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Recent advances in low power integrated circuit devices, micro-electro-mechanical

system (MEMS) technologies, and communications technologies have made possi-

ble the deployment of low-cost, low power sensors that can be integrated to form

wireless sensor networks (WSN). These wireless sensor networks have vast impor-

tant applications, i.e.: from battlefield surveillance system to modern highway and

industry monitoring system; from the emergency rescue system to early forest fire

detection and the very sophisticated earthquake early detection system. Having

the broad range of applications, the sensor network is becoming an integral part of

human lives. However, the success of sensor networks deployment depends on the

reliability of the network itself. There are many challenging problems to make the

deployed network more reliable. These problems include but not limited to extend-

ing network lifetime, increasing each sensor node throughput, efficient collection of



information, enforcing nodes to collaboratively accomplish certain network tasks,

etc. One important aspect in designing the algorithm is that the algorithm should

be completely distributed and scalable. This aspect has posed a tremendous chal-

lenge in designing optimal algorithm in sensor networks.

This thesis addresses various challenging issues encountered in wireless sensor

networks. The most important characteristic in sensor networks is to prolong the

network lifetime. However, due to the stringent energy requirement, the network

requires highly energy efficient resource allocation. This highly energy-efficient re-

source allocation requires the application of an energy awareness system. In fact,

we envision a broader resource and environment aware optimization in the sensor

networks. This framework reconfigures the parameters from different communi-

cation layers according to its environment and resource. We first investigate the

application of online reinforcement learning in solving the modulation and trans-

mit power selection. We analyze the effectiveness of the learning algorithm by

comparing the effective good throughput that is successfully delivered per unit

energy as a metric. This metric shows how efficient the energy usage in sensor

communication is. In many practical sensor scenarios, maximizing the energy ef-

ficient in a single sensor node may not be sufficient. Therefore, we continue to

work on the routing problem to maximize the number of delivered packet before

the network becomes useless. The useless network is characterized by the disinte-

grated remaining network. We design a class of energy efficient routing algorithms

that explicitly takes the connectivity condition of the remaining network in to

account. We also present the distributed asynchronous routing implementation

based on reinforcement learning algorithm. This work can be viewed as distrib-

uted connectivity-aware energy efficient routing. We then explore the advantages



obtained by doing cooperative routing for network lifetime maximization. We pro-

pose a power allocation in the cooperative routing called the maximum lifetime

power allocation. The proposed allocation takes into account the residual energy

in the nodes when doing the cooperation. In fact, our criterion lets the nodes with

more energy to help more compared to the nodes with less energy. We continue to

look at the problem of cooperation enforcement in ad-hoc network. We show that

by combining the repeated game and self learning algorithm, a better cooperation

point can be obtained. Finally, we demonstrate an example of channel-aware appli-

cation for multimedia communication. In all case studies, we employ optimization

scheme that is equipped with the resource and environment awareness. We hope

that the proposed resource and environment aware optimization framework will

serve as the first step towards the realization of intelligent sensor communications.
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Chapter 1

Introduction

Recent advancement in low power integrated circuit devices, micro-electro-mechanical

system (MEMS) technologies, and wireless communications has made possible the

large scale deployment of low cost, low power, and multi-functional sensor nodes

that are small in size and are able to communicate untethered in short distances.

Depending on the applications, these tiny nodes typically contain three major

components, data sensing component, data processing component, and the com-

munication component. These tiny sensor nodes altogether form a micro-sensors

network. There are several features of sensor networks that make them unique.

These features are the deployment position of the sensor nodes need not be engi-

neered or predesigned and the sensor nodes cooperatively accomplish some prede-

termined complex tasks. The first feature implies that the sensor network can be

deployed randomly in some inaccessible terrain. This feature also indicates that

the protocols and algorithms employed in the sensor network should have self-

configuring and self-organizing capabilities. The second feature implies that each

node in sensor network should be intelligent enough to collaboratively accomplish

the predefined task in an efficient manner. For instance, instead of sending the raw

1



data, nodes locally carry out simple computations so that the overall transmission

is as efficient as possible.

The above features enable a vast range of applications for sensor networks. In

military, the rapid deployment, self-organization, and fault tolerance characteris-

tics of sensor networks make them a very promising sensing technique for military

command, control, communications, computing, intelligence, surveillance, recon-

naissance, and targeting systems. In health, sensor networks can be deployed to

monitor patients and assist disabled patients. In emergency rescue system, sensor

nodes can be deployed to perform early detection of earthquake, fire detection,

etc. Some other commercial applications include managing inventory, monitor-

ing product quality, habitat and environment monitoring, and monitoring modern

highway system. Due to this broad applications of sensor networks, the sensor net-

work is becoming an integral part of human lives. In September 1999 [5], Business

Week ”21 ideas for the 21st century” pointed out that micro-sensor technology is

a key technology for the 21st century. Recently, the MIT Technological Review [4]

ranked the wireless sensor network as the number one emerging technology.

A more recent application of sensor network in industry is the joint research

between British Petroleum (BP) and Intel. In this project, the sensor network

is used to support preventive maintenance on board an oil tanker in the North

Sea. BP wanted to determine if the sensor network could operate in a shipboard

environment, where it would have to withstand temperature extremes, substan-

tial vibration, and significant radio frequency noise in certain parts of the ship.

A sensor network was installed onboard the ship and operated successfully for

over four months. During this trial deployment, the system gathered data reliably

and recovered from errors when they occurred. The project was recognized by

2



InfoWorld as one of the top 100 IT projects in 2004, an award given to ”innova-

tive new projects that highlight the resourcefulness of the IT community.” BP is

now exploring the use of sensor network technology throughout the company, in

shipping, manufacturing and refining operations.

Typical configuration of sensor network (shown in Figure 1.1) consists of task

manager/user, satellite and internet backbone, sinks, gateways, and sensor nodes.

The sensor nodes are scattered in the sensor field, where nodes collect the data of

interest and route back to the sinks through gateways. The data are routed back

to the sinks by a multihop infrastructureless architecture. The sinks receive queries

from and report back the collected data to the task manager via the satellite or

internet backbone

Several factors that influence the successful deployment of the large scale wire-

less sensor networks (WSNs) are listed as follows [6, 30]

1. Fault tolerance: Due to the random deployment in some severe and harsh en-

vironment, some of the deployed sensor nodes may be failed or dead because

of the exhausted energy. The failure of these small number of nodes in the

network should not affect the overall functionality of the sensor networks.

2. Production cost: Since a large number of micro-sensors are deployed in the

sensor network, it is crucial that each single one micro-sensor has very low

cost to justify the overall network deployment cost. It is envisioned in [6],

the cost of a micro-sensor should be much lower than US$1. Therefore,

it is very important to develop low power computer aided design (CAD)

tools to reduce the production cost, yet meet the requirement of each sensor.

Another important aspect is that the designed algorithm should be simple

enough to be implemented in the micro-sensor node, yet effective in such a
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Figure 1.1: Typical sensor network configuration
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harsh environment.

3. Hardware constraints: As stated in previous paragraph, typical sensor node is

composed of three major components, the sensing component, data process-

ing component, and communication component. In addition, depending on

the application, the node may also have power generator, location finding,

and mobilizer components. Different from the traditional sensor, the sensor

nodes in the sensor network should have self-configuring and self-organizing

capabilities. These requirements complicate the design of hardware in terms

of size, computation power, and power consumption. All the three com-

ponents should be fitted into a single small sized module. Therefore, the

computational power/capability in each of the sensor may be limited. Fi-

nally, it is very important to integrate all these components with extremely

low power design.

4. Severe environment: Since many applications of sensor networks are for emer-

gency rescue, habitat monitoring, and military applications. The sensor net-

work may be deployed in some inaccessible area and the deployed sensor

nodes face tremendous severe environment. Hence, it is of paramount im-

portant that the sensor nodes should be adaptive to the severe environment.

5. Transmission media: The transmission link in the sensor network basically

can be in many forms from radio, infra-red, and optical link. The latter two

media require a line of sight (LOS) between the transmitter and the receiver.

The radio link enables the global operation of this network. Many of the

current solutions for sensor network is based on radio transmission, such as

µAMPS, Wireless Integrated Sensor Network (WINS) architecture, etc. The
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SmartDust mote uses optical medium for communication. Sensor node may

also support two or more transmission interfaces.

6. Power consumption: The sensor nodes, usually battery powered, have lim-

ited energy. In many of the applications, such as battlefield monitoring,

emergency rescue system, and habitat monitoring, the replenishment of the

power/energy resources may not be possible at all. And the micro-sensor

node lifetime is highly dependent on its battery lifetime. The node lifetime

turns out to affect the overall lifetime of the network. Therefore, it is very

important that all designed algorithms in the sensor network are as energy

efficient as possible. This last factor influences major differences in the design

of protocols and algorithms used in the sensor network.

Having described the possible application and the successful design factors, we

are ready to discuss the challenges to build a successful sensor network. In the next

two sections, we will explain the envisioned protocol stack and the requirement of

resource and environment aware resource allocation.

1.1 Cross Layer Design

Traditional communication systems are designed based on layers. The Open Sys-

tem Interconnection (OSI) reference model defined seven layers from top to bottom

as application, presentation, session, transport, network, data link, and physical

layer. Each layer is designed for a specific purpose and optimized to achieve its

own goal within each layer. The main purpose of the OSI reference model is to

simplify the implementation. The downside of the layered implementation is the

overhead between layers. Moreover, the solution of separated optimization in each
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layer may be far from efficient compared to the cross layer design. And a better

solution can be obtained when one considers the optimization across several com-

munication layers. Due to the limited resources (limited bandwidth and power),

there is an increasing need to perform cross layer optimization.

The cross layer design has received tremendous attentions from many researchers.

This is especially important when designing protocols and algorithms for sensor

networks. There are several differences between the cross-layer design employed

in traditional communication compared to the sensor network. These differences

root from the different design objective in typical traditional communication sys-

tems and the sensor network. The cross-layer approaches are used to maximize the

quality of services (QoS), minimize delay, maximize throughput, etc. in traditional

communication systems. In contrast, the cross-layer design in sensor networks fo-

cuses on energy minimization, efficient utilization of the energy, and aggressive

network lifetime maximization. It can be easily understood, since power/energy is

the most precious resource in sensor communication systems. This can be justified

from the efforts of many researchers to apply cross-layer approaches to meet the

stringent energy requirement in the sensor communication [6, 30,36,45,80,94].

In [6], they outline the suitable protocol stack for sensor network shown in Fig-

ure 1.2. This protocol stack consists of application layer, transport layer, network

layer, data link layer, and physical layer. There are three modules that do the

optimization and control across different communication layers. Those modules

are power management module, mobility management module, and the task man-

agement module. The information obtained from different communication layers

is transparent to the management module. These management modules optimize

and adjust the parameters in several communication layers to achieve the energy
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Figure 1.2: Sensor network protocol stack

efficient communication. The power management module configures a sensor node

to use its power in an optimized way. For instance, the sensor node may go to sleep

mode when it is not in the sensing mode and communicating mode. Also, when

the residual energy in the sensor node is low, it can broadcast to its neighbors and

avoid participating in relaying packets. The mobility management module acts to

keep track who their neighboring sensor nodes are. Moreover, it can also act as

location finder module. Finally, since not all the sensors are required to perform

the sensing task in all region, the task management balances and schedules the

sensing tasks in a specific region. These modules are required so that sensor nodes

are able to work together in the most power/energy efficient way.

The above protocol stack motivates us to generalize the communication design

in sensor network. In fact, to make the sensor node as intelligent as possible, the

sensor node should be able to obtain and process as much information as possible.
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This information in a narrow sense includes parameters obtained from each com-

munication layers, but in a broader sense includes several behavioral information

in the network. Therefore, we propose a resource and environment aware sensor

communication framework in the next section. The resource may include the in-

formation about the residual energy, computing power, adaptive modulation and

power level supported in the nodes, etc. In contrast, the environment may include

the channel condition in the sensor communication, the connectivity of the neigh-

boring nodes, the topology of the network, etc. Based on the proposed framework,

many algorithms that have channel, power, residual energy, residual connectivity

awareness are resulted. This framework can be thought as the first step towards

the realization of intelligent sensor communication systems.

Even though the cross-layer optimization may result in better solution, there

are challenges in the cross layer design. The most obvious problem is the increase in

optimization complexity. When each communication layer is optimized separately,

the number of variables in each communication layer optimization is tractable.

However, when many communication layers are jointly optimized, the optimiza-

tion problem definitely grows exponentially. This will require a very complex

data processing unit in each of the sensor and result in high power consumption.

Hence, the first challenge in cross layer design for sensor networks is to develop

a simple optimization algorithm that can capture the relationship of parameters

across different communication layers. The resulting algorithm should be simple

to implement, even more importantly, it should be energy efficient. We refer the

explosion in the optimization variables in cross layer design to as the curse of

dimensionality.

The second challenge is the lack of good model to describe the complex rela-
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tionships between parameters from different communication layers and the per-

formance objective of interest. Researchers in communication theory community

have been doing the optimization within each communication layer for a long time.

They have developed many good models within each of the communication lay-

ers. However, these models may not be suitable for describing the relationships

between parameters from different communication layers. This lack of good model

makes the optimization even more challenging. Thereafter, this lack of good model

is referred to as curse of model.

The next but not last challenge in the cross-layer approaches in sensor com-

munication design is that the optimization should be done online and distributed

manner. Online optimization implies that the optimization should be able to adapt

to the information changes obtained in various communication layers. Distributed

optimization is always required as there may be no centralized node to coordinate

the optimization. All the activities in the network are done in an ad-hoc manner.

After listing many important design challenges, we first describe the general re-

source and environment aware optimization in the next section. Moreover, we will

outline the proposed method that can fully or partly solve the curse of dimension-

ality, curse of model, online and distributed challenges in designing optimization

algorithms for sensor networks.

1.2 Resource and Environment Aware Optimiza-

tion Framework

The resource and environment aware optimization framework is a general opti-

mization framework that takes the resource and the environment condition into
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account when doing the optimization. Generally speaking, the resource may in-

clude the bandwidth, the residual energy in the nodes, energy consumption, com-

puting power, adaptive modulation and power level supported in the nodes, etc.

The environment aware includes the channel-aware, topology-aware, remaining

connectivity-aware, and location-aware optimization. All of this information can

be obtained from different layers of communication. In particular, we focus on the

following optimization framework shown in Figure 1.3. In this framework, each

sensor node detects the local information and resource information. Based on this

local information, the adaptive learning algorithm adjusts the parameters in net-

work layer, data link layer, and physical layer. This adjustment will be evaluated

by the local system performance evaluation, which informs the adaptive system of

how well the parameter adjustment performs. The adaptation of the parameters

also effects the local information and resource. Using this framework, the design

of sensor communication has the awareness of the resource and environment when

doing the online optimization through adaptive learning algorithm.

In general, we still face the problems of curse of dimensionality, curse of model,

and the requirement of simple yet effective online distributed optimization in the

resource and environment aware optimization framework. Due to above challenges

and limitations, we propose the use of stochastic approximation technique [34,

57, 93] in solving the online optimization. The stochastic approximation (SA) is

suitable for the online optimization problems encountered in sensor networks due

to the following reasons

1. SA is categorized as one of the random search methods. This method has

been shown to be effective in solving the Markov Decision Process problem

which also has the problem of curse of dimensionality [18,97]. This method
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Figure 1.3: Resource and Environment Aware Optimization Framework
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includes (but not limited to) the reinforcement learning algorithms.

2. SA does not require the knowledge of the complete function to be optimized.

The only requirement is the noisy sample of the function at any arguments of

the function. Due to this characteristic, the SA algorithm is suitable to tackle

the problem of curse of model. In many practical scenarios, the complete

objective function to be optimized may not be available at the time the

optimization is done. However, it is typical that the sensor node can observe

and evaluate the function of interest after deciding a set of parameters to

use. For instance, upon the selection of modulation and power level, the

nodes can measure the total consumed power when employing the decided

modulation and power level.

3. Using the small constant step-size in the SA algorithm, the algorithm is ro-

bust to track non-stationarity in the function to be optimized. Therefore, the

SA algorithm is robust and is able to adapt to the resource and environment

variations.

4. The SA iterations usually involve very simple additions and multiplications.

Due to its computation simplicity, the SA iteration is envisioned to be im-

plementable in low cost sensor.

1.3 Organization of Dissertation

The rest of the dissertation is organized as follows. Chapter 2 gives the detailed

mathematical framework for the optimization, as well as a brief review of the

related computational approaches. Chapter 3 gives the application of the online

decision making problem, where sensor nodes have to select the suitable modulation
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level and transmit power such as to maximize the throughput per unit energy usage.

This chapter can be viewed as the cross layer application that combines the data

link layer, namely modulation selection and the physical layer, namely transmit

power selection. The modulation and power selection are formulated as discrete

optimization, which better reflects the practical situation.

Chapter 4 suggests one application of topology aware energy efficient routing.

In this chapter, we suggest the time until the remaining network becomes discon-

nected as the definition of the overall network lifetime. Using this definition, we

propose to embed the connectivity weights that reflect the importance of sensor

nodes in the routing metric. The importance of a node is characterized as how se-

vere the remaining network becomes when that particular node dies. In this way,

the routing decision will select route that always keeps the remaining network

connected.

Chapter 5 studies the effect of cooperative routing in maximizing the network

lifetime. This chapter is one implementation of cross layer design between the

network layer and physical layer. It provides a residual energy-aware cooperative

routing scheme. In particular, we proposed a different power allocation called max-

imum lifetime power allocation, instead of using the traditional minimum power

allocation in the cooperative routing. Our power allocation scheme jointly con-

siders the channel effect and the residual energy in each sensor nodes. Using the

maximum lifetime power allocation, the nodes that have more residual energy will

help more compared to the nodes that have less residual energy. In this way, the

overused of nodes that have low residual energy will be avoided. Therefore, our

proposed method prolongs the overall network lifetime.

Chapter 6 studies how to enforce cooperation among nodes in the ad-hoc net-
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work. We propose a self-learning repeated game framework to enforce cooperation

and obtain good cooperation point. In practice, the distributed nodes with only

local information may not know how to cooperate, even though they are willing to

cooperate. This motivates us to propose self learning algorithm to search for good

cooperation point. The proposed scheme consists of two parts; in the first part,

an adaptive repeated game scheme is designed to ensure the cooperation among

nodes for the current cooperative packet forwarding probabilities. In the second

part, self-learning algorithms are employed to find the better cooperation proba-

bilities that are feasible and beneficial to all nodes. Starting from noncooperation,

the above two steps are employed iteratively, so that a better cooperating point

can be achieved and maintained in each iteration.

Chapter 7 provides an application of cross layer optimization between the ap-

plication layer and physical layer. This chapter serves as the example of channel-

aware wireless optimization. In particular, we propose a channel aware priority

transmission scheme for OFDM system. The scheme jointly considers the effects

of different channel estimation algorithms and the property of multimedia stream

to allocate the data in the most efficient way. We observe that OFDM subchannels

experience different average bit error rate (BER) due to channel estimation inac-

curacy. The leakage effect in FFT based channel estimation method or the model

mismatch in polynomial based channel estimation method results in a variation on

the decoded BER across different OFDM subchannels. Motivated by this fact, the

proposed priority transmission utilizes the bit error rate variation across different

OFDM subchannels and provides unequal error protection (UEP) for multimedia

transmission. The proposed scheme achieves significant gain in peak-signal-to-

noise ratio (PSNR) of the reconstructed images for different channel estimation
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methods.

Finally, chapter 8 concludes the dissertation with some remarks as well as a

discussion on the contributions of the dissertation and potential future research

directions.
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Chapter 2

Mathematical Framework

In this chapter, we summarize the mathematical framework and the related com-

putational methods to find solutions of the stated problem. We also provide several

definitions and terminologies. We note that we only state many of the theorems

required to justify the computational method. The detailed proofs of the theorems

can be found in the related literatures, highlighted before the theorem.

2.1 Markov Decision Process

A Markov Decision Process (MDP) [16, 23, 84] is defined as a (S,A,P,R) tuple

where S is the state space that contains all possible states of the system, A is

the set of all possible control actions at each state, P is a transition function

S × A × S → [0, 1], and R is a reward function S × A → R. The transition

function defines a probability distribution over the next state as a function of the

current state and the agent’s action, i.e. [P]sk,sk+1
(ak) = Psk,sk+1

(ak) specifies the

transition probability from state sk ∈ S to sk+1 ∈ S under the control action

ak ∈ A. Here, the notation [A]i,j denotes the element on the ith row and the jth
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Figure 2.1: Interaction between agent and environment in MDP

column of matrix A. The transition probability function P describes the dynamic

of the environment as the response to the agent current decision. The reward

function specifies the reward incurred at state sk ∈ S under control action ak ∈ A.

The interaction between the agent and environment in MDP is illustrated in Figure

2.1. At time k, the control agent detects sk ∈ S and decides an action ak ∈ A.

The decision ak causes the state to evolve from sk to sk+1 according to probability

Psk,sk+1
(ak) , and some reward R(sk, ak) is obtained. From this figure, the control

agent makes an action choice at a series of discrete time steps and experiences

through a series of states. The state evolution and the reward obtained at each

step are dependent on the actions chosen.

A policy is a rule which the control agent employs to choose an action at each

time step. In general, the policy may depend on the time, state and the history

of actions taken and states visited. A stationary policy is a policy for which the

current choice of action depends only on the current state. It has been shown

in [9,42,84], the stationary policy is general enough to get the optimal solution of

the corresponding MDP. Therefore, for the rest of this chapter, we will focus only on

the stationary policy. Given a fixed stationary decision/action policy ak ∈ A, the

corresponding MDP reduces to a Markov Chain. The solution of the MDP consists

of finding the decision policy π : S → A that maximizes some objective functions.

Several typical objective functions are expected discounted reward, expected total
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reward and average reward per stage [16,84]. In the next two subsections, we will

define the discounted MDP and the average cost MDP.

2.1.1 Discounted Markov Decision Process

The solution of the discounted cost MDP is to find the decision/action policy that

maximizes

Jπ(s0) = lim
n→∞

Eπ

[ n−1∑

k=0

αkR
(
sk, π(sk)

)]
, sk ∈ S, π(sk) ∈ A, (2.1)

where Jπ(s0) is the discounted reward obtained using decision policy π when the

initial state is s0, α is the discount factor. Eπ(·) denotes the expectation value

when a policy π is used. The solution of the discounted MDP is characterized by

the following Bellman’s equation [16,84].

Theorem 1 The maximum expected discounted future reward starting from state

s0 = s is given by the solution to the following Bellman equation

V (s) = max
a∈A(s)

[
R(s, a) + α

∑

s′∈S

Ps,s′(a)V (s′)
]
, for each s ∈ S, (2.2)

where α ∈ (0, 1) is the discount factor. This solution exists and is unique, and

an optimal deterministic stationary policy exists. The optimal decision policy is

obtained by the maximizing action policy in this equation.

2.1.2 Average Cost Markov Decision Process

In many practical optimization, the average cost is a more relevant objective func-

tion compared to the discounted cost MDP. The solution of average cost MDP is

to find the decision/action policy that maximizes

ρπ(s0) = lim
n→∞

1

n
Eπ

[ n−1∑

k=0

R
(
sk, π(sk)

)]
, sk ∈ S, π(sk) ∈ A, (2.3)
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where ρπ(s0) is the average reward obtained using decision policy π when the initial

state is s0. We note that the expectation operation in (2.3) is the conditional

expectation given one particular policy. The optimal policy is the decision rule

that maximizes the average reward per stage ρπ(sk) over all possible policies π.

When the Markov chain resulting from applying every stationary policy is

recurrent or ergodic, it is well-known that the optimal average reward per stage is

independent of the initial state s0 [16,84]. Moreover, the optimal stationary policy

is characterized by the following theorem [16,84].

Theorem 2 The solution of average cost MDP is given by the solution to the

following Bellman equation

ρ∗ + h∗(s) = max
a∈A(s)

[
R(s, a) +

|S|∑

s′=1

Ps,s′(a)h∗(s′)
]
, (2.4)

where ρ∗ is the optimal average reward per stage and h∗(s) is known as optimal

relative state value function for each state s.

In the next section, we summarize many computational tools for finding the

solution of Bellman equation (2.2),(2.4).

2.2 Solutions of Markov Decision Process

The solution of MDP can be obtained using either dynamic programming or lin-

ear programming. Each of the methods has its own advantages and disadvantages.

Typically, the dynamic programming (DP) approach has lower computational com-

plexity, however, the linear programming (LP) formulation suggests different in-

terpretation and provides randomized stationary solution as shown in dual LP

formulation.
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2.2.1 Dynamic Programming

The traditional approaches for solving the MDP are collectively termed by dynamic

programming approaches. There are two ways to find the solution of Bellman

equation using the dynamic programming namely, the value iteration method and

policy iteration method. In the following, we summarize the value iteration and

policy iteration methods for both the discounted and average cost MDP.

Value Iteration for discounted MDP

The value iteration method for discounted MDP relies on the following operator

T : R|S| → R|S|

(T ◦ V )(s) = max
a∈A(s)

[
R(s, a) + α

∑

s′∈S

Ps,s′(a)V (s′)
]
, for eachs ∈ S, (2.5)

where A(s) denotes the set of actions when current state is in s. It can be shown [16]

that operator T is a contraction mapping with respect to the supremum norm.

Moreover, [16] shows that the iteration T n(V0) converges uniformly to the unique

solution to Bellman’s equation (2.2), for any bounded initial condition V0 ∈ R|S|.
The value iteration algorithm finds a stationary ε-optimal policy as follows

1. Select V0(s) s = 1 · · · , |S|, set iteration n = 0 and specify ε > 0.

2. For each s ∈ S, compute Vn+1(s) as

Vn+1(s) = max
a∈A(s)

[
R(s, a) + α

∑

s′∈S

Ps,s′(a)Vn(s′)
]

(2.6)

3. If ||Vn+1 − Vn||∞ < ε(1−α
2α

), then go to step 4. Otherwise, increment n by

1 and return to step 2. We note that ||V ||∞ is the supremum norm (the

maximum absolute element in the vector V ).
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4. For each s ∈ S, find the ε-optimal policy as

a∗(s) = arg max
a∈A(s)

[
R(s, a) + α

∑

s′∈S

Ps,s′(a)Vn+1(s
′)
]

(2.7)

Obviously, the number of iterations in the Value iteration method depends on

how accurate ε the solution is required to be. Generally, it requires an infinite

number of iterations to find the optimal value function exactly.

Policy Iteration for discounted MDP

The policy iteration method resembles the newton-like optimization for solving

the nonlinear equation. The detailed steps in policy iteration are summarized as

follows

1. Select initial policy π0 arbitrarily, set iteration n = 0.

2. (Policy Evaluation): solve V π
n from the following set of equations.

V πn(s) = R(s, πn(s)) + α
∑

s′∈S

Ps,s′(πn(s))V πn(s′), for each s ∈ S. (2.8)

3. (Policy Improvement): Update the policy as

πn+1(s) = arg max
π

[
R(s, π) + α

∑

s′∈S

Ps,s′(π)V πn(s′)
]

(2.9)

4. Stopping criteria: When πn+1 = πn.

Unlike the value iteration method, the policy iteration will converge to the optimal

solution in a finite number of iterations. The following theorem characterizes the

optimality and the finite iteration property in the policy iteration method [16].

Theorem 3 For the policy iteration algorithm, V πn+1(s) ≥ V πn(s) for all s ∈ S,

with the equality at s ∈ S if and only if πn(s) is optimal. Therefore, the algorithm

22



will converge in a finite number of iterations due to the finite number of states and

actions in each states.

After summarizing the value iteration and policy iteration for solving the dis-

counted MDP, we briefly explain the value iteration and policy iteration algorithm

for solving the average cost MDP in the following two subsections.

Value Iteration for average cost MDP

The following value iteration algorithm finds a stationary ε-optimal policy for the

unichain average cost MDP [16]

1. Select Th0(s) = h0(s), s = 1 · · · , |S|, set iteration n = 0, specify ε > 0, and

determine the reference state ṡ arbitrarily.

2. For each s ∈ S, compute Thn+1(s) as

Thn+1(s) = max
a∈A(s)

[
R(s, a) +

∑

s′∈S

Ps,s′(a)hn(s′)
]

(2.10)

3. Set c+ = maxs′∈S(Thn+1(s)−Thn(s)) and c− = mins′∈S(Thn+1(s)−Thn(s)).

If |c+ − c−| < ε, then go to step 4. Otherwise, set hn+1(s) = Thn+1(s) −
Thn+1(ṡ), s = 1 · · · , |S|, increment n by 1, and return to step 2.

4. For each s ∈ S, find the ε-optimal policy as

a∗(s) = arg max
a∈A(s)

[
R(s, a) +

∑

s′∈S

Ps,s′(a)hn(s′)
]

(2.11)

Similar to the value iteration algorithm for discounted MDP, the value iteration

algorithm for average cost MDP finds an ε-optimal stationary policy.
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Policy Iteration for average cost MDP

Finally, the policy iteration counterpart for solving average cost MDP is listed as

follow [16]

1. Select initial policy π0 arbitrarily, set iteration n = 0, and determine the

reference state ṡ.

2. (Policy Evaluation): solve ρπn and hπn(s) s ∈ (S) from the following set of

equations

ρπn + hπn(s) =

[
R(s, πn) +

|S|∑

s′=1

Ps,s′(a)h∗(s′)
]
, (2.12)

h(ṡ) = 0. (2.13)

3. (Policy Improvement): Update the policy as

πn+1(s) = arg max
π

[
R(s, π) +

∑

s′∈S

Ps,s′(π)hπn(s′)
]
. (2.14)

4. Stopping criteria: When πn+1 = πn.

The similar argument on finiteness of number of states and actions in each states

implies that the algorithm finds the optimal solution in a finite number of itera-

tions.

2.2.2 Linear Programming

The solution of the MDP can also be characterized using linear programming. In

this subsection, we summarize the linear programming solution for MDP problem.

The detailed treatment of linear programming formulation for MDP can be found

in [16,42,84]
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Primal Linear Program for discounted MDP

The primal linear programming for discounted MDP is listed as follow

Minimize
∑

s∈S
1
|S|V (s)

subject to V (s) ≥ R(s, a) + α
∑

s′∈S Ps,s′(a)V (s′) for a ∈ A(s), s ∈ S.
(2.15)

The coefficient 1
N

in the objective function of primal linear programming has the

interpretation that the process begins from any state s ∈ S with equal probability.

In fact, the objective function can be replaced by

∑
s∈S

γ(s)V (s), (2.16)

where γ(s) > 0 and
∑

s∈S γ(s) = 1. γ(s) represents the initial distribution of

states. The replacement will not modify the optimal policy obtained from the

linear programming [84].

Dual Linear Program for discounted MDP

The associated dual representation of the above primal linear program is presented

as follow

Maximize
∑

s∈S

∑
a∈A(s) f(s, a)R(s, a)

subject to
∑

a∈A(s′) f(s′, a)− α
∑

s∈S

∑
a∈A(s) Ps,s′(a)f(s, a) = 1

|S| for s′ ∈ S

f(s, a) ≥ 0 for a ∈ A(s), s ∈ S.

(2.17)

We note that the right hand side (RHS) of the first constraint can be replaced with

γ(s′), the initial distribution of states if it is known.

The solution of dual linear program can represent both randomized stationary

policy and deterministic stationary policy. We note that the deterministic station-

ary policy assigns one action with probability one whenever the control agent is in
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one particular state. In other word, the action the control agent chooses at state s

is a function of the state s, i.e. a : |S| → |A|. In contrast, the randomized station-

ary policy allows several actions to be chosen with some probabilities whenever

the control agent is in state s. In the solution of linear programming shown above,

the probability of taking action a whenever the control agent is in state s can be

represented as follow

Pr{an = a|sn = s} =
f(s, a)∑

a′∈A(s) f(s, a′)
. (2.18)

The primal and dual linear program for average cost MDP are presented as

follows.

Primal Linear Program for average cost MDP

The primal linear program counterpart for average cost MDP is presented as follow

Minimize ρ

subject to ρ + h(s) ≥ R(s, a) +
∑

s′∈S Ps,s′(a)h(s′) a ∈ A(s) s ∈ S.
(2.19)

with ρ and h(s) unconstrained.

Dual Linear Program for average cost MDP

The dual linear program for average cost MDP is represented as

Maximize
∑

s∈S

∑
a∈A(s) f(s, a)R(s, a)

subject to
∑

a∈A(s′) f(s′, a) =
∑

s∈S

∑
a∈A(s) Ps,s′(a)f(s, a), for s′ ∈ S

f(s, a) ≥ 0 for a ∈ A(s), s ∈ S

∑
s∈S

∑
a∈A(s) f(s, a) = 1

(2.20)

Similar to the discounted MDP, the f(s, a) has the interpretation of the joint

probability of state s and action a. In particular, the resulting stationary policy
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can be described as

Pr{an = a|sn = s} =
f(s, a)∑

a′∈A(s) f(s, a′)
. (2.21)

From computational perspective, the LP formulation has higher dimension com-

pared to the dynamic programming approach. In particular, the dual program has

|S| rows and
∑

a∈S |A(s)| columns. However, the policy obtained from the dynamic

programming is more likely to be a stationary deterministic policy, which implies

that at any particular state, one action will be applied with probability one. In

contrast, the LP solution includes the stationary randomized solution. This can

be easily seen from (2.20) and (2.21), where (2.21) may range from (0, 1). It is

well known [9] that the optimal policy for unconstrained MDP is non-randomized

stationary policy (pure/deterministic stationary policy). In the constrained MDP

case, the solution is more likely to be randomized stationary policy. For this rea-

son, it is more convenient to work on linear programming formulation in the case

of constrained Markov Decision Process [9].

