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Recent evidence from field tests and laboratory studies suggest that rootworms 

are adapting to the toxins produced by genetically modified, insect resistant (Bt) seeds. 

Given that rootworms cause over 1 billion dollars in yield losses and treatment costs 

per year, finding larger scale evidence of resistance could have important policy 

ramifications. This dissertation analyses corn farmers’ insect control decisions in an 

effort to determine whether rootworms have adapted to Bt seeds. 

Chapter 1 provides a broad overview of the literature on genetically engineered 

(GE) seeds. It strives to correct many commonly held misperceptions about genetically 

modified seeds. 

Chapter 2 provides a detailed description of the economic literature on pesticide 

productivity and GE seed use. It compares structural to reduced form models, and 

discusses how previous studies have accounted for endogeniety.  

Chapter 3 develops a two stage, theoretical model of corn farmers’ insect 

control decisions. This model is used to derive a non-linear, soil insecticide demand 

function.  



 

Chapter 4 presents the dissertation’s empirical approach. First, it describes the 

data used in the analysis. Next, it discusses how to estimate the soil insecticide demand 

function derived in Chapter 3. Finally, it discusses how the parameters of the structural 

model can be used to determine how: a) Bt adoption affects yields, b) Bt adoption 

affects insecticide use, and c) whether the effectiveness of Bt seeds has changed over 

time. 

Chapter 5 provides the study’s results. These results indicate that using 

rootworm resistant seeds would have decreased soil insecticide use by 70% in 2005 and 

84% in 2010. Bt adoption would have increased yields by .6 percentage points (1.02 

bushels/acre) in 2005 and .1 percentage points (.2 bushels per acre) in 2010. 

Alarmingly, the evidence suggests that rootworm resistant seeds were less effective in 

2010 than in 2005, and less effective on farms where selective pressure was high than 

on farms where selective pressure was low. In other words, the results of this study 

support the hypothesis that rootworms are adapting to Bt seed use. 

Chapter 6 concludes.  
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Foreword 

Throughout the 1980’s, large “life science” companies pursued the goal of 

commercializing crop biotechnologies. These efforts came to fruition in 1994 when 

Calgene’s “flavor saving” tomato became the first genetically engineered (GE) fruit 

approved for sale in the United States. Despite high consumer demand for the Flavr 

Savr, high production and distribution costs led to its rapid withdrawal from the 

marketplace (Bruening and Lyons, 2000). By contrast, herbicide tolerant (HT) and 

insect resistant (Bt) crops have been tremendously profitable. 

In 2003, Monsanto introduced genetically engineered, rootworm resistant seeds 

(Bt-CRW). These seeds provided farmers with a safe, effective, and relatively 

inexpensive method of controlling rootworm infestations. Unfortunately, frequent 

exposure to the toxins produced by Bt-CRW seeds may have induced rootworms to 

become resistant. 

Unexpectedly severe yield losses were first reported on fields with rootworm 

resistant (Bt-CRW) corn in 2009. By 2011, resistance had been reported in Illinois, 

Iowa, Minnesota, Nebraska, and South Dakota. In 2012, a group of twenty-two 

entomologists wrote a public letter strongly suggesting that the US government “act 

with a sense of urgency” to further restrict the use of Bt-CRW seeds (Porter et al., 2012). 

Surprisingly, despite the growing body of circumstantial evidence, only a small 

number of peer-reviewed studies and field tests indicate that resistance has developed 

(Gassmann, 2011; Gassmann, 2012; Gassmann et al., 2012; Gray, 2012; and Gray, 



 

2014a). As of 2014, there has not been enough systematic evidence to justify further 

regulatory action (EPA, 2013). 

Recent estimates suggest that rootworms cause over 1 billion dollars in yield 

losses and treatment costs per year (Gray, 2009). Though Bt-CRW adopters would be 

the largest group affected by the development of resistance, organic growers would lose 

access to one of the few effective, non-synthetic pesticides available to them. 

This study searches for systematic evidence that rootworms are adapting to Bt-

CRW seeds. First, a theoretical model of corn farmers’ insect control decisions is used 

to derive a demand function for soil insecticides. Next, estimates from this demand 

function are used to test the hypothesis that the effectiveness of Bt-CRW seeds has 

changed over time. The study’s unique contributions include the development of a 

damage abatement model that explicitly accounts for the timing of corn farmers’ insect 

control decisions, a structural approach that isolates the impacts of rootworm resistant 

seeds, and an empirical test for rootworm resistance. 

The format of the dissertation is as follows: Chapter 1 provides background 

information and context. Chapter 2 surveys the economic literature on pesticide 

productivity and GE seed use. Chapter 3 formulates a theoretical model of corn farmers’ 

insect control decisions. Chapter 4 describes the data used in the analysis and presents 

the study’s empirical approach. Chapter 5 discusses the regression results, marginal 

effects, and resistance tests. Chapter 6 concludes. 
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Chapter 1:  Background Information and Context 

This chapter provides a broad overview of the literature on genetically 

engineered (GE) seeds. It addresses questions such as: Does genetic engineering make 

foods unsafe? Does GE seed use adversely impact non-target insect populations and/or 

ecosystems? Has the commercialization of GE crops affected the biodiversity of US 

seed stocks? Have high GE adoption rates led to the development of resistant pests? 

And, how are GE seeds regulated? 

Answering these questions does not help explain the theoretical model 

developed in Chapter 3 or the empirical strategy described in Chapter 4. Nonetheless, 

GE seed use is one of the most misunderstood topics in US agriculture. The information 

contained in this chapter serves to correct some of the most commonly held 

misperceptions about genetically modified seeds. 

The chapter is organized as follows: Section I describes the regulatory 

framework for GE seeds. Section II discusses whether GE foods are safe for human 

consumption. Section III analyzes the environmental impacts of GE seeds. 

1. Regulations Affecting GE Seeds 

1.1 A Comprehensive Federal Regulatory Framework 

In 1984, under the presidency of Ronald Reagan, the United States Office of 

Science and Technology Policy (OSTP) convened a working group to determine if the 

existing regulatory framework could adequately ensure the safety of genetically 

modified products (OSTP, 1986). The Coordinated Framework for the Regulation of 



2 

Biotechnology (CFRB) was published two years later. Under the CFRB, three US 

government agencies have jurisdiction over genetically modified crops: the United 

States Department of Agriculture’s Animal and Plant Health Inspection Service 

(APHIS), the Food and Drug Administration (FDA), and the Environmental Protection 

Agency (EPA). 

APHIS employs a complicated process to ensure that genetically modified crops 

do not become invasive. First, seed producers develop a GE plant and test it in 

greenhouses. Next, the producer notifies APHIS of its intention to conduct field trials 

and requests a permit to do so. If the genetically modified varietal performs well in field 

trials, then the producer must demonstrate that the product poses no more of a plant 

pest risk than an equivalent non-GE organism. Once deregulated status is conferred, the 

new plant no longer requires APHIS review for movement or release (Fernandez-

Cornejo and Caswell, 2006). 

Post deregulation, the FDA has jurisdiction over a GE crop if it is a food or will 

be used in animal feed. The agency provides voluntary consultations to help ensure that 

GE crops are safe for human consumption. However, the FDA does not regulate 

genetically engineered products any differently than products produced using 

traditional techniques (OSTP, 1986). 

It is the EPA’s responsibility to ensure that pesticides do not pose a risk to 

human health or to the environment. Consequently, the agency has jurisdiction over 

genetically modified crops that produce plant incorporated protectants (PIPs). The EPA 

uses a rigorous registration process to ensure that pesticides meet regulatory standards. 

This process involves a human health assessment, an ecological assessment, and (when 

necessary) the development of resistance management plans. Most registrations are 

temporary, expiring after anywhere from two to fifteen years. Before a new registration 
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is issued, the agency requires new human health and ecological assessments to be 

completed. 

1.2 Labeling of GE Products 

In 1992, the FDA published a policy statement describing its approach to 

regulating genetically modified foods. Because GE foods were found to be 

compositionally equivalent to their traditional counterparts, the FDA determined that it 

did not have the statutory authority to mandate labeling (FDA, 1992).1 

In 1999, the agency solicited public opinion about its approach to regulating 

bioengineered foods. More than 50,000 written comments were received, the majority 

of which requested that foods containing GE ingredients be clearly labeled (FDA, 

2001). Proponents of mandatory labeling argued that the safety of GE foods was 

controversial, that labelling would facilitate international trade, and that consumers had 

a right to know what they were purchasing. Critics claimed that consumers already had 

the option of purchasing GE-free (organic) products, that labeling would be costly, and 

that labels might signal that GE foods were unsafe for human consumption. Though the 

FDA did not alter its policy, it clarified that labeling would be mandated in cases where: 

1) a GE food differed significantly from its traditional counterpart, 2) a GE food had 

significantly different nutritional properties than its traditional counterpart, or 3) a GE 

food included an allergen that consumers would not expect based on the name of the 

food (FDA, 2001). 

                                                 

1  The Food and Drug Administration’s jurisdiction to regulate the labeling of food products stems 

from the Federal Food, Drug and Cosmetic Act of 1938 (FDA, 2001). Section 403 of this act 

defines food as misbranded if its labeling fails to reveal consequences that may result from the use 

of that food. 
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In 2002, a coalition of consumer advocacy groups introduced a ballot initiative 

requiring the mandatory labeling of GE foods in Oregon. This initiative was soundly 

defeated (Senauer, 2013). Subsequently, ballot initiatives were introduced (and 

defeated) in both California (Proposition 37) and in Washington (I-522). Legislatures 

in Connecticut and Maine passed laws that mandated labeling in 2013. However, these 

laws do not go into effect until other states pass similar restrictions (Pfeiffer and 

Jolicoeur, 2014). As of 2013, 26 states were considering legislative proposals (or ballot 

initiatives) to require the labeling of GE foods (Kucinich, 2014). 

Ballot initiatives aside, it is not clear that states have the authority to mandate 

the labeling of GE foods (Senauer, 2013). In 1913, the Supreme Court affirmed the 

right of federal food labeling laws to preempt state ones (Lasker, 2013). In 1996, a 

federal appeals court ruled that farmers who injected their cows with a genetically 

altered bovine growth hormone could not be forced to label the resulting dairy products 

(Senauer, 2013). 

These judicial decisions may have bolstered recent congressional opposition to 

state level legislation. In 2013, the House Agriculture committee amended the farm bill 

to prevent states from passing labeling legislation (Sheets, 2013). Eight days later, the 

US Senate overwhelmingly rejected a bill that would have allowed states to mandate 

labeling (Jalonick, 2013). 

In the spring of 2013, Senator Barbara Boxer and Representative Peter DeFazio 

introduced an amendment to the Federal Food, Drug, and Cosmetic Act (the Genetically 

Engineered Right-to-Know Act) that would have required GE labeling on a national 

level. However, as of March 2014, it was estimated that the amendment had a 1% 

chance of passing in the House and a 0% chance in the Senate (Govtrack, 2014a; 

Govtrack, 2014b). 
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1.3 Mandatory Insect Resistance Management Plans 

Prior to the development of genetically modified, insect resistant seeds, the EPA 

had not mandated resistance management practices. This changed in 1995 when the 

EPA mandated that Bt cotton growers plant 20% of their acreage using conventional 

seeds (EPA, 2001). This “refuge” requirement was intended to promote the survival of 

cotton pests that were susceptible to Bt toxins. In 2000, the EPA mandated a 20% refuge 

for Bt corn in the US Corn Belt, a 50% refuge for Bt corn in southern counties, and a 

20% unsprayed refuge requirement for Bt potatoes (EPA, 2001). 

Though new corn and cotton PIPs were registered throughout the next decade, 

the EPA did not readjust refuge requirements until 2009, when it registered Monsanto’s 

SmartStax line of Bt seeds (EPA, 2011a). SmartStax seeds produced one PIP to control 

corn rootworms and three PIPs to control corn borers (EPA, 2011b). Although the EPA 

initially denied Monsanto’s request to reduce the size of the refuge requirement for 

these seeds (from 20% to 5%), the agency eventually found that “the combination of 

two toxins targeting lepidopteran corn pests… allowed for a reduced refuge with little 

risk of resistance (EPA, 2008a; EPA, 2008b).” The reduced refuge requirement has 

provoked concern from a number of prominent plant scientists and entomologists 

(Alyokhin, 2011; Porter et al., 2012). 

2. Are GMO’s Safe for Human Consumption: 

2.1 Allergens and Toxicity 

Traditional methods of producing new varietals include hybridization, 

irradiation, and exposure to mutagenic agents. These techniques occasionally produce 

plants with undesirable properties. For instance, a hybridized potato variety (Lenape) 

was found to contain high levels of nerve-blocking glycoalkaloids in the early 1960’s 
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(Ames et al., 1990). A pest-resistant celery variety had seven times the normal 

concentration of carcinogens in 1984 (Berkley et al., 1986). 

Similarly, genetic engineering occasionally produces unmarketable crops. For 

instance, Pioneer created a transgenic strain of soybeans containing allergens in the 

early 1990’s (Nordlee et al., 1996). In 2005, an insect resistant strain of peas was found 

to cause allergies in mice (Prescott et al., 2005). 

That said, it is extremely rare for either traditional methods or genetic 

engineering to increase the toxicity or allergenicity of a parent line (Herman and Price, 

2013). Moreover, these changes tend to occur in crops that are known to be toxic. Some 

would argue that GE foods are safer than foods made from conventionally bred crops 

because biotechnology companies tend to conduct animal feeding studies and 

substantial equivalence tests (Prakash, 2001). 

2.2 Substantial Equivalence Tests 

One method of assessing the safety of GE foods is by comparing them to 

isogenic, non-genetically modified counterparts. Referred to as substantial (or 

compositional) equivalence tests, these comparisons are made using replicated field 

trials. First, the transgenic and conventional varieties are grown simultaneously, at the 

same location, using the same production practices. Next, statistical tests are used to 

determine whether the transgenic crop has the same nutritional content and 

concentration of toxins/allergens as its conventional counterpart. 

Though many scientists and regulators have embraced compositional 

equivalence tests, this acceptance was not always universal. In a 1999 Nature 

publication, Millstone, Brunner and Mayer argued that compositional equivalence tests 

were designed to reassure consumers rather than to safeguard them. Claiming that the 
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concept of substantial equivalence was developed during a series of international 

meetings that included politicians but excluded consumer representatives, Millstone et 

al. (1999) suggested that toxicological tests should provide the basis for safety 

assessments. However, many biologists, plant scientists, and regulators disputed this 

conclusion. 

Noting that many new genes were present in traditionally bred hybrids, 

Trewavas and Leaver (1999) argued that conducting toxicological tests was expensive 

and unnecessary. Kearns and Mayers (1999) emphasized the fact that government 

experts from nineteen countries had spent two years determining that substantial 

equivalence tests were an adequate standard. Derek Burke, the chairperson of the 

British Advisory Committee on Novel Foods and Processes (ACNFP) from 1989 to 

1997, characterized Millstone et al. (1999) as “misleading and inaccurate.” He insisted 

that the ACNFP was not under political or commercial pressure when drafting 

regulations (Burke, 1999). 

Since the commercial introduction of GE seeds in 1996, the FDA has analyzed 

148 transgenic events. As of 2013, every GE crop was found to be substantially 

equivalent to a conventional variety (Herman and Price, 2013). In light of this finding, 

it has recently been suggested that compositional equivalence testing be discontinued 

altogether. 

2.3 Animal Feeding Studies 

The vast majority of animal feeding studies are ninety day trials conducted on 

mice or rats. In a recent review of these trials, the European Food Safety Authority 

(EFSA) concluded that consuming GE maize, rice, and soybeans did not have adverse 

effects (EFSA, 2008). However, the results of 90 day trials are not definitive. The EFSA 



8 

argues that these tests: a) do not detect effects on reproduction or development, and b) 

tend not to detect weak effects. 

Longer-term feeding studies have been conducted on cows, sheep, hens, birds, 

goats, and fish (Snell et al., 2011). In a recent review of feeding studies lasting between 

182 and 728 days, Snell et al. (2012) concluded that long-term feeding studies had not 

revealed deleterious effects. 

A 2007 review of multi-generational studies by Flachowsky et al. (2006) failed 

to find evidence that consuming insect resistant or herbicide tolerant crops adversely 

affected successive generations of hens or quail. Similarly, neither Brake and Evenson 

(2004) nor Haryu et al. (2009) found evidence that GE crops induced reproductive 

changes in successive generations of mice. 

Bohme et al. (2005) found that a transgenic potato (developed to synthesize 

insulin) had higher levels of glycoalkaloids and lower production potential than an 

isogenic, conventional plant. However, there was not any evidence that consuming the 

transgenic variety affected average daily growth rates (in pigs). 

A number of studies did find small differences in animal growth, food intake, 

organ weights, liver proteins, and triacylglycerol levels in studies of GE soybeans 

(Malatesta et al., 2008; Sissener et al., 2009; Daleprane et al., 2009; Tudisco et al., 

2010). However, these studies did not have isogenic controls. 

To conclude, though a small number of authors make contradictory claims, the 

evidence from animal feeding experiments suggests that GE and conventional crops are 

equally safe for human consumption. 
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2.4 Transcriptomic, Proteomic, and Metabolomic Studies of GE Seeds 

Genetic profiling techniques were developed at the turn of the 21st century to 

study the composition of organisms at a molecular level (Ricroch et al., 2011). 

Generally, three profiling techniques have been used to compare transgenic crops to 

conventional ones: transcriptomic studies (which analyze the set of RNA molecules 

produced by a cell), proteomic studies (which analyze the set of proteins expressed by 

a genome), and metablomic studies (which analyze the set of metabolites found within 

a biological sample). 

Because “model” plants have small genomes, they are often used in profiling 

studies. El Ouakfaoui and Miki (2005) tested whether gene insertion induced 

unexpected changes in a commonly studied model plant, the Arabidopsis thaliana. 

They found that less than .5% of genes were expressed differently in the transgenic and 

conventional lines. Because none of these differences were reproducible, they were 

assumed to reflect the variability of the biological system. Kristensen et al. (2005) failed 

to find evidence that gene insertion had inadvertent effects on Arabidopsis thaliana’s 

metablome.2 Ricroch et al. (2011) reported that genetic variability and environmental 

stress had a greater influence on gene expression in Arabidopsis thaliana than transgene 

insertion does. 

Other studies have analyzed GE field crops. For instance, Cheng et al. (2008) 

found that there were greater differences in gene expression between hybridized 

soybean varieties than between HT soybeans and their isogenic counterparts. Harrigan 

et al. (2010) found that the allergenicity of soybeans was not affected by the insertion 

of genes to convey herbicide tolerance. 

                                                 

2  In a similar study, Abdeen et al. (2010) found that inserting a gene effecting drought tolerance into 

an Arabidopsis thaliana plant did not have unexpected effects on the plant’s transcriptome. 
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Coll et al. (2010a) analyzed the transcriptome of Bt corn. They found that 

nitrogen availability and varietal differences dramatically impacted gene expression, 

but that the insertion of genes conferring insect resistance did not. Coll et al. (2010b) 

found that the proteomes of Bt and conventional corn were virtually identical. 

Ricroch et al. (2011) conducted a recent survey of genetic profiling studies. He 

concluded that the opinions expressed by food safety agencies (i.e. the general 

‘equivalence’ of GE crops with non-GE counterparts) had been corroborated. In other 

words, the evidence suggests that GE foods are safe for human consumption. 

3. The Environmental Impacts of GE Seeds 

3.1 Direct Impacts on Biodiversity/Nontarget Organisms 

Before issuing the first registrations (in 1995), the EPA conducted extensive 

studies to ensure that PIP’s did not adversely affect non-target organisms (EPA, 2001). 

Though the EPA was aware that the proteins produced by Bt seeds could adversely 

affect many species of Leidoptera (an order of insects that contains butterflies and 

moths), the agency concluded that few non-target species would be exposed to high 

concentrations of Bt toxins (EPA, 2001). 

This assessment was challenged by Losey et al. (1999). Claiming that corn 

pollen could be dispersed up to 60 meters from planting sites, he speculated that 

butterfly populations would be adversely affected. However, the evidence did not 

support this conclusion. Oberhauser et al. (2001) found that the toxin concentration in 

Bt corn pollen was not high enough to adversely affect monarchs. Sears et al. (2001) 

estimated that less than 1% of butterflies were likely to be affected. 

A 2005 edition of Environmental Entomology analyzed the impacts of Bt seed 

use on a broad range of non-target species. The editors concluded that Bt corn and 
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cotton had a limited impact on non-target organisms, and that these impacts were far 

less pronounced than those induced by conventional insecticide use (Naranjo et al., 

2005). 

Similarly, a meta-analysis conducted by Marvier et al. (2007) found that the 

abundance of non-target organisms was significantly higher in Bt corn and cotton fields 

than in non-GM fields treated with insecticides. They concluded that GE seed use could 

reduce the environmental impacts of agriculture. 

Wolfenbarger et al. (2008) explored the impacts of Bt adoption by ecological 

function guild.3 They found that non-target herbivores, omnivores, and detritivores 

were unaffected by Bt corn and cotton use. As in other studies and meta-analyses, most 

functional guilds were more abundant in Bt fields than in non-GM fields that had been 

treated with insecticides. 

To conclude, the vast majority of the evidence suggests that directly ingesting 

GE plants does not harm non-target organisms. That said, it is possible that possible 

that GE adoption induces shifts in production practices which have indirect effects on 

non-target organisms. 

3.2 Indirect Impacts on Biodiversity/Non-Target Organisms 

Claiming that biodiversity is dependent on weed density, Ammann (2005) 

contends that HT adoption reduces biodiversity if HT based weed management systems 

are more effective than conventional ones. Lincoln Brower, an entomologist at Sweet 

Briar College makes a more hyperbolic case, stating that glyphosate is “like 

                                                 

3  A guild is comprised of insects that exploit the same resources, in related ways. For instance, 

herbivores feed on living plant tissues, predators feed on other insects, detrivores consume 

decomposing plant and animal matter, while pollinators feed on plant pollen. 
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Armageddon for biodiversity (Pollack, 2011).” However, there is mixed evidence to 

support this claim. 

In 1999, a consortium of British research institutions initiated a four year 

evaluation of HT crops. Officially referred to as the Farm Scale Evaluation (FSE) 

project, this project was one of the longest, most expensive, and most controversial 

studies of its time (Firbank et al., 2003). The results of the FSE’s suggested that HT 

adoption did not affect herbaceous insects or predator insect populations (Hawes et al., 

2003). However, a consistently positive relationship was found between weed biomass 

and pollinator populations (Hawes et al., 2003). 

Recent research suggests that HT corn and soybean adoption has reduced weed 

populations in the US Corn Belt (Taylor, 2008). Because one of the weeds affected 

(milkweed) is a habitat for monarch butterflies, some academics attribute recent 

reductions in monarch butterfly populations to rapid increases in HT adoption rates 

(Brower et al., 2011; Pleasants and Oberhauser, 2013).4 

Several federal agencies (including the USDA’s Economic Research Service) 

are currently assessing the extent to which agricultural practices and environmental 

conditions affect pollinator health. 

3.3 Resistance in Weeds and Insect Populations 

Glyphosate resistant waterhemp (Amaranthus tuberculatus) was first observed 

in 1998 on HT soybean fields (Owen, 2008). Glyphosate resistant horseweed (Conyza 

canadensis) was first documented in 1999 (Van Gressel, 2001). Subsequently, field 

                                                 

4  Pleasants and Oberhauser (2012) estimate that monarch production in the Midwest dropped by 81% 

from 1999-2010. Brower et al. (2011) estimate that overwintering populations dropped by 65% 

over the same time period. 
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evolved resistance has been documented in populations of pigweed (Amaranthus 

palmeri) and several other weed species (Owen, 2008).5 

Insofar as insects are concerned, resistance to Cry1AC toxins was first 

documented in populations of cotton bollworms in 2002 (Luttrell and Jackson, 2012). 

Though Monsanto introduced a pyramided Bt cotton seed expressing Cry1Ac and 

Cry2Ab2 in 2003, and Dow introduced a pyramided seed expressing Cry1Ac and Cry1F 

in 2005, single trait seeds continued to be sold until 2009 (EPA, 2011a; Tabashnik et 

al., 2013). 

In late 2006, after only three years of usage, Puerto Rican farmers began 

reporting unexpectedly high yield losses on fields planted with Bt corn expressing 

Cry1F (Storer et al., 2010). Though the severity of these yield losses were initially 

attributed to environmental conditions, laboratory tests later confirmed that armyworm 

populations had become resistant. Dow voluntarily withdrew the transgenic crop in 

2007, but laboratory tests conducted in 2011 confirmed that armyworm populations 

remained resistant (Storer et al., 2012). 

In 2009, corn farmers planting rootworm resistant seeds experienced 

unexpectedly severe yield losses throughout the US Corn Belt. Concerned that 

rootworms were adapting to Bt seeds, the EPA tightened the monitoring and 

enforcement of refuge regulations in 2010. By 2011, resistance had been reported in 

Illinois, Iowa, Minnesota, Nebraska, and South Dakota. Subsequent testing confirmed 

that rootworms had become resistant to Cry3Bb1 toxins in isolated parts of Iowa and 

Illinois (Gassman et al., 2011; Gassman, 2012; Gassman et al., 2012). In 2012, a group 

                                                 

5  Owens (2008) also reports increases in populations of weeds which are naturally resistant to 

glyphosate, such as: Common lambsquarters (Chenopodium album), Giant ragweed (Ambrosia 

trifida), Velvetleaf (Abutilon theophrasti), Asiatic dayflower (Commelina communis), and Tropical 

spiderwort (Commelina benghalensis). See Heap (2014) for a comprehensive list of glyphosate 

resistant weeds. 
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of twenty-two entomologists wrote a public letter suggesting that refuge requirements 

be raised for pyramided seeds expressing Cry3Bb1 toxins (Porter et al., 2012). 

Recently, Gassman et al. (2014) found that rootworms in Iowa had developed resistance 

to pyramided seeds expressing Cry3Bb1 and mCry3A. Though the EPA held a 

scientific advisory panel meeting to discuss rootworm resistance in late 2013, as of 

spring 2014, the agency has not taken further remedial action (EPA, 2014). 

These cases demonstrate how quickly resistance is capable of developing. 

Currently, biotech companies are developing transgenic crops that produce new 

insecticidal proteins, existing Bt toxins in higher concentrations, or RNA strands which 

alter gene expression in insects (Gatehouse, 2008). 

3.5 Impacts of GE Seed Use on the Genetic Diversity of Seed Stocks 

Many studies have explored whether the commercialization of GE seeds has 

reduced the diversity of seed types planted. Sneller et al. (2003) analyzed the pedigrees 

of 312 elite soybean genotypes sold in the United States from 1999 - 2001. Noting that 

the coefficient of parentage (a measure of genetic diversity) had not changed over the 

course of the last 25 years, Sneller et al. (2003) concluded that the introduction of 

Roundup Ready soybeans had not negatively impacted the overall diversity of the elite 

soybean population. Mikel et al. (2010) indirectly corroborated this conclusion, finding 

that the genetic diversity of registered soybean cultivars had actually increased slightly 

from 1994-2008. 

Bowman et al. (2003) analyzed the genetic diversity of US cotton seeds. They 

calculated the coefficient of parentage for varietals occupying at least 1% of US cotton 

acreage. Finding that the coefficient of parentage had remained fairly constant from 
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1995 to 2000, they concluded that the development of transgenic cultivars had not 

decreased the genetic diversity of the US cotton crop. 

