
  

 

ABSTRACT 

Title of Document: COMPUTATIONAL ALGORITHM FOR 
DYNAMIC HYBRID BAYESIAN NETWORK 
IN ON-LINE SYSTEM HEALTH 
MANAGEMENT APPLICATIONS 

 Chonlagarn Iamsumang, Ph.D., 2014 

Directed By: Professor Ali Mosleh, and Professor Mohammad 
Modarres, Reliability Engineering Program, 
Department of Mechanical Engineering 

 

With the increasing complexity of today’s engineering systems that contain various 

component dependencies and degradation behaviors, there has been increasing 

interest in on-line System Health Management (SHM) capability to continuously 

monitor (via sensors and other methods of observation) system software, and 

hardware components for detection and diagnostic of safety-critical systems. 

Bayesian Network (BN) and their extension for time-series modeling known as 

Dynamic Bayesian Network (DBN) have been shown by recent studies to be capable 

of providing a unified framework for system health diagnosis and prognosis. BN has 

many modeling features, such as multi-state variables, noisy gates, dependent 

failures, and general posterior analysis. BN also allows a compact representation of 

the temporal and functional dependencies among system components. However, one 

of the barriers to applying BN in real-world problems is limitation in adequately 



  

handle “hybrid models”, which contain both discrete and continuous variables, with 

both static and time-dependent failure distributions. 

This research presents a new modeling approach, computational algorithm, and an 

example application for health monitoring and learning in on-line SHM. A hybrid 

DBN is introduced to represent complex engineering systems with underlying physics 

of failure by modeling a theoretical or empirical degradation model with continuous 

variables. The methodology is designed to be flexible and intuitive, and scalable from 

small, localized functionality to large complex dynamic systems. Markov Chain 

Monte Carlo (MCMC) inference is optimized using a pre-computation strategy and 

dynamic programming for on-line monitoring of system health. Proposed Monitoring 

and Anomaly Detection algorithm uses pattern recognition to improve failure 

detection and estimation of Remaining Useful Life (RUL). Pre-computation inference 

database enables efficient on-line learning and maintenance decision-making. The 

scope of this research includes a new modeling approach, computation algorithm, and 

an example application for on-line SHM.  
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Chapter 1: Introduction 

1.1 Bayesian Network in System Health Management 

With the increasing complexity of today’s engineering systems that contain various 

component dependencies and degradation behaviors, there has been increasing 

interest in on-line System Health Management (SHM) capability to continuously 

monitor (via sensors and other methods of observation) system software, and 

hardware components for detection and diagnostic of safety-critical systems. The 

ability to have accurate on-line system monitoring improves maintenance decision-

making to reduce cost and avoid possible critical failure. A key requirement for 

realization of such capability in practice is ability of the modeling and computational 

framework handle the complexity of component dependencies and failure behaviors, 

such as sequence-dependent failures and functional dependencies.  

Bayesian Network (Pearl, 1986) (Jensen, 2001) and their extension for time-series 

modeling known as Dynamic Bayesian Network (Murphy K. , 2002) have been 

shown by recent studies to be capable of providing a unified framework for system 

health diagnosis and prognosis (Ferreiro, Arnaiz, Sierra, & Irigoien, 2011) 

(Schumann, Rozier, Reinbacher, Mengshoel, Mbaya, & Ippolito, 2013) (Pourali & 

Mosleh, 2013). BN has many modeling features, such as multi-state variables, noisy 

gates, dependent failures, and general posterior analysis (Wilson & Huzurbazar, 

2007) (Langseth & Portinale, 2007). BN also allows a compact representation of the 
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temporal and functional dependencies among system components (Boudali & Dugan, 

2006).  

The main advantages of using BN in system reliability are its simplicity in 

representing systems and efficiency in obtaining component associations. Another 

important benefit of BNs is that they enable us to integrate information from different 

sources, including experimental data, historical data, and prior expert opinion. This 

feature is particularly useful for the reliability assessment of fault tolerant systems, 

where failure data from tests and field operations are sparse and obtained from 

diverse sources of information. BN is particularly well suited for modeling systems 

that we need to monitor, diagnose, and make predictions about, all in the presence of 

uncertainty. 

However, one of the barriers to applying BN in real-world problems is limitation in 

adequately handle “hybrid models”, which contain both discrete and continuous 

variables, with both static and time-dependent failure distributions. Despite the 

advances in needed methodologies,, applications of BNs as mainstream technology 

for SHM problems remain limited. To date, the BN framework has only partially 

addressed these limitations (Lauritzen & Jensen, 2001) (Lerner U. N., 2002) (Shenoy, 

2006). For instance the vast majority of BNs used in real world applications are either 

purely discrete or purely continuous. 

For hybrid BNs containing mixtures of discrete and continuous nodes with non-

Gaussian distributions, exact inference becomes computationally intractable (Boyen 
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& Koller, 1998). The common approach to handling (non-Gaussian) continuous 

nodes is to discretize them using some pre-defined range and intervals (Neil, Tailor, 

Marquez, Fenton, & Hear, 2007). This is cumbersome, error prone and usually 

inaccurate. 

Even though a universal framework for hybrid BN is currently impracticable, special 

case algorithms can be effective in SHM where a relatively small subset of possible 

values covers a large portion of all possible values typically encountered. This paper 

presents a hybrid BN-based methodology for component degradation modeling and a 

health monitoring of complex systems. 

The approach enables on-line probabilistic diagnosis and prognosis of a system by 

optimizing Markov Chain Monte Carlo (MCMC) inference with pre-computation and 

dynamic programming to reduce the computation time and number of inferences 

required. The pre-computation inference database is then used for efficient health 

monitoring and system learning. 

1.2 Research Objectives 

Followings are the objectives of this research: 

• Create modeling framework and algorithms for on-line health monitoring of 

complex systems. The structure must be flexible and intuitive, and can be 

scaled from localized functionality to a large complex dynamic system. The 
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model is based on physics of failure and empirical results, minimizing 

probabilistic expert opinion. 

• Address and overcome limitations of tracking and diagnosing complex 

systems with mixtures of discrete and continuous variables where the system 

dynamics are nondeterministic, not all aspects of the system are directly 

observed, and the sensors are subject to noise. 

• Implement computational algorithm that allows on-line system health 

monitoring and remaining useful life prediction for efficient maintenance to 

avoid critical failure. The algorithm should include anomaly detection, 

parameter learning, and discovery of hidden network structure through 

continuous monitoring. 

1.3 Scope of this Research 

This research presents new modeling approach, computational algorithm, and 

example application for on-line SHM. Its contributions can be summarized into the 

following main categories:  

• Introduce a new modeling approach using hybrid DBN. The model includes: 

a. Identifying and categorizing different layers within SHM BN. 

b. Using hybrid DBN with component-based model to represent complex 

engineering systems in a way that it allows accurate representation of 

underlying physics of failure by using empirical degradation model 
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with continuous variables.  

c. Creating a well-defined interface between continuous system 

component status and discrete system functionality part of the 

network. 

• Develop computational algorithm for on-line monitoring and diagnosing 

complex systems. The algorithm includes: 

a. MCMC inference for hybrid DBN. 

b. Inference pre-computation algorithm to allow instantaneous inquiry of 

system health. 

c. Dynamic programming for MCMC inference to reduce the overall 

computation time and complexity. 

• Implement on-line system monitoring and prognosis from the proposed 

modeling approach and computational algorithm. This includes: 

a. Monitoring system health and component status to detect any anomaly 

and predict remaining useful life. 

b. Continuous learning of network parameters and structure from data 

obtained during operation. 

c. Providing information to improve on-line decision making for system 

maintenance or in an event that a critical failure occurs 

• Demonstrate the capabilities of this methodology by applying it to a real 

world application. 
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1.4 Organization of this Dissertation 

This dissertation is arranged into the following chapters.  

• Chapter 2 presents literature review and past works that are related to the use 

of BN in reliability and prognosis health management. 

• Chapter 3 presents the proposed modeling approach for BN in SHM.  

• Chapter 4 presents the computational algorithm, including precomputation 

and dynamic programming for the proposed model.   

• Chapter 5 presents the use of proposed model and computational algorithm for 

health monitoring, anomaly detection, and prognosis in on-line SHM 

• Chapter 6 presents the method for parameter and structure learning of the 

network during an on-line operation. 

• Chapter 7 presents the methodology for decision-making regarding to 

maintenance and operation management. 

• Chapter 8 presents an example in unmanned aerial vehicle application. 

• Chapter 9 presents the summary of this research, contributions, and suggested 

future work. 
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Chapter 2: Review of the State of the Art 

2.1 Bayesian Network 

A Bayesian Belief Network, Bayesian Network, or hierarchical Bayesian model is a 

probability graphical model that represents a set of random variables and their 

conditional dependencies via a directed acyclic graph (DAG). It consists of a set of 

interconnected nodes, where each node represents a variable in the dependency model 

and the connecting arcs represent the causal relationships between these variables. 

Each node or variable may take one of a number of possible states or values. The 

belief in, or certainty of, each of these states is determined from the belief in each 

possible state of every node directly connected to it and its relationship with each of 

these nodes. The belief in each state of a node is updated whenever the belief in each 

state of any directly connected node changes. 

