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Given a set P of n labeled points in a metric space (X , d), the nearest-neighbor

rule classifies an unlabeled query point q ∈ X with the class of q’s closest point in P .

Despite the advent of more sophisticated techniques, nearest-neighbor classification

is still fundamental for many machine-learning applications. Over the years, this has

motivated numerous research aiming to reduce its high dependency on the size and

dimensionality of the data. This dissertation presents various approaches to reduce

the dependency of the nearest-neighbor rule from n to some smaller parameter k, that

describes the intrinsic complexity of the class boundaries of P . This is of particular

significance as it is usually assumed that k ≪ n on real-world training sets.

One natural way to achieve this dependency reduction is to reduce the training

set itself, selecting a subset R ⊆ P to be used by the nearest-neighbor rule to answer

incoming queries, instead of using P . Evidently, this approach would reduce the

dependencies of the nearest-neighbor rule from n, the size of P , to the size of R. This

dissertation explores different techniques to select subsets whose sizes are proportional



to k, and that provide varying degrees of correct classification guarantees.

Another alternative involves bypassing training set reduction, and instead

building data structures designed to answer classification queries directly. To this

end, this dissertation proposes the Chromatic AVD; a Quadtree-based data structure

designed to answer ε-approximate nearest-neighbor classification queries. The query

time and space complexities of this data structure depend on kε; a generalization of

k that describes the intrinsic complexity of the ε-approximate class boundaries of P .
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Chapter 1: Introduction

In the context of non-parametric classification in machine learning, we are

given a training set P which consists of n points in a metric space (X , d), where

P ⊆ X and metric d : X 2 → R+ defines the distance between any two points in X .

Additionally, this training set P is partitioned into a finite set of classes, meaning

that each point p ∈ P is assigned a label l(p) that indicates the class to which p

belongs to. Finally, given an unlabeled query point q ∈ X , the goal of a classifier is

to predict q’s label using the training set P .

The nearest-neighbor rule (or nearest-neighbor classifier) is among the best-

known classification techniques [1]. It classifies any query point q ∈ X with the

label of its closest point in P according to the distance function d. This idea can

be generalized to predict q’s class using its first k nearest-neighbors in P , instead of

only one. Such generalized approach is known to as the k nearest-neighbor classifier,

or simply k-NN. Throughout this book, we focus exclusively on the 1-NN classifier.

Despite being conceptually simple, numerous results show that the nearest-

neighbor rule exhibits good classification accuracy both experimentally and theoreti-

cally [2–4]. In fact, its probability of error is bounded by twice the Bayes probability

of error, which is the best achievable error by any theoretical classifier. However, the
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nearest-neighbor rule is often criticized for its high space and time complexities, as

a straightforward implementation of this approach implies storing all the points of

P to answer such queries. This would therefore make the nearest-neighbor rule be

highly dependent on the size n of the training set P .

This drawback raises an important question of whether it is possible to reduce

the dependency of the nearest-neighbor classifier, from n to some smaller parameter.

In this thesis, we proof this is indeed possible, proposing new approaches for nearest-

neighbor classification that are dependent on some parameter k, where commonly

k ≪ n on real training sets. This parameter is defined as the number of border

points of P , and depicts the inherent complexity of the boundaries between points

of different classes in the training set.

Some of the approaches presented in this thesis deal with computing a subset

of P whose size is dependent on k, which can then be used by the nearest-neighbor

rule to answer classification queries, instead of using the entire training set. These

are known as training set reduction techniques, and are explored in Chapters 3 to 5.

Additionally, Chapter 6 explores a completely different approach, proposing a tailor-

made data structure that can directly answer nearest-neighbor classification queries,

thus bypassing the preprocessing step of having to reduce the training set. In

terms of the underlying metric space, Chapters 3, 4 and 6 assume P lies in Rd for

constant dimension d, and using ℓ2 as the distance metric, while Chapter 5 deals with

training sets in general metric spaces. Finally, in terms of the model of computation,

Chapters 3 and 4 assume that nearest-neighbor queries are computed exactly, while

Chapters 5 and 6 allow multiplicative approximation errors when answering such

2



classification queries.

Preliminaries

The set of border points of the training set P are those that define the “bound-

aries” between points of different classes, and whose omission from the training set

would imply the misclassification of some query point in X . Formally, two points

p, p̂ ∈ P are border points of P if they belong to different classes, and there exist

some point q ∈ X such that q is equidistant to both p and p̂, and no other point of

P is closer to q than these two points.

For any given point p ∈ P , define an enemy of p to be any point of P in a

different class than p. The nearest-enemy of p, denoted ne(p), is the closest such

point according to metric d. Finally, define the nearest-enemy distance of p to be

dne(p) = d(p, ne(p)), and the nearest-enemy ball of p to be the metric ball centered at

p with radius dne(p). Let κ be the number of distinct nearest-enemy points of P , that

is, the cardinality of the set {ne(p) | p ∈ P}. Similarly, denote the nearest-neighbor

of p as nn(p), and the nearest-neighbor distance as dnn(p) = d(p, nn(p)).

In fact, in this thesis we prove that every nearest-enemy of P is also a border

point, implying that κ ≤ k. Thus, we will use these two parameters to analyze our

proposed approaches, showing their dependency on the complexity of the boundaries

between points of different classes in P .

Through a suitable uniform scaling, we may assume that the diameter of P

(i.e., the maximum distance between any two points in the training set) is 1. The
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spread of P , denoted as ∆, is defined to be the ratio between the largest and smallest

distances in P . Define the margin of P , denoted γ, to be the smallest nearest-enemy

distance in P . Clearly, this implies that 1/γ ≤ ∆.

Additionally, a metric space (X , d) is said to be doubling [5] if there exist some

bounded value λ such that any metric ball of radius r can be covered with at most

λ metric balls of radius r/2. Its doubling dimension is the base-2 logarithm of λ,

denoted as ddim(X ) = log λ. Many natural metric spaces of interest are doubling,

including d-dimensional Euclidean space whose doubling dimension is Θ(d).

1.1 Training Set Reduction

The idea behind training set reduction techniques is to select a subset of the

original training set P , and then use this reduced set to answer any nearest-neighbor

classification queries. Evidently, the goal is to select a subset as small as possible,

subject to maintaining the classification accuracy of the nearest-neighbor classifier.

By definition, if instead of applying the nearest-neighbor rule with the entire

training set P we use the set of border points of P , the complexity of answering

classification queries is now dependent on k instead of n, while still obtaining the

same classification for any query point in X . In other words, this approach would

maintain the same boundaries between points of different classes, before and after

reducing the training set. For this reason, algorithms for finding the set of border

points of P are known as boundary preservation algorithms.

For training sets P ⊂ R2 in the Euclidean plane, Bremner et al. [6] proposed

4



an output-sensitive algorithm for finding the set of border points of P in O(n log k)

worst-case time. For almost three decades, the best result for training sets in Rd,

assuming constant d, was Clarkson’s [7] algorithm that runs in O(min (n3, kn2 log n))

worst-case time. Recently, Eppstein [8] proposed a significantly faster algorithm for

the d-dimensional Euclidean case, which runs in O(n2 + nk2) worst-case time. In

Chapter 3, we propose an improvement over Eppstein’s algorithm [8] to compute the

set of border points of any training set P ⊂ Rd, where dimension d is assumed to be

constant. Moreover, our algorithm reduces the complexity of computing the set of

border points of P to O(nk2) worst-case time, where k is the size of such subset.

(a) Set P (104 pts)
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(b) CNN (281 pts)
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(c) FCNN (222 pts)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(d) MSS (272 pts)
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(e) NET (875 pts)
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(f) SFCNN (220 pts)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(g) RSS (233 pts)
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(h) VSS (233 pts)

Figure 1.1: Illustrative example of the subsets selected by different condensation

algorithms from an initial training set P in R2 of 104 points. It includes existing

algorithms (b)-(e), along with new algorithms introduced by our work (f)-(h).
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Another approach for training set reduction is called condensation. Formally,

the problem of nearest-neighbor condensation consists of finding a consistent subset

of P , where a subset R ⊆ P is said to be consistent [9] if and only if for every point

p ∈ P its nearest-neighbor in R is of the same class as p. Intuitively, R is consistent

if and only if all points of P are correctly classified using the nearest-neighbor rule

over R. Compared to the boundary preservation techniques, using consistent subsets

only guarantees the correct classification of the points of P , while using the set of

border points extends this guarantee for every point of X .

While finding subsets of P that are consistent can be done efficiently, computing

minimum cardinality consistent subsets is much harder. In fact, it is known to be an

NP-hard problem [10–12], even to approximate within practical factors. Therefore,

most research has focused on proposing practical heuristics to find either consistent

subsets (for comprehensive surveys, see e.g., [13–15]). Some of the best know heuristic

algorithms for this problem are known as CNN [9], FCNN [16], and MSS [17], the last

two being considered state-of-the-art for computing consistent subsets in O(n2) time.

However, while these heuristics have been extensively studied experimentally [18],

theoretical results are scarce, with no upper-bounds known for the size of the subsets

selected by these algorithms. In Chapter 4, we present the first theoretical results on

upper-bounding the subset sizes of condensation algorithms. In particular, we show

that FCNN and MSS can not be bounded in terms of k, and propose new quadratic-

time algorithms called SFCNN, RSS and VSS, that can be effectively upper-bounded

in terms of k (see Figure 1.1 for illustrative examples on their selected subsets).

So far, these approaches for training set reduction have made a key assumption:
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that after reduction, the nearest-neighbor rule will answer classification queries (i.e.,

compute nearest-neighbors on the reduced training set) exactly. However, in practice,

nearest-neighbors are frequently computed approximately rather than exactly. In

this context, given an approximation parameter ε ∈ [0, 1], a query point q ∈ X can

be assigned the class of any point of P whose distance to q is at most 1+ε times the

distance from q to its true nearest-neighbor. Sadly, the classification guarantees given

by both boundary preservation and condensation algorithms, rely on the assumption

that nearest-neighbors are computed exactly, and break when approximate query

answers are allowed. In Chapter 5, we propose a framework for training set reduction

that is sensitive to these approximations, along with a characterization of ε-coresets

for the problem of nearest-neighbor classification.

1.2 Nearest-Neighbor Search vs Classification

Due to its conceptual closeness, the problem of nearest-neighbor classification

is extremely related to the problem of nearest-neighbor search. Evidently, one can

reduce the problem of classifying a query point q ∈ X via the nearest-neighbor rule, to

simply compute q’s closest point in the training set, and assign q to the class of such

point. Unsurprisingly, this approach is standard for nearest-neighbor classification,

and under such problem reduction, there are only two alternatives to improve the

complexity of answering these classification queries. Either by reducing the training

set (as explained in the previous section), or by improving the techniques to answer

nearest-neighbor queries, which is a known and extensive line of research [19–22].
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However, there exist an alternative approach towards achieving more efficient

nearest-neighbor classification. This would imply avoiding the reduction to the search

problem, and instead having algorithms and data structures to directly compute

the class of the nearest-neighbor of any given query point; i.e., without computing

the nearest-neighbor itself. In computational geometry, this is usually known as the

chromatic nearest-neighbor search problem.

In Chapter 6, we propose a tailor-made data structure for approximate nearest-

neighbor classification (or approximate chromatic nearest-neighbor search), which we

call the Chromatic AVD. Given a training set P in d-dimensional Euclidean space

(assuming constant d and the ℓ2 metric) and an approximation parameter ε ∈ [0, 1
2
],

we construct a quadtree-based partitioning of space to answer any classification

query approximately. That is, for any query point q ∈ Rd this data structure returns

the class of any of q’s valid ε-approximate nearest-neighbors in P . Moreover, the

Chromatic AVD is designed as a simplification of state-of-the-art AVDs [20] for

approximate nearest-neighbor search. Thus, reducing its dependency from n to a

parameter kε that describes the complexity of the approximate class boundaries.
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Chapter 2: Literature Review

The problem of classification is of high relevance in the field of machine learning.

It has motivated numerous approaches that are able to predict the class of a given

query point, by constructing and using some model “trained” from a given training

set. However, and despite the advent of more sophisticated techniques (e.g., support-

vector machines [23] and deep neural networks [24]), nearest-neighbor classification

is still widely used in practice [25–27], proving its value in constructing resilient

defense strategies against adversarial [28] and poisoning [29] attacks, as well as in

achieving interpretable and reliable classification models [30,31].

Its importance has motivated diverse research in many fields, from statistics to

computational geometry. In this book, we approach the nearest-neighbor classification

problem from the perspective of computational geometry, leveraging algorithms, data

structures, and analysis techniques from this field. This chapter delves into the most

important concepts related to this classification technique, as well as the previous

work on ways to improve its efficiency.
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2.1 Classification Boundaries

The concept of boundaries in classification can be vague, as it depends on the

particularities of the classification model being studied. The terms class boundaries,

classification boundaries, and decision boundaries often refer to the same concept.

Broadly speaking, they refer to the separation between two regions in space, such

that the model of interest classifies points lying on either side of the boundary (i.e.,

on each region) with different classes.

In order to understand the class boundaries of the nearest-neighbor rule, we

first need to introduce a well-known concept in computational geometry called

Voronoi Diagrams. The Voronoi diagram of a point set P ⊆ X is a partition of the

underlying space X into different regions called cells. Each of these Voronoi cells has

an associated point p ∈ P (often call the site of the cell) such that for every point q

inside of the cell, p is q’s closest point in P according to the distance metric d.

Throughout this book, all the figures depicting Voronoi diagrams will assume

that the underlying metric space is Euclidean, and the distance function is the ℓ2

metric. Here, the Voronoi cell of each point p ∈ P is a convex region of Rd, and can

be described as the intersection of n− 1 closed halfspaces, each being the halfspace

containing p that is bounded by the bisector between p and another point of P .

Two sites p, p̂ ∈ P are said to be Delaunay neighbors, if and only if there exists

a point q in the underlying space that is part of the cells of both p and p̂. That is, if q

is equidistant to both p and p̂, and no other points of P are closer to q. This defines

the edges of the Delaunay triangulation of P , which is characterized as the dual

10



graph of the Voronoi Diagram. Moreover, we can define the boundaries between the

Voronoi cells of P as the union of all such points q in the space that are equidistant

to at least two points/sites of P .

When considering the classes of these points, we can introduce a few useful

concept. First, any edge of the Delaunay triangulation of P that connects two points

of different classes is called a bichromatic edge. Additionally, we can define the class

boundaries of the nearest-neighbor rule similarly to the definition of the boundaries

between the Voronoi cells of P . We say the class boundaries of P are the union of

points q in the underlying space that are equidistant to at least two points of P from

different classes. Intuitively, these boundaries separate different class regions, where

each such region is defined as the union of neighboring Voronoi cells corresponding to

points of the same class. See Figure 2.1 for an illustrative example on these concepts.

We say that the class boundaries of P are defined by a subset of the training set

called the set of border points of P . Basically, these border points are the endpoints

of all the bichromatic edges of the Delaunay triangulation of P . Formally, two points

p, p̂ ∈ P are border points of P if they belong to different classes, and there exist

some point q in the underlying space such that q is equidistant to both p and p̂, and

no other point of P is closer to q than these two points. See Figure 2.1a and 2.1b for

an example of a training set P ⊂ R2 and its set of border points. Throughout, we

denote k to be the total number of border points in the training set. Unsurprisingly,

k is key in understanding the complexity of the class boundaries of P , making it an

ideal candidate to analyze the complexity of the classification problem.

Another concept that is useful to characterize the class boundaries of P is that
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(a) Class regions of P (b) Border points of P (c) Nearest-enemies of P

Figure 2.1: Example of a training set P ∈ R2 with points of three classes: red, blue

and yellow. (a) shows the different class regions defined by the union of adjacent

Voronoi cells of the same class, (b) highlights the border points of P , while (c)

highlights the nearest-enemy points of P . Both (a) and (b) draw the class boundaries

with solid black lines.

of nearest-enemy points. Just as defined in Chapter 1, we say the nearest-enemy1 of

a point p ∈ P (denoted by ne(p)) is p’s closest point in P of different class. Then,

we let κ be the number of distinct nearest-enemy points of P , that is, the cardinality

of the set {ne(p) | p ∈ P}. See an example of this concept in Figure 2.1c. While not

immediately obvious, we are able to (see Section 4.4) that every nearest-enemy point

of P is a also border point of P . Therefore, the set of nearest-enemy points is a subset

of those points defining the class boundaries, and can then be used to characterize

its complexity.

1This concept was first introduced by Dasarathy [32] in 1995 under the name of nearest unlike

neighbors (or NUN), and was later renamed by Wilson & Martinez [33] in 1997 as nearest-enemies.
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2.2 Boundary Preservation

In this section, we review known algorithms for finding the set of border points

of the training set P , also referred to as boundary preservation algorithms. Note that

for each of these algorithms, P is assumed to lie in d-dimensional Euclidean space

(i.e., P ⊂ Rd), and the distance function is assumed to be the ℓ2 metric.

2.2.1 Clarkson’s algorithm

In 1994, Clarkson [7] proposed the first algorithm to compute the set of border

points of a training set P in Rd. His algorithm runs in O(min (n3, kn2 log n)) time, by

leveraging linear programming formulations along with output-sensitive techniques

to compute extreme points.

Starting with an empty selection, the algorithm incrementally adds newly found

border points to its current selection. To achieve this, it performs a “non-borderness”

test on every point p of the training set. This test can only decide with certainty if

p is not a border point, but not otherwise. However, if the test’s result is uncertain,

Clarkson proposes a method to find some other point p̂ ∈ P that is certainly a border

point. Further details on this algorithm are left for the interested reader, and can be

found in Section 5 of Clarkson’s paper.

2.2.2 Eppstein’s algorithm

In early 2022, Eppstein [8] proposed a new algorithm to find the set of border

points of a given training set P in Rd that runs in O(n2 + nk2) worst-case time.
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The algorithm’s simplicity is striking, specially when considering the small progress

achieved for this problem in the last three decades. Intuitively, the algorithm works

somewhat as an implicit graph traversal, where the border points of P are nodes in

this graph, connected by certain implicit edges. Formally, the algorithm begins by

selecting some initial set of border points of P , one point from every class region.

From here, it uses a series of subroutines (which we group together and denote as the

“inversion method”) to find the remaining border points of P . To better understand

this algorithm, we study its two phases: the initialization and search phases.

The initialization phase consists of finding a subset of points of P , such that

all these must be border points, and there is at least one point for every class region

of P . Eppstein’s approach to find these points is to compute the Minimum Spanning

Tree (MST) of P , identify the bichromatic edges of this MST, and then select the

endpoints of all such edges. Evidently, this phase takes a total of O(n2) time.

The search phase completes the algorithm, and consists of finding all the

remaining border point of the training set. This phase iterates over all the currently

selected points, and for each of these points p, it performs the inversion method on p,

identifying a subset of border points that are “visible” by p. These are then selected

by the algorithm, and the search continues. Basically, the inversion method unveils

the edges of some implicit graph that are incident on p, allowing the algorithm to

fully traverse this implicit graph. Once the inversion method has been applied on

every selected point, the algorithm terminates with the guarantee of having selected

all the border points of P . Each call of the inversion method takes O(nk) time,

making the total runtime of this phase being O(nk2).
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It is important to note that Eppstein’s algorithm works under the assumption

that this implicit graph can have multiple connected components. Therefore, the

initialization phase looks to select at least one point on every connected component,

to guarantee that all the border points will eventually be discovered by the algorithm.

In Chapter 3, we further improve Eppstein’s algorithm by showing that in fact, this

implicit graph has a single connected component. Hence, rendering the initialization

phase unnecessary, and reducing the total runtime to O(nk2).

2.2.3 Bremner et al.’s algorithm

This is a special case algorithm intended only for the planar case; i.e., then the

training set lies in R2. It was proposed by Bremner et al. [6] in 2003, as the result of

a research workshop, and has a runtime of O(n log k).

Their algorithm consists of two levels. First, the higher level algorithm, which

consists of repeatedly guessing the value of k, and running a lower level algorithm

under this assumption. This lower level algorithm works as follows: given some value

m, if m ≥ k it finds the set of all border points of P , and otherwise it fails. Moreover,

it does this within O((m2 + n) logm) time. Therefore, by repeatedly using values of

m = 22
i
, with i = 0, 1, 2, . . . , ⌈log log k⌉), and stopping when m ≥ k or m ≥

√
n, the

total runtime of the higher level algorithm equals O(n log k).

Interestingly, the lower level algorithm works in a similar way to Eppstein’s

algorithm. First, it finds an initial bichromatic edge of the Delaunay triangulation

of P (i.e., identifying two border points), and then follows iteratively by applying a
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series of “pivot operations” on the border points found so far, to unveil new border

points of P . If at some point, the algorithm finds more than m border points, it fails

as the assumption that m ≥ k is false. Otherwise, the algorithm terminates with the

guarantee of having found all the border points of P .

The remaining details of this algorithm are left to the reader, and can be found

in the original paper [6]. However, we describe the pivot operation in higher detail, as

it would be leveraged throughout this book as a useful tool in some of our algorithms

and analyses. Basically, any pivot operation receives three parameters: a point p,

a vector v⃗, and a set of points S ⊂ Rd. Intuitively, the pivot operation grows an

empty ball with p on its surface and its center on the direction of v⃗, until the ball

hits a point of p̂ ∈ S. Then, the operation returns point p̂. Despite its simplicity,

this operation is a useful tool to find border points, as seen in the remaining of this

book.

2.3 Nearest-Neighbor Condensation

Essentially, the problem of nearest-neighbor condensation consists of selecting

some subset of the original training set P , subject to the classification accuracy of

the nearest-neighbor rule not being “greatly reduced” when replacing the original

training set by this subset of points. One way of achieving this would be to simply

select the set of border points of P via a boundary preserving algorithm. However,

this approach is too strict, which has lead to the introduction of more relaxed criteria

for the purpose of condensation.

16



In this section, we explore the main criteria used for condensation, hardness

results, as well as the most relevant algorithms proposed for this problem.

2.3.1 Criteria

The central definition to understand the problem of condensation is that of

consistent subsets, proposed by Hart [9] in 1968. We say a subset R ⊆ P is consistent

if and only if for every point p ∈ P its nearest-neighbor in R is of the same class as

p. Intuitively, this means that any subset R is consistent if and only if all points of

P are correctly classified using the nearest-neighbor rule “trained” on R. That is,

with a nearest-neighbor rule that answers queries by searching among the points in

R, instead of searching among the points of the original training set P .

Another criterion frequently used for condensation is known as selectiveness,

and was proposed by Ritter et al. [34] in 1975. A subset R ⊆ P is said to be selective

if and only if for all points p ∈ P its nearest-neighbor in R is closer to p than its

nearest-enemy in P . Clearly selectiveness implies consistency, as the nearest-enemy

distance in R of any point of P would at least be its nearest-enemy distance in P . In

fact, selective subsets were introduced as a stricter version of consistency, hoping this

would allow the existence of polynomial-time algorithms to find minimum cardinality

selective subsets. As we will see in the following subsections, this would later be

discovered to be impossible unless P=NP.

Recall that none of these two criteria, namely consistency and selectiveness,

imply that every query point in X would be correctly classified after condensation.
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Instead, they simply guarantee the correct classification of the points in P . The only

techniques that guarantee correct classification of every query point are boundary

preservation algorithms, as explored in Section 2.2. It is easy to see that any subset

that preserves the class boundaries of P (i.e., the set of border points of P ) must be

selective, and that any selective subset of P must also be consistent. Therefore, any

algorithm that finds subsets of P holding any of these properties is considered to be

a condensation algorithm.

