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Magnetized fusion experiments generally perform under conditions where ideal

Alfvénic modes are stable. It is therefore desirable to develop a reduced formalism

which would order out Alfvénic frequencies. This is challenging because sub-Alfvénic

phenomena are sensitive to magnetic geometries. In this work an attempt has been

made to develop a formalism to study plasma phenomena on time scales much longer

than the Alfvénic time scales.

In Part I, a reduced set of MHD equations is derived, applicable to large

aspect ratio tokamaks and relevant for dynamics sub-Alfvénic with respect to ideal

ballooning modes. Our ordering optimally allows sound waves, Mercier modes, drift

modes, geodesic-acoustic modes, zonal flows, and shear Alfvén waves. Long to

intermediate wavelengths are considered. With the inclusion of resistivity, tearing

modes, resistive ballooning modes, Pfirsch-Schluter cells, and the Stringer spin-up

are also included. A major advantage is that the resulting system is 2D in space,

and the system incorporates self-consistent dynamic Shafranov shifts. A limitation

is that the system is valid only in radial domains where the tokamak safety factor,



q, is close to a rational. Various limits of our equations, including axisymmetric and

subsonic limits, are considered. In the tokamak core, the system is well suited as a

model to study the sawtooth discharge in the presence of Mercier modes.

In Part II, we show that the methods of Part I can be directly applied to

derive sub-Alfvénic but supersonic reduced fluid equations, for collisionless plasmas,

starting from a drift-kinetic description in MHD ordering.

In Part III, we begin a reduced description of sub-Alfvénic phenomena for

collisionless kinetic MHD in the subsonic limit. We limit ourselves to discuss ax-

isymmetric modes, including geodesic acoustic modes (GAMs), sound waves and

zonal flows. In axisymmetric geometry it is well known that trapped particles pre-

cess toroidally at speeds much exceeding the E × B speed. This large flow is

expected to contribute a large effective inertia. We show that the kinetic analog

of the “Pfirsch-Schluter” effective inertia (1 + 2q2) is augmented by the well-known

Rosenbluth-Hinton factor ≈ 1.6q2/
√
ε.
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Chapter 1: General Introduction

1.1 Reduced MHD

Ideal MHD [1] has been often described as the simplest self-consistent model

of plasma that can offer quantitative predictions for stability thresholds of plasma

confined in a magnetic confinement device like a Tokamak. However, from both

analytical and computational points of view, it is almost always beneficial to reduce

the complexities associated with the full nonlinear ideal MHD equations, by making

simplifying assumptions either about the magnetic geometry or the time scale and

length scales associated with the problem.

Several such simplified “reduced” sets of equations have been proposed in the

literature, which attempt to simplify the physics by asymptotically retaining the

relevant low frequency modes. In all these reduced models, the fast compressional

Alfvén waves are eliminated by analytical reduction. Computationally, the maxi-

mum time step is not pinned to the fast-wave time scales.

The original ideal reduced MHD (RMHD) equations were obtained by Rosen-

bluth [2] and generalized and further developed by Strauss [3–5] to study global kink

modes for a large aspect ratio tokamak. They used the inverse aspect ratio as the

expansion parameter. This reduction has been found very useful to describe quan-
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titatively kink, ballooning, tearing, and associated modes. The reduced time scale

in all these models are typically of the order of τA ≡ R/cA, where cA ≡ B2/nMi

is the Alfvén speed. However, under normal fusion experiment conditions, with

plasma β ≡ p/B2 well below ideal ballooning threshold, the characteristic growth

time for macroscopic instabilities is longer than τA. This is a motivation to seek a

sub-Alfvénic reduced MHD system.

Some modes that are sub-Alfvénic include interchange (Mercier) modes, resis-

tive interchange and resistive ballooning modes, drift waves, ITG modes, ion acoustic

waves, geodesic acoustic modes (GAMs) and zero-frequency zonal flows [6]. A brief

description of various sub-Alfvénic modes are provided in Appendix 0. A nonlinear

reduced description of all these modes together would constitute a sub-Alfvénic sys-

tem. As pointed out by Waelbroeck [7], the various sub-Alfvénic modes share some

common characteristics, namely: their evolution time scales are slow compared to

Strauss’ RMHD modes, they have localized structures, and most perturbations are

flute-like, i.e, they tend to be highly elongated along the magnetic field line.

The fact that the sub-Alfvénic modes are slowly evolving make them par-

ticularly sensitive to magnetic geometries. In the literature most of the analytic

calculations involving these modes have been done in the cylindrical limit or by

making some ad-hoc simplifications. This is because, even for circular flux surfaces,

in a torus, the Shafranov shift leads to mode coupling and geometric intricacies.

Correspondingly, in the collisionless limit, to include the effects of Landau damp-

ing, trapped particles, and self consistent zonal flows, reduced kinetic models must

be used. Thus, a self-consistent nonlinear treatment of fluid and/or drift kinetic

2



description is quite challenging and is therefore still largely lacking.

1.2 Scope of this work

In this thesis, we make an effort to construct a nonlinear fluid as well as a

drift kinetic sub-Alfvénic MHD system. The thesis is divided into three parts. In

Part I, we shall present an analytic reduction to obtain a complete sub-Alfvénic

MHD model in a low beta, large aspect ratio tokamak. In Part II, we use the

methods of Part I to derive reduced equations in the collisionless, supersonic MHD

limit. In Part III, we examine axisymmetric, subsonic modes in collisionless MHD

to elucidate some aspects of trapped ion dynamics in this regime.

In Part I, we shall expand about a low order rational surface and consider

modes below the ideal ballooning Alfvén wave. We make use of the standard large

aspect ratio expansion and assume circular flux surfaces to lowest order. We allow

long to intermediate wavelengths. We also allow resistivity. Our final reduced

equations are nonlinear, but two dimensional, and include a dynamic Shafranov

shift.

In Part II, we shall generalize our methods of Part I to derive sub-Alfvénic

drift-kinetic equations in the supersonic limit. We base our analysis on Kulsrud’s [8]

Kinetic MHD formulation. We present a nonlinear, closed set of reduced kinetic

equations which allow pressure anisotropy. In the supersonic limit, Kulsrud’s de-

scription reduces to the CGL [9] double adiabatic formalism. Thus, we can also

consider this case to be an extension of our isothermal fluid equations to a fluid

3



described by CGL closure.

In Part III, we consider axisymmetric sub-Alfvénic MHD type motions in

a collisionless tokamak. In the collisionless limit, kinetic theory allows particle

trapping along the magnetic fields and including their dynamics is important. At

this level, one can study GAMs and zonal flows. We explore the effect of trapped

ions on zonal flows and show that the well known Rosenbluth-Hinton [6] factor is

the kinetic generalization of the “Pfirsch-Schluter” effective mass factor.

In what follows, we present Parts I, II and III. Each part is self contained and

begins with a short description in an Overview.
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Part I

Collisional: Sub-Alfvénic Reduced MHD
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Chapter 2: Sub-Alfvénic reduced equations: Ideal MHD

2.1 Overview

A reduced set of MHD equations is derived, applicable to large aspect ratio

tokamaks and relevant for dynamics that are sub-Alfvénic with respect to ideal bal-

looning modes. This ordering optimally allows sound waves, Mercier modes, drift

modes, geodesic-acoustic modes, zonal flows, and shear Alfvén waves. Wavelengths

long compared to gyroradius but comparable to minor radius of a typical tokamak

are considered. With the inclusion of resistivity, tearing modes, resistive ballooning

modes, Pfirsch-Schluter cells, and the Stringer spin-up are also included. A major

advantage is that the resulting system is 2D in space, and the system incorporates

self-consistent dynamic Shafranov shifts. A limitation is that the system is valid

only in radial domains where the tokamak safety factor, q, is close to rational. In

the tokamak core, the system is well suited to study the sawtooth discharge in the

presence of Mercier modes. The systematic ordering scheme and methodology de-

veloped is versatile enough to reduce the more general collisional two-fluid equations

or possibly the Vlasov-Maxwell system in the MHD ordering.
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2.2 Introduction

The tokamak is characterized by having a strong axisymmetric toroidal mag-

netic field and a relatively weak poloidal field, in the geometry of a large aspect

ratio toroid. Given this, scale lengths perpendicular to B are shorter than along

B, resulting in a disparate separation of fundamental MHD mode frequencies. In

particular, the magnetosonic mode is at higher frequency and separates from the

shear Alfvén wave with a frequency ratio of O(ε), where ε is the inverse aspect ra-

tio. This separation allows a reduction of the ideal MHD equations (Rosenbluth [2],

Strauss [3,4]) wherein the reduced system describes shear Alfvén waves and is qua-

sistatic with respect to the magnetosonic modes. Another MHD frequency of interest

in tokamaks is that of sound waves. For a typical low beta system like a tokamak,

this frequency is below the Alfvén frequency by the square root of β, the ratio of

thermal energy to magnetic energy. The sound frequency band is generally also the

same order as the frequency of drift waves and of interchange-like modes (which

incorporate Mercier modes and geodesic acoustic modes).

This Part of the thesis is concerned with a reduction of the MHD equations

to frequencies at the sonic level; in particular, frequencies of interest are below

the ballooning Alfvén frequency, cA/qR. At sub-Alfvénic frequencies, any MHD

convection in the system must be consistent with interchanges of magnetic field

lines that, to lowest order, preserve the magnetic structure. The frequencies of

interest that can then be studied include sound waves (cs/qR), Mercier interchange

modes (cs/R)(a/Ln), geodesic acoustic modes (cs/R), drift waves (csρi/(aLn)), and

7



ζ 

θ

z

r

Figure 2.1: Interchanges on a rational flux surface

zonal flows (zero frequency). Here, cA, cs, a, R, Ln, ρi are, respectively, the Alfvén

speed, sound speed, minor radius, major radius, density scale length, and ion Larmor

radius. An expansion in ε ∼ a/R is made.

To lowest order, the dominant motions are electrostatic convection cells in

the cross-field plane as shown pictorially in Fig. 2.1. Thus, to lowest order, the

expansion is centered about and in the vicinity of a low order rational surface; in

particular, the off-rational part of the magnetic pitch and the magnetic shear are

considered weaker than the poloidal magnetic field. In our expansion, these weaker

portions are allowed in higher order, thus allowing magnetic shear. We clarify later

in the chapter what restrictions these assumptions put on our system of equations.

Within the expansion scheme, our system of equations optimally allows sound waves,

Mercier modes, drift modes, geodesic-acoustic modes, zonal flows, and shear Alfvén

waves. We allow wavelengths long compared to gyroradius but comparable to the

size of tokamak. With the inclusion of resistivity, tearing modes, resistive ballooning

modes, Pfirsch-Schluter cells, and the Stringer spin-up are also included. Since the
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system is largely electrostatic, the magnetic field acts as a “guide” to the convection

and, therefore, a major advantage of the reduction is that the resulting system of

nonlinear equations is 2-dimensional.

In what follows, we systematically derive, starting from the full ideal MHD

equations, reduced equations at sonic frequencies. Since the frequency of interest

is two orders below the magnetosonic frequency, we find we have to go to O(ε4) to

obtain a closed set of equations. Consequently, the required algebra is tedious and

several cancellations of terms are found. As a check on the algebra, we find it helpful

to motivate the cancellations by proceeding to the WKB limit and comparing with

the expected local dispersions based on previous work.

In Sec 2.3, we outline the ordering of the full MHD equations and systemati-

cally derive reduced equations in a periodic cylinder. We begin with a cylinder as it

serves to establish the basic methodology and allows us to introduce the notation,

etc. In Sec 2.4, then, we extend this to a torus. This brings in toroidal curvature

effects and, in particular, introduces new variables, with harmonic content, to the

system. In Sec 2.5, we show that the toroidal equations of Sec 2.4 can be greatly

simplified by a redefinition of variables: with the redefinition, two cancellations,

motivated by examining WKB limits, are demonstrated and the resulting system is

then rendered physically more transparent.

A rationale for reduction of toroidal MHD equations to the sonic level has been

articulated by Waelbroeck [7]. A primary interest is that a reduction to this level

allows drift waves and the associated small scale turbulent transport. While we do

not include drift waves in this chapter, for simplicity, the ordering and methodology

9



allow this band of frequencies for wavelengths longer than the ion gyroradius. The

ideal RMHD equations were previously generalized and extended self consistently

to the resistive MHD case by Drake and Antonsen (DA) [10]. They pointed out that

earlier attempts by Schmalz [11], Izzo et. al [12] and Strauss [5] to obtain resistive

modes in a large aspect ratio tokamak by simply retaining higher powers of ε was

not self consistent. This is because the sub-Alfvénic modes are sensitive to magnetic

geometry and a careful asymptotic analysis is therefore required. The sensitivity of

magnetic geometry can be seen from the fact that the magnetic fields in this limit

behave like “stiff” rods and the sub-Alfvénic modes would have to quasi statically

adjust themselves to avoid bending the field lines. In this chapter, we present a

systematic expansion upto 4th order in ε.

2.3 Sub-Alfvénic reduced MHD in a cylinder

We begin our reduction of equations for the case of a straight cylinder; this

establishes the ordering and methodology. We employ standard (r, θ, ζ) cylindrical

geometry with the unit vector ζ̂ in the direction of the symmetry direction of the

cylinder. We assume a periodic cylinder of radius a and axial length 2πR.

10



2.3.1 Equations and ordering

We begin with the Ideal MHD equations:

∂tn+∇ · (nu) = 0 (2.1)

Min(∂t + u ·∇)u = −∇p+ j ×B, j ≡∇×B (2.2)

∂tB = −∇×E (2.3)

∇ ·B = 0 (2.4)

Standard notation is used and we have set c = 4π = 1 to avoid cumbersome con-

stants. We have Mi as the ion mass, p = nT with T = Te + Ti, and we assume

constant isothermal temperature T , for simplicity. For ideal MHD,

E = −u×B. (2.5)

This forms a complete set for the variables {n,U ,B}. In this section, it is more

convenient to use B ≡∇×A. This results in

∂tA = −E −∇ϕ. (2.6)

Equation (2.6) replaces Eqs. (2.3) and (2.4). Thus, the primary equations are

(2.1,2.2,2.6). For the asymptotic expansion, we adopt the following ordering:

k||
k⊥
∼ |u⊥|

cs
∼
U||
cs
∼ Bθ

Bζ

∼ cs
cA
∼
√
β ∼ ε (2.7)

where k||, k⊥ are the wavenumbers parallel and perpendicular to the full magnetic

field B, with poloidal and toroidal components Bθ and Bζ , cs is the sound speed

≡ (T/M)1/2, and β = nT/B2. Since in the large aspect ratio limit the lowest order

11



magnetic field is toroidal. it is more convenient to define parallel and perpendicular

with respect to the toroidal axis.With this ordering, we find that the terms in the

n and A equations, (2.1,2.6), each are of the same order. However, the momentum

equation is ordered as

Min(∂t + u · ∇)u = −∇p+ j ×B.

ε4 : ε4 : β ∼ ε2 : 1

Thus, we would need to go to at least 4th order to close the system. To systemat-

ically apply the asymptotic expansion, we will need annihilation equations for the

momentum equations. These are:

B ·
(
Min

dU

dt
+∇p

)
= 0 (2.8)

∇ ·
(
Min

dU

dt
× b̂

B

)
= B · ∇

(
j||
B

)
+

1

B2
j ·∇p (2.9)

+ 2 b̂×∇p ·∇
(

1

B

)

We will also find useful as an annihilator the parallel component of the A equation,

namely

B · ∂tA = −B ·∇ϕ. (2.10)

This corresponds to the E‖ = 0 condition of ideal MHD.

In what follows we assume that the magnetic field is predominantly axial

along a cylindrical axis (i.e in the ζ̂ direction). All quantities designated as ⊥ will

be assumed to be perpendicular to ζ̂ (not B, as is often the convention). In this

12



case, it will be convenient to assume the form

B = I ∇ζ +B⊥ (2.11)

where I ≡ RBζ .

2.3.2 Asymptotic expansion of the Ideal MHD equations

We now proceed order by order systematically. The momentum equation starts

at zero order, while all the other equations (density, Faradays law and the consis-

tency conditions) start at 2nd order. Normalization parameters used are the minor

radius, Alfvén speed and magnetic field: {a, cA, B0} respectively. These parameters

will simply be set to unity. We do a perturbative expansion in the large aspect ratio

parameter ε� 1 according to:

B = B0 + εB1 + .., ψ = ψ0 + ε ψ1 + ..

I = I−1/ε+ I0 + ε I1 + .., j = j0 + ε j1 + ..

R = 1/ε, B ·∇ = ε (B ·∇)1 + ε2 (B ·∇)2 + ..,

d/dt = ε2dt, ϕ = ε2 ϕ2 + ε3 ϕ3 + .., U|| = ε2U||2 + ..

n = n0 + ε n1 + .., β ≡ ε2β̄, p = ε2 nβ̄, η ≡ ε2η̄, ŝ = εs̄

where the magnetic flux ψ will be introduced below in Eq. (2.15). We have defined

the quantities β̄, η̄ so that these are O(1) quantities as opposed to β, η etc.

To lowest order, O(ε0):

j0 ×B0 = 0, j0 ≡∇⊥ ×B0. (2.12)

13



We assume that the magnetic field is purely axial to lowest order and thus B0 = ζ̂,

and j0 = 0. From (2.11) we see that

B0 = ζ̂, I−1 = 1, (2.13)

where we use R = 1/ε. To O(ε1), we get

j1 × ζ̂ = 0 ⇒ j1 = J1 ζ̂. (2.14)

Now, from (2.2), j1 =∇⊥×B⊥1+∇I0× ζ̂. To first order, we also have∇·B⊥1 = 0

which implies B⊥1 = ζ̂ ×∇ψ0. Using these and condition (2.14) above, we get

I0=constant and

B1 = ζ̂ ×∇ψ0, J1 = ∇2
⊥ψ0. (2.15)

We further make the choice, for the predominantly axial geometry we are consider-

ing, that I0 = 0.

We now proceed to O(ε2). We first have the annihilation (2.9), which is second

order at the lowest significant order. The only term that contributes at this order

is the “field line bending term” B ·∇(j||/B); the other terms enter, at a minimum,

at 4th order, given that I0 is zero. This results in

(B ·∇)1(j||/B)1 = 0 ⇒ (j||/B)1 = J1(r) = ∇2
⊥ψ0. (2.16)

The magnetic field at this order involves a constant axial field, B0 = 1 and an

azimuthal field ζ̂×∇ψ0. We make the choice of a time independent ψ0(r) = r2/(2q0).

