executability, S-concurrent
executability, and F-concurrent executability of a set of feasible execution triples. In general, it
shows that only weakly-concurrent executability is tractable, while the other notions are intractable.

For deriving this result, we assume that we have a set of feasible execution triples AS to be exe-
cuted on a given stateOS , such that following operations are possible in polynomial time:

1. testing whether the grounded preconditionPre(�(~X))�
 for any triple (�(~X); �;
) 2 AS is
satisfied in an agent state;

2. determining all objects in solutions ofAdd(�(~X)�
) and inDel(�(~X)�
) on an agent state,
as well as insertion/deletion of objects from an agent state;

3. construction of any object that may be involved in the state evolving from execution of AS
on OS under any permutation �.

Such a setting applies e.g. in the case where the agent state is a collection of ground facts, which is
maintained under the domain closure axiom.

Theorem 4.1 Let AS be a given set of feasible execution triples, and letOS be a given object state.
Then, under the previous assumptions, deciding whether AS is� weakly-concurrently executable is polynomial;� S-concurrently executable is NP-complete; and� F -concurrently executable is co-NP-complete.

The polynomial time result for weakly-concurrent execution is immediate from the assumptions
that we made. The other results are established in Appendix A. In fact, NP-hardness (resp. coNP-
hardness) is present already in a very simple and relevant setting, in which the software package S
is a relational database, and the actions insert and delete tuples from tables, while the preconditions
of actions are simple conjunctive queries.

18

4.2 Action Constraints

As we have already seen in the preceding section, concurrent execution of multiple actions is of-
ten difficult. An action constraint is an explicit statement saying that a given set of actions is not
concurrently executable if certain conditions are met.

Definition 4.8 (action constraint) An action constraint AC has the syntactic form:f�1(~X1); : : : ; �k(~Xk)g - � (2)

where �1(~X1); : : : ; �k(~Xk) are action names, and � is a code call condition. 2
The above constraint says that if condition� is true, then the actions�1(~X1); : : : ; �k(~Xk) are not

concurrently executable.

Example 4.5 (Grid cont’d) Returning to our simple go-left and go-right actions on a grid,
we may have an action constraint of the form:fgo left(O1; X1; Y1); go right(O2; X2; Y2)g X1 � 1 = X2 + 1& Y1 = Y2:
This says that two objects cannot be simultaneously moved onto the same grid location. 2
Definition 4.9 (action constraint satisfaction) A set S of ground actions satisfies an action con-
straintAC as in (2) on a stateOS , denoted S;OS j= AC, if there is no legal assignment � of objects
in OS to the variables in AC such that �� is true and f�1(~X)�, . . . , �k(~X)�g � S holds (i.e., no
concurrent execution of actions excluded byAC is included in S). We say that S satisfies a set AC
of actions constraints on OS , denoted S;OS j= AC, if S;OS j= AC for every AC 2 AC. 2

Clearly, action constraint satisfaction is hereditary w.r.t. the set of actions involved, i.e., S;OS j=AC implies that S0;OS j= AC, for every S 0 � S.

The reader might notice that the action constraint in the previous example can also be simulated
by an integrity constraint which says that the agent state cannot allow two objects to simultaneously
occupy the same grid location. As we will see later in Section 5.5, various action constraints can be
simulated with the machinery already in place. In particular, it will turn out that action constraints
merely provide syntactic sugar for operations that can be executed within our existing framework.
Hence, we do not go into further detail on them for now.

4.3 Agent Programs: Syntax

So far, we have introduced the following important concepts:� Software Code Calls – this provides a single framework within which the interoperation of
diverse pieces of software may be accomplished;

19

� Software states – this describes exactly what data objects are being managed by a software
package at a given point in time;� Integrity Constraints – this specifies exactly which software states are “valid” or “legal”;� Action Base – this is a set of actions that an agent can physically execute (if the preconditions
of the action are satisfied by the software state);� Action Constraints – this specifies whether a certain set of actions is incompatible.

However, in general, an agent must have an associated “action” policy or action strategy. In certain
applications, an agent may be obliged to take certain actions when the agent’s state satisfies certain
conditions. For example, an agent monitoring a nuclear power plant may be obliged to execute a
shutdown action when some dangerous conditions are noticed. In other cases, an agent may be
explicitly forbidden to take certain actions – for instance, agents may be forbidden from satisfying
requests for information on US advanced air fighters from Libyan nationals.

In this section, we introduce the concept of Agent Programs – programs that specify what an agent
must do (in a given state), what an agent must not do, and what an agent is permitted to do, and
how the agent can actually select a set of actions to perform that honor its permissions, obligations,
and restrictions. Agent Programs are declarative in nature, and have a rich semantics that will be
discussed in Section 5.

Definition 4.10 (action status atom) Suppose �(~t) is an action atom, where ~t is a vector of terms
(variables or objects) matching the type schema of�. Then, the formulasP(�(~t)),F(�(~t)),O(�(~t)),W(�(~t)), and Do(�(~t)) are action status atoms. The set AS = fP;F;O;W;Dog is called the
action status set. 2

We will often abuse notation and omit parentheses in action status atoms, writing P�(~t) instead
of P(�(~t)), and so on.

An action status atom has the following intuitive meaning (a more detailed description of the pre-
cise reading of these atoms will be provided later in Section 5.2):� P� means that the agent is permitted to take action �;� F� means that the agent is forbidden from taking �;� O� means that the agent is obliged to take action �;� W� means that obligation to take action � is waived; and,� Do� means that the agent does take action �.

Notice that the operators P;F;O; and W have been extensively studied in the area of deontic
logic [79, 3]. Moreover, the operator Do is in the spirit of the “praxiological” operator EaA [62],
which informally means that “agent a sees to it that A is the case” [79, p.292].

We borrow from the field of deontic logic the syntax of deontic statements; however we do not lay
down the semantics of action programs on the basis of one of the numerous deontic logical systems

20

(e.g., Standard Deontic Logic (SDL), which amounts to the modal logic KD [3, 79]). We discuss
the relationship between our approach and deontic logic in detail in Section 11.

Another reason for not building upon existing deontic logic systems is that actions in deontic logic
typically do not have effects – hence, the fact that a set of actions may all be individually permitted,
but mutually impossible to be concurrently executed is not addressed in deontic logic.

Definition 4.11 (action rule) An action rule (rule, for short) is a clause r of the formA L1; : : : ; Ln (3)

where A is an action status atom, and each of L1; : : : ; Ln is either an action status atom, or a code
call atom, each of which may be preceded by a negation sign (:). 2

We require that every root variable which occurs in the headA of a rule r and every root- or path-
variable occurring in a negative atom also occurs in some positive atom in the body (this is the well-
known safety requirement on rules [102]).

A rule r is to be understood as being implicitly universally quantified over the variables in it. A
rule is called positive, if no negation sign occurs in front of an action status atom in its body.

Definition 4.12 (agent program) An agent programP is a finite collection of rules. An agent pro-
gram P is positive, if all its rules are positive. 2
Example 4.6 (Simple Tax Audit Agent) Here are some examples of a simple agent program P ,
that may be used by a tax agency. As described in Section 2, this agent uses two relations – one
called returns that contains a relational representation of the returns filed by tax-payers, and an-
other relation called employer declarations which specifies the payments to various indi-
viduals reported by employers. The agent monitors discrepancies between the amounts reported by
individual taxpayers, and amounts reported by all employers who have made payments to that per-
son. If the amount reported by the individual is less than 70% of the employer-reported income,
then triggering an audit program is mandatory. If the amount reported by the individual is less than
80% of the employer-reported income, then triggering an audit program is permitted. However, if
the amount reported by the individual is over 80% then it is forbidden to run the audit program. This
is captured by the following agent program:

O(run audit(Person)) in(R,taxdb:select(returns,name,=,Person)) ,
is(AllRecs,taxdb:select(employer declarations,name,=,person)) ,
is(TotalInc,taxdb:sum(AllRecs,amount)) ,R:amount � 0:7� TotalInc.

P(run audit(Person)) in(R,taxdb:select(returns,name,=,Person)) ,
is(AllRecs,taxdb:select(employer declarations,name,=,person)) ,
is(TotalInc,taxdb:sum(AllRecs,amount)) ,R:amount � 0:8� TotalInc.

F(run audit(Person)) in(R,taxdb:select(returns,name,=,Person)) ,
is(AllRecs,taxdb:select(employer declarations,name,=,person)) ,
is(TotalInc,taxdb:sum(AllRecs,amount)) ,

21

R:amount � 0:8� TotalInc.

Do(run audit(Person)) P(run audit(Person)) ,
in(R,taxdb:select(returns,name,=,Person)) ,
is(AllRecs,taxdb:select(employer declarations,name,=,person)) ,
is(TotalInc,taxdb:sum(AllRecs,amount)) ,TotalInc � 200; 000.

O(send notification(Person)) Do(run audit(Person)).

The second last rule says that audits are run on all people making over 200K (according to em-
ployer filed returns) on whom an audit run is permitted. The last rule says that if the agent decides
to run an audit program on the person’s tax return, then the agent is obliged to notify the person that
such an audit has been run. The second last rule causes a change in object state – something that
classical deontism does not do as it reasons about actions that cause such state changes, but does not
trigger them directly. 2

Before we complete our discussion of the syntax of agent programs, we add some useful notation.
For any rule r of the form (3), we denote byH(r) the atom in the head of r, and byB(r) the collection
of literals in the body; by B�(r) we denote the negative literals among them, and by B+(r) the
positive ones. Moreover, by::B�(r)we denote the atoms of the negative literals inB�(r). Finally,
the index as (resp., cc) for any of these sets denotes restriction to the literals involving action status
atoms (resp., code call atoms).

Example 4.7 For rule r Do� P�;:Do
; p(X;Y);:s(Y);
we have H(r) = Do�, B(r) = B+(r) [B�(r) where B+(r) = fP�; p(X; Y)g, B�(r) =f:Do
;:s(Y)g. Furthermore,Bas = B+as[B�as, whereB+as = fP�g,B�as = f:Do
g andBcc =B+cc [B�cc, where B+cc = fp(X; Y)g and B�cc = f:s(Y)g. Likewise, ::B�(r) = ::B�as [::B�cc
where ::B�as = fDo
g and ::B�cc = fs(Y)g. 2

Having defined the syntax of agent programs, we are now ready to turn to developing a formal
semantics for agent programs.

5 Semantics for Agent Programs

If an agent uses an action program P , the question that the agent must answer, over and over again
is: What is the set of all action status atoms of the form Do� that are true with respect to P , the
current state,OS , the underlying setAC of action constraints, and the set IC of underlying integrity
constraints on agent states? This defines the set of actions that the agent must take. In this section,
we will provide a series of successively more refined semantics for action programs that answers this
question.

In Section 5.1, we will introduce the concept of a feasible status set. Feasible status sets do not, by
themselves constitute a semantics for agent programs, but they form the basic construct upon which
all our semantics will be built.

In Section 5.2, we will define the semantics of Agent Programs to be those feasible status sets that
are deemed to satisfy certain rationality requirements. In Subsection 5.3, we add a further require-
ment – the semantics of an agent programP is characterized by a subset of rational status sets – those

22

������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������

����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������

feasible SS

complete SS

rational SS

F-preferential SS

P-preferential SS

weak rational SS

reasonable SS

Figure 3: Relationship between different Status Sets (SS)

that satisfy an additional reasonable-ness condition. This is further refined in Section 5.6.1, where
two alternative policies for selecting the “right” reasonable status sets are provided. As feasible sta-
tus sets may allow certain actions to be neither permitted nor forbidden, we introduce the notation of
a complete status set in Section 5.6.2. Two policies are allowed – one of these policies is akin to the
closed world assumption in databases [85] (all actions that are not explicitly permitted are forbidden)
and the other is akin to the open world assumption (all actions that are not explicitly forbidden are
allowed).

All the preceding semantics describe ways of syntactically selecting one or more feasible status
sets as somehow being the “right” feasible status sets. For example, rational status sets are all feasible
status sets, but not vice-versa. Reasonable status sets are also feasible status sets (and in fact rational
status sets) but not vice-versa. The same applies to the other types of status sets. In Section 5.7, we
use numerical cost measures to select status sets. Given a semantics Sem where Sem 2 f Feasible,
Rational, Reasonable, F-preferential, P-preferential, Weak Rationalg, Section 5.7 shows how to as-
sociate a “cost” with each Sem-status set. An optimal Sem-status set is one which minimizes cost.
A status set’s cost may be defined in terms of (1) the cost of performing the Do actions in that sta-
tus set, and/or (2) the “badness” value of the state that results, and/or (3) a mix of the previous two
criteria. Section 5.7 will define these expressions formally.

Figure 3 captures the relationship between these different semantic structures. The definition ofSem-status sets is layered on top of the definitions of the other semantics – hence, to avoid clutter,
we do not include them in this figure.

23

5.1 Feasible status sets

In this section, we will introduce the important concept of a feasible status set. While feasible status
sets do not constitute a semantics for agent programs, every semantics we define for Agent Programs
will build upon this basic definition.

Intuitively, a feasible status set consists of assertions about the status of actions, such that these
assertions are compatible with (but are not necessarily forced to be true by) the rules of the agent
program and the underlying action and integrity constraints.

In what follows, we assume the existence of a body of software code S = (TS ;FS), an action
baseAB, and action and integrity constraintsAC and IC, respectively, in the background. The first
concept we introduce are status sets.

Definition 5.1 (status set) A status set is any set S of ground action status atoms over S. For any
operator Op 2 fP;Do;F;O;Wg, we denote by Op(S) the set Op(S) = f� j Op(�) 2 Sg. 2

Informally, a status set S represents information about the status of ground actions. If some atomOp(�) occurs in S, then this means that the statusOp is true for �. For example, Do(�);F(�) 2 S
means that action�will be taken by the agent, while action� is forbidden. Of course, not every status
set is meaningful. For example, if both F(�) and P(�) are in S, then S is intuitively inconsistent,
since � can not be simultaneously permitted and forbidden. In order to characterize the meaningful
status sets, we introduce the concepts of deontic and action consistency.

Definition 5.2 (deontic and action consistency) A status setS is called deontically consistent, if it
satisfies the following rules for any ground action �:� If O� 2 S, then W� =2 S� If P� 2 S, then F� =2 S� If P� 2 S, thenOS j= Pre(�) (i.e., � is executable in the stateOS).

A status set S is called action consistent, if S;OS j= AC holds. 2
Besides consistency, we also wish that presence of particular atoms in S entails the presence of

other atoms in S. For example, if O� is in S, then we expect thatP� is also in S, and if O� is in S,
then we would like to have Do� in S. This is captured by the concept of deontic and action closure.

Definition 5.3 (deontic and action closure) The deontic closure of a status S, denotedDCl(S), is
the closure of S under the rule

If O� 2 S, then P� 2 S
where � is any ground action. We say that S is deontically closed, if S = DCl(S) holds.

The action closure of a status set S, denotedACl(S), is the closure of S under the rules

If O� 2 S, then Do� 2 S
24

If Do� 2 S, then P� 2 S
where � is any ground action. We say that a status S is action-closed, if S = ACl(S) holds. 2

The reader will easily notice that status sets that are action-closed are also deontically closed, i.e.� ACl(S) = S impliesDCl(S) = S� DCl(S)� ACl(S), for all S.

A status set S which is consistent and closed is certainly a meaningful assignment of a status to each
ground action. Notice that we may have ground actions� that do not occur anywhere within a status
set – this means that no commitment about the status of � has been made. The following definition
specifies how we may “close” up a status set under the rules expressed by an agent program P .

Definition 5.4 (Operator AppP;OS(S)) Suppose P is an agent program, and OS is an agent state.
Then, AppP;OS(S) is defined to be the set of all ground action status atoms A such that there exists
a rule in P having a ground instance of the form r : A L1; : : : ; Ln such that

1. B+as(r) � S and ::B�as(r) \ S = ;, and

2. every code call � 2 B+cc(r) succeeds in OS , and

3. every code call � 2 ::B�cc(r) does not succeed in OS , and

4. for every atomOp(�) 2 B+(r)[fAg such thatOp 2 fP;O;Dog, the action� is executable
in stateOS . 2

Note that part (4) of the above definition only applies to the “positive” modes P;O;Do. It does
not apply to atoms of the form F� as such actions are not executed, nor does it apply to atoms of the
form W� because such actions are executed only if Do� is true.

Our approach is to base the semantics of agent programs on consistent and closed status sets. How-
ever, we have to take into account the rules of the program as well as integrity constraints. This leads
us to the notion of a feasible status set.

Definition 5.5 (feasible status set) Let P be an agent program and let OS be an agent state. Then,
a status set S is a feasible status set for P on OS , if the following conditions hold:(S1) (closure under the program rules) AppP;OS(S) � S;(S2) (deontic and action consistency) S is deontically and action consistent;(S3) (deontic and action closure) S is action closed and deontically closed;(S4) (state consistency) O0S j= IC, where O0S = apply(Do(S);OS) is the state which results

after taking all actions in Do(S) on the stateOS . 2
25

Notice that condition (S2) is hereditary, i.e., if a status setS satisfies (S2), then any subsetS0 � S
satisfies (S2) as well.

In general, there are action programs that have zero, one or several feasible status sets.

Example 5.1 (Tax Audit Agent Revisited) Let us return to the Tax Example (cf. Example 4.6). Let
us consider the case where the tax database system, taxdb, contains the following relations:

Relation returns Relation employer declarations

Name Amount
John Smith 50,000
Jane Shady 78,000
Denis Rumble 35,000: : : : : : Name Company Amount

John Smith ABC Inc. 46,000
John Smith DEF Inc. 35,000
Jane Shady DEF Inc. 100,000
Denis Rumble ABC Inc. 34,000: : : : : : : : :

It is easy to see that of these individuals, John Smith has declared under 70% of his income (as
reported by ABC Inc. and DEF Inc.). By the rules, it is obligatory to audit him, i.e. if we take P
to be the set of rules in Example 4.6, then Orun audit(John Smith) is implied by the program. In
the same vein, Prun audit(Jane Shady) is true. Last but not least, Frun audit(Denis Rumble)
is true.

If we assume there are no integrity constraints and no action constraints, then this leads to the
following two possible feasible status sets:FSS1 = f Orun audit(John Smith);Dorun audit(John Smith);Prun audit(John Smith);Frun audit(Denis Rumble);Prun audit(Jane Shady)g;FSS2 = f Orun audit(John Smith);Dorun audit(John Smith);Prun audit(John Smith);Frun audit(Denis Rumble);Prun audit(Jane Shady);Dorun audit(Jane Shady) g:
(Other feasible status sets exist, though.) The two feasible status sets differ on whether Jane Shady
is actually audited or not. 2
Example 5.2 The program P containing the rulesP� F�
clearly does not have any feasible status set. 2

The following are immediate consequences of the definition of a feasible status set, which con-
firm that it appropriately captures a “possible” set of actions dictated by an agent program that is
consistent with the obligations and restrictions on the agent program.

26

Proposition 5.1 Let S be a feasible status set. Then,

If Do(�) 2 S, thenOS j= pre(�);
If P� =2 S, then Do(�) =2 S;

If O� 2 S, then OS j= Pre(�);
If O� 2 S, then F� =2 S;

The reader may be tempted to believe that Condition 4. in Definition 5.4 is redundant. However, as
the following agent program P amply demonstrates, this is not the case.

Example 5.3 Consider the agent program P given by:P�
Assume that � is not executable in state OS . Then, under the current definition, no feasible status
set S contains P�; e.g., S = ; is a feasible status set. If we drop condition 4 from Definition 5.4,
then no feasible status set S exists, as P� must be contained in every such S, which then violates
deontic consistency. 2
5.2 Rational status sets

Intuitively, a feasible status set describes a set of status atoms that are compatible with the state of the
software, the obligations and restrictions imposed on the agent by its associated Agent Program, and
the deontic consistency requirements. Nevertheless, we note that feasible status sets may include
Doing actions that are not strictly necessary.

For example, let us return to our tax audit scenario. Our system may have the following rules.

Example 5.4 (Expanded Tax Audit Agent) For some reason, the tax agent has decided that it is
obliged to sue an unfortunate individual called Jim Black. However, there is a rule that says that if
it has failed to previously interview the person and failed to previously issue a notice to the person,
then it is forbidden to sue to the taxpayer. This can be represented as the following set of rules. These
rules may be added to the Agent Program described in Example 4.6.Osue(Jim Black; T + 1) :Fsue(Person; T) :Doissue notice(P; T1) ; T1 < T ;:Dointerview(P; T2) ; T2 < T:
The action sue(Person; T) has no preconditions and no effects on the state of the system (except
to send a message to another agent that initiates the lawsuit). This agent program has the following
feasible status sets. (We assume that the only time points we are interested in are now and (now+1)
– furthermore, for notational simplicity, we do not explicitly list implied action status atoms of them

27

form W� and P�).FSS1 = fOsue(Jim Black; now+ 1);Dosue(Jim Black; now+ 1);Doissue notice(P; now); : : :g:FSS2 = fOsue(Jim Black; now+ 1);Dosue(Jim Black; now+ 1);Dointerview(Jim Black; now); : : :g:FSS3 = fOsue(Jim Black; now+ 1);Dosue(Jim Black; now+ 1);Dointerview(Jim Black; now);Doissue notice(Jim Black; now); : : :g:
Here, we only show O and Do atoms in the feasible status sets; each status may be completed by
adding appropriate further atoms involving other modalities.

The first status set says that to sue Jim Black at time (now+ 1), the tax agent must issue a notice
to him now. The second status set says that to sue Jim Black at time (now + 1), the tax agent must
interview him now. The last status set says that we should both interview him and issue a notice to
him now. (The reader can easily see how this example may be expanded to accommodate a larger
time window, allowing Jim Black some extra time to respond, etc.)

If one examines FSS3, this is a perfectly valid feasible status set. However, it takes one action
that is not strictly necessary. To meet the obligation of suing Jim Black at time (now + 1), either
he should be issued a notice now, or should be interviewed now – there is no need for both. Surely,
then, FSS3 represents a case where the agent is doing “too much” ? 2
The notion of a rational status set is postulated to accommodate this kind of reasoning. It is based
on the principle that each action which is executed should be sufficiently “grounded” or “justified”
by the agent program. That is, there should be evidence from the rules of the agent program that a
certain action must be executed. For example, it seems unacceptable that an action � is executed, if� does not occur in any rule of the agent program at all.

This way, we also have to make sure that execution of an action must not be driven by the need to
preserve the consistency of the agent’s state. Rather, the integrity constraints should serve to prevent
executions which appear to be rational if no integrity constraints were present. This motivates the
following formal notion of groundedness.

Definition 5.6 (groundedness; rational status set) A status set S is grounded, if there exists no
status set S0 different from S such that S0 � S and S0 satisfies conditions (S1)–(S3) of a feasi-
ble status set.

A status set S is a rational status set, if S is a feasible status set and S is grounded. 2
Notice that if S is a feasible status set, then every S0 � S satisfies the condition (S2) of feasibility.

Therefore, the requirement of (S2) for S0 in the definition of groundedness is redundant. However,
it seems more natural to have this condition included in the definition of groundedness. Moreover,
if we did not have hereditary action consistency, then inclusion of action consistency would be in-
dispensable.

Example 5.5 (Tax Example Continued) The program P of Example 5.4 has two rational status
sets: FSS1 and FSS2. In this case, as no integrity constraints IC are specified, the rational sta-
tus sets happen to be the minimal feasible status sets with respect to set inclusion. 2

28

Example 5.6 (Simple Driving Example) Suppose we want an agent which selects – in a simpli-
fied setting – the driving lane for a car. The action base contains the two actions go right and
drive(Lane). The precondition of the former is empty, while the precondition of the latter isfree(Lane). The agent program contains the following rules:O(go right) O(drive(right lane)) Do(go right)F(drive(Lane)) :free(Lane)Do(drive(left lane)) F(drive(right lane))
Here, we suppose that there are two lanes, a left lane and a right lane. The first rule says that we must
go on the right side, and the second that we must drive on the right lane if we actually go on the right
side. The third rule tells that it is forbidden to use a lane if it is not free, i.e., it is blocked, while the
last rules says that we go on the left lane if we can not use the right lane.

Depending on the status of the lanes (free or blocked), the program has different rational status
sets.

In each of the four possible cases, the program has a unique rational status set. All of them con-
tain O(go right), Do(go right), and P(go right). If the right lane is free, then it containsDo(drive(right lane)), and if the right lane is blocked but the left one is free, then it containsDo(drive(left lane)). Only in the case where both lanes are blocked, no Do-atom with action
drive is in the rational status set. This is perfectly as desired. 2

Observe that the definition of groundedness does not include condition (S4) of a feasible status
set. A moment of reflection will show that omitting this condition is indeed appropriate. Recall that
the integrity constraints must be maintained when the current agent state is changed into a new agent
state. If we were to include the condition (S4) in groundedness, it may happen that the agent is forced
to execute some actions which the program does not mention, just in order to maintain the integrity
constraints. The following example illustrates this point.

Example 5.7 Suppose that in the Tax Audit Agent example, the tableemployee declarations
has attached the integrity constraint IC which says that for each person P and company C, at most
one record for this person and that company is filed. Furthermore, assume that actionsadd ed(P;C;A)
and del ed(P;C) for adding and deleting a record from employee declarations, respec-
tively, are available, and an agent program has the simple rule:Doadd ed(JohnSmith;ABC Inc:; 30; 000) :
However, in the state reported in Example 5.1 there is already a record (John Smith,ABC Inc.,46,000)
in the table, and thus adding the record (John Smith,ABC Inc.,30,000) violates the integrity con-
straint IC. Therefore,S1 = fDoadd ed(John Smith,ABC Inc.,30,000);Padd ed(John Smith,ABC Inc.,30,000)g
is not a feasible status set. However, the status setS2 = fDoadd ed(JohnSmith;ABC Inc:; 30; 000);Padd ed(John Smith,ABC Inc.,30,000);Dodel ed(John Smith,ABC Inc.,46,000);Pdel ed(John Smith,ABC Inc.,46,000)g

29

is a feasible status set, and it is easily seen that no smaller feasible status set S3 exists such that S3 �S2. The implicit execution of del ed(John Smith,ABC Inc.,46,000) may be unwanted, however,
and thus S2 is intuitively not acceptable as the “right” set of actions to take by the agent. This is
expressed by the fact that the smaller status set S1 � S2 is sound with the rules of the program, and
no extra actions for maintaining the integrity constraints should be taken by the agent.

Observe that automatic maintenance of integrity constraints is an ongoingresearch issues in databases,
and a simple, declarative solution to this problem is by no means clear [51]. Therefore, we do not
delve into the intricated and complex more general problem here.

The fact that the program in Example 5.6 always had a unique rational status set in each of the
possible scenarios, was not accidental. In fact, as will be shown below, positive programs enjoy the
benign property of having a unique rational status sets, if any rational status set exists. Observe that
this property does not hold for non-positive agent programs in general.

It is possible to give a characterization of the unique rational status set in terms of a fixpoint opera-
tor, akin to the least fixpoint of logic programs [70, 2]. For that, we define for every positive programP and agent stateOS an operator TP;OS which maps a status set S to another status set.

Definition 5.7 (TP;OS Operator) Suppose P is an agent program andOS an agent state. Then, for
any status set S,TP;OS(S) = AppP;OS(S) [DCl(S)[ACl(S): 2

Note that as DCl(S) � ACl(S), we may equivalently write this asTP;OS(S) = AppP;OS(S) [ACl(S):
The following property of feasible status sets is easily seen.

Lemma 5.2 Let P be an agent program, letOS be any agent state, and let S be any status set. If S
satisfies (S1) and (S3) of feasibility, then S is pre-fixpoint of TP;OS , i.e., TP;OS(S) � S.

Clearly, if the program P is positive, then TP;OS is a monotone operator, i.e., S � S 0 impliesTP;OS(S) � TP;OS(S 0), and hence, it has a least fixpoint lfp(TP;OS). Moreover, since TP;OS is in
fact continuous, i.e., TP;OS(S1i=0 S0) = S1i=0 TP;OS(Si) for any chain S0 � S1 � S2 � � � � of
status sets, the least fixpoint is given bylfp(TP;OS) = 1[i=0T iP;OS ;
where T 0P;OS = ; and T i+1P;OS = TP;OS(T iP;OS), for all i � 0 (see e.g. [70, 2]). We then have the
following result.

Theorem 5.3 LetP be a positive agent program, and letOS be an agent state. Then, S is a rational
status set of P on OS , if and only if S = lfp(TP;OS) and S is a feasible status set.

30

Proof. ()) Suppose S = lfp(TP;OS) a rational status set of P on OS . Then, S is feasible by
definition of rational status set. By Lemma 5.2, S is a pre-fixpoint of TP;OS . Since TP;OS is mono-
tone, it has by the Knaster-Tarski Theorem a least pre-fixpoint, which coincides with lfp(TP;OS) (cf.
[2, 70]). Thus, lfp(TP;OS) � S. Clearly, lfp(TP;OS) satisfies (S1) and (S3); moreover, lfp(TP;OS)
satisfies (S2), as S satisfies (S2) and this property is hereditary. By the definition of rational status
set, it follows lfp(TP;OS) = S.(() Suppose S = lfp(TP;OS) is a feasible status set. Since every status set S0 which satisfies(S1)–(S3) is a pre-fixpoint ofTP;OS and lfp(TP;OS) is the least prefix point,S0 � S impliesS = S 0.
It follows that S is rational.

Notice that in case of a positive program, lfp(TP;OS) always satisfies the conditions (S1) and (S3)
of a feasible status set (i.e., all closure conditions), and thus is a rational status set if it satisfies (S2)
and (S4), i.e., the consistency criteria. The uniqueness of the rational status set is immediate from
the previous theorem.

Corollary 5.4 LetP be a positive agent program. Then, on every agent stateOS , the rational status
set of P (if one exists) is unique, i.e., if S; S0 are rational status sets for P on OS , then S = S 0.

As shown by Example 5.4, Corollary 5.4 is no longer true in the presence of negated action status
atoms. We postpone the discussion of the existence of a unique rational status set at this point, since
we will introduce a stronger concept than rational status sets below for which this discussion seems
more appropriate. Nonetheless, we note the following property on the existence of a (not necessarily
unique) rational status set.

Proposition 5.5 Let P be an agent program. If IC = ;, then P has a rational status set if and only
if P has a feasible status set.

Moreover, we remark at this point that the unique rational status set of a positive program (if it
exists) can be computed in polynomial time, if we adopt reasonable underlying assumptions (see
Section 7.1).