Mikel (2008) calculated the coefficient of parentage for 846 propriety inbred 

corn lines registered between 1976 and 2005. These calculations indicated that the 

genetic diversity of corn varietals was slightly (.95 percentage points) higher from 

1976-1995 than it was from 1996-2005. 

To summarize, it does not appear that the development of genetically modified 

crops has substantively affected the biodiversity of the crops cultivated by US farmers. 

To some extent, this is not surprising. GE plants tend to be backcrossed with high 

yielding conventional cultivars to create high yielding GE varieties. Contrary to popular 

belief, GE crops do not replace conventional ones. Rather, GE traits are incorporated 

into existing seed stocks. 

4. Conclusions 

APHIS, FDA, and EPA regulate genetically modified seed use in the United 

States. These agencies ensure that GE plants do not become invasive, that foods with 

GE ingredients are safe for human consumption, and that the pesticides produced by 

(or applied to) GE plants do not harm non-target organisms/ecosystems. 

Though many Americans perceive GE foods to be unhealthy, a wide variety of 

animal feeding, compositional equivalence, and genetic profiling tests have 

demonstrated that GE foods are safe for human consumption. Similarly, despite 

concerns that GE seed use negatively impacts non-target organisms and eco-systems, 

the evidence suggests that GE based production systems are less harmful than 

conventional ones. Insofar as the genetic diversity of seed stocks are concerned, GE 
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adoption does not appear to have substantively affected the diversity of US corn, cotton, 

or soybeans. 

To summarize, GE crops are well regulated, safe for consumers, and good for 

the environment. That said, they are not a panacea. Waterhemp, horseweed, and 

pigweed have developed resistance to glyphosate. There is evidence that bollworms, 

armyworms and rootworms have developed resistance to Bt toxins. This dissertation 

develops an approach that assesses the severity of pest resistance problems. 
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Figure 1. GE Adoption Rates in the United States, 2000-2013 

Source: Fernandez-Cornejo et al. (2014a) 
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Chapter 2:  A Survey of the Economic Literature on  

Pesticide Productivity and GE Seed Use 

This dissertation explores how the effectiveness of Bt-CRW has changed over 

time. However, it is far from the first economic analysis of pesticides, resistance, or 

farmers’ pest control decisions. While subsequent chapters discuss model formulation, 

estimation, and empirical results, this chapter provides methodological context. Section 

I provides a broad overview of the economic literature on pesticide productivity. 

Section II casts a critical eye on previous studies of GE adoption. 

1. The Economic Literature on Pesticide Productivity 

Headley (1968) was one of the first economists to analyze pesticide productivity 

in the US agricultural sector. Assuming that both productive and pest control inputs had 

a monotonically increasing impact on yields, he estimated an aggregate Cobb-Douglas 

production function. Surprisingly, the results of the analysis indicated that a dollar spent 

on pesticides generated between $3.90 to $5.66 in returns. In other words, the evidence 

suggested that the marginal benefits of pesticides were 4 to 6 times their cost. This 

finding suggested that pesticides were under-utilized (a result which contradicted the 

conventional wisdom of the time). 

Subsequent studies corroborated Headley’s results. For instance, Fischer (1970) 

estimated a Cobb-Douglas production function for Canadian apple orchards using data 

collected in 1966. He found that a dollar spent on pesticides generated between $2.34 

and $12.80. Campbell (1976) estimated a Cobb-Douglas production function by 

analyzing a cross-section of data collected from Canadian apple, apricot, and pear 

farmers in 1970. His findings indicated that a dollar spent on pesticides generated 

approximately $12. 
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Lee and Langham (1973) employed a slightly different approach. Rather than 

estimating a linearized production function, they estimated a simultaneous system that 

explicitly accounted for the endogenous relationship between pest populations and 

agricultural production. Analyzing a panel of data collected on Florida citrus groves 

(during the 1955 to 1968 growing seasons), they found that the marginal value product 

of pesticides was only 8.2 cents per pound, well below the price of the pesticides 

applied. 

Carlson (1977) was the first to conduct an economic study of insect resistance. 

He estimated Cobb-Douglas production functions for US cotton farmers using data 

collected in 1964, 1966, and 1972. Unlike previous analyses, this analysis controlled 

for the severity of pest infestations. The results suggested a substantial decrease in the 

marginal product of insecticides over time. However, these results were based on the 

assumption that pesticides increased yields monotonically. 

Lichtenberg and Zilberman (1986) developed a structural model with a 

biological basis. Previous studies had discussed the fact that pesticides did not increase 

yields monotonically (Headley, 1971; Hall and Norgaard, 1973; and Talpaz and Borosh 

1974), but Lichtenberg and Zilberman (1986) were the first to develop an econometric 

approach that accounted for the fact that pesticides were damage abating (rather than 

yield increasing). 

The damage abatement framework proposed by Lichtenberg and Zilberman 

(1986) modeled production as a function of two separable processes: output generation 

and pest control. More specifically, the production function was specified such that 

𝑓(𝑥, 𝑧) = 𝐻(𝑥)𝐺(𝑧), where 𝐻 represents potential yields and 𝐺𝜖[0,1] represents an 
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abatement function (the percentage of potential output not damaged by infestations).6 

The authors proposed four functional forms for 𝐺: the Pareto Distribution (1 −

𝐾𝜏𝑧1−𝜏), the Exponential Distribution (1 − exp(−𝜏𝑧)), the Logistic Distribution 

(
1

1+exp(𝜇−𝜎𝑧)
), and the Weibull Distribution (1 − exp(−𝑧𝑐)).7 

The damage abatement framework had a number of advantages over more 

traditional approaches. First, damage abatement models produced estimates of crop 

damages and abated yield losses. Second, unlike Cobb-Douglas specifications (which 

have constant elasticities, and thus tend to systematically overestimate the marginal 

product of pesticides), damage abatement specifications were flexible. Third, damage 

abatement models made realistic predictions about farmers’ behavior. 

The latter of these points is particularly salient. In traditional models, resistance 

is assumed to decrease a pesticide’s marginal product, which reduces its usage. 

However, this is the opposite of how farmers tend to behave in the field. Damage 

abatement models predict that resistance induces a rightward shift in the marginal 

product curve. This shift affects the lethality of the pesticide, rather than the benefits of 

pest control. Farmers respond by intensifying their pesticide usage (see Figure 2). 

Surprisingly, prior to this analysis, the damage abatement framework had not 

been used to assess the impacts of insect resistance. However, a number of 

modifications to the original damage abatement framework had been proposed. For 

instance, Babcock et al. (1992) developed a model which allowed pesticide use to affect 

the quality and quantity of output. Analyzing apple production on North Carolina apple 

                                                 

6  𝐻 has all of the familiar properties of production functions (e.g. concavity and monotonicity). 𝐺 has 

the properties of a cumulative distribution. 
7  𝐾, 𝜏, 𝜇, 𝜎 and 𝑐 are all parameters of the distributions. 
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orchards (using data collected from 1976 through 1978), they found that ignoring 

quality could induce downward bias in estimates of pesticide productivity. 

Saha et al. (1997) developed a stochastic production function which had 

separate error terms for the potential output and abatement functions. Unlike previous 

models, this formulation was sufficiently flexible to accommodate the possibility that 

pesticide use both increased yields and reduced production risk (the variance of the 

production function). 

Chambers and Lichtenberg (1994) analyzed the US agricultural sector using a 

time series of national level data (for 1949 through 1990). Unlike many previous 

analyses, this study accounted for the possibility that insecticide use was endogenous. 

The results suggested that average crop damages to US farmers had fallen from 15% 

during the early 1950’s to 3% during the 1980’s. 

Fox and Weersink (1995) used a Gumbel distribution to specify the abatement 

function. The resulting specification was used to demonstrate that damage abatement 

models could accommodate increasing returns to pesticide use. 

Carpentier and Weaver (1997) suggested modeling output as a function of 

effective input levels. In this formulation, each input is scaled by a separate abatement 

function.8 Although this formulation is more general than Lichtenberg and Zilberman’s 

“output” abatement model, it does not readily lend itself to practical application 

(because it is difficult to identify the many model parameters).9 

                                                 

8  Specifically, the production function was specified such that: 𝑓(𝑥, 𝑧) = 𝐻(𝑥𝑒(𝑥, 𝑧)) =

𝐻(𝑥1
𝑒(𝑥1, 𝑧), 𝑥2

𝑒(𝑥2, 𝑧) … 𝑥𝑛
𝑒(𝑥𝑛 , 𝑧)), where, 𝑥𝑒 is a vector of effective input levels, 𝑥ℎ

𝑒 = 𝑥ℎ ∗ 𝜑ℎ(𝑧) 

is an element of 𝑥𝑒, and 𝜑ℎ(𝑧) is a factor-specific input “abatement” function (which can be 

restricted to the unit interval).  
9  The output abatement model is a special case of Carpentier and Weaver’s (1997) model: one in 

which the production function is linearly homogenous and the input abatement functions have the 

same functional form/parameters. 
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Rather than differentiating between productive and damage abating inputs, 

Zhengfei et al. (2006) categorized agricultural inputs vis a vis their relationship to plant 

biology. “Growth” inputs, like land, weather, nutrients, or water, were directly involved 

in a plant’s physiological process. “Facilitating” inputs, like labor, capital or pesticides, 

induced conditions that were favorable for growth. 

Generally, empirical tests of damage abatement models have produced 

favorable results. Babcock et al. (1992) found that the marginal product of fungicides 

was almost 10 times larger when estimated using a Cobb-Douglas specification than 

when estimated using a damage abating model. Saha et al. (1997) corroborated the 

hypothesis that incorrect model specification led to the overestimation of pesticide 

productivity. Chambers and Lichtenberg (1994) used J-tests to demonstrate that a 

damage abatement specification outperformed a traditional one. 

Insofar as more recent contributions are concerned, Chambers et al. (2010) 

demonstrated that infestations reduced yields directly (by damaging crops) and 

indirectly (by decreasing productive input use). The magnitude of these effects was 

estimated using a panel of data collected on Greek olive farms from 1994 through 2001. 

The results suggested that crop damages decreased yields by 17% relative to potential 

profits, but that decreases in productive input use associated with these pest infestations 

decreased yields by an additional 8%. 

Chambers and Tzouvelekas (2013) used a damage abatement model to estimate 

pest population dynamics. First, Tornqvist indices were calculated for farmers’ 

fertilizer and pesticide use. Next, an instrumental variable based approach was used to 

estimate a simultaneous system of cost share functions. The structural parameters of 

the abatement function were used to predict the severity of pest infestations. Because 

farmers (in the sample) gauged the severity of insect infestations using sticky traps, the 
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authors were able to corroborate their predictions using farm level data. This highlights 

a major advantage of the damage abatement framework. Unlike reduced form models, 

which do not provide much information about variables that are not observed, damage 

abatement models can be used to recover information about the data generating process. 

To summarize, early studies of pesticide productivity estimated aggregate 

Cobb-Douglas production functions. Despite anecdotal evidence to the contrary, most 

of these studies found that the marginal benefit of pesticides exceeded their marginal 

cost. Over time, the methodologies employed by economists evolved. In particular, 

agricultural economists strove to model biological systems more realistically. For 

instance, Lichtenberg and Zilberman (1986) developed an biology based model of 

agricultural production which explicitly differentiated between production and pest 

control. Subsequent to the development of the damage abatement framework, 

agricultural economists were able to concentrate on solving empirical problems (rather 

than conceptual ones). 

2. The Economics of GE Seeds 

Quantifying the impacts of a technology adoption decision involves accounting 

for the possibilities that a) adoption and input use decisions are simultaneous, and b) 

important variables are unobserved or have been omitted from the analyses. Both of 

these problems fall under the rubric of endogeneity, a problem that arises when 

dependent and independent variables are correlated with the model’s error term. 

A number of econometric techniques have been developed to account for 

endogeneity. Following the notation (and development) in Heckman (1978), consider 

the following two equation model: 

𝑦1𝑖 = 𝑋1𝑖 ∝1+ 𝑑𝑖𝛽1 + 𝑦2𝑖
∗ 𝛾1 + 𝑈1𝑖  ⇔  𝑦1𝑖 = 𝑋1𝑖𝜋11 + 𝑋2𝑖𝜋12 + 𝑑𝑖𝜋13 + 𝑉1𝑖 
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𝑦2𝑖
∗ = 𝑋2𝑖 ∝2+ 𝑦1𝑖𝛾2 + 𝑈2𝑖  ⇔  𝑦2𝑖 = 𝑋1𝑖𝜋21 + 𝑋2𝑖𝜋22 + 𝑉2𝑖 

where, 𝑑𝑖 = 1 if 𝑦2𝑖
∗ > 0 (and 0 otherwise) and 𝑈1, 𝑈2~𝑁( 

0
0

 ,
𝜎11 𝜎12

𝜎12 𝜎22
 ).10 

In this example, 𝑦1𝑖 is observed and 𝑦2𝑖
∗  is a latent variable. 𝑋1 and 𝑋2 are 

vectors of exogenous variables. The dummy variable 𝑑𝑖 records the event 𝑦2𝑖
∗ > 0. 

Notice that 𝑦1𝑖 is a function of 𝑦2𝑖
∗  (and vice versa). Furthermore, notice that if Equation 

(II. 1) was estimated using 𝑋1 and 𝑑𝑖, the residual would contain 𝑦2𝑖
∗ . In other words, 

endogeneity would be a problem. 

Heckman (1978) proposed three methods of accounting for endogeneity. One 

approach is to estimate 𝑦1𝑖 and 𝑦2𝑖
∗  simultaneously using Maximum Likelihood. The 

likelihood function is: ℒ = ∏ 𝜑(𝑉1𝑖)Φ (
𝑐𝑖−𝜌(𝑉1𝑖 √𝜔11⁄ )

√(1−𝜌2)
)

𝑑𝑖

Φ (
𝜌(𝑉1𝑖 √𝜔11⁄ )−𝑐𝑖

√(1−𝜌2)
)

1−𝑑𝑖

𝑖 , 

where, 𝑉1𝑖 = 𝑦1𝑖 − 𝑋1𝑖𝜋11 − 𝑋2𝑖𝜋12 − 𝑑𝑖𝜋13, 𝑐𝑖 = − (𝑋1𝑖
𝜋21

(𝜔22)2 + 𝑋2𝑖
𝜋22

(𝜔22)2), and 

𝜌 =
𝜔12

√𝜔12𝜔22
 . 

A second approach involves estimating: E(𝑦1𝑖|𝑋1𝑖, 𝑋2𝑖 , 𝑑𝑖) = 𝑋1𝑖𝜋11 +

𝑋2𝑖𝜋12 + 𝑑𝑖𝜋13 + E(𝑉1𝑖|𝑋1𝑖, 𝑋2𝑖, 𝑑𝑖) where, E(𝑉1𝑖|𝑋1𝑖, 𝑋2𝑖, 𝑑𝑖) =
𝜔12

√𝜔22
(

𝜑(𝑐𝑖)

1−𝛷(𝑐𝑖)
𝑑𝑖 −

φ(−𝑐𝑖)

1−Φ(−𝑐𝑖)
(1 − 𝑑𝑖)). First, a binary choice, or linear probability, model is used to 

estimate 𝜋21and 𝜋22. Next, these parameter estimates are used to estimate 

E(𝑉1𝑖|𝑋1𝑖, 𝑋2𝑖, 𝑑𝑖). Finally, an error term is appended, and E(𝑦1𝑖|𝑋1𝑖, 𝑋2𝑖, 𝑑𝑖) is 

estimated using ordinary least squares. 

                                                 

10  Writing Equations (II.1) and (II.2) in reduced form facilitates the discussion. For future reference, 

𝜋11 =
𝛼1

1−𝛾1𝛾2
, 𝜋21 =

𝛼1𝛾2

1−𝛾1𝛾2
, 𝜋12 =

𝛼2𝛾1

1−𝛾1𝛾2
, 𝜋22 =

𝛼2

1−𝛾1𝛾2
, 𝜋13 =

𝛽1+𝛾1𝛽2

1−𝛾1𝛾2
, 𝜋23 =

𝛾2𝛽1+𝛽2

1−𝛾1𝛾2
, 𝑉1𝑖 =

𝑈1𝑖+𝛾1𝑈2𝑖

1−𝛾1𝛾2
, 𝑉2𝑖 =

𝛾2𝑈1𝑖+𝑈2𝑖

1−𝛾1𝛾2
,  E[𝑉1𝑖] = 0, 𝐸[𝑉1𝑖] = 0, 𝐸[𝑉1𝑖

2] = 𝜔11, 𝐸[𝑉1𝑖 , 𝑉2𝑖] = 𝜔12, 𝐸[𝑉2𝑖
2] =

𝜔22. 
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A third approach involves estimating: 𝑦1𝑖 = 𝑋1𝑖 ∝1+ 𝑃𝑖̂𝛽1 + (
𝑦2𝑖

∗̂

√𝜔22
) 𝛾1

∗ + 𝜀𝑖, 

where, 𝜀𝑖 = [𝑈1𝑖 + (𝑑𝑖 − 𝑃𝑖̂)𝛽1 + (
𝑦2𝑖

∗

√𝜔22
−

𝑦2𝑖
∗̂

√𝜔22
) 𝛾1

∗] , 𝑃𝑖̂ = Prob(𝑑𝑖 = 1|𝑋1𝑖, 𝑋2𝑖), and 

𝑦2𝑖
∗̂

√𝜔22
 is a normalized prediction of the latent variable (conditional on 𝑋1𝑖 and 𝑋2𝑖). This 

is also a two-step method. First the results of a binary choice (or linear probability 

model) are used to generate estimates of 𝑃𝑖̂ and 
𝑦2𝑖

∗̂

√𝜔22
. Next, 𝑦1𝑖 = 𝑋1𝑖 ∝1+ 𝑃𝑖̂𝛽1 +

(
𝑦2𝑖

∗̂

√𝜔22
) 𝛾1

∗ + 𝜀𝑖 is estimated using ordinary least squares. 

Because of its methodological simplicity, the third of these approaches is 

frequently employed in studies of GE seeds. However, predictions of 
𝑦2𝑖

∗̂

√𝜔22
 are rarely 

included in the second stage. This implies that the residual is non-zero. Although the 

non-negativity of the error term is not problematic in and of itself, the results will be 

biased if 𝑃𝑖̂ is estimated using variables that are not exogenous. A more substantive 

problem, at least in the context of damage abatement models, is that substituting 

predictions tends to induce inconsistency in nonlinear models (Greene, 2006; Tezra et 

al., 2008; and Wooldridge, 2014). As will be further discussed in Chapter 4, 

Wooldridge (2014) recommends employing a two stage, control function based 

approach.11 

With this in mind, consider Fernandez-Cornejo, Klotz-Ingram and Jans (2002), 

one of the first rigorous, economic analyses of GE seeds. This study analyzed the 

impacts of HT adoption using data collected during the USDA’s 1997 Agricultural 

                                                 

11  In fact, incorporating the inverse mills ratio into a model’s specification is a control function based 

approach. Wooldridge (2014) contends that control functions can be residuals, generalized 

residuals, standardized residuals, or even linear functions of instrumental variables. 
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Resource Management Survey.12 Recognizing that HT adoption might be endogenous, 

the authors employed the third of Heckman’s corrections. First, a probit model was 

used to regress HT adoption by a number of farm (and farmer) level characteristics. 

Next, predicted probabilities were substituted into a seemingly unrelated system of 

linear profit, production, and demand functions. The results of the first stage (or 

Adoption model) suggested that seed expenditures, farm size, education, crop prices, 

and pest infestation levels increased the probability of HT adoption. The results of the 

second stage (or Impact model) suggested that HT adoption increased glyphosate use 

and decreased the use of synthetic herbicides. 

Unfortunately, there were several problems with this study’s implementation of 

the endogeneity correction. First, the authors did not justify their exclusion restrictions. 

Second, the authors did not discuss the probit model’s goodness of fit, so it is hard to 

gauge whether the predicted probabilities were good instruments for HT adoption. 

Third, some of the variables used in the first stage of the model were clearly 

endogenous.13 

To some extent, Fernandez-Cornejo et al. (2005), Fernandez and Li (2005), 

Gardner et al. (2009), and Fernandez-Cornejo and Wechsler (2012) also suffer from 

these problems. Nonetheless, these studies provided valuable insights. By analyzing 

how HT adoption affected off-farm income, Fernandez-Cornejo et al. (2005) found 

evidence that planting HT seeds simplified weed management and decreased household 

labor requirements. Gardner et al. (2009) corroborated this result using survey data 

                                                 

12  A preliminary version of this study can be found in Fernandez et al. (2000). 
13  For instance, seed expenditures are clearly higher for HT adopters than conventional seed users. As 

discussed earlier in the chapter, substituting predicted probabilities only produces unbiased 

parameter estimates (in the model’s second stage) if the instruments used in the first stage are 

exogenous. 
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collected in 2009. They found that a 10 percent increase in the probability of HT 

soybean adoption decreased household labor by 2.2%. 

Fernandez-Cornejo and Li (2005) found that cultivating corn borer resistant 

plants increased US farmers’ yields and decreased their insecticide use in 2001. 

Surprisingly, adoption did not appear to have a statistically significant impact on 

farmers’ profits. Fernandez-Cornejo and Wechsler (2012) corroborated the finding that 

Bt adoption increased yields using survey data collected in 2005. 

Other studies analyzed the impacts of GE adoption using damage abatement 

models. For instance, Huang et al. (2002) analyzed survey data collected in 2000 by 

estimating a damage abating production function and a reduced form insecticide 

demand function simultaneously. Their findings suggested that Bt cotton adoption 

increased Chinese farmers’ yields by approximately 8% and lowered insecticide use by 

58%. However, Huang et al. (2002) failed to account for the possibility that Bt adoption 

was exogenous. 

Qaim and de Janvry (2005) analyzed the impact of Bt cotton use in India using 

data collected in in 2001. Their results suggested that planting Bt cotton increased 

yields by 30% and decreased insecticide use by 73%. However, the authors did not 

account for the possibility that the Bt adoption decision was endogenous. 

Shankar et al. (2008) used the model developed in Saha et al. (1997) to analyze 

the impacts of Bt cotton adoption in South Africa. Their results suggested that both Bt 

cotton adoption and pesticide use increased the yields of South African farmers. 

Surprisingly, the results indicated that using these inputs increased the variance of the 

production function. Unfortunately, it is hard to know whether this result is reliable 

because the authors failed to account for the possibility that the adoption was 

endogenous. 
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Shankar and Thirtle (2005) used variable addition tests (the estimation and 

inclusion of the inverse mills ratio) to determine whether Bt adoption/insecticide use 

decisions were endogenous. After determining that both inputs were exogenous, the 

authors found that Bt cotton adoption increased the yields of South African 

smallholders by 19% in 2000. 

Mutuc et al. (2011) also used variable addition tests to assess the endogeneity 

of pest control decisions. They found that insecticide use was exogenous, but that Bt 

adoption was not. The results of the study indicated that planting Asian corn borer 

resistant seeds increased the yields of Philippian farmers by 33% and 44%, in 2003 and 

2007 (respectively). Unfortunately, these results may have been biased because 

predicted probabilities were substituted into the non-linear, damage abating production 

function. 

Some studies avoided endogeneity problems by analyzing data from field trials. 

For instance, Qaim and Zilberman (2003) estimated a damage abating production 

function using data from field tests of Bt cotton seeds. The results of this study 

suggested that Bt adoption increased the yields of Indian famers by approximately 60% 

in 2001. 

Nolan and Santos (2012) estimated a reduced form model of corn yields using 

data from US field trials. Their results suggested that Bt-CRB and Bt-CRW adoption 

increased yields by 4% and 2% (respectively). Though these results are unbiased, they 

do not indicate how using different types of Bt seeds affects farmers’ insecticide use. 

One problem with Qaim and Zilberman (2003) and Nolan and Santos (2012) is 

that field trials tend to inflate yields. For instance, the average mean of the crops 

analyzed in Nolan and Santos (2012) was approximately 30% higher than yields 



29 

reported by NASS for US corn farmers. Consequently, economic analyses of field trials 

tend to overestimate the benefits associated with Bt seeds. 

It is possible to draw several broad conclusions from this review. First, analyses 

of genetically modified seeds tend to do a poor job of accounting for endogeneity. 

Second, this problem is less pronounced in reduced form analyses than it is in 

(nonlinear) structural ones. Third, previous studies have failed to test the hypothesis 

that the effectiveness of GE based pest control systems has changed over time, or by 

location. In other words, there appears to be ample opportunity to contribute to this 

literature. 

3. Conclusions 

Early studies used aggregate Cobb-Douglas production functions to estimate 

the marginal value product of pesticides. These studies ignored issues like self-selection 

and simultaneity because methods of accounting for these problems had not been 

developed yet. Similarly, little attention was paid to plant physiology or pest population 

dynamics. This changed in 1978 when Heckman developed straightforward solutions 

to endogeneity problems, and again in 1986, when Lichtenberg and Zilberman (1986) 

developed a biology based model of agricultural production. 

The commercial introduction of GE seeds renewed interest in studies of 

farmers’ pest control decisions. However, few of the ensuing studies rigorously 

accounted for endogeneity problems. Studies employing linear, reduced form models 

tended to use endogenous variables as instruments for GE adoption. Studies that 

employed damage abatement models tended to neglect endogeneity or to employ 

techniques that were not appropriate in the context of non-linear models. Though 

studies that analyzed data from field trials were not biased by endogeneity, the results 
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of these studies do not provide insight about farmers’ behavior and tend to overestimate 

the impacts of adoption. 

As is discussed in the subsequent chapters, this dissertation uses the damage 

abatement framework developed by Lichtenberg and Zilberman (1986) to formulate a 

realistic, biology based model of corn farmers’ insect control decisions. This model is 

used to derive a demand function for soil insecticides, which is estimated using field 

level data collected in 2005 and 2010. Unlike previous damage abatement studies, this 

study accounts for endogeneity using an approach that is appropriate for non-linear 

models. The results provide insight into whether the effectiveness of Bt-CRW seeds 

has changed over time. 
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Table 1. A Summary of Selected Economic Analyses of GE Seeds 

Authors 
Survey 

Year 

GE Seed 

Type 
Country Data Set Model Type 

End. 

Correction, GE 

Seeds 

End. 

Correction, 

Pesticides 

Observations 
Determinants of 

Adoption 
Impact on Profit Impact on Yield 

Impact on 

Pesticide Use 
Other 

Fernandez-

Cornejo, J.,  C. 

Klotz-Ingram, and 

S. Jans (2000) 

1997 

Bt/HT 

Cotton, HT 

Soybeans 

USA 
ARMS 

Survey 

Sim. System 

(Profit: quadratic) 

Two stage IV, 

Pred. Prob. and 

IMR 

Simultaneous 

Estimation 

1,444 for 

soybeans; 696 

for cotton 

Not Reported 
HT Cotton: 1.8%                     

Bt Cotton: 2.2%1,2 

HT Cotton: 1.7%                     

Bt Cotton: 2.1%                         

HT Soybean: .3%1,2 

HT Soybean: 

Glyphosate, 4.3%; 

Synthetic 

Herbicide Use, -

1.4%1,2 

- 

Fernandez-

Cornejo, J.,  C. 

Klotz-Ingram, and 

S. Jans (2002) 

1997 HT Soybeans USA 
ARMS 

Survey 

Sim. System 

(Profit: quadratic) 

Two stage IV, 

Pred. Prob. 