2.3.2 Hardness Results

Clearly the stricter notion of condensation, involving the full preservation of the

class boundaries of P , can be achieved in polynomial-time as described in Section 2.2.

The relaxation to the consistent and selective criteria imply that subsets holding

these properties can be computed even faster. These subsets always exist, as P itself

is both consistent and selective. Evidently, the more interesting research question

deals with finding ideally small subsets of P under these two condensation criteria.

Therefore, understanding the complexity of finding such subsets while minimiz-

ing their sizes becomes of major relevance. It took close to 30 years since consistency

was originally defined in 1968 for the first hardness results to appear, and it took

another 30 years to close some of the remaining gaps into understanding the hardness

of approximation for these problems.

DenoteMin-CS andMin-SS to be the problems of finding minimum cardinality

consistent and selective subsets of P , respectively, we know that these two problems
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are NP-hard to solve, and their decision versions are NP-complete [10–12]. Originally,

Wilfong [10] proved this complexity for when P lies in Euclidean space, and restricting

the result for Min-CS on training sets with at least 3 classes. These results were

later generalized by Zukhba [11] and Khodamoradi et al. [12] for the cases when P

has at least two classes, and also when it lies in some general metric space (X , d).

Hardness of approximation results have also been proposed for this problem.

The first result dates back to 2000, when Nock & Sebban [35] found that unless NP ⊆

DTIME(nlog logn), the Min-SS problem is NP-hard to approximate in polynomial-

time within a factor of (1− o(1)) lnn. Later in 2014, Gottlieb et al. [36] found that

the Min-CS problem is NP-hard to approximate in polynomial-time within a factor

of 2(ddim(X ) log 1/γ)1−o(1)

, where ddim(X ) is defined as the doubling dimension of the

space X , and γ is the margin or minimum nearest-enemy distance of P .

More recently, Chitnis [37] presented the first results on the parameterized

complexity of the decision version of Min-CS. This version of the problem decides

whether there exists a consistent subset of P of size ≤ m, assuming P ⊂ Zd and ℓp

being the distance metric. Then, Chitnis proves two main results. First, that this

problem is W[1]-hard parameterized by m+d, meaning that unless FPT=W[1], there

is no f(m, d) ·nO(1) time algorithm for any computable function f . Additionally, that

under the Exponential Time Hypothesis (ETH) there is no d ≥ 2 and computable

function f such that this problem can be solved in f(m, d) · no(m1−1/d) time.
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2.3.3 Algorithms

Due to the importance of this problem, numerous algorithmic approaches have

been proposed to compute such subsets. These include some optimal algorithms,

as well as some case-specific, and approximation algorithms. However, due to the

complexity of computing even close to optimal solutions for the condensation problem,

most research has focused on proposing practical heuristics to find either consistent

or selective subsets of P . For comprehensive surveys on these heuristics, see [13–15].

Here we review some of the most relevant algorithms proposed for this problem,

in chronological order. In 1968, along with the definition of consistency, Hart [9]

proposed the CNN (Condensed Nearest-Neighbor) algorithm to compute consistent

subsets of P . Even though it has been widely used in the literature, CNN suffers

from several drawbacks: its running time is cubic in the worst-case, and the resulting

subset is order-dependent, meaning that the points selected are determined by the

order in which they are considered by the algorithm. Additionally, CNN tends to

select points far from the class boundaries, which is usually undesirable as these

points are unlikely to contribute to such boundaries. To combat this, Gates [38]

proposed the RNN (Reduced Nearest-Neighbor) algorithm in 1972, which consists

of first running CNN and then proceed with a postprocessing technique to further

reduce the subset. While this resolves the issue of selecting points far from the class

boundaries, this approach still runs in worst-case cubic time and is order-dependent.

Also in 1975, Ritter et al. [34] proposed the SNN (Selective Nearest-Neighbor)

algorithm, along with the definition of selective subsets. The authors hoped it would

20



be possible to compute minimum cardinality selective subsets in polynomial time,

and propose this algorithm to find them. Unsurprisingly, it was later proved that its

runtime is worst-case exponential [10], even though Wilson & Martinez [33] claimed

that the algorithm’s average runtime is quadratic.

The new century saw a big leap in heuristic approaches for condensation. In

particular, two algorithms stand out: MSS (Modified Selective Subset) proposed by

Barandela et al. [17] in 2005, and FCNN (Fast CNN) proposed by Angiulli [16] in

2007. Both algorithms compute consistent and selective subsets, respectively. But

more importantly, both algorithms run in quadratic worst-case time, and are order-

independent. These characteristics, together with their ease of implementation, and

specially, their exceptional performance in practice, have established these algorithms

as state-of-the-art for condensation.

In 2014, Gottlieb et al. [36] proposed an approximation algorithm called NET,

along with the almost matching hardness lower-bounds described in Section 2.3.2.

The algorithm is fairly simple, consisting on just computing a γ-net of P where γ is

P ’s margin. This clearly results in a consistent subset, which can be proven to be a

tight approximation of the Min-CS problem. However, in practice, γ tends to be

small in real training sets, thus making the subsets selected by the NET algorithm

of much higher cardinality than those selected by state-of-the-art heuristics.

Recently, in 2019 Biniaz et al. [39] proposed a subexponential-time algorithm

for finding minimum cardinality consistent subsets of point sets P ⊂ R2 in the

Euclidean plane, along with other case-specific algorithms for special instances of the

problem in R2. Their main algorithm runs in nO(
√
m) where m is the size of minimum
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cardinality consistent of P , which after the hardness results presented by Chitnis [37]

in 2022, it has been proven to be asymptotically tight for the planar case.

It is important to note that, while the heuristics described in this section (i.e.,

CNN, RNN, FCNN, and MSS) have been extensively studied experimentally [18],

theoretical results are scarce. Before our work described in Chapter 4, little was

known about any theoretical guarantees on the size of their selected subsets. There

was a clear gap between practical heuristics without any theoretical guarantee, and

approximation algorithms with poor performance in practice.

2.4 Nearest-Neighbor Search

Given a set P ⊆ X of n points in a metric space (X , d) and a query point q ∈ X ,

the goal of the nearest-neighbor search problem is to compute q’s closest point in P

according to the distance function d. The most common assumption for this problem

is that P is given initially to be preprocessed into a data structure, while query points

are later received as a stream to be answered using the prepocessed data structure.

In this section, we discuss different techniques to compute nearest-neighbors,

either exactly or approximately. Additionally, we consider the related problem of

chromatic nearest-neighbor search, which assuming that P is a training set (i.e., that

each point in P is labeled), its goal is to compute the class of each query point’s

nearest-neighbor, and not necessarily its nearest-neighbor itself.
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2.4.1 Exact Search

There are two main approaches to compute nearest-neighbors exactly. The

first, via exhaustive search over the entire point set P , which evidently implies linear

query times and storage. Otherwise, the approaches usually apply point location

algorithms over space partitioning data structures. For the low dimensional case

of d ≤ 2, it is possible to obtain O(log n) query times and linear storage. Sadly,

when the dimension is d > 2, the “curse of dimensionality” starts to kick in, and

the overhead between query times and storage requirements grows increasingly

fast. On either extreme, this means that we have solutions with logarithmic query

time but roughly O(nd/2) storage [40], or solutions with linear storage but barely

sublinear query times [41]. Therefore, the applicability of exact nearest-neighbor

search becomes severely limited for high-dimensional data.

2.4.2 Approximate Search

In practice, nearest-neighbors are often computed approximately rather than

exactly, as this relaxation allows for further improvements on query time and storage

requirements. Formally, given an approximation parameter ε ∈ [0, 1], the problem of

ε-approximate nearest-neighbor searching (or ε-ANN) deals with computing a point

p ∈ P whose distance from the query point q is within a factor of 1+ ε of q’s distance

to its nearest-neighbor in P . We say that any such point p is a valid ε-approximate

nearest-neighbor of q, and can be retrived as a valid answer to q’s query.

This problem has been studied extensively, both theoretically [19–22, 42, 43]
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and from a practical standpoint [44,45]. When the number of dimensions is low, most

techniques involve some sort of space partitioning; e.g., kd-Trees [46], Quadtrees [47–

49], and Approximate Voronoi Diagrams [19,20,43]. Otherwise, alternatives for high-

dimensional data include hashing techniques like Locality-Sensitive Hashing [21,50],

and proximity graph techniques like Hierarchical Navigable Small Worlds graphs [22].

However, throughout this dissertation we focus on low-dimensional data approaches,

as many of our results have exponential dependency on the number of dimensions.

2.4.3 Chromatic Search

Evidently, given some query point q, to classify q with the nearest-neighbor

rule involves retrieving the class of q’s nearest-neighbor in the training set. Note that

this is slightly different from retrieving the nearest-neighbor itself. Potentially, this

difference opens the possibility of improvements over the standard search problem. In

the context of computational geometry, this is sometimes referred to as the problem

of chromatic nearest-neighbor search, where classes are intuitively described as colors.

Evidently, to answer exact chromatic queries there is one clear approach: to

compute the set of border points of the training set, and use any of the techniques

described in Section 2.4.1 to answer exact search queries over this subset. Despite

having increased preprocessing times, this approach would lead to query times and

storage requirements dependent on k instead of n. However, it is unclear if it is

possible to achieve similar results without having to recur to boundary preservation

algorithms and the reduction to the standard search problem.
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However, this is indeed possible in the approximate setting. Some work has

been done along these lines by Mount et al. [51], showing that when query points

are far from the class boundaries and surrounded by points of the same class, query

times can be significantly reduced. However, these query times are still dependent on

n. Moreover, the data structure itself dates back to 2000, and is based on standard

search techniques of the time. Evidently, many improvements have been achieved in

the last two decades on approximate nearest-neighbor searching, making this data

structure clearly outdated.

In Chapter 6, we propose new data structure for this problem called Chromatic

AVD, thought as a simplification of state-of-the-art AVDs [20] from 2017. This new

approach has query times and storage dependencies on a parameter kε that describes

the complexity of the approximate class boundaries (similarly to how k describes

the complexity of the exact class boundaries).
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Chapter 3: Boundary Preserving Algorithms

3.1 Introduction

As previously discussed, a common approach to reduce the dependency on n of

the nearest-neighbor rule is to reduce the training set itself. However, most training

set reduction techniques offer limited guarantees on the effect that this reduction

makes on the accuracy of the classifier. Only a handful of works [6–8] have proposed

algorithms that guarantee the same classification of every query point, before and

after the reduction took place. These are called boundary preserving algorithms, and

are the focus of this chapter. The results presented on this chapter can also be found

here [52].

While other problems in the realm of training set reduction are NP-hard [10–12]

to solve exactly (e.g., those of finding minimum cardinality consistent subsets and

selective subsets), the problem of preserving the class boundaries of the nearest-

neighbor rule is tractable. As discussed in Sections 2.1 and 2.2, this problem is

equivalent to that of finding the set of border points of P .

The set of border points of the training set P are those that define the boundaries

between points of different classes, and whose omission from the training set would

imply the misclassification of some query points in Rd. Formally, as seen in Section 2.1,
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(a) Original training set P (b) Border points of P

Figure 3.1: On the left, a training set P ∈ R2 with points of three classes: red, blue

and yellow. On the right, a subset of these points corresponding to the set of border

points of P . The solid black lines highlight the boundaries of P between points of

different classes. By definition, the class boundaries remain the same in both cases.

two points p, p̂ ∈ P are border points of P if they belong to different classes, and

there exist some point q ∈ Rd such that q is equidistant to both p and p̂, and no

other point of P is closer to q than these two points (i.e., the empty ball property of

Voronoi Diagrams). See Figure 3.1 for an example of a training set P in R2 and its

set of border points. Throughout, we let k denote the total number of border points

in the training set. By definition, if instead of applying the nearest-neighbor rule

with the entire training set P we use the set of border points of P , its dependency is

reduced from n to k, while still obtaining the same classification for any query point

in Rd. This becomes particularly relevant for applications where k ≪ n.

For training sets P ⊂ R2 in 2-dimensional Euclidean space, Bremner et al. [6]
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proposed an output-sensitive algorithm for finding the set of border points of P in

O(n log k) worst-case time. However, how to generalize this algorithm for higher

dimensions remained unclear. Until very recently, the best result for the higher

dimensional case was that of Clarkson [7]. He proposed an algorithm to find the

set of border points of P ⊂ Rd, with bounded d, that runs in O(min (n3, kn2 log n))

worst-case time. For almost three decades, this remained the best result for training

sets in Rd. Recently, Eppstein [8] proposed a significantly faster algorithm for the

d-dimensional Euclidean case, which runs in O(n2 + nk2) worst-case time.

In this chapter, we propose an improvement over Eppstein’s algorithm [8] to

compute the set of border points of any training set P ⊂ Rd, where dimension

d is assumed to be constant. While the original algorithm computes such set in

O(n2 + nk2) time, where k is the number of border points of P , our new algorithm

computes the same set in O(nk2) time.

3.2 Eppstein’s algorithm

This algorithm is strikingly simple, yet full of interesting ideas (see a formal

description in Algorithm 1), and it works as follows: it begins by selecting an initial

set of border points of P , one point from every class region. From here, the algorithm

uses a series of subroutines which we will group together and denote as the “inversion

method”, to find the remaining border points of P . Thus, the algorithm can be

naturally split into two phases: the initialization of R with some border points, and

the search process for the remaining border points of P .
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Algorithm 1: Eppstein’s algorithm [8] to find the set of border points of P .

Input: Initial training set P

Output: The set of border points of P

1 Let M be the MST of P

2 Initialize R with the end points of every bichromatic edge of M

3 foreach p ∈ R do

4 Let c be p’s class and Pc be the points of P that belong to class c

5 Let Sp be the inverted points of P \ Pc around p

6 Find all extreme points of Sp and their corresponding original points Ep

7 R← R ∪ Ep

8 return R

3.2.1 The Initialization Phase

The initialization phase (lines 1–2 of Algorithm 1) involves finding a subset of

border points such that at least one point for every class region is selected. Eppstein

observes that this can be achieved by computing the Minimum Spanning Tree (MST)

of P , identifying the edges of the MST that connect points of different classes

(denoted as bichromatic edges), and selecting the endpoints of all such edges. This

phase takes O(n2) time, but we will prove that it is not necessary.

3.2.2 The Search Phase

The search phase (lines 3–6 of Algorithm 1) is in charge of finding every

remaining border point of P . This phase iterates over all selected points, and for

each such point p, it performs what we call the inversion method. This method

identifies a subset of border points of P , which are added to R. Once the algorithm
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has done the inversion method on every point of R, it terminates with the guarantee

of having selected every border point of P .

3.2.3 The Inversion Method

Given any point p ∈ P , the inversion method on p is described in lines 4–6 of

Algorithm 1. Let c be p’s class, and Pc be the points of P that belong to class c, the

inversion method on p consists of: (i) inverting all points of P \ Pc around a ball

centered at p (call the set of these inverted points as Sp and include p itself in the

set), (ii) computing the set of extreme points of Sp, and finally (iii) returning the set

Ep of those points of P that correspond to the extreme points of Sp before inversion.

For a detailed description and proof of correctness of this method, we refer the reader

to Eppstein’s paper [8]. However, for the purposes of this chapter we only need a

property presented in Lemma 3 of [8]: the points in Ep reported by the inversion

method are the Delaunay neighbors of p with respect to the set (P \ Pc) ∪ {p}.

Every call of the inversion method takes O(nk) time by leveraging well-known

output-sensitive algorithms for computing extreme points. Given that this method

is called exclusively on every border point of the training set, this yields a total of

O(nk2) time to complete the search phase of the algorithm. Overall, this implies that

Eppstein’s algorithm computes the entire set of border points of P in O(n2 + nk2)

worst-case time.
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3.3 A Simpler Initialization

We propose a simple modification to Eppstein’s algorithm, which avoids the

step of computing the MST of the training set P , along with the subsequent selection

of bichromatic edges to produce the initial subset of border points.

Instead, we simply start the search process with any arbitrary point of P . The

rest of the algorithm remains virtually unchanged (see Algorithm 2 for a formal

description). We show that this new approach is not only correct, meaning that

it only finds border points of P , but also complete, as all border points of P are

eventually found by our algorithm. Additionally, by avoiding the main bottleneck of

the original algorithm, our new algorithm computes the same result in O(nk2) time,

eliminating the O(n2) term.

Algorithm 2: New algorithm to find the set of border points of P .

Input: Initial training set P

Output: The set of border points of P

1 Let s be any “seed” point from P

2 R← ϕ

3 foreach p ∈ R ∪ {s} do

4 Let c be p’s class and Pc be the points of P that belong to class c

5 Let Sp be the inverted points of P \ Pc around p

6 Find all extreme points of Sp and their corresponding original points Ep

7 R← R ∪ Ep

8 return R

Before proceeding, it is useful to explore why Eppstein’s algorithm computes

the MST of the training set P . First, note that the original algorithm only applies
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the inversion method on border points of P . In fact, Eppstein’s correctness proof

relies on it: Lemma 6 in [8] proves that all points in Ep are border points by assuming

that point p is also a border point. From the description of our algorithm, note that

we initially apply the inversion method on a “seed” point s, which might not be a

border point. Therefore, we need to generalize Lemma 6 in [8] for the case where p is

not a border point of P . Additionally, using the points from all bichromatic pairs of

the MST of P guarantees that Eppstein’s algorithm starts the search phase with at

least one point from every boundary of P . Eppstein’s completeness proof shows that

the search phase can then “move along” any given boundary and eventually select

all its defining points. We show that the search process is far more powerful, and

can even “jump” between nearby boundaries, thus rendering the MST computation

unnecessary.

The following description outlines the necessary steps to prove both the correct-

ness and completeness of our new algorithm, which are unfolded in the rest of this

section. (i) By applying the inversion method to any point of P , not necessarily a

border point, we must prove that all reported points are border points of P . This is

established in Lemma 3.1, generalizing the statement of Lemma 6 of [8] for non-border

points. (ii) For any class boundary of P , once the algorithm selects a point from

this boundary, we must prove that it will eventually select every other point defining

the same boundary. This is originally proved in Lemma 10 [8], however, we provide

simpler proofs in Lemmas 3.2 and 3.3. (iii) Given two disconnected boundaries

separated by a class region, we must prove that if our algorithm selects a defining

point from one of the boundaries, it will eventually select all defining points from
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both boundaries. This is established in Lemma 3.4.

All together, these lemmas are used to prove the main result: the correct-

ness, completeness, and worst-case time complexity of Algorithm 2, as stated in

Theorems 3.5 and 3.6.

(a) Training set P (b) Points from (P \Pc)∩{p} (c) q and p̂ are border points

Figure 3.2: Example showing the inversion method from any point p ∈ P . On the

left, training set P . The middle figure shows every non red point of P , except for p

itself, along with a point q selected from the inversion method on p. On the right,

we see evidence that q is a border point of P .

3.3.1 Correctness Proof

Lemma 3.1. Let p ∈ P be any point of the training set. Then every point selected

using the inversion method on p must be a border point of P .

Proof. Let Ep be the points of P corresponding (before inversion) to the extreme

points of Sp. According to Lemma 3 [8], every point in Ep is a neighbor of point

p with respect to the Voronoi Diagram of set (P \ Pc) ∪ {p}. This implies that for
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every point q ∈ Ep other than p, there exists a ball such that both p and q are on its

surface and no points of P \ Pc lie inside (see Figures 3.2a and 3.2b). We can now

leverage similar techniques to the ones described in [6], to find a “witness” point to

the hypothesis that q must be a border point of P .

Recall that the empty ball we just described, as illustrated in Figure 3.2b, is

empty from points of P \ Pc. However, there might be points of Pc inside. And

moreover, we know that at least one point of Pc, point p, lies on its surface. Now,

let r be the center of this ball, we grow an empty ball, this time with respect to

the entire training set P , such that its center lies on the line qr and point q is on

its surface (see Figure 3.2c). This ball will grow until it hits another point p̂ of P ,

which we are guaranteed it will be of the same class as point p, and thus, of different

class as point q. Finally, we have just found an empty ball with respect to P , which

has points q and p̂ on its surface, and were the class of both points differ. Therefore,

this implies that q is a border point of P .

3.3.2 Completeness Proof

Before continuing, we need to formally define a few concepts. First, we define

a wall of P as any (d− 1)-dimensional face of the Voronoi Diagram of P . By known

properties of these structures, every wall w is defined by two distinct points p, q ∈ P

such that any point on w has p and q as its two equidistant nearest-neighbors in the

training set. We say two walls are adjacent if their intersection is not empty. That

is, if there exists a point in Rd with all the defining points of these two walls as its
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(a) (b)

Figure 3.3: By definition, any two adjacent walls w1 and w2 of the Voronoi Diagram

of P hold the empty ball property with the points that define them. When these

walls are part of the class boundaries of P , the points that define them belong to at

least two classes.

equidistant nearest-neighbors in P .

Additionally, we define a class boundary (or just boundary) of P as the union

of adjacent walls, where each of these walls is defined by two points of different

classes. Similarly, we define a class region of P as the union of adjacent Voronoi cells

whose defining points belong to the same class. Based on these definitions, note that

class boundaries are the ones that separate different class regions of P . Figure 3.4

illustrates a training set in R2 with points of three classes, whose Voronoi Diagram

describes five class regions and two class boundaries.

Lemma 3.2. Let w1 and w2 be two adjacent walls in a class boundary of P . If the

algorithm selects one of the points defining one of these walls, it eventually selects

the remaining points defining both walls.
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Proof. LetW be the set of points defining both walls w1 and w2 (see Figure 3.3). By

definition, these two walls of the Voronoi Diagram of P are adjacent if there exists

an empty ball with all the points of W on its surface. Knowing these two walls are

part of the class boundaries of P , the set W must contain at least three points, and

at least two classes.

Let p1 be the first point of W to be selected by the algorithm. When doing the

inversion method on point p1, the algorithm will select all points of W of different

class than p1, of which we know there is at least one. Let p2 be one such point.

Finally, when doing the inversion method on point p2, the algorithm will select

the remaining points of W of the same class as p1. Therefore, all points of W will

eventually be selected by the algorithm.

Lemma 3.3. Let A be a class boundary of P , and assume that the algorithm selects

one of the defining points of A. Then, the algorithm will eventually select all defining

points of A.

This comes as a direct consequence of Lemma 3.2 and the definition of a class

boundary of the training set P . It remains to show what happens with boundaries

that are disconnected.

Lemma 3.4. Let A and B be two disconnected boundaries of P , such that there exists

a path in space from A to B that is completely contained within one color region.

Without loss of generality, say that every point that defines A has been selected by the

algorithm. Then, every point that defines B must also be selected by the algorithm.
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Figure 3.4: A training set with five class regions (one blue, two red, and two yellow

regions), along with two disconnected class boundaries that separate all these regions.

On the left, a boundary separating the blue region and the leftmost yellow and

red regions. On the right, a boundary that separates the same blue region and the

remaining red and yellow regions.