2.3 Reinforcement Learning

The computational methods described in previous subsections for solving the MDP

require an explicit model of the cost function and the transition probabilities in the

system. In many practical problem, however such a model is not available when the

optimization is done, but instead the system and the cost function can be sampled

at any time. This implies that the control agent knows the state space and the

control space, but the control agent does not have the cost function and the system

state transition probability. And it obtains the noisy cost function accordingly

whenever it takes some action in some states. The reinforcement learning algorithm
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is a popular paradigm for solving learning-control MDP [18, 97]. In RL, a control

agent learns to make optimal decisions by experiencing the reward received, as the

result of its action. The control agent does not require the explicit model of the

environment. Hence, the reinforcement learning approach is very useful when the

control agent has little knowledge of the environment and the exact function to be

optimized.

An excellent tutorial on the RL algorithms can be found in [18, 97]. The RL

algorithms can be used to solve different types of objective function in MDP,

including the discounted MDP and average cost MDP. In this subsection, we will

focus on the RL algorithm to solve the average cost MDP. In particular, we will

describe a class of RL algorithm called adaptive actor critic algorithm. This class of

algorithm can be used to solve both the discounted and average cost MDP, however,

we will merely focus on adaptive actor critic algorithm to solve the average cost

MDP.

The essence of adaptive actor critic algorithm used to solve average cost MDP is

to update the relative state value function h(s) and ρ in (2.4) using incremental av-

eraging. In the following, we explain step-by-step the development of update equa-

tions in adaptive actor critic algorithm and show their connection with Bellman’s

equation. Define the operator B(hπ(s)) = R(s, π(s))+
∑|S|

s′=1 Ps,s′(π(s))hπ(s′). Re-

call that given any stationary policy π, the corresponding average reward ρπ and

relative state-value hπ(s) satisfy the following relation for all s ∈ S

ρπ + hπ(s) =

[
R(s, π(s)) +

|S|∑

s′=1

Ps,s′(π(s))hπ(s′)
]
. (2.22)
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The above relation (2.22) can then be expressed as

hπ
k+1(sk) = B(hπ(sk))− ρπ

k

ρπ
k+1 = B(hπ(sk))− hπ

k(sk). (2.23)

The RL algorithm eliminates the need for state transition probability by replacing

the operator B(·) with B′(hπ(s)) = R(s, π(s)) + hπ(s′), where s′ is the next state

occurring in the sample path. Obviously, the next state s′ occurs according to the

probability Ps,s′(π(s)). The RL algorithm learns the state-value function as

hπ
k+1(sk)=(1− αk)h

π
k(sk) + αkh

π
k+1(sk)

=(1− αk)h
π
k(sk) + αk(B

′(hπ
k(sk))− ρπ

k)

=hπ
k(sk) + αk[R(sk, π(sk)) + hπ

k(sk+1)− hπ
k(sk)− ρπ

k ] (2.24)

Similarly, the average reward ρ is updated as

ρπ
k+1=(1− βk)ρ

π
k + βkρ

π
k+1

=(1− βk)ρ
π
k + βk(B

′(hπ
k(sk))− hπ

k(sk))

ρπ
k+1=ρπ

k + βk[R(sk, π(sk)) + hπ
k(sk+1)− hπ

k(sk)− ρπ
k ], (2.25)

We note that αk and βk determine the weighting of the current and future estimate

of the state value function and the average reward. The term (R(sk, π(sk)) +

hπ
k(sk+1)−hπ

k(sk)−ρπ
k) is often referred to as the temporal difference [97] or the error

between the current and next estimate. This temporal difference (error) guides the

learning process. αk and βk determine the learning rate for the differential state

value function and the average reward.

Since the Bellman equation chooses the action that optimizes the right hand

side (RHS) of (2.4), there should be some function related to the decision made

in each iteration. The adaptive actor critic algorithm chooses the decision/action
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according to the Gibbs softmax method [97], i.e., action ak is chosen in state sk

according to probability

Pr{ak = a|sk = s} =
ep(s,a)

∑
b∈A(s) ep(s,b)

. (2.26)

Whenever an action ak is chosen at state sk, the preference metric p(sk, ak) is

updated according to

p(sk, ak) = p(sk, ak) + εk[R(sk, ak) + hk(sk+1)− hk(sk)− ρk], (2.27)

where the εk determines the learning rate for the preference metric. The preference

metric update equation has the following interpretation. The algorithm typically

is initialized using p(s, a) = 0,∀s ∈ S,∀a ∈ A. This implies that initially the

algorithm chooses every action uniformly at any particular state s. As the iteration

proceeds, the action that results in increasing relative state value function hk+1(sk)

is prioritized by increasing the preference metric of choosing that particular action

(2.27). In contrast, the action that results in smaller relative state value function

(the temporal difference is negative) is penalized by reducing its preference metric.

In this sense, the equations (2.24)-(2.27) choose the action that maximizes the

RHS of (2.4). Hence, the adaptive actor critic algorithm resembles the Bellman

optimality equation. The application of adaptive actor critic algorithm in joint

adaptive modulation and power level selection will be given in Chapter 3.

2.4 Constrained Markov Decision Process

The Markov Decision Process explained in previous sections are unconstrained

MDP. In many engineering problems, there are many inherent physical limita-

tions that constrain the optimization problem. Due to this inherent physical
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limitations, it is important to consider optimization framework that can handle

constraints. In the next subsections, we describe the structure of discounted con-

strained Markov Decision Process (CMDP), the characterization of the solution

of discounted CMDP, the structure of average cost CMDP, and the solution of

average cost CMDP. An extensive discussion on the CMDP can be found in mono-

graph [9]. The solutions of the CMDP is characterized by the constrained linear

programs similar to the cases in Section 2.2.2.

2.4.1 Discounted Constrained Markov Decision Process

The structure of discounted constrained Markov decision process is given as

Maximize limn→∞ Es0
π

[ ∑n
k=1 αk−1R(sk, π(sk))

]

s. t. limn→∞ Es0
π

[ ∑n
k=1 αk−1Cl(sk, π(sk))

] ≥ Bl for l = 1, · · · , L,
(2.28)

where R(sk, ak) is the reward function when the control agent takes action ak at the

state sk. We note that the subscript in the variables indicates the time. Cl(sk, ak)

represents the constrained function obtained by the agent when it takes action

ak and at state sk. L is the number of constraints. The Es0
π is the conditional

expectation when policy π is used and the initial state is s0. We note that similar

to the unconstrained MDP case, the state evolution in the system is governed by

the state transition probability Ps,s′(a). The equation (2.28) can be interpreted

as maximize the discounted sum of the reward function, while maintaining the

discounted sum of the constraints feasible. The optimal solution for the problem is

to find decision/action policy such that the objective function is minimized while

satisfying the constraints.
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2.4.2 Average Cost Constrained Markov Decision Process

Similarly, the structure of average cost constrained Markov decision process can

be represented as follow

Maximize limn→∞ 1
n
Es0

π

[ ∑n
k=1 R(sk, π(sk))

]

s. t. limn→∞ Es0
π

[ ∑n
k=1 Cl(sk, π(sk))

] ≥ Bl for l = 1, · · · , L.
(2.29)

The optimal solution of the above problem is to find the decision/action policy

that minimize the average reward of the system while maintaining the feasibility

of the time average constrained functions. We note the structure of CMDP is very

general. For example, in the telecommunication network optimization, the designer

always wants to guarantee the quality of service (QoS). This can be represented

as the average time of the instantaneous signal to noise ratio (SNR) should be

larger than the minimum SNR, i.e. limn→∞ Es0
π

[ ∑n
k=1 γ(sk, π(sk))

] ≥ γmin, where

γ(sk, ak) is the instantaneous SNR when the system is in state sk and the control

agent takes action ak. γmin is the minimum SNR.

2.5 Solutions of Constrained Markov Decision

Process

Similar to the linear programming formulation for the unconstrained MDP, we have

primal and dual linear program for each of discounted and average cost problem.

The characterization of the solution of discounted CMDP can be obtained by

solving the following primal linear program

minV,λ

∑
s∈S γ(s)V (s)−∑L

l=1 λlBl

s. t. V (s) ≥ R(s, a) +
∑L

l=1 λlCl(s, a) + α
∑

s′∈S Ps,s′(a)V (s′) for a ∈ A(s), s ∈ S,

(2.30)
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where γ(s) is the initial distribution of the state, which satisfies
∑

s∈S γ(s) = 1. λl

is the corresponding Lagrange multiplier for the l-th constraint, A(s) is the set of

action when the system is in state s.

The dual representation of the above linear program can be written as

Maximize
∑

s∈S

∑
a∈A(s) f(s, a)R(s, a)

subject to
∑

a∈A(s′) f(s′, a) = α
∑

s∈S

∑
a∈A(s) Ps,s′(a)f(s, a) for s′ ∈ S

f(s, a) ≥ 0 for a ∈ A(s), s ∈ S

∑
s∈S

∑
a∈A(s) f(s, a)Cl(s, a) ≥ Bl for l = 1, · · · , L.

(2.31)

We note that f(s, a) has the interpretation of the joint probability of state s and

action a. In particular, the resulting stationary policy can be described as Pr{an =

a|sn = s} = f(s,a)P
a′∈A(s) f(s,a′) .

The primal program for solving average cost CMDP is listed as follow

minρ,h,λ ρ−∑L
l=1 λlBl

s. t. ρ + h(s) ≥ R(s, a) +
∑L

l=1 λlCl(s, a) + α
∑

s′∈S Ps,s′(a)h(s′)

a ∈ A(s), s ∈ S,

(2.32)

The corresponding dual linear program can be represented as

Maximize
∑

s∈S

∑
a∈A(s) f(s, a)R(s, a)

subject to
∑

a∈A(s′) f(s′, a) = α
∑

s∈S

∑
a∈A(s) Ps,s′(a)f(s, a) for s′ ∈ S

f(s, a) ≥ 0 for a ∈ A(s), s ∈ S

∑
s∈S

∑
a∈A(s) f(s, a)Cl(s, a) ≥ Bl for l = 1, · · · , L

∑
s∈S

∑
a∈A(s) f(s, a) = 1

(2.33)

Suppose under a stationary policy π, we say that there are m(s, π) randomiza-

tions in state s if there are exactly m + 1 actions in A(s) for which Pr(a|s) > 0.

Moreover, let’s denote the number of randomizations under stationary policy π as
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∑
s∈S m(s, π). The following theorem [9] is very useful to determine the bound on

the number of randomizations in solving CMDP.

Theorem 4 If the CMDP is feasible then there exists an optimal stationary policy

such that the total number of randomization
∑

s∈S m(s, π) that it uses is at most

L, where L is the number of constraints.

2.6 Stochastic Approximation

The subject on stochastic approximation (SA) was introduced as an iterative

method to find the zeros of a function when only a perturbed value of the function

at the current estimate of the zero is known [88]. However, SA has found many

application in modern disciplines, such as adaptive algorithm, neural networks,

stochastic optimization, reinforcement learning [15, 34, 57, 93]. The stochastic ap-

proximation iteration typically involves algorithm of the form

θn+1 = θn + λn+1Fn+1(θn). (2.34)

There are two common ways to prove the convergence of stochastic approx-

imation algorithm. First, the proof of convergence is based on supermartin-

gale/martingal convergence theorem [91]. The second way is based on ordinary

differential equation (ODE) approach [57]. The latter approach shows that the

interpolated process from stochastic approximation iteration asymptotically con-

verges to the following ODE

θ̇ = F (θ). (2.35)

Therefore, the solution θ will asymptotically converges to the limit point of the

ODE. The detailed treatment of the SA convergence proof can be found in [15,34,

57].
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Chapter 3

Near-Optimal Modulation and

Power Selection using

Reinforcement Learning

This chapter1 gives an application of maximizing the efficiency of one unit energy.

In particular, we consider the problem of average throughput maximization per to-

tal consumed energy in packetized sensor communications. Our study results in a

near-optimal transmission strategy that chooses the optimal modulation level and

transmit power while adapting to the incoming traffic rate, buffer condition, and

the channel condition. We investigate two scenario, the point-to-point and multi-

node communication. Many solutions of the previous works require the state tran-

sition probability, which may be hard to obtain in a practical situation. Therefore,

we are motivated to propose and utilize a class of reinforcement learning (RL) al-

gorithms (called adaptive actor critic algorithm) to obtain the near-optimal policy

1Material in this chapter has been published in IEEE Journal on Selected Area in Communi-

cations [80]
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in point-to-point communication and a good transmission strategy in multi-node

scenarios. For comparison purpose, we develop the stochastic models to obtain the

optimal strategy in the point-to-point communication. We show that the learned

policy is close to the optimal policy. We further extend the algorithm to solve

the optimization problem in a multi-node scenario by independent learning. We

compare the learned policy to a simple policy, where the agent chooses the high-

est possible modulation and selects the transmit power that achieves a predefined

signal to interference ratio (SIR) given one particular modulation. The proposed

learning algorithm achieves more than twice the throughput per energy compared

to the simple policy, particularly in high packet arrival regime. Beside the good

performance, the RL algorithm results in a simple, systematic, self-organized, and

distributed way to decide the transmission strategy.

The contributions of this chapter are as follows; we propose an optimization

framework that generally captures several parameters from different communica-

tion layers and develop practical algorithms based on the RL algorithm to learn

the near-optimal control policy in the point-to-point communication and a good

transmission strategy in multi-node scenarios. The proposed optimization scheme

is simple, inherently distributed and self-organized. This chapter is organized as

follows. We first give the motivation and summary of the previous works. Then,

we formulate the throughput maximization per total consumed energy in a point-

to-point communication scenario. We extend the formulation of the point to point

communication to the multi-node scenario. Finally, the applicability of the algo-

rithms to wireless sensor networks is discussed.
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3.1 Motivation

Several attempts to design the resource allocation protocol for WSN are based on

the existing wireless resource allocation methods. We first briefly outline the ex-

isting wireless resource management approaches, which are closer to our method.

In [11], a power control scheme for wireless packet networks is formulated using

dynamic programming (DP). The extension of this work to multi-modal power

control is also investigated in [12]. In these two schemes, the power control follows

some threshold policy that balances between the buffer content and the channel

interference. The DP formulation for power control with imperfect channel es-

timation is addressed in [51]. They show that the DP solution is better than

the fixed signal to interference ratio (SIR) approach. Jointly optimized bit-rate

and delay control for packet wireless networks has also been studied within the

DP framework [86]. Most of the literature assumes the knowledge of the exact

probability model and obtain the optimal solution by solving Bellman’s optimality

equation [16]. In practice, the probability models may not be available when the

optimization is being done. This motivates us to develop and investigate an op-

timization scheme that learns the optimal policy without knowing the probability

model.

We focus on the average throughput maximization per total consumed energy in

packetized wireless sensor communications from an optimal control point of view.

We consider the point-to-point communication and the multi-node scenarios. In

both cases, we assume that an intelligent control agent resides in the transmit-

ter and decides the right action in the right situation. We propose to utilize the

reinforcement learning algorithm to solve the online optimization problem. In

point-to-point communication, the communication takes place between one trans-
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mitter and one receiver. Before the transmission, the transmitter observes the

number of packets in its buffer and the channel gain from the previous transmis-

sion. Based on this knowledge, the objective of the intelligent control agent is to

find the best modulation level and transmit power to maximize the long-term av-

erage throughput per total consumed energy. The long-term average throughput

per total consumed energy is obtained by averaging the throughput per energy

at every transmission. The total consumed energy at every transmission consists

of the transmission energy and buffer processing cost. Clearly, the buffer in the

transmitter is affected by the agent’s decision. In this scenario, we compare the

optimal policy with the policy learned by RL algorithm and show that the RL

algorithm obtains the near-optimal control policy. Moreover, we also compare the

learned policy with a policy, where the control agent chooses the highest possi-

ble modulation and uses the transmit power that achieves a predefined signal to

interference ratio (SIR) given one particular modulation. We refer this policy as

the simple policy. We demonstrate that the proposed learned policy obtains more

than twice throughput per energy compared to the simple policy, especially in the

high mean packet arrival region.

In contrast to the point-to-point communication, we consider N transmitters

simultaneously communicate to one receiver in multi-node scenario. The channel

link experienced by one node depends on the transmission power (decision) em-

ployed by other nodes in multi-node scenarios. Hence, the optimal (equilibrium)

solution generally depends on the policy employed by the other nodes. We extend

the RL algorithm to solve the multi-node problem. We propose to let every node

independently learn its transmission strategy based on its buffer condition and the

measured channel interference. Similarly, we compare the independent learned

38



Figure 3.1: Interaction of nodes in distributed control agent

policy to the simple policy where each node chooses the highest modulation level

and selects the transmit power level to achieve a predefined SIR at given modula-

tion. The proposed modified RL algorithm provides a significant improvement in

the average throughput per total consumed energy.

3.2 Throughput maximization in point-to-point

communication

The interaction between the communicating nodes for both scenarios can generally

be illustrated in Figure 3.1. The point-to-point communication can be considered

as the special case where only one transmitter and receiver are participating in the

communication. We will refer to this illustration, when explaining the interaction

between the optimal control agent and the environment. We study the average

throughput maximization per total consumed energy considering the parameters

of the channel condition, the transmitter buffer, the modulation and the transmit

power. In the following, we first present the reward function and the adaptive

actor critic (AC) algorithm used to learn the near-optimal policy. In order to com-
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pare the learned strategy with the optimal solution, we present the models that

constitute the MDP in point-to-point communication. These models are required

in solving the Bellman optimality equation. We note that the proposed optimal

control framework does not depend on any particular model used in our formula-

tion. Hence, more accurate models, if further discovered, can be employed without

changing the optimization framework.

3.2.1 Reward function

Several utility functions or reward functions have been used in the context of

power control schemes. In [11] [12], the transmit power and cost incurred in the

buffer are used as the objective functions to be minimized. In [90], the number of

information bits successfully transmitted per Joule is used as the objective func-

tion. In the application of wireless sensor networks, the energy consumption, the

throughput and the delay are all very critical parameters. We certainly do not

want to minimize the energy consumption with an unacceptable throughput or

infinite delay. Hence, we employ the number of successfully transmitted packets

per total consumed energy as our objective function. To enforce the bounded delay

transmission, we incorporate the buffer processing cost/energy into the total en-

ergy, which is the summation of the transmission energy and the buffer processing

cost/energy. Including the buffer processing cost/energy minimizes the possibility

of buffer overflow, which can be interpreted as enforcing the Quality of Service

(QoS).

Suppose the transmitter sends a packet consisting Lb information bits, and let

the number of bits in one packet after adding error decoding code be L bits. The

transmission rate is R bits/s. Figure 3.1 illustrates this scenario, where only one
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transmitter and receiver pair is communicating. We assume the receiver feeds back

its current received channel gain γ to the transmitter before the next transmission.

Let m and pt denote the modulation level and the transmission power. Also let

S(Γ(γ, pt),m) denote the probability of successful packet reception, where Γ(γ, pt)

is the targeted signal to interference ratio. Let K denote the number of retrans-

missions required to successfully transmit a packet. Assuming each transmission

is statistically independent, K is a geometric random variable with mass function

PK(k) = S(Γ(γ, pt),m)[1− S(Γ(γ, pt),m)]k−1. (3.1)

The time duration for each transmission is L/Rm seconds and total retransmis-

sion time becomes KL/Rm seconds. When the transmitted power is pt watts,

the energy consumed per packet transmission is E[K]ptL/Rm, where E[·] is the

expectation. In one packet, the useful information portion is only Lb/L. Hence,

the utility function becomes

GoodPacket

TransmitEnergy
=

Lb

L
· R ·m · S(Γ(γ, pt),m)

L · pt

(3.2)

where the unit for the utility function is packet per Joule. Let pb denote buffer

processing cost/energy. The buffer processing cost is assumed to be a monoton-

ically increasing function with respect to the number of packets in the buffer nb,

i.e. pb = f(nb). Thus, the reward function is expressed as

R((nb, γ), (m, pt)) =



Lb

L
· R·m·S(Γ(γ,pt),m)

L·(pt+f(nb))
× 10−3if nb 6= 0 and pt 6= 0

0 otherwise,
(3.3)

where (nb,γ) is the aggregate state and (m,pt) is the action that can be taken

by the control agent. The reward function is interpreted as the number of good
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received packets per total energy consumed. We note that the reward function is

equal to zero if there is no packet in the buffer or no transmission occurs (transmit

power is zero). Also by adding the buffer processing cost, the control agent will

gradually become more aggressive as the buffer increases. Hence, the probability

of buffer overflow will be decreased.

3.2.2 Near-Optimal Solution using Actor-Critic Algorithm

In this section, we present the complete Actor-Critic (AC) algorithm developed in

Section 2.3 to solve MDP with average reward per stage. The architecture of an

Actor-Critic algorithm is shown in Figure 3.2. As we can infer from its name, the

AC algorithm consists of two major parts, the actor and the critic. The policy

structure is known as the actor, because it decides the action, and the estimated

state value function is known as the critic, since it generates temporal difference

(error) that criticizes the actions made by the actor. The complete AC algorithm

is shown in Table 3.1 . The AC algorithm uses the state value function update and

the average reward update as in (2.24) and (2.25). The actor selects the decision

according to the Gibbs softmax method [97]. In parallel with the discussion in

Section 2.3, the Gibbs softmax method (2.27) acts as the actor and the temporal

difference serves as the critic (2.24-2.25).

In the Gibbs softmax method, the actor chooses the action with the highest

conditional probability of state-action π(sk, ak) = Pr(ak|sk). The higher π(sk, ak)

is, the more likely ak will be chosen. The algorithm starts with equal π(sk, ak) for

every action. Therefore, the actor has equal probability to choose any available

actions at the initial stage. This stage is often referred to as an exploration stage.

As in all RL algorithms, the AC algorithm needs to balance the exploration and
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Figure 3.2: Actor-Critic architecture

exploitation step in the learning process. The exploitation step is used to search

for the average reward maximizing decision and the exploration step is used to try

out all possible best decisions [97].

3.2.3 The Optimal Dynamic Programming Solution

As described in Section 2.2, the solution of the Bellman optimality equation re-

quires knowledge of the state transition probability. Before describing the optimal

solution, we present the models of each of the components that constitute the MDP

system in a point-to-point scenario as follows.

Finite state Markov channel (FSMC)

In point-to-point communication, the wireless channel dynamic can be modelled

using a Finite State Markov Channel (FSMC). The approach in the Finite State

Markov Channel (FSMC) for wireless channels [101] [105] is to partition the re-

ceived signal-to-noise ratio (SNR) or the equivalent channel gain into a finite num-

ber of intervals. Suppose that the channel gain is partitioned into K intervals,

0 = Γ0 < Γ1 . . . < ΓK . The channel gain is said to be in state k if it is between
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Table 3.1: Actor-Critic Algorithm

Actor-Critic Algorithm

Initialize α, β, ε, k = 0, h(sk) = 0 for all sk ∈ S, and ρk = 0.

Set preference function p(s, a) = 0, ∀s ∈ S, ∀a ∈ A(s).

Set s0 arbitrarily.

Loop for k = 0, 1, 2, . . .

1. Choose ak in sk according to Gibbs softmax method :

π(sk, ak) = Pr(ak = a|sk = s) = ep(s,a)/
∑

b ep(s,b)

2. Get Reward from current decision and observe next state sk+1:

r = R(sk, ak)

3. Evaluation of temporal difference (error)

δ = r + h(sk+1)− h(sk)− ρk

4. Update relative state value function and average reward per state

h(sk) = h(sk) + αδ

ρk+1 = ρk + βδ

5. Update actor preference

p(s, a) = p(s, a) + εδ

End Loop.

Γk−1 to Γk. In the packet transmission system, the channel transition occurs at the

time slot boundary, and the channel gain is constant during one time slot of trans-

mission. Furthermore, the channel transition only occurs from a given state to its

two adjacent states as in Figure 3.3. The state transition probability completely

specifies the dynamics of the channel and is determined as follows [101] [105]
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Figure 3.3: FSMC with K-state

1. Steady-state probabilities:

ζk =

∫ Γk

Γk−1

p(γ)dγ, k = 1, . . . , K. (3.4)

In a Rayleigh fading channel, γ is exponentially distributed with probability

density function as p(γ) = 1/γ0 exp(−γ/γ0), where γ0 is the average channel

gain.

2. State transition probabilities:

pc(k, k + 1)=N(Γk+1)Tp/πk k = 1, . . . , K − 1

pc(k, k − 1)=N(Γk)Tp/πk k = 2, . . . , K. (3.5)

where N(.) is the level crossing function given by N(Γ) =
√

2πΓ/γ0fd exp(−Γ/γ0),

Tp is the packet transmission time and fd is the maximum doppler frequency.

State transition probability construction

We construct the system state as the aggregate of the number of packets in the

buffer, nb and the channel gain, γ, that is s ≡ (nb, γ). The control space consists

of the modulation level and transmit power, i.e. a ≡ (m, pt). The state transition

probability maps (nb, γ)× (nb, γ)× (m, pt) → [0, 1]. In particular, the state transi-

tion probability depends on the probability of packet arrival, the channel transition

probability and the successful packet transmission probability.
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We model the packet arrival process as a Poisson process with mean packet

arrival rate, µ. The channel is modelled as FSMC and the channel gain state tran-

sition probability is calculated according to Section 3.2.3. The successful packet

transmission probability, S(Γ(γ, pt),m), depends on the targeted SIR, Γ(γ, pt),

which is represented as

Γ(γ, pt) = γ × W

R

pt × At

σ2
, (3.6)

where γ, modelled as the FSMC, is the channel gain variation between the trans-

mitter and receiver, W denotes the total bandwidth of the transmission, R is the

transmission rate, (W/R is also known as the processing gain in CDMA literature),

At ∝ 1/d4 is the attenuation factor resulting from the path loss, d is the distance

between the transmitter and receiver, and σ2 is the variance of the thermal noise.

Denote the number of packet arrivals as na = 0, 1, . . ., the probability of packet

arrival as pa(na), the successful packet transmission probability as S(Γ(γ, pt),m),

and the channel transition probability as pc(γk, γk+1). Here, pc(γk, γk+1) indicates

the transition probability of the channel gain from state γk at time instant k to

γk+1 at the next time instant. Suppose the current state is sk = (nb,k, γk), where

nb,k is the number of packets in the buffer at time k, and γk is the channel gain

that is fed back. The action taken at time k is ak = (mk, pt,k), where mk and pt,k

denote the modulation level and the transmit power employed at time k. Assuming

that the events of packet arrival, successful transmission and channel transition are

all mutually independent, the corresponding system state transition probability is

determined as

1. Transmission failure:

sk+1=(nb,k + na, γk+1)

Psk,sk+1
(ak)=pa(na)(1− S(Γ,mk))pc(γk, γk+1) (3.7)
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2. Successful transmission:

sk+1=(nb,k + na −mk, γk+1)

Psk,sk+1
(ak)=pa(na)S(Γ,mk)pc(γk, γk+1) (3.8)

The formulation of MDP has the following interpretation. Before a packet

transmission, the transmitter is in some state (obtained from the previous his-

tory of transmission, i.e. buffer content and channel condition, see Figure 3.1).

The transmitter uses this information to determine what modulation and trans-

mit power should be used to maximize the average throughput per total con-

sumed energy. At the end of a packet transmission, the transmitter obtains feed-

back information from the receiver containing the quantized channel gain and

ACK/NACK. The quantized channel gain is used to track the channel evolution

γk. The ACK/NACK is used to update the buffer content. When an ACK signal

is received, the transmitter will send the following packet at the next transmission

time. Otherwise, it retransmits the packet. The number of successful transmit-

ted packets per the energy consumed in one transmission time is recorded as the

reward, R(sk, ak) = R((nb,k, γk), (mk, pt,k)).

3.2.4 Numerical Results

In this section, we construct the simulation using parameters shown in Table 3.2.

We note that the total number of states are 72 and total number of actions are 44.

Given the MDP state transition probability, the optimal solution of the posed MDP

problem is solved numerically using the policy iteration method [16]. We compare

the optimal solution to the policy learned by the Actor Critic (AC) algorithm. The

AC algorithm parameters are α = 0.01, β = 0.0001 and ε = 0.01. For comparison
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Table 3.2: Single node Simulation parameters

Packet size Lb = 64, L = 80

System W = 10Mhz, R = 100kbits/s, Tp = 0.8ms

Parameters σ2 = 5× 10−15W

Channel fD = 50Hz, γ ∈= [−8,−6, ..., 8] dB

Gain At = 1.916× 10−14

Buffer f(nb) = 0.05(nb + 4) if nb 6= max(nb)

Cost max(nb) = 7, f(max(nb)) = 3

modulation level m=1,2,3,4 (BPSK,QPSK,8PSK,16PSK),

Packet success S(Γ(γ, pt),m)=(1− P (Γ(γ, pt),m))L

probability P (Γ, m)=erfc(
√

Γ ∗ sin( π
2m ))

Transmit power pt = [0, 0.2, ..., 2] Watt

SNR range Γ = [0, 1, ..., 24] dB

purposes, we also simulate the simple policy, where the transmitter tries to transmit

at the highest throughput (modulation) possible, while maintaining a predefined

link SNR given a particular modulation. Specifically, The transmitter chooses

BPSK to transmit when there is only one packet in the buffer, and it chooses QPSK,

8PSK and 16PSK to transmit when there are two packets, three packets, and more

than 4 packets in the queue, respectively. For each modulation, the transmitter

selects the transmit power to achieve a fixed predefined SNR. We use (6, 10, 15, 20)

dB as the predefined link SNR for BPSK to 16PSK, respectively. These predefined

SNRs can achieve more than 80% packet correct reception probability.

Figure 3.4 shows the average throughput learned by the AC algorithm and the

optimal throughput when µ = 2.0. It is obvious that the learned throughput is

asymptotically very close to the optimal one. Moreover, due to the selection of

the small, constant learning parameter α, β and ε (as opposed to the decreasing

magnitude of learning parameters with time) the AC algorithm has the ability to
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track the variation in the governing probability as demonstrated in Figure 3.4. In

this figure, the mean packet arrival rate varies as µ =(0.5, 1.0, 1.5, 2.0, 1.0). Based

on the sample realization, the AC algorithm adjusts the learned policy adapting

to different packet arrival rates. The capability of the AC algorithm to obtain

the near-optimal policy and track the variation in the governing probability is due

to the fact that the algorithm explores all the possible decisions and selects the

throughput maximizing policy. This exploration is achieved by the initial stage of

the Gibbs softmax method used in the actor part of the algorithm.

The corresponding optimal and learned policies for µ = 2.0 are shown in Fig-

ure 3.5. In these figures, the channel is better when the channel gain is larger

and the buffer content indicates number of packets in the buffer. For the same

buffer content, the optimal policy tends to use higher modulation levels when the

channel is good and lower modulation when the channel is bad. The agent also

tends to select higher power levels when the channel is bad to guarantee accept-

able throughput. At the same channel gain, as more packets are queued in the

buffer, the agent becomes more aggressive and attempts a higher modulation and

power level. This effect is due to including the buffer processing cost in the reward

function, causing the agent to try to balance the transmission energy and buffer

processing cost/energy to obtain the maximum average throughput per total ex-

pended energy. Moreover, both the optimal DP and the near-optimal AC solution

jointly decide the best modulation and transmit power to maximize the average

throughput per expended energy.

Figure 3.6 shows the throughput that is achieved for the optimal policy, AC

learned policy and the simple policy described in the previous paragraph for vari-

ous packet arrival rate. It is obvious that the policy learned by the AC algorithm is
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Figure 3.4: Performance of the learning algorithm

very close to the optimal policy. Compared to the simple policy, the AC algorithm

obtains twice to three times throughput per total expended energy. Hence it is

a higher energy efficiency scheme. It is important to point out that the optimal

solution may not be feasible in practical applications, since the optimal solution

requires the knowledge of channel transition probability and packet arrival proba-

bility. The AC algorithm and simple policy algorithm do not require any knowledge

of governing probability, but the AC algorithm is still able to obtain a near-optimal

average throughput.

3.3 Multi-node Energy-Aware Optimization

In this section, we extend the throughput maximization per total consumed energy

in point-to-point communication to the multi-node scenario as shown in Figure 3.1,
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where multiple transmitters send packets to one receiver. The main difference be-

tween these two scenarios is the channel model. In point-to-point communication,

the channel gain evolves according to the FSMC model and it is unresponsive to

the transmitter power selection. The transmitter exercises all the available actions

(modulation level and transmission power) to obtain the highest throughput per

energy, while adapting to the channel variation, packet arrival rate and the buffer

condition . In a multi-node scenario, the interference in one link depends on the

power transmitted from other nodes. In fact, the channel experienced by one par-

ticular node depends on its previous decision and other nodes’ decisions. When one

node increases its power level, it will increase the interference experienced by the

other nodes. This event may trigger the other nodes to increase their transmission

power and may result in the increasing of the channel interference experienced by

the original node.

In the following, we first describe the channel model and problem formulation

in multi-node communication. We develop an extension of the AC algorithm for

the multi-node problem and evaluate the performance by simulations. Similarly

to the point-to-point communication, we compare the learned policy with the sim-

ple policy, where the each transmitter chooses the highest modulation possible,

while maintaining a predefined signal-to-interference ratio (SIR) of the link for a

particular modulation.