Simultaneous 

Estimation 
1,444 

Size***, 

Education**, 

Infestation levels**, 

Seed Price***, 

Conventional 

Tillage*, Crop 

Price* 

NS 0.3%**1 

Glyphosate: 

3.7%***,              

Synthetic 

Herbicide Use: -

1.3%***1 

- 

Huang, J., R. Hu, 

S. Rozelle, F. Qiao, 

and C. Pray (2002) 

1999 Bt Cotton China 
Huang et al. 

(2002) 

DA Prod. Function 

(F: Cobb-Douglas; 

A: Weibull, 

Exponential) 

No Correction3 
Simultaneous 

Estimation 
382 - - 8%2 -58%***4 - 

Bernard, J., J. 

Pesek, and C. Fan 

(2004) 

1996-

2000 
HT Soybeans USA 

Bernard et al. 

(2004) 

Linear production 

and cost functions 

Tested: 

Adoption is 

exogenous 

NA 

106 for 

production, 88 

for cost 

Farm Size**, Use of 

a Computer* 
- 10%* - -24%** 

Thirtle, C., L. 

Beyers, Y. Ismael, 

and J. Piesse 

(2003) 

1999, 

20005 
Bt Cotton S. Africa 

Thirtle et al. 

(2003) 

Stochastic Frontier 

Model 
No Correction No Correction 

100 obs in 1999,      

100 obs in 2000 

Farm Size*, 

Nonfarm Income**, 

Experience**, 

Number of Female 

Laborers*** 

- - - 

On average, 

adopters are 30 

to 55% more 

efficient than 

non-adopters.2 

Shankar, B. and C. 

Thirtle (2005) 
2000 Bt Cotton S. Africa 

Thirtle et al. 

(2003) 

DA Prod. Function 

(F: Cobb-Douglas; 

A: Cobb-Douglas) 

Tested: 

Adoption is 

exogenous 

Tested: Ins Use 

is exogenous 
91 Not Reported - 19%2 - - 

Shankar, B., R. 

Bennett, and S. 

Morse (2008) 

2000 Bt Cotton S. Africa 
Thirtle et al. 

(2003) 

DA Prod. Function 

(F: Cobb-Douglas; 

A: Logistic) 

Ignorability of 

Treatment 
No Correction 86 - - 13%*** - - 

Fernandez-

Cornejo, J., C. 

Hendricks, and A. 

Mishra (2005) 

2001 HT Soybeans USA 
ARMS 

Survey 

Linear Profit 

Function 

Two stage IV, 

Pred. Prob. 
NA 2,258 Seed Price*** NS - - 

Off farm 

income: 8.4%1 
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Authors 
Survey 

Year 

GE Seed 

Type 
Country Data Set Model Type 

End. 

Correction, GE 

Seeds 

End. 

Correction, 

Pesticides 

Observations 
Determinants of 

Adoption 
Impact on Profit Impact on Yield 

Impact on 

Pesticide Use 
Other 

Fernandez-

Cornejo, J. and J. 

Li (2005) 

2001 Bt Corn USA 
ARMS 

Survey 

Sim. System 

(Profit: quadratic) 

Two stage IV, 

Pred. Prob. 

Simultaneous 

Estimation 
1,751 

Size***, Age**, 

Off-farm 

income***, Corn 

revenue under 

contract*, Owns 

livestock***, Corn 

Price** 

NS 0.4%1,2 -4.11%1,2 - 

Qaim, M., E. Cap, 

and A. de Janvry 

(2003)6 

2001 Bt Cotton Argentina 
Qaim et al. 

(2003) 

DA Prod. Function 

(F: Quadratic; A: 

Logistic) 

No Correction 

Two stage IV, 

Ins Use 

Predictions 

358 - - 30%2 -81%2 - 

Qaim, M. and A. 

de Janvry (2005) 
2001 Bt Cotton Argentina 

Qaim et al. 

(2003) 

DA Prod. Function 

(F: Quadratic; A: 

Logistic) 

No Correction 

Two stage IV, 

Ins Use 

Predictions 

358 - - 29.5%2 -73%2 - 

Qaim, M. and D. 

Zilberman (2003) 
2001 Bt Cotton India 

Qaim, M. and 

D. Zilberman 

(2003) 

DA Prod. Function 

(F: Quadratic; A: 

Logistic) 

- No Correction 471 - - 60% Not reported - 

Gardner, J., R. 

Nehring, and C. 

Nelson (2009) 

2001, 

2002, 

2003 

HT Soybeans, 

Bt/HT Corn, 

Bt/HT Cotton 

USA 
ARMS 

Survey 

Linear Household 

Demand Function 

(ATE Model) 

Two stage IV, 

Pred. Prob. 
No Correction 

1,833 for 

soybeans; 1,861 

for corn; 1,269 

for cotton 

Not Reported - - - 

HT Soybean 

adoption 

decreases 

household labor 

(by 2.2%)1 

Crost, B., B. 

Shankar, R. 

Bennett, and S. 

Morse (2007) 

2002-

2003 
Bt Cotton India 

Crost et al. 

(2007) 

Cobb-Douglas 

Prod. Function 

Farm, year fixed 

effects 

Farm, year fixed 

effects 
718 - - 11%-31%2 - - 

Qaim, M., A. 

Subramanian, G. 

Naik, and D. 

Zilberman (2006) 

2003 Bt Cotton India 
Qaim et al. 

(2006) 

Translog Prod. 

Function 
No Correction No Correction 434 - - 59%*** - - 
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Authors 
Survey 

Year 

GE Seed 

Type 
Country Data Set Model Type 

End. 

Correction, GE 

Seeds 

End. 

Correction, 

Pesticides 

Observations 
Determinants of 

Adoption 
Impact on Profit Impact on Yield 

Impact on 

Pesticide Use 
Other 

Yorbe, J. and C. 

Quicoy (2006) 
2004 Bt Corn Philippines 

ISAAA 

Survey 

Linear Profit 

Function and 

Linearized Cobb-

Douglas 

Production 

Function 

Profit Function: 

Two stage IV, 

Pred. Prob. and 

IMR; 

Production 

Function: no 

correction 

No Correction 470 

Education**, Hired 

Labor**, Net 

Income***, 

Agricultural 

Training**, Risk 

Perception*** 

4.1%1,2 

A 10% increase in 

acreage planted 

increases output by 

9.2% 

- - 

Gouse, M., J. 

Piesse, and C. 

Thirtle (2006) 

2004 Bt Corn 
South 

Africa 

Gouse et al. 

(2006) 

Stochastic Frontier 

Model 
No Correction 

Not included in 

analysis 
135 - - - - 

On average, 

adopters are 4% 

less efficient 

than non-

adopters.2 

Fernandez-

Cornejo, J. and S. 

Wechsler (2012)7 

2005 Bt Corn USA 
ARMS 

Survey 

Sim. System 

(Profit: quadratic) 

Two stage IV, 

Pred. Prob. 

Simultaneous 

Estimation 
1,129 

Farm Size***, 

Experience**, Crop 

Insurance**, 

Irrigation**, 

Perceived Yield 

Losses from Corn 

Borers*** 

1.65%1,2 1.71%1,2 - 
Seed Demand: 

.97%1,2 

Fernandez-

Cornejo, J., C. 

Hallahan, R. 

Nehring, and S. 

Wechsler (2012) 

1996-

2006 
HT Soybeans USA 

ARMS, 

CTIC, and 

Public  

Sources 

Linearized 

Adoption/Demand 

Functions 

Tested: 

Adoption is 

exogenous 

NA 132 - - - - 

Conservation 

Tillage: 2.1%; 

Quality-

Adjusted 

Herbicide Use:           

-3%1,2 

Gouse, M., J. 

Piesse, C. Thirtle, 

and C. Poulton 

(2009) 

2007 Bt/HT Corn 
South 

Africa 

Gouse et al. 

(2009) 

Stochastic Frontier 

Model 
No Correction No Correction 249 - - - - 

On average, HT 

adopters are 6% 

less efficient, 

and Bt adopters 

are 2% less 

efficient than 

non-adopters.2 

Mutuc, M., R. 

Rejesus, and J. 

Yorbe (2011) 

2004, 

20088 
Bt Corn Philippines 

ISAAA for 

2004, IFPRI 

for 2008 

DA Prod. Function 

(F: Cobb-Douglas; 

A: Logistic) 

Two stage IV, 

Pred. Prob. 

Tested: 

Adoption is 

exogenous 

407 obs in 2004,      

468 obs in 2008 
- - 

33%*** in 2003, 

44%*** in 2007 
- - 
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Authors 
Survey 

Year 

GE Seed 

Type 
Country Data Set Model Type 

End. 

Correction, GE 

Seeds 

End. 

Correction, 

Pesticides 

Observations 
Determinants of 

Adoption 
Impact on Profit Impact on Yield 

Impact on 

Pesticide Use 
Other 

Smale, M., P. 

Zambrano, R. Paz-

Ybarnegaray, and 

W. Fernandez-

Montano (2012) 

2008 HT Soybeans Bolivia 
Smale et al. 

(2012) 

Off-farm 

household income 

function (Tobit) 

Two stage IV, 

control function 
NA 102 

Education**, 

Capital***, Seed 

Price* 

- - - 

Adoption 

increases off 

farm income by 

9,000 

bolivianos, a 

64% increase in 

household 

income.*** 

Nolan, E. and P. 

Santos (2012) 

1997-

2009 
Bt/HT Corn USA 

Nolan and 

Santos (2012) 

Linearized Prod. 

Function 

Trait Random-

Effects 
NA 147,790 - - 

Bt-CRB: 4%***              

Bt-CRW: 2%** 
- - 

 

1  The results are reported as elasticities. For instance, a 10% increase in the probability of adoption induces an x% increase in profits. 

2  Signifigance levels are not reported. 

3  T-tests are used to demonstrate that there are not differences between the explanatory variables. This is interpreted as evidence that there is no 

sample selection. 

4  Impacts on inseciticide use were estimated using a reduced form model. 

5  The authors analyzed the two years of survey data separately. 

6  Qaim et al. (2003) and Qaim and de Janvry (2005) use different explanatory variables in the specification of the output generating function of 

the production function. 

7  The insect resistance traits are not disaggregated. 

8  The authors analyzed the two years of survey data separately. 
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Figure 2. How Resistance Affects the Marginal Product of Insecticides 
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Chapter 3:  A Structural Model of Corn Farmers’ Insect 

Control Decisions 

The previous two chapters surveyed the literature on genetically modified 

seeds. This chapter focuses on Bt corn. First, it describes major corn pests and discusses 

the strategies that farmers use to treat them. Next, it formulates a two stage, theoretical 

model and uses it to derive a soil insecticide demand function. Subsequent chapters 

discuss how to estimate this demand function, and how the results can be used to test 

the hypothesis that rootworms have developed resistance to Bt seeds. 

1. Insect Physiology and the Timing of Corn Farmers’ Pest Control 

Decisions 

Rootworms and corn borers are the two most historically destructive corn pests 

in the United States. That distinction aside, the insects have little in common. 

Rootworms lay eggs that overwinter in the soil. After hatching in late May, the 

larvae begin feeding on root tips and root stems. After several weeks of feeding, the 

larvae metamorphose into beetles and emerge from the soil (Plant & Soil Sciences 

eLibrary). Farmers treat rootworm infestations by applying soil insecticides at planting 

time or by rotating their crops regularly. 

Unlike rootworms, corn borer larvae overwinter above the ground (in organic 

debris). After emerging from hibernation in late May, the larvae develop into moths. 

Sometime in mid-June, these moths lay eggs on the underside of corn leaves. One week 

later, the eggs hatch and the larvae begin boring into stalks and whorls (Iowa State, 

Department of Entomology). Topical insecticides are effective after the eggs have been 

laid, but before the larvae have bored into the plant. Though corn borer infestations are 

notoriously difficult to treat, they can be controlled using topical insecticide sprays. 
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To summarize, rootworm infestations are treated at planting time. Corn borer 

infestations are treated later in the growing season (after egg deposition, but before 

larvae bore into the plant). 

2. A Structural Model of Corn Farmers’ Pest Control Decisions 

As in Lichtenberg and Zilberman (1986), this study employs a damage 

abatement model. Under perfect information, it is assumed that Y = 𝐻𝐺, where 𝐻 is a 

traditional production function, and 𝐺 is an abatement function (which maps to the unit 

interval). Because rootworms and corn borers are treated at different times in the 

growing season and with different types of insecticides, it is assumed that abatement is 

multiplicatively separable. The aggregate abatement function takes the form: 𝐺 =

𝐺𝐶𝐵𝐺𝐶𝑅𝑊. 

It is explicitly assumed that farmers are risk neutral. This assumption is 

ubiquitous in the damage abatement literature. It is especially reasonable in the context 

of US agriculture, where capital markets are well developed, and farms tend to be large, 

corporate operations. 

The timing of the model is as follows: First, farmers decide whether to plant Bt 

seeds and/or administer soil insecticides. Next, farmers observe pest infestation 

levels/environmental conditions and decide whether or not to apply topical insecticides. 

It is implicitly assumed that there are three sources of uncertainty: an error term 

affecting yield losses from corn borer infestations (𝜀𝐶𝐵), an error term affecting yield 

losses from rootworm infestations (𝜀𝐶𝑅𝑊), and an error term affecting potential yields 

(𝜀𝐻). Uncertainty about yield losses are assumed to affect abatement levels 

multiplicatively such that 𝐺 = 𝐺𝐶𝑅𝑊𝐺𝐶𝐵 exp(𝜀𝐶𝑅𝑊 + 𝜀𝐶𝐵). Similarly, 𝑯 = 𝐻 exp(𝜀𝐻). 

This implies that the production function is: Y = 𝐻𝐺 exp(𝜀𝐶𝑅𝑊 + 𝜀𝐶𝐵 + 𝜀𝐻). For the 
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purposes of this analysis, the error terms will be aggregated such that 𝑌 = 𝐻𝐺 exp(𝜀). 

This formulation is appealing because of its generality and tractability. 

As in Fox and Weersink (1995), abatement is specified using an extreme value 

distribution such that: 𝐺𝑖 = exp(−𝑍𝑖 exp(−𝑝𝑖′𝛽𝑝𝑖)), where 𝑍𝑖 represents the severity 

of pest infestations, 𝑝𝑖 is a column vector of damage abating inputs, 𝛽𝑝𝑖 is a column 

vector of parameters, and 𝑖 ∈ {𝐶𝐵, 𝐶𝑅𝑊}. A non-negativity constraint is imposed on 

𝑍𝑖 by assuming that 𝑍𝑖 = exp(𝓏𝑖′𝛽𝓏𝑖), where 𝓏𝑖 is a vector of field level factors and 𝛽𝓏𝑖 

is a vector of parameters. 

2.1 Topical Insecticide Use Decisions 

The timing of the model dictates that the farmer has full information when he 

makes his topical insecticide use decision. Therefore, the farmer’s profit maximization 

problem can be simplified to: 

𝑀𝑎𝑥
𝐼𝑛𝑠𝑇

 𝜋 =  𝑃Y − 𝑝𝑇𝐼𝑛𝑠𝑇 

s.t. Y = 𝐻𝐺𝐶𝑅𝑊𝐺𝐶𝐵exp(𝑣) 

𝐺𝐶𝐵 = exp(−𝑍𝐶𝐵 exp(−𝑎 − 𝑏𝐵𝑡𝐶𝐵 − 𝑐𝐼𝑛𝑠𝑇)) 

𝑍𝐶𝐵 = exp(𝓏𝐶𝐵′𝛽𝓏𝐶𝐵
) 

where, 𝐵𝑡𝐶𝐵 is an indicator for corn borer resistant seed use, 𝐼𝑛𝑠𝑇 represents topical 

insecticide use, 𝑣 is a realization of 𝜀, and 𝑎, 𝑏, and 𝑐 are parameters. Substituting the 

constraints into the objective function indicates that: 

𝜋 =  𝑃𝐻𝐺𝐶𝑅𝑊 exp(− exp(−𝑎 − 𝑏𝐵𝑡𝐶𝐵 − 𝑐𝐼𝑛𝑠𝑇 + 𝓏𝐶𝐵′𝛽𝓏𝐶𝐵
))exp(𝑣)  − 𝑝𝑇𝐼𝑛𝑠𝑇 

The first order condition of the farmers’ profit maximization problem is: 

𝑑𝜋

𝑑𝐼𝑛𝑠𝑇
=  𝑃𝐻𝐺𝐶𝑅𝑊𝐺𝐶𝐵 exp(−𝑎 − 𝑏𝐵𝑡𝐶𝐵 − 𝑐𝐼𝑛𝑠𝑇 + 𝓏𝐶𝐵′𝛽𝓏𝐶𝐵

) 𝑐 exp(𝑣)  − 𝑝𝑇 = 0 

Therefore, the demand function for topical insecticide use is: 
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(III. 1) 𝐼𝑛𝑠𝑇
∗ =

1

𝑐
[−𝑎 − 𝑏𝐵𝑡𝐶𝐵 + 𝓏𝐶𝐵′𝛽𝓏𝐶𝐵

+ ln (
𝑐𝑃𝐻𝐺𝐶𝑅𝑊𝐺𝐶𝐵

𝑝𝑇
) + 𝑣] 

This function is increasing in pest pressure, corn prices, and yields, but 

decreasing in topical insecticide prices. 

2.2 Seed Choices and Soil Insecticide Use Choices 

At planting time, the farmer faces uncertainty about the severity of pest 

infestations and environmental conditions. Therefore, he is forced to anticipate future 

soil insecticide use decisions. If It is assumed that E[𝜀] = 0, then expected topical 

insecticide use is: E[𝐼𝑛𝑠𝑇
∗ ] =

1

𝑐
[−𝑎 − 𝑏𝐵𝑡𝐶𝐵 + 𝓏𝐶𝐵′𝛽𝓏𝐶𝐵

+ ln (
𝑐𝑃𝐻𝐺𝐶𝑅𝑊𝐺𝐶𝐵

𝑝𝑇
)]. 

Substituting E[𝐼𝑛𝑠𝑇
∗ ] into 𝐺𝐶𝐵 indicates that optimal expected abatement from 

corn borer infestations is: 

𝐺𝐶𝐵
∗ = exp (−

𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊𝐺𝐶𝐵
) 

This expression can be simplified to: 

𝐺𝐶𝐵
∗ 𝐺𝐶𝐵

∗

= exp (−
𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
) 

Appendix A demonstrates that 𝐺𝐶𝐵
∗  is: 

𝐺𝐶𝐵
∗ = (−

𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
) 𝑊 (−

𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
)

−1

 

where, 𝑊 is the product log, or Lambert function. Therefore, it is possible to substitute 

𝐺𝐶𝐵
∗  out of the production function: 

(III. 2) E[Y] = 𝐻𝐺𝐶𝑅𝑊𝐺𝐶𝐵
∗ E[exp(𝜀)] =

−𝑝𝑇

𝑐𝑃
𝑊 (−

𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
)

−1

E[exp(𝜀)] 

This implies the farmer’s maximization problem at planting time is: 

Max
𝐼𝑛𝑠𝑆, 𝐵𝑡𝐶𝑅𝑊, 𝐵𝑡𝐶𝐵

 E[𝜋] =  𝑃E[Y] − 𝑝𝑆𝐼𝑛𝑠𝑆 − 𝑝𝑇E[𝐼𝑛𝑠𝑇
∗ ] − 𝑝𝐶𝑅𝑊𝐵𝑡𝐶𝑅𝑊 − 𝑝𝐶𝐵𝐵𝑡𝐶𝐵 
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s.t.  E[𝑌] =
−𝑝𝑇

𝑐𝑃
𝑊 (−

𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
)

−1

 E[exp(𝜀)] 

𝐺𝐶𝑅𝑊 = exp(−𝑍𝐶𝑅𝑊 exp(−𝑑 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆)) 

𝑍𝐶𝑅𝑊 = exp(𝓏𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊
) 

E[𝐼𝑛𝑠𝑇
∗ ] =

1

𝑐
[−𝑎 − 𝑏𝐵𝑡𝐶𝐵 + 𝓏𝐶𝐵′𝛽𝓏𝐶𝐵

+ ln (
𝑐𝑃𝐻𝐺𝐶𝑅𝑊𝐺𝐶𝐵

∗

𝑝𝑇
)] 

𝐺𝐶𝐵
∗ = (−

𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
) 𝑊 (−

𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
)

−1

 

𝐵𝑡𝐶𝑅𝑊, 𝐵𝑡𝐶𝐵 ∈ {0,1} 

Appendix B demonstrates that the first order condition of this maximization 

problem is: 

𝑃E[𝑌]𝑓 exp(−𝑑 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝓏𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊
) ∗ 𝜑 − 𝑝𝑆 = 0 

where, 𝜑 = (
𝑐𝑃E[𝑌]

𝑃𝑇
− 1) (

𝑐𝑃E[𝑌]

𝑃𝑇
− E[exp(𝜀)])⁄ . 

Therefore, the demand function for soil insecticides is: 

(III. 3) 𝐼𝑛𝑠𝑆
∗ =

1

𝑓
[−𝑑 − 𝑒𝐵𝑡𝐶𝑅𝑊 + 𝓏𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊

+ ln (
𝑓𝑃E[𝑌]

𝑝𝑠
) + ln (𝜑)] 

Equation (III. 3) demonstrates soil insecticide demand is decreasing in 

insecticide prices, but increasing in pest pressure, corn prices, expected yields, and 

E[exp(𝜀)].14 The latter of these terms captures the impacts of uncertainty, or production 

risk, on soil insecticide use decisions. The larger the variance of 𝜀, the more soil 

insecticides will be applied. This is not because farmers are risk averse (the model 

explicitly assumes risk neutrality), but because log-normal, log-gumbel, and other such 

distributions are increasing in the variance (or scale) parameter. 

                                                 

14  Simple parametric assumptions help demonstrate that 𝐼𝑛𝑠𝑆
∗ is increasing in E[exp(𝜀)]. For instance, 

if 𝜀~𝑁(0, 𝜎2), then exp (𝜀) has a log normal distribution and E[exp (𝜀)] = exp (
𝜎2

2
). Under perfect 

information, 𝜎2 = 0, exp (
𝜎2

2
) = 1, and ln(𝜑) = 0. As the variance of 𝜀 increases, ln (𝜑) increases, 

which increases soil insecticide demand. 
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3. Conclusions 

The demand functions for soil and topical insecticides (Equations III.1 and 

III.3) are: 

𝐼𝑛𝑠𝑇
∗ =

1

𝑐
[−𝑎 − 𝑏𝐵𝑡𝐶𝐵 + 𝓏𝐶𝐵′𝛽𝓏𝐶𝐵

+ ln (
𝑐𝑃𝐻𝐺𝐶𝑅𝑊𝐺𝐶𝐵

𝑝𝑇
) + 𝑣] 

and, 

𝐼𝑛𝑠𝑆
∗ =

1

𝑓
[−𝑑 − 𝑒𝐵𝑡𝐶𝑅𝑊 + 𝓏𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊

+ ln (
𝑓𝑃E[𝑌]

𝑝𝑠
) + ln (𝜑)] 

where, 𝜑 = (
𝑐𝑃E[𝑌]

𝑃𝑇
− 1) (

𝑐𝑃E[𝑌]

𝑃𝑇
− E[exp(𝜀)])⁄ . 

The similarities between the demand functions stem from the fact that 𝐺𝐶𝑅𝑊 

and 𝐺𝐶𝐵 have the same functional form and are multiplicatively separable. The 

differences stem from the model’s timing. Notice that it is possible to estimate the soil 

insecticide demand function if the dataset contains information about input prices, 

output prices, expected yields, and pest infestation levels (or factors affecting pest 

infestation levels). 

Chapter 4 discusses how to estimate the soil insecticide demand function, and 

how the results can be used to test the hypothesis that rootworms have developed 

resistance. 



42 

Appendix A:  Isolating G*
CB 

As shown in Chapter Three, Section II: 

𝐺𝐶𝐵
∗ 𝐺𝐶𝐵

∗

= exp(−
𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
) 

For ease of exposition, let 𝐺𝐶𝐵
∗ = 𝑥 and exp(−

𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
) = 𝜔. Then: 

𝑥𝑥 = 𝜔 

Next, let 𝑥 = exp(ln(𝑥)). So: 

exp(ln(𝑥))exp(ln(𝑥)) = 𝜔 

The exponent rule exp(𝑎)𝑏 = exp (𝑎𝑏) implies that: 

exp(ln(𝑥))exp(ln(𝑥)) = exp(ln(𝑥) exp(ln(𝑥))) = 𝜔 

Taking the log of both sides of the equation demonstrates that: 

ln(𝑥) exp(ln(𝑥)) = ln(𝜔) 

Taking the product log of both sides of the equation implies that:15 

ln(𝑥) = 𝑊[ln(𝜔)] 

Taking the exponent of both sides of the equation indicates that: 

𝑥 = exp(𝑊[ln(𝜔)]) 

The identity exp(𝑊(𝑥)) = 𝑥/𝑊(𝑥) can be used to simplify this expression: 

𝑥 = ln(𝜔) 𝑊[ln(𝜔)]−1 

                                                 

15  The product log (or Lambert) function is defined as the inverse of 𝑓(𝑞) = 𝑞exp(𝑞) , so 𝑞 =
𝑊[𝑞exp(𝑞)] for any complex number q. 
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Substituting 𝐺𝐶𝐵
∗ = 𝑥 and exp(−

𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
) = 𝜔 back into the problem demonstrates 

that: 

𝐺𝐶𝐵
∗ = (−

𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
) 𝑊 (−

𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
)

−1
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Appendix B:  Deriving the First Order Condition for Soil Insecticide Use 

The farmer’s (variable) profit maximization problem at planting time is: 

𝑚𝑎𝑥

𝐼𝑛𝑠𝑆
 𝜋 =  𝑃E[𝑌] − 𝑝𝑆𝐼𝑛𝑠𝑆 − 𝑝𝑇 E[𝐼𝑛𝑠𝑇

∗ ] 

Substituting Equation (III. 2), E[𝑌] =
−𝑝𝑇

𝑐𝑃
𝑊 (−

𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
)

−1

E[exp(𝜀)], into the profit function demonstrates that: 

𝜋 =  
−𝑝𝑇

𝑐
𝑊 (−

𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
)

−1

E[exp(𝜀)] − 𝑝𝑆𝐼𝑛𝑠𝑆 −
𝑝𝑇

𝑐
ln (−𝑊 (−

𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
)

−1

) −
𝑝𝑇

𝑐
[−𝑎 − 𝑏𝐵𝑡𝐶𝐵 + 𝓏𝐶𝐵′𝛽𝓏𝐶𝐵

] 

The derivative of the Lambert function is 
𝑑𝑊(𝑥)

𝑑𝑥
=

𝑊(𝑥)

𝑥(1+𝑊(𝑥))
. So, the first order condition is: 

𝑑𝜋

𝑑𝐼𝑛𝑠𝑆
=  [

𝑝𝑇

𝑐
𝑊−2] [

𝑊

(−
𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
) (1 + 𝑊)

] (
𝑝𝑇

𝑐𝑃𝐻
𝐺𝐶𝑅𝑊

−2) 𝐺𝐶𝑅𝑊(− exp(−𝑑 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝓏𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊
))(−𝑓)E[exp(𝜀)] − 𝑝𝑆 
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−
𝑝𝑇

𝑐
[−𝑊]𝑊−2 [

𝑊

(−
𝑝𝑇

𝑐𝑃𝐻𝐺𝐶𝑅𝑊
) (1 + 𝑊)

] (
𝑝𝑇

𝑐𝑃𝐻
𝐺𝐶𝑅𝑊

−2) 𝐺𝐶𝑅𝑊(− exp(−𝑑 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝓏𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊
))(−𝑓) 

This simplifies to: 

𝑑𝜋

𝑑𝐼𝑛𝑠𝑆
= [−

𝑝𝑇

𝑐𝑊
]

𝑓 exp(−𝑑 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝓏𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊
)E[exp(𝜀)]

1 + 𝑊
− 𝑝𝑆 −

𝑝𝑇

𝑐

𝑓 exp(−𝑑 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝓏𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊
)

1 + 𝑊
 

Rearranging Equation (III. 2), demonstrates that 𝑊 =
−𝑃𝑇E[exp(𝜀)]

𝑐𝑃E[𝑌]
 and that 1 + 𝑊 =

1

𝑃E[𝑌]
[𝑃E[𝑌] −

𝑃𝑇E[exp(𝜀)]

𝑐
]. 