Proof. Given these two disconnected boundaries A and B, we assume there exists

some path P in Rd going from a wall of A to a wall of B, such that this path

passes exclusively through a single class region (see Figure 3.5a). Without loss of

generality, say this is a red class region. Formally, for every point r along P we

know r’s nearest-neighbor in P is red. Additionally, we assume that every border

point defining A is selected by the algorithm. Hence, the proof consists of showing

that there exists a sequence of border points ⟨p1, p̂1, p2, p̂2, . . . , pm, p̂m⟩ such that

(i) p1 and p̂m are defining points of A and B, respectively, (ii) p̂i is retrieved by the

inversion method on pi, for every i ∈ [1,m], and finally (iii) points pi and p̂i−1 are

both defining the same boundary, for every i ∈ [2,m]. See Figure 3.5 for a visual

description.
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(a) (b) (c)

Figure 3.5: On the right, two disconnected boundaries A and B enclosing a red

class region. Thus, there is a path P completely contained inside such region and

connecting both boundaries. Other boundaries can also be enclosing the same region

and be near path P. On the left, we proof that there exists a sequence of points

that can be retrieved by calls to the inversion method, such that if points of A are

selected by the algorithm, eventually points of B will also be selected.

By definition, for every point r along path P we know r’s nearest-neighbor is a

red point. Now, let’s delete every red point from consideration, including the ones

defining boundaries A and B (see Figure 3.5b). This immediately implies that r’s

nearest-neighbor just became a non-red border point of P . The fact that r’s new

nearest-neighbor is a border point is easy to proof, using similar arguments as the

ones laid down in Lemma 3.1. Additionally, these border points could be defining

other boundaries apart from A and B, as seen in Figure 3.5b.

Let’s start moving along the path P , starting from the end-point of the path
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that lies on a wall of boundary A. Then, find all ri points along the path, where each

ri has two equidistant nearest-neighbors among the remaining non-red points, and

both points define two distinct boundaries of P . We say there are m of these points

along the path, and denote ri’s two equidistant nearest-neighbors as qi,1 and qi,2 for

i ∈ [1,m]. Clearly, qi,1 and qi−1,2 are border points defining the same boundary, for

all i ∈ [2,m]. See Figure 3.5b, where the three black points along the path are the ri

points, and the yellow and blue points on the surface of the balls centered at each ri

are the corresponding qi,1 and qi,2 points.

For now, let’s fix the analysis on one such ri point, and consider the ball

centered at ri with both qi,1 and qi,2 on its surface. There must exist some other

point qi,3 lying inside of ri’s ball, such that qi,3 is one of the deleted red points

defining the same boundary as qi,1. It is now easy to see that there exist an empty

ball, with respect to the set P \ Pred ∪ {qi,3}, with both qi,3 and qi,2 on its boundary.

This implies that qi,2 is retrieved by the inversion method on qi,3. Therefore, let’s

add pi ← qi,3 and p̂i ← qi,2 to the sequence of points that we are looking for. Repeat

this for every ri with i ∈ [1,m] to identify all points in the sequence.

Finally, we have the sequence of border points ⟨p1, p̂1, p2, p̂2, . . . , pm, p̂m⟩ such

that for any i ∈ [1,m] assuming that the algorithm selects the points defining the

same boundary as pi, it will also select p̂i, and leveraging Lemma 3.3 it will eventually

select all other points defining the same boundary as p̂i. Given that p1 and p̂m are

defining border points of boundaries A and B, respectively, and by the assumption

that all points defining A are selected by the algorithm, we know that eventually, all

points defining B will be selected too.
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Theorem 3.5. The algorithm selects every border point of P in O(nk2) time.

Proof. Proving the worst-case time complexity of our algorithm follows directly from

the time complexity of the search phase of Eppstein’s algorithm [8]. However, the

correctness and completeness of our algorithm follows from Lemmas 3.1 to 3.4.

First, we know by Lemmas 3.1-3.3 that Algorithm 2 will select the defining

border points of at least one class boundary of P . Denote this boundary as A and

consider any other boundary B of P . Evidently, we can draw a path P from A to

B, which would generally pass through several class regions. Then, let’s split P

into several subpaths P1,P2, . . . ,Pm such that each subpath is completely contained

within a single class region. From this, we can directly apply Lemma 3.4 on each of

the intermediate boundaries that “cut” P into these subpaths. Finally, this implies

that our algorithm will eventually select every defining point of boundary B, and

similarly, it will do the same with all other boundaries of P .

Theorem 3.6. Leveraging Chan’s algorithm [53] for finding extreme points, the

algorithm selects every border point of P in randomized expected time O(nk log k)

for d = 3, and in

O
(
k(nk)1−

1
⌊d/2⌋+1 (log n)O(1)

)
time for all constant dimensions d > 3.

Just as with Eppstein’s original algorithm, we can use Chan’s randomized

algorithm [53] for finding extreme points of point sets in Rd in order to reduce the

expected time complexity of our improved algorithm. The remaining of the proof is

the same as for Theorem 3.5.
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Chapter 4: Condensation Algorithms

4.1 Introduction

As previously discussed, preserving the class boundaries of a given training

set P is a desirable objective towards the goal of more efficient nearest-neighbor

classification. However, the high complexity of computing the entire set of border

points of P has motivated the study of alternative approaches for training set

reduction, which include the problems of computing either consistent or selective

subsets of P . Thus, even though computing minimum cardinality subsets that are

either consistent or selective is known to be NP-hard [10–12], computing non-minimal

subsets holding these properties can be done efficiently. Algorithms that compute

such subsets are frequently referred to as nearest-neighbor condensation heuristics,

as they “heuristically” select points that are close to the class boundaries induced

by P . Therefore, such selected subsets induce new class boundaries that resemble

the original boundaries, albeit not exactly the same.

However, one significant shortcoming in research on practical nearest-neighbor

condensation algorithms is the lack of theoretical results on the sizes of their selected

subsets, where typically, their performance has been established experimentally. This

chapter presents the first theoretical guarantees on the performance of both new and
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existing condensation algorithms. These results have been published in [54–56].

The bounds presented in this chapter are established with respect to the size

of two well-known and structured subsets of points: (i) the set of all nearest-enemy

points of P of size κ, and (ii) the set of border points of P of size k. Additionally,

some bounds depend on the minimum nearest-enemy distance of P denoted as γ.

Algorithm Subset size

CNN O (κ log 1/γ)

FCNN Unbounded w.r.t. k and κ

SFCNN • O (κ log 1/γ)

NET O (κ log 1/γ)

MSS Unbounded w.r.t. k and κ

RSS • O (κ)

VSS • ≤ k

Table 4.1: Contributions on the worst-case analysis on the sizes of subsets selected

by different condensation algorithms. Those marked with • are new algorithms.

4.2 Lower Bounds

If we hope to leverage both k and κ to analyze the worst-case performance of

different nearest-neighbor condensation heuristics, we first need to establish realistic

expectations on what upper-bounds can be achieved. Therefore, before analyzing

each of these algorithms individually, we introduce two lower-bounds on the size of

consistent subsets, one in terms of κ and the other in terms of k.
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First, lets recall the definition of consistency. A subset R ⊆ P is said to be

consistent [9] if and only if for every p ∈ P its nearest-neighbor in R is of the same

class as p. Intuitively, R is consistent if and only if all points of P are correctly

classified with the nearest-neighbor rule w.r.t. R.

Theorem 4.1. There exists a training set P ⊂ Rd with κ number of nearest-enemy

points, for which any consistent subset has Ω(κcd−1) points, for some constant c.

Proof. Lets construct a training set P in d-dimensional Euclidean space, which

contains points of two classes: red and blue. Consider the following arrangement of

points: create a red point p, and take every point at distance 1 from p as a blue

point. Simply, point p plus the points on the surface of the unit ball centered at p.

Take any consistent subset of P and consider some point p̂ in this subset, along

with the bisector between p and p̂. The intersection between this bisector and the unit

ball centered at p describes a cap of the ball of height 1/2. Any point located inside

this cap is closer to p̂ than p, and hence, correctly classified. Clearly, by definition of

consistency, all points in the ball must be covered by at least one cap. By a simple

packing argument, we know such a covering needs Ω(cd−1) points, for some constant

c. The training set constructed so far has only two nearest-enemy points; i.e., the

red point p and the one blue point closest to p (assuming general position). Then,

we can repeat this arrangement κ/2 times using sufficiently separated center points.

This gives us a new training set P with κ nearest-enemy points in total, for which

any consistent subset has size Ω(κcd−1).

Theorem 4.2. There exists a training set P ⊂ Rd with k number of border points,
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for which any consistent subset has at least k points.

Basically, Theorem 4.1 shows that the best upper-bound that can proved on

the size of the subsets selected by condensation algorithm, in terms of κ, is O(kcd−1).

Similarly, Theorem 4.2 proves that in terms of k, the best upper-bound is k itself.

Clearly, these results provide a steady floor on which to compare the results presented

in the coming sections of this chapter.

4.3 Consistent Subsets

In this section, we explore several algorithms that compute consistent subsets

of P , and present a formal worst-case analysis on the size of the subsets that these

algorithms select. Namely, we study the CNN, FCNN, and SFCNN algorithms.

4.3.1 CNN

The CNN algorithm (or Condensed Nearest-Neighbor) was the first algorithm

to be proposed for computing consistent subsets [9]. In fact, it was introduced right

along the definition of consistency in Hart’s seminal paper. For more than 30 years,

and until the introduction of the FCNN algorithm, CNN was considered to be the

state-of-the-art among condensation heuristics.

This algorithm is fairly simple (see Algorithm 3 for a formal description).

Beginning with an empty R set, it repeatedly scans all the points of P . For each

point p ∈ P , the algorithm checks if its nearest-neighbor within the current R set is

of the same class as p. That is, the algorithm checks if p would be correctly classified
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Algorithm 3: CNN

Input: Initial training set P

Output: Consistent subset R ⊆ P

1 R← ϕ

2 while true do

3 R′ ← R

4 foreach pi ∈ P , where i = 1 . . . n do

5 Let nn(pi, R) be the nearest-neighbor of pi w.r.t. R

6 if l(pi) ̸= l(nn(pi, R)) then

7 R← R ∪ {pi}

8 Exit the while loop if R = R′

9 return R

using R. If not, p is added to R. Otherwise, the algorithm continues checking the

next point of P being scanned. Note that P can be scanned multiple times, as

adding a point to R can induce the misclassification of a previously checked point.

Evidently, this is a cubic-time algorithm. More specifically, a straightforward

implementation of CNN yields a O(n2m) worst-case time complexity, where m

denotes the size of the selected subset. Another characteristic about this algorithm

is that it is order-dependent, meaning that the resulting subset depends on the order

in which the points of P were scanned by the algorithm. Unsurprisingly, this is an

undesirable property for practitioners.

Theorem 4.3. The CNN algorithm selects O
(
κ log 1

γ

)
points.

Proof. This follows by a charging argument on every nearest-enemy point in P .

Therefore, consider one such point p ∈ {ne(r) | r ∈ P} and some value σ ∈ [γ, 1],
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and define Rp,σ to be the subset of points selected by CNN whose nearest-enemy is

p, and whose distance to p is between σ and 2σ. That is, Rp,σ = {r ∈ R | ne(r) =

p ∧ d(r, p) ∈ [σ, 2σ)}. All these subsets define a partitioning of R when considering

all nearest-enemy points of P , and values of σ = γ 2i for i = {0, 1, 2, . . . , ⌈log 1
γ
⌉}.

Now, lets consider any two points a, b ∈ Rp,σ in these subsets. We want to

prove that d(a, b) ≥ σ. Evidently, if these two points belong to different classes, then

by definition we have that d(a, b) ≥ σ. Thus, lets consider the case when both points

belong to the same class. Lets assume w.l.o.g. that point a was added to R before

point b. Note that when the algorithm selected point b, the following must be true

d(a, b) ≥ dne(b, R), as otherwise point b would have been correctly classified using R.

Moreover, by our partitioning of R, we also know that dne(b, R) ≥ dne(b) ≥ σ.

Thus, we have proved that d(a, b) ≥ σ. By a simple packing argument based

on d-dimensional Euclidean balls, we have that |R′
p,σ| ≤ 5d. Altogether, by counting

over all the Rp,σ sets for every nearest-enemy in the training set and values of σ, the

size of the subset R selected by CNN is upper-bounded by |R| ≤ κ ⌈log 1/γ⌉ 5d+1.

Assuming d to be constant, this completes the proof.

Moreover, this analysis is tight. A simple example showcasing this behavior can

be described as follows: consider a training set P ⊂ R in 1-dimensional Euclidean

space, and let γ ≪ 1 be a small value. Place a single red point in the origin, and

make all the points in the segment [γ, 1] blue points. Now consider running CNN on

this training set, scanning the points starting with the single red point and following

with the blue points in decreasing order on their coordinate (i.e., in decreasing order
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on their distance to the origin, or also, their nearest-enemy distance). It is easy to

see that this would make CNN select O(log 1/γ) points. This arrangement can be

repeated to increase the value of κ, and can also be discretized to make n finite and

independent from k, κ, and γ.

The result of Theorem 4.3 confirms the empirical behavior observed for CNN,

where we see many selected points located far from the boundaries of P (see Fig-

ure 1.1b). Evidently, the many drawbacks of the CNN algorithm (e.g., its empirical

behavior, order-dependence, and cubic worst-case time complexity) has motivated

numerous research on improved approaches towards computing consistent subsets.

4.3.2 FCNN

The FCNN algorithm (or Fast CNN) became the state-of-the-art algorithm

for computing consistent subsets [16] improving over many of CNN’s drawbacks.

When introduced, it represented a big leap forward on practical methods for nearest-

neighbor condensation, being among the first worst-case quadratic time algorithms

for this problem, with an implementation that runs in O(nm) time, where m is the

size of its selected subset. Additionally, its selected subset is order-independent,

which is a highly desirable property among practitioners. More importantly, in

practice, this algorithm significantly outperforms other condensation techniques.

This is an iterative algorithm that incrementally builds a consistent subset R

of P (see Algorithm 4). First, it begins by selecting the set of centroids of each class,

and then continues with an iterative process until the subset becomes consistent.
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Figure 4.1: Example of the voren function for any point p ∈ R. Light-colored points

belong to P \R, and points in voren(p,R, P ) are outlined (defined as the enemies of

p inside its voronoi cell w.r.t. R).

During each iteration, the algorithm identifies all points of P that are misclassified

with the current subset R (i.e., whose nearest-neighbor is of different class), and

adds some of these points to the subset. In particular, for every point p already in

the subset, FCNN selects one representative among all the points not yet selected,

whose nearest-neighbor is p, and that belong to a different class than p. That is, the

representative is selected from the set voren(p,R, P ) which is defined as:

voren(p,R, P ) = {q ∈ P | nn(q, R) = p ∧ l(q) ̸= l(p)}

See Figure 4.1 for an illustrative example. Usually, the representative chosen is

the one closest to p, although different approaches can be used. Finally, during each

iteration, the representative of each point in R is added to the subset (all in a batch

operation). This is repeated until no misclassified points are left; i.e., until no point

of R has a representative to choose.
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Algorithm 4: FCNN

Input: Initial training set P

Output: Consistent subset R ⊆ P

1 R← ϕ

2 S ← centroids(P )

3 while S ̸= ϕ do

4 R← R ∪ S

5 S ← ϕ

6 foreach p ∈ R do

7 S ← S ∪ {rep(p, voren(p,R, P ))}

8 return R

Unfortunately, to the best of our knowledge, no upper-bounds for the selection

of FCNN where known before our work. The remaining of this section presents the

first results along this line, showing that the selection size of this algorithm cannot

be upper-bounded in terms of either κ or k, as stated in Theorems 4.4 and 4.5

respectively.

Theorem 4.4. For any 0 < ξ < 1, there exists a training set P ⊂ Rd in Euclidean

space, with constant number of classes, for which FCNN selects Ω(k + 1/ξ) points.

Proof. Consider the arrangement in Figure 4.2b (left), consisting of points of four

classes. The centroids of the blue, yellow, and red classes are the only points

labeled as such. By placing a sufficient number of black points far at the top of

this arrangement, we avoid their centroid to be any of the three black points in the

arrangement. Beginning with the centroids, the first iteration of FCNN would have

added the points outlined in Figure 4.2b (right). Now each of these points have one
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black point inside their Voronoi cells, and therefore, these black points will be the

representatives added in the second iteration. This small example, with k = 5, shows

how to force FCNN to add all the border points plus two non-border points. Out

of these two non-border black points, one is the centroid added in the initial step.

The remaining non-border black point, however, was added by the algorithm during

the iterative process. This scheme can be extended to larger values of k, without

increasing the number of classes.

(a) Entire arrangement of points.

(b) Middle arrangement. (c) Side arrangement.

Figure 4.2: Example of a training set P ⊂ R2 for which FCNN selects more than k

points.

The previous is the first building block of the entire training set, shown in

Figure 4.2a. To this “middle” arrangement, we append “side” arrangements of
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points, as the one illustrated in Figure 4.2c, which will have similar behavior to the

middle arrangement. This particular side arrangement will be appended to the right

of the middle one, such that the distance between the red points is greater than

the distance from the yellow to the red point. Every time we append a new side

arrangement, its blue and red labels are swapped. The arrangements appended to

the left side are simply a horizontal flip of the right arrangement. Now, the behavior

of FCNN in such a setup is illustrated with the arrows in Figure 4.2a. The extreme

point of the previous arrangement adds the yellow point at the center of the current

arrangement, which then adds the red point next to the blue point, as is closer than

the other red point. Next, this red point adds the blue point, and the yellow point

adds the remaining red point. Finally, the Voronoi cells of these points will look as

shown in Figure 4.2c (right), and in the next iteration, the tree black points will be

added.

After adding side arrangements as needed (same number of the left and right),

it is easy to show that the centroids are still the tree points in the middle arrangement

and the black point at the top (by adding a sufficient number of black points in the

top cluster). This implies that FCNN will be forced to select more than k points.

Theorem 4.5. For any 0 < ξ < 1, there exists a training set P ⊂ Rd in Euclidean

space, with constant number of classes, for which FCNN selects Ω(κ/ξ) points.

Proof. Without loss of generality, let ξ = 1/2t for some value t > 3, we construct a

training set P ⊂ R3 with constant number of classes, and number of nearest-enemy

points κ equal to O(1/ξ), for which FCNN is forced to select O(1/ξ2) points. The
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key downside of the algorithm occurs when points are added to the subset in the

same iteration. In general, during any given iteration, the representatives of two

neighboring points in FCNN can be arbitrarily close to each other. This flaw can be

exploited to force the algorithm to add O(1/ξ) such points.

Intuitively, our constructed training set P consists of several layers of points

arranged parallel to the xy-plane, and stacked on top of each other around the z-axis

(see Figure 4.3). Each layer is a disk-like arrangement, formed by a center point and

points at distance 1 from this center. Thus, define the backbone points of P as the

center points ci = 2iv⃗z for i ≥ 0. We now describe the different arrangements of

points as follows (see Figure 4.3):

B = c0 ∪ {yj = c0 + v⃗xRz(jπ/4) | j ∈ [0, . . . , 8)}

Mi = {c2i, c2i+1,mi = (c2i + c2i+1)/2}

∪
{
rij = c2i + v⃗xRz(jπ/2

1+i) | j ∈ [0, . . . , 22+i)
}

∪
{
bij = c2i+1 + v⃗xRz(jπ/2

1+i) | j ∈ [0, . . . , 22+i)
}

∪
{
wij = c2i+1 + v⃗xRz((2j + 1)π/22+i − ξ2) | j ∈ [0, . . . , 22+i)

}
Ri = {c2i, c2i+1}

∪ {rij = c2i + v⃗xRz(j2π/ξ) | j ∈ [0, . . . , ξ)}

∪ {bij = c2i+1 + v⃗xRz(j2π/ξ) | j ∈ [0, . . . , ξ)}

These points belong to one of 11 classes named {1, . . . , 8, red, blue,white}.

Then define the labeling function l as follows: l(ci) is red when i is even and blue

when i is odd, l(mi) is white, l(yj) is the j-th class, l(rij) is red, l(bij) is blue, and
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(a) Entire arrangement.

(b) Base arrangement B.

(c) A multiplier arrangementMi.

(d) A repetitive arrangement Ri.

Figure 4.3: Example of a training set P ⊂ R3 for which FCNN selects Ω(κ/ξ) points.

l(wij) is white.

Base arrangement B: Consists of one single layer of points, with one red center

point c0 and 8 points yj in the circumference of the unit disk (parallel to the xy-plane),

each labeled with a unique class j (see Figure 4.3b). The goal of this arrangement is

that each of these points is the centroid of its corresponding class. The centroids of

the blue and white classes can be fixed to be far enough, so we won’t consider them
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for now. Hence, the first iteration of FCNN will add all the points of B. In the next

iteration, each of these points will select a representative in the arrangement above.

Clearly, the size of B is 9, and it contributes with 8 nearest-enemy points in total.

Multiplier arrangementMi: Our final goal is to have O(1/ξ) arbitrarily close

points selecting representatives on a single iteration; currently, we only have 9 (the

base arrangement). While this could be simply achieved with O(1/ξ) points in B

each with a unique class, we want to use a constant number of classes. Instead, we

use each multiplier arrangement to double the number of representatives selected.

Mi consists of (1) a layer with a blue center c2i and 22+i red points rij around

the unit disk’s circumference, (2) a layer with a red center c2i+1 and 23+i blue bij

and white wij points around the unit disk’s circumference, and (3) a middle white

center point mi between the red and blue center points (see Figure 4.3c). Suppose at

iteration 3i− 1 all the points rij and c2i of the first layer are added as representatives

of the previous arrangement, which is given forM1 from the selection of B. Then,

during iteration 3i each rij adds the point bij right above, while c2i adds point mi

(see the red arrows in Figure 4.3a). Finally, during iteration 3i+ 1, mi adds c2i+1,

and each bij adds point wij as its the closest point inside the voronoi cell of bij (see

the blue arrows in Figure 4.3a). Now, with all the points of this layer added, each

continues to select points in the following arrangement (eitherMi+1 or Ri+1). The

size of eachMi is 3(1 + 22+i) = O(23+i), and contributes with 3 + 2(22+i) = O(23+i)

to the total number of nearest-enemy points. In order to select 1/ξ = 2t points in a

single iteration, we need to stackMi’s for i ∈ [1, . . . , t− 3].

Repetitive arrangement Ri: Once the algorithm reaches the last multiplier

54



layerMt−3, it will select 1/ξ points during the following iteration. The repetitive

arrangement allows us to continue adding these many points on every iteration, while

only increasing the number of nearest-enemy points by a constant. This arrangement

consists of (1) a first layer with a blue center c2i surrounded by 1/ξ red points rij

around the unit disk circumference, and (2) a second layer with red center c2i+1 and

blue points bij in the circumference (see Figure 4.3d). Once the first layer is added all

in a single iteration, during the following iteration c2i adds c2i+1, and each rij adds

bij. The size of each Ri is 2(1 + 1/ξ) = O(1/ξ), and it contributes with 4 points to

the total number of nearest-enemy points. Now, we stack O(1/ξ) such arrangements

Ri for i ∈ [t − 2, . . . , 1/ξ], such that we obtain the desired ratio between selected

points and number of nearest-enemy points of the training set.

The training set is then defined as P = B
⋃t−3

i=1Mi

⋃1/ξ
i=t−2Ri ∪ F , where F

is a set of points designed to fix the centroids of P . These extra points are located

far enough from the remaining points of P , and are carefully placed such that

the centroids of P are all the points of B, plus a blue and white point from F .

Additionally, all the points of F should be closer to it’s corresponding class centroid

than to any enemy centroid, and they should increase the number of nearest-enemy

points by a constant. This can be done with O(n) extra points.

