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Dynamics of slender beam-like structures subjected to rotational motions is

studied experimentally, numerically, and analytically within this dissertation. As

the aspect ratio of beam-like structures is increased (i.e., as the structures become

slender), the structure can undergo large elastic deformations, and in addition, the

torsional and lateral motions can be strongly coupled. Two different paradigms

of rotor systems are constructed and used to investigate coupled torsional-lateral

motions in slender rotating structures. The first rotor model is a modified version

of the classical Jeffcott rotor, which accounts for torsional vibrations and stator

contact. Analysis and simulations indicate that torsional vibrations are unlikely to

exist during forward synchronous whirling, and reveal the presence of phenomena

with high-frequency content, such as centrifugal stiffening and smoothening, during

backward whirling. The second rotor model is a nonlinear distributed-parameter

system that has been derived with the intent of capturing dynamics observed in

an experimental apparatus with slender, rotating structures. Nonlinear oscillations

observed in the experiments contain response components at frequencies other than



the drive speed, a feature that is also captured by predictions obtained from the

distributed-parameter model. Further analysis of the governing partial-differential

equations yields insights into the origins (e.g., nonlinear gyroscopic coupling and

frictional forces) of the nonlinear response components observed in the spectrum

of the torsion response. Slender structures are often subject to large deformations

with pre-stress and curvature, which can drastically alter the natural frequencies and

mode shapes when in operation. Here, a geometrically exact beam formulation based

on the Cosserat theory of rods is outlined in order to predict the static configuration,

natural frequencies, and mode shapes of slender structures with large pre-stress

and curvature. The modeling and analysis are validated with experiments as well

as comparisons with a nonlinear finite element formulation. The predictions for

the first eight natural frequencies are found to be in excellent agreement with the

corresponding experimentally determined values. The findings of this dissertation

work have a broad range of applications across different length scales, including

drill strings, space tethers, deployable structures, cable supported structures (e.g.,

bridges and mooring cables), DNA strands, and sutures for non-invasive surgery to

name a few.
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Chapter 1

Introduction

Flexible structures occur in a variety of natural and synthetic systems, such

as space tethers, deployable structures, cable supported structures (e.g. bridges and

mooring cables), mechanics of deoxyribonucleic acid (DNA) strands, and sutures

for non-invasive surgery to name a few. These structures are distinct from tradi-

tional engineering structures because of their high aspect ratios. These structures

can undergo large deformations, and in addition, torsional, lateral, and axial mo-

tions can be strongly coupled. In certain instances, these structures also experience

intermittent impacts and collisions with physical boundaries. These unique features

can lead to strong nonlinear effects in the dynamic response of the system. Further-

more, slender structures may also operate under the effects of pre-stress or an initial

static configuration (e.g., bridge cables). This initial pre-stress and curvature can

drastically change the natural frequencies of the system, or can lead to a nonlinear

response of the structure.

Within this dissertation, the dynamics of slender structures are explored ex-

perimentally, numerically, and analytically. The dynamics of drill strings, which is

examined in the following section, is one physical system of interest, since they share

many aspects common to slender structures in operation, such as intermittent con-

tact with physical boundaries, coupling between different motions, and pre-stressed
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and curved configurations. All three of these aspects will be explored within this

dissertation, with emphasis on the latter two. The findings and results presented

here have applications to slender structures across different length scales.

1.1 Literature review of rotor dynamics and applications

1.1.1 Literature review on rotor dynamics

The classical rotor system originally developed by Henry Jeffcott (Jeffcott,

1919) is shown in Fig. 1.1. This simplified, lumped-parameter model of a rotor has

served as the basis for numerous studies found in the literature. The governing

equations of motion may be written as

(M +m)ÿ + cẏ + ky = meΩ2 cos Ωt (1.1)

(M +m)z̈ + cż + kz = meΩ2 sin Ωt (1.2)

In equation (1.2), M is the mass of the rotor, m is the effective mass imbalance, e is

the eccentricity, k is the stiffness of the rotor, c is the linear damping and Ω is the

drive speed of the rotor. When under rotation, the rotor will whirl in a circular orbit

about the origin due to the effective eccentricity and unbalanced mass. If the rotor

is not symmetric (i.e., the mass, stiffness, and damping are not equivalent in the y

and z directions), then the orbit will be elliptical. Although this lumped-parameter

model is able to explain a variety of rotor dynamic phenomena, it does not account

for certain dynamics, such as rotor-stator contact, torsional vibrations, or gyroscopic

effects (i.e., rotations of the rotor about the y and z axes). A literature review of

2



(a) (b)

Figure 1.1: Jeffcott rotor: (a) physical system and (b) schematic used for modeling.

relevant rotor dynamic studies, as well as in introduction to certain rotor dynamic

phenomena, is presented next.

Rotor-stator phenomena

Some form of rotor-stator contact exists in almost all rotating equipment. A

schematic of the modified Jeffcott rotor contained within a stator, which is com-

monly studied in the literature, is provided in Figure 1.2. Within Figure 1.2, the

quantity δ is the initial gap clearance between the rotor and the stator and Γ is the

radial displacement of the geometric center of the rotor to the origin, and is stated

Γ(x, y) ≡ Γ =
√
x2 + y2 (1.3)

During run-up or run-down of a rotor system, the rotor may come into contact

with a stator. Under certain circumstances, the rotor will stay in continuous contact

with the stator, even while the drive speed is being varied, and whirl either in the

direction of motor rotation or in the opposite direction of rotation. Some of the

forward whirling and backward whirling solutions that were studied by Black (1967,

3



(a) 
Mass

Imbalance

Rotor

Stator

(b) 

Stator

Rotor

Mass
Imbalance
Whirl
Orbit

Figure 1.2: Jeffcott rotor within a stator in the (a) static configuration and (b) at

an instant of time.

1968) for the Jeffcott Rotor contained within a stator subject to dry-friction are

shown in Figure 1.3. Note that other backward whirling solutions exist for asym-

metrical rotors and rotor systems with dominant gyroscopic terms, which are not

shown on in Figure 1.3 for clarity (for instance, see Genta (2005); Yamamoto and

Ishida (2001); Yabuno, Kashimura, Inoue, and Ishida (2011)). In Figure 1.3, the

non-dimensional radial displacement is plotted as a function of the non-dimensional

driving speed. Here, the rotor makes contact with the stator when Γ/δ ≥ 1 and

lateral resonance occurs at Ωnd = 1. For this system, there are three stable solu-

tions, namely forward whirling without stator contact, forward whirling with stator

contact, and backward whirling with stator contact. A schematic of the rotor-stator

motion for these three stable solutions, shown by points b, c, and d in Figure 1.3, are

given in Figure 1.4(b)-(d), respectively. The rotor motion during forward whirling

without contact is provided in Figure 1.4(b). During forward synchronous whirl,

the rotor whirl frequency (or precession rate about the origin) is close to that of

4



0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Ωnd

Γ
/
δ

 

 

A BC

D
d

c

b

No Stator
Forward Whirling
Backward Whirling

Figure 1.3: Frequency response function for the Jeffcott rotor contained within a
stator.

the driving speed. Similarly, forward whirling with contact, also referred to as syn-

chronous rubbing in the literature, is given by line segment AB in Figure 1.3 and the

rotor motion is shown in Figure 1.4(c). Again, during forward synchronous rubbing,

the rotor whirl frequency (or precession rate about the origin) is close to that of the

driving speed. During synchronous whirling with contact, the rotor is also said to be

slipping, where the relative speed between the rotor and zero is non-zero. In other

instances, the rotor may come into contact with the stator, and start to undergo

backward whirling with contact (also referred to as dry-friction whirl, counterwhirl,

or rolling), which is represented by line segment CD in Figure 1.3, and the rotor

motion is shown in Figure 1.4(d). For dry-friction whirl, the rotor whirl speed may

be approximated by the equation

fw = −fd
R

δ
(1.4)

by imposing the no-slip condition; that is, the relative speed between the rotor and

5



Mass
Imbalance

Rotor

Stator

Whirl
Orbit

(a) Rotor-stator definitions: (b) Forward whirling
      without contact:

(c) Forward whirling
      with contact:

(d) Backward whirling
      with contact:

Figure 1.4: Characteristic motions of the Jeffcott rotor contained within a stator:
(a) definitions used in describing the response, (b) forward whirling without contact,
(c) forward whirling with contact, and (d) backward whirling with contact.

stator is zero. If the rotation speed of the motor is continuously increased while

undergoing dry-friction whirling, eventually, the whirl speed saturates and the rotor

is said to undergo whip. The mechanism through which the rotor transitions from

whirl to whip has been studied by Childs and Bhattacharya (2007); Bartha (2000);

Jiang and Ulbrich (2005), and others, but remains to be well understood. All three of

these stable solutions coexist for the same system parameters. The initial conditions

of the rotor determine which steady-state solution the rotor will attract to.

In the presence of a stator, rotors can also undergo relative stick-slip behavior.

In the stick phase, the relative speed between the rotor and stator is zero, while

during the slip phase the relative speed between the rotor is non-zero. During relative

stick-slip the rotor undergoes a combination of both sticking and slipping, which

can act to excite torsional motions in slender rotor systems. Stick-slip behavior is

seen in other mechanical systems (e.g., squeal of brakes, the excitation of bowed

instruments, wheels of train cars) and has been studied by Oestreich, Hinrichs, and

Popp (1996); Leine and Nijmeijer (2004), and Leine, van Campen, Kraker, and van

den Steen (1998) as well as others.
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Coupled motions of slender structures

In traditional rotating structures, torsional vibrations are often considered

to be independent of the lateral or bending vibrations. However, as the aspect

ratio of a structure increases, the coupling among the torsional, lateral, and axial

motions may become stronger. This potential coupling is made apparent with the

following arguments. The linear natural frequencies for torsional and axial modes

of vibration scale proportionally to the inverse of the length of the structure, while

the natural frequencies for lateral or bending modes scale proportionally to the

inverse of the length squared. As the length of the structure is increased, the natural

frequencies of the three different motions decrease, and likewise, the spacing between

the natural frequencies for each direction also decreases. If the natural frequencies of

the different motions become close, energy may be exchanged between the torsional,

axial, and lateral modes, and the structure is able to exhibit motions which are

a combination of the different modes. Furthermore, the three motions may be

strongly coupled through the boundary conditions of the structure, such as systems

with lumped-mass elements. Since one aspect of this dissertation is concerned with

structures that rotate, particular interest is given to the coupling between torsional

and lateral motions.

A review is given here of studies which have focused on the response of rotors

with coupled lateral and torsional motions in the absence of external stator forces.

Nataraj (1993) developed a distributed-parameter structural model, and used per-

turbation analysis to show that the amplitude of torsional motions are second-order,
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while lateral motions dominate the first-order response. Huang (2007) compared a

numerically generated frequency-amplitude response for torsional vibrations with an

experimental rotating shaft for forward synchronous whirling, and found a lateral

vibration response component at twice the drive speed when driving the system at

the first torsional resonance. Hosseini and Khadem (2009b) derived a distributed-

parameter rotor model with torsional, bending, and axial coupling based on the

kinematics and modeling of Nayfeh and Pai (2004), and performed perturbation

analysis on the resulting model. Through numerical simulation and analysis, they

determined that nonlinearities in stiffness and inertia excite both forward and back-

ward whirling motions of the rotor without stator contact. Efforts with the aim

of modeling coupled torsional-bending motions for finite element implementation

include those of Hsieh, Chen, and Lee (2006) and Wu (2007).

The problem of coupled torsional-bending vibrations in rotor systems becomes

more complex when accounting for rotor-stator contact and force-interactions. Ed-

wards, Lees, and Friswell (1999) performed a numerical parametric study varying

torsional parameters and found that the modified Jeffcott rotor can exhibit chaotic,

torsional motions. In an experimental effort, Diangui (2000) found the natural fre-

quency of torsional vibrations increase when the rotor is in contact with the stator

during forward whirling, but this was not explained in that study. The potential

origin of this stiffening behavior is explained in Chapter 2 of this dissertation. The

effects of different frictional forces on the torsion response of lumped-parameter ro-

tor system was investigated in the efforts of Mihajlovic, van de Wouw, Rosielle, and

Nijmeijer (2007) and Mihajlovic (2005). In these efforts, the researchers constructed
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stable and unstable solutions of the system, and verified their existence experimen-

tally. It is noted that in system presented in the works of Mihajlovic et. al (Miha-

jlovic, van Veggel, van de Wouw, and Nijmeijer, 2004) and Mihajlovic (Mihajlovic,

2005), the rotor was subject to follower-forces; that is, frictional forces acted on the

rotor for all lateral displacement. Stick-slip interactions and the nonlinear response

of torsional vibrations of a rotor-stator system were explored numerically and exper-

imentally in the efforts of Liao, Balachandran, Karkoub, and Abdel-Magid (2011)

and Liao, Vlajic, Karki, and Balachandran (2012).

1.1.2 Drilling mechanics and drill strings

One application of slender rotating structures occurs in the use of drill strings

that are used to bore holes into the Earth in order to retrieve natural resources such

as petroleum and natural gas. Often times, these slender structures can extend sev-

eral kilometers below the Earth’s surface. A schematic of a typical rotary drill rig

and drill-string assembly is provided in Figure 1.5. A drill string is a complex struc-

ture, which consists of hollow steel pipes screwed together to form a long continuous

structure, and frequently, sections with larger diameters, referred to as stabilizers,

are inserted in between two drill pipes to help keep the drill string in the center of

the borehole. The base of the drill string is made of two main components, namely

the drill collar and the drill bit. Drill collars are similar to drill pipes, except that

they are larger in diameter and they help to provide weight-on-bit. A drill bit, the

tool which breaks down the rock and soil, is secured at the end of the drill collar
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assembly. The entire drill string assembly is rotated at the surface by using a rotary

table and a motor. This actuation is transmitted down the drill string and to the

drill bit, where it then acts to crush the rock and soil. Throughout the drilling

process, a hydraulic fluid, known as drill mud, is pumped down through the center

of the drill string and collars and serves two purposes. Not only does the mud keep

the drill bit cool and lubricated, it also washes away the broken rock and soil. After

the mud flows through the drill strings and the collars, it then flows in the annulus

between the drill string and borehole carrying the cuttings to the surface.

A brief literature review of dynamics and control of drill strings is presented

here. Jansen (1993) used a simplified rotor with an unbalanced mass supported

by two bearings, which has since served as the basis for several other efforts with

the intent of modeling drill strings. Kreuzer and Struck (2005) used a distributed-

parameter model for the drill string and a proper orthogonal decomposition pro-

cedure to develop a reduced system model and build a control scheme. Their

model predictions were verified with experimental results. Other spatially con-

tinuous models that have been developed include those presented in the work of

Khulief and Al-Sulaiman (2007) and Piovan and Sampaio (2006). In both of these

efforts, a finite element formulation is used to examine nonlinear vibrations of drill

strings. Christoforou and Yigit (1997) used a Hertzian contact model and showed

that chaotic dynamics and parametric resonances are possible.

Additionally, drill-string assemblies are subject to several non-smooth forces.

For instance, the interaction forces between the drill bit and the well bottom, the

drill bit and the well bore, and finally the drill string and the well bore. Because
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Figure 1.5: Schematic of a typical rotary drilling operation.
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of the non-smooth interaction forces, another phenomena arises known as absolute

stick-slip. It is noted that absolute stick-slip is different from relative stick-slip. In

the absolute stick phase, the absolute angular speed of the drill bit is zero. In other

words, the drill-bit becomes stuck on the rocks and soil. While the forces prevent

the drill-bit from moving, the top motor can continue to turn and the drill string

begins to twist, causing an increase in potential energy. Once the drill-bit breaks

free, the absolute speed can increase to twice the drive speed of the motor. This

violent motion is referred to as absolute slip. A few notable works which have studied

the absolute stick-slip of drill strings include those of Yigit and Christoforou (2006),

Leine, van Campen, and Keultjes (2002), and Leine and van Campen (2005).

1.2 Literature review on dynamics of curved beams

As previously mentioned, often times slender structures are initially manu-

factured in a straight configuration, but operate with initial pre-stress and about

a curved configuration. This initial pre-stress and curvature can change the natu-

ral frequencies of the structure. Calculating and predicting the natural frequencies

about the pre-stressed configuration is a problem of interest for design purposes as

well as structural health monitoring.

Within the literature, researchers have studied large static deformations of

initially straight beams, or have studied the dynamics of initially straight beams with

pre-stress and relatively small-amplitude buckled configurations (i.e., displacements

on the order of the beam thickness). Few efforts have focused on the dynamics of
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initially straight beams that have been subject to a large static displacement with

pre-stress and variable curvature, as will be addressed in this dissertation. A review

of the dynamics of curved and pre-stressed beams is presented next.

1.2.1 Arches and rings

In most of the prior work, wherein the dynamics of non-straight beam struc-

tures have been considered in the context of arches or rings, the effects of pre-stress

and neglected and/or special configurations, such as parabolic, hyperbolic, or semi-

circular, are considered. A brief review of the dynamics of arches and ring structures

is given next. Tüfekçi and Arpaci (1998) analytically determined the mode shapes

and natural frequencies specific to circular arches; they included centerline extension,

shear, and rotary inertia, for different boundary conditions. Oh, Lee, and Lee (1999)

used a numerical scheme to determine the natural frequencies and mode shapes for

non-circular arches with rotary inertia and shear effects. The results were in good

agreement with finite element predictions. Extending on this work, Oh, Lee, and

Lee (2000) investigated the influence of non-uniform cross-sections on non-circular

arches. Their work was validated with experimental data. Chidamparam and Leissa

(1995) investigated the influence of the centerline extensibility in circular arches with

the effects of pre-stress. They determined that the centerline stretching decreases

the natural frequencies, and this decrease can be considerable for certain geome-

tries. Matsunaga (1996) found approximate solutions through series expansions of

the buckling loads and natural frequencies for shallow circular beams that can un-
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dergo shear. Recently, within the context of shells, Lacarbonara and Antman (2012)

studied the stability of nonlinear viscoelastic shells with a combined pre-stress load

and dynamic load in the form of pulsating pressure.

1.2.2 Buckled and pre-stressed beams

The studies (Tüfekçi and Arpaci, 1998; Oh, Lee, and Lee, 1999, 2000; Chi-

damparam and Leissa, 1995; Matsunaga, 1996; Lacarbonara and Antman, 2012) all

considered initially curved geometries. On the other hand, the following studies

(Nayfeh and Kreider, 1995; Kreider and Nayfeh, 1998; Lacarbonara, Nayfeh, and

Kreider, 1998; Nayfeh and Emam, 2008; Li and Balachandran, 2006; Li, Preidik-

man, Balachandran, and Mote, 2006; Anderson, Nayfeh, and Balachandran, 1996;

Lacarbonara, Paolone, and Yabuno, 2004; Addessi, Lacarbonara, and Paolone, 2005)

analyzed the dynamics of initially straight beams deformed to pre-stressed or buck-

led configurations. Nayfeh and Kreider (1995) gave a closed form solution for the

linear natural frequencies and mode shapes of a buckled beam with fixed-fixed, fixed-

hinged, and hinged-hinged boundary conditions. The predictions for the fixed-fixed

boundary conditions were confirmed experimentally. Initial pre-stress and curvature

not only change the linear natural frequencies of a structure, but they can also ac-

centuate the nonlinear response when subject to an excitation. Investigations into

the nonlinear response and resonances of a fixed-fixed buckled beam were carried

out by Kreider and Nayfeh (1998). Lacarbonara, Nayfeh, and Kreider (1998) used

experimental data to compare different reduction methods to analyze nonlinear res-
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onance behavior of a fixed-fixed buckled beam. More recently, Nayfeh and Emam

(2008) determined an exact solution to the post-buckled configuration of a beam for

different boundary conditions. The linear natural frequencies and dynamic stability

around these configurations were also determined. Li and Balachandran (2006) and

Li, Preidikman, Balachandran, and Mote (2006) investigated the free and forced re-

sponse of a clamped-clamped, buckled piezoelectric microresonator. The analytical

frequency-amplitude response and experimental data revealed stiffening-type behav-

ior. Anderson, Nayfeh, and Balachandran (1996) explored the nonlinear response

of a vertical fixed-free beam with pre-stress and curvature arising from gravity. For

this structure, it was determined that nonlinear curvature had a strong influence on

the response of the first mode of vibration, while inertia nonlinearities dominated

the response of the second mode. Using a similar experimental structure, Ander-

son, Nayfeh, and Balachandran (1996) studied the effects of high-frequency modes

on the response of the first mode of vibration. In their work, the analytically pre-

dicted response obtained by the method of averaging was in good agreement with

experimental results.

