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Preface

Environment recognition using images is a worthwhile research subject.
3D information is valuable information to recognize surrounding, because
currently it is difficult for machines to understand 3D structure in the scene
with only one image, even though a human can understand the scene struc-
ture from a picture.

3D information can be obtained from stereo and motion disparities. Since
the stereo camera is assumed to be calibrated, the 3D shape can be calculated
from disparities. On the other hand, since the camera motion, so called ego-
motion, is not known, even though motion disparities is obtained, 3D shape
cannot be calculated until ego-motion is estimated. In addition, the 3D shape
recovered from motion disparities is determined up to a scale. Generally, the
accuracy of 3D reconstruction by stereo camera depends on the baseline. A
stereo camera usually cannot take long baseline, while camera motion can
produce long baseline.

Since each stereo and motion has information on 3D shape, the combina-
tion of stereo and motion disparities could complementally produce better 3D
reconstruction than only one of them. Researches in this report were taken
placed toward the 3D reconstruction using stereo and motion information.
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Researches



1 Geometorical Understanding of Calibra-
tion

1.1 One-dimensional Camera Calibration in a Two-

dimensional Space

The objective is to find two-dimensional rigid motion parameters, such
as rotation and translation, and calibration parameters, such as focal length,
pixel size, and center of image from images of a one-dimensional calibration
target. In a two-dimensional space, a one-dimensional camera can take one-
dimensional images of a one-dimensional calibration target. After the images
of the calibration target are taken, the homography matrixes can be com-
puted. The homographies indicate the transformation from the coordinates
on the calibration target to the coordinates on image. The coordinate on the
calibration target will be referred as the global coordinate. The coordinate
on the image will be referred to as the image coordinate. The coordinate in

which the origin is camera center is referred to as the camera coordinate.

7 hir hig (1)
ha1 hag
In this formula, H is the homography matrix.
If the rotation, translation, and the calibration matrix are known, the
transformation of coordinates should be as follows in the homogeneous co-

ordinate, using the ration angle #, the translation vector (¢,,t,), the focal

length f, and image center xy:



RT cos(f) —sin(0) t, )
sin(f) cos(f) t,

K — [ o (3)

0 1
Thus, when a point on the calibration target is M = (X,Y,1)” in the
homogeneous coordinate of the global coordinate, and a corresponding point
in the homogeneous coordinate of the image coordinate is m = (x,y)”, then

the transformation between the point is
m=K-RT-M (4)

There is no loss of generality in assuming that the Y coordinate of any
point on the calibration target in the global coordinate is zero. Then, the

homography between M' = (X, 1)” and m = (z,y)” is supposed to be:

m=K-L-M (5)
Where
cos(0) t,
L (eosto) o
sin() t,
The homography should be
H=a-K-L (7)

« is an unknown scale factor.
This notation shows that after rigid motion, an affine transformation is

applied. In thinking about this two-step transformation, the second one is



Figure 1: Calibration Target and Camera Coordinate System

only moving the image plane and stretching the plane without changing the
angle of the image plane.

Thus, the point [ where the calibration target, (the x-axis of the global
coordinate) and the x-axis of the camera coordinate intersect doesn’t change
in any matrix of K. This is equivalent to the property of the affine transfor-

mation, which doesn’t change the vanishing line of canonical position.

0 0
K" = (8)
1 1
Thus,
(H—l)—T = - LT KT
1 1
0
=a-L" (9)
1
Vg
Uy

In this formula, K has no effect.



<

Figure 2: Intersection of X-axes

Figure 3: Retaken Coordinate Systems

When the homography is given, the point [ can be computed as the
intersect between the x-axis and the line that is perpendicular to (v,,v,)T
and passes the point (0, —1)T.

Since the point [ can be computed from the homography matrix, it is
possible to take the global coordinate where the point [ is to be (0,0)%.
Thus, without any loss of generality, it is assumed that the x-axis of the
camera coordinate passes through the origin of the global coordinate.

When the angle between the x-axis of the camera coordinate and the x-



axis of global coordinate is # and the length between the origin of the camera
coordinate and the origin of the global coordinate is r, the transformation
matrix between coordinates is as follows:

cos(f) —sin(0) r

RT = (10)
sin(@) cos(f) 0
0
I cos(f) r 1)
sin(f) 0
So, the homography should be
H=«a-K-L
feos(0) + xosin(0) fr (12)
sin(0) 0

Although the homography given before has three rigid motion parameters
(0, tg, ty), there are only two parameters (¢, r) in this notation. It is noticed
that this reduction of parameters is made by the property of the calibration
matrix as an affine transformation.

When the homography is given,

0 0 h
HYHY T == = (13)
1 1 hao

the point [ is computed as (%, 0)” as the intersection of the x-axis and
the line that is perpendicular to the vector (o, hop)? and passes through
(0,—1)T. So, the global coordinate can be redefined so that the point [ is the

origin. It is same as multiplying the homography by the following matrix.

—hao
= (14)
0 1



So, the homography becomes:

—hyah
o [ TR e (15)
h21 0
Thus, because the (2,2) component of the homography can always be

zero, it is assumed that the homography given is:

hii h
H— 11 12 (16)
hgl 0

Although the calibration parameters are unknown, the form of K ! is as

follows:
1 —=0
K=/ / (17)
0 1
Multiply the homography by the K~!
A=K ' H
_ hll_}L'OhQI % (18)
h21 0

Since A should be the rigid motion matrix multiplied scale, the first col-
umn can be decomposed to the scale and the normal vector to make the

length of the first column to be one.

hi11—xohoy hio

A = \/(hll - thZl)Q + th%I \/(h11—$0h21)2+f2h§1 \/(h11—$0h21)2+f2h%1

f fhay 0
\/(hu —woh21)2+f2hZ,

=alL
(19)



Where,

\/(hn — xoha1)? + f2h3,

L f (20)
hi1—zoh2 hiz
L= \/(humfo}f:;l)erthgl \/(hllmof(b)zl)erth%l (21)

\/(hn —zoh21)2+f2h3,

Comparing this equation to equation (11), then :

0 = sin fhar (22)
\/(hn — Toha)? + f2h3,
r= s - (23)
\/(hn — xoh21)? + f2h3,

Since this defines the map from (6,r) to (f,x¢), the inverse map can be

defined as :

h12 sinf
=12 24
T r (24)
h12 cost hu
=422 —u 25
o hoy 7 - hay ( )

When the r is constant, the graph for (f,zo) becomes a circle with a

hu\ hip\2 1
2 11 12

=== = 26
f (.’L'O hgl ) ( hgl > 7"2 ( )

As expected, the 0 should be between 0 and 7 and r is positive to take the

parameter of 6,

image of the calibration target, and f should be positive. Knowing this, the
half of the circle of the equation (26) is comprise of candidates of calibration
parameters.

Fig.4 shows the candidates of calibration parameters. Actually, the can-

didates cover half of the (f,zo) space.



Figure 4: Trace of Calibration Parameters

Calibration is identifying one of the candidates in (f, zo) space from im-
ages. In a one-dimensional camera in a two-dimensional space, if other images
of the calibration target are taken, other circles in other centers are drawn.
Then the intersections of the circles are the calibration parameters to satisfy
all images. But even though a lot of images of calibration targets are taken,
the intersections cannot be identified because the circles cover half of the
(f,xo) space.

Thus, a one-dimensional camera in a two-dimensional space cannot be
calibrated by using images of a calibration target when the extrinsic param-

eters between the camera and the calibration target are unknown.

1.2 Two-dimensional Camera Calibration in a Three-
dimensional Space
From the explicit form of the map between (6r) and (f,xy) in a one-

dimensional camera case, the meaning of calibration becomes clear to identify

the intersection of mapped curves in calibration parameters space. In this



section, the same study is done in a two-dimensional camera case.
First, the image of the calibration target is taken; then, the homography
between the calibration target and the image is computed. It is supposed to

be

hiv hia his
H = hor  hay  hog (27)
hs1  hsa hss

When the rotation and translation follows

1 Ti2 T3
R = To1 To2 Ta3 (28)

r31 T32 T33
T
Tz(tx ty tz) (29)

, and the calibration matrix is

fm 0 Zo
0 0 1
, then the homography is
H=a-K-L (31)

Here, since the calibration target is assumed to be on the z-y plane in a

global coordinate,

rie Tiz iy
L= |ry ro t (32)
r31 T3z i,

and « is an unknown scale.

10



Figure 5: Intersection of z-y Plane between Camera and Global Coordinate
Systems

Since the calibration matrix is an affine matrix, there are no effects of K
when the vanishing line in the canonical position is mapped from image to

the calibration target plane.

(H_I)T <0 0 1>T:<h31 h3o h33>T:a(7“31 32 tz)T (33)

It means that even if the calibration parameters are unknown, the inter-
section between the x-y plane of the camera coordinate and the x-y plane of
the global coordinate is known. Line [ indicates this line of intersection.

The line [ is represented as

h312 + hgoy + has = 0 (34)
By multiplying H by
h3y hgo ___haszhs1
\/hgl +h3, \/h§1 +h3, h3,+h3,
S = haa —ha1 __ _hashsy 35
R N ey (3)
0 0 1

11
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Figure 6: Retaken Coordinate Systems

, the intersection [ becomes identical to the y-axis.

h31h11+h32h12 h32h117h31h12 _h33(h31h11+h32h12)
T 73
\/h§1+h§2 \/h§1+h§2 h3,+h3,
H - S = | hathaithsshas  hashai—hsihas _ hasz(haihait+hashe) (36)
V/h3,+h3 NEED: h3+h3
311730 31 Th32

V3 + h, 0 0

Since the intersection [ is known after the homography is calculated, it
is assumed that the line [ is identical to the y-axis. Thus, the homography’s

form is supposed to be

hir hia Dy
H = hor  haa  has (37)
hs1 O 0

Since the x-y plane of the camera coordinate includes the y-axis of the

global coordinate, the rigid motion is described by only two rotation param-

12



eters and two translation parameters, thus

cosp —sing 0 cos) 0 —sinb
R=sing cos¢p 0] - 0 1 0 (38)
0 0 1 sinf 0 cost
T
T=(t t, 0 (39)
cospcos)  —sing t,
L= singsind cosp t, (40)

—sinb 0 0

Even though the calibration matrix K is unknown, the relationship be-
tween the calibration parameters and the rigid motion parameters can be

shown by multiplying H by K.

K- H= \/(h12/f:z:)2 + (haz/ fy)*

hi1/fz—zoh31/ fz hi2/ fz hi3/ fz
V(o) f2)24(ha2/f)? \/(h1a/ f=)2+(ha2/fy)? \/(h1a/ fz)?+(ha2/ fy)?
ho1/fy—yohsi/fy haa/ fy has/ fy (41)
V(o) f2)2 4 (ha2/fy)? \/(hia) fz)>+(ha2/fy)? A/ (h1a] fz)>+(haz/ fy)?
Lay 0 0
V/(h12/ fz) 2+ (h22/ fy)?

The result of this equation is supposed to be «- L, compared to equation

13



(40) :

0 = sin * —har (42)
Vo) £ + (o £,
¢ = cos hoa/ fy = (43)
Vo) £ + (s £,)
V) £ + (R £,)°
t, = has/ 1y (45)

\/(hlz/fm)2 + (haa/f,)?