Substituting these terms into 
𝑑𝜋

𝑑𝐼𝑛𝑠𝑆
 demonstrates that: 

𝑑𝜋

𝑑𝐼𝑛𝑠𝑆
= 𝑃E[𝑌]𝑓 exp(−𝑑 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝓏𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊

) ∗
(𝑃E[𝑌] −

𝑝𝑇

𝑐 )

(𝑃E[𝑌] −
𝑃𝑇E[exp(𝜀)]

𝑐 )
− 𝑝𝑆 = 0 

Therefore, the demand function for soil insecticides is: 

𝐼𝑛𝑠𝑆
∗ =

1

𝑓
[−𝑑 − 𝑒𝐵𝑡𝐶𝑅𝑊 + 𝓏𝐶𝑅𝑊𝛽𝓏𝐶𝑅𝑊

+ ln (
𝑓𝑃E[𝑌]

𝑝𝑠
) + ln(𝜑)] 

where, 𝜑 = (
𝑐𝑃E[𝑌]

𝑃𝑇
− 1) (

𝑐𝑃E[𝑌]

𝑃𝑇
− E[exp(𝜀)])⁄ .
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Chapter 4:  Estimation Approach and Empirical Strategy 

The previous chapter derived a demand function for soil insecticides. This 

chapter describes how it is estimated. More specifically, it describes the study’s data, 

estimation approach, and empirical strategy. In other words, this chapter describes the 

study’s methodology. 

Section I provides a detailed description of the datasets used in the analysis. 

Section II discusses empirical hurdles and model estimation. Section III describes how 

the regression results are used to estimate the impacts of Bt adoption. Section IV 

describes empirical tests of rootworm resistance. 

1. The ARMS Corn Survey 

The USDA’s Agricultural Resource Management Survey (ARMS) is a 

commodity specific, cross-sectional questionnaire. It has a multi-phase, multi-frame, 

stratified, probability-weighted design. Phase I prescreens farmers to ensure that they 

are eligible survey participants. Phase II collects field-level information about 

production practices and expenditures. Phase III collects farm-level data about assets, 

income, and household characteristics. 

The primary source of data used in this study is the ARMS Phase II Corn 

Survey. This survey has been regularly administered to farmers in Georgia, Illinois, 

Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Missouri, Nebraska, New 

York, North Carolina, North Dakota, Ohio, Pennsylvania, South Dakota, and Texas 

since 1996. To restrict the heterogeneity of the sample, this study focuses on farms 
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located in or near the USDA designated Heartland region (i.e. farms located in Illinois, 

Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Missouri, Nebraska, Ohio, 

South Dakota, and Wisconsin). Because rootworm resistant seeds were commercially 

introduced in 2003, this study analyzes data collected in 2005 and 2010, the two most 

recent survey years. 

The Phase II Survey is an extremely detailed source of information about 

farmers’ pesticide use. It provides the application date, the mode of application, and the 

quantity of every pesticide applied. This makes it possible to determine which products 

were used to treat rootworms and which were used to treat corn borers (see Table 2). 

The Phase II survey also provides detailed information about farmers’ seed 

choices. It indicates whether the crop being cultivated is Bt-CB, Bt-CRW, or a 

conventional variety. Because this information is also available for the previous 

rotations, it is possible to test whether planting Bt-CRW seeds in consecutive years 

decreases the effectiveness of the GE trait. 

Ideally, the Phase II survey would contain detailed historical, field level 

information about pest pressure. Unfortunately, most farmers do not have this 

information. Though the survey solicits information about expected yield losses on 

untreated acres, the response rate for this question is low. Consequently, state level 

averages were calculated using the responses available.16 

The structural model derived in Chapter 3 assumes that farmers make soil 

insecticide use decisions based on imperfect information. Fortunately, the Phase II 

survey collects information about farmers’ yield goals. Yield goals are made at planting 

                                                 

16  Though it would have been possible to calculate averages at the county or crop district level, these 

averages would have been based on small numbers of observations (and thus, endogenous). 
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time based on expected input use and environmental conditions. Consequently, they are 

good proxies for expected yields. 

In other analyses of GE seeds, farm size has been used as an instrument for 

adoption decisions. The ARMS Phase III survey provides information about (farm-

level) acres planted and the value of fixed capital. The latter of these variables was 

calculated by aggregating the value of farm dwellings, structures, trucks, cars, tractors, 

and machinery. 

NASS does not collect information about Bt-CRW seed prices. Consequently, 

these prices had to be estimated using ARMS data. The premium paid for Bt-CRW 

seeds was calculated by subtracting average state level conventional seed prices from 

average national level Bt-CRW seed prices. Limitations of the dataset precluded the 

calculation of this premium using average state level Bt-CRW prices.17 

NASS collects state-level pesticide prices, but not for every product. 

Fortunately, the agency does have data for Chlorpyrifos and Terbufos (two of the most 

common active ingredients in soil insecticides). The average state level prices used in 

this study were calculated using weighted averages of the NASS prices.18 

Average county level soil pH levels were calculated using the Natural 

Resources Conservation Service’s (NRCS) Soil Survey Geographic Database. This 

information is useful because alkaline soils degrade soil insecticides (Lamboy, 1986). 

As will be further discussed below, the NRCS’s National Commodity Crop 

Productivity Index, which captures the inherent productivity of soils, was also used in 

the analysis. 

                                                 

17  In many cases, the average state level Bt-CRW seed prices would have been calculated using less 

than five observations. 
18  The weights were based on state level usage in 2005. 
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Data from Oregon State’s Prism Climate Group was used to calculate county 

level deviations from average minimum winter temperatures and February precipitation 

levels.19 These deviations are measured in degrees Fahrenheit and inches (respectively). 

When appropriate, inflation was accounted for using the Bureau of Labor 

Statistic’s Producer Price Index for Farm Products (series id: WPU012202). The 

adjustment is made at the national level. 

Summary statistics for selected variables can be found in Tables 3-5. These 

tables provide descriptive statistics by year, state, and seed type. Notice that soil 

insecticide use decreased by approximately 75% over the course of the study period. 

This reduction was caused by a 60% drop in frequency and a 35% drop in the intensity 

of soil insecticide usage. 

2. Estimating a Demand Function for Soil Insecticides 

2.1 Accounting for Endogeneity 

Full information joint maximum likelihood is one method of accounting for 

endogeneity in non-linear models. Though this approach is conceptually appealing, it 

is often difficult to derive joint likelihood functions when there are multiple sources of 

endogeneity (Wooldridge, 2014). A two stage, control function based approach is a 

feasible alternative. First, the potentially endogenous variable is regressed on a set of 

exogenous instruments. Next, the results of this regression are used to estimate 

residuals. Finally, the residuals are included in the model’s second stage. The residuals 

are referred to as a control function because they act as a proxy, or control, for the 

omitted variables causing the endogeneity problem. 

                                                 

19  The deviations were calculated using 20 year normals. 
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One advantage of this approach is that it serves as an endogeneity test. If the 

parameter estimate associated with the control function is not significant then it is 

possible to treat the potentially endogenous variable as exogenous. 

Equation (III. 3) contains two potentially endogenous variables: the indicator 

for Bt-CRW adoption and expected yields. Reduced form specifications are used to 

estimate control functions for each of these variables. The expected yield function was 

estimated using ordinary least squares. The control function was calculated by 

subtracting the OLS predictions from the observed values. Seed choices were analyzed 

using a probit model. As suggested in Wooldridge (2014), generalized residuals were 

used as the control function for the Bt-CRW adoption decision. 

Incorporating the control functions into Equation (III. 3) produces the following 

specification: 

𝐼𝑛𝑠𝑠
̂ =

1

𝑓
[−𝑑 − 𝑒𝐵𝑡𝐶𝑅𝑊 + 𝑧𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊

+ 𝛽𝐵𝑡𝑅𝐵𝑡𝐶𝑅𝑊
+ 𝛽E[𝑌]𝑅𝐸[𝑌] + 𝛽𝐼𝑛𝑡𝑅𝐵𝑡𝑅E[𝑌] + 

ln (
𝑓𝑃E[𝑌]

𝑝𝑠
)]  

where, 𝑅𝐵𝑡𝐶𝑅𝑊
 represents the generalized residuals of the probit model, 𝑅𝐸[𝑌] represents 

the residuals of the expected yield function, and 𝑅𝐵𝑡𝐶𝑅𝑊
𝑅𝐸[𝑌] is an interaction term. 

Recall that 𝑧𝐶𝑅𝑊 is a vector of variables that affect the initial pest population. In this 

analysis it is assumed that 𝑧𝐶𝑅𝑊 is a function of consecutive corn rotations, state level 

yield losses from rootworms, state level indicator variables, average county level soil 

ph, an indicator for erodible soils, and county level deviations from average minimum 

temperatures and precipitation levels. For simplicities sake, it is assumed that 𝑧𝐶𝑅𝑊 also 

includes farm or farmer level characteristics (like farmer education or farm size) that 

impact average insect mortality rates, 𝑑. 
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Replacing 
−𝑑

𝑓
 with a constant produces the specification used in the second stage 

of the analysis: 

(IV. 1) 𝐼𝑛𝑠𝑠
̂ = 𝑐𝑜𝑛𝑠 +

1

𝑓
[−𝑒𝐵𝑡𝐶𝑅𝑊 + 𝑧𝐶𝑅𝑊

′𝛽𝓏𝐶𝑅𝑊 + 𝛽𝐵𝑡𝑅𝐵𝑡𝐶𝑅𝑊
+ 𝛽E[𝑌]𝑅E[𝑌] + 

𝛽𝐼𝑛𝑡𝑅𝐵𝑡𝑅E[𝑌] + ln (
𝑓𝑃E[𝑌]

𝑝𝑠
)]  

Notice that this specification does not include ln (𝜑). The control functions act 

as a proxy for this omitted variable. 

2.2 Accounting for Censoring 

Censoring occurs when the dependent variable is not fully observed. The classic 

case analyzes household expenditures on durable goods (Tobin, 1958). In this case, 

approximately 25% of the observations in the sample were concentrated at 0. 

Censored regression models assume that there is a latent, continuous variable, 

𝑦∗, underlying the censored variable, 𝑦. Though it is possible to model 𝑦, it is often 

easier to describe the behavior of 𝑦∗. Both Greene (2012) and Cameron and Trivedi 

(2005) recommend using the Gumbel, or extreme value, distribution to model 𝑦∗ when 

the probability of an outcome is particularly rare. Conceptually, this is because the 

Gumbel distribution is asymmetric, and because a censored observation’s contribution 

to the likelihood function tends to be larger for Gumbel than for normally distributed 

errors (see Figure 3). 

Approximately 85% of the farmers in the sample chose not to apply soil 

insecticides in 2005, while 94% chose not to use soil insecticides in 2010. Therefore, it 

is assumed that the residuals of the soil insecticide demand function are extreme value 

distributed. 



52 

The extreme value distribution is characterized by the probability density 

function, ϕ𝐺 =
1

𝐵
exp (−

𝑦𝑖−𝑐

𝐵
− exp (−

𝑦𝑖−𝑐

𝐵
)) and the cumulative density function, 

Φ𝐺 = exp (− exp (−
𝑦𝑖−𝑐

𝐵
)), where 𝑐 is a location parameter, and 𝐵 is a scale 

parameter. The likelihood function for a censored regression model with extreme value 

distributed errors (and left censoring at 0) is: ℒ = ∏ [
1

𝐵
exp (−

𝑦𝑖−𝑐

𝐵
−𝑁

𝑖=1

exp (−
𝑦𝑖−𝑐

𝐵
))]

𝐼𝑖(𝑦𝑖>0)

exp (− exp (
𝑐

𝐵
))

1−𝐼𝑖(𝑦𝑖>0)

. 

The mean of a Gumbel distribution is 𝜇𝐺 = 𝑐 + 𝐵𝛾, where 𝛾 is the Euler-

Mascheroni constant.20 Therefore, substituting 𝑐 = 𝜇𝐺 − 𝐵𝛾 into ℒ and assuming that 

𝜇𝐺 = 𝐼𝑛𝑠𝑠
̂  implies: 

(IV. 2) ℒ = ∏[
1

𝐵
exp (

𝐼𝑛𝑠𝑠
̂ − 𝐼𝑛𝑠𝑠

𝐵
− 𝛾 − exp (

𝐼𝑛𝑠𝑠
̂ − 𝐼𝑛𝑠𝑠

𝐵
− 𝛾))

𝐼𝑖(𝐼𝑛𝑠𝑠)𝑁

𝑖=1

 

        ∗ exp (− exp (
𝐼𝑛𝑠𝑠̂

𝐵
− 𝛾))

1−𝐼𝑖(𝐼𝑛𝑠𝑠)

] 

In order to ensure that the results were representative of the population of US 

farmers, each observation’s contribution to the likelihood function was weighted using 

NASS generated probability weights. The standard errors were bootstrapped in order 

to account for the two-stage nature of the endogeneity correction.21 

                                                 

20  𝛾 ≈ .58 
21  The bootstrapped covariance matrix was generated by estimating the model 500 times using 

observations resampled from the dataset (with replacement). 
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3. Model Predictions and Marginal Effects 

3.1 Model Predictions 

Once the parameters of the rootworm abatement function have been estimated, 

it is possible to generate a broad range of estimates and predictions. This study confines 

its interest to: the probability that a farmer uses soil insecticides, Pr (𝐼𝑛𝑠𝑆 > 0), the 

intensity of soil insecticide use, E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0], expected soil insecticide use, 

E[𝐼𝑛𝑠𝑆], abatement levels, 𝐺𝐶𝑅𝑊, adjusted potential yields, 𝐻𝐴, and total expected yield 

losses from rootworms, 𝑌𝑙𝐶𝑅𝑊. These predictions take the form: 

(IV. 3) Pr (𝐼𝑛𝑠𝑆 > 0) = 1 − Φ𝐺(0) = 1 − exp (− exp (
𝐼𝑛𝑠𝑆̂

𝐵
− 𝛾)) 

(IV. 4) E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0] =
𝐼𝑛𝑠𝑆̂ − 𝐵ei (− exp (

𝐼𝑛𝑠𝑆̂

𝐵 − 𝛾))

1 − ΦG(0)
 

(IV. 5) E[𝐼𝑛𝑠𝑆] = 𝐼𝑛𝑠𝑆̂ − 𝐵ei (− exp (
𝐼𝑛𝑠𝑆̂

𝐵
− 𝛾)) 

(IV. 6) 𝐺𝐶𝑅𝑊 = exp(− exp(𝑐𝑜𝑛𝑠 ∗ 𝑓 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊
)) 

(IV. 7) 𝐻𝐴 =
E[𝑌]

𝐺𝐶𝑅𝑊
 

and, 

(IV. 8) 𝑌𝑙𝐶𝑅𝑊 =
E[𝑌]

𝐺𝐶𝑅𝑊
∗ (1 − 𝐺𝐶𝑅𝑊) =

E[𝑌]

𝐺𝐶𝑅𝑊
− E[𝑌] 

Equations (IV. 4) and (IV. 5) are derived in Appendix C. 𝑌𝑙𝐶𝑅𝑊 represents crop 

losses in bushels/acre. Otherwise, only 𝐻𝐴 requires explanation. 

Recall that E[𝑌] = 𝐻𝐺𝐶𝐵𝐺𝐶𝑅𝑊E[exp(𝜀)]. Therefore, 𝐻𝐺𝐶𝐵𝐸[exp(𝜀)]̂ =
E[𝑌]

𝐺𝐶𝑅𝑊
. 

Notice that 𝐻𝐴 = 𝐻 when pest pressure from corn borers is low and when there is not 
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much uncertainty about environmental conditions. Therefore, 𝐻𝐴 is a lower bound for 

potential yields. 

3.2 Marginal Effects 

In order to quantify the impacts of resistance it is necessary to determine how 

Bt-CRW adoption affected corn farmers’ yields and soil insecticide use decisions. It is 

possible to accomplish this goal by estimating the impact of Bt-CRW adoption on: the 

probability of soil insecticide use, the intensity of soil insecticide use, average soil 

insecticide use, abatement levels, and expected yields. These marginal effects can be 

estimated using the expressions derived in the previous section: 

(IV.9) ∆Prob(𝐼𝑛𝑠𝑆 > 0) 

= Prob(𝐼𝑛𝑠𝑆 > 0|𝐵𝑡𝐶𝑅𝑊 = 1) − Prob(𝐼𝑛𝑠𝑆 > 0|𝐵𝑡𝐶𝑅𝑊 = 0) 

(IV.10)  ∆E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0] 

= E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0, 𝐵𝑡𝐶𝑅𝑊 = 1] − E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0, 𝐵𝑡𝐶𝑅𝑊 = 0] 

(IV.11)  ∆E[𝐼𝑛𝑠𝑠] = E[𝐼𝑛𝑠𝑠|𝐵𝑡𝐶𝑅𝑊 = 1] − E[𝐼𝑛𝑠𝑠|𝐵𝑡𝐶𝑅𝑊 = 0] 

(IV.12)  ∆𝐺𝐶𝑅𝑊 = (𝐺𝐶𝑅𝑊|𝐵𝑡𝐶𝑅𝑊 = 1) − (𝐺𝐶𝑅𝑊|𝐵𝑡𝐶𝑅𝑊 = 0) 

and, 

(IV. 13) ∆E[𝑌] = (𝐻𝐺𝐶𝐵𝐺𝐶𝑅𝑊|𝐵𝑡𝐶𝑅𝑊 = 1) − (𝐻𝐺𝐶𝐵𝐺𝐶𝑅𝑊|𝐵𝑡𝐶𝑅𝑊 = 0) 

≈ 𝐻𝐺𝐶𝐵E[exp(𝜀)]̂ ∗ [(𝐺𝐶𝑅𝑊|𝐵𝑡𝐶𝑅𝑊 = 1) − (𝐺𝐶𝑅𝑊|𝐵𝑡𝐶𝑅𝑊 = 0)] 

=
E[𝑌]

𝐺𝐶𝑅𝑊
∗ ∆𝐺𝐶𝑅𝑊 

The Delta Method was used to estimate the standard errors of the marginal 

effects and the model predictions (see Appendix D). 
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4. Tests for Rootworm Resistance 

Recall that 𝐺𝐶𝑅𝑊 = exp(− exp(−𝑑 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊
)) , 

where 𝑒 represents the effectiveness of Bt-CRW seeds. If resistance developed over the 

course of the study period, then 𝑒 should have decreased between 2005 and 2010. It is 

possible to test this hypothesis by incorporating an interaction term into the structural 

model. For instance, if 𝐺𝐶𝑅𝑊 = exp(− exp(−𝑑 − 𝐵𝑡𝐶𝑅𝑊(𝑒 + 𝑒10𝐼𝑛𝑑10) − 𝑓𝐼𝑛𝑠𝑆 +

𝑧𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊
)) , then: 

(IV. 14) 𝐼𝑛𝑠𝑠
̂ = 𝑐𝑜𝑛𝑠 +

1

𝑓
[−𝐵𝑡𝐶𝑅𝑊(𝑒 + 𝑒10𝐼𝑛𝑑10) + 𝜓] 

where, 𝜓 = 𝑧𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊
+ 𝛽𝐵𝑡𝑅𝐵𝑡𝐶𝑅𝑊

+ 𝛽E[𝑌]𝑅E[𝑌] + 𝛽𝐼𝑛𝑡𝑅𝐵𝑡𝑅E[𝑌] + ln (
𝑓𝑃E[𝑌]

𝑝𝑠
), and 

𝐼𝑛𝑑10 is a an indicator for 2010. 

That said, Equation (IV. 14) is an imperfect test for rootworm resistance. 

Though resistance is a plausible explanation for reductions in the effectiveness of Bt 

toxins, it is not the only one. A more accurate test would compare the effectiveness of 

Bt-CRW seeds on farms where resistance is, and is not, likely. Fortunately, this is 

possible. 

If rootworms have adapted, then resistant populations should be concentrated 

near farms where selective pressure is the highest. In other words, Bt-CRW seeds 

should be more effective on farms that cultivated Bt-CRW seeds in 2010 than they are 

on farms that cultivated Bt-CRW seeds in both 2009 and 2010. This hypothesis can be 

tested using another interaction term. For instance, if 𝐺𝐶𝑅𝑊 = exp(− exp(−𝑑 −

𝐵𝑡𝐶𝑅𝑊(𝑒 + 𝑒10𝐼𝑛𝑑10 + 𝑒10,𝐵𝑡𝑙𝐵𝑡𝐶𝑅𝑊,𝑙𝑎𝑔𝐼𝑛𝑑10) − 𝑓𝐼𝑛𝑠𝑆 + 𝑧𝐶𝑅𝑊′𝛽𝓏𝐶𝑅𝑊
)), then: 

(IV. 15) 𝐼𝑛𝑠𝑠
̂ = 𝑐𝑜𝑛𝑠 +

1

𝑓
[−𝐵𝑡𝐶𝑅𝑊(𝑒 + 𝑒10𝐼𝑛𝑑10 + 𝑒10,𝐵𝑡𝑙𝐵𝑡𝐶𝑅𝑊,𝑙𝑎𝑔𝐼𝑛𝑑10) + 𝜓] 

where, 𝐵𝑡𝐶𝑅𝑊,𝑙𝑎𝑔 is an indicator of lagged Bt-CRW adoption. 
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In Equation (IV. 15), 𝑒10 captures the impacts of environmental conditions 

(which may or may not be related to insect resistance), while 𝑒10,𝐵𝑡𝑙 captures the 

impacts of selective pressure. If rootworms have developed resistance then 𝑒10,𝐵𝑡𝑙 

should be negative. 

The following process was used to quantify the impacts of resistance and to 

conduct inference: First, Equation (IV. 15) was estimated and the marginal effects were 

estimated. Next, it was explicitly assumed that 𝑒10,𝐵𝑡𝑙 = 0 (i.e. that there was no 

resistance) and the marginal effects were recalculated. Finally, the difference in the 

marginal effects (and the standard deviation of this difference) was calculated at the 

observation level. T-tests were used to determine if the average of the differences was 

distinct from 0. 

5. Conclusions 

A two stage, control function based approach can be used to consistently 

estimate a non-linear, censored, Gumbel distributed, insecticide demand function. The 

regression results can be used to determine how Bt adoption affects the probability of 

soil insecticide use, the intensity of soil insecticide use, and expected soil insecticide 

use. Because the model is structural, it is also possible to determine how Bt adoption 

affects yields, yield losses from corn rootworms, and potential yields. 

If resistance to Bt toxins has developed amongst populations of corn rootworms, 

then Bt-CRW seeds should be least effective on farms where Bt-CRW seeds have been 

planted in consecutive rotations. In other words, it is possible to assess the extent to 

which rootworms have developed resistance by estimating a soil insecticide demand 

function. 
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Appendix C:  Deriving the Mean of a Censored Gumbel 

Distribution 

It is assumed that 𝑥∗ is drawn from a continuous Gumbel distribution with mean 

𝜇 and standard deviation, 𝜎. The Gumbel, or extreme value, distribution is characterized 

by the cumulative distribution function, Φ𝐺 = exp (− exp (−
𝑥∗−𝑐

𝐵
)), and probability 

density function, ϕ𝐺 =
1

𝐵
exp (−

𝑥∗−𝑐

𝐵
− exp (−

𝑥∗−𝑐

𝐵
)), where, c is a location parameter 

and B is a scale parameter. 

It is assumed that 𝑥 = 𝑥∗ when 𝑥∗ > 0, and 𝑥 = 0 otherwise. Therefore the 

mean of 𝑥 is: 

(C. 1) E[𝑥] = Prob(𝑥∗ ≤ 0) ∗ 0 + Prob(𝑥∗ > 0) ∗ E[𝑥|𝑥∗ > 0] 

= Prob(𝑥∗ > 0) ∗ E[𝑥|𝑥∗ > 0] 

The probability that 𝑥∗ > 0 is 1 − Φ(0) = 1 − exp (− exp (
𝑐

𝐵
)). Therefore, 

the first step in deriving the mean of the censored normal distribution is to derive 

E[𝑥|𝑥∗ > 0], the mean of a truncated Gumbel distribution. 

Deriving the Expectation of a Truncated Gumbel Distribution 

Cameron and Trivedi (2005, pg. 566) derive the mean of the truncated standard 

normal distribution by rescaling the truncated pdf and integrating from the point of 

truncation to infinity. They find that: 

1

1 − ΦN(𝑐)
∫ 𝑧ϕN(𝑧)𝑑𝑧

∞

𝑐

=
ϕN(𝑐)

1 − ΦN(𝑐)
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where, 𝜙𝑁 is the pdf, and Φ𝑁 is the cdf of the standard normal distribution. 