In the prior studies (Nayfeh and Kreider, 1995; Kreider and Nayfeh, 1998;

Lacarbonara, Nayfeh, and Kreider, 1998; Nayfeh and Emam, 2008; Li and Balachan-

dran, 2006; Li, Preidikman, Balachandran, and Mote, 2006; Anderson, Nayfeh, and

Balachandran, 1996), the different authors considered relatively small static defor-

mations in comparison with the length of the beam. The studies of Lacarbonara,

Paolone, and Yabuno (2004) and Addessi, Lacarbonara, and Paolone (2005) were

concerned with modeling the dynamics of beams with large initial static displace-
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ments. Lacarbonara, Paolone, and Yabuno (2004) outlined a geometrically exact

formulation to model beams with large deformations with the intent of using per-

turbation techniques to analyze the dynamic problem. Addessi, Lacarbonara, and

Paolone (2005) determined the natural frequencies and mode shapes of a highly

curved beam with hinged-hinged boundary conditions and a prescribed force on one

end by using a combined analytical and numerical approach. Their predictions were

found to be in agreement with a finite element formulation. Addessi et al. (Addessi,

Lacarbonara, and Paolone, 2005) considered special boundary conditions, which

limit configurations that the beam may exhibit. Within this work, both end posi-

tions of the beam are prescribed, which allows the beam to deform to a broader class

of static configurations. For the configurations considered within this dissertation,

the beams are able to undergo large deformations with variable curvature.

1.3 Scope and dissertation objectives

Within this dissertation, the dynamic response of slender structures is studied

experimentally, numerically, and analytically. Particular attention is given to the

response of torsional vibrations in slender rotors subject to stator force-interactions.

The coupled lateral-torsional response is studied for two different systems, namely

a lumped-parameter Jeffcott rotor and a distributed-parameter rotor model. The

modified Jeffcott model serves to illustrate nonlinear behavior that may exist in even

simple rotor-stator systems, while the distributed-parameter model has been derived

with the intent of capturing the dynamics observed in an experimental arrangement.
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Objectives related to slender rotors with stator force-interactions are as follows:

• Study the response of the torsional vibrations for a Jeffcott rotor-stator system

during forward whirling with stator contact (line segment AB in Figure 1.3)

and dry-friction whirling (line segment CD in Figure 1.3)

• Design and create an experimental apparatus used to study the dynamics of

slender rotor systems with stator contact

• Develop reduced-order models that are able to capture and explain the origins

of the phenomena observed in the experiment

In addition to the coupling between torsional and lateral motions, the influence

of pre-stress and large curvature on the natural frequencies and mode shapes of

slender structures are also addressed within this dissertation. Objectives related to

the modal analysis of slender structures are listed below.

• Develop a theoretical framework to predict the natural frequencies and mode

shapes of slender structure with large curvature and pre-stress

• Validate model predictions with an experimental apparatus

1.4 Organization of dissertation

The organization of this dissertation is as follows. In Chapter 2, the torsion

response of the modified Jeffcott rotor with stator force-interactions is studied for the

forward whirling and backward whirling solutions with continuous stator contact.
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A rotor-stator experimental arrangement is presented in Chapter 3, and typical

phenomena observed in this experiment are discussed. A distributed-parameter

rotor model is used to model the dynamics and phenomena seen in the experiment.

Again, the special case of forward and backward whirling with continuous stator

contact is investigated. In Chapter 4, the dynamics of slender structures are further

explored, by developing a geometrically exact beam formulation that is used to

predict the mode shapes and natural frequencies of beams with initial pre-stress and

large curvature. The modeling and analytical work is validated with an experimental

apparatus. In the last chapter, contributions from this dissertation are highlighted,

and open areas of research yet to be addressed and future studies are discussed.

Appendices which provide further information and work related to this dissertation

are included after the last chapter.

18



Chapter 2

Torsional Motions of the Jeffcott Rotor with Continuous Stator

Contact

As previously discussed, different motions (e.g., lateral, torsional, and axial)

can be strongly coupled in slender structures with large aspect ratios. In this chap-

ter, the coupling between lateral and torsional motions is numerically and analyt-

ically studied for a modified version of the classical Jeffcott rotor (Jeffcott, 1919).

This reduced-order rotor model is subject to stator force-interactions and is capa-

ble of torsional deformations. Within this chapter, the torsional motions of this

rotor-stator system are investigated while the rotor whirls with continuous stator

contact. Approximate equations to the torsion response are derived for forward

and backward whirling motions. The modeling and analysis in this chapter serve

to identify and explain phenomena that are observed in rotor-stator systems with

torsional vibrations. Much of the work contained within this section was originally

presented in the work of Vlajic, Liu, Karki, and Balachandran (2013).
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2.1 Jeffcott model and governing equations

2.1.1 Derivation of equations of motion

A schematic of the Jeffcott rotor-stator system capable of torsional vibrations

is shown in Figure 2.1(a). The rotor with radius R and mass M coincides with the

center of the stator with a clearance δ in the static configuration. The rotor has

a mass imbalance m with eccentricity e. The quantity Jo is the mass moment of

inertia of the rotor without mass imbalance about the z-axis. The rotor is assumed

to be symmetrical so that the lateral stiffnesses have equivalent spring constants

kx = ky = kb, and has a torsional stiffness k. Similarly, the rotor has lateral damping

that is assumed to be symmetric such that the equivalent damping coefficients are

cx = cy = cb. Torsional motions also have dissipation denoted by the damping

coefficient c. A schematic of the rotor in a dynamic state at an instant of time is

depicted in Figure 2.1(b). The geometric center of the planar rotor is fully described

in an inertial frame with coordinates x and y projected onto orthogonal unit vectors

a1 and a2, respectively. Further, two sets of unit vectors, namely b1,b2 and c1,c2,

are placed at the geometric center of the rotor. The b1,b2 reference frame rotates

at a constant angular speed Ω with respect to the a1,a2 reference frame. Thus, the

angle between a1 and b1 is a measure of the rigid body rotation Ωt. The mutually

orthogonal unit vectors c1 and c2 are fixed to the rotor, and the angle between

b1 and c1 is the torsional deformation given by θ. For notational convenience, let

β(t) ≡ β = θ(t)+Ωt, which represents the superposition of the torsional deformation

and rigid body rotation. Physically, the torsional stiffness k and damping c act to
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align the b1,b2 and c1,c2 unit vectors. Additionally, the rotor is only able to undergo

planar motions with no gyroscopic effects due to rotations about the x and y axes; a

constraint imposed as a3 ≡ b3 ≡ c3 for all time t, where a3 ≡ a1×a2, b3 ≡ b1×b2

and c3 ≡ c1 × c2. For convenience, at time t = 0, a1 ≡ b1 ≡ c1, a2 ≡ b2 ≡ c2 and

the mass imbalance m is located along the x-axis. With this kinematic description,

the kinetic energy is written

T =
M

2
(ẋ2 + ẏ2) +

Jo
2
β̇2 +

m

2

[
(ẋ− eβ̇ sin β)2 + (ẏ + eβ̇ cos β)2

]
(2.1)

The overdots denote derivatives with respect to time. With gravity acting normal

to the xy plane, the potential energy of the system is

V =
1

2

[
kbx

2 + kby
2 + kθ2

]
(2.2)

Rayleigh’s dissipation function is expressed in the following form

D =
1

2

[
cbẋ

2 + cbẏ
2 + cθ̇2

]
(2.3)

Lagrange’s equations are used to derive the governing equations of motion, which

are given to be

(M +m)ẍ+ cbẋ+ kbx = me
[
β̈ sin (β) + β̇2 cos (β)

]
+ Fx (2.4a)

(M +m)ÿ + cbẏ + kby = me
[
−β̈ cos (β) + β̇2 sin (β)

]
+ Fy (2.4b)

Jθ̈ + cθ̇ + kθ = me [ẍ sin (β)− ÿ cos (β)] +Mt (2.4c)

In equation (2.4c), the quantity J is the total rotary inertia of the rotor and

mass imbalance about the z-axis, which is given by J = Jo+me
2. From the structure
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Figure 2.1: (a) Static configuration of the rotor within the stator. (b) Rotor system
in a dynamic state.

of equations (2.4a), (2.4b) and (2.4c), the torsional and lateral vibrations are coupled

by the eccentricity of the unbalanced mass through the inertial terms. In practice,

the mass imbalance and the eccentricity are both small quantities, and this will be

taken into account in further sections. The forces Fx and Fy as well as the moment

Mt arise from contact with the stator and explicit forms of these quantities are given

in the next section.

2.1.2 External stator forces and friction

Upon contact with the stator, the rotor is subject to a normal force that is

linearly proportional to the deflection of the stator with stiffness ks. This may be

written as

Fn =


0 for Γ ≤ δ

ks(Γ− δ) for Γ > δ

(2.5)

where

Γ(x, y) ≡ Γ =
√
x2 + y2 (2.6)
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The tangential force component is governed by both the normal force and friction

coefficient µ and is given by

Ft = −µFn (2.7)

The tangential and normal forces may be transformed to accommodate the exter-

nal forces and moments in equations (2.4a)-(2.4c) by using the following geometric

relations

Fx =
−Fty − Fnx

Γ
, Fy =

Ftx− Fny
Γ

, Mt = FtR for Γ 6= 0 (2.8)

Several models may be used to capture the frictional force between the rotor

and the stator, see for example, Leine and Nijmeijer (2004) or Thomsen (2003). In

the current study, friction is modeled as

µ(vrel) = µssgn(vrel)−
3

2
(µs − µm)

(
vrel
vm
− 1

3

(
vrel
vm

)3
)

= µssgn(vrel)− µ1vrel + µ3v
3
rel (2.9)

where µs is the static coefficient of friction when the relative speed vrel is zero,

and µm is the minimum coefficient of friction which occurs at a relative speed of

vrel = vm. The coefficients µ1 and µ3 take the form

µ1 =
3

2

µs − µm
vm

, µ3 =
1

2

µs − µm
v3
m

(2.10)

The relative speed between the two surfaces at the point of contact is given by

vrel = (Ω + θ̇)R− ẋ y
Γ

+ ẏ
x

Γ
for Γ 6= 0 (2.11)

The friction model given by equation (2.9) was chosen because it qualitatively cap-

tures the behavior of most macroscopic-scale friction models in certain ranges of
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relative speeds. For instance, it accounts for the discontinuity at vrel = 0 and it

has two different values of friction to account for the change in static and dynamic

(or kinematic) friction. Furthermore, a Taylor Series expansion of more complex

macroscopic-scale friction models (around a point away from vrel = 0) will yield a

similar polynomial form as that of equation (2.9). Although the coefficients may

differ between various models, the series expansions will be topologically similar.

Thus, equation (2.9) is sufficient enough to qualitatively capture the features of fric-

tion at the macroscopic length scale. Equation (2.9) is a set-valued function due

to the signum function. When the relative speed is zero, µ returns a set of values

expressed as µ± ≡ µ(0) ∈ (−µs, µs), where µs is the static coefficient of friction.

Here, the superscript plus minus (·)± denotes a set of values rather than a single,

scalar value. The graph of equation (2.9) is provided in Figure 2.2(a) for vm = 0.30,

µm = 0.05, and µs = 1.1µm. The minimum friction coefficient µm occurs at the

minimum relative speed vm. For illustration purposes, equation (2.9) is graphed in

Figure 2.2(b) for various values of vm. The signum function in equation (2.9), poses

difficulties when numerically integrating the system of equations. Therefore, when

performing numerical simulations, equation (2.9) is replaced with

µ(vrel) = µs
2

π
arctan(δfvrel)−

3

2
(µs − µm)

(
vrel
vm
− 1

3

(
vrel
vm

)3
)

(2.12)

In equation (2.12), the normalized arctangent function closely approximates the

signum function for δf � 1. For the remainder of this work, equation (2.9) is

used in the analyses, while equation (2.12) is used in the corresponding numerical

simulations.
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Figure 2.2: (a) Illustration for defining parameters used in the friction coefficient.
(b) Graphical depiction of change in friction coefficient for different values of vm.

Table 2.1: Parameter values used in simulations

Parameter Value Units

ζb (cb) 0.01 (0.02) N · s/m
ζ (c) 0.01 (1.83 e−4) N ·m · s/rad
e 0.05 m

M 1 kg

m 0.05 kg

kb 1 N/m

ks 1e4 N/m

k 0.05 N ·m/rad
R 0.05 m

vm 0.05-0.25 m/s

δ 0.01 m

δf 1e6 -

µs 1.05 µm -

µm 0.005-0.1 -
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2.2 Characteristic whirl phenomena

Equations (2.4a)-(2.8) and (2.12) are numerically integrated by using a modi-

fied Rosenbrock scheme, which is better suited to handle stiff systems. Simulations

were also conducted by using a fourth order Runge-Kutta method with absolute and

relative tolerances of 1e−6, with no discernible differences between the two schemes.

The steady-state, non-dimensional whirling amplitude Γ/δ is plotted in Figure 2.3

as a function of drive speed for the parameters given in Table 2.1. In the simu-

lations, rather than selecting the damping coefficients cb and c, it is convenient to

specify the damping ratios for the lateral and torsional motions, which are defined

as ζb ≡ cb

2
√

(M+m)kb
and ζ ≡ c

2
√
Jk

, respectively. In Figure 2.3, the rotor makes con-

tact with the stator when Γ/δ = 1. Solid lines correspond to forward whirling of

the rotor while dashed lines indicate backward whirling rotor motions. The initial

conditions determine which branch of the stable solution the system will reach. It

is noted that there are two stable forward whirling solutions above the first natural

frequency. Starting at a low drive speed near Ω = 0 and sweeping up in the drive

speed, the rotor will make contact with the stator and remain in contact with the

stator while the driving speed is increased. For both the backward and forward

whirling solutions with stator contact in Figure 2.3, the rotor will break contact

with the stator. Approximate equations when the rotor breaks contact with the

stator have been derived in Bartha (2000) and Childs (1993). Once the rotor breaks

contact with the stator at a large Ω, the drive speed may be quasi-statically lowered

back to zero and the lateral motions of the rotor will trace out the bottom branch
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of the forward whirling solution. It has been determined both numerically and ex-

perimentally that the following whirl frequency relations hold for a range of drive

speeds (Vlajic, Liao, Karki, and Balachandran, 2012).

ωfor ≈ Ω, ωback ≈ −Ω
R

δ
(2.13)

The forward whirling frequency, denoted ωfor is approximately equal to the pre-

scribed angular speed of the rotor and the whirl motion is in the direction of motor

rotation. On the other hand, the backward whirling frequency ωback is of a faster

rate than the motor rotation speed for δ < R and the whirling is in the opposite

direction of motor rotation, which is represented by the negative sign in equation

(2.13). Additionally, the backward whirling frequency relation only holds for a range

of operating speeds. As the speed is increased the backward whirling speed saturates

and the rotor is said to be in the whipping region. The remainder of this work is

focused on examining the response of torsional vibrations during both forward and

backward whirling motions.

2.3 Simplification of the governing equations

2.3.1 Reduction of structural terms

In this section, the system of equations given by equations (2.4a)-(2.4c) are

reduced to a single equation which will be analyzed in subsequent sections to explain

phenomena observed in numerical simulations of equations (2.4a)-(2.8) and (2.12).

When the rotor maintains contact with the stator while whirling at a constant rate,
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Figure 2.3: Numerically generated solutions for stable responses of the system given
by equations (2.4a)-(2.8) and (2.12).

the corresponding x and y displacements may be prescribed as:

x(t) = (δ + δp) cos(ωt+ φo) ≈ δ cosωt (2.14a)

y(t) = (δ + δp) sin(ωt+ φo) ≈ δ sinωt (2.14b)

In equations (2.14), the quantity δp = Γ−δ is the deflection of the stator, or similarly,

the penetration depth of the rotor into the stator, and this quantity is assumed to be

much smaller than the initial clearance; that is, δ � δp and δp ≈ 0. The quantity ω

is termed the whirl frequency and φo is the phase angle. For the following analysis,

φo is set equal to zero for convenience. When ω > 0, the rotor is whirling in the

direction of motor rotation (forward whirling), and when ω < 0, the rotor motion is

in the opposite direction of motor rotation (backward whirling). Furthermore, for

most rotor systems, the amplitude of torsional vibrations are small, so that sin θ

and cos θ may be approximated by the first term of their respective Taylor Series

expansions. The relative error is less than 1% for sin θ ≈ θ and approximately
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1.51% for cos θ ≈ 1 for an angular displacement of 10◦ – a reasonable amplitude

of torsional vibrations in most rotating equipment. Under this assumption, the

following relations are used

sin(β(t)) = sin(θ(t) + Ωt) = sin θ(t) cos Ωt+ cos θ(t) sin Ωt

≈ θ(t) cos Ωt+ sin Ωt (2.15)

cos(β(t)) = cos(θ(t) + Ωt) = cos θ(t) cos Ωt− sin θ(t) sin Ωt

≈ cos Ωt− θ(t) sin Ωt (2.16)

Equations (2.14), (2.15), and (2.16) are substituted into (2.4c) in order to obtain

the following simplified equation for torsional motions while the rotor is whirling

with a constant frequency and amplitude

Jθ̈ + cθ̇ +
[
k + δmeω2 cos((ω − Ω)t)

]
θ = δmeω2 sin((ω − Ω)t) +Mt (2.17)

If the external moment is linear with respect to θ and θ̇, then equation (2.17) is

linear with periodic coefficients and external forcing. This equation falls into the

general class of equations known as the Mathieu-Hill equations, and the solution

stability may be determined by using Floquet theory or Hill’s Infinite Determinant

(e.g., Nayfeh and Mook (1979) and Nayfeh and Balachandran (1995)).

2.3.2 Approximation of external forces and contact

Given the assumptions in equation (2.14) and using equation (2.5), the normal

force is zero. However, when ks � kb, a force balance is used to determine the normal
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force in terms of the reactive force. This is given by

Fn ≈ [δM + (δ + e cosφubm)m]ω2 − kbδ (2.18)

In equation (2.18), the angle φubm is the location of the unbalanced mass with respect

to the radial position vector of the rotor. During forward, synchronous whirling

φubm, is constant for a fixed drive speed. During constant backward whirling, the

phase grows linearly in time and the mass imbalance creates a periodic component

in the normal force. If the rotor mass and the clearance are much larger than the

unbalance mass and eccentricity δ(M + m) > me, the approximated equivalent of

equation (2.18) for both forward and backward whirling take the form

Fn = (M +m)δω2 − kbδ (2.19)

The first driving speed at which the rotor makes contact with the stator during

forward whirling (or breaks contact in the case of backward whirling), Ωc is termed

the contact frequency and can be approximated by determining the frequency at

which the normal force becomes zero; that is, Fn|Ω=Ωc
= 0. With this definition and

the whirl relations given by equation (2.13), the contact frequencies for forward and

backward whirling are expressed as

Ωc,for =

√
kb

M +m
, Ωc,back =

δ

R

√
kb

M +m
(2.20)

Similar contact conditions during backward whirling have been derived by Bartha

(2000). It is important to point out that equation (2.19) is an under approximation

of the actual normal given by equation (2.5) during forward whirling, which gen-

erally has a higher magnitude. Additionally, equation (2.19) is a simplification of
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the normal force during backward whirling, since the periodic component has been

neglected. Likewise, equations (2.20) are to be considered approximate speeds when

the rotor makes or breaks contact with the stator, and serve only to indicate when

equation (2.17) is valid, namely, when Ω > Ωc. In practice, the normal force and

contact speeds are dependent upon the lateral damping and the phase angle.

