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Research in population biology is concerned with factors affecting the change 

in a population over time, including births, deaths, immigration and emigration.  

Despite the potential importance of dispersal, empirical data on movement are 

lacking in many systems.  Hence, there is a large body of theory on dispersal that 

remains to be tested in real biological systems.   In particular, many organisms exist 

in ecological networks with the complex geometry common to caves, plants and 

streams.  This alternative network topology might influence population and 

community-level patterns and processes. 

Chapter 1 introduces the concept of the “dendritic ecological network,” 

highlighting special properties and characteristics useful for understanding 



community and population-level processes.  Of most interest for this dissertation is 

how the rigid spatial structure and branching topology may have implications for 

patterns of population distribution and the evolution of movement behaviour in 

stream organisms. 

In chapters 2 and 3, I investigate patterns of stream salamander distribution, 

which may be related to the spatial configuration of stream habitat branches.  First, I 

determined the sampling methods suitable for estimating the probability a site is 

occupied by one of three stream salamander species.  I then applied these methods 

to investigate occupancy patterns, in relation to stream spatial layout across two mid-

Atlantic regions.  I found that all three species have higher occupancy in streams 

with a confluent, firs-order stream, though the strength of this association seems to 

be related to life history characteristics. 

Finally, in chapters 4 and 5, I sought to identify movement pathways for 

larval, juvenile and adult Desmognathus stream salamanders.  First, I tested my 

marking method on larval individuals, and found that the visual implant elastomer 

marks can be retained through metamorphosis.  Then, using individual mark-

recapture and multistate modeling, I found that stream salamanders move during the 

juvenile stage, with both an upstream-biased movement, and a proportionally large 

probability of moving overland to an adjacent stream reach. 

The chapters in this dissertation combine empirical investigations of the 

patterns and pathways of stream salamander movement.  Taken together, they 

elucidate the underlying importance of dendritic ecological networks, and provide 

direct evidence of dispersal in stream salamanders. 
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Preface 

This dissertation contains a single introduction section, five research chapters 

and an appendix. The chapters (I-V) in the dissertation represent primary 

work; an appendix provides a supporting chapter which is referenced in 

chapter V.  All chapters are presented in manuscript form, and formatted 

depending on the journal in which they were published (chapters I-IV) or for 

which they are intended (chapter V). The appendix comprises a book chapter, 

which was coauthored during the dissertation, but separate from the main 

work of the dissertation.  A single reference section occurs at the end for 

literature cited throughout the dissertation. 
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Introduction 

Spatial structure has long been recognized to be a key component in 

structuring ecological patterns and processes.  Amphibians are often cited as key 

components of many ecosystems, with their physiological tolerances and complex 

life cycles making them potentially good indicators of environmental changes.  

Despite the attention paid to amphibians since the 1990’s, scientists have relatively 

little understanding of the controls on stream salamander populations, especially with 

respect to their movement ecology.  Because these animals live in complex stream 

networks, their patterns of distribution may be constrained both by their individual 

propensity to move among the stream branches, and by the spatial layout of the 

stream network.   

Chapter one introduces the concept of the Dendritic Ecological Network 

(DEN), which provides the foundation for the questions investigated in this 

dissertation.  Despite the importance and historical attention to complex spatial 

networks of discrete habitat patches, there has been relatively little theory and 

research on networks with alternative geometries, such as that common to river 

networks.  By outlining the special properties of DENs, and summarizing existing 

theory and empirical research in these networks, we can make predictions as to the 

role of the network in structuring patterns of distribution and movement probabilities 

in stream salamanders. 

In chapters two and three, we ask whether the distribution of three stream 

salamander species with different life histories is related to the larger network 

structure.  We use patch occupancy models and information-theoretic approach to 

determine the support for the hypothesis that stream branches with a confluent, first-

order stream branch have a higher probability of occupancy than those without such 

a connection.  We interpret differences in the relative strength of each species’ 
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relationship with the stream spatial layout to result partly from differences in life 

history. 

Knowing how the spatial layout of a DEN may influence patterns of 

distribution is an indirect measure of the relationship between animals and the 

network.  A mechanistic understanding of movement paths, and life history stages 

responsible for dispersal is essential to elucidating the underlying cause of any 

relationship between network structure and stream salamander distribution.  Further, 

information on movement paths is essential to conservation planning and resource 

management problems.  Chapters four and five ask whether the movement decisions 

of stream salamanders is related to life history stage and stream network 

configuration in one species of stream salamander.  I use mark-recapture and 

multistate modeling to estimate the probabilities of movement among and within 

stream networks of differing complexity.  The combinations of movement 

probabilities suggests a distinct dispersal stage for stream salamanders, and has 

implications for understanding extinction risk in complex dendritic networks. 
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Chapter I: Living in the branches: population dynamics and ecological processes in 

dendritic networks. 

Published in: Ecology Letters 10: 165–175, 2007 

Coauthored with: Winsor H. Lowe, William F. Fagan 

Abstract 

Spatial structure regulates and modifies processes at several levels of ecological 

organization (e.g. individual/genetic, population, community) and is thus a key 

component of complex systems, where knowledge at a small scale can be 

insufficient for understanding system behaviour at a larger scale.  Recent syntheses 

outline potential applications of network theory to ecological systems, but do not 

address the implications of physical structure for network dynamics.  There is a 

specific need to examine how dendritic habitat structure, such as that found in 

stream, hedgerow and cave networks, influences ecological processes.  Although 

dendritic networks are one type of ecological network, they are distinguished by two 

fundamental characteristics: (1) both the branches and the nodes serve as habitat, 

and (2) the specific spatial arrangement and hierarchical organization of these 

elements interacts with a species’ movement behavior to alter patterns of population 

distribution and abundance, and community interactions.  Here, we summarize 

existing theory relating to ecological dynamics in dendritic networks, review empirical 

studies examining the population- and community-level consequences of these 

networks, and suggest future research integrating spatial pattern and processes in 

dendritic systems. 

Introduction 

Ecologists’ interest in spatial processes has grown tremendously over the last 

few decades (MacArthur & Wilson 1967, Fretwell 1972, Forman & Godron 1986, 
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Hanski & Gilpin 1997, Clobert et al. 2001). Attention has focused especially strongly 

on issues relating to habitat geometry, such as patch size (Skellam 1951, Hanski & 

Ovaskainen 2000, Speirs & Gurney 2001), patch edges (Fagan et al. 1999, Ries et 

al. 2004), and corridors (Haddad et al. 2003).  In metapopulations, mainland-island 

networks, and other multi-patch systems, substantial effort has centered on 

characterizing and quantifying aspects of ecological connectivity that influence the 

flow of genes and individuals, and that regulate ecosystem services.  Empirical and 

theoretical investigations of the interaction between habitat configuration and 

ecological processes, such as population growth and spread, are becoming more 

prevalent in ecology and conservation biology (e.g., Hanski 1998, With 2002).  Here, 

we (1) review current paradigms and tools for studying complex systems, (2) 

describe a specific, important class of networks where hierarchical, branching 

geometry imposes special structural and dynamic properties, (3) summarize existing 

theory relating to ecological dynamics in these dendritic networks, (4) review 

empirical studies examining the population- and community-level consequences of 

dendritic ecological networks, and (5) suggest future research integrating spatial 

pattern and processes in these networks. 

Recent syntheses have applied network theoretic analyses to understand the 

functioning of a diverse set of complex systems (Newman 2003, Stewart 2004, 

Proulx et al. 2005, May 2006, Montoya et al. 2006), suggesting that emergent 

characteristics, such as system-level responses to disturbance, can be predicted 

from the structure of a network and the strength of interactions among network 

elements.  These reviews constitute a coherent treatment of “lattice” networks, which 

are node-focused systems in which the role of network links is to connect processes 

that occur within the system of nodes (Fig. 1.1a).  Lattice networks include rasterized 

networks, in which each cell in a regular spatial grid is connected to a fixed number 
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of neighbors, as well as patchy networks, in which each patch is (potentially) directly 

connected to all other patches in the network.  Thus, our use of the term ‘lattice’ 

includes those systems that lie between a random graph and a regular spatial lattice 

(e.g., a ‘small world’ network, Watts & Strogatz 2001). 

Ecologists have utilized theory developed for complex networks in other systems 

to understand dynamics in spatially structured ecological networks.  One such 

framework involves the application of a field of mathematics known as graph theory 

(Urban & Keitt 2001, also referred to as network theory: Newman 2003 and 

references therein), a set of tools that offer substantial advantages in studies of 

ecological connectivity (Calabrese & Fagan 2004).  In graph theory, spatially 

structured systems can be idealized as a system of ‘nodes’ and ‘links’ (also called 

‘edges’; not to be confused with habitat edges, as in landscape ecology), and spatial 

ecologists working with graph theory have generally viewed nodes as discrete 

habitat patches and the links as the connections along which individuals or resources 

flow.  This conceptual framework has been applied to spatially structured networks 

with lattice-like topology to identify important habitats for metapopulation 

conservation (Urban & Keitt 2001), to investigate the response of migration corridors 

to the positioning of stopover sites (e.g., bird migration routes, Shimazaki et al. 

2004), or to forecast the response of a population to landscape change (e.g., 

amphibian population response to drought, Fortuna et al. 2006). 

In contrast to the wide theoretic interest in spatially structured networks with 

lattice-like architecture, there has been little discussion of systems with alternative 

network geometries, such as the dendritic (branching) geometry common to plants, 

river systems, and caves.  This lack of attention may arise because, from a 

theoretical standpoint, dendritic geometries are merely a special case of network 

topology.  However, dendritic geometries are widespread in ecological systems and 

5 



 

feature particular structural and dynamic characteristics that deserve special 

attention.  Dendritic ecological networks (DENs) are a unique type of spatially 

structured network, which differ from lattice networks in several important ways 

(Table 1.1). 

Recent theoretical advances in spatially structured networks focus primarily on 

the development of statistical indices of network properties (Newman 2003) that 

contribute to large-scale connectivity and, therefore, to network-level persistence of 

populations (e.g., Jordán et al. 2003, Pascual-Hortal & Saura 2006).  However, 

ecological processes in DENs are sensitive to specific structural features of the 

network that are obscured by these statistical indices. This sensitivity results, in part, 

because in DENs there is a closer match between the physical scale at which the 

network is considered and the scales at which ecological processes are acting.  This 

sensitivity also underscores the importance of developing alternative tools for 

exploring and understanding ecological dynamics in DENs. 

What are dendritic ecological networks? 

 ‘Dendritic’ describes the geometric pattern of arborescent bifurcation, consisting 

of a ‘mainstem’ and ‘branches’ which decrease in size and increase in number 

hierarchically as one proceeds upwards through the network (Fig. 1.1c).  Many DENs 

are fractal-like, with elements of self-similarity across scales.  The classic example of 

dendritic geometry in nature is the branching architecture of individual plants 

(Thompson 1917).  However, the hierarchical branching geometry of stream systems 

has received considerable attention regarding the relationship between network 

geometry and dynamics (Fisher 1997, Fisher et al. 2004, Rodriguez-Iturbe & Rinaldo 

1997). 
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From this background, the DEN concept can be generalized to describe any 

system where critical resources are concentrated in a linear arrangement and where 

those linear subunits intersect to create a branching architecture.  This structure may 

result from landscape alteration that maintains linear units of distinct habitat, for 

example, hedgerows and fence lines (Hilty & Merenlender 2004, Deckers et al. 

2005), the formation of caves by dissolution in karst landscapes (Christman et al. 

2005), or the construction of transportation corridors (Christen & Matlack 2006).  

Though not dendritic in the strict sense, hedgerow and transportation corridors 

exhibit key structural features of other natural dendritic networks, such as streams or 

caves. 

In systems structured as DENs, ecological processes (e.g., dispersal, population 

growth, community interactions) are carried out within the branches themselves, 

while the nodes serve as “transfer” points where branch dynamics may be modified 

as one proceeds along the network.  These processes may change depending on 

branch size, the juxtaposition of different branch types at nodes, and the interplay 

between species (or individuals) and network geometry.  This conceptualization 

means that DENs are structurally and functionally different from other types of 

ecological networks, such as metapopulations and foodwebs, where the focus is 

largely on the nodes of the network, with links that define connections between 

nodes (Table 1.1; Hanski 1998, Ricketts 2001, Polis & Winemiller 1996).  For 

example, within DENs such as river or cave networks, branches serve as primary 

habitats for resident species, whereas in lattice-type spatial networks, the links are 

typically routes for connections between habitats. Furthermore, when links exist as 

discrete features in lattice networks, they are typically of lower quality (e.g., 

movement corridors between patches).  As we discuss below, the branching, 

hierarchical geometry of DENs drives key patterns and functional properties.   
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Because these structural differences are difficult to incorporate explicitly in lattice 

models, conclusions drawn from these models may not be applicable to DENs.  

Graph theoretic approaches have great potential in studies of spatially structured 

lattice networks (e.g., metapopulations; Urban & Keitt 2001), but such approaches 

are of limited utility in studies of DENs, where spatially constrained network topology 

and hierarchical geometry interact.  In some cases, representation of a DEN as 

habitat branches linked at the branch intersections (Fig 1.1b, upper) may be 

appropriate when interest is focused on dynamics within the linear habitat units 

alone.  Likewise, when interest is focused on dynamics and processes occurring at 

habitat intersections, a DEN can be conceptualized as nodes linked by habitat 

branches (Fig. 1.1b, lower).  However, such graph theoretic perspectives will 

obscure processes that are functions of both nodes and branches. Accounting for the 

interaction of these two fundamental network components is critical to understanding 

ecological dynamics in DENs. 

Dynamics in dendritic ecological networks 

Identification of general patterns resulting from network architecture provides a 

way to move beyond a case-by-case analysis of the consequences of spatial 

patterning in ecological systems.  Just as consideration of network topology has 

improved understanding of food webs (Dunne et al. 2002, Power & Dietrich 2002) 

and metapopulations (e.g., Fortuna et al. 2006), we argue that further study of DENs 

as a class of spatial structures will improve our understanding of ecological systems 

that involve branching, hierarchical geometries.  Most empirical studies of dendritic 

geometry have dealt with stream systems, though other types of systems also fit the 

general topological form of a DEN.  We believe that developing a conceptual 

framework for these types of networks will (1) guide development of theory suitable 
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for DENs, and (2) provide direction for studies in a diverse set of systems where 

branching, hierarchical geometries are important.  Because the architecture of a 

DEN is usually rigid and ecological processes occur in the network branches, the 

network imposes constraints on population processes such as spread, growth, and 

survival (Fig. 1.2).  By influencing the population dynamics of individual species and 

by differentially mediating the movement of species among branches, the network 

architecture of DENs may also affect community dynamics (Fig. 1.2). 

Population-level implications of dendritic network structure 

In a DEN, connectivity is a function of network topology, which interacts with 

species- and individual-level behaviours.  Individual movements can follow two 

pathways in dendritic networks: along the network geometry (within-network 

movement), or between branches of the network (out-of-network movement). For 

example, while larval stream insects are restricted to within-network movements 

(e.g., Waters 1972), many adult stream insects are capable of out-of-network 

movement by flying overland among branches (Miller et al. 2002, MacNeale et al. 

2005).  For some species, such as stream amphibians, certain life stages are 

capable of both in- and out-of-network movement.  A variety of taxa exhibit 

preferential movement paths along the branches of habitat networks (e.g., butterflies 

in open, non-forest habitat, Haddad 1999; organisms moving across migration 

networks, Alerstam 2006; migrating fish, Keefer et al. 2006), suggesting that 

organisms respond to structural cues within the habitat network.  For example, 

Keefer et al. (2006) found that migrating, radio-tagged Chinook salmon 

(Oncorhychus tshawytscha) selectively used those portions of the rivers that 

exhibited cues of their natal tributaries.  Where in the river network individuals began 

to use chemical cues to navigate towards their natal tributary depended on the size 
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(and discharge) of their natal tributary and the proximity of dams in the mainstem that 

could alter directional cues via mixing and turbulent flow.  Additionally, in a habitat 

with stark boundaries between habitat and non-habitat, Haddad (1999) found that 

butterflies movement behaviour at habitat patch boundaries was a good predictor of 

the use of habitat corridors through non-habitat matrix.  He observed that species 

whose movement behaviour suggested reflection off the patch boundary were likely 

to move through habitat corridors.  These examples illustrate the types of spatially 

referenced cues that organisms may use to facilitate movement through the linear 

habitat features in a DEN. 

For species that preferentially travel along the network branches, patterns of 

genetic relatedness can reflect the constraints imposed by the network architecture 

(Rissler et al. 2004, Lowe et al. 2006).  When species are obliged to move within the 

network, strong demographic and genetic isolation may occur among locations that 

are nearby in Euclidean space, but distant along network branches (Fagan 2002, 

Rissler et al. 2004). In cave networks, populations of obligate cave-dwelling 

organisms may be isolated if networks of underground passages are extensive, even 

when cave entrances are separated by short above-ground distances. As cave 

animals are restricted to subterranean pathways, the branching architecture of cave 

networks imposes a structural constraint on dispersal which may explain the high 

levels of endemism in this group of organisms (Christman et al. 2005).  For example, 

Fong & Culver (1994) described the distribution of several cave-dwelling aquatic 

crustaceans and ascertained the history of species’ invasion of the network by 

mapping the occurrence of each species in relation to the network’s branching 

geometry.  The distribution of one species (Gammarus minus) was best explained by 

movement upstream through the branching cave network.  This pattern of movement 

resulted in occupancy of only a portion of the network of cave passages, even when 
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surface connections with the adjacent cave passages were nearby in Euclidean 

space.  Another species (Caecidotea holsingeri) was postulated to have invaded the 

cave network from the tips of the network branches, as suggested by its 

contemporary distribution throughout the cave network. 