5.2.1 Reading of rational status sets

We are now ready to return to the question “Exactly how should we read the atomsOp(�) forOp 2fP;F;W;O;Dog appearing in a rational status set ?” In Section 4.3, we had promised a discus-
sion of this issue. It appears that an interpretation:Op(�) � “It is the case that � is Op�,”
where Op� is the proper verb corresponding to operator Op (forbidden, permitted, etc), is not the
one which is expressed inherently by rational status sets. Rather, a status atom in a rational status set
should be more appropriately interpreted as follows:Op(�) � “It is derivable that � should be Op�.”
where “derivable” – without giving a precise definition here – means thatOp(�) is obtained from the
rules of the agent program and the deontic axioms, under reasonable assumptions about the status

31

of actions; the groundedness property of the rational status set ensures that the adopted assumptions
are as conservative as possible.

Furthermore, a literal :Op(�) in a program should be interpreted as::Op(�) � “It is not derivable that � should be Op�.”
It is important to emphasize that there is no reason to view a rational status set as an ideally ratio-

nal agent’s three-valued model of a two-valued reality, in which each action is either forbidden or
permitted. For example, the agent programP� F� P�F� F�
has a unique rational status set, namely S = fP�g. A possible objection against this rational status
set (which arises naturally from similar arguments in logic programming with incomplete informa-
tion) is the following.

1. � is either forbidden or permitted.

2. In either of these two cases, � is forbidden.

3. Therefore, the rational status set S = fP�g is “wrong.”

“Complete” status sets, defined in Section 5.6 remedy this problem (at a cost, as we shall see later
when complexity issues are discussed).

This brings us back to our interpretation of Op�. The fallacy in the above argument is the im-
plicit equivalence assumed to hold between the statement “� is either forbidden or permitted” and
the statement P� _ F�. The latter statement is read “It is either derivable that � is permitted, or it
is derivable that � is forbidden” which is certainly very different from the former statement.

In addition, we believe that deontic logic is different from the setting of reasoning with incomplete
information because the true state of affairs need not be one in which the status of every particular
action is decided. In fact, the status may be open – and it may even be impossible to refine it without
arriving at inconsistency. For example, this applies to the legal domain, which is one of the most
fertile application areas of deontic logic.

5.3 Reasonable status sets

A more serious attack against rational status sets, stemming from the authors’ background in non-
monotonic logic programming is that for agent programs with negation, the semantics of rational
status sets allows logical contraposition of the program rules. For example, consider the following
program: Do(�) :Do(�):
This program has two rational status sets: S1 = fDo(�);P(�)g, and S2 = fDo(�);P(�)g. The
second rational status set is obtained by applying the contrapositive of the rule:Do(�) :Do(�)

32

However, the second rational set seems less intuitive than the first as there is no explicit rule in the
above program that justifies the derivation of this Do(�).

This observation leads us to the following remarks. First, in the area of logic programming and
knowledge representation, the meaning of negation in rules has been extensively discussed and there
is broad consensus in that area that contraposition is a proof principle which should not be applied:
rather, derivation should be constructive from rules. These observations led to the well known stable
model semantics for logic programs due to Gelfond and Lifschitz [40] which in turn was shown to
have strong equivalences with the classical nonmonotonic reasoning paradigms such as default logic
[86] and auto-epistemic logic[80] (see [41, 78]), as well as numerical reasoning paradigms such as
linear programming and integer programming [13, 14].

Second, the presence of derivation by contraposition may have a detrimental effect on the com-
plexity of programs, since it inherently simulates disjunction. Therefore, it is advisable to have a
mechanism which cuts down possible rational status sets in an effective and appealing way, so that
negation can be used without introducing high computational cost.

For these reasons, we introduce the concept of a reasonable status set. The reader should note that
if he really does want to use contraposition, then he should choose the rational status set approach,
rather than the reasonable status set approach.

Definition 5.8 (reasonable status set) Let P be an agent program, letOS be an agent state, and letS be a status set.

1. If P is a positive agent program, then S is a reasonable status set for P on OS , if and only ifS is a rational status set for P on OS .

2. The reduct of P w.r.t. S and OS , denoted by redS(P ;OS), is the program which is obtained
from the ground instances of the rules in P over OS as follows.

(a) First, remove every rule r such thatB�as(r) \ S 6= ;;
(b) Remove all atoms in B�as(r) from the remaining rules.

Then S is a reasonable status set for P w.r.t.OS , if it is a reasonable status set of the programredS(P ;OS) with respect to OS . 2
Let us quickly revisit our Tax Audit Agent scenario to see why reasonable status sets reflect an

improvement on rational status sets.

Example 5.8 (Tax Audit Agent Example, Revisited) Suppose we reconsider the tax audit agent
example, as described in Examples 4.6 and 5.1. However, we merely consider the two rules listed
below. Fsend refund(Person) Dorun audit(Person);:in(Person; taxdb : refund authorized()):Dosend refund(Person) :Fsend refund(Person);in(Person; taxdb : refund authorized()):
The first rule above says that sending a refund to an audited person is forbidden unless the refund has
been explicitly authorized. One may think of a situation where all audit results are sent to a human

33

being who examines the audit result and determines whether to authorize a refund or not. In the
former case, he explicitly updates a list of people to whom refunds may be sent - this list of people
is retrieved by the refund authorized() call. The second rule says that we may send a refund
to anyone who is not explicitly forbidden from receiving a refund. Here, the preconditions of the
actions send refund and run audit are assumed to be void for the sake of simplicity.

Rational Status Sets: Consider now the case of an individual, John Doe, who has been audited, and
whose refund has been authorized by a human being. In this case, the precondition of the first rule is
not true. It is important to note that the reduct of this program does not affect the first rule, because
the negation (in the body of the first rule) is in front of a code call and not in front of an action status
atom.

Now consider the second rule – we have two rational status sets – one in which John Doe’s refund
is sent, while in the other, it is forbidden. However, the latter is clearly incorrect. The reason for this
is because in rational status sets, the second rule is treated as equivalent to its converse:Fsend refund(Person) :Dosend refund(Person);in(Person; taxdb : refund authorized()):
Reasonable Status Sets: Now consider the sets S1 = fFsend refund(John Doe)g and S2 =fDosend refund(John Doe)g. Assume that the only individual we are interested in for our pro-
gram P is John Doe. Consider S2. The reduct of P w.r.t. S2 consists of the rules:Fsend refund(John Doe)) Dorun audit(John Doe));:in(John Doe); taxdb : refund authorized()):Dosend refund(John Doe)) in(John Doe); taxdb : refund authorized()):
It is easy to see that the reduct has a unique rational status set, viz. S2 itself.

Now considerS1. The reduct ofP w.r.t. S1 consists of just the first rule above, from which we can-
not derive Fsend refund(John Doe)) because the body of that rule is not true w.r.t. the agent state.
Thus, in contrast to the rational status set semantics, the reasonable status set semantics eliminates
this unintuitive rational status set, sending John Doe his (well deserved) refund check. 2
A more simplistic example is presented below.

Example 5.9 For the program P:Do� :Do�;
the reduct of P w.r.t. S = fDo�;P�g on agent stateOS is the programDo� :
Clearly, S is the unique reasonable status set of redS(P ;OS), and hence S is a reasonable status
set of P . 2

34

The use of reasonable status sets has also some benefits with respect to knowledge representation.
For example, the ruleDo� :F� (4)

intuitively expresses that action � is executed by default, unless it is explicitly forbidden (provided,
of course, that its precondition succeeds). This default representation is possible because under the
reasonable status set approach, the rule itself can not be used to derive F�, which is inappropriate
for a default rule.

This benefit does not accrue when using rational status sets because the single rule has two rational
status sets: S1 = fDo(�);P�g and S2 = fF�g. If we adopt reasonable status sets, however, then
onlyS1 remains and � is executed. If rational status sets are used, then the decision about whether �
is executed depends on the choice between S1 and S2. (Notice that if the agent would execute those
actions � such that Do(�) appears in all rational status sets, then no action is taken here. However,
such an approach is not meaningful in general, and will lead to conflicts with integrity constraints.)

The definition of reasonable status sets does not introduce a completely orthogonal type of status
set. Rather, it prunes among the rational status sets. This is shown by the following property.

Proposition 5.6 Let P be an agent program andOS an agent state. Then, every reasonable status
set of P on OS is a rational status set of P on OS .

Proof. In order to show that a reasonable status set S of P is a rational status of P , we have to
verify (1) that S is a feasible status set and (2) that S is grounded.

Since S is a reasonable status set of P , it is a rational status set of P 0 = redS(P ;OS), i.e., a
feasible and grounded status set of P 0. Since the conditions (S2)–(S4) of the definition of feasible
status set depend only onS andOS but not on the program, this means that for showing (1) it remains
to check that (S1) (closure under the program rules) is satisfied.

Let thus r be a ground instance of a rule from P . Suppose the bodyB(r) of r satisfies the condi-
tions 1.–4. of (S1). Then, by the definition of redS(P ;OS), we have that the reduct of the rule r,
obtained by removing all literals ofB�as(r) from the body, is in P 0. Since S is closed under the rules
of P 0, we have H(r) 2 S. Thus, S is closed under the rules of P , and hence (S1) is satisfied. As a
consequence, (1) holds.

For (2), we suppose S is not grounded, i.e., that some smaller S 0 � S satisfies (S1)–(S3) for P ,
and derive a contradiction. If S0 satisfies (S1) for P , then S0 satisfies (S1) for P 0. For, if r is a rule
from P 0 such that 1.–4. of (S1) hold, then there is a ground rule r0 of P such that r is obtained fromr0 in the construction of redS(P ;OS) and, as easily seen, 1.–4. of (S1) hold. Since S 0 satisfies (S1)
for P , we haveH(r) 2 S. It follows thatS 0 satisfies (S1) forP 0. Furthermore, since (S2) and (S3)
do no depend on the program, also (S2) and (S3) are satisfied for S 0 w.r.t. P 0. This means that S is
not a rational status set of P 0, which is the desired contradiction.

Thus, (1) and (2) hold, which proves the result.

In a follow-up paper [35], we are developing implementation techniques for agent programs that
implement a syntactically restricted class of agent programs called regular agent programs that are
guaranteed to have at least one reasonable status set. Existence of reasonable status sets cannot al-
ways be guaranteed because (as we have seen), some programs may have no feasible status sets.

35

5.4 Violating obligations: weak rational status sets

So far, we have adopted a semantics of agent programs which followed the principle that actions
which the agent is obliged to take are actually executed, i.e., the rule

If O� is true, then Do� is true

is strictly obeyed. This is known as regimentation [65], and reflects the ideal behavior of an agent
in a normative system.

However, the essence of deontism is in capturing what should be done in a specific situation, rather
than what finally is to be done under any circumstances [3, 79, 54]. Taking this view, the operatorO�
is a suggestionfor what should be done; it may be well the case, that in a situation an obligationO� is
true, but� is not executed as it would be impossible (due to a violation of some action constraints), or
lead to inconsistency. Such a behavior, e.g. in the legal domain, is a violation of a normative codex,
which will be sanctioned in some way.

Example 5.10 (conflicting obligations) Suppose an agent A is obliged to serve requests of other
agents A1 and A2, represented by facts O(serve(A1)) and O(serve(A2)), respectively, but there
is an action constraint which states that no two service requests can be satisfied simultaneously. This
is scenario is described by the program P :O(serve(A1)) O(serve(A2))
and the action constraintAC : fserve(A1); serve(A2)g - true:
The program P has no rational status set (and even no feasible status set exists). The reason is that
not both obligations can be followed without raising an inconsistency, given by a violation of the
action constraintAC. 2

Thus, in the above example, the program is inconsistent and the agent does not take any action. In
reality, however, we would expect that the agent serves at least one of the requests, thus only violating
one of the obligations. The issue of which request the agent should select for service may depend on
additional information – e.g., priority information, or penalties for each of the requests. In absence
of any further directives, however, the agent may arbitrarily choose one of the requests.

This example and the sketched desired behavior of the agent prompts us to introduce another gen-
eralization of our approach, to a semantics for agent programs which takes into account possible
violations of the rule

If O� is true, then Do� is true

in order to reach a consistent status set. An important issue at this point is which obligations an agent
may violate, and how to proceed if different alternatives exist. We assume in the following that no
additional information about obligations and their violations is given, and develop our approach on

36

this basis. Weak rational status sets introduced below allow obligations to be “dropped” when con-
flicts arise. Later, Section 5.7 discusses how to build more complex structures involving cost/benefit
information on top of weak rational status sets.

Our intent is to generalize the rational status set approach gracefully, and similarly the reasonable
status set approach. That is, in the case where a programP has a rational status set on an agent stateOS , then this status set (resp., the collection of all such status sets) should be the meaning of the
program. On the other hand, if no rational status set exists, then we are looking for possible violations
of obligations which make it possible to have such a status set. In this step, we apply Occam’s Razor
and violate the set of obligations as little as possible; i.e., we adopt a status set S which is rational,
if a setOb of rules O�) Do� is disposed, and such that no similar status set S0 for some disposal
setOb0 exists which is a proper subset ofOb. We formalize this intuition next in the concept of weak
rational (resp., reasonable) status set.

Definition 5.9 (relativized action closure) LetS be a status set, and letA be a set of ground actions.
Then, the action closure of S under regimentation relativized toA, denotedAClA(S), is the closure
of S under the rulesO� 2 S) Do� 2 S; for any ground action � 2 ADo� 2 S) P� 2 S; for any ground action �.

A set S is action closed under regimentation relativized toA, if S = AClA(S) holds. 2
The following example illustrates this definition.

Example 5.11 Suppose we have:A1 = f�;
gA2 = f�gS = fO�;O�;Do
g:
Then the action closure of S under regimentation relativized to A1 is given by:AClA1(S) = S [fDo�;P�;P
g:
Note that AClA1(S) is constructed by only examining obligations of actions in A1 (in particular,
action � is not considered), and closing S under the two closure rules in the preceding definition.

On the other hand, the action closure of S under regimentation relativized to A2 is given by:AClA2(S) = S [fDo�;P�;P
g: 2
Notice that ACl = AClGA, where GA is the set of all ground actions. Using the concept of

relativized action closure, we define weak versions of feasible (resp., rational, reasonable) status sets.

37

Definition 5.10 (relativized status sets) Let P be a program, let OS be an agent state, and let A
be a set of ground actions. Then, a status set S is A-feasible (resp., A-rational, A-reasonable), ifS satisfies the condition of feasible (resp., rational, reasonable) status set, where the action closureACl is replaced by the relativized action closure AClA (but DCl remains unchanged). 2
Definition 5.11 (weak rational, reasonable status sets) A status setS is weak rational (resp., weak
reasonable), if there exists an A such that S is A-rational (resp., A-reasonable) and there are noA0 6= A and S 0 such that A � A0 and S0 is an A0-rational (resp., A0-reasonable) status set. 2

An immediate consequence of this definition is the following.

Corollary 5.7 Let P be an agent program. If P has a rational (resp., reasonable) status set on an
agent stateOS , then the weak rational (resp., weak reasonable) status sets ofP onOS coincide with
the rational (resp., reasonable) status sets of P on OS .

Thus, the concept of weak rational (resp., reasonable) status set is a conservative extension of ra-
tional (resp., reasonable) status set as desired.

Example 5.12 (conflicting obligations - continued) The program P has two weak rational status
sets, namelyW1 = fO(serve(A1)); O(serve(A2)); P(serve(A1)); P(serve(A2)); Do(serve(A1)g;W2 = fO(serve(A1)); O(serve(A2)); P(serve(A1)); P(serve(A2)); Do(serve(A2)g:

The setW1 is a fserve(A1))g-rational status set, while symmetricallyW2 is a fserve(A2))g-
rational status set. Both W1 and W2 are also weak reasonable status sets of P . 2

As the previous example shows, even a positive agent program may have more than one weak
rational status set. Moreover, in other scenarios, no weak rational status set exists. To cure the first
problem, one could impose a total preference ordering on the weak rational status sets. The second
problem needs a more sophisticated treatment which is not straightforward; after all, the presence
of some conflicts which can not be avoided by violating obligations indicates that there is a major
problem, and we must question whether the agent program P is properly stated by the individual
describing the agent.

5.4.1 Characterization of weak rational status sets

By generalizing the definitions in Section 5.2, it is possible to characterize the weak rational status
sets of a positive agent program P using a fixpoint operator.

Definition 5.12 (operator TP;OS ;A) Suppose P is an agent program, OS an agent state, andA is a
set of ground actions. Then, for any S status set S,TP;OS ;A(S) = AppP;OS(S) [DCl(S)[AClA(S): 2

38

Note that with respect to TP;OS(S), the action closure ACl is replaced by the relatived action
closure AClA; however, DCl(S)may not be dropped, since DCl(S) 6� AClA(S) in general.

Clearly, also TP;OS;A is monotone and continuous if P is positive, and hence has a least fixpointlfp(TP;OS;A) = S1i=0 T iP;OS;A whereT 0P;OS;A = ; andT i+1P;OS ;A = TP;OS;A(T iP;OS;A), for all i � 0.

The following characterization of A-rational status sets is then obtained.

Theorem 5.8 Let P be a positive agent program, let A be a set of ground actions, and let OS be
an agent state. Then, a status set S is an A-rational status set of P on OSC, if and only if S =lfp(TP;OS;A) and S is an A-feasible status set.

Proof. The proof is analogous to the proof of Theorem 5.3; observe that any status set S 0 which
satisfies the conditions (S1) and (S3) of A-relativized feasibility, is a pre-fixpoint of TP;OS;A.

From the previous theorem, we obtain the following result.

Theorem 5.9 Let P be a positive agent program, and let OS be an agent state. Then, a status setS is a weak rational status set of P on OS , if and only if S = lfp(TP;OS;A) and S is A-feasible for
some maximal A w.r.t. inclusion.

Proof. S is weak rational, if and only if S is A-rational for some A such that for every A0 6= A
such that A � A0, no A0-rational status set exists. This is equivalent to the fact that A is a maximal
set of ground actions such that some A-rational status sets exist. By Theorem 5.8, a status set S isA-rational iff S = lfp(TP;OS;A) and S is A-feasible; the result follows.

In general, this criterion does not enable efficient recognition of a weak rational status set (which
is, in fact, intractable). The status setA for S in the theorem is unique, and can be detailed as follows.

Definition 5.13 (A(S)) For any status set S, denoteA(S) = Do(S) [f� j � =2 O(S)g. 2
Proposition 5.10 Let P be any agent program, and let OS be any agent state. Suppose a status
set S is A-feasible for some A. Then, S is A(S)-feasible, and A � A(S), i.e., A(S) is the unique
maximal set of ground actionsA such that S is A-feasible.

Proof. Clearly, S is A(S)-feasible. Suppose that A(S) is not the unique maximal set A such thatS is A-feasible. Then, there exists a set A0 6= A(S) and a ground action � 2 A0 n A(S) such thatS is A0-feasible. From the definition of A(S), it follows O� 2 S and Do� =2 S; since the ruleO�) Do� applies w.r.t. A0, it follows Do� 2 S, which is a contradiction.

Thus, if S is a weak rational status set, then A = A(S) is the unique maximal set such that S isA-feasible. From Theorem 5.9, we obtain the following corollary.

Corollary 5.11 Let S1, S2 be weak rational status set of a positive agent program P on an agent
stateOS . Then, O(S1) = O(S2) implies S1 = S2.

As a consequence, for every choice of a maximal set of obligationswhich can be obeyed, the result-
ing weak rational status set is uniquely determined, ifP is positive. This means that the commitment

39

to a set of obligations does not introduce further ambiguities about the status of actions, which is a
desired feature of the semantics.

It is easy to see that the operator TP;OS ;A is monotone in A, i.e., enjoys the following property.

Proposition 5.12 Let P be a positive agent program, let OS be an agent state, and let A1; A2 be
sets of ground actions such that A1 � A2. Then, for any status set S, TP;OS;A1(S) � TP;OS ;A2(S)
holds, and lfp(TP;OS;A1) � lfp(TP;OS ;A2).

For the case where no integrity constraints are present, we obtain the following result from Theo-
rem 5.9 and Proposition 5.10.

Theorem 5.13 Let P be a positive agent program, where IC = ;, and let OS be an agent state.
Then, a status set S is a weak rational status set of P on OS , if and only if (i) S = lfp(TP;OS;A)
and S is A-feasible for A = A(S), and (ii) for each ground action � =2 A(S), the status set SA0 =lfp(TP;OS;A0) is not A0-feasible, where A0 = A(S) [f�g.
Proof. ()) If S is weak rational, then (i) follows from Theorem 5.9 and Proposition 5.10. Sup-
pose for some A0 in (ii), SA0 = lfp(TP;OS ;A0) is A0-feasible. Then, by Theorem 5.8, the set SA0 isA0-rational, which contradicts that S is a weak rational status set.(() Suppose (i) and (ii) hold. Then, by Theorem 5.8, S is A-rational. Suppose S is not a weak
rational status set; hence some A0 6= A exists, A � A0, for which some A0-rational status set S0
exists. Since property (S2) of the feasibility condition is hereditary, it follows from Proposition 5.12
that for every A00 � A the status set SA00 = lfp(TP;OS;A00) satisfies (S2). Moreover, SA00 satisfies(S1) and (S3). Since IC = ;, we have that SA00 is A00-feasible. Let � 2 A00 n A and set A00 =A [f�g. This raises a contradiction to (ii). Consequently, an A0 as hypothesized does not exist,
which proves that S is weak rational.

For a fixed program P , this criterion implies a polynomial time algorithm for the recognition of a
weak rational status set in this case. Moreover, deciding whether some weak rational status set exists
and actually computing one is then possible in polynomial time (see Section 7.1.1).

5.5 Expressing action constraints in an agent program

As we have mentioned above, action constraints do not add to the expressive power of our frame-
work, and provide syntactic sugar which is however convenient. We discuss this now a little more
in detail.

For every action constraint of the formf�1(~X1); : : : ; �k(~Xk)g - � (5)

in AC, include in the program P the clauseF(nil) Do(�1(~X1));Do(�2(~X2)); : : : ;Do(�k(~Xk)); �
where nil is a distinguished new action which has no preconditions and empty add and delete set;
moreover, include in P the ruleP(nil) :

40

Let P�(AC) be the resulting program. Then, the following property can be established.

Proposition 5.14 LetP be an agent program, given an action baseAB, action constraintsAC, and
integrity constraints IC, and let OS be an agent state. Then, the rational (resp., reasonable) status
sets of P onOS correspond 1-1 to the rational (resp., reasonable) status sets of P�(AC) onOS for
action baseAB� = AB [fnilg, AC� = ;, and IC� = IC.

For feasible sets, a similar correspondence (but not 1-1) exists. Therefore, we can always eliminate
action constraints by introducing new rules in the program.

In the definition of weak action execution, a possible overlap of the add setAdd(�) and the delete
set Del(�) of two actions which should be executed is ignored. If the programmer feels unpleasant
with this situation, then (s)he may add rules to the program which take care of such a check. Namely,
we add the rules F(nil) CC�; CC�;Do�;Do�
for all CC� 2 Add(�) and CC� 2 Del(�), where nil is the distinguished action from above.
Then, the joint execution of � and � is prohibited. In a similar way, we can add rules for nonground
actions �(~X1) and �(~X2).

Having to add such overlap rules in the program comes at the benefit of higher flexibility and better
control of overlap checking, which also leads to faster computation in general. We think that this is
a big advantage which outweighs the stricter definition.

Analogously, this applies to more complex action constraints than joint action executability. If,
for example, execution of an action � requires execution of another action �, then we can add rulesDo(�) Do�;F(nil) Do�;:Do�:
Then, for every rational (resp., reasonable) status set S, it holds that Do� 2 S iff Do� 2 S. In a
similar fashion, more complex action constraints can be emulated.

5.6 Preferred and Complete Status Sets

In this section, we study what happens when we consider three classes of rational status sets.� A rational status set S is F -preferred if there is no other rational status set whose set of for-
bidden atoms is a strict subset of S’s set of forbidden atoms. Intuitively, such status sets are
permissive – most things are allowed unless explicitly forbidden.� A rational status set S is P -preferred if there is no other rational status set whose set of per-
mitted atoms is a strict subset of S’s set of permitted atoms. Intuitively, such status sets are
dictatorial – most things are allowed unless explicitly permitted.� The notion of a status set does not insist that for each action�, eitherP� orF� be inS. How-
ever, for any action �, either � must be permitted or must be forbidden. Complete status sets
insist that this additional condition be satisfied.

41

5.6.1 Preference

As we have briefly mentioned in the previous section, it may be desirable to use a preference pol-
icy for cutting down of status sets. In particular, the issue whether an action should be considered
forbidden or allowed is highly relevant.

It appears that there is no straightforward solution to this problem, and that in fact different ap-
proaches to using defaults are plausible. For example, the following two are suggestive:� (weak preference) The first approach takes the view that an action should, if possible, be con-

sidered as being not forbidden. According to this view, action sets are preferred in which the
part of forbidden actions is small. Note that due to the three-valued nature of the status of an
action in an action set (which can be forbidden, permitted, or neither), this does not necessarily
mean that the part of explicitly permitted actions in a preferred action set is large. This policy
is thus a weak default about the status of an action.� (strong preference) Another approach is to enforce a deontic completion about whether actions
are permission or forbidden, and to request that in an action set, every action is either forbidden
or permitted, and such that permission is preferred over forbiddance. This approach requires
a redefinition of the notion of a grounded consistent action set, however (keep the permission
and forbidden-parts fixed). It amounts to a kind of strong default rule that actions which are
not forbidden are explicitly permitted.

These two approaches aim at treating forbidden actions. Of course, one could foster approaches
which symmetrically aim at permitted actions, and implement (weak or strong) default rules about
such actions. Likewise, default rules for other status operators may be designed. Which approach
is in fact appropriate, or even a mixed use of different default for different actions, may depend on
the particular application domain. In the following, we take a closer look to weak defaults rules on
forbidden actions.

It would be useful if rules like Do(�) :F�
may be stated in an agent program, with the intuitive reading that action � is executed by default,
unless it is explicitly forbidden (provided, of course, that its precondition succeeds).

This single rule has two feasible status sets which are grounded: A1 = fDo(�);P�g and A2 =fF�g. Under the policy that by default, actions which are not explicitly forbidden are considered
to be permitted, A1 is preferred over A2 and � is executed. If no such default policy is taken, then
no set is preferred over the other, and it depends on the choice between A1 and A2, whether � is
executed. (If the agent executes those actions � such that Do(�) appears in all rational status sets,
then no action is taken here.) Adopting the view that actions should not be considered forbidden
unless explicitly stated motivates the following definition.

Definition 5.14 (F -preference) A setS of action status atoms isF -preferred, ifS is a rational status
set, and there exists no other rational status set S0 which has a smaller forbidden part than S, i.e.,F(S0) � F(S) holds. 2
Example 5.13 For the single rule programDo(�) :F�

42

from above, the set A1 = fDo(�), P�g is the unique F -preferred status set of P .

On the other hand, the rule Do(�) P�
has a unique F -preferred status set, which is the empty set. Assuming by weak default that � is not
forbidden, we can not conclude Do(�), though, since an assumptionP� is not supported. 2

Dual to F -preference, we can define preference for P . Intuitively, F -minimality amounts to a
“brave” principle from the view of action permission, while P -minimality amounts to a “cautious”
one. Both F - and P -minimality are the extremal instances of a more general preference scheme,
which allows to put individual preference on each action � from the action base.

5.6.2 Complete Status Sets

As we have encountered in the examples above, it may happen that a feasible status set leaves the
issue of whether some action � is permitted or forbidden open.

It may be desirable, however, that this issue is resolved in a status set which is acceptable for the
user; that is, eitherP� orF� is contained in the status set. This may apply to some particular actions�, as well as to all actions in the extremal case.

Our framework for agent programs is rich enough to handle this issue in the language in a natural,
simple way. Namely, by including a rule F� :P�
in a program, we can ensure that every feasible (and thus rational) status set includes either F�
or P�; we call this rule the F=P -completion rule of �. For an agent program P , we denote byCompF=P (P) the augmentation of P by the F=P -completion rules for all actions � in the action
base.

Call a status set S F=P -complete, if for every ground action �, either P� 2 S, or F� 2 S.

Then, we have the following immediate property.

Proposition 5.15 Let P be an agent program. Then, every feasible status set S of CompF=P (P) isF=P -complete.

Example 5.14 The programP� F� P�F� F�
has a unique rational status set. However, the program CompF=P (P) has no feasible status set, and
thus also no rational status set.

This is intuitive, if we adopt the view that the status of each action being permitted or forbidden
is complete, since there is no way to adopt either P� or F� without raising an inconsistency. 2

43

Example 5.15 Consider the program P1:Do(�) :F�:
Here, we have two rational status sets, namely S1 = fDo(�);P�g and S2 = fF�g. Both areF=P -complete, and are the rational status sets of CompP=F .

On the other hand, the program P2: Do(�) P�;
has the unique rational status set S = fg, while its F=P -completion has the two rational status
sets S1 and S2 from above. Thus, under F=P -completion semantics, the programs P1 and P2 are
equivalent. 2

In fact, the following property holds.

Proposition 5.16 Let P1 and P2 be ground agent programs and OS a state, such that P2 results
by replacing in P1 any literals �Op� in rules bodies by �Op�, where Op 2 fP; Fg and Op is
the deontic status opposite to Op. Then, CompP=F (P1) and CompP=F (P2) have the same sets of
feasible status sets.

Hence, under F=P -completion, :F amounts to P and similarly :P to F .

Further completion rules can be used to reach a complete state on other status information as well.
For example, a completion with respect to obligation/waiving can be reached by means of rulesW� :O�
for actions �. Such completion rules are in fact necessary, in order to ensure that the rational status
sets can be completed to a two-valued deontic “model” of the program. Applying F=P -completion
does not suffice for this purpose, as shown by the following example.

Example 5.16 Consider the program P :P� F� O�F� W�
The set S = fP�;P�g is a feasible status of CompF=P (P). However, S can not be completed to a
deontic model of P , in which O� and W� are true or false, respectively, and such that the deontic
axiom W�$:O� is satisfied. 2
5.7 Optimal Status Sets

Thus far, we have discussed the following semantics for agent programs: feasible status sets, rational
status sets, reasonable status sets, weak rational status sets,F -preferential status sets, P -preferential
status sets, and complete status sets. Let Sem be a variable over any of these semantics. Sem chooses

44

certain feasible status sets in keeping with the philosophical and epistemic principles underlyingSem.

