
A Trend Analysis of Exploitations

Hilary K. Browne
William A. Arbaugh�

Department of Computer Science
University of Maryland

College Park, Maryland 20742

John McHugh
William L. Fithen

CERT Coordination CenterRy
Software Engineering Institute
Pittsburgh, Pennsylvania 15214

November 9, 2000

CS-TR-4200
UMIACS-TR-2000-76

Abstract

We have conducted an empirical study of a number of computer security exploits and determined that the
rates at which incidents involving the exploit are reportedto the CERT can be modeled using a common
mathematical framework. Data associated with three significant exploits involving vulnerabilities in phf,
imap, and bind can all be modeled using the formulaC = I + S �pM whereC is the cumulative count
of reported incidents,M is the time since the start of the exploit cycle, andI andS are the regression
coefficients determined by analysis of the incident report data. Further analysis of two additional exploits
involving vulnerabilities in mountd and statd confirm the model. We believe that the models will aid in
predicting the severity of subsequent vulnerability exploitations, based on the rate of early incident reports.

�This work was sponsored in part by an IBM Faculty PartnershipAward.yThis work was sponsored by the Department of Defense.



A Trend Analysis of Exploitations

Abstract

We have conducted an empirical study of a number of computer security exploits and determined
that the rates at which incidents involving the exploit are reported to the CERT can be modeled using a
common mathematical framework. Data associated with threesignificant exploits involving vulnerabil-
ities in phf, imap, and bind can all be modeled using the formula C = I + S � pM whereC is the
cumulative count of reported incidents,M is the time since the start of the exploit cycle, andI andS
are the regression coefficients determined by analysis of the incident report data. Further analysis of two
additional exploits involving vulnerabilities in mountd and statd confirm the model. We believe that the
models will aid in predicting the severity of subsequent vulnerability exploitations, based on the rate of
early incident reports.

1 Introduction

Flaws in system software create vulnerabilities that enable most1 of the reported system intrusions. Anecdo-
tal evidence supports a hypothesis that poor system administration practices, including the failure to apply
available patches in a timely fashion, results in an excessive window of vulnerability for the affected sys-
tems. As far as we have been able to determine, no studies exist that would either confirm or refute this
conjecture though is is widely believed and often repeated.

Several previous studies have attempted to estimate the number of computers at risk for specific vul-
nerabilities [1, 2], but none have focused on the temporal distributions of intrusions that exploit a given
vulnerability. To address these short-comings, we examined data collected by the CERT Coordination Cen-
ter for several incidents involving specific vulnerabilities, and we have found that the evidence tends to
support the hypothesis even more strongly than anecdotal evidence would tend to indicate [3]. Furthermore,
our evidence has identified a temporal distribution of intrusive activity with respect to the defining events in
exploit cycles that varies substantially from that hypothesized by other researchers in the field [4, 5].

In this paper, we present a statistical model that relates the rate at which intrusions accumulate, and we
provide evidence to support it. The result is a model that assists in predicting the severity of an exploita-
tion cycle. The existence of a severity predictor allows incident handling organizations to plan and staff
accordingly. Additionally, the knowledge of the severity of an incident can assist operational organizations
in performing more effective risk management. Our model, presented in section 4, indicates that each of
the vulnerabilities that we have studied accumulate in a similar, and near linear, fashion. Identifying and
validating the model requires a regression analysis on the intrusion data for each vulnerability.

To perform our analysis, we extracted data from the incidentreport repository of the CERT Coordination
Center. In section 3, we will describe the data available at CERT and outline the procedures that we used to
select the specific vulnerabilities that we examined. Whilethe available data is far from ideal, we believe
that it is usable for our purposes. The data that we extractedconfirms the hypothesis in which the vast
majority of exploits occur long after patches that would thwart them are available- demonstrating that poor
administrative procedures are an enabling factor. The reasons for these practices and the development of
interventions to alter them are left for future efforts.

The remainder of this paper is divided into several sections. First, we describe the events that occur
during an exploit cycle- beginning with the preconditions for exploitation and continuing until the exploit
is no longer viable. This is followed by a discussion of the individual cases that we studied including a
discussion of the data available to us, and the criteria we used to select the reported cases. Next, we provide
the steps used to generate the model, and the results of applying it to additional samples for validation.
Finally, we conclude the paper and describe our future work.