The linear habitat arrays of a DEN can also enhance population connectivity by 

acting as movement corridors, which channel dispersal along pathways of suitable 

habitat (Fig. 1.2b; Beier & Noss 1998, Joyce et al. 1999).  The enhanced connectivity 

of a DEN can increase the likelihood of metapopulation persistence, provided 

dispersal is sufficient to recolonize extirpated patches (Fagan 2002).  Similarly, the 

topology of a network of habitat patches may interact with dispersal vectors and 

species’ life history traits to influence the rate and extent of population expansion 

(Cuddington & Yodzis 2002).  Empirical evidence of high population connectivity in 

DENs includes rates of seed spread via the edge-following behavior of birds (Levey 

et al. 2005), the distribution of plant communities along riverbanks and within 

hedgerows (Honnay et al. 2001, Deckers et al. 2005), the preferential flight 

orientation of emerging stream invertebrates (Macneale et al. 2004, 2005), and the 

recovery of salamander populations following logging in headwater drainages (Lowe 

and Bolger 2002).  In European hedgerows, the probability of pin cherry (Prunus 

pensylvanica) occurrence increased near nodes where hedgerows intersected.  This 

pattern was attributed to the edge-following behavior of birds that serve as the tree’s 

primary seed dispersal vector (Deckers et al. 2005).  Likewise, the presence of 

confluent or intersecting branches may enhance the size and demographic resilience 

of a population (Fig. 1.2b) by providing a ready source of colonists (the rescue effect 

of Brown & Kodric-Brown 1977) or through transient source-sink dynamics (Pulliam 

1988).  For example, Lowe & Bolger (2002) found that networks with greater 

complexity (e.g., networks having confluent branches versus linear, unbranched 
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networks) harbored larger populations of a stream salamander species (Gyrinophilus 

porphyriticus) that is primarily limited to movement along the network branches. 

Organisms searching for high quality habitat may take advantage of spatially 

referenced clues. In DENs, node habitats often feature distinct physical and chemical 

conditions that may create high quality habitat at nodes, or provide information on 

habitat quality in the intersecting branches (Fig. 1.2d,e; e.g., Joyce et al. 1999, Liu et 

al. 2003, Benda et al. 2004, Keefer et al. 2006).  For example, Riffell & Gutweiller 

(1996) found that the shape of hedgerow intersections influenced plant species 

richness, with more intersecting branches correlating with higher richness.  In these 

hedgerow systems, such ‘intersection effects’ were a result of both the unique abiotic 

conditions at the nodes and the increased chance of seed deposition by bird and 

mammal dispersal vectors at those nodes with many branch intersections.  Such 

intersection effects in hedgerows are particularly strong in carabid beetles, which 

were more abundant at those habitat nodes with many branch intersections than in 

the confluent branches (Joyce et al. 1999).  Likewise, in stream networks, two-lined 

salamander larvae (Eurycea bislineata) and all life stages of the northern spring 

salamander (Gyrinophilus porphyriticus) prefer microhabitats in headwater streams 

with low proportions of fine particles, which can limit the suitability of the stream bed 

as a refuge from predatory fish (Barr & Babbitt 2002, Lowe & Bolger 2002).  

Disturbance in upstream tributaries can result in greater deposition of fine sediments 

at nodes (Benda et al. 2004), which may prevent salamanders from moving through 

those nodes and into upstream tributaries. 

The spatial pattern of disturbance is also likely to have a strong affect on 

population connectivity in DENs.  For example, in stream networks, Euclidean (i.e., 

overland) distances between adjacent, low-order streams (e.g., headwaters) are 

typically shorter than distances to the same point if traveling along the network 
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branches.  Therefore, in species that are restricted to within-network movements 

(e.g., most fish), the likelihood of recolonization following disturbance will increase as 

the size of the impacted stream decreases (Fagan 2002, Fagan et al. 2002).  

Likewise, in cave systems, populations may be sensitive to disturbances that are 

correlated in space, when surface entrances to branches of the cave network are 

nearby in Euclidean distance.  In this way, the architecture of the DEN impedes 

recolonization of the branch tips by inducing a mismatch between the dispersal 

ecology of a species (which is restricted to movements along the network branches) 

and the spatial pattern of disturbance in the network (Fagan 2002).  Further, due to 

the hierarchical geometry of DENs, a disturbance in one branch segment may be 

more easily translated through the network (Jones et al. 2000).  Such connectivity 

results in correlated extinction risks for branches along the network, and will likely be 

most severe in directed systems (e.g., streams). 

The dynamics of an invasion can also be sensitive to the underlying geometry of 

a DEN.  In a complex network, a population undergoing diffusion will be partitioned 

between (1) movements along the main stem of the network and (2) spread to the 

branches (Fig. 1.2; Johnson et al. 1995).  In this way, the branches may act as 

population ‘sinks’ (Pulliam 1988), preventing rapid spread through the network.  This 

feature may be especially important in understanding the spread and dynamics of 

diseases in DENs.  Further, network geometry and complexity allow for increased 

equilibrium densities of prey populations, especially when predator movement is 

limited (Cuddington & Yodzis 2002). Out-of-network connectivity may remove the 

restrictions imposed by network architecture (Cuddington & Yodzis 2000), and this 

increased topological connectedness may enhance dynamic stability of the network 

(Csermely 2004). Such results would be qualitatively similar to theoretical models of 

metapopulation dynamics occurring in dendritic networks (e.g., Fagan 2002, Lowe 
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2002).  In a theoretical investigation of the effect of dendritic network geometry on 

population persistence, Fagan (2002) studied the influence of network topology on 

extinction risk in dendritic and linear (unbranched) networks, simulating the response 

of species that only move along the network branches.  He found that when 

colonization probability was small relative to extinction, the shape of the network did 

not change the metapopulation extinction risk.  However, when colonization 

probability was high and not directed (i.e., individuals could move both up- and 

downstream through the network), population persistence times were enhanced in 

the dendritic system, highlighting the importance of network geometry.  Additionally, 

Lowe (2002) included a small probability of out-of-network movement (i.e., 

movements that did not follow the network branches) in his model of metapopulation 

dynamics in DENs.  He found that when a population was concentrated in the 

uppermost branches of the network (as may be common in stream salamanders), 

this out-of-network dispersal was important in promoting stability of the population in 

the network.  These results highlight the importance of network architecture on 

regulating ecological processes such as movement and colonization.  Further, in 

species or life stages capable of out-of-network movements, the interaction between 

population distribution and the bifurcation angles of habitat branches in a DEN may 

play a key role in regulating spread to adjacent branches. More theoretical work is 

needed to understand the range of conditions under which dendritic geometry 

enhances dynamic stability of ecological systems. 

Community-level implications of dendritic network structure 

Because dendritic geometry constrains local patterns of movement, and may do 

so differentially among species, the physical structure of a DEN may strongly 

influence interspecific interactions.  In dendritic networks, the complexity of the 
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network architecture can impede the movement of individuals (Johnson et al. 1995), 

which can reduce predator-prey interaction rates (Cuddington & Yodzis 2002).  This 

results from the interaction of environmental attributes (i.e., the geometric complexity 

of the network) with the movement behaviour of individuals, which only have local 

spatial knowledge and cannot perceive the overall structure of the network.  Within a 

geometrically complex network, predators may be unable to respond to spatial 

variation in prey population density, increasing the variation in local reproductive 

rates, persistence, and equilibrium densities of prey populations (Cuddington & 

Yodzis 2002). The link between dendritic geometry and species interactions is 

especially well developed in insect-plant systems (e.g., Grevstad & Klepetka 1992, 

Kareiva & Sahakian 1990).  Many attributes of plant architecture may affect species 

interactions, including size and gross morphology, number and variety of plant parts, 

and number of physically touching (‘connected’) parts (Grevstad & Klepetka 1992, 

Gingras et al. 2002, Marquis et al. 2002, Legrand & Barbosa 2003).  In an 

experimental test of the influence of network architecture on parasitoid-host 

interactions, Gingras et al. (2002) constructed artificial plants of varying geometric 

complexity, and evaluated the influence of plant architectural complexity on 

parasitism rate.  They found that increasing connectedness (defined as the number 

of nodes present in the plant’s architecture) reduced the rate of parasitism by 

decreasing the efficiency of locating a host.  The parasitoid found hosts by walking 

along the branches of the plant, and therefore, increasing the number of connections 

decreased the encounter rate and the probability of finding a host in a given unit of 

time (Fig. 1.2f).  Legrand & Barbosa (2003) reported similar results in an aphid-

predator system, and attributed the persistence of aphid populations on structurally 

complex plants (those with a larger number of nodes) to a decrease in predator 

search area efficiency. 
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The geometry of intersecting habitat branches influences the distribution of 

species within the network, and the branching architecture can therefore determine 

patterns of species diversity.  For example, the species richness of electric fish 

communities of the Amazon River is enhanced at tributary confluences (i.e., nodes; 

Fig. 1.2d; Fernandes et al. 2004).  In general, this enhancement of diversity may 

depend on the branching patterns of the network (Grenouillet et al. 2004), and on the 

specific dispersal ecology of the species involved (Skalski & Gilliam 2000, 

Cuddington & Yodzis 2002).  In stream networks, the presence of confluent branches 

at nodes may enhance diversity by (1) providing refugia for sensitive life stages or 

species, (2) enhancing local habitat heterogeneity, and (3) providing access to the 

mainstem for migratory individuals.  The side branching architecture of stream 

networks (i.e., lower order branches that link directly to a mainstem; Turcotte et al. 

1998) affects distributional patterns of fish (Smith & Kraft 2005, Grenouillet et al. 

2004) and invertebrates (Rice et al. 2001).  In these studies, increased local diversity 

was related to the large-scale branching geometry and spatial arrangement of the 

stream network, rather than tributary presence per se.  One reason for this 

relationship may be that the hierarchical branching of stream tributaries affects 

aspects of habitat structure and water quality both at the tributary confluences and in 

the mainstem downstream of the confluences (Rice et al. 2001, Liu et al. 2003, 

Benda et al. 2004).  More generally, the nodes of DENs are likely to support high 

level of species diversity because they represent intersections of distinct habitat 

types where, consequently, localized habitat diversity is high relative to areas of 

similar size within network branches.  

Network architecture can also influence food web structure (Power & Dietrich 

2002, Fisher et al. 2004), and three characteristics of DENs seem especially 

important in regulating food web structure.  First, nodes serve as unique habitats, 
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where resources are concentrated before they are dispersed through the network.  

Concentration of resources can occur via advective transport or active individual 

choice for specific habitat conditions at nodes (Fig. 1.2e), and accumulation of 

resources at branch junctions may regulate the flux of resources through the 

network.  For example, the effect of persistent downstream movement of material 

and individuals from tributaries may override competitive interactions further down in 

the network, resulting in a type of mass-effect (Kunin 1998).  Second, the 

juxtaposition of independent branch habitats provides diverse habitat types and 

resource flows at nodes, especially where smaller tributaries intersect larger 

branches (Fig. 1.2d).  Via advection and concentration, smaller branches may 

provide resource subsidies to organisms that are restricted to larger branches by 

size or other abiotic habitat requirements (‘landscape complementation’; Dunning et 

al. 1992).  This effect would likely be highly dependent on the size and configuration 

of the network branches.  Finally, the presence of spatially repeating, but indirectly 

linked branches introduces a source of spatial heterogeneity in predation pressure 

and resource availability.  Theoretical studies by Cuddington & Yodzis (2002) 

demonstrated that the topological complexity of DENs alters stopping rules of 

predators, which can get caught in network branches with depleted resources (Fig. 

1.2b).  The architecture of a DEN thus induces a mismatch between scale at which a 

consumer can respond to the spatial structure of the network and the scale over 

which resources are distributed within the network. 

Moving beyond branches and nodes: Integrating pattern and process in 

dendritic networks  

Compared to lattice networks, networks with dendritic architecture lack a general 

theory relating to ecological patterns and processes.  Stream ecologists have long 
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recognized that the spatial layout of tributary branches can affect processes in the 

mainstem (e.g. Vannote et al. 1980, Bruns et al. 1984, Fisher 1997).  However, 

despite a focus on large-scale spatial structure in riverine systems (Fisher 1997), 

empirical studies of how dendritic network geometry affects ecological patterns and 

processes in these systems are rare.  Empirical examinations of the role of spatial 

structure in other types of DENs are similarly sparse.  Indeed, our review revealed 

only a handful of studies dealing with the influences of plant architecture, cave, or 

hedgerow networks on population or community level dynamics. 

Much of the work on lattice networks falls into a few broad categories: (1) 

mechanisms for the formation of complex networks (e.g., preferential addition of links 

to highly connected nodes), (2) assembly characteristics for attachment of links to 

nodes, (3) properties of the network (e.g., robustness to node removal), and (4) the 

form and function of links (Newman 2003, Proulx et al. 2005).  Thus, in spatial 

networks with lattice-type geometry (e.g., Fig. 1.1a), much of the interest is on 

features of the landscape that promote or inhibit network connectivity.   In contrast, 

the exciting future for DENs lies in the identification of patterns and processes 

specific to and resulting from the rigid, branching geometry and the interaction of 

branches and nodes.  Characteristics important to DENs include: (1) number of 

branch intersections, (2) size and shape of branches, and (3) the hierarchical 

geometry of branching.  In particular, more theoretical and empirical efforts are 

needed to characterize the relationship between dendritic network structure and (1) 

population dynamics, limitation, and regulation, (2) speciation and evolutionary 

dynamics and limitations, (3) species extinction risks and conservation, (4) land 

management and response to disturbance, and (5) species interactions. 

Empirical case studies discussed above suggest that the topology of dendritic 

networks results in special properties and patterns that may be generalized to other 
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systems sharing important features of this network structure (e.g., caves, 

transportation networks, and potentially, migration routes and corridors). Concern 

about habitat fragmentation has inspired research into habitat features controlling 

population connectivity and ecosystem fluxes, such as habitat edges (e.g., Fagan et 

al. 1999) and corridors (e.g., Haddad et al. 2003), that can also be addressed within 

a conceptual framework for DENs.  Linking DENs to work in lattice networks would 

benefit our general understanding of ecological networks, but the rigid geometry of 

DENs and importance of branches rather than node habitats does not fit well into 

existing network models for node-focused lattice systems.  Regardless, we need a 

better way to generalize patterns and processes resulting from the geometry of 

dendritic systems.  Looking forward, several topics deserve special attention: 

Within-network versus out-of-network movements. The fraction of 

movements taking place within the restrictive geometry of a DEN relative to out-of-

network movements (e.g., from one branch to another) is undoubtedly critical to 

population demography and genetics. For organisms that have evolved within 

spatially structured systems, within-network movements can reasonably be 

considered as primary movement pathways, and out-of-network movements as 

secondary pathways (or ‘weak’ links; Csermely 2004).  However, out-of-network 

movements may be particularly important for maintaining genetic diversity within 

populations in DENs (Lowe 2002, Rissler et al. 2004), and may be crucial for 

population persistence, should a dendritic network become fragmented (Fagan 

2002).  In addition, when species’ movements are not constrained by the branching 

geometry of a DEN (e.g., a greater proportion of out-of-network as compared to 

within-network movements), measures of community stability will likely increase, as 

is found in lattice networks with increasing connectance (e.g., Dunne et al. 2002). 
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Natural versus human-generated DENs and species adaptation to network 

geometry. Examples exist of both natural (e.g., streams, desert riparian vegetation) 

and human-created DENs (e.g., hedgerows).  Likewise, we have sets of species that 

have existed for many generations in DENs and others for which dendritic 

geometries are a relatively new feature of their landscapes.  Consequently, it would 

be informative to compare the response to disturbance of species that are adapted to 

dendritic systems with the response of species that have not evolved in spatially 

structured systems.  Large scale, manipulative experiments of network configuration 

and population abundance or distribution, combined with observational studies on 

the distribution of organisms in existing natural and manipulated systems, can 

provide strong inference on the effect of network structure and evolutionary history of 

species responses.  

Expanding the scope of DEN models. Most DEN modeling thus far has 

focused on the dynamics of one or a few species, and almost none of it has been 

firmly tied to particular systems.  One logical area for further modeling efforts is the 

dynamics of biological invasions, where dendritic geometry can have overriding 

influences (Johnson et al. 1995).  Interestingly, dendritic geometry may both facilitate 

invasions (via corridor-following behaviour) and inhibit invasions (by the presence of 

side branches).  Theoretical studies of the consequences of dendritic geometry are 

also needed in evolutionary biology.  For example, n the context of DENs, models of 

speciation, the development of patterns of endemism, and related topics are 

effectively absent.  Because limitations on movement can have such important 

consequences in evolutionary biology and population genetics in particular, future 

work should investigate how the specific types of limited movement that arise 

because of dendritic geometry may affect aspects of species evolution. 
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Investigating when geometric details matter. Distributional patterns of a 

population in a DEN is likely a function of the area and arrangement of intersecting 

branches, but the nature of these relationships has not been adequately 

investigated.  Decomposing patterns of species distribution in hierarchically 

structured branches may be aided with a general understanding of the effects of 

branch area, intersection effects (i.e., number and angles of intersecting branches), 

and the sequence of branch additions to a network.  Better understanding of how an 

individual or population responds to the network geometry will, for example, elucidate 

those combinations of life history characteristics, movement preferences and rates, 

and interactions with the dendritic network architecture that maximize population 

spread or invasion dynamics in networks of varying complexity (e.g., Cuddington & 

Yodzis 2002). 

Understanding mechanisms for formation of dendritic networks.  Models of 

dendritic network formation are likely different than in lattice network assembly 

models (reviewed in Newman 2003), and may provide greater understanding of, for 

example, biogeographic patterns in species distributions, or species responses to 

habitat fragmentation or the addition of habitat corridors.  Network formation in a 

DEN (e.g., dissolution of karst geology, stream capture) may interact with species 

evolution by reworking network connections in hierarchical dendritic landscapes on 

timescales comparable to those of speciation processes.  Additionally, understanding 

how natural dendritic systems form may aid efforts to promote landscape level 

conservation of species over long timescales by identifying movement corridors 

preemptively, even when faced with rapid fragmentation of natural habitats.  

Combined with an understanding of species’ adaptations to DENs, and how species 

are likely to respond to this network architecture, such perspectives may be a 
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powerful tool in assessing and forecasting the effect of landscape change on natural 

communities. 