All together, by adding up the corresponding terms, the ratio between the size

of FCNN and κ (the number of nearest-enemy points of P ) is O(1/ξ). Therefore,

there exists a training set in 3-dimensional Euclidean space for which FCNN selects

O(κ/ξ) for any ξ < 1/8.
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These results show that adding points in batch on every iteration of FCNN

prevents the algorithm to have any guarantee on the size of its selected subset, in

terms of either k or κ. However, this design choice is not key for any of the features

of the algorithm, and can therefore be avoided.

4.3.3 SFCNN

The SFCNN algorithm (or Single FCNN) is a modified version of FCNN such

that only one single representative is added to the subset R on each iteration of

the algorithm. Surprisingly, such a simple change in the selection process allows

us to successfully analyze the size of SFCNN in terms of κ, and even prove that it

computes a tight approximation of the minimum cardinality consistent subset of

P on general metrics. These results can be seen as corollaries of the more general

Theorems 5.16 and 5.17, which are presented later in Chapter 5.

Algorithm 5: SFCNN

Input: Initial training set P

Output: Consistent subset R ⊆ P

1 R← ϕ

2 S ← centroids(P )

3 while S ̸= ϕ do

4 R← R ∪ {Choose one point of S}

5 S ← ϕ

6 foreach p ∈ R do

7 S ← S ∪ {rep(p, voren(p,R, P ))}

8 return R

Following similar arguments to the ones described for the upper-bound proved
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on CNN (see Theorem 4.3), the following theorem proofs a comparable upper-bound

for SFCNN in terms of κ and γ.

Theorem 4.6. The SFCNN algorithm selects O(κ log 1
γ
) points.

Proof. Similarly to the upper-bound proof of CNN, this result follows by a charging

argument on each nearest-enemy point in the training set. Consider one such point

p ∈ {ne(r) | r ∈ P} and a value σ ∈ [γ, 1]. We define Rp,σ to be the subset of points

selected by SFCNN whose nearest-enemy is p, and whose distance to p is between

σ and 2σ. That is, Rp,σ = {r ∈ R | ne(r) = p ∧ d(r, p) ∈ [σ, 2σ)}. Clearly, these

subsets define a partitioning of R when considering all nearest-enemy points of P ,

and values of σ = γ 2i for i = {0, 1, 2, . . . , ⌈log 1
γ
⌉}.

Consider any two points a, b ∈ Rp,σ in these subsets. Assume w.l.o.g. that

point a was selected by the algorithm before point b (i.e., in a prior iteration). We

show that d(a, b) ≥ σ. By contradiction, assume that d(a, b) < σ, which immediately

implies that a and b belong to the same class. Moreover, recalling that b’s nearest-

enemy in P is p, at distance d(b, p) ≥ σ, this implies that b is closer to a than to

any enemy in R. Therefore, by the definition of the voren function, b could never be

selected by SFCNN, which is a contradiction.

This proves that d(a, b) ≥ σ. Now, just as with CNN, using a simple packing

argument based on d-dimensional Euclidean balls, we have that |R′
p,σ| ≤ 5d. Alto-

gether, by counting over all the Rp,σ sets for every nearest-enemy in the training set

and values of σ, the size of R is upper-bounded by |R| ≤ κ ⌈log 1/γ⌉ 5d+1. Assuming

d to be constant, this completes the proof.
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4.4 Selective Subsets

Another common criterion used for nearest-neighbor condensation is known as

selectiveness [34]. A subset R ⊆ P is said to be selective if and only if for every point

p ∈ P its nearest-neighbor in R is closer to p than its nearest-enemy in P . Clearly

selectiveness implies consistency, as the nearest-enemy distance in R of any point of

P is at least its nearest-enemy distance in P .

Similarly to the previous section, this section studies several algorithms that

compute selective subsets of P , along with a formal worst-case analysis on the sizes of

their selected subsets. Namely, these are the NET, MSS, RSS, and VSS algorithms.

4.4.1 NET

The NET algorithm [36] was proposed as an approximation algorithm for the

problem of finding minimum cardinality consistent subsets. Their paper also presents

almost matching hardness lower-bounds for this problem. While this algorithm is

proposed for computing consistent subsets of P , it can easily be shown that its

selection is actually selective. Hence, the NET algorithm is described and analyzed

in this section, and not in section 4.3.

The algorithm is fairly simple, and works by computing a γ-net of P where

γ is the minimum nearest-enemy distance in P . Evidently, this subset must be

selective. Moreover, the authors of the paper prove that this algorithm computes a

tight approximation of the minimum cardinality consistent subsets, being the first

algorithm to show such guarantees. However, in practice, γ tends to be small, which
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results in subsets of much higher cardinality than needed. To overcome this issue,

the authors proposed a post-processing pruning technique to further reduce the

selected subset, which is formally described in Algorithm 6. But even with this extra

pruning, NET is often outperformed on typical training sets (w.r.t. both runtime

and selection size) by the more practical heuristics studied in this chapter.

Algorithm 6: NET+Prune

Input: Initial training set P

Output: Selective subset R ⊆ P

1 R← Compute a γ-net of P

2 foreach i ∈ {1, 0, . . . , ⌊log γ⌋} do

3 foreach p ∈ R with dne(p,R) ≥ 2i+1 do

4 R← R \ {q ∈ R | q ̸= p ∧ d(p, q) < 2i − γ}

5 return R

Theorem 4.7. The NET+Prune algorithm selects O(κ log 1
γ
) points.

Proof. Proving this result follows basically the same arguments described on the

proofs of Theorems 4.3 and 4.6. Similarly, we must define the sets Rp,σ as the points

selected by the NET+Prune algorithm whose nearest-enemy is some point p ∈ P ,

and its nearest-enemy distance is between [σ, 2σ). The main difference lies on the

lower-bound on the distance between any two points a, b ∈ Rp,σ in such subsets. In

this case, we can only guarantee that d(a, b) ≥ σ/2− γ. Even though this slightly

complicates the packing argument, we can still argue that there exists a constant

c such that |Rp,σ| ≤ cd. Therefore, this implies that NET+Prune selects a subset

with at most κ⌈log 1
γ
⌉ cd points, which completes the proof.
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4.4.2 MSS

The MSS algorithm (or Modified Selective Subset) has been considered a state-

of-the-art algorithm for computing selective subsets [17], due to its good performance

in practice and its O(n2) worst-case runtime.

The selection process of the algorithm can be simply described as follows: for

every p ∈ P , MSS selects the point with smallest nearest-enemy distance contained

inside the nearest-enemy ball of p. Clearly, this approach computes a selective subset

of P , which by definition, is order-independent. Unfortunately, the selection criteria

of MSS can be too strict, requiring one particular point to be added for each point

p ∈ P . Note that any point inside the nearest-enemy ball of p suffices for achieving

selectiveness. In practice, this can lead to much larger subsets than needed. This

intuition is formalized in the following theorem, where we show how MSS can select

a subset of unbounded size as a function of either κ or k.

Theorem 4.8. There exists a training set P ⊂ Rd in Euclidean space, with constant

number of classes, nearest-enemy points, and border points, such that MSS selects

Ω(1/ξ) points, for any 0 < ξ < 1.

Proof. Recall that for each point in P , the MSS algorithm selects the point inside

its nearest-enemy ball with smallest nearest-enemy distance. Given a parameter

0 < ξ < 1, we construct a training set in 1-dimensional Euclidean space, as illustrated

in Figure 4.4a. Create two points r1 and r2, and assign them to the class of red

points. w.l.o.g. the distance between these two points is 1. Let u⃗ be the unit vector

from r1 to r2, create additional points bi = r1 +
iξ
4
u⃗ for i = {1, 2, . . . , 3/ξ}. Assign
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Algorithm 7: MSS

Input: Initial training set P

Output: Selective subset R ⊆ P

1 Let {pi}ni=1 be the points of P sorted increasingly w.r.t. their nearest-enemy

distance dne(pi)

2 R← ϕ

3 S ← P

4 foreach pi ∈ P , where i = 1 . . . n do

5 add ← false

6 foreach pj ∈ P , where j = i . . . n do

7 if pj ∈ S ∧ d(pj , pi) < dne(pj) then

8 S ← S \ {pj}

9 add ← true

10 if add then

11 R← R ∪ {pi}

12 return R

all bi points to the class of blue points. The set of all these points constitute the

training set P . It is easy to prove that P has only four nearest-enemy points and

four border points, corresponding to r1, r2, b1 and b3/ξ.

Let’s discuss which points are added by MSS for each point in P (see Fig-

ure 4.4b). For points r1 and r2, the only points inside their nearest-enemy balls

are themselves, so both r1 and r2 belong to the subset selected by MSS. For points

bi with i ≤ 2/ξ, the point with smallest nearest-enemy distance contained inside

their nearest-enemy ball is b1, which is also added to the subset. Now, consider the

points bi with 2/ξ < i < 5/2ξ. Let j = i − 2/ξ, it is easy to prove that the point

with smallest nearest-enemy distance inside the nearest-enemy ball of bi is b2j+1 (see
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(a) Initial training set of collinear points, where both the number of nearest-enemy points

and the number of border points equal to 4. That is, κ = k = 4.

(b) Subset of points computed by MSS from the original training set (fully colored points

belong to the subset, while faded points do not). The size of the subset is Ω(1/ξ).

Figure 4.4: Unbounded example for MSS with respect to κ and k.

Figure 4.4b). Therefore, this implies that the number of points selected by MSS

equals 5/2ξ − 2/ξ = 1/2ξ = Ω(1/ξ).

4.4.3 RSS

We propose the RSS algorithm (or Relaxed Selective Subset) with the idea

of relaxing the selection process of MSS, while still computing a selective subset.

For any given point p ∈ P in the training set, while MSS requires to add the point

with smallest nearest-enemy distance inside the nearest-enemy ball of p, in RSS

any point inside the nearest-enemy ball p suffices. The idea is rather simple (see

Algorithm 8). Points of P are examined in increasing order with respect to their

nearest-enemy distance, and we add any point whose nearest-enemy ball contains

62



no point previously added by the algorithm. This tends to select points close to

the decision boundaries of P (see Figure 1.1g), as points far from the boundary are

examined later in the selection process, and are more likely to already contain points

inside their nearest-enemy ball.

Algorithm 8: RSS

Input: Initial training set P

Output: Selective subset R ⊆ P

1 R← ϕ

2 Let {pi}ni=1 be the points of P sorted increasingly w.r.t. their nearest-enemy

distance dne(pi)

3 foreach pi ∈ P , where i = 1 . . . n do

4 if dnn(pi, R) ≥ dne(pi) then

5 R← R ∪ {pi}

6 return R

Just like MSS, RSS is order-independent and computes a selective subset of

P in O(n2) worst-case time. Its selectiveness is evident, as every point in P is

either added to the subset, or has a point in the subset inside its nearest-enemy ball.

Its order-independence follows from the initial sorting step of the algorithm. Now,

the time complexity of RSS can be analyzed as follows. The initial step requires

O(n2) time for computing the nearest-enemy distances of each point in P , plus

additional O(n log n) time for sorting the points according to such distances. The

main loop iterates through each point in P , and searches their nearest-neighbor in

the current subset, incurring into additional O(n2) time using a simple linear search.

All together, the worst-case time complexity of the algorithm is quadratic.
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Theorem 4.9. The RSS algorithm selects O(κ) points.

Proof. The proof follows by a charging argument on each nearest-enemy point of

P . Consider a nearest-enemy point p ∈ P , and let Rp be the set of points selected

by RSS such that p is their nearest-enemy. Let a, b ∈ Rp be two such points, and

w.l.o.g. say that dne(a) ≤ dne(b). By construction of the algorithm, we also know

that d(a, b) ≥ dne(b). Now, consider the triangle △pab. Clearly, pa is the largest side

of the triangle, making the angle ∠apb ≥ π/3. This means that the angle between

any two points in Rp with respect to p is at least π/3.

By a standard packing argument, this implies that |Rp| = O((3/π)d−1). Finally,

we obtain that the number of points selected by RSS is
∑

p |Rp| = κ O((3/π)d−1).

Additionally, we prove that the size of the subset selected by RSS can be

bounded as a function of κ and the dimensionality of P . Moreover, we show that

RSS computes an approximation of both the consistent and selective subsets of

minimum cardinality. These results come as corollaries of Theorems 5.10 and 5.11,

which will be described in later sections. However, different parameters from κ can be

used to bound the selection size of condensation algorithms: consider k, the number

of border points in the training set P . From the example illustrated in Figure 4.5,

we know that RSS can select more points than k (see Figure 4.5b). Repeating such

arrangement forces RSS to select Ω(k + 1/ξ) points.
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(a) Basic point arrangement in R2, along

with the Voronoi diagram induced by such

points.

(b) RSS selection outlined, along with the

nearest-enemy balls of each point in the

arrangement.

Figure 4.5: Example where RSS selects k + 1 points.

4.4.4 VSS

We now propose the VSS algorithm (or Voronoi Selective Subset). This new

algorithm comes as a modification of RSS, based on an observation from the proof

of the following lemma. As stated in Chapter 2, we are able to prove that every

nearest-enemy is also a border point of P , formalized here.

Lemma 4.10. Any nearest-enemy point of a point in P is also a border point of P .

Proof. Take any point p ∈ P . Consider the empty ball of maximum radius, tangent

to point ne(p), and with center in the line segment between p and ne(p). Being

maximal, this ball is tangent to another point p∗ ∈ P (see Figure 4.6a). Clearly, p∗

is inside the nearest-enemy ball of p, which implies that p and p∗ belong to the same
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class, making p∗ and ne(p) enemies. By the empty ball property, this means that

both p∗ and ne(p) are border points of P .

(a) The largest empty ball tangent to ne(p)

and center in p ne(p), is also tangent to some

point p∗, making p∗ and ne(p) border points.

(b) How to compute the radius of a ball with

center in the line segment between p and

ne(p), and tangent to both ne(p) and p′.

Figure 4.6: Relation between nearest-enemy points and border points.

Therefore, from Lemma 4.10 we know that in d-dimensional Euclidean space,

the number of nearest-enemy points of P is at most the number of border points of

P . That is, κ ≤ k. Moreover, this result can be easily extended to ℓp metric spaces

with p ≥ 2. While this result implies an easy extension of the upper-bounds found

for RSS, CNN, SFCNN, and NET+Prune, now in terms of k instead of κ, it is

unclear if the other factors in those upper-bounds can be improved.

Coming back to VSS, this proof opens an alternative idea for condensation.

In order to prove Lemma 4.10, we show that there exist at least one border point
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inside the nearest-enemy ball of any point p ∈ P . Therefore, by selecting such border

points, we can guarantee that the resulting subset is selective and its size is ≤ k.

Algorithm 9: VSS

Input: Initial training set P

Output: Selective subset R ⊆ P

1 R← ϕ

2 Let {pi}ni=1 be the points of P sorted increasingly w.r.t. their nearest-enemy

distance dne(pi)

3 foreach pi ∈ P , where i = 1 . . . n do

4 if dnn(pi, R) ≥ dne(pi) then

5 Find a border point that lies inside the nearest-enemy ball of pi and add it

to R

6 return R

We call this algorithm VSS (see Algorithm 9 for a formal description). Essen-

tially, we show this algorithm computes a selective subset of P of size at most k. By

construction, for any point in p ∈ P the algorithm selects one border point inside

the nearest-enemy ball of p, which implies that the resulting subset is selective, and

contains no more than k points.

Theorem 4.11. The VSS algorithm selects at most k points.

Finally, we describe an efficient implementation of VSS, showing this algorithm

can be implemented to run in quadratic time. Recall that for every point p ∈ P , the

algorithm selects a border point inside its nearest-enemy ball. w.l.o.g. implement

VSS to compute the point p∗ that minimizes the radius of an empty ball tangent

to both ne(p) and p∗, and center in the line segment between p and ne(p). For any
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given point p′ inside the nearest-enemy ball of p, denote r(p, p′) to be the radius

of the ball tangent to p′ and ne(p) and center in the line segment between p and

ne(p). As illustrated in Figure 4.6b, let vectors u⃗ = p−ne(p)
∥p−ne(p)∥ and v⃗ = p′ − ne(p),

the radius of this ball can be derived from the formula r(p, p′) = ∥v⃗ + r(p, p′)u⃗∥ as

r(p, p′) = v⃗ · v⃗/2u⃗ · v⃗. As p∗ is defined as the point that minimizes such radius, a

simple scan over the points of P suffices to identify the corresponding p∗ for any

point p ∈ P . Therefore, this implies that VSS can be computed in O(n2) worst-case

time.

4.5 Experimental Comparison

Historically, the importance of some condensation algorithms rely on their

performance in practice, despite the lack of theoretical guarantees. Therefore, a

natural question is how the algorithms proposed in this chapter compare to existing

ones when evaluated in real-world training sets.

Thus, to get a clearer impression of the relevance of these results in practice, we

performed experimental trials on several training sets, both synthetically generated

and widely used benchmarks. First, we consider 21 training sets from the UCI

Machine Learning Repository1 which are commonly used in the literature to evaluate

condensation algorithms [18]. These consist of a number of points ranging from 150

to 58000, in d-dimensional Euclidean space with d between 2 and 64, and 2 to 26

classes. We also generated some synthetic training sets, containing 105 uniformly

1https://archive.ics.uci.edu/ml/index.php
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distributed points, in 2 to 3 dimensions, and 3 classes. All training sets used in

these experimental trials are summarized in Table 4.2. The implementation of the

algorithms, training sets used, and raw results, are publicly available2.

We test seven different condensation algorithms, namely CNN, FCNN, SFCNN,

MSS, RSS, VSS, and NET. To compare their results, we consider their runtime and

the size of the selected subset. Clearly, these values might differ greatly on training

sets whose size are too distinct. Therefore, before comparing the raw results, these

are normalized. The runtime of an algorithm for a given training set is normalized

by dividing it by n, the size of the training set. The size of the selected subset is

normalized by dividing it by κ, the number of nearest-enemy points in the training

set, which characterizes the complexity of the boundaries between classes.

Figures 4.7a and 4.7b summarize the experimental results. Evidently, the

performance of SFCNN is equivalent to the original FCNN algorithm, both in

terms of runtime and the size of their selected subsets, showing that the proposed

modification does not affect the behavior of the algorithm in real-world training

sets. Both FCNN and SFCNN outperform other condensation algorithms in terms

of runtime, while their subset size is comparable in all cases, with the exception of

the NET algorithm.

2https://github.com/afloresv/nnc/
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Training set n d c κ (%)

banana 5300 2 2 811 (15.30%)

cleveland 297 13 5 125 (42.09%)

glass 214 9 6 87 (40.65%)

iris 150 4 3 20 (13.33%)

iris2d 150 2 3 13 (8.67%)

letter 20000 16 26 6100 (30.50%)

magic 19020 10 2 5191 (27.29%)

monk 432 6 2 300 (69.44%)

optdigits 5620 64 10 1245 (22.15%)

pageblocks 5472 10 5 429 (7.84%)

penbased 10992 16 10 1352 (12.30%)

pima 768 8 2 293 (38.15%)

ring 7400 20 2 2369 (32.01%)

satimage 6435 36 6 1167 (18.14%)

segmentation 2100 19 7 398 (18.95%)

shuttle 58000 9 7 920 (1.59%)

thyroid 7200 21 3 779 (10.82%)

twonorm 7400 20 2 1298 (17.54%)

wdbc 569 30 2 123 (21.62%)

wine 178 13 3 37 (20.79%)

wisconsin 683 9 2 35 (5.12%)

v-100000-2-3-15 100000 2 3 1909 (1.90%)

v-100000-2-3-5 100000 2 3 788 (0.78%)

v-100000-3-3-15 100000 3 3 7043 (7.04%)

v-100000-3-3-5 100000 3 3 3738 (3.73%)

v-100000-4-3-15 100000 4 3 13027 (13.02%)

v-100000-4-3-5 100000 4 3 10826 (10.82%)

v-100000-5-3-15 100000 5 3 22255 (22.25%)

v-100000-5-3-5 100000 5 3 17705 (17.70%)

Table 4.2: Training sets used to evaluate the performance of condensation algorithms.

Indicates the number of points n, dimensions d, classes c, nearest-enemy points κ

(also in percentage w.r.t. n).
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(a) Running time.

(b) Size of the selected subsets.

Figure 4.7: Evaluating the studied condensation algorithms: CNN, FCNN, SFCNN,

NET, MSS, RSS, and VSS.
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Chapter 5: ε-Coresets

5.1 Introduction

There are obvious parallels between the problem of nearest-neighbor condensa-

tion and the concept of coresets in geometric approximation [57–60]. Intuitively, a

coreset is small subset of the original data, that well approximates some statistical

properties of the original set. Coresets have previously been applied to many prob-

lems in machine learning, such as clustering and neural network compression [61–64].

Additionally, coresets have been used towards achieving more efficient classification

techniques, as evidenced by the recent results on coresets for the SVM classifier [65].

While the other chapters of this book deal with training sets in d-dimensional

Euclidean space (i.e., P ⊂ Rd), this chapter deals with the more generic concept

of metric spaces. Therefore, we assume a training set P consisting of n points in a

metric space (X , d), with domain X and distance function d : X 2 → R+. Evidently,

d must hold the properties of identity, symmetry, and triangle inequality. The rest

remains the same. That is, P is partitioned into a finite set of classes by associating

each point p ∈ P with a label l(p), indicating the class to which it belongs.

Given an unlabeled query point q ∈ X , the exact nearest-neighbor rule predicts

q’s class using the class of its closest point in P according to metric d. That is, it
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assigns q to the class l(nn(q)), where nn(q) = argminp∈P d(q, p).

So far, in Chapters 3 and 4 we have assumed that q’s nearest-neighbor is always

computed exactly. However, it is common practice that these queries are instead

computed approximately, leveraging known techniques for efficient nearest-neighbor

search like Approximate Voronoi Diagrams [19,20], Locality-Sensitive Hashing [21],

and Hierarchical Navigable Small Worlds graphs [22]. In this context, we are given

an approximation parameter ε ∈ [0, 1] and an unlabeled query point q ∈ X , and the

ε-approximate nearest-neighbor rule assigns q to the class of some point p, where

p is any point of P such that d(q, p) ≤ (1 + ε) dnn(q). Therefore, in both this and

the following chapters, we discuss different techniques to achieve boundary-sensitive

approaches (i.e., dependent on κ and k instead of n) for approximate nearest-neighbor

classification.

This chapter presents the first approach proposed to compute coresets for nearest-

neighbor classification, leveraging its resemblance to the problem of nearest-neighbor

condensation. These results have been published in [66].

Preliminaries

Similarly to Chapter 4, we define notation relevant to understanding the results

presented. Given any point q ∈ X in the metric space, its nearest-neighbor, denoted

nn(q), is the closest point of P according the the distance function d. The distance

from q to its nearest-neighbor is denoted by dnn(q, P ), or simply dnn(q) when P is

clear. Given a point p ∈ P from the training set its nearest-neighbor in P is p itself.
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Additionally, any point of P whose label differs from p’s is called an enemy of p. The

closest such point is called p’s nearest-enemy, and the distance to this point is called

p’s nearest-enemy distance. These are denoted as ne(p) and dne(p, P ), respectively.

Evidently, we can simplify dne(p, P ) as dne(p) when it is clear.

Unsurprisingly, the size of a coreset for nearest-neighbor classification should

depend on the spatial characteristics of the points of different classes in the training

set. For example, it should be much easier to find a small coreset for two spatially

well separated clusters than for two classes that have a high degree of overlap. Again,

we use the number of nearest-enemy points of P , denoted as κ, to model the intrinsic

complexity of the problem of nearest-neighbor classification.