1Misconfiguration appears to account for many of the remainder.

1



2 Vulnerabilities and Exploit Cycles

System software is less than perfect. As a result, it is sometimes possible to take advantage of flaws in a
privileged program to force it to take or support actions that violate the letter or intent of the security policy
of a system in which it is deployed. In this section, we discuss vulnerabilities and exploits in terms of the
events relating to the introduction of the flaw, its discovery and the development of an exploit that takes
advantage of the flaw (now a vulnerability). We also considerthe patterns of activity that occur when the
vulnerability becomes well known, and its exploitation is wide spread.

2.1 The Defining Events

A security relevantflaw is a necessary precondition for the exploitation of a piece of system software.
Usually, flaws occur by “accident” or (more likely) due to carelessness on the part of a programmer or
designer. Not every flaw leads to a vulnerability, however. First, the flaw must bediscovered, and it must be
possible toexploit the flaw in such a way as to abuse the privileges granted the program or otherwise damage
the system on which the software is installed. In some cases,long periods of time may lapse between the
introduction of the flaw, its discovery, and the developmentof an exploit that takes advantage of the flaw.
For example, The TCP/IP protocols [6, 7] were defined in the early 1980s. In 1989, Bellovin [8] announced
the discovery of a flaw that he conjectured could lead to an exploit that would allow an intruder to spoof
IP addresses. Exploits did not appear until some years later[9]. On the other hand, the creation of “Trojan
Horse” code may result in the near simultaneous introduction of a flaw, its discovery, and the creation of an
exploit to take advantage of it. In general, we say that thereis avulnerability only when software affected
by a flaw is deployed and available for widespread use, the flawhas been discovered, and an exploit exists
that takes advantage of the flaw.

Given a vulnerability, other events may occur. It is possible for apatch or otherremediation to be
created that removes the flaw or compensates for it in some manner. It is also possible that the vulnerability
will be publicized so that its existence becomes widely known. In addition, exploits for the vulnerability
may bescripted (and the script publicized) so that the exploit can be carried out as a rote exercise by
attackers who might (and usually do) lack the skill to carry it out in detail by themselves. The vulnerability
dies when there are no more instances of the flaw that can be exploited. This will occur when either all
instances of the vulnerable code have been patched or when they have been retired or replaced by a version to
the software that does not contain the flaw in question. It is also possible for a vulnerability to becomepasse
before it dies. This happens when the attention of the exploitation community is directed elsewhere and
exploits become infrequent- even though a substantial number of vulnerable systems remain. Occasionally,
a resurgence of activity involving a passe vulnerability isseen, as discussed in section 3.2.3. And, in some
cases, vulnerabilities arereincarnated in that a previously eliminated flaw is reintroduced in a subsequent
software version.

Note that, while the introduction of the flaw, its discovery,and the creation of an exploit must occur in
that order, once a vulnerability is recognized, there is no unique ordering requirement for the subsequent
events. Some orderings, e.g. death before scripting, may not occur.

3 Vulnerability Case Studies

The quality of any model relies upon the validity of the data used to generate the model. In this section, we
describe the approach we used in the collection of our data samples, as well as short descriptions of each
sample.

2



The initial data we examined covers a period from 1996 through 1999 while the validation data extends
the period through October 2000. Different periods were selected for two reasons- to increase sample size,
and to allow the examination of more current incidents to ensure the model remains valid with more current
samples.

The data contained in the database provides a unique view of intrusions that cannot be obtained else-
where. However, there are several issues with the data, which we discuss below. After this, we first present
the initial three case studies that were used in the generation of our model. Then, we present the three cases
used to validate the model.

3.1 Data Collection Approach

While the CERT/CC data is the best available source for an analysis of this type, there are several problems
related to the data. The foremost is that all of the reports are self-selecting. Only a subset of those sites that
experience some sort of problem, either an intrusion or a probe, will report it. As a result, the data collected
by CERT/CC does not accurately reflect the entire scope of theintrusion activity on the Internet.