The same approach can be used to derive the mean of the truncated Gumbel 

distribution. Assuming that there is truncation at 0, 𝑥∗ is: 

E[𝑥∗|𝑥∗ > 0]  =
1

1 − Φ(0)
∫ 𝑥∗

∞

0

∗
1

𝐵
exp (−

𝑥∗ − 𝑐

𝐵
− exp (−

𝑥∗ − 𝑐

𝐵
)) 𝑑𝑥∗ 

Using the change of variables suggested in Jawitz (2004), 𝑦 = exp (−
𝑥∗−𝑐

𝐵
), 

𝑥∗ = 𝑐 − 𝐵ln(𝑦), and 𝑑𝑥∗ = −
𝐵

𝑦
𝑑𝑦 . Therefore, 

E[𝑥∗|𝑥∗ > 0]  =
1

1 − Φ(0)
∫ (𝑐 − 𝐵ln(𝑦))

0

exp(
𝑐
𝐵

)

∗
1

𝐵
exp (−

𝑐 − 𝐵ln(𝑦) − 𝑐

𝐵
− 𝑦) (−

𝐵

𝑦
) 𝑑𝑦 

This expression simplifies to: 

C. 2) E[𝑥∗|𝑥∗ > 0]

=
−𝑐

1 − Φ(0)
∫ exp(−𝑦)

0

exp(
𝑐
𝐵

)

𝑑𝑦 +
𝐵

1 − Φ(0)
∫ ln(𝑦)exp(−𝑦)

0

exp(
𝑐
𝐵

)

𝑑𝑦 

Evaluating the integral in the first term demonstrates that: 

C. 2a) 
−𝑐

1 − Φ(0)
∫ exp(−𝑦)

0

exp(
𝑐
𝐵

)

𝑑𝑦 = 𝑐 

Evaluating the integral in the second term, 
𝐵

1−Φ(0)
∫ ln(𝑦)exp(−𝑦)

0

exp(
𝑐

𝐵
)

𝑑𝑦, is slightly 

more complicated. First, integrate by parts, setting 𝑢(𝑦) = ln (𝑦) and 𝑣′(𝑦) =

exp(−𝑦). Then, 

∫ ln(𝑦)exp(−𝑦)
0

exp(
𝑐
𝐵

)

𝑑𝑦 = (− ln(𝑦) exp(−𝑦) |
exp(

𝑐
𝐵

)

0 ) − ∫
exp(−𝑦)

𝑦
𝑑𝑦

0

exp(
𝑐
𝐵

)

 

= [− ln(0) +  (
𝑐

𝐵
) exp (− exp (

𝑐

𝐵
))] − [∫

exp(−𝑦)

𝑦

∞

0

𝑑𝑦 − ∫
exp(−𝑦)

𝑦

∞

exp(
𝑐
𝐵

)

𝑑𝑦] 
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The exponential integral function is defined as, ei(𝑦) = − ∫
exp (−𝑡)

𝑡

∞

−𝑦
𝑑𝑡. Therefore, 

this expression simplifies to: 

[− ln(0) +  (
𝑐

𝐵
) exp (− exp (

𝑐

𝐵
))] − [−ei(0) + ei (− exp (

𝑐

𝐵
))]

= ei(0) − ln(0) +  (
𝑐

𝐵
) exp (− exp (

𝑐

𝐵
)) − ei (− exp (

𝑐

𝐵
)) 

Both ei(0) and ln(0) equal −∞. Therefore, ei(0) − ln(0) = −∞ + ∞, which is 

indeterminate. However, lim
𝑦→0

ei(𝑦) − ln(𝑦) = ln (lim
𝑦→0

exp (ei(𝑦))

𝑦
) = 𝛾. Therefore: 

(C. 2b) 
𝐵

1 − Φ(0)
∫ ln(𝑦)exp(−𝑦)

0

exp(
𝑐
𝐵

)

𝑑𝑦

=
𝐵

1 − Φ(0)
[𝛾 + (

𝑐

𝐵
) exp (− exp (

𝑐

𝐵
)) − ei (− exp (

𝑐

𝐵
))] 

Combining Equations (C. 1a) and (C. 1b) provides the mean of the truncated Gumbel 

Distribution: 

(C. 3) E[𝑥∗|𝑥∗ > 0] = 𝑐 + 𝑐 
Φ(0)

1 − Φ(0)
+

𝐵

1 − Φ(0)
[𝛾 − ei (− exp (

𝑐

𝐵
))] 

=
𝑐

1 − Φ(0)
+

𝐵

1 − Φ(0)
[𝛾 − ei (− exp (

𝑐

𝐵
))] 
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Deriving the Expectation of a Censored Gumbel Distribution 

Recall that E[𝑥] = Prob(𝑥∗ > 0) ∗ E[𝑥|𝑥∗ > 0]. Therefore, the mean of a left 

censored, Gumbel distributed variable is: 

(C. 4) E[𝑥] = (1 − Φ(0)) ∗
1

1 − Φ(0)
(𝑐 + 𝐵 [𝛾 − ei (− exp (

𝑐

𝐵
))]) 

=  𝑐 + 𝐵 [𝛾 − ei (− exp (
𝑐

𝐵
))] 

The mean of the latent, Gumbel distributed variable is: μ = 𝑐 + 𝐵𝛾. Therefore, E[𝑥] 

can be expressed as: 

(C. 5) E[𝑥] = 𝜇 − 𝐵ei (− exp (
𝜇

𝐵
− 𝛾)) 
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Appendix D:  Deriving the Standard Errors of The Model 

Predictions and Marginal Effects 

The Delta Method 

Hayashi (2000) provides a clear description of the delta method. Assume that 

{𝑋𝑛} is a sequence of (K-dimensional) random vectors such that the plim of 𝑥𝑛 is 𝛽 and 

the limiting distribution of √𝑛(𝑥𝑛 − 𝛽) is 𝑧. Assume that 𝑎(𝛽) is a continuously 

differentiable function that maps from ℝ𝐾 → ℝ1, and that 𝐴(𝛽) is a (1xK) matrix 

containing the partial derivatives of 𝑎 (evaluated at 𝛽). Then, the limiting distribution 

of √𝑛[𝑎(𝑥𝑛) − 𝑎(𝛽)] is 𝐴(𝛽)𝑧. 

This implies that the variance of any linear or nonlinear combination of 

unbiased parameter estimates is 𝐴(𝛽) Σ 𝐴(𝛽)′, where Σ is the asymptotic variance of 

the parameter estimates. More formally, if the limiting distribution of √𝑛(𝑥𝑛 − 𝛽) is 

𝑁(0, 𝛴) then the limiting distribution of √𝑛[𝑎(𝑥𝑛) − 𝑎(𝛽)] is 𝑁(0, 𝐴(𝛽) 𝛴 𝐴(𝛽)′). 

Calculating the Standard Errors of Model Predictions: 

Closed Form Solutions for the Standard Errors 

The structural model described in Chapter III can be used to predict the 

probability that a farmer uses soil insecticides, Prob(𝐼𝑛𝑠𝑆 > 0), the intensity of soil 

insecticide use, E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0], expected soil insecticide use, E[𝐼𝑛𝑠𝑠], average 

abatement levels, 𝐺𝐶𝑅𝑊, adjusted potential yields, 𝐻𝐴, and total expected yield losses 

from rootworms, 𝑌𝑙𝐶𝑅𝑊. It was assumed that: 



62 

𝑍𝐶𝑅𝑊 = exp(𝑧′𝛽𝑧) 22 

and, 

𝐼𝑛𝑠𝑠
̂ = 𝑐𝑜𝑛𝑠 +

1

𝑓
[−𝑒𝐵𝑡𝐶𝑅𝑊 + 𝑧′𝛽𝑧 + ln (

𝑓𝑃𝑌

𝑝𝑠
)] 23 

Therefore, the model predictions are: 

(D.1)  Prob(𝐼𝑛𝑠𝑆 > 0) = 1 − Φ(0) = 1 − exp (− exp (
𝐼𝑛𝑠𝑠̂

𝐵
− 𝛾)) 

(D.2)  [𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0] =
1

1−Φ(0)
[𝐼𝑛𝑠𝑠

̂ − 𝐵ei (− exp (
𝐼𝑛𝑠𝑠̂

𝐵
− 𝛾))] 

(D.3)  E[𝐼𝑛𝑠𝑠] = 𝐼𝑛𝑠𝑠
̂ − 𝐵ei (− exp (

𝐼𝑛𝑠𝑠̂

𝐵
− 𝛾)) 

(D.4)  𝐺𝐶𝑅𝑊 = exp(−𝑍𝐶𝑅𝑊 exp(−𝑑 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆)) 

= exp(− exp(𝑐𝑜𝑛𝑠 ∗ 𝑓 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧′𝛽𝑧)) 

(D.5)  𝐻𝐴 =
E[𝑌]

exp(−𝑍𝐶𝑅𝑊 exp(−𝑑−𝑒𝐵𝑡𝐶𝑅𝑊−𝑓𝐼𝑛𝑠𝑆))
=

E[𝑌]

exp(− exp(𝑐𝑜𝑛𝑠∗𝑓−𝑒𝐵𝑡𝐶𝑅𝑊−𝑓𝐼𝑛𝑠𝑆+𝑧′𝛽𝑧))
 

and, 

(D. 6) 𝑌𝑙𝐶𝑅𝑊 =
E[𝑌]

𝐺𝐶𝑅𝑊
∗ (1 − 𝐺𝐶𝑅𝑊) =

E[𝑌]

𝐺𝐶𝑅𝑊
− E[𝑌]24 

So, if: 

𝐴1 =  [
𝑑Prob(𝐼𝑛𝑠𝑆)

𝑑𝑐𝑜𝑛𝑠
 
𝑑Prob(𝐼𝑛𝑠𝑆)

𝑑𝑓
 
𝑑Prob(𝐼𝑛𝑠𝑆)

𝑑𝑒
 
𝑑Prob(𝐼𝑛𝑠𝑆)

𝑑𝛽𝑧
 
𝑑Prob(𝐼𝑛𝑠𝑆)

𝑑𝐵
] 

𝐴2 =  [
𝑑E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0]

𝑑𝑐𝑜𝑛𝑠
 
𝑑E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0]

𝑑𝑓
 
𝑑E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0]

𝑑𝑒
 
𝑑E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0]

𝑑𝛽𝑧

𝑑E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0]

𝑑𝐵
] 

𝐴3 =  [
𝑑E[𝐼𝑛𝑠𝑆]

𝑑𝑐𝑜𝑛𝑠
 
𝑑E[𝐼𝑛𝑠𝑆]

𝑑𝑓
 
𝑑E[𝐼𝑛𝑠𝑆]

𝑑𝑒
 
𝑑E[𝐼𝑛𝑠𝑆]

𝑑𝛽𝑧
 
𝑑E[𝐼𝑛𝑠𝑆]

𝑑𝐵
 ] 

𝐴4 =  [
𝑑𝐺𝐶𝑅𝑊

𝑑𝑐𝑜𝑛𝑠
 
𝑑𝐺𝐶𝑅𝑊

𝑑𝑓
 
𝑑𝐺𝐶𝑅𝑊

𝑑𝑒
 
𝑑𝐺𝐶𝑅𝑊

𝑑𝛽𝑧
 
𝑑𝐺𝐶𝑅𝑊

𝑑𝐵
 ] 

                                                 

22  For simplicity’s sake, this appendix treats the vectors 𝑧 and 𝛽𝑧 as scalars.  

23  𝑐𝑜𝑛𝑠 =
−𝑑

𝑓
 ⟹  −𝑑 = 𝑐𝑜𝑛𝑠 ∗ 𝑓 

24  Notice that the derivative of (D. 5) equals the derivative of (D. 6). Consequently, it is not discussed 

in the treatment that follows. 
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and, 

𝐴5 =  [
𝑑𝐻𝐴

𝑑𝑐𝑜𝑛𝑠
 
𝑑𝐻𝐴

𝑑𝑓
 
𝑑𝐻𝐴

𝑑𝑒
 
𝑑𝐻𝐴

𝑑𝛽𝑧
 
𝑑𝐻𝐴

𝑑𝐵
 ] 

Then, the standard errors of the model predictions are: 

se𝑖(Prob(𝐼𝑛𝑠𝑆 > 0)) = √𝐴1𝛴̂𝐴1
′
 

se𝑖(E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆]) = √𝐴2𝛴̂𝐴2
′
 

se𝑖(E[𝐼𝑛𝑠𝑆]) = √𝐴3𝛴̂𝐴3
′
 

se𝑖(𝐺𝐶𝑅𝑊) = √𝐴4𝛴̂𝐴4
′
 

se𝑖(𝐻𝐴) = √𝐴5𝛴̂𝐴5
′
 

where, 𝛴̂ is the covariance matrix of the empirical model, and 𝑖 is an observation level 

index. 

In order to estimate these standard errors, it is necessary is to derive closed form 

solutions for the elements of 𝐴1, 𝐴2, 𝐴3, 𝐴4, and 𝐴5, or to estimate them numerically. 

Though most econometrics packages make calculating numeric derivatives 

straightforward, closed form solutions were used to calculate the standard errors of the 

model predictions. 

Closed form solutions for 𝑨𝟏: The partial derivatives of 𝐏𝐫𝐨𝐛(𝑰𝒏𝒔𝑺 > 𝟎) 

𝑑Prob(𝐼𝑛𝑠𝑆)

𝑑𝑐𝑜𝑛𝑠
= 𝜙 

𝑑Prob(𝐼𝑛𝑠𝑆)

𝑑𝑓
=

1

𝑓2
(1 + 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑧′𝛽𝑧 − ln (

𝑓𝑃𝑌

𝑝𝑠
)) ∗ 𝜙 

𝑑Prob(𝐼𝑛𝑠𝑆)

𝑑𝑒
= (−

𝐵𝑡𝐶𝑅𝑊

𝑓
) ∗ 𝜙 
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𝑑Prob(𝐼𝑛𝑠𝑆)

𝑑𝛽𝑧
= (

𝑧

𝑓
) ∗ 𝜙 

𝑑Prob(𝐼𝑛𝑠𝑆)

𝑑𝐵
= − (

𝐼𝑛𝑠𝑠
̂

𝐵
) ∗ 𝜙 

where, 𝜙 =
1

𝐵
exp (

𝐼𝑛𝑠𝑠̂

𝐵
− 𝛾 − exp (

𝐼𝑛𝑠𝑠̂

𝐵
− 𝛾)) 

Closed form solutions for 𝑨𝟐: The partial derivatives of 𝐄[𝑰𝒏𝒔𝑺|𝑰𝒏𝒔𝑺 > 𝟎] 

𝑑E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0]

𝑑𝑐𝑜𝑛𝑠
= 1 − 𝜓 

𝑑E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0]

𝑑𝑓
=

1

𝑓2
(1 + 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑧′𝛽𝑧 − ln (

𝑓𝑃𝑌

𝑝𝑠
)) ∗ (1 −  𝜓) 

𝑑E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0]

𝑑𝑒
=  (−

𝐵𝑡𝐶𝑅𝑊

𝑓
) ∗ (1 −  𝜓) 

𝑑E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0]

𝑑𝛽𝑧
=  (

𝑧

𝑓
) ∗ (1 −  𝜓) 

𝑑E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0]

𝑑𝐵
= (

𝐼𝑛𝑠𝑠
̂

𝐵
) 𝜓 +

1

1 − Φ(0)
[(

𝐼𝑛𝑠𝑠
̂

𝐵
) Φ(0) − ei (− exp (

𝐼𝑛𝑠𝑠
̂

𝐵
− 𝛾))] 

where, 𝜓 =
ϕ

[1−Φ(0)]2 [𝐼𝑛𝑠𝑠
̂ − 𝐵ei (− exp (

𝐼𝑛𝑠𝑠̂

𝐵
− 𝛾))] 

Closed form solutions for 𝑨𝟑: The partial derivatives of 𝐄[𝑰𝒏𝒔𝑺] 

𝑑E[𝐼𝑛𝑠𝑆]

𝑑𝑐𝑜𝑛𝑠
= 1 − Φ(0) 

𝑑E[𝐼𝑛𝑠𝑆]

𝑑𝑓
=

1

𝑓2
(1 + 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑧′𝛽𝑧 − ln (

𝑓𝑃𝑌

𝑝𝑠
)) ∗ [1 − Φ(0)] 

𝑑E[𝐼𝑛𝑠𝑆]

𝑑𝑒
= (−

𝐵𝑡𝐶𝑅𝑊

𝑓
) ∗ [1 − Φ(0)] 

𝑑E[𝐼𝑛𝑠𝑆]

𝑑𝛽𝑧
= (

𝑧

𝑓
) ∗ [1 − Φ(0)] 
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𝑑E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0]

𝑑𝐵
= (

𝐼𝑛𝑠𝑠
̂

𝐵
) Φ(0) − ei (− exp (

𝐼𝑛𝑠𝑠
̂

𝐵
− 𝛾)) 

Closed form solutions for 𝑨𝟒: The partial derivatives of 𝑮𝑪𝑹𝑾 

𝑑𝐺𝐶𝑅𝑊

𝑑𝑐𝑜𝑛𝑠
= −𝐺𝐶𝑅𝑊 ∗ exp(𝑐𝑜𝑛𝑠 ∗ 𝑓 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧′𝛽𝑧) ∗ (𝑓) 

𝑑𝐺𝐶𝑅𝑊

𝑑𝑓
= −𝐺𝐶𝑅𝑊 ∗ exp(𝑐𝑜𝑛𝑠 ∗ 𝑓 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧′𝛽𝑧) ∗ (𝑐𝑜𝑛𝑠 − 𝐼𝑛𝑠𝑆) 

𝑑𝐺𝐶𝑅𝑊

𝑑𝑒
= −𝐺𝐶𝑅𝑊 ∗ exp(𝑐𝑜𝑛𝑠 ∗ 𝑓 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧′𝛽𝑧) ∗ (−𝐵𝑡𝐶𝑅𝑊) 

𝑑𝐺𝐶𝑅𝑊

𝑑𝛽𝑧
= −𝐺𝐶𝑅𝑊 ∗ exp(𝑐𝑜𝑛𝑠 ∗ 𝑓 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧′𝛽𝑧) ∗ (𝑧) 

𝑑𝐺𝐶𝑅𝑊

𝑑𝐵
= 0 

Closed form solutions for 𝑨𝟓: The partial derivatives of 𝑯𝑨 

𝑑𝐻𝐴

𝑑𝑐𝑜𝑛𝑠
=

E[𝑌]

𝐺𝐶𝑅𝑊
∗ exp(𝑐𝑜𝑛𝑠 ∗ 𝑓 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧′𝛽𝑧) ∗ (𝑓) 

𝑑𝐻𝐴

𝑑𝑓
=

E[𝑌]

𝐺𝐶𝑅𝑊
∗ exp(𝑐𝑜𝑛𝑠 ∗ 𝑓 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧′𝛽𝑧) ∗ (𝑐𝑜𝑛𝑠 − 𝐼𝑛𝑠𝑆) 

𝑑𝐻𝐴

𝑑𝑒
=

E[𝑌]

𝐺𝐶𝑅𝑊
∗ exp(𝑐𝑜𝑛𝑠 ∗ 𝑓 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧′𝛽𝑧) ∗ (−𝐵𝑡𝐶𝑅𝑊) 

𝑑𝐻𝐴

𝑑𝛽𝑧
=

E[𝑌]

𝐺𝐶𝑅𝑊
∗ exp(𝑐𝑜𝑛𝑠 ∗ 𝑓 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧′𝛽𝑧) ∗ (𝑧) 

𝑑𝐻𝐴

𝑑𝐵
= 0 

Estimating the standard deviation of the model predictions 

In order to determine how the model’s performance varied by year, state, and 

seed type, average predictions were calculated for different subsets of the population. 
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The standard errors of the average predictions were calculated using a two-step process. 

First, 𝐴1𝛴̂𝐴1
′
, 𝐴2𝛴̂𝐴2

′
, 𝐴3𝛴̂𝐴3

′
, 𝐴4𝛴̂𝐴4

′
, and 𝐴5𝛴̂𝐴5

′
 were calculated for each 

observation. Next, the variances were averaged (and square roots were taken). 

Calculating the Standard Errors of the Marginal Effects 

Closed Form Solutions for the Standard Errors:  

The model’s marginal effects indicate how Bt-CRW adoption affects the 

probability of soil insecticide use, ∆Prob(𝐼𝑛𝑠𝑆), the intensity of soil insecticide use, 

∆E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0], average soil insecticide use, ∆E[𝐼𝑛𝑠𝑆], abatement levels, ∆𝐺, and 

yield impacts (in bushels per acre), ∆E[𝑌]. These expressions take the form: 

(D.6)  ∆Prob(𝐼𝑛𝑠𝑆) = Prob(𝐼𝑛𝑠𝑆|𝐵𝑡𝐶𝑅𝑊 = 1) − Prob(𝐼𝑛𝑠𝑆|𝐵𝑡𝐶𝑅𝑊 = 0) 

(D.7)  ∆E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0] = E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0, 𝐵𝑡𝐶𝑅𝑊 = 1] 

−E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0, 𝐵𝑡𝐶𝑅𝑊 = 0] 

(D.8)  ∆E[𝐼𝑛𝑠𝑠] = E[𝐼𝑛𝑠𝑠|𝐵𝑡𝐶𝑅𝑊 = 1] − E[𝐼𝑛𝑠𝑠|𝐵𝑡𝐶𝑅𝑊 = 0] 

(D.9)  ∆𝐺𝐶𝑅𝑊 = (𝐺𝐶𝑅𝑊|𝐵𝑡𝐶𝑅𝑊 = 1) − (𝐺𝐶𝑅𝑊|𝐵𝑡𝐶𝑅𝑊 = 0) 

and, 

(𝐷. 10) ∆E[𝑌] = (𝐻𝐺𝐶𝐵𝐺𝐶𝑅𝑊|𝐵𝑡𝐶𝑅𝑊 = 1) − (𝐻𝐺𝐶𝐵𝐺𝐶𝑅𝑊|𝐵𝑡𝐶𝑅𝑊 = 0)

≈ 𝐻𝐺𝐶𝐵̂ ∗ [(𝐺𝐶𝑅𝑊|𝐵𝑡𝐶𝑅𝑊 = 1) − (𝐺𝐶𝑅𝑊|𝐵𝑡𝐶𝑅𝑊 = 0)]

=
E[𝑌]

𝐺𝐶𝑅𝑊
∗ ∆𝐺𝐶𝑅𝑊 

So, if: 

𝐴6 =  [
𝑑∆Prob(𝐼𝑛𝑠𝑆)

𝑑𝑐𝑜𝑛𝑠
… 

𝑑∆𝑃𝑟𝑜𝑏(𝐼𝑛𝑠𝑆)

𝑑𝐵
] 

𝐴7 =  [
𝑑∆E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0]

𝑑𝑐𝑜𝑛𝑠
…

𝑑∆E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆 > 0]

𝑑𝐵
] 
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𝐴8 =  [
𝑑∆E[𝐼𝑛𝑠𝑆]

𝑑𝑐𝑜𝑛𝑠
… 

𝑑∆E[𝐼𝑛𝑠𝑆]

𝑑𝐵
 ] 

𝐴9 =  [
𝑑∆𝐺𝐶𝑅𝑊

𝑑𝑐𝑜𝑛𝑠
… 

𝑑∆𝐺𝐶𝑅𝑊

𝑑𝐵
 ] 

and, 

𝐴10 =  [
𝑑∆E[𝑌]

𝑑𝑐𝑜𝑛𝑠
… 

𝑑∆E[𝑌]

𝑑𝐵
 ] 

Then, the standard errors are: 

se𝑖(∆Prob(𝐼𝑛𝑠𝑆 > 0)) = √𝐴6𝛴̂𝐴6
′
 

se𝑖(∆E[𝐼𝑛𝑠𝑆|𝐼𝑛𝑠𝑆]) = √𝐴7𝛴̂𝐴7
′
 

se𝑖(∆E[𝐼𝑛𝑠𝑆]) = √𝐴8𝛴̂𝐴8
′
 

se𝑖(∆𝐺𝐶𝑅𝑊) = √𝐴9𝛴̂𝐴9
′
 

and, 

se𝑖(∆𝐸[𝑌]) = √𝐴10𝛴̂𝐴10
′
 

Deriving the Partial Derivatives of the Marginal Effects 

Though it is possible to estimate the elements of 𝐴6, 𝐴7, 𝐴8, 𝐴9, and 𝐴10 

numerically, closed form solutions were used to calculate the standard errors of the 

marginal effects. 

Closed form solutions for𝑨𝟔, 𝑨𝟕, 𝑨𝟖, and 𝑨𝟗: 

Notice that 𝐴6, 𝐴7, 𝐴8, and 𝐴9 are linear combinations of the elements of 𝐴1, 

𝐴2, 𝐴3, and 𝐴4 (respectively). For instance, the first element of 𝐴6 is: 
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𝑑∆Prob(𝐼𝑛𝑠𝑆)

𝑑𝑐𝑜𝑛𝑠
=

𝑑Prob(𝐼𝑛𝑠𝑆|𝐵𝑡𝐶𝑅𝑊 = 1)

𝑑𝑐𝑜𝑛𝑠
−

𝑑Prob(𝐼𝑛𝑠𝑆|𝐵𝑡𝐶𝑅𝑊 = 0)

𝑑𝑐𝑜𝑛𝑠
 

where, 
𝑑Prob(𝐼𝑛𝑠𝑆)

𝑑𝑐𝑜𝑛𝑠
 is the first element of 𝐴1. 

Therefore, 

𝑑∆Pro𝑏(𝐼𝑛𝑠𝑆)

𝑑𝑐𝑜𝑛𝑠
= (𝜙|𝐵𝑡𝐶𝑅𝑊 = 1) − (𝜙|𝐵𝑡𝐶𝑅𝑊 = 0) 

Because they are linear combinations of the partial derivatives derived in the 

previous section, expressions for the elements of 𝐴6, 𝐴7, 𝐴8, and 𝐴9 are not explicitly 

provided. 

Closed form solutions for𝑨𝟏𝟎: The partial derivatives of ∆𝑬[𝒀] 

𝑑∆E[𝑌]

𝑑𝑐𝑜𝑛𝑠
=

E[𝑌]

𝐺𝐶𝑅𝑊
∗ [exp(𝑐𝑜𝑛𝑠 ∗ 𝑓 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧′𝛽𝑧) ∗ (𝑓) +

𝑑∆𝐺𝐶𝑅𝑊

𝑑𝑐𝑜𝑛𝑠
] 

𝑑∆E[𝑌]

𝑑𝑓
=

E[𝑌]

𝐺𝐶𝑅𝑊
∗ [exp(𝑐𝑜𝑛𝑠 ∗ 𝑓 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧′𝛽𝑧) ∗ (𝑐𝑜𝑛𝑠 − 𝐼𝑛𝑠𝑆) +

𝑑∆𝐺𝐶𝑅𝑊

𝑑𝑓
] 

𝑑∆E[𝑌]

𝑑𝑒
=

E[𝑌]

𝐺𝐶𝑅𝑊
∗ [exp(𝑐𝑜𝑛𝑠 ∗ 𝑓 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧′𝛽𝑧) ∗ (−𝐵𝑡𝐶𝑅𝑊) +

𝑑∆𝐺𝐶𝑅𝑊

𝑑𝑒
] 

𝑑∆E[𝑌]

𝑑𝛽𝑧
=

E[𝑌]

𝐺𝐶𝑅𝑊
∗ [exp(𝑐𝑜𝑛𝑠 ∗ 𝑓 − 𝑒𝐵𝑡𝐶𝑅𝑊 − 𝑓𝐼𝑛𝑠𝑆 + 𝑧′𝛽𝑧) ∗ (𝑧) +

𝑑∆𝐺𝐶𝑅𝑊

𝑑𝛽𝑧
] 

𝑑𝐻𝐴

𝑑𝐵
= 0 

Estimating the standard deviation of the model marginal effects (by year, state, 

or seed type) 

In order to determine whether the impact of Bt-CRW seeds varied by year, state, 

or seed type, average marginal effects were calculated for different subsets of the 

population. The standard error of the average marginal effects was calculated using a 

two-step process. First, 𝐴6𝛴̂𝐴6
′
, 𝐴7𝛴̂𝐴7

′
, 𝐴8𝛴̂𝐴8

′
, 𝐴9𝛴̂𝐴9

′
, and 𝐴10𝛴̂𝐴10

′
 were 
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calculated for each observation. Next, these estimates were averaged (and square roots 

were taken). 