3.3.1 Channel model for multi-node communication and

Problem Formulation

The channel model in the multi-node scenario captures the interaction dynamics

between each node. This interaction is described in terms of the received SIR of
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each node. Suppose there are N nodes that want to simultaneously communicate

with the receiver. The SIR of link i can be expressed as [46]

Γi(p1
t , · · · , pN

t ) =
WAi

tp
i
t

R(
∑

j 6=i A
j
tp

j
t + σ2)

, (3.9)

where W and R are the system bandwidth and transmission rate, pi
t is the trans-

mission power employed by node i, Ai
t is the path loss corresponding to link i, and

σ2 is the variance of the thermal noise. The path loss Ai
t depends on the distance

between the transmitter i and the receiver, that is Ai
t = c/(di)4, where di is the

distance between the transmitter i and the receiver. Equivalently, (3.9) can be

written in dB as

Γi(p1
t , · · · , pN

t )dB = 10 log10

(
Wpi

t

R

)
− ηi, (3.10)

where ηi = 10 log10

(P
j 6=i Aj

tpj
t+σ2

Ai
t

)
is the equivalent interference of link i. Other

nodes’ power transmission influences the link quality of node i through the relation

(3.10).

The MDP formulation of multi-node scenarios is similar to the formulation of

the point-to-point communication case. We point out the differences as follows.

At time instant k, the system state at node i is si
k ≡ (ni

b,k, η
i
k), where ni

b,k and ηi
k

are the number of packets in the transmitter’s buffer and the quantized equivalent

link interference experienced by node i, and the action space is ai
k ≡ (mi

k, p
i
t,k),

where mi
k and pi

t,k denote the modulation level and transmission power employed

by node i at time instant k, respectively. We assume that the transmitting node i

receives the quantized estimation of its link quality from the receiver through the

error free channel, hence the transmitting node knows the history of the quantized

interference of its link, ηi. This implies that the control agent can fully observe its

corresponding state, si ≡ (ni
b, η

i). Having observed its system state si
k ≡ (ni

b,k, η
i
k)
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at time instant k, every node exercises all the possible actions ai
k ≡ (mi

k, p
i
t,k) to

maximize its average throughput per unit energy while adapting to the incoming

traffic, buffer condition and the link quality. The reward obtained is represented

as

Ri((ni
b, η

i), (mi, pi
t)) =




Lb·R·mi·Si(Γi,mi)

L2·(pi
t+f i(ni

b))
× 10−3if ni

b 6= 0 and pi
t 6= 0

0 otherwise,
(3.11)

where the superscript i denotes the node i. The actions taken by every node in

current transmission affect the next transmission’s link quality through (3.9). The

objective of every node is to maximize its average throughput per total consumed

energy.

3.3.2 Extension of Reinforcement Learning

To solve the posed multi-node problem, we propose to extend the single-agent AC

algorithm in Table 3.1 to learn independently policy in each agent. In this inde-

pendent learning, each agent learns its transmission strategy by assuming that the

agent itself is the only agent that influences the evolution of its state. Each agent

uses only its local state information to do the decision, that is the agent does not

take into account the state, action and reward involved in other agents’ decision

making processes. Although the proposed independent AC learning may not be

optimal, it has several advantages. First, since no global information (the state

and the decision of other agents) is used in the learning process, less control hand-

shaking (each node doesn’t need to exchange its state information and the decision

employed) is required. Second, the extension of the AC algorithm has the same

computational complexity as the single-agent scenario. Each agent requires only
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to update the relative state value function, average reward and actor preference

function of the state and action it experiences. (Table 3.1).

In the extension of single-agent RL, the actor-critic algorithm is applied di-

rectly to each node in multi-node scenarios. Before the transmission of a packet,

every node uses the Gibbs softmax method to make the decision based on its

current local state. At the end of the packet transmission, each node observes

the ACK/NACK signal and receives the feedback information from the receiver

containing the channel link quality in previous transmission. Also, each node ob-

serves the packet arrival and it records the reward (packet good throughput per

unit energy). The agent uses this information to update its state, state value

function and learned average reward as in Table 3.1. The above procedure is re-

peated throughout the transmission. We note that the resulting RL algorithm is

inherently distributed, since every node applies the AC algorithm and makes its

decision based on its local information. For comparison purposes, we simulate a

policy where each node tries to transmit as high throughput as possible with a

predefined SIR for one particular modulation. As before, we refer this policy as

the simple policy.

3.3.3 Simulation Results: Multi-node scenario

In this section, we assess the performance of the independent AC algorithm in

multi-node scenarios. We simulate the multi-node system with 3 nodes communi-

cating with one receiver. The locations of the transmitting nodes are 340 meters,

460 meters and 570 meters away from the receiver. Node 1 is the nearest node

to the receiver and node 3 is the farthest node from the receiver. Most of the

simulation parameters are similar to Table 3.2 except those shown in the Table

55



3.3. The total number of states in each agent are 496 and total number of actions

are 44.

Table 3.3: Simulation parameters

Channel Model d=[320,460,570] m, Ai
t = 0.097/(di)4

Buffer f(nb) = 0.05(nb + 4) if nb 6= max(nb)

Cost max(nb) = 15, f(max(nb)) = 3

modulation level m=1,2,3,4 (BPSK,QPSK,8PSK,16PSK),

Transmit power pt = [0, 0.2, ..., 2] Watt

SIR range Γ = [0, 1, ..., 24] dB

Quantized η = [−16,−15, ..., 14] dB

Interference

The AC algorithm is initialized with α = 0.05, β = 0.0005 and ε = 0.01.

Figure 3.7 shows the average throughput learned by the AC algorithm and the

simple policy for packet arrival rate µ = 2.0. It is obvious that in both policies,

the node nearer to the receiver will effectively have higher packet throughput per

energy, since it requires less energy for achieving the same throughput. Figure 3.8

shows the throughput that is achieved for the AC learned policy and the simple

policy for various packet arrival rates. From this figure, both policies achieve

similar throughput when the packet arrival rate is low (µ ≤ 1). But when the

packet arrival rate becomes large, the AC algorithm achieves higher throughput.

In particular, the AC algorithm achieves 1.5 more throughput for node 1 when

µ = 3.0 and it achieves 6.3 and 7.1 times throughput for node 2 when µ = 3.0 and

node 3 when µ = 2.0, respectively. We note that in the simple policy, the node

3 is not able to transmit anything for the packet arrival rate beyond µ = 2.0. In

this situation, the energy in node 3 is completely wasted without the ability to

transmit anything. Using the AC algorithm, each node in the network is able to
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Figure 3.7: Learned and the simple policy throughput, packet arrival load µ = 2.0

achieve higher throughput per unit energy for a broad set of packet arrival rates.

This is due to the fact that the AC algorithm has the ability to explore policies

other than the greedy policy adapting to the channel condition and packet arrival

rate. The greedy policy will obviously result in a total breakdown of the network.

3.4 Discussions on the applicability of the RL

algorithm to WSN

One of the major advantages of the RL algorithm is its capability to learn the

environment with very little information. This property is very suitable for the

WSN application, where each nodes may not have exact knowledge of its envi-
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ronment. Moreover, the wireless environment in WSN tends to be varying due to

many practical reasons. Having the learning capability, the algorithm decides the

best transmission mode by adapting to the variation in the environment.

Since very little information is required in the learning process, the algorithm

needs to explore all the possible actions/decisions and determines the best action

according to the current environment/state. From (2.24)-(2.27), one observes that

the learning algorithm uses the iterative averaging method to learn/estimate the

value function h, average reward ρ and the preference metric. Intuitively, as the

number of actions and states become larger, more data are required to refine the

accuracy of the estimates. As the consequence, more time is required to experience

and explore all possible decisions. In short, the convergence time of the algorithm

is highly dependent on the number of actions and states in the learning system.
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The larger the state and action space are, the more time will be required for the

learning.

As discussed in the previous paragraph, the number of states and actions affects

the time required for the learning process. In general, the number of states and

actions in the learning system is closely related to the type of the applications. In

particular, when the state is the sample of the physical quantity such as interfer-

ence, a larger number of states results in a more accurate solution. On the other

hand, the number of actions in the system reflects the degree of reconfiguration in

the system. Therefore, the states and actions in the system, on one hand should

be chosen carefully to accurately model the physical situation. On the other hand,

the excessively large number of states and actions makes the learning algorithms

slow. In our problem, the aggregate of the number of packets queued in the buffer

and the interference level constitutes the state space and the action space consists

of the power and modulation. The determination of these parameters may be dic-

tated by the accuracy of the model and the cost for deploying the sensors. One

obvious way to keep the number of states and actions small is to use small buffer

length, small transmit power range and limited modulation levels. In this way,

the resulting number of states and actions can be kept small enough to make the

convergence fast, as will be demonstrated below.

To demonstrate that a smaller number of states and actions can actually have

shorter learning stage, we perform another simulation where 7 nodes are simulta-

neously communicating with one receiver. The distance of nodes are (320, 460,

570, 660, 740, 810, 880) meters from the receiver. Two modulation levels, BPSK

and QPSK are available and the transmit power levels are [0, 0.5, 1] Watt. Buffer

length is equal to 4, the quantized interference has 8 levels. In this simulation,
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each agent has 6 actions and 40 states. The resulting learned throughput per

unit energy and the throughput obtained from simple policy are shown in Figure

3.9. Obviously, by reducing the number of states and actions, the learning time of

the algorithm is also reduced. The learned policy outperforms the simple policy

by (1.001, 1.1100, 1.1324, 1.7565, 2.6799, 3.2403, 3.0946) times of the achievable

throughput for node 1 to 7, respectively.

Another important property of the learning algorithm is that the transient

learning period only occurs once in the initial warming up stage of the sensor.

Moreover, the algorithms efficiently capture the history information when learning

the state value and average reward function, hence, it is not necessary for each

node to record all the history of the transmission. After the learning stage, the

algorithm is able to use the history efficiently to obtain good decisions.
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Figure 3.9: Learned and the simple policy throughput per unit energy for packet

arrival load µ = 1.5. The learned policy achieves (1.001, 1.1100, 1.1324, 1.7565,

2.6799, 3.2403, 3.0946) times throughput per energy compared to the simple policy,

for the node 1 to 7 respectively.
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Chapter 4

Robust Maximum Connectivity

Energy-aware Routing

This chapter1 demonstrates the topology-aware (connectivity-aware) energy-efficient

routing for wireless network. In particular, we consider the energy-aware routing

algorithm that explicitly takes into account the connectivity of the sensor networks.

In typical sensor network deployments, some nodes may be more important than

other nodes because the death of these nodes cause the network disintegration,

which in turn causes early termination of information delivery. To overcome this

problem, we propose a class of routing algorithms called keep connect algorithms,

that explicitly consider the connectivity of the network while making the routing

decision. The algorithm can be used along with the existing routing algorithms.

When making the routing decision, the keep connect algorithm embeds the impor-

tance of the nodes in the routing cost. The importance of a node is quantified

by the connectivity of the remaining network when that particular node dies. In

1Material in this chapter has been submitted to Transactions on Networking [79]
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particular, we propose two criteria for describing the connectivity of the remaining

network. First, the importance of a node is quantified by how severe the remaining

network becomes disconnected/disintegrated when that particular node dies. Sec-

ond, the connectivity of the remaining network is quantified by the Fiedler value

of the graph when that particular node is removed. In other word, the importance

of a node is characterized by the algebraic connectivity of the remaining graph.

We prove some characteristics of our proposed routing algorithm. The proposed

algorithm achieves on average 20% ∼ 50% better network lifetime and total de-

livered packets when it is used on top of minimum total energy(MTE) routing

algorithm. The proposed algorithm also achieves around 20% improvement com-

pared to the flow augmentation (FA) algorithm. We also present the distributed

implementation of our proposed algorithm. The MTE based distributed imple-

mentation achieves more than two times more total delivered packets before the

network becomes disconnected, compared to flow augmentation based algorithm.

The organization of this chapter is as follows. First, we briefly give the moti-

vation, system description and problem formulation. We review several important

facts from spectral graph theory that will be used in the rest of the sections. Then,

we explain our proposed keep connect algorithm and analyze some properties of the

proposed routing metrics. Finally, we outline the distributed implementation and

evaluate the effectiveness of our proposed algorithm through extensive simulations.

4.1 Motivation

There are many important characteristics of sensor networks. First, the sensor

nodes are typically deployed in an area with high redundancy and each of the

sensor nodes has very limited energy, therefore is prone to failure. In order to be
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useful, the sensor nodes are required to collaboratively accomplish a special task.

Second, the nodes in the sensor networks typically stay in their original deployed

places for the entire of their lifetime. Hence, it is very important to always keep

the remaining network connected, since the disintegrated clusters of nodes are

useless for information gathering. Moreover, due to the immobility of the nodes, it

may not be possible to reorganize the remaining nodes to create a new connected

network.

Due to the above characteristics of the sensor networks, the design of the routing

algorithm becomes very different from the typical ad-hoc networks in the following

aspect. Instead of minimizing the hop count and delivery delay in the network,

the routing algorithm in the sensor networks focuses more on extending the scarce

battery lifetime of the nodes. There are many existing literatures focusing on the

routing design of sensor networks. The minimum total energy routing (MTE) [99]

algorithm selects the route that minimizes the total transmission energy along the

route. The max-min residual energy (MMRE) algorithm [92] tries to maximize

the residual battery among the minimum residual battery routes. This algorithm

avoids the overuse of nodes along the minimum total energy route. In [99], the con-

ditional min-max battery cost routing (CMMBCR) is proposed. This algorithm

uses MTE algorithm when all nodes in some possible routes between source and

destination have sufficient remaining battery capacity. However, when the batter-

ies of nodes in the routes fall below certain threshold, the algorithm uses MMRE

algorithm to select the route. Similarly, the max-min zPmin algorithm [63] controls

the trade-off of MTE and MMRE using the variable z. When z = 1 the algorithm

corresponds to MTE and when z = ∞, it corresponds to the MMRE. All the

above algorithms share the same characteristic that is to trade-off between MTE
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and MMRE algorithms. In [25,27], they propose a heuristic called flow augmenta-

tion (FA) algorithm that gradually makes transition from MTE to MMRE. They

show that their algorithm performs better than CMMBCR and zPmin algorithms.

However, all the existing algorithms do not explicitly consider the connectivity of

the network in their routing decision.

Unlike most of the previous works which use the time until the first node in

the network dies as the definition of network lifetime. In this chapter, we argue

that the definition of network lifetime should be defined as the time until there

is no route from any source to any destination instead of the time until the first

node in the network dies. In other words, the network lifetime should be defined

as the time until the network becomes disconnected. Using this definition as the

network lifetime, the network connectivity becomes a very important criterion to

be considered in designing the routing algorithm, especially when the information

generation is not known a priori. Here, the information generation indicates the

source and destination pairs during transmission in the network. To be precise, we

employ the notion of algebraic connectivity of a graph in the spectral graph theory

to quantify the importance of the node. In particular, we propose two criteria

for describing the connectivity of the remaining network. First, the importance

of a node is quantified by how severe the remaining network becomes discon-

nected/disintegrated when that particular node dies. We define the importance of

a node as how many disconnected clusters will be resulted if that particular node

becomes dead. The larger the number of disconnected clusters, the more important

that node is. Second, the connectivity of the remaining network is quantified by

the Fiedler value of the graph when that particular node is removed. One property

of the Fiedler value is that the Fiedler of a graph is higher when the graph is more
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connected. By considering the nodes’ importance in the routing design, the node

with higher importance will be retained in the network, therefore the connectivity

of the remaining network is always maintained. By embedding the nodes’ impor-

tance in the routing cost, we propose a class of algorithms called keep connect to

solve the posed problem. Our proposed algorithm is very flexible and can be used

along with other existing algorithms such as MTE and FA algorithm. Moreover,

we show the effectiveness of our proposed method by extensive simulations.

4.2 System Model and Problem Formulation

In this section, we present the network model. Several definitions for the sensor

network lifetime are also reviewed. We also give the problem formulation and the

related work on power aware routing.

4.2.1 Network Model

A wireless sensor network is modelled as an undirected simple finite graph G(V, E),

where V = {vi, · · · , vn} is the set of nodes in the network, E is the set of all

links/edges, n is the number of vertices in the graph, and |E| = m is the number

of edges in the graph. The undirected graph implies that all the links in the

network are bidirectional, i.e. node vi is able to reach node vj implies the vice

versa. The simple graph implies that there are no self-loops in each node and

there are no multiple edges connecting two nodes. And the finite graph implies

the cardinality of the nodes and edges are finite. The link (vi,vj) implies that node

vj ∈ Svi
can be directly reached by node vi with a certain transmit power level in

the predefined dynamic range, where Svi
is the set of nodes that can be directly
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reached by node vi. We assume that every node has the initial battery energy of Ei

for ∀i ∈ N . Every packet transmission consumes energy. The energy expenditure

for transmission from node vi to vj is proportional to dα
ij, where dij is the distance

between node vi and vj, α ranges from 2 to 4. The path loss exponent, α depends

on the transmission environment [85]. In this chapter, we assume α = 2 for free

space propagation. When the energy in one node is exhausted, we say that the

node is dead for the remaining of the network lifetime.

4.2.2 Definitions of Network lifetime

Depending on the application in the wireless sensor network, there are many de-

finitions of the network lifetime. In [25, 27, 99], the network lifetime is defined as

the time until the first node/sensor in the network dies. In contrast, in [24], the

network lifetime is defined as the time until all nodes die. A more general defini-

tion on the network lifetime is given in [19]. In [19], Blough and Santi defined the

lifetime of sensor networks as the min{t1, t2, t3}, where t1 is the time it takes for

the cardinality of the largest connected components to drop below c1 · n(t), where

n(t) is the number of alive nodes at time t, t2 is the time it takes for n(t) to drop

below c2 ·n(0), and t3 is the time it takes for the area covered to drop below c3 ·A,

where A is the area covered by the initial deployment of the sensors. In above

definition, c1, c2, and c3 are the pre-defined constants between zero and one. It is

well-known that the network connectivity is very important to ensure the maximal

delivery of the collected information in both the ad-hoc and sensor networks, there-

fore it should be taken into account in the network lifetime definition. In sensor

network applications, the time until the first node/sensor dies may not serve as a

good definition of the network lifetime. Since, the death of the first node/sensor
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does not imply the breakdown of information delivery. Moreover, network disin-

tegration typically causes severe impact in the information delivery. Therefore,

we argue that it is crucial to consider the network connectivity in designing the

energy-aware routing algorithm. In this chapter, we employ the time until the

remaining network becomes disconnected as our network lifetime definition.

4.2.3 Problem Formulation

The problem of maximizing the minimum residual energy of nodes in the network

has been studied in [25–27]. The time until the first node in the network dies can

be found using the following linear program

Maximize T

s.t. f(i, j)(c) ≥ 0, ∀i ∈ N, ∀j ∈ Si, ∀c ∈ C,

∑
j∈Si

e(i, j)
∑

c∈C f(i, j)(c) ≤ Ei, ∀i ∈ N,

∑
j:i∈Sj

f(j, i)(c) + TQ
(c)
i =

∑
j∈Si

f(i, j)(c), ∀i ∈ N \D(c), ∀c ∈ C,

(4.1)

where f(i, j)(c) is the flow rate or the number of packets of commodity c information

that is transmitted from node vi to its neighbor node vj ∈ Si, Si is the set of i’s

neighboring nodes, the commodity c ∈ C indicates different source nodes O(c) and

destination nodes D(c), where O(c) being the origin/source of commodity c and D(c)

being the destination of commodity c, e(i, j) is the energy required to guarantee

successful transmission from node vi to node vj, and Q
(c)
i denotes the information-

generation rates at node vi of commodity c. The second constraint implies the

total energy used for packet transmission from node vi should be less than the

total energy in node vi. The last constraint indicates the flow conservation at

each nodes in the network, we note that Q
(c)
i is equal to zero if no information is
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generated in node vi and the notation j : i ∈ Sj denotes the summation of the flow

from all nodes vj whose neighbor is node vi. The flow conservation simply states

that the total flow coming into node vi is equal to the total flow going out from

node vi plus any information rate generated from node vi.

We note that the above formulation has two problems, the first problem is that

the formulation requires the knowledge of all commodities when performing the

optimization. This implies that the information on sources and destinations in all

commodities during the whole duration of network lifetime is required to solve the

linear program. Moreover, the information generation rates for all commodities

should be specified in the linear programming formulation. The second problem

is that the above formulation does not reflect the sequences of the commodities.

Therefore, the above formulation is only suitable for off-line optimization.

The qualitative performance comparison of online and off-line algorithm for

routing algorithm is given in [63]. They show that there is no online algorithm for

message routing that has a constant competitive ratio in terms of network lifetime,

where the competitive ratio is defined as the ratio of solution of online algorithm

with respect to the optimal off-line solution. This implies that the online algo-

rithm will be much worse compared to the off-line algorithm, however, the off-line

algorithm is infeasible in practical situation. For this reason, we focus on designing

robust online algorithm by taking into account the connectivity of the remaining

network in making the routing decision. The robustness of our proposed scheme

comes from the fact that when the information generation is not known a priori

and the routing decision is made on the fly, employing the connectivity weight

in the routing decision avoids the early termination of the information delivery.

Therefore, more future traffic can still be delivered because of the higher degree of

69



connectivity of the remaining network.

4.2.4 Related work

In this subsection, we briefly review the related work. Depending on the objective

of the routing algorithm, we have different routing algorithms for sensor network.

Most of the existing algorithms can be categorized as either minimizing the sum

of cost function along some routes or minimizing the maximum cost on some

routes. Algorithms that minimizing the sum of cost function along routes between

source and destination are minimum total energy (MTE) routing [99] and the flow

augmentation (FA) algorithm [27]. Such routes can be computed using Dijkstra’s

shortest path algorithm, where the path cost is replaced by the amount of energy

required to do transmission in that path. Let’s consider a route r = {v0, · · · , vd},
where v0 is the source node and vd is the destination node, and the energy consumed

in transmitting a packet over the hop (vi, vj) as e(vi, vj), then the total expended

energy in that route is

PMTE(r) =
d−1∑
i=0

e(vi, vi+1), (4.2)

where PMTE(r) is the total transmit energy in route r. We note that the energy

consumed in transmitting a packet over the hop (vi, vj) can be represented as

e(vi, vj) = K ·d(i, j)α, where K is some transmission constant, d(i, j) is the distance

between node vi and node vj, α is the attenuation coefficient. The MTE routing

selects the route among all routes that minimizes the total expended energy in the

route, i.e.

r∗MTE = arg minr∈R(v0,vd)PMTE(r), (4.3)

where R(v0, vd) is the set of routes from source node v0 to destination node vd.

The flow augmentation (FA) algorithm is similar to the MTE routing algorithm,
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except it weights the energy consumed over one hop by the normalized residual

energy. In particular, the FA algorithm employs e(vi, vj)
x1E−x2

vi
Ex3

vi
as the energy

metric over the hop (vi, vj), where Evi
is the residual energy of node vi at current

time, Evi
is the initial energy of node vi. The coefficients x1, x2, and x3 control the

effects of the transmit energy, residual energy, and the initial energy to the total

routing cost. In the rest of this chapter, we will employ x1 = 1, x2 = 5, x3 = 5.

Hence, the total weighted energy expended in a route r is

PFA(r) =
d−1∑
i=0

e(vi, vi+1)
x1E−x2

vi
Ex3

vi
. (4.4)

And the algorithm selects the route that minimizes the total weighted energy,

r∗FA = arg minr∈R(v0,vd)PFA(r).

Algorithms that minimize the maximum cost on some routes use algorithm to

find the minimum of the maximum or the maximum of the minimum cost along

the route. This max-min route can be computed using the modified Dijkstra algo-

rithm shown in Table 4.1. The maximin residual energy (MMRE) [92], conditional

maximin battery capacity (CMMBC) [99], and the lifetime maximization heuris-

tic [73] can be implemented using the modified Dijkstra’s algorithm in Table 4.1.

The MMRE ensures that no node will be overused in the routing. Let’s define

the residual energy cost along route j as Rj = mini∈rj
Evi

(t), where Evi
(t) is the

residual energy of node i at time t and the set of all routes between source s and

destination d as R(s, d), then the MMRE selects the route that maximizes Rj, that

is

r∗MMRE = max{Rj|j ∈ R(s, d)}. (4.5)

The maximin residual energy (MMRE) route can be implemented using the algo-

rithm in Table 4.1 by replacing c(i, j) = Evi
. Similarly, the lifetime maximization
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heuristic in [73] can be implemented using the algorithm in Table 4.1 by using

c(i, j) =
Evi

e(vi,vj)
.

Table 4.1: Modified Dijkstra’s algorithm for Max-min cost along the route

Input: a network G = (V,E), source node s and destination node d.

Output: a path with the max-min cost along all routes from s to d.

1. Initialization: for each node v in G, set parent[v] = 0 and Cost[v] = −∞.

2. Set: Cost[s] = ∞ and initialize priority queue F.

3. For each neighbor, w of s do

parent[w] = s, Cost[w] = c(s, w), and add w to F.

4. Repeat

Extract node u with maximum Cost from F.

for each neighbor w of u do

if Cost[w] = −∞,

Set parent[w] = u, Cost[w] = min(Cost[u], c(u,w)),

and add w to F.

else if w ∈ F and Cost[w] < min(Cost[u], c(u,w))

Set parent[w] = u, Cost[w] = min(Cost[u], c(u,w)).

Stop when Cost[t] 6= −∞ and t not in F.

The conditional minimax battery cost routing (CMMBCR) [99] combines the

objectives of minimizing the total expended energy in routes and maximizing the

minimum residual energy in the route. The algorithm uses the MTE routing

whenever there are routes from the source to the destination with the residual

energy cost, Rj > γ, where γ is some threshold. Otherwise, the MMRE will be

employed. When comparing the CMMBCR and the FA algorithm, we observe
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that both algorithms make trade-off between the minimum total energy routing

and the max-min residual energy routing. The CMMBCR explicitly switches the

routing criterion based on whether Rj > γ. The FA algorithm will initially use the

MTE route since the normalized residual energy is equal to one. However, as the

residual energy in nodes along some routes in the network becomes depleted, the

FA algorithm avoids using the less residual energy route.

4.3 Facts from Spectral Graph Theory

Before we describe our proposed solution, we briefly summarize some important

facts from spectral graph theory [32, 40, 41]. These lemmas provide insights for

understanding the proposed scheme and will be used to prove properties of the

proposed scheme.

4.3.1 Eigenvalues of Laplacian Matrix

In this subsection, we briefly discuss the definition of Laplacian Matrix, its eigen-

values and the relationship between the eigenvalues and the connectivity of the

associated graph. For simplicity and practicality in our problem, we are only in-

terested in a simple graph (graph that does not contain loops and multiple edges

between two nodes). Precisely, the simple graph does not have edge from node vi

to node vi, moreover, there is only one edge connecting node vi and node vj for

vi 6= vj. The following notations will be used throughout the chapter: G = (V, E)

is the graph with set of vertices V and set of edges E. We denote the number of

vertices as |V | = n and the number of edges as |E| = m. The Laplacian matrix

associated with a graph is defined as follow.
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Definition 1 (Laplacian matrix associated with a graph) In a graph G =

(V,E), let dv denote the degree of vertex v ∈ V . The Laplacian matrix associated

with a graph, L is an n by n matrix defined as follows:

L(u, v) =





dv if u = v,

−1 if u and v are adjacent or (u, v) ∈ E,

0 otherwise

(4.6)

Equivalently, the Laplacian matrix L can be expressed as:

L = T − A, (4.7)

where T is an n by n diagonal matrix with the (v,v)-th entry having value dv, and

A is the n by n adjacent matrix.

Definition 2 (Normalized Laplacian matrix associated with a graph) A nor-

malized Laplacian matrix L associated with a graph, G = (V,E) is defined as [32]:

L(u, v) =





1 if u = v and dv 6= 0 ,

− 1√
dudv

if u and v are adjacent or (u, v) ∈ E,

0 otherwise

(4.8)

Equivalently,

L = T−1/2LT−1/2, (4.9)

where T denotes the n by n diagonal matrix with the (v,v)-th entry having value

dv with the convention T−1(v, v) = 0 for dv = 0.

The eigenvalues of the Laplacian matrix, L, (λ0 ≤ λ1 ≤ · · · ≤ λn−1) are usually

called the spectrum of the graph. The following lemma describes the relationship

between the eigenvalue and the connectivity of a graph.
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Lemma 1 Let’s denote 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 as the eigenvalues of the

Laplacian matrix L of a graph G. If G is connected, then λ1 > 0. Moreover, if

λi = 0 and λi+1 6= 0, then G has exactly i+1 disjoint connected components.

Proof 1 The above lemma follows from the fact that the union of two disjoint

graphs has its spectrum as the union of the spectra of the original graphs. Generally,

any disjoint connected components has its first eigenvalue as zero, then the union of

i+1 disjoint connected components will have zero eigenvalue with i+1 multiplicity.

Since the Laplacian matrix L has all zero row sums, the L has an eigenvalue 0

and the corresponding eigenvector (1, · · · , 1)T . Moreover, since L is real, symmet-

ric and positive semi-definite, thus all the eigenvalues of L should be real and larger

or equal to zero. Therefore, we conclude that the smallest eigenvalue of Laplacian

matrix L is zero. Similarly, the smallest eigenvalue of the normalized Laplacian

matrix L, is also zero, and the corresponding eigenvector is (
√

d1, · · · ,
√

dn)T . The

above lemma indicates that if G is strongly connected (there exists a simple path

from any initial node i to the terminal node j, where i 6= j) then the Laplacian

matrix L has simple eigenvalue 0 (the eigenvalue 0 has multiplicity of 1). More-

over, if the eigenvalue 0 of the Laplacian matrix L has multiplicity n, then there

are n connected components. For the rest of this chapter, we will focus on the

eigenvalues and eigenvectors of the Laplacian matrix, L.

4.3.2 Fiedler value and vector

Let’s denote the eigenvalues of the Laplacian matrix, L associated with G = (V, E)

as λ0(G), · · · , λn−1(G) and the corresponding eigenvectors as ν0(G), · · · , νn−1(G).

Obviously, ν0 = e = (1, · · · , 1)T . Suppose that the graph G = (V, E) is strongly
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connected (the second smallest eigenvalue is larger than zero, λ1 > 0). This second

smallest eigenvalue can be represented as (Courant-Fisher Theorem)

λ1 = min
xT x=1,xT ν0=0

xTLx (4.10)

The second smallest eigenvalue of the Laplacian matrix is always referred to as

the algebraic connectivity of the graph G [40]. It is also called as Fiedler value

of a graph. The reason for calling the second smallest eigenvalue as the algebraic

connectivity of a graph G comes from the following lemma.

Lemma 2 If G1 and G2 are edge-disjoint graphs with the same vertices, then

λ1(G1) + λ1(G2) ≤ λ1(G1 ∪G2).

Proof 2 Since L(G1 ∪G2) = L(G1) + L(G2). Then

λ1(G1 ∪G2) = min
xT x=1,xT e=0

(
xTL(G1)x + xTL(G2)x

)

≥ min
xT x=1,xT e=0

(
xTL(G1)x

)
+ min

xT x=1,xT e=0

(
xTL(G2)x

)

≥ λ1(G1) + λ1(G2). (4.11)

Lemma 3 The Fiedler value λ1 is non-decreasing for graphs with the same set of

vertices, i.e. λ1(G1) ≤ λ1(G), where G1 = (V, E1), G = (V, E), and E1 ⊆ E. The

λ1(G) denotes the second smallest eigenvalue of the normalized Laplacian matrix

associated with graph G.

Proof 3 Direct result from Lemma 2.

We observe that G and G1 have the same number of vertices. Since G1 has less

number of edges compared to G and E1 ⊆ E, this implies that G1 is less connected

compared to G. From Lemma 3, we have the Fiedler value corresponding to G1
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is smaller than G, λ1(G1) ≤ λ1(G). It is in this sense that the Fiedler value

represents the degree of connectivity in a graph. Finally, the relation of Fiedler

value for graph obtained from removing a vertex and all its adjacent edges is given

by the following lemma.

Lemma 4 Let G1 be a graph obtained from removing 1 vertex from G and all the

adjacent edges. Then λ1(G1) ≥ λ1(G)− 1.

Proof 4 Suppose graph G has n vertices and graph G1 is obtained from G by

removing one of its vertex (let denote this vertex as vn). Let also denote a graph

Ḡ which is obtained from G by completing the edges connecting vertex vn. Then

L(Ḡ) =




L(G1) + I −e

−eT n− 1


 . (4.12)

Let ν be the eigenvector of L(Ḡ) corresponding to λ1(Ḡ). Since

L(Ḡ)




ν

0


 = (λ1(Ḡ1) + 1)




ν

0


 , (4.13)

then, λ1(Ḡ1) + 1 is the eigenvalue of L(Ḡ). Since λ1(Ḡ1) + 1 is larger than zero,

then λ1(Ḡ) ≤ λ1(Ḡ1) + 1. Form Lemma 3, we have λ1(G) ≤ λ1(Ḡ) ≤ λ1(Ḡ1) + 1.

Finally, the following two lemmas give some upper and lower bounds for the

Fiedler value.

Lemma 5 Let G = (V,E), dvi
be the degree of node vi, then

λ1(G) ≤
[

n

n− 1

]
min

vi

dvi
. (4.14)
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Lemma 6 Let ε(G) is the edge connectivity of the graph G (the minimal number

of edges whose removal would result in losing connectivity of the graph G). Then,

we have

λ1(G) ≥ 2ε(G)

[
1− cos

(
π

n

)]
, (4.15)

where n is the number of vertices |V | = n.