Other intrinsic characteristics of P will also come handy when describing these

coresets. Through a suitable uniform scaling, we may assume that the diameter of

P (that is, the maximum distance between any two points in the training set) is 1.

Then, the spread of P , denoted as ∆, is the ratio between the largest and smallest

distances in P . Similarly, recall the definition of the margin of P , denoted γ, as the

smallest nearest-enemy distance in P . Clearly, we can see that 1/γ ≤ ∆.

Additionally, a metric space (X , d) is said to be doubling [5] if there exist some

bounded value λ such that any metric ball of radius r can be covered with at most

λ metric balls of radius r/2. Its doubling dimension is the base-2 logarithm of λ,

denoted as ddim(X ) = log λ. Throughout this chapter, we assume that ddim(X )

is a constant, which means that multiplicative factors depending on ddim(X ) may

be hidden in our asymptotic notation. Many natural metric spaces of interest are

doubling, including d-dimensional Euclidean space whose doubling dimension is Θ(d).
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An important property of doubling spaces, that will come useful throughout this

chapter, is that for any subset R ⊆ X with spread ∆R, the size of R is upper-bounded

by |R| ≤ ⌈∆R⌉ddim(X )+1.

Contributions

In this chapter, we introduce the concept of a coreset for classification with the

nearest-neighbor rule, which provides approximate guarantees on correct classification

for all query points. We demonstrate their existence, analyze their size, and discuss

approaches for their efficient computation.

We say that a subset R ⊆ P is an ε-coreset for the nearest-neighbor rule on P ,

if and only if for every query point q ∈ X , the class of its exact nearest-neighbor in

R is the same as the class of some ε-approximate nearest-neighbor of q in P (see

Section 5.2 for definitions). Recalling the concepts of κ and γ introduced in the

preliminaries, here is our main result:

Theorem 5.1. Given a training set P in a doubling metric space (X , d), there exist

an ε-coreset for the nearest-neighbor rule of size O(κ log 1
γ
(1/ε)ddim(X )+1), and this

coreset can be computed in subquadratic worst-case time.

The following summarizes of the principal results presented in the remaining

sections, which all together are leveraged to prove the main theorem.

• We extend the criteria used for nearest-neighbor condensation, and identify

sufficient conditions to guarantee the correct classification of any query point

after condensation. These conditions are the ones that describe our coreset
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construction.

• We prove that finding minimum-cardinality subsets with this new criteria is

NP-hard. Moreover, we prove it is even hard to approximate within practical

factors.

• We provide quadratic-time approximation algorithms with provable upper-

bounds on the sizes of their selected subsets, and we show that the running time

of one such algorithm can be improved to be subquadratic. This subquadratic-

time algorithm is the first with such worst-case runtime for the problem of

nearest-neighbor condensation.

5.2 Coreset Characterization

In practice, many applications usually rely its efficiency on computing nearest-

neighbors not exactly, but rather approximately. Given an approximation parameter

ε ≥ 0, an ε-approximate nearest-neighbor or ε-ANN query returns any point whose

distance from the query point is within a factor of (1 + ε) times the true nearest-

neighbor distance.

Intuitively, a query point should be easier to classify if its nearest-neighbor is

significantly closer than its nearest-enemy. This intuition can be formalized through

the concept of the chromatic density [51] of a query point q ∈ X with respect to a

set R ⊆ P , defined as:

δ(q, R) =
dne(q, R)

dnn(q, R)
− 1. (5.1)
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Clearly, if δ(q, R) > ε then q will be correctly classified1 by an ε-ANN query

over R, as all possible candidates for the approximate nearest-neighbor belong to

the same class as q’s true nearest-neighbor. However, as evidenced in Figures 5.1a

and 5.1b, one side effect of existing condensation algorithms is a significant reduction

in the chromatic density of query points. Consequently, we propose new criteria

and algorithms that maintain high chromatic densities after condensation, which are

then leveraged to build coresets for the nearest-neighbor rule.

5.2.1 Approximation-Sensitive Condensation

The decision boundaries of the nearest-neighbor rule (that is, points q such that

dne(q, P ) = dnn(q, P )) are naturally characterized by points that separate clusters of

points of different classes. As illustrated in Figures 1.1c-1.1g, condensation algorithms

tend to select such points. However, this behavior implies a significant reduction of

the chromatic density of query points that are far from such boundaries, as can be

seen in Figures 5.1a-5.1b with the selection of the FCNN and RSS algorithms.

A natural way to define an approximate notion of consistency is to ensure that

all points in P are correctly classified by ANN queries over the condensed subset R.

Given a condensation parameter α ≥ 0, we define a subset R ⊆ P to be:

α-consistent if ∀ p ∈ P, dnn(p,R) < dne(p,R)/(1 + α).

α-selective if ∀ p ∈ P, dnn(p,R) < dne(p, P )/(1 + α).

1By correct classification, we mean that the classification is the same as the classification that

results from applying the nearest-neighbor rule exactly on the entire training set P .
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(a) FCNN (b) RSS (c) 0.1-RSS (d) 0.5-RSS

Figure 5.1: Heatmap of chromatic density values of points in R2 w.r.t. the sub-

sets computed by different condensation algorithms: FCNN, RSS, and α-RSS (see

Figure 1.1). Yellow • corresponds to chromatic density values ≥ 0.5, while blue •

corresponds to 0. Evidently, α-RSS helps maintaining high chromatic density values

when compared to standard condensation algorithms.

It is easy to see that the standard forms arise as special cases when α = 0.

These new condensation criteria imply that δ(p,R) > α for every p ∈ P , meaning

that p is correctly classified using an α-ANN query on R. Note that any α-selective

subset is also α-consistent. Such subsets always exist for any α ≥ 0 by taking

R = P . Current condensation algorithms cannot guarantee either α-consistency or

α-selectiveness unless α is equal to zero. Therefore, the central algorithmic challenge

is how to efficiently compute such sets whose sizes are significantly smaller than P .

We propose new algorithms to compute such subsets, which showcase how to maintain

high chromatic density values after condensation, as evidenced in Figures 5.1c and

5.1d. This empirical evidence is matched with theoretical guarantees for α-consistent

and α-selective subsets, described in the following section.
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5.2.2 Guarantees on Classification Accuracy

These newly defined criteria for nearest-neighbor condensation enforce lower-

bounds on the chromatic density of any point of P after condensation. However, this

doesn’t immediately imply having similar lower-bounds for unlabeled query points of

X . In this section, we prove useful bounds on the chromatic density of query points,

and characterize sufficient conditions to correctly classify some of these query points

after condensation.

Intuitively, the chromatic density determines how easy it is to correctly classify

a query point q ∈ X . We show that the “ease” of classification of q after condensation

(i.e., δ(q, R)) depends on both the condensation parameter α, and the chromatic

density of q before condensation (i.e., δ(q, P )). This result is formalized in the

following lemma:

Lemma 5.2. Let q ∈ X be a query point, and R an α-consistent subset of P , for

α ≥ 0. Then, q’s chromatic density with respect to R is:

δ(q, R) >
α δ(q, P )− 2

δ(q, P ) + α + 3
.

Proof. The proof follows by analyzing q’s nearest-enemy distance in R. To this end,

consider the point p ∈ P that is q’s nearest-neighbor in P . There are two possible

cases:

Case 1: If p ∈ R, clearly dnn(q, R) = dnn(q, P ). Additionally, it is easy to show that af-

ter condensation, q’s nearest-enemy distance can only increase: i.e., dne(q, P ) ≤

dne(q, R). This implies that δ(q, R) ≥ δ(q, P ).
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Case 2: If p ̸∈ R, we can upper-bound q’s nearest-neighbor distance in R as follows:

Since R is an α-consistent subset of P , we know that there exists a point r ∈

R such that d(p, r) < dne(p,R)/(1+α). By the triangle inequality and the definition of

nearest-enemy, dne(p,R) ≤ d(p, ne(q, R)) ≤ d(q, p)+dne(q, R). Additionally, applying

the definition of chromatic density on q and knowing that dne(q, P ) ≤ dne(q, R), we

have d(q, p) = dnn(q, P ) ≤ dnn(q, R) = dne(q, R)/(1 + δ(q, P )). Therefore:

dnn(q, R) ≤ d(q, r) ≤ d(q, p) + d(p, r)

< d(q, p) +
d(q, p) + dne(q, R)

1 + α
≤
(

δ(q, P ) + α + 3

(1 + α)(1 + δ(q, P ))

)
dne(q, R).

Finally, from the definition of δ(q, R), we have:

δ(q, R) =
dne(q, R)

dnn(q, R)
− 1 >

(1 + α)(1 + δ(q, P ))

δ(q, P ) + α + 3
− 1 =

α δ(q, P )− 2

δ(q, P ) + α + 3
.

The above result can be leveraged to define a coreset, in the sense that an exact

result on the coreset corresponds to an approximate result on the original set. As

previously defined, we say that a set R ⊆ P is an ε-coreset for the nearest-neighbor

rule on P , if and only if for every query point q ∈ X , the class of q’s exact nearest-

neighbor in R is the same as the class of any of its ε-approximate nearest-neighbors

in P .

Lemma 5.3. Any ε-coreset for the nearest-neighbor rule is an α-consistent subset,

for α ≥ 0.

Proof. Consider any ε-coreset C ⊆ P for the nearest-neighbor rule on P . Since the

approximation guarantee holds for any point in X , it holds for any p ∈ P \ C. We
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know p’s nearest-neighbor in the original set P is p itself, thus making dnn(p, P )

zero. This implies that p must be correctly classified by a nearest-neighbor query

on C, that is, dnn(p, C) < dne(p, C), which is the definition of α-consistency for any

α ≥ 0.

Theorem 5.4. Any 2/ε-selective subset is an ε-coreset for the nearest-neighbor rule.

Proof. Let R be an α-selective subset of P , where α = 2/ε. Consider any query

point q ∈ X in the metric space. It suffices to show that its nearest-neighbor in R is

of the same class as any ε-approximate nearest-neighbor in P . To this end, consider

q’s chromatic density with respect to both P and R, denoted as δ(q, P ) and δ(q, R),

respectively. We identify two cases:

Case 1 (Correct-Classification guarantee): If δ(q, P ) ≥ ε.

Consider the bound derived in Lemma 5.2. Since α ≥ 0, and by our assumption

that δ(q, P ) ≥ ε > 0, setting α = 2/ε implies that δ(q, R) > 0. This means that

the nearest-neighbor of q in R belongs to the same class as the nearest-neighbor

of q in P . Intuitively, this guarantees that q is correctly classified by the

nearest-neighbor rule in R.

Case 2 (ε-Approximation guarantee): If δ(q, P ) < ε.

Let p ∈ P be q’s nearest-neighbor in P , thus d(q, p) = dnn(q, P ). Since R

is α-selective, there exists a point r ∈ R such that d(p, r) = dnn(p,R) <

dne(p, P )/(1 + α). Additionally, by the triangle inequality and the definition of

nearest-enemies, we have

dne(p, P ) ≤ d(p, ne(q, P )) ≤ d(p, q) + d(q, ne(q, P )) = dnn(q, P ) + dne(q, P ).
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From the definition of chromatic density, dne(q, P ) = (1 + δ(q, P )) dnn(q, P ).

Together, these inequalities imply that (1 + α) d(p, r) ≤ (2 + δ(q, P )) dnn(q, P ).

Therefore:

dnn(q, R) ≤ d(q, r) ≤ d(q, p) + d(p, r) ≤
(
1 +

2 + δ(q, P )

1 + α

)
dnn(q, P ).

Now, assuming δ(q, P ) < ε and setting α = 2/ε, imply that dnn(q, R) <

(1 + ε) dnn(q, P ). Therefore, the nearest-neighbor of q in R is an ε-approximate

nearest-neighbor of q in P .

Cases 1 and 2 imply that setting α to 2/ε is sufficient to ensure that the

nearest-neighbor rule classifies any query point q ∈ X with the class of one of its

valid ε-approximate nearest-neighbors in P . Therefore, R is an ε-coreset for the

nearest-neighbor rule on P .

So far, we have assumed that nearest-neighbor queries over R are computed

exactly, as this is the standard notion of coresets. However, it is reasonable to

compute nearest-neighbors approximately even for R. How should the two approxi-

mations be combined to achieve a desired final degree of accuracy? Consider another

approximation parameter ξ, where 0 ≤ ξ < ε. We say that a set R ⊆ P is an

(ξ, ε)-coreset for the approximate nearest-neighbor rule on P , if and only if for every

query point q ∈ X , the class of any of q’s ξ-approximate nearest-neighbor in R

is the same as the class of any of its ε-approximate nearest-neighbors in P . The

following result generalizes Theorem 5.4 to accommodate for ξ-ANN queries after

condensation.
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Theorem 5.5. Any α-selective subset is an (ξ, ε)-coreset for the approximate nearest-

neighbor rule when α = Ω(1/(ε− ξ)).

Proof. This follows from similar arguments to the ones described in the proof of

Theorem 5.4. Instead, here we set α = (εξ+3ξ+2)/(ε− ξ). Let R be an α-selective

subset of P , and q ∈ X any query point in the metric space, consider the same two

cases:

Case 1 (Correct-Classification guarantee): If δ(q, P ) ≥ ε.

Consider the bound derived in Lemma 5.2. By our assumption that δ(q, P ) ≥

ε > 0, and since α ≥ 0, the following inequality holds true:

δ(q, R) >
α δ(q, P )− 2

δ(q, P ) + α + 3
≥ αε− 2

ε+ α + 3

Based on this, it is easy to see that the assignment of α = (εξ+3ξ+2)/(ε− ξ)

implies that δ(q, R) > ξ, meaning that any of q’s ξ-approximate nearest-

neighbors in R belong to the same class as q’s nearest-neighbor in P . Intuitively,

this guarantees that q is correctly classified by the ξ-ANN rule in R.

Case 2 (ε-Approximation guarantee): If δ(q, P ) < ε.

The assignment of α implies that dnn(q, R) < 1+ε
1+ξ

dnn(q, P ). This means that an

ξ-ANN query for q in R, will return one of q’s ε-approximate nearest-neighbors

in P .

All together, this implies that R is an (ξ, ε)-coreset for the nearest-neighbor rule on

P .
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In contrast with standard condensation criteria, these new results provide

guarantees on either approximation or the correct classification, of any query point in

the metric space. This is true even for query points that were “hard” to classify with

the entire training set, formally defined as query points with low chromatic density.

Consequently, Theorems 5.4 and 5.5 show that α must be set to large values if we

hope to provide any sort of guarantees for these query points. However, better results

can be achieved by restricting the set of points that are guaranteed to be correctly

classified. This relates to the notion of weak coresets, which provide approximation

guarantees only for a subset of the possible queries. Given β ≥ 0, we define Qβ as

the set of query points in X whose chromatic density with respect to P is at least

β (i.e., Qβ = {q ∈ X | δ(q, P ) ≥ β}). The following result describes the trade-off

between α and β to guarantee the correct classification of query points in Qβ after

condensation.

Theorem 5.6. Any α-consistent subset is a weak ε-coreset for the nearest-neighbor

rule for queries in Qβ, for β = 2/α. Moreover, all query points in Qβ are correctly

classified.

The proof of this theorem is rather simple, and follows the same arguments

outlined in Case 1 of the proof of Theorem 5.4. Basically, we use Lemma 5.2 to

show that for any query point q ∈ Qβ, q’s chromatic density after condensation

is greater than zero if αβ ≥ 2. Note that ε plays no role in this result, as the

guarantee on query points of Qβ is of correct classification (i.e., the class of its exact

nearest-neighbor in P ), rather than an approximation.
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The trade-off between α and β is illustrated in Figure 5.2. From an initial

training set P ⊂ R2 (Figure 5.2a), we show the regions of R2 that comprise the setsQβ

for β = 2/α, using α = {0.1, 0.2,
√
2} (Figures 5.2b-5.2d). While evidently, increasing

α guarantees that more query points will be correctly classified after condensation,

this example demonstrates a phenomenon commonly observed experimentally: most

query points lie far from enemy points, and thus have high chromatic density with

respect to P . Therefore, while Theorem 5.4 states that α must be set to 2/ε to

provide approximation guarantees on all query points, Theorem 5.6 shows that much

smaller values of α are sufficient to provide guarantees on some query points, as

evidenced in the example in Figure 5.2.

(a) Set P (200 pts) (b) Q2/α for α = 0.1 (c) Q2/α for α = 0.2 (d) Q2/α for α =
√
2

Figure 5.2: Depiction of the Qβ sets for which any α-consistent subset is weak coreset

(β = 2/α). Query points in the yellow • areas are inside Qβ, and thus correctly

classified after condensation. Query points in the blue • areas are not in Qβ, and

have no guarantee of correct classification.

These results establish a clear connection between the problem of condensation

and that of finding coresets for the nearest-neighbor rule, and provides a roadmap

to prove Theorem 5.1. This is the first characterization of sufficient conditions to
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correctly classify any query point in X after condensation, and not just the points

in P (as the original consistency criteria implies). In the following section, these

existential results are matched with algorithms to compute α-selective subsets of P

of bounded cardinality.

5.3 Coreset Computation

5.3.1 Hardness Results

Define Min-α-CS to be the problem of computing an α-consistent subset of

minimum cardinality for a given training set P . Similarly, let Min-α-SS be the

corresponding optimization problem for α-selective subsets. Following known results

from standard condensation [10–12], when α is set to zero, the Min-0-CS and

Min-0-SS problems are both known to be NP-hard. Being special cases of the

general problems just defined, this implies that both Min-α-CS and Min-α-SS are

NP-hard.

Here we present results related to the hardness of approximation of both

problems, along with simple algorithmic approaches with tight approximation factors.

Theorem 5.7. The Min-α-CS problem is NP-hard to approximate in polynomial

time within a factor of 2(ddim(X ) log ((1+α)/γ))1−o(1)

.

The full proof is omitted, as it follows from a modification of the hardness

bounds proof for the Min-0-CS problem described in [36], which is based on a

reduction from the Label Cover problem. Proving Theorem 5.7 involves a careful
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adjustment of the distances in this reduction, so that all the points in the construction

have chromatic density at least α. Consequently, this would imply that the minimum

nearest-enemy distance is reduced by a factor of 1/(1 + α), explaining the resulting

bound for Min-α-CS.

The NET algorithm [36] can also be generalized to compute α-consistent subsets

of P as follows. We define α-NET as the algorithm that computes a γ/(1 + α)-net

of P , where γ is the smallest nearest-enemy distance in P . The covering property

of nets [67] implies that the resulting subset is α-consistent, while the packing

property suggests that its cardinality is O
(
((1 + α)/γ)ddim(X )+1

)
, implying a tight

approximation to the Min-α-CS problem.

Theorem 5.8. The Min-α-SS problem is NP-hard to approximate in polynomial

time within a factor of (1− o(1)) lnn unless NP ⊆ DTIME(nlog logn).

Proof. The result follows from the hardness of another related covering problem: the

minimum dominating set [68–70]. We describe a simple L-reduction from any instance

of this problem to an instance of Min-α-SS, which preserves the approximation

ratio.

1. Consider any instance of minimum dominating set, consisting of the graph

G = (V,E).

2. Generate a new edge-weighted graph G′ as follows:

Create two copies of G, namely Gr = (Vr, Er) and Gb = (Vb, Eb), of red and blue

nodes respectively. Set all edge-weights of Gr and Gb to be 1. Finally, connect

each red node vr to its corresponding blue node vb by an edge {vr, vb} of weight
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1 + α + ξ for a sufficienly small constant ξ > 0. Formally, G′ is defined as the

edge-weighted graph G′ = (V ′, E ′) where the set of nodes is V ′ = Vr ∪ Vb, the

set of edges is E ′ = Er ∪ Er ∪ {{vr, vb} | v ∈ V }, and an edge-weight function

w : E ′ → R+ where w(e) = 1 iff e ∈ Er ∪ Eb, and w(e) = 1 + α + ξ otherwise.

3. A labeling function l where l(v) = red iff v ∈ Vr, and l(v) = blue iff v ∈ Vb.

4. Compute the shortest-path metric of G′, denoted as dG′ .

5. Solve the Min-α-SS problem for the set V ′, on metric dG′ , and the labels

defined by l.

A dominating set of G consists of a subset of nodes D ⊆ V , such that every

node v ∈ V \D is adjacent to a node in D. Given any dominating set D ⊆ V of

G, it is easy to see that the subset R = {vr, vb | v ∈ D} is an α-selective subset

of V ′, where |R| = 2|D|. Similarly, given an α-selective subset R ⊆ V ′, there is

a corresponding dominating set D of G, where |D| ≤ |R|/2, as D can be either

R ∩ Vr or R ∩ Vb. Therefore, Min-α-SS is as hard to approximate as the minimum

dominating set problem.

There is a clear connection between the Min-α-SS problem and covering

problems, in particular that of finding an optimal hitting set. Given a set of elements

U and a family C of subsets of U , a hitting set of (U,C) is a subset H ⊆ U such

that every set in C contains at least one element of H. Therefore, let Np,α be the

set of points of P whose distance to p is less than dne(p)/(1 + α), then any hitting

set of (P, {Np,α | p ∈ P}) is also an α-selective subset of P , and vice versa. This
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simple reduction implies a O(n3) worst-case time O(log n)-approximation algorithm

for Min-α-SS, based on the classic greedy algorithm for set cover [71, 72]. Call this

approach α-HSS or α-Hitting Selective Subset. It follows from Theorem 5.8 that for

training sets in general metric spaces, this is the best approximation possible under

standard complexity assumptions.

While both α-NET and α-HSS compute tight approximations of their corre-

sponding problems, their performance in practice does not compare to heuristic

approaches for standard condensation (see Section 5.4 for experimental results).

Therefore, in the following subsections, we consider two practical algorithms for this

problem, namely SFCNN and RSS, and extend them to compute subsets with the

newly defined criteria.

5.3.2 An Algorithm for α-Selective Subsets

For standard condensation, we have already analyzed the RSS algorithm (see

Chapter 4) used to compute selective subsets. It runs in quadratic worst-case time

and exhibits good performance in practice. The selection process of this algorithm is

heuristic in nature and can be described as follows: beginning with an empty set, the

points in p ∈ P are examined in increasing order with respect to their nearest-enemy

distance dne(p). The point p is added to the subset R if dnn(p,R) ≥ dne(p). It is easy

to see that the resulting subset is selective.

Now, we define a generalization called α-RSS, to compute α-selective subsets

of P . The condition to add a given point p ∈ P to the selected subset checks if any

89



previously selected point is closer to p than dne(p)/(1 + α), instead of just dne(p).

See Algorithm 10 for a formal description, and Figure 5.3 for an illustration. It is

easy to see that this algorithm computes an α-selective subset, while keeping the

quadratic time complexity of the original RSS algorithm.

Algorithm 10: α-RSS

Input: Initial training set P and parameter α ≥ 0

Output: α-selective subset R ⊆ P

1 R← ϕ

2 Let {pi}ni=1 be the points of P sorted increasingly w.r.t. their nearest-enemy

distance dne(pi)

3 foreach pi ∈ P , where i = 1 . . . n do

4 if (1 + α) · dnn(pi, R) ≥ dne(pi) then

5 R← R ∪ {pi}

6 return R

Naturally, we want to analyze the number of points this algorithm selects. The

remainder of this section establishes upper-bounds and approximation guarantees of

the α-RSS algorithm for any doubling metric space, with improved results in the

Euclidean space. This proves the result mentioned in Chapter 4 that RSS computes

an approximation of the Min-0-CS and Min-0-SS problems.