It should be noticed that there is no xy and ¥y, and above equations
define a map from the (f,, f,) space to the (0, ¢,t,,t,) space. It is because
two of the four rigid motion parameters are not independent that equation
(41) is supposed to be a rigid motion matrix; thus, the first column vector
and second column vector of the matrix in equation (41) are supposed to be
normal perpendicular.

The inverse of the map is

h12 sinf
=2 46
J h31 cosp (46)
hgg sinf
=—— 47
fy h31 SZTL¢ ( )
Comparing equation (40) and (41), the following equations hold :
hi1 £ h cosd
vy — 11+ Mgy s (48)
hs1
ha1 £ h ot
yo = 21 2;008 ang (19)
31

Equations (46),(47),(48), and (49) draw a two dimensional surface with

parameters § and ¢ in the calibration parameters space (fz, fy, o, %o)-

14
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Figure 7: the Surface on which Calibration Parameters are Supposed Be

Fig.7 shows the projection on the (fy, f,, o) space of the surface in the
(f:l:;fyax()ayO) space.

The calibration means finding the intersection of the surface in this space.
Since the surface is two-dimensional in four-dimensional space, the intersec-
tion of the two surfaces is a point. That point indicates the calibration

parameters that hold in two views of the calibration target.

1.3 Conclution

The calibration is discussed in a two-dimensional space in order to under-
stand it easily. The geometrical restriction of the relation between the camera
coordinate and global coordinate is shown, due to affinity of the calibration
matrix when the image of calibration target was taken in two-dimensional
space. Even though the calibration for a one-dimensional camera was impos-
sible, it became clear that calibration means finding a unique intersection of

curves mapped from rigid motion space in calibration parameters space.

15



It is shown that the same things are happening in three-dimensional space.
It became clear that rigid motion parameters are represented by only two
rotation parameters and two translation parameters, thanks to the affinity
of the calibration matrix. The map between the calibration parameters and
the rigid motion parameters is revealed. In general, the unique intersection
in calibration parameters space is found by two images of calibration target
in different views.

Zhang’s Algorithm which is often used for a single camera calibration.
The Caltech’s Calibration Toolbox and the calibration routine of Intel’s Open
Computer Vision Library are based on Zhang’s Algorithm. The affine prop-
erty of the calibration matrix is not used in it. So, it needs at least three
images of calibration target in different views ([17][8]).

In some algorithms of calibration, the calibration parameters that are
found by restriction of rigid motion are used as an initial value of optimization
to reduce the error due to noise and distortion ([15][17]). The study in this
report made the geometrical meaning and restrictions between rigid motion
parameters and calibration parameters of the first step of those calibration
algorithms clear.

It would be possible to look at the intersections of the surface that is
described in the previous section and eliminate surfaces that produce inter-
sections that are far from the others as wrong data. It would be possible to
figure out in what case it becomes difficult to find the intersection or in what

case the intersection becomes robust to noise geometrically.

16



2 Ego-Motion Estimation Using Fewer Image

Feature Points

2.1 Background

Ego-motion estimation is useful for both 3-D shape reconstruction and
motion segmentation. Ego-motion estimation algorithms are roughly classi-
fied into two categories. One is the area-based method, which utilize image
gradients or optical flows all over the images. The other one is the feature-
based method, which track feature points or find corresponding points be-
tween two images.

The area-based method can be used only for a small motion, because
infinitesimal operations are necessary to measure image gradients or optical
flows. When the motion is small, different motion can produce same motion
on the imaging surface. Therefore, the area-based method has ambiguity due
to small motion. Although the feature based method can be used for rela-
tively large motion, finding corresponding points, so called matching prob-
lem, are difficult in general. When the motion is large, feature points looks
different due to the viewpoint difference. Excluding independently moving
area or points are challenging issue for both methods.

In order to avoid ambiguity due to a small motion, relatively large mo-
tion is used in this study; therefore, this study is classified as feature based
method. Even though finding a corresponding point to an assigned point
are difficult, corresponding points to fewer feature points can be found reli-
ably. Therefore, a feature-based method using fewer image feature points is

studied to estimate ego-motion.

17



2.2 Motion Parameterizations

The camera motion is usually represented by a rotation matrix and a

translation matrix as Fig.8.

Figure 8: Motion Parametrization

In Fig.8, R is the rotation matrix and 7" is the translation matrix. O and
O' are camera centers which are origins of camera coordinate systems. P
is a 3-dimentional point. Motion parameters, R and 7" are measured in the
reference coordinate system O in this case. The transformation between two

coordinate systems is written as follows:

P=R"'(p-T) (50)

The rotation and translation can be measured in the other coordinate
system as Fig.9.
In Fig.9, R’ is the rotation matrix and 7" is the translation matrix. The

transformation between coordinate systems is written as follows:

18



Figure 9: Motion Parameterizations

p=R"" (p' — T’) (51)

pP=R -p+T (52)

When the motion is parameterized by a rotation and translation, those
parameters depend on the reference coordinate system. Therefore, the equa-
tion (50) and equation (52) are not equivalent.

The epipoles can be used as ego-motion parameters as Fig.10. Here, e

Figure 10: Motion Parametrization with Epipoles

and e are epipoles of each camera respectively. Although € is usually taken

19



to the opposite direction, e and e are taken as same direction in order to
take the sign While a rotation and translation have six motion parameters,
two epipoles have only four parameters. Therefore, other two parameters are
necessary to determine the motion. One of them is the distance between two
camera centers. The other one is the angle along the line going through two

camera centers.

2.3 Epipolar Constrain with Epipoles

The epipolar constrain is written using a rotation and a translation as
follows:

pl R-Ty-p =0 (53)

Here, Ty is the matrix which satisfy T, - p = T X p. Since it is assumed that
both cameras are calibrated, the camera matrices are identical matrices, and
feature points are projected to the normal cameras. This equation can be
rewritten using epipoles. While the rotation and translation matrix have five
parameters, two epipoles have only four parameters. The missing parameter
is a rotation angle along the line going through two camera centers. Instead
of using the rotation angle, another pair of corresponding points p; and p'1

can be utilized to determine the motion. R and R is defined as follows:

R= ( exp1 g expi ) 54
lexpi] € lexpi] € ( )
’ e,><p, / elxp’ ’
R =522 xe S22 ¢ (55)
le’ xp | le’ xp |

Then, the original epipolar constrain, the equation (53), is rewritten as fol-

lows:

p'-R-RT- (¢ xp)=0 (56)

20



While the original epipolar constrain (53) involves one pair of correspond-
ing points and five motion parameters, the derived one (56) involves two
pair of corresponding points and four motion parameters. Although motion
parameters in the original epipolar constrain are combination of angles and
direction, motion parameters in the derived one are two direction.

The equation (56) is written concretely using coordinate of two feature
points and epipoles. It is assumed that the imaging surface is sphere; there-
fore, feature points are unit vectors. The two feature points can be moved
to the points p; and p, as Fig.11 by a certain rotation. p'1 and p’2 are also
rotated as well as p; and p, by another certain rotation. Then, p; and p'1 are
on the north pole of the sphere respectively. p, and p'2 are on the grate circle

on the x — z plane respectively.

Figure 11: Locations of Feature Points and Epipoles

The coordinate of feature points and epipoles are written using longitude

and latitude as follows:

m=r=(00 1)T (57)
P2 = (sin(d)z) 0 cos(¢)2)>T (58)
p’g = (sm(qﬁé) 0 cos(qﬁé))T (59)

21



€=(cos(¢)sm(9) sin(¢)sin(6) cos(¢))T (60)

e = <cos(¢')sm(9') sin(¢ )sin(6') cos(qﬁ’))T (61)
In this case, the R and R in the equations (54) and (55) are written as
follows:
cospcos)  —sin  singcosh
R = | cospsin® cost)  singsind (62)
—sing 0 coso
cosd costl  —sinb  sing cost
R = | cos¢'sind  cost  sing sind (63)
—sing' 0 cosd

Then, the constrain (56) is written as follows:
stnfsings {sinqﬁ'cosd); — cosd),cosﬁlsmgb;}
—sinf sing, {sind)cos@ - cosqﬁcos@sinqb} =0 (64)

Multiplying the equation (64) by singsing , the constrain is written using

inner products and outer products as follows:

{e- (m xp)H(e xpy) - (€ x p)}

—{e" - (m x ) H(ex pr) - (e x p2)} =0 (65)

Since the all terms in equation (65) are invariant with rotation, the equation
holds for any general position of py, ps, p'1 and p’2 even though the equation
is derived from the special position. Moreover, even thought p; and p'1 are
given instead of giving the rotation angle along the line going through both

camera centers, the p; and py are exchangeable.

22



The equation (65) is rewritten as follows:

(expi)-(exps) _ (e xpy)- (e X py)
e (p1 X pa) e - (p X py)

(66)

In this expression, the left term is a value measured only in one coordinate
system, and the right term is a value measured only in the other coordinate

system.

2.4 Another Derived Constrain

The epipolar constrain for feature point P; means that the line OO’ and
the light rays Op; and O’p’1 in the Fig.12 are on the same plane, so-called
epipolar plane. For another feature point P,, there exist another epipolar

plane. Therefore, the angle between the two epipolar planes measured in one

Figure 12: Angles between Epipolar Planes

coordinate system must be same as the angle between the two epipolar planes
measured in the other coordinate system. The normal vectors of the two

epipolar planes measured in each coordinate system are written respectively

23



as follows:

e X Py
|6Xp1|
€ X P2
|€Xp2|
’ €,><p,1
Ny =y7—_ 77
le" X py

’ ’
’ €Xp2

ny =

No =

"2 e Xyl

(67)
(68)
(69)

(70)

Since the angles between the epipolar planes measured in each coordinate

system must be same, the following equation is derived.

! !

n1'n2:n1'n2

(71)

In general, the following equations hold with regard to three-dimensional

unit column vectors a, b and c:

(axb)-(axc)=la*b-c)—(a-b)(a-c)
:bT(I—aaT)c

lax bl =1/1—(a-b)

= /T (I —adT)b
Here, I is 3 x 3 identical matrix.
Q and Q' are defined as follows:
Q=1-—eel
QI — 1 - elelT

24



P and P’ are defined as follows:

P:(pl o Di e pn>T (78)

P’:(p'1 Dy p;z>T (79)

Here, p; is ith feature point in one coordinate system, and p’i is its corre-
sponding point in the other coordinate system. C and C' are defined as

follows:

cC=pPr.Q-pP (80)
o =pT. Q’ .pP (81)

Using the formulas (74) and (75), the constrain (71) is rewritten with regard

with ith and jth feature points as follows:

g C..
G = Y (82)

Eventually, each left and right term of the constrain (71) is measured in

the matrix C' and C" respectively. C' is simply obtained by multiplication
between the measurement matrix P and the motion parameters matrix ).
(" is also obtained similarly.