Conclusions 

Recognizing that network geometry may shape ecological patterns and 

processes will lead to understanding of system properties that would not be possible 

by examining the individual parts alone (Proulx et al. 2005).  Key to this argument is 

the expectation that specific characteristics of network architecture can be linked to 

system-wide properties (e.g., small world networks, Watts & Strogatz 1998).  In this 

review, we have highlighted how the definitions and functions of nodes and branches 

in dendritic networks are distinctly different from those in lattice networks, and 

illustrated the impacts of this alternative geometry on population- and community-

level processes.  Overall, a close correspondence exists in DENs between the 

spatial scale over which the network branches and the scale over which ecosystem 

processes act.  Consequently, the arrangement and dimensions of the network 

components (habitat branches or patches) should play a large part in regulating the 

emergent properties of the network as a whole.  

A reasonable target for theoretical studies of population dynamics and 

community processes in spatially structured systems would be the development of a 

general conceptual framework that encompasses both dendritic and lattice networks.  

This framework would allow dynamic modeling between network states, where key 

regulators of ecological processes (such as dispersal) and emergent properties 

imposed by the dendritic architecture change with the relative contributions of within- 

and out-of-network connectivity.  With this approach, a DEN might function like a 

lattice network, but this outcome would depend on spatio-temporal dynamics of 

population, community, and evolutionary processes in the focal system, and would 
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not be predetermined by network geometry alone.  In such an integrative framework, 

tools from existing network theory would be useful in describing the general 

characteristics and statistical properties of the network, while understanding of the 

effect of the specific geometry of the network would come from a dendritic network 

theory.  Borrowing (and modifying) components of lattice network theory may prove a 

fruitful starting point.  Improved understanding of the contribution of network 

geometry should lead to better understanding of community- and population-level 

dynamics in systems inherently assembled in dendritic ecological networks, and in 

those systems that are artificially constrained to this architecture by human activities.   
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Table 1.1.  Conceptual contrasts between spatially structured lattice networks and 

dendritic ecological networks.  

Lattice networks Dendritic networks 
Nodes (patches) and edges (links) are 
discrete features, with nodes as habitat 
and edges as functional links between 
habitat patches 

Both nodes and edges (branches) are 
habitat, with branches as primary habitat 
patches 

Primary movement between habitat 
patches (edges or links) 

Primary movement along network 
branches 

Movement generally restricted to 
occurring along the network branches.  
Out-of-network connections sometimes 
possible (depending on species, life 
stage, branching geometry of the network)

All connections possible, provided they 
satisfy constraints specific to the species 
or individual (e.g., dispersal distance, 
matrix permeability) 

Geometry of habitat patch layout affects 
processes and patterns in the network 

Geometry of branching affects processes 
and patterns in the network 

Movement through the network 
constrained by inter-patch distance and 
conditions in the non-habitat matrix 
between patches 

Movement through the network primarily a 
function of distance following the network 
branches and branching geometry 

Patches of varying shapes Elements of habitat largely linear 
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Figure 1.1.  Types of spatial networks considered in this review.  Lattice networks (a) 

are often represented as a system of patches and links.  In this conceptual model, 

patches represent populations or other subunits of a system, and links function as 

pathways of dispersal or interaction.  Dendritic networks (c) are distinctly different 

from lattice networks in that the links (or ‘branches’) are no longer mere 

representations of functional interaction, but are instead primary habitat..  Likewise, 

the nodes of dendritic networks are transfer points between branches, and often 

constitute distinct types of habitat themselves.  Representation of dendritic networks 

using existing conceptual models (e.g., with stream reaches as habitats [b, upper] or 

confluences as nodes [b, lower]) may be insufficient to capture the key features 

inherent to ecological networks with dendritic geometry (c). 

 

25 



 

Figure 1.2.  Conceptual diagram of population and community processes in dendritic 

ecological networks.  Dendritic networks are unique in that both ‘nodes’ and 

‘branches’ serve as habitat (a).  A principal consequence of dendritic architecture is 

to alter patterns of dispersal.  For example, dendritic geometry may facilitate rescue 

of declining populations (b), alter vector stopping rules (c), and enhance diversity at 

‘nodes’ (confluence points) by providing heterogeneity in resource distribution (d), or 

as a function of advective displacement (e).  The spatial isolation imposed by the 

branching geometry of the network may also interact with individual mobility to slow 

spatial spread along the network (f). 
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Chapter II: Are two methods better than one?: Area constrained transects and leaf 

litterbags for sampling stream salamanders 

Published in: Herpetological Review : 38(1): 43-45, 2007 

Coauthored with: Sandra D. Mattfeldt 

Introduction 

Concern over large-scale amphibian and reptile declines and general 

acknowledgement of sparse baseline information for most herpetological species has 

prompted the initiation of several monitoring programs. These programs, as well as 

ecological studies focused on metapopulation dynamics and habitat associations, 

often use presence-absence (or probability of occupancy) as the parameter of 

interest. For example, the long-term monitoring design of the US Geological Survey’s 

Amphibian Research and Monitoring Initiative (ARMI) uses multi-season models 

developed by MacKenzie et al. (2003) to estimate the changes in the proportion of 

sites occupied by a species. As a national program, ARMI has chosen occupancy as 

the state variable of interest (rather than abundance), because of the ease and 

relative cost efficiency of collecting survey data (i.e., detection or non-detection of 

each target species), and the ability to incorporate the probability of detecting a 

species to obtain unbiased estimates of occupancy (MacKenzie et al. 2002). 

Sampling methods may differ in their effectiveness in detecting a species at an 

occupied site (Bailey et al. 2004). Because a higher probability of detection means 

fewer surveys are needed to obtain good precision for the occupancy estimator 

(MacKenzie and Royle 2005), efficient survey designs should consider detection 

probabilities in the cost/benefit analysis of sampling methods. The goal of this study 

was to determine the most efficient method for estimating stream salamander habitat 
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occupancy at a regional scale, as part of the Northeast region of the ARMI program 

(NE ARMI). 

Several methods exist for sampling stream salamanders including area-

constrained transects (Grant et al. 2005; Heyer et al. 1994), cover-controlled active 

searches (Heyer et al. 1994; Lowe and Bolger 2002), time-constrained searches 

(Barr and Babbitt 2002) and leaf litter refugia bags (‘leaf litterbags’; Pauley and Little 

1998). Area-constrained transect surveys may give a reliable index of the relative 

abundance of stream salamanders, and multiple passes can be used to estimate 

population sizes using removal models (Bruce 1995; Jung et al. 2000). Leaf 

litterbags are a uniform way to sample the leaf litter habitat and are an effective 

method for determining species presence, but not abundance (Chalmers and Droege 

2002; Waldron et al. 2003). Leaf litterbags have been proposed as an appropriate 

method for determining site occupancy (Pauley and Little 1998; Waldron et al. 2003), 

and they may increase detection probabilities of some species or life stages.  

During a survey, a species can be present but not detected (i.e., a false 

absence), causing the site to appear unoccupied. To estimate the true occupancy 

state of a species, multiple ‘surveys’ are required, which can be in the form of repeat 

site visits, multiple observers, replicate surveys, or multiple methods conducted 

simultaneously. Methods that increase detection probabilities of a species can 

reduce the optimal number of surveys of a site needed to obtain a precise estimate 

of occupancy (MacKenzie and Royle 2005). To determine the most efficient survey 

design, we compared the probabilities of detecting Desmognathus fuscus, Eurycea 

bislineata, and Pseudotriton ruber using area-constrained transects (hereafter 

‘transects’) and leaf litterbags in twenty-five 30 m stream reaches within 12 first- and 

second-order streams in the Chesapeake & Ohio Canal National Historical Park, 

Maryland (38° 59’N, 77° 14’W) and Rock Creek National Park, District of Columbia 
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(38° 57’N, 77° 02’W). We surveyed each site twice from 16 June - 29 July 2005. 

During the sample period, all age classes of E. bislineata and P. ruber were available 

for capture, while only adult and juvenile D. fuscus were available (as the previous 

year’s larvae had metamorphosed by this time). By sampling with both methods 

within the same stream reach, we were able to estimate detection probabilities for 

each species-method combination, and determine the possible bias associated with 

each sampling method. 

Methods 

The transects consisted of two 15 x 3 meter areas (1 meter in the water and 2 

meters on the bank), located on opposite banks and separated by 15 meters. To 

survey each transect, one observer proceeded upstream, turning all cover objects 

greater than 6 cm in diameter. An aquarium net was used to facilitate the capture of 

salamanders. Three leaf litterbags were placed within each 15 meter transect at 0, 

7.5 and 15 m. The bags were placed one week prior to sampling to allow 

colonization by salamanders. Our leaf litterbags were constructed of two layers of 50 

x 50 cm Deer Block brand plastic netting, with a mesh size of 15 x 15 mm, and filled 

with 50-60 grams (dry weight) of leaf litter (Chalmers and Droege 2002; Waldron et 

al. 2003). To maximize the likelihood of capturing larval salamanders, leaf litterbags 

were partially submerged (Waldron et al. 2003), using a rock to hold each bag in 

place. The leaf litterbags were checked after a week and again 3-4 weeks later by 

placing a net under the bag, and immediately placing the bag into a wash basin with 

water. We shook the bag in water for 15-20 seconds to loosen salamanders, then 

drained the contents of the basin into a net, and searched for salamanders. 

We defined a site as a 30 m stream reach and used the program PRESENCE 

(MacKenzie et al. 2002) to estimate the proportion of sites that were occupied. For 
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each of the following analyses we used the detection/non-detection data for each 

species separately, and estimated the species-specific detection probability (p; 

defined as the probability of detecting the species at an occupied site) and the 

proportion of sites occupied (Ψ), while accounting for a species not always being 

detected when present (i.e., p <1).  

We conducted 3 separate analyses. First, we combined detection information 

from transect and leaf litterbag searches into a single survey event (‘combined’ 

dataset). In this dataset, the probability of detection represents the likelihood that the 

species was detected by either survey method during a survey event, and the 

resulting estimate of occupancy should provide an unbiased estimate of the true 

occupancy state of the site. Second, we analyzed a single dataset in which each 

detection/non-detection observation was separate for the two methods employed 

during a survey event (‘method-covariate’). By modeling “method” as a covariate in 

the PRESENCE models, we were able to obtain detection estimates for each survey 

method, using knowledge of sites where the species was detected by the other 

method. Finally, we analyzed separate datasets (‘method-specific’) for each method, 

in which the probability of detection represents the likelihood that the species was 

detected by only one method. This dataset represents the data that would be 

collected if only one method was implemented, and thus may reveal a potentially 

biased estimate of the site occupancy, suggesting that the sampling method itself 

may be flawed. 

These analyses allowed us to investigate possible heterogeneity in detection 

probabilities caused by sampling bias associated with each survey method. The two 

methods may differ in their detection probabilities, but if the methods are able to 

detect a species, then the detection-adjusted estimates of occupancy should be the 

same among all the analyses. Drastic differences in the occupancy estimates would 
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suggest a bias in the actual sampling method (i.e., if one method was unable to 

detect, or had very low probability of detecting the target species at occupied sites). 

Comparing the method-specific estimates of occupancy with the ‘method-covariate’ 

and ‘combined’ datasets gives an assessment of sampling bias for each survey 

method (Bailey et al. 2004). 

Results and Discussion 

For D. fuscus and E. bislineata, the detection probabilities were higher for 

transects than leaf litterbags (Table 2.1). For D. fuscus this was expected, since 

submerged leaf litterbags target the larval life stage (Waldron et al. 2003), which was 

not present during the survey period. We were therefore unable to estimate a 

method-specific estimate for leaf litterbags for D. fuscus (Table 2.1). For E. bislineata 

the probability of detection increased slightly when both methods were used. Both 

methods appear suitable for detecting this species, as the point estimates of site 

occupancy were similar across all datasets, though transects alone had a slightly 

higher probability of detection (Table 2.1). For both D. fuscus and E. bislineata, 

incorporating detection probability resulted in an estimate of occupancy that was 

higher than the naïve estimate (the fraction of sites where the species was detected 

without accounting for missed detections; naïve ΨE. bislineata = 0.68; naïve ΨD. fuscus = 

0.44, Table 2.1).   

For P. ruber, leaf litterbags were more effective at detecting salamanders than 

area constrained transects (Table 2.1). Using transects, P. ruber was detected at 2 

of the 25 sites, and at one site it was found during both survey events. This resulted 

in a high estimate of p, (though with a large SE) for the method-specific transect 

dataset. However, when method is modeled as a covariate (Table 1; method-

covariate dataset), additional information is provided from leaf litterbag detections, 
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which were more efficient at detecting larval salamanders. Including detections from 

leaf litterbags reduced the estimate of p for the transect method (as P. ruber was 

never detected by both methods at a site). The estimate of occupancy for the 

method-specific dataset using transects was much lower than the known, naïve 

estimate of site occupancy (method-specific Ψ = 0.09, naïve Ψ = 0.28). These data 

indicate the bias in occupancy estimates which would have resulted from using only 

the transect sampling method, due to the very low probabilities of detecting P. ruber 

(i.e., p = 0.1127 for the transect survey method in the ‘method-covariate’ dataset). 

For this species, sampling with leaf litterbags in combination with transects increases 

the detection probability, eliminates or reduces bias in occupancy estimates that may 

result for using just one detection method, and also decreases the number of times a 

site should be visited to obtain an optimal occupancy estimate (i.e., low SE) from 17 

to 4 visits (MacKenzie and Royle 2005; Table 2.2). 

As expected, using two methods to detect the presence of a species provides a 

more precise estimate of occupancy than a single method alone (Table 2.1). For 

example, P. ruber was never detected by both methods at the same site, and the 

estimate of occupancy is more precise for the combined dataset (Table 2.2).   

If one method is superior for detecting a species, then the addition of a second 

method provides redundant information that does not improve the occupancy 

estimate. The inferior sampling method can still be used, but the optimal number of 

visits to a site increases substantially (e.g., Table 2.1, 2.2; leaf litterbags are less 

suitable for detection of D. fuscus, and therefore inflate the optimal number of 

surveys from k = 2 to 17, MacKenzie and Royle 2005). Further, when the detection 

probability is high, the increase in detection provided by a second method does not 

change the estimate of occupancy or the optimal number of visits to a site (e.g., 

Table 2.1,2.2; E. bislineata). 
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Sampling methodologies may vary in their effectiveness of sampling different life 

stages. Leaf litterbags are designed to preferentially capture larval salamanders 

(Waldron et al. 2003), and our transect surveys are designed to sample all life 

stages.  In our study, leaf litterbags detected adult salamanders of all three species 

with low probabilities, and thus leaf litterbags are not likely to provide the data 

necessary to estimate patterns in stream occupancy by adult salamanders with 

sufficient power.  If occupancy of a habitat by a particular life stage is of primary 

interest, then the sampling program should be designed primarily using methods that 

target that life stage.  Regardless, interpretation of results should consider that a 

sampling method may detect all life stages, while having different detection 

probabilities for each life stage.   

Conclusions 

 In studies designed to assess the status and trends in occupancy of a suite of 

species across a large area, the allocation of survey effort is a chief concern. For 

species that are difficult to detect on a given sampling occasion, such as P. ruber, 

the use of an additional method may increase the precision and decrease bias in 

estimates of occupancy. However, since we found leaf litterbags were expensive to 

construct (materials cost per bag was $2.50), difficult to maintain in the field, and had 

lethal effects on non-target organisms (i.e., 2 dead snakes were found tangled in the 

litterbags), we suggest sampling the leaf litter at a set distance interval (i.e., 1 meter) 

using an aquarium net, rather than deploy leaf litterbags. Incorporating leaf litter 

sampling into the transect surveys may be more effective than using leaf litterbags 

because of increased detections of species that are more likely to be captured within 

the leaf litter (Bruce 2003; E. Grant, unpublished data). 
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Regardless, when designing a research or monitoring program, assessment of 

the potential bias in survey methods should be incorporated into the study design 

(e.g., this study; Bailey et al. 2004; O’Connell et al., in press). In addition, pilot data 

can guide optimization of data collection to meet a variety of study objectives (Bailey 

et al. in press; MacKenzie and Royle 2005), and will ultimately yield estimates that 

facilitate comparisons among studies, provided the state variable estimates account 

for missed detections. 
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Table 2.1. Detection probability (p) and estimates of site occupancy (Ψ) for the 

salamanders Eurycea bislineata, Desmognathus fuscus, and Pseudotriton ruber. The 

data was analyzed in three ways: using method as a covariate (‘Method-covariate’), 

separately for each method (‘Method-specific’), and combined detections from both 

methods for each survey event (‘Combined’). Naïve occupancy estimates for E. 

bislineata (ψ = 0.68), D. fuscus (ψ = 0.44) and P. ruber (ψ = 0.28) do not account for 

missed detections. Occupancy could not be estimated for D. fuscus under the 

method-specific leaf litterbag model because there were too few detections for 

parameter estimation. 

  

E. bislineata D. fuscus P. ruber
Survey 
Method Dataset P (SE) Ψ (SE) p (SE) Ψ (SE) P (SE) Ψ (SE) 

Method-
covariate 

0.621 
(0.088) 

0.715 
(0.099) 

0.787 
(0.105) 

0.460  
(0.105) 

0.113 
(0.298) 

0.541 
(0.298) Transect 

Method-
specific  

0.628   
( 0.121)

0.710 
(0.138) 

0.886   
( 0.080)

0.408  
(0.100) 

0.662    
( 0.317) 

0.091 
(0.066)  

Leaf 
litterbag 

Method-
covariate  

0.508 
(0.088) 

0.715 
(0.099) 

0.131 
(0.071) 

0.460  
(0.105) 

0.226 
(0.298) 

0.541 
(0.298) 

Method-
specific 

0.545   
( 0.141)

0.667 
(0.168) 

0.061   
( 0.034)

0.328    
( 0.247) 

0.371 
(0.270)  - 

0.820   
( 0.078)

0.713 
(0.100) 

0.838   
( 0.092)

0.456  
(0.104) 

0.438    
( 0.206) 

0.416 
(0.195) 

Both 
methods Combined 
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Table 2.2. Optimal number of surveys (k) given occupancy (ψ) and detection (p) 

estimates from the method-covariate dataset and the combined model (from Table 

1). 

 

Survey Method Eurycea bislineata Desmognathus fuscus Pseudotriton ruber 
Transect 3 2 19 

Leaf litterbag 4 17 9 
Combined 2 2 4 
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Chapter III: Salamander occupancy in headwater stream networks 

Published in: Freshwater Biology 

Coauthored with Linda E Green and Winsor H Lowe 

Summary 

Stream ecosystems exhibit a highly consistent dendritic geometry in which linear 

habitat units intersect to create a hierarchical network of connected branches. 