5.3.2.1 Size in Doubling spaces

First, we consider the case where the underlying metric space (X , d) of P

is doubling. The following results depend on the doubling dimension ddim(X ) of

the metric space (which is assumed to be constant), the margin γ (the smallest
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nearest-enemy distance of any point in P ), and κ (the number of nearest-enemy

points in P ).

Theorem 5.9. α-RSS computes a tight approximation for the Min-α-CS problem.

Proof. This follows from a direct comparison to the resulting subset of the α-NET

algorithm from the previous section. For any point p selected by α-NET, let Bp,α

be the set of points of P “covered” by p, that is, whose distance to p is at most

γ/(1 + α). By the covering property of ε-nets, this defines a partition on P when

considering every point p selected by α-NET.

Let R be the set of points selected by α-RSS, we analyze the size of Bp,α ∩R,

that is, for any given Bp,α how many points could have been selected by the α-RSS

algorithm. Let a, b ∈ Bp,α ∩ R be any two such points, where without loss of

generality, dne(a) ≤ dne(b). By the selection process of the algorithm, we know that

d(a, b) ≥ dne(b)/(1+α) ≥ γ/(1+α). A simple packing argument in doubling metrics

implies that |Bp,α ∩R| ≤ 2ddim(X )+1. Altogether, we have that the size of the subset

selected by α-RSS is O
(
(2(1 + α)/γ)ddim(X )+1

)
.

Theorem 5.10. α-RSS computes an O(log (min (1 + 2/α, 1/γ)))-factor approxima-

tion for the Min-α-SS problem. For α = Ω(1), this is a constant-factor approxima-

tion.

Proof. Let OPTα be the optimum solution to the Min-α-SS problem, i.e., the

minimum cardinality α-selective subset of P . For every point p ∈ OPTα in such

solution, define Sp,α to be the set of points in P “covered” by p, or simply Sp,α =
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Figure 5.3: Selection of α-RSS for α=0.5. Faded points are not selected, while

selected points are drawn along with a ball of radius dne(p) (dotted outline) and a

ball of radius dne(p)/(1 + α) (solid outline). A point p is selected if no previously

selected point is closer to p than dne(p)/(1 + α).

{r ∈ P | d(r, p) < dne(r)/(1 + α)}. Additionally, let R be the set of points selected

by α-RSS, define Rp,σ to be the points selected by α-RSS which also belong to Sp,α

and whose nearest-enemy distance is between σ and 2σ, for σ ∈ [γ, 1]. That is,

Rp,σ = {r ∈ R ∩ Sp,α | dne(r) ∈ [σ, 2σ)}. Clearly, these subsets define a partitioning

of R for all p ∈ OPTα and values of σ = γ 2i for i = {0, 1, 2, . . . , ⌈log 1
γ
⌉}.

However, depending on α, some values of σ would yield empty Rp,σ sets.

Consider some point q ∈ Sp,α, we can bound its nearest-enemy distance with respect

to the nearest-enemy distance of point p. In particular, by leveraging simple triangle-

inequality arguments, it is possible to prove that 1+α
2+α

dne(p) ≤ dne(q) ≤ 1+α
α

dne(p).
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Therefore, the values of σ for which Rp,σ sets are not empty, are σ = 2j 1+α
2+α

dne(p)

for j = {0, . . . , ⌈log (1 + 2/α)⌉}.

The proof now follows by bounding the size of Rp,σ which can be achieved by

bounding its spread. Thus, lets consider the smallest and largest pairwise distances

among points in Rp,σ. Take any two points a, b ∈ Rp,σ where without loss of

generality, dne(a) ≤ dne(b). Note that points selected by α-RSS cannot be “too close”

to each other; that is, as a and b were selected by the algorithm, we know that

(1 + α) d(a, b) ≥ dne(b) ≥ σ. Therefore, the smallest pairwise distance in Rp,σ is at

least σ/(1+α). Additionally, by the triangle inequality, we can bound the maximum

pairwise distance using their distance to p as d(a, b) ≤ d(a, p) + d(p, b) ≤ 4σ/(1 + α).

Then, by the packing properties of doubling spaces, the size of Rp,σ is at most

4ddim(X )+1.

Altogether, for every p ∈ OPTα there are up to ⌈log (min (1 + 2/α, 1/γ))⌉ non-

empty Rp,σ subsets, each containing at most 4ddim(X )+1 points. In doubling spaces

with constant doubling dimension, the size of these subsets is also constant.

While these results are meaningful from a theoretical perspective, it is also

useful to establishing bounds in terms of the geometry of the learning space, which

is characterized by the boundaries between points of different classes. Thus, using

similar packing arguments as above, we bound the selection size of the algorithm

with respect to κ.

Theorem 5.11. α-RSS selects O
(
κ log 1

γ
(1 + α)ddim(X )+1

)
points.

Proof. This follows from similar arguments to the ones used to prove Theorem 5.10,
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using an alternative charging scheme for each nearest-enemy point in the training set.

Consider one such point p ∈ {ne(r) | r ∈ P} and a value σ ∈ [γ, 1], we define R′
p,σ to

be the subset of points from α-RSS whose nearest-enemy is p, and their nearest-enemy

distance is between σ and 2σ. That is, R′
p,σ = {r ∈ R | ne(r) = p ∧ dne(r) ∈ [σ, 2σ)}.

These subsets partition R for all nearest-enemy points of P , and values of σ = γ 2i

for i = {0, 1, 2, . . . , ⌈log 1
γ
⌉}.

For any two points a, b ∈ R′
p,σ, the selection criteria of α-RSS implies some

separation between selected points, which can be used to prove that d(a, b) ≥ σ/(1+α).

Additionally, we know that d(a, b) ≤ d(a, p) + d(p, b) = dne(a) + dne(b) ≤ 4σ. Using

a simple packing argument, we have that |R′
p,σ| ≤ ⌈4(1 + α)⌉ddim(X )+1.

Altogether, by counting all sets R′
p,σ for each nearest-enemy in the training set

and values of σ, the size ofR is upper-bounded by |R| ≤ κ ⌈log 1/γ⌉ ⌈4(1 + α)⌉ddim(X )+1.

Based on the assumption that ddim(X ) is constant, this completes the proof.

As a corollary, this result implies that when α = 2/ε, the α-selective subset

computed by α-RSS contains O
(
κ log 1/γ (1/ε)ddim(X )+1

)
points. This establishes

the size bound on the ε-coreset given in Theorem 5.1, which can be computed using

the α-RSS algorithm.

5.3.2.2 Size in Euclidean space

In the case where P ⊂ Rd lies in d-dimensional Euclidean space, the analysis

of α-RSS can be further improved, leading to a constant-factor approximation of

Min-α-SS for values of α ≥ 0, and reduced dependency on the dimensionality of P .
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Theorem 5.12. α-RSS computes an O(1)-approximation for the Min-α-SS problem

in Rd.

Proof. Similar to the proof of Theorem 5.10, defineRp = Sp,α∩R as the points selected

by α-RSS that are “covered” by p in the optimum solution OPTα. Consider two such

points a, b ∈ Rp where without loss of generality, dne(a) ≤ dne(b). By the definition of

Sp,α we know that d(a, p) < dne(a)/(1 + α), and similarly with b. Additionally, from

the selection of the algorithm we know that d(a, b) ≥ dne(b)/(1 + α). Overall, these

inequalities imply that the angle ∠apb ≥ π/3. By a simple packing argument, the

size of Rp is bounded by the kissing number in d-dimensional Euclidean space, or

simply O((3/π)d−1). Therefore, we have that |R| ≤
∑

p |Rp| = |OPTα| O((3/π)d−1).

Assuming d is constant, this completes the proof.

Figure 5.4: Training set where the analysis of the approximation factor

of α-RSS in Rd is tight.

This analysis is tight up to constant factors. In Figure 5.4, we illustrate
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a training set P consisting of red and blue points in Rd, where α-RSS selects

Θ(cd−2 |OPTα|) points. Consider two helper points (which do not belong to P )

cr = 0u⃗d and cb = (1 + α)u⃗d, where u⃗d is the unit vector parallel to the d-th

coordinate. Add red points ri on the surface of the d − 1 unit ball centered at cr

and perpendicular to u⃗d. Similarly with blue points bi around cb. Finally, add two

points r∗ = −ξu⃗d and b∗ = (1 + α+ ξ)u⃗d, for a suitable value ξ such that ∥r∗ri∥ < 1.

Clearly, the nearest-enemy distance of all ri and bi points is 1 + α, while the one of

r∗ and b∗ is strictly greater than 1 + α. Thus, OPTα = {r∗, b∗} but α-RSS selects

Θ(cd−2) points ri and bi at distance greater than 1 from each other.

Furthermore, a similar constant-factor approximation can be achieved for any

training set P in ℓp space for p ≥ 3. This follows analogously to the proof of

Theorem 5.12, exploiting the bounds between ℓp and ℓ2 metrics, where 1/
√
d ∥v∥p ≤

∥v∥2 ≤
√
d ∥v∥p. This would imply that the angle between any two points in α-RSSp

is Ω(1/d). Therefore, it shows that α-RSS achieves an approximation factor of

O(dd−1), or simply O(1) for constant dimension.

Similarly to the case of doubling spaces, we also establish upper-bounds in terms

of κ for the selection size of the algorithm in Euclidean space. The following result

improves the exponential dependence on the dimensionality of P (from ddim(Rd) =

Θ(d) to d− 1), while keeping the dependency on the margin γ, which contrast with

the approximation factor results.

Theorem 5.13. In Euclidean space Rd, α-RSS selects O
(
κ log 1

γ
(1 + α)d−1

)
points.

Proof. Let p be any nearest-enemy point of P and σ ∈ [γ, 1], similarly define R′
p,σ to
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be the set of points selected by α-RSS whose nearest-enemy is p and their nearest-

enemy distance is between σ and bσ, for b = (1+α)2

α(2+α)
. Equivalently, these subsets

define a partitioning of R for all nearest-enemy points p and values of σ = γ bk for

k = {0, 1, 2, . . . , ⌈logb 1
γ
⌉}. Thus, the proof follows from bounding the minimum angle

between points in these subsets. For any two such points pi, pj ∈ R′
p,σ, we lower

bound the angle ∠pippj . Assume without loss of generality that dne(pi) ≤ dne(pj). By

definition of the partitioning, we also know that dne(pj) ≤ bσ ≤ b dne(pi). Therefore,

altogether we have that dne(pi) ≤ dne(pj) ≤ b dne(pi).

First, consider the set of points whose distance to pi is (1 + α) times their

distance to p, which defines a multiplicative weighted bisector [73] between points

p and pi, with weights equal to 1 and 1/(1 + α) respectively. This is characterized

as a d-dimensional ball (see Figure 5.5a) with center ci = (pi − p) b+ p and radius

dne(pi) b/(1 + α). Thus p, pi and ci are collinear, and the distance between p

and ci is d(p, ci) = b dne(pi). In particular, let’s consider the relation between pj

and such bisector. As pj was selected by the algorithm after pi, we know that

(1 + α) d(pj, pi) ≥ dne(pj) where dne(pj) = d(pj, p). Therefore, clearly pj lies either

outside or in the surface of the weighted bisector between p and pi (see Figure 5.5b).

For angle ∠pippj, we can frame the analysis to the plane defined by p, pi and

pj. Let x and y be two points in this plane, such that they are the intersection

points between the weighted bisector and the balls centered at p of radii dne(pi) and

b dne(pi) respectively (see Figure 5.5c). By the convexity of the weighted bisector

between p and pi, we can say that ∠pippj ≥ min(∠xppi,∠ypcj). Now, consider

the triangles △pxpi and △pyci. By the careful selection of b, these triangles are
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(a) Multiplicatively

weighted bisectors for

different weights.

(b) Position of point pj

w.r.t. the weighted bisector

between points p and pi.

(c) The intersection points x and

y between the weighted bisector

and the limit balls of Rp,σ.

Figure 5.5: Construction for the analysis of the minimum angle between two points

in R′
p,σ w.r.t. some nearest-enemy point p ∈ P . Let points pi, pj ∈ R′

p,σ, we analyze

the angle ∠pippj.

both isosceles and similar. In particular, for △pxpi the two sides incident to p have

length equal to dne(pi), and the side opposite to p has length equal to dne(pi)/(1+α).

For △pyci, the side lengths are b dne(pi) and dne(pi) b/(1 + α). Therefore, the angle

∠pippj ≥ ∠xppi ≥ 1/(1 + α).

By a simple packing argument based on this minimum angle, we have that the

size of R′
p,σ is O((1 + α)d−1). All together, following the defined partitioning, we

have that:

|R| =
∑
p

⌈logb 1
γ
⌉∑

k=0

|R′
p,bk | ≤ κ

⌈
logb

1

γ

⌉
O
(
(1 + α)d−1

)
For constant α and d, the size of α-RSS is O(κ log 1

γ
). Moreover, when α is

zero α-RSS selects O(κ cd−1), matching the bound presented in Chapter 4 for RSS

in Euclidean space.
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5.3.2.3 Subquadratic Implementation

Here we present a subquadratic implementation for the α-RSS algorithm, which

completes the proof of our main result, Theorem 5.1. Prior to this result , among

algorithms for nearest-neighbor condensation, FCNN and SFCNN achieve the best

worst-case time complexity, running in O(nm) time, where m = |R| is the size of

the selected subset.

The α-RSS algorithm consists of two main stages: computing the nearest-enemy

distances of all points in P (and sorting the points based on these), and the selection

process itself. The first stage requires a total of n nearest-enemy queries, plus

additional O(n log n) time for sorting. The second stage performs n nearest-neighbor

queries on the current selected subset R, which needs to be updated m times. In

both cases, using exact nearest-neighbor search would degenerate into linear search

due to the curse of dimensionality. Thus, the first and second stage of the algorithm

would need O(n2) and O(nm) worst-case time respectively.

These bottlenecks can be overcome by leveraging approximate nearest-neighbor

techniques. Clearly, the first stage of the algorithm can be improved by computing

nearest-enemy distances approximately, using as many ANN structures as classes

there are in P , which is considered to be a small constant. Therefore, by also applying

a simple brute-force search for nearest-neighbors in the second stage, result (i) of

the next theorem follows immediately. Moreover, by combining this with standard

techniques for static-to-dynamic conversions [74], we have result (ii) below. Denote

this variant of α-RSS as (α, ξ)-RSS, for a parameter ξ ≥ 0.
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Theorem 5.14. Given a data structure for ξ-ANN searching with construction time

tc and query time tq (which potentially depend on n and ξ), the (α, ξ)-RSS variant

can be implemented with the following worst-case time complexities, where m is the

size of the selected subset.

(i) O (tc + n (tq +m+ log n))

(ii) O ((tc + n tq) log n)

More generally, if we are given an additional data structure for dynamic ξ-

ANN searching with construction time t′c, query time t′q, and insertion time t′i, the

overall running time will be O
(
tc + t′c + n (tq + t′q + log n) +mt′i

)
. Indeed, this can

be used to obtain (ii) from the static-to-dynamic conversions [74], which propose an

approach to convert static search structures into dynamic ones. These results directly

imply implementations of (α, ξ)-RSS with subquadratic worst-case time complexities,

based on ANN techniques [43, 75] for low-dimensional Euclidean space, and using

techniques like LSH [50] that are suitable for ANN in high-dimensional Hamming

and Euclidean spaces. More generally, subquadratic runtimes can be achieved by

leveraging techniques [76] for dynamic ANN search in doubling spaces.

It remains unclear how these new implementations of the algorithm would

deal with “uncertainty”. That is, such implementation schemes for α-RSS would

incur an approximation error (of up to 1 + ξ) on the computed distances: either

only during the first stage if (i) is implemented, or during both stages if (ii) or the

dynamic-structure scheme are implemented. The uncertainty introduced by these

approximate queries, imply that in order to guarantee finding α-selective subsets, we
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Algorithm 11: (α, ε)-RSS

Input: Initial training set P and parameters α, ε ≥ 0

Output: α-selective subset R ⊆ P

1 R← ϕ

2 Let {pi}ni=1 be the points of P sorted increasingly w.r.t. their approximate

nearest-enemy distance dne(pi, ε)

3 foreach pi ∈ P , where i = 1 . . . n do

4 if (1 + α)(1 + ε) · dnn(pi, R, ε) ≥ dne(pi, ε) then

5 R← R ∪ {pi}

6 return R

must modify the condition for adding point during the second stage of the algorithm.

Let dne(p, ξ) denote the ξ-approximate nearest-enemy distance of p computed in the

first stage, and let dnn(p,R, ξ) denote the ξ-approximate nearest-neighbor distance of

p over points of the current subset (computed in the second stage). Then, (α, ξ)-RSS

adds a point p into the subset if (1 + ξ)(1 + α) dnn(p,R, ξ) ≥ dne(p, ξ).

By similar arguments to the ones described in Section 5.3.2, size guarantees

can be extended to (α, ξ)-RSS. First, the size of the subset selected by (α, ξ)-RSS,

in terms of the number of nearest-enemy points in the set, would be bounded by the

size of the subset selected by α̂-RSS with α̂ = (1 + α)(1 + ξ)2 − 1. Additionally, the

approximation factor of (α, ξ)-RSS in both doubling and Euclidean metric spaces

would increase by a factor of O((1 + ξ)2(ddim(X )+1)).

This completes the proof of Theorem 5.1.

Lemma 5.15. There exist a data structure for dynamic ξ-ANN queries in sets P

in d-dimensional Euclidean space, that can be constructed in t′c = O(n log n) time,
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queried in t′q = O(log n + 1/ξd−1) time, and where points of P can be inserted in

t′i = O(log n) time.

Together with Theorem 5.14 described above, this lemma implies that there is

a variant of α-RSS for Euclidean space that runs in O(n log n+ n/ξd−1) time. Such

data structure can be build from a standard BBD tree [42, 77] as follows. First,

construct the tree from the entire set P , thus taking t′c = O(n log n) time. However,

each node of the tree has some additional data: a boolean flag indicating if the

subtree rooted at such node contains a point of the “active” subset R. Initially,

all flags are set to false, making the initial active subset being empty. To add a

point p ∈ P to the active subset R, all the flags from the root of the tree to the leaf

node containing p must be set to true, thus making the insertion time t′i = O(log n).

Finally, an ξ-ANN query on such tree would perform as usual, only avoiding to visit

nodes whose flag is set to false, yielding a query time of t′q = O(log n+ 1/ξd−1).

5.3.3 An Algorithm for α-Consistent Subsets

Even thought the main result of this chapter relies on the computation of α-

selective subsets, Theorem 5.6 shows that even α-consistency is enough to guarantee

the correct classification of certain query points. In practice, FCNN [16] has been

acknowledged as the most efficient algorithm for computing consistent subsets. From

the results presented in Chapter 4, we know that while FCNN cannot be upper-

bounded in terms of k or κ, the simple modification of this algorithm called SFCNN

can be successfully upper-bounded. Therefore, in this section, we discuss a simple
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extension of this algorithm in order to compute α-consistent subsets.

Recall the workings of both the FCNN and SFCNN algorithms, which select

points iteratively as follows. First, the subset R is initialized with one point per class

(e.g., the centroids of each class). During every iteration, the algorithm identifies all

the points in P that are incorrectly classified with the current R, or simply, those

whose nearest-neighbor in R is of different class. This is formalized as the voren

function, defined for every point p ∈ R as follows:

voren(p,R, P ) = {q ∈ P | nn(q, R) = p ∧ l(q) ̸= l(p)}

This function identifies all the enemies of p whose nearest-neighbor in R is p

itself. The only difference between the original FCNN algorithm and the modified

SFCNN appears next. While FCNN adds one point per each p ∈ R in a batch2,

potentially doubling the size of R, SFCNN adds only one point per iteration. Then,

both algorithms terminate when no other points can be added (i.e., all voren(p,R, P )

are empty), implying that R is consistent.

We can now extend both algorithms to compute α-consistent subsets, namely

α-FCNN and α-SFCNN, by redefining the voren function. The idea is simple: to

identify those points whose nearest-neighbor in R is p, such that are either enemies

of p, or whose chromatic density with respect to R is less than α. This is formally

defined as follows:

voren(α, p,R, P ) = {q ∈ P | nn(q, R) = p ∧ (l(q) = l(p)⇒ δ(q, R) < α)}
2For FCNN, line 4 of Algorithm 12 updates R by adding all the points in S, instead of only one

point of S.
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By plugging this function into the algorithms (see Algorithm 12), it is easy

to show that the resulting subsets are α-consistent. Moreover, this can be easily

implemented to run in O(nm) worst-case time, where m is the final size of R,

extending the implementation scheme described in the paper where FCNN was

initially proposed [16].

Algorithm 12: α-SFCNN

Input: Initial training set P and parameter α ≥ 0

Output: α-consistent subset R ⊆ P

1 R← ϕ

2 S ← centroids(P )

3 while S ̸= ϕ do

4 R← R ∪ {Choose one point of S}

5 S ← ϕ

6 foreach p ∈ R do

7 S ← S ∪ {rep(p, voren(α, p,R, P ))}

8 return R

Finally, leveraging the analysis described in Section 4.3.3, together with the

proofs of Theorems 5.9 and 5.11, we upper-bound the selection size of the α-SFCNN

algorithm. The proofs of the next results depend on the following observation. Let

a, b ∈ R be two points selected by α-SFCNN, where dne(a), dne(b) ≥ β for some

β ≥ 0, it is easy to show that d(a, b) ≥ β/(1 + α). This follows from a fairly simple

argument: to the contrary, suppose that d(a, b) < β/(1+α), which would imply that

a and b belong to the same class. Without loss of generality, point a was added to R

before point b. Note that after adding point a to R, the chromatic density of b w.r.t.

R is δ(b, R) > α, which contradicts the statement that b could be added to R.
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Theorem 5.16. α-SFCNN computes a tight approximation for the Min-α-CS

problem.

This result follows by similar arguments as the proof of Theorem 5.9. By

considering any two points a, b ∈ Bp,α ∩R, we know that d(a, b) ≥ γ/(1 + α) as γ is

the smallest nearest-enemy distance in P . This implies α-SFCNN can select up to

2ddim(X )+1 times more points as the α-NET algorithm, which yields the proof.

Theorem 5.17. α-SFCNN selects O
(
κ log 1

γ
(1 + α)ddim(X )+1

)
points.

Similarly, this result can be proven using the same arguments outlined to prove

Theorem 5.11. After partitioning the selection of α-SFCNN into O(κ log 1/γ) subsets,

consider any two points a, b in one of these subsets, where dne(a), dne(b) ∈ [σ, 2σ), for

some σ ∈ [γ, 1]. Therefore, we can show that d(a, b) ≥ σ/(1 + α), which implies that

each subset in the partitioning contains at most ⌈4(1 + α)⌉ddim(X )+1 points. This

yields the proof.

5.4 Experimental Comparison

In order to get a clearer impression of the relevance of these results in practice,

we performed experimental trials on several training sets, both synthetically generated

and widely used benchmarks. First, we consider 21 training sets from the UCI

Machine Learning Repository3 which are commonly used in the literature to evaluate

condensation algorithms [18]. These consist of a number of points ranging from 150

to 58000, in d-dimensional Euclidean space with d between 2 and 64, and 2 to 26

3https://archive.ics.uci.edu/ml/index.php
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classes. We also generated some synthetic training sets, containing 105 uniformly

distributed points, in 2 to 3 dimensions, and 3 classes. All training sets used in

these experimental trials are summarized in Table 4.2. The implementation of the

algorithms, training sets used, and raw results, are publicly available4.