Another problem with the data revolves around the human element of reporting. At some point, the hot
vulnerability becomes passe, and focus shifts to the vulnerability du jour, i.e. attackers lose interest in it,
administrators have already dealt with it and either understand it or are tired of it. This may artificially lower
the incidence rate of the vulnerability. While the effects of these problems on the data set are significant, we
believe that the data is sufficient to provide a window into the much larger problem.

When an incident is closed by CERT/CC, a summary containing all of the pertinent information about
the incident is created. The summary contains both formatted and free format discussion sections. One of
the formatted fields is the vulnerability that was exploited. To collect the initial data, the total number of
incidents for every vulnerability known to CERT/CC was calculated. From this list, the three vulnerabilities
with the highest incidence rate were selected for further analysis. Next, each incident identified as involving
the specific vulnerability was examined by reading the discussion section to ensure two conditions held.
First, that the incident did in fact involve the specific vulnerability, and second, that the incident involved an
intrusion. In some cases, the incident only involved unsuccessful probes for the vulnerability. If the evidence
was clear that both conditions held, then the incident was counted as a successful intrusion. Otherwise, the
incident was not counted. Often, an incident includes several and sometimes hundreds to thousands of hosts.
These hosts were not added to the intrusion count unless theymet the criteria previously mentioned. In some
of these cases, captured logs clearly indicated that numerous hosts were successfully exploited. However,
the actual dates of the exploitation of the hosts contained in the logs could not be determined. In this case,
the date that the logs were obtained was used as the incident date. The result is that an occasional spike
occurs.

3.2 Initial Vulnerability Samples

This section presents a brief description of the initial vulnerabilities studied. The three vulnerabilities with
the highest incidence rate during our initial study years (1996 - 1999) were selected to provide as many data
points as possible.

3.2.1 Phf

Phf is the name for a common gateway interface (CGI) program.CGI programs extend the functionality of
web servers by providing a server-side scripting capability. The purpose of the phf program is to provide a
web based interface to a database of information- usually personnel information such as names, addresses,

3



Figure 1: Phf intrusions

and telephone numbers. The vulnerability exploited in phf was an implementation error, and not an under-
lying security problem with CGI or the web server. The vulnerable phf program was distributed with both
the apache and NCSA HTTPd servers.

The phf script works by constructing a command line string based on input from the user. While the
script attempted to filter the user’s input to prevent the execution of arbitrary commands, the authors failed
to filter a new line character. As a result, attackers could execute arbitrary commands on the web server at
the privilege level of the http server daemon- usually root [10]. A plot of the count of phf incidents over
time is shown in Figure 1. In this and all following plots, incidents reported by day are binned by month, so
that multiple incidents may appear in the same month.

3.2.2 Berkeley Internet Name Domain (Bind)

Bind provides an implementation of the domain name system (DNS) which maps an Internet host name such
as bozo.cs.umd.edu to its Internet Protocol (IP) address, i.e. bozo.cs.umd.edu maps to 128.8.128.38. The
flaw in bind involved a buffer overflow in the inverse query directive to bind which takes an IP address and
maps it to the host’s fully qualified domain name (FQDN), i.e.128.8.128.38 maps to bozo.cs.umd.edu [13].
A plot of the count of bind incidents over time is shown in Figure 2.

3.2.3 Internet Message Access Protocol (IMAP)

IMAP provides a method to access electronic mail over a network using a server-based approach. The
client is able to access and manipulate the messages as if they were local. A client, once connected to the
IMAP service, may create, delete, and rename messages and mailboxes. A client connects to the service by
contacting the server through a well-known port, 143. Afterconnecting, the client must authenticate itself
– usually through sending a username and password. Unfortunately, a buffer overflow existed in the source
code distributed by the University of Washington in the login process such that the use of a long username
would cause a buffer overflow [11].

4



Figure 2: Bind intrusions

Unfortunately, the IMAP server contained a second flaw that was identified almost a year later. This
flaw, also a buffer overflow, involved the server level authentication mechanism of IMAP [12].

Rather than separate the two flaws into different case studies, the two were combined for two reasons.
First, the incident data, in most cases, did not differentiate between the two flaws. And second, several later
scripts combined the two flaws- making it difficult to determine exactly which flaw was exploited. A plot of
the count of IMAP incidents over time is shown in Figure 3.