Ecological and life history traits of species living in streams, such as the potential for 

overland movement, may interact with this architecture to shape patterns of 

occupancy and response to disturbance.  Specifically, large-scale habitat alteration 

that fragments stream networks and reduces connectivity may reduce the probability 

a stream is occupied by sensitive species, such as stream salamanders. 

We collected habitat occupancy data on four species of stream salamanders in first-

order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern 

U.S.A.  We then used an information-theoretic approach to test alternative models of 

salamander occupancy based on a priori predictions of the effects of network 

configuration, region and salamander life history. 

Across all four species, we found that streams connected to other first-order streams 

had higher occupancy than those flowing directly into larger streams and rivers.  For 

three of the four species, occupancy was lower in the urbanised region than in the 

undeveloped region. 

These results demonstrate that the spatial configuration of stream networks within 

protected areas affect the occurrences of stream salamander species.  We strongly 

encourage preservation of network connections between first-order streams in 

conservation planning and management decisions that may affect stream species. 
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Introduction 

Viewing ecological systems as spatially structured networks has improved our 

understanding of pattern and process across temporal and spatial scales.  

Conceptual research has focused on processes in patch-based systems (e.g. 

metapopulations; see Urban & Keitt, 2001; Calabrese & Fagan, 2004), but there has 

been little consideration of networks with alternative geometries, such as the 

dendritic structure common to streams, individual plants, caves and other systems 

(reviewed in Grant et al., 2007).  The branching geometry of these dendritic 

ecological networks (DENs) can have unique effects on the distribution and 

abundance of species occupying these systems.  For example, the hierarchical 

nature of stream networks, with small stream branches intersecting at confluences to 

form larger streams, can influence patterns of dispersal and occupancy of stream-

associated organisms (Fagan, 2002; Lowe & Bolger, 2002).  These branched 

networks can also promote population expansion by facilitating movement to 

adjacent habitats (Fagan et al., 2009), or alter community dynamics by regulating the 

frequency of species interactions (Cuddington & Yodzis, 2002). If populations in the 

stream branches are panmictic, branched stream networks will tend to have larger 

habitat area and lower isolation than traditional metapopulations (e.g. Hanski, 1998).  

Both characteristics can reduce extinction risk and increase occupancy in branched 

streams (Fagan, 2002; Lowe, 2002; Fagan et al., 2009). 

At the landscape scale, the structure and complexity of a DEN may affect the 

dispersal of individuals through the network, resulting in vastly different extinction 

risks for the metapopulation, depending on the number and spatial configuration of 

branches within the network (Fagan et al., 2009).  Stream-dwelling species can 

move through the network along two pathways: movements upstream and 
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downstream within the stream channel (within-network movement), or terrestrial 

excursions over land between stream branches (out-of-network movement).  For 

most species that are associated with streams, such as fish, stream 

macroinvertebrates and amphibians, within-network movements are likely the 

primary dispersal pathway (Finn et al., 2006; Lowe et al., 2006).  However, models 

suggest that some capacity for overland (out-of-network) movements can greatly 

reduce metapopulation-level extinction risk (Lowe, 2002; Fagan et al., 2009).   

Many stream salamander species have the potential for both within- and out-of-

network movement. The majority of these species have larvae that are strictly 

aquatic, but juveniles and adults are generally semi-aquatic or terrestrial (Petranka, 

1998). These later life history stages may preferentially move along stream corridors 

to maintain proximity to moisture, but may also move between adjacent streams by 

overland pathways (Grover & Wilbur, 2002; Crawford & Semlitsch, 2006; Greene et 

al., 2008).  Due to the contribution of within- and out-of-network movements, we 

might expect more frequent recolonisation events in streams that have adjacent, 

connected branches (Fig. 1) than in those that flow directly into larger streams and 

rivers.  Additionally, we would expect species-specific relationships in stream 

occupancy as a function of ecological and life history traits influencing the likelihood 

of out-of-network movements.  In communities of stream salamanders, competitive 

and predatory interactions result in habitat partitioning, with smaller species often 

found furthest from the water’s edge despite the increased desiccation risk that 

results from smaller body size (Hairston, 1987).  Body size may be a predictor of 

propensity for out-of-network movements, and this relationship could be positive or 

negative for a given species, depending on the relative effects of desiccation risk 

versus interspecific interactions. 
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In addition to species ecology and life history, landscape characteristics that 

decrease local habitat quality or connectivity may influence occupancy in stream 

networks.  Urban development can impact hydrology, geomorphology and stream 

ecosystem structure and function, which in turn affect local population stability in 

stream-associated species (e.g. Palmer et al., 2002; Meyer et al., 2005). Specifically, 

streams in urbanised areas may be more likely to undergo episodic extinctions (Price 

et al., 2006), resulting in higher variability in occupancy among sites, especially in the 

branch tips at the upper reaches of a catchment (Fagan, 2002).  Further, stream 

networks in areas of heavy agricultural or urban land use become simplified over 

time as small streams are lost (Dunne & Leopold, 1978; Sophocleous, 2000), 

reducing the likelihood of out-of-network movement and recolonisation as branched 

networks are converted into more linear, unbranched networks (Fagan et al., 2009).  

Because stream salamanders are most strongly associated with first-order 

headwater streams (Snodgrass et al., 2007; Peterman, et al. 2008), they are likely to 

be especially sensitive to change in the spatial configuration of stream networks and 

human activities in the surrounding landscape (Welsh & Olivier, 1998; Lowe & 

Bolger, 2002).   

In this study, we tested the hypothesis that stream network configuration and 

regional landscape context influence occupancy in four stream salamander species.  

These species have different combinations of ecological and life history attributes 

that might affect the propensity for within-network versus out-of-network movements: 

length of larval period, association of metamorphosed individuals to the aquatic 

habitat and adult body size.  Across all species, we predicted higher occupancy in 

streams connected to another first order stream (Fig. 1A) than in those flowing 

directly into larger streams and rivers (Fig. 1B).  We also predicted that interspecific 
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variation in life history traits would lead to variation in the strength of the relationship 

between stream network configuration and occupancy.  Finally, we expected lower 

occupancy of streams within an urbanised landscape compared to streams located 

in a less developed landscape.  Our study was motivated by the hypothesis that the 

successful management and conservation of sensitive stream species may rely on 

explicit consideration of the spatial configuration of protected stream networks. 

 Methods 

Study species 

The four study species are in the family Plethodontidae, the lungless salamanders. 

Eurycea bislineata (Green) and E. cirrigera (Green) are closely-related species 

(Jacobs, 1987; but see Petranka, 1998) with extended larval periods (≥ 2 yrs), high 

local densities, small body size and a weak association with the stream channel after 

metamorphosis.  These combinations of characteristics suggest both high occupancy 

and an ability to make out-of-network movements.  Despite their high surface area to 

volume ratio, interactions with larger salamander species generate adult preferences 

for microhabitat refuges furthest from the stream channel (L.E. Green, unpubl. data). 

Perhaps as a result of these antagonistic interactions, E. bislineata is known to make 

long-distance (> 100 m) terrestrial migrations (MacColloch & Bider, 1975).  

Therefore, we expect a relatively strong association with branched networks because 

these species (hereafter, Eurycea complex) can exchange individuals via both in-

stream larval dispersal and out-of-network movements in the adult stage (Table 1).  

Pseudotriton ruber (Latreille) also has an extended larval period (≥ 2 yrs), but low 

densities, large body size and a strong adult association with the aquatic habitat that 

likely result in low levels of occupancy, especially in unbranched streams (Table 1).  
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Finally, Desmognathus fuscus (Green) exhibits a short larval period (< 1 yr), high 

local densities, large body size and a strong adult association with the aquatic 

habitat.  This species was predicted to have an occupancy probability intermediate to 

the Eurycea complex and P. ruber, and the strongest association with branched 

streams (Table 1). 

 Study sites and field methods 

We surveyed 54 first order streams; 11 were located in the National Capital Region 

(Chesapeake and Ohio Canal National Historic Park, Rock Creek National Park, 

U.S.A.; hereafter NCR) and 43 were located in Virginia (Shenandoah National Park 

and the George Washington and Jefferson National Forests, U.S.A.; hereafter VA).  

The NCR streams were on protected federal lands surrounded by heavily urbanised 

areas of Washington, D.C.  The VA streams were on protected federal lands set 

within a forested, undeveloped landscape. 

Because the data used here were initially collected as part of separate studies by 

two of the authors (E.H.C.G in NCR and L.E.G. in VA), survey methods differed in 

the two regions.  In both regions, we surveyed transects during the day using two 

temporary removal passes, capturing and removing salamanders from the transect 

after each pass to avoid duplicate sampling of individuals. All salamanders were 

returned to the streams within 2 h.  For each stream in the NCR, we surveyed two 

sets of paired transects (15 m long by 3 m wide) along opposite banks and 

separated by 15 m of stream length.  Each transect pair was separated by 100 m of 

stream length.  For each stream in VA, we surveyed three transects (10 m long by 6 

m wide, centred on the stream channel so equal area was surveyed on the right and 

left banks) separated by 15 m or more of stream length.  The total area searched on 

each stream reach was identical between the regions (180 m2).  Because larval 
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salamanders may hide in leaf litter in headwater streams, we also sampled the leaf 

litter in streams at 0.5 m intervals along the NCR transects when litter was present 

(Mattfeldt & Grant, 2007; Nichols et al., 2008); leaf litter along the entire reach was 

searched in the VA transects.  We surveyed streams in VA in May through August of 

2004 and 2005, and in the NCR in June and July of 2005 and 2006. 

We used each transect as a survey event in our occupancy analysis, which allows us 

to estimate the probability of not detecting a species in a transect given that it is 

present in a stream segment (the detection probability parameter, p).  This approach 

assumes that individuals in each transect are part of the same population, an 

assumption supported by evidence of movement along headwater streams by 

stream-associated plethodontids (Stoneburner, 1978; Bruce, 1986; Lowe, 2003).  

While survey methods differed between regions, we were consistent in targeting both 

aquatic larvae and terrestrial adults of the focal species using multiple transects 

along each stream.  Differences in detection due to methodology are accounted for 

in our analysis (see Occupancy analysis, below). We combined observations of 

Eurycea bislineata (distributed in NCR and VA) and E. cirrigera (only VA streams) for 

analysis based on their close phylogenetic and ecological relationship.  Age classes 

(larvae, juvenile, adult) were also combined for analysis, as the majority of each 

species was detected in only one age class. 

  

Occupancy analysis 

The models of MacKenzie et al. (2006) provide a statistical framework for estimating 

occupancy (Ψ), an instantaneous measure of metapopulation distribution resulting 

from the balance of extinctions and colonisations.  This approach is robust to 

variation in the probability that a species is detected, given that it is present at a site, 
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while allowing the incorporation of covariates to test specific hypotheses about 

factors influencing broader occupancy patterns.  At each stream reach, a species 

can exist in one of three states: 1) present and detected, 2) present but undetected 

or 3) absent.  Because states 2 and 3 cannot be accurately distinguished, 

researchers must estimate the likelihood of a species being present even when it is 

not detected.  Thus, estimating occupancy requires recording detection-nondetection 

data during multiple visits to a site within a short time period, during which it is 

assumed that there is no colonisation or extinction (MacKenzie et al. 2006). 

Using the most general structure on the state variable occupancy [the global model 

Ψ (region, network)], we investigated combinations of covariates on the detection 

probability parameter, p, using the program PRESENCE (Hines, 2006).  Here, p is 

the probability of detecting a species, given it is present at a site.  We tested whether 

detection was a function of the number of cover objects (“zrocks”; the normalised z-

value of the number of rocks and logs >6 cm in diameter turned during the survey), 

the survey method (“survey”; 15x3 m transects in the NCR or 10x6 m transects in 

VA) or the additive effect of number of cover objects and survey method.  This 

statistical design allowed us to investigate whether the network configuration or the 

regional landscape context influenced occupancy patterns while controlling for 

differences in detection probability resulting from the different survey methods 

(Bailey et al., 2004). 

For the occupancy analysis, we used each stream reach as a site, with three or four 

transects representing multiple visits in space (in lieu of repeated temporal visits, 

MacKenzie et al., 2006: 161).  We investigated two variables hypothesised to be 

related to site occupancy: network configuration (“network”), represented by 

branched (B) versus unbranched (UB) streams (Fig. 1; n = 21 of 54 sites were 
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branched), and regional landscape context (“region”; n = 11 NCR sites, 43 VA sites).  

We also tested whether occupancy was unrelated to either covariate [notation Ψ ( . 

)].  We compared models using AIC (Akaike’s Information Criterion) and considered 

models with ΔAIC less than 2 to be meaningful representations of the relationship 

between our covariates and site occupancy (Burnham & Anderson 2002).  We tested 

for lack-of-fit by evaluating whether the estimated variance inflation factor ( ) was > 

1, using the bootstrap method incorporated in PRESENCE (Mackenzie & Bailey, 

2004). 

Finally, to assess the effect of the stream network configuration (Fig.1), we 

calculated model-averaged estimates of occupancy ( ) for each species in 

branched and unbranched streams.  Model-averaging can reduce the bias in an 

estimator with respect to inference from a ‘single-best’ model from the model set 

(Burnham & Anderson, 2002).  Model averaging combines estimates from each 

model using their associated model weights, to provide an estimate of the predicted 

effect ( ) that is not conditional on a single model in the set.  We used estimates 

from each model and the associated model weight to calculate model-average 

occupancy estimates for both branched and unbranched stream reaches.  For the 

additive model [Ψ(network , region)], the estimated occupancy used for model 

averaging was chosen from the region where each species had the highest 

occupancy, as we expected the difference between branched and unbranched 

streams to be largest in the most suitable region for each species.   

 Results 

The naïve estimate of occupancy is the proportion of sites where a species is 

detected, and, unless the detection probability (p) equals 1, is always less than the 
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estimated .  We detected Pseudotriton ruber at eight sites in VA and seven sites in 

NCR (naïve Ψ = 0.28), Desmognathus fuscus at 36 VA and nine sites in NCR (naïve 

Ψ = 0.83) and the Eurycea complex at 40 sites in VA and nine sites in NCR (naïve Ψ 

= 0.91).   The VA sites also included some or all of the following sympatric species: 

D. quadramaculatus, D. monticola, D. ochrophaeus and Gyrinophilus porphyriticus.  

The VA sites had a greater abundance of cover than the NCR sites (mean ± 1 SE = 

438 ± 30 versus 45 ± 6 cover objects per transect, respectively; two-tailed t-test t8,42 

= -12.9, P< 0.001).  For P. ruber and Eurycea complex, models including both the 

number of cover objects (zrocks) and survey method (survey) as covariates on p 

were favoured, while the model for D. fuscus included only survey method as a 

covariate of p. We used these covariate structures to investigate occupancy of each 

species.  The global model for all species included the additive effects of region and 

network.  There was little evidence of lack of fit for any species in 5000 bootstrap 

samples.  None of the global models had a variance inflation factor ( ) > 1, 

indicating no extrabinomial variability unexplained by the global model (Mackenzie & 

Bailey, 2004).  Under the method of MacKenzie & Bailey (2004), one can calculate 

the Pearson’s chi-square statistic (χ 2
 ) for the observed occupancy data under the 

global model, and find the probability (P) that the calculated statistic is greater than 

the bootstrapped χ 2  test statistic (P. ruber χ 2 = 45030.6, P = 0.48; Eurycea 

complex χ2 = 51507.2, P = 0.87; D. fuscus χ 2 =67673.32, P = 0.67). 

Salamanders from the Eurycea complex were detected at 91% of sites.  Two 

occupancy models were supported by the data (i.e. ∆AIC < 2.0; Table 2).  The 

Eurycea complex had higher model-averaged occupancy (Burnham & Anderson, 
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2002) in branched streams (Table 3) and higher occupancy in VA than NCR (e.g. a 

negative  value; Table 2). 

D. fuscus was detected at 83% of sites.  The Ψ(region), Ψ(network) and Ψ( . 

) models were supported by the data, but the model incorporating the additive effect 

of region and network was not favoured (Table 2).  This species had higher model-

averaged occupancy in branched streams (Table 3) and higher occupancy in VA 

than NCR (Table 2).   

P. ruber was detected at 28% of sites.  Detection for this species was low 

(estimates using no covariates on the occupancy parameter and only survey method 

on detection probability [i.e. Ψ( . ), p(survey)]: = 0.28 ± 0.05 for transects in NCR; 

= 0.27 ± 0.13 for transects in VA), and all of the occupancy models considered 

had some support from the data (Table 2).  Based on model rankings, the region 

appeared to have a greater effect on occupancy than network structure for P. ruber. 

Unlike the other two species, the urban NCR streams had higher model-averaged 

estimated occupancy for this species than the VA streams (Table 2). Although 

network structure had less support, the model-averaged occupancy estimates were 

higher in branched streams (Table 3).   

Interpreting the point estimates of occupancy in relation to the network 

covariate was of primary interest in our analysis.  Salamanders from the Eurycea 

complex were more likely to be found in branched than unbranched streams ( B ± 

1 SE =99 ± 3% versus UB ± 1 SE =90 ± 7%; effect size = 0.13).  P. ruber also had 

higher occupancy in branched streams ( B = 52 ± 23% versus UB = 48 ± 18%; 

effect size = 0.15), though with relatively large uncertainty in the point estimates.  For 
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D. fuscus, point estimates of occupancy in branched and unbranched streams had 

the smallest effect size ( B = 90 ± 8% versus UB = 88 ± 7%; effect size = 0.07), 

though with higher occupancy in branched stream networks.  

 Discussion 

Consistent with our a priori hypothesis, models that included the network 

covariate had support in the data, and occupancy probabilities were higher for 

branched streams than unbranched streams in the Eurycea complex, P. ruber and D. 

fuscus.  The strength of the association between occupancy and network 

configuration varied from weak to moderate among species (Table 2). Current model 

selection methods cannot account for our a priori specification of the expected 

direction of the effect of branched streams on the estimated occupancy (MacKenzie 

et al., 2006: 119-120), and it is important to note that the higher occupancy 

probability in branched streams was in the direction we expected based on existing 

theory in dendritic ecological networks (Grant et al., 2007; Fagan et al., 2009).   