4.4 Proposed Solutions

In this section, we use the properties described in previous section to develop

heuristics that drive the routing algorithm to maximize the network lifetime with

the connectivity consideration. The proposed solution can be employed along with

different existing routing algorithms. The key idea of our proposed method is

that when there is no a priori knowledge about the information generation, the

best we can do is to design the routing algorithm that does it best to keep the

remaining nodes as a connected graph. This objective is obvious, since the disin-

tegrated network causes severe performance degradation in terms of the amount

of delivered information as discussed in Section 4.2. In particular, we propose a

class of algorithms that makes use of the graph connectivity condition in perform-

ing the routing decision. We proposed 5 algorithms namely, maximin remaining

connectivity routing (MMRCR), maximin the remaining energy with connectivity

condition (MMREKC), minimum hop while considering the connectivity condi-

tion (MHKC), minimum total energy while considering the connectivity condition

(MTEKC), and the flow augmentation with the connectivity condition (FAKC).

The first two algorithms use the modified Dijkstra’s algorithm in Table 4.1, while

the latter three use the shortest path algorithms with modified path cost.

Before describing the detail algorithm, let’s first consider how to quantify the
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connectivity of the remaining graph as the routing cost. We propose to use 2

different criteria that reflect the connectivity condition on the remaining of the

graph. The first criterion is based on checking the eigenvalue 0 multiplicity of the

(normalized) Laplacian matrix of the graph. Each node is weighted according to

how that node affects the connectivity of the remaining graph when that particular

node dies; that is how many connected components will result as that particular

node dies. The weight of the node can be thought as the importance of the node in

the sense that the most important node is the node that results in a large number

of disconnected components as it dies. The procedure for computing the node

importance, keep connect algorithm is listed as in Table 4.2. We note that the

Table 4.2: Keep Connect Algorithm 1

Let G(V, E) be the original graph. Let’s define graph

G−vi
({V − vi}, E−vi

) as the graph obtained after

omitting node vi.

1. Initialization:

Set nodes’ weights as zeros W (vi) = 0,∀vi ∈ V

2. For each node vi:

2a. Form the Laplacian matrix L−vi
of graph

G−vi
({V − vi}, E−vi

) as (4.6).

2b. Find the multiplicity of eigenvalue 0 of

matrix L−vi
. Let’s denote this value as l.

2c. Set the weight of node as: W (vi) = l.

End for

keep connect algorithm can also be extended further by looking ahead to the case
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when there are more than one node die. The KC algorithm shown in Table 4.2

only considers the connectivity of the remaining graph after one node dies. Since

it is very common that the death of one node causes the other nodes to become

more important, we extend the KC algorithm to consider the case when more than

one node die. The keep connect 2 as shown in Table 4.3 can be used to capture the

connectivity of the remaining graph after two nodes die. Ideally, this lookahead

can be applied to the case when more than 2 nodes die. However, due to the

complexity of the algorithm, we only consider up to 2 nodes lookahead.

Table 4.3: Keep Connect Algorithm 2

Let G(V, E) be the original graph. Let’s define graph

G−vi
({V − vi}, E−vi

) as the graph obtained after

omitting node vi. Moreover, let G(−vi,−vj) be the graph

obtained by omitting node vi and then node vj, where

vj ∈ {V − vi}.
1. For each node vi:

a. Form the G(−vi,−vj), for vj ∈ {V − vi} and find

the corresponding Laplacian matrix as (4.6).

Let l−vj
be the multiplicity of eigenvalue 0 of

the associated Laplacian matrix corresponding

to G(−vi,−vj).

b. Set the weight of node vi as

W (vi) =
∏{V−vi}

j l−vj
.

End for

The second criteria representing the connectivity of the remaining graph is
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Table 4.4: Keep Connect using Fiedler value

Let G(V,E) be the original graph. Let’s define graph

G−vi
({V − vi}, E−vi

) as the graph obtained after

removing node vi.

1. Initialization:

Set nodes’ weights as zeros W (vi) = 0,∀vi ∈ V

2. For each node i:

2a. Form the Laplacian matrix L(G−vi
) of graph

G−vi
({V − vi}, E−vi

) as (4.6).

2b. Find the Fiedler value and let denote the Fiedler

value as λ1(G−vi
)

2c. Set the weight of node as: W (vi) = 1/λ1(G−vi
).

End for

based on the Fiedler value. Recall from Section 4.3.2, the Fiedler value represents

the connectivity of a graph in the sense that the larger the Fiedler value is the more

connected the graph is. The degree of connectivity of the remaining graph can be

quantified by the Fiedler value of the graph resulted by removing that particular

node and all the edges connected to that node from the original graph. We design

the weight of each node by setting the weight of node vi as 1/λ1(G−vi
). In this

way, the node that caused severe reduction in the remaining network connectivity

will be avoided when doing the routing decision. The routing algorithm that uses

the keep connect algorithm tries to avoid the nodes that are more important to

keep the remaining network connected.

The modification of the existing routing algorithm by incorporating the con-
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nectivity condition is straightforward. Using the node importance, the edge cost

for edge connecting node vi and node vj is weighted by W (vi)
y. In the following

subsections, we describe the maximin remaining connectivity (MMRC) routing ,

maximin the remaining energy while keeping connectivity (MMREKC), minimum

hop while keeping connectivity (MHKC), minimum total energy while keeping con-

nectivity (MTEKC), and flow augmentation while keeping connectivity (FAKC).

4.4.1 Maximin remaining connectivity (MMRC) routing

The basic idea of MMRC algorithm is to maximize the minimum weight of nodes

along the routes between the source and the destination. In this way, for a fixed

source and destination, the node with lowest weight will be avoided. This MMRE

algorithm can be calculated using the modified Dijkstra’s algorithm in 4.1 with

the cost between node u and w as

c(u,w) =
1

W (u)
. (4.16)

The weight of each node can be found using the algorithm keep connect algorithm

1 (Table 4.2), keep connect algorithm 2 (Table 4.3), and keep connect algorithm

using fiedler value (Table 4.4).

4.4.2 Maximin the remaining energy while keeping con-

nectivity (MMREKC(y)) routing

Although, the MMRC algorithm avoids to use the most important node (node

that cause huge degradation in connectivity of the remaining graph), it does not

consider the remaining energy in the node as the criteria to select the routing

decision. To jointly select the routing decision based on the remaining energy
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in nodes and the connectivity criterion, we propose the MMREKC(y) routing

algorithm. The MMREKC(y) algorithm avoids the nodes with low residual energy

while considering the connectivity of the remaining graph. The MMREKC(y) can

be computed using the modified Dijkstra’s algorithm in Table 4.1 with the edge

cost function defined as

c(u,w) =
Eu

W (u)y
(4.17)

4.4.3 Minimum hop while keeping connectivity (MHKC)

routing

The minimum hop routing is usually used in ad-hoc or wire-line network to min-

imize the delay in the packet delivery. The keep connect algorithm can also be

used along with the minimum hop routing. The MHKC algorithm can be used to

achieve the purpose of minimizing the number of hops between the source and des-

tination while the connectivity of the remaining graph relatively high. By setting

the edge cost function as c(u, w) = 1
W (u)

and using any shortest path algorithm,

the MHKC can be calculated. Suppose the route between source and destination

is described as r = {v0, · · · , vd}, where v0 is the source and vd is the destination.

Then, the MHKC(y) selects route that minimizes r∗ = arg minr

∑d−1
i=0

1
W (vi)

.

4.4.4 Minimum total energy while keeping connectivity

(MTEKC) routing

The MTEKC(y) algorithm is obtained by embedding the connectivity weight to

the original minimum total energy (MTE) [99] algorithm. The modified algorithm

uses the edge cost between node u and node w as c(u,w) = e(u,w) · W (u)y.

The complete algorithm for MTEKC is shown in Table 4.5. Similar to previous
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algorithms, the weight in the MTEKC(y) algorithm can be calculated either using

keep connect algorithm 1 (Table 4.2), keep connect algorithm 2 (Table 4.3), or keep

connect algorithm using Fiedler value (Table 4.4). We note that in the MTEKC

algorithm, the parameter y determines how important the connectivity weight

should influence the weighted minimum total energy. When y is very large, we

expect the performance of the MTEKC(y) will be near to the performance of

MHKC algorithm, which may be far from the energy efficient route. We will

determine this parameter in the following section.

Table 4.5: MTEKC(y)

1. For any source-destination pairs, find the minimum

total energy path with edge cost as: e(vi, vj) ·W (vi)
y

for vi ∈ V , vj ∈ Svi
, where e(vi, vj) is the

transmission energy from node vi to vj when

vj is the neighbor of vi, Svi
; W (vi) is the weight of node vi.

2. If node dies, recompute the remaining nodes’

weight using Keep Connect algorithm.

Recompute the minimum total energy path.

4.4.5 Flow Augmentation while keeping connectivity (FAKC(y))

routing

Our last algorithm FAKC(y) is obtained by including the connectivity weight to

the flow augmentation algorithm [25, 27]. In particular, the edge cost is modified

as c(u,w) = e(u,w)x1E−x2
u Ex3

u · W (u)y. The detailed algorithm for FAKC(y) is

listed in Table 4.6. The FA-KC algorithm searches not only for the route with the
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maximum residual energy, but it also tries to avoid the nodes with high importance.

Table 4.6: FAKC(x1, x2, x3,y)

In every update time:

1. For any source-destination pairs, find the minimum

total energy path with edge cost as:

e(vi, vj)
x1 · E−x2

vi
· Ex3

vi
·W (vi)

y

for vi ∈ V , vj ∈ Svi
, where e(vi, vj) is the transmission

energy from node vi to vj when vj is the neighbor of vi, Svi
.

Evi
is initial energy of node vi, Evi

is the remaining

energy of node vi and W (vi) is the weight of node vi.

2. If node dies, recompute the remaining nodes’

weight using Keep Connect algorithm. Recompute

the minimum total energy path using FA algorithm.

4.4.6 Illustrative Example

Now let us give an illustrative example of how the keep connect (KC) algorithm

can really improve the performance of the existing routing algorithm. Consider

the network shown in Figure 4.1(a), suppose that there are 10 packets from node

1 to node 3 and another 10 packets from node 3 to node 7, respectively in that

order. Also, assume that initially all of the nodes have 10 unit energy and one

packet transmission requires one unit energy. Here, we also assume that packet

reception energy is negligible. Figure 4.1 shows the routing results by using the

FA algorithm. After the first 10 packet transmission, the remaining energy of each

nodes are shown in Figure 4.1 (b). The FA algorithm will do the load balancing
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between route 1− 2− 3 and route 1− 4− 3. However, because of this transmission

order, only 5 packet transmission in the second 10 packet transmission will be

delivered. Hence, the total throughput is 15 packets. Similar to the FA algorithm,

the MTE algorithm will choose one of the route with equal probability. In the

worst case the route 1− 4− 3 is chosen and the resulting throughput is 10 packets

and in the best case the route 1−2−3 is chosen first, and the resulting throughput

is 20 packets. In contrast, Figure 4.2 illustrates the routing results using the joint

MTE-KC algorithm. The weights of each node (calculated using KC1 algorithm in

Table 4.2) are tabulated in the right hand side of the figure. In the first 10 packet

transmission, the proposed algorithm use mainly route 1 − 2 − 3, since node 4 is

more important and the death of node 4 causes the remaining network becomes

disconnected. Hence, the resulting throughput is 20 packets. This solution is the

same with the optimal throughput obtained by solving (4.1). In summary, when

the traffic generation is not known a priori, it is better to keep the remaining nodes

in the network connected.

4.5 Properties of the proposed solution

In this section, we give some properties and quantitative analyses on the class of

our proposed algorithms. We will make use of bounds of the Fiedler value known

in the spectral graph theory [32,40,41,74]. The lower and upper bound of Fiedler

value are stated in Lemma 6 and Lemma 5. In the following, we give some simple

lemmas on the lower bound and upper bound of the metric used in keep connect

algorithm.

Lemma 7 (Lower bound of MTEKC metric using Fiedler value) For each

route, the MTEKC(y) employing the Fiedler value metric has the following prop-
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Figure 4.1: Illustration 1

Figure 4.2: Illustration 2
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erty

d−1∑
i=0

e(vi, vi+1) ·W (vi)
y ≥

( d−1∑
i=0

e(vi, vi+1)

)(
n− 2

n− 1

1

mini dvi

)y

≥
( d−1∑

i=0

e(vi, vi+1)

)(
(n− 2)n

2(n− 1)m

)y

, (4.18)

where dvi
is the degree of node vi in the graph, n is the number of vertices in the

graph, and m is the number of edges in the graph.

Proof 5 To prove these inequalities, we require the upper bound of the Fiedler

value as follow (stated in Lemma 5). Consider G = (V, E) and let dvi
be the degree

of node vi. Then, λ1(G) ≤ n
n−1

mini dvi
. Now, consider the graph G−vi

obtained

from graph G by removing node vi and all edges connecting to node vi. Obviously,

λ1(G) ≤ n
n−1

mini dvi
implies that λ1(G−vi

) ≤ n−1
n−2

mini dvi
, since the minimum

degree of graph G−vi
is smaller or equal to minimum degree of graph G, mini dvi

.

Now, using keep connect algorithm with Fiedler value, we have

d−1∑
i=0

e(vi, vi+1) ·W (vi)
y =

d−1∑
i=0

e(vi, vi+1)

λ1(G−vi
)y

≥
d−1∑
i=0

e(vi, vi+1)

(
n− 2

(n− 1) mini dvi

)y

. (4.19)

Since n · mini dvi
≤ ∑

i dvi
= 2m, we have

(
1

mini dvi

)y ≥ (
n

2m

)y
. Then, we obtain

the second inequality

d−1∑
i=0

e(vi, vi+1)

(
n− 2

(n− 1) mini dvi

)y

≥
d−1∑
i=0

e(vi, vi+1)

(
(n− 2)n

2(n− 1)m

)y

.

Lemma 8 (Upper bound of MTEKC metric using Fiedler value) For each

route, the MTEKC(y) employing the Fiedler value metric has the following prop-

erty

d−1∑
i=0

e(vi, vi+1) ·W (vi)
y ≤

( d−1∑
i=0

e(vi, vi+1)

)(
1

2
(
ε(G)− 1

)(
1− cos

(
π

n−1

))
)y

,

(4.20)
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where ε(G) is the edge-cut or edge connectivity of the graph. The edge-cut/edge

connectivity is defined as the minimal number of edges whose removal would result

in disconnected graph. n is the number of vertices in the graph.

Proof 6 Similar to Lemma 7, we use the lower bound of Fiedler value in Lemma

6. Consider G = (V,E) and let ε(G) be the edge-cut of the graph. Then, λ1(G) ≥
2ε(G)[1 − cos(π/n)]. Now, consider the graph G−vi

obtained from graph G by re-

moving node vi and all edges connecting to node vi. From upper bound of Fiedler

value, we have λ1(G−vi
) ≥ 2ε(G−vi

)[1 − cos(π/(n − 1))]. Moreover, we have

ε(G−vi
) ≥ ε(G) − 1. Hence, λ1(G−vi

) ≥ 2[ε(G) − 1][1 − cos(π/(n − 1))]. Fol-

low the similar proof in Lemma 7, we can obtain

d−1∑
i=0

e(vi, vi+1) ·W (vi)
y =

d−1∑
i=0

e(vi, vi+1)

λ1(G−vi
)y

≤
d−1∑
i=0

e(vi, vi+1)

(
1

2[ε(G)− 1][1− cos( π
n−1

)]

)y

.

Now we are ready to develop the upper bound on the energy consumed in the

MTEKC algorithm with Fiedler value. Let us first define the following notations,

before we state the theorem on the upper bound on the energy consumed using

MTEKC algorithm with Fiedler value. Suppose r∗ is the minimum total energy

route connecting any fixed source node v0 and destination node vd, then MTE

route satisfies r∗ = arg minr∈R(v0,vd)

∑d(r)−1
i=1 e(vi, vi+1), where R(vs, vd) is the set of

all routes connecting source node vs and destination node vd, d(r) is the number of

hops between in the route. We note that d(r) is obviously a function of the route

r. Let’s denote r† as the MTEKC route obtained using Fiedler value, then this

route satisfies r† = arg minr∈R(v0,vd)

∑d(r)−1
i=1

e(vi,vi+1)
λ1(G−vi )

y . The following theorem gives

the upper bound on the consumed energy
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Theorem 5 The energy consumed in the MTEKC using Fiedler value satisfies the

following upper bound

d(r†)−1∑
i=1

e(vi, vi+1) ≤
d(r∗)−1∑

i=1

e(vi, vi+1) ·
[

(n− 1)m

n(n− 1)(ε(G)− 1)(1− cos(π/(n− 1)))

]y

(4.21)

Proof 7 From the definitions, we have the following inequalities

d(r∗)−1∑
i=1

e(vi, vi+1) ≤
d(r†)−1∑

i=1

e(vi, vi+1) (4.22)

d(r†)−1∑
i=1

e(vi, vi+1)

λ1(G−vi
)y
≤

d(r∗)−1∑
i=1

e(vi, vi+1)

λ1(G−vi
)y

(4.23)

From inequality (4.23), Lemma 7 and 8, we have

( d(r†)−1∑
i=1

e(vi, vi+1)

)
·
(

(n− 2)n

2(n− 1)m

)y

≤
d(r†)−1∑

i=1

e(vi, vi+1)

λ1(G−vi
)y

(4.24)

d(r∗)−1∑
i=1

e(vi, vi+1)

λ1(G−vi
)y
≤

( d(r∗)−1∑
i=1

e(vi, vi+1)

)
·
(

1

2[ε(G)− 1][1− cos( π
n−1

)]

)y

(4.25)

Combining the above two inequalities and (4.23), we have

d(r†)−1∑
i=1

e(vi, vi+1) ≤
( d(r∗)−1∑

i=1

e(vi, vi+1)

)
·
(

m(n− 1)

n(n− 2)(ε(G)− 1)(1− cos( π
n−1

))

)y

(4.26)

The above theorem gives the upper bound on the energy consumed in MTEKC

route compared to the minimum total energy for routing the packet. The following

theorem gives the bound on the ratio of energy consumed by MTEKC using Fiedler

value when the number of nodes becomes large.

Theorem 6 Suppose that the network generated satisfies m = a1 ·n and ε(G)−1 =

a2, where a1 and a2 are some constants. Then the upper bound on the ratio of

energy consumed can be presented as follow
∑d(r†)−1

i=1 e(vi, vi+1)∑d(r∗)−1
i=1 e(vi, vi+1)

= O((n2)y) (4.27)
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Proof 8 Using the assumption of the theorem, we have

∑d(r†)−1
i=1 e(vi, vi+1)∑d(r∗)−1
i=1 e(vi, vi+1)

≤
(

a1n(n− 1)

a2n(n− 2)(1− cos( π
n−1

))

)y

∑d(r†)−1
i=1 e(vi, vi+1)∑d(r∗)−1
i=1 e(vi, vi+1)

≤ C

(
n(n− 1)(1 + cos( π

n−1
))

n(n− 2) sin2( π
n−1

)

)y

,

(4.28)

where C = (a1/a2)
y. As n →∞, we have

∑d(r†)−1
i=1 e(vi, vi+1)∑d(r∗)−1
i=1 e(vi, vi+1)

≤ C

(
(n− 1)2

π2

)y

, (4.29)

where we have used small angle approximation in sinusoidal function, sin(θ) ≈ θ,

as θ ¿ 1. Hence, we have
Pd(r†)−1

i=1 e(vi,vi+1)Pd(r∗)−1
i=1 e(vi,vi+1)

= O((n2)y).

From this theorem, we see that the ratio of energy will increase in quadratic func-

tion of number of nodes, compared to the minimum energy used to route a packet

when the network is very large. This ratio of energy can be easily controlled by the

parameter y, for instance if y = 1/2, then the ratio of consumed energy increases

in a linear function of number of nodes in the network. In the extreme case, setting

y = O(1/n) makes the proposed algorithm approaching to MTE as n →∞.

4.6 Distributed Implementation and Learning Al-

gorithm

In this section, we outline the distributed implementation of the proposed max-

imum connectivity routing algorithm. The method is based on the distributed

reinforcement learning routing algorithm [68]. The resulting algorithm can be

characterized as a version of distributed Bellman-Ford algorithm that performs
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Figure 4.3: Exchange and Update Q-value

its path relaxation step asynchronously and online with the edge cost defined as

weighted energy required to transmit packet in that hop. The routing decision is

learned by all nodes in the network. Each node maintains the best packet deliv-

ery cost to all the destinations. In particular, each node vi maintains a table of

Q-values Qvi
(vj, vd), for vj ∈ Svi

, where vj is in the set of node vi neighbors, Svi
,

and node vd is the destination. The Qvi
(vj, vd) has the interpretation of node vi’s

best estimated cost that a packet would incur to reach its destination node vd from

node vi when the packet is sent via node vi’s neighbor node vj.

The value in the Q-table will be exchanged between node vi and vj, whenever

there is a packet is sent from node vi and vj, and vice versa. The exchange

mechanism is illustrated as in Figure 4.3. Whenever node vi transmits a packet

P to node vj, node vj feedbacks Qvj
(v∗k, vd) = minvk∈Svj

Qvj
(vk, vd) to node vi as

shown in the figure. We note that Qvj
(v∗k, vd) represents the best estimated cost

that a packet would be sent to the destination node vd from node vj. Node vj

reports the best cost that a packet will incur if it is sent from vj to destination vd.

The node i uses this value to update its own Q-value as follow

Qvi
(vj, vd) = (1− δ)Qvi

(vj, vd) + δ[Qvj
(v∗k, vd) + c(vi, vj)], (4.30)

where c(vi, vj) is the cost for sending packet from node vi to node vj, and δ ∈ [0, 1]
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is the learning rate for the algorithm.

Since in this chapter, the routing algorithms are driven for the purpose of

maximizing the network lifetime, then the cost of sending a packet between node

vi and node vj is related to the energy consumption for sending the packet. In

particular, the cost of sending packet for MTE and MTEKC routing algorithms

are

[MTE]: c(vi, vj) = e(vi, vj), (4.31)

[MTEKC(y)]: c(vi, vj) = e(vi, vj) ·W (vi)
y, (4.32)

For MTE, Qvi
(vj, vd) represents the total energy consumption used to delivery

a packet from node vi to node vd via node vi’s neighbor node vj. In contrast,

Qvi
(vj, vd) in MTEKC represents the total energy consumption in delivering a

packet from node vi to vd via vj, while considering the connectivity of the remaining

network. The procedure for implementing the MTEKC is summarized in Table 4.7.

We note that when δ = 1.0, the algorithm becomes the distributed Bellman-Ford

iterations [17].

Intuitively, the FA and FAKC algorithms can also be implemented similar to

the Table 4.7 with the cost for sending the packet as follows

[MTE]: c(vi, vj) = e(vi, vj)
x1 · E−x2

vi
· Ex3

vi
, (4.33)

[MTEKC(y)]: c(vi, vj) = e(vi, vj)
x1 · E−x2

vi
· Ex3

vi
·W (vi)

y, (4.34)

However, careful observation on the cost for sending the packet, we notice that

the cost for sending the packet is continuously changing whenever a packet is

transmitted. Even though the network topology is not changing, the edge cost of

sending a packet depends on the residual energy of the node. In typical distributed

algorithm, each node requires some time to learn the correct Q-table when the edge
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Table 4.7: Distributed Asynchronous MTEKC(y)

1. Network Initialization: Flooding the adjacent neighbors

information to all nodes in the network

2. Each node computes its own connectivity weight

3. Whenever node vi sends a packet to node vj:

a. Node vj informs vi its minimum cost transmitting a

packet to the destination vd, Qvj
(v∗k, vd) (Figure 4.3)

b. Node vi updates its metric as:

Qvi
(vj, vd) = (1− δ)Qvi

(vj, vd) + δ[Qvj
(v∗k, vd) + c(vi, vj)]

c. Node vi leaves other estimates unchanged.

4. When a node dies, informs nodes in the network through

flooding and repeat step 2

cost is fixed. This problem also appears in distributed implementation of routing

algorithms that make use of nodes’ residual energy in determining the routing path.

This causes the trade-offs between the accuracy of residual energy estimation and

the stability of the learning algorithm. Although, the FA algorithm seems to be

amenable to distributed implementation, but due to the rapid changing in the

residual energy of nodes in the network, the problem of whether the steady state

is achievable is still in question.

4.7 Simulation Results

We simulate the routing algorithms in a discrete-event simulator. The simulator

initially deploys nodes in the network. Every events are timestamped and queued.

The most current event will be dequeued and some task is performed according
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to the type of the event. There are three types of events; the packet arrival

event, the reporting event, and the sending event. The packet arrival event injects

packets to the network from some source node to some destination node. We

assume the packet arrival follows the Poisson arrival process with mean µ. The

report event occurs periodically to retrieve the simulation parameters such as the

average delivery delay per packet, average hops per packet transmission, energy

consumed per one delivered packet, and the number of packets delivered in this

report interval. All events that are neither the packet arrival events nor reporting

events are the sending events. In the sending events, a packet is sent to its next

hop. The next hop is determined based on the routing algorithm used. Whenever

a packet arrives at a node, it is queued in the node’s buffer and will be sent in the

next transmission time. Whenever a packet reaches its destination, the number

of delivered packets is incremented and the event associated with that packet is

freed. In the following, we first investigate the centralized solution, where the

system knows all the edges’ costs and the residual energy of all nodes. Hence,

the optimal routing path can be evaluated before the packet is being sent in a

centralized manner. In the second path, we consider the performance of several

routing algorithms when there is only limited information exchange. Finally, a

fully distributed solution outlined in Section 4.6 is evaluated.

4.7.1 Centralized solution

We generate 10 connected random network in the area of 100m by 100m with 36

nodes. The networks have average edges per node from 4.4 to 7.5. The transmis-

sion energy between two nodes is quantified as 6.4×10−4d2, where d is the distance

between the two nodes. All nodes in the network initially have 500 unit energy.
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The traffic follows the Poisson distribution with mean µ (this is also referred to as

the traffic/network load). The source and destination are selected uniformly from

the alive nodes. We use the network lifetime (time before the remaining network

becomes disconnected), packet delivery time, average transmit energy per packet,

and total delivered packet before the remaining network becomes disconnected as

our performance metrics. We first compare the performance of the maximin resid-

ual connectivity (MMRC) routing, the minimum hop (MH) routing, minimum hop

while keeping connectivity (MHKC) routing, and the minimum transmit energy

(MTE) routing. All of these algorithms recalculate the routing path at the be-

ginning of the simulation and whenever a node dies. In MMRC and MHKC, the

nodes’ weights are calculated using the Fiedler value. We normalized the perfor-

mance metrics to the performance metrics achieved by the MTE algorithm. Figure

4.4 shows the normalized metrics achieved by MMRC, MH, and MHKC algorithms.

All the algorithms have lower network lifetime compared to the MTE algorithm.

This is obvious since all the algorithms do not use the transmit energy to guide

the routing decision, hence the route is not energy efficient at all. This can be

observed from the figure that all the algorithms consume 20% to 90% more energy

per packet. However, the MH and MHKC take only 50% less time to deliver one

packet, this is clear because MH based algorithms select route that has the min-

imum hops from source to destination, hence the resulting packet delivery delay

is the smallest. In fact, the MMRC algorithm also requires less time to delivery a

packet. In term of network lifetime and total delivered packets, the MH performs a

little bit better compared to the MMRC; in contrast, the MHKC achieves about 5%

more in terms of network lifetime and total delivered packets compared to MMRC.

Compared to the MH, MHKC achieves on average 4.72% and 4.67% more network
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Figure 4.4: Comparison of normalized metric for different algorithms w.r.t. MTE

algorithm, when the packet arrival follows the Poisson process with mean µ = 1.0.

lifetime and total delivered packets, respectively, while both MH and MHKC have

comparable packet delivery time and energy consumed per packet transmission.

Next, we evaluate the performance of employing the connectivity condition in

the MTE algorithm. Figure 4.5 shows the performance metrics when MTE algo-

rithm is employed when keeping the remaining network connected. We plot the

normalized network lifetime, normalized packet delivery time, normalized trans-

mit energy per packet, and normalized total delivery packets. The normalization

is done with respect to the performances of MTE algorithm. From the figure,

the MTEKC1(y), y = 1 deviates the least from the MTE algorithm in terms of

all the performance metrics, this is obvious since most of the deployed network

are more than k-connected, where k = 1. The MTEKC1(y), y = 1 algorithm

on average achieves around 5.67% and 5.71% more network lifetime and total de-

livered packet, while it is only 1% less energy efficient compared to MTE. The
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Figure 4.5: Comparison of normalized metric for different MTEKC algorithms

w.r.t. MTE algorithm, when the packet arrival follows the Poisson process with

mean µ = 1.0.

MTEKC2(y), y = 1, MTEKCfiedler(y), y = 1, MTEKCfiedler(y), y = 2, and

MTEKCfiedler(y), y = 3 achieve on average 13.13% and 13.18%, 15.39% and

15.52%, 12.62% and 13.42%, 11.12% and 11.15% more network lifetime and total

delivered packet, respectively, while they are around 10.61%, 5.74%, 10.15% and

25.39% less energy efficient, respectively. For the proposed algorithm using the

Fiedler value, the value of y should only be chosen around 1 to 2. The reason for

this is that when y is too large, the algorithm performs more like MHKC algo-

rithm, which is less energy efficient as seen in Figure 4.4. This can be observed

from MTEKCfiedler(y), y = 3, this algorithm achieves slightly larger network

lifetime, but consumes much more energy per packet compared to the case when

lower y is employed.

Now, we are about to compare algorithms that use the residual energy in nodes
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to determine the routing decision. We note that all the algorithms that use residual

energy to guide the routing decision such as MMRE, MMREKC, FA algorithms

recompute the routing path every 20 simulation time and whenever a node dies.

Figure 4.6 shows the performance of FA algorithm with connectivity condition,

MTE, and the maximin residual energy (MMRE). In the figure, the energy effi-

ciency of FA algorithms with/without connectivity condition are in between the

energy efficiency of MMRE and MTE. This is obvious, since the MMRE does not

take into account the transmit energy in their routing metric, therefore the MMRE

results in worst energy efficiency. In terms of network lifetime and total delivery

packets, the FA algorithm is better than MTE and MMRE algorithms. In fact,

adding the connectivity condition does not improve the FA algorithm much in the

low packet arrival rate. This can be verified by exploring the impact of employing

network connectivity weight to these routing algorithms when the packet arrival

rate is high. Specifically, we study 3 of the 10 networks that we generated. These

networks are shown in Figure 4.7. Figure 4.8 to 4.10 show the network lifetime and

total delivered packets achieved by the MTE and FA algorithm with/without con-

nectivity condition. In Figure 4.8, the MTEKC2(1) achieves 33.67% to 42.84%

more network lifetime from the low load to high load, and it achieves longer than

34% more successful delivered packets compared to the MTE algorithm. The

MTEKC using Fielder value with y = 1 achieves 40 ∼ 46% longer network lifetime

and it achieves more than 41% more packet delivery. Finally, the MTEKC using

Fiedler value with y = 2 achieves 46 ∼ 51% longer lifetime and more than 50%

more packet delivery. Compared to the FA algorithm, the FAKC2(1) achieves

around 0 ∼ 15% longer lifetime and 0 ∼ 20% more successfully delivered packets.

Similar to the FAKC2(1), the FAKC with Fiedler value for y = 1, 2 outperforms
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FA algorithm by more than 10% in terms of network lifetime and successfully de-

livered packets. Observing Figure 4.9, we found that in the high load (µ = 3.0)

MTEKC with Fiedler value for y = 1, 2 outperforms the FA algorithm. The perfor-

mance gain by including the connectivity weight in calculating the routing decision

for Figure 4.8 to 4.10 is summarized in Table 4.8 and 4.9. The main reason of this

performance improvement is that by explicitly considering the connectivity of the

remaining network, some more important nodes may not be overused in the high

load. The more important nodes will not be used unless they are the nodes along

the only path to the destination. The probability of the overused is higher in the

high network load compared to the low network load. Hence, the performance

improvement is more pronounced in the high network load. Finally, we remark

that the FA based algorithms compared in this section require to recompute the

routing path in every 20 simulation time. This implies a frequent information ex-

change of the residual energy of all nodes happens in the FA algorithm. Next, we

consider the performance of FA algorithm when less frequent information exchange

of residual energy of all nodes is performed.

4.7.2 Limited information exchange

We note that the comparison in the previous section is not completely fair, in

terms of information exchange. The routing algorithms that employ the residual

energy in each nodes to compute the routing path require the updated information

regarding to the residual energy of all nodes every time before the routing path is

recomputed. In contrast, the MTE and MTEKC only recalculate the routing path

whenever there is a node dies. As we know, the information dissemination in the

sensor network can be done through flooding, and for the sake of energy efficiency,
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Table 4.8: Network lifetime and total delivery packets improvement for network 1,

2, and 3.

Load Network MTEKC2
MTE

MTEKCfiedler(1)
MTE

MTEKCfiedler(2)
MTE

1 1 (33.67%, 34.10%) (39.59%, 40.27%) (48.30%, 49.93%)

2 (4.98%, 4.92%) (15.21%, 15.41%) (11.81%, 11.69%)

3 (6.21%, 6.46%) (16.56%, 17.32%) (3.9%, 3.63%)

2 1 (34.03%, 34.12%) (39.83%, 40.53%) (46.85%, 47.78%)

2 (4.86%, 4.45%) (15.33%, 15.74%) (11.32%, 11.78%)

3 (5.92%, 6.13%) (17.11%, 17.58%) (6.42%, 6.09%)

3 1 (42.84%, 30.14%) (46.40%, 41%) (50.59%, 42.21%)

2 (5.01%, 2.51%) (10.16%, 17.69%) (11.58%, 12.46%)

3 (0.1%, 0.1%) (21.60%, 38.55%) (−19.83%, 59.86%)

Table 4.9: Network lifetime and total delivery packets improvement for network 1,

2, and 3.