This choice corresponds to a constant axial current J1 = 2/q0 and implies a helical

net field with the same winding number on each radial surface. In particular, the

14
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Figure 2.2: Field line following coordinate system

well-known tokamak safety factor, q(r) = rBζ/RBθ, is a constant, q0, and there is

no magnetic shear. Additionally, we assume q0 is rational, and so we define a helical

coordinate system with respect to the magnetic field given by the transformation

r′ = r, θ′ = θ, α = θ − (1/q0)ζ. (2.17)

For the purposes of this chapter, we will assume that the magnetic shear is small,

in the sense that any shear will be included as a correction term at the level of ψ1.

Likewise, we assume that any non-rational part of the magnetic field is also weak

and enters at the ψ1 order. We will discuss later how these assumptions, while self-

consistent, constrain our equations to apply only within a certain radial domain.

We note that

(B ·∇)1 = (1/q0) ∂θ′ (2.18)

in the helical coordinate system.
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Continuing our expansion at 2nd order, we get, in addition to Eq. (2.16),

(j ×B)2 = j2 × ζ̂ + j1 ×B⊥1 =∇⊥p2 = β̄∇⊥n0. (2.19)

Calculating j to 2nd order using the form (2.11) for B, and noting that B⊥1 is

axisymmetric, we have j2 × ζ̂ = −∇⊥I1. Using this in Eq (2.19), we can integrate

(2.19) with respect to the perpendicular coordinates to get

β̄ n0 + I1 + ψ0∇2
⊥ψ0 = 0. (2.20)

This is the Grad-Shafranov equation. In our accounting, this is an equation for I1:

note that since n0 is not necessarily axisymmetric (we will describe this later), I1 is

also in general non-axisymmetric (as by implication is the axial magnetic field, to

2nd order).

Next, we consider Eq (2.6) taken to second order. The time derivative term is

zero since A
(0)
⊥ is time independent, being proportional to I−1. Using (2.5), we then

deduce from the right hand side of (2.6) that

u2 = U||2 ζ̂ + ζ̂ ×∇ϕ2. (2.21)

Finally, at the O(ε2) order, we have from (2.1)

dtn0 = 0 (2.22)

where dt = ∂t+ ζ̂×∇ϕ2 ·∇. We note also that the condition (∇ ·B)2 = 0 becomes

∇⊥ ·B⊥2 = 0, since I0 = 0. This implies that B⊥2 can also be written in terms of

the flux function ψ, viz.,

B⊥2 = ζ̂ ×∇ψ1. (2.23)
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We now proceed to O(ε3). The annihilation equation (2.9) becomes

(B ·∇)1(j‖/B)
2

+ (B ·∇)2(j‖/B)
1

= 0 (2.24)

where, again, we note that the remaining terms in the equation contribute only at

4th order. To calculate j ·B/B2 to 2nd order, we note that j⊥ ·B⊥ is of order ε3

since j⊥ is of 2nd order, at largest. Thus to the required order

(j||/B)2 = (I∇ζ · (∇×B)/B2)2 = ∇2
⊥ψ1 (2.25)

Using this in the expression for j||/B above, we get the annihilation condition to be

(B ·∇)1∇2
⊥ψ1 = 0. (2.26)

Thus, ψ1 is a “flute function”, that is to say it is constant along a twisted magnetic

field line but not necessarily constant across the field lines, i.e., ψ1 = ψ1(r, α).

Hereon, we will suppress the prime on r as there is no ambiguity. We also find, from

the annihilation equation (2.8),

(B ·∇)1n0 = 0. (2.27)

We now write Eq (2.6) at 3rd order. An as yet unknown term, u3 × ζ̂, appears

on the RHS and can be annihilated by dotting with ζ̂ (or, equivalently, using the

annihilation equation Eq. (2.10)). Noting that ε A1 = −ψ0∇ζ, consistent with

(2.15), and that ψ0 is self-consistently time independent, the annihilated equation

becomes

(B ·∇)1ϕ2 = 0. (2.28)

The foregoing three equations imply that all of the functions {n0, ϕ2, ψ1} are flute

functions. We denote ψ1 by ψ1 just to emphasize its flute nature.
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We pause here to collect the description for the B field so far. B is, in general

written as (2.11). To the extent that we have obtained so far, to 2nd order in ε,

expressions for I−1, I0, and I1, and expressions for ψ0 and ψ1, (see equations (2.13),

(2.20), (2.23), and (2.26)), we may write the B field from (2.11), in familiar form,

as

B = I∇ζ +∇ζ ×∇ψ +O(ε3) (2.29)

where I = I−1 + I1(r, α), and ψ = ψ0(r) + ψ1 (r, α). This expression for B is

familiar; it is correct to 2nd order in ε and only 3rd order terms are dropped. Note,

however, that the field is not axisymmetric (usually the form (2.29) is employed for

axisymmetric fields). We will show in what follows that this is the only required

precision in B necessary to close our set of equations.

Finally, we go to fourth order. We first apply the E|| = 0 annihilation condition

(2.10). This gives us

(B ·∇)1ϕ3 + (B ·∇)2ϕ2 = ∂ψ1/∂t. (2.30)

The ϕ3 term is higher order and not needed. This term can be annihilated by

integrating over each separate closed field line for fixed α, i.e., we use the condition∮
dθ′(B ·∇)1f = 0. We get

dtψ1 = 0. (2.31)

We now proceed to the annihilation equation (2.9). The field line bending term,

B ·∇(j‖/B), is the largest term. This term, to 4th order, is (B ·∇)1(j||/B)3 + (B ·

∇)2(j||/B)2, since (j||/B)1 is a constant. As above, we annihilate the (j||/B)3 term

by field line averaging. The remaining terms yield the vorticity equation (see 2.9),
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viz.

∇⊥ · (dt n0∇⊥ϕ2) =
2β̄

q0

∂ζn0 + (B ·∇)2∇2
⊥ψ1. (2.32)

Here, the LHS, being the “smallest” term, is calculated to lowest order in the

cylindrical geometry. An expression for (j||/B)2 was previously obtained (see Eq

(2.25)) and has been used to calculate the surviving field line bending term, where

(B ·∇)2 = ζ̂ ×∇ψ1 ·∇. The j ·∇p = j2 ·∇p2 term is zero because of pressure

balance condition, Eq.(2.19). The only nonzero contribution from the term propor-

tional to B ×∇p · ∇(1/B2) is J1 ζ̂ ×∇ψ0 ·∇n0 on account that I0 = 0 and that

the non-constant part of I1 is equal to p2, as seen from (2.20). Using Eq.(2.27), this

term can be shown to give the first term on the RHS.

2.3.3 Summary: Closed set in a cylinder

The complete set for a cylinder that describes {n0, ϕ2, ψ1} is given by:

dtn0 = 0 (2.33)

dtψ1 = 0 (2.34)

∇⊥ · (dt n0∇⊥ϕ2) =
2 β̄

q0

∂ζn0 + ζ̂ ×∇ψ1 ·∇∇2
⊥ψ1 (2.35)

where, dt = ∂t + ζ̂×∇ϕ2 ·∇. Eqs (2.33), (2.34), and (2.35) now constitute a closed

system for the flute functions n0, ϕ2, and ψ1 . These equations incorporate the

cylindrical flute interchange, and also the shear Alfvén wave in the presence weak

magnetic shear (or weakly off-rational fields). Together, these describe the low β

interchange in a sheared field. Magnetic shear is introduced in the system in the ψ1
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field as follows: the usual tokamak safety factor q is defined as 1/q(r) = RBθ/(rBζ),

where Bθ = (1/R)dψ/dr. Thus, to lowest order in our expansion,

1/q0 = dψ0/d(r2/2)

where q0 is assumed rational which is consistent with the choice of ψ0 = r2/(2q0).

To first order then, we get then

q0/q(r)− 1 = ε dψ1/dψ0

which defines q(r). Per our expansion, the RHS must be small; thus, our system of

equations is valid provided q is close to (but not equal to) rational. The magnetic

shear parameter is defined in the usual way as ŝ = (r/q0)(dq/dr)0. The parallel

wave number may be defined as k ·B/B. This can be calculated out to

k|| = (m/R)(1/q − 1/q0) = ε2 k̄||

where εk̄|| = m(1/q−1/q0) is an O(1) quantity in our ordering. For the full nonlinear

equations above, the validity of our expansion can be checked by demanding k||cA �

cA/(qR). This scales, using k|| ∼ k′||∆x, as ŝ ∆x m � 1, where ∆x is the radial

extent from the rational surface and k′|| = mŝ/(q0R). Thus, for a given m spectrum,

this puts a restriction on the shear strength or the extent of the considered radial

domain.
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2.4 Reduction in Toroidal Geometry

We now derive sub-Alfvénic equations in toroidal geometry. The calculation

parallels the cylindrical calculation closely. The primary difference is that the ζ̂ unit

vector is not constant in space, as in the cylindrical case, but points in the azimuthal

direction of a toroidal geometry which can be described by the usual {R, ζ, z} system.

The curvature vector ζ̂ ·∇ζ̂ points in the R̂ direction, i.e., ζ̂ ·∇ζ̂ = −R̂/R. We

will assume circular flux surfaces and use the toroidal coordinate system {r, θ, ζ},

where z = r sin θ, and R = 1/ε+ r cos θ. We will sometimes write R = 1/ε+x, with

x = r cos θ. The ordering is the same as given by (2.7). Again, we will use for B the

representation, B = I∇ζ +B⊥. Proceeding order by order as before, we recover, to

O(ε2), results identical to the cylindrical results as follows:

B0 = ζ̂, j1 = J1ζ̂, with J1 = (1/r)∂r(rψ
′
0) = 2/q0 (2.36)

I0 = 0 (2.37)

(B ·∇)1J1 = 0 (2.38)

where (B ·∇)1 = ∂ζ + ζ̂ ×∇ψ0 ·∇.

Here, we make the choice that ψ0 is axisymmetric and only a function of r, ψ0(r) =

r2/(2q0), as in the cylinder, and given the magnetic geometry under investigation.

Again parallel to that shown in cylindrical geometry, we find that B can be written,

to O(ε2), in the familiar form

B = I∇ζ +∇ζ ×∇ψ +O(ε3) (2.39)
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with the important distinction that ∇ζ = ζ̂/R where R = 1/ε + x, with x � 1/ε.

In this form, I = 1/ε+ ε I1 and ψ = ψ0 + ε ψ1, with (2.39) calculated to a precision

no higher than O(ε2). Given this form for B, it can be deduced, from B =∇×A,

that A to commensurate order is given as

A = −ψ∇ζ +A⊥. (2.40)

The similarity to the cylindrical results continues to the Grad-Shafranov equa-

tion. As in the cylindrical calculation, to this order, we can show that j2× ζ̂ =∇I1.

This leads to the same Grad-Shafranov equation as in cylindrical, viz.,

I1 + J1ψ0 + β̄n0 = 0 (2.41)

and the flow velocity

U2 = U||2 + ζ̂ ×∇ϕ2. (2.42)

Also, to this order, using the expression for u2, we find an evolution equation for n0

from the continuity equation, (2.1), viz.,

dtn0 = 0. (2.43)

The equations are, however, modified at the O(ε3) and higher level. To O(ε3),

the annihilation equation (2.9) becomes

(B ·∇)1

(
j||/B

)
2

+ (B ·∇)2

(
j||/B

)
1

= −∇ · (B ×∇p/B2) (2.44)

where the inertial term is 4th order.
(
j||/B

)
1

is a constant, thus the 2nd term does

not contribute. To calculate j ·B/B2 to 2nd order, we note that j⊥ ·B⊥ is of order
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ε3 since j⊥ is of 2nd order, at largest. The remaining term is I∇ζ · (∇ × B)/B2

which can be calculated to be ∆∗ψ/I ≡ R2∇⊥ · (R−2∇⊥ψ)/I. This implies,

(
j||/B

)
2

= (∆∗ψ/I)2 = (∆∗ψ)1 (2.45)

where

(∆∗ψ)1 = ∆ψ1 − ∂ψ0/∂R. (2.46)

and ∆ = ∂2
R + ∂2

z =
1

r
∂r(r∂r) +

1

r2
(∂α + ∂θ′)

2.

This provides the information needed to evaluate the line bending term. As far as

the pressure term on the RHS, this can be decomposed as

∇ · (B ×∇p/B2) = B ×∇p ·∇(1/B2) + j ·∇p. (2.47)

Since j×B =∇p up to O(ε3), j ·∇p is at minimum of O(ε4). Further, to the order

required, the equilibrium equation,

∇(B2/2 + p) = B ·∇B (2.48)

can be used to insert for ∇B2 into the pressure term in (2.47). The pressure term

then becomes 2B ×κ ·∇p/B2, where κ = b̂ ·∇b̂ is the field curvature. Evaluating

the latter pressure term to 3rd order results in −2∂p/∂z. Collecting all terms, the

annihilation equation (2.44), to O(ε3), becomes

(B ·∇)1

(
j||/B

)
2

= 2∂p2/∂z,
(
j||/B

)
2

= (∆∗ψ)1. (2.49)

We now note from (2.49) that ψ1 is driven by β and also driven by ∂ψ0/∂R

(see also Eq. (2.46)). The homogenous solution for ψ1 is constant along field lines

23



and corresponds to the flute part of ψ1, as in the cylindrical limit. The particular

solutions correspond to the well-known Shafranov shift, a purely toroidal effect.

The Shafranov shift has two components: the cos θ term in (2.46), proportional to

∂ψ0/∂R, gives a static shift, Ψ1x, from the magnetics; while the β driver, the ∂p2/∂z

term in (2.49), is time-dependent and, thus, gives a dynamic Shafranov shift, Ψ1β.

Further, while the equilibrium magnetic shift is toroidally in-out, the dynamic shift

has both in-out and up-down components. Thus, in summary

ψ1 = ψ1 + Ψ1, where Ψ1 = Ψ1x + Ψ1β (2.50)

∆Ψ1x = ∂Rψ0 (2.51)

(B ·∇)1(∆Ψ1β) = 2β̄ ∂zn0 (2.52)

where ψ1 is a flute function, and Ψ1 is harmonic.

Continuing further at 3rd order, we find from the annihilation equation (2.8)

(B ·∇)1n0 = 0. (2.53)

We also write the annihilation Eq (2.10) at 3rd order. Noting that εA1 = −ψ0∇ζ,

consistent with (2.39,2.40), and that ψ0 is time independent, the annihilated equa-

tion becomes

(B ·∇)1ϕ2 = 0. (2.54)

In higher order, we will also need (B ·∇)2. This can be obtained starting from the

expression (2.39) for B. Using the result that I0 = 0, we readily find

(B ·∇)2 =
(
(I/R2)∂ζ +∇ζ ×∇ψ ·∇

)
2

= −2 x ∂ζ − x ζ̂ ×∇ψ0 ·∇+ ζ̂ ×∇ψ1 ·∇ (2.55)
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where, ∇ζ = ζ̂/R, and the various terms are to be evaluated to O(ε2).

The foregoing equations imply that all of the functions {n0, ϕ2, ψ1} are flute

functions, while Ψ1 is a harmonic function of θ′ and is obtained from Eqs. (2.50-

2.52). At this stage, we have an evolution equation for n0, Eq (2.43). To close the

loop, we will need, as in the cylindrical case, a vorticity equation for ϕ2, as well as

an evolution equation for ψ1. To do this, we need to proceed to 4th order. First, we

apply, at 4th order, the E|| = 0 annihilation condition (2.10). This results in

(B ·∇)1ϕ3 + (B ·∇)2ϕ2 = ∂ψ1/∂t. (2.56)

We average this over each field line, viz.,
∮

dθ′(B · ∇)1f = 0, to eliminate the

(B ·∇)1ϕ3 term. This gives us the evolution equation for ψ1

dtψ1 = 0. (2.57)

Next, we need an evolution equation for ϕ2. This necessitates evaluating the an-

nihilation equation (2.9) to 4th order. The line bending terms are to be calculated

to this order as (B ·∇)1(j‖/B)3 + (B ·∇)2(j‖/B)2 + (B ·∇)3(j‖/B)1, and then

averaged along the field lines. The first of these terms vanishes upon averaging,

while the 3rd one is zero since (j||/B)1 is a constant. The 2nd term survives; this is

to be evaluated using the full expression for ψ1 defined in (2.50), where the terms

(B · ∇)2 and (j||/B)2 are as defined in (2.55) and (2.45). It is natural to split〈
(B ·∇)2(j||/B)2

〉
into a piece independent of θ′, ie, the flute part, and the remain-

ing θ′-dependent parts. The flute part can be written as 〈(B ·∇)2〉
〈
(j||/B)2

〉
where

〈(B ·∇)2〉 = ζ×∇ψ1·∇ and
〈
(j||/B)2

〉
= ∆ψ1, where ∆ = (1/r)∂r(r∂r)+(1/r)2∂2

α
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is the averaged Laplacian. This split is facilitated by the fact that ψ1 itself is de-

composed as a linear combination of the flute part and harmonic part, as discussed

in Eq. (2.50). Upon effecting this split, the harmonic terms in the line bending

terms can be written as
〈
d2(j||/B)2

〉
, where, using (2.55),

d2 = −x (2∂ζ + ζ̂ ×∇ψ0 ·∇) + ζ̂ ×∇Ψ1 ·∇. (2.58)

We note that the operator d2 ≡ (B ·∇)2 − 〈(B ·∇)2〉 has all harmonic terms. To

calculate B ×∇p ·∇B2, we again use the equilibrium condition (2.48) above, still

correct to the required order, to get a term proportional to B × κ. To 2nd order,

we readily find Bκ = B ·∇(B/B) becomes (B ·∇)1(ζ̂ +B⊥) = −R̂/R + B2
θ r̂/r.

Thus, the required term becomes 2β̄〈∂z n1〉 plus the previously obtained cylindrical

term 2 (β̄ ∂ζn0)/q0.

Finally, we evaluate the inertial term∇·(B×dU/dt) to 4th order. This term is only

cylindrical since d/dt and p are each of 2nd order. Thus, we get ∇ · (ζ̂ × dU2/dt) =

∇⊥ · dt∇⊥ϕ2. Collecting all the terms, we get the annihilated equation (2.9) to 4th

order,the vorticity equation,

∇⊥ · (dt n0∇⊥ϕ2) =
2 β̄

q0

∂ζn0 + ζ̂ ×∇ ψ1 ·∇∇2
⊥ψ1 − 2β̄〈∂z n1〉+ 〈d2(j||/B)2〉.