Our results support the prediction that different life history characteristics 

among the species may affect relative propensity to make in-stream versus out-of-

network movements, leading to interspecific differences in occupancy in branched 

and unbranched streams.  However, the consistent positive effect of the network 

covariate (Table 2) suggest that the spatial layout of habitat branches, rather than 

species-specific life history characteristics, may be a dominant factor in structuring 

distribution patterns.  We predict that higher occupancy in branched streams results 

from a combination of both in-stream and out-of-network movements.  While out-of-

network movements may be undertaken by all species considered here, the larger 

effect sizes of occupancy in branched versus unbranched streams for the Eurycea 
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complex and P. ruber suggest that long larval periods may also facilitate in-stream 

movement between stream reaches. 

For Eurycea bislineata and E. cirrigera (which were combined in our 

occupancy analysis), we found that occupancy differed between branched and 

unbranched streams, but that these species had high occupancy across all sites.  

High levels of occupancy are not surprising because in-stream movements by larvae 

appear to be common in Eurycea populations (Johnson & Goldberg, 1975; 

Stoneburner, 1978), and are likely to increase occupancy in branched streams. 

Likewise, out-of-network movements by juveniles and adults may allow colonisation 

of adjacent streams in both branched and unbranched systems (MacColloch & Bider, 

1975; Ashton & Ashton, 1978).   

The difference in occupancy between branched and unbranched streams 

was highest for P. ruber and lowest for D. fuscus.   A recent mark-recapture study of 

P. ruber larvae in North Carolina shows that they can move up to 116 m along first-

order streams in less than one month (Cecala et al., In review), and this species has 

a long larval period, long-lived adults and large body size at metamorphosis 

(Petranka, 1998). Therefore, occupancy of branched streams likely depends on 

combined movements of both life stages in P. ruber; larvae have several years to 

disperse within the stream channel between branches prior to metamorphosis, and 

adults benefit from a large body size and associated small surface area:volume ratio 

that is likely to facilitate out-of-network movements.  Adults of D. fuscus are smaller 

in size than P. ruber adults, and the larval stage of D. fuscus is brief and unlikely to 

allow extensive in-stream movement.  Recently metamorphosed D. fuscus 

individuals are typically small and found near the stream edge, so out-of-network 

movements may be undertaken by older, larger individuals.  The lower effect size in 
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D. fuscus may thus be indicative of a proportionally smaller pool of potential 

dispersers to adjacent habitats. 

We expected the region in which the protected areas were located would also affect 

habitat occupancy of each species.  Not surprisingly, we found higher occupancy 

probabilities for D. fuscus and Eurycea complex in the relatively undeveloped 

Virginia streams compared to streams within the urbanised region of Washington, 

DC.  However, P. ruber exhibited the opposite trend.  These species-specific 

regional differences are likely a function of different microhabitat preferences.  We 

observed large differences in stream substratum (e.g. VA sites had, on average, 

57% cobble and 9% fine sediment, while NCR sites had 8% cobble and 50% fine 

sediment) and P. ruber is known to prefer high-silt conditions like those at the NCR 

sites (Bruce, 2003).  There were also differences in salamander community 

composition that may have contributed to regional differences in occupancy.  The 

study species (Eurycea bislineata, Pseudotriton ruber, Desmognathus fuscus) 

comprised the entire stream salamander community in the NCR, but the salamander 

community in the VA sites also included some or all of the following species: D. 

quadramaculatus, D. monticola, D. ochrophaeus and Gyrinophilus porphyriticus.  In 

addition to the regional substratum differences, the presence of G. porphyriticus in 

VA streams may contribute to lower P. ruber occupancy, because both species 

occupy a similar ecological niche and are known to compete (Gustafson, 1993; 

Bruce, 2003). 

Even with the differences in occupancy in our two regions, our results are consistent 

with theory on spatial population dynamics in dendritic ecological networks (Grant et 

al., 2007), indicating that occupancy of headwater stream salamanders is shaped by 

the spatial configuration of stream networks.  This suggests that population 
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persistence in urbanised landscapes may be promoted by connectivity to 

neighbouring stream branches. Therefore, we recommend that the integrity of 

branched stream networks be considered explicitly in management decisions 

affecting urban streams and the species occupying those streams.  This study also 

highlights the utility of occupancy as a coarse but accessible index for testing 

hypotheses for the specific drivers and pathways of dispersal, as well as for how 

dispersal contributes to population persistence.  Direct observations of dispersing 

organisms remain crucial to elucidating movement pathways and the relative 

propensity of different species to make in-stream versus out-of-network movements 

(e.g. Lowe, 2003).  Combined with analyses of large-scale patterns of occupancy like 

this one, direct observations of marked animals will greatly expand insight on how 

network configuration affects local population persistence in amphibians and other 

stream organisms. 
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Table 3.1 The hypothesised relative dispersal ability of the stream salamander 

species in this study. Life history characteristics may result in different propensities to 

make in-stream (within-network) versus out-of-network (overland) movements. 

These relative movement probabilities may influence patterns of distribution in 

streams with or without a confluent first order stream branch.  Differences in the table 

are for ranking only, hence ++ does not imply that a species is hypothesised to have 

twice the dispersal ability as a species with a single +.  We combined the two 

Eurycea sp. (E. bislineata and E. cirrigera) for our analysis. 

  Movement Pathway 

 Overland Out of network 

Desmognathus fuscus + + 

Eurycea complex ++ +++ 
Pseudotriton ruber +++ + 
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Table 3.2.  Summary of model selection and estimated parameters (and standard errors).  ΔAIC is the difference in AIC value 

for a particular model when compared with the top ranked model; w is the AIC model weight; K is the number of parameters 

in the model and −2l is twice the negative log-likelihood value. The “network” covariate was a categorical variable (1 = 

branched), as was the “region” covariate (1 = NCR).  Detection probability was modelled as a function of survey method 

(“survey”) plus the (normalised) number of cover objects (“zrocks”; Eurycea complex and P. ruber models only).  The global 

model was Ψ (network, region),p(survey) or p(survey, zrocks).  Models in boldface are within 2 ΔAIC units of the top model.  

A "-" indicates that the effect was not included in the model, or the estimated SE was nonsensical.  

Eurycea complex 

Model ∆AIC w K -2l SE( ) SE( )
Ψ(network),p(survey, zrocks) 0.00 0.47 5 250.1 25.142 - - - 
Ψ(network, region),p(survey, zrocks) 1.20 0.26 6 249.3 25.149 - -1.015 1.152 
Ψ(region),p(survey, zrocks) 2.41 0.14 5 252.5 - - -1.812 1.465 
Ψ(.),p(survey, zrocks) 2.46 0.14 3 254.5 - - - - 
Desmognathus fuscus 

Model ∆AIC w K -2l SE( ) SE( )
Ψ(.),p(survey) 0.00 0.47 3 272.8 - - - - 
Ψ(region),p(survey) 1.53 0.22 4 272.3 - - 1.146 -0.761
Ψ(network),p(survey) 1.61 0.21 4 272.4 0.725 1.341 - - 
Ψ(network, region),p(survey) 3.26 0.09 5 272.0 0.716 1.657 -0.681 1.200 
Psuedotriton ruber 

Model ∆AIC w K -2l SE( ) SE( )
Ψ(.),p(survey, zrocks) 0.00 0.37 4 175.4 - - - - 
Ψ(region),p(survey, zrocks) 0.27 0.33 3 173.6 - - 1.277 0.880 
Ψ(network),p(survey, zrocks) 1.74 0.16 3 175.1 0.615 1.413 - - 

0.899 Ψ(network, region),p(survey, zrocks) 1.95 0.14 6 173.3 0.482 0.869 1.351 



 

Table 3.3. Model-averaged occupancy probabilities (and standard errors) for 

Desmognathus fuscus, Pseudotriton ruber and Eurycea complex, in branched and 

unbranched streams.  

  Branched Unbranched 
0.90 (0.08) 0.88 (0.07) D. fuscus 

Eurycea complex 0.99 (0.03) 0.90 (0.07) 
0.52 (0.23) 0.48 (0.18) P. ruber 
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Figure 3.1 Schematic of stream configurations. “A” represents a branched stream, 

where the stream reach of interest makes a downstream confluence with another first-

order stream; “B” represents an unbranched stream, where the stream reach of interest 

makes an eventual downstream confluence with a higher order stream.  The dotted box 

indicates a sample site, in which three to four transects were surveyed to characterise 

occupancy of our focal salamander species.  

A B 
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Chapter IV: Visual Implant Elastomer Mark Retention in Amphibian Larvae Through 

Metamorphosis 

 

Published in: The Journal of Wildlife Management 72(5): 1247-1252, 2008 

 

Abstract 

Questions in population ecology require the study of marked animals, and marks are 

assumed to be permanent and not overlooked by observers.  I evaluated the retention of 

Visual Implant Elastomer marks in larval salamanders and frogs through 

metamorphosis, and assessed the error in observer identification of these marks.  I 

found (1) individual marks were not retained in larval wood frogs, whereas only small 

marks are likely to be retained in larval salamanders, and (2) observers did not always 

correctly identify marked animals.  Evaluating the assumptions of the marking protocols 

is important in the design phase of a study, so that correct inference can be made about 

the population processes of interest. 

Introduction 

Detailed understanding of animal populations requires precise recognition of 

captured individuals.  Estimation of some ecological parameters, such as movement and 

survival, or population growth rate, often relies on tracking individuals.  To estimate 

these parameters, marks must be permanent, consistently identified throughout the life 

of an individual, and have no effect on survival or development.  Capturing and marking 

large numbers of amphibians may be most easily accomplished during the larval stage, 

especially for ‘aggregate’ breeders where egg deposition sites are spatially concentrated 

(e.g., wood frog, Rana sylvatica), or species whose terrestrial forms are less likely to be 

encountered than larvae (e.g., northern two-lined salamander, Eurycea bislineata 
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bislineata, adults are frequently absent from streamside surveys; Grant et al. 2005).  

Natural variation in color pattern may be useful in mark-recapture studies of adult 

amphibians (e.g., Bailey 2004, Grant and Nanjappa 2006), but may not be useful in 

larval animals because color patterns have not completely formed.  Retention of marks 

added during the larval stage is a critical consideration in any study where individuals 

are to be tracked through metamorphosis. 

Many species of amphibians are characterized by complex life cycles (Wilbur 1980), 

with ontogenetic changes characterized by changes in body form, rapid growth, and 

transition from aquatic to terrestrial life forms.  In general, the metamorphosis of 

salamanders differs from that of frogs and toads.  Salamander morphology remains 

much the same through metamorphosis, whereas anurans undergo a drastic change in 

morphology between tadpole and adult stages, including development of limbs, 

resorption of the tail, and development of adult skin (Duellman and Trueb 1986).  I 

hypothesized that these differences in the mode of metamorphosis may affect the 

retention of marks assigned to an individual during the larval stage. 

My objectives were to 1) assess the retention of marks through metamorphosis in 3 

species of larval amphibians: northern dusky salamander (Desmognathus fuscus), 

northern two-lined salamander and wood frog, and 2) to quantify bias in observer 

identification of marked salamander larvae (northern dusky salamander).   

Methods 

There are three errors that can be made that would invalidate the assumption that 

marks are retained and recorded correctly.  First, a mark can be lost physically (mark 

loss).  Second, a mark may move from the initial marking location (mark migration), 

because the mark was administered into the body cavity or too deeply into the space 

between the skin and the underlying muscle.  I consider both mark loss and mark 
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migration as separate components of ‘mark retention’, and I discuss both components of 

this error herein.  Finally, observers may fail to correctly recognize a mark, either by 

overlooking a mark completely or by misidentifying the mark code (‘observer bias’). 

I marked animals with Visual Implant Elastomer (VIE; Northwest Marine Technology 

Inc., Shaw Island, Washington).  VIE has been used to mark frogs (e.g., Anholt et al. 

1998, Nauwelaerts et al. 2000) and salamanders (e.g., Davis and Ovaska 2001, Marold 

2001, Johnson and Wallace 2002, Bailey 2004) across a range of sizes and life history 

stages. VIE is a two-part silicone-based polymer that cures to a pliable consistency, 

which can be detected with ultraviolet or blue light with amber filtering glasses.  The best 

method for administering VIE marks to amphibians is to inject the VIE just under and 

parallel to the skin.   

In June 2006, I obtained 120 wood frog (Rana sylvatica) tadpoles from a backyard 

swimming pool in Silver Spring, Maryland, USA.  I gave 60 animals both a red and a 

green mark at the base of the tail (Fig. 4.1) with a 29 gauge needle, just above the tail 

musculature on either side of the tail fin (following Anholt et al. 1998), and an equal 

number were handled but not injected as unmarked controls.  To administer the marks, I 

anesthetized all individuals (including control animals) in a buffered (pH 7.0) 500 mg/L 

tricaine methylsulfonate (MS-222).  All study animals were allowed to recover in clean 

water and then added to one of two 10 L tanks.  I fed animals frozen, thawed organic 

romaine lettuce and fish food flakes.  After 20 days, I captured 20 tadpoles at random 

from the marked treatment group, and assessed the retention of marks.  After each 

surviving animal metamorphosed I recorded marks for the marked group on two 

separate days following metamorphosis.  I used a 2-tailed t-test to test the hypothesis 

that marking had no effect on either (1) time to metamorphosis or (2) size at 

metamorphosis in the wood frog tadpoles, and a linear regression to relate mark loss (as 
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an explanatory variable with three levels: zero, one or two marks retained) to time to 

metamorphosis.   

In April 2006, I collected 30 larval northern dusky salamanders from streams in the 

Chesapeake and Ohio Canal National Historic Park, Maryland, USA. In June 2006, I 

collected 30 larval two-lined salamanders from a different stream in the same park. I 

chose twenty individuals of each species at random to receive marks.  I gave eight 

northern dusky salamanders and five northern two-lined salamanders one mark, and 12 

northern dusky salamanders and 15 northern two-lined salamanders were given two 

marks.  Animals were given a unique mark by combining 2 VIE colors (red, green) and 4 

marking locations (anterior to each hind limb and posterior to each front limb, Fig. 4.1), 

with a 29 gauge needle.  I handled, but did not inject, all animals that were not marked.  I 

kept animals in individual containers in an environmental chamber maintained at 15 C 

and fed them frozen, thawed bloodworms until metamorphosis.  I did not use a 

microscope while I marked either frogs or salamanders, because I was interested in the 

feasibility of the technique for marking large numbers of small animals in remote field 

locations. 

I chose sixteen of the 30 northern dusky salamanders (11 marked, 5 unmarked) at 

random for the observer bias study.  Thirteen observers participated in the study: 4 with 

prior experience identifying marks in the field, and 9 naïve observers.  Naïve observers 

were primarily graduate students at the University of Maryland, and did not have 

experience with VIE marking techniques.  Observers were given a brief introduction to 

VIE marking techniques and mark identification, and were allowed to practice with color 

standards until they were comfortable using the VIE lights.  Recently Northwest Marine 

Technology, Inc. switched from a blue-LED light and amber filtering glasses to a violet-

LED light which was intended to facilitate mark identification.  Both lights were tested for 
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their efficacy in mark identification in my study.  Observers were informed of the marking 

procedure, and that animals may have been given between 0 and 4 marks, with two 

colors of VIE (red and green).  Observers were provided a schematic of the marking 

locations.  After all observers had viewed the animals, salamanders were re-randomized 

and presented to the same observers, who viewed the salamanders with the other light.  

Observers were unaware that they were presented with the same set of individuals for 

each light.  An observation was scored as correct when an observer recorded all marks 

on an individual salamander that matched the true mark combination.  Because I 

expected the probability of recording an incorrect mark to increase with the complexity of 

the marking code (1 versus 2 marks), I used separate logistic regression models for 

each light (blue and violet) to determine if the proportion of correct identifications was 

related to the number of marks.  I used a two-tailed paired t-test to test whether 

observers took more time to identify marks by light, or whether the light (blue vs. violet) 

was related to the proportion of correctly identified salamanders.  I transformed the 

proportion of correctly identified salamanders with an arcsine-square root.  I separated 

observers into naïve and experienced observer groups, to further evaluate the impact of 

training on correct mark identification. 

I evaluated mark migration in northern two-lined salamanders on 4 occasions prior to 

their metamorphosis.  On each occasion, I recorded the marks on each animal twice on 

the same day, which allowed me to separate mark migration from observer error in mark 

identification.  After each animal metamorphosed, I recorded the position of marks 

remaining in each salamander.  This also was done twice on a single day to assess bias 

in mark identification.  I used multistate modeling to evaluate my observations on mark 

retention in northern two-lined individuals.  One can consider mark migration to be 

equivalent to an animal’s code making a transition, with probability Ψ, among states 
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‘correct’ and ‘incorrect’ between two observation periods (ΨCI; Williams et al. 2002).  

Marks that were loose in the body cavity or administered too deeply under the skin may 

change position over different observation periods, resulting in some animals first 

experiencing mark migration, and then ‘recovering’ their marks.  Because I observed 

some animals that recovered their marks (i.e., were observed to be marked incorrectly in 

one period, and marked correctly in a subsequent time period), I also estimated the 

transition probabilities from ‘incorrect’ to ‘correct’ mark codes (ΨIC).  To estimate the 

transition probabilities Ψ  and ΨCI IC, I used the recaptures-only multistate model in 

program MARK (White and Burnham 1999).  I created a 5-period ‘capture history’ for 

each animal, recording whether the read code matched the given code (on day 0) at 16, 

43, 96 and 116 days after marking.  I fit all models where survival was allowed to vary by 

time (since several animals died at each time period) but was equal for all animals (i.e., 

there was no effect of mark migration on survival), and I set the capture probability (p) 

equal to 1. The initial transition probability from incorrect to correct (ΨIC) was set to zero 

for all models, because all individuals started the study with a correct mark code. 