2.3.3 Non-dimensionalization

With the transformation t = ωoτ , where τ represents dimensionless time and

ωo =
√
k/J is the linear natural frequency in torsion, equation (2.17) may be

rewritten in terms of non-dimensional parameters as

θ̈ + 2ζθ̇ +
[
1 + m̃ω̃2 cos(α̃τ)

]
θ = m̃ω̃2 sin(α̃τ) + M̃t

In equation (2.21) and in the remainder of this work, overdots represent deriva-

tives with respect to τ and the following non-dimensional parameters have been

introduced:

m̃ ≡ δme

J
, ω̃ ≡ ω

ωo
, α̃ ≡ ω − Ω

ωo
, Ω̃ ≡ Ω

ωo
,

2ζ ≡ c√
Jk

, c̃ ≡ δ +R

R
, M̃t ≡

Mt

Jω2
o

= −Ñµ(ṽrel) (2.21)

In the last of equations (2.21), the quantity Ñ is proportional to normal force (phys-

ically it is the normal force multiplied by the radius of the rotor) and is written

Ñ ≡ Fn
Jω2

o

=
(
ñ1ω̃

2 − ñ2

)
(2.22)

31



where

ñ1 =
Rδ(M +m)

J
, ñ2 =

kbδR

Jω2
o

(2.23)

Similarly, the relative speed is non-dimensionalized by ṽrel = vrel/(ωoR). Addi-

tionally, the two friction coefficients in equation (2.9) are also non-dimensionalized

provided the relative speed is non-dimensionalized, and they are denoted as µ̃1 and

µ̃3. The term m̃ is referred to as the mass ratio in this work, and is a measure of

the gap distance, unbalance, and eccentricity to the rotary inertia of the rotor. The

quantities Ω̃ and ω̃ are the non-dimensional drive frequency and whirl frequency,

respectively. The term α̃ is the non-dimensional whirl ratio, which takes on val-

ues less than zero for backward whirling and equal to zero for synchronous forward

whirling. The parameter c̃ is the clearance ratio and gives a measure of the rotor

radius to clearance.

2.4 Torsion response during forward whirling motions

When undergoing forward, synchronous whirling, the whirl frequency is ap-

proximately equal to the drive frequency (ω̃ ≈ Ω̃) and equation (2.21) becomes

autonomous and reduces to

θ̈ + 2ζθ̇ +
[
1 + m̃ω̃2

]
θ = −

(
ñ1ω̃

2 − ñ2

)
µ(ṽrel) (2.24)

It is understood that throughout the rest of the work equation (2.24) is only valid

for ω = Ω > Ωc,for in order to ensure contact between the rotor and stator as

prescribed by the original assumptions. Equation (2.24) has features similar to that
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of the classic stick-slip problem, which is generally illustrated by a mass-spring-

damper system on a drive belt with dry-friction, with the exception of two notable

differences. Namely, the system at hand has a centrifugal stiffening effect, and the

normal force is quadratic in the whirl frequency. Likewise, the relative speed for

forward whirling reduces to

ṽrel = ω̃c̃+ θ̇

= ṽw + θ̇ (2.25)

The term ṽw in equation (2.25) is referred as the whirl speed in this work. While

undergoing forward whirling motions, the relative speed between the rotor and the

stator is greater than zero and is away from the signum function in equation (2.9).

Therefore, for forward whirling, the signum function in equation (2.9) is always

positive, and it is assumed that the relative speed does not reach zero; that is,

ṽw > −θ̇. The equilibrium of the torsional displacement is found by setting the time

derivatives equal to zero in equation (2.24), which for this case yields

θ̇eq = 0

θeq = −(ñ1ω̃
2 − ñ2)µ(ṽw)

1 + m̃ω̃2
(2.26)

The transformation u(t) ≡ u = θ+ θeq is used to shift the origin of u to be centered

at the equilibrium θeq. Equation (2.24) is transformed to be

ü+
[
1 + m̃ω̃2

]
u+ εF̂ (u̇) = 0 (2.27)

where F (u̇) = εF̂ (u̇) and F (u̇) is given by

F (u̇) = 2ζu̇+ (ñ1ω̃
2 − ñ2) [µ(ṽw + u̇)− µ(ṽw)] (2.28)
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The nondimensional parameter ε has been introduced as a scaling parameter to

indicate that the friction quantity is small compared to the other terms in equation

(2.27). For the analytical considerations, 0 < ε� 1 and it follows that F̂ (u̇) = O(1)

and F (u̇) = εF̂ (u̇) = O(ε). The relative strengths of the different magnitudes

approximately hold for Table 2.1 values and whirl speeds in the range ω̃ ∈ (1, 5). A

Taylor series expansion is used to expand equation (2.28) to obtain the approximate

polynomial for the analyses.

F (u̇) ≈ fo + f1u̇ (2.29)

The coefficients in equation (2.29) are given by

f0 = 0

f1 = 2ζ − µ̃1(ñ1ω̃
2 − ñ2)

(
1−

(
ṽw
ṽm

)2
)

(2.30)

The fixed points given by equation (2.26) may be stable or can lose stability through

a Hopf bifurcation. In the absence of structural damping (ζ = 0), the equilibrium

will be unstable if vc,for < vw < vm, where vc,for = (R + δ)Ωc,for is the relative speed

when the rotor first makes contact with the stator. According to this, the whirl speed

of the rotor must be greater than the contact speed, but less than the minimum

velocity which defines the coefficient of friction profile. In the presence of damping,

a Hopf instability can occur if f1 < 0. In practice the relative speed at first contact

is likely to be larger than the minimum velocity (i.e., vc,for > vm), which is typically

a small value. Consequently, during forward, synchronous whirling, the frictional

force effectively results in additional damping and oscillations asymptotically decay

to zero in time. For illustrative purposes, the equilibrium and the nature of its
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Figure 2.4: Stability dependence on the friction parameter vm when the damping
ratio is set to ζ = 0.01. Dotted lines represent unstable solutions while solid lines
represent stable solutions for the equilibrium position θeq.

stability are plotted in Figure 2.4 for ζ = 0.01 and different values of the minimum

relative speed vm.

As the damping is increased, the point that transitions from stable to unstable

oscillations moves toward the left. This is found by determining the zeros of the term

f1, as illustrated in Figure 2.5. As ζ is increased, the region of stability is increased

until the term f1 no longer has any zeros. Upon which, the entire equilibrium

solution becomes stable. The onset of this condition occurs when f1 no longer has

any real valued roots, and is found to be

2ζ > µ̃1(ñ1ω̃
2 − ñ2)

(
1−

(
ṽw
ṽm

)2
)

(2.31)

Numerical simulations of the full system, given by equations (2.4a)-(2.8) and

(2.12), indicate that if equation (2.31) is not satisfied, then the amplitude of tor-
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Figure 2.5: Stability dependence on structural damping ζ. Dotted lines represent
unstable solutions while solid lines represent stable solutions for the equilibrium
position θeq for vm = 0.3.
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sional vibrations becomes large and the rotor will either lose contact with the stator,

or it will remain in contact with the stator and no longer whirl at a constant rate.

Comparisons between the full model and reduced-order model, subject to a pertur-

bation of θo = 0.05 for four different cases are provided in Figure 2.6 for a drive speed

of Ω = 4.0 rad/s. In cases (a) and (b), the minimum friction is set for vm = 0.15

m/s, which is less than the average relative speed between the rotor and stator

vrel = (R + δ)Ω = 0.24 m/s. During case (a), with the damping ratio ζ = 0.01, the

initial perturbation of θo = 0.05 decays exponentially with time. Similarly in case

(b) when the damping ratio is set to ζ = 0.0, the perturbation still asymptotically

decays, and the system returns to the equilibrium position, however, at a much

slower rate. In cases (c) and (d), the minimum velocity was equal to vm = 0.3,

which is higher than the relative velocity vrel. During case (c), the damping ratio

is set to ζ = 0.01, and again the perturbation decays asymptotically back to the

equilibrium position. On the other hand, when the damping ratio is set ζ = 0.0, as

in case (d), the perturbation in both the full model and the reduced-order model

start to grow. For the parameter values used in cases (a) − (c), the criterion for

stability given by equation (2.31) holds, whereas the equation (2.31) is not satisfied

for the parameters used in case (d).
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(a) vm = 0.15 m/s, ζ = 0.01

(b) vm = 0.15 m/s, ζ = 0.00

(c) vm = 0.30 m/s, ζ = 0.01

(d) vm = 0.30 m/s, ζ = 0.00

Figure 2.6: Comparisons of the results from the full system (equations (2.4a)-(2.8)
and (2.12)) and the reduced-order system (equations (2.24) and (2.12)) at Ω = 4.0
rad/s. Perturbations decay in cases (a)-(c) and grow in case (d). (a) Whirl speed
is greater than the minimum friction speed (vw > vm) in the presence of structural
damping, (b) whirl speed is greater than the minimum friction speed (vw > vm)
even without structural damping (ζ = 0), (c) whirl speed is less than the minimum
friction speed (vw < vm) in the presence of structural damping, and (d) whirl speed
is less than the minimum friction speed (vw < vm) in the absence damping (ζ = 0).
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2.5 Torsion response during backward whirling motions

2.5.1 Governing equation and equilibrium

While undergoing backward, dry-friction whirling, the whirl speed of the rotor

may be expressed in terms of system parameters as ω ≈ −R
δ
Ω, which is derived

under the assumption of the no-slip condition; that is, the relative speed between

the rotor and stator is zero in the absence of torsional vibrations. By using this

relationship, the non-dimensional whirl frequency, whirl ratio and relative speed are

found to be

ω̃ = −R
δ

Ω̃, α̃ = −Ω̃

(
R

δ
+ 1

)
, ṽrel = θ̇ (2.32)

Again, the negative signs in equation (2.32) indicate that the whirl direction of the

rotor is in the opposite direct of the driving rotation. With the above relations,

equation (2.21) reduces to equation (2.33).

θ̈ + 2ζθ̇ +
[
1 + m̃ω̃2 cos(α̃τ)

]
θ = m̃ω̃2 sin(α̃τ)−

[
ñ1ω̃

2 − ñ2

]
µ(θ̇) (2.33)

It is understood that equation (2.33) is valid only while the rotor is in continuous

contact with the stator while undergoing backward whirling motions, which is valid

for Ω > Ωc,back. The frequency component α̃ observed in the torsion response is

confirmed experimentally in Chapter 3.

Equation (2.33) has a differential inclusion because the friction model is a set-

valued function, which returns values µ± ≡ µ(0) ∈ (−µs, µs) at vrel = 0. Seeking

an equilibrium solution of the form θ̇ = 0, θ = θ±eq and performing a static force

balance, the stable equilibrium set is determined to be θ±eq ∈ (−θeq, θeq) where
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θeq = min

(
[ñ1ω̃

2 − ñ2]µs − m̃ω̃2 sin α̃τ

1 + m̃ω̃2 cos α̃τ

)
for m̃ω̃2 ≤

[
ñ1ω̃

2 − ñ2

]
µs (2.34)

The boundary of the equilibria set given by equation (2.34) is determined over

0 ≤ ατ < 2π. Considering the limiting case, as m̃ω̃2 approaches [ñ1ω̃
2 − ñ2]µs,

θeq approaches zero. If the amplitude of the external forcing is larger than the

coefficient of friction (i.e., m̃ω̃2 > [ñ1ω̃
2 − ñ2]µs), then no stable set exists and

the system will undergo limit-cycle motions. Two separate cases of low-speed and

high-speed backward whirling are considered below.

2.5.2 Low-speed backward whirling

The term “low-speed” backward whirling in this work refers to parameter

values that yield the small quantity m̃ω̃2 = O(ε), where ε� 1. Further, if 2ζ, Ñµs =

O(ε), then equation (2.33) may be rewritten as

θ̈ + θ + εB̂LS(θ, θ̇, τ) = 0

where BLS = εB̂LS and

BLS(θ, θ̇, τ) = 2ζθ̇ + m̃ω̃2 cos(α̃τ)θ − m̃ω̃2 sin(α̃τ) +
[
ñ1ω̃

2 − ñ2

]
µ(θ̇)

Again, ε is a small positive bookkeeping parameter that indicates the BLS term is of

order O(ε) and is small compared with the other terms in equation (2.35). For the

parameters found in Table 2.1, the scaling used in equations (2.35) and (2.35) can

be said to hold over α̃ ∈ (−0.1,−0.8). An approximate solution to equation (2.35)

may be constructed by using the Method of Multiple Scales (Nayfeh and Mook,
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1979) with independent time scales T0 = τ and T1 = ετ . An approximate solution

is sought of the expanded form

θ = θ0(T0, T1) + εθ1(T0, T1) + ... (2.35)

Upon substituting equation (2.35) into equation (2.35) and collecting appropriate

terms of ε, the O(1) solution is

θ0(T0, T1) = A(To, T1)ejTo + A∗(To, T1)e−jTo (2.36)

Here, A = 1
2
aejb is a complex function in polar form with a(T1), b(T1) ∈ R , j is

the imaginary number, and the superscript star (·)∗ denotes the complex conjugate.

Invoking the solvability conditions and performing a Fourier Series on the signum

function, three separate cases are considered below to ensure the elimination of

terms that will result in secular terms of the particular solution of θ1.

Off Resonance: α̃ away from −1,−2. The slow-time amplitude and phase variation

equations are found to be

da

dT1

=

(
Ñ

2
µ̃1 − ζ

)
a− 3

8
Ñ µ̃3a

3 − 2

π
Ñµs

db

dT1

= 0 (2.37)

where Ñ is given by equation (2.22). The steady-state amplitude and phase of the

response θ is determined from the steady-state solution to equation (2.37). The

phase is simply a constant bo whose value is governed by initial conditions. The

steady-state amplitude is determined by setting a′ = g(a) = 0 and determining the

zeros of g(a). In general, g(a) may have upto three real valued roots, denoted by
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aj. The stability of the steady-state amplitude is determined by the sign of dg
da

∣∣
a=aj

,

where positive values indicate the amplitude solution is unstable and negative values

signify the amplitude solution is stable. Further analysis is needed when dg
da

∣∣
a=aj

= 0.

Primary Resonance: α̃ ≈ −1. The transformation α̃ = −1+εσ is introduced, where

σ is a detuning parameter that indicates how close α̃ is to -1. Further, with the

transformation ψ = σT1 + b, the slow-time variation or modulation equations may

be expressed in autonomous form as

da

dT1

=

(
Ñ

2
µ̃1 − ζ

)
a− 3

8
Ñ µ̃3a

3 − 2

π
Ñµs −

m̃ω̃2

2
cosψ

a
dψ

dT1

= aσ − m̃ω̃2

2
sinψ (2.38)

Parametric Resonance: α̃ ≈ −2. As before, with the transformations α̃ = −2 + εσ

and ψ = σT1 + 2b, the autonomous form of the modulation equations become

da

dT1

=

(
Ñ

2
µ̃1 − ζ

)
a− 3

8
Ñ µ̃3a

3 − 2

π
Ñµs −

m̃ω̃2

4
a sinψ

a
dψ

dT1

= 2aσ − m̃ω̃2

2
a cosψ (2.39)

Approximate solutions to equations (2.38) and (2.39) may be determined by using

perturbation analysis (e.g. Nayfeh and Mook (1979)), but they are not discussed

in this work. The special case when |ω̃|, |α̃|� 1 is examined in detail in the next

section.

2.5.3 High-speed backward whirling

In this work, “high-speed” backward whirling refers to instances when the

backward whirling frequency is much greater than the first torsional natural fre-
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quency; that is, |ω̃|, |α̃|� 1. This case readily occurs in practice for most rotor

systems since the radius of the rotor is generally much larger than the clearance of

the stator (i.e., R� δ). It is important to point out that ω̃ = O(α̃), which is made

apparent from equations (2.32). Additionally, as mentioned earlier, the mass and

eccentricity are typically small quantities so that m̃ � 1. If the whirl frequency of

the rotor is such that m̃ω̃, m̃α̃ = O(1), a range valid for α̃ ∈ (−1,−8), then equation

(2.33) may be written

θ̈ + [1 + (m̃ω̃)ω̃ cos(α̃τ)] θ + εB̂HS(θ̇) = (m̃ω̃)ω̃ sin(α̃τ)

where BHS = εB̂HS and

BHS(θ̇) = 2ζθ̇ +
[
ñ1ω̃

2 − ñ2

]
µ(θ̇)

The quantity BHS is assumed to be smaller than the other terms in Eq. (2.40),

and this is expressed by stating that BHS = O(ε) with B̂HS = O(1). An approxi-

mate solution to equation (2.40) will be constructed following the Method of Direct

Partition of Motions (MDPM) as shown by Blekhman (1976) and used in reference

Thomsen (2003). As such, two time scales are introduced, namely a slow scale τ

and a fast scale τ1 = α̃τ where τ1 > τ . The torsional amplitude is then decomposed

into a superposition of the slow and fast scales as

θ(τ, α̃τ) = z(τ) + α̃−1ϕ(τ, α̃τ) (2.40)

where z is the slow-scale variable and ϕ is the fast-scale variable. It is noted that the

approximate solution assumed for low-speed backward whirling, given by equation
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(2.35), is different than the solution presented in equation (2.40). The expansion

assumed while using the Method of Multiple Scales results in fast-scale evolutions

with slow-scale modulations in amplitude and phase (equation (2.35)), while the

expansion assumed in using the Method of Direct Partition of Motions is a super-

position of the slow and fast scales (equation (2.40)) to capture the superposition

of the “high-frequency oscillations” on the “slow” evolutions (Thomsen, 2003). The

introduction of two scales transforms one unknown θ into two unknowns z and ϕ.

Therefore, an additional constraint is necessary to make the transformation unique.

A reasonable constraint is to impose the condition that the average over one pe-

riod of the fast-scale variation is zero, while the variation on the slow time-scale is

constant. This is expressed as

〈ϕ(τ, α̃τ)〉 =
1

2π

∫ 2π

0

ϕ(τ, α̃τ) d(α̃τ) = 0 (2.41)

The bracket operator, denoted by 〈·〉, indicates the integration of the argument

over one period of the fast scale as defined by equation (2.41). Equation (2.40) is

substituted into equation (2.33) and making use of the Chain Rule, the following

equation is obtained

ϕ′′ = −z m̃ω̃
2

α̃
cos α̃τ +

m̃ω̃2

α̃
sin α̃τ

− 1

α̃

{
z̈ + 2ϕ̇′ + z + 2ζ(ż + ϕ′) +

m̃ω̃2

α̃
ϕ cos α̃τ + (ñ1ω̃

2 − ñ2)µ(ż + ϕ′)

}
+O(α̃−2)

(2.42)

The dot operation ˙(·) and the prime operation (·)′ denote the derivatives with re-

spect to τ and α̃τ , respectively. Once the O(1) equation is obtained, the following
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expression for the fast-scale variable is found by recognizing that m̃ω̃2

α̃
= O(1).

ϕ = z∆ cos α̃τ −∆ sin α̃τ +O(α̃−1) (2.43)

where

∆ =
m̃ω̃2

α̃
=

m̃α̃

(δ/R + 1)2 (2.44)

Note that the expression for ϕ satisfies the imposed constraint 〈ϕ〉 = 0 given by

equation (2.41). The slow-scale variation has been assumed to be constant while

solving for the fast variable. In a similar manner, while solving for slow-scale vari-

able, average values are taken for the fast scale. After substituting the expression

for ϕ and its appropriate derivatives into equation (2.42), performing the necessary

average over the fast scale, and neglecting terms of O(α̃−2) and higher, the following

equation governing the slow-scale variable is obtained

z̈ + 2ζż + z + ∆ 〈ϕ cos α̃τ〉+ (ñ1ω̃
2 − ñ2) 〈µ(ż + ϕ′)〉 = 0 (2.45)

Initial conditions for equation (2.45), are found by using equations (2.40) and (2.43).

They are given by

zo =
θo

1 + ∆/α̃
(2.46)

żo = θ̇o + ∆ (2.47)

The superimposed high frequency upon the slow scale will have two effects. The term

〈ϕ cos α̃τ〉 contributes to a stiffening effect, as seen in stabilization of an inverted

pendulum subject to high frequency base excitation (for example, see the studies

Yabuno, Miura, and Aoshima (2004) and Thomsen (2003)). The term 〈µ(ż + ϕ′)〉
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effectively acts to smoothen out the discontinuous signum function in the friction

model. Both terms are given special consideration below.

Stiffening Effect: The averaging operation is performed on the fourth term in equa-

tion (2.45) leading to

∆ 〈ϕ cos α̃τ〉 =
∆2

2π

∫ 2π

0

[
z cos2 α̃τ − sin α̃τ cos α̃τ

]
d(α̃τ) (2.48)

=
∆2z

2
(2.49)

After substituting equation (2.49) into equation (2.45), the effective stiffness of the

torsional mode on the slow scale becomes keff = 1 + 1
2
m̃2ω̃4

α̃2 . It is noted that this

stiffening effect is independent of the friction model and arises because of coupling

with the lateral vibrations. Thus, for fast enough driving speeds, this effect is present

for a large class of rotors undergoing dry-friction whirl.