BN and influence diagrams (IDs) were invented in the mid 1980s (Howard & 

Matheson, 1984) to represent and reason with large multivariate discrete probability 

models and decision problems. First major publication on the subject appeared in 

1988 (Pearl, 1986). Using exact Inference, Pearl’s message passing algorithm 

messages (probabilities/likelihood) propagate between variables. After finite number 

of iterations, each node has its correct beliefs. This only works for pure discrete or 

pure Gaussian and singly connected network where inference is done in linear time. 
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There are four advantages of using BN: (Heckerman D. , 2008) 

One – BNs can readily handle incomplete data sets. When one of the inputs is not 

observed however most models will produce an inaccurate prediction because they do 

not encode the correlation between input variables. BNs offer a natural way to encode 

such dependencies. 

Two – BNs allow one to learn about causal relationships. Help gain understanding 

about the problem domain and allow us to make predictions in the presence 

interventions 

Three – BNs in conjunction with Bayesian statistical techniques facilitate the 

combination of domain knowledge and data 

Four – Bayesian method in conjunction with BNs and other types of models offers an 

efficient and principled approach for avoiding the over fitting data. All the data can 

be use for training. 

2.1.1 Definition 

A Bayesian network for a set of variables 𝒙 =    𝑥!,… , 𝑥!  consists of 

1. a network structure S (direct acyclic graph) that encodes a set of conditional 

independence assertions about variables in x 
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2. a set P of local probability distributions associated with each variable 

The joint probability distribution for x is given by 

 𝑝 𝒙 = 𝑝(𝑥!|𝐩𝐚!)
!

!!!

 (2-1) 

Where 𝐩𝐚! denotes the parents of node 𝑥!  

From the chain rule of probability 

 𝑝 𝒙 = 𝑝(𝑥!|π!)
!

!!!

 (2-2) 

Where π! ⊆    𝑥!,… , 𝑥!!!  such that 𝑥! and 𝑥!,… , 𝑥!!!  are conditionally 

independent. 

The initial tasks to build a BN are (Heckerman D. , 1995): 

1. Correctly identify the goals of modeling 

2. Identify many possible observations that may be relevant to the problems 

3. Determine what subset of those observations is worthwhile to model 

4. Organize the observations into variables having mutually exclusive and 

collectively exhaustive states 
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2.1.2 Inference in a Bayesian Network 

Because a BN for a given system determines a joint probability distribution for the 

whole system, in principle we can use the BN to compute any probability of interest. 

Using the conditional independencies encoded in a Bayesian network, the 

computation can be made more efficient. 

Bayesian inference requires a prior probability distribution for the parameters 

𝑃 𝜃!,… ,𝜃! . The prior could be subjective based on expert opinions or objective 

based on observed frequencies. 

When combine a prior distribution for the parameters with the conditional distribution 

for the observed data, we get a joint distribution for all quantities related to the 

problem: 

 𝑃 𝜃!,… ,𝜃! , 𝑥!, 𝑥!,… , = 𝑃 𝜃!,… ,𝜃! 𝑃 𝑥!, 𝑥!,… 𝜃!,… ,𝜃!  (2-3) 

 𝑃 𝜃!,… ,𝜃! , 𝑥!, 𝑥!,… , = 𝑃 𝜽 𝑃(𝑥!|𝜽)
!

 (2-4) 

From this, we can derive Bayes’ Rule for the posterior distribution of the parameters, 

given observed values for 𝑋!,… ,𝑋!: 

 𝑃 𝜽|𝑥!,… , 𝑥! =
𝑃 𝜽|𝑥!,… , 𝑥!
𝑃 𝑥!,… , 𝑥!

=
𝑃 𝜽 𝑃(𝑥!|𝜽)!

!!!

𝑃(𝜃) 𝑃(𝑥!|𝜃)!
!!! 𝑑𝜃

 (2-5) 
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The posterior can also be expressed as proportionality in terms of the likelihood: 

 𝑃 𝜽|𝑥!,… , 𝑥! ∝   𝑃 𝜽 𝐿(𝜽|𝑥!,… , 𝑥!) (2-6) 

This shows how introduction of a prior converts the expression of relative plausibility 

contained in the likelihood into an actual probability distribution over parameter 

space. 

The Bayesian framework can provide a predictive distribution for an unobserved 

case, 𝑋!!!, given the values observed for 𝑋!,… ,𝑋!  (Neal, 1993): 

 𝑃 𝑥!!!|𝑥!,… , 𝑥! =    𝑃 𝑥!!!|𝜃 𝑃(𝜃|𝑥!,… , 𝑥!)𝑑𝜃 (2-7) 

Note that the Bayesian predictive distribution is not based on a single estimate for the 

parameters, but is instead an average of the predictions using all possible values of 

the parameters, with each prediction weighted by the probability of the parameters 

having those values. 

Once the BN structure and nodes probability distributions have been defined, 

reliability analysis can be carried out using standard BN inference algorithms 

(Lauritzen & Spiegelhalter, 1988) (Jensen, Lauritzen, & Olesen, 1990). Several 

efficient algorithms exist to compute exact marginals of posterior distributions for 

discrete BNs and to solve discrete influence diagrams exactly (Shachter, 1986) 

(Shenoy, 1992). Neapolitan (Neapolitan, 2004) shows that by assuming that every 
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variable follows a Gaussian distribution, the inference process for continuous 

networks simplifies as it can be shown that a linear combination of Gaussian 

distributions results in another Gaussian distribution. 

As inference in BNs was found to be NP-hard in general (Cooper G. F., 1990), 

attention was paid to heuristic and stochastic techniques to help solve the problem. It 

was then found that approximate inference is also NP-hard (Dagum & Luby, 1993). 

However approximate inference do have wider range of applicability. Some of the 

most prevalent inexact techniques are based on Monte Carlo methods; the paper of 

Cousins et al. (Cousins, Chena, & Frisse, 1993) have a short tutorial on the subject in 

relation to Bayesian network inference, whereas the paper of Dagum and Horvitz 

(Dagum & Horvitz, 1993) analyses the performance of simulation algorithms using a 

Bayesian perspective. However, exact inference is generally a computationally 

intractable problem (Boyen & Koller, 1998). 

2.1.3 Hybrid Bayesian Network 

The state of the art exact algorithm for mixtures of Gaussians hybrid BNs is the 

Lauritzen-Jensen (Lauritzen & Jensen, 2001) algorithm. This requires the conditional 

distributions of continuous variables to be conditional linear Gaussians (CLG), and 

that discrete variables do not have continuous parents. 

If a BN has discrete variables with continuous parents, Murphy (Murphy K. , 1999) 

uses a variational approach to approximate the product of the potentials associated 
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with a discrete variable and its parents with a CLG. Lerner (Lerner U. N., 2002) uses 

a numerical integration technique called Gaussian quadrature to approximate non-

CLG distributions with CLG, and this same technique can be used to approximate the 

product of potentials associated with a discrete variable and its continuous parents. 

Shenoy (Shenoy, 2006) proposes approximating non-CLG distributions by mixtures 

of Gaussians using a nonlinear optimization technique, and using arc reversals to 

ensure discrete variables do not have continuous parents. The resulting mixture of 

Gaussians BN is then solved using Lauritzen-Jensen algorithm. 

Moral et al. (Moral, Rumi, & Salmeron, 2001) proposes approximating probability 

density functions (PDFs) by mixtures of truncated exponentials (MTE), which are 

easy to integrate in closed form. Since the family of MTE is closed under 

combination and marginalization, the Shenoy-Shafer architecture can be used to solve 

the MTE BN. Another common method is dynamic discretization algorithm, which is 

given by Neil (Neil, Tailor, Marquez, Fenton, & Hear, 2007). 

2.1.4 Dynamic Bayesian Network 

Dynamic Bayesian Network (DBN) framework (Dean & Kanazawa, 1989) allows a 

compact representation of the temporal (and functional) dependencies among the 

system components and event-dependent failure behaviors, characteristic of fault-

tolerant systems, avoiding the state space explosion problem of the Markov Chain 

based approaches to Dynamic Fault Tree (DFT) analysis (Bechta Dugan, Bavuso, & 

Boyd, 1992). The key to DBNs is that they are specified in two parts, a prior 
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Bayesian network that specifies the initial conditions and a transition Bayesian 

network that specifies how variables change from time to time. 

The most original paper is presented by Dean and Kanazawa (Dean & Kanazawa, 

1989) or Freidman et al. (Friedman N. , 1998). In addition Murphy and Mian 

(Murphy & Mian, 1999) show modeling of data using DBN. Ghahramani 

(Ghahramani, 1998) examines the topic from the perspective of learning and Flesch 

and Lucas (Flesch & Lucas, 2007) consider DBNs where the transition network can 

change over time. 

2.2 Bayesian Network in Reliability Applications 

Estimation of systems reliability using BN dates back as early as 1988 (Barlow, 

1988). The first real attempt to merge the efforts of the two communities is probably 

the work of Almond (Almond, 1992), where he proposes the use of the graphical 

belief tool for calculating reliability measures concerning a low-pressure coolant 

injection system for a nuclear reactor A number of early studies have attempted to use 

BNs (Pearl, 1993) (Jensen, 2001) to provide a unified framework for reliability 

modeling and analysis of complex systems. Works on system safety and Bayesian 

Networks (BNs) were originally developed in (Kang & Golay, 1999). 

2.2.1 General reliability 

Bobbio et al. (Bobbio, Portinale, Minichino, & Ciancamerla, 2001) show how to 
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improve the analysis of dependable systems by mapping fault trees into Bayesian 

networks. Singh et al. (Singh, Cortellessa, Cukic, Gunel, & Bharadwaj, 2001) 

presents their work on reliability estimation in component-based systems. They 

classify the component-based system reliability estimation methods into three as 

state-based models, path-based models and additive models. 