70 

Table 2. Timing of Insecticide Applications (Total Pounds of AI Applied) 

Active Ingredient Name 

2005 2010 

Applied 

Before 

Planting 

Applied At 

Planting 

Applied After 

Planting 

Total Pounds 

of Ai Applied  

Applied 

Before 

Planting 

Applied At 

Planting 

Applied After 

Planting 

Total Pounds 

of Ai Applied  

         

Carbofuran 0 0 2.10 2.10 0 0 0 0 

Chlorethoxyfos 0 0.16 0 0.16 0 0.41 0 0.41 

Chlorpyrifos 3.95 48.19 9.90 62.04 0 13.04 2.79 15.83 

Methyl parathion 0 0 2.82 2.82 0 0 0 0 

Tefluthrin 0.28 7.73 0.14 8.15 0 1.82 0.17 1.99 

Terbufos 0 13.43 1.28 14.70 0 1.86 0.10 1.96 

Other Insecticides 0.81 12.55 18.34 31.70 0.25 3.12 13.75 17.16 

Total 5.04 82.06 34.58 121.68 0.25 20.24 16.81 37.35 

         

Percent of Total Pounds 

Applied 4.14% 67.44% 28.42%  0.66% 54.20% 45.01%  
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Table 3. Descriptive Statistics (Means) for Selected Variables 

   2005 2010 

      

Yields1    148.39 154.11 

Yield Goals1    157.72 167.97 

Corn Price2    2.20 5.23 

Soil Insecticide Price3    11.35 10.81 

Premium Paid for Rootworm Resistant Seeds4  25.21 27.19 

Premium Paid for Corn Borer Resistant Seeds4  15.98 21.55 

Premium Paid for Stacked Seeds4  28.75 39.45 

Lbs of Soil (CRW) Insecticides Applied5  0.046 0.011 

Lbs of Topical (CRB) Insecticides Applied5  0.011 0.0007 

Total Lbs of Insecticide Applied5  0.06 0.02 

Incidence of Soil Insecticide Use  16% 6% 

Incidence of Topical Insecticide Use  2% 1% 

Incidence of Bt-CRW use  10% 52% 

Incidence of Bt-CRB use  37% 58% 

Expected Yield Losses from Rootworms6  9.24 11.00 

Soil pH    6.30 6.37 

Deviation from Average Winter 

Temperatures7 
   1.11 -1.91 

Deviation from Average February 

Precipitation8 
   1.03 -6.67 

Number of Consecutive Corn Rotations  0.43 0.47 

Farm Size9    574.64 433.67 

Indicator for a Post-High School Education  0.24 0.21 

Indicator for Erodable Soil  0.19 0.12 

NCRS Soil Productivity Index  0.47 0.49 

Fixed Capital10   
 

    

641,731  

    

632,262  

Number of Observations  836 918 

      0.07 0.01 

 

1 in bushels/acre 

2 in dollars/per bushel 

3 in dollars/per pound 

4  in dollars/bag 

5 in lbs/ai/acre 

6  in bushels/acre 

7  in degrees Fahrenheit 

8  in inches 

9  in acres 

10  in dollars 
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Table 4. Descriptive Statistics (Means) for Selected Variables by Seed Type 

 Yield Goals1 

Expected Yield 

Loss (if CRW 

Infestations Are 

Not Treated)1 

Soil Insecticide 

Use2 Bt Adoption 

  2005 2010 2005 2010 2005 2010 2005 2010 

          

Illinois 168.04 178.23 17.17 15.29 0.13 0.03 6% 74% 

Iowa 174.89 187.01 14.25 15.37 0.01 0.004 13% 59% 

South Dakota 136.03 152.91 12.25 12.57 0.053 0.003 16% 0.57 

Wisconsin 156.27 160.86 11.67 14.90 0.04 0.01 10% 41% 

Indiana 165.63 174.42 9.64 9.54 0.15 0.03 3% 51% 

Michigan 149.81 147.08 8.17 6.39 0.07 0.001 8% 35% 

Nebraska 167.45 165.92 7.84 13.31 0.04 0.02 27% 46% 

Kentucky 147.58 159.00 7.59 4.45 0.01 0.001 5% 23% 

Missouri 151.54 158.33 7.54 5.44 0.004 0 7% 33% 

Minnesota 159.54 173.65 6.32 9.36 0.02 0.01 12% 65% 

Kansas 134.89 137.35 4.75 5.38 0.00 0 15% 44% 

Ohio 163.61 166.40 3.18 8.02 0.04 0.01 6% 48% 

                  

 

1 in bushels/acre 

2 in pounds of active ingredient/ planted acre 
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Table 5. Descriptive Statistics (Means) by Rootworm Control Strategy 

 

Bt-CRW Users 

(only) 

Soil Insecticide 

Users (only) 

Bt-CRW and Soil 

Insecticide Users 

No Bt-CRW Seed 

or Soil Insecticide 

Use 

  2005 2010 2005 2010 2005 2010 2005 2010 

          

Yields1 162.17 162.49 157.28 164.88 178.00 167.11 144.40 143.06 

Yield Goals1 162.96 173.87 167.83 176.25 180.71 189.39 154.73 159.67 

Lbs of Soil 

(CRW) 

Insecticides 

Applied2 

0.00 0.00 0.29 0.24 0.10 0.16 0 0 

Lbs of Topical 

(CRB) 

Insecticides 

Applied2 

0.01 0.0001 0 0 0 0.01 0.01 0.001 

Total Lbs of 

Insecticide 

Applied2 

0.02 0.005 0.30 0.24 0.10 0.16 0.02 0.005 

Incidence of 

Soil Insecticide 

Use 

0% 0% 100% 100% 1.00 100% 0% 0% 

Incidence of 

Topical 

Insecticide Use 

3% 0% 0% 0% 0% 3% 2% 2% 

Expected Yield 

Losses from 

Rootworms3 

10.60 12.56 12.93 12.49 12.08 15.84 8.27 8.91 

Soil Ph 6.53 6.47 6.38 6.25 6.74 6.44 6.25 6.25 

Number of 

Consecutive 

Corn Rotations 

0.64 0.52 0.65 0.75 0.71 0.97 0.36 0.36 

Number of 

Observations 
80 444 127 20 7 33 622 421 

                  

 

1 in bushels/acre 

2 in pounds of active ingredient/planted acre 

3 on untreated acres 
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Figure 3. The Probability that X≤0 

 

Gumbel Distribution

Normal Distribution

Gumbel Distribution

Normal Distribution
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Chapter 5:  Results 

This chapter presents the results of the analysis. Section I discusses the results 

of the variable addition tests (i.e. whether it is necessary to account for endogeneity 

when estimating the soil insecticide demand function). Section II provides the results 

of the censored regression model and describes what they imply about the impacts of 

Bt-CRW adoption. Section III discusses the evidence that rootworms are adapting to 

Bt-CRW seeds. 

1. Reduced Form Models and Endogeneity Tests 

As previously discussed, accounting for endogeneity using control functions is 

a multi-step process. First, the potentially endogenous variables are regressed on a set 

of exogenous instruments. Next, these results are used to calculate residuals. Finally, 

the residuals are used as explanatory variables in the second stage of the analysis. If 

Wald tests demonstrate that the control functions are not significant, then it is safe to 

treat the potentially endogenous variables as exogenous (Woodridge, 2014). 

1.1 Results of the Reduced Form Models 

The results of the reduced form models conformed to a priori expectations (see 

Table 6). For instance, expected yields were found to be increasing in stocks of fixed 

capital, the productivity of soils, and soil pH levels, but decreasing in February 

precipitation levels and the presence of erodible soils. The probability of Bt-CRW 
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adoption was found to be increasing in consecutive corn rotations, expected yield losses 

from corn rootworms on untreated acres, February precipitation levels, and soil pH. 

Surprisingly, the results of the probit model indicated that the probability of Bt-

CRW adoption was increasing in the premium paid for Bt-CRW seeds. This unexpected 

result might be due to heterogeneity in Bt-CRW seeds. For instance, though many Bt-

CRW seeds produce a single toxin, others have “pyramided” traits which produce 

multiple PIP’s.25 

Insofar as goodness of fit is concerned, the adjusted R2 of the Probit and OLS 

regressions were .26 and .29 respectively. These results suggest that the instruments 

used in the first stage of the model explain fairly little of the variation associated with 

farmers’ expectations.  

1.2 Variable Addition Tests 

Table 7 presents the results of the variable addition tests. Though 𝛽𝐸[𝑌] was 

strongly significant in every specifications tested, neither 𝛽𝐵𝑡 nor 𝛽𝐼𝑛𝑡 were. In other 

words, omitted variables associated with expected yields were correlated with soil 

insecticide decisions, but omitted variables associated with Bt-adoption decisions were 

not. Wald tests were used to confirm these results. One interpretation is that average 

state level yield losses are good proxies for pest pressure, but that there are not good 

proxies for omitted environmental factors that influence expected yields. 

Notably, two stage instrumental variable based methods require exclusion 

restrictions. In other words, there must be at least one instrument that is correlated with 

the potentially endogenous variable and uncorrelated with the dependent one. Notice 

                                                 

25  As a robustness test, the control functions were estimated with and without the Bt-CRW seed 

prices. The variable addition tests were not sensitive to this change in the specification.  
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that seed prices and continuous corn rotations strongly affected the probability of Bt-

CRW seed use, but not expected yields or soil insecticide use decisions. The presence 

of erodible soils and stocks of fixed capital were strongly correlated with expected 

yields, but not soil insecticide use or seed choices. In other words, there were valid, 

relevant instruments for both potentially endogenous variables. 

To summarize, the results of the variable addition tests imply that it is necessary 

to account for the endogeneity of expected yields, but that it is acceptable to treat Bt-

CRW adoption decisions as exogenous. 

2. Parameter Estimates, Predictions, and Marginal Effects 

2.1 Goodness of fit 

The parameter estimates suggest that precipitation, pest pressure, and alkaline 

soils increase soil insecticide use (see Tables 7). Despite controlling for changes in 

these factors, soil insecticide use appears lower than average in Iowa, Minnesota, and 

Nebraska. Though the parameter estimates suggest that Bt-CRW adoption reduces soil 

insecticide use, the magnitude of the impact appears small relative to other factors. 

Tables 8-10 compare the model’s predictions with the sample means. Notice 

that the predictions correspond closely to the means regardless of whether they are 

compared by year, across states, or for farmers using different types of seeds.  

On average, the model predicts that farmers anticipated yield losses from 

rootworms of approximately 3.7 percentage points (or 6 bushels per acre) in 2005 and 

1.2 percentage points (1.9 bushels per acre) in 2010 (see Tables 11-13). These results 

are lower than the 6% - 7% suggested by the sample means.26 Future work will attempt 

                                                 

26  Notably, results from field studies suggest that yield losses from rootworms are highly variable. 

Kahler et al. (1985), Sutter et al. (1990), Spike and Tollefson (1991), Riedell et al. (1996), and Cox 
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to provide more accurate estimates of yield losses from rootworms by incorporating 

better information about pest pressure, growing degree days, stress degree days, and 

irrigation systems. 

To conclude, despite its stringent assumptions (risk neutrality, multiplicative 

separability of the abatement functions, etc.), the structural model makes accurate 

predictions about farmers’ insecticide usage. The model’s predictions about yield losses 

and the severity of rootworm infestations also appear reasonable.  

2.2 Impacts on Insecticide Use 

The model predicts that Bt-CRW adoption decreased the probability of soil 

insecticide use by approximately 10.9 percentage points (68%) in 2005 and 3.4 

percentage points (56%) in 2010 (see Table 14). Adoption appears to have had a less 

dramatic impact on application rates, reducing the intensity of soil insecticide use by 

.01 pounds per acre (3.5%) in 2005, and .003 pounds per acre (1.4%) in 2010. On 

average, adopting rootworm resistant seeds would have decreased a farmers’ expected 

soil insecticide use by .032 pounds per acre (70%) in 2005 and .01 pounds per acre 

(84%) in 2010. 

Notably, the magnitudes of these impacts were larger for Bt-adopters and in 

states where pest pressure was high (see Tables 15-16). In Illinois, Bt-CRW adoption 

appears to have decreased the probability of soil insecticide usage by approximately 

25.6 percentage points (57%) in 2005 and 9.6 percentage points in 2010 (44%). By 

                                                 

et al. (2008) reported that yield losses from rootworms were 6% to 9% lower than yields on treated 

fields. Godfrey et al. (1993), Davis (1994), Roth et al. (1995), Dun et al. (2010), and Tinsley et al. 

(2013) estimated that yield losses from rootworms ranged from 15% to 40%. 
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contrast, it decreased the intensity of usage by .033 pounds per acre in 2005 (11%) and 

.009 pounds per acre in 2010 (8%). 

These reductions are likely to benefit US farmers. Historically, organophosates 

(such as Terbufos and Chlorpyrifos) have been responsible for the majority of acute 

occupational pesticide poisoning cases in the United States (Weisenburger, 1993). 

Additionally, there is evidence that long term occupational exposure to 

organophosphates can increase the risk of cancer, Parkinson’s disease, and immune 

disfunction (Ragnarsdottir, 2000). Conversely, there is not any evidence that exposure 

to Bt toxins is detrimental to human health. 

Similarly, though soil insecticides are frequently present in soil, runoff water, 

and runoff sediment, Bt toxins dissipate rapidly in the environment, and pose a limited 

risk to non-target species (Whiting et al., 2014). Therefore, replacing conventional 

insecticides with Bt toxins is likely to improve environmental outcomes. 

To summarize, Bt-CRW adoption appears to have reduced conventional 

insecticide use. These reductions are likely to have had positive consequences, 

especially in and around agricultural communities. 

2.3 Impacts of Bt-CRW Adoption on Yields: 

The model predicts that Bt-CRW adoption decreased yield losses from 

rootworms by .6 percentage points (1.02 bushels per acre) in 2005 and .1 percentage 

points (.2 bushel per acre) in 2010 (see Table 7). These estimates are smaller than those 

reported in Nolan and Santos (2012), who found that Bt-CRW adoption increased yields 

by 3 bushels/acre in field trials conducted from 2004-2006. However, crops tend to 

perform better in field trials than they do on farms. By way of illustration, average 

yields in the sample analyzed by Nolan and Santos were 30% higher than those reported 
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by NASS. This suggests that 3 bushels/per acre is an upper bound on the benefits of Bt-

CRW adoption. 

Insofar as the financial benefits of adoption are concerned, using rootworm 

resistant seeds did not appear to increase farmers’ profits over the course of the study 

period. Rather, farmers may have chosen to purchase Bt-CRW seeds because of the 

non-pecuniary benefits associated with adoption. 

3. Resistance Tests 

Wooldridge (2014) warns against using the parameter estimates [of the 

structural model] to conduct inference. Rather, the delta method (or a similarly robust 

method) should be used to assess the statistical significance of the average marginal 

effects. Judging from the average marginal effects reported in Tables 18 and 19, the 

benefits associated with Bt-CRW adoption may have decreased rather substantively 

over the course of the study period. 

Assuming that differences in the average annual effectiveness of Bt-CRW seeds 

(as reflected by the parameter estimate 𝑒10) reflect an environmental impact unrelated 

to rootworm resistance, the model predicts that the benefits associated with adoption 

decreased by approximately 64% from 2005 to 2010 (see Table 18). If 𝑒10 reflects an 

impacts which is related to resistance (e.g. the migration of resistant populations), then 

the model predicts a 37% reduction in benefits on farms that rotate Bt-CRW seeds, and 

a 77% reduction on farms that use Bt-CRW seeds in consecutive rotations (see Table 

19). 

However, these results should be interpreted with caution. For instance, the 

structural model assumes that farmers are well informed. However, because resistance 

was first reported in 2009, accurate information about resistance might not have been 
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well disseminated by 2010. Additionally, the model assumes that farmers are risk 

neutral. If farmers are risk averse then the impacts of resistance may be overstated. 

4. Conclusions 

This study finds that expected yields are endogenous to soil insecticide use 

decisions, but that seed choices are not. Estimates from the censored, structural soil 

insecticide demand function imply that Bt-CRW adoption increases yields and 

decreases insecticide use. The magnitudes of these effects suggest that adoption may 

improve human health and environmental outcomes. Surprisingly, there is not strong 

evidence that using rootworm resistant seeds increases farmers’ profits. 

Alarmingly, Bt-CRW seeds appear to have become less effective over the 

course of the study period. Because this effect is especially pronounced on farms that 

have planted Bt-CRW seeds in consecutive rotations, it appears likely that resistance is 

developing. 
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Table 6. Reduced Form Models of Seed Choices and Expected Yields 

Reduced Form Models of Seed Choices and 

Expected Yields (OLS) (Probit) 

Variables Yield Goal Bt-CRW Seed Use 

      

Average State Level Premiums For Bt-CRW Seeds 0.87  0.07 ** 

State Level Premium^2 -0.006  -0.001 ** 

Soil Insecticide Prices -0.34  -0.06  

Farm Size 0.001  0.0001  

ln(Fixed Capital) 4.71 *** 0.045  

Consecutive Corn Rotations 0.45  0.18 *** 

Av. State Level Expected Yield Losses (from 

Rootworms) 5.51 *** 0.52 *** 

Indicator for a Post-High School Education 1.78  0.11  

NCRS Soil Productivity Index 41.34 *** -0.30  

Indicator for Erodable Soils -7.52 *** -0.06  

Soil Ph 14.70 *** 0.72 *** 

Deviation from Average Winter Temperature -0.17  0.02  

Deviation from Average February Precipitation -0.44 *** 0.002  

Indicator for Illinois 2.94  -0.18  

Indicator for Indiana 8.75 * -0.24  

Indicator for Iowa 16.37 *** -0.12  

Indicator for Michigan -8.50 ** -0.28  

Indicator for Minnesota 12.71 *** -0.13  

Indicator for Nebraska 15.20 ** -0.03  

Indicator for South Dakota 0.66  0.35  

Indicator for 2010 1.76  1.64 *** 

Constant -37.25  -7.31 *** 

      

Pseudo R2/Adj R2 0.29 0.26 

Number of Observations 1754 1754 

      

      

Average Residual 0.02 -0.011 

      

 

1 The generalized residual is calculated for the Probit model. 
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Table 7. Variable Addition Tests and Parameter Estimates of the Structural Model 

Variable Addition Tests and Parameter 

Estimates of the Structural Model Specification 1 Specification 2 Specification 3 

       

Parameters of the Rootworm Abatement 

Function       
        

e, Bt-CRW Adoption 0.58 * 0.39 * 0.19 ** 

e10 Interaction of Bt and 2010 -0.13  -0.10  -0.07  

e10,CC 

Interaction of Bt, 2010, and Lagged 

Bt-CRW -0.05  -0.09  -0.07  

        
-d/f, Constant -6.99 *** -6.92 *** -6.53 *** 

f, Soil Insecticides 0.83 *** 0.64 *** 0.66 *** 

Zcc Consecutive Corn Rotations 0.04      

ZYl 

Av. State Level Expected Yield 

Losses (from Rootworms) 0.19 

** 

0.16 

*** 

0.14 

*** 

Z10 Indicator for 2010 -0.96 *** -1.02 *** -1.11 *** 

ZIll Indicator for Illinois 0.12      

ZInd Indicator for Indiana 0.15      

ZIa Indicator for Iowa -0.33 *** -0.32 *** -0.32 *** 

ZMi Indicator for Michigan 0.07      

ZMn Indicator for Minnesota -0.26 ** -0.24 *** -0.26 *** 

ZNb Indicator for Nebraska -0.20 * -0.18 *** -0.19 *** 

ZSd Indicator for South Dakota -0.06      

ZPh Average Soil Ph 0.30 *** 0.18 *** 0.16 *** 

ZE Indicator for Erodable Soils -0.007      

ZWt 

Deviation from Average Winter 

Temperature 0.007 

 

 

 

 

 

ZPr 

Deviation from Average February 

Precipitation 0.006 

*** 

0.005 

*** 

0.005 

*** 

ZFC ln(Fixed Capital) 0.015      

ZEdu 

Indicator for a Post-High School 

Education 

-

0.0009 

 

 

 

 

 

ZFs Farm Size 
0.0000

04 

 

 

 

 

 

        

Parameters of the Gumbel Distribution       

Standard Deviation 0.10 *** 0.10 *** 0.10 *** 

        

Control Functions       

βBt Generalized Residuals, Bt Adoption 0.19  0.11    

βE[Y] 
Residuals of the Expected Yield 

Function -0.005 

*** 

-0.005 

*** 

-0.005 

*** 

βInt Interaction of the Control Functions 0.000  0.0002    

          

Pseudo R2 0.29 0.28 0.28 

Observations 1754 1754 1754 

P-value for the Wald Test of H0: Zcc, ZYl, 

Z10, ZIll, ZInd, ZIa, ZMi, ZMn, ZNb, ZSd, 

ZPh, ZE, ZWt, ZPr, ZFC, ZEdu, ZFs = 0 

0.93 

  

P-value for the Wald Test of H0: βBt, βInt= 0 0.60 0.64  
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Table 8. Sample Means and Insecticide Use Predictions, by Year 

  Sample Means  Model Predictions 

Year  Ins1 Pr(Ins) E[Ins|Ins>0]1  Ins 1 Pr(Ins) E[Ins|Ins>0]1 

            

2005  0.046 16.0% 0.285  0.045  16.2%  0.262  

2010  0.011 6.1% 0.186  0.015  5.9%  0.253  

                        

1In Pounds of Active Ingredient per Planted Acre 
              

 

Table 9. Sample Means and Insecticide Use Predictions, by Seed Type 

  Sample Means  Model Predictions 
Bt 

Adopters  Ins1 Pr(Ins) E[Ins|Ins>0]1  Ins 1 Pr(Ins) E[Ins|Ins>0]1 

            

2005  0.008 8.0% 0.104  0.021  8.1%  0.255  

2010  0.011 7.2% 0.155  0.017  6.6%  0.253  

            

Non 

Adopters         

            

2005  0.050 17.0% 0.295  0.048  17.1%  0.263  

2010  0.012 4.9% 0.237  0.014  5.2%  0.252  

                        

1In Pounds of Active Ingredient per Planted Acre 
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Table 10. Sample Means and Insecticide Use Predictions, by State 

  Sample Means  Model Predictions 

Illinois  Ins1 Pr(Ins) E[Ins|Ins>0]1  Ins 1 Pr(Ins) E[Ins|Ins>0]1 

            

2005  0.132 44.9% 0.293  0.136  43.6%  0.294  

2010  0.03 21.8% 0.117  0.05  17.4%  0.262  

            

Indiana            

            

2005  0.15 40.3% 0.360  0.06  22.2%  0.265  

2010  0.03 9.2% 0.280  0.029  11.1%  0.257  

            

Iowa            

            

2005  0.01 10.9% 0.106  0.03  13.0%  0.258  

2010  0.004 4.5% 0.098  0.012  4.7%  0.252  

            

Other 

States            

            

2005  0.02 9.6% 0.257  0.04  12.9%  0.259  

2010  0.01 2.8% 0.278  0.01  3.4%  0.251  

                        

1In Pounds of Active Ingredient per Planted Acre 
              

 

Table 11. Predicted Yield Losses, by Year 

Year G Adj. Pot. Y. Yield Loss, CRW 

       

2005 96.3% *** 164 *** 6.0 *** 

2010 98.8% *** 170 *** 1.9 *** 
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Table 12. Predicted Yield Losses, by Seed Type 

Bt Adopters G Adj. Pot. Y. Yield Loss, CRW 

       

2005 96.7% *** 170 *** 5.5 *** 

2010 98.9% *** 177 *** 1.9 *** 

       

Non Adopters       

       

2005 96.2% *** 163 *** 6.0 *** 

2010 98.8% *** 162 *** 1.9 *** 

              

 

Table 13. Predicted Yield Losses, by State 

Illinois G Adj. Pot. Y. Yield Loss, CRW 

       

2005 96.0% *** 175 *** 7.0 *** 

2010 98.8% *** 180 *** 2.1 *** 

       

Indiana       

       

2005 96.2% *** 172 *** 6.4 *** 

2010 98.9% *** 176 *** 1.9 *** 
       

Iowa       

       

2005 96.7% *** 181 *** 6.0 *** 

2010 99.0% *** 189 *** 1.9 *** 

       

Other States       

       

2005 96.3% *** 159 *** 5.8 *** 

2010 98.8% *** 162 *** 1.9 *** 
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Table 14. Impact of Bt-CRW Adoption, by Year 

  Marginal Effects 

Year  ΔIns 1 ΔPr(Ins) ΔE[Ins|Ins>0]1 ΔG ΔE[Y] 

2005  -0.032  -10.9%  -0.010  0.6% ** 1.02  

2010  -0.010  -3.4%  -0.003  0.1%  0.20  

1In Pounds of Active Ingredient per Planted Acre 

 

Table 15. Impact of Bt-CRW Adoption, by Seed Type 

  Marginal Effects 

Bt Adopters  ΔIns 1 ΔPr(Ins) ΔE[Ins|Ins>0]1 ΔG ΔE[Y] 

2005  -0.039  -13.1%  -0.012  0.7% ** 1.10  

2010  -0.012  -4.3%  -0.004  0.1%  0.20  

Non 

Adopters            

2005  -0.031  -10.6%  -0.010  0.6% ** 1.01  

2010  -0.007  -2.5%  -0.002  0.1%  0.20  

1In Pounds of Active Ingredient per Planted Acre 
          

 

Table 16. Impact of Bt-CRW Adoption, by State 

  Marginal Effects 

Illinois  ΔIns 1 ΔPr(Ins) ΔE[Ins|Ins>0]1 ΔG ΔE[Y] 

2005  -0.09  -25.6%  -0.033  0.68% ** 1.18  

2010  -0.03  -9.6%  -0.009  0.12%  0.22  

Indiana            

2005  -0.04  -14.5%  -0.011  0.64% * 1.08  

2010  -0.02  -6.5%  -0.005  0.12%  0.21  

Iowa            

2005  -0.03  -9.3%  -0.007  0.57% * 1.03  

2010  -0.007  -2.8%  -0.002  0.10%  0.19  

Other 

States            

2005  -0.03  -9.1%  -0.008  0.64% * 0.99  

2010  -0.01  -2.0%  -0.001  0.13%  0.20  

1In Pounds of Active Ingredient per Planted Acre 
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Table 17. Resistance Tests 

 
(1) 

Base 

(2) 

2010 

(3) 

Lagged Bt-

CRW Seed 

Use, 2010 

(4) 

Lagged Bt-

CRW Seed 

Use, All 

         

Parameters of the Rootworm 

Abatement Function 
        

-d/f, Constant -6.55 *** -6.53 *** -6.54 *** -6.53 *** 

e, Bt Adoption 0.13 ** 0.19 ** 0.14 ** 0.19 ** 

e10 Interaction of Bt and 2010   -0.09    -0.07  

e10,CC 

Interaction of Bt, 2010, 

and Lagged Bt-CRW 
    -0.09  -0.07  

f, Soil Insecticides 0.66 *** 0.66 *** 0.66 *** 0.66 *** 

ZYl Expected Yield Losses 0.14 *** 0.14 *** 0.14 *** 0.14 *** 

Z10 Indicator for 2010 -1.08 *** -1.11 *** -1.09 *** -1.11 *** 

ZIll Indicator for Ia -0.33 *** -0.32 *** -0.33 *** -0.32 *** 

ZInd Indicator for Mn -0.26 *** -0.26 *** -0.26 *** -0.26 *** 

ZWi Indicator for Nb -0.19 *** -0.19 *** -0.19 *** -0.19 *** 

ZPh Average Soil Ph 0.16 *** 0.16 *** 0.16 *** 0.16 *** 

ZPr 

Deviation from Average 

February Precipitation 
0.005 *** 0.004 *** 0.005 *** 0.005 *** 

          

Parameters of the Gumbel 

Distribution 
        

Standard Deviation 0.10 *** 0.10 *** 0.10 *** 0.10 *** 

         

Control Functions         

Residuals of the Expected Yield 

Function 
-0.005 *** -0.005 *** -0.005 *** -0.005 *** 

          

Pseudo R2 0.276 0.277 0.277 0.278 

Observations  1702 1702 1702 1702 
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Table 18. Impacts of Resistance if e10 is Environmental 

 ME w/o Res ME w/Res 

ME w/Res  - 

ME w/o Res 

Standard 

Error of 

ΔME 

Implied 

Reduction in 

the Benefits 

of Bt-CRW 

Adoption 

ΔG 0.13% 0.05% -0.0008 0.0003 -64% ** 

ΔIns -0.015 -0.006 0.009 0.019 -58% 

ΔPr(Ins) -5.4% -2.2% 0.032 0.05 -59% 

ΔE[Ins|Ins>0] -0.005 -0.002 0.003 0.007 -57% 

 

Table 19. Impacts of Resistance if e10 is Due to Resistance 

 

ME w/o 

Res ME w/Res 

ME w/Res  

- ME w/o 

Res 

Standard 

Error of 

ΔME 

Implied 

Reduction 

in the 

Benefits of 

Bt-CRW 

Adoption 

ΔG 
1 Rotation 0.21% 0.13% -0.0008 0.0003 -37% ** 

Cons. Rot. 0.20% 0.05% -0.0016 0.0007 -77% ** 

ΔIns 
1 Rotation -0.014 -0.010 0.004 0.010 -28% 

Cons. Rot. -0.021 -0.006 0.015 0.033 -70% 

ΔPr(Ins) 
1 Rotation -5.0% -3.6% 0.014 0.03 -29% 

Cons. Rot. -7.6% -2.2% 0.054 0.09 -71% 

ΔE[Ins|Ins>0] 
1 Rotation -0.004 -0.003 0.001 0.003 -27% 

Cons. Rot. -0.006 -0.002 0.004 0.011 -69% 
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Chapter 6:  Conclusions 

This dissertation develops a two stage, structural model of corn farmers’ insect 

control decisions. It estimates a demand function for soil insecticides in order to recover 

the parameters of the structural model. A two-stage, control function based approach is 

used to account for the possibility of endogeneity. A censored regression model is used 

to account for the infrequency of soil insecticide use. 