Smoothening Effect: Consideration is now given to the averaged frictional force in

equation (2.45). The averaged friction coefficient is defined as µ̄(ż) ≡ 〈µ(ż + ϕ′)〉.

First, examining the O(1) equation for θ̇, it is found that

θ̇ = ż + ϕ′ +O(α̃−1) (2.50)

≈ ż −∆ [z sin α̃τ + cos α̃τ ]

≈ ż −∆
√

1 + z2 sin(α̃τ + γ) (2.51)

where
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γ = arctan

(
1

z

)
+


0 for z ≥ 0

π for z < 0

(2.52)

It is noted that from the original assumption of small torsional motions, a reasonable

approximation of
√

1 + z2 ≈ 1 may be employed, which then results in the approx-

imation θ̇ ≈ ż−∆ cos α̃τ . For the sake of completeness, the remaining analysis will

be carried out by using equations (2.51) and (2.52). Equations (2.51) and (2.52) are

substituted into equations (2.9) and after performing the averaging operation, the

average friction coefficient acting on the slow scale µ̄(ż) is obtained. The averaged

friction coefficient µ̄(ż) takes a different form depending on the magnitude of |ż(t)|.

If |ż|> |∆
√

1 + z2|, then there is no switch condition in the signum function, and

after performing the necessary integrations, one obtains

µ̄ = µ(ż) +
3

2
µ̃3∆2(1 + z2)ż for |ż|>

∣∣∣∆√1 + z2

∣∣∣ (2.53)

In the instance when |ż|≤
∣∣∆√1 + z2

∣∣, the values of the averaging operation depend

on the value of the signum function. The quantity sgn(ż + ϕ′) takes on values of

−1 for τ ∈ [τa, τb] and yields values of 1 for τ ∈ [0, τa] ∪ [τb, 2π]. The points of zero

crossing τa and τb are determined to be

τa = arcsin

(
ż

−∆
√

1 + z2

)
− γ

τb = π − τa − 2γ (2.54)

With this information, and performing the necessary integrations, the effective fric-
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tion coefficient acting on the slow scale is governed by equation (2.55).

µ̄(ż) =


2
π
µs arcsin

(
ż

−∆
√

1+z2

)
− µ̃1ż + µ̃3ż

3 + 3
2
µ̃3∆2(1 + z2)ż for |ż|≤

∣∣∆√1 + z2
∣∣

µ(ż) + 3
2
µ̃3∆2(1 + z2)ż for |ż|≥

∣∣∆√1 + z2
∣∣

(2.55)

Because of the fast-scale vibrations, the signum function in equation (2.9) has

been smoothed out and is replaced by the arcsine function in equation (2.55). This

smoothening effect has been studied before in studies Nayfeh and Mook (1979);

Thomsen (2003, 1999, 2002), as well as others. An interesting feature in the result

of equation (2.55) is that the averaged friction coefficient also has dependence upon

the slow-scale position z. As mentioned earlier, due to the small torsional motions,

this dependence upon z is not strong. The effective friction coefficient given by

equation (2.55) is plotted in Figure 2.7 as a function of the slow-scale relative speed

and torsional deformation. In Figure 2.7, the parameters have been set so that ∆ =

−0.101 corresponding to α̃ = −8.0, while the friction parameters have been selected

so that µm = 0.005, µs = 1.05µm, and vm = 0.05 m/s. It is noted that the effective

friction force in Figure 2.7 resembles planing forces experienced by a supercavitating

body with similar types of nonlinearities (Nguyen and Balachandran, 2011). A cross-

section in the µ−ż plane at z = 0 of Figure 2.7 is provided in Figure 2.8(a) for various

values of ∆. With increasing drive speed and similarly ∆, the discontinuous friction

force becomes smooth in nature. The effective normal forces for selected values

of ∆ are provided in Figure 2.8(b). Here, both the smoothening effect from the

high-frequency excitation, and increasing normal force, originating from centrifugal

forces, are apparent.
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Approximate analytic solution

If the slow-scale velocity ż of the torsional vibration is sufficiently small, so that

|ż|� |∆
√

1 + z2|, then the slow-scale variable, governed by equation (2.45), may be

further linearized by performing a Taylor Series expansion of the averaged friction

coefficient given by equation (2.55). In performing this operation, the slow-scale

variable is governed by the following ordinary differential equation

z̈ + c̄ż + k̄z = 0 for |ż|� |∆
√

1 + z2| (2.56)

where

c̄ = Ñ

(
−2µs
π∆
− µ̃1 +

3

2
µ̃3∆2

)
+ 2ζ, k̄ = 1 +

∆2

2
(2.57)

An algebraic, closed-form equivalent solution to equation (2.56) is

z(τ) = C1e
s1τ + C2e

s2τ (2.58)

with roots s1,2 and amplitudes C1,2 given by

s1,2 =
1

2

(
−c̄±

√
c̄2 − 4k̄

)
, C1 = zo − C2, C2 =

żo − s1zo
s2 − s1

(2.59)

Because c̄ > 0, perturbations on the slow scale will asymptomatically decay to

zero and only the fast-scale motions, governed by equation (2.43), contribute to

the steady-state torsion response. For illustrative purposes, the analytic fast-scale

solution (equation (2.43)), slow-scale solution (equation (2.58)) are shown in Figure

2.9(a), along with the superposition of both (equation (2.40)) to form an approxi-

mate solution for θ, provided in Figure 2.9(b). Comparisons of the simulations of

the full system of equations given by equations (2.4a)-(2.8) and (2.12), simulations
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Figure 2.9: (a) Fast-scale and slow-scale variable histories (equations (2.43) and
(2.58)). (b) Analytical approximation history (equations (2.43), (2.58), and (2.40)).
(c) Simulations of reduced-order system (equation (2.33)). (d) Simulations of full
system (equations (2.4a)-(2.8) and (2.12)).
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of the reduced-order differential equation given by equation (2.33), and the approxi-

mate algebraic solution governed by equations (2.58),(2.43), and (2.40) are provided

in Figure 2.9(b)-(d), respectively. Here, an initial displacement of θo = 0.05, θ̇o = 0

is applied to all three systems and the time histories are shown. The steady-state

responses of the three solutions agree; however, there is discrepancy in transient mo-

tion, which is governed by equation (2.58) in the analysis. This can be attributed to

differences in the effective damping c̄. Additionally, the full model has a finite mean

in the steady-state (i.e., a DC component), which is not captured in the reduced-

order model or approximate solution. However, the qualitative features of the full

model prediction, reduced-order model prediction, and results from analysis are in

good agreement.

2.6 Summary

The Jeffcott rotor with torsional vibrations in the presence of continuous stator

contact and subject to dry-friction has been studied within this chapter. In order

to simplify the dynamics, a reduced-order equation has been constructed with the

aim of capturing the torsional oscillation features during whirling motions. Key

findings from the numerical studies and analysis of the reduced-order equation are

highlighted below.

1. During forward whirling, if vc < vw < vm and f1 < 0, torsional vibrations can

be excited through a Hopf instability in the reduced-order model. Numerical

simulations of the full model reveal that with the onset of this bifurcation in
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the reduced-order model, the rotor is likely to break contact with the stator

or whirl with a non-constant speed.

2. During forward whirling, with increasing damping ratio, the bifurcation in

the reduced-order model can be suppressed as given by equation (2.31), after

which no vibrations exist in simulations of the full system.

3. During backward whirling, if the rotor whirls at high speeds, away from reso-

nance, the discontinuous dry friction starts to behave in a manner similar to

that of viscous damping.

4. During both forward whirling and backward whirling, the torsional vibrations

are subject to a centrifugal stiffening effect that originates from coupling with

the lateral vibrations. This effect is consistent with previously published ex-

perimental work (Diangui, 2000).
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Chapter 3

Rotor Dynamics with Coupled Torsional-Lateral Motions with

Gyroscopic Effects

In the last chapter, the torsional vibration response was analyzed for a reduced-

order, lumped-parameter rotor model. Although this reduced-order model was able

to demonstrate certain phenomena capable in rotor-stator systems, it is inadequate

at predicting the dynamics in more complex rotor systems. For instance, the dynam-

ics of slender structures can be better described with distributed-parameter models,

which have the virtue of relating the mass and stiffness to physical quantities of the

system, and can capture high-order modes. Additionally, the modified Jeffcott rotor

presented in Chapter 2 was a planar rotor, so that it did not account for gyroscopic

effects (i.e., finite rotations about the y and z axes). Some of these dynamic fea-

tures, which were not considered in the reduced-order model presented in Chapter

2, are addressed within this chapter. The study of these additional dynamic fea-

tures is motivated by the need to understand the dynamic behavior observed in an

experimental slender rotor system.

Here, the dynamics of slender rotating beams are studied experimentally, an-

alytically, and numerically. Phenomena observed in the experimental arrangement,

including the response of torsional vibrations with continuous stator contact, are

presented. The reduced-order model presented in the previous chapter is insuffi-
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cient in predicting the dynamic response of the slender structure in the experiment.

Thus, within this chapter, a distributed-parameter model is derived with the intent

of capturing experimentally observed phenomena. The resulting partial differential

equations are strongly nonlinear and closed-form solutions are not feasible; there-

fore, solutions to the nonlinear equations are numerically determined and numerical

predictions are compared with experimental data. Under a given set of assumptions,

the system of differential equations can be reduced to a single, nonlinear equation

which is used to predict the torsion response while in continuous stator contact.

This single DOF equation gives insights into the origins of the components observed

in the torsion response spectra.

3.1 Experimental arrangement

A photograph with annotations of the experimental arrangement is shown in

Figure 3.1. An aluminum rotor is secured to the end of a slender aluminum rod,

which is referred to as a string in this work due to its slenderness. The rotor is

enclosed within an aluminum circular stator, and when in contact, the rotor is sub-

ject to frictional forces. The entire string-rotor assembly is driven by a chuck which

is connected to a stiff stainless steel drive shaft and servo-motor. The eccentricity

and unbalanced mass of the rotor may be varied by using a series of holes located

radially away from the center of the rotor. The parameters for the experimental ar-

rangement are listed in Table 3.1. The natural frequencies and the damping ratios

for the first torsion and bending modes have been obtained from the free response
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of the system without mass imbalance. More specifically, the natural frequencies

where determined through an impulse-input response of the structure, while the

damping ratios were determined with the log-decrement method.

While in operation, data are gathered from the system by using digital video

cameras, a torque sensor, and strain gages. The strain gages are secured to the

string near the chuck, where linear strain theory predicts the occurrence of maximum

strains for the torsional and bending motions. The wires from the strain gages are fed

back to a data acquisition module through a slip-ring. By using a special rosette and

signal processing procedure, bending and torsional strain information is extracted

from the sensors. Data have been gathered for drive speeds and whirl speeds in the

vicinity of the first bending and torsional natural frequencies. Caution was taken

to not excite the second bending mode of vibration. Due to the large inertia of the

rotor at the end of the string, the second torsional natural frequency is in the kilo-

Hertz (kHz) range and the corresponding vibration mode has little participation in

the system dynamics. Consequently, only the first torsional and bending modes are

excited and the strain measurements can be directly related to the corresponding

displacements. In addition to the strain gage data, a digital video camera mounted

above the rotor is able to record the lateral motions. By using an image processing

procedure developed by the author, the displacement time histories of the rotor

may be determined from the video data. Furthermore, the coefficient of friction

between the rotor and stator is varied by securing a thin layer of synthetic rubber to

each surface, or by introducing a lubricant such as oil. An aluminum on aluminum

contact surface corresponds to a lower coefficient of friction in comparison to the
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Figure 3.1: Vertical drill string experimental apparatus.

rubber on rubber contact surface, which is representative of a higher coefficient of

friction.

3.2 Experimental results

3.2.1 Characteristic whirl phenomena

Representative motions of the bottom rotor are illustrated in Figure 3.2(a),

Figure 3.3(a), and Figure 3.4(a). At low driving speeds, and low weights of unbal-

anced mass, the rotor stays near the center of the stator. However, as the driving

speed and/or weight of the unbalanced mass is increased, the lateral forcing be-

comes larger and the rotor has a high likelihood of coming into contact with the

stator. Upon contact, several behaviors are possible. When the coefficient of friction
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Table 3.1: Experimental arrangement parameters used in simulations.

Parameter Value units

DR 0.1534 m
DS 0.1905 m
e 0.0650 m
L 1.1300 m
M 0.6250 Kg
m 0.010-0.090 Kg
r 1.600 mm
E 70·109 Pa
G 25·109 Pa

Ωback 11-65 RPM
Ωforward 31-56 RPM

ζb 0.0004 -
ζt 0.002 -
fb1 0.50 Hz
fb2 6.92 Hz
ft 1.75 Hz

between the surfaces of the rotor and stator is small in magnitude (corresponding

to an aluminum to aluminum contact surface), the rotor may stay in continuous

contact with the stator and synchronously whirl in the direction of rotation. In

contrast, when the coefficient of friction between the two surfaces is large (corre-

sponding to a rubber on rubber contact surface), the rotor has a higher probability

of undergoing dry-friction whirling motions. Through both simulations and experi-

ments, it is found that friction plays a large role in transient response of the system

and ultimately determines the steady-state motion (i.e., whirl with no contact, for-

ward synchronous whirl with contact, and backward dry-friction whirling) (Li and

Päıdoussis, 1994). These results indicate that the friction is a dominant parameter

in mapping out the basin of attraction – the set of initial conditions (or states of

the system) that converge to a steady-state motion. Although friction plays a large
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role in determining the steady-state response, it does not have a large effect on the

existence of the steady-state solutions. In other words, all three solutions shown in

Figure 1.3 exist for a large range of friction values.

Experimental data for the rotor during forward synchronous whirling with

stator contact is provided in Figures 3.2(a)-(c). Under these conditions, the relative

speed between the two surfaces is non-zero and slipping is said to occur. The lateral

displacement time histories denoted by v(L, t) and w(L, t), which correspond to

the data given in Figure 3.2(a), are presented in Figure 3.2(b). After using the

transformation Z(t) = v(L, t)+j ·w(L, t), where j is the imaginary number, the two

displacements may be cast into complex form. The centered Fourier transform of

the complex signal is shown in Figure 3.2(c). Here, positive frequencies correspond

to whirling in the direction of rotation, while negative frequencies denote whirling in

the opposite direction of rotation (Yamamoto and Ishida, 2001). The motor driving

speed was set to 85 revolutions per minute (RPM) for the data presented in Figures

3.2(a)-(c), and the corresponding driving frequency is observed at 1.42 Hz in Figure

3.2(c).

Experimental data for the rotor during dry-friction whirl (similarly, backward

whirl with contact, or rolling) are shown in Figures 3.3(a)-(c). Under perfect rolling

conditions, the relative speed between the rotor and the stator is equal to zero.

Under the assumption that the deflection of the stator and the torsional vibration

amplitudes are both small, as discussed in references (Black, 1967, 1968; Feng and

Zhang, 2002; Yamamoto and Ishida, 2001; Vlajic, Liao, Karki, and Balachandran,

2011, 2012), the response angular speed can be approximated as
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Figure 3.2: Experimentally observed forward whirling motions: (a) trajectory of ro-
tor center within the stator, (b) time histories of the v(L, t) and w(L, t) displacement
components, and (c) Fourier spectra of complex displacement quantity.
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Figure 3.3: Experimentally observed backward whirling motions: (a) trajectory of
rotor center within the stator, (b) time histories of the v(L, t) and w(L, t) displace-
ment components, and (c) Fourier spectra of complex displacement quantity.

Ωback = − DR

DS −DR

Ωfor = −R
δ

Ωfor (3.1)

For the given experimental parameters, R/δ ≈ 4.13. The centered Fourier transform

of the data provided in Figure 3.3(b) is shown in Figure 3.3(c). For this specific

experiment, the driving angular frequency was again approximately 85 RPM or 1.42

Hz. The peak value in the spectrum is approximately at −5.61 Hz, which is in close

agreement with the value obtained from equation (3.1). Here, the negative frequency

indicates that the rotor is whirling in the opposite direction of the drive rotation.
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Additionally, for low friction coefficient values and small levels of unbalanced

mass, and for certain driving speeds, the rotor may undergo impacting motions, as

depicted in Figure 3.4(a)-(c). It is mentioned that impacting motions are difficult

to reproduce experimentally and numerically, as small perturbations from these

motions may cause the rotor to undergo forward whirling with contact, backward

whirling with contact, or the rotor may simply whirl without contact. The centered

Fourier transform of the data in Figure 3.4(b) is presented in Figure 3.4(c). For this

particular experiment, the Fourier spectra shows a forward whirling frequency of

1.07 Hz which corresponds to the driving speed of 61 RPM, as well as a component

at −1.40 Hz which is assumed to originate from collisions with the stator.

3.2.2 Torsional vibrations with continuous rotor-stator contact

Within this section, experimental data of the torsion response while the ro-

tor undergoes forward and backward whirling motion is presented. When a linear

system is forced at a particular frequency Ω, the system response will also occur

at the same frequency Ω. As will be shown in this section, the torsion response

spectra contain frequencies that are different than the driving (or forcing) frequency

of the system. These additional response components are a strong indication that

nonlinearities are present in the system. For all of the data presented in this section,

the contact surface was aluminum on aluminum.
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Figure 3.4: Experimentally observed impacting motions: (a) trajectory of rotor
center within the stator, (b) time histories of the v(L, t) and w(L, t) displacement
components, and (c) Fourier spectra of complex displacement quantity.
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3.2.2.1 Forward whirling

The Fourier transforms of the torsional strain collected during forward, syn-

chronous whirling are given in Figure 3.5. Here, the DC offset (0 Hz frequency

component) has been removed, and the amplitudes have been normalized by divid-

ing throughout by the largest amplitude and raising the result to the 0.8th power

for clarity. This torsional strain response corresponds to the rotor radial movements

along the line AB in Figure 1.3. Data have been collected for 56 different driving

speeds between 31-56 RPM (0.52-0.93 Hz) for a total of 60 seconds. From Figure

3.5, it is seen that the component at the driving speed fd is one of the dominant

components in the frequency response; small amplitude contributions at the har-

monics of fd are also present. Additionally, large amplitude responses occur when

the harmonic components 2fd and 3fd coincide with the natural frequency ft.

3.2.2.2 Backward whirling

The Fourier transforms of the torsional strain collected during backward, dry-

friction whirling are given in Figure 3.6, where the same normalization procedure

has been implemented. The strain response presented in Figure 3.6 corresponds to

the radial displacement along the line CD in Figure 1.3 for driving speeds ranging

from 11-65 RPM, or equivalently, 0.18-1.08 Hz. In this case, data have been gathered

at 94 different driving speeds for 60 seconds each. The strongest component of the

response for all driving speeds occurs at the sum of the whirling frequency and

driving frequency, fw + fd. Furthermore, the second strongest contribution occurs
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Figure 3.5: Experimentally determined frequency content of torsional strain during
forward synchronous whirling.

at the drive speed fd. Additionally, small amplitude components at fw − fd, fw,

fw + 2fd and 2(fw + fd) are also visible in the response spectra. These response

frequencies in the case of backward whirling were reported in the work Vlajic, Liao,

Karki, and Balachandran (2012).

3.3 Modeling efforts

Within this section a structural model with coupled torsional and lateral mo-

tions is derived along with a force-interaction model that aims to capture the dy-

namics observed in the experimental arrangement.
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Figure 3.6: Experimentally determined frequency content of torsional strain during
dry-friction whirling.

3.3.1 Distributed-parameter structural model

A schematic which depicts the structure shown in Figure 3.1 is provided in

Figure 3.7. In the modeling efforts, the beam or string is taken to be a distributed

parameter element, while the disk is modeled as a rigid, lumped-parameter element.

Let the fixed xyz frame with mutually orthogonal unit vectors ijk be used to describe

the undeformed geometry of the initially straight string. Additionally, let x3y3z3 be

the reference frame in the deformed configuration with mutually orthogonal unit

vectors i3j3k3, with the frame’s origin located along the centerline of the string.