3.3 Validation Samples

This section presents a brief description of three vulnerabilities used as validation samples for the model
we build in the next section. In the initial samples, we combined the two different IMAP vulnerabilities
because it was difficult to differentiate intrusions. In thenew samples, we also consider two vulnerabilities
with the same program,statd. This time, however, we can differentiate between the vulnerabilities because
of changes in the reporting of the incidents. For several years now, vulnerabilities have been given a unique
identifier by the CERT/CC. Previously, the vulnerability exploited in an incident would be reported by it’s
name, e.g.IMAP, only. Recently, however, the incident reports now also include the vulnerability identifier.
As a result, we were able to easily separate the incidents related to the twostatdincidents.

3.3.1 mountd

The networked file system (NFS) uses a privileged daemon on servers to permit clients to mount remote file
systems and utilize them as local file systems. A buffer overflow existed in this daemon program,mountd,
on Linux and SGI systems which permitted an attacker to execute arbitrary code on the server [14].

3.3.2 statd bounce

Thestatdbounce vulnerability utilized two distinct vulnerabilities-statdandautomountd. NFS uses the statd
program to communicate changes between NFS servers and clients. The automountd program automatically

5



Figure 3: IMAP intrusions

mounts file systems when they are required.
The vulnerability withstatdaccepted calls to services and forward them as if they originated from the

statd program. Attackers utilized this to send a request to automountd which contained a localhost buffer
overflow. “Bouncing” the request throughstatdpermitted the exploitation of a localhost flaw remotely [15].

3.3.3 statd format

Thestatdformat vulnerability allows the remote execution of arbitrary code at the privilege level ofrpc.statd
which is usually root as the result of unchecked user input [16].

4 Modeling and Analysis

When we started our investigation, we were primarily interested in confirming the “poor system adminis-
tration” hypothesis as noted in the introduction, and we hadan initial intuitive idea of the process whereby
vulnerabilities are discovered, exploited, and re-mediated. In general, we expected the rate at which ex-
ploits occur to be fairly small in the period following the discovery of a vulnerability and to increase as the
vulnerability and its associated exploit become more widely known. We expected the rate to decrease as
the exploit became passe or as the pool of vulnerable machines became smaller due to the availability and
application of patches or the replacement of vulnerable software.

Figure 4 illustrates the kind of behavior that we expected tofind. We were not alone in making these
assumptions. Kendall [5] gives a similar model in his Masters Thesis, and more recently, Bruce Schneier
put forth a similar model in his online newsletter, Cryptogram [4]. When we analyzed the CERT data for
the incidents discussed in the previous section, we discovered that we were wrong. As the graphs in Figures
1-3 indicate, the incidents have a decidedly positive skew toward early months in the reporting, rather than
the negative skew hypothesized in figure 4. Further, almost all of the incidents that were associated with the
vulnerabilities we examined were avoidable. Patches were available prior to the start of significant reporting

6



Intro
ducti

on of fl
aew

Disc
ove

ry 
of fl

aw

Disc
losu

re
 of fl

aw

Release
 of p

atch

In
ci

de
nt

 r
ep

or
tin

g 
ra

te

Time

Figure 4: An intuitive (but incorrect) depiction of intrusive behavior

activity, which occurred when a script for the exploit was made available, rather than shortly following
disclosure. Thus, scripting seems to be the major trigger for incidents, and the largest number of incidents
appear soon after this event. This is discussed in more detail elsewhere [3] and will not be considered further
here.

Having found similar shapes in the raw data for all three incidents, we then examined the cumulative
graphs of the incidents over time, and found that each case could be transformed into a nearly linear form.
As a result, we performed a statistical analysis of the data and have determined that data from the three cases
can be modeled using a single framework. Data from the two largest validation exploit cycles also seem to
fit the framework as well2. Thus, it appears that data from the early stages of an exploit cycle, particularly
the rate at which incidents are reported following the release of a script, can be used to predict the magnitude
of the cycle, but not, as yet, its duration.

In the remainder of this section, we describe our analyticaltechniques and our results. The section is
illustrated with graphical results from a single exploit cycle, phf, as described in section 3.2.1, but similar
graphs for the other cycles are given in Appendix 5.