(2.59)

Between (2.43), (2.57), and (2.59), we now have a set of evolution equations

for the flute variables n0, ϕ2, ψ1. However, unlike in the cylinder, the system is not

closed, on account of the n1 term in (2.59). We thus write out the density equation
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(2.1) to 3rd order:

dtn1 + x ζ̂ ×∇ϕ2 ·∇n0 + ζ̂ ×∇ϕ3 ·∇n0

+n0(B ·∇)1U||2 − 2n0∂zϕ2 = 0. (2.60)

We also need an equation for U||2. We obtain this by evaluating (2.8) to 4th order:

(n0/β̄) dtU||2 + (B ·∇)1n1 + (B ·∇)2n0 = 0. (2.61)

Thus, we have equations for n1 and U||2. At first glance, it appears as though a

vorticity equation like (2.59) would be needed to advance ϕ3. However, examination

of (2.59) reveals that in the averaged term 〈∂zn1〉 only sine and cosine averages of

n1 are needed. Further, the driving term for n1, from the n1 equation (2.60), is the

flute function ϕ2, in particular the dot product ẑ ·∇ϕ2; this term, in the circular

surface geometry, has only sin θ and cos θ components. Thus, we only need the

harmonic projections of the n1 equation (2.60). Further, in (2.56), we only need the

first harmonics of ϕ3 to advance n1. The system is now closed as we have evolution

equations for the 3 flute functions n0, ϕ2, ψ1, and equations for the first harmonics of

n1 and ϕ3. In addition, the first harmonics of ψ1, required in (2.56) to calculate ϕ3,

are obtained by inverting the Shafranov shift equation (2.49), as already discussed

in Eqs. (2.51) and (2.52). Note that, on account the Shafranov shift is dynamic,

the harmonics of ψ1 are time-dependent.

2.4.1 Summary: closed set in a torus

In this section, we have derived closed equations Eqs. (2.43, 2.57, 2.59), in

toroidal geometry for the flute variables {n0, ϕ2, ψ1} as coupled to the first harmonics
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of n1, U||2, ϕ3,Ψ1 given by Eqs. (2.60, 2.61, 2.56, 2.49) respectively. We now show a

further simplification.

2.5 Further reduction

While we have a complete set of equations, which contains the physics of both

interchange modes as well as sub-ballooning Alfvén modes, there are indications

that further simplifications are likely. In this section, we rewrite the complete set

using a more natural density variable to obtain simplified equations.

We begin by noting that in the complete set above there are 3 primary oper-

ators, which we will define as follows: d1 = (B ·∇)1, d2 = (B ·∇)2 − 〈(B ·∇)2〉,

and ∂z. These operators and their commutators are defined in Appendix A. Note

that d1 = (1/q)∂θ′ is the derivative along a cylindrical field line. We now show that

there is a cancellation of two large terms in the vorticity equation (2.59), between

the line bending term, d2

(
j||/B

)
2
, and the ∂zn1 term. We first observe that if the

system is subsonic, then the B ·∇n term in (2.61) must be zero in that limit. We

are motivated by this to introduce a new density variable, N1, defined according to

d1n1 + d2n0 = d1N1. (2.62)

Note that this equation is consistent under the field line averaging operation. N1

must be very small under subsonic conditions. From (2.62), using (A.9), we have

n1 = N1 + q2
0d1d2n0. (2.63)

We now insert this form of n1 into the 〈∂zn1〉 term in (2.59), and insert
(
j||/B

)
2

from (2.49) into the field line bending term
〈
d2

(
j||/B

)
2

〉
in (2.59). Upon these
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insertions, and leaving aside for now the N1 term, the last two terms in (2.59)

become proportional to

〈d2d1∂zn0 + ∂zd1d2n0〉. (2.64)

Given the symmetry in the operators in (2.64), a possibility for a cancellation is

clearly evident. A cancellation becomes almost certain if one examines these terms

in the WKB limit. Assuming solutions of the form ∼ exp(ikα + γt), the linearized

interchange mode is obtained from the continuity equation (2.43), which couples

γn0 to kϕ2, and from the vorticity equation (2.59), which couples γk2ϕ2 to the RHS

term involving the terms in n0 given in (2.64) above. Note now that the terms

in (2.64) go as k2, since both d2 and ∂z go as k. The interchange dispersion then

would result in γ2 ∝ k, which is clearly not consistent with the well-known Mercier

interchange for which γ is independent of k in the large k, WKB limit. Thus, a

cancellation is to be expected.

Indeed, we can show a nonlinear cancellation in (2.64) as follows. We note that

d2d1∂zn0 = d2[d1, ∂z]n0 since d1n0 = 0; and 〈∂zd1d2n0〉 = 〈[∂z, d1]d2n0〉 since 〈d1f〉 =

0. Here, for operators A and B, the commutator is defined as [A,B] = AB − BA.

Definitions, properties and commutators of Poisson brackets and relevant operators

are discussed in detail in Appendix A. Thus, expression (2.64) becomes

〈d2[d1, ∂z]n0 + [∂z, d1]d2n0〉 = 〈[d2, [d1, ∂z]]n0〉 (2.65)

using [d1, ∂z] = −[∂z, d1]. Further, as shown in Appendix A Eq.(A.10), q0[d1, ∂z]n0 =

∂Rn0. Thus, the expression (2.65) becomes (1/q0) 〈[d2, ∂R]n0〉. The commutator
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[d2, ∂R] has been calculated in Appendix A, Eq.(A.15). We find

〈[d2, ∂R]n0〉 = 〈(x/q0) ∂zn0 + {∂RΨ1, n0}+ ∂ζn0〉. (2.66)

To further evaluate (2.66), we note readily that the 1st term on the RHS, upon

averaging, becomes (1/2)∂αn0, which then combines with the 3rd term. The 2nd

term is evaluated in Appendix C: in brief, only the piece of Ψ1 that comes from the

equilibrium magnetic Shafranov shift,Ψ1x, survives the averaging, resulting in a term

equal to (1/2)∂αn0, which simply combines with the other ∂αn0 terms already found;

the piece of Ψ1 that comes from finite β terms, Ψ1β, the dynamic Shafranov shift,

simply averages to zero (shown in Appendix C). Altogether then, the expression〈
−2 β̄ ∂zn1 + d2

(
j||/B

)
2

〉
reduces to

− 2 β̄ (〈∂zN1〉 − ∂αn0) . (2.67)

Note that this expression scales as ∼ k, indicating a large cancellation from the

original scaling of k2 terms in Eq.(2.64).

We thus have the RHS of the vorticity equation, greatly simplified. We now

turn to the n1 equation, (2.60). This has to be rewritten in terms of the N1 variable,

where N1 and n1 are related by the Eq. (2.63). Inserting for n1 from (2.63) into

(2.60), we get

dtN1 − 2∂zϕ2 + n0d1U||2 + F = 0 (2.68)

where F = q2
0dtd1d2n0 + {n0, ϕ3}+ x{n0, ϕ2}.

We will now show that there is a large cancellation in (2.68), in that F is indeed

equal to zero. To show this, it will be convenient to redefine the operator d2 (see
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Eq.(2.55)) so as to split it into x-dependent and x-independent pieces according to

d2 ≡ R1 + { ,Ψ1}, where R1 ≡ −x(d1 + ∂ζ). (2.69)

We will also need the expression for ϕ3 as defined in Eq. (2.56). This expression

can also be split into x-dependent and independent pieces, using (2.69), as

d1ϕ3 = dtΨ1 −R1ϕ2. (2.70)

We now insert for d2 from (2.69) and for ϕ3 from (2.70) into the term F in (2.68)

to get, upon separating out the R1 terms,

F = q2
0 (dtd1{n0,Ψ1} − {n0, d1dtΨ1})+

q2
0(dtd1R1n0 + {n0, d1R1ϕ2}) + x{n0, ϕ2}. (2.71)

Using the commutation property of [d1, dt] from Eq.(A.14) in Appendix A, and

d1n0 = 0 and dtn0 = 0, the 1st and 2nd terms can be seen to exactly cancel. The

remaining x-terms in F can be expanded, using (A.6) and d1R1n0 = [d1,R1]n0 =

(z/q0) ∂ζn0, as

q0(z ∂ζ∂tn0 + {z∂ζn0, ϕ2}+ {n0, z∂ζϕ2}) + x{n0, ϕ2}. (2.72)

For the 2nd and 3rd terms in this equation, we use the identity (B.3) in Appendix B

to rewrite (2.72) as

q0(z∂ζ∂tn0 + z∂ζ{n0, ϕ2} − {n0, ϕ2}R,ζ) + x{n0, ϕ2}z,R.

We see immediately that the first two terms cancel since dtn0 = 0. In addition, the

3rd and 4th terms cancel using the identity (B.1) in Appendix B.
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2.5.1 Summary: closed set in a torus (in new variables)

The two large cancellations described above lead to a significant simplification,

resulting in transparent equations for the vorticity and for the new density variable

N1. The equations for {n0, ϕ2, ψ1, N1, U||2} can be summarized as

dtn0 = 0 (2.73)

dtψ1 = 0 (2.74)

∇⊥ · (dt n0∇⊥ϕ2) = −2β̄ 〈∂zN1〉

− 2β̄
(
1/q2

0 − 1
)
∂αn0 +

1

r
{ψ1,∆ψ1}(r,α) (2.75)

dtN1 − 2∂zϕ2 + n0d1U||2 = 0 (2.76)

n0dtU||2 + β̄d1N1 = 0. (2.77)

2.6 Resistive MHD

In this section, we extend our sub-Alfvénic formalism to include non-ideal

effects stemming from resistivity. We order resistivity such that ∂t ∼ η ∇2
⊥, i.e.,

η = η̄ε2 ∼ O(ε2) Ohm’s law in resistive MHD is

E + u×B = η j +Eext (2.78)

where Eext = Eext(1/ε)∇ζ is an external inductive toroidal electric field needed to

maintain a steady lowest order flux surface ψ0. We note that resistivity will modify

our previous reduced equation only through Faraday’s law, Eqn. (2.3). Therefore,
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here we will rederive only the terms in Faraday’s law, order by order. First, Faraday’s

law to 2nd order is unchanged since η j is of 3rd order at lowest. Thus, Eq. (2.77) for

u2 remains unchanged. To 3rd order, we begin with the annihilated Faradays law,

equation (2.10). This gives (B ·∇)1ϕ2 = ∂tψ0− η̄ J1−Eext. Annihilating the B ·∇f

term in the usual manner, and assuming ∂tψ0 = 0, we obtain Eext = −η̄J1 = −η̄∆ψ0.

This ensures ϕ2 remains a flute function.

To 4th order, we have

d1ϕ3 +R1ϕ2 = dtψ1 − η̄ (j ·B)2 − x Eext

= dtψ1 − η̄∆ψ1 − x η̄/q0. (2.79)

This equation is the analogue of Eq. (2.70). There are several x terms: obtained

from the x correction to Eext and η̄ (j ·B)2. Before solving for ϕ3, we annihilate

the d1 operator. This results in the evolution equation for the flute part of the flux,

ψ1, including the resistive diffusion term, viz.

dtψ1 = η̄∆ψ1 (2.80)

d1ϕ3 +R1ϕ2 = (dt − η̄∆)Ψ1 − x η̄/q0. (2.81)

The oscillatory part of ϕ3 can now be solved for. An examination of the terms that

drive ϕ3 shows that resistivity enters only in the last two terms in Eq. (2.81). The

remaining terms are all “ideal” terms that have been obtained before. In addition,

all ψ1 terms are the same as in the ideal limit, since the Shafranov shifts, driven

by n0 and ψ0, are not affected by resistivity. We may thus separate out the ideal
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and the resistive parts of ϕ3 as ϕ3 = ϕI3 + ϕPS3 where ϕI3 satisfies the ideal equation

(2.70) and ϕPS3 is the potential set up by Pfirsch-Schluter diffusion and is given by

ϕPS3 = η̄ q2
0 d1(∆Ψ1 + x/q0) = −2η̄(z − q2

0 β̄ ∂zn0). (2.82)

This separation between ideal and resistive parts of ϕ3 makes the transition to N1

from n1 transparent. In particular, the ϕI3 part cancels out exactly as in the ideal

case but the ϕPS3 does not. Thus, the resistive N1 equation becomes

dtN1 + n0d1U||2 − 2∂zϕ2 + uPS ·∇n0 = 0 (2.83)

where

uPS = ζ̂ ×∇ϕPS3 . (2.84)

As noted earlier, the flow from ϕ2 is unaffected by the resistivity. All the extra flows,

allowed by resistivity from frozen-in slippage, are now, to required order, captured

by the (non-axisymmetric) Pfirsch-Schluter cells, uPS.

2.6.1 Summary: reduced Resistive MHD equations in a torus

In summary, we find that resistivity can be included in our formalism in

a straightforward manner. The only modifications to the ideal toroidal system

Eq.(2.73)-(2.77) are in the dtψ1 and dtN1 equations. The resistive version of these

equations are given by Eq (2.76,2.74) replaced by (2.83,2.80).
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2.7 Complete set of toroidal sub-Alfvénic equations

We summarize here the complete set of sub-Alfvénic resistive MHD equations.

We drop without ambiguity all subscripts, for clarity. The toroidal nonlinear sub-

Alfvénic equations for {n, ϕ, ψ,N, U||} are:

dtn = 0 (2.85)

(dt − η̄∆)ψ = 0 (2.86)

∇⊥ · (dt n∇⊥ϕ) = −〈2 β̄ ∂zN〉

− 2 β̄
(
1/q2

0 − 1
)
∂αn+

1

r
{ψ,∆ψ}(r,α) (2.87)

dtN − 2n ∂zϕ+ nd1U|| + u
PS ·∇n = 0 (2.88)

ndtU|| + β̄d1N = 0 (2.89)

where,

dt = ∂t + ζ̂ ×∇ϕ ·∇ = ∂t +
1

r

(
{ϕ, }(r,α) + ∂rϕ ∂θ′

)
∆ = (1/r)∂r(r∂r) + (1/r2)∂2

α

∂z = sin θ′∂r + (1/r) cos θ′(∂θ′ + ∂α)

d1 = (1/q0)∂θ′ , 〈 〉 =

∮
dθ′

2π

uPS ≡ ζ̂ ×∇ϕPS, ϕPS = −2η̄(z − q2
0 β̄ ∂zn).

While these equations are complete, they are not manifestly 2D. As discussed, we

only need the harmonic projections, as defined byX = Xs(r, α) sin θ′+Xc(r, α) cos θ′,

for X = (N,U||, ϕ
PS) with subscripts ‘c’ and ‘s’ denoting cosine and sine har-

monics. To make the 2D nature of the equations explicit, we rewrite the above
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complete set so that it only involves (r, α) coordinates and the flute variables

{n, ψ, ϕ,Ns, Nc, U||s, U||c}. These equations are

dtn = 0 (2.90)

(dt − η̄∆)ψ = 0 (2.91)

∇⊥ · (dt n∇⊥ϕ) = −〈2 β̄ ∂zN〉

− 2 β̄

(
1

q2
0

− 1

)
∂αn+

1

r
{ψ,∆ψ}(r,α) (2.92)

dt

Ns

Nc

+
1

r
∂rϕ

−Nc

Ns

+
n

q0

− U||c
U||s

 =

S1

S2

 (2.93)

ndt

U||s
U||c

+
n

r
∂rϕ

−U||c
U||s

+
β̄

q0

−Nc

Ns

 = 0 (2.94)

where, all 7 variables are functions of (r, α) and

dt = ∂t + (1/r){ϕ, }(r,α)

2 〈∂zN〉 = (∂r + 1/r)Ns + (1/r)∂αNc

ϕPSs = −2η̄(r − q2
0 β̄ ∂rn)

ϕPSc = 2η̄(q2
0 β̄ ∂αn)/rS1

S2

 =
1

r

2n r∂rϕ+ {n, ϕPSs }r,α − ϕPSc ∂rn

2n ∂αϕ+ {n, ϕPSc }r,α + ϕPSs ∂rn

 .

We restate here the normalizations: lengths are normalized to the minor radius

a; time rates are normalized to ε2cA/a ∼ cs/R, ε = a/R. The time-varying part

of the magnetic field is defined according to ε2B2 = ε2ζ̂ ×∇ψ1. In addition, the
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complete density is given as n+ εn1, where n1 is defined in terms of N by Eq (2.63).

The operators d1 and d2 are defined in the Appendix, Eqs. (A.7) and (A.8).

2.8 Invariants of the Reduced system

Ideal MHD [1] satisfies a number of important conservation properties e.g con-

servation of mass, momentum, energy, flux, angular momentum, magnetic helicity,

cross helicity etc. In this section we shall discuss the various quantities that are

conserved by our reduced system of equations. The proofs are given in Appendix

E. Besides mass and magnetic flux, Eqs (2.85,2.86,2.88), the following are also con-

served:

1. Magnetic-helicity ∫
rdrdαdθ′ψ (2.95)

where ψ includes both the periodic and flute components of ψ1.

2. Cross-helicity in a closed field line:∫
rdrdαdθ′ U|| (2.96)

3. Angular momentum (in axisymmetry):∫
rdr

((
U||c −

1

q0

∂rϕ

)
nr +

〈
NU||

〉)
(2.97)

4. Energy:∫
rdrdα

(
1

2
|∇ψ|2 +

1

2
n|∇ϕ|2 +

1

2

(
β̄

n

〈
N2
〉

+ n
〈
U2
||
〉)
− 2β̄

(
1

q2
0

− 1

)
rn

)
(2.98)
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where
〈
NU||

〉
= (1/2)

(
NsU||s +NcU||c

)
etc.

Let us now compare these with the corresponding quantities obtained from the

full MHD system. The form of cross helicity in ideal MHD is
∫
dVU ·B. To required

order we recover Eq.(2.96). The form for angular momentum is volume integral of

nMu ·∇ζR2 = nM(RU|| − (r/q0)∂rϕ). Thus after averaging, U||c survives. The〈
NU||

〉
occurs because first order density and || flow vary poloidally. Finally, from

the energy density of isothermal ideal MHD [13],

E =
B2

2
+

1

2
nu2 + nT log(n)

we can see that the first term in Eq.(2.98) is the B2
p energy, the flow energy is

composed of averaged (n/2)(U2
|| + |∇ϕ|2). The logarithmic term nT log n, which is

a hallmark of a isothermal system, when expanded to required order gives the term

quadratic [13] in N and finally we have an “effective gravity” like term∼ (1/q2
0−1)rn

due to the averaged curvature of B.