The equations (66) and (71) are written under the definition (57)-(61)
respectively as follows:

SINGCospy — cospcostsings sindcosqﬁ; — cosx;ﬁ’cosﬁ’smd2
sinfsing, N sinf) sing,

(83)

25



SINGCosps — cospcoshsing,

\/1 — (singcosfsings + cospcosps)?
sing cosqﬁ’2 — cosqﬁ’cos@’sinqﬁ’2

\/1 — (sing’ cost singy + cosd’ cosd);)Z

(84)

The denominator of equation (84) is rewritten as follows:

\/1 — (singcoslsings + cos¢cos¢2)2
= (1 — 5in%po5in’Ppcos’l — 2singocospysinpcospcosfcosd
1
—cos* Py + 0032¢237jn2¢) 2

= (1 — sin’pocos®0 + sin®pacos® pcos®

N

—25indacospysingcospcosfcosh — cos®dy + 0052¢25in2¢)
= {1 — 5in% o050 — cos® Py

+ (singycospcost — cosqﬁgsinqﬁ)Z}%
= {1 — cos’hy — sin’¢s + sin’pasin’f

+ (singacosdcosd — cospysing)’ }%

:sind)gsinﬁ\/l N StNPocospcost) — cospasing (85)

singesind
Here, sing,sinf is assumed to be positive. Therefore, suppose s and s is
defined as left and right term of the equation (83) respectively, the equation

(84) is rewritten as follows:

!

\/18—52:\/18—3'2 (86)

In general, suppose x is defined as cota, cosa is expressed by

\/1‘27. Since
each left and right term of the equation (71) is the dot product of normal
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vectors on epipolar planes, each term is written as cosa and cosa’ respec-
tively. The a and o are the angles between two epipolar planes measured
in each coordinate system. Eventually, two derived constrains (66) and (71)

are rewritten using the angles « and o' respectively as follows:

cotar = cotar (87)

’

cosa = cosa (88)

Therefore, both constrains mean the agreement about the angles between
epipolar planes measured in each coordinate system. While the original
epipolar constrain is comparing the epipolar line of a feature point and its
corresponding point, the derived constrain is comparing between angles. In
other words, the original epipolar constrain is comparing different type of
things, a line and a point, whereas the derived constrain is comparing same

type of things, angles.

2.5 Constrain in One Coordinate System

Since the derived constrain (66) is separated in each coordinate system,
estimation of the motion parameter, which is same as the epipole estimation,
in only one coordinate system can be examined assuming the epipole in the
other coordinate system is estimated. Suppose the right term of the constrain

is constant C.
(e X p1) - (e x py)

=C 89
e (p1 X p2) (89)

Then, a function F' of e is defined as follows:
Fe)=(exp) (exp)—C-{e-(p1 x )} (90)
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The e which satisfy F' (e) = 0 satisfy the constrain (89). As examples, values

of function F (e) are color coded on a sphere in Fig.13. The black solid curves

Figure 13: Examples of F (e)

are the curves on which the function F'(e) is zero.

The function F'(e) has very simple shape. There are only one or two
zero-curves. The zero-curves are closed. The zero-curves do not intersect
each other. Therefore, one side of a zero-curve is negative and the other side
is positive. By the zero-curves, the imaging surface is divided into two or
three areas.

When more than two feature points are given, the zero-curves are drawn
for each two pair of feature points. Fig.14 shows an example of simulated
corresponding points. Corresponding points measured in each coordinate

system are plotted in one figure in Fig.14. The same color points are corre-
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sponding points each other. Then, zero-curves are drawn as in Fig.15 Since
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Figure 14: Corresponding Points

each zero-curve are points that satisfy the equation (89), the intersection of
zero-curves for all the corresponding pairs is the point that satisfy all con-
strains. In Fig.15, the sum of square F'(e) is also color-coded. It shows that
the global minimum is at the intersection.

When the C in the equation (89) is given with correct €, zero-curves for
all correspondent point pairs intersect at one point on the sphere (Fig.15);
however, zero-curves do not intersect coincidently when the C' is given with
wrong ¢ (Fig.16). In the Fig.16, the €' is 10 deg different from correct epipole.
Therefore, zero-curves do not intersect at one point in Fig.16. The sum of

square F'(e) is also shown in color code on the sphere.

2.6 Minimization
By multiplying the constrain (66) by both denominator and moving right
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Figure 15: Intersection of Zero-curves

Figure 16: Intersection of Zero-curves with Wrong e’
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term to left, A function Fj; (e, e') is defined as follows:
Fy (er¢') = ¢ -0 <)) - (e xpi)- (e xpy) = e (b xpy)- (¢ xp})- (¢ xp5) (91)

When e and e satisfy the constrain (66), the function Fj; (e,e') is zero.

Therefore, epipoles can be estimated by minimizing sum of square F; (e, e').

n , 2
milnz {Fij (e, e ) } (92)
i

However, the nonlinear minimization result depends on the initial value.
Fig.17-a and Fig.17-b show two results by Levenberg-Marquardt method,
and in both case, estimated epipoles are different from correct epipoles. The

small red circles indicate the estimated epipole in one coordinate system. In

i

Figure 17: a)Local Minimum and b)Another Solution

Fig.17-a, since the zero-curves do not intersect at the estimated epipole, the
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estimated epipole do not satisfy constrains. As well as Fig.16, even though all
zero-curves do not intersect at one point, there still exist minimum point on
the sphere. It is considered that those minimum points can be local minimum.
On the other hand, in Fig.17-b, although the estimated epipoles are different
from the correct epipoles, there exist coincident intersection at the estimated
epipole. It is understood that these epipoles are another solution because
the coincident intersection means the point satisfy all constrains. In other
word, when fewer image feature points are used, it is possible that there is

more than one solution.

2.7 Voting Algorithm

In order to estimate epipoles, there are some requirements to an algorithm
based on the analysis until previous section. First, the algorithm should find
the intersections of zero-curves directly. Looking for epipoles in the area
where no zero-curves go through is not only waste, but also risk of local
minimum. Second, since one unique solution is not guaranteed, the algorithm
should find all the possible solutions. In general, minimization algorithms are
used to find unique global minimum. Therefore, minimization algorithms do
not work for this problem. Third, the algorithm should detect no solution or
ignore outliers. It is assumed there are some independently moving objects
in the scene. When the feature points are extracted from background and
those objects, zero-curves of the independently moving feature points do not
intersect at the epipole. Fourth, the algorithm should not demand initial
estimation.

A voting algorithm is suited in order to satisfy those requirements. The
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idea is the following. A unit sphere surface in each coordinate system is
divided into small patches. In one coordinate system, a point is chosen for
each patch, such as a corner of a patch. For each patch in one coordinate
system, the chosen point is a tentative epipole. For each tentative epipole
in one coordinate system, zero-curves are drawn on a unit sphere in the
other coordinate system. All the patches on which a zero-curve passes over
a patch gain one vote. The patches gain one vote for one zero-curve. Since
when correct epipole is given in one coordinate system, all the zero-curves
in the other coordinate system intersect at one point, the patch on which
the intersection exist gains maximum vote. The voting is taken place for all
tentative epipoles. Fig.18 shows two examples of voting result. The vote
scores are color-coded. Fig.18-a shows the voting result when the tentative
epipole is close to the correct epipole. Fig.18-b shows the voting result when
the tentative epipole is 10 deg different from the correct epipole. For the
examples, spheres surface are divided into each 4—10 longitude and % latitude
patch, and the tentative epipole is the top left corner of the patch. Since
when the tentative epipole is close to the correct epipole, the patch on which
all zero-curves intersect gain more votes than any patch of the case when the
tentative epipole is far from the correct epipole. Therefore, the patch that
gains maximum votes contains the epipole, and the tentative epipole in the

other coordinate system is close to the other correct epipole.

2.8 Algorithm Implementation

The zero-curves are obtained as a set of points. Suppose p; and p, are

the consecutive two points of a zero-curve, the normal vector of the great
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Figure 18: a)Voting with correct epipole and b)Voting with wrong epipole

circle passing through p; and ps is obtained as follows:

n=pi X po (93)

Since a patch is small, a boundary of a patch is represented by a part of a great
circle. Suppose n’ is the normal vector of the great circle, the intersection p
between the great circle passing p; and py and the great circle of the patch

boundary is obtained as follows:
p=nxn (94)

In case the sphere is divided into patches by longitude and latitude, a longi-

tudinal boundary is expressed as follows:
. T
n = (cos@ sinf 0) (95)

Fig.19 shows the procedure. The white curve is the zero-curve, and black

line lattices are boundaries of patches. After finding all intersections between
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Figure 19: Intersection between Patch Boundary and Zero-curve

a zero-curve and patch boundaries, one vote is given to patches between the
intersections. Same procedure is taken place for other zero-curves.

As another implementation of voting algorithm is following. It is assumed
that a patch is represented by a polygon. A sign of F' (e) for each apex is
calculated regarding with a zero-curve. If all signs of apexes of a patch are
same, it is regarded that the zero-curve does not pass through the patch,
because the F'(e) is positive in one side of zero-curve and negative in the

other side of zero-curve.
. T
n = (cosH sinf O) (96)

Fig.19 shows the procedure. The white curve is the zero-curve, and black
line lattices are boundaries of patches.

Eventually, a zero-curve is represented by patches with one vote like in
Fig.21.

Since the vote is taken placed on the sphere in one coordinate system for

35



Figure 20: Finding Patches On Which Zero-curve Pass Through

Figure 21: Voting Result for a Zero-curve
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each tentative epipole in the other coordinate system, the voting table is four
dimensional of two unit vectors. Although the voting table is shown in two
dimensions in Fig.22, each column represents the vote score on a spherical
surface. A column of the voting table is shown as a spherical surface in

Fig.23.

450

Figure 22: Voting Table

2.9 Algorithm Results

When number of feature points is small, there are some possible solutions.
Fig24 shows an example result when there are five feature points. It shows
patches that gain maximum vote in green. The red spot is the correct epipole.
Although the patch on which the correct epipole exist gain maximum vote,
some other patches also gain same amount of vote. As the number of fea-
ture points increasing, number of possible solution decrease. Fig25 shows an

example result when there are ten feature points. Even though the number
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A Column of the Voting Table

Figure 23:

Figure 24: An Example Result of Five Feature Points
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Figure 25: An Example Result of Ten Feature Points

of solution decreases, they contain the correct epipole.

When the motion is small, in other word, the distance between two camera
centers is small; there can be many possible solutions. It is considered that
the ambiguity of motion increase, as the distance between two camera centers
decrease. Fig.26 shows an example result that is obtained when the distance
between two camera centers is 0.02. Since both cameras are normalized, the
distance is normalized too. To compare with Fig.25 in which the distance is
2.2, possible solutions increased and become broad. It is considered that the
area on which the possible solutions are spread is the ambiguity of motion,
so called valley.

When a few outliers are involved in a set of feature points, the voting
algorithm can ignore the outliers. Corresponding point mismatching, inde-

pendently moving objects, etc produce the outlier feature points. When the
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Figure 26: An Example Result of Small Motion

tentative epipole is the correct epipole, all zero-curves are intersecting at one
point except zero-curves of outlier. As long as there is no another motion
perception involving outliers, the patch on which the epipole exist gain the
maximum vote. Fig.27 shows an example of zero-curves of feature points in-
cluding outliers in one coordinate system in case that the correct epipole in
the other coordinate system is given. The zero-curves in green and blue are
outliers; therefore, those curves do not intersect the point where other zero-
curves intersect. Fig.28 shows the result of voting regarding with the same
situation as Fig.27. It is shown in Fig.27 that even though a set of feature
points involves outliers, the voting algorithm can ignore outliers. However, it
is possible that motion of feature points including outliers can be percept as
another motion of no outliers, especially when the number of feature points

is small. In that case, the voting score is the maximum at the epipole for the

40



“EBE3ETRZHETT

curves of Outliers

Figure 27: Zero

s
P

e
H.-....n.ﬂ'ﬂp'é
rplha bt

T
e,

o

ate
S
%o-ﬂ-

i
...r.ﬂ.
M S

e

Figure 28: An Example Result of Outliers
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solution.