An arbitrary material point Po in the undeformed configuration is displaced to the

point P in the deformed configuration. The position vector from the origin of the

xyz frame to the origin of the local coordinate frame x3y3z3 is given by

rC/O = (x+ u(x, t))i + v(x, t)j + w(x, t)k (3.2)
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where u(x, t), v(x, t), and w(x, t) are the displacements of the string centerline along

the i, j, and k directions, respectively. Likewise, the position vector from the local

coordinate frame to the material point located in the cross-section of the string is

given by

rP/C = 0i3 + y3j3 + z3k3 (3.3)

Next, a relationship between the orientation of the local coordinate frame relative to

the fixed coordinate frame is needed in order to completely determine the position

of the material point in the fixed frame and to construct an expression for the

velocity of the material point P . This relationship is given by the use of 1-2-3 Euler

angles, which decomposes the transformation from the fixed frame to the local frame

through the use of three rotations. A detailed derivation of the 1-2-3 Euler angles

is given in Appendix A, along with a derivation of the angular velocity of the local

coordinate frame with respect to the fixed coordinate frame, which is

ω = (β̇ − α̇Sψ)i3 + (ψ̇Cβ − α̇Sβ)j3 + (ψ̇Sβ + α̇Cβ)k3 (3.4)

The ˙(·) operation denotes the partial derivative with respect to time and the S(·)

and C(·) symbols denote the sine and cosine function of the argument, respectively.

For the given configuration, β is a measure of the angular displacement of the lower

disk which may undergo large displacements. On the other hand, ψ and α are

measures of bending, which are assumed to be small and hence the trigonometric

functions of the two angles may be approximated by the first term of the Taylor

series expansion. Further, from Bernoulli-Euler beam theory, ψ = −w′ and α = v′

where the operation (·)′ denotes the partial derivative with respect to x. Since β is

67



e

Stator
Rotor

String

Figure 3.7: Schematic of the structural model used to develop the governing equa-
tions of motion.
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a measure of the angular displacement about the x direction, it can be decomposed

into a sum of the torsional deformation and a rigid body rotation. By using the

above expression for the angular velocity, the kinetic energy of the shaft may be

expressed as

Tstring =
1

2

∫
V ol

ρ
(
rP/O,t · rP/O,t

)
dV ol (3.5)

where ρ is the cubic density and integration over the continuum has been carried out.

The string is initially straight so that the deformed coordinate system aligns with

the fixed coordinate system, and shear effects are neglected due to the slenderness

of the structure. The local coordinate system is aligned with the principal axes of

inertia of the string, such that the kinetic energy of the string may be written as

Tstring =
1

2

∫ L

0

[
ρA(u̇2 + v̇2 + ẇ2) + ρI(v̇′2 + ẇ′2) + ρIoβ̇

2 + 2ρIoβ̇v̇
′w′
]
dx (3.6)

A detailed derivation of the string kinetic energy can be found in Appendix B.

Similarly, it follows that the kinetic energy of the lower disk is given by

Trotor =
1

2

[
M(u̇2 + v̇2 + ẇ2) + ID(v̇′2 + ẇ′2) + IDo(β̇

2 + 2 β̇v̇′w′)
]∣∣∣
x=L

If the rotary inertia of the unbalanced mass about the z and y axes is neglected, the

kinetic energy of the unbalanced mass is determined to be

Tubm =
m

2

[
u̇2 + (v̇ − β̇e sin β)2 + (ẇ + β̇e cos β)2

]∣∣∣
x=L

(3.7)

Next, in order to construct the system Lagrangian, an expression for the po-

tential energy of the system is determined. From linear elasticity, the potential

69



energy of the string can be expressed as

U =
1

2

∫ L

0

[
EAu′2 + EI(v′′2 + w′′2) +GIoβ

′2 − 2Su′
]
dx (3.8)

In equation (3.8), the first term represents the axial potential energy, the second

and third terms account for the potential energy due to bending, the fourth term is

a measure of the torsion potential energy, and the last term accounts for the axial

pre-stress on the beam due to a force S. Here, S = Mg, where M is the total

mass of the rotor and g is the acceleration due to gravity. Next, through geometric

reasoning, the strain in the x direction can be expressed as a function of the two

bending displacements v and w through geometry as

dx2 =

(
dx+

∂u

∂x
dx

)2

+

(
∂v

∂x
dx

)2

+

(
∂w

∂x
dx

)2

(3.9)

Making use of the binomial expansion theorem and rearranging the above equation,

the geometric relation may be cast into the following form

∂u

∂x
≈ −1

2

((
∂v

∂x

)2

+

(
∂w

∂x

)2
)

(3.10)

The above relation is a result of the inextensionality condition, which is constraint

that prevents the centerline of the beam from extending or contracting. Equa-

tion (3.10) is substituted into equation (3.8). In addition, the variation of the

external work can be expressed as

δW = λ [FtanRδβ + Fvδv + Fwδw] (3.11)

where λ is a contact parameter that is equal to unity when the rotor is in contact

with the stator and zero otherwise. It is assumed that the axial inertia is negligible,

70



and attention is focused on the torsional and bending vibrations. For a constant

rotating angular speed Ω, the transformation β = Ωt + θ can be used, where θ is

the torsional deformation. The Lagrangian may then be written as

L = T − U (3.12)

where

T = Tstring + Trotor + Tumb (3.13)

Invoking the Extended Hamilton’s Principle,

∫ t2

t1

δ(L −W) dt = 0 (3.14)

one can obtain the equations of motion described by a system of three nonlinear

coupled partial differential equations with ten associated boundary conditions. The

governing equations of motion for 0 < x < L are obtained as

ρAv̈ − ρIv̈′′ − ρIo
(
β̈′w′ + β̈w′′ + β̇′ẇ′ + β̇ẇ′′

)
+ EIv′′′′ − Sv′′ = 0 (3.15a)

ρAẅ − ρIẅ′′ + ρIo

(
β̇′v̇′ + β̇v̇′′

)
+ EIw′′′′ − Sw′′ = 0 (3.15b)

ρIo

(
β̈ + v̈′w′ + v̇′ẇ′

)
−GIoβ′′ = 0 (3.15c)
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with boundary conditions at x = L

(M +m)v̈ + ρIv̈′ + ρIoβ̈w
′ + ρIoβ̇ẇ

′ − EIv′′′ + Sv′ = me
(
β̈ sin β + β̇2 cos β

)
(3.16a)

Idv̈
′ + IDo

(
β̈w′ + β̇ẇ′

)
+ EIv′′ = 0 (3.16b)

(M +m)ẅ + ρIẅ′ − ρIoβ̇v̇′ − EIw′′′ + Sw′ = me
(
−β̈ cos β + β̇2 sin β

)
(3.16c)

IDẅ
′ − IDoβ̇v̇′ + EIw′′ = 0 (3.16d)(

IDo +me2
)
β̈ + IDo (v̈′w′ + v̇′ẇ′) +GIoβ

′ = me (v̈ sin β − ẅ cos β) (3.16e)

The boundary conditions at x = 0 are simply

v = 0, v′ = 0 (3.17a)

w = 0, w′ = 0 (3.17b)

θ = 0 (3.17c)

The system of partial differential equations given by equations (3.15)-(3.17) are

then transformed to a system of ordinary differential equations by using a Galerkin

projection. This is done by multiplying each equation of (3.15) by a respective trial

function that is only a function of the spatial coordinate x and integrating over the

length of the string. The quantities v, w, and θ are taken to be separable in space

and time and may be expanded as follows:

v(x, t) =
N∑
i=0

Vi(t)φvi(x) (3.18a)

w(x, t) =
N∑
i=0

Wi(t)φwi(x) (3.18b)

θ(x, t) =
N∑
i=0

Θi(t)φθi(x) (3.18c)

72



The temporal functions Vi, Wi, and Θi are unknown quantities. On the other

hand, the spatial functions φvi(x), φwi(x), and φθi(x) are chosen to satisfy the linear

boundary conditions. These functions are also selected as the trial functions. In

equations (3.18), i is the mode number and N is the total number of modes. The

rotor is expected to dominate the inertia effects of the system, and the mass of

the shaft is neglected as a first approximation. Equations (3.18) are substituted

into equations (3.15)-(3.17) where a single mode is considered for each displacement

directions. The rotor on the string acts as a lumped mass which further separates

the natural frequencies between each mode; thus, the single mode assumption is a

reasonable approximation. Linear viscous damping is added to the system, and the

three coupled ordinary differential equations of motion for the system are obtained

as

a1V̈ + a2V̇ + a3ΩẆ + a4V + a5(Θ̇Ẇ + Θ̈W )− meφθφvΘ̈ sin(Θφθ + Ωt)
∣∣∣
x=L

− meφv

(
Θ̇φθ + Ω

)2

cos(Θφθ + Ωt)

∣∣∣∣
x=L

= λφvFv

∣∣∣
x=L

(3.19)

b1Ẅ + b2Ẇ + Ωb3V̇ + b4W + b5Θ̇V̇ + meφwφθΘ̈ cos(Θφθ + Ωt)
∣∣∣
x=L

− meφw

(
Θ̇φθ + Ω

)2

sin(Θφθ + Ωt)

∣∣∣∣
x=L

= λφwFw

∣∣∣
x=L

(3.20)

c1Θ̈ + c2Θ̇ + c3Θ + c4(V̈ W + V̇ Ẇ ) + meẄφwφθ cos(Θφθ + Ωt)
∣∣∣
x=L

− meV̈ φvφθ sin(Θφθ + Ωt)
∣∣∣
x=L

= λφθFtan
DR

2

∣∣∣
x=L

(3.21)
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3.3.2 Rotor-stator force-interaction model

In the context of rotor-stator interactions, there are various classifications of

phenomena and dynamic behavior, which were discussed in Section 3.2. The contact

between the rotor and stator are commonly described through either a switching

model or an impact model. Difficulties in numerical integration arise when using

impacting models for certain rotor motions, such as continuous stator contact or

grazing impacts (zero velocity impact). In light of this, the current model is a

switching model which allows for both rolling, rubbing, and impacting behavior,

albeit this switching model is numerically stiff and computationally expensive. This

force model has been adapted from Liao, Balachandran, Karkoub, and Abdel-Magid

(2011); Leine, van Campen, Kraker, and van den Steen (1998); and Feng and Zhang

(2002), and is non-smooth in nature due to both the contact condition and friction.

A schematic of the rotor when in contact with the stator and parameter definitions

are shown in Figure 3.8. In order to determine the presence of contact, the following

definitions are used:

δ =
1

2
(DS −DD) (3.22)

Γ =
√
w(L, t)2 + v(L, t)2 (3.23)

λ =


0 for Γ ≤ δ

1 for Γ > δ

(3.24)

74



Figure 3.8: Schematic of forces when the rotor is in contact with the stator.

The coefficient of friction and the magnitude of the tangential force and normal

force are given by

Fn =


0 for Γ ≤ δ

Kc(Γ− δ) for Γ > δ

(3.25)

(3.26)

µ = − 2

π
arctan(εfvrel)

[
µs − µd

1 + δf |vrel|
+ µd

]
(3.27)

Ft = µ · Fn (3.28)

In equation (3.27), the normalized arctan function is used to approximate the

signum function to account for the change in the direction of friction as the relative

speed changes sign. This was also implemented in Section 2.1.2. The parameter

εf determines the steepness of the approximation of the vertical segment of signum

function. Additionally, the parameter δf is a positive number that determines the

rate at which the static friction coefficient approaches the dynamic friction coefficient
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Figure 3.9: Coefficient of friction µ as a function of the relative speed for the model
given by equation (3.27).

with respect to the relative velocity. For illustration purposes, the negative form

of equation (3.27) is plotted in Figure 3.9 for the parameters given in Table 3.2.

The frictional force acts to damp out vibrations when |vrel| is approximately less

than 1e−3 (see the expanded section of Figure 3.9). However, when the relative

speed is near zero, but |vrel| is greater than 1e−3, the frictional force effectively has

negative damping and acts to excite vibrations. This type of friction can lead to Hopf

instabilities (e.g., Leine and Nijmeijer (2004)). It is noted that the friction model

presented here is different than the model presented in Section 2.1.2. Although both

models are qualitatively similar, the model presented here was selected because it

is one of the simplest models that can capture the difference between static and

dynamic friction. The focus of this chapter is not on modeling the friction, but

rather studying the response of the structure. The model selected here is able
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to capture the dominate features of friction on the macroscopic scale, such as the

difference between static and dynamic friction and its behavior at vrel = 0. The

normal and tangential forces may be transformed to accommodate the expression

for external work and the equations of motion by using the transformations

Fv =
−Ftw(L, t)− Fnv(L, t)

Γ
(3.29)

Fw =
Ftv(L, t)− Fnw(L, t)

Γ
(3.30)

Table 3.2: Friction parameters used in simulations.

Parameter Value units

Kc 106 Nm−1

µd 0.07 -
µs 1.2µd -
εf 104 -
δf 103 -

A schematic of the forces acting on the rotor during contact are shown in

Figure 3.8. The direction of the normal force always starts at the point of contact

and points towards the geometric center of the stator. The magnitude of the normal

force is linearly proportional to the penetration depth δp = Γ− δ. The direction of

the tangential force, by definition, acts to always oppose the direction of rotation.

The magnitude of the tangential force determined by a combination of the normal

force and the frictional force as given by equation (3.28).
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3.4 Simulation Results

3.4.1 Characteristic whirl motions

The equations of motion are numerically integrated by using a modified second-

order Rosenbrock solver that is better suited for solving stiff ordinary differential

equations, such as the system at hand. The parameters used to generate the nu-

merical results correspond to the experiments, and the associated values are given

in Tables 3.1 and 3.2. The damping ratios for the bending and torsion motions

were experimentally obtained from the free-response data of the system. The model

predictions confirm the motion characteristics and phenomena observed in the ex-

periments including dry-friction whirl, forward whirling with contact, and impacting

motions. As a comparative example, experimental data and numerical predictions

are shown in Figure 3.10 for the same system parameters and similar initial condi-

tions. In both the experiments and simulations provided in Figure 3.10 the rotor

makes several impacts with the stator and then starts to undergo backward dry-

friction whirl.

From numerical simulations, it is observed that the presence of forward and

backward whirling do not have a significant dependence upon the clearance between

the rotor and the stator or the torsion stiffness. In general, the rotor is likely to

undergo backward whirling motions for high values of friction and exhibit forward

whirling motions for low values of friction. For friction values between the high and

low values, the rotor may undergo either forward or backward whirling motions.

For this range of friction, the steady-state response is found to be largely dependent
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Figure 3.10: Comparisons for the same input parameters: (a) experimental results
and (b) numerical results.
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upon initial conditions for the lateral motions. Additional parametric studies related

to initial conditions and friction of two different rotor-stator systems may be found

in the works of Liao, Vlajic, Karki, and Balachandran (2012) and Li and Päıdoussis

(1994).

3.4.2 Torsional vibrations during forward and backward whirl mo-

tions

3.4.2.1 Forward whirling

The Fourier spectra of the torsional displacement generated through the nu-

merical studies while the rotor undergoes forward whirling for a range of driving

speeds are presented in Figure 3.11. Again, the spectra have been normalized using

the scheme mentioned earlier. For low driving speeds, the amplitude of response is

small and occurs at 2fd. However, as the driving speed is increased and nears the

torsional natural frequency, the first resonance is excited and the response occurs

at a combination of ft and 2fd. It is noted that the current structure and force-

interaction model do not capture the drive speed fd component as well as the third

order and higher harmonics. The fd component in the experimental arrangement

likely originates from non-ideal boundary conditions which are not considered in the

system model, such as a small eccentricity of the chuck. Two segments of Figure

3.11 are provided in Figure 3.12 along with the relative speed time histories for 50

and 51 RPM drive speeds. The Fourier transforms of the data presented in Figure

3.12(a) and (b) are given in Figure 3.12(c) and (d), respectively. At a drive speed
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Figure 3.11: Normalized Fourier spectra of the simulated torsional displacement for
forward whirling with stator contact.

of 50 RPM, the mean relative speed is approximately 0.5 m/s with a small peak-to-

peak amplitude of 0.06 m/s, and oscillations occur at a frequency of 2fd. However,

with increase of the speed to 51 RPM, the first torsional mode is excited and the

amplitude of the torsional displacement and relative speed both become large. Here,

the amplitude of the torsional displacement is bounded by the chosen friction force

model, once the lower amplitude of the relative speed reaches 0 m/s.

3.4.2.2 Backward whirling

The normalized Fourier spectra of the torsional displacement generated through

the numerical studies while the rotor undergoes backward whirling are shown in Fig-

ure 3.13. As with the experiments, the strongest component of response occurs at
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steady-state torsion displacement for 51 RPM.
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Figure 3.13: Normalized Fourier spectra of the simulated torsional displacement for
backward whirling with stator contact.

fw + fd, and other contributions at fd and fw− fd also exist. The simulation results

also indicate frequency components at 2fw and 2fd, which are not seen in the exper-

iments. The simulations are not able to capture the contributions of fw, fw + 2fd,

and 2(fw + fd) as seen in Figure 3.6.

Two segments at 13 RPM and 34 RPM of Figure 3.13 are given in Figure 3.14.

Here, expanded sections between 900 and 910 seconds are provided to illustrate the

nature of the response. Its is noted that the approximate amplitudes of the relative

speed for cases shown in Figure 3.14(a) and (b) are maintained for the entire duration

of the simulation. As expected for dry-friction whirling, the mean of the relative

speed is approximately zero. Stick-slip oscillations are visible in Figure 3.14(a) and

(b); these motions excite several frequencies that are shown in Figure 3.14(c) and

(d), respectively. The sticking phase occurs when the relative speed is approximately
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Figure 3.14: Two typical system responses for backward, dry-friction whirling: (a)
Relative speed for 13 RPM, (b) relative speed for 34 RPM, (c) Fourier spectra of
the steady-state torsion displacement for 13 RPM, and (d) Fourier spectra of the
steady-state torsion displacement for 34 RPM.
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zero, and the slip phase occurs when the relative speed is non-zero. At low speeds,

the dominating components occur at fw + fd and 2fw, while at high speeds major

contributions occur at fw + fd and 2fd.

3.5 Further reduced-order modeling and analysis

Following a procedure that was done in Section 2.3.2, and originally outlined

in Vlajic, Liu, Karki, and Balachandran (2013); Vlajic, Karki, and Balachandran

(2013), the system of equations given by equations (3.19)-(3.21) are reduced to a

single nonlinear differential equation which is meant for studying the torsional mo-

tions during steady-state whirl. For constant whirl frequencies, the lateral motions

of the rotor at x = L may be prescribed as

v(L, t) = (δ + δp) cos(ωt+ φo) ≈ δ cosωt (3.31a)

w(L, t) = (δ + δp) sin(ωt+ φo) ≈ δ sinωt (3.31b)

where the penetration depth δp of the rotor into the stator is approximately zero.

Considering small torsional deformations, the respective Taylor series expansions

are carried out with the trigonometric terms in Θ, in a manner similar to that as

equations (2.16) and (2.15). These expansions are substituted into the governing

equations, and the following reduced-order equation is obtained to focus on the

torsion dynamics:

c1Θ̈ + c2Θ̇ +
[
c3 + φθ(L)meδω2 cos ((ω − Ω)t)

]
Θ =

c4ω
2 sin (2ωt) + φθ(L)meδω2 sin ((ω − Ω)t) + φθ(L)FtanR (3.32)
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As was done earlier, the normal force is found in terms of the reaction force as the

rotor whirls in contact with the stator. This approximate form is taken to be

Fnorm ≈Mδω2 −Keqδ (3.33)

where it has been assumed that δ(M +m)� me and Keq is the equivalent stiffness

of shaft. This equation is given consideration in the remaining sections for both

forward and backward whirling.

3.5.1 Forward whirling

As previously mentioned, in the special case of forward whirling ω ≈ Ω, equa-

tion (3.32) can be written as

c1Θ̈ + c2Θ̇ +
[
c3 + φθ(L)meδω2

]
Θ = c4ω

2 sin (2ωt)− φθ(L)FtanR (3.34)

Equation (3.34) has interesting features which are explained next. As discussed

in Section 2.4, equation (3.34) has a centrifugal stiffening term. However, due

to the low drive speeds in the given experiment, this effect is small and unmea-

surable. In other experiments at high drive speeds, researchers have observed a

stiffening effect during steady whirl with constant stator contact (Diangui, 2000).

The reduced-order equation also has an external forcing frequency of 2Ω = 2ω,

which originates solely from the gyroscopic coupling terms in equations (3.19)-

(3.21). In the absence of friction, Ftan = 0, equation (3.34) takes the form of a

linear oscillator with harmonic forcing, associated with which a resonance will oc-

cur if 2Ω ≈ ωt =
√

c3+φθ(L)meδω2

c1
≈
√

c3
c1

. This resonance behavior is apparent in
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both the experimental results shown in Figure 3.5 and in the results obtained from

simulations of the full model (equations (3.19)-(3.21)) shown in Figure 3.11, as well

as in the numerical results for the reduced-order model (equation (3.34)) provided

in Figure 3.15. It is noted that near resonance, the original assumption of small

angular deformations breaks down and equation (3.34) is no longer a reasonable

approximation for the system dynamics in that region. Further, even in the absence

of forcing originating from gyroscopic coupling (such as a planar rotor presented

in Chapter 2, for instance), one can still obtain limit-cycle motions from the form

of equation (3.34), as was found in Vlajic, Liu, Karki, and Balachandran (2013).