I used 6 multistate models (Table 4.1), representing different hypotheses of the 

nature of mark migration in larval salamanders.  Model 1 is the most general model, with 

transition probabilities state independent and allowed to vary among observation 

periods.  Model 2 allows transition probabilities to vary by state only (constant across all 

observation periods).  Model 3 specifies a constant transition probability among states, 

but allows variation across observation periods.  Model 4 allows a different ΨCI in the first 

time period (versus time periods 2-5) and Ψ =ΨCI IC for each subsequent time period.  

Model 5 is similar to Model 4 except that it does not require Ψ =ΨCI IC.  Model 6 specifies 

a constant transition probability among states (i.e., Ψ =ΨCI IC) with no time variation.  I use 

AIC corrected for small sample size (AICc; Burnham and Anderson 2002) to rank the 
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candidate models.  Models within 2.0 ∆AICc were considered to have support.  I 

expected Model 4, which specified a different transition probability (ΨCI) in the first time 

period and equivalence among states (ΨCI=ΨIC) to be the most likely (e.g., have the 

lowest AICc).. 

Results 

Of the 120 wood frog tadpoles, 42 of the 60 marked and 45 of the 60 unmarked 

tadpoles successfully metamorphosed.  After 20 days, 50% of marked tadpoles had lost 

one of the two marks, though no individuals lost both marks.  Among marked individuals 

that metamorphosed, 67% lost at least one mark, and 21% lost both marks.  There was 

no relationship between time to metamorphosis and number of marks retained (R2 = 

0.03).  The location of the marks did not change in any individual, though as the tail was 

resorbed, marks moved further up the animal’s dorsum.  Marks were visible for at least 2 

weeks following metamorphosis.  Marks in 2 individuals were still visible 6 months after 

metamorphosis under darkened dorsal pigment.  There was no difference between 

marking treatments in time to metamorphosis ( SEx 1± : unmarked = 28 + 10 days, 

marked = 31 + 13 days; t  = 0.132, P = 0.188) or the size at metamorphosis ( SEx 1±88 :  

SVL (for both marked and unmarked groups) = 14 + 2 mm; t68 = 0.67, P = 0.542). 

Naïve and expert observers correctly identified 69 and 83% of marked northern 

dusky salamanders, respectively.  In all but 2 of 130 total observations of unmarked 

individuals (13 observers*5 unmarked northern dusky*2 lights), observers correctly 

identified unmarked individuals. Overall, observers using the blue light and amber 

glasses took less time (t10 = 3.24, P = 0.008), and had a higher proportion of correctly 

identified marks (t  = 2.54, P = 0.029; 0.80 +10  0.07% for the blue light versus 0.66 + 

.05% for the violet light).  The difference between lights was larger in naïve observers 

(0.79 + 0.08% for the blue light, 0.60 + .04% for the violet light) than in experienced 
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observers (0.84 + 0.08% for the blue light, 0.82 + 0.10% for the violet light).  Whereas 

naïve observers had higher correct identification under the blue light (t10 = 2.38, P = 

0.039), experienced observers did not prefer either light (t10 = 0.15, P = 0.882).  The 

probability of correct identification was not related to the number of marks on an 

individual; the variable describing number of marks (1 versus 2 VIE marks) was not 

significant in a logistic regression model conducted separately for each light (blue light: 

χ2 2 = 0.290, P = 0.591; violet light: χ  = 0.601, P = 0.438).  Odds ratios were small for two 

marks with both lights (blue light 1.255 (95% Wald CI = [0.549, 2.870]); violet light 1.317 

(95% Wald CI = [0.656, 2.643]).  In 5 of 11 marked northern dusky salamanders, marked 

animals were incorrectly identified as not having a mark by at least one observer (range 

1-5 observers), but at least one observer correctly identified marks in all animals. 

Most of the northern two-lined salamanders died prior to metamorphosis, likely 

caused by a Saprolegnia fungus (D.E. Green, National Wildlife Health Center, pers. 

comm.).  Marking did not contribute to mortality or susceptibility to the disease because 

control animals died at the same rate.  Marks migrated from their original position at 

some point over the study period in five of 17 marked individuals that survived through 

the second observation period (43 days after marking; Table 4.2).  There was no 

consistent pattern of mark migration, but marks tended to accumulate near the vent, 

which has been observed in adult animals in the field.  A sixth individual (animal 17) had 

one mark migrate after 146 days.  In 3 individuals, a mark was recorded in a different 

position in one time period, only to return to the original location in a later period (Table 

4.2; animals 09, 12, 18).  Viewing each salamander twice in the same day (i.e., during 

each observational period) ruled out the possibility that this effect was due to mark mis-

identification.  Relatively large marks (i.e., ~2mm or larger) were more likely to migrate: 

seven individuals were given large marks, of which 5 experienced mark migration over 
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the course of the study.  All individuals with mark migration had one mark that split into 

two, and one of these 2 marks then migrated to a different position. 

The most general model (Model 1), with transition probabilities different in each state 

and time period, was not well supported (e.g., ∆AICc > 0, Table 4.1), whereas Models 5 

and 2 had similar levels of support (∆AICc < 2.0).  The estimated transition probability 

(ΨCI, from correctly marked to incorrectly marked) was highest during the first 

observation period (estimate + SE; Ψ  = 0.185 +CI  0.075), and was smaller in the 

subsequent observation periods (Ψ  = 0.048 +CI  0.033) under Model 5, with a different 

ΨCI in the first time period (versus time periods 2-5), and ΨCI=ΨIC for each subsequent 

time period (Table 4.1).  The ‘recovery’ probability (ΨIC, the transition probability between 

an incorrect and a correct mark) was relatively high (estimate + SE; ΨIC = 0.375 + 

0.171).  The model I expected a priori to be most likely (Model 4) was not well supported 

(Table 4.1; ΔAICc >2.0, AICc weight = 0.079), though the top model (Model 5) still allows 

a different transition in the first observation period, (with Ψ  not equal to ΨCI IC; Table 4.3). 

The probability of mark migration in the two-lined salamander larvae resulting in an 

incorrect mark decreased after the initial marking period (Table 4.1, 4.3).  Consider 

Table 4.2 as an example.  If the 6 animals are recaptured 16 days after marking, 5 of the 

individuals would be mis-identified (due to mark migration).  If the same 6 animals were 

recaptured 43 days after marking, only 3 of the individuals would be misidentified (due to 

mark migration).  Some individuals “recovered” their marks over time (Table 4.2), which 

may be unique in the mark-recapture literature. 

Only 7 (4 marked and 3 unmarked) northern two-lined salamanders survived and 

successfully metamorphosed, thus there was no apparent effect of marking on survival 

to metamorphosis.  All metamorphosed animals retained their marks in the correct 
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positions.  All northern dusky salamanders successfully metamorphosed, but marks 

migrated in 25% (5 of 20) of individuals. 

Discussion 

Mark retention and observer bias in mark identification have not been routinely 

tested or reported in amphibian mark-recapture studies, despite the potential for bias in 

demographic parameter estimates caused by mark loss or misidentification (Bailey 

2004).  Perhaps more importantly, an assessment of mark retention of larval animals 

through metamorphosis is needed if long-lived animals will be tracked for multiple years.  

Such an assessment will allow researchers to address potential problems in the design 

phase of a study.  For larval amphibians, I suggest 1) assigning small VIE marks if 

individual identifiers are needed because large marks may split and migrate, leading to 

incorrect mark codes, and 2) using 2 observers (or having a single observer view an 

animal’s mark twice) to check both the application of mark codes and recording of codes 

on recaptured animals.  Further, assigning marks with a small number of locations or 

VIE colors (especially early in the study) and recording age and detailed size information 

may allow subsequent identification of suspect marks.  This type of data may allow 

estimation of the joint probability of a mark migrating and being read as an invalid code. 

The identity of an individual changed for every observation period after the mark 

migrates (unless the mark is ‘recovered’ in a later period; e.g., Table 4.2, animals 09, 12, 

18), unlike observer (e.g., resighting) errors that are independent between time periods, 

in the case of my larval salamanders with mark migration.  The size of the VIE mark may 

influence the retention of a given mark code; large marks split and migrated to different 

positions within an animal.  Therefore, I suggest taking care to assign marks that are 

small, if the assumption that marks are retained is to be met. 

65 



 

The effect of tag migration on estimates of demographic parameters may depend on 

goals of the study and thus the capture-recapture model being considered.  For 

example, in two-sample, closed population abundance estimators such as the Lincoln-

Petersen model (Williams et al. 2002), only identification of the number of previously 

marked individuals is required.  In this model, individual marks are not needed (and mark 

migration is not an issue, if the mark is not physically lost).  In a study lasting longer than 

2 capture occasions, survival from period t to t+1 generally requires individually marked 

animals, especially when investigating factors that influence survival (e.g., size, sex, 

age).  Tag migration may result in an individual having a lower capture probability after 

initial marking (similar to a trap shy response; Pollock et al. 1990), leading to a positive 

bias in abundance estimators under open population models (e.g., the Jolly-Seber 

model; Williams et al. 2002), due to a negative bias in the capture parameter estimate, p 

(Weiss et al. 1991, Schwarz and Stobo 1999).  Survival estimates under the Jolly-Seber 

model are robust to heterogeneity in capture probabilities, and in long-lived species, the 

bias in survival estimates declines over time (Schwarz and Stobo 1999).  Mark migration 

that results in a new individual can be identified by comparing with the list of known 

marks in the population, provided that the investigator added the marks.  It is important 

to consider ways of reducing or detecting the error when mark migration results in an 

individual which has a mark matching a ‘true’ code of a different animal in the 

population,. 

Errors in recording marks may be common (e.g., Stevick et al. 2001, Milligan et al. 

2003). Mark loss or misidentification has the potential to bias estimates of demographic 

parameters, however, field studies may have insufficient power to detect these errors 

(Schwarz and Stobo 1999).  When mark misidentification, mark loss, or mark migration 

cannot be controlled during the design phase of a capture-mark-recapture study, these 
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errors must be incorporated into the modeling of the capture histories (e.g., Lukacs and 

Burnham 2005), which can deal explicitly with the biases caused by incorrectly 

identifying marked animals (at a cost of reduced estimator precision).  Reducing the 

potential for these errors in the data collection phase of a capture-mark-recapture study 

is advised, because an increase in estimated variance of population size, for example, 

may occur when error rates are as small as 5% in genetic mark-recapture studies, 

(Lukacs and Burnham 2005). 

Management implications 

Tracking amphibians through metamorphosis is an important component of 

investigations into factors limiting amphibian populations.  Care must be taken when 

using visual implant elastomer marks to individually identify larval amphibians, and I 

suggest investigation of mark migration and the impact of mark size on mark migration in 

other studies applying this marking method.  Despite the cost associated with additional 

observers (or observations by a single observer) of each captured animal, errors in mark 

identification can be identified only with repeat observations of each individual.  Care 

must be taken in the design phase of a mark-recapture study to ensure that all model 

assumptions are met, because violation of any of the assumptions of mark recapture 

models can result in either large variances of estimated parameters or incorrect 

inference. 
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Table 4.1.  Results of model selection for the 6 multistate models analyzed using 

program MARK, describing mark migration in northern two-lined salamanders (Eurycea 

bislineata bislineata).  Transition (Ψ) probabilities, which may occur between states 

‘Correct’ (C) and ‘Incorrect’ (I), are estimated under several competing hypotheses.  In 

all models, survival is assumed equal among states (SC = SI) but allowed to vary across 

observation periods (time, t), the capture probability (p) is set to 1, and the transition 

probability, ΨIC for the first time period is set to 0 (since all individuals were known to 

have a correct mark code in the first observation period).  AICc = Akaike’s information 

criterion, adjusted for small sample size (Burnham and Anderson 2002), Num. Par = 

number of parameters estimated in the model. 

Model 
LikelihoodModel Model Name Δ AICc AICc Wt K Deviance 

5 S (t) Ψ (state, t1,t2-5)  0.000 0.460 1.000 7 16.694 
2 S (t) Ψ (state)  1.018 0.276 0.601 6 20.037 
6 S (t) Ψ (.)  2.325 0.144 0.313 5 23.618 
4 S (t) Ψ (t1,t )  3.517 0.079 0.172 6 22.536 2-5

1 S (t) Ψ (state*t)  5.773 0.026 0.056 11 12.620 
3 S (t) Ψ (t)  7.994 0.008 0.018 8 22.310 
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Table 4.2. Marks moved in the following marked northern two-lined salamander 

(Eurycea bislineata) animals that survived through at least 2 sample periods (43 days 

post-marking). + indicates that the mark matched the original mark given, whereas - 

indicates the mark did not match the given mark (i.e., that a mark had moved elsewhere 

in the body).  xx indicates that the animal died prior to the sample period. 

 Days after marking 
Animal ID 16 43 96 146 

15 - - xx xx 
12 - + + xx 
18 - - + xx 
09 - + + - 
23 - - - - 
17 + + + - 
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Table 4.3. Estimates for the survival and transition probabilities with the best multistate 

model (Model 4; S(t) Ψ (state, t1,t2-5) ) in program MARK.  For the analysis, I fixed the 

capture probability (p) equal to 1, and the transition probability between incorrect and 

correct marks ( ΨIC ) equal to zero for the first period (day 16 after marking), indicated by 

– in the table.   

Days after 
marking (t) 

Estimated 
probability Parameter SE (Estimate) 

16 Survival (S) 0.964 0.036 
43  0.926 0.050 
96  0.680 0.093 

146  0.471 0.121 
    

Initial Transition (Ψ ) 0.185 0.075 CI
> day 16  0.048 0.033 

    
Initial Transition (ΨIC) - - 

> day 16   0.375 0.171 
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Figure 4.1. Marking locations on tadpoles (top) and salamander larvae (bottom).  
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Chapter V: Dispersal behaviour in stream salamanders suggests a mechanism for 
population stability. 

 

Coauthored with James D. Nichols, Winsor H. Lowe and William F. Fagan 

Abstract 

Despite the implications of network structure for the evolution of dispersal strategies 

and resulting population and community dynamics, quantifying dispersal in real 

populations has proven tremendously difficult (Nathan 2001).  Of particular concern are 

specific, rarely observed dispersal pathways that may affect network dynamics(Holland 

and Hastings 2008, Ranta et al. 2008) and distributional patterns (Levey et al. 2005, 

Muneepeerakul et al. 2008) and promote metapopulation stability (Gyllenberg et al. 

1993, Ruxton 1994, Dey and Joshi 2006) in populations with low growth rates.  While 

populations of amphibians are generally in decline worldwide, those of stream 

salamanders have not been observed to undergo enigmatic extinctions (Hairston 1987, 

Green 2003, Stuart et al. 2004). Here we show the first direct evidence of movement 

behavior in a stream salamander, demonstrating age- and route-dependent variation in 

dispersal rates that suggest a mechanism for system-level stability. We find a strong 

upstream bias in movement and evidence of high rates of overland movement to 

adjacent headwater streams, suggesting a mechanism for the persistence of stream 

salamander populations despite population declines in other systems (Stuart et al. 

2004).  Our results indicate that the network geometry of stream systems affects the 

basic movement behavior of stream organisms.  This link between landscape geometry 

and movement has significant implications for understanding spatial aspects of 

demography, evolution, and community assembly in streams and rivers.
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Introduction 

The hierarchical geometry of streams, hedgerows and plants separate these 

ecological networks from other spatially structured networks (Grant et al. 2007).  In these 

dendritic networks, dispersal can follow two pathways: along network branches (within-

network movement), or overland between branches (out-of-network movement). 

Variation in dispersal pathways may be related to species- or age-specific habitat 

associations, and may have strong effects on population persistence, evolutionary 

dynamics, and patterns of community composition. In species that are restricted to 

movement along riparian corridors, dispersal is constrained by the structure of the 

network (Rissler et al. 2004). Theory predicts population stability and local extinction risk 

in these species will be highly sensitive to network position and direct connections 

among populations (Labonne et al. 2008). Even in species that rely on streams for most 

of their life history, a capacity for overland movement is predicted to increase population 

stability and decreases extinction risk significantly (Hill et al. 2002, Ranta et al. 2008). 

Many habitat conditions vary along the stream continuum (Vannote et al. 1980) and 

consequently, dispersal along this continuum is more likely to expose stream organisms 

to novel conditions than dispersal between branches at the same hierarchical level.  

Furthermore, dispersal distances between branches are generally shorter by overland 

routes than along stream corridors. This is especially true in the uppermost portions of 

the network (i.e., the headwaters), suggesting that headwater specialists, including many 

amphibians and invertebrates, should evolve overland dispersal strategies. 

While declines of amphibians have been widely documented in other habitats, 

the existing data on stream salamanders in the Appalachian mountains of the Eastern 

United States suggest stable populations (Green 2003), without evidence for large-scale, 

enigmatic declines like those affecting amphibians worldwide (Stuart et al. 2004). In 
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stream salamanders, both occupancy (Rissler et al. 2004, Grant et al. 2009) and 

abundance (Lowe and Bolger 2002) are higher in streams with a confluent (i.e., 

connected) stream branch in the headwaters.  While the propensity for an organism to 

disperse among habitat branches in a stream network can have a profound influence on 

metapopulation stability in theoretical models (Gyllenberg et al. 1993, Hill et al. 2002, 

Ranta et al. 2008), empirical data for such movement probabilities in stream-associated 

organisms (and for declining amphibians in particular (Lips et al. 2003)) is lacking. 

Plethodontid salamanders are a model for studies of evolutionary divergence and 

diversification, and have their greatest species diversity in upland, headwater areas of 

streams in North and Central America (Wake and Larson 1987, Wiens 2007). Therefore, 

we would predict that their dispersal behavior is adapted to the spatial layout of 

headwater habitats.  We expected upstream-biased movement that would allow a 

species to maintain its position in the headwater.  Upstream biased movement appears 

common in stream organisms (Bruce 1986, Macneale et al. 2005), and overland 

dispersal has been observed in stream invertebrates (Macneale et al. 2005).  Stream 

salamanders have a complex life cycle where aquatic larvae metamorphose into 

juveniles and adults that are largely terrestrial (Wilbur 1980).  In the Appalachian 

mountains of eastern North America, both occupancy and abundance of stream 

salamanders are higher in branched headwater streams than in streams flowing directly 

into larger streams or rivers (Lowe and Bolger 2002, Rissler et al. 2004, Grant et al. 