The voting algorithm has to have a certain size patches; therefore, a
patch on which all zero-curves pass through can gain maximum vote score,
even though zero-curves do not intersect at one point. If the patch size is
enough small, the patch can be the approximation of the intersection. If the
patch size is not enough small, some patches that gain maximum vote are
not solutions due to the size of patch. In order to eliminate such patches and
to find all solutions, minimization method, equation (92), can be utilized
when the patch size is not enough small. The patches that gain maximum
vote are used to give an initial value for minimization method. Then the
minimum point found by the minimization method is still on the patch, the
minimum point is considered as a solution. Fig.29 shows the result of six
feature points. The yellow points are solutions found by the combination of

the voting algorithm and the minimization method.

2.10 Conclusions

Two epipoles are used as motion parameters instead of a translation and
a rotation to determine the ego-motion. The epipolar constrain is written
with epipoles. Since two epipoles have only four parameters, another pair of
a feature point is used in order to determine the angle along the line passing
through both camera centers. Then, the derived constrain involves two pair
of corresponding points, while original one involves one pair of corresponding
points. The original epipolar constrain tells that a feature point measured
in one coordinate system has to be on the epipolar line of a feature point

measured in the other coordinate system. Briefly, the original epipolar con-
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Figure 29: An Example Result of Voting and Minimization Combination

strain compare different types of things, a line and a point. On the other
hand, the derived constrain is equivalent to the agreement of angles between
epipolar planes measured in each coordinate system. The derived constrain
compare two angles. Moreover, on one hand the original constrain involve
deferent types of motion parameters, which are rotations and directions; on
the other hand, the derived constrain involve two direction in motion pa-
rameters. Therefore, the derived constrain is more even to two coordinate
systems.

Since the derived epipole is balanced to each coordinate system, the con-
strain is separated into two values in same expression measured in each coor-
dinate system. The value is cotangent of an angle between epipolar planes.
Since the constrain is separated in each coordinate system, the constrain can

be examined in one coordinate system by assuming that the values measured
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in the other coordinate system is fixed. Moreover, since the constrain involve
only four motion parameters, an epipole in each coordinate system, the con-
strain is visualized on a sphere as zero-curves of function F' (e). Then, the
motion estimation is recognized as finding a coincident intersection of the
Zero-curves.

A voting algorithm is introduced to find the coincident intersection. Since
one unique solution is not guaranteed, it is necessary to find all the solutions.
Those solutions are considered as different perceptions of the motion. In ad-
dition, outliers have to be disregarded because independently moving objects
are assumed in the scene. The voting algorithm satisfies those requirements.
The qualitative results are shown in regard to the number of feature points,
the size of motion and outliers. Although it shows positive results, combina-
tion of voting and minimization is necessary due to the patch size, when the

patch size is not enough small.
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Part 11

Appendix
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A Single Camera Calibration

A.1 Fundamentals

Calibration is the process to find the some of camera intrinsic parame-
ters and extrinsic parameters or all of them. Intrinsic parameters are the
parameters that depend on the camera itself, such as the focal length, the
principal point, and pixel size. Extrinsic parameters are the camera posi-
tion and direction. When the camera coordinate (z., y., z.) are placed in the
global coordinate (2, Yuw, 2w), the transform from the global coordinate to

the camera coordinate is as follows [1]:

M. = (R|t) - M, = (R| - RT) - M, (97)
Ly
Te
Yuw
M.=1 y,. M, = (98)
Zw
Zc
1

Here, M, is the global coordinate expression of a point, and M, is the cam-
era coordinate expression of the point. The t is the vector to the global
coordinate origin in the camera coordinate system. The T is the vector to
the camera coordinate origin in the global coordinate system. The R is the
rotation matrix which rotate the camera coordinate axes to be same as the
global coordinate axes.

The transform from the camera coordinate (x., y., z.) to the image coor-

dinate (uy,,v,) is as follows:
wmy, = Ay - M, (99)
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my=| v, (100)

The image coordinate (u,,v,) is the coordinate which indicate a point in
the projecting plane. The m, express the point in which a point in camera
coordinate is projected. Here, w is a scale factor. The point in the image

coordinate can be transformed to the pixel coordinate (u,,v,) as follows:

mg = A, - my (101)
Uq

my=| o, (102)
1

A = A, - A, is the matrix which express the projection between camera
coordinate and pixel coordinate. The Projection Matrix P is defined as

follows:

P=A-(R[t)=A-(R| - RT) (103)

The relationship of a point between the global coordinate and pixel coordi-
nate is expressed follows:

wmg = P - M, (104)

When the camera is described as the pinhole model the A, is expressed as

follows:
f fleotd 0
Ap=1| 0 f/sing 0 (105)
0 0 1
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The A, is expressed as follows:

1/du 0 Ug
A,= 0 1, v (106)
0 0 1

Therefore, the A is as follows:

fldu f/(ducot ) uo
A=1 0 f/(dysing) vy (107)
0 0 1

Here, the f is the focal length, d,0d, are the pixel width and height, uy,
v is the principal point. d,d, generally disagree with the imaging element
size because of the D/A and A/D transform. The ¢ is the angle between
axes in the image coordinate, and when ¢ is 90°, cot¢ = 0, sin¢ = 1 are

hold, then the A, is as follows:

£ 00
A4,=1 0 f 0 (108)
0 01

Therefore the A is expressed as follows:

f/du 0 U Oy 0 U
A= 0 fldy v | =] 0 o w (109)
0 0 1 0 0 1

The pinhole model is applied and the ¢ is supposed to be 90° bellow.

Then, the transform from camera coordinate to the image coordinate in the
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equation (99) is called as Center Projection and expressed as follows:

F 00
wmy,=| 0 f 0 | M (110)
00 1

The transform to the pixel coordinate in the equation (101) is expressed as

follows:
1/du 0 Ug
mg = 0 1/d, vy | My (111)
0 0 1

The lens aberration sometimes cannot be neglected. Whereas a point
supposed to be projected to (u,,v,) in the image coordinate by the projection
equation (110) without any aberration, the point is projected to (ug,vq)
due to the aberration. The difference between those projected points with
aberration and without aberration is defined as the model of aberration.

Therefore, the differences are expressed as follows:

u u ou
=)+ (112)
Vg Up ov
or
u u ou'
o= S (113)
Uy Ug ov'

Then, (du,dv) or (0u’,dv') is defined with some aberration parameters. The
(up, vp) is called as the image coordinate without aberration, and the (ugq, v4)
is called as image coordinate with aberration bellow in this report.

The lens aberration model by Weng et al. is the most common aber-

ration model. It express the change (du,dv) by the aberration using some
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parameters as follows:

ou

K1Uyp (ufj + vg)

D1 (3u12, + Ug) + 2pauyvy,

+ o+

1 (ug —|—U;) (114)

ov

K1Up (UIZ, + vg)
+  2prupuy + po (Ul 4 307)
+ 5 (uf, + U;) (115)

When only the radial distortion is considered, the aberration is described

as follows:
ou Up
= 6(r) (116)
ov Up
§(r) = kir® 4 Kprt .- (117)
ro= \Jui+v?
It is also described by the aerated point (ug,v4) as follows:
ou’ Ug
= 4(r") (118)
ov' Vg
§'(r') = Ky 4k 4 (119)
o= yJud+v?
myg is defined as follows:
Uq
ma= | w (120)
1
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Then, the transform from image coordinate to the pixel coordinate in the

equation (111) is expressed as follows:

1/du 0 Ug
my = 0 1/dy, vy | M (121)
0 0 1

The aerated pixel coordinate is obtained by the equation above.

The purpose of a single camera calibration is to obtain the matrix P, A,
R or t. Some algorithms obtain the optimal matrices to the observed data
neglecting the relationship between elements of the matrices and the physical
parameters; others obtain the physical parameters such as focal length and
so on. The calibration process obtain some of the extrinsic parameters, R
and ¢, and intrinsic parameters, f, d,, d,, O a0 a0, ug , v, k1 or all of
them. Then, it finds the matrix P, or A. In the case of obtaining not all

parameters, the rest parameters are supposed to be known.

A.2 Tsai’s Algorithm

Tsai’s Algorithm [15] using coplanar points can obtain the extrinsic pa-
rameters, R, t and the intrinsic parameters, f, k;. Other parameters, d,,, d,,
ug, vg, are supposed to be known. In addition, the aberration is supposed
to occurred due to only the radial distortion, and it is approximated by the
first term of the equation (117).

A calibration plane on which lattice pattern is drawn like chessboard is
placed to be that the plane is not parallel to the imaging plane. The origin
of the global coordinate is places on the plane. The z, axis of the global

coordinate is placed as it is parallel to the normal vector of the calibration
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plane, so that the 2z, = 0 is hold on the calibration plane In addition, the
origin of the global coordinate is placed not close to the x.z. plane to make
ty # 0 hold.

Suppose that n pairs of the global coordinate of the grids (Zu;, Yuw:, 0)
and the projected points, (ug;,v4i), in the pixel coordinate is supposed to
be obtained, the camera parameters are calculated as in bellow. Here, i,

t =1, ...,n indicates each lattice.

A.2.1 Process

1. Transform from the pixel coordinate to the image coordinate with aber-

ration

From the equation (121), the transform from the pixel coordinate m,

to the image coordinate with aberration my is expressed as follows:

du 0 —duUO
mq = 0 dv _d'u'UU My (122)
0 O 1

Therefore, (ug,vq;) is transformed to (x4, yai, 1)

2. Extrinsic Parameters Calculation (1)

Tsai noticed the restriction' in case that the aberration is occurred due

to only radial distortion, and show the equation as follows [15]:

Ug Uy T

123
Uq Up Ye ( )

!Tsai calls as RAC(radial alignment constraint)
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The first equation is derived from the fact that the (ugq, vq) and (u,, v,)
are proportional, which is proven by substituting the equation (120) for
the equation (113). The second equation is derived from the equation
(110)which express center projection. The R, t, and ¢, is obtained
from the equation above. The (R|t) in the equation (97) which express
the transform from the global coordinate to the camera coordinate is

written in its elements as follows:

T T2 T3l
(RIt) =] roy oo 73 1t (124)

T3 T3z T3z 1y
Then, from the equation (97), the equation (123) is rewritten as follows:

Ud _ T1Zw + T12Yw + T13%w + s (125)
Vi To1%w + T22Yw + T2320w + Uy

Since points used in Tsai’s algorithm are coplanar, the z,, axis of the
global coordinate is defined to be parallel to the plane’s normal vector,

then always z,, = 0 is hold.

Ud _ T1Tw + T12Y0 + s (126)
Va  T21%w + T22lw + 1y

53



The following equation is derived from the equation (126):

Va(r11%w + T12Yw + to) — Ua(T21%0 + To2y + 1) =0
VaTowT11 + VaYuwT12 + Valy — UaTwT21 — UqYwT22 — Uty = 0

' / / ' /
VaZowTy1 + VaYwTio + Valy, — UaZwTy — UgYwToe = Ud

T
T
( VaTw Valw Vi —UaTw —UdYu ) t, | =ua (127)
T
T
Here, the symbols above are defined as follows:
M= =T A= =T =T

rio,0 .0 rh, 0 rh, which hold the equation above for all (2, Yuwi, 0)and
(ugi, vg;) is obtained. Since the actual observed data contain errors,
the parameters are calculated by solving the least square solution. The
global coordinate must be placed to be t, # 0 so that the equation
(128) is available.