However, in the real world, many choices are made based on the cost of a certain course of action,
as well as the benefits gained by adopting that course of action. E.g., if we consider the Supply Chain
Example, it is quite likely that Suppliers 1 and 2 charge two different prices for the item that the
Plant Agent wishes to order. Furthermore, as the two suppliers are likely to be located at different
locations, transportation costs are also likely to vary. If one supplier can supply the entire quantity
required, the Plant Agent will in all likelihood, select the one whose total cost (cost of items plus
transportation) is lower. Note that this cost is being described in terms of the costs of the actions
being executed in a status set.

However, yet another parameter that needs to be taken into account is the desirability of the final
state that results by executing the Do-actions in a Sem-status set. For example, the time at which
the supplies will arrive at the company is certainly pertinent, but is not accounted for by the cost
parameters listed above. If Supplier 2 will provide the supplies one day before Supplier 1, then the
Plant Agent may well choose to go with Supplier 1, even if Supplier 2’s overall cost is lower.

What the preceding discussion tells us is that we would like to associate with any Sem-status set,
a notion of a cost, and that this cost must take into account, the set of Do-status atoms in the status
set, and the final state that results. This motivates our definition of a cost function.

Definition 5.15 (cost function) Suppose S = (TS ;FS) is a body of software code, and States is
the set of all possible states associated with this body of code. Let AB be the set of all actions. A
cost function, cf , is a mapping from (States� 2AB) to the non-negative real numbers such that:[(8s1; s2) (8A) cf(s1; A) = cf(s2; A)]! [(8s) (8A;A0) (A � A0 ! cf(s; A) � cf(s; A0))] : 2
The precondition of the above implication basically reflects state independence. A cost function is
state-independent iff for any set A of actions, and any two arbitrarily chosen states s1; s2, the cost
function returns the same value for cf(s1; A) and cf(s2; A). State-independence implies that the cost
function’s values are only affected by the actions taken, i.e. by the set of actions A.

The above axiom says that for cf to be a cost function, if it is state-independent, then the values it
returns must monotonically increase as the set of actions is enlarged (i.e. as more actions are taken).

One might wonder whether cost functions should satisfy the stronger condition:(�) (8s)(8A;A0): A � A0 ! cf(s; A) � cf(s; A0):
The answer is “no” – to see why, consider the situation where executing the actions in A is cheaper
than executing the actions inA0, but this is offset by the fact that the state obtained by executing the
actions in A0 is less desirable than the state obtained by executing the actions in A.

Alternatively, one might wonder whether cost functions should satisfy the condition:(��) (8s1; s2)(8A): s1 � s2 ! cf(s1; A) � cf(s2; A):
Again, the answer is no. Executing all actions inA in state s1 may lead to a more desirable state than
doing so in state s2. As an example on the lighter side, consider the action enter(room). States1 is empty, state s2 =f in(room,python)g . Clearly, s1 � s2. For most of us, executing the
action enter(room) is vastly preferable to executing the action enter(room) in state s2.

45

However, even though not all cost functions should be required to satisfy (�) and (��), there will
certainly be applications where either (�) and/or (��) are satisfied. In such cases, it may turn out to
be beneficial computationally to take advantage of properties (�) and (��)when computing optimalSem-status sets defined below.

Definition 5.16 (weak/strong monotonic cost functions) A cost function is said to be weakly mo-
notonic, if it satisfies condition (�) above. It is strongly monotonic, if its satisfies both conditions(�) and (��). 2

We are now ready to come to the definition of optimal status sets.

Definition 5.17 (Optimal Sem-status set) Suppose S = (TS ;FS) is a body of software code, andOS is the current state. A Sem-status set X is said to be optimal with respect to cost function cf iff
there is no other Sem-status set Y such thatcf(OS ; fDo� jDo� 2 Y g) < cf(OS ; fDo� jDo� 2 Xg): 2

Note that the above definition induces different notions of status set, depending on what Sem is
taken to be.

6 Algorithms and Complexity Issues

In this section, we address the computational complexity of agent programs. We assume that the
reader is familiar with the basic concepts of complexity theory, in particular with NP-completeness
and the polynomial hierarchy, and refer to [37, 61, 83] for background material on this subject and
for concepts and notation that we use in the remainder of this paper.

Our aim is a sharp characterization of the complexity of different computational tasks which arise
in the context of agent programs. Such a characterization is useful in many respects. First of all,
it tells us whether certain problems are tractable or intractable in the worst case. However, beyond
such a coarse classification, the precise complexity gives us a hint of which type of algorithm is ap-
propriate for implementing solutions to a problem, and how many sources of complexity have to be
eliminated in order to ensure tractability.

In the rest of this section, we state the assumptions that we make for our analysis, and we present an
overview and a discussion of the results that we derive. The results are then established in Sections 7
and 8.

6.1 Underlying assumptions

Any reasonable measurement of the computational complexity of agent programs must be based on
underlying assumptions. We consider here the evaluation of a fixed agent program P in the context
of software code S, an action base AB, action constraints AC, and integrity constraints IC, each
of which is fixed, over varying states OS . This corresponds to what is commonly called the data
complexity of a program [104]. If we consider varying programs where the agent state is fixed (resp.,
varying), we would have expression (or program) complexity and combined complexity, which are

46

typically one exponential higher than data complexity. This also applies in many cases to the results
that we derive below; such results can be established using the complexity upgrading techniques for
expression complexity described in [50].

Of course, if we use software packages S = (TS ;FS) with high intrinsic complexity, then the
evaluation of agent programs will also be time consuming, and leaves us no chance to build efficient
algorithms. We therefore have to make some general assumptions about the software package used
such that polynomial time algorithms are not a priori excluded.

We adopt a generalized active domain assumption on objects, in the spirit of domain closure; all
objects considered for grounding the program rules, evaluation of the action preconditions, the con-
ditions of the actions constraints and the integrity constraints must be fromOS , or they must be con-
structible from objects therein by operations from a fixed (finite) set in a number of steps which is
bounded by some constant, and such that each operation is efficiently executable (i.e., in polynomial
time) and involves only a number of objects bounded by some other constant. Notice that the active
domain assumption is often applied in the domain of relational databases, and similar domain clo-
sure in the context of knowledge bases. In our framework, creation and use of tuples of bounded arity
from values existing in a database would be a feasible object construction process, while creation of
an arbitrary relation (as an object that amounts to a set of tuples) would be not.

Under this assumption, the number of objects which may be relevant to a fixed agent program P
on a given stateOS is bounded by a polynomial in the number of objects inOS , and each such object
can be generated in polynomial time. In particular, this also means that the number of ground rules
of P which are relevant is polynomial in the size of OS , measured by the number of objects that it
contains.

Let us further assume that the evaluation time of code condition calls � over a state OS , for any
particular legal assignment of objects, is bounded by a polynomial in the size of OS . Moreover, we
assume that given an agent stateOS and a set of ground actionsA, the stateO0S which results under
weakly-concurrent execution of A on OS (see Definition 4.5) is constructible in polynomial time.

As a consequence of these assumptions, the action and integrity constraints are evaluable on an
agent stateOS under the generalized active domain semantics in polynomial time, and the integrity
constraints on the agent stateO0S resulting from the execution of a set of actions A grounded in the
active domain, are checkable in polynomial time in the size of OS .1

Notice that these assumptions will be met in many software packages which support the use of in-
tegrity constraints (e.g., a relational database). If evaluation of the code condition calls or constraints
were not polynomial, then the evaluation of the agent program would not be either.

6.2 Problems Whose Complexity is Studied / Overview of Complexity Results

The complexity results we derive may be broken up into two parts. In the first part, we assume that
fixed positive agent programs are considered. In the second part, this assumption is relaxed, and
general, i.e., not necessarily positive agent programs are considered.

In this paper, we study four types of complexity problems. For each concrete semantics introduced
in the paper, we study the complexity of these four problems. This leads to Tables 1 and 2 which
summarize the results, under different assumptions on the syntax of the agent programs considered.
The computational problems that we study are listed below. Let Sem be any kind of status sets.

1This would remain true if the integrity constraints where arbitrary fixed first-order formulas (evaluated under active
domain semantics).

47

(consistency) Deciding the consistency of the program on a given agent state, i.e., existence of anSem-status set;

(recognition) the recognition of a Sem-status set;

(computation) the computation of an arbitrary Sem-status set; and

(action reasoning) reasoning about whether the agent takes an action� under Sem-status sets, both
under the� possibility variant (decide whether � is executed according to some Sem-status set), and

the� certainty variant (decide whether � is executed according to every Sem-status set).

The range of Sem for which these problems have been analyzed is listed in the leftmost column of
Tables 1 and 2. Particular attention has been paid to the presence or absence of integrity constraints.

Table 1 specifies the complexity of the four problems that we study when positive agent programs
are considered, while Table 2 specifies their complexity when arbitrary agent programs are consid-
ered. As Tables 1 and 2 contain many complexity classes that the casual AI researcher may not be
familiar with, we present in Figure 4 a graphical representation of these classes – the reader interested
in a more detailed discussion of these classes will find them in Section 6.3. Generally speaking, in
Figure 4, we draw an arc from complexity class C1 to complexity class C2, if the hardest problems
in C1 are “easier” to solve than the hardest problems in C2 (assuming that the classes in question do
not collapse). Thus, for instance, the existence of an edge from the class P to the class NP indicates
that the hardest problems in P, which are those complete for P, are easier to solve as compared to
the hardest problems in NP, i.e., the NP-complete problems (unless P = NP).

Note on Tables: The entries for decision problems in Tables 1 and 2 stand for completeness for the
respective complexity classes. In case of P, hardness may implicitly be present with costly object
construction operations. However, we remark that for all problems except recognition of a feasible
status set, hardness holds even if no new objects are introduced and the agent state consists merely
of a relational database. Proof of these results are not difficult, using the well-known result that in-
ference from a datalog program (Horn logic program) is P-complete, cf. [28].

The entries for the computation problem are the classes FC from the literature considered e.g. in
[83, 23, 24] (i.e., compute any arbitrary solution to a problem instance; see subsection 6.3 for more
details). Unless stated otherwise, they stand for completeness under an appropriate notion of poly-
nomial time reduction as used in [83, 23]. Observe that we have aimed at characterizing in this paper
the complexity of agent programs in terms of existing classes from the literature, rather than intro-
ducing new classes to precisely assess the complexity of some problems.

6.2.1 Bottom Line for the Computation Problem

Of all the four problems described above, from the point of view of the IMPACT system (and in gen-
eral, for any system that attempts to determine which actions an agent must take), the most important
problem, by far, is the problem of Computation – given an agent program, a current agent state, a
set of integrity constraints and action constraints, determine a set of actions that the agent must take.
This task forms the single most important task that an agent must take, over and over again.

48

action reasoningIC = ; j IC arbitrary consistency computation recognition possible certain

feasible P j NP FP j FNP P NP co-NP

rational P FP P P P� reasonable� F -pref. rational� F -pref. reasonable

weak rational P j NP FP j FNP//log * P j co-NP NP co-NP j �P2� weak reasonable

* ... hard for both FNP and FPNPk
Table 1: Complexity of fixed positive agent programs

action reasoningIC = ; j IC arbitrary consistency computation recognition possible certain

feasible NP FNP P NP co-NP

rational NP j �P2 FNP//log * j F�P2 co-NP �P2 co-NP j �P2
reasonable NP FNP P NP co-NPF -pref. rational NP j �P2 FNP//log j FP�P2 co-NP j �P2 �P2 j �P3 �P2 j �P3\RP � FP�P2k yF -pref. reasonable NP FNP//log co-NP �P2 �P2
weak rational NP j �P2 FNP//log j FP�P2 co-NP j �P2 �P2 j �P3 �P2 j �P3\RP � FP�P2k y
weak reasonable NP FNP//log co-NP �P2 �P2

* ... hard for both FNP and FPNPky ... hard for both F�P2 and FP�P2k
Table 2: Complexity of fixed agent programs with negation

49

When considering the different semantics for agent-programs, we easily notice (by examining the
column “computation” in both Tables 1 and 2), that the easiest semantics to compute are given as
follows:� When positive agent programs with no integrity constraints are considered, the rational,

weak rational, reasonable, weak reasonable, F -preferential, and P -preferential semantics are
the easiest to compute, all falling into the same complexity class. The other semantics are
harder to compute. Thus, in this case, we have some flexibility in choosing that out of the
rational, weak rational, reasonable, weak reasonable, F-preferential, and P-preferential, that
best meets the agent’s epistemic needs. Note that different agents in IMPACT can use different
semantics.� When positive agent programs with integrity constraints are considered, the best seman-
tics, from the point of view of computationalcomplexity, are the rational, reasonable, F-preferential,
and P-preferential semantics. Note that unlike the previous case, the weak rational and weak
reasonable semantics are harder to compute when integrity constraints are present.� When arbitrary agent programs with no integrity constraints are considered, then the eas-
iest semantics to compute are the feasible set semantics and the reasonable status set semantics.
All other semantics are harder to compute.� When arbitrary agent programs with integrity constraints are considered, the same con-
tinues to be true.

In general, when considering how to compute a kind of status set, the reasonable status set semantics
is generally the easiest to compute, irrespective of whether agent programs are positive or not, and
irrespective of whether integrity constraints are present or not. As we have argued earlier on in the
paper, reasonable status sets have many nice properties which might make them epistemologically
preferable to feasible status sets and rational status sets.

6.3 Different Complexity Classes

In this subsection, we briefly describe the various complexity classes encountered earlier in this sec-
tion. We also analyze the causes for the various complexity trends we notice.

The classes that we use in our characterizations are summarized in Figure 4. An edge directed
from class C1 to class C2 indicates that all problems in C1 can be efficiently transformed into some
problem in C2, and that it is strongly believed that a reduction in the other direction is not possible;
i.e., the hardest problems in C2 are more difficult than the problems in C1.

The decision classes are from the polynomial hierarchy, which is built on top of the classes P andNP (=�P1), by allowing the use of an oracle (i.e., a subprogram) for deciding problems instanta-
neously. The class C to which this oracle must belong is denoted in a superscript; e.g., PNP (resp.,NPNP) is the class of problems solvable in polynomial time on a deterministic (resp., nondetermin-
istic) Turing machine, if an oracle for a problem in NP may be used. For the decisional classes, the
arcs in Figure 4 actually denote inclusions, i.e., the transformation of problems inC1 to problems inC2 is by means of the identity.

The classes for search problems, which are often also called function classes, can be found in
[83, 24]. A search problem is a generalization of a decision problem, in which for every instance

50

.

.

.

.

.

. FNP//OptP[O(logn)] (=FNP//log)

�P2 =�P3 = FPNPF�P2
FPFNP FPNPk

FP�P2 RP � FP�P2kFP�P2k�P2 = PNPNP�P1 =
PSPACE

P = �P1 co-NP=co-�P1=co-�P2�P2�P3 = P�P2 �P3 =co-�P3NPNPNP�P2
Figure 4: Decision (left) and search (right) problem complexity classes

of the problem a (possibly empty) set of solutions exists. To solve such a problem, an algorithm
must (possibly nondeterministically) compute an arbitrary solution out of this set, if it is not empty.
Decision problems can be viewed as particular search problems, in which the solution set is either
empty or the singleton set fyesg. More formally, search problems in the classes from Figure 4 are
solved by transducers, i.e., Turing machines equipped with an output tape. If the machine halt in an
accepting state, then the contents of the output tape is the result of the computation. Observe that a
nondeterministic machine computes a (partial) multi-valued function. Thus, not all arcs in Figure 4
mean inclusion, i.e., trivial reducibility by the identity.

The concept of reduction among search problems �1 and �2 is also obtained by a proper gener-
alization of the respective concept for decision problems. �1 is (polynomial-time) reducible to �2,
if (i) from every instance I of �1, an instance f(I) of �2 is constructible in polynomial time, such
that f(I) has some solution precisely if I has; and (ii) from every solution S of f(I), a solution ofI can be constructed in time polynomial in the size of S and I .

For both decision and search problem classes C, a problem is complete for C, if it belongs to C
and is hard for C, i.e., every problem in C reduces to it.

The search problem counterparts of the classes C in the polynomial hierarchy are often denoted

by a prefixed “F”; some of them appear in Figure 4. The other classes FPNPk and FP�P2k are the

search problem counterparts of the classes PNPk and P�P2k , respectively, which are not shown in the
figure. These classes contain the problems which can be solved in polynomial time on a deterministic
Turing machine which has access to an oracle in NP (resp., �P2), but where all queries to the oracle
must be prepared before issuing the first oracle call. Thus, the oracle calls are nonadaptive and must
essentially take place in parallel; it is commonly believed that this restricts computational power.FNP//log is short for the class FNP//OptP[O(logn)] [24], which is intuitively the class of prob-
lems for which a solution can be nondeterministically found in polynomial time for an instance I ,
if the optimal value opt(I) of an NP optimization problem on I is known, where opt(I) must haveO(log jI j) bits. E.g., computing a clique of largest size in a given graph is a problem in FNP//log.
The class FNP//log reduces to FPNP and roughly amounts to a randomized version of FPNPk . Due

51

to its nondeterministic nature, it contains problems which are not known to be solvable in FPNPk .
The most prominent of these problems is the computation of an arbitrary model of a propositional
formula [59], which is the prototypical problem complete for the classFNP. Few naturalFNP//log-
complete problems are known to date; our analysis contributes some new such problems, which are
from the realm of practice rather than artificially designed.

In the context of action programs, computing a weak rational status set for a positive program is inFNP//log, since if we know the maximum size s of a setA of ground actions such that anA-rational
status S set exists, then we can nondeterministically generate such an S in polynomial time. The
computation of s amounts to an NP optimization problem, and thus the overall algorithm places the
problem in FNP//log.

The class RP � FP�P2k [24] contains, intuitively speaking, those problems for which a solution on
input I can be found by a random polynomial time algorithm with very high probability, by using a

problem in FP�P2k as single call subroutine. This class is above FP�P2k . Chen and Toda have shown
that many optimization problems belong to this class whose solutions are the maximal solutions of
an associated problem for which solution recognition is in co-NP. Computation of an F -preferred
rational and a weak rational status set matches this scheme, which means that the problems are inRP � FP�P2k .

The results show that the complexity of agent programs varies from polynomial up to the third
level of the polynomial hierarchy. Observe that in some cases, there are considerable complexity
gaps between positive agent programs and agent programs which use negation (e.g., for F -preferred
rational status sets).

The reason for this gap are three sources of complexity, which lift the complexity of positive agent
programs fromP up to�P3 and�P3 , respectively (in the cases ofF -preferred and weak rational status
sets):

1. an (in general) exponential number of candidates for a feasible (resp., weak feasible) status
set;

2. a difficult recognition test, which involves groundedness; and

3. an exponential number of preferable candidates, in terms of F -preference or maximal obedi-
ence to obligations.

These three sources of complexity act in a way orthogonally to each other; all of them have to be
eliminated to gain tractability.

For the canonical semantics of positive agent programs, the rational status set semantics, all com-
putational problems are polynomial. This contrasts with feasible status sets, for which except recog-
nition, all problems are intractable. On the other hand, under the weak status set semantics, the prob-
lems apart from action reasoning are polynomial, if no integrity constraints are present; intractability,
however, is incurred in all problems as soon as integrity constraints may be used.

It is interesting to observe that for programs with negation, rational status sets are more expen-
sive to compute than reasonable status sets in general, and this is true if no integrity constraints are
present, except for consistency checking and cautious action reasoning. A similar observation ap-
plies to the F -preferred and weak variants of rational and reasonable status sets in the general case;
here, the rational variants are always more complex than the reasonable ones. However, somewhat

52

surprisingly, if no integrity constraints are present, then the complexities of the rational and rea-
sonable variants coincide! This is intuitively explained by the fact that in absence of integrity con-
straints, the expensive groundedness check for rational status sets can be surpassed in many places,
by exploiting the property that in this case, every feasible status set must contain some rational status
set.

Another interesting observation is that for programs with negation, the preferential and weak vari-
ant of rational status sets have the same complexity characteristics, and similar for reasonable status
sets. These semantics have a dual computational nature; preference effects minimization of the F-
part of the status set, while weakness effects maximization of the Do-part.

Presence of integrity constraints, even of the simplest nature which is common in practice (e.g.,
functional dependencies [102] in a database), can have a detrimental effect on (variants of) rational
status sets and raises the complexity by one level in the polynomial hierarchy. However, the com-
plexity of reasonable status sets and their variants is immune to integrity constraints except for the
weak reasonable status sets on positive programs. Intuitively, this is explained by the fact that the
refutation of a candidate for a reasonable status set basically reduces to the computation of the ratio-
nal status set of a positive agent program, and there integrity constraints do not increase the complex-
ity. In the case of weak reasonable status sets for positive programs, we have an increase since the
weakness condition may create an exponential number of candidates if the program is inconsistent.

We finally remark that we have omitted here an analysis of the complexity of optimal status sets as
proposed in Section 5.7, in order to avoid an abundance of complexity results. Based on the results
presented above, coarse bounds are staightforward. The sources [23, 24, 59] and references therein
provide suitable complexity classes for a more accurate assessment.

7 Complexity Results and Algorithms for Agent Programs: Basic Re-
sults

This section contains the first part of the derivation of the complexity results which have been pre-
sented in Section 6. The focus in this section is on the base case, in which we have programs without
integrity constraints (though cases where results on integrity constraints follow as immediate exten-
sions of the no-integrity-constraint case are also included). As the Table 1 and 2 show, in general the
presence of integrity constraints has an effect on the complexity of some problems, while it has not
for others. For the latter problems, we discuss this effect in detail in the next section. In this section,
as complexity results are discussed, we also develop algorithms for various status set computations.

7.1 Positive programs

The most natural question is whether a feasible status set exists for program P on a given stateOS .
As we have seen, this is not always the case. However, for fixed positive programs, we can always
efficiently find a feasible status set (so one exists), and moreover, even a rational status set, measured
in the size of the inputOS . This is possible using the algorithm COMPUTE-P-RSS below, where the
program P and possibly integrity and action constraints are in the background.

Theorem 7.1 Let P be a fixed positive agent program. Then, given an agent state OS , the unique
rational status set of P on OS (so it exists) is computed by COMPUTE-P-RSS in polynomial time.

53

Algorithm COMPUTE-P-RSS

Input: agent stateOS (fixed positive agent program P);

Output: the unique rational status set of P , if it exists; “No”, otherwise.

Method

Step 1. Compute S = lfp(TP;OS);
Step 2. Check whether S satisfies conditions (S2) and (S4) of a feasible status set;

Step 3. If S satisfies (S2) and (S4), then output S; otherwise, output “No”. Halt.

Moreover, if IC = ;, then deciding whether P has some feasible status set on OS as well as com-
puting any such status set, is possible in polynomial time using COMPUTE-P-RSS.

Proof. By Theorem 5.3 and the fact that S satisfies (S1) and (S3), algorithm correctly computes
the unique rational status set of P on OS .

By the assumptions that we made at the beginning of this section, Step 1 can be done in polynomial
time, since a fixed P amounts to a ground instance which is polynomial in the size of OS , and we
can compute S = lfp(TP;OS) bottom up by evaluating the sequence T iP;OS , i � 0, until the fixpoint
is reached.

Observe that, of course, checking (S2) (action and deontic consistency) –or part of this criterion–
in algorithm COMPUTE-P-RSS can be done at any time while computing the sequence T iP;OS , and
the computation can be stopped as soon as an inconsistency is detected.

Step 2, i.e., checking whether S satisfies the conditions (S2) and (S4) is, by our assumptions,
possible in polynomial time. Therefore, for fixed P (and tacitly assumed fixed action and integrity
constraints in the background), algorithm COMPUTE-POS-RATIONAL-SS runs in polynomial time.

If IC = ;, then by Proposition 5.5, P has a feasible status set onOS iff S is a feasible status set.
Therefore, deciding the existence of a feasible status set (and computing one) can be done by using
COMPUTE-P-RSS in polynomial time IC = ;.
Corollary 7.2 Let P be a fixed positive agent program. Then, given an agent stateOS and a status
set S, deciding whether S is a rational status set of P on OS is polynomial.

Since for every positive agent programP , the rational status set, the reasonable status set, and the
preferred one among them coincide, we have the following easy corollary.

Corollary 7.3 Let P be a fixed positive agent program. Given an agent state OS , the unique F -
preferred rational (resp., reasonable) status set of P (so it exists) can be computed and recognized
in polynomial time.

54

7.1.1 Weak rational status sets

In this subsection, we address the problem of computing a weak rational status set for a positive
program. As we have mentioned in Section 5.4, for a fixed positive agent program P , it is possible
to compute a weak rational status set on a given agent state OS in polynomial time, provided that
the no integrity constraints are present.

In fact, this is possible by using the following algorithm.

Algorithm COMPUTE-P-WEAK-RSS

Input: agent stateOS (fixed positive agent program P ; IC = ;)
Output: a weak rational status set of P on OS , if one exists; “No”, otherwise.

Method

Step 1. Set A := ;, GA := set of all ground actions, and compute S := lfp(TP;OS;A);
Step 2. If S is not A-feasible, then output “No” and halt; otherwise, set A := A(S) andGA := GA nA(S);
Step 3. If GA = ;, then output S and halt;

Step 4. Choose some ground action � 2 GA, and set A0 := A [f�g;
Step 5. If S0 := lfp(TP;OS;A0) is A0-feasible, then set A := A(S 0), GA := GA n A(S0),

and S := S 0; continue at Step 3.

The next result states that this algorithm is correct and works in polynomial time.

Theorem 7.4 Given a positive programP and an agent stateOS , algorithm COMPUTE-P-WEAK-
RSS correctly outputs a weak rational status set of P on OS (so one exists) if IC = ;. Moreover,
for fixed P , COMPUTE-P-WEAK-RSS runs in polynomial time.

We remark that this simple algorithm can be speeded up by exploiting some further properties. In
Step 5 of the algorithm, the computation of S 0 can be done by least fixpoint iteration starting fromS rather than from the empty set (cf. Proposition 5.12).

The previous result shows that we can compute an arbitrary weak rational status set in polyno-
mial time under the asserted restrictions. However, this does not mean that we can decide efficiently
whether a given status set is a weak rational status set. The next result shows that this is in fact pos-
sible.

Theorem 7.5 Let P be a fixed positive agent program, and suppose IC = ;. Let OS be an agent
state, and let S be a status set. Then, deciding whether S is a weak rational status set of P is poly-
nomial.

Proof. By Proposition 5.10,Smust beA(S)-feasible if it is a weak rational status set; since for any
set of ground actionsA, testingA-feasibility is not harder than testing feasibility, by Proposition 7.7
we obtain that this condition can be tested in polynomial time.

55

If S is A(S)-feasible, then, since P is positive and IC = ;, by Theorem 5.13 S is a weak rational
status set, iff for every ground action � =2 A(S), the status set S 0 = lfp(TP;OS;A0) is notA0-feasible,
where A0 = A [f�g. For each such �, this condition can be checked in polynomial time, and
there are only polynomially many such �; hence, the required time is polynomial. Consequently,
the overall recognition test is polynomial.

We remark that algorithm COMPUTE-P-WEAK-RSS can be modified to implement the recogni-
tion test; we omit the details, however.

Since in general, multiple weak rational status sets may exist, it appears important to know whether
some action status atom A belongs to all (resp., some) weak rational status set. This corresponds to
what is known as certainty (resp., possibility) reasoning in databases [102], and to cautious (resp.,
brave) reasoning in the area of knowledge representation [47]. In particular, this question is impor-
tant for an atom Do(�), since it tells us whether � is possibly executed by the agent (if (s)he picks
nondeterministically some weak rational status set), or executed for sure (regardless of which action
set is chosen). Unfortunately, these problems are intractable.

Theorem 7.6 Let P be a fixed positive agent program P , and suppose IC = ;. Let OS be a given
agent state and let � be a given ground action atom. Then, deciding whether � 2 Do(S) holds
for (i) some weak rational status set (resp., (ii) every weak rational status set) of P on OS is NP-
complete (resp., co-NP-complete).

Proof. For (i), observe that algorithm COMPUTE-P-WEAK-RSS is nondeterministically com-
plete, i.e., every weak rational status set S is produced upon proper choices in Step 4. Therefore, by
checking Do(�) 2 S (resp., Do(�) =2 S) before termination, we obtain membership in NP (resp.,
co-NP).

For the hardness part, we present a reduction from the complement of a restricted version of the
satisfiability problem (SAT) for (ii); a similar reduction for (i) is left as an exercise to the reader.

Suppose that � = Vmi=1Ci is conjunction of propositional clauses such that each clause Ci is a
disjunctionCi = Li;1 _ Li;2 _ Li;3 of three literals over atoms X = fx1; : : : ; xng. Then, deciding
whether � is satisfiable is a well-known NP-complete problem. This remains true if we assume that
for each clauseCi, either all literals in it are positive or all are negative; this restriction is known as
monotone 3SAT (M3SAT).

In our reduction, we store the formula � in a databaseD. For this purpose,D is supposed to have
two relations POS(V1; V2; V3) and NEG(V1; V2; V3), in which the positive and negative clauses of� are stored, and a relation VAR(V) which contains all variables. For each positive clauseCi, there
exists a tuple with the variables ofCi in POS, e.g., for x1_x4_x2 the tuple (x1; x4; x2), and likewise
for the negative clauses a tuple with the variables in NEG, e.g., for :x3 _ :x1 _ :x2 the tuple(x3; x1; x2).

The action baseAB contains the actions set0(X), set1(X), and �; here, we assume that every
action has empty precondition and empty Add and Del-Set. Define now the program P as follows.O(set0(X)) VAR(X)O(set1(X)) VAR(X)Do� Do(set0(X1));Do(set0(X2));Do(set0(X3)); POS(X1; X2; X3)Do� Do(set1(X1));Do(set1(X2));Do(set1(X3));NEG(X1; X2; X3)
Here, and throughout the rest of this paper, code call atoms accessing a relation in a database are for
simplicity represented by the facts to be accessed.

56

On this program, we impose the following action constraintAC : fset0(X); set1(X)g - VAR(X):
Thus,AC = fACg. Let furthermore be IC = ;.

Then, for a given database instance D describing a formula �, it is easily seen that every weak
rational status set of P onD contains Do�, if and only if the corresponding M3SAT instance � is a
No-instance. Since P is easily constructed, the result is proved.