Load Network FAKC2
FA

FAKCfiedler(1)
FA

FAKCfiedler(2)
FA

1 1 (2.04%, 1.96%) (1.14%, 1.07%) (1.73%, 1.76%)

2 (0.45%, 0.5%) (−0.36%,−0.29%) (0.93%, 0.58%)

3 (0.03%, 0.02%) (0.03%, 0.02%) (0.03%, 0.02%)

2 1 (6.69%, 6.84%) (8.35%, 8.54%) (8.72%, 8.98%)

2 (9.31%, 9.64%) (9.14%, 9.44%) (9.78%, 10.16%)

3 (15.42%, 15.20%) (14.83%, 14.69%) (15.43%, 15.32%)

3 1 (6.13%, 9.53%) (6.27%, 8.10%) (7.18%, 11.10%)

2 (8.89%, 15.67%) (10.16%, 19.01%) (7.82%, 16.51%)

3 (10.55%, 20.35%) (8.09%, 18.31%) (10.09%, 20.42%)
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Figure 4.6: Comparison of normalized metric for different algorithms w.r.t. FA

algorithm, when the packet arrival follows the Poisson process with mean µ = 1.0.
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Figure 4.7: Random networks
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Figure 4.8: Comparison of normalized metric for different packet arrival rate in

network 1.
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Figure 4.10: Comparison of normalized metric for different packet arrival rate in

network 3.

the information dissemination should not be done very often. For fair compari-

son, we investigate the residual energy based algorithm with limited information

exchange. In particular, the algorithms only do the information dissemination

once in the beginning of the network setup and whenever a node dies. The FA

algorithm recomputes the routing path at the beginning of the simulation and

whenever a node dies. We refer to this algorithm as FA fair. Figure 4.11 to 4.13

show the normalized performance metrics for different network realizations, when

the packet arrival rate is 1.0 to 3.0, respectively. From the figures, we observe

that the MTE algorithm performs comparably with the FA fair algorithm in the

low packet arrival case. However, the FA fair algorithm performs a little bit better

than the MTE algorithm at high packet arrival rate. The FAfairKC1(1) achieves

on average 16.71% ∼ 22.24% and 19.95% ∼ 22.51% longer network lifetime and

more total delivered packets, respectively, compared to the FA fair algorithm.

The FAfairKC2(1) achieves on average 19.43% ∼ 22.01% and 20.50% ∼ 22.25%

longer network lifetime and more total delivered packets, respectively, compared to
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Figure 4.11: Comparison of normalized metrics for different routing algorithms

w.r.t. FA fair in different network realization when packet arrival=1.0.

the FA fair algorithm. Similarly, the FAfairKCfiedler(1) achieves 18% ∼ 21%

better lifetime and 19.15% ∼ 22% more total delivered packets, compared to FA

fair. From the simulation results, we can summarize that when the information ex-

change about the residual energy in sensor nodes are limited, explicitly considering

the network connectivity improves the network lifetime and total delivered packets

by around 22%. We note that the information exchange required to calculate the

connectivity weight is minimal in the sense the information exchange only occurs

whenever a node dies. This can be done through flooding.

4.7.3 Distributed implementation

In this subsection, we evaluate the distributed implementation outlined in Section

4.6. We run the distributed algorithm in Network 1 of Figure 4.7 with nodes
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Figure 4.12: Comparison of normalized metrics for different routing algorithms

w.r.t. FA fair in different network realization when packet arrival=2.0.
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Figure 4.13: Comparison of normalized metrics for different routing algorithms

w.r.t. FA fair in different network realization when packet arrival=3.0.
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initial energy Ei = 1000, ∀i ∈ N . Figure 4.14 and 4.15 show the average energy per

packet, the number of delivered packets, average number of hops per packet, and

average delivery time per packet of the distributed implementation for different

routing algorithms. From Figure 4.14, the FA based algorithms have very low

throughput compared to the MTE based algorithms. This is mainly due to the

fact that the learned optimal routing path based on FA algorithm keeps changing

as a packet reaches to its next hop. This changing of routing path is caused by

the changing edge cost in the FA algorithm. Due to this changing edge cost, the

optimal routing path based on FA algorithm is always changing and it never reaches

a fixed stable route. Because of this reason, the learning algorithm may never reach

the stable state. Hence, the FA based algorithms have low total delivered packets

before the network becomes disconnected. In fact, the total delivered packet using

FA and FAKCfiedler are 8863 and 8872, respectively. In contrast, the MTE and

MTEKCfiedler deliver 18521 and 20128 packets. The MTE based algorithms can

achieve higher throughput because the stable optimal routing path is achieved and

the optimal routing path changes only whenever a node dies. This can be observed

from the number of delivered packets, the jump in the graph corresponds to the

relearning in the Q− value. The relearning happens only when a node dies. After

the death of a node, the MTE and MTEKCfiedler algorithms have to relearn the

new topology and refine the Q − value. From this figures, we summarize that

the MTEKCfiedler consistently performs better than MTE. And both MTE and

MTEKCfiedler achieve more than 2 times total delivered packets compared to the

FA based algorithm. In Figure 4.15, we observe that the FA based algorithms

always have increasing average delivery time. This increasing average delivery

time shows the instability of the learned routing path.
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Chapter 5

Cooperative Routing for Lifetime

Maximization

This chapter studies the impact of cooperative routing for maximizing the network

lifetime in sensor network applications. We We assume nodes in the network are

equipped with a single omnidirectional antenna and they coordinate their trans-

mission to achieve transmit diversity. We propose a joint cooperative transmission

and energy aware routing algorithm to prolong the network lifetime. In contrast

to the previous works, our approach uses the maximum lifetime power allocation,

instead of minimum power allocation. Using the maximum lifetime power alloca-

tion, the cooperative nodes allocate their transmit power according to the channel

condition and the residual energy in the nodes. Our maximum lifetime cooperative

routing scheme combines the maximum lifetime power allocation and the energy

aware routing to maximize the network lifetime. We study the performance of

the cooperative routing in terms of network lifetime (defined as the time until the

first node dies). We demonstrate that our proposed solution achieves 1 ∼ 3.5 and

1 ∼ 2 times longer network lifetime and total delivered packet compared to non-
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cooperative routing, when it is used with MTE and FA algorithms, respectively.

Furthermore, the maximum lifetime power allocation achieves 1 ∼ 2 times longer

lifetime, compared to maximum power allocation in MTE and FA routing schemes.

We also provide distributed implementation of the proposed algorithm.

This chapter is organized as follows. First, we give the motivation of our work,

describe the system model, reviews the existing energy aware routing algorithm.

Then, we formulate the link cost for the cooperative routing. We derive and

explain the proposed maximum lifetime power allocation in cooperative routing.

After the derivation, we present the joint cooperative transmission and energy

aware routing scheme, furthermore, we outline the distributed implementation.

Finally, the performance of our proposed algorithm is evaluated using extensive

simulations.

5.1 Motivation

Advances in low power integrated circuit devices and communications technologies

have enable the deployment of low-cost, low power sensors that can be integrated

to form sensor networks. These networks have vast important applications, i.e.:

from battlefield surveillance system to modern highway and industry monitoring

system; from the emergency rescue system to early forest fire detection and the very

sophisticated earthquake early detection system. Having the broad range of appli-

cations, the sensor network is becoming an integral part of human lives. Moreover,

it has been identified as one of the most important technologies nowadays.

The deployment of the low cost and energy limited sensors implies that the

energy efficient communication protocol is imperative to extend the lifetime of the

network. The problem of energy efficient protocol can be approached from different
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communication layers; from physical layer, data-link layer, MAC layer, network

layer to the application layer. Moreover, the cross layer approach has been shown

to be an effective energy saving method in the energy constrained communication

[45, 80]. In ad hoc networking environment, the most energy consumption of the

wireless network interface is due to the packet transmission [37]. Motivated by

this fact, we focus on the cross layer approach by jointly design the energy efficient

routing algorithm in network layer and the energy efficient signal combining in

physical layer.

The energy efficient routing and transmitter side diversity have been studied

separately in the literatures. The transmitter side diversity, pioneered by Alam-

outi’s paper [7] shows the significant performance gains can be achieved in the

multiple-input-multiple-output (MIMO) systems. However, multiple antennas in

sensor node may be impractical due to the cost. To overcome this problem, the

cooperative communication concept has been recently proposed [60]. This cooper-

ative communication explores the broadcast nature of the wireless medium, where

signal transmitted by a node will be received by all nodes within its transmission

range. This property is usually referred to as the Wireless Broadcast Advantage.

In the multi-hop transmission, nodes that have received the transmitted signal will

cooperatively help relaying and form a virtual multi antenna system. This virtual

multi antenna system achieves the significant performance gains as in the MIMO

system.

There are many existing energy efficient routing algorithms in the literatures.

The minimum total energy routing (MTE) [99] algorithm selects the route that

minimizes the total transmission energy along the route. The min-max battery

cost routing (MMBCR) algorithm [92] tries to minimize the battery cost among
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the maximum battery cost routes. This algorithm avoids the overuse of nodes

along the minimum total energy route. However, the MMBCR selects route that

is far from the energy efficient route. To overcome the problem, the conditional

min-max battery cost routing (CMMBCR) [99] is proposed to trade-off between

MTE and MMBCR. In [27], they proposed a heuristic called flow augmentation

(FA) algorithm that gradually makes transition from MTE to MMBCR. They

show that their algorithm performs better than CMMBCR algorithm. However,

all the existing energy efficient algorithms do not jointly utilize the cooperative

transmission and energy efficient routing in performing routing decision. In [56], a

joint cooperative communication and routing selection algorithm is proposed. They

however, design the power allocation method is based on energy minimization.

In this chapter, we propose a cooperative routing algorithm to maximize the

network lifetime. The proposed scheme combines the cooperative transmission and

the energy aware routing algorithm. To maximize the network lifetime, we propose

maximum lifetime power allocation in the cooperative transmission. The maximum

lifetime power allocation allocates transmit power in each nodes according to the

channel condition and the normalized remaining energy in the nodes. We argue

and demonstrate that using this criterion along with any energy aware routing

algorithm (such as MTE and FA algorithms) results in longer network lifetime.

We show the effectiveness of our proposed method through extensive simulations.

5.2 System Model

We modeled the wireless network as an undirected simple finite graph G(V, E),

where V is the set of nodes in the network and E is the set of all links/edges. The

link (i, j) ∈ E implies that node j ∈ Si can be directly reached by node i with a
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certain transmit power level in the predefined dynamic range, where Si is the set

of nodes that can be directly reached by node i. We assume that every node has

the initial battery energy of Ei for ∀i ∈ V . Every packet transmission consumed

energy. The energy expenditure for transmission from node i to j is proportional

to d(i, j)α, where d(i, j) is the distance between node i and j, α is between 2 and

4 and depends on the transmission environment [85]. In this chapter, we assume

α = 2 as the path loss exponent for free space propagation. In the rest of this

section, we summarize the existing energy-aware routing algorithms and the link

cost formulation in cooperative transmission.

5.2.1 Energy-aware routing

The minimum total energy (MTE) routing uses the simple energy metric rep-

resenting the total energy consumed along the route. If we consider a route

r = {n0, · · · , nd}, where n0 is the source node and nd is the destination node.

Let denote the energy consumed in transmitting packet over the hop (ni, nj) as

e(ni, nj), then the total expended energy in that route is P (r) =
∑d−1

i=0 e(ni, ni+1).

The MTE routing selects the route among all routes that minimizes the total

expended energy in the route

r∗ = arg minr∈R(n0,nd)P (r), (5.1)

where R(n0, nd) is the set of routes from source node n0 to destination node nd.

The flow augmentation (FA) algorithm is similar to the MTE routing algo-

rithm, except it weights the energy consumed over one hop by the normalized

residual energy. In particular, the FA algorithm employs e(ni, nj)
x1E−x2

ni
Ex3

ni
as

the energy metric over the hop (ni, nj), where Eni
is the residual energy of node

ni at current time and Eni
is the initial energy of node ni. Therefore, the to-
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tal weighted energy expended in a route is P (r) =
∑d−1

i=0 e(ni, ni+1)
x1E−x2

ni
Ex3

ni
.

And the algorithm selects the route that minimizes the total weighted energy,

r∗ = arg minr∈R(n0,nd)P (r). This metric gradually avoids the minimum energy

path as the residual energy of nodes along the minimum energy path is low. We

use (x1, x2, x3) = (1, 5, 5) throughout this chapter.

5.2.2 Link cost formulation

Employing the cooperative transmission changes the link cost for the routing al-

gorithm. Let denote the transmitter set as Tx = {t1, · · · , tn} and the receiver set

as Rx = {r1, · · · , rm}. We summarize the link cost in the following 4 transmission

modes [56].

1. Point-to-point, Tx = {t1}, Rx = {r1}: the received signal is represented as

r(t) = βωs(t) + η(t), (5.2)

where β is the channel response, s(t) is the unit-energy transmit signal, and

η(t) is the additive gaussian noise. The transmit power at the transmitter

is represented as PT = |ω|2 and the SNR at the receiver side is γ = β2|ω|2
Pη

,

where Pη is the noise variance. We assume the receiver can correctly decode

the received signal if the receiver side SNR is above the minimum threshold

value, γmin. Therefore, the link cost in point-to-point is described as

L(t1, r1) = e(t1, r1) =
γminPη

β2
. (5.3)

For free space propagation, β = d(t1, r1)
−α/2, where d(t1, r1) is the distance

between node t1 and r1.

2. Broadcast, Tx = {t1}, Rx = {r1, · · · , rm}: using the wireless broadcast advan-

tage, the cost for reaching the receiver set Rx is the cost to reach the farthest

114



receiver, i.e.,

L(t1, Rx) = max{L(t1, r1), · · · , L(t1, rm)}. (5.4)

3. Cooperative, Tx = {t1, · · · , tn}, Rx = {r1}: the signal at the receiver is

r(t) =
n∑

i=1

βi1|ω|s(t) + η(t). (5.5)

Using simple calculation, the link cost/total power allocation can be obtained

as

L(Tx, r1) =
1

∑n
i=1

β2
i1

γminPη

. (5.6)

The energy consumption in each transmitter is presented as

e(t1, r1) =
β2

i1γminPη( ∑n
i=1 β2

i1

)2 . (5.7)

4. Cooperative-Broadcast, Tx = {t1, · · · , tn}, Rx = {r1, · · · , rm}: If we assume

that the channel estimation is done in the receiver and the cooperative trans-

mitted signal can be coherently decoded in the receiver, then we will have a

multi-node to multi-node scenario. The link cost for this mode of transmis-

sion will be

L(Tx, Rx) = max

{
1

∑n
i=1

β2
i1

γminPη

, · · · ,
1

∑n
i=1

β2
im

γminPη

}
. (5.8)

Similarly, the energy consumption in each of the transmitter is

e(t1, Rx) =
β2

im∗γminPη( ∑n
i=1 β2

im∗
)2 , (5.9)

where

m∗ = arg max

{
1

∑n
i=1

β2
i1

γminPη

, · · · ,
1

∑n
i=1

β2
im

γminPη

}
. (5.10)
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Figure 5.1: Exchange and Update Q-value

5.3 Proposed solution

5.3.1 Maximum lifetime power allocation

In this section, we propose a different power allocation that takes into account the

goal of the routing algorithm; that is to maximize the network lifetime. We note

that the flow augmentation routing algorithm minimizes the total transmit power

in the route weighted by the normalized residual energy. By weighting the energy

metric with the normalized residual energy, the route with extremely low residual

node will be avoided. Based on this concept, we re-derive the power allocation

problem in the cooperative transmission case and we referred the resulting power

allocation to as the maximum lifetime power allocation. Specifically, we want to

minimize

min
n∑

i=1

Ei

Ei

|ωi|2

s.t.
|∑n

i=1 βi1ωi|2
Pη

≥ γmin. (5.11)

The above optimization problem minimizes the weighted total power while en-

suring the received SNR is larger than minimum required SNR. Using the Lagrange
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multiplier method we have

L(ω1, · · · , ωn, λ) =
n∑

i=1

Ei

Ei

|ωi|2 − λ

( |∑n
i=1 βi1ωi|2

Pη

− γmin

)
, (5.12)

Taking the partial derivatives, we have

∂L

∂ωi

= 2
Ei

Ei

ωi − 2
λβi1|

∑n
i=1 βi1ωi|
Pη

= 0, ∀i (5.13)

∂L

∂λ
=
|∑n

i=1 βi1ωi|2
Pη

− γmin = 0. (5.14)

Equivalently, (5.13) can be represented as

ωi =
Ei

Ei

λβi1

√
Pηγmin

Pη

. (5.15)

We note that we have use |∑n
i=1 βi1ωi|2 = Pηγmin to get (5.15). Substituting (5.15)

to (5.14), we get
n∑

i=1

Ei

Ei

λβ2
i1

√
Pηγmin

Pη

=
√

Pηγmin, (5.16)

hence, we have

λ =
Pη∑n

i=1

(Ei

Ei

)
β2

i1

. (5.17)

This implies that (5.15) is equivalent to

ωi =

Ei

Ei
βi1

√
Pηγmin∑n

i=1

(Ei

Ei

)
β2

i1

, (5.18)

and the energy consumption of cooperative transmission in each node using max-

imum lifetime criteria is

e(ti, r1) = |ωi|2 =

(Ei

Ei

)2
β2

i1Pηγmin[ ∑n
i=1

(Ei

Ei

)
β2

i1

]2 . (5.19)

This power allocation criterion (5.19) has the interpretation that in addition to

using the channel condition βi1 for power allocation, the node who has abundant
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residual energy will help more on the cooperative transmission compared to the

node with less residual energy. In initial deployment, when all the sensor nodes

have abundant of residual energy, the criteria (5.19) practically reduces to (5.7).

We will show by simulation in Section 5.5, that the joint maximum lifetime power

allocation and the maximum lifetime routing algorithm can significantly extend

the network lifetime.

5.3.2 Joint maximum lifetime routing and power allocation

The simplest way to jointly consider the maximum lifetime routing and the max-

imum lifetime power allocation is to select the cooperating nodes along the non-

cooperative route [56]. The cooperative MTE and cooperative FA algorithm are

summarized in Table 5.1 and Table 5.2, respectively.

Table 5.1: Centralized cooperative MTE-n

1. Find the minimum total energy route with edge cost as in (5.7)

2. Select the last n nodes in the MTE route to do cooperative

transmission.

3a. For minimum energy allocation, deduct the amount of energy

proportional to (5.7) from each of cooperating nodes.

3b. For maximum lifetime energy allocation, deduct the amount

of energy proportional to (5.19) from each of cooperating nodes.
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Table 5.2: Centralized cooperative FA(x1,x2,x1)-n

1. In every update time: find the maximum lifetime route with edge cost

between node i and j as e(i, j)x1E−x2
ni

Ex3
ni

. The optimal route is

denoted as r∗ = arg minr∈R(s,d)P (r), where

P (r) =
∑d−1

i=0 e(ni, ni+1)
x1E−x2

ni
Ex3

ni
.

2. Select the last n nodes in the FA route to do cooperative transmission.

3a. For minimum energy allocation, deduct the amount of energy

proportional to (5.7) from each of cooperating nodes.

3b. For maximum lifetime energy allocation, deduct the amount

of energy proportional to (5.19) from each of cooperating nodes.

Figure 5.2: Cooperation transmission illustrated

5.4 Distributed cooperative routing and learning

In this section, we develop a distributed method to implement the maximum life-

time cooperative routing algorithm. The method is based on the distributed rein-

forcement learning routing algorithm [68]. The routing decision is learned by all

nodes in the network. Each node maintains the best packet delivery cost to all

the destinations. In particular, each node i maintains a table of Q-values Qi(j, d),

for j ∈ N(i), where j is in the set of node i neighbors, N(i), and node d is the

destination. The Qi(j, d) has the interpretation of node i’s best estimated cost

that a packet would incur to reach its destination node d from node i when the

packet is sent via node i’s neighbor node j.

119



The value in the Q-table will be exchanged between node i and j, whenever

there is a packet is sent from node i and j, and vice versa. The exchange mechanism

is illustrated as in Figure 5.1. Whenever node i transmits a packet P to node j,

node j feedbacks Qj(k
∗, d) = mink∈N(j) Qj(k, d) to node i as shown in the figure.

The node i uses this value to update its own Q-value as follow

Qi(j, d) = (1− δ)Qi(j, d) + δ[Qj(k
∗, d) + c(i, j)], (5.20)

where c(i, j) is the cost for sending packet from node i to node j, and δ ∈ [0, 1] is

the learning rate for the algorithm.

Since in this chapter, the routing algorithms are driven for the purpose of

maximizing the network lifetime, then the cost of sending a packet between node

i and node j is related to the energy consumption for sending the packet. In

particular, the cost of sending packet for MTE and FA routing algorithms are

[MTE]: c(i, j) = e(i, j), (5.21)

[FA(x1,x2,x3]: c(i, j) = e(i, j)x1E−x2
ni

Ex3
ni

, (5.22)

For MTE, Qi(j, d) represents the total energy consumption used to delivery a

packet from node i to node d via node i’s neighbor node j. In contrast, Qi(j, d) in

FA represents the total energy consumption in delivering a packet from node i to d

via j, weighted by the normalized residual energy of nodes along the route. We note

that the entire route used for packet transmission is appended to the header when

doing the learning. After making the next hop decision and before transmitting

the packet, the node will inform its previous n − 1 nodes to do the cooperation

based on the route in the packet header (where the packet comes from). Figure

5.2 illustrates this situation where node i has made the routing decision, but it has

not transmitted the packet P yet. At this time node i informs the n− 1 nodes to
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Figure 5.3: Random network with 36 nodes in 100 meter by 100 meter area

engage in cooperation (n = 3 is shown in the figure). In this way, the cooperative

transmission also helps reducing the transmit energy expended during the learning

period.

5.5 Simulation Results

We simulate the packet routing system as the discrete event system. The topol-

ogy of the simulated network is shown in Figure 5.3. The network contains 36

nodes, which uniformly deployed in an 100 meter by 100 meter area. The traffic

is generated from node 21 to node 6 and node 32 to node 3. The packet arrival

follows the Poisson distribution and the number of packets introduced per unit

simulation time step is referred to as packet arrival rate (traffic load), µ. Multiple

packets generated at a node are stored in its unbounded first-in-first-out queue. At

every time step, each node removes the packet in front of its queue and sends the

packet to the next hop according to the routing decision. When a node receives a
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Figure 5.4: Network lifetime

packet, it either queues the received packet at the end of its queue or removes the

packet from the network. The latter case happens when the packet arrives at its

destination. All the nodes in the network initially have Ei = 100, ∀i ∈ V \{21, 32}
unit energy, except node 21 and node 32, which have E21 = 1000 and E32 = 1000.

We compare 2 routing algorithms, namely MTE and FA algorithm, each with

2 power allocation. We referred the MTE with the minimum power allocation

criterion (5.7) to as MTE-MP and the MTE with the maximum lifetime power

allocation (5.19) to as MTE-ML. Similar naming is given for FA algorithm. We

compare network lifetime, average packet delivery time, average energy per packet,

and total packet delivery. The network lifetime (measured in terms of simulation

time step) is defined as the time before the first node dies. The average packet

delivery time is defined as the time between packet introduction at the source and

its removal time at the destination. The average energy per packet is the total

energy consumed per delivered packets. Finally, the total delivered packet is the

number of packets that are successfully delivered before the first node dies.
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Figure 5.4 shows the lifetime of the network that is achieved by different cen-

tralized routing algorithm with minimum power allocation and maximum lifetime

power allocation. We note that for the centralized routing algorithm, the mini-

mum total energy route is only calculated at the beginning of the simulation. In

contrast, the FA algorithm recomputes the route every 20 simulation time step

using the most current residual energy on each node. The performance of each

scheme is compared for different traffic load, namely low load (µ = 1.0), medium

load (µ = 2.0), and high load (µ = 3.0). The x-axis of the figure represents the

number of relays used in the cooperative transmission. We recall that the n-relays

are selected from the last n nodes along the noncooperative MTE and FA algo-

rithm, correspondingly. In the figure, the cooperative MTE-MP achieves 71.77%,

73.45%, 85.06%, 112.30%, and 136.20%, longer network lifetime when 1, 2, · · · , 5

relays are used, respectively, compared to the noncooperative routing. However,

if the maximum lifetime power allocation is used, the MTE-ML achieves 108.72%,

161.05%, 235.09%, 298.88%, and 340.54%, longer network lifetime when 1, 2, · · · , 5

relays are used. Obviously, we see that the maximum lifetime power allocation can

achieves much higher network lifetime compared to the maximum power alloca-

tion. The MTE-ML algorithm can achieves from 1 ∼ 3.5 times higher network

lifetime compared to noncooperation routing. Compared to MTE-MP, MTE-ML

achieves around 1 ∼ 2 times better network lifetime. The reason for this phenom-

enon is that, the minimum power allocation allocates the power merely based on

the channel condition (in our model (5.7) farther away nodes have lower channel

gain, due to path loss, and therefore allocate less transmit power). Hence, in some

popular route (minimum total energy route), some nodes will be overused in the

minimum power allocation and the time until the first node dies (network lifetime)

123



1 1.5 2 2.5 3
0

1000

2000

3000
Network lifetime comparison for different arrival load, 1 relay

MTE−MP
MTE−ML
FA−MP
FA−ML

1 1.5 2 2.5 3
0

2000

4000
3 relays

N
et

w
or

k 
lif

et
im

e

MTE−MP
MTE−ML
FA−MP
FA−ML

1 1.5 2 2.5 3
0

2000

4000
5 relays

Arrival load, µ

MTE−MP
MTE−ML
FA−MP
FA−ML

Figure 5.5: Network lifetime comparison for different routing algorithms when the

number of relays is 1, 3, and 5

is shorter. In contrast, in maximum lifetime power allocation, the power alloca-

tion allocates the power according to the normalized residual energy in the nodes

and the channel condition. Therefore, the situation that one particular node is

overused will be minimized in cooperative transmission and MTE-ML results in

longer network lifetime. Figure 5.4 also shows the network lifetime when the FA

algorithm is used. Compared to the noncooperative routing, the FA-MP achieves

65.72%, 84.29%, 95.45%, 105.01%, and 109.18% longer lifetime, when 1, 2, · · · , 5

relays are used, respectively. In contrast, the FA-ML achieves 93.02%, 124.89%,

153.44%, 166.41%, and 176.96%, when 1, 2, · · · , 5 relays are used, respectively.

Figure 5.5 shows the sensitivity of the routing algorithm to the network load.

From this figure, we observe that the MTE-MP is the least sensitive to the traf-

fic load among all the algorithms. This can be understood since the MTE-MP

only uses the minimum total transmit power as the routing selection and power

allocation criterion. No matter how the traffic arrival load is, the route selection
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Figure 5.6: Average delivery time

and power allocation will not change. However, the MTE-ML, FA-MP, and FA-

ML algorithms choose the route and power allocation according to the normalized

residual energy in the nodes. When the traffic arrival load is small, the ML algo-

rithm tries its best to balance the load to all the cooperative nodes. Similarly, the

FA algorithm tries to balance the load to nodes in all possible routes between the

source and destination. As the traffic load becomes large, the algorithms find less

flexibility to distribute the load among either the cooperative nodes or the nodes in

routes between source and destination. Hence, the algorithm based on normalized

residual energy degrades as the arrival load becomes larger. In all cases, the FA-

ML is superior to FA-MP, FA-MP outperforms MTE-ML, and MTE-ML is better

than MTE-MP. But, the performance gains become smaller as the network arrival

load is larger.

Figure 5.6-5.8 show the average delivery time, average consumed energy per

packet and the total delivery packets before the first node dies. In Figure 5.6, all

the algorithms have similar delivery time when the traffic load is low (µ = 1.0).

125



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Number of relays

A
ve

ra
ge

 e
ne

rg
y 

pe
r 

pa
ck

et

Comparison of network lifetime for different routing algorithms with/out cooperation

MTE−MP µ=1.0

MTE−MP µ=2.0

MTE−MP µ=3.0

MTE−ML µ=1.0

MTE−ML µ=2.0

MTE−ML µ=3.0

FA(1,5,5)−MP µ=1.0

FA(1,5,5)−MP µ=2.0

FA(1,5,5)−MP µ=3.0

FA(1,5,5)−ML µ=1.0

FA(1,5,5)−ML µ=2.0

FA(1,5,5)−ML µ=3.0

Figure 5.7: Average consumed energy per packet
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In the medium traffic load, the FA algorithms with MP and ML power allocation

have lower delivery time compared to MTE algorithm. This is due to the fact

that FA algorithm explores several routes besides the minimum energy route and

distributes the traffic to queues among routes between source and destination.

Therefore, the algorithm has practically lower delivery time. However, in the large

network load, all the algorithms except MTE-ML have similar delivery time. The

MTE-ML has the worst delivery time. Figure 5.7 shows the average energy per

packet consumed by different routing algorithms. It is obvious that the MTE class

of the algorithm has the lower energy consumed per packet. The FA algorithm

has higher energy consumption because the algorithm selects less energy efficient

route to balance the energy consumption among nodes. In both algorithms, the

cooperative transmission is very effective in lowering the energy consumed per

packet. Finally, Figure 5.8 shows the number of packets successfully delivered

before the first node dies. The performance of different routing algorithms in this

metric is very similar to the network lifetime. The FA-ML outperforms FA-MP,

FA-MP outperforms MTE-ML, and MTE-ML is better than MTE-MP in low to

high traffic load.

Figure 5.10 and 5.9 show the distributed reinforcement learning implementation

for all routing algorithms according to Section 5.4. In this simulation, the learning

parameter is chosen as δ = 0.85. Figure 5.9 shows the learning curves in distributed

implementation when the traffic load is 1.0 and 3 cooperative relay nodes are used.

It is obvious that the distributed MTE-MP converges to the centralized solution

within 100 simulation time. In contrast, the distributed FA algorithm converges

to the centralized solution in rather longer time. We recall that the optimal route

according to the FA algorithm changes as the residual energy in nodes changes. In
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Figure 5.9: Learning curves in the distributed learning algorithm

this time varying route selection, the distributed implementation is able to achieve

the centralized solution. Finally, Figure 5.10 shows the result of learning algorithm

for different routing algorithms. In this Figure, the distributed implementation can

achieves almost similar network lifetime as in the centralized solution. However,

if we observe the total delivered packet, the distributed algorithm achieves much

lower throughput compared to the centralized solution. The reason for this is that

the distributed algorithms consumed some portion of the nodes’ energy to explore

and learn the good routing decision. During the exploration (learning) stage, loops

in the route may appear and the algorithms practically deliver only a small portion

of the traffic. From the figure, one can observe that the cooperative transmission

can still improve the number of delivered packet.
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Figure 5.10: Comparison of network lifetime and total delivery packets for distrib-

uted reinforcement learning implementation, when the network load, µ = 1.0
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Chapter 6

Cooperation Enforcement and

Learning for Optimizing Packet

Forwarding Probability

In previous chapters, we focus on several techniques to efficiently use one unit en-

ergy in sensor communication. We also investigate several methods to prolong the

network lifetime. The optimization is done under the assumption that all nodes

are willing to cooperate. In wireless ad hoc networks, autonomous nodes would be

reluctant to forward others’ packets because of the nodes’ limited energy. However,

such selfishness and noncooperation would deteriorate both the system efficiency

and nodes’ performances. Moreover, the distributed nodes with only local infor-

mation may not know the cooperation point, even if they are willing to cooperate.

Hence, it is crucial to have a design goal of a distributed mechanism for enforcing

and learning the cooperation among the greedy nodes for packet forwarding. In
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this chapter1, we propose a self-learning repeated game framework to overcome the

problems and achieve the design goal. We employ the self transmission efficiency

as the utility function of each autonomous node, where each node maximizes the

ratio of the power for successful self-transmission over the total power used for self

transmission and packet forwarding. Then, we propose a framework to search for

good cooperation points and maintain the cooperation among selfish nodes. The

framework has two steps: First, an adaptive repeated game scheme is designed to

ensure the cooperation among nodes for the current cooperative packet forward-

ing probabilities. Second, self-learning algorithms are employed to find the better

cooperation probabilities that are feasible and benefit all nodes. We propose three

learning schemes for different information structures; namely, learning with perfect

observability, learning through flooding, and learning through utility prediction.

Starting from noncooperation, the above two steps are employed iteratively, so

that a better cooperating point can be achieved and maintained in each itera-

tion. From the simulations, the proposed framework is able to enforce cooperation

among distributed selfish nodes and the proposed learning schemes achieve 70%

to 98% performance efficiency compared to the optimal solution.

This chapter is organized as follows. First, we give the motivation, system

model. We then propose and analyze the repeated game framework for packet

forwarding under different information structures. We construct self-learning al-

gorithms corresponding to different information structures in detail. Finally, we

evaluate the performances of our proposed scheme using extensive simulations.

1Material in this chapter has been submitted to Transactions on Mobile Computing [78]
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6.1 Motivation

Wireless ad-hoc networks consist of autonomous nodes without centralized control.

In such autonomous networks, the nodes may not be willing to fully cooperate and

accomplish the network task. Specifically for the packet forwarding problem, for-

warding the others’ packets consumes the node’s limited battery resource. There-

fore, it may not be of the node’s best interest to forward others’ arriving packets.

However, rejection of forwarding other’s packets non-cooperatively will severely

affect the network functionality, and impair the nodes’ own benefits if the other

nodes also play non-cooperatively. Therefore, it is crucial to design a mechanism

to enforce cooperation among greedy nodes. In addition, the randomly located

nodes with local information may not know how to cooperate, even if they are

willing to cooperate.