This study’s findings suggest that Bt-CRW adoption lowered farmers’ 

insecticide use by approximately 70% in 2005 and by 84% in 2010. In other words, if 

Bt-CRW adopters had planted conventional seeds in 2010 their soil insecticide use 

would have approximately doubled. Because conventional soil insecticides are toxic 

(and the toxins produced by rootworm resistant seeds are not), Bt-CRW adoption is 

likely to have improved environmental and human health outcomes over the course of 

the study period. 

Though Bt-CRW adoption appears to have increased yields by approximately 

1 bushel per acre in 2005 and .2 bushels per acre in 2010, it does not appear to have 

increased corn farmers’ profits. This finding is incongruous given that Bt-CRW 

adoption rates have risen in recent years. It is possible that the non-pecuniary benefits 

associated with adoption help compensate farmers for decreases in their earnings. 

Alternately, it is possible that farmers perceive that Bt crops are risk decreasing. 

Unfortunately, this study finds that resistance may have decreased the marginal 

product of Bt-CRW adoption by 37% on farms that rotate Bt-CRW seeds, and 77% on 
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farms that use Bt-CRW seeds in consecutive rotations. This finding begs an obvious 

question: What is the appropriate regulatory response?  

First and foremost, existing refuge requirements should be tightly monitored 

and enforced. Second, the EPA should consider raising refuge requirements (especially 

for Bt-CRW seeds with pyramided traits). Third, farmers should be induced to adopt 

better pest management practices. Subsidies represent one (potentially) viable method 

of encouraging farmers to rotate Bt-CRW and conventional seeds, or shift usage from 

single trait to pyramided Bt-CRW seeds. 

Two conclusions should be drawn from this analysis. First, the benefits of Bt-

CRW seeds appear substantial. Second, the threat of rootworm resistance should be 

taken seriously. 

Future work should develop better measures of pest pressure, incorporate risk 

aversion into the structural model, and explore more complicated methods of 

accounting for environmental interactions. Additionally, the structural model should be 

generalized. For instance, Bt cotton could be analyzed if the model was adapted to 

analyze non-sequential pest control decisions. 



92 

Bibliography 

Abdeen, A., J. Schnell, and B. Miki. 2010. “Transcriptome analysis reveals absence of 

unintended effects in drought-tolerant transgenic plants overexpressing the 

transcription factor ABF3.” BioMed Central Genomics 11(69): 1-21. 

Acquaye, A. and G. Traxler. 2005. “Monopoly Power, Price Discrimination, and Access to 

Biotechnology Innovations.” Agbioforum 8 (2&3): 127-133. 

Alyokhin, A. 2011. “Scant evidence supports EPAs pyramided Bt corn refuge size of 5%.” 

Nature Biotechnology 29(7): 577-578. 

Amemiya, T. 1984. “Tobit Models: A Survey.” Journal of Econometrics 24: 3-61. 

Ames, B., M. Profet, and L. Gold. 1990. “Nature’s chemicals and synthetic chemicals: 

Comparative toxicology.” Proceedings of the National Academy of Science 87: 7782-

7786. 

Ammann, K. 2005. “Effects of biotechnology on biodiversity: herbicide-tolerant and insect 

resistant GM crops.” TRENDS in Biotechnology 23(8): 388-394. 

Animal and Plant Health Inspection Service. 2012. “Permit User’s Guide With Special 

Guidance for ePermits.” May 30, 2012. Downloadable at: 

http://www.aphis.usda.gov/biotechnology/downloads/permit_guidance.pdf. Accessed 

on March 18, 2014. 

Animal and Plant Health Inspection Service. 2014. “Petitions for Determination of 

Nonregulated Status.” Downloadable at: 

http://www.aphis.usda.gov/biotechnology/petitions_table_pending.shtml#not_reg. 

Accessed on March 24, 2014. 

Babcock, B., E Lichtenberg, and D. Zilberman. 1992. “Impact of Damage Control and 

Quality of Output: Estimating Pest Control Effectiveness.” American Journal of 

Agricultural Economics 74(1): 163-172. 

Benbrook, C. 2009. “Impacts of Genetically Engineered Crops on Pesticide Use in the United 

States: The First Thirteen Years.” The Organic Center, Critical Issue Report. 

November 2009. Downloadable at: http://www.organic-

center.org/reportfiles/13Years20091126_ExSumFrontMatter.pdf. Accessed on April 

9, 2014. 

Benbrook, C. 2012. “Impacts of genetically engineered crops on pesticide use in the U.S. – 

the first sixteen years.” Environmental Sciences Europe 24 (24): 1-13. 

Berkely, S., A. Hightower, R. Beier, D. Fleming, C. Brokopp, G. Ivie, C. Broome. 1986. 

“Dermatitis in Grocery Workers Associated with High Natural Concentrations of 

Furanocoumarins in Celery.” Annals of Internal Medicine 105: 351-355. 



 

93 

Bernard, J., J. Pesek, C. Fan. 2004. “Performance Results and Characteristics of Adopters of 

Genetically Engineered Soybeans in Delaware.” Agricultural and Resource 

Economics Review 33(2): 282-292. 

Blackwell, M. and A. Pagoulatos. 1992. “The Econometrics of Damage Control, Comment.” 

American Journal of Agricultural Economics 74(4): 1040-1044. 

Blake, H., P. Andrilenas, R. Jenkins, T. Eichers, and A. Fox. 1970. “Farmers’ Pesticide 

Expenditures in 1966.” Agricultural Economic Report No. 192, Economic Research 

Service, United States Department of Agriculture, Washington D.C. 

Bohme, H., B. Hommel, and G. Flachowsky. 2005. “Nutritional assessment of silage from 

transgenic insulin synthesizing potatoes for pigs.” Journal of Animal Feed Science 

14(Supplement 1): 333-336. 

Bowman, D., O. May, and J. Creech. 2003. “Genetic Uniformity of the U.S. Upland Cotton 

Crop since the Introduction of Transgenic Cottons.” Crop Science 43: 515-518. 

Brake, D. and D. Evenson. 2004. “A generational study of glyphosate-tolerant soybeans on 

mouse fetal, postnatal, pubertal and adult testicular development.” Food Chemical 

Toxicology 42: 29-36. 

Brower, L., O. Taylor, E. Williams, D. Slayback, R. Zubieta, and M. Isabel. 2011. “Decline of 

monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk?” 

Insect Conservation and Diversity 5: 95-100. 

Bruening, G. and J. Lyons. 2000. “The case of the FLAVR SAVR tomato.” California 

Agriculture 54(4): 6-7. 

Burke. 1999. “No GM conspiracy.” Nature 401: 640-641. 

Burrows, T. 1983. “Pesticide Demand and Integrated Pest Management: A Limited 

Dependent Variable Analysis.” American Journal of Agricultural Economics 65 

(1983): 806-810. 

Cameron, A. and P. Trivedi. 2005. Microeconometrics, Methods and Applications. New York 

NY: Cambridge University Press. 

Campbell, H.F. 1976. “Estimating the Marginal Productivity of Agricultural Pesticides: The 

Case of Tree-Fruit Farms in the Okanagan Valley.” Canadian Journal of Agricultural 

Economics 24: 23-30. 

Carlson, G. 1977. “Long-Run Productivity of Insecticides.” American Journal of Agricultural 

Economics 59(3): 543-548. 

Carpentier, A. and R. Weaver. 1977. “Damage Control Productivity: Why Econometrics 

Matters.” American Journal of Agricultural Economics 79(1): 47-61. 

Carpenter, J. 2011. “Impact of GM crops on biodiversity.” GM Crops 2(1): 7-23. 

Carpenter, J. and L. Gianessi. 1999. “Herbicide Tolerant Soybeans: Why Growers Are 

Adopting Roundup Ready Varieties.” AgBioForum 2(2): 65-72. 



 

94 

Carrasco-Tauber, C. and L.J. Moffitt. 1992. “Damage Control: Econometrics: Functional 

Specification and Pesticide Productivity.” American Journal of Agricultural 

Economics 74(1): 158-162. 

Chambers, R., G. Karagiannis, and V. Tzouvelekas. 2010. “Another Look at Pesticide 

Productivity and Pest Damage.” American Journal of Agricultural Economics 92 (5): 

1401-1419. 

Chambers, R. and E. Lichtenberg. 1994. “Simple Econometrics of Pesticide Productivity.” 

American Journal of Agricultural Economics 76 (3): 407 –417. 

Champion, G., M. May, S. Bennett, D. Brooks, S. Clark, R. Daniels, L. Firbank, A. 

Haughton, C. Hawes, M. Heard, J. Perry, Z. Randle, M. Rossall, P Rothery, M. 

Skellern, R.. Scott, G. Squire, and M. Thomas. 2003. “Crop Management and 

Agronomic Context of the Farm Scale Evaluations of Genetically Modified 

Herbicide-Tolerant Crops.” Philosophical Transactions: Biological Sciences 358 

(1439): 1801-1818. 

Cheng, K., J. Beaulieu, E. Iquira, F. Belzile, M. Fortin, and M. Stromvik. 2008. “Effect of 

transgenes on global gene expression in soybean is within the natural range of 

variation of conventional cultivars.” Journal of Agricultural and Food Chemistry 

56(9): 3057-3067. 

Coll, A., A. Nadal, R. Collado, G. Capellades, M. Kubista, J. Messeguer, and M. Pla. 2010a. 

“Natural variation explains most transcriptomic changes among maize plants of 

MON810 and comparable non-GM varieties subjected to two N-fertilization farming 

practices.” Plant Molecular Biology 73: 349-362. 

Coll, A., A. Nadal, M. Rossignol, P. Puigdomenech, and M. Pla. 2010b. “Proteomic analysis 

of MON810 and comparable non-GM maize varieties grown in agricultural fields.” 

Transgenic Research 20(4): 939-949. 

Cox, W., E. Shields, and D. Cherney. 2008. “Western Corn Rootworm Damage Subtly 

Affects Corn Growth under Moderate Environmental Stress.” Crop Science 48: 1164-

1169. 

Crost, S., B. Shankar, R. Bennett, and S. Morse. 2007. “Bias from Farmer Self-Selection in 

Genetically Modified Crop Productivity Estimates: Evidence from Indian Data.” 

Journal of Agricultural Economics 58(1): 24-36. 

Eichers, T., P. Andrilenas, H. Blake, R. Jenkins, and A. Fox. 1970. “Quantities of Pesticides 

Used by Farmers in 1966.” Agricultural Economic Report No. 179, Economic 

Research Service, United States Department of Agriculture, Washington D.C. 

Environmental Protection Agency. 2013. “DDT – A Brief History and Status.” EPA Home, 

Pesticides, About Pesticides, Topical & Chemical Fact Sheets. Accessed September 

2, 2013. Downloadable at: http://www.epa.gov/pesticides/factsheets/chemicals/ddt-

brief-history-status.htm 

D’Alessandro, A. and L. Zolla. 2011. “We Are What We Eat: Food Safety and Proteomics.” 

Journal of Proteome Research 11: 26-36. 



 

95 

Daleprane J., J. Pacheco, G. Boaventura. 2009. “Evaluation of protein quality from 

genetically modified and organic soybean in two consecutives generations of Wistar 

rats.” Brazilian Archives of Biology and Technology 52: 841–847. 

Davis, P. 1994. “Comparison of Economic Injury Levels for Western Corn Rootworm 

(Coleoptera: Chrysomelidae) Infesting Silage and Grain Corn.” Journal of Economic 

Entomology 87(4): 1086-1090. 

Deloitte. 2010. “Food Survey Fact Sheet: Genetically Modified Foods.” Deloitte Consulting 

LLP, Washington D.C. February 15, 2011. Downloadable at: 

http://www.deloitte.com/view/en_US/us/Industries/consumer-

products/1912cf06d7c38210VgnVCM100000ba42f00aRCRD.htm. Accessed on 

March 4, 2014. 

Demortain, D. 2013. “Regulatory Toxicology in Controversy.” Science, Technology & 

Human Values 38(6): 727-748. 

Duke, S. and S. Powles. 2009. “Glyphosate-Resistant Crops and Weeds: Now and in the 

Future.” AgBioForum 12 (3&4): 346-357. 

Dun, Z., P. Mitchell, and M. Agosti. 2010. “Estimating Diabrotica virgifera virgifera damage 

functions with field trial data: applying an unbalanced nested error component 

model.” Journal of Applied Entomology 134: 409-419. 

Edwards, C., D. Jordan, M. Owen, P. Dixon, B. Young, R. Wilson, S. Weller, and D. Shaw. 

2014. “Benchmark study on glyphosate-resistant crop systems in the United States. 

Economics of herbicide resistance management practices in a 5 year field-scale 

study.” Pest Management Science Early Publication: doi: 10.1002/ps.3759. 

El Ouakfaoui, S. and B. Miki. 2005. “The stability of the Arabidopsis transcriptome in 

transgenic plants expressing the marker genes nptII and uidA.” Plant Journal 41(6): 

791-800. 

Environmental Protection Agency. 2001. “Biopesticides Registration Action Document, 

Bacillus thuringiensis (Bt) Plant-Incorporated Protectants.” October 16, 2001. 

Downloadable at: http://www.epa.gov/oppbppd1/biopesticides/pips/bt_brad.htm. 

Accessed on March 18, 2014. 

Environmental Protection Agency. 2008a. “Review of the Public Interest Document in 

Support of the Section 3(c)7(C) Registrations of Monsanto Company’s Insect-

protected Bacillus thuringiensis Corn Products.” Feburary 29, 2008. Downloadable 

at: http://www.epa.gov/opp00001/chem_search/cleared_reviews/csr_PC-006514_29-

Feb-08_a.pdf. Accessed on March 18, 2014. 

Environmental Protection Agency. 2008b. “Review of an amendment request to reduce the 

refuge required for MON 89034 corn in the Corn Belt.” November 12, 2008. 

Downloadable at: 

http://www.epa.gov/opp00001/chem_search/cleared_reviews/csr_PC-006514_12-

Nov-08_a.pdf. Accessed on March 18, 2014. 

Environmental Protection Agency. 2011a. “Current & Previously Registered Section 3 PIP 

Registrations.” November 30, 2011. Downloadable at: 

http://www.epa.gov/pesticides/biopesticides/pips/pip_list.htm. Accessed on March 

18, 2014. 



 

96 

Environmental Protection Agency. 2011b. “Pesticide Fact Sheet, MON-89Ø34-3 x DAS- 

Ø15Ø7-1 x MON-88Ø17-3 x DAS-59122-7.” November 29, 2011. Downloadable at: 

http://www.epa.gov/pesticides/biopesticides/pips/smartstax-factsheet.pdf. Accessed 

on March 18, 2014. 

Environmental Protection Agency. 2012. “EPA’s Regulation of Biotechnology for Use in Pest 

Management.” January 1, 2012. Downloadable at: 

http://www.epa.gov/oppbppd1/biopesticides/reg_of_biotech/eparegofbiotech.htm. 

Accessed on March 18, 2014. 

Environmental Protection Agency. 2014. “A Set of Scientific Issues Being Considered by the 

Environmental Protection Agency Regarding Scientific Uncertainties Associated 

with Corn Rootworm Resistance Monitoring for Bt Corn Plant Incorporated 

Protectants (PIPs).” March 18, 2014. Downloadable at: 

http://www.epa.gov/scipoly/sap/meetings/2013/december/120413minutes.pdf. 

Accessed on April 6, 2014. 

ETC Group. 1997. “World’s Top 10 Seed Corporations.” January 30, 1997. Downloadable at: 

http://www.etcgroup.org/content/worlds-top-10-seed-corporations. Accessed on April 

2, 2014. 

ETC Group. 2013. “Putting the Cartel before the Horse… and Farm, Seeds, Soil, Peasants, 

etc..” September, 2013. Downloadable at: http://www.etcgroup.org/content/new-

report-putting-cartel-horse%E2%80%A6and-farm-seeds-soil-peasants. Accessed on 

April 2, 2014. 

Falck-Zepeda, J., G. Traxler, and R. Nelson. 2000. “Surplus distribution from the introduction 

of biotechnology innovation.” American Journal of Agricultural Economics 82 (2): 

360-369. 

Feder, G. 1979. “Pesticides, Information, and Pest Management under Uncertainty.” 

American Journal of Agricultural Economics 61(1): 97-103. 

Fernandez-Cornejo, J. 2004. “The Seed Industry in U.S. Agriculture: An Exploration of Data 

and Information on Crop Seed Markets, Regulation, Industry Structure, and Research 

and Development.” Agricultural Information Bulletin No. 786, Economic Research 

Service, United States Department of Agriculture, Washington D.C. 

Fernandez-Cornejo, J. and M. Caswell. 2006. “The First Decade of Genetically Engineered 

Crops in the United States.” Economic Information Bulletin Number 11, Economic 

Research Service, United States Department of Agriculture, Washington D.C. 

Fernandez-Cornejo, J., C. Hallahan, R. Nehring, and S. Wechsler. 2012. “Conservation 

Tillage, Herbicide Use, and Genetically Engineered Crops in the United States: The 

Case of Soybeans.” AgBioForum 15(3): 231-241. 

Fernandez-Cornejo, J., C. Hendricks, and A. Mishra. 2005. “Technology Adoption and Off-

Farm Household Income: The Case of Herbicide-Tolerant Soybeans.” Journal of 

Agricultural and Applied Economics 37(3): 549-563. 

Fernandez-Cornejo, J., C. Klotz-Ingram, and S. Jans. 2000. “Farm-Level Effects of Adopting 

Genetically Engineered Crops in the U.S.A.” in Transitions in Agbiotech: Economics 

of Strategy and Policy, ed. by W. Lesser. Amherst, University of Massachusetts 

Press. 



 

97 

Fernandez-Cornejo, J., C. Klotz-Ingram, and S. Jans. 2002. “Farm-Level Effects of Adopting 

Herbicide-Tolerant Soybeans in the U.S.A.” Journal of Agriculture and Applied 

Economics 34(1): 149-163. 

Fernandez-Cornejo, J. and J. Li. 2005. “The Impacts of Adopting Genetically Engineered 

Crops in the USA.” Paper Presented at the American Agricultural Economics 

Association July 24-27: 1-25. 

Fernandez-Cornejo, J. and R. Just. 2007. “Researchability of Modern Agricultural Input 

Markets and Growing Concentration.” American Journal of Agricultural Economics 

89 (5): 1269-1275. 

Fernandez-Cornejo, J., R. Nehring, C. Osteen, S. Wechsler, A. Martin, A. Vialou, and A. 

Grube. 2014b. “Pesticide Use in U.S. Agriculture, 1960-2008.” Economic 

Information Bulletin No. 124, Economic Research Service, United States Department 

of Agriculture, Washington D.C. (Unpublished data product used to generate the 

report; contact authors for details) 

Fernandez-Cornejo, J. and S. Jans. 1995. “Quality adjusted price and quantity indices for 

pesticides.” American Journal of Agricultural Economics 77(August): 645-659. 

Fernandez-Cornejo, J. and S. Wechsler. 2012. “Revisiting the Impact of Bt Corn Adoption by 

U.S. Farmers.” Agricultural and Resource Economics Review 41(3): 377-390. 

Fernandez-Cornejo, J., S. Wechsler, M. Livingston, and L. Mitchell. 2014a. “Genetically 

Engineered Crops in the United States.” Agricultural Research Report No. 162, 

Economic Research Service, United States Department of Agriculture, Washington 

D.C. 

Fernandez-Cornejo, J. and W. McBride. 2002. “Adoption of Bioengineered Crops.” 

Agricutural Economic Report No. 810, Economic Research Service, United States 

Department of Agriculture, Washington D.C. 

Firbank, L., M. Heard, I. Woiwod, C. Hawes, A. Haughton, G. Champion, R. Scott, M. Hill, 

A. Dewar, G. Squire, M. May, D. Brooks, D. Bohan, R. Daniels, J. Osborne, D. Roy, 

H. Black, P. Rothery, and J. Perry. 2003. “An introduction to the Farm-Scale 

Evaluations of genetically modified herbicide-tolerant crops.” Journal of Applied 

Ecology 40: 2-16. 

Flachowsky, G., K. Aulrich, H. Bohme, I. Halle. 2006. “Studies on feeds from genetically 

modified plants (GMP) – Contributions to nutritional and safety assessment.” Animal 

Feed Science and Technology 133: 2-30. 

Food and Drug Administration. 1992. “Statement of Policy: Foods Derived From New Plant 

Varieties” May 29, 1992. Downloadable at: 

http://www.fda.gov/food/guidanceregulation/guidancedocumentsregulatoryinformati

on/biotechnology/ucm096095.htm. Accessed on March 19, 2013. 

Food and Drug Administration. 2001. “Guidance for Industry: Voluntary Labeling Indicating 

Whether Foods Have or Have Not Been Developed Using Bioengineering.” January 

1, 2001. Downloadable at: 

http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInfor

mation/LabelingNutrition/ucm059098.htm. Accessed on March 19, 2013. 



 

98 

Food and Drug Administration. 2013. “Biotechnology, Genetically Engineered Plants for 

Food & Feed.” May 31, 2013. Downloadable at: 

http://www.fda.gov/Food/FoodScienceResearch/Biotechnology/default.htm. 

Accessed on March 14, 2013. 

Fox, G. and A. Weersink. 1995. “Damage Control and Increasing Returns.” American 

Journal of Agricultural Economics (77)1: 33-39. 

Gardner, J. and G. Nelson. 2008. “Herbicides, glyphosate resistance and acute mammalian 

toxicity: simulating an environmental effect of glyphosate-resistant weeds in the 

USA.” Pest Management Science 64: 470-478. 

Gardner, J., R. Nehring, and C. Nelson. 2009. “Genetically Modified Crops and Household 

Labor Savings in US Crop Production.” AgBioForum 12(3&4): 303-312. 

Gassmann, A. 2012. Field-evolved resistance to Bt maize by western corn rootworm: 

predictions from the laboratory and effects in the field. J. Invertebr. Pathol 110(3): 

287-292. 

Gassmann, A., J. Petzold-Maxwell, E. Clifton, M. Dunbar, A. Hoffmann, D. Ingber, and R. 

Keweshan. 2014. “Field-evolved resistance by Western Corn Rootworm to multiple 

Bacillus thuringiensis toxins in transgenic maize.” Proceedings of the National 

Academy of Sciences of the United States of America, published ahead of print March 

17, 2014, doi:10.1073/pnas.1317179111. 

Gassmann, A., J. Petzold-Maxwell, R. Keweshan, and M. Dunbar. 2011. “Field-Evolved 

Resistance to Bt Maize by Western Corn Rootworm.” PLoS One 6(7): 1-7. 

Gassmann, A., J. Petzold-Maxwell, R. Keweshan, and M. Dunbar. 2012. “Western Corn 

Rootworm and Bt maize challenges of pest resistance in the field.” GM Crops and 

Food 3(3):1-10. 

Gatehouse, J. 2008. “Biotechnological Prospects for Engineering Insect-Resistant Plants.” 

Plant Physiology 146: 881-887. 

Gianessi, L. 2008. “Economic impacts of glyphosate-resistant crops.” Pest Management 

Science 64: 346-352. 

Gilliam, C. 2010. “Farm Groups call on U.S. to ‘bust up big ag.’” Reuters. March 11, 2010. 

Downloadable at: http://www.reuters.com/article/2010/03/12/us-seeds-antitrust-

idUSTRE62B0A720100312. Accessed on April 2, 2014. 

Godfrey, L., L. Meinke, and R. Wright. 1993. “Vegetative and Reproductive Biomass 

Accumulation in Field Corn: Response to Root Injury by Western Corn Rootworm 

(Coleoptera: Chrysomelidae).” Jounral of Economic Entomology 86(5): 1557-1573. 

Gouse, M., J. Piesse, and C. Thirtle. 2006. “Output and Labour Effects of GM Maize and 

Minimum Tillage in a Communal Area of KwaZulu-Natal.” Journal of Development 

Perspectives 2(2): 71-86. 

Govtrack. 2014a. “H.R. 1699: Genetically Engineered Food Right-to-Know Act.” 

Downloadable at: https://www.govtrack.us/congress/bills/113/hr1699. Accessed on 

March 20, 2014. 



 

99 

Govtrack. 2014b. “S. 809: Genetically Engineered Food Right-to-Know Act.” Downloadable 

at: https://www.govtrack.us/congress/bills/113/s809. Accessed on March 20, 2014. 

Gray, M. 2014a. “Field Evolved Western Corn Rootworm Resistance to Bt (Cry3Bb1) 

Confirmed in Three Additional Illinois Counties.” The Bulletin. April 3, 2014. 

Downloadable at: http://bulletin.ipm.illinois.edu/?p=1913. Accessed on April 6, 

2014. 

Gray, M. 2014b. “Western Corn Rootworm Egg Survival and the Winter of 2013-2014: 

What’s the Likely Outcome?” The Bulletin. March 18, 2014. Downloadable at: 

http://bulletin.ipm.illinois.edu/?p=1876. Accessed on August 22, 2014. 

Green, J. 2009. “Evolution of Glyphosate-Resistant Crop Technology.” Weed Science 57: 

108-117. 

Greene, W. 2006. “A General Approach to Incorporating Selectivity in a Model.” Department 

of Economics, Stern School of Business, New York University, Working Paper 06-

10. June, 2006. Downloadable at: http://archive.nyu.edu/bitstream/2451/26072/2/6-

10.pdf. Accessed on April 27, 2014. 

Greene, W. 2012. Econometric Analysis (7th edition). Upper Saddle River, NJ: Prentice-Hall. 

Griliches, Z. 1964. “Research Expenditures, Education, and the Aggregate Agricultural 

Production Function.” The American Economic Review 54(6): 961-974. 

Guan, Z., S. Kumbhakar, R. Myers, and A. Lansink. 2009. “Measuring Excess Capital 

Capacity in Agricultural Production.” American Journal of Agricultural Economics 

91: 765-776. 

Hall, D. and R. Norgaard. 1973. “On the Timing and Application of Pesticides.” American 

Journal of Agricultural Economics 55(2): 198-201. 

Harrigan, G., D. Lundry, S. Drury, K. Berman, S. Riordan, M. Nemeth, W. Ridley, and K. 

Glenn. 2010. “Natural variation in crop composition and the impact of transgenesis.” 

Nature Biotechnology 28(5): 402-404. 

Haryu, Y., Y. Taguchi, E. Itakura, O. Mikami, K. Miura, T. Saeki, and Y. Nakajima. 2009. 