These experimental trials compare the performance of different condensation

algorithms when applied to vastly different training sets. We use two measures of

comparison on these algorithms: their runtime in the different training sets, and

the size of the subset selected. Clearly, these values might differ greatly on training

sets whose size are too distinct. Therefore, before comparing the raw results, these

are normalized. The runtime of an algorithm for a given training set is normalized

by dividing it by n, the size of the training set. The size of the selected subset is

normalized by dividing it by κ, the number of nearest-enemy points in the training

set, which characterizes the complexity of the boundaries between classes.

5.4.1 Algorithm Comparison

The first experiment evaluates the performance of the five algorithms discussed

in this chapter: α-RSS, α-FCNN, α-SFCNN, α-HSS, and α-NET. The evaluation is

carried out by varying the value of the α parameter from 0 to 1, to understand the

impact of increasing this parameter. The implementation of α-HSS uses the well-

known greedy algorithm for set cover [71], and solves the problem using the reduction

described in Section 5.3.1. In the other hand, recall that the original NET algorithm

(for α = 0) implements an extra pruning technique to further reduce the training set

4https://github.com/afloresv/nnc/
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after computing the γ-net [36]. For a fair comparison, we implemented the α-NET

algorithm with a modified version of this pruning technique that guarantees that the

selected subset is still α-selective.

The results show that α-RSS outperforms the other algorithms in terms of

running time by a big margin, and irrespective of the value of α (see Figure 5.6a).

Additionally, the number of points selected by α-RSS, α-FCNN, and α-SFCNN is

comparable to α-HSS, which guarantees the best possible approximation factor in

general metrics, while α-NET is significantly outperformed.

(a) Running time. (b) Size of the selected subsets.

Figure 5.6: Comparison α-RSS, α-FCNN, α-SFCNN, α-NET, and α-HSS, for differ-

ent values of α.

5.4.2 Subquadratic Approach

Using the same experimental framework, we evaluate performance of the

subquadratic implementation (α, ξ)-RSS described in Section 5.3.2.3. In this case,

we change the value of parameter ξ to assess its effect on the running time and
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selection size over the algorithm, for two different values of α (see Figure 5.7). The

results show an expected increase of the number of selected points, while significantly

improving its running time.

(a) Running time. (b) Size of the selected subsets.

Figure 5.7: Evaluating the effect of increasing the parameter ξ on (α, ξ)-RSS for

α = {0, 0.2}.
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Chapter 6: Chromatic Approximate Voronoi Diagram

6.1 Introduction

As evidenced from the previous chapters, a common approach towards dealing

with nearest-neighbor classification, is to reduce this problem to the one of nearest-

neighbor search. That is, taking the initial training set P and using any out-of-the-box

solution for computing nearest-neighbors of P , like AVDs [19, 20], LSH [21], and

HNSW graphs [22]. Assuming this reduction for nearest-neighbor classification, there

are only two ways of having more efficient queries. The first, by preprocessing the

training set via some condensation algorithm or by computing an ε-coresets, as

described in Chapters 3 to 5. The second option is to improve the complexity of

nearest-neighbor search techniques (usually involving approximate solutions), which

is a known and extensive line of research.

In this chapter we explore an alternative approach towards efficient nearest-

neighbor classification. The idea then is to avoid reducing this problem to the one of

nearest-neighbor search, but instead proposing an approach that directly computes

the predicted class. Therefore, our approach would bypass the preprocessing of the

training set, and build a tailor-made data structure for approximate nearest-neighbor

classification. Formally, we are given training set P in a metric space (X , d) and an
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approximation parameter 0 < ε ≤ 1
2
, and the goal is to construct a data structure so

that given any query point q ∈ X , it is possible to efficiently classify q according to

any valid ε-approximate nearest-neighbor of q in P . Throughout, we take domain X

to be the d-dimensional Euclidean space Rd, distance function d to be the L2 norm,

and we assume that the dimension d is a fixed constant, independent of n and ε.

These results have been published in [78].

Related Work

When working with ε-approximate nearest-neighbor searching (ε-ANN), the

objective is to compute a point whose distance from the query point is within a

factor of 1 + ε of the true nearest-neighbor. This problem, referred to as “standard

ANN” throughout this chapter, has been widely studied. In chromatic ε-ANN search

the objective is to return just the class (or more visually, the “color”) of any such

point [51]. We refer to this as ε-classification, and it is the focus of this chapter.

Clearly, chromatic ANN queries can be reduced to standard ANN queries.

Hence, most of the efficiency improvements in nearest-neighbor classification have

arisen from improvements to the standard ANN problem. While standard ANN

has been well studied in high-dimensional spaces (see, e.g., [21, 22,50]), in constant-

dimensional Euclidean space, the most efficient data structures involve variants of

the Approximate Voronoi Diagram (or AVD) (see [19,20,43,75]). Mount et al. [51]

proposed a data structure specifically tailored for ε-classification. Unfortunately,

this work was based on older technology, and its results are not competitive when
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compared to the most recent advances on standard ANN search via AVDs.

All previous results have query and space complexities that depend on n, the

total size of the training set P . In many cases, a much smaller portion of the training

set may suffice to correctly ε-classify queries. In the exact setting, these smaller set

of points would be the set of border points of P , of size k, which are the ones that

define the boundaries between classes. Moreover, the concept of border points can be

generalized in the context of ε-classification (see Section 6.2 for a formal definition).

Thus, denote kε as the number of ε-border points, where k ≤ kε ≤ n. Ideally, we

would like the query and space complexities of answering chromatic ε-ANN queries

to depend on kε instead of n.

There are different approaches to achieve this goal via training set reduction,

as described in Chapters 3 to 5. In general, the idea in such case would be to select

a subset R ⊆ P , which is then used to build a standard AVD to answer ε-ANN

queries over R. However, depending on the approach, one obtains different subset

sizes and classification guarantees. From the condensation heuristics described in

Chapter 4, we know that it is possible to compute subsets R of size O(k) in O(n2)

time. However, when AVDs are built from these subsets, the resulting data structures

are likely to introduce classification errors, especially for query points that should be

easily ε-classified (as described in Chapter 5). Thus, while often used in practice,

these approaches do not guarantee that chromatic ε-ANN queries are answered

correctly. The second approach would involve computing a coreset for ε-classification,

as defined in Chapter 5. Recall that a coreset R guarantees that every query point

will be correctly classified when assigning the class of the point of R returned by the
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AVD. That is, for any query q ∈ Rd, the point of R returned by the AVD belongs to

the same class as one of q’s ε-approximate nearest-neighbors in P . Unfortunately,

the size of the described coreset can be as large as O((k log∆)/εd−1), where ∆ is

the spread of P .

Contributions

From the previous section, we have seen that existing approaches for ε-

classification achieve only one of the following goals:

• The size of the resulting data structure is dependent only on ε, kε (the number

of ε-border points) and d, while being independent from n and ∆.

• It guarantees correct ε-classification for any query point.

The main result of this chapter is an approach that achieves both goals. We

propose a new data structure built specifically to answer chromatic ε-ANN queries

over the training set P , which we call a Chromatic AVD. Given any query point

q ∈ Rd, this data structure returns the class to be assigned to q, which matches the

class of at least one of q’s ε-approximate nearest-neighbors in P . More generally,

our data structure returns a set of classes such that there is an ε-approximate

nearest-neighbor of q from each of these classes.

Therefore, the Chromatic AVD can be used to correctly ε-classify any query

point. The main result of this work is summarized in the following theorem, expressed

in the form of a space-time tradeoff based on a parameter γ.

112



Theorem 6.1. Given a training set P of n labeled points in Rd, an error parameter

0 < ε ≤ 1
2
, and a separation parameter 2 ≤ γ ≤ 1

ε
. Let kε be the number of ε-border

points of P . There exists a data structure for ε-classification, called Chromatic AVD,

with:

Query time: O

(
log (kεγ) +

1

(εγ)
d−1
2

)
Space: O

(
kεγ

d log
1

ε

)
.

Which can be constructed in time Õ
((

n+ kε/(εγ)
3
2
(d−1)

)
γd log 1

ε

)
.

(a) Standard AVD [19,20,43,75]. (b) Chromatic AVD.

Figure 6.1: Examples of the space partitioning achieved by any standard AVD,

compared to the Chromatic AVD data structure proposed in this chapter. Our

approach subdivides the space around the boundaries defined by the ε-border points,

while ignoring other boundaries.

By setting γ to either of its extreme values, we obtain the following query times

and space complexities.

Corollary 6.2. The separation parameter γ describes the tradeoffs between the query
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time and space complexity of the Chromatic AVD. This yields the following results:

If γ = 2 −→ Query time: O
(
log kε +

1

ε
d−1
2

)
Space: O

(
kε log

1

ε

)
.

If γ =
1

ε
−→ Query time: O

(
log

kε
ε

)
Space: O

(
kε
εd

)
.

The approach towards constructing this data structure is hybrid, combining

a quadtree-induced partitioning of space (leveraging similar techniques to the ones

used for standard AVDs), with the construction of coresets for only some cells of this

partition. All other cells can be discarded, and a new quadtree can be built with

only the remaining cells. The final size of the tree is bounded in terms of kε. This

technique allows us to maintain coresets in the most critical regions of space, and

thus, avoiding the dependency on the spread of P .

6.2 Preliminary Ideas and Intuition

First, we need to introduce some preliminary definitions and notations that

are relevant to the results presented in the remaining of the chapter. Given any

point q ∈ Rd, denote its nearest-neighbor as nn(q), and the distance between them

by dnn(q) = d(q, nn(q)).

Additionally, let’s introduce a few concepts and related properties that will

prove useful in the construction of the Chromatic AVD. These are Well-Separated

Pair Decompositions [79] (WSDPs), Quadtrees [48,80], and Approximate Voronoi

Diagrams [19,20,43,75] (AVDs).

Well-Separated Pair Decompositions: Given the point set P , and a separation factor

σ > 2, we say that two sets X, Y ⊆ P are well separated if they can be enclosed
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within two disjoint balls of radius r, such that the distance between the centers

of these balls is at least σr. We say that X and Y form a dumbbell, where both

sets are the heads of this dumbbell. Consider the line segment that connects

the centers of both balls, and let z and ℓ be the center and length of this line

segment, respectively (i.e., the center and the length of the dumbbell). The

following properties hold when σ > 4, for x ∈ X and y ∈ Y :

d(x, z) < ℓ ℓ < 2d(x, y) ℓ > d(x, y)/2.

Furthermore, a well-separated pair decomposition of P is defined as a set

D = {(Xi, Yi)}i where every Xi and Yi are well separated, and for every two

distinct points p1, p2 ∈ P there exists a unique pair P = (X, Y ) ∈ D such that

p1 ∈ X and p2 ∈ Y , or vice-versa. It is known how to construct a WSPD of P

with O(σdn) pairs in O(n log n+ σdn) time.

Quadtrees: These are tree data structures that provide a hierarchical partition of

space. Each node in this tree consists of a d-dimensional hypercube, where

non-leaf nodes partition its corresponding hypercube into 2d equal parts. The

root of this tree corresponds to the [0, 1]d hypercube. We will use a variant of

this structure called a balanced box-decomposition tree (BBD tree) [42]. Such

data structure satisfies the following properties:

1. Given a point set P , such a tree can be built in O(n log n) time, having

space O(n) such that each leaf node contains at most one point of P .

2. Given a collection U of n quadtree boxes in [0, 1]d, such a tree can be built
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in O(n log n) time, having O(n) nodes such that the subdivision induced

by its leaf cells is a refinement of the subdivision induced by the Quadtree

boxes in U .

3. Given the trees from 1 or 2, it is possible to determine the leaf cell

containing any arbitrary query point q in O(log n) time.

Approximate Voronoi Diagram: Generally, AVDs are quadtree-based data structures

that can be used to efficiently answer ANN queries. The partitioning of

space induced by this data structure is often generated from a WSPD of

P . Additionally, every leaf cell w of this quadtree has an associated set of

ε-representatives Rw that has the following property: for any query point q ∈ w,

at least one point in Rw is one of q’s ε-approximate nearest-neighbors in P .

New Ideas and Intuitions. Consider the space partitioning induced by a

standard AVD, as previously described. By construction, any leaf cell w of this

partition has an associated set of ε-representatives Rw. Evidently, for the purposes

of ε-classification, the most important information related to this leaf cell comes

from the classes of the points in Rw, and not necessarily the points themselves.

This leads to an initial approach to simplify an AVD. We distinguish between

two types of leaf cells, based on the points inside their corresponding ε-representative

sets. Any leaf cell w is said to be:

• Resolved: If every point in Rw belongs to the same class.

• Ambiguous: Otherwise, if at least two points in Rw belong to different classes.
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Clearly, there is no need to store the set of ε-representatives of any resolved

leaf cell, as instead, we can simply mark the leaf cell w as resolved with the class

that is shared by all the points in Rw. This effectively reduces the space needed for

such cells to be constant.

Furthermore, it seems that the bulk of the “work” needed to decide the class

of a given query point can be carried out by the ambiguous leaf cells, along with

some groupings of resolved leaf cells. The data structure presented in this chapter,

called Chromatic AVD, builds upon this hypothesis.

Additionally, we formally define the set of ε-border points of the training set

P . This set, denoted as Kε, contains any point p ∈ P for which there exist some

q ∈ Rd and p̄ ∈ P , such that p and p̄ are ε-approximate nearest-neighbors of q, and

both belong to different classes. Denote kε = |Kε| as the number of ε-border points

of the training set P . Note that Kε ⊆ Kε′ if and only if ε ≤ ε′. Additionally, note

that K0 defines the set of (exact) border points of P , where k = k0.

This generalization of the definition of border points seems better suited to

analyze the problem of ε-classification, as illustrated in Figure 6.2. Figure 6.2b shows

the ε-approximate bisectors between the two closest and two farthest points (the first

two belong to K0, while the others belong to Kε but not K0). A hypothetical leaf

cell w is sufficiently separated from the only two exact border points, but intersects

the ε-approximate bisectors between the two farthest points. This implies that inside

the cell w lie query points that can only be ε-classified with one class, and others

with the other class, forcing this cell to be ambiguous. This suggests that K0 is

insufficient to account for the necessary complexity of ε-classification.
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(a) (b)

Figure 6.2: Intuition to assume that Kε (and not K0) is needed to ε-classify some

query points.

6.3 Chromatic AVD Construction

In this section, we describe our method for constructing the proposed Chromatic

AVD. The following overview outlines the necessary steps followed to construct this

data structure.

• The Build step (Section 6.3.1): Consists of building an initial quadtree-based

subdivision of space, designed specifically to achieve the properties described

in Lemma 6.3.

• The Reduce step (Section 6.3.2): Seeks to identify the leaf cells of the initial

subdivision that are relevant for ε-classification, as well as those that can be

ignored or simplified. This process consists of the following substeps.

– Computing the sets of ε-representatives for every leaf cell of the initial

quadtree.
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– Based on these sets, marking the leaf cells as either ambiguous or resolved.

– Selecting those leaf cells which are relevant for ε-classification.

– Building a new quadtree-based subdivision using the previously selected

leaf cells.

6.3.1 The Build Step

We begin by constructing the tree Tinit using similar methods as the ones used

to construct a standard AVD. Thus, the first step is to compute a well-separated

pair decomposition D of P using a constant separation factor of σ > 4. While the

standard construction would use all pairs in this decomposition, for the purpose of

the Chromatic AVD, we filter D to only keep bichromatic pairs. Denote D′ ⊆ D to

be the set of bichromatic pairs in D, where a pair P ∈ D is said to be bichromatic if

and only if the dumbbell heads separate points of different classes. Note that D′ can

be computed similarly to D, using a simple modification of the well-known algorithm

for computing WSPDs [79] (the details are left to the reader).

Next, we compute an initial set of quadtree boxes U(P) for every pair in D′

as follows. This construction depends on two constants c1 and c2 whose assignment

will be described later in this section. For 0 ≤ i ≤ ⌈log (c1 1/ε)⌉, we define bi(P) as

the ball centered at z of radius ri = 2iℓ. Thus, this set of balls involves radius values

ranging from ℓ to Θ(ℓ/ε). For each such ball bi(P), let Ui(P) be the set of quadtree

boxes of size ri/(c2γ) that overlap the ball. Let U(P) denote the union of all these

boxes over all the O(log 1/ε) values of i.
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After performing this process on every pair of the filtered decomposition D′,

take the union of all these boxes denoted as U =
⋃

P∈D′ U(P). Finally, build the tree

Tinit from the set of quadtree boxes U , leveraging property 2 of quadtrees described

in Section 6.2. Additionally, for each class i in the training set, build an auxiliary

tree T i
aux from the point set Pi (i.e., the points of P of that are labeled with class i),

using property 1 of quadtrees. These auxiliary trees will be used together with Tinit

in order to build our final tree T , the Chromatic AVD.

While the standard AVD construction satisfies that all resulting leaf cells of

the tree have certain separation properties from the points of set P , the same is not

true for tree Tinit. However, the following result describes a relaxed notion of the

separation properties, now based on the classes of the points, which are achieved by

Tinit.

Lemma 6.3 (Chromatic Separation Properties). Given two separation parameters

γ > 2 and φ > 3, every leaf cell w of the tree Tinit satisfies at least one of the

following separation properties, where bw is the minimum enclosing ball of w:

(i) P ∩ γbw is empty (see Figure 6.3a), and hence bw is concentrically γ-separated

from P .

(ii) The cell w can be resolved with the classes present inside P ∩ φbw (see Fig-

ure 6.3b).

Proof. Let w be any leaf cell of Tinit, with center cw and side length sw, where its

(minimum) enclosing ball bw has radius rw =
√
d/2 sw and shares the center cw.
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(a) No points inside γbw. (b) Leaf cell w can be resolved.

Figure 6.3: Basic separation properties achieved by during the construction of the

Chromatic AVD.

Additionally, let xi ∈ Pi be a 1-approximate nearest-neighbor of cw among the points

of P of class i. In other words, for each class of points we use the auxiliary trees T i
aux

to compute a 1-approximate nearest-neighbor of cw. A few cases unfold from here:

The first case is rather simple. If 4γφbw∩{xi}i = ∅, knowing that the points xi

are 1-approximate nearest-neighbors of cw, this implies that the ball 2γφbw is empty

(i.e., we know that 2γφbw ∩ P = ∅). Clearly, this means the the first separation

property holds for w.

Consider the case when |4γφbw ∩ {xi}i| = 1, and let i be the class of the point

that lies inside 4γφbw. Following similar arguments to the previous case, this implies

that only points of class i could potentially lie inside of 2γφbw. Then, check if xi

lies inside the smaller ball expansion 2γbw. If not, we know that γbw is empty (i.e.,
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γbw ∩ P = ∅), making the first separation property hold for w. Otherwise, we know

that 2γbw contains at least one point (i.e., xi), and additionally we know that 2γbw

is φ-separated from points of all other classes but i (as 2γφbw only contains points

of class i). Given that φ > 3, the nearest neighbor of every query point inside 2γbw

has class i. Therefore, w can be resolved with class i (namely, Cw = {i}), satisfying

the second separation property.

Lastly, it is possible that |4γφbw ∩ {xi}i| ≥ 2. However, it is possible to show

that if this is the case, it immediately implies that every point inside 4γφbw actually

lies inside of some ball b′w which is β-separated from w (see Figure 6.4a), where

β = 1/ε. Let x, y ∈ 4γφbw be the two points of different classes inside the ball

4γφbw with largest pairwise distance. Thus, it is easy to show that all the points

inside 4γφbw lie inside the two balls centered at x and y with radii equal to d(x, y),

as shown in Figure 6.4b. By definition of the (bichromatic) well-separated pair

decomposition D′, there exists a pair P ∈ D′ that contains x and y each in one of

its dumbbells, with length ℓ and center z. Now, we define the ball b′w with center at

z and radius r′w = max (d(z, x), d(z, y)) + d(x, y). By definition of P , we know that

d(z, x), d(z, y) ≤ ℓ and d(x, y) ≤ 2ℓ, thus making r′w ≤ 3ℓ. Let L be the distance

from w to z, we distinguish two cases based on the relationship between L and ℓ:

• L > c1βℓ. Consider the distance that separates the ball b′w from the cell w.

d(w, b′w) = L− r′w > c1βℓ− r′w ≥ (c1β/3− 1) r′w

Since β = 1/ε, for all sufficiently large constants c1 ≥ 3(1 + ε), the distance

d(w, b′w) exceeds βr
′
w which implies that b′w is concentrically β-separated from
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(a) (b)

Figure 6.4: It is possible that points of ≥ 2 classes lie inside of γφbw. However, this

case can be reduced to the two separation properties illustrated in Figure 6.3.

w.

• L ≤ c1βℓ. We will show that this case cannot occur, since otherwise the

dumbbell P would have caused w to be split, contradicting the assumption

that it is a leaf cell of Tinit. Since x, y, and w are all contained in the ball

4γφbw whose center lies within w, we have both that d(x,w) ≤ 4γφrw, and

ℓ < 2d(x, y) ≤ 2(8γφrw) = 16γφrw. Thus, by the triangle inequality, we have:

L ≤ d(x, y) + d(x,w) < ℓ+ 4γφrw < 16γφrw + 4γφrw = 20γφrw

Because L ≤ c1βℓ, it follows from our construction that there is at least one

ball bi(P) (with 0 ≤ i ≤ ⌈log c1β⌉) that overlaps w. Let b denote the smallest

such ball, and let r denote its radius. By the construction, we have that
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r ≤ max (ℓ, 2L). Since our construction generates all quadtree boxes of size

r/(c2γ) that overlap b, it follows that sw ≤ r/(c2γ). Thus, we have:

rw = sw

√
d

2
≤ r
√
d

2c2γ
≤ max (ℓ, 2L)

√
d

2c2γ
<

20γφrw
√
d

c2γ
=

20φrw
√
d

c2

Choosing c2 ≥ 20φ
√
d yields the desired contradiction.

Finally, if |4γφbw ∩{xi}i| ≥ 2, we know all points inside 4γφbw are β-separated

from w. We can now proceed similarly to the previous case, by checking if one

of the computed 1-approximate nearest-neighbors lies inside the ball 2γbw. If

2γbw ∩ {xi}i = ∅ we know that γbw is empty (i.e., γbw ∩ P = ∅), making the first

separation property hold for w. Otherwise, note that b′w is completely contained

inside 2γ(1 + ε)bw. Given that φ > 3, it is possible to show that for any query point

in w, all points in b′w are valid ε-approximate nearest neighbors. This implies that we

can resolve w with the class of any of the points inside of b′w, thus satisfying the second

separation property. In particular, we mark w as resolved with every class present in

the inner cluster b′w, namely, Cw = {l(p) | ∀ p ∈ b′w ∩ P} = {i | xi ∈ 4γφbw}.

6.3.2 The Reduce Step

From the initial partitioning as described in Lemma 6.3, every leaf cell w of

Tinit is either concentrically γ-separated from P (i.e., γbw ∩ P = ∅), or it is already

marked as resolved. For every leaf cell w in the first case, we will compute a set of

ε-representatives by leveraging the concentric ball lemma (see Lemma 5.1 in [75]). It

states that there exists a set Rw of ε-representatives for w of size O(1/(εγ) d−1
2 ), and

provides a way to compute such set.
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Instead of directly applying this result, we use it to compute a set of ε/3-

representatives for any leaf cell w that is yet unresolved. Essentially, this leads to the

same asymptotic upper-bound on the size of Rw, meaning that |Rw| = O(1/(εγ)
d−1
2 ).