Before closing this subsection, we remark that tractability of both problems can be asserted, if a
total prioritization on the weak rational status sets is used, which technically is derived from a total
ordering �1 < �2 < � � � < �n on the set of all ground actions. In this case, a positive agent programP has a unique weak rational status set S (if one exists). This set S can be constructed by selecting
in Step 4 of algorithm COMPUTE-WEAK-RSS always the least action from GA with respect to the
ordering <. Thus, in the absence of integrity constraints, the unique weak rational status set can be
computed in polynomial time in this case.

7.2 Programs with negation

If we allow unrestricted occurrence of negated status atoms in the rule bodies, then the complexity
of evaluating agents programs increases. This is not very surprising, since this way, we can express
logical disjunction of positive facts. For example, the ruleP� :F�
leads to two rational status sets: S1 = fP�g and S2 = fF�g. Informally, this clause expresses
under rational status semantics the disjunction F� _ P�. Notice that under the reasonable status
semantics, the above rule has only a single reasonable status set, namely S1. However, if we add its
contrapositiveF� :P�;
then the resulting program has the two reasonable status sets S1 and S2. Thus, in the general case,
both rational and reasonable status set semantics allow for expressing disjunction, and are for this
reason inherently complex. We now analyze the precise complexity of these semantics.

7.2.1 Feasible status sets

A relevant computational problem, for any of the semantics defined above, is the test whether a given
status set is among those which are acceptable under the chosen semantics. This problem corre-
sponds to the task of model checking in the area of knowledge representation and reasoning, which
has been addressed e.g. in [53, 20, 69].

We note here that for feasible status sets, the recognition problem is tractable under the assump-
tions that we made; this can be easily seen.

Proposition 7.7 Let P be a fixed agent program (where IC may be nonempty), let OS be a given
state, and letS be a status set. Then, deciding whetherS is a feasible status set ofP onOS is possible
in polynomial time.

57

However, as the following result shows, the search for feasible status sets is intractable in the gen-
eral case.

Theorem 7.8 Let P be a fixed agent program. Then, given an agent state OS , deciding whetherP has a feasible status set is NP-complete, and computing some feasible status set is complete forFNP. Hardness holds even if IC = ;.
Proof. By Proposition 7.7, we can guess and check a feasible status set of P onOS in polynomial
time. Hence, the existence problem is in NP, and the computation problem is in FNP.

To show that the existence problem is NP-hard, we describe a reduction from M3SAT. The reduc-
tion is similar to the one in the proof of Theorem 7.6. As there, we suppose that an M3SAT instance� on variables xi 2 X is stored in relations POS (positive clauses) and NEG (negative clauses),
and we assume that all variables xi are stored in VAR. Moreover, we assume that D has a relation
AUX(V ar; V al), which contains in the initial database D all tuples (xi; 0), for all variables xi.

Now construct the following agent program P :P� F� F�(X1);F�(X2);F�(X3); POS(X1; X2; X3)F� P�(X1);P�(X2);P�(X3);NEG(X1; X2; X3)P�(X1) :F�(X1);VAR(X1)
The action baseAB contains two actions� and�, which have both empty preconditionsand empty

add and delete sets. Thus, these actions do not have any effect on the state of the database. The setsAC and IC of action and integrity constraints, respectively, are both assumed to be empty.

Then, it is easy to see that P possesses a feasible status set over OS , if and only if the formula �
is satisfiable; the satisfying truth assignments of � correspond naturally (but not 1-1) to the feasible
status sets of P on OS . (Observe that every feasible status set must either contain P�(xi) or con-
tain F�(xi), for every xi, but not both; intuitively,P�(xi) represents that xi is true, while F�(xi)
represents that xi is false.) Since for a given formula � the database instanceD of D is clearly con-
structible in polynomial time, it follows that the decision problem is NP-hard. Moreover, by the
correspondence between feasible sets status of P and the satisfying assignments of �, it follows im-
mediately that the feasible status set computation problem is hard for FNP.

Observe that we can replace in the construction the positive atoms F�(Xi) in the rule withF� in
the head by :P�(Xi), and we would get the same feasible status sets; moreover, the last rule could
then also be removed, and still a feasible status exists iff � is satisfiable.

This negative result raises the issue of how we can achieve tractability of programs. There are
different possibilities.

One possibility is that we identify syntactic constraints under which programs are guaranteed to be
tractable. However, as the form of the program in the proof of the previous theorem indicates, rather
strict conditions on negation must be imposed, in order to exclude possible inconsistencies. Still, a
number of different feasible and rational status sets may exist, due to the inherent logical disjunction.
In particular, the reduction in the proof of Theorem 7.8 works for rational status sets as well.

Another possibility is that we use an alternative semantics which is more amenable to cutting dis-
junctive cases. In particular, under reasonable status set semantics, the program in the proof of The-

58

orem 7.8 either has no reasonable status set, or a unique such status set, which can be efficiently de-
termined in polynomial time; notice that F�(ai) is not contained in any reasonable status set, since
there is no possibility for deriving F�(ai) by means of the head of a program rule or by deontic
closure. However, if we add the ruleF�(X1) :P�(X1)
to the program, then the reasonable status sets of the resulting programP 0 coincide with the rational
status sets of P . Hence, also the computation of a reasonable status set is intractable in general. We
will deal with reasonable status set in detail in Subsection 7.2.3.

From Theorem 7.8, the following result on action reasoning on the feasible status sets is easily
derived.

Theorem 7.9 Let P be a fixed agent program. Then, given an agent stateOS and a ground action�, deciding whether � 2 Do(S) for (i) every (resp., (ii) some) feasible status set S of P onOS , is
co-NP-complete (resp., NP-complete).

7.2.2 Rational status sets

For the existence problem, we obtain from Proposition 5.5 and Theorem 7.8 immediately the fol-
lowing result.

Theorem 7.10 Let P be a fixed agent program, and suppose IC = ;. Then, given an agent stateOS , deciding whether P has a rational status set on OS is NP-complete.

The condition that a feasible status set is grounded requires a minimality check. It turns out that
this minimality check is, in general, an expensive operation. In fact, the following holds.

Theorem 7.11 Let P be a fixed agent program, and suppose IC = ;. Then, given an agent stateOS and a feasible status set S for P on OS , deciding whether S is grounded is co-NP-complete.

Proof. In order to refute that S is grounded, we can guess a status set S0 such that S0 � S and
verify in polynomial time that S0 satisfies the conditions (S1)–(S3) of a feasible status set.

To show that the problem is co-NP-hard, we use a variant of the construction in the proof of The-
orem 7.8. For the CNF formula � there, we set up the following program P :P� F� :P
;:P�(X1);:P�(X2);:P�(X3); POS(X1; X2; X3)F� :P
;P�(X1);P�(X2);P�(X3);NEG(X1; X2; X3)P�(X1) P
;VAR(X1)
Here,
 is a new action of the same type as � and �, i.e., it has empty precondition and empty add
and delete sets.

It is easily seen that S = fP�;P
g [fP�(ai) j i = 1; : : : ; ng is a feasible status set of P .
Moreover, S is grounded, if and only if formula � is not satisfiable. This proves co-NP-hardness.

59

The reduction even allows to derive another result. In fact, observe that any rational status set ofP is contained in S: if P
 2 S 0 for a status set S 0 which satisfies (S1)–(S3), then clearly S 0 � S
holds; otherwise, if P
 =2 S0, then S0 � S must hold.

Assume w.l.o.g. that either � is unsatisfiable, or it has at least two satisfying assignments. Then,S is the unique rational set of P , iff � is unsatisfiable. As a consequence, deciding whether a non-
positive agent program has a unique rational status set is co-NP-hard as well.

The complexity of the recognition problem is an immediate consequence of the previous theorem
and Proposition 7.7.

Corollary 7.12 Let P be a fixed agent program, and suppose IC = ;. Then, given an agent stateOS and a status set S, deciding whether S is a rational status set for P on OS is co-NP-complete.

In the absence of integrity constraints, the rational status sets coincide with the minimal feasible
status sets. Using an NP oracle, we can compute a rational status set as follows.

Algorithm COMPUTE-RATIONAL-SS

Input: agent stateOS (fixed agent program P , IC = ;);
Output: a rational status set of P , if one exists; “No”, otherwise.

Method

Step 1. Set S := ; and At := set of all ground action status atoms.

Step 2. Check if S is a feasible status set; if true, then output S and halt.

Step 3. If At = ;, then output and halt.

Step 4. Choose some atom A 2 At and query the oracle whether a feasible status set S0
exists such thatS � S0 � S[(AtnfAg); If the answer is “no”, thenS := S[fAg;

Step 5. set At := At n fAg and continue at Step 2.

This algorithm correctly outputs a rational status set (so one exists) in polynomial time modulo
calls to the oracle. Hence, the problem is in FPNP. This upper bound can be improved to FNP//log,
since we can nondeterministically compute a rational status set as follows.

1. Compute the smallest size s of a feasible status set S;

2. nondeterministically generate, i.e., guess and check a feasible status set S such that jSj = s,
and output it.

Step 1 amounts to an NP optimization problem, since s can be computed in a binary search on the
range of possible values, and s has in binary O(log jI j) many bits, where I is the instance size.

The time for Step 2 is also polynomial time (cf. Proposition 7.7).

Hence the overall algorithm proves that computing a rational status set is in FNP//log, if IC = ;.
We obtain the following result.

60

Theorem 7.13 Let P be a fixed agent program, and suppose IC = ;. Given an agent state OS ,
computing any rational status set of P on OS is in FNP//log and hard for both FNP and FPNPk .

Proof. By the previous discussion, it follows that the problem is in FNP//log. Hardness for FNP
follows from the proof of Theorem 7.8.

Thus, it remains to show hardness for FPNPk . We establish this by a reduction of computing a
minimal model of a propositional CNF formula �, i.e., find a modelM (satisfying truth assignment
to the variables), such that no model M 0 exists withM 0 � M , where a model is identified with the
set of variables which are true in it. FPNPk -hardness of this problem, even if all clauses in � have at
most three literals, follows easily from the results in [24] (Lemma 4.7).

The reduction is an extension of the one in the proof of Theorem 7.11 (note the observations on
rational status sets of the program P there, and that a rational status set always exists).

We use six further 3-ary relationsC1; : : : ; C6 for storing the clauses which are neither positive nor
negative, and add respective rules derivingF�. More precisely, if we setC0 = NEG andC7 = POS,
then the relation Ci stores the clauses C = L1 _ L2 _ L3 such that the string p(L1)p(L2)p(L3) of
the polarities of the literals yields i in binary, where p(L) = 1 if L is positive, and p(L) = 0, if L is
negative; thus, e.g. the clause x1 _ x5 _ :x3 is stored as tuple (x1; x5; x3) in the relation C6, sincep(x1)p(x5)p(:x3) = 110.

Then, the rational status set of the resulting program P 0 on the database for � correspond 1-1 to
the minimal models of �, if � is satisfiable, and the set S from there is the unique rational status set
iff � is unsatisfiable. Moreover, from any rational status set, the corresponding minimal model M
is easily computed.

Hence, the computation of a minimal model reduces to the computation of a rational status set.
This implies FPNPk -hardness, and the theorem is proved.

An improvement of these bounds, in particular completeness for FNP//log, seems to be difficult
to achieve. In fact, it can be shown that computing a rational status set is polynomial time equivalent
to computing a minimal model of a CNF formula, which is not known to be complete for FNP//log,
cf. [24].

Action reasoning becomes harder in the brave variant if we use rational status sets instead of fea-
sible status sets. The reason is that we have to check groundedness of a status set, which is a source
of complexity and adds another level in the polynomial hierarchy. However, for the cautious variant,
there is no complexity increase.

Theorem 7.14 Let P be a fixed agent program P , and suppose IC = ;. Let OS be a given agent
state and let � be a given ground action atom. Then, deciding whether � 2 Do(S) holds for (i)
every (resp., (ii) some) rational status set of P on OS is co-NP-complete (resp., �P2 -complete).

Proof. For (i), observe that to disprove � 2 Do(S) for every rational status set S, we can guess
a feasible status set S such that � =2 S and verify the guess in polynomial time by Proposition 7.7.
Hence, the problem is in co-NP. Hardness follows from the reduction in the proof of Theorem 7.8;
there, Do(�) belongs to every rational status set of the constructed program P , if and only if P has
no feasible status set.(ii). The membership part is easy: A guess for a rational status set S such that � 2 Do(S) can be
verified by Proposition 7.7 and Theorem 7.11 in polynomial time with an NP oracle.

61

The hardness part is shown by a reduction from a syntactical fragment of quantified Boolean for-
mulas which is �P2 -hard, and combines the reductions in the proofs of Theorems 7.8 and 7.11 in a
suitable way.

Telling whether a quantified Boolean formula (QBF) 8X9Y:�, where � = Wmj=1 Cj is a CNF
formula of clauses Cj = Lj;1 _ Lj;2 _ Lj;3 whose literals Lj;k are over propositional variables
(atoms) X [Y , is not true is a well-known �P2 -complete problem [37]. This remains true even if
each clause Cj is either positive or negative (i.e., � is a M3SAT instance).

We extend the database D from the proofs of Theorems 7.8 and 7.11, by adding two further rela-
tions XVAR and YVAR for storing the variables of X and Y , respectively. Construct a program P ,
using the actions �; �, and
 from above as follows.P� F� :P
;:P�(X1);:P�(X2);:P�(X3); POS(X1; X2; X3)F� :P
;P�(X1);P�(X2);P�(X3);NEG(X1; X2; X3)P�(X1) :F�(X1);XVAR(X1)P�(X1) P
;YVAR(X1)Do
 P

Clearly, every feasible status set S must contain either P�(x) or F�(x) (but not both), for everyx 2 X . Moreover, if P
 2 S, then Do
 2 S and for all y 2 Y , we have P�(y) 2 S.

Let � be a choice among the atoms P�(x) and F�(x), for all x 2 X . Then, defineS� = � [fP�;P
;Do
g [fP�(y) j y 2 Y g:
It is easy to see that S� is a feasible status set, for every choice �. We claim that every rational status
set S of P must be contained in some of the S�.

To see this, notice that no atoms with status W or O can be in S, since there is no possibility to
derive such an atom. For the same reason, no atoms Do�(v),Do�, F
 and F�(y) can be in S, for
every v 2 X [Y and y 2 Y . Hence, by the observation on P(�(x)) and F(�(x)) from above, S
must be a subset of some S�.

It is easy to set that S� is not grounded, if and only if P
 can be removed from it, such that S� nfP
;Do
g contains a feasible status set. This happens to be the case if the formula 9Y:�[�] is true,
where �[�] is � with x 2 X being replaced by true, if P�(x) 2 S�, and by false, if F�(x) 2 S�,
for all x 2 X .

Thus, it follows that some rational status set of P contains Do
, if and only if S� is a rational
status set of P for some �, if and only if for some � the formula �[�] is unsatisfiable, if and only if8X9Y:� is not true.

Of course, for positive agent programs, action reasoning is easier. In fact, in this case it is poly-
nomial for both (i) and (ii) since a rational status set, if it exists, is unique.

7.2.3 Reasonable status sets

Our first result on reasonable status sets is positive: the recognition problem, even in the general
setting where we have negation and integrity constraints, is tractable.

62

Theorem 7.15 Let P be a fixed agent program (where IC is not necessarily empty). Then, given
an agent stateOS and a status set S, deciding whether S is a reasonable status set of P on OS is
possible in polynomial time.

Proof. Indeed, by our assumptions, the ground instance of P over the agent state is constructible
in polynomial time, and, moreover, the reduct redS(P ;OS) is computable in polynomial time. By
Theorem 7.1, the unique rational status set S0 of redS(P ;OS) is computable in polynomial time,
and it remains by Theorem 5.3 and the definition of a reasonable status set to check whether S = S 0
(so S0 exists). Overall, this yields a polynomial-time algorithm.

Computing a reasonable status set, however, is clearly intractable in the general case, even in the
absence of integrity constraints. We note for completeness sake the complexities of deciding the
existence of a reasonable status set and computing one, which are immediate from Proposition 7.7
and the discussion after Theorem 7.8.

Theorem 7.16 Let P be a fixed agent program (where IC is not necessarily empty). Then, given an
agent stateOS , deciding whetherP has a reasonable status set onOS is NP-complete, and comput-
ing some reasonable status set S of P onOS is complete for FNP. Hardness holds even if IC = ;.

It is clear in the light of this result that for nonpositive programs with no integrity constraints,
action reasoning on the reasonable status sets is intractable. However, compared to the rational status
sets, the complexity of the brave variant is lower; this is explained by the absence of an expensive
groundedness test for reasonable status sets, which allows for an efficient recognition.

Theorem 7.17 Let P be a fixed agent program P (where IC is not necessarily empty). Let OS be
a given agent state and let � be a given ground action atom. Then, deciding whether � 2 Do(S)
holds for (i) every (resp., (ii) some) reasonable status set of P on OS is co-NP-complete (resp.,
NP-complete). Hardness holds even if IC = ;.
Proof. For (i) (resp., (ii)), we can guess a reasonable status set S of P such that � in Do(S)
(resp., � =2 :Do(�)) and verify the guess in polynomial time (Proposition 7.15).

Hardness for (i) and (ii) can be easily shown by modifying the reduction in the proof of Theo-
rem 7.8 as discussed (add F(�(X1)) P(�(X1))) questioning about �, where we add in (ii) the
rule Do(�) .

7.2.4 Weak status sets

In Subsection 7.1.1, we have already considered the computation of weak rational (resp., reasonable)
status sets for positive programs. In the presence of negation, the concepts of weak rational status
sets and weak reasonable status set do no longer coincide. Also, the complexities of the different
concepts of status sets are different.

Compared to rational (resp., reasonable) status sets, we have here to deal with relativized action
closureAClA, whereA is a set of ground actions; recall thatA-feasibility,A-rationality etc is defined
likeA-feasibility, with the only only difference that action closure is fixed to actions inA, rather than
all ground actions. The relativization toA does not affect the complexity.

63

Proposition 7.18 LetP be any program, and letOS be an agent state. Then, given S andA, testingA-feasibility of S (resp., A-rationality,A-reasonability), has the same complexity as testing feasi-
bility (resp., rationality, reasonability) of S.

Since under our assumptions, a weak rational (resp., weak reasonable) status set exists if and only
if an A-rational (resp., A-reasonable) status set exists for some A, we easily obtain from the proofs
of Theorems 7.8 and 7.16 the following result.

Theorem 7.19 Let P be a fixed agent program, and suppose IC = ;. Then, given an agent stateOS , deciding whether P has a weak rational (resp., reasonable) status set onOS is NP-complete.

The computation of any weak rational status set can be accomplished using the algorithm COMP-
WEAK-RATIONAL-SS described below.

Algorithm COMP-WEAK-RATIONAL-SS

Input: agent stateOS , (fixed agent program P , IC = ;)
Output: a weak rational status set of P on OS , if one exists.

Method

1. Compute the maximum size s of a set A such that P has anA-feasible status set onOS ;

2. Compute a set A such that jAj = s and some A-feasible status set exists;

3. Compute the smallest size s0 of any A-feasible status set S;

4. Compute an A-feasible status set S such that jSj = s0, and output S.

The steps 1.-4. can be done in polynomial time with the help of an NP oracle. Therefore, comput-
ing a weak rational status set is in FPNP in the absence of integrity constraints. Notice by Proposi-
tion 5.10, Steps 1 and 2 can be combined by computing a status set S which is A(S)-feasible and
such that jA(S)j is maximal.

For weak reasonable status sets, we can apply an adapted version of COMP-WEAK-RSS, in which
“A-feasible” is replaced by “A-reasonable”; Notice that existence problem for A-feasible and A-
reasonable status sets has the same complexity.

Thus, for both kinds of status sets, the computation problem is polynomial if an NP oracle may be
consulted. We can improve on this upper bound and give an exact characterization of the problem
in terms of the complexity class FNP//log, which comprises computation problems with an adjunct
NP optimization problem (see Section 6.3 and [24]).

In our case, this NP optimization problem consists in the computation of the numbers s and s0,
respectively. It is possible to combine these two steps into a single NP optimization problem, such
that we can generate, given its solution, nondeterministically in polynomial time a weak rational
(resp., reasonable) status set.

Theorem 7.20 LetP be a fixed agent program and suppose thatIC = ;. Then, computing any weak
rational (resp., weak reasonable) status set ofP on a given agent stateOS is complete for FNP//log.

64

Proof. Let GA be the set of all ground action atoms. Associate with every status set S the tupletS = hjA(S)j; jGAj � jSji, if S is A(S)-rational, and ts = h�1; 0i otherwise, and impose on the
tuples tS the usual lexicographic order. Then, the following holds: Any status set S such that tS is
maximal is a weak rational status set, if and only if tS 6= h�1; 0i.

Given a maximal tuple tS , it is clearly possible to generate a weak rational status set S nonde-
terministically in polynomial time, so one exists. Moreover, the tuples tS can be easily encoded
by polynomial size numbers z(tS), such that z(tS) > z(tS0) iff tS > tS0 ; e.g., define z(hi; ji) =(jGAj + 1)i + j. Computing the maximum z(tS) is an NP optimization problem, and from anyz(tS), the tuple tS is easily computed. Hence, it follows that computing a weak rational status set is
in FNP//log.

It remains to show hardness for this class. For this purpose, we reduce the computation of an X-
maximal model [23, 24] to this problem. This problem is, given a propositional CNF formula � and
a subsetX of the atoms, compute theX-part of a model M of � such that M \X is maximal, i.e.,
no model M 0 of � exists such that M 0 \X � M \X , where M is identified with the set of atoms
true in it. Hardness of this problem for FNP//log is shown in [23, 24].2

The reduction is as follows. Without loss of generality, we assume that � is an M3SAT instance.
Indeed, we may split larger clauses by introducing new variables, and exchange positive (resp., neg-
ative) literals in clauses by using for each variable x a new variable x̂ which is made equivalent to:x. (All new variables do not belong to the set X .)

The reduction is similar to the one in the proof of Theorem 7.6. We use the action base and database
from there, and introduce a further relation XVAR for storing the variables in X . Consider the fol-
lowing program P :O(set1(X)) XVAR(X)Do(set0(X)) :Do(set1(X));VAR(X)P� F� Do(set0(X1));Do(set0(X2));Do(set0(X3)); POS(X1; X2; X3)F� Do(set1(X1));Do(set1(X2));Do(set1(X3));NEG(X1; X2; X3)
and impose on it the action constraintAC:AC : fset0(X); set1(X)g - VAR(X):
The first rule states that every variable in X should be set to true, and the second rule together withAC effects that xi is either set to true or to false, but not both.

It is easily seen that the weak rational status sets S of P on the input database D for an M3SAT
instance � correspond 1-1 to theX-maximal models of �, and from every such S, theX-part of the
correspondingX-maximal model is easily obtained.

Since D is efficiently constructed from � in polynomial time, it follows that computing a weak
rational status set is hard for FNP//log.

The proof of hardness for computing a weak reasonable status set is similar (use an additional
clause Do(set1(X)) :Do(set0(X));VAR(X)). This proves the result.

2In fact, the authors use in [24] a slightly stronger form of reduction among maximization problems than in [23], which
requires that the transformed instance must always have solutions; our proofs of FNP//log hardness can be easily adapted
to this stronger reduction.

65

Like in the case of positive programs, recognition of a weak rational status set S is no harder than
computation, even if programs are nonpositive. The recognition problem is solved by the following
algorithm.

Algorithm REC-WEAK-RATIONAL

Input: status set S on agent stateOS (fixed agent program P ; IC = ;)
Output: “Yes”, if S is a weak rational status set of P on OS , “No” otherwise.

Method

1. Check whether S is A(S)-feasible;

2. Check whether there is no A(S)-feasible status set S0 such that S0 � S;

3. Check whether there is no S0 such that S0 is A(S0)-feasible and A(S) � A(S 0).
The correctness of this algorithm follows from Proposition 5.10. However, it is not clear how

to implement it in polynomial time. The next theorem establishes that such an implementation is
unlikely to exist, nor that any polynomial time algorithm for this problem is known.

Theorem 7.21 LetP be a fixed agent program and suppose thatIC = ;. Then, given an agent stateOS and a status setS, deciding whether S is a weak rational status set ofP onP is co-NP-complete.

Proof. Algorithm REC-WEAK-RATIONAL can be easily rewritten as a nondeterministic polyno-
mial time algorithm for refuting that S is a weak rational status set. Hardness is immediate from the
proof of Theorem 7.11.

A weak reasonable status set can be recognized in a similar way; see algorithm REC-WEAK-
REASONABLE below. The correctness of this algorithm follows from Proposition 5.10. We obtain
the following result.

Algorithm REC-WEAK-REASONABLE

Input: agent stateOS , status set S (fixed agent program P)

Output: “Yes”, if S is a weak reasonable status set of P , “No” otherwise.

Method

1. check whether S is A(S)-reasonable, and output “No” if not;

2. Check whether there is no S0 such that S0 is A(S 0)-reasonable and A(S) � A(S 0).
Theorem 7.22 Let P be a fixed agent program (where IC is arbitrary). Then, given an agent stateOS and a status set S, deciding whether S is a weak reasonable status set is co-NP-complete. Hard-
ness holds even if IC = ;.

66

Proof. Clearly, algorithm REC-WEAK-REASONABLE can be turned into a NP-algorithm for show-
ing that S is not a weak rational status set.

The hardness part follows by an easy modification to the proof of Theorem 7.8. Add the rulesF�(X1) :P�(X1);VAR(X1), and replace the rule P� by the rule O�. Moreover, assume
w.l.o.g. that the assignment in which all variables xi have value false does not satisfy �.

Then, S = fF(x1) j xi 2 Xg [fF�;O�g is A(S)-reasonable. It is easily seen that S is a weak
reasonable status set, if and only if � is not satisfied by any assignment which sets some variable
true. (If such an assignment exists, then the obligationO�, which is violated in S, can be obeyed,
and thus a reasonable status set exists).

When we switch from rational (resp., reasonable) status sets to weak versions, the complexity of
action reasoning is partially affected in the absence of integrity constraints.

It is easy to see that for the brave variant, the complexity for the weak and the ordinary version of
rational status sets is the same. In both cases, the straightforward Guess and Check algorithm yields
the same upper bound, and the result for brave rational action reasoning has been derived without
involving obligations.

For the cautious variant, we find a complexity increase, even if the complexity of the recognition
problem has not changed. The reason is that the beneficial monotonicity property of finding just
some feasible status set which does not contain the action � in question as a proof that � does not
occur in all rational status sets, can (in a suitable adaptation) no longer be exploited.

Theorem 7.23 Let P be a fixed agent program P , and suppose IC = ;. Let OS be a given agent
state and let � be a given ground action atom. Then, deciding whether � 2 Do(S) holds for (i)
every (resp., (ii) some) weak rational status set of P on OS is �P2 -complete (resp., �P2 -complete).

Proof. The proof for the brave variant is in the discussion above.

For the cautious variant, observe that a weak rational status set S such that � =2 Do(S) can be
guessed and checked with an NP oracle in polynomial time.

For the hardness part, we adapt the construction in the proof of Theorem 7.14 for a reduction from
QBF formulas 9X8Y �, where � is in M3DNF form.

We use the action baseAB from there and extend it with another action � of the same type as �.
Moreover, we use the relations POS and NEG for storing the disjuncts of � as described in the proof
of Theorem 8.2, and replace VAR by the relations XVAR and YVAR for storing the variables in X
and Y , respectively.

Then, we set up the following program:O(set0(X)) XVAR(X)O(set1(X)) XVAR(X)Do(set0(X)) :Do(set1(X));XVAR(X)F� Do(set0(X1));Do(set0(X2));Do(set0(X3)); POS(X1; X2; X3)F� Do(set1(X1));Do(set1(X2));Do(set1(X3));NEG(X1; X2; X3)O(�) P(�) Do(�)
We modify the action constraint AC toAC0 : fset0(X); set1(X)g - XVAR(X):

67

In the above program, the agent is informally obliged by the first two clauses to set every variablex 2 X to both true and false, which is prohibited by AC0. The next clause forces him/her to assign
each variable in X [Y a truth value. By the maximality of weak rational status sets, then agent
follows one of the two obligations for each variable in X , which creates an exponential number of
possibilities.

The next two clauses check whether the formula � is satisfied. If so, then F� is derived. By the
next clause, the agent should take �, but if F� is derived, s/he cannot execute �; hence, s/he must
violate this obligation in that case. Thus, if for a choice � from O(set0(x)), O(set1(x)), for allx 2 X , the formula 8Y �[X = �] is true, then there exists a weak rational status set S such thatDo� =2 S; conversely, if there exists such a status set, then a truth assignment � to X exists such
that 8Y �[X = �] is true.

Consequently,deciding whether� 2 Do(S) for every weak rational status set ofP on the databaseD for 9X8Y � is �P2 -hard.

We remark that �P2 -hardness of the brave variant can be obtained by adding a ruleDo
 :Do�
and querying about
.

For action reasoning with weak reasonable status sets, we obtain similar complexity results.

Theorem 7.24 Let P be a fixed agent program. Let OS be a given agent state and let � be a given
ground action atom. Then, deciding whether � 2 Do(S) holds for (i) every (resp., (ii) some) weak
reasonable status set ofP onOS is�P2 -complete (resp.,�P2 -complete). Hardness holds even ifIC =;.
Proof. A weak reasonable status set S such that � =2 Do(S) (resp., � 2 Do(S)) can be guessed
and checked in polynomial time with an NP oracle by Theorem 7.22.

Hardness follows for both problems by a slight extension of the construction in the proof of The-
orem 7.23. Add to the program P there the clauseDo(set1(X)) :Do(set0(X));YVAR(X)
Then, the weak reasonable status sets of the resulting program P 0 coincide with the weak rational
status sets of P 0, which coincide with the weak rational status sets of P . This proves the result for(ii). For (i), add the rule Do
 Do� and query about
.

7.3 Preferred status sets

Intuitively, adding a preference on rational or reasonable status sets does increase the complexity of
the semantics. Even if we have checked that a status setS is rational (resp., reasonable), then we still
have to verify that there is no other rational (resp., reasonable) status set S0 which is preferred overS. This check appears to be expensive, since we have to explore an exponential candidate space
of preferred rational (resp., reasonable) status sets S0, and the test whether S0 is in fact rational is
expensive as well.