Murphy (Murphy K. , 2002) introduces DBN to provide a unified framework for 

reliability modeling and analysis of complex systems. Lerner et al. (Lerner, Parr, 

Koller, & Biswas, 2000) propose a new approach to this task, based on the framework 

of hybrid DBN. These models contain both continuous variables representing the 

state of the system and discrete variables representing discrete changes such as 

failures; they can model a variety of faults, including burst faults, measurement 

errors, and gradual drifts. 

Mahadevan and Rebba (Mahadevan & Rebba, 2005) propose a methodology based on 

Bayesian statistics to assess the validity of reliability computational models when 

full-scale testing is not possible. Sub-module validation results are used to derive a 

validation measure for the overall reliability estimate. BNs are used for the 

propagation and updating of validation information from the sub-modules to the 

overall model prediction. 

Boudali and Dugan present two great papers to cover both discrete-time BN 

reliability modeling and analysis framework (Boudali & Dugan, 2005) and introduce 

a method for reliability assessment in dynamic systems by using temporal BN 
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(Boudali & Dugan, 2006). Langseth and Portinale (Langseth & Portinale, 2007) 

discuss the properties of the modeling framework that make BNs particularly well 

suited for reliability applications, and point to ongoing research that is relevant for 

practitioners in reliability. 

Wilson and Huzurbazar (Wilson & Huzurbazar, 2007) extend their use to multilevel 

discrete data and discuss how to make joint inference about all of the nodes in the 

network. This article extends complex systems modeling using BNs for multilevel 

discrete data. Weber and Jouffe (Weber & Jouffe, 2006) present a methodology that 

will help developing Dynamic Object Oriented Bayesian Networks (DOOBNs) to 

formalize such complex dynamic models that are dynamically modeled and 

controlled to optimize the diagnosis and the maintenance policies. Recently, Doguc et 

al. (Doguc & Ramirez-Marquez, 2009) present a holistic method for constructing a 

Bayesian network (BN) model for estimating system reliability. BN is a probabilistic 

approach that is used to model and predict the behavior of a system based on 

observed stochastic events. 

2.2.2 Reliability applications 

Bayesian network has been applied to many applications during the course of the 

years as seen in the example papers below: 

• Bouissou and Ourghanlian (Bouissou, Martin, & Ourghanlian, 1999) 

developed assessment of a safety- critical system including software using a 
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Bayesian belief network for evidence sources.  

• Gran and Helminen (Gran & Helminen, 2001) provide a BN structure for 

nuclear power plants and introduce a hybrid method for estimating the 

reliability of the plant. 

• Wooff et al. (Wooff, Goldstein, & Coolen, 2002) use Bayesian graphical 

models for software testing. 

• Neil et al. (Neil, Fenton, Forey, & Harris, 2003) suggest using Bayesian 

Networks to access vehicle reliability. 

• Helminen and Pulkkinen (Helminen & Pulkkinen, 2003) present a BN-based 

method for reliability estimation of computer-based motor protection relay. 

• Kipersztok and Provan (Kipersztok & Provan, 2003) show framework for 

diagnostic inference of commercial aircraft systems. 

• Fenton et al. (Fenton, Neil, & Marquez, 2008) use Bayesian Networks to 

predict software defects and reliability. 

2.2.3 Bayesian Network in System Health Management 

BNs have established themselves as an indispensable tool in artificial intelligence and 

in the domain of system health management, including diagnosis and prognosis. They 

are being used effectively by researchers and practitioners more broadly in science 

and engineering. BNs are particularly well suited to modeling systems that need to be 

monitored, diagnose, and make predictions about, all under the presence of 
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uncertainty. 

BNs provide a simple and natural language for modeling problems in systems health 

management. Moreover, they support a variety of probabilistic queries, which provide 

a means to qualitatively and quantitatively reason about system health and reliability. 

Further, there are a variety of effective and principled approaches to inducing 

Bayesian networks from data, with or without prior expert knowledge. 

DBNs in System Heath Management provide diagnostic and prognostic capabilities. 

They have shown promise in several recent applications. Dong and Yang (Ming & 

Yang, 2008) use DBNs combined with particle filtering to estimate the RUL 

distribution of drill bits in a vertical drilling machine. Tobon-Mejia et al. (Tobon-

Mejia, Medjaher, Zerhouni, & Tripot, 2012) use mixtures of Gaussian HMMs (a form 

of DBN) to estimate the RUL distributions for bearings. The junction tree algorithm 

is used for exact inference.  

The following are a few examples of research works that were done recently in the 

area of System Health Management. 

• Ferreiro et al. (Ferreiro, Arnaiz, Sierra, & Irigoien, 2011) use BN model in 

prognostics and SHM for aircraft line maintenances. The article presents the 

global framework of a health management system as a new concept in aircraft 

line maintenance. This framework allows the transformation of the traditional 

maintenance (preventive and corrective, time based) into a predictive 
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maintenance based on prognostic techniques. 

• Schumann’s (Schumann, Rozier, Reinbacher, Mengshoel, Mbaya, & Ippolito, 

2013) implementation provides a novel approach of combining modular 

building blocks, integrating responsive runtime monitoring of temporal logic 

system safety requirements with model-based diagnosis and Bayesian 

network-based probabilistic analysis. 

• Choi et al. (Choi, Zheng, Darwiche, & Mengshoel, 2011) has recently written 

a tutorial on BNs for SHM.  

2.2.4 Software 

Many BN tools are available to the practitioners. Examples of commercial tools 

available online include Hugin (http://www.hugin.com/), BayesiaLab 

(http://www.bayesia.com/) and Netica (http:// www.norsys.com/). BUGS 

(http://www.mrc-bsu. cam.ac.uk/bugs/) is a general-purpose modeling framework 

where inference is based on simulation. 

Other popular alternatives include, UCLA’s SamIam (Sensitivity Analysis, Modeling, 

Inference and More), Kevin Murphy’s Bayesian Network Toolbox for use in Matlab 

computing environments, and the University of Pittsburgh’s GeNIe & SMILE system, 

which includes specialized features for BNs used in diagnostic applications. There are 

also a variety of commercial systems for modeling and reasoning in BNs. 
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Chapter 3: Proposed Modeling Methodology 

3.1 Degradation Model for System Health Management 

3.1.1 Proposed Hybrid Bayesian Network  

For SHM modeling, it is advantageous and intuitive to consider a hybrid system, 

typically with the variables such as time and temperature being modeled as 

continuous and the system’s functionality probability being discrete. 

 

Figure 3-1: Overview of different levels in SHM BN 

The proposed complex system hybrid BN can be separated into 5 levels as shown in 

Figure 3-1, according to the typical characteristics of the nodes. The BN combines 

high-level functionality nodes with low-level physical variables representing failure. 
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Here are the descriptions of each level: 

1. System node: this is the highest level of nodes with no children. It represents the 

state of the whole system and usually indicates whether or not the system is 

working as intended. 

2. Functionality probability nodes: these nodes are designed to be abstract discrete 

nodes that represent various functionalities, which are required for the system to 

operate. 

3. Component critical parameter nodes: these are continuous nodes representing 

status of physical components and structures susceptible to specific failure 

mechanisms in the system. These values should be measurable directly or 

indirectly. 

4. Factor nodes: these nodes show contributors to the degradation of the 

components. They can be component internal factors related to material 

properties or physical characters, or they can be external factors such as 

environmental stress or temperature.  

5. Hyper-parameter nodes: these nodes are hyper-parameters that describe 

probability distributions of the factors. 

It is to be noted that each level does not have to be only one layer as shown in Figure 

3-1, it can be a combination of different layers of nodes that have the same type. 
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3.1.2 Component Critical Parameters 

Reliability concerns arise when some critically important materials or devices 

degrade with time. Let C represent a critically important material/device parameter. 

This parameter degrades over the life of the component. The value itself can either 

increase (threshold voltage of a semiconductor device, increase in leakage of a 

capacitor, increase in resistance of a conductor) or decrease (decrease of pressure in a 

vessel, decrease of spacing between mechanical components, decrease in lubricating 

properties of a fluid). Figure 3-2 presents the SHM Bayesian network at specific time 

𝑡. The shade areas show continuous nodes that are related to each component. 

 

Figure 3-2: SHM Bayesian network at specific time t. 

An example of a degradation process can be derived from a Taylor expansion about 
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𝑡 = 0, which produces the Maclaurin Series, assuming that C changes monotonically 

and relatively slowly over the lifetime of the material/device: 

 𝐶 𝑡 = 𝐶!!! +
𝜕𝐶
𝜕𝑡 !!!

𝑡 +
1
2
𝜕!𝐶
𝜕𝑡!

!!!
𝑡! +⋯ (3-1) 

By assuming that the higher order terms in the expansion can be approximated by 

simply modeling degradation of component/device parameter C with a power-law 

equation: 

 𝐶 = 𝐶! 1± 𝐴!𝑡!  (3-2) 

where 𝐶! is the value of 𝐶 at 𝑡 = 0, 𝐴! is material/device-dependent coefficient, and 

𝑚 is the power-law exponent. Both 𝐴! and 𝑚 are parameters that can be learned from 

component/device degradation data. Summation (+) is used when the parameter 𝐶 

increases with time, while subtraction (-) is used when the parameter 𝐶 decreases 

with time 

The parameter 𝐴! is generally material/microstructure dependent. It is not only a 

function of material variations, but also a function of other factors, such as electrical, 

thermal, mechanical and chemical environments to which the device is exposed. 