Once Rw is computed, we can proceed to mark w as either resolved or ambiguous as

follows.

Procedure to Mark Leaf Cells: For every leaf cell w, this procedure marks w as either

resolved or ambiguous, following a few defined cases that unfold from the contents

of the set Rw of points selected as representatives for w. Let r−w = ε (1−γ) rw/3.

1. If all the points in Rw belong to the same class.

For every point p ∈ Rw and class i ∈ C, compute a 1-approximate nearest-

neighbor of p among the points of Pi, denoted as the point xp,i. If d(p, xp,i) < r−w ,

then add xp,i to Rw. It is easy to show that xp,i would also be an ε-representative

for w. Repeat this for every point originally in Rw, and every class in the

training set.

(a) If any point xp,i was added to Rw, proceed with Case 2.

(b) Otherwise, mark w as resolved with the class of the points in Rw. Namely,

let i be the class of every point in Rw, then Cw = {i}.

2. If Rw contains points of more than one class.

Before proceeding, we will do some basic pruning of the set Rw. For every class

i, compute a net among the points of Rw of class i, using a radius of r−w to

compute the net, and replace the points of class i in Rw with the computed net.
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It is easy to see that the remaining points of Rw are a set of ε-representatives

of w, and that every two points in Rw of the same class are at distance at least

r−w .

(a) If the diameter of Rw is less than r−w , it is easy to prove that all the points

in Rw are ε-representatives of any point inside bw. Therefore, w can be

labeled as resolved with the class of all of the points in Rw. That is,

Cw = {l(p) | ∀ p ∈ Rw}.

(b) If the diameter is greater than or equal to r−w , w is marked as ambiguous.

Let A andR be the sets of ambiguous and resolved leaf cells of Tinit, respectively.

We will use some of these cells to build the Chromatic AVD, while ignoring the

remaining cells.

Consider the set of resolved leaf cells R, we partition this set into two subsets

Rb and Ri (named boundary and interior resolved leaf cells, respectively). We say

a resolved leaf cell w1 belongs to Rb, if and only if there exists another resolved

leaf cell w2 adjacent to w1, such that Cw2\Cw1 ̸= ∅. Every other resolved leaf cell

belongs to Ri (i.e., Ri = R \Rb). Note that both sets Rb and Ri can be identified

by a simple traversal over the leaf cells of Tinit, using linear time in the size of the

tree1.

Finally, we build a new tree T from the set of ambiguous and boundary resolved

1Two leaf cells are adjacent if and only if a vertex of one of the cells “touches” the other cell.

This implies that the number of adjacency relations (i.e., edges in the implicit graph where the leaf

cells are the nodes) is O(2d m), where m is the number of leaf cells of the tree Tinit.
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leaf cells A ∪Rb. By well-known construction methods of quadtrees, as described in

Section 6.2, the leaf cells of T either belong to A ∪ Rb, or are “Steiner” leaf cells

added during the construction of T that cover the remainer of the space that is

uncovered by A ∪Rb.

Lemma 6.4. For any leaf cell w in the tree T such that w ̸∈ A∪Rb, w must cover a

space that is also covered by a collection of leaf cells of Tinit, all of which are resolved

with the same set of classes Cw.

Proof. This becomes apparent from the construction of T . In the new tree T ,

consider any leaf cell w of T that is not part of A ∪Rb (i.e., a “Steiner” leaf cell

added during the construction of the tree). Now, recall that the leaf cells of both

T and Tinit are a partitioning of (the same) space, which means that we can define

Ww = {w′ ∈ Tinit | w ∩ w′ ̸= ∅} as the collection of leaf cells of Tinit that cover the

same space covered by w.

Now, for any fixed w of T , it is easy to see that any two leaf cells w1, w2 ∈ Ww

must be resolved with the same set of classes. Otherwise, at least one of these two

would be part of the set Rb, which would be a contradiction to the fact that w is

a “Steiner” leaf cell of T . Therefore, any query inside w can be answered with the

classes Cw = Cw1 = Cw2 , and this can be determined during preprocessing by a

single query on Tinit (e.g., finding the leaf cell of Tinit that contains the center cw of

w is sufficient to know the contents of Cw).

This implies that after building tree T , and with some extra preprocessing to

resolve the “Steiner” leaf cells of the tree, we can use the resulting data structure to
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correctly answer chromatic ε-approximate nearest-neighbor queries over the training

set P . In other words, T can be used to answer ε-classification queries over P . We

call this data structure T the Chromatic AVD.

Lemma 6.5. The construction of T takes Õ
(
nγd log 1

ε

)
time.

Proof. Let’s analyze the total time needed to build our Chromatic AVD, namely the

tree T , by analyzing the time required to perform each step of the construction.

• Building Tinit has essentially the same complexity of building any standard

AVD [19,20, 43, 75]. This means that constructing Tinit takes O(m logm) time,

where m = nγd log 1
ε
. Note that during the construction, while computing the

set of ε-representatives of each leaf cell, each leaf cell can already be marked

as either ambiguous or resolved.

• Building the auxiliary trees T i
aux for every class i, takes O(n log n) time, as the

number of classes of P is considered to be a constant. Recall that because

these trees are only used to for 1-ANN queries, they only need to be standard

Quadtrees, and not AVDs.

• Identifying the set Rb requires a traversal over the leaf-level partitioning of

the space, which is linear in terms of the number of cells. Therefore, this step

requires O(m) time.

• Once the sets of ambiguous and boundary resolved leaf cells are identified,

namely, the sets A and Rb, the final tree T can be built. Roughly, this step

takes O(m logm) time.
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• Finally, we must resolve each “Steiner” leaf cell of T , which can be done by

a single query over Tinit, each taking O(logm) time. Thus, this step takes

O (m logm) total time.

All together, the total construction time is dominated by the first step. There-

fore, the time required to construct T is O(m logm) = Õ(m) = Õ
(
nγd log 1

ε

)
.

6.4 Tree-size Analysis

6.4.1 Initial Size Bounds

Define the set of important leaf cells I of the tree Tinit as those leaf cells w for

which there exists two ε-border points inside ργbw for some constant ρ, such that

the distance between these points is lower-bounded by Ω(εγrw). Formally, we define

this set as I = {w ∈ Tinit | ∃p1, p2 ∈ ργbw ∩Kε, d(p1, p2) = Ω(εγrw)}.

Lemma 6.6. The number of important leaf cells of Tinit is |I| = O
(
kεγ

d log 1
ε

)
.

Proof. This proof follows from a charging argument on the set Kε of ε-border points

of P . More specifically, consider a well-separated pair decomposition D′′ of Kε with

constant separation factor of σ > 4, the charging scheme assigns every important

leaf cell w ∈ I to a pair of D′′. Recall that D′′ can generally be consider to have

O(kε) pairs, where kε = |Kε|. It is important to note that both Kε and D′′ need not

be computed.

Given that w ∈ I, we know there exist two points p1, p2 ∈ ργbw ∩ Kε. Let

P ∈ D′′ be the pair of D′′ that contains both p1 and p2, each in one of its dumbbell
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heads. We then charge w to the pair P. Denote z and ℓ to be the center and

length of P, respectively, we know the following. First, note that the distance

from cw (the center of w) to z is d(cw, z) ≤ ργrw + ℓ. Additionally, we know that

ℓ ≥ d(p1, p2)/2 = Ω(εγrw) by the properties of WSPDs described in Section 6.2.

Therefore, this implies that the ratio d(cw, z)/ℓ = O(1/ε).

Finally, fix some pair P ∈ D′′ with center z and length ℓ, and consider

all important leaf cells according to their distance to z. For any value of i ∈

[0, 1, . . . ,O(log 1/ε)], consider all leaf cells that can charge P whose distance to z is

between 2iℓ and 2i+1ℓ. From our previous analysis, rw ≥ d(cw, z)/ργ ≥ 2iℓ/ργ. By a

simple packing argument, the number of such leaf cells is at most O(γd). Thus, a

total of O(γd log 1/ε) cells can charge P. Note that no leaf cell whose distance to

z is Ω(ℓ/ε) can charge P, as it would contradict the fact that both p1 and p2 are

separated by a distance of Ω(εγrw). Finally, the proof follows by knowing that there

are at most O(kε) pairs in D′′.

Lemma 6.7. Every ambiguous leaf cell of Tinit is important, namely A ⊆ I.

Proof. Consider any ambiguous leaf cell w ∈ A of the tree Tinit. Knowing that w is

ambiguous implies that there must exist some point q ∈ γ
2
bw for which two of the

ε-representatives of w are valid ε-approximate nearest neighbors for q, both points

belong to different classes, and the distance between them is Ω(εγrw). Formally,

denote these points as p1, p2 ∈ P such that l(p1) ̸= l(p2), d(p1, p2) ≥ ε (1−γ) rw/4,

and d(q, p1), d(q, p2) ≤ (1+ε) dnn(q).

We will see now how to bound the distance from cw to any of these points as
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a constant factor of rw (recall that rw =
√
d/2 sw). From the proof of Lemma 6.3

in [75], we know that the ball c3γbw ∩ P ≠ ∅, for some constant c3 ≥ 1 + 2c2/
√
d.

In other words, dnn(cw) ≤ c3γ rw. From this, we can say that dnn(q) ≤ (1
2
+

c3)γrw. Applying the triangle inequality yields that d(cw, p1) ≤ d(cw, q) + d(q, p1) ≤(
1
2
+ (1 + ε)(1

2
+ c3)

)
γ rw. Similarly, we can achieve the same bound for d(cw, p2).

Therefore, both p1, p2 ∈ ργbw for sufficiently large constant ρ (i.e., ρ ≥ ε(1
2
+

c3) + c3 + 1). Knowing also that d(p1, p2) = Ω(r−w) = Ω(εγrw) yields that the leaf

cell w ∈ I.

Lemma 6.8. Every boundary resolved leaf cell of Tinit is important, namely Rb ⊆ I.

Proof. Let w1 ∈ Rb be any boundary resolved leaf cell of the tree Tinit, we know

there exists another leaf cell w2 ∈ Rb adjacent to w1, such that there exists some

class i ∈ Cw2\Cw1 . Let bw1 and bw2 be the corresponding bounding balls of w1 and

w2. By definition, any point q on the boundary shared by w1 and w2 has at least one

ε-representative from each cell, namely some points p1 ∈ Rw1 and p2 ∈ Rw2 , where

l(p1) ̸= i and l(p2) = i. Additionally, by similar arguments to the ones described in

Lemma 6.7, we know that both p1, p2 ∈ ργbw for sufficiently large constant ρ.

Now, we proceed to prove that d(p1, p2) ≥ r−w/2. First, note that if w1 was

resolved by the initial marking of leaf cells as described in Lemma 6.3, then p2

must lie outside of γbw. In such cases, clearly d(p1, p2) ≥ r−w/2. The remaining

possibility is that w1 was resolved after computing the set of representatives. From

the described procedure, in Case 1, we know that if d(p1, p2) < r−w/2, the point xp1,i
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(which is a 1-approximate nearest-neighbor of p1 among points in Pi) would hold that

d(p1, xp1,i) < r−w . Hence, xp1,i should have been added to the set of representatives of

w1, contradicting the assumption that w1 is resolved, or that Cw1 does not contain i.

All together, we have that d(p1, p2) = Ω(r−w) = Ω(εγrw). From the definition of the

set of important leaf cells, w ∈ I.

Lemmas 6.7 and 6.8 imply that all the leaf cells used to build T belong to

the set of important leaf cells (i.e., A ∪Rb ⊆ I), whose size is upper-bounded by

Lemma 6.6. All together, and leveraging construction methods of quadtrees (see

Section 6.2), the size of T is proportional to the total number of leaf cells used to

build it, which we now know is O(kεγd log 1
ε
). However, we also need to account for

the set of ε-representatives stored for each ambiguous leaf cell, leading to a worst-case

upper-bound of O(kεγd log 1
ε
· 1/(εγ) d−1

2 ) total space to store T .

6.4.2 Spatial Amortization

The previous result can be improved by applying a technique called spatial

amortization, described by Arya et al. [75]. That is, we can remove the extra

O(1/(εγ) d−1
2 ) factor from the analysis of the space requirements for T .

This will be twofold process, as in order to successfully apply spatial amortiza-

tion to the analysis of the data structure, we first need to further reduce the set of

ε-representatives of every ambiguous leaf cell in the tree. Actually, the new set will

no longer be a set of ε-representatives, but it will just be a weak ε-coreset for query

points inside of each leaf cell.
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Lemma 6.9. The total space required to store the ambiguous leaf cells of T is

O
(
kεγ

d log 1
ε

)
.

Consider any ambiguous leaf cell w of T , and in particular, consider the set

Rw of ε-representatives of w. By construction, Rw has the property that every point

q ∈ bw has at least one ε-approximate nearest-neighbor in the set Rw. However, note

that the opposite is not necessarily true, as not every p ∈ Rw is an ε-approximate

nearest-neighbor of some point in bw. Even worst, while the fact the w is ambiguous

indicates that at least two points in Rw belong to Kε, the remaining points of Rw

might not, which in turn prevents the application of a spatial amortization analysis.

Overall, this suggests some of the points of Rw might not be necessary to distinguish

between the classes that change the classification of points inside bw (see Figure 6.5a).

This can be resolved as follows. Suppose we have access to the Voronoi diagram

of the set of points Rw, and consider the boundaries between adjacent cells of this

diagram. Any boundary that separates two points of Rw of different classes, and that

intersects bw, is relevant to the classification any query point inside bw. Formally, we

define the set R′
w ⊆ Rw of border points of Rw as (see Figure 6.5b):

R′
w = {p ∈ Rw | ∃ q ∈ bw, p

′ ∈ Rw such that l(p) ̸= l(p′) ∧ d(q, p) = d(q, p′)}

This new set R′
w has some useful properties. Note that for any query point

q ∈ bw, its (exact) nearest-neighbor in R′
w belongs to the same class as its (exact)

nearest-neighbor in Rw, which itself is an ε-approximate nearest-neighbor of q among

the points of P . In other words, R′
w is an ε-coreset for any query point in bw.

This implies that we can replace the set of ε-representatives of w with the set R′
w.
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Moreover, this means that by the definition of ε-border points, R′
w ⊆ Kε. Note that

we can use the algorithm described in Chapter 3 to compute R′
w in O(|Rw| · |R′

w|2)

time, increases the construction time described in Lemma 6.5 by a factor of k2
ε .

(a) Set of ε-reps Rw. (b) Set of border points R′
w. (c) Relevant pairs of D′′.

Figure 6.5: The set Rw of ε-representatives of w can be reduced to the set R′
w. This

later set is a subset of Kε, and can be charged to a proportional number of relevant

pairs of D′′.

Now, let’s proceed with the charging argument over the pairs of the same

WSPD D′′ used in Lemma 6.6. Instead of only charging w to a single pair (as

described in Lemma 6.7), we charge every point stored in R′
w to a pair of D′′. Thus,

consider the following procedure to find a sufficient number of pairs to charge all

the points in R′
w, which is derived from a similar procedure proposed in [75]. See

Figure 6.5c for an illustrative example.

1. Compute a net of R′
w using radius r−w , and denote this subset R′′

w. Given that

all the points of R′
w that belong to the same class are already separated by a

distance of at least r−w , we know that |R′′
w| = Θ(|R′

w|), hiding constants2 that

2More specifically, we know that |R′′
w| ≥ |R′

w|/ϕd−1c, where ϕd−1 is the kissing number in
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depend exponentially on d.

2. Find the two of points of p1, p2 ∈ R′′
w with smallest pairwise distance, and

consider the pair of P ∈ D′′ that contains both points p1 and p2, each in one

of its dumbbell heads. Note that by having computed a net in the previous

step, d(p1, p2) ≥ r−w .

3. Delete one of the two points from R′′
w (without lost of generality, delete p1).

4. Charge every point of R′
w that is covered by p1 (i.e., whose distance to p1 is

≤ r−w) to the pair P . By the arguments described in step 1 on the size of R′′
w,

we know that P receives a charge from O(1) points of R′
w.

5. Repeat steps 2-4 with the remaining points of R′′
w until the set is empty.

Evidently, the number of pairs found (and charged) equals |R′′
w| − 1. All

together, we have that the total space required to store all the ambiguous leaf cells

is proportional to the sum of charges to every pair of D′′. Using the same arguments

as Lemma 6.6, this implies that the total storage is O(kεγd log 1
ε
). This completes

the proof of Theorem 6.1.

d-dimensional Euclidean space, and c is the number of classes in P .

135



Chapter 7: Conclusions

In this dissertation, we have presented different techniques that successfully

reduce the query time and space complexities of the nearest-neighbor rule. While

usually nearest-neighbor classification would be highly dependent on n, the size of

the training set P , our results provide a clear way to reduce its dependency to k.

This parameter is defined as the number of border points of P , and characterizes

the intrinsic complexity of the class boundaries of the training set.

The results presented here open a series of potential directions for future re-

search to further improve the efficiency of the nearest-neighbor rule. While mostly

theoretical, these results can help expand the scope of applicability of this classifica-

tion method for larger real-world use cases. Furthermore, our results on training set

reduction algorithms imply their potential application beyond the scope of nearest-

neighbor classification, by reducing the data used to train other classification models.

While many of the classification guarantees provided here would not hold –with most

likeliness– for other classification methods, the upper-bounds on subset sizes would.

In the following sections, we retrace most of the results presented throughout

this dissertation, and discuss some of the remaining open problems and limitations.
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7.1 Training Set Reduction

Most of the results presented in this dissertation can be described as training

set reduction approaches. In this case, the goal is to find a subset R ⊆ P , whose

induced class boundaries resemble the original class boundaries of P . This subset is

then used by the nearest-neighbor rule to answer any incoming queries, instead of

using the full training set. As seen throughout this book, different approaches yield

different subsets, and depending on the approach used, the classification guarantees

of the nearest-neighbor rule after training set reduction can vary.

7.1.1 Boundary Preservation

The goal of boundary preservation algorithms is to compute the set of border

points of P . Given that by definition, this subset of points fully characterize the class

boundaries of P , this reduction of the training set does not affect the classification

accuracy of the nearest-neighbor rule. That is, the class boundaries remain the same.

Moreover, these algorithms achieve the expected dependency reduction from n to k,

as k is defined as the size of their selected subset.

In Chapter 3, we present an improvement over Eppstein’s recent algorithm [8]

to compute the set of border points of any training set P ⊂ Rd, with constant d.

This improved algorithm reduces the complexity of computing such subset to O(nk2)

worst-case time, while Eppstein’s original algorithm has O(n2 + nk2) runtime. A

paper describing this result is under submission, and can be found here [52].
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7.1.2 Condensation Algorithms

Alternatively, condensation algorithms aim to compute subsets R ⊆ P whose

induced class boundaries are “similar” to the original class boundaries, albeit not the

same as with boundary preservation algorithms. As formally described in Chapter 2,

condensation algorithms select either consistent or selective subsets of P , which can

only guarantee the correct classification of points in P . This is a rather popular line

of research [9,13–17,34,38], with many heuristic approaches proposed to compute

such subsets. Until our work, theoretical results on these heuristics were scarce.

In Chapter 4, we present the first theoretical results on upper-bounding the

subset sizes of condensation algorithms. In particular, we show that FCNN and

MSS, which were considered state-of-the-art for the condensation problem, can not

be bounded in terms of k. Additionally, we propose new quadratic-time algorithms

called SFCNN, RSS, and VSS, and prove upper-bounds on their subset sizes as a

function of k. These upper-bounds are tight up-to constant factors, and supports

the good empirical behavior observed for these condensation algorithms. Most of

these results were published in a series of papers [54–56].

Despite our efforts, some questions remain open. First, it is unclear whether

our upper-bound for the RSS algorithm in terms of k can be improved to have linear

dependencies on d, as our current result has a term with exponential dependency

on d. So far, we have been unable to find a matching lower-bound for RSS in

terms of k, keeping the hope that this improvement is indeed possible. The other

important open question revolves around SFCNN. While this algorithm performs
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really well in practice, we were only able to prove a O(k log (1/γ)) upper-bound on

its selected subset (compared with the O(k) upper-bound on RSS). Thus, it remains

open whether the log (1/γ) factor in the upper-bound of SFCNN can be dropped.

7.1.3 ε-Coresets

Both boundary preservation and condensation algorithms make the assumption

that the nearest-neighbor rule computes nearest-neighbors exactly. However, efficient

data structures for nearest-neighbor search compute nearest-neighbor approximately

rather than exactly. That is, given an approximation parameter ε ∈ [0, 1], a query

point q ∈ X can be assigned the class of any point of P whose distance to q is

at most 1+ε times the distance from q to its true nearest-neighbor. This relaxed

assumption immediately breaks the classification guarantees provided by both types

of training set reduction techniques.

Chapter 5 presents a new framework for training set reduction that is sensitive

to these approximations, as well as a characterization of ε-coresets for the nearest-

neighbor rule. First, we define such an ε-coreset as a subset R ⊆ P where for every

query point q ∈ X the class of its exact nearest-neighbor in R is the same as the

class of a valid ε-approximate nearest-neighbor of q in P . In order to compute

such subsets, we extended the criteria used for condensation to be approximation-

sensitive, and modified the condensation algorithms from Chapter 4 to compute

subsets under these new criteria. Finally, this gives us a way to compute ε-coresets

of size O(k log 1
γ
(1/ε)ddim(X )+1). These results have been published in the following
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paper [66].

The biggest shortcoming of this result is the size of the ε-coresets, having high

dependencies on γ and ε. The lower-bound presented in Lemma 5.3 indicate that

our coreset construction might not be optimal, and that the terms on γ and ε could

be potentially dropped. However, despite our efforts, we were unable to achieve this.

7.2 Chromatic Nearest-Neighbor Search

Unsurprisingly, the standard approach to answer nearest-neighbor classification

queries is to reduce them to nearest-neighbor search queries. However, as described

in Chapter 6, there exists an alternative approach towards achieving more efficient

nearest-neighbor classification. This consists of having algorithms and data structures

to directly compute the class of the nearest-neighbor of any given query point; i.e.,

without computing the nearest-neighbor itself.

To this end, we proposed a tailor-made data structure for approximate nearest-

neighbor classification called Chromatic AVD. Given a training set P in d-dimensional

Euclidean space (assuming constant d and the ℓ2 metric) and an approximation

parameter ε ∈ [0, 1
2
], we construct a quadtree-based partitioning of space to answer

any classification query approximately. That is, for any query point q ∈ Rd this data

structure returns the class of any of q’s valid ε-approximate nearest-neighbors in P .

This data structure is designed as a simplification of state-of-the-art AVDs [20] for

approximate nearest-neighbor search, and completely reduces its dependency from

n to kε, which is defined as the number of ε-border points of P , and describes the

140



intrinsic complexity of the ε-approximate class boundaries. These results have been

published in the following paper [78].

There are a few possible improvements and extensions that would be worth

exploring. First, the query time and space dependencies of the Chromatic AVD are

expressed in terms of kε and not k, where kε ≥ k. However, it is unclear if kε can

be expressed in terms of k, or if the analysis and construction of the Chromatic

AVD can be improved to reduce the expressed dependencies to be in terms of k.

Another interesting direction is trying to obtain query times that are query-sensitive,

similar to the result by Mount et al. [51] in 1997, where query points with high

chromatic density are easier to answer than query points with low chromatic density.

Finally, yet another direction would be on extending this data structure to answer

ε-approximate k-NN classification queries, for k ≥ 1. While there exists some work

on this problem [51,81], all existing results have dependencies on n.
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