2.9 Various sub-limits

The sub-Alfvénic equations, (2.85) to (2.89), can be examined in two illumi-

nating limits, the axisymmetric limit, and the subsonic limit. We discuss these two

limits in this section.

2.9.1 Axisymmetric limit

We discuss the axisymmetric (∂ζ = 0 = ∂α, ∂θ′ = ∂θ) limit of the subalfvénic

equations. In this limit, the flute functions are only functions of r and t. The E×B
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flows are on a magnetic surface. Thus, the total time derivative is given by

dt = ∂t +
1

r

dϕ(r, t)

dr
∂θ (2.99)

and equation (2.73) becomes ∂tn = 0, which yields n = n(r).

In the vorticity equation we see that the only non zero contribution comes from

the term 〈∂zN〉 on the RHS of (2.75); the interchange and the field line bending

terms vanish in the ∂α = 0 limit, and ψ1 is not needed. Thus, the axisymmetric

reduced equations, which govern ϕ,N , and U||, are given by

1

r
dr

(
n r

d

dr
∂tϕ

)
= −2β̄〈∂zN〉 (2.100)

dtN − 2∂zϕ+ nd1U|| −
q0

r
n′(r) d1ϕ

PS = 0 (2.101)

ndtU|| + β̄d1N = 0 (2.102)

where d1 = (1/q0)∂θ, ϕPS = −2η̄z(1− rn′β̄p), βp = (q2
0/r

2)β̄.

In the limit of zero resistivity and ∂r � 1/r these equations reduce to the

nonlinear system of equations developed by Hassam-Drake [14] (HD). In that work,

in-out asymmetric density source terms were included to show the existence of spon-

taneous poloidal spin-up. However, a spin-up can also be obtained from the resistive,

Pfirsch-Schluter, flows. These terms appear in our N density equation and, as shown

below, provide necessary source terms to drive spontaneous poloidal spin up.
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From the axisymmetric equations (2.100)− (2.101), an equilibrium solution is:

n = n(r), N = ϕ = 0, Ψ = Ψc cos θ′

U||,s = −2η̄ q0
n′

n
(1− β̄p rn′) (2.103)

The parallel flows are in response to the toroidally outward resistive flow produced

from the Pfirsch-Schluter potential ϕPS; these are the well known Pfirsch-Schluter

convection cells. Let us now linearize the system about this equilibrium. We shall

assume that fluctuating gradients are much bigger than equilibrium gradients. We

shall denote perturbations by overhead tildes. Assuming the perturbations Ñ , ϕ̃, Ũ||,

to have a eγ t dependence, we obtain the following dispersion relation (in agreement

with Eq 41 in HD [14])

γ

(
1 + 2q2

0 +
γ2

β̄/q2
0

)
≈
q0U||,s
r

(2.104)

The parallel flow is resistive, thus small. As obtained in HD, the cubic equation

yields GAMs and sound waves as the high frequency solution, and the Stringer-

spinup with an effective mass as the low frequency solution.

We note that zero frequency incompressible zonal flows are also obtained from

the set (2.100)-(2.102) by allowing ϕ(r) as part of the equilibrium. In this case, U‖

and ϕ are related by the incompressible condition U‖ = −2q cos θdϕ/dr.

2.9.2 Subsonic limit

It is instructive to study the sub-Alfvénic equations (2.85)-(2.89) in the limit

that time variations are subsonic. This can happen, for example, when the Mercier

40



driving term is weak, or in the case of zonal flows. We study this by a subsidiary

expansion with dt � cs/R. In this limit, dtU|| in Eq (2.77) is very small compared

with the d1 N term. Thus, N is a flute to lowest order and we can set this to

zero. This implies we can ignore dtN in equation (2.76). Denoting the subordered

quantities by superscripts we obtain,

d1N
(0) = 0 ⇒ N (0) = 0 (2.105)

d1U
(0)
|| = 2∂zϕ. (2.106)

Thus, the flow is incompressible as expected. We substitute this in (2.77) to obtain

the correction to N ,

d1N
(1) = −(n/β̄)dtU

(0)
|| = (nq0/β̄)dt∂Rϕ. (2.107)

Operating with d1 on this equation again and using the fact that [d1, dt] = 0, we

obtain N (1) = 2(q2
0/β̄)dt (n∂zϕ ). From the vorticity equation (2.75) we observe that

N enters through 〈∂zN〉. Using the expression for the latter from Appendix D we

find that the subsonic vorticity equation takes the form of

(1 + 2q2
0) dtΩ = −2

(
1

q2
0

− 1

)
β̄ ∂αn+

1

r
{ψ,∆ψ}(r,α). (2.108)

This clearly shows that in the ideal subsonic limit, the incompressible flows result

in an “effective mass”, leading to the Pfirsch-Schluter (1 + 2q2) factor.

2.10 Linearized modes

In this section, we examine the linearized version of the full equation set (2.85-

2.89), to effect a cross check with previous well known results. We consider the
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axisymmetric equilibrium Eq.(2.103) about a rational surface q0 = m/n with q(r)

close to q0 and ψ related to q(r) by (ε/r)dψ/dr = (1/q(r) − 1/q0). We consider

perturbations of the form ∼ eγ te−ιmα. The linearized set is given by

γ ñ+ ι
m

r
n′0 ϕ̃ = 0 (2.109)

(γ − η̄ ∆)ψ̃ + ι k̄|| ϕ̃ = 0 (2.110)

γ n∆ϕ̃ = −2β̄〈∂zÑ〉+ 2
(
1/q2

0 − 1
)
β̄ ιm ñ

+
1

r
˜{ψ,∆ψ}

(r,α)
(2.111)

γ Ñ + d1(ñU||)− 2n ∂zϕ̃+ ˜{n, ϕPS} = 0 (2.112)

γ ñU|| + n {U||, ϕ̃}+ β̄d1Ñ = 0 (2.113)

where,

k̄|| = (1/r){ψ , }(r,α) = (m/r)(dψ/dr) = (m/ε)(1/q(r)− 1/q0)

The general dispersion relation can be obtained in a straight forward manner.

Considering perturbed quantities to vary more rapidly than equilibrium quantities

we obtain

γ2
s

(
1 +

2q2
0

1 + γ2
s

)
∆ϕ̃− 2

(
1− q2

0

) r n′
n

(m
r

)2

ϕ̃ (2.114)

=
q2

0

nβ̄

γ

r
˜{ψ,∆ψ}

(r,α)
+

γ2
s

1 + γ2
s

q2
0

n

(
S̃N + S̃U

) 1

γ
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where

γ2
s =

γ2

β̄/q2
0

, β̄p =
q2

0

r2
β̄, U||s = −2η̄ q0

n′

n
(1− β̄p rn′)

S̃N =
〈

2 γ ∂z ˜{n, ϕPS}
〉
≈ −2η̄β̄p

(m
r

)2

(rn′)2∆ϕ̃

S̃U =
〈
2 ∂zn{−d1U||, ϕ̃}

〉
≈ n

q0r

(
U||s∆ϕ̃

)

The source terms S̃N , S̃U are present only in the resistive case and shows

the effect of “Pfirsch-Schluter” potential and flows respectively on the vorticity.

Substituting for S̃N , S̃U in Eq. 2.114 we get

γ2
s

(
1 +

2q2
0

1 + γ2
s

(1 + χ)

)
∆ϕ̃ =

2q2
0

(
r n′

n

)(
1

q2
0

− 1

)(m
r

)2

ϕ̃+
q2

0

nβ̄

γ

r
˜{ψ,∆ψ}

(r,α)
(2.115)

where χ = − 1

2γ

(
U||,s
q0 r

)
+
η̄ β̄pn

γ

(
r n′

n

)2 (m
r

)2

,

If we put m = 0 we immediately recover the axisymmetric dispersion relation

(2.104) which describes Stringer spin-up. Next, we consider some other limiting

cases.

2.10.1 Ideal MHD interchange modes without shear

For very weak magnetic shear, we may set k|| to zero. Considering ideal modes

only, and assuming elongated interchanges, ∂α � r∂r � 1, we obtain the dispersion:

γ2
s

(
1 +

2q2
0

1 + γ2
s

)
= −2

(
1− q2

0

) r n′
n
, γ2

s =
γ2

β̄/q2
0
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The equation is bi-quadratic and we conclude instability if q < 1 and for negative

dn/dr. This is the well known ideal interchange instability first obtained by Mercier.

If the instability driver term on the RHS is strong, i.e., very steep pressure gradients,

the modes decouple into a supersonic interchange mode, γs
2 ≈ −2(1 − q2

0)(rn′/n),

and a sound wave γs
2 = 1. In the opposite limit, for weak gradients, the modes

decouple into a subsonic interchange mode, γs
2 ≈ −2(1− q2

0)(rn′/n)/(1 + 2q2
0), and

the GAM γs
2 ≈ −(1 + 2q2

0). The denominator in the interchange mode, (1 + 2q2
0), is

the effective mass, discussed earlier. The GAM is of the same frequency as the GAM

obtained in the axisymmetric limit Eq(2.104); however, the present calculation is

for flute convection cells, elongated in radius and of high mode numbers. Thus, the

GAM convection cells are isotropic and of unique frequency.

2.10.2 Ideal MHD Linear modes with shear

Using Eq (2.91) (with η = 0) and (1/r){ψ, }(r,α) = k̄||, the shear term

(1/r) ˜{ψ,∆ψ}
(r,α)

can be written as

−(1/γ)
(
k̄|| ∆k̄|| ϕ̃)− k̄||ϕ̃(1/r)∂r

(
(1/r)∂r(r

2k̄||)
))
.

It can further be shown that the resulting eigenvalue equation is

1

r2
∂r

(
γ2
Ar

3∂r

(
ϕ̃

r

))
+

1

r2
γ2
A(1−m2)ϕ̃

=
2m2

r2
(1− q2

0)
r n′

n
ϕ̃ (2.116)
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where

γ2
A = γ2

s

(
1 +

2q2
0

1 + γ2
s

)
+

k̄2
||

β̄n/q2
0

This is the Shear-Alfvén law as discussed by Hazeltine et. al [15], that describes kink

modes and interchange modes. In the case of constant k||, the Mercier dispersion

obtained above contains an additional frequency, namely the Alfvén wave ω = k||cA,

which is stabilizing for the Mercier mode.

In the marginal stability ω → 0 case, the modes are highly localized near the

mode rational surface. Expanding about the surface with r = r0 + x, and k̄|| ≈

k̄′||x = −(mŝ/q0)(x/r0), we get

∂

∂x

(
−2β̄

ŝ2
rn′
(
1− q2

0

))
ϕ̃ = 0

Newcomb’s condition can be used on the above equation to obtain the Mercier

criterion with shear, viz,

2β̄
(
1− q2

0

)
rn′ +

1

4
ŝ2 > 0

2.10.3 Resistive ballooning without shear

Let us now include the effects of resistivity on the ideal mode of section 2.10.1

(no shear). In the limit m ∼ ∂α � r∂r � 1, the term (η̄/γr2)(rn′/n)m2rn′β̄p

dominates over the term U||,S term in χ. The linear dispersion relation can be

shown from Eq. 2.115 to be

γ2
s

(
1 +

2q2
0

1 + γ2
s

(1 + χ)

)
= 2q2

0

(
r n′

n

)(
1

q2
0

− 1

)
(2.117)
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For small η̄ and moderate mode numbers, the term in χ can be neglected

and the ideal interchange modes are recovered (stable or unstable). For large mode

numbers, the χ1 term can become large. This can only be balanced if γ2
s itself is

large, in which case 1 = −2q2
0χ/γ

2
s . This results in a high m unstable mode, with

γ ∼ η̄1/3. This is the resistive ballooning mode which is unstable even if the RHS

term is stabilizing, i.e, if the average curvature is stable. The mode localizes to the

unfavorable curvature.

2.10.4 Resistive MHD modes with shear

Let us now consider resistive modes with finite shear in the limit γ � η̄∆. In

this limit we have η̄∆ψ̃ = ιk||ϕ̃. Expanding near the rational surface with r = r0 +x

we get k̄|| = k̄′||x, with k̄′||q0r0 = −mŝ. The term ˜{ψ,∆ψ} on the RHS of Eq. 2.115

can be shown to be ϕ̃ (k̄′||x)2/η̄. The vorticity equation now reduces to Webber’s

equation of the form

a1
∂2ϕ̃

∂x2
= (a2 + a3x

2)ϕ̃ ⇒ ϕ̃ ∼ e−αx
2/2 (2.118)

where,

a1 = γ2
s

(
1 +

2q2
0

1 + γ2
s

(1 + χ)

)
, a2 = 2q2

0

(
r n′

n

)(
1

q2
0

− 1

)
, a3 =

γ

η̄

k̄′2||

nβ̄/q2
0

For an instability with a real growth rate to exist, the exponent α must be real and

positive. This is possible iff the conditions, a2/a1 < 0, a1a3 = a2
2 are satisfied. The

first of these conditions imply ideal stability and the second gives the dispersion

relation
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γ3

η̄

(
k̄′||

β̄/q2
0

)2(
1 +

2q2
0

1 + γ2
s

(1 + χ)

)
= na2

2 ⇒ γ ∼ η̄1/3

Therefore we can see that the γ ∼ η̄1/3 scaling can be obtained both with and

without shear.

2.11 Summary and Discussion

Reduced equations, at frequencies below the ballooning shear Alfvén frequency,

have been derived for tokamak geometry. Because the field line structure guides the

motion, the equations are 2-dimensional in space, though also nonlinear. While the

calculation to reduction is involved and characterized by large cancellations, the

resulting set of equations is quite intuitive and consistent with well known previous

results in various sublimits.

Previosuly, Drake and Antonsen (DA) have also derived similar reduced equa-

tions. The DA ordering like our ordering, is also sub-Alfvénic. Accordingly, DA also

incorporate a dynamic Shafranov shift in that j × B ≈ ∇p to high order. Their

ordering, in contrast to ours, is also subsonic: time rates ∂t/(cA/R) are ordered as

ε2. By keeping higher order corrections, above the quasi static condition, they ob-

tain general, 3D, sub-sonic equations, also applicable to low and intermediate mode

numbers. DA show the necessity of 2 scales along B, of order R and longer. This

is similar to ours in that weak k|| is retained. Our approach has many similarities

except our equations optimally allow sonic frequencies. We also expand about a

low order rational surface. This yields a set of 2D single helicity equations with
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side band harmonic content, albeit restricting applicability to relatively short radial

domains.

Our system is suited for regions where q(r) is close to rational and the shear

is not too strong. One possible application is to the core of tokamaks, in regions

where the safety factor q(r) stays close to unity. An important problem is to study

the sawtooth phenomena in the core of tokamaks. When q(r) goes below unity, an

m = 1 tearing is precipitated at the q = 1 surface. The ensuing reconnection is

thought to be responsible for the well known sawoothing discharges which keep q

close to unity. Nonlinearly, if q(r) stays self-consistently close to unity, our equations

should be applicable. In particular, for regions where q < 1, the (1/q2
0 − 1) term

will destabilize Mercier modes, at growth rates of order (∆q)1/2(cs/R). The Mercier

interchanges would be macroscopic and would compete with the tearing mode whose

intrinsic Alfvénic frequency could scale as εcA/R or less. These unstable Mercier

interchanges do not necessarily have to be high mode numbers. As has been pointed

out by Ramos [16], for low shear and k⊥ ∼ 1/a the interchange stability condition

is independent of the toroidal wavenumber n. It would be very interesting to study

the interaction of these two strong and long wavelength instabilitites. As a caveat,

we point out that our reduced equations, strictly, would have to be further reduced

if q0 is exactly unity. However, q0 could evolve under slower transport time scales.

Thus, by replacing q0 with q(r,t), a model set of equations could be investigated.

The results could be suggestive and provide guidance to a fully 3D code.

For high mode numbers, there will be strong overlap of sub-Alfvénic dynamics

between mode rational surfaces. Our equations may not directly apply and a bal-
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looning type formalism is more applicable. For low to intermediate mode numbers,

however, as has also been pointed out by Hastie and Taylor [17, 18], the standard

formalism breaks down. The failure shows up in the form of oscillations of local

ω2 with toroidal mode number. The main point is that the separation between

successive rational surfaces increases, and the modes, instead of spreading over mul-

tiple surfaces, tend to localize near their respective mode rational surfaces. Thus,

for low shear and finite to intermediate mode numbers, modes behave more like

Fourier modes than ballooning modes as discussed by Connor et.al [19]. Hastie et

al [17] modified the standard picture by making the ballooning coordinate finite and

periodic in extent (as opposed to infinite in standard ballooning representation).

Manickam et.al [20] later showed that even the modified ballooning formalism fails

for certain modes labelled as “infernal” modes. These are sensitive to pressure and

q profiles and can be unstable even though ballooning theory predicts complete sta-

bility. Our equations can allow ultra flat q profiles and could describe modes like

“infernal modes”
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Part II

Kinetic MHD: Sub-Alfvénic and Kinetic MHD
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Chapter 3: Sub-Alfvénic and supersonic reduced Kinetic MHD

3.1 Overview

We generalize the previously derived sub-Alfvénic procedure to the collisionless

limit described by kinetic MHD. Restricting to the supersonic limit, we systemati-

cally reduce the kinetic MHD system developed by Kulsrud [8]. For large q, one can

achieve a self consistent supersonic regime where effects of sound waves are mini-

mized. In this limit, the analysis is particularly simple because there are no trapped

ions as the time rates exceed ion bounce frequency, and Kulsrud’s kinetic MHD sys-

tem reduces to the CGL double adiabatic equations. Using methods analogous to

Part I, especially as far as the cancellations, we present a complete set of nonlinear

sub-Alfvénic reduced KMHD in the CGL limit. This is a direct generalization of

the previous RMHD equations to a kinetic system which allows pressure anisotropy

but, self-consistently not trapped dynamics.

3.2 Kinetic MHD Equations and ordering

We begin with the collisionless kinetic MHD equations written in

{v||, µ = |v⊥|2/2B,x, t} variables:
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∂tn+∇ · (nu) = 0 (3.1)

∂t(nMu) +∇·
↔
P= j ×B, j ≡∇×B (3.2)

∂tB =∇× (u×B) (3.3)

∇ ·B = 0 (3.4)

∂tf +
(
v||∇|| + uE ·∇

)
f +

(
−b̂ · DuE

Dt
− µ∇||B +

e

M
E||

)
∂v||f = 0 (3.5)

ne = ni (3.6)

where,

u = U||b̂+ uE, uE = E ×B/B2 (3.7)

DuE/Dt ≡ ∂tuE + (uE + v||b̂) ·∇uE (3.8)

↔
P≡ p⊥I + (p|| − p⊥)bb, p|| = M

∫
d3v v2

||f, p⊥ = M

∫
d3v µBf (3.9)

(e/M)nE|| = b̂ ·∇ · (
↔
P e −(m/M)

↔
P i)/(1 +m/M) (3.10)

Note that we have used Eq. (51) instead of Eq.(37) for our drift kinetic equation

Eq.(3.5). Note also, that the distribution function is needed only to obtain the

pressure tensor. The definition of pressures used here are different from Kulsrud [8]

Eq. (44). Also, Kulsrud obtains E from the perpendicular component of u but

we shall use E = −∇φ− ∂tA as before. We shall also assume adiabatic electrons.