The packet forwarding problem in ad hoc networks has been extensively studied

in the literature. The fact that nodes act selfishly to optimize their own perfor-

mances has motivated many researchers to apply the game theory [43,77] in solving

this problem. Broadly speaking, the approaches used in encouraging the packet

forwarding task can be categorized into two methods. The first type of methods

makes use of virtual payment. Virtual currency [21, 22], pricing [33], and credit

based method [107] fall into this first type. The second type of approaches is re-

lated to personal and community enforcement to maintain the long-term relation-

ship among nodes. Cooperation is sustained because defection against one node

causes personal retaliation or sanction by others. This second approach includes

the following works. Marti et. al. [70] propose mechanism called watchdog and

pathrater to identify the misbehaving nodes and deflect the traffic around them.

Buchegger et. al. [20] and Michiardi et. al. [71, 72] define protocols based on rep-
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utation system. Felegyhazi et al. [38, 39] consider a model to show cooperation

among participating nodes. Altman et. al. similarly [10] consider a less aggressive

punishment policy. In [48], Han et. al. proposes leaning repeated game approaches

to enforce cooperation and obtain better solution. Some other works using Game

Theory in solving communication problems can be found in [59], [69], [47].

Since in some ad hoc networks, it might be difficult to implement the virtual

payment system because of the practical implementation challenges such as enor-

mous signallings. In this chapter, we concentrate on the second type of approaches

and design the mechanism such that cooperation can be enforced in a distributed

way. In addition, unlike the previous works which assume the nodes know the

cooperation points or other nodes’ behaviors, we argue that randomly deployed

nodes with local information may not know how to cooperate even if they are will-

ing to do so. Motivated by these facts, we propose a self-learning repeated game

framework for cooperation enforcement and learning.

We quantify the node’s utility as the self-transmission efficiency, where each

node maximizes the ratio of the power for successful self-transmission over the to-

tal power used for self-transmission and packet forwarding. The goal of the node

is to maximize the long-term average efficiency. Using this utility function, a dis-

tributed self-learning repeated game framework is proposed to ensure cooperation

among nodes in ad-hoc networks. The framework has two major steps: First, the

repeated game enforces cooperation in performing packet forwarding tasks. This

first step in our framework ensures that any cooperation equilibrium that is more

efficient than the Nash Equilibrium (NE) of the one stage game can be sustained.

It is very important to emphasize that the inefficiency of NE is irrelevant to the

utility function chosen; the inefficiency of NE is merely caused by the nature that
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acting greedily to maximize node’s own benefit results in low average efficiency

in the network. The repeated game allows nodes to consider the history of ac-

tions/reactions of their opponents in making the decision. The cooperation can be

enforced, since any deviation will cause the punishment from other nodes in the

future. This results in lower long term efficiency.

The second step utilizes the learning algorithm to achieve the desired efficient

cooperation equilibrium. We propose three learning algorithms for different infor-

mation structures; namely, learning with perfect observability, learning through

flooding, and learning through utility prediction. Starting from non-cooperation

point, the two proposed steps are applied iteratively. A better cooperation is dis-

covered and maintained in each iteration, until no more efficient cooperation point

can be achieved. From the simulation results, our proposed framework is able

to enforce cooperation among selfish nodes. Moreover, compared with the opti-

mal solution obtained by a centralized system with global information, our pro-

posed learning algorithms achieve similar performances in the symmetric network.

Depending on learning algorithms and the information structures, our proposed

schemes achieve 70% to 98% of the optimality in the random network.

6.2 System Model and Design Challenge

We consider a network with N nodes. Each node has a limited transmit power

constraint. This implies that only nodes within the transmission range are neigh-

bors. The packet delivery typically requires more than one hop. The source, the

relays (intermediate nodes), and the destination constitute an active route. We

assume an end-to-end mechanism that enables a source node to know if the packet

is transmitted successfully. The source node can observe whether there is a packet
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drop in one particular active path. However, the source node might not know

where the packet is dropped. Finally, we assume that routing decision has already

been done before optimizing the packet forwarding probabilities.

Let’s denote the set of sources and destinations as {Si, Di}, for i = 1, 2, · · · ,M ,

where M represents the number of source-destination pairs that are active in the

network. Suppose the shortest path for each source-destination pair has been

discovered. Let’s denote the route/path as Ri = (Si, f
1
Ri

, f 2
Ri

, · · · , fn
Ri

, Di), where Si

denotes the source node, Di denotes the destination node, and {f 1
Ri

, f 2
Ri

, · · · , fn
Ri
}

is the set of intermediate/relay nodes, thus, there are n + 1 hops from source

node to the destination node. Let V = {Ri : i = 1, · · · ,M} be the set of routes

corresponding to all source-destination pairs. Let’s denote further the set of routes

where node j is the source as V s
j = {Ri : S(Ri) = j, i = 1 . . . M}, where S(Ri)

represents the source of route Ri. The power expended in node i for transmitting

its own packet is

P (i)
s =

∑
r∈V s

i

µS(r) ·K · d(S(r), n(S(r), r))γ, (6.1)

where µS(r) is the transmission rate of source node S(r), K is the transmission

constant, d(i, j) is the distance between node i and node j, n(i, r) denotes the

neighbor of node i on route r, and γ is the transmission path-loss coefficient. For

the link from node i to its next hop n(i, r) on route r, K · d(i, n(i, r))γ describes

the reliable successful transmission power per bit transmission.

Clearly, probability of successful transmission from node i to its destination

depends on the forwarding probabilities employed in the intermediate nodes and

it can be represented as

P i
Tx,r =

∏

j∈(r\{S(r)=i,D(r)})
αj, (6.2)
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where D(r) is the destination of route i and (r\{S(r) = i,D(r)}) is the set of nodes

on route r excluding the source and destination. Define the good power consumed

in transmission node i, P
(i)
s,good as the product of the power used for transmitting

node i’s own packet and the probability of successful transmission from node i to

its destination,

P
(i)
s,good =

∑
r∈V s

i

µS(r) ·K · d(S(r), n(S(r), r))γP i
Tx,r. (6.3)

Moreover, let the set of routes where node j is the forwarding node be Wj and

αi for i = 1, · · · , N be the packet forwarding probability for node i. The power

used to forward others’ packets is given by

P
(i)
f = αi ·K ·

∑
r∈Wi

d(i, n(i, r))γµS(r)P
i
F,r, (6.4)

where P i
F,r is the probability that node i receives the forwarded packet in route r,

and
∑

r∈Wi
µS(r) P i

F,r is the total rate that node i receives for packet forwarding.

The probability that node i receives the forward packet in route r is represented

as

P i
F,r =

∏

j∈{f1
r ,f2

r ,··· ,fm−1
r }

αj, (6.5)

where r = {S(r), f 1
r , · · · , fm−1

r , fm
r = i, · · · , fn

r , D(r)} is the n + 1 hops route from

source S(r) to destination D(r), and the mth forwarding node fm
r is node i. P i

F,r

depends on the packet forwarding probabilities of the nodes on the route r before

node i.

We focus on maximizing the self-transmission efficiency, as the ratio of success-

ful self-transmission power (good power) over the total power used for transmission

and packet forwarding. Therefore, the stage utility function for node i can be rep-

resented as

U (i)(αi, α−i) =
P

(i)
s,good

P
(i)
s + P

(i)
f

. (6.6)
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where αi is the node i’s packet forwarding probability, α−i = (α1, · · · , αi−1, αi+1, · · · , αN)T

are the other nodes’ forwarding probability. Putting (6.1), (6.4) and (6.3) into

(6.6), we have

U (i) =

∑
r∈V s

i
µS(r)d(S(r), n(S(r), r))γ

∏
j∈(r\{S(r)=i,D(r)}) αj∑

r∈V s
i

µS(r)d(S(r), n(S(r), r))γ + αi

∑
r∈Wi

d(i, n(i, r))γµS(r)

∏
j∈{f1

r ,··· ,fm−1
r } αj

.

(6.7)

The problem in packet forwarding arises because the nodes in ad-hoc networks

have their own authorities to decide whether to forward the incoming packets. Un-

der this scenario, it is very natural to assume that each node selfishly optimizes its

own utility function. In parallel to (6.7), node i selects αi in order to maximize the

transmission efficiency U (i)(αi, α−i). In the game theory literatures [43, 77], Nash

Equilibrium (NE) is a well-known concept, which states that in the equilibrium

every node selects the best response strategy to the other nodes’ strategies. The

formal definition of NE is given as follow

Definition 3 Define feasible range Ω as [0, 1]. Nash Equilibrium [α∗1, · · · , α∗N ]T is

defined as:

U (i)(α∗i , α
∗
−i) ≥ U (i)(αi, α

∗
−i),∀i,

∀αi ∈ Ω, (6.8)

i.e., given that all nodes play NE, no node can improve its utility by unilaterally

changing its own packet forward probability. Here α∗−i = (α∗1, · · · , α∗i−1, α
∗
i+1, · · · , α∗N)T .

Unfortunately, the NE for the packet forwarding game described in (6.7) is α∗i =

0, ∀i. This can be verified by finding the forwarding probability αi ∈ [0, 1] such that

U (i) is unilaterally maximized. To maximize the transmission efficiency of node i,

the node can only make αi as small as possible, since the successful probability of
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its own packet transmission in (6.2) depends only on the other nodes’ willingness to

forward the packets. By greedily dropping its packet forwarding probability, node i

reduces its total transmission power used for forwarding others’ packets, therefore,

increases its instantaneous efficiency. However, if all nodes play the same strategy,

this causes zero efficiency in all nodes, i.e., U (i)(α∗1 . . . α∗N) = 0, ∀i. This implies

the network breakdown. Hence, playing NE is inefficient. It is very important to

emphasize that the inefficiency of NE is irrelevant to the utility function in (6.7).

This inefficiency is merely the nature of greedy optimization unilaterally done by

each of the nodes. To overcome the above problem, we propose a self-learning

repeated game framework in the next two sections.

6.3 Repeated Game Framework and Punishment

Analysis

As demonstrated in Section 6.2, the packet forwarding game has α∗i = 0, ∀i as

its unique Nash equilibrium if the game is only played once. This implies that

all nodes in the network won’t be cooperating in doing the packet forwarding. In

practice, the packet forwarding game is played more than once and can be modelled

as the infinitely repeated game (a game that is played in the infinite time horizon).

In this chapter, we employ the average discounted utility with discounting factor

δ. The average discounted utility of node i is given by:

Ū (i)
∞ = lim

t′→∞
Ū

(i)
t′ = (1− δ)

∞∑
t=1

δ(t−1)U (i)(~α(t)), (6.9)

where ~α(t) = (α1, . . . , αN)T , U (i)(~α(t)) is the utility of node i at each stage game

(6.7) played at time t, and Ū
(i)
t′ is the average discounted utility from time 1 to time

t′. Unlike the one-time game, the repeated game allows a strategy to be contingent
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on the past moves and results in the reputation and retribution effect, which give

possibility for cooperation [43,44,55].

6.3.1 Design of Punishment Scheme under Perfect Observ-

ability

In this subsection, we analyze a class of punishment policy under the assumption

of perfect observability. Perfect observability means that each node is able to

observe actions taken by other nodes along the history of the game. This implies

that node knows which node drops the packet and is aware of the identity of

other nodes. This condition allows every node to detect any defection of other

nodes and it also allows nodes to know if any node does not follow the game rule.

The perfect observability is the ideal case and serves as a performance bound. In

the next subsection, this assumption is relaxed to more practical situations where

individual nodes only have limited local information.

Let’s denote the NE in one stage forwarding game as ~α∗ = (α∗1, · · · , α∗N)T , and

the corresponding utility functions as (v∗1, · · · , v∗N)T = (U (1)(~α∗), · · · , U (N)(~α∗))T .

We also denote

U = {(v1, · · · , vN)| ∃~α ∈ ΩN s.t.

(v1, · · · , vN) = (U (1)(~α), · · · , U (N)(~α))},

V = convex hull of U,

V† = {(v1, · · · , vN) ∈ V| vi > v∗i , ∀i}.

We note that V consists of all feasible utilities, and V† consists of feasible utilities

that Pareto-dominate the one stage NE, this set is also known as the individually

rational utility set. The Pareto-dominant utilities denote all utilities that are
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strictly better than the one stage NE. From game theory literatures [43,44,55], the

existence of equilibria that Pareto-dominate the one stage NE in repeated game is

given by the Folk theorem [44].

Theorem 7 (Folk Theorem [44]) Assume that the dimensionality of V† equals

to N . Then, for any (v1, · · · , vN) in V†, there exists δ ∈ (0, 1) such that for all

δ ∈ (δ, 1), there exists an equilibrium of the infinitely repeated game with discounted

factor δ in which player i’s average utility is vi.

Before we give the application of Folk theorem in the packet forwarding game,

it is useful to recall the notion of dependency graph [39]. Given the routing al-

gorithm and the source-destination pairs, the dependency graph is the directed

graph that is constructed as follows. The number of nodes in the dependency

graph is the same as the number of nodes in the network. When node i sends

packets to node j via nodes f 1, · · · , fn, then there exist directed edges from node

i to nodes f 1, · · · , fn. The resulting dependency graph is a directed graph, which

describes the node dependency in performing the packet forwarding task. Let’s

define degin(i) and degout(i) as the number of edges going into node i and coming

out from node i, respectively. Obviously, degin(i) indicates of the number of nodes

whose packets are forwarded by node i and degout(i) is the number of nodes that

forward node i’s packets. Using the notation of the corresponding dependency

graph, the application of Folk theorem in packet forwarding game is stated as

follow:

Proposition 1 (Existence of Pareto-dominant forwarding equilibria under per-

fect observability) Under the perfect observability condition and the corresponding

dependency graph satisfies the following condition

degout(i) > 0, ∀i. (6.10)
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Suppose that V† has full dimensionality, then for any (v1, · · · , vn) ∈ V†, there

exists δ ∈ (0, 1), such that for all δ ∈ (δ, 1), there exists an equilibrium of infinitely

repeated game in which the node i average utility vi.

Proof 9 Let ~α = (α1, · · · , αN)T be the joint strategy results in (U (1)(~α), · · · , U (N)(~α)).

The full dimensionality condition ensures the set
(
U (1)(~α), · · · , U (j−1)(~α), U (j)(~α)−

ε, U (j+1)(~α), · · · , U (N)(~α)
)

for any ε > 0, is in V†. Let node i’s maximum utility

be vi = max~α U (i)(~α), ∀i. This maximum utility is obtained when all nodes try

to maximize node i’s utility. Let the cooperating utility be vi = U (i)(~α) ∈ V†,∀i.
The cooperative utilities are obtained when all nodes play the agreed packet for-

warding probabilities. Let the maximum utility node i can get when it is punished

be vi = maxαi
minα−i

U (i)(~α). This implies the best utility node i can get when all

other nodes are punishing node i. Let’s denote the node j’s utility when punishing

node i as wi
j. We note that from (6.7). Notice that vi coincides with the one stage

NE. If there exist ε and punishment period for node i, Ti, such that

vi

U (i) − ε
< (1 + Ti), (6.11)

then the following rule of game ensures any individually rational utilities can be

enforced.

1. Condition I: All nodes play cooperation strategies if there is no deviation

in the last stages. After any deviations go to Condition II (Suppose node j

deviates).

2. Condition II: Nodes that can punish the deviating node (node j) play pun-

ishing strategies for punishment periods. The rest of the nodes keep playing

cooperating strategies. If there is any deviation in Condition II, restart Con-

dition II and punish the deviating node; if any punishing node does not play
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punishment in punishment period, the other nodes will punish that particular

node for the punishment period; otherwise, after the end of the punishment,

go to Condition III.

3. Condition III: Play strategy that results in utility
(
U (1), · · · , U (j−1), U (j) −

ε, U (j+1), · · · , U (N)
)
. If there is any deviation in Condition III, start Condi-

tion II and punish the deviating node.

In the sequel, we show that under the proposition’s assumptions:

• the average efficiency gained by deviating node is smaller than the cooperating

efficiency,

• the average efficiency gained by the punishing node that does not play pun-

ishment strategy in the punishment stage is worse than the efficiency gained

by that node when it conforms to the punishing strategy.

If node j deviates in Condition I and then conforms, it receives at most vj when

it deviates, vj for Tj periods when it is punished, and (U (j)−ε) after it conforms to

the cooperative strategy. The average discounted deviation utility can be expressed

as:

Û (j)
∞ = vj +

δ(1− δTj)

1− δ
vj +

δTj+1

1− δ
(U (j) − ε). (6.12)

Since if the node conforms throughout the game, it has the average discounted

utility of 1
1−δ

U (j). So the gain of deviation is given by:

∆U (j) = Û (j)
∞ − 1

1− δ
U (j) < vj +

δ(1− δTj)

1− δ
vj −

1− δTj+1

1− δ
(U (j) − ε). (6.13)

We note that vj coincides with the one stage NE, which is vj = 0,∀j. As δ → 1,

1−δTj+1

1−δ
tends to 1+Tj. Under the condition of (6.11), the deviation gain in (6.13)

will be strictly less than zero. This indicates that the average cooperating utility is
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strictly larger than deviation utility. Hence, rational nodes will not deviate from

the cooperation point.

If the punished node still deviates in the punishment period, the punishment

period (Condition II) restarts and the punishment duration experienced by the

punished node is lengthened. As the result, deviation in the punishment period

postpones the punished node from receiving the strictly better utility (U (j) − ε) in

Condition III. Hence, it is better not to deviate in the punishment stage.

On the other hand, if punishing node i does not play punishing strategy during

the punishment of node j, node i receives at most

Û (i)
∞ = vi +

δ(1− δT )

1− δ
vi +

δT+1

1− δ
(U (i) − ε). (6.14)

However, if node i conforms with the punishment strategy, it will receive at least

Ũ (i)
∞ =

(1− δT )

1− δ
wj

i +
δT+1

1− δ
U (i). (6.15)

Here wj
i is the utility of node i to punish node j. Therefore, the node i’s reward

for carrying out the punishment is (6.15) minus (6.14),

Ũ (i)
∞ − Û (i)

∞ =
(1− δT )

1− δ
(wj

i − δvi)− vi +
δT+1ε

1− δ
. (6.16)

Using vi = 0,∀i and let δ → 1, the expression (6.16) is equivalent to

Ũ (i)
∞ − Û (i)

∞ = T · wj
i − vi +

ε

1− δ
. (6.17)

By selecting δ close to one, this expression can be always larger than zero. In

summary, punishing node is always conforming to the punishment strategy in the

punishment stage.

The same argument of no node deviating in Condition I can be used to show

that no nodes deviates in Condition III. Therefore, we conclude that deviations in

all Conditions are not profitable.

143



Figure 6.1: Example of punishment scheme under perfect observability

The proof above is based on two conditions: First, nodes are able to iden-

tify which node is defecting and which node does not carry out the punishment.

This is guaranteed by the perfect observability assumption. Secondly, the proof

assumes that there always exist nodes that can punish the deviating nodes, this

is guaranteed by the assumption degout(i) > 0 in the corresponding dependency

graph.

Now let’s consider the following example to understand the punishment behav-

ior. In this example, we assume µS(r) = 1, K = 1, and d(i, j) = 1, the resulting

utilities are shown in Figure 6.1. Each node has the one stage utility given by:

U (i) =
αmod(i−2,6)+1

+ αmod(i,6)+1

2 + 2αi

. (6.18)

By selecting the discounted factor, δ = 0.9 and T = 2 appropriately, all nodes are

better-off when they are cooperating in packet forwarding by setting αi = 1,∀i.
If all nodes conform to the cooperative strategies, the 6-stage average discounted
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utilities defined in (6.9) are given by Ū
(i)
6 = 0.2343, ∀i. In Figure 6.1, we plot

the utility functions and forwarding probabilities of all nodes. The x-axis of the

plot denotes the round of game, the left y-axis denotes the value of node’s utility,

and the right y-axis denotes the value of forwarding probability. The forwarding

probability is denoted by the squared plot and the utility function is denoted by

the plot with stars. In the figure, we show that node 1 is deviating in second

round game by setting its forwarding probability to zero. At this time, node 1’s

utility changes from 0.5 to 1 as seen in the figure. As the consequence, node

2 and node 6 are punishing node 1 for the following T = 2 stages by setting

their forwarding probabilities to zeros. In the third round of the game, node

1 has to return to cooperation; otherwise, the punishment from others restarts

and consequently the average discounted utility will be further lowered. After

the punishment, all nodes come back to the cooperative forwarding probabilities

(as shown in the figure). The resulting 6-stage average utilities are as follows

Ū
(1)
6 = 0.2023, Ū

(2)
6 = Ū

(6)
6 = 0.2887, Ū

(3)
6 = Ū

(5)
6 = 0.1958 and Ū

(4)
6 = 0.2343. So

node 1 has less utility by deviation than by cooperation. Moreover, if both node

2 and node 6 fail to punish node 1, they will be punished by other nodes for the

following T periods of game. And the resulting average utilities are Ū
(1)
6 = 0.3485,

Ū
(2)
6 = Ū

(6)
6 = 0.1425, Ū

(3)
6 = Ū

(5)
6 = 0.3035 and Ū

(4)
6 = 0.165. Therefore, node 2

and 6 will carry out the punishment, since otherwise, they will in turn be punished

and have less utility. We note that in this example the corresponding dependency

graph has degin(i) = degout(i) = 2,∀i. Therefore, there are always punishing nodes

whenever any node deviates.
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6.3.2 Design of Punishment Scheme under Imperfect Local

Observability

We have shown that under the perfect observability assumption, the packet for-

warding game along with the punishment scheme can achieve any Pareto-dominant

efficiency. However, the perfect observability may be difficult to implement in ad-

hoc networks, due to the enormous overheads and signallings. Therefore, we try to

relax the condition of the perfect observability in this subsection. There are many

difficulties in removing the perfect observability assumption. Suppose each node

observes only its own history of stage utility function. In this situation, the node

knows nothing about what has been going on in the rest of the network. The node

only knows the deviation of nodes on which it relies on to do packet forwarding.

And it cannot detect the deviation in other part of the network, even though it

may be the one that can punish the deviating node. Therefore, it is impossible to

implement the Folk Theorem (Theorem 7) in this information limited situation.

Moreover, nodes may not know if the system is in punishment stage or not. As

soon as one of the nodes sees the deviation, it starts the punishment period. This

will quickly start another punishment stage by other nodes, since the nodes can-

not differentiate if the stage efficiency change is caused by the punishment stage

or the deviating node. As the result, the defection spreads like an epidemic and

cooperation in the whole network breaks down. This is known as the contagious

equilibrium [55]. Indeed, the only equilibrium in this situation is the one stage NE.

Nevertheless, from the game theory literatures [55], the cooperating equilib-

rium sometimes can be sustained based on the following argument. All nodes

know whenever a defection is detected, the outcome will be the contagious equi-

librium; therefore, it is better off for nodes to conform with the cooperating point.
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However, this equilibrium is vulnerable to noise (such as observation errors for

packet forwarding probability and deviation detection), in the sense that small

amount of noise causes the cooperation breakdown in the whole network. Reasons

to this vulnerability are that all the nodes have the inconsistent beliefs about the

state of the system, they do not know whether the system is currently in the pun-

ishment state, the deviation state, or the end of punishment stage. Therefore, any

mistake in invoking the punishment stage causes the contagious equilibrium.

The lack of the consistent knowledge of the system state can be mitigated using

communications between nodes. Suppose each node observes only a subset of the

other nodes’ behavior. The communication is introduced by assuming that each

node makes a public announcement about the behavior of the nodes it observes.

This public announcement can be implemented by having the nodes exchange the

behavior of nodes they observe. The intersection of these reports can be utilized to

identify the deviating node. At the end of each stage game, the nodes report either

no nodes deviate or the identity of the deviating node. The communicated reports

can be used to obtain the stable equilibrium of the game. Since these reports

can be exchanged in a relatively low frequency and only to the related nodes, the

communication overheads are limited. Under this local observability assumption,

the following theorem inspired by the Folk Theorem for private monitoring with

communication [14] is proposed

Theorem 8 Suppose V† has N dimensionality, where N is the number of nodes

in the network. And if every node is monitored by at least two other nodes. This

implies that the corresponding dependency graph satisfies the following condition

degin(i) ≥ 2, ∀i. (6.19)
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And also, there always exists a node that can punish the deviating node, i.e.,

degout(i) > 0, ∀i. (6.20)

Moreover, the monitoring nodes can exchange the observations. Then, for every

v in the interior of V†, there exist δ ∈ (0, 1), such that for all δ ∈ (δ, 1), v =

(v1, · · · , vN) is an equilibrium of an infinitely repeated game in which the node i’s

average utility is vi.

Proof 10 Suppose there exist ε, δ and punishment period Ti such that (6.11) holds

and
maxi{Ti}−1∑

t=0

δt max
i
{max

(α,α′)

(
vi(α)− vi(α

′)
)} <

∞∑

t=maxi{Ti}
δtε, (6.21)

then the following rule of the game (Condition I to III) achieves the equilibrium

when degin(i) = 2, ∀i.

Condition I: If there is no announcement of the deviating nodes

a. If previous stage is in cooperating state, continue the cooperating state.

b. If nodes play the following strategy in the previous stage

(
U (1), · · · , U (k−1), U (k) − ε, U (k+1), · · · , U (N)

)

for k ∈ {1, · · · , N}, continue the previous state.

c. If the previous stage is in punishing node k state and the punishment

has not ended, then continue the punishing; otherwise, switch to strategy

that results in

(
U (1), · · · , U (k−1), U (k) − ε, U (k+1), · · · , U (N)

)
.

Condition II: If node j is incriminated by both of its monitors j1 and j2
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a. If previous stage’s strategy is either in the following states: punishing

node j state, in implementing
(
U (1), · · · , U (j−1), U (j)−ε, U (j+1), · · · , U (N)

)
,

in implementing
(
U (1), · · · , U (j) − ε, · · · , U (l) − ε, · · · , U (N)

)
, for some

l 6= j, or in implementing
(
U (1), · · · , U (l) + ε, · · · , U (j) − ε, · · · , U (N)

)
,

for some l 6= j, then start the punishment state for punishing node j.

b. If previous stage’s strategy is in punishing node j1 state, then switch to

strategy that results in
(
U (1), · · · , U (j2) +ε, · · · , U (j)−ε, · · · , U (N)

)
. The

similar argument is applied to increase node j1’s utility by ε when node

j2 is punished in the previous stage.

Condition III: If there is any inconsistent announcement by node j1

and j2. We note that the inconsistent announcement happens when there are

at least two announcements of deviation node, but the deviation nodes in the

announcements are different.

a. If the previous state is punishing node j1 or node j2, then restart the

punishment state.

b. Otherwise, implement
(
U (1), · · · , U (j1) − ε, · · · , U (j2) − ε, · · · , U (N)

)
.

In the above rules, we consider three different conditions, namely when no an-

nouncement of deviating node (Condition I), when the announcements are con-

sistent (Condition II), and when the announcements are inconsistent (Condition

III). Then we discuss the different strategies for different states within each Condi-

tion. We note that only the nodes whose packets are forwarded by node j have the

potential ability of detecting the deviation of node j. The condition of degin ≥ 2

on the corresponding dependency graph in Theorem 8 implies that there exist at

least 2 flows that require node j to forward. And any deviation of node j can be
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potentially detected by at least 2 sources. Similar to Theorem 1, degout(i) > 0,∀i
implies that there always exists a node for punishing the deviating node.

If both the monitors of node j incriminate it, then node j is punished in a way

similar to the punishment in Theorem 7. The deviator is punished for some period

of time if the previous state is in one of the following states: punishing node i

(this implies that the punishment stage will be restarted), finished punishing node

i (i.e. in state U (1), · · · , U (j−1), U (j) − ε, U (j+1), · · · , U (N)), after penalizing nodes

that make inconsistent announcements (i.e. in state U (1), · · · , U (j) − ε, · · · , U (l) −
ε, · · · , U (N)), or in state U (1), · · · , U (l) + ε, · · · , U (j) − ε, · · · , U (N). In all these

states, the deviator will be punished for a certain period of time (Condition IIa).

However, if the previous state is in punishing node j1, then the system switches

to strategy that results in U (1), · · · , U (j2) + ε, · · · , U (j) − ε, · · · , U (N) (Condition

IIb). This strategy gives additional incentives (U (j2) + ε) for node j2 to punish to

node j. The condition IIb is used to avoid the situation where node j2 lies on its

announcement even though it observes that node j is deviating. This condition will

become obvious as we discuss the condition III.

When there are incompatible announcements about node j (Condition III),

nodes that make incompatible announcements will be penalized and they will re-

ceive utility U (ji) − ε for i = 1, 2 (Condition IIIb). This strategy is sufficient to

avoid lying in announcement, except in the case when node j1 is being punished in

previous stage. The Condition IIIa prevents node j1 from falsely accusing node j.

However, including the Condition IIIa creates the situation where node j2 enjoy

punishing node j1. This means that when node j1 is being punished and in the case

node j has really deviated, node j2 has the incentive to lie in its announcement and

announces that no nodes is deviating. This problem is solved by Condition IIb that
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gives additional reward for node j2 to tell the truth and punish node j. Moreover

(6.21) implies that this additional reward for node j2 outweighs the benefit from

punishing node j1. (6.21) can be thought as incentives for the monitoring nodes

to punish the deviating node when the announcements are inconsistent. Using the

rule of game as in (Condition I to III), the infinite average discounted utility close

to any v = (v1, · · · , vN) can be enforced.

In the general case when degin(i) ≥ 2, ∀i, the only difference is for Condition

III where there is inconsistence in the announcements. Under this condition, a

similar approach to Condition IIIa and Condition IIIb can be obtained for more

than two monitors.

Based on different information structures, Section 6.3.1 and Section 6.3.2 guar-

antee that any individually rational utilities can be enforced under some conditions.

However, the individual distributed nodes need to know how to cooperate, i.e. what

is the good packet forwarding probability. In the next section, we describe learning

algorithm to achieve better utilities.

6.4 Self-Learning Algorithms

From Section 6.3, any Pareto dominant solutions better than one stage NE can be

sustained. However, the analysis does not explicitly determine which cooperation

point to be sustained. In fact, the system can be optimized to different cooperating

points, depending on the system designer choices. For instance, the system can be

designed to maximize the sum of the average infinitely repeated game’s utilities as

follow

U sys =
1

N

N∑
i=1

U
(i)

∞ . (6.22)
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Figure 6.2: Time slotted transmission

The basic idea of the learning algorithm is to search iteratively the correct coop-

erating forwarding probability. Similar to the punishment design, we consider the

learning schemes for different information availability; namely, the perfect observ-

ability and the local observability. We use (6.22) as an example, but we emphasize

that any system objective function can be incorporated into the learning algorithm

in a similar way.

The implementation of the learning algorithm and the repeated game main-

taining the cooperation point can be illustrated as in Figure 6.2. In particular,

we consider the time-slotted transmission that interleaves the learning mode and

the cooperation maintenance mode. In the learning mode, the nodes search for

better cooperating point. In the cooperation maintenance mode, nodes monitor

the actions of other nodes and apply punishment if there is any deviation. In the

learning mode, the nodes have no incentives to deviate since they do not know if

they can get benefits. So they do not want to miss the chance of obtaining the bet-

ter average discounted utilities in the learning mode. It is also worth mentioning

that if a node deviates just before a learning period, it will still be punished in the

following maintain cooperation period. So the infinite repeated game assumption

is still valid in this time slotted transmission system.
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Table 6.1: Self Learning Repeated Game Algorithm under Perfect Observability

For node i: Given ~α−i, small increment β

and minimum forwarding probability αmin

Iteration: t = 1, 2, · · ·
Calculate ∇U sys(~α(t− 1))

Calculate ~α(t) = ~α(t− 1)− β∇U sys(~α(t− 1))

Select αi(t) = min {max {[~α(t)]i, αmin}, 1}

6.4.1 Self-learning under the perfect observability

Under the perfect observability information structure, every node is able to detect

the deviation of the defecting node. And nodes observe which nodes help forward-

ing others’ packets. This implies that every node is able to perfectly predict the

average efficiencies of other nodes and optimize the cooperating point based on

the system criterion (6.22). The basic idea of the learning algorithm is to use the

steepest descent like iterations. All nodes predict the average efficiencies of oth-

ers and the corresponding gradients. The detailed algorithm is listed as in Table

6.1. Learning with perfect observability assumes the perfect knowledge of utility

functions of all nodes in the network, and represents the best solution that any

learning algorithm can achieve.

Under perfect observability assumption, node does not want to defect in the

learning stage for two reasons; first, they will not risk losing the opportunity to

obtain better cooperation strategy. Secondly, since nodes know the utility functions

of other nodes and the history of actions along the game, deviation in learning may

also induce punishment in the next cooperation maintenance stage.
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6.4.2 Self-learning under the local observability

In this subsection, we focus on the learning algorithm with the information struc-

ture available under local observability. Under this condition, the nodes may not

have the complete information about the exact utility of others. Based on this

information structure, we develop two learning algorithms; the first algorithm is

called learning through flooding. The second algorithm makes prediction of the

other nodes’ stage efficiency based on flows that go through the predicting node.

We called the second algorithm as learning through utility prediction.

Learning through Flooding

In this local observability assumption, we develop heuristics to learn the better

cooperating point. The basic idea of the learning algorithm is as follow. Since

the only information the node can observe is the effect of changing its forwarding

probability onto its own utility function. The best way for the nodes to learn the

packet forwarding probability is to gradually increase the probability and monitor

if the utility function becomes better. If the utility becomes better, the new for-

warding probability will be employed. Otherwise, the old forwarding probability

will be kept. The algorithm lets all nodes change their packet forwarding proba-

bilities simultaneously. This can be done by flooding the instruction for changing

the packet forwarding probability. After changing the packet forwarding proba-

bility, the effect propagates throughout the network. All nodes wait for a period

of time until the network becomes stable. At the end of this period, the nodes

obtain their new utilities. If the utilities are better than the original ones, then

the new packet forwarding probabilities are employed. Otherwise, the old ones are

kept. We note that the packet forwarding probability increment is proportional
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Table 6.2: Self Learning Repeated Game Algorithm (Flooding)

Initialization: t = 0

αt
i = αmin,∀i. Choose small increment ξ, η.