 𝐴! = 𝐴! 𝐹!,… ,𝐹!  (3-3) 
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Therefore, we have: 

 𝐶 = 𝐶! 1± 𝐴! 𝐹!,… ,𝐹! 𝑡!  (3-4) 

 
𝑑𝐶
𝑑𝑡 = ±𝑚𝐶!𝐴! 𝐹!,… ,𝐹! 𝑡!!! (3-5) 

𝑚 and other parameters are considered to be constant for the component/device. 

Considering a Bayesian network at a time slice of a given system, 𝑡 is then constant 

and indicates the current life of the component/device.  

For a component/device to fail, the amount of degradation must reach a critical value, 

𝐶!"#$. Therefore, the time to failure, 𝑇!"#$%&' , is then: 

 𝑇!"#$%&' =
1

±𝐴! 𝐹!,… ,𝐹!
𝐶!"#$ − 𝐶!

𝐶!

!/!

 (3-6) 

Values of the factors are continuously distributed and parameters of the distribution 

can be shown explicitly as 𝜃 node. 

 𝐹 = 𝐹 𝜃!,…𝜃!  (3-7) 

There are three general time-dependent models for degradation. The choice of model 

and the model parameters can be extracted from the observed degradation data. 

Power-Law: 
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 𝐶 = 𝐶! 1± 𝐴! 𝐹!,… ,𝐹! 𝑡!  (3-8) 

Exponential: 

 𝐶 = 𝐶! exp ±𝐴! 𝐹!,… ,𝐹! 𝑡  (3-9) 

Logarithmic 

 𝐶 = 𝐶! 1± ln 𝐴! 𝐹!,… ,𝐹! 𝑡 + 1  (3-10) 

The choice of model and the model parameters can be extracted from observed 

degradation data. 

3.1.3 Functional Probability Node Interface 

Since the component parameter and their parents are continuous nodes, and the 

functionality probability nodes are discrete, the interface between these different 

types of nodes becomes critical. In general hybrid BNs, when continuous nodes have 

discrete parents, there are simple conditional inference techniques such as in 

conditional linear Gaussian (CLG) model. Difficulty arises when discrete nodes have 

continuous parents, which is the case for our SHM network. However in this case, 

even though discrete functionality probability nodes have continuous component 

status nodes, they are related by degradation thresholds. 

Discrete functionality nodes can contain more than two states with thresholds 
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between the transitions of one state to the other. Let the threshold value between 

functionality states 𝑖 and 𝑗 be 𝐶!!,!/!. The most common case would be state 𝑖 

denoting “component function”, and state j denoting “component does not function”. 

Let 𝑃! be the probability of functional state being 𝑖. The probability 𝑃! is then the 

probability that the component status 𝐶 is lower than the threshold value 𝐶!!,!/!. 

Figure 3-3 shows a hypothetical component exponential degradation function and the 

overlap of probability distributions of 𝐶 and 𝐶!!,!/!. 

 

Figure 3-3: Typical exponential degradation function. 

Figure 3-4 shows the overlap of probability distributions of 𝐶, lower threshold 

𝐶!!,!!!/!, and higher threshold 𝐶!!,!/!!!. If the distribution 𝐶 is moving to the left as 

the component is degrading, the probability of being in state 𝑖 − 1 is increasing, and 

the probability of being in state 𝑖 + 1 is decreasing. 

C"

t"

Ccrit"

tth"

C0"
C"

Cth,i/j"



 

 27 

 

 

Figure 3-4: Overlap of probability distribution of component status and its threshold. 

Let a functionality node have 𝑛 states, the probabilities of being in these states are 

𝑃!,… ,𝑃!. Assume the state of the functionality node changes monotonically 

according to the component degradation status: 

 𝐶!!,!!!/! < 𝐶!!,!/!!!  for 𝑖 = 2,… ,𝑛 − 1 (3-11) 

Therefore, 

 𝑃! = 𝑝𝑟𝑜𝑏 𝐶 > 𝐶!!,!!!/!   𝑎𝑛𝑑  𝐶 < 𝐶!!,!/!!!  (3-12) 

Analytically, 𝑃! can be calculated from the following convolution equation: 

 
𝑃! = 𝑝 𝐶!!,!!!/! ∙ 𝑝 𝐶

!!!,!/!!!

!!!,!!!/!

!

!!!,!!!/!

!!!,!/!!!

!!

∙ 𝑝 𝐶!!,!/!!! 𝑑𝐶𝑑𝐶!!,!/!!!𝑑𝐶!!,!!!/! 

(3-13) 
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If there are many component critical parameters contributing to this functionality then 

the state of the functionality node conditionally depends on comparison between the 

status of each component and its threshold values. 

 
𝑃!!…!! = 𝑝𝑟𝑜𝑏 𝐶!!!,!!!!/!! < 𝐶! < 𝐶!!!,!!/!!!!  ,… ,𝐶!!!,!!!!/!! < 𝐶!

< 𝐶!!!,!!/!!!!  
(3-14) 

For example, the functionality is in functioned state when 𝐶! > 𝐶!!!,!/! and 

𝐶! > 𝐶!!!,!/!, but it is in not functioned state when 𝐶! > 𝐶!!!,!/! or 𝐶! > 𝐶!!!,!/!. 

This conditional probability can be dealt with conditional probability table (CPT) the 

same way as in discrete Bayesian network.  

Probability functionality part of the SHM Bayesian network is shown in Figure 3-5. 

 

Figure 3-5: Relationship between functionality probability node and its components. 

Please note that 𝐶!! is shown in brackets because it is possible to have more than one 
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threshold values, depending on the number of states of the functionality. 

3.2 Dynamic Bayesian Network 

DBN is a BN that includes a temporal dimension. This new dimension is managed by 

time-indexed value 𝑡 to indicate time stage of the nodes. A set of nodes at certain 

stage contains random variables relative to time slice 𝑡. An arc that links two 

variables belonging to different time slices represents a temporal probabilistic 

dependence between these variables. Variables can be modeled to have impact on the 

future distribution of the other variables. These impacts are defined as transition 

probabilities between the stats of variables at time step 𝑡 and 𝑡 + ∆𝑡. 

A DBN describes the joint distribution of a set of variables 𝜽. This is a complex 

distribution, but may be simplified by using the Markov assumption due to slow 

changing degradation mechanisms in SHM. The Markov assumption requires only 

the present state of the variables 𝜽! to estimate 𝜽!!!, i.e. 𝑝 𝜽!!!|𝜽!,… ,𝜽! =

𝑝 𝜽!!!|𝜽!  where 𝑝 indicates a probability density function and bold letters indicate 

a vector quantity. Additionally, the process is assumed to be stationary, meaning that 

𝑝 𝜽!!!|𝜽!  is independent of t. 

For SHM Bayesian network, the main variables that change between time slices are 

component parameters. Components degrades over time, therefore, the status of 

components at a certain time slice depend on their status at the previous time slice 
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and the factors affecting the degradation processes during that transition. 

 𝑝 𝐶! = 𝑝 𝐶|𝐶!!∆! , 𝐹!!,… ,𝐹!!  (3-15) 

Given that 𝐹!! is the average value of factor 𝑖 between time slice 𝑡 − ∆𝑡 and 𝑡.  

 

Figure 3-6: Two-time-slice representation of a SHM DBN 

Figure 3-6 shows a two-time-slice representation of a dynamic SHM Bayesian 

network. ∆𝑡 should be set according to the system under interest and how often the 

parameters can be observed, such as frequency of sensor signals. 

At any point in time during system operation, any value of variables in the system can 

be derived by probabilistic inference to compare with its expected value to see if the 
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probability is still in the acceptable range and the system as a whole is working as 

intended. With continuous monitoring, the trajectories of the degradation processes 

can be estimated form our knowledge of the health of the system. We can then use 

this information to estimate remaining useful life (RUL) of components and plan 

maintenance accordingly.  

Figure 3-7 shows example of different degradation trajectories of component critical 

parameter 𝐶 depending on the conditions and factors of the system during operation. 

 

Figure 3-7: Example of different degradation trajectories of 𝐶. 

Change to 𝐶 can be measured either as degradation of a component’s critical health 

parameter or as damage to the component. Health degradation and damage are 

related, but one is usually easier to be measured than the other. However, both will 

reach critical thresholds where the component fails. 
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3.3 Inference with Markov Chain Monte Carlo 

3.3.1 Bayesian inference 

The BN is a model for the variables and their relationships. Therefore, it can be used 

to answer probabilistic queries about them. The main application is to use BN to 

realize updated knowledge of the states of a subset of variables, when the other 

variables (the evidence variables) are observed.  

To begin, we recall that Bayes’ rule with continuous variables is written as: 

 𝑝 𝜃|𝐷 =
𝑝 𝐷 𝜃 𝑝 𝜃
𝑑𝜃  𝑝(𝐷|𝜃)𝑝 𝜃

 (3-16) 

where 𝜃 is the parameter of interest and 𝐷 is data or evidence. 𝑝 𝜃|𝐷  is then the 

posterior probability of getting parameter value 𝜃 when data value 𝐷 is presented. 

Therefore, the Bayes’ rule in this case is: 

 
 𝑝 𝜃|𝐷      =        𝑝 𝐷 𝜃         𝑝 𝜃     /     𝑑𝜃  𝑝(𝐷|𝜃)𝑝 𝜃  

            posterior           likelihood       prior                  evidence 
(3-17) 

In real world SHM applications, it may be difficult to calculate full marginal 

distributions analytically. Therefore, sampling techniques need to be used to 

approximate the distributions instead. Expected values of a distribution can be 

estimated as follow: 
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 𝐸 𝑝 𝜃|𝐷 ≈
1
𝑁 𝑝 𝜃(!)|𝐷

!

!!!