68

However, as it turns out, for rational status sets, preference does not lead to an increase in the
complexity of action reasoning if no integrity constraints are present. On the other hand, preference
does increase the complexity of action reasoning for reasonable status set. This is explained by the
fact that for rational status sets, an increase in complexity is avoided since for deciding preference,
it is sufficient to consider feasible status sets for ruling out a candidate S for a preferred rational set,
and feasible status sets have lower complexity. For reasonable status sets, a similar property does
not apply, and we enface the situation of being obliged to use reasonable status sets for eliminating
a candidate.

In the rest of this paper, we focus on F -preferred status sets. Similar results can be derived for the
dual P -preferred status sets by dualizing proofs.

Theorem 7.25 Let P be a fixed agent program, and suppose IC = ;. Then, given an agent stateOS and a status setS, deciding whether S is a F -preferred rational status sets ofP onOS is co-NP-
complete.

Proof. By Proposition 7.7, one can decide in polynomial time whether S is a feasible status set.
Now we exploit the following property: A feasible status set S of P is not a F -preferred rational
status set of P , if and only if there exists a feasible status set S 0 of P such thatF(S 0) � F(S) holds.

Therefore, we can refute that S is a F -preferred rational status set by guessing a status set S0 and
checking in polynomial time whether either S is not a feasible set, or whether S 0 is feasible and
satisfies F(S0) � F(S). Hence, the problem is in co-NP.

Hardness is an immediate consequence of the proof of Theorem 7.11, as the candidate setS defined
there satisfies F(S) = ;, and is thus F -preferred, if and only if it is grounded.

The computation of an F -preferred rational status set is possible using a variant of the algorithm
COMPUTE-RATIONAL-SS as follows. After Step 1, compute in a binary search the size s of the
smallest possible F -part over all feasible status sets of P on OS ; then, in the remaining steps of the
algorithm, constrain the oracle query to existence of a feasible status setS0, S � S 0 � S[(AtnfAg),
such that jF(S0)j = s. This is a polynomial algorithm using an NP oracle, and hence the problem is
in FPNP.

A refined analysis unveils that the complexity of this problem is, like the one of computing a weak
rational status set, captured by the class FNP//log.

Theorem 7.26 Let P be a fixed agent program, and suppose IC = ;. Then, given an agent stateOS , computing an arbitrary F -preferred rational status set of P on OS is complete for FNP//log.

Proof. The proof of membership is similar to the one of computing a weak rational status set.
Indeed, the F -preferred status sets are those status sets S for which the tuple t0S = hjF(S)j; jSji
is minimal under lexicographic ordering, where infeasible status sets S have associated the tuplet0S = hjGAj+1; jGAji, whereGA is the set of all ground action status atoms. From a minimal t0S , aF -preferred rational status set can be nondeterministically constructed in polynomial time. Hence,
the problem is in FNP//log.

The proof of hardness is by a reduction from the problem X-maximal model in the proof of The-
orem 7.20, which is w.l.o.g. in M3SAT form.

We modify the program in the proof of Theorem 7.8 to the following program P 0:P�
69

F� :P�(X1);:P�(X2);:P�(X3); POS(X1; X2; X3)F� P�(X1);P�(X2);P�(X3);NEG(X1; X2; X3)F�(X1) :P�(X1);XVAR(X1)
Here, XVAR stores the variables in X . The rational status sets of P 0 on the database D for � corre-
spond 1-1 to the models M of � such that for the X-part fixed to X \M , the part of the remaining
variables is minimal, i.e., to the models M such that no M 0 exists such that M 0 \X =M \X andM 0 �M .

It is not hard to see that for every F -preferred rational status set S of P on D, the corresponding
model M of � is X-maximal. (Observe also that for every X-maximal model �, there exists someF -preferred rational status set of P such that the corresponding model M 0 of � satisfiesM 0 \X =M \ X .) Moreover, M is easily constructed from S. It follows that computing an arbitrary F -
preferred rational status set is hard for FNP//log.

ForF -preferred reasonable status sets, we obtain similar results. However, we may allow the pres-
ence of integrity constraints without a change in the complexity.

Theorem 7.27 Let P be a fixed agent program. Then, given an agent stateOS and a status set S,
deciding whether S is a F -preferred reasonable status set of P onOS is co-NP-complete. Hardness
holds even if IC = ;.
Proof. By Proposition 7.15, we can decide in polynomial time whether S is a reasonable status
set, and check that there is no reasonable status set S 0 such that F(S 0) � F(S) with the help of an
NP oracle.

Hardness is shown by a proper modification of the program P in the proof of Theorem 7.11. In-
deed, replace the clause P�(X1) P
 with the clause F�(X1) F
, replace :P
 with :F
 in
the other clauses, and add the following clauses:P�(X1) :F�(X1) F
 :P
F�(X1) :P�(X1) P
 :F

Then, the set S = fF�(xi) j xi 2 Xg [fF
g is a reasonable status set of the new program P 0 on
the database D. It is the (unique) F -preferred reasonable status set, if and only if the formula � is
not satisfiable. Hence, deciding whether S is a F -preferred reasonable status set is co-NP-hard.

An F -preferred reasonable status set can be computed applying an algorithm analogous to the one
used for computing a F -preferred rational status set. First, compute the minimum size s of the F -
part F(S) over all reasonable status sets S, and then construct a reasonable status set S such thatjF(S)j = s.

This matches the solution scheme for problems in FNP//log; we obtain the following result.

Theorem 7.28 Let P be a fixed agent program (where IC is not necessarily empty). Then, given
an agent state OS , computing any F -preferred reasonable status set of P on OS is complete for
FNP//log. Hardness holds even if IC = ;.
Proof. The membership part is in the preceding discussion.

70

The hardness part can be shown by a modification of the reduction in the proof of Theorem 7.26.
Add to the program from there the following rules:P�(X1) :F�(X1);XVAR(X1)P�(X1) :P
(X1);YVAR(X1)P
(X1) :P�(X1);YVAR(X1)
here, YVAR is a relation which stores the variables which are not inX , and
 is a new action of the
same type as �.

It holds that the reasonable status sets of the described program P on the databaseD for � corre-
spond 1-1 to the models of �; moreover, the F -preferred reasonable status sets S correspond 1-1 to
the X-maximal models M of �. Since M is easily computed from S, it follows that computing an
arbitrary F -preferred reasonable status set is FNP//log-hard.

7.3.1 Action reasoning

Theorem 7.29 LetP be a fixed program, and suppose that IC = ;. Then, given an agent statusOS
and an action status atomA, deciding whether A belongs to (i) every (resp., (ii)some) F -preferred
rational status sets is �P2 -complete (resp., �P2 -complete).

Proof. For the membership part, observe that a guess for a F -preferred rational status set S such
that A =2 S (resp., A 2 S), can be verified by checking that F is feasible, F is grounded, and that
no feasible status set S0 exists such that F(S 0) � F(S). By Proposition 7.7, and Theorem 7.11, it
follows that these tests can be done in polynomial time with an NP oracle. Hence, the problem is in�P2 (resp., �P2).

To show hardness, we employ a slight modification of the construction in the proof of case (ii) of
Theorem 7.14. Add to the program P from there the clausesP��(X1) F�(X1);XVAR(X1)F��(X1) P�(X1);XVAR(X1)
where �� is a new action of the same type as �. The effect of these clauses is to includeP��(xi) in a
rational status set, if F�(xi) belongs to it, and symmetrically to include F��(xi), if P�(xi) occurs
in it. This way, the extended candidate setS�� = S� [fF��(x) j P�(x) 2 S�; x 2 Xg [fP��(x) j F�(x) 2 S�; x 2 Xg
is not a F -preferred rational status set, if and only if the formula 9Y:�[�] is true.

Since any rational status set S0 which is F -preferred over S�� must not contain Do
, it follows
that Do
 is contained in some F -preferred rational status set, if and only if the formula 8X9Y:� is
false. This proves �P2 -hardness of (ii).

For (i), we simply add a clause Do� :P
 to the above program, where � is another action of
the type of �. Then, every rational status set S0 which is F -preferred to S�� containsDo�, while S��
does not containDo�. Consequently,Do
 occurs in all F -preferred rational status sets forP , if and
only if 8X9Y:� is true. This proves �P2 -hardness.

71

As discussed above, for reasonable status sets F -preference leads to a complexity increase, and
raises it to the level of rational status sets. However, as with the other problems on reasonable status
sets, this increase is independent of whether integrity constraints are present or not. For rational
status sets, this is not the case, and the complexity there is higher in the general case, as we will see
in Section 8.5.

Theorem 7.30 Let P be a fixed program (where IC may be nonempty). Then, given an agent stateOS and an action status atomA, deciding whetherA belongs to (i)every (resp., (ii)some)F -preferred
reasonable status set is �P2 -complete (resp., �P2 -complete). Hardness holds even if IC = ;.
Proof. A F -preferred reasonable status set S such that A =2 S (resp., A 2 S) can be guessed and
checked in polynomial time with the help of an NP oracle (Proposition 7.15, Theorem 7.27).

For the hardness we employ a reduction from a variant of Quantified Booleans Formulas, described
in Lemma 8.14: decide whether a formula � = 8X9Y 6= ;: � is true, knowing that for every X ,
the assignment � = ; satisfies the formula.

We extend the reduction in the proof of Theorem 7.8 in the same way as we have extended the one
in the proof of Theorem 7.14 for the proof of Theorem 7.29. We then have the program P :P� F� F�(X1);F�(X2);F�(X3); POS(X1; X2; X3)F� P�(X1);P�(X2);P�(X3);NEG(X1; X2; X3)P�(X1) :F�(X1)F�(X1) :P�(X1)P��(X1) F�(X1);XVAR(X1)F��(X1) P�(X1);XVAR(X1)
The asserted property of� implies that for each choice fromF(�(xi)) andP(�(xi)), for all xi 2 X ,
we have a status set S+� containing all atoms F(�(yi)), for all yi 2 Y , such that S+� is a reasonable
status set of P .

Now, if we add the ruleDo(
) :F�(X1);YVAR(X1)
where
 is a fresh action of the same type as �, then
 is contained in every F -preferred reasonable
status set of P , if and only if 8X9Y 6= ;: � is true. This proves �P2 -hardness of (i). For (ii), add
another ruleDo(�) :Do(
)
where � is another fresh action of the type of �. Then, � belongs to some F -preferred reasonable
status set of P , if and only if 8X9Y 6= ;: � is false. This proves the theorem.

8 Complexity Impact of Integrity Constraints

So far, we have focused in our complexity analysis mainly on agent programs where in the back-
ground no integrity constraints were present. We say mainly, since for positive programs and rea-

72

sonable status sets, most results that have been derived in Section 6 do allow for integrity constraints,
and fortunately establish tractability for a number of important computation problems.

However, in the presence of negation, we have excluded integrity constraints. The reason is that
in some cases, the presence or absence of integrity constraints makes a difference to the intrinsic
complexity of a problem, while in other cases, there is no difference. A systematic treatment of this
issue is suggestive; therefore, we analyze in this section the effects of integrity constraints on the
complexity of agent programs. An overview of the effects and a discussion is given in Section 6.2.
In the rest of this section, we develop the technical results.

8.1 Feasible status sets

As shown in the previous section, finding a rational or feasible status set of a positive agent program
is polynomial, if no integrity constraints are present. While adding integrity constraints preserves
polynomial time computability of rational status sets, it leads to intractability for feasible status sets.
In fact, already for a software package S = (TS ;FS) which is a simple relational database D in
which tuples may be inserted or deleted from tables, we face intractability if the integrity constraints
include functional dependencies (FDs for short) on the tables. Notice that FDs are one of the most
basic and important type of dependencies in databases [102].3

Theorem 8.1 LetP be a fixed agent program, where IC ma y be nonempty. Then, deciding whetherP has a feasible status set on a given agent stateOS is NP-complete, and computing an arbitrary
feasible status set is FNP-complete. Hardness holds even if P is positive and IC holds functional
dependencies of a relational databaseD.

Proof. The problem is in NP, since a feasible status set S can be guessed and checked in polyno-
mial time, according to our assumptions (cf. Proposition 7.7).

We show the hardness part for the particular restriction by a reduction from the set splitting prob-
lem [37]. Given a collection S = fS1; : : : ; Smg of sets over a finite set U , decide whether there
exists a partitioning (or coloring) (C1; C2) of U such that every Si 2 S, i = 1; : : : ; m, meets each
of C1 and C2 in at least one element.

We construct from S an instance of the feasible status set test as follows. The database D has
four relations: COLL(Set; El), SPLIT(El; Color), A1(Set; El; Tag) and A2(Set; El; Tag). In-
tuitively, the collection S is stored in COLL by tuples (i; e) for every e 2 Si and Si 2 S; the table
SPLIT is used for placing each element e 2 U in C1 or C2 (i.e., coloring it), which is indicated by
tuples (e; 1) and (e2; 2); the tables A1 and A2 hold the occurrences of elements in sets, where each
set has some label.

The action baseAB contains assign(X; Y) andtrigger(X; Y), which have empty precondition
and the following Add- and Del-Sets:

assign: Add(assign(X; Y)) = f SPLIT(X; Y)g,Del(assign(X; Y)) = f A1(S;X; Y), A2(S;X; Y) g;
trigger: Add(trigger(X; Y)) = f A1(X; Y; 0), A2(X; Y; 0) g, Del(trigger(X; Y)) = ;.

3A functional dependency is a constraint C : X ! A on a relation r, where A is an argument of r andX = fX1; : : : ; Xng is a subset of arguments of r; it holds, if any two tuples in r which agree on the ar-
guments in X agree also on A. In our framework, C can be expressed as an integrity constraint e.g. as follows:in(T1;db : select(r)&in(T2;db : select(r))&T1:X1 = T2:X1& � � �&T1:Xn = T2:Xn) T1:A = T2:A.

73

The program P has the single ruleDo(trigger(X; Y)) COLL(X; Y)
Let D be the database instance such that COLL contains the collection S, SPLIT is empty, and A1
(resp. A2) holds for each tuple (s; e) in COLL a tuple (s; e; 1) (resp. (s; e; 2)). Moreover, suppose
that the integrity constraintsIC onD consist of the following FDs: the FDEl! Color on ASSIGN,
and the FD Set! Tag on A1 and A2.

Intuitively, the program forces the agent to add for every occurrence of an element in a set Si 2 S,
represented by a tuple (i; e) in COLL, a tuple (i; e; 0) to both A1 and A2. This triggers a violation
of the FD Set! Tag on A1 and A2. This violation must be cured by executing assign(e1; 0) andassign(e2; 1) actions for some e1; e2 which occur in the set Si; by the FD El! Color on SPLIT,e1 must be different from e2.

Hence, it is easy to see that P has a feasible status set onD, if and only if S is colorable by some
coloring (C1; C2). Since a coloring (C1; C2) is easily constructed from any feasible status set S, the
result follows.

This result is quite negative, since it tells that already for very simple programs and very basic
constraints, computing a feasible set is a hard problem. The reason is that the agent program P we
have constructed in the reduction does not say anything about how and when to use the assign
action, which does not show up in the program. If we had rules which tell the agent under which
conditions a particular assign action should be taken or must not be taken, such a situation would
hardly arise. However, since the program is underconstrained in that respect, an exponentiality of
possibilities exists which must be explored by the agent.

The previous theorem shows that we benefit from using rational status sets instead of feasible sta-
tus sets on positive programs in different respects. First, on the semantical side, we have a unique
rational status set (if one exists) compared to a possible exponential number of feasible status sets,
and second, on the computational side, we can compute the unique rational status set on an agent
state in polynomial time, compared to the intractability of computing any feasible status set. Unfor-
tunately, in the presence of negation, like on the semantical side, also on the computational side the
appealing properties of rational status sets vanish.

8.2 Rational status sets

In the presence of integrity constraints, the complexity of rational status sets increases. The reason is
that due to the integrity constraints IC, a feasible set S may no longer necessarily contain a rational
status set; deciding this problem is intractable.

Theorem 8.2 LetP be a fixed agent program (not necessarily positive), supposeIC holds functional
dependencies on a relational database D. Let OS be an agent state, and let S be a feasible status
set for PonOSC. Then, deciding whether S contains some rational status set (resp., S is rational)
is co-NP-hard, even if IC contains a single FD.

Proof. We prove this by a reduction from the M3DNF problem, which is a restriction of the DNF
TAUTOLOGY problem (cf. [37]): Given a propositional formula � = Wmi=1Di in DNF, where
the Di’s are conjunctions of literals on a set of propositional variables X = fx1; : : : ; xng, decide

74

whether � is a tautology. M3DNF is the restriction in which eachDi has three literals, and such that
the literals of Di are either all positive or all negative. For convenience, we allow repetition of the
same literal in the same disjunct.

The databaseD contains three relations: POS(V1; V2; V3) and NEG(V1; V2; V3) for storing the pos-
itive and the negative disjuncts of �, respectively, and a relation VAR(V ar; V alue; Tag), which
contains for each pair of variable a x 2 X and a value v 2 f0; 1g precisely one tuple. That is, the
FD V ar; V alue! Tag is a constraint on VAR.

The initial databaseD contains the following tuples. For each positivedisjunctDi = xi1^xi2^xi3
from �, the tuple (xi1 ; xi2 ; xi3) is in POS, and for each negative disjunctDi = :xi1 ^ :xi2 ^ :xi3
the tuple (xi1 ; xi2 ; xi3) is in NEG. Moreover, for each propositional variables xi 2 X , the tuples(xi; 0; 0) and (xi; 1; 0) are in VAR.

The action base contains the three actions all, set(X; Y) and addto var(X; Y; Z), which have
empty preconditions and the following add and delete sets:

all: Add(all) = Del(all) = ;;
set(X; Y): Add(set(X; Y)) = ;, Del(set(X; Y)) = fVAR(X; Y; 0)g;
addto var(X; Y; Z): Add(addto var(X; Y; Z)) = fVAR(X; Y; Z)g,Del(X; Y; Z) = ;.

The program P is as follows:Do(set(X; Y)) Do(all);VAR(X; Y; Z):Do(all) Do(set(X; 0));Do(set(X; 1));VAR(X; Y; Z):Do(all) :Do(set(X; 0));:Do(set(X; 1));VAR(X; Y; Z):Do(all) Do(set(X; 0));Do(set(Y; 0));Do(set(Z; 0)); POS(X; Y; Z):Do(all) Do(set(X; 1));Do(set(Y; 1));Do(set(Z; 1));NEG(X; Y; Z):Do(addto var(X; Y; 1)) VAR(X; Y; Z):
Suppose that IC holds the single FD V ar; V alue! Tag on VAR. Let S be the smallest status setS which is closed under DCl and ACl and has the Do-SetDo(S) = fallg [fset(xi; v); addto var(xi; v; 1) j xi 2 X; v 2 f0; 1gg:
Then, it can be checked that S is a feasible status set of P on the initial database D.

We note that any feasible status set S0 � S must not contain Do(all), and must contain exactly
one of Do(set(xi; 0)),Do(set(xi; 1)), for every xi 2 X ; but, any such S0 does never satisfy the
FD V ar; V alue! Tag on VAR, since either the tuples (xi; 1; 0),(xi; 1; 1) are in VAR, or the tuples(xi; 0; 0), (xi; 0; 1), and therefore the FD V ar; V alue! Tag is violated on VAR.

It holds that S contains some rational status set (resp., that S is rational), if and only if formula �
is a tautology. The result follows.

For the recognition problem, we thus obtain by Theorem 8.2 and Proposition 7.7 easily the fol-
lowing result.

Theorem 8.3 Let P be a fixed agent program. Then, given an agent state OS and a status set S,
deciding whether S is a rational status set of P on OS , is co-NP-complete. Hardness holds even ifP is positive.

The computation problem for rational status sets is harder than for feasible status sets, and is be-
yond the polynomial time closure of NP.

75

Theorem 8.4 Let P be a fixed agent program. Then, given an agent state OS , deciding whetherP has a rational status set on OS is �P2 -complete, and computing any rational status set is F�P2 -
complete.

Proof. The problems are in �P2 andF�P2 , respectively, since a rational status set S can be guessed
an verified in polynomial time with the help of an NP oracle (cf. Theorem 8.3).

To show that the problems are hard for �P2 and F�P2 , respectively, we extend the construction in
the proof of Theorem 8.2, such that we encode the problem of computing, given a QBF 9Y 8X:�, an
assignment � to the Y -variables such that 8X:�[Y = �] is valid, where �[Y = �] is the application
of � to the Y -variables in �.

We use an additional relation YVAR for storing the Y -variables, and add the ruleDo(set(Y; 1)) :Do(set(Y; 0))
This rule enforces a choice between Do(set(yj ; 0)) and Do(set(yj ; 1)), for all yj 2 Y ; each such
choice � generates a candidate S� for a rational status set.

It holds that every rational status set of P onD must be of the form S�, for some choice �; more-
over, the rational status sets of P onD correspond to the setsS� such that the formula 8X:�[Y = �]
is valid. Therefore, deciding whetherP has a rational status set onD is�P2 -hard, and computing any
rational status set is hard for F�P2 . The result follows.

For action reasoning, we obtain from the preceding theorem easily the following result.

Theorem 8.5 Let P be a fixed agent program. Then, given an agent stateOS and a ground action�, deciding � 2 Do(S) holds for (i) every (resp., (ii) some) rational status set of P on OS is (i)�P2 -complete (resp., (ii) �P2 -complete).

Proof. Membership is immediate from Theorem 8.3: A guess for a rational status set S such that� =2 Do(S) (resp., � 2 Do(S)) can be verified with an NP oracle.

For the hardness parts, observe that all 2 Do(S) for every rational status set of the program P
in the proof of Theorem 8.4; thus, by querying about all, hardness for (i) holds. For (ii), query
about �, where � is a fresh action which does not occur in P .

8.3 Reasonable status sets

For reasonable status sets, we find in all cases better computational properties than for rational status
sets. This is explained by the fact that the criterion for a reasonable status set is much stronger than
the one for a rational status set.

Indeed, this criterion is so strong, such that the presence of integrity constraints has no effect on
tractability vs intractability issue of recognizing a reasonable status set. In both cases, a reasonable
status set can be recognized in polynomial time (Proposition 7.15). Therefore, the same complexity
results hold for programs with and without integrity constraints. (see Section 7.2.3).

76

8.4 Weak status sets

8.4.1 Positive programs

The recognition problem is no longer known to be polynomial if no integrity constraints are present
in general. This is a consequence of the proof of the previous theorem.

Theorem 8.6 Let P be a fixed positive agent program. Let OS be an agent state, and let S be a
status set. Then, deciding whether S is a weak rational status set of P is co-NP-complete.

Proof. To show thatS is not a weak rational status set, we can proceed as follows. Check whetherS is not A(S)-rational; if this is not the case (i.e., S is A(S)-rational), then guess some status set S 0
such that S0 is A(S0)-rational and A(S0) � A(S). Since checking A-rationality is polynomial if P
is positive, it follows membership in co-NP.

For the hardness part, we can establish a reduction from the M3SAT problem similar to the one in
the proof of Theorem 7.6.

As there, we suppose that an M3SAT instance � is stored in relations POS (positive clauses) and
NEG (negative clauses), and we assume that all variables are stored in VAR. Moreover, there is a
relation AUX(V ar; V al), which contains in the initial databaseD all tuples (xi; 0), for all variablesxi.

The action baseAB contains set0(X) and set1(X), which have both empty precondition, and
both the add sets fAUX(Y; 1)g and the delete sets fAUX(X; 0)g. Further,AB contains an action �
with empty precondition and empty add and delete sets. Define the program P as follows.O(set0(X)) VAR(X)O(set1(X)) VAR(X)F� Do(set0(X1));Do(set0(X2));Do(set0(X3)); POS(X1; X2; X3)F� Do(set1(X1));Do(set1(X2));Do(set1(X3));NEG(X1; X2; X3)P�
In addition, we have the action constraintAC : fset0(X); set1(X)g - VAR(X)
(this action constraint can be easily represented by additional positive rules in P ; see Section 5.5).
Moreover, IC contains the FD V ar ! V al on AUX. Clearly, the initialD satisfies this FD.

Then, for a given initial databaseD, the status setS = fO(set0(xi));O(set1(xi));P(set0(xi));P(set1(xi)) j xi 2 Xg [fP�g
is an f�g-set feasible status set. Moreover, it holds that S is a weak rational status set, if and only if
there exists no status set S0 such that S0 is A(S 0)-feasible andA(S 0) � f�g. Observe that any suchS0 must contain Do(set0(xi)) or Do(set1(xi)), for every xi 2 X , and thus corresponds to a truth
assignment; indeed, taking set 0(xi) or set 1(xi) for any xi adds the tuples (xj ; 1) to AUX1, for
all variables xj .

Thus, S is a weak rational status set, iff � is a No-instance; Since the database D is easily con-
structed from �, the result follows.

77

As we have seen in Section 7.1.1, a weak rational (resp., reasonable) status set of a fixed positive
agent program can be computed in polynomial time using the algorithm COMPUTE-WEAK-RSS.
Unfortunately, a similar polynomial algorithm in the presence of integrity constraints is unlikely to
exist. This is a consequence of the following result.

Theorem 8.7 Let P be a fixed positive agent program. Given an agent stateOS , deciding whetherP has a weak rational status set on OS is NP-complete.

Proof. The problem is inNP, since we can guess a setA of ground actions, computeS = lfp(TP;OS;A)
and check whether S isA-feasible in polynomial time. If such a setA exists, thenP has some weak
rational status set on OS .

NP-hardness can be shown by a slight extension to the reduction in the proof of Theorem 8.6.
Without loss of generality, the M3SAT formula � from the reduction there is only satisfiable if a
designated variable x1 is set to true. Thus, if we add the rule Doset1(x1) to the program P ,
then the resulting program has a weak rational status set if and only if � is satisfiable.

For the computation problem, we have the algorithm COMPUTE-PIC-WEAK-RATIONAL-SS be-
low, which makes use of an NP oracle.

Algorithm COMPUTE-PIC-WEAK-RATIONAL-SS

Input: agent stateOS (fixed positive agent program P ; IC is arbitrary)

Output: a weak rational status set of P on OS , if one exists; “No”, otherwise.

Method

Step 1. Set Anew := ;, GA := set of all ground actions.

Step 2. Query the oracle whether some A � Anew exists such that S 0 = lfp(TP;OS;A) isA(S0)-feasible.

Step 3. If the answer is “yes”, then letS := lfp(TP;OS ;Anew) and setAold := A(S),GA :=GA nAold; otherwise, if Anew = ;, then output “No” and halt.

Step 4. If GA = ;, then output S and halt.

Step 5. choose some � 2 GA, and set Anew := Aold [f�g, GA := GA n f�g; continue
at Step 2.

This algorithm computes a weak rational status set in polynomial time modulo calls to the NP
oracle. Therefore, the problem is in FPNP. Observe that in case IC = ;, the NP-oracle can be re-
placed by a polynomial time algorithm, such that we obtain an overall polynomial algorithm similar
to COMPUTE-WEAK-RSS.

Like in other cases, the FPNP upper bound for the computation problem can also be lowered toFNP//log in this case.

Theorem 8.8 Let P be a fixed positive agent program. Then, computing a weak rational status set
is in FNP//log and hard for both FNP and FPNPk .

78

Proof. For computing a weak rational status set, we can proceed as follows. First, compute the
maximum size s = jA(S)j over all status sets S such that S is A(S)-rational; then, generate nonde-
terministically a status set S which is A(S)-rational and such that jA(S)j = s, and output this set
(so one exists).

The correctness of this algorithm follows from Proposition 5.10. Moreover, checking whether S
is A(S)-rational is polynomial if P is positive, as follows from Propositions 7.18 and 7.2. Conse-
quently, computing a weak rational status set is inFNP//log in this case. FNP-hardness follows from
the proof of Theorem 8.7; the weak rational status sets of the program from the proof of this theorem
correspond to the satisfying assignments of an M3SAT instance, whose computation is easily seen
to be FNP-complete by the FNP-completeness of SAT.

For the proof of FPNPk -hardness, we use the fact that given instances I1; : : : ; In of any arbitrary
fixed co-NP-complete problem �, computing the binary stringB = b1 � � � bn where bi = 1 if Ii is a
Yes-instance of � and bi = 0 otherwise, is FPNPk -hard (this is easily seen).

We choose for this problem the recognition of a weak rational status set S of a fixed positive agent
program P , which is co-NP-complete by Theorem 8.6.

We may assume thatP is the program from the proof of this result, and S the status set constructed
over the databaseD constructed for a formula �. We observe that P has weak rational status set onP , and thatS is the unique weak rational status set, iff the formula � is unsatisfiable. Thus, from any
arbitrary weak rational status set S0 of P over D, it is immediate whether S is weak rational or not.

Consequently, computing weak rational status sets S1; : : : ; Sn ofP over given databasesD1; : : : ;Dn is FPNPk -hard.

It remains to show that the computation ofS1; : : : ; Sn can be reduced to the computation of a single
weak rational status set S of a fixed program P 0 over a database D0.

For thus purpose, we merge the databasesDi into a single database. This is accomplished by tag-
ging each tuple inDi with i, i.e., add a new attributeA in each relation, and each tuple obtains valuei on it;A is added on the left hand side of each functional dependency. Moreover, an additional argu-
ment T for the tag is introduced in each action, and all literals in a rule have the same fresh variableT in the tag position.

Then, the resulting program P 0 has some weak rational status set S on the unionD0 of the taggedDi’s, and from any such S weak rational status sets S1; : : : ; Sn of P on each Di are easily obtained
in polynomial time. On the other hand, D0 is polynomial-time constructible from D1; : : : ; Dn.

We finally address the problem of action reasoning.

Theorem 8.9 Let P be a fixed positive agent program P . Let OS be a given agent state and let �
be a given ground action atom. Then, deciding whether � 2 Do(S) holds for (i) every (resp., (ii)
some) weak rational status set of P on OS is �P2 -complete (resp., NP-complete).

Proof. The membership part of (ii) is easy from Theorem 8.6. A guess for a weak rational status
set S such that A =2 Do(S) can be verified with an NP oracle in polynomial time.

For the membership part of (i), observe that under the assumptions, if S is anA rational status set,
then any A0-rational status set S 0 such that A0 � A satisfies S 0 � S. Therefore, it suffices to guess
a status set S such that S is A(S)-rational and A 2 Do(S); the guess can be verified in polynomial
time.

79

Hardness for (i) follows from Theorem 7.6. The hardness part for (ii) can be shown by a suitable
extension of the construction in the proof of Theorem 8.6, such that validity of a quantified Boolean
formula 8Y 9X�, can be decided, where � is in M3SAT form.