2009).  These observations suggest that connectivity between streams promotes 

population stability, but until now no data have been available to test this prediction and 

identify pathways of dispersal between streams.  

In each of two confluent stream pairs in Shenandoah National Park, Virginia, USA, 

we marked individuals of all age classes of salamanders in three 40 m reaches, 

separated by <500 m either along the stream length or across terrestrial habitat.  Each 
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reach was surveyed in May, June, July and September in 2007-08.  Using multistate 

mark-recapture modeling (Lebreton et al. 2009), we compared the probabilities of within-

network vs. overland movements.  Combining data from two species of stream 

salamander (Desmognathus fuscus, D. monticola) having similar life histories and close 

association with the stream channel (Organ 1961), we followed 2470 individually marked 

salamanders over the 2 yr study. 

We used the closed robust design multistate model (Lebreton et al. 2009) to 

estimate the probabilities of survival and transition among ‘states’.  In our analysis, we 

defined each state as a combination of age class and stream reach (Lebreton et al. 

2009).  The transition probability rs
tψ is therefore the probability an individual in state r 

(age  in reach ) at time t is found in state s (age class in reach ) in time t+1, 

conditional on survival from t to t+1. Two of five candidate models, representing our 

hypotheses about stream salamander movement were supported by the data and had a 

combined 93% of the model weight.  Because of the uncertainty in model support (Table 

1: model selection results), we calculated model-averaged estimates for the transition 

probabilities (

ta tl 1+ta 1+tl

rs
tψ ) across all models. 

Newly metamorphosed juveniles, those that were larvae in time t-1, had the 

highest probabilities of dispersing to other stream segments, with both a strong 

upstream bias in movement and a higher probability of moving overland between 

reaches than along the stream corridor (Fig. 5.1). Post-metamorphic juveniles, those that 

were juveniles in time t-1, had higher site fidelity, and smaller probabilities of moving 

between reaches. Like newly metamorphosed juveniles, they were more likely to move 

upstream than downstream, and had a non-negligible probability of moving overland to 

an adjacent reach (Fig. 5.1). Adults exhibited the highest site fidelity, with movement 

probabilities near 0 (Fig. 5.1). 
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Though the origin and evolution of salamanders in the family Plethodontidae is 

debated (Ruben and Boucot 1989), they likely diversified in headwater streams (Vieites 

et al. 2007), and we would predict that their dispersal behavior may be an adaptation to 

the spatial layout of these habitats.  Our data, which represent the first direct 

observations on stream salamander movement, provide a mechanism for increased 

salamander occupancy and abundance in complex stream networks relative to simpler 

networks (Lowe and Bolger 2002, Grant et al. 2009).  High rates of upstream and 

overland dispersal by juveniles, and low rates of within-network dispersal along the 

stream corridor, support our prediction that the dendritic structure of stream systems 

affects the basic movement behavior of headwater specialists (Grant et al. 2007). These 

data also support general theory predicting increased metapopulation persistence in 

networks with even a small amount of overland dispersal (Holland and Hastings 2008, 

Fagan et al. 2009), especially in species with low intrinsic population growth rates 

(Brown and Kodric-Brown 1977, Gyllenberg et al. 1993).  Accordingly, the observed 

dispersal probabilities in our system suggest a mechanism for the perceived stability of 

stream salamander populations (Tilley 1980, Hairston 1987, Green 2003), which may 

contribute to their persistence in headwater stream habitats. 

Methods summary 

Data for D. monticola and D. fuscus were combined for analysis, as larval and 

juvenile individuals are hard to differentiate in the field.  In this way, we are assuming 

that the movement ecology of these two species is similar with regards to overland and 

within-stream movement probabilities.  This is a reasonable expectation, as these 

movement probabilities likely stem from the similarity in life-history characteristics 

(Organ 1961) (e.g., short larval period, close association with the stream channel and 

overlapping body sizes within each life stage). 
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We used the Huggins formulation of the closed robust design multistrata model, 

implemented in program MARK (White and Burnham 1999), to estimate survival ( ) 

and capture (p) probabilities at each site, and transition probabilities (

r
tS

rs
tψ ) among age-

reach states.  The survival probability is the probability that an animal alive at time t 

survives to time t+1 and remains in the study system (i.e., does not die or permanently 

emigrate), while the recapture probability (p) is the probability of capturing a marked 

individual conditional on it being present in the sampled population at t.  The transition 

probability ( rs
tψ ) is the probability that an animal in one state at time t is present in a 

different state at time t+1, conditional on survival from time t to time t+1.  It is important 

to note that our use of the robust design (using 3 temporary removal passes on each 

survey occasion) estimates the surface-active population at each sampling occasion and 

not the total population in the system. 

We investigated 5 models (Supporting Online Material) representing our hypotheses 

about stream salamander movement, and used AICc to rank models based on their 

support in the data (Burnham and Anderson 2002).  We used model-averaging to 

incorporate model uncertainty into our inferences and to reduce the bias in the estimator 

( rs
tψ̂ ) with respect to inference from a ‘single-best’ model from the model set. 

Methods (Supporting Online Material) 

Individuals were classified into three ages: larvae, juvenile, and adult.  Animals were 

assigned to either the juvenile or adult age class based on the distribution of sizes: 

Desmognathus fuscus individuals were classified as adults when their SVL exceeded 36 

mm, and D. monticola individuals when their SVL exceeded 45 mm (Orser and Shure 

1975, Bruce 1989, Bruce and Hairston 1990). 
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We used program U-CARE (Choquet et al. 2003) to perform the goodness of fit test 

on the global model.  The global multisite test indicated some lack of fit in one of the 

stream groups, and an investigation of Test3.Sr indicated the problem was likely due to 

‘transients’ – animals that were traveling through the study area (or experienced a 

handling effect), leading to extremely low probabilities of being present in future 

occasions.  Within each age class, we therefore used different survival parameters for 

the period following initial capture and all subsequent periods. Because of low capture 

probabilities of larval individuals, we borrowed information across age classes to 

estimate the capture probability within the closed population removal model. 

Our global model included stream pair, stream reach, age class, and sampling 

season as covariates on survival probabilities ( ); we included stream pair, stream 

reach, temporary removal pass, and sampling season as covariates on capture 

probabilities (p). Recapture probabilities were constrained to zero to reflect our use of 

temporary removal passes within each sampling occasion.  Covariates on the age-reach 

transition probabilities (

r
tS

rs
tψ ) focused on the type of movement (no movement, upstream, 

downstream or overland), and we conditioned on the type of age transition (remain as 

larvae, remain juvenile, remain adult, transform from larvae to juvenile, recruit from 

juvenile to adult).   All transitions which were not possible (e.g., from adult to larvae; 

overland movement of larvae) were fixed = 0.  Because all larvae were observed to 

metamorphose prior to July, larval transition probabilities for July-September were fixed 

= 0. 

We used a sequential modeling approach, where we first found parsimonious models 

for the closed-population capture probabilities and then survival probabilities, and we 

used the resulting parameterizations to test models of state transition probabilities.  

Models of capture probabilities included additive models of stream pair, reach, 
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temporary removal pass, and sampling month.  Because numbers of captured larvae did 

not always decline with removal pass, we borrowed capture information across all life 

stages.  This primarily affected the larval capture probabilities (see also Jung et al. 

2005).  Models of survival probabilities included additive effects of stream configuration, 

reach, life stage, and month.  We did not expect stream configuration to affect either 

capture or survival probabilities.  

The modeling proceeded as follows: (1) using the most general model, we used the 

small-sample Akaike’s Information Criterion (AICc) to rank models including different 

combinations of covariates to determine the most parsimonious structure on the 

detection probability parameter.  Using this set of covariates, we proceeded to 

investigate the covariate structure on the survival probability.  Finally, we used the most 

parsimonious structure on p and φ  to investigate our hypotheses of stream salamander 

transition among stream reaches and age classes. We calculated model-averaged 

estimates of the transition probabilities ( rs
tψ ).  Model averaging combines estimates 

from each model using their associated model weights, to provide an estimate of the 

predicted effect that is not conditional on a single model in the set (Burnham and 

Anderson 2002). 

We were not able to explicitly separate movements between the uppermost reaches 

of our stream pairs.  However, in order to travel between the two uppermost reaches via 

within-stream moves, an individual would have to survive and move first from the upper 

to the lower reach ( ), and then survive and move from the 

lower reach to the adjacent upper reach ( ).  Across all age 

classes, this sequence of probabilities (  = 0.0001) is much lower than the overland 

survival-transition probability calculated for the same 2 time periods (  = 0.0474), in 

lowerupper
t

upper
t

lowerupper
t S −

−−
−

− = 1
1

1
1

1
1 ψφ

22 upperlower
t

lower
t

upperlower
t S −− = ψφ

rs
tφ

rs
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which an individual could either survive and remain in the uppermost reach 

( ) and then survive and move to the adjacent reach 

( ), or vice versa.  This suggests that, though movement 

between the uppermost stream reaches is possible via within-stream movements, they 

comprise a small fraction of the observed overland movement probabilities.

11
1

1
1

11
1

upperupper
t

upper
t

upperupper
t S −

−−
−

− = ψφ

21121 upperupper
t

upper
t

upperupper
t S −− = ψφ

80 



 

Figure 5.1.  Monthly movement probabilities (and SE) for each age transition in the 

stream networks sampled in Shenandoah National Park, VA, USA. 
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Table 5.1.  Model set used for model-averaging.  All models included the most 

parsimonious detection [p (tx,pass,season)] and survival [φ  (a,month)] structures, and 

all transition probabilities were conditioned on age transition (larval to larval; larval to 

juvenile; juvenile to juvenile; juvenile to adult; adult to adult).  Model definitions follow 

Table 5.2. 

 

Model AICc ΔAICc K Deviancew 
ψ (move2) 20674.14 0.00 0.67 23 20627.81
ψ (move3) 20676.10 1.96 0.25 24 20627.74
ψ (move) 20678.69 4.55 0.07 22 20634.39
ψ (move3(Up=Dn)) 20685.70 11.56 0 23 20639.37
ψ (move(Up=Dn)) 20688.71 14.57 0 21 20646.43
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Table 5.2. Candidate model set.  All models included the most parsimonious structure 

on p (stream reach, temporary removal pass (1-3), sampling month) and φ  (age class, 

sampling month).  All transition probabilities were conditioned on age transition (larval to 

larval; larval to juvenile; juvenile to juvenile; juvenile to adult; adult to adult), and 

constrained to reflect our hypotheses of stream salamander movement among our study 

reaches.  

 

Description Model 
ψ (move) Movement overland from the upper reach 

equivalent to overland movement from the lower 
reach. 

ψ (move2) Different overland movements from upper and 
lower reaches. 

ψ (move3) Different overland movement for upper and lower 
transects; overland movement between upper 
transects allowed to be different than overland 
movement from the adjacent upper transect to the 
lower transect. 

ψ (move(Up=Dn)) No bias in within-stream movement;  different 
overland movement from the upper and lower 
reaches 

ψ (move3(Up=Dn)) No bias in within-stream movement; different 
transition for lower and upper transects in 
overland movement; overland upper->lower 
different than overland lower ->upper. 
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Appendix: Riverine Landscapes: Ecology for an Alternative Geometry 

Published in: Spatial Ecology 

Coauthored with: William F. Fagan, Heather J. Lynch, Emma C. Goldberg, Peter J. 
Unmack 

 
 

Abstract 

Ecologists interested in spatial processes are increasingly turning to models and 

sampling efforts that are spatially explicit.  By definition, such explicitness necessitates a 

conceptualization of the underlying geometry of the landscapes in which important 

ecological processes (e.g., habitat loss, fragmentation, transport) are seen to operate.  

Perhaps because humans are fundamentally a terrestrial species, the default 

perspective in much of ecology—and in theoretical ecology in particular—is of two-

dimensional terrestrial landscapes in which habitat patches of various types are 

interspersed within a habitat matrix.   

However, riverine landscapes (including riparian systems as well as creeks and 

rivers themselves) exhibit fundamentally different geometric properties than do 2-D 

terrestrial landscapes.  These geometric properties likely have important consequences 

for population, community, and ecosystem ecology, but they have been relatively little 

explored.  Drawing upon several examples, we lay out a rationale for increased research 

on the linkages between the branching geometry of riverine landscapes and ecological 

dynamics, focusing on the fundamental issue of the ‘branchiness’ of riverine networks.  

Given the rich biodiversity of riverine landscapes and the pervasive threats that these 

key systems face, extensive opportunities exist for theoretical and empirical research in 

this alternative geometry. 
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Dendritic Networks as a Problem in Spatial Ecology 

Whether one considers the evolution of new species, the dynamics of invading 

species, or the maintenance of biodiversity, spatial processes play central roles in 

ecology.  A key aspect of such spatial processes is the degree to which subunits of a 

system or network are connected to one another, because connectivity is often a 

linchpin for population persistence, patterns of biodiversity, and ecosystem function 

(Calabrese and Fagan 2004).   

Thus far, however, ecological studies of landscape connectivity have dealt 

almost exclusively with ‘planar’ geometries, wherein habitat units or patches (such as 

forests, fields, and cities) extend in two dimensions and can completely ‘fill up’ a 

landscape.  In contrast, other natural landscape geometries have received far less 

attention. For example, dendritic networks, such as river systems, which consist of 

effectively linear (rather than 2D) habitat units sequentially arranged, have inherently 

different geometries than planar landscapes (Fagan 2002, Grant et al. 2007) (Fig. 

Appendix.1). River systems (and their associated riparian zones: Gregory et al. 1991, 

Malanson 1993, Naiman and Décamp 1997) are perhaps the most obvious dendritic 

networks in nature, but caves, plant structures, and animal migratory pathways exhibit 

similar topologies. Geometry is a critical feature of these dendritic networks because it is 

intimately tied to network dynamics. For example, branching, hierarchical networks may 

slow down movement altering opportunities for interactions between individuals or 

network components (Cuddington and Yodzis 2002, Campos et al. 2006).   

Despite their potential importance, the unique contributions of dendritic geometry 

to the dynamics and emergent functions of networks have only rarely been studied by 

theoreticians (Johnson et al. 1995,Charles et al. 1998a,b, Fagan 2002, Anderson et al. 

2005, Muneepeerakul 2007).   Empirical studies addressing dendritic geometry are also 
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scarce, but the extant few highlight the potential importance of hierarchical geometry for 

species persistence and patterns of biodiversity (Bornette et al. 1998, Crabbe and 

Fausch 2000, Cottenie and de Meester 2003).  For example, in the Amazon, river 

confluences exhibit dramatically higher diversities of predatory ‘electric’ fishes than do 

other reaches (Fernandes et al. 2004), suggesting a key link between connectivity and 

community structure. Likewise, in Sonoran stream networks, fish species with highly 

fragmented distributions have exhibited markedly increased rates of local extinction 

compared to species whose historical distributions were more connected (Fagan et al. 

2002, 2005a,b).   

Unique features of dendritic landscapes and their consequences for ecological 

theory 

Given the profound lack of research on the ecology of dendritic geometries, even 

fundamental issues remain unresolved.  For example, within a branching network, what 

are the relative contributions of linear components and branching frequency to individual 

movements, population persistence, and species diversity?  When species move 

through a dendritic landscape, do transient changes in density influence population 

persistence, competition, predation, and the transmission of pathogens, and what is the 

contribution of network geometry to those changes?  What are the functional differences 

between ‘rooted’ networks (e.g., rivers or ant trails) and other dendritic geometries where 

hierarchical branching occurs on both ends (e.g., avian flyways)?  These and many 

other interesting problems remain to be explored.   

 

Clearly issues of dendritic geometry are related in certain ways to the 

increasingly popular ‘network theory’ approaches that have been used in studies of 

telecommunication (Albert et al .2000), epidemiology (Grenfell and Bolker 1998), 
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foodwebs (Brose et al. 2004, Garlaschelli et al. 2003), and elsewhere.  However, several 

key differences set the problem of dendritic geometries apart from network theory more 

generally (Grant et al. 2007).  The most important of these is that dendritic ecological 

networks exist as physical entities whereas in network theory the ‘branches’ or links of a 

network represent rates or magnitudes of connections among entities (e.g., patches).  

Dendritic networks require separate investigations because organisms actually live and 

interact in those alternative geometries (Grant et al. 2007). Consequently, the important 

issues in the ecological dynamics of dendritic networks are not easily addressable via 

graph theory or similar approaches that are so popular with network theorists (Vincent 

and Myerscough 2004, Grant et al. 2007).  Instead, to explore these issues theoretically 

one must often build model landscapes of patches arranged in a variety of branching, 

hierarchical fashions and then simulate populations or communities of species that 

interact on those landscapes (e.g., Fagan 2002, Muneepeerakul et al. 2007).    

Despite commonalities with other network-related topics, dendritic ecological 

networks present several unique complications that, together, constitute a novel 

research frontier in spatial ecology.  Four of these sources of complexity are:  

1) Intrinsic effects of configuration 

Even without any additional complications (i.e., even if the three sources of 

complexity listed below are not present), the hierarchical, branching arrangement of local 

communities per se can affect ecological patterns and dynamics in dendritic networks.  

In dendritic geometries, confluences and spatial sequencing are important 

considerations because they can act as impediments to spatial averaging as the scale 

changes (Guo et al. 2003, Kuby et al. 2005).  For example, temporal variation in a 

natural process (e.g., water retention) may have starkly different consequences 

depending on whether the process occurs upstream or downstream within a river 

network (Guo et al. 2003). 
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2) Directional biases  

River networks feature directionally biased flows (e.g., river flows) that introduce 

systematic anisometries and noncommutativities into problems of dispersal in branching 

networks (e.g., the ‘distance’ or ‘ease of travel’ from patch A to B is not necessarily the 

same as from patch B to A).  Directionality has received some theoretical attention via 

advection-diffusion models focusing on questions of population persistence, critical 

patch sizes, and the ‘drift paradox’ (Anderson et al. 2005, Lutscher et al. 2005, 

Pachepsky et al. 2005), but these studies considered linear habitats, not branching 

geometries. 