 (3-18) 

where 𝜃(!),… ,𝜃(!) are the sample values of parameter 𝜃. 

There are many ways to sample these values, the key idea is to let 𝜃 values be points 

in state space and find a way to walk around so that the likelihood of visiting any 

point 𝜃 is proportional to 𝑝 𝜃 . Therefore, the sampler will spend more time sampling 

from the distribution where the probability is high, and spending less time sampling 

from where the probability is low. 

3.3.2 Markov Chain Monte Carlo 

In Bayesian inference, we need a good description of the posterior distribution. If we 

cannot achieve that description through formal analysis, nor through dense-grid 

approximation, then we can generate a lot of representative values from the posterior 

distribution and use those values to approximate the posterior. 

Markov Chain Monte Carlo (MCMC) algorithm (Cousins, Chena, & Frisse, 1993) 

(Dagum & Horvitz, 1993) generates a random walk such that each step in the walk is 

completely independent of the steps before the current position. The proposed next 

step has no dependence on where the walk has been before, and the decision to reject 

or accept the proposed step has no dependence on where the walk has been before. 

Any such process in which each step has no memory for states before the current one 
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is called a (first order) Markov process, and a succession of such steps is a Markov 

chain. 

A Markov chain can be defined as a sequence of generated random variables, say 

𝑋!,𝑋!,𝑋!,… , such that at each time 𝑡 ≥ 0, the next state 𝑋!!! is sampled from a 

distribution 𝑝 𝑋!!!|𝑋! . The main property of a Markov chain is the fact that, given 

that one knows 𝑋!, the next state does not depend of any state before 𝑋!. 

An important definition is the stationary distribution, which does not depend on 𝑡 or 

the initial state, given that the current state depends directly from the initial one. We 

can represent this distribution as 𝜙. Furthermore, we can note that, as t increases, the 

sampled points will look like dependent ones from 𝜙. 

Thus, after several generations of samples, these ones will be approximately 

dependent from 𝜙. Under this assumption, the expectation of 𝑔(𝑥) can be done 

according with these several generations. 

 𝜃!" =
1

𝑛 −𝑚 𝑓(𝑋!)
!

!!!!!

 (3-19) 

Any simulation that samples a lot of random values from a distribution is called a 

Monte Carlo simulation. For integration simulation, the algorithm is called Monte 

Carlo integration. 
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Let 𝑔(𝑥) be a function and suppose we want to compute φ. 

 𝜑 = 𝑔 𝑥 𝑑𝑥
!

!
 (3-20) 

Thus, the value of 𝜑 can be approximated by sampling values 𝑋!,𝑋!,… ,𝑋! from a 

distribution. 

 𝜑 = 𝐸(𝑔 𝑥 ) ≈
1
𝑚 𝑔(𝑋!)

!

!!!

 (3-21) 

According to the laws of large number, increasing the value of m corresponds to more 

accuracy in this approximation but only if the samples 𝑋!  are independent. 

Therefore, in Bayesian analysis, expected values of a posterior distribution can be 

estimated as follow: 

 𝐸 𝑝 𝜃|𝐷 ≈
1
𝑇 𝑝 𝜃(!)|𝐷

!

!!!

 (3-22) 

Where 𝜃(!),… ,𝜃(!) are the sample values of parameter 𝜃. 

There are many ways to sample these values, the key idea is to let 𝜃 values be points 

in state space and find a way to walk around so that the likelihood of visiting any 

point 𝜃 is proportional to 𝑝 𝜃 . Therefore, the sampler will spend more time sampling 
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from the distribution where the probability is high, and spending less time sampling 

from where the probability is low. 

MCMC algorithms are a general class of computational methods used to produce 

samples from distribution (in Bayesian, MCMC is used to produce samples from 

posterior distribution). They are often easy to implement and can be used to simulate 

very high dimensional posterior distribution. 

The basic goal of an MCMC algorithm is to simulate values (also called samples or 

draws) from the posterior distribution of a parameter vector. Inference about likely 

parameter values, or functions of parameter values, is then based on these simulated 

values. Letting the jth value in such a sequence of draws of the parameter vector 𝜃 be 

denoted by 𝜃(!). MCMC algorithms have the property that the distribution of the jth 

iterate in the sequence of sampled values converges to a random sample drawn from 

the posterior distribution as j becomes large. In general, successive draws from the 

posterior are correlated, but this correlation tends to die out as the interval between 

draws increases. Thus, if a large number of sample updates are performed, the last 

group of sampled values in the sequence, say 𝜃(!),𝜃(!!!),… ,𝜃(!!!), represents a 

(dependent) sample from the posterior distribution of interest. The iterations, 

𝜃(!),… ,𝜃(!!!), are known as burn-in and do not represent samples from the posterior 

distribution.  

Viewed from slightly more general perspective, MCMC algorithms produce random 
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walks over a probability distribution. By taking a sufficient number of steps in this 

random walk, the MCMC simulation algorithm visits various regions of the parameter 

space in proportion to their posterior probabilities. We can, for inferential purposes, 

summarize the iterates obtained in these random walks much as we would summarize 

an independent sample from the posterior distribution.  

Previous descriptions show how the expected value of 𝜃 by Monte Carlo integration 

and Markov chains can be obtained. The latter seems to solve the problem of finding 

a suitable approximation of the expected value to 𝑔(𝑥). However, we must guarantee 

that the stationary distribution corresponds exactly to the distribution of interest. The 

method that constructs a Markov chain and guarantees this condition is the well-

known Metropolis-Hastings algorithm (Appendix A). For the case that the complete 

joint posterior cannot be analytically determined and cannot be directed sampled, but 

all the conditional distributions can be determined and directly sampled, Gibbs 

sampling technique can be useful (Appendix B). Gibbs sampling simplifies a complex 

high-dimensional problem by breaking down into simple, low dimensional problems. 

In the cases where evaluation of full conditional density is computationally 

expensive, Adaptive Rejection Sampling (ARS) can be used to draw samples with 

fewer evaluations (Appendix C). The algorithm only works with probability density 

functions that are log-concave, which is usually the case for Bayesian applications. 
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3.4 Example 

To demonstrate the proposed methodology, SHM of an advanced integrated circuit 

(IC) was considered. Reliability of semiconductor devices may depend on assembly, 

use, and environmental conditions. Stress factors affecting device reliability include 

gas, dust, contamination, voltage, current density, temperature, humidity, mechanical 

stress, vibration, shock, radiation, pressure, and intensity of magnetic and electrical 

fields. 

The dominant failure modes of ICs are different depending on materials, usage, 

configurations, and applications. Let C be component critical parameter related to 

each failure mechanism and P be the functionality probability of failure of each 

material/device. Figure 3-8 shows an example BN for ICs with the following failure 

mechanisms: electromigration (EM), stress migration (SM), and corrosion (Cor) in 

Al-alloy metal strips, thermal-cycling fatigue (TCF) in Si-chips, and time-dependent 

dielectric breakdown (TDDB) and hot-carrier injection (HCI) in MOSFET devices.  

 

Figure 3-8: Example BN for an advanced integrated circuit 
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The conditional probability density of the system node, 𝑆!" , is then: 

 𝜋 𝑆!" = 𝑝(𝑆!"|𝑃!" ,𝑃!" ,𝑃!"#) (3-23) 

 𝜋 𝑆!" = 𝑝(𝑆!"| 𝐶!" ,𝐶!" ,𝐶!"# , 𝐶!"# , 𝐶!""# ,𝐶!"# ) (3-24) 

Each component critical parameter contains sub-network with continuous factor 

nodes and structure for that specific failure mechanism. For example the model 

generally used to describe EM time-to-failure takes the form: 

 𝑇𝐹 =   𝐵!   𝐽(!) − 𝐽!"#$
(!)   

!!
exp

𝑄
𝐾!𝑇

, (3-25) 

where 𝑇𝐹 is the component time to failure. 𝐵! is a process/material-dependent 

coefficient. 𝐽(!) is the electron current density. 𝐽!"#$
(!)  is a critical (threshold) current 

density which must be exceeded before significant EM is expected. 𝑛 is the current 

density exponent. 𝑄 is the activation energy. 

Using degradation model of component/device parameter C with the power-law 

equation: 

 𝐶 = 𝐶! 1− 𝐴!   𝐽(!),𝑇 𝑡!  (3-26) 

We can derive at the following relationship: 
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 𝐶 = 𝐶! 1− 𝐴! ∙   𝐽(!) − 𝐽!"#$
(!)   

!
∙ exp

−𝑄
𝐾!𝑇

𝑡!  (3-27) 

Since both current density 𝐽(!) and temperature 𝑇 are expected to be normally 

distributed between time t-1 to t,  

 𝐽 ! =𝒩 𝜇!,𝜎! , 𝑇 =𝒩 𝜇! ,𝜎!  (3-28) 

In the context of simple health monitoring in this example, 𝐴!,  𝑄, 𝑟, and 𝑚 are 

considered to be constant parameters representing material/device internal factors. 

These parameters can also be modeled with probabilistic distributions. 

The BN model of EM in the IC example is shown in Figure 3-9. 

 

Figure 3-9: BN of EM in the IC example. 
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Consider an Al-alloy under high temperature operation, with expected current density 

of J = 2×106 A/cm2 and at expected temperature of T = 200 °C. Assuming an 

activation energy of Q = 0.8 eV and the current density exponent of n = 2. Using 

conservative design approach, assume Jcrit = 0. 

Let 𝐶! = 1.  The following parameters were derived empirically and 𝐾! is the 

Boltzmann’s constant. Time is in hours. 