4.1 Graphical Analysis

Our goal in studying three different vulnerability incidents was to determine if there were any underlying
similarities or trends that were independent of any particular incident. Such trends could then potentially
be used to understand and respond more effectively to futureincidents. We plotted the raw and cumulative
data grouped by month for the three vulnerability incidents. We also split the IMAP data into two separate
incidents based on the discovery date of the second incidentso that we could also consider both incidents
separately. Raw and cumulative plots for the phf incident are shown in Figure 1 and Figure 5. Raw plots for
the other incidents appear in Figures 3 and 2. Cumulative plots for the other incidents are found in Appendix
5 (Figures 10–13). All of these plots show similar shapes, indicating that a common model relating time to

2The third validation sample does not contain enough data points as yet.

7



Figure 5: Cumulative phf intrusions

incidents might be applicable to all the incidents, and perhaps to future incidents as well. The shape of the
cumulative plots indicates that a standard linear regression model can be applied using month as a predictor
for incident count, but only after satisfying certain assumptions.

First, the plots of the data should indicate a linear relationship. The cumulative plots are all slightly
curved as a result of fewer reported incidents in later months. This drop off violates the first assumption, as
well as the second, which requires a relatively normal distribution of the raw data measured. The raw data
plots all show a slightly positive skew away from a normal distribution as a result of more reported incidents
in earlier months.

4.2 Transformation Analysis

To solve these problems, a standard technique in regressionanalysis is to apply a transformation to the
independent or dependent variable or both. In [17], the authors suggest that applying either a square root
or logarithmic transformation to the independent variable(month) can help correct positive skewness in the
raw data. Such transformations also remove some of the curvature from the cumulative data. We performed
regressions using both transformations, as well as standard, non-transformed regression, and obtained the
best overall results (criteria described below) for all three incidents using the square root transformation.
Plots for the phf incident are shown in Figure 6 and Figure 7. Plots for the other incidents appear in
Appendix 5 (Figures 14–21). All of the transformed raw data plots show a more normal distribution, and
the transformed cumulative plots are more linear, as desired.

4.3 Residual Analysis

In addition to the assumptions about linearity and normality of the raw data, linear regression also requires
certain properties be true of the errors in the regression model. While a good regression model will explain
most of the relationship between the independent and dependent variables being studied, some degree of
error always remains. Regression seeks to reduce error by minimizing residuals, the differences between the

8



Figure 6: Transformed phf intrusions

Figure 7: Transformed cumulative phf intrusions

9



Figure 8: Phf incident normal probability plot

measured values of the dependent variable and the values predicted by the regression model. These residuals
should be normally distributed with mean 0 and constant variance. To check the normality property, one
plots the standardized residuals against the corresponding percentile in a normal probability plot. If the
residuals are normally distributed, the points will fall along a straight line. To check the constant variance
property (known as homoscedasticity), one plots the standardized residuals against the independent variable.
If the residuals have constant variance, they should fall ina horizontal band above and below the horizontal
line Y=0.

The normal probability plot (Figure 8) for the phf incident shows the results for the square root trans-
formation and indicates that the distribution of the residuals is relatively, though not perfectly normal. The
standardized residual plot for the square root transformation on the phf incident (Figure 9) is not perfectly
scattered, but does not indicate any particular pattern. Plots for the other incidents show similar results and
appear in Appendix 5 (Figures 22–29). In [18], the author suggests a number of possible remedies when
these plots do not look appropriate. A logarithmic transformation, rather than a square root transformation,
is suggested for removing the S shape from the normal probability plots, but this transformation did not
improve these plots over the square root transformation. Weighted regression, multiple regression, nonlin-
ear regression, and removal of outliers are also suggested.However, weighted regression, which involves
assigning a different weight to each point in the data, is only useful when the residuals exhibit a pattern
indicative of a non-constant variance. Multiple regression, which uses more than one predictor, may be
appropriate, but we currently only have time as a known predictor. Nonlinear regression is usually only
appropriate when there is a known, underlying relationshipbetween the independent and dependent vari-
ables, such as a biological or chemical phenomena. We did notidentify or remove any outliers because we
aggregated our data by month, so any day to day abnormalitieswould likely be smoothed out.