. Extrinsic Parameters Calculation (2)

Since R is a rotation matrix, the norm of each column and row must
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be 1. Therefore, the rotation matrix is written as follows:

R =
ity sty £,/1- (% +13)8
ity oty /11— (8 + 1322
L= 0B+ £/1-0B+m)  +/T-58
(129)
Here the symbol is defined as follows:
Sy =1+ 4 (130)

In addition, the fist and second column vectors in R must be perpen-

dicular. It is described as follows:

Tlntyrluty + 7"121751/7“52751/ + \/1 —(r + 7"’122)7532,\/1 — (rj + 7“522)7532, =0
(7“,117",127532, + 7“;17"'22753)2 ={1- (7"1121 + 7",122)’5;}{1 - (7"1221 + 7“;22)752}

(T,11T,12 + 7"1217“;2)2’53 =1- Sytz + (7"1121 + 7"1221)(7“,122 + 7"1222)753

(7",1217",122 + 7",2217";22 + 27",117",127"1217";2)@ (131)

_ 2 .12 2 .12 2 .12 12 12\ 44 2
= (rry iy oy + 7"217"22)ty - Syty +1

(riirss + ri5r5) ", — Sity +1=0

Therefore, tz is calculated as follows:

2 12 .12 12 .12 \2
2 — Sy — \/Sr —A(riir +risrs)

132
y 22 + 1B (132)

Although ¢, can be positive or negative value, it is assumed to be

positive. Then, that is r{10 r500 r9; 0 r990 ¢, can be obtained by the
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equation (128). The following values are calculated using a observed
point, (Zwi, Ywi, 0)0 (up, v,) which is apart from the principal point.
Ty = T11Twi T T12Ywi Tt Yi = 21Twi + T22Yuwi + 1y (133)

Then, if the sign of z; and w, and the sign of y; and v, agree, the
assumption of the sign of ¢, is correct. If not, the assumption is wrong,
so change the sign of ¢,, then, ryy, 712, 721, 192, ¢, are recalculated.

T3, T23, 731, T32 and rs3 are obtained by the equation (129). First,

under the assumption of r13 > 0, 13 is calculated as follows:
ri3 =1/1—1%2 —1r% (134)

The sign of 793 is known because the inner product between the first
column and the second column vectors must be 0. 793 is calculated as

follows:

VA T35 — T3y if 111791 + 1292 > 0

T93 — (135)

—V/1 =133 =73 if riurar +r1oree <0
Since the third column must be the outer product between the first and

second column vector in R, r31, r32 and r33 are calculated as follows:
31 = T12T23 —T13722 T332 = T'13T21 — 711733 133 = T'11T22 —T'12721 (136)

. Intrinsic Parameter Calculation (1)

First, fOt, is calculated neglecting lens aberration. The elements of
the camera coordinate is expressed from the equation (97) using z,, = 0

as follows:
Y = TaZy +Trely +is (137)

2 = T31Ty + T32Yw + s
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The equation (110) indicate w = z. Defining h = r3;z,, + 7329w, the
following equation is hold.
(h+t)v, = [y
( y —u ) . hv, (138)
te

Here, the aberration is neglected, (up,v,) and (ug,vq) are identical.
Using the (ug,vq) and (T, Yuwi, 0) that are obtained by 1, the linear
equation (138) can be solved to find f and ¢, by the least square so-
lution. Here, in order that the equation (138) is linear independent
and f and ¢, have unique solution, the calibration plane must not be
parallel to the imaging plane. If f < 0, the assumption, 3 > 0, in 3
is not correct. Then, the signs of 7300 79300 3 35 are switched to be

opposite, and f and ¢, are recalculated.

. Intrinsic Parameter Calculation (2)

When it is assumed that the lens aberration is approximated the first
term of (117) and (119), the equation (118) and the equation (120) is

rewritten by substituting them as follows:

Uqg Uy Uy

= + K12 (139)
Vg Up (N
u u u
P = )+ Kr'? ‘ (140)
Up Va ()

The following equation is derived from the equation (140), (110) and
the equation (138).

’ 12

(7"31£Uw + T32Yw + tz)(l + R )'Ud = f(T21£Uw + T22Yw + ty) (141)
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Substituting the equation (122) for the equation above, it is expressed

as follows:

(T31xw + T32Yw + tz)(l + K;llrﬂ)dv(v - UO) = f(r21xw + T'22Yw + ty)
T'91%qy + T22Yw + ty
(7312w + T32Yw + 12)

dy(v — vo)(1 + K\ 7"?) = f (142)

f, t, and & are obtained by solving the equation (142) as a nonlinear
optimization problem with the initial values, f, ¢, and k] = 0 which

are obtained by the process of 4.

A.2.2 Features

Tsai’s algorithm is a classic camera calibration method based on the pin-
hole model. The algorithm is known as very realistic method because of
its less computation power and the accuracy. The negative point of Tsai’s

algorithm is that the pixel size and the principal point have to be known.

A.2.3 Accuracy

As an example of the accuracy, a paper reported that after calculating
f and &/, the average of the differences of the image points and calculated
points by the matrix P is about 0.6 pixels in the image resolution 640x480 and
focal length 4.2mm experiment. [8]. In addition, the paper [8] reports that
when the given pixel size and the principal point have errors, the calculated
parameters are affected. While the effect of the principal point error is small,
and a few pixel errors can be eliminated by measurement repetition, the effect
of the pixel size error cannot be eliminated by the repetition. The difference

between the real pixel height and its design value of the device is usually
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small, but since the pixel width depends on the sampling timing, measuring
the accurate pixel width is difficult.

The calibration plane is placed to be slanted to the imaging plane as
described in the process 4. It is reported that the accuracy is better when it
is slanted along the vertical axis than when it is slanted along the horizontal

axis, because of the difference between pixel width and height.

A.3 Zhang’s Algorithm

In Zhang’s algorithm [8] [17], the equation (107) is rewritten as follows:

a Y U
A= 0 B Vg (143)
0 0 1

The intrinsic parameter, «, 3, v, uy and vy, and the extrinsic parameters,
R, t can be obtained by the algorithm. The calibration plane with lattice
pattern is used as well as Tsai’s algorithm. Images of the plane are taken in
some different positions and angles. In each imaging, the plane must not be
parallel. The global coordinate is changed in each imaging, and the origin
is placed to be on the calibration plane to hold z, = 0 on the plane. In
each imaging, the grid point in the global coordinate, (z7,;,yL,;,0), and the
projected point in the pixel coordinate (u},v}) is observed as the calibration
data. Here, the upper letter indicates the imaging number, and the lower

letter indicates the grid number.

A.3.1 Process
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1. Finding the Homography H

The equation (103) and (103) are rewritten using R = ( r, rs I3 ),

and z, = 0 as follows:

Yw
wm:A(r1 ry Ij3 t)

0
1
Ty
Yuw
— A( r Iy t )
0
1
Ly
=H| vy, (144)
1

Here, H = A ( r, ro t ) is defined. In each imaging, the H is
calculated from the observed data [17]. Since the multiplied H for the

equation (144), the scale factor can not be found.

2. Without Aberration

i) Calculating Initial Value of Intrinsic and Extrinsic Param-
eters
The H which is obtained in the process 1 is redefined using the scale

factor A as follows:
H:<h1 h, h3>=>\A(r1 ro t) (145)
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Since the r; and ry are perpendicular and identical size, the following

equations are hold:
h A TA7hy = 0 (146)
hA""A 'hy = hy,A""A'h, (147)
Here, The AT A~! can be rewritten using the parameters in the equa-

tion 143 as the follows (A"TA~! is known as the projection of the

absolute conic on the image plane [16]) :

B=ATA"'
1 _ Yvo—Buo
a? a?p3 a?f3
- 7 2 + L _v(ywvo—Buo) _ wo
28 o232 32 o232 32
— — _ 2 2
’YU(;2guo _7(71;02[35%) o % (’Yvoazg;to) + % +1
By Bz Bis
= | B2 By By (148)
B3 Bys Bs3

Besides, the symbols are defined as follows:
T
b = ( By Bz By Bz Bi Bsg )
T
h; = ( hii  hiz R )
Vij = ( hithji  hithjo + hiohji highje  hishji + hihys
T
hizhjo + highjs  hishjs )
Then, the following equation is hold:
h/Bh; = v)b (149)
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In addition, the equation (146) and (147) are summarized as follows:

Vb = 0 (150)

T
Vi

V = (151)

(vir — V22)T
The equation (150) gives two fouler as the constrain of the unknown
six- dimensional vector b. Since the equation (150) is given by each
H, b can be solved by at least three H. The solution of the equation
(150) is calculated as the eigenvector of the minimum eigenvalue of
VTV or it is also obtained by finding zero-space using singular value

decomposition [8]. Once the b is obtained the intrinsic parameters are

obtained form the equation (148) as follows:
vy = (BiaBiz — B11By3)/(B12Bay — B%g)
A = Bss— {Bl; +v0(B12Bis — BuiBas) /B
o« = B
B = \/ABu/(BuBy — BY)
v = —Bpad®B/\

uy = Yvo/a — Byza® /)

In addition, the extrinsic parameters are obtained from the equation

(145) as follows:

r, = M™'h
ry, = M 'h
rs = r; XTIy
t = A 'h;



ii) Refine the Extrinsic Parameter R

The obtained R above is not generally a rotation matrix because
of errors. A rotation matrix R which has minimum Frobenius norm
of R — R is calculated bellow. The problem is define the formulae as
follows:

min ||R — R|[? (152)
R
The R holds for the following equation.
R'R=1 (153)

Since the norm is expressed as flows, the minimization in the equation

(152) is equal to maximization of trace(R"R).

||f{ — R||?7 = tmce(f{ — R)T(f{ —R))

— 3+ trace(RR) — 2trace(RTR) (154)
The singular value decomposition of R can be expressed as follows:
R =USV? S = diag ( o 0y 03 ) (155)

The normal matrix z, is defined as z, = VIRTU. The following

equations are derived:

trace(R"R) = trace(RTVUSVT)
= trace(V'RTUS)

= trace(zyS)
3 3
i=1 i=1
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Then, z,, = I is hold by defining R = UV, and trace(RTR) is the
maximum. It give the minimum of the equation (152) The obtained R

is rewritten as the estimated rotation matrix R.

iii) Intrinsic and Extrinsic Parameter Optimization

Using the obtained intrinsic and extrinsic parameters, the projected
points of the calibration data, M} = (zl,;, i, 0), are calculated. Tt is
considered as a function of the intrinsic and extrinsic parameters, and
defined as m(A, R’ t',M?). Under the definition, m} = (uf, v}), the

parameters can be optimized to minimize the following equation.

n

S5 fjmi — (A, R, ), M) | (157)

i=1 j=1
Since that is non-linier optimization problem, it is solved by Levenberg-

Marquardt method [17].