 𝐴! = 5×10!!", 𝑟 = 2,𝑚 = 3,𝑄 = 0.8,𝐾! = 0.0000862 (3-29) 

Figure 3-10 shows a plot of the critical parameter C degrades over time.  

 

Figure 3-10: Plot of critical parameter C of the EM example over time. 

For example at 𝑡 = 100, we can infer the value and its distribution of component 

critical parameter 𝐶 from the evidence data of 𝐽 and 𝑇, shown in Figure 3-11. 
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Figure 3-11: Plot of example data of J and T over 100 hours. 

From the data, we have normal distributions for both J and T, with the following 

means and standard deviations. 

 𝜇! = 2×10!𝐴/𝑐𝑚!,𝜎! = 1×10!𝐴/𝑐𝑚!, 𝜇! = 200℃,𝜎! = 0.5℃ (3-30) 

Figure 3-12 shows the MCMC inference result for 𝐶 with 10,000 iteration samples 

(trace plot on the left and density plot on the right). 

 

Figure 3-12: Inference result for component status C with 10,000 iteration samples. 
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The mean value of C is 0.940, with standard deviation of 0.00612.  

Given that from the testing, the threshold distribution of the component critical 

parameter for EM failure mode has the following mean and standard deviation: 

 𝜇!!! = 0.7,𝜎!!! = 0.1 (3-31) 

Using Equation (3-10), we can calculate the probability that the component critical 

parameter has not reach the failure threshold. Figure 3-13 shows reliability 

probability of Al-strip on EM failure mode over time. 

 

Figure 3-13: Reliability probability of Al-strip on EM failure mode over time.  
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Chapter 4: Computational Approach 

In highly complex systems, a MCMC algorithm requires large amount of 

computational time for inference in hybrid DBN. The computation time grows 

exponentially with each additional layer of network and becomes infeasible with a 

large number of nodes. The computation time makes the use of Hybrid DBNs 

impractical for on-line health monitoring of complex systems. To solve this problem, 

special case algorithms for SHM are introduced to reduce the number of 

computations and the amount of time required for each computation. 

4.1 Inference pre-computation 

Since the physical parameter values are expected to be in certain ranges, it is possible 

to perform pre-computation for all combinations of possible values in the known 

ranges. The results are then stored in a database, such that they can be pulled quickly 

to approximate the BN inferences. More computation may be conducted and more 

results added to the database while monitoring the health of the system such that the 

database could provide better coverage of the possible computations that may be 

needed in the future. Figure 4-1 illustrates the pre-computation process to replace the 

computations required during the operating phase. 

With a continuous range of parameter values, it is impossible to pre-compute every 

possible outcome. The goal of pre-computation is to cover enough values of the 

observable parameters so that the values of unobservable parameters can be 
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interpolated from the results. There are two factors in considering the selection of 

possible values. 

 

Figure 4-1: Pre-computation process 

There are two types of parameters: 

1. Observable parameters: these parameters that can be directly observed or 

measured. The values then can be used to infer other parameter values 

2. Unobservable parameters: these parameters cannot be observed directly given 

the system and available sensors/measurements. The values can only be 

inferred from other parameters. 

Our pre-computation then consists of inferences from values of observables 

parameters to unobservable parameters. Essentially, we have to select all different 

combinations of possible observable parameters values to perform MCMC inference 
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There are two factors in considering the selection of possible values. 

First is the range of observable parameters after a time period ∆𝑡. The selections 

should cover full range of possible values. There should be at least one selected value 

at lower bound and one selected value at upper bound. The common range is from 5th 

percentile to 95th percentile, or more accurately 0.5th percentile to 99.5th percentile. 

Second is the number of selections within the bound: the higher the number of 

selections, the more accurate results from interpolation will be. The density of 

selections should be proportional to the probabilistic density of the observable 

parameters. For example, if there is N number of selections per variable, the 

selections are: 

 𝐶! = 𝐶!!"#!! ,𝐶!!"#!!"! ,𝐶!!"#!!!"! ,…𝐶!!!"!!!  (4-1) 

 𝛿 =   
𝑝!!"! − 𝑝!"#
𝑁!"#"$%&'(! − 1

 (4-2) 

Therefore, for a given measurement interval ∆𝑡, we can estimate the set of possible 

values and use those values to pre-computed possible outcomes. 

There are two different types of observable parameters. The first one is the 

parameters that change over time. This is usually the case for component status 

parameters. For pre-computation to be feasible, the changes must be predictable. For 

a component status parameter, the change in value can be computed from its 
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degradation equation for a given ∆𝑡. Figure 4-2 shows example expected value, 5th 

percentile, and 95th percentile values. 

 

Figure 4-2: Example component degradation with 5th percentile, and 95th percentile values. 

For this case, the range of possible values grows over time. Therefore, the number of 

selection should increase proportionally with the range to keep the interval between 

selected values the same, thus, keep the accuracy of interpolation constant. 

The other type of observable parameters is constant parameters. These parameters are 

usually Gaussian distributed, shown in Figure 4-3. For this case, the range always 

stay constant, therefore, the selections remain the same throughout the life of the 

component. 
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Figure 4-3: Component Gaussian distribution. 

If the observed values are always in the predicted range, the accuracy of the results 

depends upon the number of selections for pre-computation. The number of selections 

is the number of selections at each time-slice multiplied by the number of 

measurement intervals. The number of pre-computations is then the number of 

selections for each observable, times the number of observables parameters.  

 𝑁!"#!!"#$%&'&(") = 𝑁!"#"$%&'(!,!,!!(!∆!)

!

!!!

!!/∆!

!!!

 (4-3) 

Where 𝑁!"#"$%&'(!,!,! is the number of selections of observable parameter 𝑖 at time 𝑡. 𝑛 

is the number of observable parameters, and 𝑇! is the component life. 

The total computation time then can be estimated. 

F"
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 𝑇!"#!!"#$%&'&(") = 𝑁!"#!!"#$%&'&(") ∙ 𝑇!"#$!%#!!"#!!"#$%&'&(") (4-4) 

For MCMC computation, the average computation time is proportional to the number 

iterations. The higher the number of iterations, the higher accuracy of the result will 

be. Therefore, there is a tradeoff between computation time and accuracy. For pre-

computation, the decision between higher number of value selections or higher 

number of iteration per computation must be made. 

4.2 Dynamic Programming 

Dynamic programming is a method for solving complex problems by breaking them 

down into simpler subproblems. It is applicable to problems exhibiting the properties 

of overlapping subproblems and optimal substructure. When applicable, the method 

takes far less time than naive methods that do not take advantage of the subproblem 

overlap. 

In general, to solve a given problem, we need to solve different parts of the problem 

(subproblems), and then combine the solutions of the subproblems to reach an overall 

solution. Often when using a more naive method, many of the subproblems are 

generated and solved many times. The dynamic programming approach seeks to solve 

each subproblem only once, thus reducing the number of computations: once the 

solution to a given subproblem has been computed, it is stored the next time the same 

solution is needed, it is simply looked up. This approach is especially useful when the 
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number of repeating subproblems grows exponentially as a function of the size of the 

input. 

Using dynamic programming can reduce the pre-computation time for BN inference 

drastically. Instead of computing full inferences for each set of evidence values, 

dynamic programming algorithm retain marginal results that can be reused with 

similar set of evidence values.  

The core of dynamic programming is the Memoization Methodology, which consists 

of the following: 

• Start with a backtracking algorithm 

• Look up the problem in a table; if there's a valid entry for it, return that value 

• Otherwise, compute the problem recursively, and then store the result in the 

table before returning the value 

The algorithm has three steps: 

1. Use a logic-sampling algorithm and degradation model to generate all possible 

evidence values according to its probability of occurring. Not all evidence 

nodes have to be instantiated for each case, only the evidence nodes that are 

required for observing nodes are instantiated. 

2. Check and construct a cache by comparing each generated case to those 

already in the cache. If the case is found to be new, then determine the joint 

probability of the case’s evidence using the algorithm in the third step. 
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3. The marginal posterior-probability distributions over the diagnosis nods are 

determined, then the values of the evidence nodes, the joint probability of the 

evidence set, and the marginal posterior-probability distributions for the 

diagnosis node are stored in the cache. 

Figure 4-4 shows two example cases where dynamic programming can reduce the 

number of computation. The first case is when nodes have the same set of parent 

nodes, thus the same sets of possible marginal probability distributions for discrete 

nodes. The second case is when continuous parameters have several trajectories that 

can reach the same values after some period of time. 

	
  	
  	
  

Figure 4-4: Example cases where dynamic programming reduces number of computations 

In addition, if more computations are needed during an operation in the event where 

evidence values reaches the bound of expected values, dynamic programming provide 

a set of marginal results that can be used for possible faster inference of values 
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outside the pre-computed cache. 

According to the algorithm and the proposed modeling approach, the computation 

should start from each individual component failure mechanism, and then compute 

the functionality probability from lower-level nodes (related to failure mode) to 

higher-level (system functionality) nodes. Table 4-1 shows the algorithm to generate 

pre-computed database, using dynamic programming. 