Finally, a component at the torsional damped natural frequency is observed in the

experiments shown in Figure 3.5, where the first torsion damped natural frequency

is approximately equal to the undamped torsional frequency due to the light struc-

tural damping of the system. The response component at the first torsional natural

frequency is not apparent in the simulations as the static coefficient of friction value

was selected to be small. The response amplitude at this natural frequency is ex-

pected to be more prominent for other friction parameter values.

3.5.2 Backward whirling

During backward whirling, the whirl speed of the lateral vibrations is approx-

imately ω ≈ −R
δ
Ω, and equation (3.32) can be rewritten as

c1Θ̈ + c2Θ̇ +
[
c3 + φθ(L)meδω2 cos (αt)

]
Θ =

c4ω
2 sin (2ωt)− φθ(L)meδω2 sin (αt) + φθ(L)FtanR (3.35)
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Figure 3.15: Torsion response spectra determined by equation (3.35) for forward
whirling motions.
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Figure 3.16: Torsion response spectra determined by equation (3.34) for forward
whirling motions.
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where

α = (ω − Ω) = −Ω(1 +
R

δ
) (3.36)

The frequency α physically represents the whirl speed, less the drive speed.

This excitation frequency plays a role in equation (3.35) through external and para-

metric excitation terms. In both the experimental results shown in Figure 3.6,

simulations of the full model (equations (3.19)-(3.21)) shown in Figure 3.13, and

simulation results of the reduced-order model (equation (3.35)) provided in Figure

3.16, the response component at the whirl frequency plus the drive frequency is the

dominant component (note that Fourier transforms presented here do not distin-

guish between positive and negative frequencies). Additionally, the external forcing

at frequency 2ω from the gyroscopic coupling is still present in equation (3.35) and

in the simulation results shown in Figure 3.13. However, this component is not

discernibly large in the experimental results shown in Figure 3.6 (b), and in the

numerical results obtained from the reduced-order equation and shown in Figure

3.16.

3.6 Summary

Within this chapter, a slender rotor with stator force-interactions has been

studied. An experimental apparatus was able to demonstrate different rotor whirling

motions, and the torsion response of the experimental structure was studied for con-

tinuous rotor-stator contact. A distributed-parameter structural model was derived
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for the purpose of capturing phenomena observed in the experimental arrangement.

The model presented in this chapter is able to account for more dynamic features

(e.g. distributed parameter elements, gyroscopic coupling, gravitational effects) that

were not considered in the simplified rotor model presented in Chapter 2. Numerical

simulations of this model were able to predict the largest frequency components ob-

served in the torsion response. Furthermore, under a given set of assumptions, the

reduced-order model may be reduced to a single degree-of-freedom equation that is

used to describe the torsional vibration response. Specific findings and contributions

of this chapter are as follows:

1. The torsional motion is subject an external forcing frequency at twice the

drive speed for non-planar rotors (i.e., rotors with gyroscopic effects) that are

whirling at a constant rate. This external forcing effect has been found for

both forward and backward whirling; therefore, a torsion resonance can occur

when rotating the shaft at a frequency of half the torsional natural frequency.

2. When forward whirling with continuous stator contact, the effective external

forcing and nonlinear friction may also excite response components at the first

torsional natural frequency.

3. During backward whirling, the effective external forcing at twice the drive

speed as well as external and parametric excitation at the whirl speed plus the

drive speed can cause resonances in the torsional motions.
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Chapter 4

Modal Analysis of Geometrically Exact Beams with Pre-stress and

Curvature

In Chapters 2 and 3, the coupling between lateral and torsional motions of

slender structures was explored. Within this chapter, the dynamics of slender struc-

tures with pre-stress and initial curvature are investigated. As pointed out earlier,

slender structures are often manufactured in a straight configuration, but operate

with an initial pre-stress in a deformation static configuration. This pre-stress and

initial curvature can change the natural frequencies and mode shapes when in op-

eration. For design and/or structural health monitoring purposes, it is desirable to

predict the natural frequencies about this pre-stressed configuration. Previously in

the literature, studies have focused on the dynamics of curved beams, such as arches

or rings, with little or no pre-stress where the structure is restricted to special con-

figurations (e.g., circular, elliptical, quadratic). Other studies have paid particular

attention to the dynamics of buckled beams; however, the initial static displace-

ment was relatively small (i.e., displacement on the order of the beam thickness).

Within this chapter, the dynamics of curved beams are studied with large variable

curvature and pre-stress in the static configuration. Additionally, the boundary con-

ditions considered here allow for a broader class of static configurations than what

has previously been published in the literature.
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4.1 Geometrically exact model

The kinematics of the rod presented here follow the kinematic description

that is outlined by Antman (2005). A graphical representation of the kinematics is

provided in Figure 4.1. The rod is considered initially straight and unstressed in

Euclidean space with mutually orthogonal unit vectors i , j , and k . In the reference

configuration, the rod spans the i direction with arc length s ∈ [0, L], where L

is the length of the rod. Furthermore, at each point along the centerline of the

rod let a and b be another set of mutually orthogonal unit vectors, where in the

reference configuration a ≡ i and b ≡ j . Let the vector r describe the position

of the centerline of the rod in the deformed configuration. The rod is allowed to

undergo only deformations in the i–j plane, so that r can be decomposed as

r(s, t) ≡ r = x i + y j . (4.1)

The components of r , x (s, t) ≡ x and y(s, t) ≡ y , are the kinematic unknowns that

define the position of the centerline of the rod in the i and j directions, respectively.

Similarly, the position of the centerline of the rod may be determined by using

another set of kinematic unknowns, namely the displacements from the reference

configuration denoted by u . The displacement field u is comprised of the scalar

quantities u(s, t) ≡ u and v(s, t) ≡ v , which are the displacements of the centerline

of the rod along the i and j directions. Hence,

r = [s+ u] i + v j . (4.2)
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Once the rod is deformed, the beam frame vectors a and b may be related back to

the fixed frame by using the transformation

a(s, t) ≡ a = cos θ i + sin θ j (4.3a)

b(s, t) ≡ b = − sin θ i + cos θ j (4.3b)

where θ(s, t) ≡ θ is the angle between a and i . It is convenient to decompose

derivatives of r with respect to the beam basis (a-b frame) as

r s ≡ r ′ = νa + ηb . (4.4)

In equation (4.4) and others that follow, the prime superscript and s subscript are

both used to denote the partial derivative with respect to s. The quantity η(s, t) ≡ η

is the shear strain. If the rod does not undergo shear, η = 0 and the axial strain

of the rod is given by ν(s, t) ≡ ν. In the general case with the presence of shear,

the axial strain of the rod is
√
η2 + ν2. Additionally, the curvature of the beam is

represented by µ ≡ θ′, which is the spatial rate of change of the rotation angle θ with

respect to the arclength. It is noted that the curvature µ is not the mathematical

curvature.

4.1.1 Governing equations of motion

As stated by Antman (2005), by carrying out force and moment balance, the

governing equations of motion can be obtained as

ns + f = ρAr tt + ρIb tt (4.5a)

ms + r s × n + lk = ρIb × r tt + ρJb × b tt (4.5b)
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Here, subscript t denotes the partial derivative with respect to time. Furthermore,

the quantities ρA, ρI, and ρJ are the mass, first moment of mass, and second

moment of mass, per unit reference length. These quantities are taken to be constant

in this work along with a uniform cross-section and constant density. Since the

centerline of the rod passes through the mass centers of the cross-section, then

ρI = 0. The vector n is the resultant internal force, while m is the resultant

internal couple. Likewise, f is the external force per unit reference length acting on

the beam and l accounts for any external moments per unit reference length acting

on the beam. As this is a planar beam, the internal force and internal couple take

the form (Antman, 2005)

n(s, t) ≡ n = Na +Hb (4.6a)

m(s, t) ≡m = Mk . (4.6b)

In equation (4.6a), H(s, t) ≡ H is the shear force (not necessarily the vertical shear),

and N(s, t) ≡ N is the resultant force in the a direction. With this in mind, the

component form of equations (4.5) in the inertial frame (i.e., projected onto the

i -j -k basis) with kinematic variables x , y , and θ yields the following:

(∂sN − µH) cos θ − (∂sH + µN) sin θ + f · i = ρA∂ttx (4.7a)

(∂sN − µH) sin θ + (∂sH + µN) cos θ + f · j = ρA∂tty (4.7b)

∂sM + νH − ηN + lk = ρJ∂ttθ. (4.7c)
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Figure 4.1: Description of the variables used to describe the motion of the rod
structure.

4.1.2 Beam kinematics and governing equations

4.1.3 Static analysis

Dropping the time derivatives in equations (4.5), the equations governing the

static configuration of the rod are given by

n ′ + f = o (4.8a)

m ′ + r ′ × n + lk = o (4.8b)

Equation (4.8a) is an expression of force balance, while the equation (4.8b) is the

expression for moment balance. The boundary conditions are prescribed as

r(0) = o (4.9a)

r(L) = xLi + yLj (4.9b)

θ(0) = 0 (4.9c)

θ(L) = θL. (4.9d)
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Note, that either the force or the position may be prescribed in each direction at

the boundary, but not both. Similarly, either the angle θ may be prescribed at the

boundary or the moment, but not both. The boundary conditions presented here are

different than those used in the previous work of Addessi, Lacarbonara, and Paolone

(2005), where the forces were defined at s = L. In the absence of any external forces

(including gravity) and external couples, f = o and l = 0. Equations (4.8) reduce

to

n ′ = o (4.10a)

m ′ + r ′ × n = o (4.10b)

From equation (4.10a), it follows that the resultant internal force is a constant

throughout the beam. After integration of the first of equations (4.10), the constant

reaction forces are found to be

n = N1 i +N2 j . (4.11)

It follows by the transformation (4.3) that the resultant force components in the

a-b frame are given by

N = N1 cos θ +N2 sin θ (4.12a)

H = −N1 sin θ +N2 cos θ. (4.12b)

The beams under consideration are assumed to be unshearable due to their slender-

ness and closed, uniform cross-section. This unshearability assumption is exercised

through the constraint η = 0. Further, if the beam is also inextensible, then an ad-

ditional constraint ν = 1 may be imposed. It is noted that the boundary conditions
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must be chosen judiciously when considering these assumptions and constraints. For

instance, when exercising the inextensionality constraint, equations (4.8) and (4.10)

may not have a physical solution for certain boundary conditions, such as xL > L,

yL = 0, and θL = 0; that is, boundary conditions that represent pure elongation of

the beam.

The Bernoulli-Euler constitutive relation

M = EIµ (4.13)

where E is the Young’s modulus and I is the area moment of inertia of the cross

section of the rod, is assumed throughout this work. With this constitutive relation,

and after substituting equation (4.11) into equation (4.10), assuming unshearability

and inextensionality, and making use of the coordinate transformations given by

equations (4.3), the following set of differential equations is obtained

M ′ −N1y ′ +N2x ′ = 0 (4.14a)

M = EIθ′ (4.14b)

x ′ = cos θ (4.14c)

y ′ = sin θ. (4.14d)

Equation (4.14a) is an expression of moment balance while (4.14b) is the Bernoulli-

Euler constitutive relation. Similarly, (4.14c) and (4.14d) are constraints from

the inextensionality and unshearability assumptions. Equations (4.14) constitute

a fourth-order system with two unknown parameters, namely N1 and N2. The

fourth-order system with two unknowns is properly defined by the six boundary
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conditions given by equations (4.9). This set of equations does not admit a trivial

solution unless N2 goes to zero as θ goes to zero. As such, this system is said to

be statically indeterminate. Commonly, solutions to equations (4.14) with (4.9) are

numerically determined. It will be shown later however, that for the circular and

semi-circular boundary conditions, closed-form, algebraic solutions for x , y and θ

are possible. For numerical purposes, it is convenient to integrate equation (4.14a).

After performing this operation, the system of equations becomes

M −N1y +N2x +Mo = 0 (4.15a)

M = EIθ′ (4.15b)

x ′ = cos θ (4.15c)

y ′ = sin θ (4.15d)

Equations (4.15) now consist of a third order system with three kinematic unknown

functions x , y , and θ along with three unknown constants N1, N2, and Mo. Here,

there are three kinematic unknowns, and two constraints, thus making the problem

properly determined using only one kinematic variable. Often in the literature, a

linearization is performed so that v ′ ≈ θ (Lacarbonara, 2013). However, this poses

difficulties for circular trajectories where the slope becomes infinite. Therefore, θ is

selected as the kinematic unknown.

To demonstrate the types of configurations the beam may exhibit, numerical

solutions to equation (4.15) are provided in Figure 4.2 for four different boundary

conditions. The rod is taken to have a uniform circular cross-section and the prop-

erties R = 0.005m, EI = 0.625Nm2, ρA = 0.25kg/m, and L = 1m. The solution
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Figure 4.2: General static configurations admitted by equations (4.15). The solu-
tions shown here have been numerically determined.

has been determined by numerically integrating the system (4.15) with boundary

conditions (4.9) using bvp4c in MATLABTM. This routine makes use of a finite

difference method with collocated polynomials that is suited for solving two-point

boundary value problems with unknown parameters. Solutions are sought by iter-

ating from an initial guess to the unknown functions and parameters; therefore, the

configurations shown in Figure 4.2 for the given boundary conditions may not nec-

essarily be unique. In the following section, a formulation is provided to determine

the natural frequencies and mode shapes for motions about static solutions found

from equations (4.15).
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4.1.4 Modal analysis about the pre-stressed configuration

The dynamical system is cast into incremental form by using the static solu-

tion, denoted with superscript o, for the reference configuration. The incremental

quantities are deviations from the static solution. The total displacement of the

centerline is denoted r̆ , so that r̆ = r o +u , where r o is the static solution obtained

in the previous section and u is the incremental displacement from the static config-

uration to the current configuration. Likewise, the total angular displacement may

be decomposed as θ̆ = θo + θ. It is mentioned that incremental displacements of

u and θ should tend to zero as s → 0 and s → L, since the static configuration is

prescribed at the boundaries. The unit vectors ao and bo are determined by the

static configuration, while the unit vectors a and b are associated with the current

configuration. Physical representations of these quantities are shown in Figure 4.3.

In a similar manner, let n = Na +Hb be the incremental force and M be the incre-

mental moment. It follows that n̆ = n +no is the total force, and M̆ = M +M o is

the total moment. After substituting the incremental expressions into the equations

(4.5), the governing equations of motion for the incremental quantities accounting

for pre-stress in the beam frame are given by (Lacarbonara, 2013)

∂sN − (µo + µ)H − µHo + f o ·∆a + f · a = (ρA∂ttu) · a (4.16a)

∂sH + (µo + µ)N + µN o + f o ·∆b + f · b = (ρA∂ttu) · b (4.16b)

∂sM +H + l = ρJ∂ttθ (4.16c)

where ∆a = a − ao and ∆b = b − bo. If no external forces or external moments

act on the rod, then f = o, f o = o, and l = 0. Equation (4.16c) is used to solve for
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Deformed Configuration

Static Configuration

Figure 4.3: Description of the variables used to describe the motion of the beam
about the pre-stressed configuration.

the incremental shear force H, and equation (4.16b) is used to solve for the force

N . These quantities are substituted into equation (4.16a) to obtain the incremental

dynamic equation of motion about the static configuration; that is,

∂s

{
1

µ+ µo

[
(ρA∂ttu) · b − ∂s (ρJ∂ttθ − ∂sM)− µN o

]}
− (µo + µ) (ρJ∂ttθ − ∂sM)− µHo = (ρA∂ttu) · a (4.17)

Governing Equations with Kinematic Variable θ

The variable θ is selected as the primary, kinematic unknown quantity, as

was done to find the static solution. In this formulation, the components of ŭ are

decomposed with respect to the inertial frame by using the relation u = ŭi + v̆ j .

It follows that ŭ and v̆ may be expressed as a function of θ from the unshearability
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and inextensionality assumptions, ∂sr̆ = a , resulting in

ŭ(s, t) = uo(s) + u(s, t) =

∫ s

0

[−1 + cos (θo(ζ) + θ(ζ))] dζ (4.18a)

v̆(s, t) = v o(s) + v(s, t) =

∫ s

0

sin (θo(ζ) + θ(ζ)) dζ. (4.18b)

The scalar form of equation (4.17) is

∂s

{
1

µ+ µo

[
−sin (θo + θ)ρA∂ttu+cos (θo + θ)ρA∂ttv−∂s (ρJ∂ttθ − ∂sM)−µN o

]}

− (µo + µ) (ρJ∂ttθ − ∂sM)− µHo = cos (θo + θ)ρA∂ttu + sin (θo + θ)ρA∂ttv .

(4.19)

On substituting equations (4.18a) and (4.18b) into equation (4.17), the following

nonlinear integro-partial differential equation of motion is obtained:

∂s

{
1

µ+ µo

[
− ρA

(
∂tt

∫ s

0

cos (θo + θ) dζ

)
sin (θo + θ)

+ ρA

(
∂tt

∫ s

0

sin (θo + θ) dζ

)
cos (θo + θ)− ∂s (ρJ∂ttθ − ∂sM)− µN o

]}

− (µo + µ) (ρJ∂ttθ − ∂sM)− µHo = ρA

(
∂tt

∫ s

0

cos (θo + θ) dζ

)
cos (θo + θ)

+ ρA

(
∂tt

∫ s

0

sin (θo + θ) dζ

)
sin (θo + θ) (4.20)

with boundary conditions

θ(0) = 0 (4.21a)

θ(L) = 0 (4.21b)

and constraints ∫ L

0

[−1 + cos (θo(ζ) + θ(ζ))] dζ = 0 (4.22a)∫ L

0

sin (θo(ζ) + θ(ζ)) dζ = 0. (4.22b)
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If M is only a function of θ′ and not of any higher-order derivatives, then

equation (4.19) is a fourth-order system that is properly posed with two initial

conditions for θ, and four spatial pieces of information given by boundary conditions

(4.21) and nonlinear constraints (4.22). In general, the rotary inertia ρJ can be

neglected since it is orders of magnitude smaller than the translational inertia terms

dominated by ρA, and on the fact that solutions are small. This is justified on the

basis that J is a function of the cross section radius to the fourth power, while the

area A is function of the radius to the second power. The incremental quantity

θ is assumed to be much smaller than the initial configuration θo and equation

(4.19) is linearized with respect to θ after using the transformation θ 7→ εθ and the

derivative df(εθ)
dε
|ε=0. Performing these operations leads to the following linear partial

integro-differential equation of motion:

∂s

{
1

µo

[
ρA

(
∂tt

∫ s

0

sin (θo)θ dζ

)
sin (θo) + ρA

(
∂tt

∫ s

0

cos (θo)θ dζ

)
cos (θo)

+ ∂ssM̂ − µN o

]}
+ µo∂sM̂ − µHo = −ρA

(
∂tt

∫ s

0

sin (θo)θ dζ

)
cos (θo)

+ ρA

(
∂tt

∫ s

0

cos (θo)θ dζ

)
sin (θo). (4.23)

In equation (4.23), M̂ is the linearized moment or couple, which is prescribed

through the constitutive relations. The boundary conditions are given by equation

(4.21) and the linearized constraints are

∫ L

0

sin (θo(ζ)) · θ(ζ) dζ = 0 (4.24a)∫ L

0

cos (θo(ζ)) · θ(ζ) dζ = 0. (4.24b)
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Although the system of equations given by equations (4.21), (4.23) and (4.24) is

linear, finding an exact or approximate solutions poses several challenges. Equation

(4.23) may be cast into weak-form, but trial functions should be selected that satisfy

the mechanical data given by equations (4.21) and (4.24).