Iteration: t = 1, 2, · · ·
Calculate U (i),t−1(αt−1

i ) and U (i),t−1(αt−1
i + ξ),

Calculate ∆U (i),t−1 = U (i),t−1(αt−1
i + ξ)− U (i),t−1(αt−1

i ),

For each i such that ∆U (i),t−1 > 0,

αt
i = αt−1

i + η ∆U(i),t−1

U(i),t−1(αt−1
i )

,

αt
i = max(min(αt

i, 1), αmin).

End when: No improvement and keep monitoring

the deviation start punishment scheme if there

is a deviation

to the increase in the utility function; nodes with higher increment in their utility

functions increase their forwarding probability more compared to nodes with lower

utility increment. Here, we introduce the normalization factor U (i),t−1(αt−1
i ) (the

utility before changing the forwarding probability) in order to keep the updates in

forwarding probability bounded. The forwarding probability increment depends

on small increment constant η and the normalization factor. The above process is

performed until no improvement can be made. The detailed algorithm is shown in

Table 6.2.

Learning with Utility Prediction

In this second approach, we observe that some of the routing information can

be used to learn the system optimal solution (6.22). We assume that the routing
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Figure 6.3: Example for learning with utility prediction

decision has been made before performing the packet forwarding task. For instance,

in the route discovery using Dynamic Source Routing (DSR) [54] algorithm without

route caching, the entire selected route is included in the packet header in the

packet transmission. The intermediate nodes use the route (in packet header) to

determine to whom the packet should be forwarded. Therefore, it is clear that the

transmitting node knows where the packet goes through; the relaying nodes know

where the packet comes from and heads to; and the receiving node knows where

the packet comes from. The nodes use this information to predict the utilities of

others’ nodes. We note that because not all the nodes are involved in all of the

flows in the network, the utility prediction may not be very accurate.

The utility prediction is illustrated using an example shown in Figure 6.3,

assuming µS(r) = 1, K = 1, and d(i, j) = 1. We denote U
(j)
i as the utility of node j

predicted by node i. From the figure, the node 1 receives flows from node 3 and 4

and node 4 receives flows from node 1 and 2. It is obvious that the flow from 2 to 4

is not perceived by node 1. Hence, the utilities of node 2 and 3 predicted by node 1
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Table 6.3: Self Learning Repeated Game Algorithm with prediction

Initialization: t = 0

α
(i),t
j = αmin,∀i, j. Choose small increment ζ.

Iteration: t = 1, 2, · · ·
For each node j = 1, · · · , N

Calculate [∇(1)
j , · · · ,∇(N)

j ] =

[
∂
PN

n=1 U
(n)
j

N∂α̂
(1),t
j

, · · · ,
∂
PN

n=1 U
(n)
j

N∂α̂
(N),t
j

]

Calculate α
(i),t
j = α

(i),t−1
j + ζ∇(i)

j

Set α
(i),t
j = max(min(α

(i),t
j , 1), αmin).

End when: No improvement and return α
(i)
j = α

(i),t
j ,∀i, j.

Keep monitoring the deviation, go to punishment

scheme whenever there is a deviation.

are not the accurate ones. Similarly, flow from node 3 to node 1 is not perceived by

node 4, therefore, U
(2)
4 and U

(3)
4 are not accurate. The accuracy of the prediction

depends on the flows. If all the flows involving node i pass through j then U
(i)
j will

be the accurate one and vice versa as is illustrated in Figure 6.3. However, as we

show by simulations the inaccuracy in the prediction does not affect the result of

optimization too much.

Since the objective of the optimization is to achieve the system optimal solution

(6.22), the best node i can do is to find the solution that minimizes the total average

predicted utility function, which is

min 1
N

∑N
j=1 U

(j)
i (α̂

(1)
i , · · · , α̂

(N)
i )

s.t. αmin ≤ α̂
(j)
i ≤ 1,∀j.

(6.23)

where α̂
(j)
i is the packet forwarding probability that node j should employ as

predicted by node i. The detailed of the algorithm is presented as in Table 6.3.
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Figure 6.4: (a) Ring-25 network (b) Random-25 network

The algorithm in Table 6.3 imitates the steepest descent algorithm based on the

predicted utility, every node finds the gradient of the predicted utility and optimizes

the predicted system utility (6.23). After obtaining {α̂(i)}, each node sets its own

packet forwarding probability as αt
i = α̂

(i)
i . We note that the optimization problem

(6.23) can be done in a distributed manner, since the optimization does not require

the global knowledge of the utility function. Each node does the optimization based

on its own prediction and sets its packet forwarding probability according to the

optimized predicted average utility.

6.5 Simulation Results

To investigate the effectiveness of our proposed framework, we perform simulations

with the following settings. We generate two networks with 25 nodes, the ring-25

network (Figure 6.4 (a)) and random-25 network (Figure 6.4 (b)). The ring-25

network consists of 25 nodes that are arranged in a circle with radius 1000m. The

random-25 network consists of 25 nodes that are uniformly distributed in the area
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of 1000m × 1000m. We define the maximum distance dmax, such that two nodes

are connected if the distance between two nodes is less than dmax. We select the

maximum distance between two nodes to ensure the connectivity of the whole

network. In the ring-N network, the angle separation between two neighboring

nodes is 2π
N

. And, the distance between two neighboring nodes is 2r sin( 2π
2N

), where

r is the radius of the circle. In particular, the maximum distance for the ring-

25 network can be calculated as 2000 sin
(

2π
50

)
m = 250.7m. In the random-25

network, the maximum distance between two nodes is chosen as 350m to ensure

the connectivity of the whole network with high probability.

We also define the flows as source-destination (SD) pairs. We assume that the

routing decision has been made before performing packet forwarding optimization.

The shortest path routing is employed in the simulations. In random-25 network,

we vary the number of SD pairs. When there are traffic flows from all nodes

to all other nodes, we called this traffic as dense flow. This implies that each

node has packets destined to the rest of nodes in the network. Obviously, the

dense flow has N × (N − 1) SD pairs in the N -node network. When the total

flow is less than the dense flow, the SD pairs are determined randomly. In the

ring-25 network, the number of SD pairs is defined in the following way. The

(K ·N) SD pairs are obtained when every node i sends packets to nodes ({mod(i+

2, 25), · · · , mod(i+K +1, 25)}. For instance, 25 SD pairs are obtained when every

node i transmits packets to node mod(i + 2, 25), 50 SD pairs are obtained when

every node i sends packets to nodes {mod(i + 2, 25),mod(i + 3, 25)}, etc. The rest

of the simulation parameters are given as follows, transmission rate of source i as

µi = 1, ∀i, transmission constant K = 1, distant attenuation coefficient γ = 4. We

compare three learning algorithms according to the information availability. The
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Figure 6.5: Punishment of Repeated Game in Ring Network

parameters for the learning algorithms are listed as follows β = 0.05, ξ = 0.001,

η = 1.0, and ζ = 0.05. The minimum forwarding probability is set to be αmin = 0.1

and the maximum forwarding probability is set to be αmax = 1. Finally, all the

algorithms are initiated with αi = αmin,∀i.
Figure 6.5 shows the average efficiency of the deviation node in the ring-25

network when number of source-destination is 75 with the discounted factor δ =

0.9. In the figure, the node 3 deviates at time instant 10. This deviation causes

the stage efficiencies of node 1, 2 and 25 become lower. From the route, the node

1, 2 and 25 suspect that nodes in {2, 3, 4}, {3, 4, 5} and {1, 2, 3} are deviating,

respectively. The nodes in the network know that node 3 is consistent to be

incriminated for deviation and start the punishment stage (Here, the punishment

period is set to 3). The punishment scheme results in lower average stage efficiency

as described in Figure 6.5. From the figure, the average efficiency without deviation

is better than the average efficiency with deviation. It is clear that it is better off for

node 3 to conform to the previously agreed cooperation point. And no node wants
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Figure 6.6: Punishment of Repeated Game in Random Network

to deviate, since deviation results in worse average efficiency. Similarly, Figure 6.6

shows the average utilities of deviating node and other nodes in random network

with 16 nodes with the discounted factor 0.9. In time instant 11, node 10 in the

network deviates. At the next time instant, all related nodes that detect deviation

exchange the list of incriminated nodes. The consistent incriminated node (in this

case node 10) is punished for some period of time (in this figure, 8 period of time).

From the figure, it is clear that node 10 will have higher average efficiency when

it conforms. So from Figure 6.5 and 6.6, the proposed repeated game can enforce

the cooperation among autonomous greedy nodes in the networks.

Figure 6.7 and 6.8 show the learning curves for the proposed self-learning re-

peated game scheme for the ring-25 and random-25 network, respectively. In the

figures, we compare the optimum solution, learning with perfect observability,

learning with flooding, and learning with utility prediction. In Figure 6.7, all of

the algorithms achieve the system optimal value when the source-destination pairs

are 100, 200, and 275. From this figure, the learning with perfect observability
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Figure 6.7: Learned average efficiency per node for different traffic loads in ring

network

and utility prediction have approximately the same convergence speed. The learn-

ing with flooding converges slower, this can be understood since the learning with

flooding does the trial-and-error to find the correct forwarding probability. This

unguided optimization although requires minimal information has inferior conver-

gence speed. Figure 6.8 shows the learning curves of the proposed algorithms for

random-25 network with different source-destination pairs. One can observe that

the learning with utility prediction achieves very close efficiency per node compared

to the optimum solution and learning with perfect observation case. In contrast,

the learning with flooding achieves inferior efficiency per node.

Figure 6.9 shows the learned average efficiency per node for various algorithms

with different traffic flows in the ring-25 network. The efficiency becomes lower as

the number of source-destination pairs become larger. This can be explained as
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follows. Because of the symmetric property of the utility functions, the local opti-

mal forwarding probabilities for all the nodes are the same. It can be easily shown

that the local optimal forwarding probabilities in the ring-25 network is 1 for all

the nodes2. Therefore, the larger the number of source-destination pairs, the more

packets a node needs to forward and the higher value of the denominator of the

stage utility function (6.7). As the result, the average efficiency per node decreases

as the number of source-destination increases. Using simple calculation, it can be

shown that the average efficiency per node decays as Nsd/N
(Nsd/N+0.5∗(Nsd/N+1)∗(Nsd/N)

,

where Nsd is the number of source-destination pairs. In the figures, all the learning

algorithms perform similarly for different numbers of source-destination pairs.

2This is not true in random network in general.
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Figure 6.9: Average efficiency per node for different traffic loads in ring network

Figure 6.10 shows the achievable efficiency per node after the learning algo-

rithms converge for different numbers of source-destination pairs in the random-25

network. Similarly, we observe that the learning with utility prediction achieves

very close efficiency compared to the learning with perfect observation and op-

timum solution for broad source-destination pairs. The learning with flooding

achieves lower efficiency per node, but it achieves much better efficiency compared

to the Nash Equilibrium of the stage game. In average, the learning with utility

prediction achieves around 99.2% of the efficiency achieved by the optimal solu-

tion. In contrast, the learning with flooding achieves more than 73.18% of the

optimality.

Comparing Figure 6.9 and 6.10, we see that the learning with flooding performs

well in the ring-25 network but inferior in random-25 network. The reason for

this phenomenon is that in the ring-25 network, the utilities of every node are

symmetric and optimizing the system criterion (6.22) results in the same average

efficiency in each node. Since the learning with flooding tries to increase its node’s
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Figure 6.10: Average efficiency per node for different traffic loads in random net-

work

efficiency by changing its own forwarding probability synchronously, this iteration

will finally reach the point where all nodes’ efficiencies are the same due to the

symmetric structure of the network. This solution is coincidentally the same as

the solution of the system criterion (6.22) optimization. In contrast to the ring-25

network, the utility functions for each nodes are highly asymmetry in the random-

25 network. In this case, the node that firstly reaches a better solution will not

change its forwarding probability, even though changing its forwarding probability

results in slightly lower efficiency in that particular node but increases the other

nodes’ efficiencies quite a bit. Due to this greedy and unguided optimization,

the learning with flooding achieves inferior average efficiency per node compared

to the learning using utility prediction which obtains information from routing

information and performs better learning.

In Figure 6.11, we investigate the performance of the learning algorithms in

the dense flow with different number of nodes in random network. The maximum
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Figure 6.11: Average efficiency per node for different nodes in random network

with dense traffic

distance and number of nodes are highlighted in the figure. Figure 6.11 shows a

snapshot of average efficiency per node for different sizes of the network. In the

figure, we observe that as the number of nodes increases, the number of average

efficiency per node decreases. This is because the total power required for self

transmission and forwarding increases much faster compared to the successful self-

transmission power, as the number of nodes increases. Therefore, the stage utility

for each node (6.7) decreases as the number of nodes increases in the dense flow. As

the result, the average efficiency per node decreases as the node increases. We also

observe that the learning with utility prediction achieves around 98.55% of that

average efficiency per node achieved by optimum solution and learning with perfect

observability. On the other hand, the learning with flooding achieves around 70%

of the average efficiency obtained by optimal solution.
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Chapter 7

Channel-Aware Priority

Transmission

This chapter1 presents an application of cross layer optimization between the appli-

cation layer and physical layer. In particular, we propose a data loading technique

that jointly considers the effect of channel estimation and the property of encoded

multimedia data in Orthogonal Frequency Division Multiplexing (OFDM) sys-

tems. We observe that OFDM subchannels experience different average bit error

rate (BER) due to channel estimation inaccuracy. The leakage effect in FFT based

channel estimation method or the model mismatch in polynomial based channel es-

timation method results in a variation on the decoded BER across different OFDM

subchannels. Thus, we are motivated to design the Priority Transmission (PT)

scheme that utilizes this BER variation across different OFDM subchannels and

provides unequal error protection (UEP) for multimedia transmission. In addi-

tion, since OFDM has been adopted in many multimedia transmission standards,

1Material in this chapter has been published in Transactions on Signal Processing [82]
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we compare the different channel estimation techniques, which were compared

only for generic data transmission before, in the context of multimedia trans-

mission with the PT scheme. In particularly, we extend the polynomial based

channel estimation that was previously designed for decision-directed scenario to

pilot-symbol-assisted (PSA) channel estimation scenario. Then, we investigate the

channel estimation mean square error (MSE) and BER performance of individual

OFDM subchannels for both the FFT based and the polynomial based channel

estimation. Furthermore, we design the PT scheme that achieves significant gain

in peak-signal-to-noise ratio (PSNR) of the reconstructed images for both channel

estimation methods. Finally, we compare different OFDM channel estimation tech-

niques for multimedia transmission. It is shown that for generic data transmission,

the polynomial based PSA channel estimation outperforms the FFT based method

in realistic channel conditions, and both types of channel estimation have similar

performance when using the proposed PT scheme for multimedia transmission.

The rest of this chapter is organized as follows. We first give the motivation

of this work, introduce the system model. We then develop the polynomial based

PSA channel estimation method and design the PT scheme based on the derived

channel estimation MSE for individual subchannel. We continue with the design

of the PT scheme for the FFT based channel estimation. Finally, we compare

the Polynomial based and the FFT based channel estimation techniques for both

generic data and multimedia transmission.

7.1 Motivation

Wireless multimedia services that require high data rate transmission have be-

come a major driving force in the development of broadband wireless communi-
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cations. Many high speed wireless transmission standards, such as digital audio

broadcasting (DAB) [1], digital video broadcasting (DVB-T) [2], and broadband

wireless LAN (IEEE 802.11a) [3], adopt Orthogonal Frequency Division Multi-

plexing (OFDM) modulation, which is known for its advantages of transforming

frequency selective fading channels into a set of parallel flat fading subchannels

and eliminating inter-symbol interference (ISI) [31,58].

In OFDM systems, channel estimation is crucial for coherent demodulation

and has a significant impact on overall performance [35,65,100]. Previous channel

estimation techniques mainly concern the transmission of generic data, and focus

on reducing the average estimation errors [35, 65]. Since multimedia data will

contribute a large proportion of the traffic in high speed wireless communications,

it is important to understand how the channel estimation can effect the multimedia

transmission.

An important class of channel estimation techniques is pilot-symbol-assisted

(PSA) channel estimation, which estimates OFDM channel based on a set of train-

ing symbols inserted into data streams and is suggested by many standards [2, 3].

Most PSA channel estimation schemes use Fast Fourier Transform (FFT) for re-

ducing noise and estimate the subchannels that do not transmit training pilots,

such as in [61, 64]. However, the FFT-based channel estimation suffers from the

leakage effect when the delay paths are not separated by integer multiples of the

system sampling period [35, 65, 100]. The main consequence of the leakage effect

is that the OFDM subchannels experience non-uniform average estimation error.

As a result, there exists a variation on decoded bit error rate (BER) across dif-

ferent subchannels. This BER variation is highly undesirable for generic data

transmission because the worst subchannels dominate the error performance. For
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the multimedia transmission, however, we can utilize the leakage effect to provide

unequal error protection (UEP). In particular, we design a Priority Transmission

(PT) scheme that loads multimedia data to OFDM subchannels according to the

importance of the data and the channel estimation error with the decoding delay

constraint [81,96]. The PT scheme is suitable for a variety of compressed multime-

dia data. In this chapter, we use SPIHT [89] encoded images to demonstrate the

performance of the PT. We show that the PT scheme significantly improves the

quality of the reconstructed images, compared to the schemes that do not exploit

the channel estimation.

Another way to combat the leakage effect is to use polynomial based channel

estimation techniques [28,102,103], which use polynomial basis functions to replace

the exponential basis functions used in the FFT based methods. The polynomial

based methods were originally proposed for decision-directed channel estimation

schemes and do not suffer from the leakage effect [102]. In order to fully understand

the effects of the PT scheme on different channel estimation methods, we develop

the polynomial based PSA channel estimation, where we observe the variation of

BER across subchannels. Therefore, the PT can also be applied to the polynomial

based PSA methods. Moreover, we show that the FFT based method is effective

in interpolating the sinusoidal like function, while the polynomial based method

performs well as long as the channel varies smoothly in one interpolation window.

Previously, channel estimation techniques were compared for their average BER

performance, which makes perfect sense for the data transmission, but not for

multimedia. Therefore, the development of the PT scheme raises an interesting

question on what channel estimation scheme is good for multimedia transmission.

In this chapter, we first extend the development of polynomial based channel es-
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timation in [103] to the polynomial based PSA channel estimation. We also show

that the polynomial based PSA channel estimation outperforms the FFT based

method for data transmission in most of the realistic channel conditions. Moreover,

for multimedia transmission, the polynomial based PSA channel estimation is su-

perior to the FFT based method when PT is not used, and both channel estimation

schemes achieve similar good performance when the PT scheme is employed.

7.2 System Description

In this section, we introduce the transmission systems, channel model and the

PSA channel estimation for OFDM systems. Also, we summarize the properties

of the Set Partitioning in Hierarchical Trees (SPIHT) image codec to be used in

our simulation.

7.2.1 OFDM System

Figure 7.1 illustrates a high level diagram of an OFDM system [102]. At the

transmitter, input signals are arranged into blocks by a serial-to-parallel (S/P)

converter and the data in each block are mapped into a set of complex constellation

points, i.e. {X[0, k], · · · , X[N −1, k]}. The mapped data block is often referred to

as an OFDM block. Here, N is the total number of subchannels and k denotes the

index of the OFDM blocks. After signal mapping, the modulation is implemented

using inverse fast Fourier transform (IFFT). A cyclic prefix is then inserted to

eliminate inter-symbol-interference (ISI). Finally, the modulated data block and

the cyclic prefix are converted to an OFDM symbol by a parallel-to-serial (P/S)

converter.
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Figure 7.1: Typical OFDM Systems

At the receiver, the cyclic prefix is discarded and demodulation is performed

by fast Fourier transform (FFT). When the length of the cyclic prefix is longer

than the length of the channel impulse response, the interference between two

consecutive OFDM symbols is eliminated. In this case, the channel can be viewed

as a set of parallel independent subchannels and the received signal is represented

as

Y [n, k] = H[n, k]X[n, k] + w[n, k], n = 0, . . . , N − 1, (7.1)

where Y [n, k] represents the received signal, X[n, k] denotes the transmitted signal,

H[n, k] and w[n, k] are the channel frequency response and the additive gaussian

noise, respectively. Here, n is the index of subchannels and k is the index of OFDM

blocks. The channel noise samples, {w[n, k]}, are modelled as Gaussian random

variables with zero mean and variance σ2, and are assumed to be independent for

different n’s or k’s [65,75,103].

In addition, the receiver performs channel estimation and obtains the estimated

channel frequency response, denoted by Ĥ[n, k]. Finally, the receiver produces the

estimated transmitted signal, denoted by X̂[n, k], using a one-tap equalizer as

X̂[n, k] =
Ĥ∗[n, k]Y [n, k]

|Ĥ[n, k]|2 . (7.2)
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7.2.2 Channel Model

In mobile wireless communication systems, signal transmission suffers from various

impairments such as frequency-selective fading due to multipath delay [83]. As in

[83,95], the complex baseband representation of wireless channel impulse response

is expressed as

h(t, τ) =
∑

i

γi(t)δ(τ − τi), (7.3)

where γi(t) and τi are the gain and the delay of the ith path, respectively. In

Rayleigh fading, the sequence {γi(t)} is modeled as zero-mean circular symmet-

ric complex Gaussian random variable with variance σ2
i , and is assumed to be

independent for different paths [83,95].

The channel frequency responses of OFDM subchannels can be approximated

by the samples of the continuous channel frequency response [65], that is

H[n, k] =

∫ ∞

−∞
h(t, τ)e−j2πfτdτ

∣∣∣∣
f=n∆f, t=kTf

=
∑

i

γi(kTf )e
−j2πn∆fτi , (7.4)

where Tf is the duration of an OFDM symbol, ∆f = Bd/N is the bandwidth of

each subchannel, and Bd is the total bandwidth. This approximation does not

consider the effect of the smoothing filter at the transmitter and the front-end

filter at the receiver.

The correlation function of the channel frequency response is usually simplified

as the multiplication of time correlation and frequency correlation [64,65], i.e.

rH [∆n, ∆k] = rf [∆n]rt[∆k], (7.5)

where the frequency correlation, rf [∆n], can be expressed as

rf [∆n] =
∑

i

σ2
i∑

j σ2
j

e−j2π∆n∆fτi . (7.6)
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Based on Jakes’ model [53], the time correlation, rt[∆k], can be expressed as

rt[∆k] = J0(2πTffD∆k) , (7.7)

where J0(x) is the zeroth-order Bessel function of the first kind, and fD = vfc

c
is

the Doppler frequency calculated from vehicle speed v, carrier frequency fc and

the speed of light c.

7.2.3 Overview of Pilot-Symbol-Assisted (PSA) Channel

Estimation

In PSA channel estimation, a set of predefined pilot symbols is inserted into the

data streams to assist the channel estimation process [49,50,64,75]. Let np and kp

denote the locations of the subchannels and the OFDM blocks, respectively, where

the pilot symbols are transmitted. The PSA channel estimation usually consists

of two steps. First, the receiver estimates the channel frequency response at the

pilot locations as

H̃[np, kp] =
Y [np, kp]

X[np, kp]
= H[np, kp] + w′[np, kp], (7.8)

where w′[np, kp] = w[np,kp]

X[np,kp]
is the noise term and H̃[np, kp] is often referred to

as the temporal estimate. Second, the channel responses of all subchannels are

calculated from the temporal estimates through interpolation or filtering [50, 64].

The interpolation is typically applied both across subchannels in one OFDM block

and across different OFDM blocks [61]. In this chapter, we denote the pilot spacing

along different subchannels and OFDM blocks as Ip and Kp, respectively. For

instance, the pilot configuration shown in Figure 7.2 corresponds to Ip = 4 and

Kp = 4.
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Figure 7.2: An example of pilot symbol configuration
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7.2.4 Set Partitioning in Hierarchical Trees (SPIHT)

SPIHT [89] is a wavelet based image compression technique that uses set partition-

ing hierarchical trees encoding. In SPIHT, the wavelet coefficients of the image

are encoded using bit planes, and two passes are performed on each bit-plane. The

first pass is the sorting pass, which determines the sign values and implicit location

information of significant wavelet coefficients. The second pass is the refinement

pass, which refines bit values of the significant coefficients [89]. Several important

properties of SPIHT are summarized as follows: First, the SPIHT has a good

rate-distortion performance for still images with comparatively low complexity.

Second, it is scalable or completely embeddable, that is, the decoding algorithm

can be stopped at any received bit. This scalable property is very suitable for

image transmission. The transmitted image can be decoded until the first irrecov-

erable error occurs, the more bits is received, the better quality the reconstructed

image will have. Third, the encoded SPIHT bitstreams have the property that

the later encoded bits are approximately less important than the earlier encoded

bits. Due to this property, several unequal error protection (UEP) schemes [8,104]

based on forward error correcting (FEC) codes have been proposed. Those ap-

proaches generally apply stronger FEC codes to the more important portions of

the SPIHT bitstreams. The method proposed in this chapter utilizes this property

in a different way. Instead of applying the stronger FEC to the more important

bitstream, the PT scheme utilizes the best channel within the acceptable delay to

transmit the most important data.
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7.3 Priority Transmission for polynomial based

channel estimation

Due to the advantages of the PSA methods in the fast fading environment, we

first extend the derivation in [103] and develop the polynomial based PSA channel

estimation scheme. We derive the channel estimation MSE and the decoded BER

for different OFDM subchannels and finally, we propose the PT scheme to improve

the reliability of multimedia transmission in OFDM systems using polynomial

based PSA channel estimation.

7.3.1 PSA Polynomial Channel Estimation: Algorithm de-

scription

A time varying wireless channel response can be approximated by a set of piecewise

polynomial basis functions [13]. Let (n, k) denote the nth subchannel in the kth

OFDM block. In a time-frequency window that has dimension (2L+1)× (2M +1)

and is centered at (n0, k0), the channel frequency response can be expressed as [13]

[102]

H[n, k] =

Ideg∑
i=0

Jdeg∑
j=0

Cn0,k0 [i, j](n− n0)
i(k − k0)

j + SIdegJdeg
[n, k] ,

for n0 − L ≤ n ≤ n0 + L and k0 −M ≤ k ≤ k0 + M, (7.9)

where Ideg and Jdeg are the orders of the polynomial basis at frequency and time

domain, respectively, Cn0,k0 [i, j] are the polynomial coefficients, and SIdegJdeg
[n, k]

are the model errors. When the model errors are small (negligible), the channel

can be fully described by the polynomial coefficients, Cn0,k0 [i, j]. Thus, the task of

channel estimation is to obtain Cn0,k0 [i, j] from temporal estimation H̃[np, kp] and
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estimate H[n, k] through the two dimensional polynomial interpolation as in (7.9).

In the following, we describe the polynomial based PSA channel estimation

with rectangular pilot symbol arrangement as shown in Figure 7.2. Without loss

generality, we focus on the channel responses in the window that has size (2L+1)×
(2M + 1) and is centered at (L,M). This window locates at the top-left corner

of the pilot arrangement pattern in Figure 7.2. The number of pilot symbols

inside this window are Lpts × Mpts, where Lpts = d2L+1
Ip
e and Mpts = d2M+1

Kp
e.

Recall that Ip and Kp denote the pilot spacing at the frequency and time domain,

respectively. In addition, these pilot symbols are located at positions (a ·Ip, b ·Kp),

where a = 0, 1, · · · , Lpts − 1 and b = 0, 1, · · · ,Mpts − 1.

Using (7.9), the temporal estimate within this approximation window can be

represented as

H̃[a · Ip, b ·Kp] =

Ideg∑
i=0

Jdeg∑
j=0

Cn0,k0 [i, j](a · Ip − n0)
i(b ·Kp − k0)

j + S ′IdegJdeg
[a · Ip, b ·Kp](7.10)

for a = 0, 1, · · · , Lpts − 1 and b = 0, 1, · · · ,Mpts − 1,

where (n0, k0) = (L,M) is the center of the approximation window. Since the

temporal estimates, H̃[a ·Ip, b ·Kp], are noisy samples of the true channel frequency

response, the residue term, S ′IdegJdeg
[a · Ip, b ·Kp], includes the model error as well

as the noise. In order to determine (Ideg + 1) × (Jdeg + 1) unknown polynomial

coefficients from the temporal estimation, it is necessary to have at least (Ideg +

1)× (Jdeg + 1) equations in (7.10). That is, Lpts ≥ Ideg + 1 and Mpts ≥ Jdeg + 1.

Equation (7.10) can also be written in matrix format. Let [A]i,j denote the

element on the ith row and the jth column of matrix A. We define the following
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matrices as

H̆n0,k0 with size Lpts ×Mpts, and [H̆n0,k0 ]i,j = H̃[i · Ip, j ·Kp]

qIdeg
with size Lpts × (Ideg + 1), and [qIdeg

]i,j = (i · Ip − n0)
j

CIdegJdeg
with size (Ideg + 1)× (Jdeg + 1), and [CIdegJdeg

]i,j = Cn0,k0 [i, j]

qJdeg
with size Mpts × (Jdeg + 1), and [qJdeg

]i,j = (i ·Kp − k0)
j

S′IdegJdeg
with size Lpts ×Mpts, and [S′IdegJdeg

]i,j = S ′IdegJdeg
[i · Ip, j ·Kp].

We can show that (7.10) is equivalent to

H̆n0,k0 = qIdeg
CIdegJdeg

qT
Jdeg

+ S′IdegJdeg
. (7.11)

Let vec(A) denote the vector whose elements are taken column-wise from ma-

trix A, and let ⊗ denote the Kronecker product. The Kronecker product has the

following property [52]

Y = BXAT ⇔ vec(Y) = (A⊗B)vec(X). (7.12)

Using this property, (7.11) can be written as

h̆n0,k0 = (qJdeg
⊗ qIdeg

)cIdegJdeg
+ s′IdegJdeg

, (7.13)

where h̆n0,k0 = vec(H̆n0,k0), cIdegJdeg
= vec(CIdegJdeg

) and s′IdegJdeg
= vec(S′IdegJdeg

).

In (7.13), h̆n0,k0 contains the temporal estimates of the channel parameters

that are obtained from training pilots using (7.8), cIdegJdeg
contains the polynomial

coefficients to be estimated, and s′IdegJdeg
is the error term. Therefore, the least

square solution of the polynomial coefficients, denoted by ĉIdegJdeg
, is calculated as

ĉIdegJdeg
= (qJdeg

⊗ qIdeg
)†h̆n0,k0 , (7.14)

where A† denotes the pseudo-inverse of matrix A.
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The next step is to compute the channel frequency response of all subchannels

from the estimated polynomial coefficients. In the approximation window, the

estimated channel parameters are represented by a (2L + 1) × (2M + 1) matrix

Ĥn0,k0 , and [Ĥn0,k0 ]i,j = Ĥ[i, j]. In addition, we denote ĥn0,k0 = vec(Ĥn0,k0) and

define matrices

QIdeg
with size (2L + 1)× (Ideg + 1), and [QIdeg

]i,j = (i− L)j,

QJdeg
with size (2M + 1)× (Jdeg + 1), and [QJdeg

]i,j = (i−M)j.

Then, the channel responses in the approximation window are estimated as

ĥn0,k0 = (QJdeg
⊗QIdeg

)ĉIdegJdeg
(7.15)

= (QJdeg
⊗QIdeg

)(qJdeg
⊗ qIdeg

)†h̆n0,k0 (7.16)

= (QJdeg
q†Jdeg

⊗QIdeg
q†Ideg

)h̆n0,k0 . (7.17)

Here, (7.15) is based on (7.9), (7.16) is derived from (7.14) and (7.15), and (7.17) is

obtained using the properties of Kronecker product (A⊗B)(C⊗D) = (AC⊗BD)

and (A⊗B)† = (A† ⊗B†) [52].

Using (7.17) and (7.12), we can show that:

Ĥn0,k0 = (QIdeg
q†Ideg

)H̆n0,k0(QJdeg
q†Jdeg

)T . (7.18)

From implementation point of view, the term (QIdeg
q†Ideg

) and (QJdeg
q†Jdeg

) can be

computed off-line. Thus, the channel responses in one approximation window can

be obtained from the temporal estimation by (i) a multiplication of a (2L + 1) ×
Lpts matrix and an Lpts ×Mpts matrix; and (ii) a multiplication of a (2L + 1) ×
Mpts matrix and an Mpts × (2M + 1) matrix. Based on the above discussion, the

polynomial based PSA channel estimation can be performed using the following

procedures:
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Off-line Computation:

1. Determine the degrees of polynomial basis functions (Ideg, Jdeg) and the

window size (L,M) based on the training pattern and the channel con-

ditions.

2. Calculate (QIdeg
q†Ideg

) and (QJdeg
q†Jdeg

).

On-line Computation:

1. Compute the temporal estimation in (2M +1) consecutive OFDM blocks.

2. Slide the approximation windows over these total N × (2M + 1) sub-

channels, such that all subchannels are covered by at least one window.

Then, compute the channel parameters in each window from the tem-

poral estimation based on (7.18). Note that the matrix indexes should

be adjusted according to the window centers when using (7.18).