4.4 Regression Analysis

Having identified the square root transformation as the bestcandidate for meeting the assumptions required
for regression, we performed the regression analysis. The results of the regressions on the transformed data

10



Figure 9: Phf incident residual plot

for all three incidents and the two split IMAP incidents are listed in Table 1. These regressions calculate a
slope and intercept such that the relationship between time(in months) since the start of the exploit cycle
(M ) and cumulative incident count (C) satisfies the linear equation:C = I + S �pM whereI andS are
the intercept and slope of the regression line, respectively. The quality of the regression is usually measured
using the coefficient of determination, known asR2, which describes the proportion of the observed variation
in the count that can be explained by time. The closer this value is to 1, the better the regression. We
obtained values larger than .89 for all incidents, indicating that this regression model is quite good. An
analysis of variance (ANOVA) test comparing the variation explained byR2 to the variation explained by
errors yielded almost negligible P-values (P�.01) for all incidents, indicating a strong probability that the
model adequately explains the relationship. We also performed regressions using the untransformed data
and the logarithmically transformed data for comparison (see Table 2). TheR2 values for the square root
transformation were the best for all incidents except for the second Imap incident, where the logarithmic
transformation was slightly better. However, even in this last case, we would still choose the square root
transformation because the difference is so small and the plots for the square root transformation were better.

The results for the values of the slopes and intercepts of thelines in Table 1 do not indicate any similarity
in line shape across the incidents. The slope value for the phf incident is roughly double that of the combined
IMAP incidents, and roughly quadruple that of the bind incident. The bind incident took place over a much
shorter period of time than the other two incidents, and the IMAP incident includes two separate events.
These differences may account for the lack of a common slope and/or intercept shared by the incidents,
though such a common model may not be realistic even with cleaner, more uniform data given that the
nature of the incidents may be quite different. Nonetheless, t-tests on all the values of the slopes and
intercepts yielded almost negligible P-values (P�.01) for all incidents, indicating a strong probability that
these values can be used to adequately explain the relationship between month and cumulative count for
each separate incident.

11



R2 P-Value Slope P-Value Intercept P-Value
bind 0.908 3.70E-29 60 3.70E-29 -50 1.40E-12
phf 0.939 2.03E-130 240 2.03E-30 -378 1.75E-65
All IMAP 0.981 8.02E-182 126 8.02E-182 -167 2.09E-96
1st IMAP 0.965 1.22E-80 124 1.22E-80 -160 1.79E-50
2nd IMAP 0.896 6.96E-50 86 6.96E-50 -96 1.31E-23

Table 1: Regression results for square root transformation

Square Root Logarithmic Untransformed
bind 0.908 0.903 0.884
phf 0.939 0.910 0.881
All IMAP 0.981 0.952 0.971
1st IMAP 0.965 0.942 0.943
2nd IMAP 0.896 0.897 0.833

Table 2: Comparison ofR2 values for three types of regressions

4.5 Testing the Model

To test the accuracy of our model, we applied it to additionalsamples to see if it was robust enough to handle
more recent incidents. The mountd and statd bounce incidents described in sections 3.3.1 and 3.3.2 provided
data over about 15 months, less than the approximately 30 months covered by the IMAP and phf incidents,
but still enough to consider. We did not consider the statd format incident described in section 3.3.3 as it
only covered four months- too few data points to provide an adequate test as of yet. We performed the same
analyses described above to see if the model held. The results are quite encouraging. For both data sets,
we performed standard regression, square root transformation regression, and logarithmic transformation
regression. For both data sets, both transformations improved the raw and cumulative data plots as compared
to the untransformed data. For both data sets, both transformations also improved the normal probability
and residual plots. For brevity, we illustrate these pointsin Appendix 5 with the same set of plots as the
original analysis: the raw and cumulative plots for the untransformed data and the square root transformed
data, and the normal probability and residual plots for the square root transformed data (Figures 30–41).

The coefficients of determination (R2) for the regressions performed on the two additional data sets and
their square root and logarithmic transformations are shown in Table 4. For both data sets, both the square
root and logarithmic transformations produce better results than the untransformed data. All theR2 values
for the transformed data are .839 or better, indicating a strong correlation between cumulative count and
time, though not as strong as our original data. For both datasets, theR2 for the logarithmic transformation
is better than that for the square root transformation, which does not support our original choice of the square
root model. However, the smaller size of the two new data setsmay artificially skew the data in favor of the
logarithmic model. Given more data over a longer period of time for these two incidents, we would expect
to see the number of incidents decrease. This in turn would favor the square root model, consistent with our
analysis on the larger data sets. We will obtain more data forthese two incidents to verify these hypotheses
in the future.