Assume without loss of generality that no clause of � has all its variables from Y , and that � can
only be satisfied if a particular variable x1 2 X is set to true. We introduce two new relations YVAR
for storing the variables in Y (VAR stores X [Y) and AUX1(V ar; V al), on which also the FDV ar ! V al applies. Store in the database D for each variable xi 2 X a tuple (xi; 0) in AUX, and
for each yi a tuple (yi; 0) in AUX1.

The delete sets of set0(X) and set1(X) are augmented by AUX(X; 0). Moreover, we intro-
duce a new action add to aux1(Y), which has empty precondition, empty delete set, and add setf AUX1(Y; 1) g.

Finally, add to the program P in the proof of Theorem 8.6 the following rule:Do(add to aux1(Y)) YVAR(Y)
These modifications have the following effect. The added rules enforces that for each variable yi 2Y , the tuple (yi; 1) is added to AUX1, and either set0(yi) or set1(yi) must be executed, in order
to maintain the FD V ar ! V al on AUX1. Thus, every weak rational status set of the constructed
program onD contains either Do(set0)(yi) or Do(set1)(yi), for each yi 2 Y .

On the other hand, for each such choice �, which embodies a truth assignment to Y , by the as-
sumption on � a weak rational status set exists; if all obligations set0(xi), set1(xi), xi 2 X are
violated, then we obtain a respectiveA-feasible status setS�, and therefore, since the program is pos-
itive, a weak rational status set S0 � S� exists. It holds that S� is weak rational, iff 9X�[Y = �] is
unsatisfiable.

By our assumptions, it follows that set1(x1) 2 Do(S) for every weak rational status set S of the
program onD, iff formula � is valid. This proves the hardness part for (ii) and the result.

8.4.2 Programs with negation

Let us now consider programs with negation. In this case, weak rational and weak reasonable status
sets are no longer identical in all cases.

Weak reasonable status sets. For weak reasonable status sets, we can observe that integrity
constraints do not add on the complexity; under both presence and absence of integrity constraints,
we obtain the same results for the worst case complexity. In particular, all the general upper bounds
that we have derived for weak reasonable status sets in Section 7.2.4, apply to programs with integrity
constraints as well. It thus remains to consider weak rational status sets.

Weak rational status sets. The existence problem of anA-rational status set has the same com-
plexity as the existence problem of a rational status set (Proposition 7.18). Since a weak rational
status set exists if and only if anA-rational status set exists for someA, we obtain from Theorem 8.4
resp. its proof the following result.

Theorem 8.10 Let P be a fixed agent program. Then, given an agent state OS , deciding whetherP has a weak rational status set on P is �P2 -complete.

For the computation of a weak rational status set, we can use a modified version of the algorithm
COMPUTE-WEAK-RATIONAL-SS, by replacingA-feasible sets withA-rational sets. This increases

80

the complexity, as we have to replace the NP oracle by a �P2 oracle. We thus obtain that the problem
belongs to FP�P2 . A slightly better upper bound can be given.

Theorem 8.11 Let P be a fixed agent program. Then, computing any weak rational status set of P
on a given agent stateOS is in FP�P2 \ RP � FP�P2k and hard for both F�P2 and FP�P2k .

Proof. Membership inFP�P2 was discussed above. Membership inRP �FP�P2k can be established
using results from [24]. In fact, the computation of a weak rational status set in the most general
setting can be easily expressed as a maximization problem (MAXP) as defined in [24], such that the

instance-solution relation is co-NP-decidable; for such problems, RP � FP�P2k is an upper bound.

Hardness for F�P2 is immediate from the proof of Theorem 8.4 (existence of a rational status set),

sinceO does not occur in the program constructed. Hardness forFP�P2k can be established as follows.

Let � be any �P2 -complete problem. Then, computing, given instances I1; : : : ; In of �, the binary
string B = b1 � � � bn where bi = 1 if Ii is a Yest-instance and bi = 0 otherwise, is easily seen to be

hard for FP�P2k .

From the proof of Theorem 8.4, we know that deciding whether a fixed agent programP , in whichO does not occur, has a rational status set on a given database D is �P2 complete. Thus, for given

databases D1; : : : ; Dn, computing the stringB is FP�P2k -hard.

The different instances can be combined into a single instance of a new fixed program as follows.
Take a fresh action �, which does not occur inP such that Pre(�) is void andAdd(�) = Del(�) =;. Add the atom Do� in the body of each rule in P , and add the rule O� . Then the resulting
programP0 has some weak rational status set S on eachDi, and for any such S it holds� 2 Do(S)
iff P0 has a rational status set on Di.

The databasesDi can be merged into a single databaseD0 for a new fixed programP 0, in the same
way as described in the proof of Theorem 8.8, by tagging the databases Di with i and taking their
union. This program P 0 has some weak rational status set S on D0; moreover, for every such S, it
holds that�(i) 2 Do(S) iff P has a rational status set onDi; thus, from an S the string binary stringB is easily computed.

Since the databaseD0 is polynomial-time constructible from D1; : : : ; Dn, it follows that comput-

ing a weak rational status set is hard for FP�P2k .

Next we consider the recognition problem. Here, the complexity increases if integrity constraints
are allowed; the benign property that a A-feasible status set is A-rational, if no smaller A-feasible
status set exists is no longer valid.

Theorem 8.12 Let P be a fixed agent program. Then, given an agent stateOS and a status set S,
deciding whether S is a weak rational status set of P on OS is �P2 -complete.

Proof. For the membership part, consider the following algorithm for showing that S is not a
weak rational status set. First, check whether S is not an A(S)-rational status set. If S is foundA(S)-rational, then guess A0 � A(S) and S0 and check whether S0 is A0-rational. Since CheckingA-rationality of S is in co-NP, this is an �P2 algorithm for refuting S as a weak rational status set;
this proves the membership.

81

For the hardness part, we adapt the construction in the proof of Theorem 8.2 for QBF formulas9Y 8X�, by adding the 9Y quantifier block.

We use the databaseD, the actions baseAB, and the integrity constraints as there, but add toD an-
other relation YVAR for storing the Y -variables (theX-variables are in VAR) and introduce another
action �, which has empty precondition and empty add and delete sets.

We add the following clauses in the program:O(�) O(set(Y; 0)) YVAR(Y)O(set(Y; 1)) YVAR(Y)Do(set(Y; 0)); Do(�);:Do(set(Y; 1));YVAR(Y)Do(�) Do(set(Y; 0));YVAR(Y)Do(�) Do(set(Y; 1));YVAR(Y)
and we set up the action constraintAC : fset(Y; 0); set(Y; 1)g - YVAR(Y):
(The use of AC can be surpassed, but is convenient.) Let the resulting program be P 0.

These rules state that the agent is obliged to execute � and to set every variable yi 2 Y to true
and false, which however is prohibited byAC. Moreover, each yi must have assigned a value if � is
executed, and if some variable receives a value, then � is executed; consequently. if � is executed,
then every yi gets precisely one value, and if � is not executed, then no yi gets a value.

Let S0 be the status sets defined byS0 = S [fO�;P�g [O(set(y; v));P(set(y; v)) j y 2 Y; v 2 f0; 1gg;
where S is the status set from the proof of Theorem 8.2.

Then, S0 is an A(S)-rational status set, in which all the obligations from the newly added rules
are violated.

It holds that S0 is the (unique) weak rational status set of P 0 iff 8Y 9X:� is true.())SupposeS0 is weak rational. Then, it is impossible for any choice� from set(y; 0),set(y; 1),y 2 Y , to find an A-rational status set where the obligation followed in A correspond to �.

In particular, the status setS� = S0 [fDo(set(y; v)) j set(y; v) 2 �g [fDo�g
is not weak rational. It holds that S� is A(S�)-feasible; hence, there must exist some truth assign-
ment � toX such that �[�(X); �(Y)] is false, where � is the truth assignment to Y such that �(y) �set(y; 1) 2 �. Hence, 8X9Y :� is true.(() Suppose 8Y 9X:� is true. Consider any weak rational status set S of P 0. Then, either (i)A(S) = A(S0), or (ii)A(S) defines a choice � from set(y; 0), set(y; 1), y 2 Y , and � 2 S.

Assume (ii) and consider the following two cases:

(1) Do(all) =2 S. Then, exactly on of the actions set(x; 0), set(x; 1) must be in S, for everyx 2 X . But then, executingDo(S) violates the integrity constraints IC, which contradicts that S is
a weak rational status set.

82

(2) Do(all) 2 S. Then, for some truth assignment � toX , we have that �[�(X); �(Y)] is false,
for � defined as previously. Consequently, there is an A(S)-feasible status set S0 such that S0 � S,
which contradictsA(S)-rationality of S.

Hence, case (ii) is impossible, and case (i) applies toS. Consequently,S0 is a weak rational status
set. It can be seen that S = S0 must hold. This proves the result.

The last result that we turn to in this subsection is action reasoning under weak rational status sets.
Here we face the full complexity of all conditions that we have imposed on acceptable status sets.

Theorem 8.13 LetP be a fixed agent programP . LetOS be a given agent state and let� be a given
ground action atom. Then, deciding whether � 2 Do(S) holds for (i) every (resp., (ii) some) weak
rational status set of P on OS is �P3 -complete (resp., �P3 -complete).

Proof. The membership part is routine: A guess for a weak rational status set S such that � =2 S
(resp., � 2 S) can be verified with an �P2 oracle in polynomial time (Theorem 8.12).

For the hardness part, we extend the construction in the proof of Theorem 8.12 to QBF formulas8Z9Y 8X�, by adding another quantifier block.

For that, we introduce a new relation ZVAR for storing the variables in Z, and add the following
clauses to the program:O(set(Z; 0)) ZVAR(Z);O(set(Z; 1)) ZVAR(Z);Do(set(Y; 0)); :Do(set(Y; 1));ZVAR(X);
denote this program by P 00. Moreover, we add another action constraintAC0 : fset(Z; 0); set(Z; 1)g - ZVAR(Z):
Similar as the rules for the variables inY , these rules force the agent to make a choice� fromDo(set(z; 0),Do(set(z; 1)), for all z 2 Z, in every weak rational status set. Upon such a choice, the programP 00 behaves like the program P 0.

For any such �, it holds that a weak rational status set S implementing this � satisfies Do� 2 S,
iff 9Y 8X�[�(Z)] is true, where � is the truth assignment to the Z-variables according to �.

It holds that � 2 Do(S) for every weak rational status set of P 00, iff 8Z9Y 8X� is true.

This proves �P3 -hardness of (i). For (ii), we add the ruleDo(�) :Do(�)
in the program, where � is a fresh action.

Then, it holds a status set S such that � 2 Do(S) is a weak rational status set of the resulting
program P�, iff S0 = S n fDo�;P�g is a weak rational status set of P 000.

Hence, � 2 Do(S) for some weak rational status set of P�, iff � is not a cautious consequence
of P 000. This proves �P3 -hardness of (ii), and completes the proof of the theorem.

83

8.5 Preferred status sets

Let us now consider the effect of integrity constraints on F -preferred status sets. It appears that for
rational status sets, we have a complexity increase, while for reasonable status sets, the complexity
remains unchanged (see Section 7.3).

We start with the recognition problem for F -preferred rational status sets. In the presence of in-
tegrity constraints, this problem migrates to the next level of the polynomial hierarchy. For the proof
of this result, we use the following convenient lemma.

Notation. Let � be propositional formula, and let � 2 2Y be a choice from the subsets of a set Y of
variables. Then, �[Y = �] denotes the formula obtained by substituting in � the value true for everyy 2 Y which is in �, and the value false for every y 2 Y which is not in �.

Lemma 8.14 Let �0 = 9Y 08X 0�0 be a QBF such that �0 is in DNF. Then, a formula� = 9Y 8X�,
where � is in M3DNF (see proof of Theorem 8.2 for M3DNF) can be constructed in polynomial time,
such that(1) for Y = ;, the formula 8X�[Y = ;] is true;(2) �0 ! (9Y 6= ;)(8X)� holds.

Proof. See Appendix B.

Theorem 8.15 Let P be a fixed agent program. Then, given an agent stateOS and a status set S,
deciding whether S is a F -preferred rational status set ofP onOS is �P2 -complete. Hardness holds
even if IC holds functional dependencies on a relational database.

Proof. Checking whether S is a rational status set can be done with a call to an NP oracle (The-
orem 8.3), and a rational status set S 0 such that F(S 0) � F(S) can be guessed an checked in poly-
nomial time with an NP oracle; hence, showing that S is not a F -preferred rational status set is in�P2 .

The proof of hardness is an extension to the proof of Theorem 8.2. We encode the 9Y 8X� QBF
problem, by adding an alternate block of quantifiers in the construction.

For convenience, we may start from the formula 9Y 8X:� as in Lemma 8.14, and encode the fail-
ure of condition (2) of it; this is a �P2 -hard problem.

As in the construction of the proof of Theorem 8.2, we assume that database tables POS(V ar1;V ar2; V ar3) and NEG(V ar1; V ar2; V ar3) contain the positive and negative disjuncts of �0, re-
spectively, and that the table VAR(V ar; V alue; Tag; Tag1) contains all variables, but now has an
additional tag (Tag1), which indicates whether a variable is from X (value 0) or from Y (value 1).

Thus, IC holds two FDs on VAR: V ar; V alue! Tag and V ar! Tag1.

The action baseAB is the same, with the only differences that addto var has a fourth parameterW , and that occurrence of VAR(X; Y; Z) has to be replaced by VAR(X; Y; Z;W).
Modify and extend the program P to a program P 0 as follows. First, the occurrences of every

atom VAR(X; Y; Z) have to be replaced by VAR(X; Y; Z; 0), and addto var(X; Y; 1) is uniformly
replaced by addto var(X; Y; 1; 0). Then, add the rules(1) F(set(X; 1)) P(set(X; 0));VAR(X; Y; Z; 1)(2) Do(set(X; 1)) :Do(set(X; 0));VAR(X; Y; Z; 1)

84

For each choice � 2 2Y from the subsets of Y , we obtain a candidate S� which is a feasible status
set of P 0. This candidate is the deontic and action closure of the setfDo(set(yi; 1) j yi 2 � g [fDo(set(yi; 0));F(set(yi; 1)) j yi 2 Y n � g;
where S is the feasible status set from the construction in the proof of Theorem 8.2.

For the assignment Y = ;, S� has a “maximal” F -part on theF(set(X; 1)) atoms over all�; this
is also the maximal F -part possible for any rational status set of P 0. Moreover, by Lemma 8.14 and
the construction of P 0, this S�0 is a rational status set.

We claim that S�0 is F -preferred, if and only if 9Y 6= ; 8X� is false.

()) Suppose S�0 is F -preferred. Then, no rational status set S0 exists such that F(S0) � F(S). In
particular, no candidate set S� for some � 6= �0 can amount to a rational status set. Similar as in
the proof of Theorem 8.2, we conclude that the formula 8X:�[Y = �] must be false. Hence, the
formula 9Y 6= ;8X:� is false.

(() Suppose S�0 is not F -preferred. Then, there exists a rational set S0 such that F(S 0) � F(S).
The clause (1) ensures that there is at most one of Do(set(y; 0)) and Do(set(y; 1)) in S 0, for

every y 2 Y ; moreover, by the clause (2), precisely one of them is in S0. ThisS 0 amounts to a choice� from the subsets of Y such that � 6= ;, given by y 2 � iff Do(set(y; 1)) 2 S 0, for every y 2 Y .

The program P 0, under S0 and choice �, basically reduces to a program P for a formula 8:�[Y =�]. Notice that by the rationality of S0, no atoms for status O or W are in S0, and neither atomsF� for irrelevant actions �. Moreover, rationality of S0 implies that the formula 8:�[Y = �] must
evaluate to true. This means that 9Y 6= ; 8X:� is true.

Since the recognition of F -preferred rational status sets is gets more complex in the presence of
integrity constraints, also the complexity of computing such a status set increases; the increase is one
level in the polynomial hierarchy.

Theorem 8.16 Let P be a fixed agent program. Then, given an agent stateOS , computing any F -

preferred rational status set of P on OS (so one exists), is in FP�P2 \RP �FP�P2k and hard for bothF�P2 and FP�P2k .

Proof. We can use the same algorithm as for the computation where IC = ;, in which we have
to replace the NP-oracle by a �P2 -oracle. This proves membership in FP�P2 . Membership in RP �FP�P2k follows from the fact that computing a F -preferred rational status set can be easily expressed
as a maximization problem (MAXP) as defined in [24], whose instance-solution relation is co-NP-

decidable; as mentioned previously, RP � FP�P2k is an upper bound for such problems.

Hardness for F�P2 is immediate from the proof of Theorem 8.4 (compute a rational status set),
since each rational status set of the programP constructed there is F -preferred. The lower bound of

hardness for FP�P2k can be shown following the line of the proof of Theorem 8.11, where we reduce

the computation of the binary stringB for instances I1; : : : ; In of the �P2 -complete complement of
the recognition problem for F -preferred rational status sets.

We may suppose that the program isP 0 from the proof of Theorem 8.15, and that the setS to check
over databaseD is the set S�0 , which is rational and has the maximal F -part over all rational status
sets. Similar as in the proof of Theorem 8.11, we tag databases Di by introducing a new column

85

T in each table which is added on the left hand side of FDs, and we add for the tag a variable T to
each action scheme. Then, the F -preferred rational status sets S of the obtained program P 00 over
the union D̂ of all tagged databases Di, are given by the union of the F -preferred rational status
sets Si of P 00 over each tagged database Di. Hence, from any F -preferred status set S of P 00, the
desired stringB can be efficiently computed. Moreover, D̂ is constructible in polynomial time fromI1; : : : ; In. It follows that computing a F -preferred rational status set is FP�P2k -hard, which proves
the result.

The last result of this subsection concerns action reasoning for F -preferred rational status sets. It
shows that this task has the highest complexity of all the problems considered, and is located at the
third level of the polynomial hierarchy.

Theorem 8.17 Let P be a fixed program. Then, deciding whether an action status atom A belongs
to some (resp., all) F -preferred rational status sets is �P3 -complete (resp., �P3 -complete).

Proof. The membership part is similar as in the case where no integrity are present (Theorem 7.29),
with the difference that we need a �P2 oracle instead of a NP oracle for checking whether an status
set is an F -preferred rational status set.

The hardness part is an extension of the construction in the proof of Theorem 8.15.

We add another block of quantifiers 8Z in front of the formula �; Lemma 8.14 generalizes to the
case where free variables occur in �0.

The action base and the database is the same, and field Tag1 has value 2 for identifying the Z
variables. We add to the program P 0 the following clauses:F(set(X; 1)) P(set(X; 0));VAR(X; Y; Z; 2)F(set(X; 0)) P(set(X; 1));VAR(X; Y; Z; 2)Do(set(X; 1)) :Do(set(X; 0));VAR(X; Y; Z; 2)
These clauses effect a choice � of a subset of Z, which is passed to the rest of the program, similar
as the rules for a choice from the subsets of Y ; however, here the choice entails that the F -parts of
candidates corresponding to different choices � and �0 are incomparable.

Furthermore, if we add to the program a ruleDo(�) P(set(X; 0));VAR(X; Y; Z; 1);
where � is some new action without effects, then Do(�) is contained in every F -preferred rational
status set of the resulting program P 00, if and only if the formula (8Z)(9Y 6= ;)(8X)� is true. To
see this, notice that this rule can be applied in a F -preferred rational status set S, if and only if S
does not contain for all variables y 2 Y the atomsF(set(y; 1)). Do(�) is contained in all candidateF -preferred rational status sets, and is dispensable if and only if the formula 8Z9Y 6= ;8X:� is
true.

If we add a rule Do(�) :Do(�);
to P 00, where � is an action of the same type as �, then Do(�) belongs to some F -preferred status
set of the obtained programP 000, if and only if the formula 8Z9Y 6= ;8X:� is false. Indeed, it is not

86

hard to see that a status set S such that Do(�);P(�) 2 S is a F -preferred status set of P 000, if and
only if the set S0 = S n fDo(�);P(�)g is a F -preferred status set of P 00 such that Do(�) =2 S.

This implies �P3 -hardness (resp. �P3 -hardness), and completes the proof of the theorem.

9 Relation to Logic Programming

Thus far in this paper, we have introduced several semantics for agent programs. In this section, we
will show that these semantics for agent programs are specifically tied to well known semantics for
logic programs. In particular, we will show that three major semantics for logic programs may be
“embedded” within the concept of agent programs.� First, we will exhibit a transformation, called AG, that takes an arbitrary logic program P as

input, and produces as output, an agent program, and an empty set of action constraints and an
empty set of integrity constraints. We will show that the (Herbrand) models of P are in a 1-1
correspondence with the feasible status sets of AG(P), if they are projected to their P-parts.� Second, we will show that the minimal Herbrand models ofP are in a 1-1 correspondence with
the rational status sets of AG(P). This automatically implies, by results of Marek and Subrah-
manian [77], the existence of a 1-1 correspondence between supported models of P , rational
status sets ofAG(P), weak extensions of a default theory associated withP as defined by [77],
and expansions of an auto-epistemic theory associated with P [77]. Similar equivalences also
exist between rational status sets and disjunctive logic programs [71].� Third, we show that the stable models of P are in a 1-1 correspondence with the reasonable
status sets of AG(P). As a consequence of known results due to Marek and Truszczyński [78],
it follows immediately that there is a 1-1 correspondence between reasonable status sets and
extensions of default logic theories associated with P .

Throughout this section, we assume the reader is familiar with standard logic program terminology
as described by Lloyd [70] and nonmonotonic logic programming terminology [78].

9.1 Feasible Status Sets and Models of Logic Programs

In this subsection, we describe a transformation AG that takes as input, a logic program P , and pro-
duces as output:� An action base, all of whose actions have an empty precondition, add list and delete set,� An agent program AG(P),� An empty set of action constraints and an empty set of integrity constraints.

As all components other than the agent program produced by AG(P) are empty, we will abuse no-
tation slightly and use AG(P) to denote the agent program produced by AG.

For each ground instance of a rule r in P of the forma b1; � � � ; bm;:c1; : : : ;:cn
87

insert the ruleP(a) P(b1); � � � ;P(bm);:P(c1); : : : ;:P(cn) (6)

in AG(P). Here, the atoms a, bi, and cj of P are viewed as actions with description (;; ;; ;), i.e.,
they have no precondition and their add and delete sets are both empty. It is important to note that
the only types of status atoms that occur in AG(P) are of the form P(�).
Example 9.1 Consider the logic program containing the two rules:a b a;:c:
The AG(P) is the agent program:P(a) P(b) P(a);:P(c):
We observe that the logic program has three models. These are given by:M1 = fa; bgM2 = fa; cgM3 = fa; b; cgAG(P) happens to have more than three feasible status sets. These are given by:F1 = fP(a);P(b)g:F2 = fP(a);P(b);Do(a)g:F3 = fP(a);P(b);Do(b)g:F4 = fP(a);P(b);Do(a);Do(b)g:F5 = fP(a);P(c)g:F6 = fP(a);P(c);Do(a)g:F7 = fP(a);P(c);Do(c)g:F8 = fP(a);P(c);Do(a);Do(c)g:F9 = fP(a);P(b);P(c)g:F10 = fP(a);P(b);P(c);Do(a)g:F11 = fP(a);P(b);P(c);Do(b)g:F12 = fP(a);P(b);P(c);Do(c)g:F13 = fP(a);P(b);P(c);Do(a);Do(b)g:F14 = fP(a);P(b);P(c);Do(a);Do(c)g:F15 = fP(a);P(b);P(c);Do(b);Do(c)g:F16 = fP(a);P(b);P(c);Do(a);Do(b);Do(c)g:
Many further feasible status sets exist, if we take atoms with the other modalities F, O and W into
account.

88

However, when we examine the above sixteen and all other feasible status sets, and if we ignore
the Do atoms in them, we find only three feasible status sets, viz. F1; F5 and F9. The reader will
easily note that the feasible status sets F2; F3; F4 reflect different ways of determining which actions
that are permitted in F1 should actually be done. The same observation holds with regard to F5 and
the feasible status sets F6; F7; F8. Likewise, the feasible status sets F10; : : : ; F17 are derived fromF9 in the same way.

The reader will note that in this example, M1;M2;M3 stand in one one correspondence to the
projections of F1; : : : ; F16 with respect to the modality P,i.e. M1;M2;M3 stand in one one corre-
spondence with F1; F5 and F9. 2

The following result shows, conclusively, that this is no accident.

Proposition 9.1 There exists a 1-1 correspondence between the models of P and the P-projection
of the feasible status sets of AG(P), i.e.

1. If M is a model of the program P , then AM = fP(a) j a 2 Mg is a feasible status set ofAG(P).
2. If A is a feasible status set of AG(P), then MA = fa j P(a) 2 A, a occurs in Pg is a model

of P .

Proof. (1) Suppose M is a model of the program P . To show that AM is a feasible status set ofP(P), we need to show that AM satisfies conditions (S1)–(S4) in the definition of a feasible status
set.(S1) Suppose r is a ground instance of a rule in AG(P) whose body is true w.r.t. AM . Rule r must

be one of the form Pa Pb1; : : : ;Pbm;:Pc1; : : : ;Pcm. Then P(b1); � � � ;P(bm) � AM
and fP(c1); : : : ;P(cn)g \AM = ;. By definition ofAM , it follows that fa1; : : : ; amg �M .
By definition of AM we have fc1; : : : ; cng \ M = ;. As M is a model of P , a 2 M , and
hence, by definition of AM , P(a) 2 AM .

Thus,AM satisfies condition (S1) in the definition of feasible status set.(S2) It is easy to see that the conditions defining deontic and action consistency (Definition 5.2)
are satisfied. The reason is that by definition,AM only contains atoms of the form, P(�) and
hence, the first two bullets of Definition 5.2 are immediately true. The third bullet of Defini-
tion 5.2 is satisfied because all actions in AG(P) have an empty precondition, and hence, the
consequent of the implication in the third bullet is immediately true. The action consistency
requirement is satisfied trivially as AG(P) contains no action constraints.(S3) The deontic and action closure requirements stated in Definition 5.3 are trivially satisfied be-
cause AM contains no status atoms of the form O(�) or Do(�).(S4) As AG(P) contains no integrity constraints, it follows immediately that the state consistency
requirement is satisfied by AM .

This completes the proof of (1) of the theorem.

89

(2) Suppose A is a feasible status set of AG(P) and MA satisfies the body of a ground instance, r,
of a rule in P . Let rule r be of the forma b1; : : : ; bm;:c1; : : : ;:cn:
As fb1; : : : ; bmg �MA, we must, by definition, have fP(b1); : : : ;P(bm)g �MA. As fc1; : : : ; cng\MA = ;, we must, by definition, haveA \ fP(c1); : : : ;P(cn)g = ;. By construction of AG(P),
we have the ruleP(a) P(b1); : : : ;P(bm);:P(c1); : : : ;:P(cn)
in AG(P). AsA is a feasible status set, it must satisfy axiom (S1). Hence,P(a) 2 A, which implies
that a 2MA. This completes the proof.

9.2 Rational Status Sets and Minimal Models of Logic Programs

If we return to Example 9.1, we will notice that the logic program P shown there has two minimal
Herbrand models, corresponding to M1;M2 respectively, and the feasible status sets, F1; F5 corre-
spond to the rational status sets of AG(P). Intuitively, minimal Herbrand models of a logic program
select models ofP that are inclusion-minimal,while rational status sets select feasible status sets that
are also inclusion-minimal. As there is a 1-1 correspondence between models ofP and theP-parts of
the feasible status sets of AG(P), it follows immediately that the inclusion minimal elements should
also be in 1-1 correspondence. The following result is in fact an immediate corollary of Proposi-
tion 9.1 and establishes this 1-1 correspondence.

Proposition 9.2 There exists a 1-1 correspondence between the minimal models of P and the ratio-
nal status sets of AG(P), i.e.

1. If M is a minimal model of the program P , then AM = fP(a) j a 2 Mg is a rational status
set of P(P).

2. IfA is a rational status set ofAG(P), thenMA = fa j P(a) 2 A, a occurs in Pg is a minimal
model of P .

When taken in conjunction with results of Lobo and Subrahmanian [72], the above result implies
that there exists a translation T (given in [72]) such that the rational status sets of AG(P) correspond
exactly to the extensions of a pre-requisite free normal default theory T (P).
9.3 Reasonable Status Sets and Stable Semantics

In this section, we show that the reasonable status sets of AG(P) correspond to the stable models ofP . Before stating this main result formally, let us return to the case of Example 9.1.

Example 9.2 It is easy to see that the logic programP of Example 9.1 has exactly one stable model,
viz. M1. It is easy to see that AG(P) program has a unique reasonable status set, viz. RS1 =fP(a);P(b)g. As Proposition 9.3 below will show, this is not an accident. 2

90

The following result explicitly states this.

Proposition 9.3 There exists a 1-1 correspondence between the stable models of P and the reason-
able status sets of AG(P), i.e.

1. IfM is a stable model of the program P , thenAM = fP(a) j a 2Mg is a reasonable status
set of AG(P).

2. IfA is a reasonable status set ofP(P), thenMA = fa j P(a) 2 A, a occurs in Pg is a stable
model of P .

Proof. We show part (1). Part (2) is proved by an analogous (and somewhat simpler) reasoning.
SupposeM is a stable model of P . Then letQ = redAM (AG(P); ;) be the agent program obtained
as the reduct of AG(P)w.r.t. AM and the empty object state. To show thatAM is a reasonable status
set of AG(P), we need to show that AM is a rational status set of Q. For this we need to show that
each of conditions (S1)–(S4) is true forAM with respect toQ, and thatAM is an inclusion-minimal
set satisfying this condition.(S1) Consider a rule inQ having a ground instance, r, of the formP(a) P(b1); : : : ;P(bm)

such that fP(b1); : : : ;P(bm)g � AM . By definition, fb1; : : : ; bmg � M . As r 2 Q, there
must exist a rule in AG(P) having a ground instance, r0, of the formP(a) P(b1); : : : ;P(bm);:P(c1); : : : ;:P(cn)
such that fP(c1); : : : ;P(cn)g \ AM = ;. This means that there is a rule inP having a ground
instance, r?, of the forma b1; : : : ; bm;:c1; : : : ;:cm
such that fc1; : : : ; cng \M = ;. Thus asM satisfies the body of r? and asM is a stable model
of P (and hence a model of P), a 2 M which implies that P(a) 2 AM and this concludes
this part of our proof.(S2) The first bullet in the definition of deontic consistency is immediately satisfied asAM contains
no status atoms of the form W(�). The second bullet in the definition of deontic consistency
is immediately satisfied as AM contains no status atoms of the form F(�). The third in the
definition of deontic consistency is immediately satisfied as all actions have an empty pre-
condition, which is immediately satisfied. The action consistency requirement is immediately
satisfied as the set AC of action constraints produced by AG is empty.(S3) AM is deontically closed because, by definition, AM contains no status atoms of the formO(�). AM is action-closed becauseAM contains no status atoms of the formO(�);Do(�).(S4) AM satisfies the state consistency property because the set IC of integrity constraints produced
by AG is empty.