Table 4-1: Dynamic programming algorithm for pre-computation 

Algorithm: Dynamic Programming for Pre-Computation  

Input: unobserved variables (𝑿𝑼), observed variables (𝑿𝑬), variable starting values 
(𝑿𝟎), variable change function over time (𝑭𝒙), variable number of selections (𝑵𝑺), 
time range (𝑻), time step (∆𝒕) 

Output: database containing unobserved values given observed values and time 

01.  for 𝒕 increment by ∆𝒕 until 𝑻 

02.      generate selected possible values of 𝑿𝒕𝑬 according to 𝑵𝑺 and 𝒕 

03.      for each combination of selected 𝑿𝒕𝑬 

04.          if the inference result of 𝑿𝒕𝑼 given 𝑿𝒕𝑬 is not in the database 

05.              compute inferences for 𝑿𝒕𝑼 given 𝑭𝒙 and 𝒕, and 𝑿𝒕!𝟏𝑼  in the database 

06.              if 𝑿𝒕𝑼 is within the range 𝜺 of any 𝑿′𝒕𝑼 already in the database 

07.                  store 𝑿′𝒕𝑼 in the database 

08.              else 

09.                  store 𝑿𝒕𝑼 in the database 

10.  return the database 
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Consider a complex system with N number of components in the system, 

 𝜋 𝑆 = 𝑝 𝑆|𝑃!,𝑃!,… ,𝑃!  (4-5) 

Since both exact and approximate inferences have been found to be NP-hard (Cooper 

G. F., 1990) (Dagum & Luby, 1993), the computation complexity for both discrete 

functionality and continuous component degradation model are exponential in the 

network’s treewidth. Figure 4-5 shows a plot presenting differences between pre-

computation time with and without dynamic programming. Without storing marginal 

probability distribution results for further computations, all approximate inference 

computations are required for pre-computation, increasing the computation time 

exponentially with network’s treewidth. 

 

Figure 4-5: Inference pre-computation time with and without dynamic programming. 

Using dynamic programming, the number of computation can be reduced drastically 
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depending on the amount of approximation. Without dynamic programming, the 

number of computation required for C is: 

 
𝑁!"#$%&'&(") = 𝑁!!!"#"!"#$%& ∙ 𝑁!!!"#"$%&'(! ∙ 𝑁!!!"#$%&

∙ 𝑁!"#$!!"#$%& 
(4-6) 

With dynamic programming, results in the cases where C values are close to previous 

calculations can be pulled from the cache, thus reduce 𝑁!!!"#$%& and 𝑁!"#$!!"#$%&, 

and reduce 𝑁!"#$%&'&("). The reduction in number of computation depends on the 

range of parameter distributions and the level of acceptable approximation. 

4.3 Computation Time Optimization 

To optimize for the best pre-computation results, priority of computation becomes 

significant. The order of computation should start from small localized parts of the 

network, and then go up to the functionality probabilities and system to maximize the 

benefits of dynamic programming.  

One advantage of the isolation among component sub-tree is that time intervals do 

not have to be uniform for all components. Measurement/inspection intervals can be 

based on the rate of component degradation and possible change to component 

parameters. They can also be dynamically changed during the life a component 

depending on its status.  
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For example there can be less frequency of measurements during the early life of a 

component due to less probability of failure. Then increase the frequency when the 

component approaches the end of life. 

 ∆𝑡 ∝
1
∆𝐶 (4-7) 

The time interval between measurements, ∆𝑡, should then be inverse proportional to 

the amount of change of the parameter 𝐶. Therefore, the sampling rate around a 

certain evidence value will be proportional to the probability that the evidence value 

could happen and how much different in values to the possible values around it at 

certain period of time.  

If the observed values are always in the predicted range, the accuracy of the results 

depends upon the number of selections for pre-computation. The number of selections 

is the number of selections at each time-slice multiplies be the number of 

measurement intervals. The number of pre-computations is then the number 

selections for each observable times the number of observables parameters.  

 𝑁!"#!!"#$%&'&(") = 𝑁!"#"$%&'(!,!,!!(!∆!)

!

!!!

!!/∆!

!!!

 (4-8) 

Where 𝑁!"#"$%&'(!,!,! is the number of selections of observable parameter 𝑖 at time 𝑡. 𝑛 

is the number of observable parameters. 𝑇! is the component life. 
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The total computation time then can be estimated. 

 𝑇!"#!!"#$ = 𝑁!"#!!"#$ ∙ 𝑇!"#$!%#!!"#!!"#$ (4-9) 

For MCMC computation, the average computation time is proportional to the number 

iterations. The higher the number of iterations, the higher accuracy of the result will 

be. Therefore, there is a tradeoff between computation time and accuracy. For pre-

computation, the decision between higher number of value selections or higher 

number of iteration per computation must be made.  

 

Figure 4-6: Illustrated plots for addition of inference results. 

In addition, the pre-computation process does not have to stop at the start of an 

operation. Database of pre-computation results can be updated for more possible 

inference computation values, resulting in higher accuracy and larger range of 

covered values. Figure 4-6 shows how more results can be added between existing 

results. 
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4.4 Efficient Dependency Algorithm 

In the case that components in the system are dependent on each other because they 

have common factors, an efficient algorithm is required to maintain efficiency of the 

proposed modular component model. Figure 4-7 shows a modular component 

Bayesian Network model for System Health Management. 

 

Figure 4-7: Proposed BN for SHM. 

While the components are separated by their physical and functionality, there are 

possibilities that different components are sharing the same environmental factors, 

such as temperature, humidity, etc.  

Figure 4-8 shows an example of a 2-component system where both components share 
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1,n and Ft
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1. Even though the components share the same factor, it is very likely that there 

Pt1$

Ct1$

Ptl$

St$

Ct(11$

Ft1,1$ Ft1,n$

Ctn$Ct(1n$

Ftn,1$ Ftn,n$



 

 58 

 

is a spatial difference between them. By combining the nodes, the possibility 

of decoupling them is eliminated from future analysis. For example if two 

components are directly in contact with each other and are assumed to always 

have the same temperature, there is a chance that in some scenarios, the two 

components are separated due to an external event or unexpected degradation. 

The model should be flexible enough to handle this situation. 

2. When identical nodes are combined into common nodes of multiple 

components, the component models can no longer be treated in separate 

modules computationally. This leads to a large increase in complexity and 

computation time.  

 

Figure 4-8: BN of components with common factor. 

Let Dt be a node representing the value observed from a detector/sensor that measures 

the common factor. If the common factor is observable, factor Ft
1,n and Ft

2,1 can be 

directly derived from the measurement value of Dt. Therefore, inference calculations 

for each component stay modular. Figure 4-9 show the proposed BN with an 
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observable common factor. 

 𝑝 𝐶! = 𝑝 𝐶|𝐶!!∆! , 𝐹!!,… ,𝐹!!  (4-10) 

 𝑝 𝐹!
!,! = 𝑝 𝐹!

!,!|𝐷!  (4-11) 

 

Figure 4-9: Proposed BN with an observable common factor. 

If the common factor is unobservable, the inference calculation can be done by 

placing a “hidden node” Dt as an imaginary measurement node between Ft
1,n and Ft

2,1, 

shown in Figure 4-10. 

 

Figure 4-10: Proposed BN with an unobservable common factor 
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Since Ft
1,n and Ft

2,1 are more likely to have the same value, p(Ft
1,n,Ft

2,1)  is expected to 

have a distribution similar to the distribution shown in Figure 4-11. 

 

Figure 4-11: Probability distribution of the common factor. 

One method to reduce computation complexity and keep the inference calculation 

modular is to incorporate pre-computation approximation. Pre-computation generates 

possible subsets of values of variables according to their probability distribution.  

For this case: 

 𝑓𝑜𝑟  𝑝 𝑃!!|𝐶!!,𝐶!! ~∀𝑖, 𝑗  𝑝 𝑃!!| 𝐶!! ! , 𝐶!! !  (4-12) 

Therefore, the combination of 𝐶!! ! , 𝐶!! !  that have higher probability are those 

for which values of Ft
1,n and Ft

2,1 are close to each other. 

 𝑝 𝐶!! ! , 𝐶!! !   |𝐹!
!,! ≈ 𝐹!

!,! > 𝑝 𝐶!! ! , 𝐶!! !   |𝐹!
!,! ≠ 𝐹!

!,!  (4-13) 

Ft1,n&

Ft2,1&E(Ft2,1)&

E(Ft1,n)&

p(Ft1,n,&Ft2,1)&
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Using this method, the most probable explanation (MPE) can be derived from the pre-

computation database. Table 4-2 shows the proposed algorithm to compute inferences 

for common component factors. 

Table 4-2: Common component factor algorithm 

Algorithm: Common component factor inference 

Input: unobserved common factor variables (𝑿𝑼), observed variables (𝑿𝑬), variable 
starting values (𝑿𝟎), variable change function over time (𝑭𝒙), variable number of 
selections (𝑵𝑺), time 𝒕 

Output: inference values of unobserved common factor variables 

01.  for each 𝑿𝑼 as 𝒙𝑪 

02.      for each component that has 𝒙𝑪 factor 

03.          if full conditional probability 𝒙𝑪 has been stored 

04.              retrieve and return 𝒙′𝑪 

05.          else check if 𝒙𝑪 can be computed for full conditional probability 

06.              compute  and store 𝒙′𝑪 

07.          if none of 𝒙𝑪 can be computed for full conditional probability 

08.              compute marginal probability for each 𝒙𝑪 

09.              compute most probable expected value of 𝒙′𝑪 from marginal probabilities 

10.              store 𝒙′𝑪 

11.  return inference values of 𝑿𝑼 
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4.5 Example 

Consider an Al-alloy in the previous example under the same high temperature 

operation, with current density J = 2×106 A/cm2 and at a metal temperature T = 200 

°C. Assuming an activation energy of Q = 0.8 eV and the current density exponent of 

n = 2. Using conservative design approach, assume Jcrit = 0. 

To generate pre-computation results for EM, first we need to find the ranges of the 

observable factors, J and T, shown in Table 4-3. 