TheR2, slope, and intercept values and their respective P values for the regression on the square root
transformed data are shown in Table 3. Although this was not the best model for these new data sets, the
P-values for all but the intercept for the statd incident areall significant (P�.01), indicating that the model

12



R2 P-Value Slope P-Value Intercept P-Value
mountd 0.839 7.25E-28 72 7.25E-28 -84 3.91E-14
statd 0.857 8.47E-20 52 8.57E-20 -10 1.98E-01

Table 3: Regression results for square root transformation

Square Root Logarithmic Untransformed
mountd 0.839 0.868 0.761
statd 0.857 0.935 0.707

Table 4: Comparison ofR2 values for three types of regressions

remains valid. As with the three original data sets, there does not appear to be any relation between the slope
and intercept values for the two incidents.

4.6 Model Selection and Prediction

Given the results of the regression analyses above, a linearregression model using a square root transforma-
tion on time appears to provide very good predictive power for the accumulation of security vulnerability
incidents following the release of a script for the vulnerability. More data is needed to authoritatively select
the square root transformation over the logarithmic model,but we believe the square root model will pre-
vail. The incidents studied vary widely on the values of the slope and intercept of their respective regression
lines, indicating that there is no one formula for a line applicable to all past and future incidents which is as
expected. However, given a few months of data for a new incident, we believe that a regression line fit using
the square root transformation will provide an accurate extrapolation of the incident reporting pattern in the
future. This information provides a powerful tool for system administrators. Although it cannot predict the
duration of a vulnerability, it can identify the most severevulnerabilities - those with the steepest regression
line slopes. Armed with this information, the security community can become pro-active rather than reactive
with respect to incident response.

5 Conclusions and Future Work

Intuitively, many researchers have felt that the availability of patches reduce the severity of incidents after a
small time delay. Unfortunately, our evidence has found this is not the case, and that incidents accumulate
regardless of the existence of corrections for the exploited vulnerabilities. The incidents, however, accumu-
late in a near linear fashion which has allowed us to develop astatistical model of the incident accumulation
rate. While the model does not yet determine when an incidentwill dissipate, it does provide a predictor
for the rate of growth of incidents. The benefits of such a predictor are significant. For instance, once the
first few months of incident data have been collected, an incident handling organization can use our model
to forecast the rate at which the incident will continue. Such analysis permits the organization to plan it’s
staffing requirements rather than reacting. Operational organizations, can benefit from the knowledge of the
severity of continuing incidents. For instance, most operational organizations test vendor supplied patches
prior to deployment to ensure that the fix for the vulnerability does not produce unwanted side effects. In
the case of security related patches, a time-bar is usually established as to when the patch must be deployed.
This time-bar is set based on the severity of the vulnerability and weighs the risk of the vulnerability verses

13



the risk of reduced testing. By using the severity of the incident in conjunction with the severity of the
vulnerability, organizations can establish a time-bar that provides significantly better risk management than
if they had just considered the severity of the vulnerability.

In the future, we plan to collect additional data to continuevalidation our model and to perform “real
time” tests by predicting the severity of current incidents. We also plan to examine additional models that
may assist in predicting the duration of incidents- extending our analysis from a linear regression into a
multi-variate regression. This will require the consideration of additional dependent variables such as the
type of systems involved in the incident as well as the eventsin the exploit cycle.

We also plan on investigating new methods and practices in aneffort to reduce the large window of
vulnerability that exists because of poor systems management. One method we are currently investigating
is the secure automation of the deployment of patches. Whilesuch a solution appears easy at first glance,
developing the process and the implementation that works ona wide scale is not.

References

[1] J. Howard,An Analysis Of Security Incidents On The Internet: 1989 – 1995. PhD thesis, Carnegie –
Mellon University, April 1997.

[2] G. A. Office, “Information security: Computer attacks atdepartment of defense pose increasing risks,”
Tech. Rep. GAO/AIMD-96-84, U.S. Government Accounting Office, 1996.