Therefore we shall use pe = β̄en order by order.

The standard annihilations corresponding to the fluid annihilations given by

Eqs. (2.8,2.9,2.10) are

52



B ·
(
∂Min u

∂t
+∇ · P

)
= 0 (3.11)

∂t∇ ·
(
Min u× b̂

B

)
= B · ∇

(
j||
B

(
1 +

p⊥,e + p⊥,i
B2

))
+

∇ · b̂
B
×
(

2 nTe +

∫
d3vM

(
v2
||κ+ µ∇B

)
fi

)
(3.12)

(e/M)n(∇||φ+ b̂ · ∂tA) = b̂ ·∇·
↔
P e −(m/M)b̂ ·∇ · (

↔
P i +

↔
P e) (3.13)

For the asymptotic analysis we shall use the ordering similar to the fluid case

(2.7)

k||
k⊥
∼ u⊥

cs
∼ Bp

BT

∼ cs
cA
∼
√
β ∼ ε.

The main difference with the fluid ordering lies in the parallel flow which was chosen

to be subsonic in the fluid case. However, in the axisymmetric limit, the trapped

particles can have a large parallel flow ∼ quE/ε ≈ cs because of toroidal preces-

sion. Before proceeding further, let us simplify the basic equations for a low beta

sub-Alfvénic system.

Let us first simplify the drift kinetic equation (DKE). Using Eq. (3.3,3.7,3.8),

the term −b̂ ·DuE/Dt can be shown to be

−b̂ · DuE

Dt
− v||uE · κ = uE · ∂tb̂−∇||

u2
E

2
+
E

B
·∇× uE = ∇||

u2
E

2
≈ O(ε5).

Based on the fluid asymptotics, we need ∂tf to a maximum of 3rd order, so −b̂ ·

DuE/Dt ≈ v||uE · κ. Therefore, the DKE can be simplified to

∂tf +
(
v||∇|| + uE ·∇

)
f +

(
v||UE · κ− µ∇||B +

e

m
E||

)
∂v||f = 0 (3.14)
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Also, for a low beta system we shall find the following approximate form of

the vorticity equation more useful

∇ ·
(
Mi∂t(n u)× b̂

B

)
= B ·∇

(
j||
B

(
1−

p|| − p⊥
B2

))
+ b̂×∇B

B2
·∇(p||+p⊥+2nTe).

(3.15)

In the following, we shall use Eqs. (3.14,3.15) for the DKE and vorticity

equations. It is important to note that Eq. (3.14) scales differently for the trapped

and circulating particles since the velocity scales differently for these two species.

For CPs, v|| ∼ cs, while for TPs, v|| ∼
√
εcs. Assuming uE ∼ εcs and defining

ωs ≡ ω/(cs/qR), we scale the DKE to obtain

∂tf +
(
v||∇|| +UE ·∇

)
f +

(
v||UE · κ− µ∇||B +

e

m
E||

)
∂v||f = 0

ωs : 1 : q : q ε : ε : 1 (CP )

ωs :
√
ε : q : q ε :

√
ε :

√
ε (TP )

This means the trapped region is a boundary layer region in phase space of width

√
εcs. In section 3.3 we shall consider the limit of large q and ω ∼ cs/R so that

the boundary layer can be avoided. In this super bounce limit the particles are no

longer trapped and this simplifies the analysis considerably.

3.3 Supersonic limit

In the large q limit, we can neglect ∇|| terms and hence the DKE simplifies to

∂tf + uE ·∇f +
(
v||uE · κ

)
∂v||f = 0 (3.16)
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Taking the density, p|| and p⊥ moments of the above DKE with the volume integral

given by d3v = 2πBdµdv|| we obtain

(∂t + uE ·∇)n− 2n(uE.∇B/B) = 0 (3.17)

(∂t + uE ·∇)p|| − 4p||(uE.∇B/B) = 0 (3.18)

(∂t + uE ·∇)p⊥ − 3p⊥(uE.∇B/B) = 0 (3.19)

These equations can be recast as the well known CGL equations as can be verified

easily. Kulsrud’s equations reduce to the CGL equations in the supersonic limit.

dt

( n

B2

)
= 0, dt

(
p|| B

2

n3

)
= 0 dt

( p⊥
n B

)
= 0, dt = ∂t + uE ·∇ (3.20)

We now proceed order by order and keep the calculation as close as possible

to the collisional limit discussed in Chapter 2. However, we observe that it is more

efficient to work directly with the distribution function, f , rather than its moments.

This allows the same cancellations but at a more primitive level. We shall also take

q ∼ O(1) and take the large q limit only at the end. We shall highlight the main

differences between the fluid and kinetics as we proceed.

The first two orders in the ε expansion is completely identical to the fluid case.

Note that the velocity space volume element d3v has a factor of B in it and hence

needs to be evaluated order by order too. To second order we have,

(∂t + u
(2)
E ·∇)f0 + v||d1f0 = 0

Since we ordered U|| ∼ εcs, f0 should not contribute to any parallel flows. This can

be accomplished by making f0 a flute i.e d1f0 = 0. The lowest order DKE is then
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given by,

(∂t + u
(2)
E ·∇)f0 = 0, dtn0 = 0 (3.21)

where dt = ∂t +u
(2)
E ·∇ and n0 =

∫
B0dµdv|| f0. f0 stays a flute (i.e (B ·∇)1f0 = 0)

and an even function of v|| due to Eq. (3.21). We shall further choose f0 to be an

isotropic function in velocity space so that p||0 = p⊥0 = β̄n0. The Grad-Shafranov

equation to 2nd order is therefore exactly the same as Eq. (2.41)

To 3rd order, the vorticity equation (3.15) reduces to (2.49)

(B ·∇)1

(
j||/B

)
2

= ∂z(p||0 + p⊥0 + 2n0Te) = 2β̄(1 + Te/Ti)∂zn0 (3.22)

Thus, the choice of a Maxwellian, i.e

f0i ∝ n0(x, t) exp

(
v2
||/2 + µB

Ti/Mi

)
,

ensures that up to 3rd order, we have exactly the same equations (including the

dynamic Shafranov Shifts) as the fluid system described in Chapter 2. This choice

is not essential but is being made only to simplify the following analysis.

Taking Eq. (3.16) to 3rd order and using κ1 ≈ −∇⊥B we get

(∂t + u
(2)
E ·∇)f1 + v||(d1f1 + d2f0) + (xζ̂ ×∇φ2 + ζ̂ ×∇φ3).∇f0

+
(
v||u

(2)
E ·∇B − µd1B

)
∂v||f0 = 0 (3.23)

Density can be calculated using n1 =
∫

dv||dµ(B0f1 + B1f0) and can be shown to

satisfy the corresponding collisional fluid Eq.(2.60). Similarly, the parallel flow can

be obtained by taking the
∫
B0dµdv|| v||f1 moment, since the contribution from f0

is zero. Once again the fluid result (2.61) is obtained.
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We now proceed to O(ε4). In ideal MHD E|| = 0 but in KMHD its given in

terms of parallel pressure gradients. However in the large q limit it is negligible and

hence we can recover the fluid result (2.56, 2.57). The vorticity equation is identical

except for the first order pressure terms. Thus,

∇⊥ · (dt n0∇⊥ϕ2) =
2 β̄

q0

∂ζn0 + ζ̂ ×∇ ψ1 ·∇∇2
⊥ψ1

−〈∂z (p||1 + p⊥1 + 2n1Te)〉+ 〈d2(j||/B)2〉. (3.24)

To efficiently effect the cancellations encountered in the fluid case, we define

F1 in analogy with its fluid counterpart N1 such that

d1F1 = d1f1 + d2f0, F1 = f1 − q2
0d1d2f0 (3.25)

In exact analogy with the fluid case we find

dtF1 − dtf1 = −q2
0[d1, [dt, d2]]f0 = (xζ̂ ×∇φ2 + ζ̂ ×∇φ3).∇f0,

which allows us to write

dtF1 + v||d1F1 + (v||u
(2)
E ·∇B1 − µd1B1)∂v||f0. (3.26)

The same cancellations can be shown to occur, and the vorticity equation in new

variables is given by

∇⊥ · (dt n0∇⊥ϕ2) = −2β̄

(
1

q2
0

− 1

)
∂αn0 +

1

r
{ψ1,∆ψ1}(r,α)

−2〈∂z P 〉. (3.27)
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where P1 = (P||1 + P⊥1)/2 + N1Te. Let us now calculate the density, parallel and

perpendicular pressures from F1 taking into account various powers of B in the

integrals,

(N1, P||1) =

∫
dµdv||(1, v

2
||)(F1 +B1f0), P⊥1 =

∫
dµdv||µB0(F1 + 2B1f0).

(3.28)

To obtain the equations for the parallel and perpendicular pressures we shall now

use the large q limit so that the terms v||d1F1, µd1B1 in Eq. (3.26) can be neglected.

Using u
(2)
E ·∇B1 = ∂zϕ2 we can simplify Eq.(3.26) to

dtF1 + ∂zφ2 v||∂v||f0 = 0. (3.29)

Taking the density, parallel and perpendicular pressure moments, we obtain

dtN1 = 2n ∂zϕ2, dtP||1 = 4β̄n ∂zϕ2, dtP⊥1 = 3β̄n ∂zϕ2

⇒ dtP1 = dt(P||1 + P⊥1)/2 + Te dtN1 = (7/2 + 2Te/Ti)β̄n0 ∂zϕ2 (3.30)

Thus we have a complete set of equation for the variables {n0, ϕ2, ψ1, P1} which we

summarize in the following.
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3.4 Summary and discussion

We shall drop subscripts and summarize the equations for the complete set

{n, ϕ, ψ, P}

dtn = 0 (3.31)

∇⊥ · (dt n0∇⊥ϕ) = −2β̄∂αn+
1

r
{ψ,∆ψ}(r,α) − 2〈∂z P 〉. (3.32)

dtψ = 0 (3.33)

dtP = 2(7/4 + Te/Ti) β̄n ∂zϕ. (3.34)

The main point of this chapter is to show that the methodology that we

developed in Part I applicable to collisional plasmas can also be suitably extended

to collisionless plasmas described by kinetic equations. In the supersonic limit, we

avoid the complications arising in the kientic calculations due to trapped particles.

In this limit, we can define F in analogy to N defined in Part I and show that

the same nonlinear cancellations occur even in a sub-Alfvénic kinetic system. From

F we can obtain P||1, P⊥1 which satisfy CGL equations. To keep the system close

to the fluid system of Part I we have assumed that the lowest order pressure is

isotropic. Keeping anisotropies to this level would have allowed us to retain firehose

and mirror instabilities. The axisymmetric limit (∂α = 0) of the reduced system

reproduces the CGL-GAM calculation of Hassam-Kleva [21].
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Part III

Kinetic MHD: Sub-sonic and Kinetic MHD
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Chapter 4: Sub-Alfvénic Axisymmetric Kinetic MHD

4.1 Overview

An initial radial electric field, Er(0), in an axisymmetric tokamak, results in

geodesic acoustic mode [22] (GAM) oscillations. The GAMs Landau damp, resulting

in a much smaller final residual electric field, Er(∞), and accompanying parallel

zonal flows [6]. The phenomenon exhibits a large effective mass (inertia due to

flows), with an enhancement of order the well-known Rosenbluth-Hinton (RH) factor

≈ 1+1.6q2/
√
ε. In apparent paradox, the final angular momentum in the RH parallel

zonal flow is much smaller than the angular momentum expected from the well-

known rapid precession of the trapped particle population in the final electric field.

In addition, an effective mass calculated naively based on the rapid trapped particle

(TP) precession is much larger than the RH factor. A drift kinetic calculation is

presented showing a shift, proportional to Er, of the usual energy coordinates in

phase space. Importantly, this shift contributes to the effective mass even if the

system is linearized in Er, and can be interpreted as a first order linear shift in the

Jacobian. Further, the Jacobian shift recovers the large TP precession flow and also

uncovers the presence of reverse circulating particle flows that, to lowest order, are

equal and opposite to the TP precession. A detailed calculation is presented.
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4.2 Introduction

An initial radial electric field, Er(0), in an axisymmetric tokamak results in

GAM oscillations. In a collisionless system, the GAMs Landau damp. However,

it was shown by Rosenbluth and Hinton (RH) [6] that, in the asymptotic steady

state, there persists a residual electric field, Er(∞), and an associated parallel zonal

flow. RH showed that the initial and final electric fields are related according to

Er(0) = (1 + D)Er(∞), where D ∼ 1.6q2/
√
ε. Here, q is the tokamak safety factor

and ε� 1 is the tokamak inverse aspect ratio. Since the initial E ×B flow, uE(0),

has a toroidal component and, thus, an initial toroidal angular momentum, and the

final E ×B flow is much smaller than the initial, a substantial parallel zonal flow

must arise in order to preserve angular momentum (see Figure 4.1). The size of the

parallel zonal flow, as found by RH, can be deduced from the geometry of Figure

4.1 to be of order (ε/q)uE(0). Finally, as we will elaborate later, the term 1 +D is

like an effective mass, arising from the inertia due to the parallel flows.

A question arises when one considers the individual contributions to the an-

gular momentum of the trapped and circulating fractions of the plasma. It is

well known that in the presence of a radial electric field, trapped particles precess

toroidally. The speed of precession is of order (q/ε)uE and represents a rapid rate

inasmuch as it is much larger than uE. The reason behind the toroidal precession

can be seen easily by going to a frame moving with speed U , where the TPs are just

bouncing back and forth in a magnetic well without feeling any net electric field.

Such a frame exist only if E + U ×B = 0. In an axisymmetric system, it can be
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Figure 4.1: Comparison of initial and final RH flows

shown [23] that U ≈ ζ̂quE/ε. In apparent paradox, one finds that the angular mo-

mentum in the TP population precessing in the final RH electric field is much larger

than the total final RH angular momentum (the TP precession angular momentum

is of order
√
ε(q/ε)uE(∞), while the RH calculated final angular momentum is of

order (ε/q)uE(0), as discussed above. Here we have accounted for the lower density

of the trapped fraction, i.e, nTP ∼ O(
√
ε).) In addition, it is reasonable to expect

(as we describe below) that such a large precession kinetic energy could result in a

fractional effective mass factor of order ∼
(

1
2
(nU2

||)
TP/1

2
nu2

E

)
∼ O(nTP q2/ε2). This

factor is, in fact, larger than the RH mass factor, by 1/ε.

A simple toy model can be constructed to illustrate these points. We con-

sider a massless rod and two beads of masses mT ,mC that can slide freely, without

interaction, along the rod; one of them (mT ) is further constrained in that it can

only move horizontally, that is to say it stays trapped inside a linear horizontal 1D
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Figure 4.2: A toy model

channel. This system is depicted in Fig 4.2. The rod represents a magnetic field

line; mC represents circulating particles (CPs), while mT represents deeply trapped

particles. The rod is inclined at a small angle given by sinα = ε/q � 1. Consider

now an external perpendicular force, F⊥, acting on the rod, as shown in the figure.

We want to obtain the effective mass of the system defined according to the con-

strained Newton’s equation Ms̈ = F⊥, where s is the distance measured along F⊥

and ṡ is the speed of the rod in the lab frame. The Lagrangian for this system is

L(s, ṡ, ṙ) =
1

2 sin2 α
(mT +mC) ṡ2 +

1

2
mC (ṙ2 + 2ṡ ṙ cotα) + F⊥s

leading to the equation of motion,

s̈ =
F⊥

mC +mT/ sin2 α
⇒ M = mC +mT/ sin2 α = mC +mT

q2

ε2
.

This shows that the effective mass from the constrained mass mT is mT (q2/ε2),

illustrating our conjecture for TPs above.

This line of investigation raises further questions when one calculates sepa-
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rately the CP and TP flows associated with the residual RH zonal flows: as we will

show, by direct calculation [24] based on standard drift-kinetic theory, we find the

RH parallel flow for the TP’s to be of O(q uE), smaller than the precession drift by

1/ε. In addition, a direct calculation of the net flux surface averaged poloidal flow of

the TP’s surprisingly gives a nonzero result, namely, a net poloidal flow of O(q uE).

We note that the RH problem, as posed by Rosenbluth and Hinton, starts with

an initial electric field that sets up GAMs, eventually settling to a steady residual

flow. Our toy problem, as posed, does not incorporate GAMs, and is based on an

external driver force F⊥. Nonetheless, as we will show later, the externally driven

problem is a relevant comparison. In particular, one may revisit the RH problem

as the tokamak plasma response to a weak external perpendicular force; in that

case, we will show that the same RH factor, or effective mass, is obtained. Such a

force could arise from perpendicular neutral beams, for example: the force would

provide toroidal torque that would slowly increase the angular momentum. There

are accompanying GAMs, but of negligible amplitude. The final electric field is once

again reduced by the same factor M = 1 +D.

Our study in this chapter is motivated by an attempt to understand the dis-

crepancy in the flows as well as in the naively expected effective mass of the RH

problem. The discussion below is organized as follows: In section 4.3, we present the

basic system of equations, consisting of the drift kinetic equation and the angular

momentum conservation equation in axisymmetric toroidal geometry. We then solve

the classic Rosenbluth-Hinton problem in section 4.4 and point out the aforemen-

tioned discrepancies in the flows. We introduce the shifted coordinates in section
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4.5 and redo the RH problem in these new coordinates in section 4.6, to reconcile

trapped particle toroidal precession in RH flows. In section 4.7, we illustrate the role

of barely circulating particles in cancelling the large trapped particle precession and

thereby explain the smaller overall RH effective mass. We summarize our results in

section 4.9 and discuss future lines of research.