. With Aberration

i) Aberration Factor Initial Value Calculation

It is assumed that the aberration is described by the equation (118)
and (117) and the effects of k3 and more are neglected. The image coor-
dinate without aberration and with aberration is indicated as (u, v) and
(w,0) respectively. The equation (118) is expressed as the relationship

between (u,v) and (@, 0) as follows:

=41

U U — Up
== + {/ﬁ(xQ + y2) + /ﬁ?g(lL’Z + y2)2}
] v —

(158)

4
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A symbol is defined as follows.

D = L (159)

R1

K = (160)
%)
U — U

d = (161)
v —

Then, the equation (158) is expressed as follows:
Dk =d (162)

Here, since the aberration is considered, the calibration data are

¢, 0%). It is supposed that intrinsic and

M; = ("E'Zw]ayzzu]ao) and ﬁl; = (ﬂja J

extrinsic parameters are obtained from the result without aberration.

The image coordinate without aberration m} = (u’,v}) are obtained

from MY = (2, yL,;,0) It is supposed that m} O m is hold for O

(162). Then, & is calculated by solving the least square minimization

as follows:

k= (D'D)'D’d (163)

iia) Intrinsic and Extrinsic Parameter Optimization

Once k1 and ko are obtained, the (ﬂ;, 17;) are calcurated by substitut-

ing m(A, R’, t', M) for the equation (158). Using the m(A, R/, t', M)
instead of the (a,0}) in the equation (157), the estimated parametes

can be optimized. The process to estimate the intrinsic and extrinsic
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parameters using (@}, 7}) in the equation (157) and the process to es-
timate k1 and ko by the equation (163) are excited alternatively until

convergence.

iib) Intrinsic and Extrinsic Parameter Optimization
The projected point of M} = (7,,4,,;,0) are defined as
m(A, k1, k2, R’, t', M}) using k1 and ky. Instead of iia), The equation
(157) is expanded under the definition as follows:
n m
ZZHm; _Ih(Aalﬁ;l;HZaRl;tZ;M;‘)HZ (164)
i=1 j=1
Then, the optimal parameter can be found by minimizing it. Zhang
recommends iib) [17]. It is a nonlinear optimization problem, so it is

solved by Levenberg-Marquardt method.

iii) Summary
As a summary, the parameters with the aberration is estimated as

follows:
(a) The intrinsic and extrinsic parameters are calculated by the pro-
cess 2-)
(b) The R is refined by the process 2-ii)
(c) The aberration factors are calculated by the process 3-i)

(d) The parameters are optimized with initial values which are ob-

tained in (a), (b) and (c) by the process 3-iii)
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A.3.2 Feature

Zhang’s algorithm can estimate not only the five intrinsic and extrinsic
parameters, but also the aberration parameters. For the calibration, at least
three imaging is needed with different camera direction or the calibration

plane’s slanting angle

A.3.3 Accuracy

According to Zhang [17], when the noise subjecting to the normal dis-
tribution with average 0 and standard deviation o pixel is added to the
projected points on the image in the simulation, the relative error [%] of a
0~ and the absolute error [pixel] are increased lineally with increasing o.
When the o = 0.5, the relative errors of o and 3 are less than 0.3%, and the
absolute errors of vy and vy are less than about 1pixel. The errors are tend
to be reduced with increasing the calibration data, but when it is larger than
3, the reduction is small. Besides, the angle of the calibration plane affects
the errors, and it is said that about 45deg is optimal [17]. In an experiment
with 5 calibration target images with 640480 resolution, the square root of
averaged square error (RMS) between the observed data and calculated data

by the estimated intrinsic and extrinsic parameters are 0.335 pixel [17].

A.4 Summary

Zhang’s algorithm needs at least three times observation, while Tsai’s al-
gorithm needs only one time for the calibration and easy to proceed. On the

other hand, the principal point and the pixel size are needed to be given for
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Tsai’s algorithm. When the given pixel size has error, it affect the calibra-
tion. In the case of estimating the camera translation and rotation serially,
such as the image mosaicking, it is supposed that the intrinsic parameters
are changeless; therefore one time calibration is enough. First the principal
point and the pixel size are obtained by Zhang’s algorithm, and after that,
the parameters are given to the Tsai’s algorithm. Then the extrinsic param-
eters can be estimated. In case that the camera has zooming function, it is
supposed that the principal point and the pixel size are changeless, and the

calibration is executed equally.
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B Stereo Calibration

B.1 Stereo Geometry

The camera projection matrix is expressed by the equation (103). Tt is
written using the vector T from the origin to the camera coordinate origin

in the global coordinate as follows:
P=A(R|t)=A(R| - RT) (165)
The projection matrices of cameral and camera2 are defined as follows:

P1 — Al (R1|t1) — Al (R1| - RlTl) (166)
P2 — A2 (R2|t2) — Al (R2| - RZTZ) (167)

A point in the global coordinate indicated by the projective coordinate, M,,,
is projected to the projective coordinate of the cameral image, m;, and the
camera2 image, mo. The image of cameral is called imagel, and the image

of camer?2 is called image2 bellow.

wim, = Ple == AlRle — A1R1T1 (168)
WoMy = PZM’U) = AQRQMw - A2R2T2 (169)

The following equation is derived by eliminating M, in the equations above:
wl(AlRl)*lml — wg(AgRg)flmg = T2 — T1 (170)

The following equation is derived under the definition R = R R;'0t =
—R{R2(T1 -T2)}:

wlAflml — ngAglmg =t (171)
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The R expresses the rotation that rotates the axes to be same direction as
the camera2 coordinate axes in the cameral coordinate. The t is the vector
from the origin to the image2 coordinate origin in the imagl coordinate.
Therefore, the equation (171) does not depends on the location in the global
coordinate system.

The matrix 7; is defined as for any vector x, t X x = T;x is hold. Then,
since the equation (171) tells that O is expressed by the linear combination
of A;'m; and RA,'ms, and A;'m,, A,'m, and t are coplanar, A;'m; L

T;(RA; ' my) is hold and the following equation is derived:
m] (AT T,RA;'my =0 (172)
Here, the following symbols are defined:

E = TR (173)
= (4, )TEA}! (174)

Then, the equation (172) is rewritten as follows:
m] (AT EA;'my =0 (175)
It is also rewritten as follows:
m| Fmg = 0 (176)

These equations dose not depends on the location of the two cameras in the
global coordinate system, but depend only on the relationship between the
two cameras. They are fundamental equations for the stereo camera. The

E in the equation (173) is called as Essential Matrix, and the F in the
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equation (174) is called as Fundamental Matrix. The equation (176) is
called as Fundamental Equation. The Essential Matrix express the stereo
camera with the two camera location and direction without the intrinsic
parameters, while the Fundamental Matrix express the stereo camera as the

relationship between two images comprehending the intrinsic parameters.

B.2 Eight Point Algorithm

Since the equation (176) gives one equation for each corresponding point
pair, eight corresponding point pairs are enough to decide the Fundamental
Matrix up to the scale factor. As an example method to find the correspond-
ing points, Harris operator can be used to find corners in images. Next, for
each pair in both images of corner points, the mating value, such as sum
of absolute difference or sum of squared difference is calculated. Then, the
matched pairs are adopted as the corresponding points. Generally, the least

square solution is calculated using more than eight point pairs.

B.3 Kruppa’s equation [16] [6]

The intrinsic parameters can be found from two images without the cal-
ibration target. It is called as self-calibration.

The camera projection is described by the 3x4 projection matrix, P =
A[R| — RT], using the upper triangle matrix A, the rotation matrix R and
the translation matrix T as in the equation (103).

The absolute conic is the conic that is considered being on the infinity
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plane in the projective space and is expressed as follows:
Pyt =0 (177)
t =0 (178)

Here, the (z,y,2,t)7 is the projective coordinate of a point in the three-
dimensional space

The (z,y,2,0)T is assumed to be on the absolute conic. The projective
coordinate on the image, m, is expressed as m = A[R| — RT] - (x,vy, z,0)"
from the equation (104) which express the projection. Under the definition
x = (z,y,2)T, it is written as m = ARx. It is written as # = RTA 'm

because the R is normal matrix. Since (z,y,z,0)” is on the absolute conic,

x'x = 0 must be hold. Therefore, the following equation is derived:
x'x = m"ATTRR"A™'m
= m'ATA ' m=0 (179)

The image of the absolute conic is the set of points m which subject to the
equation above, and A=TA~! can be equated with the image of the absolute
conic. It is shown that the absolute conic doesn’t have any real coordinate,
but its image can be expressed by symmetric 3x3 real matrix. The inverse
matrix AAT of the A=T A~ is called as the dual image of the absolute conic.

Under the definition C' = AAT, the tangential line [ of the image of

absolute conic subject to the following equation:
FCl=0 (180)

Here, it is assumed that the Fundamental Matrix, F', is obtained by two
images. The epipoles e and e’ in each image are obtained by F7e = 0 and

Fe' = 0. The epipolar line for a point y in each image are e x y and Fy.
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Since when the one of the epipolar line is tangential to the absolute conic,
the corresponding epipolar line is also tangential to the absolute conic, the

following equation is derived:

(exy) Cexy) = 0 (181)
(FTy)" ' (FTy) = 0 (182)
(183)

The second order equations of the 7 are obtained by substituting the
infinity point in the image y = (1, 7,0)” for the equations above respectively.
They are written as ko + k17 + kom® = 0 and kj + k{7 + kim® = 0. The
solutions of the both equation, 7, must be identical because it corresponds
to the y. Therefore the following equation is hold.

k k k
This equation is called as Kruppa’s Equation

When the principal point is known, and the axes are perpendicular (equa-
tion (105), ¢ = 0, the intrinsic parameter, A, is rewritten by replacing the
origin to the principal point, A = diag(f/d,, f/d,,1). Under the definition,
ky = f/d,0 Ky = f/d,, it is rewritten as C = AAT = diag(k?,k2,1). F is

expressed as follows:

Juu fiz fis
F=1| fa foo fos
fa1 fa2 [f33

It is assumed the F' is known and the epipole e = (e1, eq, e3) is obtained

from the F' here. Under the assumption where the intrinsic parameters of
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the two cameras are identical (C" = C'), The following equation is derived by
substituting them for the equation (181) and (182).

2.2 2

€T €
2—5 + k—; + (e —e)? = 0 (185)
2 2
- -
Uu kaﬂT) 4 e ka”T) +(fis+ f23)" = 0 (186)

Then, the Kruppa’s equation is rewritten as follows:

k2k2el + kZe3
kyfi + ko ffy + koks £
B kZk2eieq _ k2kZet + k2e3 (187)
k3 fiifor + kG frafoo + kGG fis fos ki f3 + ki foh + Kok £

The k, and k, can be solved from the equation above and
Here, the case of identical two intrinsic parameters is explained above, but
even though the intrinsic parameters are not identical, the unknown intrinsic

parameters are found as well as the method above.
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C Rotation

When a point is stationary and a coordinate system is rotated centered the
original point, the coordinate in the rotated coordinate system is represented
using rotation matrix .

M =R"' M (188)

Here, R represents rotation based on the original coordinate system, M is
the point’s coordinate in the original coordinate system, and the M’ is the
point’s coordinate in the rotated coordinate system.

There are three representations of rotation matrix. First one is that using
rotation angles of each coordinate axis. Second one is that using normal
perpendicular vectors of each coordinate axis. The third one is that using a
vector which direction represents rotation axis and which length represents

rotation angle.