91

At this point, we have shown thatAM is a feasible status set ofQ. To establish that it is a rational
status set of Q, we need to show that it is inclusion-minimal. Suppose not. Then there exists a setS � AM such that S is a feasible status set of Q. Let S? = fa jP(a) 2 Sg. It is straightforward to
show that S? is a stable model of P . But then S? �M , which is a contradiction, as no stable model
of any logic program can be a strict subset of another stable model [77].

It is important to observe that by this correspondence, we obtain alternative proofs for the com-
plexity results on reasonable status sets in the previous section. This is because the complexity results
known for non-monotonic logic programs with stable model semantics [47, 48, 49] directly imply
the above results.

9.4 Discussion

Thus far, in this section, we have shown that given any logic program P , we can convert P into an
agent program , AG(P), (together with associated action base and empty sets of integrity constraints
and action constraints) such that:

1. The P-parts of feasible status sets are in 1-1 correspondence with the models of P ;

2. Rational status sets are in 1-1 correspondence with the minimal models of P ;

3. Reasonable status sets are in 1-1 correspondence with the stable models of P .

The above results, when taken in conjunction with known results linking logic programs and non-
monotonic reasoning, provide connections with well known nonmonotonic logics as well. For ex-
ample, the following results are well known:� Marek and Truszczynski [78] prove 1-1 correspondences between stable models of logic pro-

grams and extensions of default logic theories.� Marek and Subrahmanian [77] and Marek and Truszczynski [78] prove 1-1 correspondences
between stable models of logic programs and appropriate types of expansions of auto-epistemic
theories.� Lobo and Subrahmanian [72] prove 1-1 correspondences between minimal models of logic
programs, and extensions of prerequisite-free normal default logic theories.� Ben-Eliyahu and Dechter [15] have proved that stable models and minimal models of logic
programs may be viewed as models of a suitable logical theory.

An important topic that we have not addressed (due to space restrictions) is whether there exists a
transformation } that takes as input, an agent state, action base, an agent program, a set of integrity
constraints, and a set of action constraints, and produces as output a logic program such that the above
equivalences hold. This is somewhat complicated to do because the use of arbitrary agent states
over arbitrary data structures means that classical model semantics, minimal model semantics, and
stable semantics cannot be used directly. Rather, the notion of models over arbitrary data structures
introduced by Lu et al. [74] must be used. For this reason, we defer this to further work.

However, we remark that for feasible and rational status sets, no 1-1 correspondence to the mod-
els and minimal models, respectively, of a polynomial-time constructible logic program similar as

92

above is possible in general: An agent program may lack a feasible or rational status set (even in
absence of integrity constraints), while a logic program always has some model and minimal model;
recall that existence of a feasible as well as a rational status set for an agent program was shown to
be NP-hard, even for agent programs without integrity constraints. Furthermore, since computing
a model (resp., minimal model) of a logic program is in FNP (resp., FNP//log), it is not possible
to polynomially reduce the F�P2 -hard computation of a rational status set of a general agent pro-
gram to the computation of a model (resp., minimal model) of a polynomial time-constructible logic
program, unless the polynomial hierarchy collapses. In particular, no polynomial-time constructible
logic program exists whose minimal models correspond 1-1 to the rational status sets of a general
agent program. Observe that from the complexity side, a 1-1 correspondency between reasonable
status sets of an agent program and the stable models of a polynomial-time constructible logic pro-
gram is not excluded; in fact, a rather natural translation seems feasible.

10 Supply Chain Example, Revisited

In this section, we briefly revisit the supply chain example introduced towards the beginning of this
paper, and see how this example works.� The Plant Agent, located at a factor in Forth Worth, monitors the status of its inventory. For

example, Figure 1 shows that the plant has in its inventory, 200 copies of Item1. Likewise,
there are two supplier agents, associated with vendors who supply parts to the factory. These
supply agents are located in Palo Alto and Washington, respectively. Their inventories show
500 and 300 copies of Item1, respectively. The two supplier agents and the plant agent are all
built on top of Microsoft Access.� When the inventory for the plant agent falls below a threshold, the plant agent initiates an at-
tempt to procure the relevant parts. In the example, it attempts to procure Item1. It is important
to note that dropping of inventory levels triggers this action.� The first action taken by the Plant Agent is to send messages to the two supply agents. Figure 5
shows various messages that are interchanged during the evolution of the supply chain exam-
ple. The reader should note that sending a message is an action. Determining what message
to send is also an action. For example, the first two rows of Figure 5 shows the Plant Agent
sending the message QuantityRequest(Item1) to both supplier agent 1 and 2.� The supplier agents, on receiving this message, take actions. They determine the amount of
Item1 they have in stock by executing a query on the Access database, and send a response
such as QuantityAvailable(SupplierAgent1,Item1,500).� Once the Plant Agent has received affirmative responses from the Supply Agents, it contacts
the Shipping Agent in order to schedule shipment of the items.� The shipping agent comprises the flight agent and the truck agent. The task of the flight agent
is to determine if there is an airport “near” the origin and destination of the shipment. In our
implementation, “near” is defined as a range query on top of ESRI’s MapObject geographic
information system. If the origin and the destination are very “near” then we merely truck the
shipment. Otherwise, if an airport exists “near” both the origin and the destination, then we
merely truck it to the airport, fly it to an airport near the destination, and truck it from there to

93

Figure 5: Messages Exchanged by Agents in Supply Chain Example

the destination. Otherwise, the shipping agent decides to truck it all the way from the origin
to the destination. (Note that more sophisticated shipping strategies are possible, but in fact,
this simple strategy is the one used by some of the large transportation logistics companies).� Figure 5 shows several messages exchanged between the shipping agent, the flight agent, and
the truck agent, coordinating this task.� At the end of this process, the shipping agent produces a simple map, visualizing the shipment
of the items from the Supplier location to the destination. Figure 6(a),(b),(c) shows such a
visualization. In particular, Figure 6(a) shows the original flight path from San Francisco to
Dallas. Figure 6(b) shows how our demonstration allows zooming, so that the truck route from
Palo Alto to San Francisco airport is visualized, and Figure 6(c) shows the truck route from
Dallas to the final destination, Forth Worth. This visualization is produced by the shipping
agent by invoking appropriate code calls in the ESRI MapObjects system.

11 Related Work

During the last few years, there has been an explosion in the area of agent based research. Of this
plethora of research, the work reported in this paper is perhaps closest to that of the group in CWI,
Amsterdam, working on deontic logics for agent based programming [55, 31, 56] Below, we review
the work on agents in a variety of arenas.

Agent Programming. Shoham [97] was perhaps the first to propose an explicit programming lan-
guage for agents, based on object oriented concepts, and based on the concept of an agent state. In
Shoham’s approach, an “agent is an entity whose state is viewed as consisting of mental components
such as beliefs, capabilities, choices, and commitments” [97]. He proposes a language, Agent-0, for
agent programming, that provides a mechanism to express actions, time, and obligations. Agent-0 is
a simple, yet powerful language. There are several differences between our approach and Shoham’s.
First, our language builds on top of arbitrary data structures, whereas Shoham’s language is more or
less logical (though it uses a LISP-like syntax). For us, states are instantiations of data structures

94

(a) Flight from San Francisco to Dallas (b) Truck route from Palo Alto to San Francisco

(c) Truck route from Dallas to Forth Worth

Figure 6: Maps Produced by Shipping Agent in Supply Chain Example

95

managed by the program code associated with agents, while for Shoham, the agent state consists of
beliefs, capabilities, choices and commitments. This allows Shoham to focus on reasoning about
beliefs (e.g. agent A knows that agent B knows that agent A has no money), whereas our focus is on
decision making on top of arbitrary data structures. Clearly both paradigms are needed for success-
fully building an agent.

Closely related to Shoham’s work is that of Hindriks et al. [55] where an agent programming lan-
guage based on BDI-agents is presented (BDI stands for “Belief, Desires, Intentionality”). They pro-
ceed upon the assumptions that an agent language must have the ability for updating beliefs, goals
and for practical reasoning. (finding means to achieve goals). Hindriks et al. [55] argue that “Now,
to program an agent is to specify its initial mental state, the semantics of the basic actions the agent
can perform, and to write a set of practical reasoning rules” [55, p.211].

In our framework, as decision layers can (in principle) be embedded on top of arbitrary pieces of
software code, representations of beliefs, goals, such as those developed by researchers in “reasoning
about beliefs” can be easily incorporated as modules into those data structures, though we have not
focused on this part. We do not insist that all agents have an a priori goal. For instance, consider an
ACCESS database agent. This agent has no real goal that requires AI planning, unless one considers
the fact that it should respond to user queries as a goal. Practical reasoning is achieved in our system
because each agent processes an explicit call through a method used to process that call. Hindriks et
al. [55] argue that “Now, to program an agent is to specify its initial mental state, the semantics of
the basic actions the agent can perform, and to write a set of practical reasoning rules” [55, p.211].
In contrast to their framework, for us, an initial state is any set of (instantiated) data types – they
assume this is a set of logical atoms. Likewise, practical reasoning rules for us are implemented as
methods (or code-calls), but the decision about which of these actions is to be taken is represented
through rules.

ConGolog [45] is a logic programming language for concurrent execution of actions. ConGolog
creates static plans from a set of goals and primitive actions. ConGolog is built on the framework of
Cohen and Levesque [25] who develop a logic of rational agents based intentionality using speech
acts as a starting point. Their work has subsequently been used for a variety of other multiagent
frameworks – we do not go into these extensions here, as they are not directly related to our effort.

In general, the approach in this paper builds upon the approaches of [97] and [55] in the follow-
ing sense: first, we agree with these earlier approaches that the behavior of agents should be encoded
through an agent program, and second, that actions taken by agents should modify agent states. How-
ever, we differ from these approaches in the following sense. First, our notion of an agent state is
built on top of arbitrary data structures, rather than on top of states represented in logic. As a conse-
quence, our approach complements the work of [97, 55] where they focus on logical representations
of agent state, describing beliefs, capabilities, commitments, and goals. In addition, [97] describes
temporal action scheduling which our language does not currently support, though ongoing work
will extend it to do so [35]. If these modes of reasoning can be expressed as data structures, then
the notion of agent proposed in our paper can benefit from the contributions in [97, 55]. Second, we
propose a set of increasingly more satisfying declarative (epistemic) formal semantics for our work –
[55] proposes an elegant proof theoretic operational semantics. Our semantics has the advantage of
being neatly related to existing well-understood semantics for logic programs. Third, we analyze the
tradeoffs between the adopting an epistemically satisfying semantics, and the computational com-
plexity of these semantics. The complexity results also contain algorithmic approaches to computing
these semantics.

96

Deontic Logic. In many applications (e.g. the tax application, and various legal applications), the
administrators of an application have certain legal obligations (that is, they are required to take cer-
tain actions), as well as certain restrictions (that is, they are forbidden to take certain actions) if certain
conditions are true. However, not all actions are either forbidden or obligatory. The vast majority of
actions fall within a “gray” area – they are permitted, but neither obligatory or forbidden. To date,
no active database system has provided a formal semantics for obligatory, permitted, and forbidden
actions. In this paper, we have done so, building on top of classical deontic logic syntax [3, 79].

We have added to deontic logic as well in several ways: first, we have introduced the Do operator
which standard deontic logic does not contain. Second, classical deontic logic does not account for
interference between multiple actions (i.e., do actions�; � have mutually inconsistent effects, or can
actions �; � be simultaneously executed), while our framework takes into account, both effects of
actions, and provides different notions of concurrent executability. Third, our framework also allows
nonmonotonic inference through the negation operator in rule bodies – this nonmonotonic negation
operator does not occur in classical deontic logic model theory. The need for non-monotonic op-
erators has been well argued by Reiter [86]. Last, but not least, the semantics of classical deontic
logic is given in terms of a classical Hintikka-Kripke style model theory. Due to the introduction
of the new features described above, and due to the fact that most deontic logic model theory leads
to one or another deontic paradox, we chose to develop an alternative semantics that incorporates
nonmonotonicity, concurrent actions, and the Do operator proposing the concepts of feasible, ratio-
nal and reasonable status sets, and their variants, through which many desirable deontic desiderata
(e.g. regimentation, relaxing obligations when the cannot be satisfied)) can be incorporated. Pre-
cisely how various other deontic assumptions can be captured within our semantics remains to be
worked out.

The approach of Hindriks et al. [55] is based on such logics and has already been discussed earlier.
Dignum and Conte [31] have used deontic logic extensively to develop methods for goal formation
– in our framework, goal formation is one of several actions that an agent can take. Thus, we can
specifically gain from the work of Dignum and Conte [31], through explicitly plugging-in such a
framework as an action called form-goals implemented through the elegant work they report.

Agent Decision Making. There has been a significant amount of work on agent decision making.
Rosenschein [88] was perhaps the first to say that agents act according to states, and which actions
they take are determined by rules of the form “When P is true of the state of the environment, then the
agent should take action A.” As the reader can easily see, our framework builds upon this intuitive
idea, though (i) our notion of state is defined very generally and (ii) agent programs have a richer set
of rules than those listed above. Rosenschein and Kaelbling [89] extend this framework to provide
a basis for such actions in terms of situated automata theory.

Bratman et al. [18] define the IRMA system which uses similar ideas to generate plans. In their
framework, different possible courses of actions (Plans) are generated, based on the agent’s inten-
tions. These plans are then evaluated to determine which ones are consistentand optimal with respect
to achieving these intentions.

Verharen et al. [105] present a language-action approach to agent decision making, which has some
similarities to our effort. However, they do not develop any formal semantics for their work, and
their language for agent programs uses a linguistic rather than a logical approach. Schoppers and
Shapiro [92] describe techniques to design agents that optimize objective functions - such objective
functions are similar to the cost functions we have described.

One effort that is close to ours is Singh’s approach [98]. Like us, he is concerned about hetero-

97

geneity in agents, and he develops a theory of agent interactions through workflow diagrams. Intu-
itively, in this framework, an agent is viewed as a finite state automaton – as is well known, finite
state automata can be easily encoded in logic. This makes our framework somewhat more general
than Singh’s, instead of explicitly encoding automata (hard to do when an agent has hundreds of
ground actions it can take). Sycara and Zeng [101] provide a coordinated search methodology for
multiple agents. Haddadi [52] develops a declarative theory of interactions, as do Rao and Georgeff
[84], and Coradeschi and Karlson [27] who build agents for air traffic simulation.

There has been extensive work on negotiation in multiagent systems, based on the initial idea of
contract nets, due to Smith and Davis [99]. In this paradigm, an agent seeking a service invites bids
from other agents, and selects the bid that most closely matches its own. Schwartz and Kraus [93]
present a model of agent decision making where one agent invites bids (this is an action !) and oth-
ers evaluate the bids (another action) and respond; this kind of behavior is encodable through agent
programs together with underlying data structures. This body of work is complementary to ours: an
agent negotiates by taking certain actions in accordance with its negotiation strategy, while we pro-
vide the “hooks” to include such actions within our framework, but do not explicitly study how the
negotiation actions are performed, as this has been well done by others [99, 93].

Coalition formation mechanisms where agents dynamically team up with other agents has been
intensely studied by many researchers [94, 91, 111]. Determining which agents to team with is a sort
of decision making capability. Inverno et al. [58] present a framework for dMARS based on the BDI
model. Like us, they assume a state space, and the fact that actions cause state transitions. Labrou
and Finin [68] develop the semantics of KQML, but do not explicitly present an action language.

Reasoning About Actions. Several works [42, 8, 9, 10] have addressed the problem of modeling
the logic of actions by means of logic programming languages. In this section, we briefly address
these, one by one. Gelfond and Lifschitz[42] propose a logic programming language called A us-
ing which, users may express knowledge about actions and their effects. This framework was later
extended by Baral, Gelfond and others in a series of elegant papers [9, 10, 6, 7]. The language A
allows users to make statements of the formf after a1; : : : ; aminitially fa causes f if p1; : : : ; pn:
Intuitively, the first statement says that executing actions a1; : : : ; am makes f true (afterwards).
Likewise, the second statement says f was true in the initial state, and the third statement describes
the effect of a on f if certain preconditions are satisfied.

The key differences between our approach, and this genre of work are the following. (1) First
and foremost, our approach applies to heterogeneous data sources, while this body of work assumes
all data is stored in the form of logical atoms. (2) Second, the modalities for determining what is
permitted, what is forbidden, what is obligatory, what is done, are not treated in the above body of
work. (2) Third, in our approach, we use the semantics to determine which set of firable actions (in
a state) must actually be fired, and this policy of choosing such sets of actions in accordance with
the policies expressed in an agent program and the underlying integrity constraints is different from
what is done in [42, 9, 10, 6, 7].

Collaborative Problem Solving. There has also been extensive work on collaborative problem
solving and negotiation in multiagent systems (e.g., [26, 60, 64, 87, 107]). As our approach allows

98

arbitrary decisions, and as negotiation is one form of decision making, our work provides a frame-
work within which various negotiation strategies described in the literature can be encoded. Agents
can collaborate if they wish, but again, collaboration is an explicit action, and the rules governing
such collaborations can be encoded as rules within agent programs.

Agent Architectures. For an excellent anthologyof classic works on agent systems, see [57]. There
have been numerous proposals for agentization in the literature (e.g., [38, 46, 16]) which have been
broadly classified by Genesereth and Ketchpel [43] into four categories: in the first category, each
agent has an associated “transducer” that converts all incoming messages and requests into a form
that is intelligible to the agent. This is clearly not what happens in IMPACT – as noted in [43], the
transducer has to anticipate what other agents will send us and translate that – something which is
clearly difficult to do. The second approach is based on wrappers which “inject code into a program
to allow it to communicate” [43, p.51]. The IMPACT architecture provides a language (the service
description language) for expressing such wrappers, together with accompanying algorithms. The
third approach described in [43] is to completely rewrite the code implementing an agent which is
obviously a very expensive alternative. Last but not least, there is the mediation approach proposed
by Wiederhold [108], which assumes that all agents will communicate with a mediator which in turn
may send messages to other agents. In contrast, our framework allows point to point communication
between agents without having to go through a mediator. Of course, none of these efforts explicitly
address agent decision making in heterogeneous environments, which is the focus of our effort.

Matchmaking. First, there has been substantial work on matchmaking, in which agents advertise
their services, and matchmakers match an agent requesting a service with one (or more) that provides
it. Kuokka and Harada [66] present the SHADE and COINS systems for matchmaking. Decker,
Sycara, and Williamson [30] present matchmakers that store capability advertisements of different
agents. Arisha et al. [5] present a theoretical foundation for matchmaking as well. This paper, in
contrast, merely focuses on how an agent makes decisions, rather than determining how one agent
“matches” up with another.

Relationship to Heterogeneous Data Integration in the Database Community. There is now a
great deal of work in mediated systems techniques. In this paragraph, we merely explain the rela-
tionship between code call conditions and existing work on data and software integration.

For example, there have been several efforts to integrate multiple relational DBMSs [29, 81] and
relational DBMSs, object-oriented DBMSs and/or file systems [39, 63, 95]. However, to date, the
semantics of mediators that take actions has not been explored. The work in this paper builds upon
mediation efforts reported upon in our HERMES effort described previously in [19, 74, 74, 100, 76].
The Stanford TSIMMIS project [22] effort aimed at integrating a wide variety of heterogeneous
databases, together with a free text indexing system. In contrast, HERMES integrated arbitrary soft-
ware packages such as an Army Terrain Route Planning System, Jim Hendler’s UM Nonlin nonlin-
ear planning system, a face recognition system, a video reasoning system, and various mathematical
programming software packages are integrated currently into Hermes. As a consequence, TSIM-
MIS was able to take advantage of its focus on integrating databases to perform some optimizations
which HERMES was unable to incorporate, but conversely, HERMES was able to access many data
sources that TSIMMIS could not. Query optimization methods applicable to both TSIMMIS and
HERMES were studied in [1]. The SIMS system[4] at USC uses a LISP-like syntax to integrate
multiple databases as well. It is closely related to the HERMES effort. HERMES used minimalistic
versions of logic to integrate data and software, while SIMS used a somewhat richer language. As a

99

consequence, HERMES was able to take advantage of very efficient caching and query optimization
methods [73, 1], but may have not been able to easily express some of the more sophisticated rea-
soning tasks desired by the authors of SIMS. Other important later directions on mediation include
the InfoSleuth effort [12] system, at MCC.

12 Conclusions and Future Work

In this paper, we have argued the following two simple points:

(I) Agents in the real world manipulate not just logical formulas, but complex data types, that vary
from one application to another.

(II) Agents must be able to act in accordance with a specific, declarative action policy that governs
their actions. It must be possible to build such a declarative policy on top of the existing data
structures that the agent’s implemented imperative software code manipulates.

Towards this end, we have developed the concept of an agent state, that can consist of instantia-
tions of arbitrary data structures. We then develop the concept of an agent program, building on top
of work in deontic logic. Agent programs allow the designer of an agent to specify how an agent
should act, and take into account the following aspects. What is the agent obliged to do? What is
the agent permitted to do? What is the agent forbidden from doing? and so on. We have developed
a theoretical framework within which agent programs can be built on top of arbitrary pieces of soft-
ware code, and we have developed a series of successively more refined declarative semantics for
agent programs. As the declarative semantics for agent programs become intuitively more appeal-
ing, they (with some exceptions) also become computationally more complex. We have developed
results showing the relationship between the declarative semantics and computational complexity.
Our complexity results also, for the most part, include algorithms to compute the relevant semanti-
cal structures.

Our semantical results are closely related to other research in the field of artificial intelligence. In
particular, we have demonstrated that three well-known semantics for logic programs, namely the
model semantics, minimal model semantics, and the stable model semantics, are captured within
our agent program framework. These semantics are well-known to correspond to certain fragments
of advanced knowledge representation frameworks such as default logic and circumscription.

Last, but not least, we have developed a simulation of the working of our agent framework in the
area of supply chain management. In the simulation, we have built several agents on top of legacy
commercial software including Microsoft Access database agents, and ESRI MapObject agents as
well.

Our current and ongoing efforts focus on the following subjects:� We are extending the semantical framework described here to accommodate the following
types of reasoning not currently included: (a) reasoning about uncertain agent states, (b) rea-
soning about temporal actions, where an agent makes decisions on taking an action in the fu-
ture, (c) reasoning about other agent’s reasoning. All of these modes of reasoning are well
recognized in the AI community, and expanding our semantical framework to accommodate
these modes of reasoning is an important semantical issue.

100

� We are currently developing a compiler for agent programs – in particular, in a future paper
[35], we will report upon a class of agent programs called regular agent programs that are guar-
anteed to possess reasonable status sets – regularity of agent programs is a syntactically easily
verifiable property, and regular agent programs possess many nice computational properties.
The paper [35] will report upon several experiments evaluating the ease of computing the sev-
eral diverse semantics described in this paper. This implementation builds upon our existing
HERMES Heterogeneous Reasoning and Mediator System, reported on in [19, 76, 100].� We are studying the problem of whether all agent programs (under different semantics) can be
embedded into logic programs. In other words, is there a translation } that takes as input, an
agent program P , and produces as output, a logic program }(P) such that there is a one one
correspondence between appropriate status sets of P and appropriate models of }(P)?� Suppose we choose to use Sem-status set semantics for agent programs, where Sem is any of
the semantics introduced in this paper. At any given point t in time, the agent program has aSem-status set, St that it acts on. When new events occur (e.g. new messages arrive), these
events may be viewed as updates to the current agent state. We would like to incrementally
compute a new status set St+1 from St, the object state immediately after the Do-actions inSt are executed, and the updates. We are developing algorithms for this task.

Acknowledgements

We wish to thank Alex Dekhtyar, Juergen Dix, Sarit Kraus, Munindar Singh, and Terrence Swift,
for a very close reading of this manuscript, and for the numerous detailed comments they made.
These commends have significantly improved the quality of this paper. We have also benefited from
discussions with Swati Allen, Piero Bonatti, Steve Choy, Phil Emmerman, Dana Nau, Anil Nerode,
Dino Pedreschi, and Jose Salinas.

This work was supported by the Army Research Office under Grants DAAH-04-95-10174,DAAH-
04-96-10297, and DAAH04-96-1-0398, by the Army Research Laboratory under contract number
DAAL01-97-K0135, by an NSF Young Investigator award IRI-93-57756, and by a DAAD grant.

References

[1] S. Adali, K.S.Candan, Y. Papakonstantinou, and V.S. Subrahmanian. Query Processing in Distributed
Mediated Systems. In: Proc. 1996 ACM SIGMOD Conf. on Management of Data, Montreal, Canada,
June 1996.

[2] K. Apt. Logic Programming. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,
volume B, chapter 10. Elsevier Science Publishers B.V. (North-Holland), 1990.

[3] L. Åquist. Deontic Logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic,
Vol.II, chapter II.11, pages 605–714. D. Reidel Publishing Company, 1984.

[4] Y. Arens, C.Y. Chee, C.-N. Hsu and C. Knoblock. Retrieving and Integrating Data From Multiple In-
formation Sources. International Journal of Intelligent Cooperative Information Systems, 2(2):127–158,
1993.

[5] K. Arisha, S. Kraus, F. Ozcan, R. Ross and V.S.Subrahmanian. IMPACT: The Interactive Maryland Plat-
form for Agents Collaborating Together. Submitted for publication, Nov. 1997.

101

[6] M. Baldoni, L. Giordano, A. Martelli and V. Patti. An Abductive Proof Procedure for Reasoning about
Actions in Modal Logic Programming . In: Proc. Workshop on Non Monotonic Extensions of Logic Pro-
gramming at ICLP ’96, Lecture Notes in AI 1216, pp. 132–150, Springer, 1998.

[7] M. Baldoni, L. Giordano, A. Martelli and V. Patti. A Modal Programming Language for Representing
Complex Actions. Manuscript, 1998.

[8] C. Baral and M. Gelfond. Representing Concurrent Actions in Extended Logic Programming. In: Proc.
13th Intl. Joint Conf. on Artificial Intelligence, pp. 866-871, 1993.

[9] C. Baral and M. Gelfond. Logic programming and knowledge representation. Journal of Logic Program-
ming, 19/20:73–148, 1994.

[10] C. Baral, M. Gelfond and A. Provetti. Representing Actions I: Laws, Observations, and Hypothesis. In:
Proc. AAAI ’95 Spring Symposium on Extending Theories of Action, 1995.

[11] C. Baral and J. Lobo. Formal Characterization of Active Databases. In: Proc. Workshop of Logic on
Databases (LID ’96), D. Pedreschi and C. Zaniolo (eds), San Miniato, Italy, LNCS 1154, 1996.

[12] R. Bayardo, et. al. Infosleuth: Agent-based Semantic Integration of Information in Open and Dynamic
Environments. In: Proc. ACM SIGMOD Conf. on Management of Data, 1997.

[13] C. Bell, A. Nerode, R. Ng and V.S. Subrahmanian. Mixed Integer Programming Methods for Computing
Non-Monotonic Deductive Databases. Journal of the ACM, 41(6):1178–1215, 1994.

[14] C. Bell, A. Nerode, R. Ng and V.S. Subrahmanian. Implementing Deductive Databases by Mixed Integer
Programming. ACM Transactions on Database Systems, 21(2):238–269, 1996.

[15] R. Ben-Eliyahu and R. Dechter. Propositional Semantics for Disjunctive Logic Programs. Annals of
Mathematics and AI, 12:53–87, 1994.

[16] W. P. Birmingham, E. H. Durfee, T. Mullen and M. P. Wellman. The Distributed Agent Architecture Of
The University of Michigan Digital Library (UMDL). In: Proc. AAAI Spring Symposium Series on Soft-
ware Agent, 1995.

[17] D.J. Bowersox, D.J. Closs and O.K. Helferich. Logistical Management: A Systems Integration of Phys-
ical Distribution, Manufacturing Support, and Materials Procurement. 3rd ed., Macmillan, New York,
1986.

[18] M. Bratman, D. Israel and M. Pollack. Plans and Resource-Bounded Practical Reasoning. Computa-
tional Intelligence, 4(4):349–355, 1988.

[19] A. Brink, S. Marcus, and V.S. Subrahmanian. Heterogeneous Multimedia Reasoning. IEEE Computer,
28(9):33–39, 1995.

[20] M. Cadoli, The Complexity of Model Checking for Circumscriptive Formulae. Information Processing
Letters, 44:113–118, 1992.

[21] R.G.G. Cattell et al. (eds.) The Object Database Standard: ODMG-97. Morgan Kaufmann, 1997.

[22] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom.
The TSIMMIS Project: Integration of Heterogeneous Information Sources., In: Proc. IPSJ Confer-
ence, Tokyo, Japan, October 1994. (Also available via anonymous FTP from host db.stanford.edu, file
/pub/chawathe/1994/tsimmis-overview.ps.)

[23] Z.-Z. Chen and S. Toda. The Complexity of Selecting Maximal Solutions. In: Proc. 8th IEEE Structure
in Complexity Theory Conference, pp. 313–325, 1993.

[24] Z.-Z. Chen and S. Toda. The Complexity of Selecting Maximal Solutions. Information and Computation,
119:231–239, 1995.

[25] P. Cohen and H. Levesque. Intention is Choice with Commitment. Artificial Intelligence, 42:263–310,
1990.

102

[26] S.E. Conry, K. Kuwabara, V.R. Lesser and R.A. Meyer. Multistage Negotiation for Distributed Satis-
faction, IEEE Transactions on Systems, Man, and Cybernetics, Special Issue on Distributed Artificial
Intelligence, 21(6):1462–1477, 1991.

[27] S. Coradeschi and L. Karlsson. A Behavior-based Decision Mechanism for Agents Coordinating using
Roles. In: Proc. 1997 Intl. Workshop on Agent Theories, Architectures, and Languages, Providence, RI,
pp 100-105, 1997.