4.3 Kinetic Equations

We begin our calculation with the drift kinetic equation (DKE) as formulated

by Kulsrud, Frieman, and Hinton-Wong [8, 25, 26]. The DKE is derived in “MHD

ordering” and thus allows large, sonic level E×B flows. A consistent ordering also

requires that the parallel electric field E‖ be very small compared to E⊥. In the

electrostatic limit (∂t � VA/L||) the full DKE is given by

∂f

∂t
+ (uE + v||b̂) ·∇f +

(
−b̂ ·

(
(uE + v||b̂) ·∇

)
uE + µB∇ · b̂+

e

m
E‖

) ∂f

∂v||
= 0

(4.1)

where,

uE =
B ×∇ψ

B2
ϕ′(ψ) (4.2)

is the E ×B flow and f = f(v||, µ,x, t). The magnetic field B is defined as usual

by B = I ζ̂ + ζ̂ ×∇ψ. Here, the E‖ force term is of the same order as the other

parallel force terms (the mirror force and inertial forces) in the equation. The above

DKE applies for both ions and electrons, though we will assume small electron mass

and thus the electron response will be taken to be adiabatic. The full system in the

electrostatic approximation consists of four variables, namely, the two distribution
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functions, the potential ϕ, and E‖. These four unknowns are governed by the two

DKEs, the quasineutrality condition ne = ni, and the equation of conservation of

angular momentum, namely [21]

M∂t

〈
nϕ′
|∇ψ|2

B2
−
∫
d3v

Iv||
B
f

〉
= τ⊥ (4.3)

where 〈·〉 represents a flux surface average, and τ⊥ =
〈
n |∇ψ|

B
F⊥

〉
is a toroidal torque

due to a perpendicular force F⊥. The latter represents an external force, such as

from a neutral beam, that could accelerate the E × B flow. It can be shown

that in axisymmetric geometry, the equation governing the angular momentum is

identical to the radial current quasineutrality condition. This equivalence is shown

in Appendix G. For the present purposes, we will find the former equation to be

more convenient.

In this chapter, we will only be concerned with time scales which are subsonic,

i.e., d/dt << cs/qR. In this limit, as we will show more precisely later, E‖ is small

and can be neglected. In that case, the system can be closed by simply using the

DKE for ions, Eq. (4.1), and the angular momentum conservation equation (4.3).

As a further simplification, we will order q � 1 but uE ∼ vth/q. In this ordering,

the nonlinear in uE terms in the DKE can be neglected compared with cross terms

in v|| and uE, since |v||bb : ∇uE| : |buE : ∇uE| ∼ 1 : 1
q
. Given these orderings,

Eq.(4.1) can be recast as

∂f

∂t
+ (uE + v||b̂) ·∇f +

(
v||uE · κ− µ∇||B

) ∂f
∂v||

= 0. (4.4)

We now use the form for uE, Eq. (4.2), to simplify (4.1). In particular, uE · κ =

uE ·∇B/B, in the low β limit. We also assume axisymmetry and thusB×∇ψ ·∇ =
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IB∇||. Given these, (2) can be recast to the form

∂f

∂t
+

(
v|| +

Iϕ′

B

)
∇||f +

(
v||
Iϕ′

B
− µB

)
∇||B
B

∂f

∂v||
= 0. (4.5)

where f = f(v||, µ,x, t). We will now use (4.5) and (4.3) as the closed set of equations

for the two variables f and ϕ.

4.4 The classic Rosenbluth Hinton problem

We begin by reviewing the RH problem. We are interested mainly in the

effective mass physics as derived by RH. This physics can be recovered by setting

the field lines into motion by applying a weak perpendicular external force F⊥.

Since the force is weak, we look for a sub-bounce frequency solution according to

the ordering ∂/∂t ∼ uE · ∇ ∼ F⊥ << v||∇||. To lowest order from (4.5), we have

v||∇||f0 − µ
∇||B
B

∂f0

∂v||
= 0 (4.6)

which yields f0 = f0(E , µ, ψ, t), where E = v2
|| + µB is the energy. The lowest order

angular momentum equation from (4.3) is simply the 2nd term on the LHS set to

zero. This is identically satisfied if we assume that f0(E , t) is symmetric in v|| with

respect to the circulating particles. To first order, Eq (4.5) becomes

∂f0

∂t
+ v||∇′||f1 = v||∇′||

(
Iϕ′

B
v||

)
∂f0

∂E
(4.7)

where we have transformed from v|| to E coordinates with ∇||′ being the gradient

operator at constant E , and we have used v||∇′||(v||) = −µ∇||B. Annihilating the f1

term by bounce averaging as in f =
∮

(dlf/v||)/
∮

(dl/v||), we get f0 = f0(E) and
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f1 = Iϕ′
(v||
B
− g
)
f0
′ (4.8)

where g(E) is yet to be determined. To second order we have,

∂f1

∂t
+ v||∇||f2 = 0. (4.9)

Annihilation of Eq.(4.9) yields ∂tf1 = 0, which gives g =
(
v||/B

)
. Thus, we get the

RH solution for f1 correct to first order [24], viz.

f1 =
Iϕ′

B

(
v||
B
−
(v||
B

))
f0
′. (4.10)

We would now insert f1 into the second term of the angular momentum equation,

Eq. (4.3). We would thus need to calculate the parallel flow to first order, viz.,

n0u||1 =

∫
d3v v||f0 = Iϕ′

∫
d3v v||

(
v||
B
−
(v||
B

)) ∂f0

∂E
(4.11)

Using an expansion in ε, we find

u||1 = −[2ε cos θ + 1.6ε3/2 +O(ε2)]
Iϕ′

B
, (4.12)

proportional to ϕ′. Inserting this into Eq. (4.3), we get the angular momentum

equation in the form(
1 + 2q2 + 1.6

q2

√
ε

+O(q2)

)
∂tuE = F⊥/M

from which the Rosenbluth-Hinton effective mass is seen to be the factor multiplying

∂tuE. The (1+2q2) factor is the well known Pfirsch-Schluter factor [27] arising from

the circulating particles response. We can see that the 1.6 q2/
√
ε is the dominant

term.
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4.4.1 Rosenbluth-Hinton || flows

We note from the above that the effective mass is smaller than what we expect

from the toy model, given the rapid TP toroidal precession. We also note that the

parallel flow, (4.12), is much less than the toroidal precession speed expected of the

TPs. In particular, given the large precession, we expect a much larger angular

momentum contribution from the TPs (even given the lower density fraction of

this species). To examine this further, we calculate separately for trapped and

circulating species the parallel flows resulting from the RH solution. Using Eq.

(4.11) and integrating only over E > µBmax , we get for circulating particles (CP)

(nu||)
CP = n0[−2ε cos θ + (−1.6 + (1 + cos θ)3/2)ε3/2 +O(ε2)]

Iϕ′

B
(4.13)

where we have used an expansion in ε. This flow speed is as expected. Corre-

spondingly, for the trapped particles (TP), we integrate inside the separatrix over

µBmin < E < µBmax to get for the parallel flow,

(nu||)
TP = n0

[
−(1 + cos θ)3/2ε3/2 +O(ε5/2)

] Iϕ′
B
. (4.14)

The total parallel flow is obtained by summing these [24], giving

u|| = −[2ε cos θ + 1.6ε3/2 +O(ε2)]
Iϕ′

B
, (4.15)

in agreement with Eq. (4.12). We would expect to see a large toroidal precession

from the TPs. Instead, we find the flow of the TP to be smaller than the toroidal

precession drift of the TPs by a factor of ε. Further, if we calculate the poloidal
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velocity of the trapped particle fraction, we find

UTP · θ̂ = (uTP|| +UE) · θ̂ =
Bp

B

(
uTP|| +

Iϕ′

B

)
≈ Bp

B

Iϕ′

B0

≈ uE (4.16)

the trapped particles seem to have a nonzero bounce averaged poloidal flow. This is

puzzling, since for adiabatic changes we expect TPs to have a purely toroidal flow.

Incidentally, we can use f0 and f1 above to calculate the density. To lowest

order, for f0 = f0(E), the density is constant along the magnetic surface. To first

order, f1 is antisymmetric in v‖, yielding no change in the density. Likewise, changes

in parallel and perpendicular pressures are also zero. The elements of the electron

pressure tensor can be used to a posteriori calculate E||, as defined in Eq. (49) of

the Kulsrud [8] manuscript. [For massless electrons, E|| is given essentially by the

generalized adiabatic electron response, viz., neE|| = −b∇ : Pe.] We find that

E|| = 0 to lowest order and also zero to first order given the f1 symmetry. This

self-consistently justifies the neglect of E|| in our calculation above.

In order to understand the discrepancy between the RH solution and the ex-

pected TP contribution to the flows and effective mass, we will now take a different

approach to solve the low frequency RH problem.

4.5 Shifted coordinates

As shown earlier, assuming axisymmetry we can rewrite the DKE as

∂f

∂t
+

(
v|| +

Iϕ′

B

)
∇||f +

(
v||
Iϕ′

B
− µB

)
∇||B
B

∂f

∂v||
= 0 (4.17)

where f = f(v||, µ,x, t). We reiterate that this equation is valid for large q and with

uE ordered to be commensurate with vth/q. It can be deduced from this equation,
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using the method of characteristics, that

E∗ =
1

2
v2
|| + µB + Iϕ′

v||
B

is a constant of motion. In an axisymmetric system, conservation of the canonical

angular momentum ψ∗ = ψ−Iv||/(eB/m) implies that E∗ = E+(e/m)(φ(ψ)−φ(ψ∗))

is also conserved. It is to be noted that in Kinetic MHD ordering, ψ∗ ≈ ψ, (e/T )φ�

1 and hence the E∗ can be interpreted as a shifted energy. (See references [23,28–30]

for further elaboration on this constant.) We shift to (E∗, v||∗) coordinates, defined

as follows:

E∗ =
1

2
v2
|| + µB + Iϕ′

v||
B

= E +
Iϕ′v||
B

v||∗ = v|| +
Iϕ′

B
µ→ µ, x→ x (4.18)

d3v =
∑
σ

B dµ dE∗
|v||∗|

.

Here, σ =
v||∗
|v||∗|

denotes the three regions in energy space, namely, the trapped

population and the rightward and leftward moving circulating particle populations.

The coordinate v||∗ is defined with respect to coordinates shifted downward in v||.

E∗ is then a downshifted energy-like coordinate, centered about v||∗ = 0. This shift

is depicted in Fig.[4.3b]. In E∗ coordinates, centered with respect to v||∗, the DKE,

Eq.(4.4), becomes

∂f

∂t
+ v||∗∇||f +

∂Iϕ′

∂t

v||
B

∂f

∂E∗
= 0 (4.19)

where f = f(E∗, µ, ψ, θ, t) and ∂/∂t is at constant E∗. The angular momentum

equation, also recast in E∗ coordinates, is now given by

∂t

〈
n0ϕ

′ |∇ψ|2

B2

〉
= ∂t

〈∫ ∑
σ

B dµ dE∗
|v||∗|

Iv||
B
f

〉
+ τ⊥/M . (4.20)
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(a) Contours of constant E (b) Contours of constant E∗

Figure 4.3: Comparison of the coordinate systems. [4.3a] standard energy coor-

dinates (sign(v||), E , θ). [4.3b] the shifted coordinates (sign(v||∗), E∗, θ).The shift is

Iϕ′/B

In what follows, we shall use equations (4.18),(4.19),(4.20).

4.6 The RH problem revisited

4.6.1 Sub-bounce limit

To make contact with the RH problem, we begin by performing a ∂t � ωb

expansion, but allowing a large uE ∼ vth/q, which corresponds to a finite downward

shift as shown in Fig(4.3b). This approach allows for a more transparent calculation.

To dominant order, we have from (4.19)

v||∗ ∇||
∣∣
E∗
f ≈ 0 ⇒ f = f(E∗, t). (4.21)

Annihilating the ∇||E∗ operator by bounce averaging gives a constraint equation for

f(E∗, t), viz.

∂f

∂t
+
∂Iϕ′

∂t

(v||
B

) ∂f
∂E∗

= 0 . (4.22)
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The constraint on f introduces a σ dependence. Eq. (4.22) and the angular mo-

mentum relation (4.20), with f = f(E∗, t), form a closed set for the nonlinear {f, ϕ′}

system. We now do a subsidiary expansion in small Iϕ
′

B
� vth, denoting f = f0+f1+

(here, the subscript indices are not the same expansion parameter as in earlier sec-

tions). From Eq.(4.22), the corresponding lowest and first order equations are

∂f0

∂t

∣∣∣∣
E∗

= 0 ⇒ f0 = f0(E∗) (4.23a)

∂f1

∂t
+
∂Iϕ′

∂t

(v||
B

)∂f0

∂E∗
= 0 ⇒ f1 = −Iϕ′

(v||∗
B

)∂f0

∂E∗
(4.23b)

where the overbar corresponds to the bounce average holding E∗, µ constant, and we

note that (v||∗/B) = 0 for TPs.

4.6.2 RH flows

We can now calculate the RH flows from Eqs (4.23). For general (Iϕ′/B)/vth,

the dominant order parallel flow for either the TP or the CP populations (or both)

is

(nU)|| =

∫ ∑
σ

B dµ dE∗
|v||∗|

v||f =

∫ ∑
σ

B dµ dE∗
|v||∗|

(
σ|v||∗| −

Iϕ′

B

)
f (4.24)

where, the integrals are to be taken over the appropriate populations and we have

used the definition of v||∗ as in Eq. (4.18) . If we were to expand in small ϕ′, correct

to first order, we would insert both f = f0 + f1 in the right hand side integral in

(4.24). However, since f0 is independent of σ for both species, the lowest order

term, proportional to σ|v||∗|f0, will vanish, by symmetry (with respect to the E∗

coordinates). To first order then, two terms must be retained: one from the ϕ term
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in the parenthesis and the other from the f1 term. This yields the expression

(nU)|| =

∫ ∑
σ

B dµ dE∗
|v||∗|

(
v||∗f1 −

Iϕ′

B
f0

)
. (4.25)

We emphasise that the second term in the integrand appears because of a “shift in

the Jacobian”, and acts on the lowest order f . In particular, even for small ϕ′, this

term must be retained as it is of the same order as the preceding f1 term. Inserting

for f1 in Eq. (4.25), we have

(nU)|| = −Iϕ′
∫ ∑

σ

B dµ dE∗
((v||∗

B

)∂f0

∂E∗
+

1

|v||∗|B
f0

)
(4.26)

where, for TPs, we recall that
(v||∗
B

)
= 0. (Eq. (4.26) can be compared with Eq.

(4.11), the corresponding equation from the previous section; the latter equation

does not have a Jacobian shift term.)

Since
(v||∗
B

)
= 0 for TPs, the TP parallel flow from Eq. (4.26) is

(nU)TP|| = −Iϕ
′

B

∫
TP

∑
σ

B dµ dE∗
|v||∗|

fTP0 (E∗, t) = −nTP Iϕ
′

B
(4.27)

where

nTP = n0 [
√
ε(1 + cos θ) +O(ε3/2)]

is the trapped particle density. This parallel flow is a rigid rotor flow and, we note,

has an amplitude that corresponds precisely to the precession drift speed.

We can now also calculate the net poloidal velocity of the TP’s,

UTP · θ̂ =

∫
d3v

(
b v|| + uE

)
· θ̂, (4.28)
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using Eq. (4.27), and we find

(nU)TP · θ̂ =
Bp

B

(
(nU)TP|| + nTPuE · θ̂

)
=
ε

q

(
(nU)TP|| +

Iϕ′

B
nTP

)
= 0. (4.29)

This is zero as expected. We note that the “Jacobian shift” is responsible for

resolving the discrepancies.

The CP flow can be calculated from Eq. (4.26) assuming that the lowest order

distribution function is a Maxwellian. This gives us

(nU)CP|| = n0
Iϕ′

B0

[√
ε(1 + cos θ)− 2ε cos θ +O(ε3/2)

]
. (4.30)

Note that, to lowest order, the CP flow is a rigid rotor flow, equal and oppo-

site to the TP flow. Thus from Eqs (4.30),(4.27) we see that to dominant order,

(nU)CP|| + (nU)TP|| ≈ 0. This says that in the accounting of parallel flows for angular

momentum, the large TP precession flow does not materialize as a large parallel

flow since it is completely balanced by an oppositely directed CP flow. The cos θ

term in the CP flow is the usual harmonic parallel flow.

The net poloidal velocity of the CP’s is :

UCP · θ̂ =

∫
d3v

(
b v|| + uE

)
· θ̂ =

ε

q

(
Iϕ′

B0

nCP +O(
√
ε)

)
≈ uE · θ̂ (4.31)

Hence the poloidal velocity of the CPs is basically the E ×B flow, consistent with

expectations.

Summing over the TP and CP flows, we get the total RH flow to be

(nU||)
TP+CP = −Iϕ

′

B0

(
2 ε cos θ + 1.6 ε3/2 +O(ε2)

)
n0 . (4.32)
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Although the individual flows, Eqs. (4.27, 4.30), differ from the ones obtained using

standard neoclassical methods, Eqs(4.14,4.13), the total flows, Eqs(4.32,4.15) from

our calculation, match the RH solution. Remarkably, the large TP precession flow

is balanced by an equally large and oppositely directed flow from the barely CPs.

4.6.3 RH Effective mass

We now consider the effective mass factor. For this, we would insert f0 + f1

just found into the 2nd term of the angular momentum equation (4.20). The second

term

∂t

〈∫ ∑
σ
B dµ dE∗
|v||∗|

Iv||
B
f
〉

is just the time derivative of the parallel flow, viz.,

∂t

〈
I
B

(nU total
|| )

〉
. A general expression for the parallel flow (for small ϕ′) is given by

Eq. (4.26). Inserting this expression as discussed, we obtain the angular momentum

equation as

∂t

〈
ϕ′
|∇ψ|2

B2

〉
= −∂t

〈(
I

B

)2

ϕ′

1 +B

∫
CP

∑
σ

B dµ dE∗
|v||∗|n0

v||∗

(v||∗
B

)∂f0

∂E∗

〉+
τ⊥
M

Rearranging, we find

∂tuE =
F⊥/m

1 +D

where,

D =

〈(
1

B

)2
1 +B

∫
CP

∑
σ

B dµ dE∗
|v||∗|n0

v||∗

(v||∗
B

)∂f0

∂E∗

〉〈 |∇ψ|2
I2B2

〉−1

(4.33)

≈ q2

ε2
〈
nU total
||

〉
/(Iϕ′/B0)

represents the added effective mass.

77



To illuminate the role of each species in the effective mass, we consider the

individual effective mass contributions from the TPs and CPs. The TP contribution

to the effective mass factor is

〈(
n
I

B
U||

)TP〉
= ∂tϕ

′

〈
nTP

(
I

B

)2
〉

= n0[0.9
√
ε+ 0.15ε3/2]∂tuE ∼ n0

√
ε
q2

ε2
∂tuE.