C.1 Rotation Angle

The rotation of the coordinate system can be considered that fist, the
coordinate system is rotated around x axis by angle «, and then rotated
around y-axis by angle 3 and finally, rotated around z-axis by angle v. So,

the rotation matrix is represented as

R=Rz-Ry-Rzx (189)
1 0 0
Rrxr =10 cosa —sina (190)

0 sinha cosa

75



cos 0 sing
Ry = 0 1 0 (191)
—sinf3 0 cosf
cosy —siny 0
Rz = | siny cosy 0O (192)
0 0 1

C.2 Normal Vectors

Let a normal vector Vx represents the x coordinate axis of the rotated
coordinate system in the original coordinate axis. The x component of M’ is
written as Vo - M. Since other component is also written in same way using
y axis normal vector Vy and z axis normal vector Vz, the rotation matrix

can be represented as

R=|Vy (193)
Vz
Here, Vx, Vy and Vz are mutually perpendicular.

C.3 Rotate Vector

Although the actual rotation may not occurred around only one axis, the
relation between the rotated coordinate system and the original coordinate
system can be represented as a rotation around one axis.

When a vector w represents the rotation axis and o = |w| represent the

rotation angle, the rotation matrix is represented as

sina 1 —cosa .
_|_

R=elx =T+ [w]? (194)

« o?
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The equation is called as Rodrigues equation.

Here, [w], is the matrix by which [w], - a = w A a, thus

X

0 —w, wy
[w]x = Wy 0 —Wyg (195)
—Wy W, 0

C.4 The Relation Between Rotation Angles And The

Rotation Vector

When the rotation is represented by a rotation vector w as a rotation
axis and the rotation angle, the same relation between the rotated coordinate
system and the original coordinate system is represented by the following.

First, rotate the coordinate system around x-axis so that the w in rotated

coordinate system is on the z-x plane in the original coordinate system.

10 0
Ry= |0 cosf —sind (196)
0 sinf cos
Wy Wy
Ry |w, | = | wycost — w,sinb (197)
W, w,sinf + w,sinf
wycost — w,sinf =0 (198)
tand = <Y (199)
Wy

Then, rotate the coordinate system around y-axis so that the w in rotated
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coordinate system matches z-axis in the original coordinate system.

cosp 0 sing
R, = 0 1 0 (200)

—sing 0 cos¢p

Wy WeCosP + wysinbsing + w,cosfsing
Ry | wycosd —w,sinf | = wycosh — w,sind (201)
w,sinf + w,sinf —WySINg + wysinbcosd + w,cosbcose
WzC08Q + wysinbsing + w,cosbsing = 0 (202)
Wy

tang = —
¢ wysinl + w,cost
1 ww,

2 2
cos0 wy + w;

(203)
Next, rotate o = |w| around z-axis, because the rotation axis is identical

to z-axis here.

cosae —sina 0

Ry = | sina cosa 0 (204)
0 0 1
T reosa + ysina
Ry | = | —xsina + yeosa (205)
z z

In this case, a point (x,y, z) is rotated —a because the w doesn’t represents
the rotation of points, but coordinate system. The rotation of points is
opposite rotation to the rotation of coordinate system relatively.

In this notation, the rotation matrix R is subject to
R™'=Ry'R,'R,'RsRy (206)
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Since the rotation is identical between using rotation angles and rotation

vector, the both representation indicate same rotation matrix (see Appendix

C.5).

1y stno 1 —cosa .
R=Ry'R;'R.RyRy = I + " W], + — [w]? (207)
This equation (207) is called as Rodrigues equation.
C.5 Proof of Rodrigues Equation
cosp 0 sing 1 0 0
RyRy = 0 1 0 0 cosf —sinf
—sing 0 coso 0 sinf cosf
cosp  singsinf  singcosh
= 0 cost) —sinf
—sinf)  cospsinf cospcost
00159 tangtan tang
_ 1 tand
= cosfcoso 0 o5 — e (208)
—i‘f)ﬁg tanf 1
ﬁ tangtan  tang
— 1 __tanf
cosflcoso 0 w5 e
—iaozg’ tanf 1
1 1 Wwzwy 1l wpws
cosf cos w2 +w? cosf w2 +w?
= cosflcos¢ 0 Cols¢ _Colmuwf_z
R L
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There are two # between —7 and 7 which subject to

tand = <Y (209)
Wy

It is because there are two direction when w is rotated around x axis to

be on z-x plane. So, without any loss of generality, it is assumed as follows:

T T
—— << = 210
2 -2 (210)
Thus, cosf) > 0.
tanf = Yy
wz
2
W
tan’0 = —g
wZ
1 w?
2 2
f = - 211
cos L +tan?0 w2 +w? (211)
S8 w, >0
cosh =<V Wity
s w, <0

\/ w2 -l—wg
Same as 6, there are two direction of ¢ when w is rotated around y-axis

to be on z-axis. So, it is assumed as follows:

(212)

<9<

ro | 3
bl

Thus, cos¢ > 0.
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1 ww,
tang = ——————
cosf w2 + w?

g L w2
an‘“p = =
cos?0 (w2 + w?)?  w? + w?
1 w2 + w? (213)
2, _ y z
cos d) 1 2.4 2 2 2
+tan*¢  w; +wy +w;
5 VWi + w? VWi + w?
cosp = =
Vw?+ wg + w? «
i) w, >0
V w§+w§ _‘-Uzwy — Wz Wz
\/w%—l—w;—l—w% \/w%-l—wg-i-wf \/wf-i-wg \/w%—l—w;—l—w%\/w%—l—w;
N w w
R¢R9 - 0 w;"—lfwg _w;“—iwg
. We Wy  we
/ yw 2 __ WalWy W Wz
1 VI Wy T rver ered
=il 0 el i 21
jwl N N
wz- wy wz
szy W Wz
1 oyl — T Jwyz]
il 0wl el
|w| |wy =] |wy-|
Wy Wy W,
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R =R,'R;'R,R4R,

el ) e i O) [l 0w
TR | 0 WIS g ] | sine cosa O =R el @
Wi Wy ws 00 1)\ lelgy e
|wy:|*cosa + w? wowy (1 — cosa) — |wlwsina wow,(1 — cosa) + |wlwysina

:ﬁ wawy(1 — cosar) + |wlw,sine: Jwe [Peoser + wyws (1 = cosa) — |wlwesina

wew; (1 — cosa) — |wlwysina  wyw, (1 — cosa) + |w|wysina

|way|2cosa + w?

(215)

' 0 -—w, wy —Jwye2(1 = cosa)  wpwy(1 — cosa)  wyw, (1 — cosa)
__ . sina
=I+ o | e 0 omega, | + o wawy(l — cosa)  —|wg.|*(1 — cosa)  wyw.(1 — cosa)
Wy Wy 0 wew, (1 — cosar) wyw(1 — cosa)  —|wgy*(1 — cosa)
sino 1 —cosa,
=I+ Wl + ——=— Wk
(07 (07
il) w, >0

Although the sign of cosf is changed in this case, the Rodrigues equation

is derived similarly.

C.6 Infinitesimal Rotation

When the « is small, sina is approximated to «, and cosa is approximated

to 0. Therefore, the Rodrigues equation (207) is approximated to as follows:

R=1+w]

X

Therefore, the motion of a point d P can be written as follows:

JP=RP—P=u], P
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D Factorization

D.1 Problem Statement

N image feature points are tracked in F' frames sequential image. Those
feature point locations are measured in image coordinate system. The prob-
lem is to estimate camera motion and the three-dimensional location of those

feature points using the measurement of image feature points.

D.2 Principle

P9 is defined as nth image feature point location in global coordinate
system. fth frame camera location and direction is represented by a trans-
lation t¢ and a rotation Ry. P7; is defined as nth image feature point in fth
frame camera coordinate system. The relationship among the feature point
in global coordinate system and in image coordinate system is expressed as

follows:

n

Py =Ry (PJ—ty) (218)

It is supposed that the global coordinate system is taken to hold the

following equation:

P=)"P,=0 (219)

Then, the Pf is defined as follows: '
Pp=) Pi=-R;-t; (220)

In addition, ]S,ff is defined as follows:
Pt =Pl — Py =Ry - PS (221)
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It is expressed using matrices. P¢R and P9 are defined as follows:

Py ... Pg

Pe=| : . (222)
Py ... Pip
Ry

R=| : (223)
Rp

pi=(pr ... PY) (224)

Then, equation (221) is rewritten in matrices as follows:

P°=R-PY (225)
Since the right term of equation (225) is the product of rank three matrices,
P¢ can be decomposed to the product of the camera rotation matrix R and
the feature points location matrix PY by singular value decomposition. The
principle of factorization is the decomposition.

Suppose that the projection from the camera coordinate system to the
image coordinate system is represented by orthographic projection, x and y
coordinates in an image coordinate system are same as x and y coordinates
in a camera coordinate system. Then, a matrix Ry is defined as the first
two column of the matrix Ry. The nth image feature point position ﬁf;f
measured from the average position of N image feature points in f frame

image coordinate system is expressed as follows:

Pi,=R;- P! (226)
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Similarly, P is defined as follows:

Pl ... P%,

P=|: - (227)
Pip ... Pip

The R is redefined as Ry. Then, P’ is expressed as follows:

P'=R-PY (228)

The factorization method solve the camera direction and feature point
positions in global coordinate system by decomposing P? into R and P¢ using
singular value decomposition. The location of camera coordinate system in
the global coordinate system is not completely solved.

P is decomposed into 2F x 3 matrix R and 3 x N matrix P using the
singular value decomposition. However, in general, R does not satisfy the
condition in which its 2f — 1th row i} and 2fth row i} have to be mutually
perpendicular unit vectors that represent x and y axis respectively in the fth
frame camera coordinate system. Therefore, after the decomposition, () is
solved to satisfy the condition in which R = R-Q

Since the normal perpendicularity is invariant with rotation matrix, the
(@ is solved up to rotation matrices. When it is supposed that the direction of
the global coordinate system is same as the direction of the camera coordinate
system, the freedom of rotation is eliminated to determine a unique matrix
. However, when the camera motion is only rotation along an axis, the @)
have more freedom than rotation matrices.