Equation of Motion with Kinematic Variable ū

To circumvent the system of partial integro-differential equations, a different

kinematic unknown is selected at the primary variable. Here, the incremental dis-

placement is defined with respect to the static configuration, and the displacement

field is expressed by

u = ūao + v̄bo. (4.25)

If the amplitude of oscillation about the static equilibrium is small, the following

dot products can be approximated as

ao · a ≈ 1, ao · b ≈ −θ,

bo · a ≈ θ, bo · b ≈ 1 . (4.26)

Equations (4.25) and (4.26) are substituted into equation (4.17) in order to obtain

the governing equation

∂s

{
1

µo + µ

[
ρA∂tt(v̄ − θū)− ∂s(ρJ∂ttθ − ∂sM)− µN o

]}

− (µo + µ)(ρJ∂ttθ − ∂sM)− µHo = ρA∂tt(ū + θv̄). (4.27)

Furthermore, with the description of the displacement field while imposing the un-

shearability assumption, it follows that the total stretch can be obtained as (Lacar-
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bonara, 2013)

ν̆ =
[
(νo + ūs − µov̄)2 + (v̄s + µoū)2

]1/2
. (4.28)

Similarly, the incremental angular displacement θ is then determined as

θ = arctan

(
v̄s + µoū

νo + ūs − µov̄

)
. (4.29)

Under the assumption of small oscillations about the static equilibrium, and con-

sidering an inextensible beam (ν̆ = 1), equations (4.28) and (4.29) can be linearized

to obtain

v̄ ≈ 1

µo
∂sū (4.30a)

θ ≈ ∂sv̄ + µoū. (4.30b)

It follows that the curvature may then be approximated in the form

µ ≈ ∂s

[
∂s

(
1

µo
∂sū

)
+ µoū

]
. (4.31)

On substituting equation (4.30) into equation (4.27), the following differential equa-

tion is obtained

∂s

{
1

µo + µ

[
ρA∂tt

(
1

µo
∂sū − ∂s

(
1

µo
∂sū

)
ū − µoū2

)
− µN o

− ∂s
(
ρJ∂tt

(
∂s

( 1

µo
∂sū
)

+ µoū

)
− ∂sM

)]}

− (µo + µ)

{
ρJ∂tt

[
∂s

(
1

µo
∂sū

)
+ µoū

]
− ∂sM

}
− µHo =

ρA∂tt

[
ū +

1

µo
(∂sū)∂s

(
1

µo
∂sū

)
+ ū(∂sū)

]
. (4.32)

If the material constitutive law that governs M is a function of µ, and no other

higher spatial derivatives are involved, then equation (4.32) is a sixth-order par-

tial differential equation which is properly defined with two initial conditions and

105



six boundary conditions. The boundary conditions may be determined from the

kinematic approximations (4.30). They are given by

ū(s = 0) = 0, ū(s = L) = 0

∂sū(s = 0) = 0, ∂sū(s = L) = 0

∂ssū(s = 0) = 0, ∂ssū(s = L) = 0 (4.33)

Linearizing equation (4.32) as discussed previously, the following linear, partial dif-

ferential equation of motion is obtained.

∂s

{
1

µo

[
ρA∂tt

(
1

µo
∂sū

)
− ∂s

[
∂s

(
1

µo
∂sū

)
+ µoū

]
N o

− ∂s
(
ρJ∂tt

(
∂s

( 1

µo
∂sū
)

+ µoū

)
− ∂sM̂

)]}

−µo
(
ρJ∂tt

(
∂s

( 1

µo
∂sū
)

+µoū

)
−∂sM̂

)
−∂s

[
∂s

(
1

µo
∂sū

)
+ µoū

]
Ho = ρA∂ttū.

(4.34)

In order to determine the natural frequencies and mode shapes, the solution to

equation (4.34) is assumed to be separable in space and time, with periodic temporal

amplitude; that is,

ū(s, t) = U(s)eiωt. (4.35)

After substituting equation (4.35) into equation (4.34), assuming Bernoulli-Euler

constitutive relations with constant EI, and neglecting rotary inertia (ρJ = 0), the
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following ordinary differential equation is obtained.

d

ds

{
1

µo

[
−ρAω2

µo
dU

ds
− d

ds

[
d

ds

(
1

µo
dU

ds

)
+ µoU

]
N o+EI

d3

ds3

[
d

ds

(
1

µo
dU

ds

)
+ µoU

] ]}

+ µoEI
d2

ds2

[
d

ds

(
1

µo
dU

ds

)
+ µoU

]
− d

ds

[
d

ds

(
1

µo
dU

ds

)
+ µoU

]
Ho = −ρAω2U

(4.36)

Equation (4.36) is a sixth-order differential eigenvalue problem with unknown pa-

rameter ω, and six boundary conditions given by (4.33). Solutions to equation

(4.36) are numerically determined in MATLAB by using the function bvp4c. Since

equation (4.36) represents a homogeneous eigenvalue problem, the amplitude cannot

be uniquely determined. In the numerical scheme, a moment proportional to the

fourth-spatial derivative of U is prescribed to make the amplitude unique.

4.2 Experimental studies

The modeling presented earlier is validated in this section with the experimen-

tal arrangement, which is shown in Figure 4.4. A schematic of the experiment with

coordinates is provided in Figure 4.5. The beam is made from aluminum (6061-T6)

material, has a length of 1.506m and a circular cross-section with a 1.59mm radius.

The top end of the beam (taken as the origin) is vertically secured at one end by

using a three-jaw chuck. The opposite end of the rod (represented by coordinates

xL, yL and θL) is secured horizontally with a clamping mechanism, such that the

angle of the rod between each end is 900. A complete list of experimental parame-

ters along with their values is provided in Table 4.1. The clamping mechanism is

mounted onto a linear bearing, which is actuated with an electro-dynamic shaker.
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Figure 4.4: (a) Experimental arrangement used to determine the natural frequencies
of a pre-stressed beam. (b) Detailed view of the bottom assembly.

The clamping mechanism is much stiffer than the beam, and is assumed to be rigid.

Since the motions of the rigid clamping mechanism are prescribed, its inertial prop-

erties are not included in the modeling. Strain gages are mounted at both ends of

the rod, along with an accelerometer that is mounted onto the clamping mechanism.

The time histories of the strain gages and accelerometer are recorded by using a data

acquisition system and personal computer. In order to determine the natural fre-

quencies of the beam, white Gaussian noise is input into the shaker while the strain

gage and accelerometer responses are recorded. Discrete Fourier transforms are per-

formed on the strain and acceleration data that were collected over a period of 600

seconds at a sampling frequency of 5kHz. The resulting Fourier-transforms of the

strain and acceleration responses were divided in order to obtain the strain response

to the acceleration input frequency-response. The damped natural frequencies of

the structure were then determined from the response spectrum, which is provided

in Figure 4.6.

Once the damped natural frequencies were determined, the associated mode
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Cross Section B-B:

(a) Initial Configuation (b) Prestressed Configuation

Figure 4.5: Schematic of the experimental arrangement used to study the dynamics
of slender structures.

shapes were extracted with high-speed videography. The beam was excited at the

desired frequency, and the response was recorded at 3000 frames per second (FPS)

with a resolution of 1280×800 pixels. Each frame of the video was later post-

processed in MATLAB to determine the displacement time histories of the beam

by using a procedure that is briefly outlined here. First, an image is captured of

the experimental arrangement without the beam, which is referred to as the back-

ground image in this section. In each frame of the video, the beam is accentuated

by performing an image subtraction with the background image. The edges of the

beam structure were determined with a gradient-based edge detection technique.

Note that the mid-span of the beam was obstructed by a post which is necessary

for the experimental apparatus. This obstructed portion of the beam structure is

determined by converting the left and right-hand portions of the structure into polar

coordinates, and curve fitting the result with a polynomial in the polar domain. The

static configuration was fit with a fifth-order polynomial, while a sixth-order poly-

nomial was chosen for the first mode. The order of the polynomial was increased by
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one for each higher mode. The data were converted back into Cartesian coordinates

and the pixel information was then converted into units of meters. In Figure 4.7,

one image from the high-speed video with the tracked position of the beam (in red

dots) determined by the image processing algorithm is shown.

4.3 Comparison of experimental results, theory, and finite element

analysis

The list of natural frequencies obtained for the first eight modes of vibration

from the data shown in Figure 4.6 are provided in Table 4.2 along with the pre-

dicted values from the model and the finite element method software ANSYSTM.

In the finite element implementation, 500 quadratic beam elements (BEAM189)

were selected to discretize the structure. The nonlinear geometry (NLGEOM) op-

tion was also activated. This option setting allows for large deformations, by using

an updated corotational frame as outlined by Rankin and Brogan (1986). After

the static configuration is determined, the results are used for an eigen-analysis with

the PSTRESS option active to account for static pre-stress. The natural frequencies

were determined by using a Block-Lanczos algorithm. It is noted that a convergence

study was performed, and the natural frequencies calculated with 500 elements had

less than 0.1% difference when the analysis was performed with 1000 elements. In

the constitutive relation used in the model, the resultant couple is proportional to the

curvature, through the Bernoulli-Euler constitutive relation M = EIµ. This consti-

tutive relation cannot be implemented in this finite element formulation; therefore a
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Figure 4.6: Normalized strain-acceleration response for the curved structure shown
in Figure 4.4.

linear-isotropic material was chosen as the constitutive relation with properties that

are provided in Table 4.1. The three assumptions of unshearability, inextensional-

ity, and negligible rotary inertia have not been implemented in the finite element

formulation; rather, they are only considered in the model. The experimental re-

sults, model and finite element predictions are in good agreement. The model and

finite element predictions for the first natural frequency are below the experimental

natural frequency by approximately 2%. For the remaining modes, the errors for

both model and finite elements remain less than 2%. However, it is mentioned that

this trend would not continue for all higher mode numbers and frequencies, since

the effects of centerline or axial stretching will decrease certain natural frequencies.

The effect of centerline stretching has not been considered in the current modeling

since the body is assumed to be inextensible.
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Static Configuration

Current Configuration

Figure 4.7: One frame of the video with the backlit structure in black, the static
configuration (dashed line), and the estimated current configuration (dots) from the
image processing.

Table 4.1: Experimental dimensions and parameters used in the model and finite

element analysis. Superscript asterisks (*) denote tabulated parameters, while the

remaining parameters and dimensions are measured quantities.

Parameter Symbol Value Units

Modulus of Elasticity* E 70 GPa

Possion’s Ratio* (for ANSYS) - 0.33 [-]

Mass Density* ρ 2700 Kg/m3

Length of Rod L 1.506 m

Radius of Rod R 1.59 mm

x Location of Rod End xL 1.09 m

y Location of Rod End yL 0.833 m

Angle of Rod End about k θL π/2 rad
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Table 4.2: Experimentally observed natural frequencies of the curved structure com-

pared with predictions from the model and finite element model.

Mode
Experiment Theory Difference FEA Difference

[Hz] [Hz] [%] [Hz] [%]

1 15.81 15.55 −1.64 16.08 1.71

2 29.23 29.25 0.07 29.79 1.92

3 53.81 54.21 0.74 54.69 1.64

4 78.64 79.64 1.27 80.03 1.77

5 114.0 115.6 1.40 116.0 1.76

6 150.3 152.4 1.40 152.6 1.55

7 196.2 199.6 1.73 199.8 1.83

8 243.4 247.7 1.77 247.5 1.67

The static configuration and the first three mode shapes of the experiment

are compared in Figure 4.8, where the experimental mode shapes and static con-

figuration have been determined by using the image processing algorithm discussed

previously. The displacements of the fourth and higher modes are small, and track-

ing the displacement of the string with the image processing algorithm became

unreliable. The experimentally determined mode shapes, model and finite element

predictions are in good agreement for the static configuration shown in Figure 4.8(a).

There are some discrepancies between the experimentally observed mode shapes and

predictions. These discrepancies may originate from a variety of different sources.

For instance, the physical beam also has some intrinsic damping, which was not

considered in the modeling and analysis, and perfectly clamped-clamped bound-

ary conditions are difficult to realize experimentally. Furthermore, differences may

be attributed to errors in the measurement, since optical lenses can distort planar

objects.

113



0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

x
[m

]

y [m]

(a) Static Configuration

 

 

Experiment

Model

FEA

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

x
[m

]

y [m]

(b) Mode 1

 

 

Static

Experiment

Model

FEA

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

x
[m

]

y [m]

(c) Mode 2

 

 

Static

Experiment

Model

FEA

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

x
[m

]

y [m]

(d) Mode 3

 

 

Static

Experiment

Model

FEA

Figure 4.8: Static configuration and mode shapes from the experiments (black dots),
the model formulation (solid black line) and finite element results. (a) Static con-
figuration, (b) mode 1, (c) mode 2, and (d) mode 3.
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4.4 Summary

Within this chapter, a geometrically exact modeling approach has been out-

lined in order to predict the natural frequencies of slender beams with prescribed

boundary conditions. The configurations of the beam are able to undergo large de-

formations with variable curvature. The boundary conditions considered here allow

for a broader class of static configurations for the deformed rod than what has previ-

ously been studied. The predictions from the model have been validated by using an

experimental apparatus. Comparisons have also been made with predictions from

nonlinear finite element software.
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Chapter 5

Summary of Contributions and Recommendations for Future Studies

5.1 Coupled motions in rotor systems

Contributions

Coupled torsional and lateral motions of slender structures were explored in

Chapters 2 and 3 with emphasis on slender rotating structures. In Chapter 2, the

modified Jeffcott rotor with continuous stator contact and torsional deformations

was studied for constant whirling motions. A reduced-order equation was derived,

with the aim of capturing the torsional motions for a constant rotor whirl rate and

amplitude. Particular attention was given to torsional vibrations while a rotor was in

continuous contact with a stator. Analysis of this reduced-order equation indicates

the presence of a centrifugal stiffening effect on the torsional motion, and reveals

that torsional vibrations are unlikely to exist during forward synchronous whirl with

stator contact. If torsional oscillations are present during forward synchronous whirl,

they are likely excited through a Hopf instability. Furthermore, the reduced-order

equation was analyzed for both “low-speed” and “high-speed” whirling motions.

During high-speed backward whirling, analysis indicates that high-frequency forcing

effectively acts to smoothen out discontinuous friction forces arising from stator

contact and contributes to a centrifugal stiffening effect on the slow scale motion.
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In Chapter 3, slender rotating structures were investigated experimentally, nu-

merically and analytically. The experimental arrangement was able to demonstrate

characteristic whirling motions, and the torsion response was studied for whirling

motions during continuous stator contact. A distributed-parameter structural model

along with a rotor-stator force-interaction model was developed with the intent of

capturing the phenomena observed in the experimental arrangement. Comparisons

were made between the torsion response during whirling for the experiment and the

model. It was shown that the numerical model was able to predict the strongest re-

sponse components of the torsion response. Furthermore, a single degree-of-freedom

reduced-order model was derived that gave insight into the physics and origins of

the components observed in the frequency of the torsion response. Numerical sim-

ulations of this reduced-order equation were in good agreement with experimental

observations and numerical simulations of the higher-order system. During forward

whirling, analysis showed an autonomous forcing component at twice the drive fre-

quency for forward whirling originating from gyroscopic coupled terms with lateral

motions, as well as the centrifugal stiffening effect found in the simplified system in

Chapter 2. During backward whirling motion, an external and parametric excitation

component exists at the whirl speed plus the drive speed.

Future studies

The coupling between torsional and lateral motions was explored in Chapters

2 and 3 under the assumption that only one mode of vibration contributed to the
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displacement in each lateral and torsional direction. The effects of coupling between

higher-order lateral and torsional vibration modes have yet to be addressed. When

combination frequencies of higher-order modes coincide with a lower-mode natural

frequency, certain resonances may occur (Anderson, Nayfeh, and Balachandran,

1996). Additionally, few researchers have studied the effects of axial, torsional, and

later coupling in slender structures. The inclusion of high-order modes and axial

motions into the coupling of the structure is still an open area of research that is

not yet fully understood. The effects of these two areas become more pronounced

as the aspect ratio of the structure increases further.

In both Chapters 2 and 3, the rotor was assumed to whirl at a constant

speed. If the rotor does not whirl at a constant rate (for instance, due to stick-

slip vibrations), then the torsion response will change. The high-frequency analysis

presented in Chapter 2 can be extended to include the time scales of the lateral

motions. However, because of the large number of states of the system, numerical

methods should be employed.

During forward whirling motions, the point of contact on the rotor is constant

for a fixed drive speed. However, during backward whirling the location of the point

of contact moves to different locations along the periphery of the rotor. This type

of physical behavior may be suitable for hybrid dynamical models. These types of

models have not been given large consideration in the area of rotor dynamics.
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5.2 Geometrically exact structures

Contributions

In Chapter 4 of this dissertation, the static configuration and dynamic modal

analysis of geometrically exact beams subject to large pre-stress and curvature were

studied experimentally, numerically, and analytically. The boundary conditions for

the beams under consideration within Chapter 4 allow for a broad class of static

configurations in comparison to what has previously been presented in the litera-

ture. The static configuration, natural frequencies, and mode shapes predicted by

the theory were verified with an experimental arrangement. Predictions of these

quantities were also compared to a nonlinear finite element formulation. The dif-

ferences between the predicted natural frequencies for the theoretical model, finite

elements, and experiments were less than 2%. Furthermore, under special boundary

conditions, the governing beam equations presented in Chapter 4 may be cast into

the classical equations for circular arches as was shown in Appendix D. For this

special case of semi-circular and circular configurations, a closed form solution for

the static configuration, mode shapes and natural frequencies are possible.

Future studies

The three main assumptions employed within the geometrically exact beam

model presented in Chapter 4 are inextensibility (i.e., no centerline stretching or

contraction), unshearability, and negligible rotary inertia. For the slender struc-

tures and the boundary conditions considered here, these assumptions are justified
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and reasonable; however, for smaller aspect ratios and other boundary conditions,

these assumptions may no longer be valid. For instance, if the beam or rod has

boundary conditions which exert tension throughout the structure, then the effects

of centerline stretching play a large role in the system response. Additionally, some

researchers have shown that the effects of centerline stretching can lower the nat-

ural frequencies of higher-order modes in ring and arch structures. This centerline

stretching effect has not yet been studied for the boundary conditions presented

here. In regard to shear and rotary inertia, as the aspect ratio of the beam de-

creases (i.e., as the length to diameter ratio becomes smaller), these two effects will

have a larger impact on the natural frequencies of the system. Although, the contri-

butions of these three effects have been studied for arches and rings, few efforts have

studied their effects for beams with large pre-stress and variable curvature, such as

the beams considered in Chapter 4. Additionally, in scenarios where lumped masses

are placed along the curved structure, such as stabilizer collars used in horizontal

drilling, the rotary inertia effects will become more pronounced. The validity of these

three assumptions for the boundary conditions considered within this dissertation

is still an unaddressed area of research.
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Appendix A

Derivation of 1-2-3 Euler Angles and Angular Velocity

The relationship between the orientation of the local coordinate frame to the

fixed coordinate frame in Section 3.3.1 is given by the use of 1-2-3 Euler angles as

follows. In order to transform from the local frame to the fixed frame, the fixed

frame is rotated an amount β about the i direction, yielding an intermediate frame

i1j1k1. The 3× 3 special orthogonal matrix for this transformation is
i1

j1

k1

 = [Rβ]


i

j

k

 where [Rβ] =

 1 0 0

0 Cβ −Sβ
0 Sβ Cβ

 (A.1)

The notations C(·) and S(·) denote the sin (·) and cos (·) functions, respectively.

Likewise, the i1j1k1 frame is then rotated by ψ about the j1 direction to give the

second intermediate frame i2j2k2. This transformation is given by the following

matrix operation
i2

j2

k2

 = [Rψ]


i1

j1

k1

 where [Rψ] =

 Cψ 0 Sψ

0 1 0

−Sψ 0 Cψ

 (A.2)

Last, a rotation of α about the k2 direction gives the orientation of the local coor-

dinate frame i3j3k3. This rotation is given by
i3

j3

k3

 = [Rα]


i2

j2

k2

 where [Rα] =

 Cα Sα 0

−Sα Cα 0

0 0 1

 (A.3)
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Therefore, the total transformation from the ijk frame to the i3j3k3 frame is then

the multiplication of each individual rotation as
i3

j3

k3

 = [Rα] [Rψ] [Rβ]


i

j

k

 (A.4)

In contrast, the transformation from i3j3k3 frame to the ijk frame is then
i

j

k

 = ([Rα] [Rψ] [Rβ])T


i3

j3

k3

 = [Rβ]T [Rψ]T [Rα]T


i3

j3

k3

 (A.5)

The superscript T denotes the matrix transpose operation. In order to generate an

expression for the kinetic energy, the angular velocity of the i3j3k3 frame is needed.