(4.34)

Thus the effective mass contribution from the TPs is ∼ O(q2/ε3/2)� 1 as expected

from our toy model. The CP contribution to the effective mass factor is

q2

ε2
〈
nU total
||

〉
/(Iϕ′/B0) ∼ − q2

ε3/2
+ 1.6

q2

√
ε

+O(q2)

To lowest order this is equal and opposite to the TP effective mass. Thus the total

effective mass is 1 + 2q2 + 1.6
q2

√
ε

+O(q2).

4.6.4 Flows and effective masses for truncated distributions

We have seen that the cancellation of the rapid TP precession flow by an

oppositely directed flow of barely CPs explains why the effective mass is smaller

than that expected from the TPs alone. But this finding does not unequivocally

address whether a distribution function of only TPs would result in the expected

large effective mass. To address this, we consider the distribution function in (4.33)

to be populated only for E∗ < µBmax. For this case, the TP contribution to the

effective mass can be seen from Eq. (4.34) to be independent of the details of the

distribution. The contribution is found to be ∼ (q2/ε2)nTP . Since there are no CPs,

nTP = n. Therefore, we find the effective mass to be q2/ε2, and the accompanying
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TP flows to be

UTP
|| = −Iϕ

′

B
, UTP · θ̂ = 0.

These findings are completely consistent with our toy model.

To complete this line of reasoning, we consider a distribution function with

only energetic circulating particles ECPs, i.e., all particles considered to lie well

above the separatrix region (E∗ = µB0(1 + ε)) in phase space (see solid curve in

Fig.[4.4] ). The distribution function f0(E∗) vanishes both at infinity and at the

boundary E∗ = µ ξB0, where, ξ is a parameter greater than 1, as shown in Fig.

[4.4]. To calculate the response to this distribution, we use the following form of

Eq. (4.26), obtained upon integrating the first term by parts:

(nU)|| = −Iϕ′
(∫

B dµ dE∗
(

1

|v||∗|B
− ∂

∂E∗

(v||∗
B

))
f0 −

∫
Bdµ

(v||∗
B

)
f0

∣∣∣∣
cutoff

)
.

(4.35)

Using this form, the boundary term in Eq. (4.35) vanishes, and we get

(nU)|| = −
Iϕ′

B0

∫
B0 dµ dE∗

(
1

|v||∗|
−B ∂

∂E∗

(v||∗
B

))
f0 . (4.36)

We evaluate this equation by an expansion in ε. To lowest order in ε, the RHS is

∂

∂E∗

(v||∗
B

)
≈ 1

B0

1√
2(E∗ − µB0)

=
1

|v||∗|B0

.

Thus, the integral in (4.36) vanishes to lowest order, indicating that the parallel

CP flow is smaller than the TP flow by at least O(ε). To evaluate this further,

we consider the distribution to be of Maxwellian form but with a sharp cut-off at

E∗ = µ ξB0 (as shown in Figure 4.4). We can then calculate the flows of the ECPs.

(nU||)
ECP = −Iϕ

′

B0

(
ε cos θ h1(ξ)− (2− cos 2θ) ε2 h2(ξ)

)
(4.37)
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ℰ* = μ B0(1+ϵ) ℰ* = μ ξ B0 ℰ*

ℰ*

o(ℰ*)

Smooth cutoff

sharp cutoff

Figure 4.4: The distribution function is nonzero only well above the separatrix

E∗ = µB0(1 + ε).

where h1, h2 are simple O(1) algebraic functions of ξ. Further approximating for

large ξ, we get

UECP
|| = −Iϕ

′

B0

(
ε cos θ +O(ε2)

)
(4.38)

UECP · θ̂ ≈ uE · θ̂ . (4.39)

The effective mass can be shown to be 1 +O(q2). These results are consistent with

fluid models where we get the oscillating Pfirsch-Schluter flows and the correspond-

ing effective mass factor. Note that unless we approach the separatrix, there are no

√
ε terms.

4.7 The role of the barely circulating particles

We have shown that the large trapped particle precession flow is cancelled

to lowest order by an opposite flow from the circulating particles, so that there
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m

α

F⟂

  V(θ)

Rζ

qRθ

Figure 4.5: New toy model with potential V (θ)

are no large composite flows of order quE/
√
ε. We would now like to understand

the origin of the opposite flow. We show here that this flow is largely from a

class of barely circulating particles. To demonstrate this, we begin with a more

sophisticated toy model. Consider a particle on a rod as shown in figure[4.5]. The

generalized coordinates are (x = R0ζ, y = qR0θ), where θ, ζ are analogous to the

poloidal and toroidal angles. In addition to being constrained to move only along

the rod, the particle also feels a force due to an applied potential V (θ) = µB(θ) =

µB0(1 − ε cos θ). Thus, while our previous model allowed only freely circulating

particles and deeply trapped particles, our new model allows these but also allows

barely circulating particles.

The Lagrangian is given by,

L =
1

2
mR2

0

(
(qθ̇)2 + (ζ̇ + qθ̇ cotα)2

)
− µmB0(1− ε cos θ)−mR2

0 c(t) ζ̇

where c = (
∫
F⊥dt) sinα/(mR0) is the impulse due to the applied force F⊥ .
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The equation of motion is

θ̈ + ω2
b sin θ = −F⊥ cosα

qmR0

where ωb =
√
µB0ε/qR0

which shows that our toy model is identical to a driven nonlinear pendulum. We

can exploit this similarity to understand the particle trajectories in the presence of

the external torque. Let’s consider the case where F⊥ is time independent. In this

case the work and energy E of the driven pendulum is conserved. Thus,

E =
1

2
θ̇2 − ω2

b cos θ +
F⊥ cosα

qmR0

θ = constant.

-p 0 p

q

q
†

Figure 4.6: driven pendulum phase portrait

Figure (4.6) shows the contours of constant E for nonzero F⊥. Note that for small

F⊥, most of the trajectories resemble the original trajectories of a simple pendulum.

However now there exists a group of particles near the separatrix which can change

directions. In order to understand the change of direction (sign of θ̇), we note that if

we ignore the ω2
b term then the equation of motion is simply θ̈ = −g, where g ∝ F⊥

82



is the effective gravity. This means that particles initially moving in the direction

of “g” would not undergo a change in θ̇, but any particle moving opposite to the

gravity would slow down and eventually change direction. Figure (4.6) shows a case

where F⊥, g < 0 so that eventually θ ≈ −gt2 is positive Thus we can understand

how a small applied torque due to F⊥,would generate a flow mostly due to the

barely circulating particles. This is actually a very general phenomenon. A small

perturbation (in this case F⊥) when added to a Hamiltonian system, keeps most of

the original trajectories unchanged except for the ones near the separatrix.

In order to make contact with the drift kinetic system, lets now use the Hamil-

tonian description of the toy model. From the Lagrangian we calculate the canonical

momenta,

Pθ
qmR2

0

= ζ̇ cotα + qθ̇ / sin2 α,
Pζ
mR2

0

= ζ̇ − c+ qθ̇ cotα.

Since the Lagrangian is independent of ζ, the “toroidal angle”, Pζ must be a con-

stant. The Hamiltonian H, can now be constructed,

H/m− 1

2

(
Pζ
mR0

+R0c

)2

=
1

2
v2
||∗ + µB(θ)

where, v||∗ ≡ qR0θ̇ = (Pθ − q(Pζ + cmR2
0) cotα)/qm. We can now define E∗ =

1
2
v2
||∗ + µB(θ) and write down Liouville’s equation for this system in {θ, ζ, E∗, Pζ}

coordinates. We restrict ourselves to the “axisymmetric” problem by choosing ∂ζ =

0. Thus we have,

∂f

∂t
+
v||∗
qR0

∂f

∂θ
− ∂

∂t
(R0c cotα) v||∗

∂f

∂E∗
= 0. (4.40)

Let us compare the Lioville’s equation (4.40) with the Drift kinetic equation (4.19).
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We note that, by making the identification Iϕ′/B ⇐⇒ −R0 c cotα, we obtain a

one-one relation. This is perhaps not surprising because both equations describe

conservation of phase space volume.

Let us now try to understand the large cancellation of the RH flows. From

the DKE-toy model equivalence, we see that Iϕ′/B ∝ −F⊥. Figure (4.6) now

corresponds to the case where Iϕ′/B > 0. We have already seen that the trapped

particles precess with speed uTP|| ≈ quE/ε. Their net flow from equation (4.27)

is (nu||)
TP = −n

√
εIϕ′/B which is negative in this case. The barely circulating

particles on the other hand, have a similar density,
√
ε, but have an opposite flow

n
√
εIϕ′/B > 0 (see Eq.(4.30)). Thus, the two flows cancel. A further explanation of

the opposite flows are provided in the next section where we compare and contrast

the collisional and the collisionless effective masses.

4.8 Effective mass factor in collisional and collisionless axisymmetric

dynamics

The concept of “effective mass” or “added mass” is a very well known concept

in fluid mechanics. It has important applications in naval architecture, since in

ships the added mass can reach even a third of the mass of the ship. The physical

reason behind the added mass is the fact that a body moving with non uniform

speed through a fluid must also accelerate a volume of fluid surrounding it. Note

that this concept is not related to buoyancy or viscosity.

We shall present a very simple derivation [31] of “effective mass” of a body
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moving through an ideal fluid of density ρ. The flows shall be considered to be

subsonic, incompressible, inviscid and potential, so that

U =∇φ, and ∇ ·U = 0⇒ ∇2φ = 0.

The force exerted on the moving body can be obtained from the hydrodynamic

pressure through F = −∇
∫
pdV and the pressure is given by p = ρ(∂tφ+1/2|∇φ|2).

When integrated over volume the second term vanishes owing to ∇2φ = 0 and we

get F = ∂t
∫
ρUdV . This shows that the contribution of the flow adds up as an

extra mass factor which depends on the geometry and shape of the body. We shall

show next that this is exactly what happens in subsonic plasma dynamics.

Let us consider the adiabatically forced problem once again but this time

assuming the plasma is described by ideal MHD. Instead of forcing a body we are

forcing the flux tube which acts like a rigid “rod”. We shall also assume the flows to

be subsonic and incompressible and given by U = (U||/B)B + uE. In the subsonic

limit, uE = B ×∇ϕ/B2. In an axisymmetric system, ∇ ·U = 0 implies

U||
B

= −Iϕ
′

B2
+ F (ψ) (4.41)

where F (ψ) is an arbitrary flux function so that B ·∇F = 0. We can write F in

terms of the cross helicity
〈∫

dVU ·B
〉

=
∮
U||dl as,

F (ψ) =

∮
dl U|| + Iϕ′

1

〈B2〉
, where 〈h〉 ≡

∮
dl h/B∮
dl/B

(4.42)

Let us now use angular momentum conservation to evaluate the effective mass. In

axisymmetry it is given by
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∂t

〈
nM

(
IU||
B
− |∇ψ|

2

B2

)〉
= −τ⊥, τ⊥ =

〈
n
|∇ψ|
B

F⊥

〉
Substituting for U|| from Eq. (4.41) into Eq. (4.8) we get

∂tϕ
′ 〈R2

〉
− I∂tF (ψ) =

τ

nM
(4.43)

In ideal MHD, cross-helicity is conserved. Choosing it to be zero initially implies

F (ψ) = Iϕ′
1

〈B2〉
,

U||
B

= Iϕ′
(

1

〈B2〉
− 1

B2

)
(MHD). (4.44)

In the large aspect limit this reduces to the well known Pfirsch-Schluter parallel

flows U|| ≈ −2quE cos θ. Using this result in Eq. (4.43) gives

(1 +D)∂tuE =
F⊥
M
, D =

〈(
1− B2

〈B2〉

)〉〈
|∇ψ|2

I2B2

〉−1

(4.45)

In the large aspect ratio, we recover the Pfirsch-Schluter effective mass factor: 1 +

D ≈ 1 + 2q2.

Returning to the kinetic problem, it can be shown (Appendix H) that the

second adiabatic invariant J|| =
∮
v||dl is conserved because the forcing is adiabatic.

This is the kinetic analog of the cross helicity invariant of ideal MHD. Both F (ψ)

and U|| can be determined from conservation of J||. From the definition of U|| we

get,

U||
B

=

∫
d3v

n

v||
B
f = −Iϕ

′

B2
+

∫
d3v

n
v||∗f (4.46)

where, we have used v||∗ = v|| + Iϕ′/B and the symmetry property w.r.t v||∗ = 0.

This implies that,

F (ψ) =

∫
d3v

n

v||∗
B
f (4.47)
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Thus, for TPs, F (ψ) is always zero because the TP distribution function is an even

function of v||∗. For TPs, Eq. (4.43) therefore implies the large q2/ε2 effective mass.

For CPs, F (ψ) is not necessarily zero. We obtain ∂tF (ψ) from Eq. (H.5). Using

angular momentum conservation Eq. (4.43) and Eq. (H.5), we recover Eq.(4.33).

Let us analyse the three cases that we just considered: the hydrodynamic

problem, collisional and collisionless plasmas. In all these cases, the flows are time-

dependent, subsonic and hence incompressible. The effective inertia arises in each

case because the force on the body (“rod”) not only accelerates the body (“rod”)

but also the associated flows in the surrounding liquid (parallel plasma flows).

Now let us try to understand the origin of the opposite flows from this point

of view. In the fluid case, cross helicity is preserved and can be set to zero and

stays zero. This completely determines F (ψ) for all time. In the kinetic problem,

helicity evolves and has different values for different species of particles. Note that

in the kinetic problem, F (ψ) is zero for TPs and the parallel flow is due to the fast

precession. Thus, TPs always contribute the large q2/ε2 effective mass. F (ψ) is

however nonzero and in fact different for the CPs above and below the separatrix.

This breaks the up down symmetry dynamically, leading to differential parallel flow

due to CPs. The fact that the CP flow must be opposite to the TPs also follow from

the fact that J|| must be conserved and J|| is initially small because of the initial up

down symmetry.
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4.9 Summary

If a tokamak plasma is set into motion with an initial radial electric field Er,

the final state, after transients, is a much reduced Er and a parallel zonal flow

consistent with angular momentum conservation. However, the trapped particle

precession angular momentum in the final Er field is found to be much larger than

the zonal flow. We have shown in this chapter that this discrepancy is resolved by

the fact that there are reverse flows from the barely passing particles that cancel

the large momentum from the TP precession momentum. Mathematically, we show

that, even for small perturbations, there is a linear shift in the Jacobian of the

phase space volume element, from Er, that accounts for the reverse flows and the

cancellation. The effective mass for this system is the same as that obtained by

Rosenbluth and Hinton [6] and Xiao et.al [24]. However, the individual contributions

from CPs and TPs to the effective mass are very different.

This calculation is done for the completely collisionless response. As is well-

known, the separatrix plays an important role in this problem. In particular, the

series expansion in ε fails near the separatrix because of the logarithmic divergence

in the bounce time. Discontinuous flows are obtained. This indicates an inner

expansion in the separatrix region to fully understand the RH problem. In other

work, we have shown we can use action angle coordinates to address the inner

expansion. We have also shown that the RH effective mass can be obtained by simply

conserving angular momentum and the second adiabatic invariant. Although, we

used, MHD ordered drift kinetic equation, the results obtained here can be easily
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generalized for the drift ordered axisymmetric system. Finally, as is well known [32],

effects from collisions are also likely to play an important role and act to introduce

friction between the large oppositely directed flows.
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Chapter 5: Conclusion

In Part I of this thesis we have carried out an analytical reduction scheme

in a large aspect ratio tokamak to obtain a complete set of reduced sub-Alfvénic

equations. We have shown that although the calculations are involved it is still

possible to carry out a self consistent sub-Alfvénic asymptotic reduction. Salient

features of our final reduced fluid equations are as follows. The complete set of

equations derived for a large aspect ratio tokamak is self-consistent, nonlinear and

sub-Alfvénic and includes dynamic Shafranov shifts. The modes are quasi-static and

mostly flute-like and hence 2D. This is because the coordinate along the field line

can be averaged out. Since these equations are 2D in space they offer a substantial

advantage from the numerical standpoint. The modes that can be desrcibed are

Mercier and Suydam interchange modes, GAMs, RH zonal flows, Stringer spin up,

Resistive (but not ideal) Ballooning modes, 3D MHD “snake” equilibria and Pfirsch-

Schluter cells. We do not expand in toroidal mode number, and unlike standard bal-

looning formalism, we can handle low shear and low to intermediate mode numbers.

However, high mode numbers can not be described by our equations unless shear is

very low.

In Part II, we have extended the methodology of Part I to sub-Alfvénic kinetic
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MHD in the super-sonic limit. We have obtained a closed set of reduced kinetic

equations which allow pressure anisotropy. These equations correctly reproduce the

Mercier criterion and the GAM dynamics in the axisymmetric limit.

In Part III, we have studied the sub-Alfvénic dynamics in a collisionless ax-

isymmetric tokamak using the kinetic MHD description due to Kulsrud. Our main

result in this part is the analysis of trapped particle dynamics and their contribu-

tion to the effective inertia, which, in the fluid limit is given by the Pfirsch-Schluter

factor. We have shown how the fast precession of trapped particles contribute to a

large effective mass of order q2/ε2 but that is largely cancelled by a large opposite

flow from the barely trapped particles. The resultant effective inertia is still large,

≈ 1.6q2/
√
ε when compared to the Pfirsch-Schluter factor.
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Appendix 0: Various sub-Alfvénic modes

We shall discuss the various important sub-Alfvénic modes that can be de-

scribed by the formalism developed in this thesis. Most of the description provided

below is just to highlight the main features. A general description can be found in

standard textbooks [1].

Pressure driven modes

These are instabilities driven by the pressure gradient. The most unstable

modes are internal modes which lie close to a rational surface where k|| ⇒ 0. They

can be further classified as Interchange modes and Ballooning modes.

Interchange instabilities

They are the MHD equivalent of Rayleigh-Taylor instabilities observed in fluid

dynamics. They occur when there is magnetic field curvature and the pressure gradi-

ent is sufficiently strong enough to overcome the restoring force from the magnetic

line bending. An interchange of two flux tubes at two different radius in such

cases lead to lowering of energy and hence an instability. Typically they are local-

ized near a mode rational surface and they have large perpendicular wave numbers
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and small parallel wave numbers giving them a “fluted” appearance. In a cylinder

such modes are called Suydam modes while in toroidal geometry they are known

as Mercier modes. Magnetic shear can stabilize interchange modes. Resistive in-

terchange modes have slower growth rate compared to the ideal modes however

typically resistive modes are always unstable [10].