The parameters in polynomial based PSA channel estimation including pilot

spacing, polynomial degree, and window size, should be chosen to minimize the

channel estimation error for given channel conditions. Unfortunately, there is no

closed-form solution for such an optimization problem. In [102], the optimal pa-

rameters for decision-directed methods were obtained using exhaustive search for

a given channel correlation function. In this chapter, we choose the parameters as

Lpts = Ideg + 1, Mpts = Jdeg + 1 and Ideg = Jdeg = 3. Thus, the approximation

window size only depends on the pilot spacing, as (IdegIp + 1)× (JdegKp + 1). We

obtain these parameters by performing simulations over a broad range of channel

conditions, and they demonstrate good performance in most channels. In particu-

lar, we performed simulation for Typical Urban (TU) and Hilly Terrain (HT) delay

profiles [66, 95] for Doppler frequency from 40Hz to 200 Hz, and for channel SNR
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from 5dB to 40dB. Here, Both of the delay profiles have 6 paths. The average path

power and delay for the TU delay profile are σ2
i = {0.5, 1.0, 0.63, 0.26, 0.16, 0.1}

and τi = {0, 0.2µs, 0.5µs, 1.6µs, 2.3µs, 5.0µs}, and the average path power and

delay for the HT delay profile are σ2
i = {1.0, 0.64, 0.4, 0.2, 0.26, 0.06} and τi =

{0, 0.2µs, 0.4µs, 0.6µs, 15.0µs, 17.2µs}.

7.3.2 Channel Estimation Error and Decoding BER

Instead of finding the channel estimation error averaged over all subchannels, we

are more interested in calculating the channel estimation error of individual sub-

channel. Let ε2
mse[n, k] denote the mean square channel estimation error of the nth

subchannel in the kth OFDM block, i.e. ε2
mse[n, k] = E[(H[n, k]−Ĥ[n, k])(H[n, k]−

Ĥ[n, k])∗]. Then, the MSE channel estimation of all subchannels in one estimation

window can be described by a (2L + 1)(2M + 1)× 1 vector as:

ε2
MSE ≡ [ε2

mse[0, 0], . . . , ε2
mse[2L, 0], ε2

mse[0, 1], . . . , ε2
mse[2L, 1], . . . , ε2

mse[2L, 2M ]]T .

Similar to Section 7.3.1, matrices Hn0,k0 and Ĥn0,k0 represent the true and esti-

mated channel responses in one approximation window, respectively. Both matri-

ces have size (2L+1)× (2M +1). For the window centered at (n0, k0), [Hn0,k0 ]i,j =

H[i−L+n0, j−M+k0] and [Ĥn0,k0 ]i,j = Ĥ[i−L+n0, j−M+k0]. The vector repre-

sentations of these two matrices are hn0,k0 = vec(Hn0,k0) and ĥn0,k0 = vec(Ĥn0,k0).

Thus, (7.19) is equivalent to

ε2
MSE = diag(E[(hn0,k0 − ĥn0,k0)(hn0,k0 − ĥn0,k0)

H ]). (7.19)

From (7.16) and (7.19), we obtain

ε2
MSE = diag{(E[(hn0,k0 − (QJdeg

⊗QIdeg
)(qJdeg

⊗ qIdeg
)†h̃n0,k0)

(hn0,k0 − (QJdeg
⊗QIdeg

)(qJdeg
⊗ qIdeg

)†h̃n0,k0)
H ]}. (7.20)
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Using the channel delay profile, Doppler frequency and channel SNR, the channel

estimation error can be calculated.

For M-QAM modulation, the effect of channel estimation on the BER has

been discussed in [29, 98]. Particularly, [29] gave the close form expression of the

BER in OFDM systems with imperfect channel estimation. Using the results

in [29] and (7.20), we calculate the BER of different OFDM subchannels. Figure

7.3(a) shows the mean square channel estimation error calculated from (7.20) for

the typical urban (TU) delay profile [66, 95] with Doppler frequency 200Hz and

channel SNR 30dB. The pilot spacing, Ip = Kp = 4 is used. This implies that the

approximation window size is 13 by 13, as discussed in Section 7.3.1. From Figure

7.3(a), we can see that the channel estimation error varies significantly for different

subchannels and OFDM blocks. In addition, the corresponding BER for using 16-

QAM modulation is shown in Figure 7.3(b). It is clear that the subchannels that

have larger channel estimation error experience higher decoding BER.

7.3.3 Priority Transmission Design for Two Dimensional

Polynomial Channel Estimation

In the previous section, we have seen that there exists significant BER variation

across different OFDM subchannels due to channel estimation inaccuracy. For

multimedia data transmission, we can utilize this property to provide unequal error

protection (UEP). In this section, we design the priority transmission (PT) scheme,

which rearranges multimedia data in OFDM subchannels by jointly considering the

effects of channel estimation and the importance of multimedia data. In particular,

the PT scheme is applied in the following four steps.

Step 1. Calculate mean square channel estimation error in one approximation
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window, based on channel estimation parameters (Ip, Kp, Ideg, Jdeg, Mpts,

Npts ) and the channel correlation matrix. Here, the channel correlation can

be obtained through feedback from the receivers.

Step 2. Sort all subchannels within D×Kp×Jdeg OFDM blocks in the increasing

order of BER. Here, D is the PT delay parameter and should be determined

such that the maximum decoding delay allowed at the receiver is less than

the time used to transmit D ×Kp × Jdeg consecutive OFDM blocks.

Step 3. Rearrange the encoded multimedia bitstream in the decreasing order of

importance.

Step 4. Match the rearranged multimedia data with the sorted subchannels,

such that higher importance of the multimedia data are transmitted over the

subchannels with lower BER.

The total decoding delay at the receiver depends on the parameter D as well

as the approximation window size. Since the receiver must receive all the pilot

symbols in one approximation window before performing channel estimation, the

decoding delay caused by channel estimation is Kp×Jdeg OFDM blocks. By apply-

ing PT, the receiver must obtain D ×Kp × Jdeg consecutive OFDM blocks before

rearranging the received data back into their original order. Thus, the decoding

delay of the OFDM system with polynomial based PSA channel estimation and

PT is D × Kp × Jdeg OFDM blocks. We note that the performance of the PT

depends on the delay parameters D. When larger delay parameter D is allowed,

the PT scheme will have more flexibility in arranging the transmission order of

data, and will achieve better quality in reconstructed multimedia.
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For multimedia transmission, UEP can also be achieved by applying forward

error correction (FEC) codes with different rates to different portions of multime-

dia data stream. Compared to FEC based UEP methods, such as those in [8,104],

the PT scheme has the advantage of not introducing additional redundancy. Fur-

thermore, the PT scheme can work together with FEC based methods when both

the BER variation of channel estimation and the importance of multimedia data

are taken into consideration for choosing the channel coding rates.

7.3.4 PT Scheme based on Polynomial Channel Estima-

tion: Simulation Results

We simulate image transmission in an OFDM system with the following parameters

to demonstrate the performance of the PT scheme. The transmitted data is a

512 by 512 Lena image, which is compressed to 0.5 bit per pixel (bpp) using

SPIHT [89]. The compressed bitstream is packetized into 128 bit long packets.

Each packet is appended with a 16 bit CRC code [67] [87] and then encoded

using the shortened systematic RS(30,18) code, which is obtained by shortening

RS(255,225) in GF(28) [2]. The encoded data are transmitted in an OFDM system,

where the entire channel bandwidth is 800kHz, with 128 subchannels. In each

OFDM block, four boundary subchannels at each end are used as guard tones [64]

and the remaining 120 subchannels are used to transmit data. To eliminate ISI, a

32 symbol long cyclic prefix is inserted in each OFDM block [65]. All subchannels

use QAM16 modulation. Rectangular pilot configuration with Ip = Kp = 4 is used

in the TU delay profile and Ip = 2, Kp = 4 is used in the HT delay profile. At the

receiver, error check is performed based on the CRC-16 code after RS decoding.

If there are irrecoverable errors in a packet, this packet is dropped. The first
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dropped packet stops the SPIHT decoder. We employ the peak-signal-to-noise

ratio (PSNR) of the reconstructed image as our performance measure. The PSNR

is defined as

PSNR = 10 log10

(
2552

MSE

)
dB, (7.21)

where MSE denotes the mean-square-error of the reconstructed image.

Three transmission strategies are compared. The first scheme, referred to as

the Interleaving 1, transmits the encoded bitstream according to the following

order {(n, k) = (0, 0), (0, Kp × Jdeg), ..., (0, (D − 1) × Kp × Jdeg), (1, 0), (1, Kp ×
Jdeg), ..., (1, (D− 1)×Kp× Jdeg), ..., (N − 1, 0), (N − 1, Kp× Jdeg), ..., (N − 1, (D−
1)×Kp×Jdeg), (0, 1), (0, Kp×Jdeg+1), ..., (0, (D−1)×Kp×Jdeg+1), (1, 1), ...}, where

n is the index of OFDM subchannels and k denotes the index of OFDM blocks.

We note that when D = 1, the Interleaving 1 becomes the regular transmission

that transmits the encoded image block by block according to the order {(n, k) =

(0, 0), (1, 0), ..., (N − 1, 0), (0, 1), ..., (N − 1, 1), ...}. The second scheme, referred to

as the Interleaving 2, transmits data according to the order {(n, k) = (0, 0), (0, Kp×
Jdeg), ..., (0, (D−1)×Kp×Jdeg), (0, 1), (0, Kp×Jdeg +1), ..., (0, (D−1)×Kp×Jdeg +

1), ..., (0, D ×Kp × Jdeg − 1), (1, 0), (1, Kp × Jdeg), ..., (1, (D − 1)×Kp × Jdeg), ...}.
When D = 1, the Interleaving 2 scheme transmits according to order {(n, k) =

(0, 0), (0, 1), ..., (0, Kp× Jdeg − 1), (1, 0), ..., (1, Kp× Jdeg − 1), ..., (N − 1, 1), ...(N −
1, Kp × Jdeg − 1)}. The third scheme is the PT scheme, which rearranges the

transmission order of the multimedia data within D × Kp × Jdeg OFDM blocks

according to channel estimation errors. In the simulations, we assume the perfect

estimation of channel correlation matrix (Step 1) in the PT scheme.

Figure 7.4 shows the average PSNR of reconstructed images in three transmis-

sion schemes. Figure 7.4(a) and 7.4(b) are for the TU and HT delay profiles, re-
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Figure 7.4: Comparison of the three transmission schemes using polynomial based

channel estimation

188



spectively, with the maximum Doppler frequency 200Hz. The results are obtained

by averaging 300 transmissions of Lena image for different fading and additive

noise realizations. One can observe that the PT scheme performs better or at least

as well as the regular transmission (Interleave 1, D=1) and Interleave 2 with D=1.

Moreover, the performance gain of the PT scheme is larger when the delay para-

meter D is larger. This is due to the fact that there are effectively larger number of

good OFDM subchannels to transmit the more important SPIHT bitstreams when

the delay parameter D is larger. Compared with the Interleave 1 and Interleave 2

schemes, the PT scheme achieves about 4 and 8 dB gain in reconstructed PSNR

when the delay parameter D = 24 and the channel SNR is equal to 21 dB in

TU delay profile with 200 Hz doppler frequency. With the same delay parameter

D, all the three transmission schemes have similar interleaving benefit. Thus, the

gain of the PT scheme is mainly from allocating the more important data to sub-

channels experiencing lower channel estimation error. Figure 7.5 shows the PSNR

of individual reconstructed images. Here, the Doppler frequency is 200 Hz, and

both TU and HT delay profiles are studied. When using the PT, the PSNR of the

reconstructed images at different time instances does not change much, while two

other transmission schemes do not have this advantage. Obviously, the PT scheme

provides better and smoother performance over time.

7.4 Priority Transmission based on FFT based

channel estimation

The FFT based channel estimation has been well studied for both the decision-

directed [65, 100] and PSA scenarios [50, 61, 64, 75]. In this section, we design the
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Figure 7.5: PSNR of individual reconstructed images of the three transmission

schemes using polynomial channel estimation

PT scheme for the FFT based PSA channel estimation. As discussed in Section

7.3, the crucial idea behind the PT scheme is to evaluate the error performance

of individual OFDM subchannels and to load multimedia data according to the

quality of the subchannels. Thus, we first briefly summarize the FFT based chan-

nel estimation algorithm and design the PT scheme to improve the reliability of

multimedia transmission.
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Figure 7.6: FFT based channel estimation scheme

7.4.1 FFT based Channel Estimation: Algorithm descrip-

tion

The structure of FFT based channel estimation in [61, 65] is illustrated in Figure

7.6. The input, H̃(n, k), is obtained from the temporal estimation as

H̃(n, k) =





Y [n, k]/X[n, k], when (n, k) are pilot positions

0, otherwise.

The first K0 outputs of the IFFT, representing low frequency components, are

interpolated by the interpolation filters, denoted by φ1, φ2, · · · , φK0 . Here, K0 is

computed as K0 = (bBd× τmaxc+1) [65], where Bd is the total channel bandwidth

and τmax is the maximum delay spread. In [61], the Lagrange interpolators are

chosen. The rest of the high frequency components after IFFT are set to zeros.

The estimated channel parameters, denoted by Ĥ(n, k), are obtained after the FFT

operation. In this channel estimation scheme, the frequency domain interpolation

is performed through IFFT-FFT filtering, while the time domain interpolation is

performed by the Lagrange interpolators. Consequently, the channel responses for

all subchannels are estimated.
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7.4.2 FFT based Channel Estimation: Channel Estimation

Error and BER

FFT based PSA channel estimation can be applied on a variety of pilot patterns.

For the purpose of fair comparison between FFT based and polynomial based

methods in later sections, we demonstrate the performance of the FFT based

methods using the rectangular training pattern. Without loss of generality, we

consider the channel estimation in (LdegKp + 1) consecutive OFDM blocks, which

have indexes {k, k = 0, · · · , LdegKp}. Here, Ldeg is the degree of the Lagrange

interpolation.

Given the channel correlation functions (as in (7.5) - (7.7)), the channel esti-

mation MSE can be calculated in a similar way as that in section 7.3.2, which is

omitted in this chapter. Figure 7.7(a) shows the channel estimation mean square

error for the TU delay profile with Doppler frequency 200Hz and channel SNR

30dB. The pilot spacing is chosen as Ip = Kp = 4 and Ldeg is chosen to be 3.

We observe that there exists a significant variation in channel estimation errors

along different OFDM subchannels, which is often referred to as the leakage ef-

fect [35,65,75,100]. The leakage effect occurs when the delay paths, τi, are not all

integer multiples of the system sampling period [35, 65, 75]. Since it is not realis-

tic for all delay paths to be exactly integer multiples of the sampling period, the

leakage effect always causes performance degradation in FFT based channel esti-

mation. In Figure 7.7(b), the decoding BER of subchannels in one OFDM block

calculated from the estimation MSE using the results in [29], is shown for different

channel SNR in the TU delay profile with Doppler frequency 200Hz. One can see

that the leakage effect will not diminish even when channel SNR is high. Com-

pared to the error variation in the polynomial-based methods (see Figure 7.3), the
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error variation in the FFT-based methods is larger. This leakage effect is difficult

to eliminate and is typically remedied by discarding a large number of boundary

subchannels [75] or performing adaptive bit/power loading [108] that requires high

computational complexity. In this work, we utilize this property to provide unequal

error protection (UEP) for multimedia transmission.

7.4.3 Priority Transmission Design for FFT based Channel

Estimator

Similar to Section 7.3, the priority transmission utilizes the variation of BER and

provides UEP for multimedia data. The procedure of the PT is the same as that

in Section 7.3.3 with some slight modifications in the first step. In the first step

of the PT with the FFT based channel estimation, the channel estimation MSE is

calculated based on pilot spacing, Doppler frequency, maximum path delay, total

bandwidth, and degree of Lagrange interpolation. The decoding delay introduced

by the FFT based channel estimation is (LdegKp + 1) OFDM blocks, and that

of the PT is D × Ldeg × Kp OFDM blocks. Thus, the total decoding delay is

D×Ldeg ×Kp. The parameter D can be adjusted to provide the tradeoff between

the decoding delay and the quality of reconstructed multimedia.

7.4.4 PT Scheme based on FFT based Channel Estimation:

Simulation Results

In this section, we evaluate the effectiveness of the PT for FFT based channel

estimation through simulations. The performance of the PT in both FFT based

and polynomial based methods will be compared in Section 7.5. Similar to Section

7.3.4, three transmission schemes will be compared. They are the Interleave 1,
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Interleave 2 and PT scheme. All other simulation parameters are the same as

those in Section 7.3.4. Figure 7.8 shows the simulation results for various decoding

delay and channel SNR. Figure 7.8(a) is for the TU delay profile and Figure 7.8(b)

is for the HT delay profile. Compared with the methods that do not utilize the

channel estimation property, the PT scheme can significantly improve the PSNR of

the reconstructed images in moderate and high channel SNR regions, where most

practical wireless systems operate. For example, the PT scheme outperforms the

Interleave 1 and Interleave 2 with D = 1 in TU-200 by 1 and 2 dB in PSNR of the

reconstructed image, when channel SNR equals to 21 dB. The performance gain

of the PT scheme is more pronounced when the delay parameter D is larger. That

is the PT scheme achieves 11 and 9 dB higher in the PSNR of the reconstructed

image, when it is compared with Interleave 1 and Interleave 2 with D = 24 and

channel SNR equals to 21 dB. The reason for this higher performance gain is

that the PT scheme effectively has larger number of good subchannels to transmit

more important multimedia data. The PSNR of individual reconstructed images

are shown in Figure 7.9 for the Interleave 1, Interleave 2 and PT scheme for

D = 24. When using the Interleave 1 and Interleave 2 schemes, the quality of

the subchannels that transmits the more important bits of the SPIHT bitstream

is quite random. Thus, the quality of individual received images changes rapidly.

When using the PT, the data is allocated according to the importance of data

and the quality of the subchannels. In this case, the transmission of each image

experiences similar channel conditions and smooth quality of the reconstructed

images is achieved.

We also simulate the case when using the shifted-pilot configuration, that is

the pilots are placed on subchannels 0, Ip, 2Ip, ..., in the 0th OFDM block and they
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less channel conditions and decoding delay.
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schemes.

are placed on subchannels 1, Ip + 1, 2Ip + 1, ..., in the Kth
p OFDM block. We note

that this shifted pilot has been used in several practical transmission standards

such as DAB [1] and DVB [2]. The performance of the PT scheme is shown in

Figure 7.10. Similar to the rectangular pilot case, the PT scheme always achieves

higher performance compared with the schemes that do not utilize the channel

estimation error property. We note that the calculation of channel estimation

MSE and subchannel reordering in PT for the shifted pilot takes the pilot pattern

into consideration. Within the acceptable delay, the PT scheme tries to match

the characteristic of multimedia to the OFDM channel by allocating the more

important multimedia data onto the better subchannels.

Comparing Figure 7.8(a) and Figure 7.10(a), correspondingly Figure 7.8(b) and

Figure 7.10(b), we observe that the performance of the PT scheme in the shifted

pilot is slightly better or almost the same as the one without shifted pilot. For
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Figure 7.10: Comparison between the three transmission schemes for shifted pilot

pattern in various wireless channel conditions and decoding delay.
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the Interleave 1 and 2 schemes, their performance are comparable when the delay

parameter is one, however, they become worse when the Delay parameter is large.

This can be explained as follows. The interleave 1 and 2 schemes with delay para-

meter virtually fill the near boundary OFDM subchannel with the more important

data while expecting some interleaving benefit. When using with the shifted pilot,

both of the schemes are more likely to use bad subchannels near the OFDM block

boundaries. Therefore, the resulting performances are worse than the ones with-

out shifted pilot. This effect can be compensated by discarding more boundaries

subchannels as demonstrated below. We simulate the same condition for TU-200

case except that eight boundary subchannels at each end of one OFDM block are

used as guard tone and the remaining 112 subchannels are used for transmitting

the multimedia data. The resulting performance comparisons are shown in Fig-

ure 7.11. It is clear from the figure that interleaving schemes with delay perform

better than without delay case. However, the larger the number of subchannels

are discarded, the more OFDM blocks should be used for transmitting an image.

Similar to previous scenario, the PT scheme in this case also performs much better

compared to the one where the guard tone is four. This is because that the worse

channels have been discarded. In all simulations, the PT scheme proves to provide

significant gain over the one without exploiting channel estimation property.

7.5 Comparison between FFT based method and

Polynomial based Method

The FFT based and Polynomial based channel estimation methods have been com-

pared for data transmission in decision-directed scenario [102] [103]. Since we have
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Figure 7.11: TU delay profile fD=200Hz, guard tone=8.

developed the polynomial based PSA channel estimation, we can compare the FFT

based and polynomial based channel estimation in the PSA scenario. In this sec-

tion, we will first compare these two types of PSA channel estimation techniques

for generic data transmission, by examining their average BER performances for

different channel SNR and training pilot density. More importantly, since the

OFDM modulation is adopted in many broadband multimedia transmission stan-

dards, such as DVB-T, it is particularly interesting to perform the comparison for

multimedia transmission when the proposed PT schemes are employed.

7.5.1 Comparison for Data Transmission

As explained in Section 7.4, the FFT based channel estimation suffers from the

leakage effect when the delay paths are not separated by integer multiples of the

sampling period. The leakage effect, which causes severe performance degradation

in FFT based schemes, cannot be eliminated by increasing the channel SNR or the

density of training pilots. The polynomial based channel estimation does not have

the leakage effect and performs very well as long as the channel frequency response
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in the approximation window changes smoothly. This can be ensured by choosing

small approximation window and increasing pilot density.

We first compare both channel estimation methods for data transmission. The

setup of the OFDM modulation is the same as that in Section 7.3.4. The pilot

spacing (Ip,Kp)=(4,4) is chosen for the TU delay profile, and (Ip,Kp)=(2,4) is

chosen for the HT delay profile. In the FFT based method, the degree of Lagrange

interpolator is Ldeg = 3. According to the maximum delay spread and the total

bandwidth, the parameter K0 is 5 for the TU delay and is 15 for the HT delay. In

the polynomial based method, the polynomial degrees are chosen as Ideg = Jdeg =

3.

Figure 7.12(a) shows the analytical and simulated BER performance for both

channel estimation schemes. The simulation results are obtained by transmitting

24000 OFDM blocks, and the BER shown in the figure represents the average

performance of all subchannels. The analytical BER is evaluated by using the

channel estimation MSE derived in Section 7.3.2 and Section 7.4.2 and the results

in [29]. From the figure, we observe that the FFT based channel estimation has

error floor in all channel conditions, due to the leakage effect. The polynomial

based channel estimation achieves lower BER, although it also has the error floor

in TU-200 and HT-200 cases, due to the model errors. In addition, the FFT based

method has slightly better performance in the low channel SNR region. This is

because that the FFT based methods can remove the channel noise by eliminating

the high frequency components when performing IFFT-FFT filtering. In moderate

and high SNR regions, removing high frequency components causes model error

since the energy of channel frequency response spread over all frequency bins due

to the leakage effect. Thus, the polynomial based method performs much better
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Figure 7.12: Comparison between FFT based and polynomial based methods.
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than the FFT based method in moderate and high SNR regions.

We also investigate the effects that the pilot density has upon these two channel

estimation schemes in Figure 7.12. It is important to point out that IFFT-FFT

filtering is suitable for interpolating sinusoidal like functions, while polynomial in-

terpolation is suitable for slow varying functions. In some situations, the polyno-

mial based method needs more pilots than the FFT based method to achieve good

performance. For instance, in HT-200 channel with pilot spacing Ip = Kp = 4, the

FFT based method has better performance than the polynomial based method.

This is because that the polynomial basis cannot accurately model fast chang-

ing sinusoidal functions along different subchannels, as in the HT delay scenario,

within a large approximation window. In this case, the approximation window size

should be reduced.

In summary, the polynomial based channel estimation outperforms the FFT

based channel estimation for data transmission in realistic channel SNR region,

when pilot density is large enough such that the channel frequency response within

an approximation window can be modelled as 2D polynomial functions.

7.5.2 Comparison for Multimedia Transmission

In this section, we study which channel estimation scheme is better for multimedia

transmission. In Figure 7.13(a), the average PSNR of reconstructed images with

Interleave 1 with D=1 (regular transmission) for the FFT based and the poly-

nomial based methods are compared in TU and HT delay scenarios. Similar to

the data transmission results, the polynomial based method outperforms the FFT

based method in moderate and high SNR regions. In Figure 7.13(b) and 7.13(c),

these two channel estimation schemes are compared when the PT is employed.
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When the channel SNR is from 12dB to 19dB, the polynomial based method is

slightly worse than the FFT based method, since the latter method can remove

noise more effectively. When the channel SNR is higher, the polynomial based

method achieves better performance because the effects of the polynomial model

error are much less pronounced than the leakage effect. In fact, these two channel

estimation schemes have close performance, since the PT scheme compensates the

imperfection of channel estimation.

7.5.3 Complexity Comparison

The complexity of the two channel estimation algorithms are compared in terms

of the number of real additions and real multiplications needed to perform channel

estimation per OFDM block. Let N denotes the number of subchannels, Ip and Kp

denote the pilot spacing , K = Kp×Ldeg + 1 = Kp× Jdeg + 1 and I = Ip× Ideg + 1

are the window size of the interpolation, where Ldeg, Ideg, Jdeg are the lagrange

interpolator degree and two dimensional polynomial degree respectively. Using

these parameters, the complexity of both the algorithms are summarized in Table

7.1. Assuming N is the power of two, the FFT operation requires N log2 N real

multiplications and 2N log2 N real additions [76]. The first term of the number of

multiplication in FFT based method corresponds to the IFFT-FFT pair, the second

term corresponds to the lagrange interpolation, and the third term corresponds to

the process of finding the temporal estimate (7.8). Similarly, the first term in the

number of addition corresponds to the IFFT-FFT operation and the second term

corresponds to the lagrange interpolation. In complexity analysis for polynomial

channel estimation, the terms (QIdeg
q†Ideg

) and (QJdeg
q†Jdeg

) in (7.18), are assumed

to be pre-computed. The first term in the number of multiplications corresponds to
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Figure 7.13: Comparison of PT schemes in FFT based and Polynomial based

channel estimation for image transmission. For HT (Ip,Kp)=(2,4) and TU

(Ip,Kp)=(4,4).
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Table 7.1: Complexity Comparison: FFT versus Polynomial based method per

OFDM block

Algorithm FFT based Polynomial

Complexity

# Real (1 +
Ldeg+1

K
)N log2 N+ 2N(Jdeg + 1)(1 +

(Ideg+1)

K
)+

Multiplications 2(K0 + 1)(Ldeg + 1) +
2N(Jdeg+1)

KIp

2N(Jdeg+1)(Ideg+1)

KI

# Real 2(1 +
Ldeg+1

K
)N log2 N+ 2N

Jdeg+(Jdeg+1)Ideg

K

Additions 2(K0 + 1)Ldeg

the two dimensional interpolation (7.18), and the second term corresponds to the

process of finding temporal estimates. For instance, using simulation parameters in

TU-200 in the previous sections, the FFT based channel estimation requires 1240

multiplications and 2380 adders per OFDM block, while the polynomial method

requires 1364 multiplications and 1005 adders per OFDM block. Therefore, the

complexity of both channel estimation algorithms is comparable.

The additional computational complexity for performing priority transmis-

sion is described as follows. The PT scheme only requires matrix-matrix addi-

tion/multiplication to compute the channel estimation MSE, the sorting algorithm

and the estimation of channel correlation matrix. The estimation of the correla-

tion matrix can be done using direct averaging the products of channel frequency

response of the subchannels. This procedure will be done at the very initial of the

transmission and can be continuously used afterward. It is important to notice

that there are several OFDM transmitter design techniques that perform adap-

tive bit and power loading [108]. Typically, these methods require the eigenvalue

decomposition of the channel correlation matrix, which may be infeasible when

the number of OFDM subchannels are large. We note also the adaptive bit and
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power loading techniques also require the estimation of channel correlation matrix.

Therefore, the PT scheme may be the method of choice in transmitting multimedia

data.
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Chapter 8

Conclusions and Future Research

In this dissertation, we have presented a unified optimization framework for sensor

communications. This framework employs general idea of cross layer optimization.

The ultimate goal of the optimization is to utilize the energy in the sensor node

as efficient as possible. This can be achieved by increasing the awareness of the

node to its current resource status and environment condition. The resource in-

cludes (but not limited to) residual energy in the sensor nodes, bandwidth, energy

consumption, computing power, etc. The environment information includes the

instantaneous channel information, topology of the network, the connectivity of

the remaining network, etc. Having this information, the optimizer in the sensor

node can manage and adjust the communication parameters in the best possible

way.

We first summarize general mathematical framework for stochastic optimiza-

tion. We have also explored several important problems encountered in wireless

sensor network. We approach the problem from physical layer to the data link

layer, and the network layer. We further utilize a class of online learning algo-

rithm called adaptive actor-critic algorithm to solve the optimal selection of mod-
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ulation and transmit power in single point-to-point communication and multi-node

communication scenario. The proposed adaptive algorithm is based on stochastic

approximation algorithm. The algorithm requires minimal statistical information

from the system and the objective function. This makes the optimization algorithm

very suitable for sensor communications. Furthermore, the proposed scheme is ro-

bust to the variation of the environment. This first work can be considered as the

cross layer optimization between data link layer and physical layer. The proposed

scheme achieves optimal solution in point-to-point communication and achieves

near-optimal solution in the multi-node scenario. In this case, the energy utiliza-

tion in each node is maximized in the sense that it results higher good throughput

given a fixed transmit energy.

We continue investigating the cross layer optimization that includes higher

communication layer. In particular, we consider the routing problem. To make

the resulting algorithm more useful, we put more concern on the overall network

lifetime as opposed to energy consumption in single micro-sensor node. In this

second work, we suggest the time until the remaining network becomes discon-

nected as the network lifetime metric. This will lengthen the total successful

delivered packet before the network becomes disconnected. Specifically, we pro-

pose the connectivity-aware energy efficient routing algorithm. We also outline the

application of distributed reinforcement learning scheme, which merely based on

stochastic approximation algorithm in doing the packet routing in total distributed

way.

In Chapter 5, we explore the advantages of cooperative routing. This work

can be categorized as the cross layer optimization between the network layer and

the physical layer. We propose a maximum lifetime power allocation, where the
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cooperating nodes aware of their residual energy when doing cooperative routing.

In particular, nodes with more energy will help more compared to the nodes with

less energy. This power allocation in cooperative routing avoids the overuse of the

nodes that have already had low residual energy. In this way, the overall network

lifetime will be much prolonged.

The next two chapters consider how to enforce cooperation in wireless ad-hoc

network and channel aware wireless optimization. In the cooperation enforcement,

we propose a self-learning repeated game framework to enforce cooperation and

obtain good cooperation point. The combination of self-learning and cooperation

enforcement using repeated game is shown to be effective in enforcing nodes to

cooperate. In the channel-aware priority transmission work, we show that by

implementing channel-aware concept in multimedia communication, a significant

gain can be obtained.

Finally, we hope that our proposed resource and environment aware optimiza-

tion framework can serve as the first step towards the implementation of intelligent

wireless system.

8.1 Directions for future research

The resource and environment aware communication framework presented in this

dissertation addresses many design challenges towards the realization of intelligent

wireless sensor communications. However, there are still many important research

issues left unresolved. In this section, we briefly discuss some of these issues and

provide some general research directions to address them.

1. The cooperative routing scheme discussed in chapter 5 combines the coop-

erative transmission scheme in physical layer and the routing algorithm in
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the network layer. In that chapter, the cooperative nodes are selected along

the non-cooperative route, i.e. the route computed based on either the min-

imum transmit energy route or flow augmentation route. The selection of

cooperative nodes along the non-cooperative route has several important ad-

vantages, that are simple implementation and the algorithm are amenable

to distributed implementation. However, this kind of selection may not be

optimal, since the selection of cooperative nodes is based on the predesigned

routing objective. Moreover, the selection of cooperative nodes in turns will

affect the routing selection. The optimal joint cooperative routing should be

done. Moreover, the resulting joint selection should have distributed imple-

mentation. In this direction, we envision the use of reinforcement learning

algorithm to solve the combinatoric selection of cooperative nodes. We note

that the reinforcement learning algorithm has also been implemented to solve

complex combinatoric optimization [106].

2. The throughput maximization in chapter 3, the online learning works on the

unconstrained Markov Decision Process (MDP). In many practical engineer-

ing problems, the constrained optimization is not avoidable. It is important

to develop the online learning algorithm that can handle constraints.

3. The cooperative routing scheme discussed in chapter 5 only consider the

packet routing. As the nodes in the network become more intelligent, nodes

in the network can do data aggregation or data fusion before making the

routing decision. We envision a different type of cooperation can be done by

combining the data fusion and cooperation among nodes. In this way, the

routing will be done in a more efficient way.
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4. The reinforcement learning algorithm has recently been applied to solve sto-

chastic games, where several players learn suitable policies in playing the

game [62]. It is very important to analyze the dynamical system resulting

from the learning in games. We also envision the natural learning algorithm

that converges to the cooperative forwarding for all nodes in the network.

5. In our work on network lifetime maximization, we consider the maximization

of the number of packets that are successfully delivered before the network be-

comes useless. In this design, we have ignored the most important issue that

is maintaining the overall network. Even though in typical deployment of sen-

sor network, the energy replenishment is often an impossible task. However,

the network can be maintained by deploying small amount of node in critical

region to keep the functionality of the network. This issue is very important

since some algorithms and protocols will result in unhealthier remaining net-

work than the others. The concept of network healthiness should also be

defined. Intuitively, a healthier network is more easily maintained compared

to the less healthy network. Based on the fact that it will cost much less

to do network maintenance compared to the whole network redeployment.

Therefore, it is also important to consider the network maintenance property

when designing the protocols and algorithms.
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