The angular velocity of each of the intermediate frames is

ω = β̇i + ψ̇j1 + α̇k2 (A.6)

Figure A.1: Euler angles used to express the angular velocity of the structure.
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Transforming the angular velocity into the x3y3z3 coordinate frame, by using the

rows of equations (A.1), (A.2), and (A.3) leads to

ω = ω1i3 + ω2j3 + ωk3

= (β̇ − α̇Sψ)i3 + (ψ̇Cβ − α̇Sβ)j3 + (ψ̇Sβ + α̇Cβ)k3 (A.7)
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Appendix B

Kinetic Energy for Coupled Bending and Torsion Model

A schematic, which depicts the rotating string and disk assembly is given in

Fig. 3.7. Let the fixed xyz coordinate frame associated with mutually orthogonal

unit vectors ijk describe the undeformed geometry of the initially straight string.

Additionally, let x3y3z3 be the coordinate frame in the deformed configuration with

mutually orthogonal unit vectors i3j3k3 whose origin is located along the centerline

of the string. The position vector from the origin of the xyz frame, point O, to an

arbitrary material point on the cross-section of the string in the deformed configu-

ration is given by the summation of the position vector from point O to the center

of the shaft, plus the distance from the centerline to the material point, which is

written as

rP/O = rC/O + rP/C (B.1)

where

rC/O = (x+ u(x, t))i + v(x, t)j + w(x, t)k (B.2)

rP/C = y3j3 + z3k3 (B.3)

The scalar quantities u(x, t), v(x, t), and w(x, t) are the displacements of the cen-

terline of the string along the i, j, and k directions, respectively. Next, assuming an

initially straight string in the xyz frame and also using Bernoulli-Euler beam theory

(i.e., the centerline of the string is always normal to the cross-sectional area and
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neglecting shear), the following relations between the initial and local frame can be

shown.

y3 = y, z3 = z (B.4)

On substituting equations (B.2), (B.3), and (B.4) into (B.1), the position vector

from the origin of the xyz frame to an arbitrary material point is then given by

rC/O = (x+ u(x, t))i + v(x, t)j + w(x, t)k + yj3 + zk3 (B.5)

The velocity of an the material point may then be expressed as

∂

∂t
rP/O ≡ N ∂

∂t
rP/O = N ∂

∂t
rC/O + L ∂

∂t
rP/C + ω × rP/C (B.6)

In the above expression, the pre-superscript N denotes the time derivative in the

inertial frame xyz and the pre-superscript L denotes the time derivative in the local

frame x3y3z3, and ω = ω1i3+ω2j3+ω3k3 is the angular velocity vector; the different

components are determined through a series of 1-2-3 Euler angles given in Appendix

A. Upon substitution into equation (B.6), the result is

∂

∂t
rP/O =


u(x, t) · i
v(x, t) · j
w(x, t) · k

+


0 · i3
0 · j3
0 · k3

+


ω1 · i3
ω2 · j3
ω3 · k3

×


0 · i3
y · j3
z · k3

 (B.7)

=


u(x, t) · i
v(x, t) · j
w(x, t) · k

+


(zω2 − yω3) · i3
−zω1 · j3
yω1 · k3

 (B.8)

The kinetic energy of the entire string is then the kinetic energy of all material

points on the string, and this energy can be expressed as the following integral

T =
1

2

∫
V ol

ρ
(
rP/O,t ·rP/O,t

)
dV ol (B.9)

=
1

2

∫ L

0

∫
A

ρ
(
rP/O,t ·rP/O,t

)
dAdx (B.10)
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In the above expression, ρ is the mass density of the string, A is the cross sectional

area, and V ol is the volume of the string. It proves useful to cast equation (B.10)

into matrix-vector notation as follows:

T =
1

2

∫ L

0

∫
A

ρ


u̇ · i
v̇ · j
ẇ · k


T  1 0 0

0 1 0

0 0 1




u̇ · i
v̇ · j
ẇ · k

 dAdx+ (B.11)

1

2

∫ L

0

∫
A

ρ


ω1 · i3
ω2 · j3
ω3 · k3


T  y2 + z2 0 0

0 z2 −zy
0 −zy y2




ω1 · i3
ω2 · j3
ω3 · k3

 dAdx (B.12)

The explicit functional dependence on x and t have been dropped for notational

convenience. Additionally, the quantity

I = ρ

 y2 + z2 0 0

0 z2 −zy
0 −zy y2

 (B.13)

Figure B.1: Segment of the shaft in both the undeformed and deformed configura-

tion.
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is recognized as the mass moment of inertia tensor of the cross-sectional area. If the

local coordinate frame aligns with the principal axes of inertia of the string, then

the off diagonal quantities
∫
A
zy dA = 0. Also,

Io =

∫
A

(z2 + y2) dA (B.14)

and for a symmetric cross-sectional area

I =

∫
A

y2 dA =

∫
A

z2 dA (B.15)

In the above two expressions Io is the polar moment of inertia and I is the moment

of inertia about the z and y axes, which is referred to as the diametral moment of

inertia. Performing the necessary matrix operations the scalar quantity (B.12) may

be written as

Tshaft =
1

2

∫ L

0

[
ρA(u̇2 + v̇2 + ẇ2) + ρIoω

2
1 + ρI(ω2

2 + ω2
3)
]
dx (B.16)
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Appendix C

Coefficients for Coupled Bending and Torsional Model

The coefficients used in equation (3.19) are as follows:

a1 =
[
(M +m)φ2

v + IDφ
′2
v

]∣∣
x=L

(C.1)

a2 = 2ζb
√
a1a4 (C.2)

a3 = IDoφ
′
vφ
′
w|x=L (C.3)

a4 =

∫ L

0

(EIφ′′2v − Sφ′′vφv) dx+ Sφ′vφv|x=L (C.4)

a5 = IDoφ
′
vφθφ

′
w|x=L (C.5)

The coefficients that appear in equation (3.20) are given by

b1 =
[
(M +m)φ2

w + IDφ
′2
w

]∣∣
x=L

(C.6)

b2 = 2ζb
√
b1b4 (C.7)

b3 = −IDoφ′wφ′v|x=L (C.8)

b4 =

∫ L

0

(EIφ′′2w − Sφ′′wφw) dx+ Sφ′wφw|x=L (C.9)

b5 = −IDoφ′wφθφ′v|x=L (C.10)

The coefficients in equation (3.21) take the form

c1 = (IDo +me2)φ2
θ

∣∣
x=L

(C.11)

c2 = 2ζt
√
c1c3 (C.12)
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c3 = GIo

∫ L

0

φ′2θ dx (C.13)

c4 = IDoφθφ
′
vφ
′
w|x=L (C.14)
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Appendix D

Modal Analysis of Pre-stressed Semi-circular Configurations

Within this appendix, a special case is considered where an initially straight

beam is bent to form various semi-circular configurations. The natural frequencies

are then determined about this semi-circular static configuration. First, consider

an initially straight undeformed and unstressed rod, that sits along the i direction

with arclength s ∈ [0, L]. In order to realize the semi-circular configuration, the

boundary conditions are selected to be

r(0) = 0i + 0j (D.1a)

θ(0) = 0 (D.1b)

r(L) =
L

2πξ
sin (2πξ) i +

L

2πξ
[1− cos (2πξ)] j (D.1c)

θ(L) = 2πξ. (D.1d)

Here, ξ ∈ (0, 1] is a constant and determines the formation of the circle. Represen-

tative curves are as follows: ξ = 1/4 represents a quarter-circle, ξ = 1/2 represents

a half-circle, and ξ = 1 represents a complete circle. Note that when ξ = 0, the

initially straight rod is subject to fixed-fixed boundary conditions. Since the rod is

assumed to be inextensible, then it cannot vibrate.
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Static Analysis

A solution which satisfies equations (4.15) and the boundary conditions given

by equations (D.1) is θ = 2πξs
L

. This form for the angle has been heuristically chosen

and satisfies the governing equation as well as the boundary conditions. After

substitution into equation (4.15), the Lagrange Multipliers, namely the reaction

forces N1 and N2, become zero. Therefore, only the constant couple Mo = −EI2πξ
L

exists throughout the rod. Solving for the position of the centerline of the rod by

integrating the second and third equations of (4.15), leads to the total solution

θ =
2πξ

L
s (D.2a)

x =
L

2πξ
sin

(
2πξ

L
s

)
(D.2b)

y =
L

2πξ

[
1− cos

(
2πξ

L
s

)]
. (D.2c)

The static configuration of a rod for ξ = 1/4, 1/2, 3/4, and 1 are shown in Fig.

D.1. In Figure D.1, the analytical solution is given by (D.2), while the numerical

solutions have been determined from equations (4.36) and (D.1) by using the scheme

mentioned in Section 4.1.3. The static configuration of the curved beam was also

determined with finite elements as described in Section 4.3. In the following sub-

section, the natural frequencies and mode shapes of the structure about these static

configurations are presented.

Modal Analysis: Natural Frequencies and Mode Shapes

As mentioned in the previous subsection, for semi-circular and circular config-

urations, the reaction forces N o and Ho are zero and the curvature µo is a constant.
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Figure D.1: Four different configurations for the semi-circle parameter ξ that satisfies
equations (4.15) with boundary conditions (D.1). The analytical solution is given
by equations (D.2), and numerical solutions are obtained through direct integration
of equations (4.15) with boundary conditions (D.1).

With this in mind, and in consonance with the earlier assumption of Bernoulli-Euler

constitutive relations, equation (4.34) reduces to the following form

ρA∂ttū −
ρA

µ2
o

∂ttssū − µ2
oEI∂ssū − 2EI∂IV

s ū − EI

µ2
o

∂VI
s ū = 0 . (D.3)

It is noted that the superscript o on the static curvature has been moved to a

subscript for notational convenience, and the quantities ∂IV
s and ∂VI

s denote the

fourth and sixth partial derivatives with respect to s, respectively. This sixth-order

differential equation is properly defined for two initial conditions in time and the

six boundary conditions given by equations (4.33). The solution to equation (D.3)

is assumed to be separable in space and time and decomposable as ū = eiωtU(s).

After substituting the assumed solution into (D.3), the following ordinary differential
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equation is obtained

d6U

ds6
+ 2µ2

o

d4U

ds4
+

(
µ4
o −

ρAω2

EI

)
d2U

ds2
+
µ2
oρAω

2

EI
U = 0 . (D.4)

A note of historical context is briefly addressed here. Equation (D.4) repre-

sents the spatial displacement U from the static, circular configuration as a function

of the initial arc length s. Taking advantage of the fact that the static configura-

tion is circular, the system (D.4) can be transformed into polar coordinates (with

independent angular variable α) through the transformation α = µos. After this

transformation, and noting that the radius of the circular static configuration is

Ro = 1/µo, equation (D.4) may be expressed as

d6U

dα6
+ 2

d4U

dα4
+

(
1− ρAR4

oω
2

EI

)
d2U

dα2
+
ρAR4

oω
2

EI
U = 0. (D.5)

Equation (D.5) is the classical differential equation used to determine the natural

frequencies and mode shapes of unshearable, inextensible rings found in textbooks

such as that by Love (1944). However, it is noted that the solutions of equation

(D.4) are not, in general, the same as those exhibited by that of the classical problem

of free-vibration of a ring, given by (D.5). This difference can be discerned from

the roots of the characteristic polynomial, and implementation of the boundary

conditions.

The remaining analysis is carried out by using the initial arc length s as the

independent variable. The system (D.4) has an algebraic equivalent solution of the

exponential form

U(s) = C1e
λ1s + C2e

λ2s + C3e
λ3s + C4e

λ4s + C5e
λ5s + C6e

λ6s. (D.6)
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The eigenvalues, denoted by λi (for i = 1, 2, . . . 6), are determined through the

characteristic polynomial

σ3 + 2aσ2 + (a2 − b)σ + ab = 0

λ = ±√σ (D.7)

where

a = µ2
o, and b =

ρAω2

EI
. (D.8)

The quantity a physically represents the square of the initial curvature and the

quantity b is the eigenvalue of the classic linear beam equation. Equation (D.4)

represents a differential eigenvalue problem, with six unknown coefficients Ci (for

i = 1, 2, . . . 6), and one unknown parameter, namely the natural frequency ω. Five

of the unknown coefficients are obtained by implementing the boundary conditions

given by equations (4.33). The sixth boundary condition of (4.33) is then used

to find the system characteristic equation. The roots of the system characteristic

equation are used to find the natural frequencies ω. Since the system (D.4) is homo-

geneous, the amplitude cannot be uniquely determined and the last coefficient may

be selected arbitrarily or through a normalization process. Algebraic forms of the

coefficients Ci are very large and must either be solved for by symbolic computation

(e.g. MathematicaTM) or through numerical methods.

The first seven natural frequencies determined for four different semi-circular

and circular trajectories (ξ = 1/4, 1/2, 3/4, and 1) are provided in Table D.1.

The corresponding mode shapes are provided in Fig. D.2. The rod is assumed
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to have a uniform circular cross-section and properties such that R = 0.005 m,

L = 1 m, EI = 0.625 Nm2, and ρA = 0.25 kg/m, which are the same values as that

chosen for the rod presented in Section 4.1.3. The natural frequencies predicted by

the model are also compared to results obtained from the finite element software

ANSYS, as described in Section 4.3. Here, 2000 beam elements are used to discretize

the structure. The difference in the predicted natural frequencies in going from

1000 to 2000 elements was found to be negligible. The modeling predictions are

sufficient for predicting the lower natural frequencies of the structures; however, the

model cannot predict certain higher-order frequencies and modes with coupled axial-

bending motions. The formulation outlined here cannot predict these frequencies

because of the imposed inextensionality assumption. This is highlighted in Table

D.1, where the difference between the model predictions and FEA for the mode 6

and ξ = 1/4 is higher in comparison to the other predictions. Furthermore, between

mode 6 and mode 7, the FEA predicted another natural frequency at 157.64 Hz.

As observed in ANSYS, this mode exhibits strong axial-bending coupling, and has

been omitted from Table D.1. For slender structures, the formulation is capable of

predicting the lower-order natural frequencies and mode shapes.
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Figure D.2: Comparisons of the mode shapes determined from the model and the
finite element modeling. Thin dashed lines represent the static configuration. Solid
black lines are the mode shapes determined by the model, given by the differential
eigenvalue problem (D.4) and spatial solution, equation (D.6).
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Table D.1: Natural frequencies for different semi-circular configurations predicted

by the model and found with finite elements. *The finite element analysis also

includes a prediction of a natural frequency at 157.64 Hz, which is omitted because

it is associated with a combination of bending and centerline stretching.

ξ = 1/4 ξ = 1/2 ξ = 3/4 ξ = 1

Mode
Theory FEA Theory FEA Theory FEA Theory FEA
[Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz]

1 14.05 14.02 10.88 10.87 7.195 7.780 5.627 5.168
2 26.86 26.68 23.97 23.88 20.03 19.97 15.85 15.80
3 48.58 48.37 44.51 44.30 39.35 39.16 33.62 33.47
4 71.67 70.59 68.36 67.83 63.36 62.93 57.17 56.80
5 103.1 102.3 98.84 98.00 93.13 92.34 86.33 85.60
6 136.3 *129.1 132.8 131.0 127.4 126.0 120.5 119.2
7 177.6 175.4 173.2 170.8 167.3 165.0 160.0 157.9
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Appendix E

ANSYS Input File for Experimental Parameters
!Nick Vlajic

!April 23, 2013

!Modal anlaysis of a prestress curved beam in ANSYS using beam

!elements.

!Finish

!/clear

fileNameToSave = ’CurvedExperiment’

/filname,fileNameToSave

/PREP7

Pi = acos(-1)

YoungsModulus = 70e9 !Young’s modulus of elasticity [Pa]

PoissonsRatio = 0.33 !Possion’s ratio [-]

Radius = 0.001588 ![meters]

Length = 1.5057 ![meters]

zRotation = Pi/2 ![radians]

xDisp = -0.4157 ![meters]

yDisp = 0.833 ![meters]

zDisp = 0 ![meters]

NumberOfModes = 16 ![-]

ET,1,BEAM189 !3 node beam element

SECTYPE, 1, BEAM, CSOLID, , 0 !Defining beam cross-section

SECOFFSET, CENT !Defining beam cross-section

SECDATA,Radius,0,0,0,0,0,0,0,0,0,0,0 !Defining beam cross-section

MPTEMP,,,,,,,, !Defining material properties

MPTEMP,1,0 !Defining material properties

MPDATA,EX,1,,YoungsModulus !Defining material properties

MPDATA,PRXY,1,,PoissonsRatio !Defining material properties

MPDATA,DENS,1,,2700 !Defining material properties
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K,1,0,0,0 !Keypoint for end of the rod at the origin

K,2,Length,0,0 !Keypoint for end of the rod at the length

LSTR, 1, 2 !Connect the key points

lesize, 1,,,1000 !Define the number of elements between points

LMESH, 1 !Mesh the line

!------------------------------!

! Static analysis

!------------------------------!

/SOL

ANTYPE,STATIC !Static analysis

numSteps = 10 !Total number of load steps for static analysis

startAxialDisp = 3 !Beam will buckle (zero-stiffness), so need

!to start the beam in bending, then apply axial disp.

*DO,icount,1,numSteps,1

/prep7

!Applying the boundary conditions at one end of the rod

nsel,s,node,,1

d,all,ux,0 !Fix displacement in the x-diection

d,all,uy,0 !Fix displacement in the y-diection

d,all,uz,0

d,all,rotx,0

d,all,roty,0

d,all,rotz,0

!Calculating the boundary conditions to apply at the other end

of the rod

zRotationStep = zRotation*(icount/numSteps)

yDispStep = (icount/numSteps)*yDisp

*IF,icount,le,startAxialDisp,THEN

xDispStep = 0

*ELSE
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xDispStep=(icount-startAxialDisp)/(numSteps-startAxialDisp)*xDisp

*ENDIF

!Applying the boundary conditions at the other end of the rod

nsel,s,node,,2

d,all,ux,xDispStep

d,all,uy,yDispStep

d,all,uz,0

d,all,rotx,0

d,all,roty,0

d,all,rotz,zRotationStep

neqit, 10 !Number of equilibrium points

nlgeom, on !Nonlinear geometry on or off

pstres, on !Prestress needed for modal analysis -- needs to

!be called twice, once for the static case and once for

!the dynamic case

FINISH

/config,nres,1e5

/sol

nsubst,20,500,10 !Number of substeps between each load

time,icount !Update the "time"

nsel,all !Select all nodes

solve !Solve

FINISH

/sol

antype,,rest !Restart for next step of the analysis

*ENDDO

!------------------------------!

! Save the static solution

!------------------------------!
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/post1

SET,,, ,,, ,numSteps

nsel,all !Select all the nodes

/HEADER, OFF, OFF, OFF, OFF

/PAGE,5000,500,5000,500

/FORMAT,3,,15,7

fileNameToSave2 = ’CurvedExpStaticConfig’

/output,fileNameToSave2,txt

/HEADER,OFF,OFF,OFF,OFF

prnsol,u !Write displacements for each node

/out

/post1

SET,,, ,,, ,numSteps

!pldisp,1

!-------------------------------!

! Modal Analysis

!-------------------------------!

FINISH

/sol

ANTYPE, MODAL !Modal analysis

UPCOORD,1.0,ON !Display the mode shapes relative to the deformed

!geometry in the post processor

PSTRES, ON !Use the prestressed matrix

MODOPT, LANB, NumberOfModes !Eigensolver and number of modes

MXPAND, NumberOfModes !Number of modes to expand

PSOLVE, EIGLANB !Calculates the eigenvalues and eigenvectors

!(must match MODOPT command -- either EIGLANB EIGSNODE)

FINISH

/solu

141



EXPASS, ON

PSOLVE, EIGEXP !Expands to eigenvector solution to see the mode

! shapes in the postprocessor

FINISH

!------------------------------!

! Save the mode shapes

!------------------------------!

*DO,i1,1,NumberOfModes,1

name1 = ’CurvedExp’

name2 = strcat(’_Mode_’,chrval(i1))

fileNameToSave3 = strcat(name1,name2)

/post1

SET,,, ,,, ,i1

nsel,all !Select all the nodes

/HEADER, OFF, OFF, OFF, OFF

/PAGE,5000,500,5000,500

/FORMAT,3,,15,7

/output,fileNameToSave3,txt

/HEADER,OFF,OFF,OFF,OFF

prnsol,u !Write displacements for each node

/out

pldisp,1

*ENDDO
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