[28] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of Logic Program-
ming. In: Proc. Twelfth IEEE International Conference on Computational Complexity (CCC ’97), pp
82–101, 1997.

[29] U. Dayal and H. Hwang. View Definition and Generalization for Database Integration in a Multi-
Database System. IEEE Transactions on Software Engineering, SE-10(6):628–644, 1984.

[30] K. Decker, K. Sycara and M. Williamson. Middle Agents for the Internet. In: Proc. IJCAI 97, Nagoya,
Japan, pp 578–583, 1997.

[31] F. Dignum and R. Conte. Intentional Agents and Goal Formation, In: Proc. 1997 Intl. Workshop on
Agent Theories, Architectures, and Languages, Providence, RI, pp 219–231, 1997.

[32] T. Eiter and G. Gottlob. The Complexity of Logic-Based Abduction. Journal of the ACM, 42(1):3–42,
1995.

[33] T. Eiter, G. Gottlob, and N. Leone. On the Indiscernibility of Individuals in Logic Programming. Journal
of Logic and Computation, 7(6):805–824, 1997.

[34] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions on Database Systems,
22(3):315–363, 1997.

[35] T. Eiter, V.S. Subrahmanian, and M. Tikir. Regular Agent Programs and their Implementation, in prepa-
ration.

[36] O. Etzioni and D. Weld. A Softbot-Based Interface to the Internet, Communications of the ACM,
37(7):72-76, 1994.

[37] M. Garey and D. S. Johnson. Computers and Intractability– A Guide to the Theory of NP-Completeness.
W. H. Freeman, New York, 1979.

[38] L. Gasser and T. Ishida. A Dynamic Organizational Architecture For Adaptive Problem Solving. In:
Proc. AAAI ’91, pp 185–190, 1991.

[39] N. Gehani, H. Jagadish, and W. Roome. OdeFS: A File System Interface to an Object-Oriented Database.
In: Proc. Int’l Conf. on Very Large Databases (VLDB), pp 249–260, 1994.

[40] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In: Logic Program-
ming: Proceedings Fifth Intl Conference and Symposium, pages 1070–1080, Cambridge, Mass., 1988.
MIT Press.

[41] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases. New
Generation Computing, 9:365–385, 1991.

[42] M. Gelfond and V. Lifschitz. Representing Actions and Change by Logic Programs. Journal of Logic
Programming, 17(2-4):301–323, 1993.

[43] M.R. Genesereth and S.P. Ketchpel. Software Agents. Communications of the ACM, 37(7), 1994.

[44] M.R. Genesereth and N.J. Nilsson. Logical Foundations of Artificial Intelligence. Morgan Kaufman
Pub., 1987.

[45] G. De Giacomo, Y. Lesperance and H.J. Levesque. Reasoning about Concurrent Execution, Prioritized
Interrupts, and Exogenous Actions in the Situation Calculus. In: Proc. IJCAI 97, Nagoya, Japan, 1997.

[46] L. Glicoe, R. Staats and M. Huhns. A Multi-Agent Environment for Department of Defense Distribution.
In: Proc. IJCAI 95 Workshop on Intelligent Systems, 1995.

103

[47] G. Gottlob. Complexity Results for Nonmonotonic Logics. Journal of Logic and Computation, 2(3):397-
425, 1992.

[48] G. Gottlob. The Complexity of Default Reasoning Under the Stationary Fixed Point Semantics. Infor-
mation and Computation, 121(1):81-92, 1995.

[49] G. Gottlob. Translating default logic into standard autoepistemic logic, Journal of the ACM, 42(4):711–
740, 1995.

[50] G. Gottlob, N. Leone, and H. Veith. Second-Order Logic and the Weak Exponential Hierarchies. In:
Proc. 20th Conference on Mathematical Foundations of Computer Science (MFCS ’95), LNCS 969,
pages 66–81, 1995. Full paper CD-TR 95/80, Christian Doppler Lab for Expert Systems, TU Wien.

[51] A. Gupta and I.S. Mumick (eds). Materialized Views. MIT Press, 1998, to appear.

[52] A. Haddadi. Towards a Pragmatic Theory of Interactions, In: Proc. Intl Conf. on Multi-Agent Systems,
pp 133–139, 1995.

[53] J.Y. Halpern and M.Y. Vardi. Model Checking vs. Theorem Proving: A Manifesto. In: Proc. Intl Conf.
on Knowledge Representation and Reasoning (KR 91), pp 325–334, 1991.

[54] S. Hansson. Review of Deontic Logic in Computer Science: Normative System Specification. Bulletin
of the IGPL, 2(2):249–250, 1994.

[55] K.V. Hindriks, F.S. de Boer, W. van der Hoek and J.-J.Ch. Meyer. Formal Semantics of an Abstract
Agent Programming Language. In: Proc. 1997 Intl. Workshop on Agent Theories, Architectures, and
Languages, Providence, RI, pp 204–218, 1997.

[56] W.van der Hoek, B. van Linder and J.-J.Ch.Meyer. A Logic of Capabilities. In: Proc. 3rd Intl Symposium
on the Logical Foundations of Computer Science (LFCS 94), A. Nerode and Y.V. Matiyasevich (eds),
pp 366-378, Springer Verlag, 1994.

[57] M. Huhns and M. Singh (eds). Readings in Agents. Morgan Kaufmann Press, 1997.

[58] M. d’Inverno, D. Kinny, M. Luck and M. Wooldridge. A Formal Specification of dMARS. In: Proc. 1997
Intl. Workshop on Agent Theories, Architectures, and Languages, Providence, RI, pp 146-166, 1997.

[59] B. Jenner and J. Toran. The Complexity of ObtainingSolutions for Problems in NP and NL. In: A. Selman
(ed), Complexity Theory: A Retrospective II, to appear.

[60] N. R. Jennings. Controlling Cooperative Problem Solving in Industrial Multi-Agent Systems Using Joint
Intentions. Artificial Intelligence, 75(2):1–46, 1995.

[61] D. S. Johnson. A Catalog of Complexity Classes. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, vol. A, chapter 2. 1990.

[62] S. Kanger. Law and Logic. Theoria, 38, 1972.

[63] A. Kemper, C. Kilger, G. Moerkotte. Function Materialization in Object Bases: Design, Realization,
and Evaluation. IEEE Transactions on Knowledge and Data Engineering, 6(4), 1994.

[64] S. Kraus. Negotiation and Cooperation in Multi-Agent Environments. Artificial Intelligence, Special Is-
sue on Economic Principles of Multi-Agent Systems. 94(1-2):79-98, 1997.

[65] C. Krogh. Obligations in Multi-Agent Systems. In: Aamodt, Agnar, and Komorowski (eds), Proc. Fifth
Scandinavian Conference on Artificial Intelligence (SCAI ’95), pp 19–30, Trondheim, Norway, 1995.
ISO Press.

[66] D. Kuokka and L. Harada. Integrating Informationvia Matchmaking. Journal of Intelligent Informations
Systems, 6(2/3):261–279, 1996.

[67] Y. Labrou and T. Finin. A Semantics Approach for KQML – A General Purpose Communications Lan-
guage for Software Agents. In: Proc,. 1994 Intl Conf. on Information and Knowledge Management, pp
447–455, 1994.

104

[68] Y. Labrou and T. Finin. Semantics for an Agent CommunicationLanguage, In: Proc. 1997 Intl. Workshop
on Agent Theories, Architectures, and Languages, Providence, RI, pp 199–203, 1997.

[69] P. Liberatore and M. Schaerf. The Complexity of Model Checking for Belief Revision and Update. Ib:
Proc. AAAI-96, pp 556–561, 1996.

[70] J. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1987.

[71] J. Lobo, J. Minker and A. Rajasekar. Foundations of Disjunctive Logic Programming. MIT Press, 1992.

[72] J. Lobo and V.S. Subrahmanian. Relating Minimal Models and Pre-Requisite-Free Normal Defaults. In-
formation Processing Letters, 44:129–133, 1992.

[73] J. Lu, G. Moerkotte, J. Schue, and V.S. Subrahmanian. Efficient Maintenance of Materialized Mediated
Views. In: Proc. 1995 ACM SIGMOD Conf. on Management of Data, San Jose, CA, May 1995.

[74] J. Lu, A. Nerode and V.S. Subrahmanian. Hybrid Knowledge Bases. IEEE Transactions on Knowledge
and Data Engineering, 8(5):773–785, 1996.

[75] P. Maes. Agents that Reduce Work and Information Overload. Communications of the ACM, Vol.
37(7):31–40, 1994.

[76] S. Marcus and V.S. Subrahmanian. Foundations of Multimedia Database Systems. Journal of the ACM,
43(3):474–523, 1996.

[77] W. Marek and V.S. Subrahmanian. The Relationship Between Stable, Supported, Default and Auto-
Epistemic Semantics for General Logic Programs. Theoretical Computer Science, 103:365–386, 1992.

[78] W. Marek and M. Truszczyński. NonmonotonicLogics – Context-Dependent Reasoning. Springer, 1993.

[79] J.-J. C. Meyer and R. Wieringa. (eds.) Deontic Logic in Computer Science. Wiley & Sons, Chichester
et al, 1993.

[80] R. Moore. Semantical Considerations on NonmonotonicLogics. Artificial Intelligence, 25:75–94, 1985.

[81] A. Motro. Superviews: Virtual Integration of Multiple Databases. IEEE Trans. Software Engineering,
SE 13(7):785–798, 1987.

[82] N.J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, 1980.

[83] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[84] A.S. Rao and M. Georgeff. Modeling Rational Agents within a BDI-Architecture. In: Proc. Intl Conf. on
Knowledge Representation and Reasoning (KR 91), pp 473–484, 1991.

[85] R. Reiter. On Closed-World Databases. In: H. Gallaire and J. Minker (eds.), Logic and Data Bases, pp
55–76. Plenum Press, New York, 1978.

[86] R. Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13:81–132, 1980.

[87] J. S. Rosenschein and G. Zlotkin. Rules of Encounter: Designing Conventions for Automated Negotia-
tion Among Computers. MIT Press, Boston, 1994.

[88] S.J. Rosenschein. Formal Theories of Knowledge in AI and Robotics. New Generation Computing
3(4):345–357, 1985.

[89] S.J. Rosenschein and L.P. Kaelbling. A Situated View of Representation and Control. Artificial Intelli-
gence, 73, 1995.

[90] S.J. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.

[91] T. Sandholm and V. Lesser. Coalition Formation Amongst Bounded Rational Agents. In: Proc. IJCAI
1995, pp 662–669, Montreal, Canada, 1995.

[92] M. Schoppers and D. Shapiro. Designing Embedded Agents to Optimize End-User Objectives. In: Proc.
1997 Intl Workshop on Agent Theories, Architectures, and Languages, Providence, RI, pp 2–12, 1997.

105

[93] R. Schwartz and S. Kraus. Bidding Mechanisms for Data Allocation in Multi-Agent Environments, In :
Proc. 1997 Intl. Workshop on Agent Theories, Architectures, and Languages, Providence, RI, pp 56–70,
1997.

[94] O. Shehory, K. Sycara and S. Jha. Multi-Agent Coordination through Coalition Formation. In: Proc.
1997 Intl. Workshop on Agent Theories, Architectures, and Languages, Providence, RI, pp 135–146,
1997.

[95] A. Sheth and J. Larson. Federated Database Systems for Managing Distributed, Heterogeneous and Au-
tonomous Databases. ACM Computing Surveys, 22(3):183–236, 1990.

[96] J. Shoenfield. Mathematical Logic. Addison Wesley, 1967.

[97] Y. Shoham. Agent Oriented Programming, Artificial Intelligence, 60:51–92, 1993.

[98] M.P. Singh. A Customizable CoordinationService for Autonomous Agents. In: Proc. 1997 Intl Workshop
on Agent Theories, Architectures, and Languages, Providence, RI, pp 86–99, 1997.

[99] R.G. Smith and R. Davis. Negotiation as a Metaphor for Distributed Problem Solving, Artificial Intel-
ligence 20:63–109, 1983.

[100] V.S. Subrahmanian. Amalgamating Knowledge Bases. ACM Transactions on Database Systems,
19(2):291–331, 1994.

[101] K. Sycara and D. Zeng. Multi-Agent Integration of Information Gathering and Decision Support. In:
Proc. European Conf. on Artificial Intelligence (ECAI ’96), 1996.

[102] J.D. Ullman Principles of Database and Knowledge-base Systems. Computer Science Press, 1989.

[103] R. van der Meyden. The Dynamic Logic of Permission. In: Proc. Fifth Annual IEEE Symposium on
Logic in Computer Science (LICS ‘90), pages 72–78, 1990.

[104] M. Vardi. Complexity of Relational Query Languages. In: Proc. 14th ACM Symposium on the Theory
of Computing (STOC ‘82), pp 137–146, San Francisco, 1982.

[105] E. Verharen, F. Dignum and S. Bos. Implementation of a Cooperative Agent Architecture Based on
the Language-Action Perspective, In: Proc. 1997 Intl Workshop on Agent Theories, Architectures, and
Languages, Providence, RI, pp 26–39, 1997.

[106] K. Wagner. Bounded Query Classes. SIAM Journal of Computing, 19(5):833–846, 1990.

[107] M. Wellman. A Market-Oriented Programming Environment and its Application to Distributed Multi-
commodity Flow Problems. Journal of Artificial Intelligence Research, 1:1–23, 1993.

[108] G. Wiederhold. Intelligent Integration of Information. In: Proc. 1993 ACM SIGMOD Conf. on Man-
agement of Data, pp 434–437, 1993.

[109] F. Wilder. A Guide to the TCP/IP Protocol Suite. Artech House, 1993.

[110] M. Wooldridge and N.R. Jennings. Intelligent Agents: Theory and Practice, Knowledge Engineering
Reviews, 10(2), 1995.

[111] M. Wooldridge and N.R. Jennings. Formalizing the Cooperative Problem Solving Process, In: M.
Huhns and M. Singh (eds.), Readings in Agents, pp 430–440. Morgan Kaufmann, 1997.

106

A Appendix: Complexity of S- and F -Concurrent Executability

We assume that we have a set of feasible execution triples AS to be executed on a given state OS ,
such that following operations are possible in polynomial time:

1. testing whether the grounded preconditionPre(�(~X))�
 for any triple (�(~X); �;
) 2 AS is
satisfied in an agent state;

2. determining all objects in solutions ofAdd(�(~X)�
) and inDel(�(~X)�
) on an agent state,
as well as insertion/deletion of objects from an agent state;

3. construction of any object that may be involved in the state evolving from execution of AS
on OS under any permutation �.

Such a setting applies e.g. in the case where the agent state is a relational database maintained under
active domain semantics.

Theorem A.1 Let AS = f(�1; �1;
1), . . . , (�n; �n;
n)g be a given set of feasible execution triples(�i; �i;
i) on a given agent stateOS . Then, under the previous assumptions, testing whether AS isS-concurrently executable is NP-complete.

Proof. The problem is NP, since we can guess an appropriate permutation � and check in poly-
nomial time whetherAS is �-feasible. Indeed, by our assumptions we can always evaluate the pre-
condition Pre(�(~X�(i))��(i)
�(i)) in polynomial time on OiS , and we can construct the state Oi+1S
in polynomial time fromOiS , for all i = 0; : : : ; n� 1; overall, this is possible in polynomial time.

To show NP-hardness, we provide a reduction from monotone 3SAT (M3SAT) [37] to the S-con-
current execution problem, for a setting where the software code S provides access to a relational
database DB and an agent stateOS is a relational database instance D.

Let I be an instance of M3SAT, consisting of clauses C1; : : : ; Cm over variables x1; : : : ; xn, such
that each Ci is either positive or negative.

The databaseDB has four relations: VAL(V ar; BV), which stores a Boolean value for each vari-
able; SV(V ar), which intuitively holds the variables which have assigned a value; SAT(C) which
intuitively stores the clauses which are satisfied; the 0-ary relation INIT.

The initial database DB holds all possible tuples, in particular, both tuples (xi; 0) and (xi; 1) are
in VAL for every atom xi. This will ensure that every execution triple in AS is feasible.

The execution triples in AS are designed such that a feasible schedule must have the following
phases:

Initialization. An action init must be executed here, which clears all relations except VAL.

Choice. In this phase, for each atom xi a truth value is chosen by removing from VAL either (xi; 0)
(which sets xi to 1), or (xi; 1) (which sets xi to 0).

Checking. In this phase, it is checked for every single clauseCi independently whetherCi is satis-
fied.

107

Success. In this phase, the single tests for the Ci are combined; if the result is positive, i.e., the
assignment selected in the choice phase satisfies everyCi, then a success action sat is executed
which enables to gracefully execute the remaining actions.

Clearance. In this phase, which is entered only if the Success phase had a positive result, all re-
maining actions which have not been executed so far are taken. Moreover, we add an ac-
tion which completely clears the database, such that every feasible permutation � leads to the
empty database.

The actions and their descriptions are given in the following table:

Phase Action Precondition

Init init INIT

Choice set1(X) VAL(X; 1)^ VAL(X; 0)set0(X) VAL(X; 1)^ VAL(X; 0)
Checking checki;j SV(x1) ^ � � �^ SV(xn) ^Ati;j
Success sat SAT(c1) ^ � � �^ SAT(cm)
Clearance clear ;
Phase Action Add Set Delete Set

Init init ; f SV(V), SAT(C), INIT g
Choice set1(X) f SV(X) g f INIT, VAL(X; 0) gset0(X) f SV(X) g f INIT, VAL(X; 1) g
Checking checki;j f SAT(ci) g f INIT g
Success sat f VAL(xi; 0), VAL(xi; 1) j i = 1; : : : ; ng f INIT g
Clearance clear ; all relations

Here Ati;j = V AL(xk; 1) if the j-th literal of clauseCi is xk, andAti;j = V AL(xk; 0) if it is :xk .

Observe that all variables in the preconditions of the above actions� are action parameters. Thus,
 is void in every solution of Pre(�(~X)�), and thus for every �(~X) and � at most one feasible triple(�(~X); �;
)may exist, in which
 is void; we hene write simply �(~X)� for this triple. Let the setAS be as follows:AS = fset1(xi); set0(xi) j 1 � i � ng [fchecki;j j 1 � i � m; 1 � j � 3g [finit; clear; satg:
Notice the following observations on a feasible permutation � for AS:� initmust be executed first, i.e.,��(1) = init, and clearmust be executed as the last action.� Clause checking can only be done after some choice actionsetv(xi), v 2 f0; 1g, has occurred,

for every i = 1; : : : ; n.� In the choice phase, execution of at most one of the actions set1(xi), set0(xi) is possible,
for every i = 1; : : : ; n.� Success is only possible, if for each clauseCi at least one action checki;j has been executed.

108

� After the Success phase, first every remaining action setv(xi) can be executed, then all re-
maining actions checki;j are possible, and finally clear can be done.

It holds that AS is S-concurrently executable, i.e., there exists some permutation � such that AS is�-feasible, if and only if I is a Yes-Instance of M3SAT.

Remark. The construction can be extended so to obtain a fixed action baseAB such that the set AS
in the construction is an instance of AB, by adding further relations to the schema describing the
clauses in I . Moreover, strict typing of the values occurring in the relations is possible.

Theorem A.2 Let AS = f(�1; �1;
1), . . . , (�n; �n;
n)g be a given set of feasible execution triples(�i; �i;
i) on a given agent stateOS . Then, under the previous assumptions, testing whether AS isF -concurrently executable is co-NP-complete.

Proof. The problem is in co-NP, since we can guess permutations� and�0 such that eitherAS[�] =��(1); : : : ; ��(n) orAS[�0] = ��0(1), : : :, ��0(n) not feasible, orAS[�] and AS[�0] yield a different
result. By our assumptions, the guess for � and �0 can be verified in polynomial time (cf. Proof of
Theorem A.1).

To show that the problem is co-NP-hard, we consider the case where S is a relational database D
and an agent stateOS is a relational database instance D.

We reduce the complement of M3SAT to F -concurrent executability checking. Let I be an in-
stance of M3SAT, consisting of at least one positive clause and at least one negative clause. Here,
each clause is supposed to have three (not necessarily different) literals.

Let I 0 be the instance of I which results if every positive clause is made negative and vice versa,
and if every atomxi is replaced byxn+i. Clearly, I 0 is a Yes-instance if and only if I is a Yes-instance,
if and only if I [I 0 is satisfied by some truth assignment to x1; : : : ; x2n in which xi has the opposite
value to the value of xn+i, for every i = 1; : : : ; n.

The relational databaseD we construct has four relations: POS(V1; V2; V3) and NEG(V1; V2; V3),
which serve for storing the positive and negative clauses of I [I 0, respectively; VAL(V ar; BV),
which stores a truth value assignment to the variables, s.t. variable xi is true if (xi; 1) 2 VAL, andxi is false if (xi; 0) 2 VAL, for every i = 1; : : : ; 2n; and, a 0-ary relation UNSAT.

The initial databaseD contains the relations POS and NEG storing the clauses of I[I 0, the relation
VAL which holds the tuples (xi; 0) and (xn+i; 1), for every i = 1; : : : ; n and the relation UNSAT is
empty.

The action base contains the actions switch(X; Y) and eval, where

switch: Pre(switch(X; Y)) = ;,Add(switch(X; Y)) = f VAL(X; 1);VAL(Y; 0)g,Del(switch(X; Y)) = fVAL(X; 0);VAL(X; 1)g;
eval: Pre(eval) = f 9V1; V2; V3:POS(V1; V2; V3) ^VAL(V1; 0)^VAL(V2; 0) ^VAL(V3; 0)^

NEG(V1; V2; V3) ^VAL(V1; 1) ^VAL(V2; 1)^VAL(V3; 1) g;Add(eval) = f UNSAT g,Del(eval) = ;.
109

Observe that like in the proof of Theorem A.1, all unbound variables in preconditions of actions are
action parameters; we thus write analogously (�(~X)�) for (�(~X); �;
)where
 is void.

The set AS of execution triples isAS = fswitch(xi; xn+i) j 1 � i � ng [fevalg:
Intuitively, a switch action switch(xi; xn+i) flips the value of xi from 0 to 1 and the value fromxn+i from 1 to 0. The eval action checks whether for the truth assignment to x1; : : : ; x2n given in
the database, there is some positive clause and some negative clause which are both violated.

For any permutation � on AS, the actions ��(j) scheduled before ��(i) = eval flip the values of
some variables; notice that flipping xi is simultaneously done with flipping xn+i. The preconditionPre(eval) is true, precisely if there exists some positive clause P and some negative clause N inI [I 0 which are both violated; this is equivalent to the property that the current assignment � stored
in D does not satisfy I .

To see this, if P is from I , then I is not satisfied by �, and if P is from I 0, then there is a corre-
sponding negative clause N(P) in I such that N(P) is not satisfied. On the other hand, if � does
not satisfy I , then there exists either a positive clause P 2 I or a negative clauseN 2 I which is not
satisfied, and thus the corresponding negative clause N(P) 2 I 0 (resp. positive clause P (N) 2 I 0)
is not satisfied by �; this means Pre(eval) is true.

Clearly, all actions in AS are executable on the initial database DB, and every feasible permu-
tation AS[�] yields the same resulting database. Hence, it follows that AS is F -concurrently exe-
cutable, if and only if I is a Yes-Instance. This proves the result.

Remark. We can deriveAS from a simple fixed program, if we store the pairs xi; xn+i in a separate
relation. result extends to the data complexity of an tion set.

Remark A.1 The F -concurrent execution problem in the above database setting is polynomial, if
the precondition is a conjunction of literals and there are no free (existential) variables in it. Then,
the condition amounts to the following property. Let AS be a set of action execution triples, and
denote by Pre+(�) (resp., Pre�(�)) the positive (resp., negated) ground atoms in the precondition
of �. Moreover, let Add # (�) and Del # (�) be the ground instances of the atoms in Add(�) andDel#(�) over the database, respectively.(i) Add#(�) \ Pre�(�) = ;, for every � 6= � 2 AS;(ii) Del#(�) \ (Pre+(�) [Add#(�)) = ;, for every � 6= � 2 AS;(iii) Add#(�) \Del#(�) = ;, for every � 2 AS.

(Condition (iii) is actually not needed, but avoids philosophical problems.) An alternative, less con-
servative approach would be to limit change by � to the atoms not in Add#(�) \Del#(�).
B Appendix: QBF

Lemma 8.14 Let �0 = 9Y 08X 0�0 be a QBF such that �0 is in DNF. Then, a formula� = 9Y 8X�,
where � is in M3DNF (see proof of Theorem 8.2 for M3DNF) can be constructed in polynomial time,
such that

110

(1) for Y = ;, the formula 8X�[Y = ;] is true;(2) �0 ! (9Y 6= ;)(8X)� holds.

(As a remark to the interested reader, 9Y 6= ; is, strictly speaking, a second-order generalized
quantifier.)

Proof. Without loss of generality, �0 is already monotone. Suppose Y 0 = fy1; y2; : : : ; yng and
let Y = Y 0 [fy0g. Consider the formula9Y 0 6= ;8Y:((:y1 ^ � � � ^ :yn) _ �): (7)

This formula is clearly equivalent to �0. Construct next the formula9Y 08X [8Z:(:y0 ^ z1) _ (:z1 ^ :y1 ^ z2) _ (:z2 ^ :y2 ^ z3)_(:zn�1 ^ yn�1 ^ zn) _ (:zn ^ :yn)] _ �; (8)

where Z = fz1; : : : ; zng. The formula (8) is equivalent to (7). Indeed, observe that the subformula[8Z: : : :] of (8), denoted by 8Z: , is equivalent to :y1 ^ � � � ^ :yn. To see this, suppose first 8Z:
is true. Then, for every i = 0; : : : ; n consider a value assignment�i toZ such that zj = 0, for everyj < i, and zj = 1, for all j � i. Then, [Z] $:xi. Hence, the only-if direction holds. Suppose
now that :y0 ^ � � � ^ :yn is true. Towards a contradiction, suppose [Z] is false for some value
assignment � toZ. Hence, by the first disjunct in z1 is false in �, which means by the second thatz2 is false in �, . . . , that zn is false in �. However, the last disjunct in is :zn ^ :xn. Thus, this
disjunct is true, which is a contradiction.

By elementary quantifier pulling, formula (8) is equivalent to the formula9Y 6= ;8XZ(_ �); (9)

and8XZ(_�)[Y = ;] is true. By using further universallyquantified variablesZ 0 = fz01; : : : ; z0ng,
we obtain 9Y 6= ;8Y ZZ0[_i (zi ^ zi ^ z0i) __i (:zi ^ :zi ^ :z0i) _ [Z=:Z]_ �] (10)

where �[Z=:Z0] means the obvious substitution of Z 0 literals for Z literals such that the formula
is monotone (observe that zi resp. :zi are for convenience replicated in disjuncts). Clearly, (10) is
equivalent to (9). This proves the lemma.

111

C Appendix: Table of Notation Used in the Paper

In the following tables, all numbers refer to Definition numbers, unless explicitly stated otherwise.

Notation Location DescriptionS Sec. 1 beginning Software CodeTS Sec. 1 beginning Set of data types for software code SFS Sec. 1 beginning Set of predefined functions for software code SOS Sec. 1 beginning Agent State� 2 TS Sec. 1 beginning Object typeV ar(�) Sec. 3.1 beginning Variable symbols ranging over �X:fi:g Sec. 3.1 beginning Path variableS : f(d1; : : : ; dn) 3.2 Code call
cc 3.2 Code call
in(X,cc) 3.2 Code call atom<;>;�;�;=;& 3.3 Code call condition operators� 3.3 Code call conditionSol(�)TS ;OS 3.5 Set of code call solutionsO Sol(�)TS;OS 3.5 Set of all objects in a code call solutioninsS After 3.5 Inserts objects in a statedelS After 3.5 Deletes objects from a state) �a 3.6 Integrity constraintOS j= IC 3.7 Integrity constraint satisfactionIC 3.7 Finite collection of integrity constraints� 4.1 Action(�1; : : : ; �n) 4.1 Action schemaPre(�) 4.1 Precondition for action �Add(�) 4.1 Add list for action �Del(�) 4.1 Delete list for action �(�;
)-Executability 4.3 Action execution under substitutions��(�(~X);OS) 4.3 Set of all �;
 making an action �(~X) executableapply(A;OS) 4.5 Weak-concurrent executionS-concurrently executable 4.6 Sequential-concurrent executionF -concurrently executable 4.7 Full-concurrent executionAC 4.8 Action constraintS;OS j= AC 4.9 Action constraint satisfactionP� 4.10 Agent is permitted to take action �F� 4.10 Agent is forbidden to take action �O� 4.10 Agent is obliged to take action �W� 4.10 Obligation to take action � is waivedDo� 4.10 Agent does take action �A L1; : : : ; Ln 3 Action ruleP 4.12 Agent program
(continued next page)

112

Notation Location DescriptionH(r) para before Ex. 4.7 Head of rule rB(r) para before Ex. 4.7 Body of rule rB�(r) para before Ex. 4.7 Negative literals in the body of rule rB+(r) para before Ex. 4.7 Positive literals in the body of rule r::B�(r) para before Ex. 4.7 Atoms of the negative literals of rule rB(r)as; B(r)cc para before Ex. 4.7 Body of rule r restricted to action status atomsB(r)cc para before Ex. 4.7 Body of rule r restricted to code call atomsB�(r)as para before Ex. 4.7 Negative literals in the body of rule r
restricted to action status atomsB�(r)cc para before Ex. 4.7 Negative literals in the body of rule r
restricted to code call atomsB+(r)as para before Ex. 4.7 Positive literals in the body of rule r
restricted to action status atomsB+(r)cc para before Ex. 4.7 Positive literals in the body of rule r
restricted to code call atoms::B�(r)as para before Ex. 4.7 Negations of atoms inB�(r)as::B�(r)cc para before Ex. 4.7 Negations of atoms inB�(r)ccDCl(S) 5.3 Deontic closureACl(S) 5.3 Action closureAppP;OS(S) 5.4 Application of program rulesTP;OS 5.7 Fixpoint operatorAClA(S) 5.9 Relativized action closureA-feasible, A-rational, 5.10 Relativized status setsA-reasonableTP;OS;A 5.12 Relativized fixpoint operatorA(S) 5.13A(S)-feasible 5.10F -preferred Sec.5.6 beginning Preferred setF=P -completion 5.6.2 F=P -completion rule of �CompF=P (P) Sec. 5.6.2 beginning Augmentation of PF=P -complete 5.6.2Sem 5.7 Semantics variablecf 5.15 Cost function

113