Ballooning modes

They occur only in toroidal geometry because toroidal coupling of modes on

various rational surfaces allow a radially extended mode to exist. These modes set an

upper limit on plasma beta. Ballooning modes occur near a region where the average

magnetic curvature is unfavourable. They also have long parallel wavelengths and

short perpendicular wavelengths like interchange modes. However they are not

localized to any particular rational surface. There can be both ideal and resistive

ballooning modes. In the sub-Alfvénic domain only weakly ballooning modes exist

because the strongly ballooning limit excites Alfvén waves.

Zonal flows

In plasma literature, the term zonal flow is generally used to describe a toroidally

symmetric radial electric field perturbation, which is constant on a magnetic sur-

face. It has been shown [33] that zonal flows can play important role in suppressing

turbulence and in L-H transition. There are two important branches of zonal flows

: Geodesic acoustic modes (GAMs) and the stationary zonal flows.
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GAMs

They are basically coherent nonlinear pendulum like oscillations of flux tubes in

the “effective gravity” [14] due to toroidal curvature. The characteristic frequency is

cs/R. GAMs generate shear flows and hence are useful in suppression of turbulence.

GAMs typically have a coupling of m = ±1 poloidal modes. Linearly, collisionles

GAMs are heavily Landau damped.

Stationary Zonal flows

Studied theoretically by Rosenbluth-Hinton [6] and observed experimentally by

Hilleshime et.al [34] in JET tokamak, the stationary zonal flows have been shown [33]

to have a significant effect on turbulence saturation. They are the m = n = 0 branch

of the zonal flow modes. Sometimes in the literature the term zonal flow is used to

describe only these modes.

Various Resistive modes

In presence of finite resistivity, plasma is no longer ‘frozen-in’ and can dif-

fuse past the magnetic fields. However charge/current neutrality requires a return

parallel flow. This generates the so called “Pfirsch-Schluter” cells and the “Pfirsch-

Schluter” flows.

Besides resistive interchange and ballooning modes there can be also other

resistivity driven instability. The one that we shall find important in our discussion

is the spontaneous poloidal spin-up mode also known as Stringer-spin up mode
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[14]. These modes can exist if there is a poloidally asymmetric particle source but

“Pfirsch-Schluter” flows can also self-consistently drive a poloidal-spin up.
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Appendix A: Operators and Commutators

Definitions and properties of the operators

∂z = sin θ′ ∂r +
1

r
cos θ′ ∂θ (A.1)

∂R = cos θ′ ∂r −
1

r
sin θ′ ∂θ (A.2)

∂θ = ∂θ′ + ∂α, ∂ζ = −(1/q0)∂α (A.3)

{f, g}z,R = ∂zf ∂Rg − ∂Rf ∂zg = ζ̂ ×∇g ·∇f (A.4)

{f, g}r,θ = {f, g}r,θ′ + {f, g}r,α = −r {f, g}z,R (A.5)

dt = ∂t + { , ϕ2} (A.6)

d1 = ∂ζ + { , ψ0} = (1/q) ∂θ′ (A.7)

d2 = { ,Ψ1}+R1, R1 = −x(d1 + ∂ζ) (A.8)

d1f0 = 0, d2
1f1 = −(1/q0)2f1 (A.9)

where, f0, f1 demotes flute and first harmonic functions respectively and all Poisson

brackets are assumed to be w.r.t (z,R) unless otherwise stated.
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Useful commutators

[d1, ∂z] = (1/q0)∂R, [d1, ∂R] = −(1/q0)∂z (A.10)

[d1, ∂ζ ] = 0 (A.11)

[dt, ∂z] = {∂zϕ2, }, [dt, ∂R] = {∂Rϕ2, } (A.12)

[dt, ∂ζ ] = {∂ζϕ2, }, (A.13)

[dt, d1] = 0 (A.14)

[d2, ∂R] = (d1 + ∂ζ) + (x/q0)∂z − { , ∂RΨ1} (A.15)

[d2, ∂z] = −(x/q0)∂R − { , ∂zΨ1} (A.16)

Proofs: We make use of the following identities:

[Ô, {f, }] = {Ôf, } where Ô = (∂R, ∂z, ∂ζ) (A.17)

[{A, }, {B, }] = {{A,B}, } (A.18)

The first identity follows from the fact that Ô commutes past the Poisson bracket

(in (z,R)). The second identity follows from Jacobi’s identity for Poisson brackets.

Using the definition of d1 from (A.7),∂zψ0 = (z/q0), ∂Rψ0 = (x/q0), ∂ζψ0 = 0 and

putting Ô = (∂z, ∂R, ∂ζ) we easily obtain (A.10,A.11). Similarly using the definition

of dt from (A.6) and the fact that ∂t commutes with ∂z, ∂R, ∂ζ we obtain (A.12,A.13).

To prove (A.14) we first note that ∂t does not contribute as ψ0 is time inde-

pendent. Thus, [dt, d1] = {∂ζϕ2, } + [{ψ0, }, {ϕ2, }]. We can simplify the second

term using (A.18) to obtain [dt, d1] = {∂ζϕ2 +{ϕ2, ψ0}, } = {d1ϕ2, } = 0. Note that
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the last equality follows from the fact that ϕ2 is a flute.

We shall now prove (A.15,A.16). From the definition of d2, (A.8), we have

[d2, Ô] = [R1, Ô] + [{ ,Ψ1}, Ô] for Ô = (∂R, ∂z). Using (A.17) we can simplify the

second term to obtain −{ , ÔΨ1}. From the definition of R1, (A.8), we find that

[R1, Ô] = −[x, Ô](d1 + ∂ζ)− x[(d1 + ∂ζ), Ô]. Using the fact that ∂ζ commutes with

∂z, ∂R, [x, ∂R] = −1, [x, ∂z] = 0 and (A.10) we finally obtain (A.15,A.16).
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Appendix B: Identities satisfied by flutes

For flutes f,g:

{f, g}R,ζ = (x/q0){f, g} (B.1)

dt{f, g} = {dtf, g}+ {f, dtg} (B.2)

z∂ζ{f, g} = {z∂ζf, g}+ {f, z∂ζg}+ {f, g}R,ζ (B.3)

where {f, g} = {f, g}z,R unless otherwise stated.

Proofs:

For flute function f, ∂θ′f = 0 and (A.3) therefore implies ∂θf = ∂αf = −q0∂ζf .

From (A.5) we get {f, g} = −(1/r){f, g}r,α for flutes f and g. Finally, expanding

{f, g}R,ζ using (A.2,A.3) we find that the terms proprtional to sin θ′ cancel while

the r cos θ′(= x) terms give {f, g}R,ζ = −(x/rq0){f, g}r,α = (x/q0){f, g}.

To prove (B.2) we shall use the fact that the ∂t term in the expression for dt

commutes past the Possion Brackets. Thus,from (A.6),we have dt{f, g} = {∂tf, g}+

{f, ∂tg}−{ϕ2, {f, g}}. We shall now use Jacobi’s identity in the form {ϕ2, {f, g}} =

{{ϕ2, f}, g}+ {f, {ϕ2, g}} to rewrite the second term. Collecting all the terms and

using the definition of dt leads to (B.2).

In (B.3) we first note that since ∂ζ commutes past the Poisson bracket, it is

distributive just like ∂t. Therefore, {z∂ζf, g}+ {f, z∂ζg} − z∂ζ{f, g} = {z, g}∂ζf +
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{f, z}∂ζg = −{f, g}R,ζ , rearranging which leads to B.3.
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Appendix C: Evaluation of {〈∂RΨ1, n0〉}

Here, we show that the term 〈{∂RΨ1β, n0}〉 in Eq (2.66) evaluates to zero.

Noting that −r{, }z,R = {, }r,θ and using (A.5), we rewrite

{∂RΨ1, n0}r,θ = {∂RΨ1, n0}r,θ′ + {∂RΨ1, n0}r,α.

Noting that n0 is a flute function, the previous averaged Poisson bracket reduces to

(1/r){〈∂RΨ1〉, n0}(r,α). Thus, it remains to calculate 〈dRΨ1〉.

The complete Ψ1 equation is given by

∆Ψ1 = ∂R(ψ0 − 2β̄q0n0), ∆ = ∂2
R + ∂2

z (C.1)

We first consider the particular solution for Ψ1x as driven by ψ0. Since we need

∂RΨ1x, we rewrite the above equation as ∆∂RΨ1x = ∂2
Rψ0. However, since ψ0 =

ψ0(r), the RHS can be rewritten as (1/2)∆ψ0. Thus, ∂2
RΨ1x = (1/2)ψ0 and, there-

fore, {〈∂RΨ1x〉 , n0} = (1/2)∂αn0.

We now solve (C.1) for the particular solution proportional to β̄. We proceed

similarly as for ψ0. First, we write ∆ in (ψ0, θ
′, α) coordinates as

∆ =
1

r
∂r(r∂r) +

1

r2
∂2
α +

1

r2
∂2
θ′ + 2

1

r2
∂α∂θ′ (C.2)

from which we note that

〈∆f〉 =

(
1

r
∂r(r∂r) +

1

r2
∂2
α

)
〈f〉 = ∆〈f〉 (C.3)
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We want the particular solution for 〈∂RΨ1β〉 in the equation

∆∂RΨ1β = −2q0β̄∂
2
R(n0)

. Upon averaging, we have

〈∆∂R Ψ1β〉 = ∆〈∂RΨ1β〉 (C.4)

〈∂2
R β̄n0〉 =

1

2
∆β̄n0 (C.5)

whereupon, 〈∂RΨ1β〉 = −β̄n0. It follows that {〈∂RΨ1β〉, n0} = 0.
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Appendix D: Evaluation of 〈∂zN1〉 in the subsonic limit

Starting from ∂zN1 = 2 (q2
0/β̄) ∂z(n0dt∂zϕ2) and using [dt, ∂ζ ] = {∂ζϕ2, }, we

obtain

〈2 ∂zN1〉 = (2q2
0/β̄) 〈 2 dt ∂z(n0 ∂zϕ2) + {n0, (∂zϕ2)2} 〉 (D.1)

The second term is nonlinear and hence can be discarded. Using the fact that

[d1, dt] = 0 we can commute the dt operator past the average along the field line

denoted by angle brackets. Thus,

〈2 dt ∂z(n0 ∂zϕ2)〉 = 2 dt〈 ∂z(n0 ∂zϕ2)〉

= dt

((
∂r +

1

r

)
(n0∂rϕ2) +

1

r
∂α

(
1

r
n0∂αϕ2

))
(D.2)

= dt∇⊥ · (n0∇⊥ϕ2) (D.3)

Here we have used the expression for ∂z as given in Appendix A and the fact that

for a first harmonic quantity N = Ns sin θ′ +Nc cos θ′, we have

2 〈∂zN〉 =

(
∂r +

1

r

)
Ns +

1

r
∂αNc. (D.4)

Therefore,

〈2 ∂zN1〉 =
2 q2

0

β̄
dt∇⊥ · (n0∇⊥ϕ2) =

2 q2
0

β̄
dtΩ (D.5)
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Appendix E: Conserved quantities

E.1 Flux and magnetic helicity conservation

Conservation of flux follows trivially from Eqn. 2.86 and the fact that Ψ

vanishes upon
∮
∂θ′ . Also A ·B = −(Iψ)/R2 ∼ −ψ to lowest order and is hence

conserved.

E.2 Cross helicity

Dividing the parallel flow equation (2.89) by n and performing the volume

integral with rdrdαdθ′ gives us ∂t
∫

dV U|| = 0.

E.3 Angular momentum

In the axisymmetric limit ∂α = 0 and ∂tn = 0. Taking the r moment of the

U||c equation (2.94) we get,

∂t

∫
rdr (nU||cr) +

∫
rdr n∂rϕ U||s + (β̄/q0)

∫
rdr r Ns = 0 (E.1)

In order to evaluate the second term we multiply Eqn (2.93) by row vector
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(U||s U||c) and Eqn (2.94) by (1/n)(Ns Nc) and add them to obtain

(1/2)∂t

∫
rdr (NsU||s +NcU||c) = n∂rϕ U||s (E.2)

To evaluate the last term in (E.1), we multiply the vorticity equation Eqn(2.87)

by r2/(2q0) and integrate over the volume. Integrating by parts we have

∂t

∫
rdr

r

q0

n∂rϕ+
β̄

q0

∫
rdr r Ns = 0

Using all of the above, we finally obtain,

∂t

∫
rdr

(
nr(U||c −

1

q0

∂rϕ) +
1

2
(NsU||s +NcU||c)

)
= 0 (E.3)

E.4 Energy

We shall start with the vorticity equation (2.87), multiply by ϕ and integrate

over volume. The first term after integrating by parts in a straightforward manner

produces −∂t
∫
rdrdα(n/2)|∇ϕ|2.

Similarly using dtψ = 0 the shear term can be massaged to give

∂t

∫
rdrdα

1

2
|∇ψ|2.

The 2β̄ 〈∂zN〉 ϕ term can be simplified to obtain

β̄

∫
rdrdα

(
Ns∂rϕ+

1

r
Nc∂αϕ

)
.

Next, we multiply Eqn (2.93) by row vector (1/n)(Ns Nc) and Eqn (2.94)
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by (U||s U||c) and add them to obtain

1

2
∂t

∫
rdr

(
β̄

n

〈
N2
〉

+ n
〈
U2
||
〉)

= β̄

∫
rdrdα

(
Ns∂rϕ+

1

r
Nc∂αϕ

)
(E.4)

where
〈
U2
||
〉

=
1

2
(U2
||c + U2

||s),
〈
N2
〉

=
1

2
(N2

c +N2
s )

Finally, using
∫
rdrdα (∂t(rn) + (1/r)∂αn) we can rewrite the (1/q2

0− 1) term

as −∂t
∫
rdrdα

(
2β̄(1/q2

0 − 1)rn
)
. Thus,

∂t

∫
rdrdα

(
1

2
n|∇ϕ|2 +

1

2
|∇ψ|2 +

1

2

(
β̄

n

〈
N2
〉

+ n
〈
U2
||
〉)
− 2β̄

(
1

q2
0

− 1

)
rn

)
= 0

(E.5)
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Appendix F: Vorticity equation in E and E∗ coordinates

We can derive the vorticity equation using 〈j · ∇ψ〉 = 0. From Kulsrud’s

Eqn [8] (46), It can be shown that

∂t

〈
n
|∇ψ|2

B2
ϕ′
〉

=

〈∫
d3v

e

m
~vd ·∇ψf

〉
+ τ⊥ (F.1)

In axisymmetric system,

~B ×∇ψ ·∇B = I ~B ·∇B, ∇||
∣∣
E

(
1

2
v2
||

)
= −µ∇||B

and we can show that

e

m
~vd ·∇ψ = v|| ∇||

∣∣
E

(
Iv||
B

)
= −(v2

|| + µB)I
∇||B
B2

Now,

E∗ =
1

2
v2
|| + µB + Iϕ′

v||
B

=
1

2
v2
||∗ + µB −

(
Iϕ′

B

)2

⇒ ∇||
∣∣
E∗

(
1

2
v2
||∗

)
= −

∇||B
B

(
µB +

(
Iϕ′

B

)2
)

So,

v||∗ ∇||
∣∣
E∗

v||
B

= v||∗ ∇||
∣∣
E∗

(
v||∗
B
− Iϕ′

B

)
= −(v2

|| + µB)
∇||B
B2

= v|| ∇||
∣∣
E

(v||
B

)
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Appendix G: Proof of equivalence of Angular momentum and vor-

ticity equation

Using the following identities,

~B = I∇ζ +∇ζ ×∇ψ

R2 ~∇ζ · ~UE = −|∇ψ|
2

B2
ϕ′, R2 ~∇ζ · b̂ =

I

B

the angular momentum conservation condition Eqn(4.20), simplifies to

∂t

〈
n
|∇ψ|2

B2
ϕ′
〉
− τ⊥ = ∂t

〈∫
d3v

Iv||
B
f

〉
=

〈∫
d3v

Iv||
B

(
∂

∂t

∣∣∣∣
E∗

+
∂Iϕ′

∂t

v||
B

∂

∂E∗

)
f

〉
=

〈∫
d3v

Iv||
B

(
−v||∗ ∇||

∣∣
E∗
f
)〉

=

〈∫
d3v

e

m
~vd ·∇ψf

〉
(By parts)
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Appendix H: J|| invariance

We shall now solve Eq. (4.22) without linearization. The second adiabatic

invariant J|| is defined by

J|| =

∮
E∗
v|| dl =

∮
E∗
v||∗ dl − σqRIϕ

′

B0

(H.1)

Let us now show that Eq. (4.22) implies f0 = f0(J||). Using E∗ = v2
||/2 + µB +

v||Iϕ
′/B, we can show that

∂v||
∂E∗

=
1

v||∗

∂v||
∂t

∣∣∣∣
E∗

= − 1

v||∗

v||
B
∂tIϕ

′ (H.2)

∂J||
∂E∗

=

∮
E∗

dl

v||∗
, ∂tJ|| = −

∮
E∗

1

v||∗

v||
B
∂tIϕ

′ (H.3)

Let us now simplify Eq. (4.22) using the above properties of J||.

∂f0

∂t
+
∂Iϕ′

∂t

(v||
B

)∂f0

∂E∗
= 0 ⇒ ∂f0

∂t

∂J||
∂E∗
−
∂J||
∂t

∂f0

∂E∗
= 0 (H.4)

The last equation implies f0 = f0(J||).

Note the crucial sigma dependence in the expression for J|| as noted earlier by

Taylor et al and Henrard [35,36]. There is no such sigma dependence in the trapped

particle distribution because the second term averages out as σ = ±1 for TPs. This

means that the CP distribution is not symmetric with respect to v||∗ = 0 and this

results in non zero CP flows from f0.
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Let us now obtain an evolution equation for the F (ψ). Taking the v||∗ moment

of Eq. (4.22) and integrating over velocity space and along B, we get

∂tF (ψ) = −∂tϕ′
∮

dl

∫
dµdE∗
|v||∗|

v||∗

(v||
B

)∂f0

∂E
(H.5)

We can also calculate evolution of the cross-helicity by using

∂t

∮
∇U|| = −I∂tϕ′

∮
dl

B
+ ∂tF (ψ)

∮
dl

B
B2

Thus although J|| is conserved, the cross-helicity moment need not be conserved in

a kinetic system.
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