In case that all the feature points are coplanar, the rank of P is two,

therefore, P? cannot be decomposed using singular value decomposition.
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D.3 Another Definition

In some textbooks, same relationship showed in previous section is ex-
pressed in different way. As it is shown below, the columns of Pi and R are
exchanged in the other expression.

pl = (xf,y/) is defined as the nth image feature point coordinate in fth

frame image coordinate system. Then, a matrix M is defined as follows:

I S
F F F

M= |—-2 al (229)
YL s Y
yi yd yN

This matrix M is called as measurement matrix.
(if, df) is defined as the average position of all image feature points in f
frame image, and M is defined as the matrix in which elements are difference

of each point position in M from the average position as follows:

z! LS s

=" E;Vl " (230)
yf % Zn:l y£

x~£ A

e i (231)
Yn ys —yf
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Ty Ty T
N ol 2l zk
M= |— — -
1 1 1
Y1 Y Yn
F F T
Yi Y --- Yy

(232)

Suppose that the direction of z axis and y axis in fth frame camera

coordinate are represented by unit vectors i/,j/ in the global coordinate

system respectively, a matrix R is defined as follows:

Then, the measurement matrix is expressed as follows:

M=R-P

D.4 An Example

It is supposed that feature points are located as follows:

P, = (1,0,0)"
P, =(0,1,0)"
Py = (0,0, 1)

Pi=-P—P—Py=(-1,-1,-1)7
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x and y axis directions of each frame camera coordinate system are supposed

to be as follows in the global coordinate system:

it = (1,0,0)" ' =(0,1,0)" (239)
i? = (~1,0,0)" i*=(0,1,0)" (240)
i* = (0,0,1)" i*=(0,1,0)" (241)

Suppose that the camera projection is represented by orthogonal projection

model, the measurement matrix is expressed as follows:

i".p i"op i 1P L 0o~
2".p 2p #.p 2R L oo 1

N R SR LR T LR A R 21 0 01 -1

M = T T T T - (242)
it iten 3ep TR 0 10 -1
R ST R < N CL SN i ) 0 10 -1
AR T L S L SN L o 0 10 -1

The M is decomposed using singular value decomposition as follows:

M =USVT (243)

—0.3791035 —0.5529025 0.2248990 0.7071067  0.0000000  0.0000000
0.3791035  0.5529025 —0.2248989 0.7071068 0.0000000  0.0000000
U= —0.3280033 —0.1542043 —0.9320058 0.0000000 0.0000000  0.0000000 (244)
—0.4490638  0.3487210  0.1003428 0.0000000 —0.5773503 —0.5773503
—0.4490638  0.3487210  0.1003428 0.0000000 0.7886751 —0.2113249

—0.4490638 0.3487210  0.1003428 0.0000000 —0.2113249 0.7886751
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2.901523
0.000000
0.000000
0.000000
0.000000
0.000000

—0.2613135 —0.7157694 0.4115694 0.5000001
—0.4643050 0.6771641
—0.1130452 —0.0998139
0.8386638  0.1384191

0.000000 0.000000
1.544918 0.000000
0.000000 1.092885
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.2754439  0.4999999
—0.8527943 0.4999999
0.1657807  0.5000000

(245)

(246)

Since the diagonal (1,1),(2,2)and(3,3) elements in S are non-zero, a

matrix S is defined as the top left 3 x 3 sub-matrix of S. U is defined as 1,2

and 3 rows sub-matrix of U. V is defined as 1,2 and 3 rows sub-matrix of V.

Then, the matrix M is expressed as follows:

R is defined as follows:

M=U-S.-v"

—0.6457594 —0.6872284
0.6457594  0.6872284

L —0.5587161 —0.1916680

—0.7649288  0.4334418
—0.7649288  0.4334418
—0.7649288  0.4334418
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0.2351120
—0.2351120
—0.9743294

0.1048995

0.1048995

0.1048995

(247)
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P is defined as follows:
—0.4451176 —0.7908905 —0.1925596 1.4285677
P=S8V2.V"| -0.8806635 0.8416794 —0.1240636 0.1720476 | (249)
0.4302594  0.2879522 —0.8915207 0.1733091

Then, M is decomposed as M = R - P, however, fth and f + 3th column
vector in R, which are suppoed to represent z and y axis of fth frame camera
coordinate system respectively, are not perpendicular. In order to make them
perpendicular, the R is defined as R = R - Q, and the Q is determined to
make fth and f + 3th column vectors of R perpendicular.

@ is determined using the Newton method as follows:

0.9322650 —0.0942472 —0.1020902
Q= | —0.0948945 1.2398700  0.0346459 (250)
—0.1020046  0.0352958  0.9643888

Then, R is calculated as follows:

—0.5607872 —0.7829144  0.2688554
0.5607872  0.7829144 —0.2688554
- —0.4032972 —0.2193757 —0.8892335
R=R-Q= (251)
—0.7649479 0.6132063  0.1942726
—0.7649479 0.6132063  0.1942726

—0.7649479  0.6132063  0.1942726

P is also calculated using @) as follows:

—0.5090860 —0.7648207 —0.3210116 1.5949183
P=Q7'-P=|-07682569 0.6148545 —0.0979502 0.2513526
0.4204182  0.1951860 —0.9548100 0.3392059

(252)
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Eventually, the measurement matrix M is decomposed as M = R - P. Here,
fth and f + 3the column vectors in R represent each unit vector direction of
x and y axis of f frame camera coordinate system in the global coordinate
system. The nth row vector in P represents nth feature point position in the

global coordinate system.

D.5 Consideration

The x and y axis of the first frame camera coordinate system are given as
it = (1,0,0)T and j' = (0,1,0)T at the beginning in the example. However,
the obtained x and y axis are it = (—0.5607872, —0.7829144,0.2688554)"
and j' = (—0.7649479, 0.6132063, 0.1942726)" In order to explain the reason

why they are different, a matrix is defined as follows:

—0.5607872 —0.7829144 0.2688554
¢ =1 —-0.7649479 0.6132063  0.1942726 (253)
—0.4032972 —0.2193757 —0.8892335

The R; and P, are defined using given values as follows:
it”
i2”

37
Rt - le (254)

2T
_]2
37T
.]3

P=(P P P, P) (255)
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Then, the following equations are hold:
R=R;-¢ (256)
P=¢!'-P (257)

That is, Q which satisfies that = and y axis are perpendicular is not unique.
Suppose that @' is defined as Q' = @ - ¢~ !, and R and P is calculated as
R=RxQ and P = Q' 'P, R and P are obtained as R = R,,P = P,.

The freedom degree of ¢ is up to a rotation matrix generally because
the matrix is a transformation matrix which preserves the perpendicular-
ity between x and y axes of camera coordinate systems in multiple frames.

1 32

However, since equations, i* = —i? and j! = j?, are hold in the example,

relationships, i' Lj! and i?Lj?, are same condition. Moreover, an equation,
j2 = j', is hold. Therefore, when () is determined, there are exist perpen-
dicularity conditions only between i! and j' and between i* and j'. In those
condition, a matrix which is not a rotation matrix can be a transformation
matrix which preserve perpendicularity between x and y aces of camera coor-
dinate systems. If x and y axis of additional frame camera coordinate system
is not placed on the plane of itandj' and the plane of i3, j!, ¢ is a rotation
matrix.

Eventually, ) is determined up to a rotation matrix ¢. Therefore, it is
supposed that axes of the first frame camera coordinate system are in same
direction as axes of the global coordinate system. Then, the unique @ is
obtained under the condition in which ' and j' are given as i' = (1,0,0),
it =(0,1,0).

When the number of feature points is less than three, Py is represented

by a linear combination of ]51 and ]52 as ]53 = —]51 - ]52. Since the rank of the
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matrix P is two in this case, the rank of the measurement matrix M is also
two. Therefore, the decomposition into R and P cannot be executed, when
the number of feature points is less than three. Even though the number
of feature points is more than four, if those feature points are coplanar,
the decomposition cannot be executed similarly. Therefore, the number of
feature points has to be more than four and all those feature points must not

be coplanar.
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E Stabilization

E.1 Phase Correlation

F)(w) is defined as the Fourier transformation of a function f;(¢), and

Fy(w) is defined as the Fourier transformation of a function fy(¢).
Fi(w) = / fi(t)e ™“tdt (258)
Fy(w) = / fo(t)e “'dt (259)

The product of F}(w) and Fy(w) is expressed as follows:

Fi(w) Fy(w) = / Z { / Z A folt — t’)dt’} g (260)

Therefore, the inverse Fourier transformation of F(w)F5(w) is expressed as

follows:

1 oo . oo
2—/ Fl (w)Fg(w)el“’tdw = / fl(tl)fg(t — t,)dtl (261)
™ o.¢] —0o0
Suppose that F'(w) is the Fourier transformation of f(¢), F(w) and con-

jugate of F'(w) can be expressed as follows:

F(w) =A(w) —iB(w)

:/oo f(t)cos(wt)dz — i/oo f(t)sin(wt)dx (262)

o0

[ e

F*(w) =A(w) + iB(w)

_ / " (cos(wh)ds + i / Z F(0)sin(wi)da

o0

s (263)
~ [ s



Therefore, the inverse Fourier transformation of F(w)F;(w) is expressed as

follows:

1 / " R (W) P ()6t = / TR R — (264)

21
Suppose that fo(z,y) = fi(z + u,y + v), the Fourier transformation of

fo(z,y) is expressed as follows:
Fa(onwy) = [ [ .yt dady
= / filx +u,y 4 v)e W) ddy
_ / F1 (o) o) g g (265)
_ pilwautwy) / oy e o) gt
= et By (1, w,)
Therefore, the product of F| and conjugate of F5, is express as follows:

F(wx,wy) = Fl(w:vawy) : F;(wwiy)

| (266)
— efz(wmquwy'u) |F1 (ww, Wy) |2
Then, F(w,,w,) is defined as follows:
~ F(wg,wy) »
Flwg,wy) = mo Y = g ilwsutwyw) (267)
T F(wewy)l

Therefore, the inverse Fourier transformation of F(w;, wy), f(x,y), is ex-

pressed as follows:
_ 1 —i(weutwyv) i(www+wyy)d d
flz,y) = — e e wedw,

27
_ 1 / / A P
27
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The real part of f(x,y) is expressed as follows:

Re{f(z,y)} = % // cos{wy(x — u) + wy(y — v) fdw,dw, (269)

Therefore, Re{f(z,y)} have a maximum point at z = u, y = v.
Suppose fi(z,y) and fo(z,y) are two image intensity functions, the max-

imum point of phase correlation represent translation of image.

E.2 Log-Polar Coordinate

The log-polar coordinate is a two-dimensional coordinate system. One
parameter is a logarithmic distance from the origin. The other parameter
is an angle from a base line. When a point is expressed as (r,6) in polar
coordinate system, (logr,#) is the coordinate in log-polar coordinate system.

Suppose that f(logr,f) is a image intensity function in log-polar co-
ordinate system, « times scaled and ¢ rotated image is represented as
f(ogZ,0 + ¢) = f(logr — loga,f + ¢). Therefore, the scaling and rota-
tion is represented as a displacement in log-polar coordinate system.

Fig.30 shows an example of log-polar coordinate representation of image.

E.3 Stabilization Algorithm

Stabilization is an image processing technique to remove the image motion
caused by camera motion. The phase correlation is applied to consecutive
two images in Cartesian and log-polar coordinate system in the stabilization
algorithm. Since the scaling and rotation is represented as a displacement

in log-polar coordinate, the maximum point of phase correlation indicates
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Figure 30: a) Cartesian Coordinate and b) Log-Polar Coordiante Image

the scaling and rotation between images. When the peak of phase correla-
tion is higher in Cartesian coordinate than that in log-polar coordinate, the
translation in Cartesian coordinate is removed first. Then, the phase corre-
lation is applied again in log-polar coordinate system to extract and remove
scaling and rotation. Fig.31 shows an example result in case that image is

translated. Fig.32 shows an example result in case that image is scaled and

Figure 31: a) Translated Image and b) Stabilized Image

rotated. In both example, Fig.30-a is the target image of stabilization.
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Figure 32: a) Scaled and Rotated Image and b) Stabilized Image

Theoretically, the phase correlation works to find displacement only in
each aces, in other words, it works only for pure translation in image when it
is applied in Cartesian coordinate system, or it works only for combination
of scaling and rotation along z-axis in log-polar coordinate system. For other
motion, such as combination of translation and rotation, the phase correla-
tion is not guaranteed to have a peak to indicate camera motion. However,
when the motion is close to a pure translation or close to a combination
of scaling and rotation, the highest peak between two coordinate systems

indicates the motion.
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