[3] Anonymous, “Anonymous for reviewing purposes,”

[4] B. Schneier, “Full disclosure and the window of vulnerability.” In Crypto-Gram available ashttp:
//www.counterpane.com/crypto-gram-0009.html#1, September 15, 2000.

[5] K. Kendall, “A database of computer attacks for the evaluation of intrusion detection systems,” BS/MS
thesis, Massachusetts Institute of Technology, June 1999.

[6] “Transmission control protocol - darpa internet program protocol specification,” RFC 973,
USC/Information Sciences Institute, September 1981.

[7] “Internet protocol - darpa internet program protocol specification,” RFC 971, USC/Information Sci-
ences Institute, September 1981.

[8] S. Bellovin, “Security problems in the TCP/IP protocol suite,” Computer Communication Review,
vol. 19, pp. 32–48, April 1989.

[9] “CERT Advisory CA-1995-01: IP spoofing attacks and hijacked terminal connections.” Available at
http://www.cert.org/advisories/CA-1995-01.html, January 1995.

[10] “CERT Advisory CA-1996-06 : Vulnerability in NCSA/Apache CGI example code.” Available at
http://www.cert.org/advisories/CA-1996-06.html, March 1996.

[11] “CERT Advisory CA-1997-09 : Vulnerability in IMAP and POP.” Available athttp://www.cert.
org/advisories/CA-1997-09.html, April 1997.

[12] “CERT Advisory CA-1998-09 : Buffer overflow in some implementations of IMAP servers.” Available
athttp://www.cert.org/advisories/CA-1998-09.html, July 1998.

14



[13] “CERT Advisory CA-1998-05 : Multiple vulnerabilitiesin BIND.” Available at http://www.
cert.org/advisories/CA-1998-05.html, April 1998.

[14] “CERT Advisory CA-1998-12 : Remotely exploitable buffer overflow vulnerability in mountd.” Avail-
able athttp://www.cert.org/advisories/CA-1998-12.html, October 1998.

[15] “CERT Advisory CA-1999-05 : Vulnerability in statd exposes vulnerability in automountd.” Available
at http://www.cert.org/advisories/CA-99-05-statd-automountd.html, June
1999.

[16] “CERT Advisory CA-2000-17 : Input validation problem in rpc.statd.” Available athttp://www.
cert.org/advisories/CA-2000-17.html, August 2000.

[17] B. Tabachnick and L. Fidell,Using Multivariate Statistics. Harper and Row, 1983.

[18] J. Devore,Probability and Statistics for Engineering and the Sciences. Duxbury Press, fourth ed.,
1995.

15



Appendix: Supporting Graphs

Figure 10: Cumulative bind intrusions

Figure 11: Cumulative IMAP intrusions

Figure 12: Cumulative IMAP1 intrusions

Figure 13: Cumulative IMAP2 intrusions

Figure 14: Transformed bind intrusions

16



Figure 15: Transformed cumulative bind intrusions

Figure 16: Transformed IMAP intrusions

Figure 17: Transformed cumulative IMAP intrusions

Figure 18: Transformed 1st IMAP intrustions

Figure 19: Transformed cumulative 1st IMAP intru-
sions

Figure 20: Transformed 2nd IMAP intrusions

17



Figure 21: Transformed cumulative 2nd IMAP intru-
sions

Figure 22: Bind incident normal probability plot

Figure 23: Bind incident residual plot

Figure 24: All IMAP incidents normal probability
plot

18



Figure 25: All IMAP incidents residual plot

Figure 26: First IMAP incident normal probability
plot

Figure 27: First IMAP incident residual plot

Figure 28: Second IMAP incident normal probabil-
ity plot

Figure 29: Second IMAP incident residual plot

19



Figure 30: Mountd intrusions

Figure 31: Cumulative mountd intrusions

Figure 32: Statd intrusions

Figure 33: Cumulative statd intrusions

Figure 34: Transformed mountd intrusions

20



Figure 35: Transformed cumulative mountd intru-
sions

Figure 36: Transformed statd intrusions

Figure 37: Transformed cumulative statd intrusions

Figure 38: Mountd incident normal probability plot

Figure 39: Mountd incident residual plot

Figure 40: statd incident normal probability plot

21



Figure 41: Statd incident residual plot

22