3) Out-of-network connections 

Some processes in dendritic networks are out-of-network by nature. For 

example, forest fires and other disturbances, which need not follow the geometry of river 

networks, represent situations in which out-of-network processes are mismatched 

against the geometry of organisms’ in-network dispersal (Fagan 2002).  Likewise, 

human trucking of salmon and overland ‘walking’ by invasive snakehead fish are good 

examples of situations where out-of-network movement is critical to network-level 

dynamics.  Some species (e.g., fish) are restricted to travel along the network, while 

others (e.g., stream insects) may make occasionally make overland movements. 

4) Transient connectivity 

The connectivity among patches in a river network may be transient (i.e., time-

dependent) rather than static.  For example, river networks featuring regional droughts 

(Arizona) or episodic flooding (Amazonia) exhibit reduced or enhanced connectivity, 

periodically altering opportunities for dispersal and redistribution of resources. 

To investigate how hierarchical, dendritic geometries influence ecological 

dynamics and patterns of biodiversity will require the development of a series of models 

of varying complexity, detail, and focus.   Explicit dendritic landscapes should be at the 
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core of these models, providing a common framework that transcends differences in 

model structure and purpose.  For example, to explore the interface between dendritic 

geometry and network dynamics, one could vary the geometric properties of those 

landscapes (e.g., branching frequency, rooted versus non-rooted topology, hierarchical 

form of spatial heterogeneity) and impose one or more of the four complications above 

to examine their joint impacts on ecological patterns and dynamics.  Of the four sources 

of complexity, the last item, transient connectivity, is arguably the most novel and most 

likely to yield results that generalize in important ways to network problems far beyond 

theoretical ecology.  In such models, a difference or differential equation (such as those 

routinely used to study local population dynamics and species interactions) could 

operate within each compartment, and the compartments would then be linked to other 

compartments within the hierarchy.  Given their complexity, such models will typically be 

solved via extensive numerical simulations, but in some cases variable aggregation 

methods may be useful (Charles et al. 1998a,b).  Across model runs, outputs could can 

be interpreted in terms of scaling laws for such metrics as population persistence times, 

average abundance or occupancy, or rates of spatial spread (Muneepeerakul et al. 

2007, unpublished ms.).  This approach is commonly used in ecohydrology (Rodriguez-

Iturbe and Rinaldo 1997). 

The ‘branchiness’ of a river network influences colonization opportunities and 

extinction risk 

To illustrate the importance of dendritic geometry for ecological systems, we 

focus in this chapter on one important geometric factor, namely the ‘branchiness’ of a 

river network. Extending some ideas about riverine metapopulation dynamics that were 

initially laid out in Fagan (2002), we first use a simulation model to explore how 

branchiness of a network alters opportunities for recolonization and consequently 
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extinction risk.  We then draw upon a database of fish distributions to illustrate the 

effects of network branchiness in a real system where fragmentation is already known to 

be an important driver of extinction risk.  

Modeling the effects of network branchiness for metapopulation dynamics 

We investigated the relationship among network branchiness, movement 

probabilities, and extinction risk of a metapopulation within networks of 15 stream 

reaches (‘habitat patches’).  In our model, all patches are of equal habitat quality, and we 

assume a uniform distribution of a population in the network.  After investigating 

extinction risk in general, we look closer at a particular metapopulation scenario using 

parameter values guided by a mark-recapture study of a stream salamander species, 

Gyrinophilus porphyriticus (Lowe 2003). 

We created two 15-patch dendritic networks with different topologies: (1) a fractal 

network (‘Full’) with bifurcations at each branch node, and (2) a network with reduced 

complexity (‘Pruned’), where only one bifurcation is present at each depth in the network 

(Fig Appendix.2).  The first configuration corresponds to the model in Fagan (2002), 

whereas the second configuration results in a network with branches of differing length 

from the mainstem (Fig Appendix.2).  Realistic networks in nature may fall between the 

dendritic network topologies considered here (Dunne and Leopold 1978).  Location in 

the network is indexed by specifying a network ‘depth,’ or location along the mainstem of 

the network, and the horizontal position in the network (Fig Appendix.2).  In our ordering 

schema, starting from the downstream terminus of the network, a patch in position (3,2) 

is located 3 steps along the mainstem, and 2 branches from the leftmost patch (at the 

first bifurcation point, keep left, at the second, keep right). 

For each model run, we initialized full occupancy of all patches in the network, 

and fixed the time-specific extinction probability in each patch for each model run.  At 
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each time step, we allowed colonization of extinct patches via three movement routes: 

(1) upstream, (2) downstream and (3) overland, out-of-network colonization from one of 

the two closest neighboring patches within the same depth.  We investigated three 

probabilities for extinction probability (0.1, 0.01, 0.001), and four movement probabilities 

(0, 0.1, 0.01, 0.001).  The model was run for a maximum of 10000 time steps (or until full 

extinction of the network) for all parameter combinations, and each combination was 

replicated 100 times.  We investigated all combinations of extinction and movement 

probabilities, though we present here results for the case with upstream = downstream 

movement probabilities.  

For the Full dendritic network, the presence of out-of-network connectivity has a 

large effect on the time to extinction.  This effect was most prominent with high levels of 

within-network movement, suggesting that out-of-network movement is not the sole 

driver of extinction risk (Fig. Appendix.3, left panels).  When per-patch extinction risk 

was low (0.001), the network persisted for a wide range of both within- and out-of-

network dispersal probabilities (Fig. Appendix.3, left panels).  At intermediate levels of 

extinction probability (0.01), the network had a reduced time to extinction when there 

was at least a small amount of out-of-network movement compared to the scenario 

without out-of-network movement. The metapopulation persisted when both within 

network dispersal was high (0.1), and out-of-network dispersal was moderate to high 

(0.01 – 0.1).  Extinction risk in the Pruned network was similar to that in the Full network 

(Fig. Appendix.3, right panels), but featured a damped pattern that was especially 

evident at intermediate levels of extinction probability (Fig. Appendix.3, left middle panel, 

extinction = 0.01).  With high extinction probability (0.1), the Pruned network goes extinct 

rather quickly (not different axis scale), regardless of the level of out-of-network 

dispersal. 
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Finally, we compared 15-patch networks in two configurations (Full vs. Pruned 

networks) guided by empirical within-network movement data on a species of stream 

salamanderLittle is known about rates of out of network movements in stream 

amphibians, though populations of some species are more closely associated with 

stream networks with confluent first order branches (Lowe and Bolger 2002, Rissler et 

al. 2004, Grant and Green, unpublished data), suggesting that this type of movement 

may be naturally low in some species.  Stream networks in altered landscapes typically 

lose complexity via loss of small headwater streams (Dunne and Leopold 1978).  In 

species which are adapted to live in streams, the loss of network complexity may result 

in an increased extinction risk, especially when within network movements are the 

predominant mode of dispersal.  Some species may be capable of making out of 

network movements, which may be important for stabilizing populations (a type of ‘weak 

link,’ Csermely 2004).  Further, in undisturbed populations, stream salamanders likely 

have low rates of extinction (Hairston and Riley 1993), though with increasing landscape 

disturbance, rates of extinction are likely higher (Price et al. 2006).  Using our model, we 

found that at low rates of extinction (0.01), both network complexities have similar 

extinction risk when there is a small amount of out of network dispersal (Fig. Appendix.4, 

top).  However, at higher extinction rates (0.1), the Full dendritic network has a greater 

potential for population persistence, when out-of-network movements are proportional to 

or greater than other modes of dispersal (Fig. Appendix.4, bottom).   

From our simulation results, it is apparent that the spatial layout of populations 

within a stream network helps determine the risk of metapopulation extinction.  

Consequently, understanding how network complexity interacts with population 

extinction risk may be important for managing stream network habitats.  More complex 

patterns of extinction (e.g., correlated disturbances, Fagan 2002, Lowe 2002) and biases 

in animal movements or habitat preferences in the network (e.g., preference for higher 
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order branch locations) may alter the results from our simple model discussed here.  

However, we expect that more realistic models will strengthen the relationship among 

movement probabilities and network complexity, especially considering variation in out-

of-network colonization probabilities. 

For most species that live in dendritic networks, empirical estimates of movement 

probabilities is a critical information need for managing populations in these habitats, 

though these estimates are largely unavailable at large scales.  As our results suggest, 

the specific combination of movement probabilities are important for assessing 

metapopulation extinction risk.  While out-of-network connectivity generally increases the 

time to metapopulation extinction, the effect of increasing this movement is mediated by 

the within-network movement probabilities.  Few long-term data exist to test our model in 

existing dendritic network systems at large scales, though recently established 

monitoring programs that recognize the potential importance of the spatial layout of 

dendritic networks should yield useful empirical data. 

Finally, we note that the modeling approach employed here may be useful for 

planning repatriation, translocation or stocking programs in dendritic stream networks.  

Viewing out-of-network dispersal as a translocation or stocking event, alternative 

scenarios could be explored in advance of field work.  Extensions to our model could 

specify stocking or translocation frequency via modification of the out-of-network 

colonization probability, consider the impact of stocking location within the network 

hierarchy, and allow for a greater range of colonization distances (e.g., allowing for long 

distance dispersal events in the network). 

Network branchiness and extinction risk for desert fishes 

 A key prediction emerging from the above modeling scenarios is that ‘branchier’ 

networks should facilitate recolonization among subpopulations and thereby buffer the 
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system as a whole from regional extinctions.  To test this prediction in the real world, we 

investigated the link between network branchiness and local extirpation risk in an 

assemblage of fish species native to the Sonoran Desert ecoregion.   

Occurrence records for this group of species are summarized in the Sonoran 

Fishes (or ‘SONFISHES’) database, initially developed by the late ichthyologist W. L. 

Minckley.  This GIS database provides extensive distributional data for native freshwater 

fishes in the southwestern USA and northwestern Mexico.  Within the Sonoran 

ecoregion, the Lower Colorado River basin, and within that, the Gila River, feature the 

most detailed biogeographical coverage and the greatest density of collecting records.  

Parts of this landscape are highly fragmented due to a lack of perennial water due to the 

interplay among precipitation, discharge and substrate, and more recently as a result of 

diversion and desiccation by human activities (Brown et al., 1981).  Moreover, even 

when contiguous stretches of surface water exist, the widespread introduction of 

multiple, non-native, invasive fish species induce a type of ‘biological fragmentation’ due 

to larvivory, in which non-native species prey on juvenile native fish and greatly limit their 

recruitment (Unmack and Fagan 2004).   

The SONFISHES database encompasses ~160 years (from 1843 to ~2005) and 

contains incidence, identity, and collection data for the complete holdings of the major 

museum collections from this region, numerous smaller collections of southwestern 

fishes, records from the Non-Game Branch of the Arizona Game and Fish Department, 

and peer-reviewed and ‘gray’ literature sources.  Due to the intensity and time span of 

sampling, SONFISHES summarizes virtually all that is known about past and present 

distributions of fishes in the region and represents an unusually comprehensive resource 

for examining changes in species spatial distributions over time.  

Previous analyses of the SONFISHES database have demonstrated that, among 

25 fish species native to the Lower Colorado River basin, the degree to which a species’ 

94 



 

distribution was fragmented historically is a strong predictor of the frequency of local 

extirpations that the species has since experienced (Fagan et al. 2002a, 2005a,b).  

Although a species’ historical frequency of occurrence (i.e., number of localities at which 

it was found ) is also correlated with the risk of extirpation on local scales (e.g., 5km or 

25km reach lengths), historical fragmentation of occurrences is a far stronger predictor 

of variation in extinction risk among species (Fagan et al. 2002), and this dependence 

manifests on small through large spatial scales (5 to 2500 km reach lengths; Fagan et al. 

2005a). Thus the physical arrangement of species’ populations and not just the number 

of those populations has been an important determinant of extinction risk in the Sonoran 

ecoregrion. 

Here we seek to expand on this understanding by quantifying the relationship 

between the branching geometry of river networks in particular watersheds and the 

observed frequency of local extinctions in those watersheds.  To quantify network 

branchiness, we will adopt two measures of riverine geometry from the theoretical 

hydrology literature (Rodriguez-Iturbe and Rinaldo 1997, Dodds and Rothman 1999, 

Turcotte et al. 1998).   However, before introducing the branchiness metrics themselves, 

we first define some important hydrological terms that provide context..   Using the 

conventional methodology for characterizing watershed geomorphology (Strahler 1967), 

a stream’s ‘order’ is an index that relates to both flow capacity and network position.  

Starting from tiny trickles far upstream (1st order streams), stream order increases when 

two streams of equal order merge together. For a given stream of order n, a ‘major side 

tributary’ is a stream of order n-1 that merges with the parent stream partway along its 

course (rather than at its upstream confluence). Likewise, a ‘stream segment’ is defined 

as a contiguous reach of stream with the same order (i.e., a stream segment is bounded 

by upstream and downstream confluences where order changes).  In idealized 
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watersheds, these concepts are related by Tokunaga’s Law (Dodds and Rothman 1999) 

which states 

1
1

−= n
Tn RTT           (1) 

where Tn is the expected number of tributaries of order n in a given watershed, T1 is the 

average number of major side tributaries per stream segment, and RT is a multiplicative 

factor describing the average rate at which numbers of side tributaries of successively 

lower orders accumulate in a watershed.  Example calculations of these branchiness 

metrics appear in Dodds and Rothman (1999).  Although Equation (1) is typically used in 

theoretical hydrology problems, the metrics T1 and RT , which quantify different, but 

complementary, aspects of stream network complexity, can also be calculated for real 

watersheds via tedious effort.   

To characterize the branchiness of different river networks, we quantified T1 and 

RT for 13 watersheds within the Gila River drainage (central Arizona and western New 

Mexico, USA, plus small portions of northern Sonora, Mexico).  We used watersheds 

defined at the HUC-8 scale (Hydrological Unit Code – 8; Seaber et al. 1987), and given 

the monotony involved in calculating the branchiness metrics, chose a subset (52%) of 

the HUC-8 watersheds that spanned the range of watershed complexity evident in the 

Gila drainage. We focused our analyses on six species of small- and medium-sized fish: 

Agosia chrysogaster, Catostomus insignis, Gila intermedia, Meda fulgida, Rhinichthys 

osculus, and Tiaroga cobitis. These species were all widespread in the Gila River 

drainage historically, and, unlike other fish native of the region, were not restricted to 

particular elevational zones (e.g., Onchorhynchus spp.) or river flow volumes (e.g., 

Xyrauchen texanus, Ptychocheilus lucius).  We then used logistic regression to quantify 

relationships between watershed branchiness and the observed frequency of extirpation 

at the local scale (=5 km of reach). 
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Gila River watersheds vary substantially in branchiness, whether that geometric 

complexity is measured in terms of the average number of major side tributaries (T1) or 

the rate at which reaches accumulate lower order tributaries (RT). On average, a given 

stream segment in Gila River watersheds has T1 = 1.00 major tributaries (range: 0.85 – 

1.42) and finer scale branching occurs at an average rate of RT = 2.21 branches per 

segment (range: 1.44- 3.15) 

For four of our six focal species, the frequency of local extirpation was strongly 

and significantly dependent on one or both measures of network branchiness (Fig. 

Appendix.3).  Catostomus and Rhinichthys both exhibited lower local extinction risk in 

those watersheds with relatively high T1 scores, whereas observed extinction risk in Gila 

and Tiaroga were more strongly related to RT. In contrast, extinction risk in neither 

Agosia nor Meda was significantly related to watershed branchiness, although extinction 

risk for Agosia trended downward with increasing branchiness for both RT and T 1.  

In a system like the Sonoran ecoregion, where connectivity may be determined 

largely by in-stream proximity of individual populations, it is intuitive that the extent of 

fragmentation in populations is a strong predictor of extinction risk, and this has been 

borne out by several analyses (Fagan et al. 2002, 2005a, b).  Our analysis here 

suggests that watershed ‘branchiness’ may contribute to those previously observed 

relationships between fragmentation and extinction risk, with branchier watersheds being 

less prone to local population extinctions. Consequently, conservationists and resource 

managers may want to consider the branching geometry of riverine networks when 

seeking to identify watersheds that will yield a high probability of local population 

persistence for Sonoran fishes.  
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Conclusion 

Although this chapter has focused on riverine geometry, river networks are only 

one example within a broader class of ecological networks involving dendritic 

geometries.  For example, caves feature network-like geometry, but exist in three 

dimensions rather than just two (Curl 1986, Palmer 1991). Likewise, avian flyways, 

ungulate migratory pathways, and ant trails possess branching, hierarchical geometries 

but exist at a functional level (for migration or resource acquisition) rather than in a 

structural sense (Watmough and Edelstein-Keshet 1995, Speirs and Gurney 2001, 

Hindmarch and Kirby 2002, Jackson et al. 2004, Xia et al. 2004). The architecture of 

individual plants also involves dendritic geometries that may alter species interactions 

and drive emergent food web dynamics (Kareiva and Sahakian 1990, Cuddington and 

Yodzis 2002).  Unfortunately, links between geometry and dynamics in these other 

dendritic systems have received even less theoretical attention than have river networks.  

Consequently, the ecology of alternative geometries will afford rich research 

opportunities for years to come. 
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Figure Appendix.1   A dendritic landscape (left) differs fundamentally from the standard 

two dimensional landscape often featured in spatially explicit investigations in ecology. 
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Figure Appendix.2    Fifteen patch network configurations (A = Full, B = Pruned) 
considered in investigating extinction risk in dendritic metapopulations.  The network 
depth is used to index position in the network.  
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Figure Appendix.3 Effects of river network ‘branchiness’ on extinction risk in 15 patch 
dendritic metapopulations.  Panels on the left are from a full dendritic network, and on 
the right are from the pruned network.  Three extinction probabilities were modeled 
(0.001, top row; 0.01, middle; 0.1 bottom row), under combinations of within and out of 
network dispersal probabilities (0, 0.001, 0.01, 0.1).  
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Figure Appendix.4 Effects of river network ‘branchiness’ on extinction risk for the spring 
salamander Gyrinophilus porphyriticus under different levels of out of network dispersal 
(upstream dispersal probability = 0.15, downstream dispersal probability = 0.05).  Top 
panel, extinction probability = 0.01.  Bottom panel, extinction probability = 0.1.
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Figure Appendix.5  Measures of river network branchiness as predictors of extinction risk in fish species of the Gila River in 
the Sonoran Desert ecoregion. Extirpation probability calculated at the scale of 5km reaches. 
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