“Longterm biosafety assessment of a genetically modified (GM) plant: the 

genetically modified (GM) insect-resistant Bt11 corn does not affect the performance 

of multi-generations or life span of mice.” Open Plant Science (3): 49-53. 

Hawes, C., A. Haughton, J. Osborne, D. Roy, S. Clark, J. Perry, P. Rothery, D. Bohan, D. 

Brooks, G. Champion, A. Dewar, M. Heard, I. Woiwod, R. Daniels, M. Young, A. 

Parish, R. Scott, L. Firbank, and G. Squire. 2003. “Responses of plants and 

invertebrate trophic groups to contrasting herbicide regimes in the Farm Scale 

Evaluations of genetically modified herbicide-tolerant crops.” Philosophical 

Transactions of the Royal Society of London, Series B-Biological Sciences 

358(1439): 1899-1913. 

Headley, J.C. 1968. “Estimating the Productivity of Agricultural Pesticides.” American 

Journal of Agricultural Economics 50(1): 13-23. 



 

100 

Heard, M., C. Hawes, G. Champion, S. Clark, L. Firbank, A. Haughton, A. Parish, J. Perry, P. 

Rothery, R. Scott, M. Skellern, G. Squire, and M. Hill. 2003. “Weeds in fields with 

contrasting conventional and genetically modified herbicide-tolerant crops. I. Effects 

on abundance and diversity.” Philosophical Transactions of the Royal Society of 

London, Series B-Biological Sciences 358(1439): 1819-1832. 

Hellenas, K.E., A. Nyman, P. Slanina, L. Loof, and J. Gabrielsson. 1992. “Determination of 

potato glycoalkaloids and their aglycone in blood serum by high-performance liquid 

chromatography.” Journal of Chromatography 573: 69-78. 

Hennessy, D. 1997. “Damage Control and Increasing Returns: Further Results.” American 

Journal of Agricultural Economics 79(3): 786-791. 

Hensley, S. 2010. “Americans are Wary of Genetically Engineered Foods.” National Public 

Radio. November 12, 2010. Downloadable at: 

http://www.nytimes.com/2013/07/28/science/strong-support-for-labeling-modified-

foods.html?emc=eta1. Accessed on March 4, 2014. 

Herman, R. and W. Price. 2013. “Unintended Compositional Changes in Genetically 

Modified (GM) Crops: 20 Years of Research.” Journal of Agricultural and Food 

Chemistry 61: 11695-11701. 

Hodgson, Erin. 2014. “Did this winter kill all the corn rootworm eggs.” It’s a bug’s life. June 

4, 2014. Downloadable at: http://iowabuglife.blogspot.com/2014/06/did-this-winter-

kill-all-corn-rootworm.html. Accessed August 21, 2014. 

Howard, P. 2009. “Visualizing Consolidation in the Global Seed Industry: 1996-2008.” 

Sustainability 1: 1266-1287. 

Huang, J., R. Hu, S. Rozelle, F. Qiao, and C. Pray. 2002. “Transgenic varieties and 

productivity of smallholder cotton farmers in China.” The Australian Journal of 

Agricultural and Resource Economics 46(3): 367-387. 

Hyde, J., M. Martin, P. Preckel, and C. Edwards. 1999. “The Economics of Bt Corn: Valuing 

Protection from the European Corn Borer.” Review of Agricultural Economics 21(2): 

442-454. 

Jalonick, M. 2013. “Farm bill: Senate rejects GMO labeling amendment.” Salt Lake Tribune. 

May 23, 2013. Downloadable at: http://www.sltrib.com/sltrib/money/56355087-

79/amendment-senate-labeling-farm.html.csp. Accessed on March 20, 2014. 

Jawitz, J. 2004. “Moments of truncated continuous univariate distributions.” Advances in 

Water Resources 27: 269-281. 

Kahler, A., A. Olness, G. Sutter, C. Dybing, and O. Devine. 1985. “Root Damage by Western 

Corn Rootworm and Nutrient Content in Maize.” Agronomy Journal 77(5): 769-774. 

Karlin, J. 2010. “July 2010 Precipitation and Temperatures in Top Corn and Bean States.” 

The Progressive Farmer. August 12, 2010. Downloadable at: 

http://www.dtnprogressivefarmer.com/dtnag/view/ag/printablePage.do?ID=BLOG_P

RINTABLE_PAGE&bypassCache=true&pageLayout=v4&blogHandle=agfundamen

tal&blogEntryId=8a82c0bc29aa007f012a666ce6c90900&articleTitle=July+2010+Pre

cipitation+and+Temperatures+in+Top+Corn+and+Bean+States&editionName=DTN

AgFreeSiteOnline. Accessed on September 7, 2014. 



 

101 

Kearns, P. and P Mayers. 1999. “Substantial equivalence is a useful tool.” Nature 401: 640. 

Kleter, G., R. Bhula, K. Bodnaruk, E. Carazo, A. Felsot, C. Harris, A. Katayama, H. Kuiper, 

K. Racke, B. Rubin, Y. Shevah, G. Stephenson, K. Tanaka, J. Unsworth, R. 

Wauchope and S. Wong. 2007. Pest Management Science 63: 1107-1115. 

Kopicki, A. 2013. “Strong Support for Labeling Modified Foods.” New York Times. July 27, 

2013. Downloadable at: http://www.nytimes.com/2013/07/28/science/strong-support-

for-labeling-modified-foods.html?emc=eta1. Accessed on March 4, 2014. 

Kovach, J., C. Petzoldt, J. Degni, and J. Tette. 1992. “A method to measure the environmental 

impact of pesticides.” New York’s Food and Life Sciences Bulletin 139: 1-8. 

Krishna, V., D. Zilberman, and M. Qaim. 2009. “Transgenic Technology Adoption and On-

Farm Varietal Diversity.” Paper presented at the 2009 International Association of 

Agricultural Economists (IAAE) Conference, Beijing, China. Downloadable at: 

http://ageconsearch.umn.edu/bitstream/51750/2/COTTON.pdf. 

Kristensen, C., M. Morant, C. Olsen, C. Ekstom, D. Galbraith, B. Moller, and S. Bak. 2005. 

“Metabolic engineering of dhurrin in transgenic Arabidposis plants with marginal 

inadvertent effects on the metabolome and transcriptome.” Proceedings of the 

National Academy of Science 102: 1779-1784. 

Kucinich, E. 2014. “Members of Congress, Farmers and Business Call on Obama to Fulfill 

Campaign Promise on GMO Labeling.” Huffington Post. January 16, 2014. 

Downloadable at: http://www.huffingtonpost.com/elizabeth-

kucinich/post_6676_b_4612219.html. Accessed on March 19, 2014. 

Lamboy, J. 1986. “Alkaline Degradation of Pesticides.” New York State Integrated Pest 

Management Program. Downloadable at: 

http://www.nysipm.cornell.edu/publications/alkaline_deg/. Accessed on September 7, 

2014. 

Lansink, A. and A. Carpentier. 2001. “Damage Control Productivity: An Input Damage 

Abatement Approach.” Journal of Agricultural Economics 52(3): 11-22. 

Lasker, E. 2005. Federal Preemption and State Anti-GM Food Laws. Legal Background 

20(60): 1-4. 

Lee, J. and M. Langham. 1973. “A Simultaneous Equation Model of the Economic-Ecologic 

System in Citrus Groves.” Southern Journal of Agricultural Economics 5(1): 175-

180. 

Lehman, A., L. Woodard, D. Fitzhugh, and J. Nelson. 1949. “Procedures for the Appraisal of 

the Toxicity of Chemicals in Food.” Food Drugs and Cosmetics Law Journal 4 (3): 

412-434. 

Lence, S. and D. Hayes. 2005. “Genetically modified crops: their market and welfare 

impacts.” American Journal of Agricultural Economics 87: 931-950. 

Lichtenberg, E. and D. Zilberman. 1986. “The Economics of Damage Control: Why 

Specification Matters.” American Journal of Agricultural Economics 68: 261-273. 

Lichtenberg, E. and D. Zilberman. 1989. “The Economics of Damage Control: Reply.” 

American Journal of Agricultural Economics 71(2): 445-446. 



 

102 

Losey, J., L. Rayor, and M. Carter. 1999. “Transgenic pollen harms monarch larvae.” Nature 

399: 214. 

Luttrell, R. and R. Jackson. 2012. “Helicoverpa zea and Bt cotton in the United States.” GM 

Crops and Food: Biotechnology in Agriculture and the Food Chain 3(3): 213-227. 

Malatesta, M., F. Boraldi, G. Annovi, B. Baldelli, S. Battistelli, M. Biggiogera, and D. 

Quaglino. 2008. “A long-term study on female mice fed on a genetically modified 

soybean: effects on liver ageing.” Histochemistry and Cellular Biology 130: 967–

977. 

Marvier, M., C. McCreedy, J. Regetz, and P. Kareiva. 2007. “A Meta-Analysis of Effects of 

Bt Cotton and Maize on Nontarget Invertebrates.” Science 316:1475-1477. 

Mellman Group. 2006. “Review of Public Opinion Research.” Pew Research Center, 

Washington D.C. November 16, 2003. Downloadable at: 

http://www.pewtrusts.org/uploadedFiles/wwwpewtrustsorg/Public_Opinion/Food_an

d_Biotechnology/2006summary.pdf. Accessed on March 4, 2014. 

Mikel, M. 2008. “Genetic Diversity and Improvement of Contemporary North American Dent 

Corn.” Crop Science 48: 1686-1695. 

Mikel, M., B. Diers, R. Nelson, and H. Smith. 2010. “Genetic Diversity and Agronomic 

Improvement of North American Soybean Germplasm.” Crop Science 50: 1219-

1229. 

Millstone, E., E. Brunner, and S. Mayer. 1999. “Beyond ‘substantial equivalence’.” Nature 

401: 525-526. 

Mitchell-Olds, T. 2001. “Arabidopsis thaliana and its wild relatives: a model system for 

ecology and evolution.” TRENDS in Ecology & Evolution 16(12): 693-700. 

Mutuc, M., R. Rejesus, and J. Yorobe. 2011. “Yields, Insecticide Productivity, and Bt Corn: 

Evidence from Damage Abatement Models in the Philippines.” AgBioForum 14(2): 

35-46. 

National Center for Food and Agricultural Policy. 2008. “Quantification of the Impacts on US 

agriculture of Biotechnology-Derived Crops Planted in 2006.” February 2008. 

Downloadable at: 

http://www.ncfap.org/documents/2007biotech_report/Quantification_of_the_Impacts

_on_US_Agriculture_of_Biotechnology_Executive_Summary.pdf. Accessed on 

April 9, 2014. 

Naranjo, S. 2009. “Impacts of Bt crops on non-target invertebrates and insecticide use 

patterns.” CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition 

and Natural Resources 4(11): 1-23. 

Naranjo, S., G. Head, and G. Dively. 2005. “Field Studies Assessing Arthropod Nontarget 

Effects in Bt Transgenic Crops: Introduction.” Environmental Entomology 34(5): 

1178-1180. 

Nolan, E. and P. Santos. 2012. “The Contribution of Genetic Modification to Changes in Corn 

Yield in the United States.” American Journal of Agricultural Economics 94(5): 

1171-1188. 



 

103 

Nordlee, J., S. Taylor, J. Townsend, L. Thomas, and R. Bush. 1996. “Identification of a 

Brazil-Nut Allergen in Transgenic Soybeans.” The New England Journal of Medicine 

334: 688-692. 

Oberhauser, K., M. Prysby, H. Mattila, D. Stanley-Horn, M. Sears, G. Dively, E. Olson, J. 

Pleasants, W. Lam, and R. Hellmich. 2001. “Temporal and spatial overlap between 

monarch larvae and corn pollen.” PNAS 98(21): 11913-11918. 

Oehmke, J. and C. Wolf. 2004. “Why is Monsanto leaving money on the table? Monopoly 

pricing and technology valuation distributions with heterogeneous adopters.” Journal 

of Agricultural and Applied Economics 36 (3): 705-718. 

Office of Science and Technology Policy. 1986. “Coordinated Framework for Regulation of 

Biotechnology.” June 26, 1986. Downloadable at: 

http://www.aphis.usda.gov/brs/fedregister/coordinated_framework.pdf. Accessed on 

March 18, 2014. 

Owen, M. 2008. “Weed species shifts in glyphosate-resistant crops.” Pest Management 

Science 64: 377-387. 

Pandey, S. 1989. “The Econometrics of Damage Control: Comment.” American Journal of 

Agricultural Economics 71(2): 443-444. 

Perry, J., P. Rothery, S. Clark, M. Heard, and C. Hawes. 2003. “Design, analysis and 

statistical power of the Farm-Scale Evaluations of genetically modified herbicide-

tolerant crops.” Journal of Applied Ecology 40: 17-31. 

Perry, J., L. Firbank, G. Champion, S. Clark, M. Heard, M. May, C. Hawes, G. Squire, P. 

Rothery, L. Wolwod, and J. Pidgeon. 2004. “Ban on triazine herbicides likely to 

reduce but not negate relative benefits of GMHT maize cropping.” Nature 428: 313-

316. 

Pew Center for the People and the Press. 2003. “Views of a Changing World.” Pew Research 

Center, Washington D.C. June 2003. Downloadable at: 

http://www.pewglobal.org/2003/06/03/views-of-a-changing-world-2003/. Accessed 

on March 4, 2014. 

Pfeiffer, S. and L. Jolicoeur. 2014. “Massachusetts Legislature Faces Deadline to Advance 

GMO Labeling Bill.” WBUR, Boston’s NPR News Station. March 13, 2004. 

Downloaded at: http://www.wbur.org/2014/03/13/mass-gmo-bill-deadline. Accessed 

on March 19, 2014. 

Pilcher, C., M. Rice, R. Higgins, K. Steffey, R. Hellmich, J. Witkowski, D. Calvin, K. Ostlie, 

and M. Gray. 2002. “Biotechnology and the European Corn Borer: Measuring 

Historical Farmer Perceptions and Adoption of Transgenic Bt Corn as a Pest 

Management Strategy.” Journal of Economic Entomology 95 (5): 878-892. 

Pleasants, J., R. Hellmich, G. Dively, M. Sears, D. Stanley-Horn, H. Mattila, J. Foster, P. 

Clark, and G. Jones. 2001. “Corn pollen deposition on milkweeds in and near 

cornfields.” PNAS 98(21): 11919-11924. 

Pleasants, J. and K. Oberhauser. 2013. “Milkweed loss in agricultural fields because of 

herbicide use: effect on the monarch butterfly population.” Insect Conservation and 

Diversity 6(2): 135-144. 



 

104 

Pollack, A. 2011. “In Midwest, Flutters May Be Far Fewer.” New York Times. July 11, 2011. 

Downloadable at: 

http://www.nytimes.com/2011/07/12/science/12butterfly.html?pagewanted=all&_r=0

. Accessed on March 27, 2014. 

Porter, P., E. Cullen, T. Sappington, A. Schaafsma, S. Pueppke, D. Andow, J. Bradshaw, L. 

Buschman, Y. Cardoza, C. DiFonzo, B. French, A. Gassmann, M. Gray, R. 

Hammond, B. Hibbard, C. Krupke, J. Lundgren, K. Ostlie, E. Shields, J. Spencer, J. 

Tooker, and R. Youngman. 2012. “Comment submitted by Patrick Porter, North 

Central Coordinating Committee NCCC46 (22 members).” Regulations.gov. March 

5, 20102. Downloadable at: http://www.regulations.gov/#!documentDetail;D=EPA-

HQ-OPP-2011-0922-0013. Accessed on November 22, 2013. 

Prakash, C. 2001. “The Genetically Modified crop Debate in the Context of Agricultural 

Evolution.” Plant Physiology 126: 8-15. 

Pray, C., J. Oehmke, and A. Naseem. 2005. “Innovation and Dynamic Efficiency in Plant 

Biotechnology: An Introduction to the Researchable Issues.” AgBioForum 8 (2&3): 

52-63. 

Prescott, V., P. Campbell, A. Moore, J. Mattes, M. Rothenberg, P. Foster, T. Higgins, and S. 

Hogan. 2005. “Transgenic Expression of Bean alpha-Amylase Inhibitor in Peas 

Results in Altered Structure and Immunogenicity.” Journal of Agriculture and Food 

Chemistry 43: 9023-9030. 

Price, G., W. Lin, J. Falck-Zepeda, and J. Fernandez-Cornejo. 2003. “The size and 

distribution of market benefits from adopting agricultural biotechnology.” Technical 

Bulletin No. 1906, Economic Research Service, United States Department of 

Agriculture, Washington D.C. 

Prince, J., D. Shaw, W. Givens, M. Newman, M. Owen, S. Weller, B. Young, R. Wilson, and 

D. Jordan. 2012. “Benchmark Study: III. Survey on Changing Herbicide Use Patterns 

in Glyphosate-Resistant Cropping Systems.” Weed Technology 26(3): 536-542. 

Qaim, M. and A. de Janvry. 2005. “Bt cotton and pesticide use in Argentina: economic and 

environmental effects.” Environment and Development Economics 10: 179-200. 

Qaim, M., A. Subramanian, G. Naik, and D. Zilberman. 2006. “Adoption of Bt Cotton and 

Impact Variability: Insights from India.” Review of Agricultural Economics 28(1): 

48-58. 

Qaim, M. and D. Zilberman. 2003. “Yield Effects of Genetically Modified Crops in 

Developing Countries.” Science 299(5608): 900-902. 

Qaim, M., E. Cap, and A. Janvry. 2003. “Agronomics and Sustainability of Transgenic Cotton 

in Argentina.” Agbioforum 6(1&2): 41-47. 

Qaim, M. and G. Traxler. 2005. “Roundup Ready soybeans in Argentina: farm level and 

aggregate welfare effects.” Agricultural Economics 32: 73-86. 

Ragnarsdottir, K. 2000. “Environmental fate and toxicology of organophosphate pesticides.” 

Journal of the Geological Society, London 157: 859-876. 



 

105 

Rice, M. 2004. “Transgenic Rootworm Corn: Assessing Potential Agronomic, economic, and 

Environmental Benefits.” Plant Management Network. March 2004. Downloadable 

at: http://www.plantmanagementnetwork.org/pub/php/review/2004/rootworm/. 

Accessed on April 10, 2014. 

Ricroch, A., J. Bergé, and M. Kuntz. 2011. “Evaluation of Genetically Engineered Crops 

Using Transcriptomic, Proteomic, and Metabolomic Profiling Techniques.” Plant 

Physiology 155: 1752-1761. 

Riedell, W., T. Schumacher, and P. Evenson. 1996. “Nitrogen fertilizer management to 

improve crop tolerance to corn rootworm larval feeding damage.” Agronomy Journal 

88(1): 27-32. 

Roldan-Tapia, L., T. Parron, and F. Sanchez-Santed. 2005. “Neuropsychological effects of 

long-term exposure to organophosphate pesticides.” Neurotoxicology and Teratology 

27: 259-266. 

Roth, G., D. Calvin, and S. Lueloff. 1995. “Tillage, Nitrogen Timing, and Planting Date 

Effects on Western Corn Rootworm Injury to Corn.” Agronomy Journal 87(2): 189-

193. 

Rowinski, P., W. Strupczewki, and V. Singh. 2001. “A note on the applicability of log-

Gumbel and log-logistic probability dsitributions in hydrological analyses: I. Known 

pdf.” Hydrological Sciences 47(1): 107-122. 

Saha, A., R. Shumway, and A. Havenner. 1997. “The Economics and Econometrics of 

Damage Control.” American Journal of Agricultural Economics 79(3): 773-785. 

Satran, J. 2013. “Genetically Engineered Food Labeling Taken On By Congress In Right-To-

Know Act.” Huffington Post. April 25, 2013. Downloaded at: 

http://www.huffingtonpost.com/2013/04/25/genetically-engineered-

food_n_3149418.html. Accessed on March 19, 2014. 

Schroder, D., J. Headley, and R. Finley. 1984. “The Contribution of Herbicides and Other 

Technologies to Corn Production in the Corn Belt Region, 1964 to 1979.” North 

Central Journal of Agricultural Economics 6(1): 95-104. 

Scursoni, J., F. Forcella, J. Gunsolus, M. Owen, R. Oliver, R. Smeda, and R. Vidrine. 2006. 

“Weed diversity and soybean yield with glyphosate management along a north-south 

transect in the United States.” Weed Science 54: 713-719. 

Sears, M., R. Hellmich, D. Stanley-Horn, K. Oberhauser, J. Pleasants, H. Mattila, B. 

Siegfried, and G. Dively. 2001. “Impact of Bt corn pollen on monarch butterfly 

populations: A risk assessment.” PNAS 98(21): 11937-11942. 

Senauer, B. “Mandatory Labeling of Genetically Engineered (GE) Foods: The Showdown 

Begins.” Choices 28(3): 1-5. 

Shankar, B., R. Bennett, and S. Morse. 2008. “Production risk, pesticide use and GM crop 

technology in South Africa.” Applied Economics 40: 2489-2500. 

Shankar, B. and C. Thirtle. 2005. “Pesticide Productivity and Transgenic Cotton Technology: 

The South African Smallholder Case.” Journal of Agricultural Economics 56(1): 97-

116. 



 

106 

Sheets, C. “Monsanto protection act 2.0 would ban GMO-labeling laws in states.” 

International Business Times. May 17, 2013. Downloadable at: 

http://www.ibtimes.com/monsanto-protection-act-20-would-ban-gmo-labeling-laws-

state-level-1267629. Accessed on March 20, 2014. 

Sissener, N., M. Sanden, A. Bakke, A. Krogdahl, and G. Hemre. 2009. “A long term trial with 

Atlantic salmon (Salmo salar L.) fed genetically modified soy; focusing general 

health and performance before, during and after the parr–smolt transformation.” 

Aquaculture 294: 108–117. 

Smale, M., P. Zambrano, R. Paz-Ybarnegaray, and W. Fernandez-Montano. 2012. “A Case of 

Resistance: Herbicide-tolerant Soybeans in Bolivia.” AgBioForum 15(2): 191-205. 

Snell, C., A. Bernheim, J. Berge, M. Kuntz, G. Pascal, A. Paris, and A. Ricroch. 2012. 

“Assessment of the health impact of GM plant diets in long-term and 

multigenerational animal feeding trials: A literature review.” Food and Chemical 

Toxicology 50: 1134-1148. 

Sneller, C. 2003. “Impact of Transgenic Genotypes and Subdivision on Diversity within Elite 

North American Soybean Germplasm.” Crop Science 43: 409-414. 

Spike, B. and J. Tollefson. 1991. “Yield Response of Corn Subjected to Western Corn 

Rootworm (Coleoptera: Chrysomelidae) Infestation and Lodging.” Journal of 

Economic Entomology 84(5): 1585-1590. 

Storer, N., J. Babcock, M. Schlenz, T. Meade, G. Thompson, J. Bing, and R. Huckaba. 2010. 

“Discovery and Characterization of Field Resistance to Bt Maize: Spodoptera 

frugiperda (Lepidoptera: Noctuidae) in Puerto Rico.” Journal of Economic 

Entomology 103(4): 1031-1038. 

Storer, N., M. Kubiszak, J. King, G. Thompson, and A. Santos. 2012. “Status of resistance to 

Bt maize in Spodoptera frugiperda: Lessons from Puerto Rico.” Journal of 

Invertebrate Pathology 110: 294-300. 

Sutter, G., J. Fisher, N. Elliot, and T. Branson. 1990. “Effect of Insecticide Treatments on 

Root Lodging and Yields of Maize in Controlled Infestations of Western Corn 

Rootworms (Coleoptera: Chrysomelidae).” Journal of Economic Entomology 83(6): 

2414-2420. 

Tabashnik, B., T. Brevault, and Y. Carriere. 2013. “Insect resistance to Bt crops: lessons from 

the first billion acres.” Nature Biotechnology 31(6): 510-521. 

Talpaz, H. and I. Borosh. 1974. “Strategy for Pesticide Use: Frequency and Applications.” 

American Journal of Agricultural Economics 56(4): 769-775. 

Taylor, C. 2008. “Roundup-ready crops and resistant weeds.” Monarch Watch Blog. January 

17, 2008. Downloadable at: http://monarchwatch.org/blog/2008/01/roundup-ready-

crops-and-resistant-weeds/. Accessed on March 24, 2014. 

Tezra, J., A. Basu, and P. Rathouz. 2008. “Two-stage residual inclusion estimation: 

Addressing endogeniety in health econometric modeling.” Journal of Health 

Economics 27: 531-543. 



 

107 

Thirtle, C., L. Beyers, Y. Ismael, and J. Piesse. 2003. “Can GM-Technologies Help the Poor? 

The Impact of Bt Cotton in Makhathini Flats, KwaZulu-Natal.” World Development 

31(4): 717-732. 

Yorobe, J. and C. Quicoy. 2006. “Economic Impact of Bt Corn in the Philippines.” Philippine 

Agricultural Scientist 89(3): 258-267. 

Tinsley, N., R. Estes, and M. Gray. 2013. “Validation of a nested error component model to 

estimate damage caused by corn rootworm larvae.” Journal of Applied Entomology 

137: 161-169. 

Tobin, J. 1958. “Estimation of Relationships for Limited Dependent Variables.” 

Econometrica 26(1): 24-36. 

Tudisco, R., V. Mastellone, M. Cutrignelli, P. Lombardi, F. Bovera, N. Mirabella, G. Piccolo, 

S. Calabro, L. Avallone, F. Infascelli. 2010. “Fate of transgenic DNA and evaluation 

of metabolic effects in goats fed genetically modified soybean and in their 

offsprings.” Animal 4(10): 1662-1671. 

Trewavas, A. and C. Leaver. 1999. “Conventional crops are the test of GM prejudice.” Nature 

401: 640. 

Valdes, A., C. Simo, C. Ibanez, and V. Garcia-Canas. 2013. “Foodomics strategies for the 

analysis of transgenic foods.” Trends in Analytical Chemistry 52: 2-15. 

VanGessel, M. 2001. “Glyphosate-resistant horseweed from Delaware.” Weed Science 49: 

703-705. 

Weisenburger, D. 1993. “Human Health Effects of Agrichemical Use.” Perspectives in 

Pathology 24: 571-576. 

Whiting, S., K. Strain, L. Campbell, B. Young, and M. Lydy. 2014. “A multi-year field study 

to evaluate the environmental fate and agronomic effects of insecticide mixtures.” 

Science of the Total Environment 497-498: 534-542. 

Widawsky, D., S. Rozelle, S. Jin, and J. Huang. 1998. “Pesticide productivity, host-plant 

resistance and productivity in China.” Agricultural Economics 19(1): 203-217 

Wolfenbarger, L., S. Naranjo, J. Lundgren, R. Bitzer, and L. Watrud. 2008. “Bt Crop Effects 

on Functional Guilds of Non-Target Arthropods: A Meta-Analysis.” PLoS One 3(5): 

1-11. 

Wooldridge, J. 2014. “Quasi-maximum likelihood estimation and testing for nonlinear models 

with endogenous explanatory variables.” Journal of Econometrics 182: 226-234. 

Wright, Robert. 2000. “Managing Corn Rootworm Larvae.” Downloadable at 

http://entomology.unl.edu/pmguides/crwlarv.shtml. Accessed on August 11, 2014. 

Zhengfei, G., A.O. Lansink, M. van Ittersum, and A. Wossink. 2006. “Integrating Agronomic 

Principles into Production Function Specification: A Dichotomy of Growth Inputs 

and Facilitating Inputs.” American Journal of Agricultural Economics 88(1): 203-

214. 