Table 4-3: Ranges and distribution parameters of J and T 

Parameter 5th Percentile 95th Percentile Mean Standard 
Deviation 

𝜇! 1.7×106 2.3×106 2.0×106 1.8×105 

𝜎! 0.5×105 1.5×105 1.0×105 3.0×104 

𝜇! 190 210 200 6.0 

𝜎! 0.5 1.5 1 0.30 

 

Let 𝑁!"#"$%&'(! = 19: 

 𝛿 =   
𝑝!!"! − 𝑝!"#
𝑁!"#"$%&'(! − 1

=
95− 5
19− 1 = 5 (4-14) 
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Therefore, 

 

𝜇! !"#"$%"&
= 𝜇!!!! , 𝜇!!"!! , 𝜇!!"!! ,… 𝜇!!"!!  

𝜎! !"#"$%"&
= 𝜎!!!! ,𝜎!!"!! ,𝜎!!"!! ,…𝜎!!"!!  

𝜇! !"#"$%"& = 𝜇!!!! , 𝜇!!"!! , 𝜇!!"!! ,… 𝜇!!"!!  

𝜎! !"#"$%"& = 𝜎!!!! ,𝜎!!"!! ,𝜎!!"!! ,…𝜎!!"!!  

(4-15) 

Figure 4-12 shows plots of J and T parameters over all selected percentile values. 

 

Figure 4-12: Plots of J and T parameters over all selected percentile values. 
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Then we compute C from all the possible combinations values of J and T parameters, 

and possible set of value C at time t. Then store the results in the database. With the 

proposed SHM BN modeling method, these data can be used for all similar 

components at any location and time. 

Given the data set shown in Figure 4-13 of 𝐽(!) and 𝑇 during an operation. 

 

Figure 4-13: Current density and temperature parameters data set 

Figure 4-14 shows a plot of component degradation under electromigration vs. time at 

different current density and temperature from the data set, with expected degradation 

trend for J=2×106 A/cm2, T=200°C and J=2.3×106 A/cm2, T=210°C. 
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Figure 4-14: Plot of component degradation under electromigration vs. time. 

Figure 4-15 shows the difference between the traditional inference result and the 

result from pre-computation method. The results are almost the same, with less than 

0.25% error. 

 

Figure 4-15: The difference between results with and without pre-computation method. 
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As mentioned in the previous section, with pre-computation method, the accuracy of 

inference computation depends mainly on the number of selections of possible values 

of the variables. Figure 4-16 shows the percentage error of inference result of 

reliability probability due to the EM failure mechanism at t = 200 hours as a function 

of number of selections of J and T parameters. The error decreases as the number of 

selection increases until it reaches a point where the error remains roughly the same. 

From this result, the optimal number of selection is around 10 to 15 selections. 

 

Figure 4-16: Error of inference result vs. number of parameter selections. 

The optimal number of selections depends on the accuracy required by the particular 

application and how much pre-computation time is available. In more complex 
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IC example with both electromigration (EM) and stress migration (SM) degradations. 

Let CEM and CSM be component critical parameter degrading under EM and SM 

respectively.  

 𝐶!" = 𝐶!!" 1− 𝐴!!"   𝐽(!) − 𝐽!"#$
(!)   

!!"
exp

−𝑄!"

𝐾!𝑇
𝑡!!"  (4-16) 

 𝐶!" = 𝐶!!" 1− 𝐴!!" 𝐿 !!" exp
−𝑄!"

𝐾!𝑇
𝑡!!"  (4-17) 

𝐽(!) is the electron current density. 𝐽!"#$
(!)  is a critical (threshold) current density which 

must be exceeded before significant EM is expected. 𝐿 is the tensile stress in the 

metal for a constant strain. 

The BN model of a component affected by EM and SM is shown in Figure 4-17. 

 

Figure 4-17: BN of a component with EM and SM degradations 
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Assume 𝐽(!), L, and 𝑇 are expected to be normally distributed between time t-1 to t,  

 𝐽(!) =𝒩 𝜇!,𝜎! , 𝐿 = 𝜇! ,𝜎! ,𝑇 =𝒩 𝜇! ,𝜎!  (4-18) 

With traditional BN modeling, both failure modes have temperature as a common 

factor. Therefore, the component parameters, CEM and CSM, have the same parent 

node, T. In this case, any approximate inference will require full marginal distribution 

of both failure mode variables. The amount of time for sampling and computation 

increases exponentially with the number of variables in the inference calculation. 

With the proposed technique, the failure modes stay modular and approximate 

inferences can be achieved at much lower cost because of lower number of variables 

in the calculation. For this example, approximate inference calculation will only 

involve parameters of failure mode EM and failure mode SM, but not both of them 

combined. 

Given an example where 𝐶!", 𝐽(!), and 𝐿 are observables and T is an unobservable. 

Traditionally, to get and inference for T, the following marginal distribution 

computation is required. 

 𝜋 𝑇! = 𝑝(𝑇!|𝐶!!" ,𝐶!!" ,𝐶!!!!" ,𝐶!!!!" , 𝐽!
! , 𝐿!) (4-19) 

With the proposed methodology, pre-computation of the following inferences for 𝑇! 

are computed for all possible values of other parameters with respect to each failure 
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mode. 

 𝜋 𝑇!!" = 𝑝(𝑇!|𝐶!!" ,𝐶!!!!" , 𝐽!
! ) (4-20) 

 𝜋 𝑇!!" = 𝑝(𝑇!|𝐶!!" ,𝐶!!!!" , 𝐿!) (4-21) 

The following table shows the ranges of the parameter of L in N/m2 and T in Celsius, 

shown in Table 4-4. 

Table 4-4: Ranges and distribution parameters of L and T 

Parameter 5th Percentile 95th Percentile Mean Standard 
Deviation 

𝜇! 1.5×108 2.5×108 2.0×108 3.0×107 

𝜎! 0.5×106 1.5×106 1.0×106 3.0×105 

𝜇! 190 210 200 6.0 

𝜎! 0.5 1.5 1 0.30 

  

If at time t = 100 hours, 

 

𝜇!!!!!" = 0.975,𝜎!!!!!" = 0.005 

𝜇!!!" = 0.973,𝜎!!!" = 0.005 

𝜇!! = 2×10!, 𝜇!! = 1×10!  

(4-22) 



 

 70 

 

From the pre-computation result of EM failure mode,  

 𝜇!! = 202.51,𝜎!! = 1.214  (4-23) 

With 19 selections in the previous example, the closest parameter values are: 

 𝜇!!"!! = 202.31,𝜎!!"!! = 1.202  (4-24) 

Given that, 

 𝜇!!!!!" = 0.975,𝜎!!!!!" = 0.005 (4-25) 

Therefore, from the pre-computation of SM failure mode, 

 𝜇!!!" = 0.895,𝜎!!!" = 0.013 (4-26) 

This also allows instantaneous inquiry of the states of degradations of all components 

in the system without computing full inference of all nodes every time there is new 

information. In real applications, a sensor on tensile stress may collect data every 

second, while another sensor on current density collect data every a tenth of a second. 

The health information of the system can be updated every tenth of a second, without 

having to performing approximate inference for EM failure mode as often. 

Consider a more complex example where the system consists of 50 electrical 

components that have 2 failure modes. Figure 4-18 shows a plot of amount of time 
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required as a function of number of failure modes that have the same dependent 

factor. Assume an approximate inference requires 10,000 iterations to reach 

reasonably accurate result. Using the proposed technique, the computation stays 

roughly the same, while traditional computation time increases exponentially with the 

number of dependent failure modes. 

 

Figure 4-18: Plot of number of computation vs. number of components with the same 

dependent factor 

  

5 10 15 201e
+0

4
1e

+2
2

1e
+4

0

No. of Components

N
o.

 o
f C

om
pu

ta
tio

ns

5 10 15 201e
+0

4
1e

+2
2

1e
+4

0

No. of Components

N
o.

 o
f C

om
pu

ta
tio

ns

Traditional
Proposed Technique             



 

 72 

 

Chapter 5: System Health Monitoring and Prognosis 

This section presents methods to apply the proposed modeling approach and 

computation algorithms for on-line health monitoring, prognosis, and anomaly 

detection of a complex system.   

5.1 Sensors 

One of the most important steps when implementing designing the system for health 

monitoring is identifying the observables and how to obtain the measurements. This 

is accomplished by adding sensors. It’s crucial to the effectiveness of health 

monitoring to deploy the correct sensors at the best possible placements. 

There are two classes of sensors that are important to system monitoring for fault 

diagnosis and prognosis. The first one is traditional transducers aimed at monitoring 

mechanical, structural, performance and operational, and electrical/electronic 

properties that relate to failure mechanisms of mechanical, structural, and electrical 

systems. The second class is for sensor systems that are placed specifically to track 

system properties that are related directly to their failure mechanisms. 

The main categories of sensors include mechanical/structure sensor systems, such as, 

accelerometers for vibration measurement, strain gauges, and ultrasonic sensor 

systems, performance/operational sensors, temperature sensors/thermography, electric 

measurements, such as Eddy-current proximity probes and microelectromechanical 
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system (MEMS) sensors. The physical effects these sensors are detecting are thermal, 

electrical, mechanical, humidity, biological, chemical, optical, and magnetic. A 

typical sensor system includes sensors, onboard analog-to-digital (A/D) converters, 

onboard memory, embedded computational capabilities, data transmission, and power 

source or supply. 

With the propose methodology, BN shows clearly what critical parameters and 

factors required measurement in order to infer the health of the system due to 

dominant degradation processes. Figure 5-1 shows and example BN with observable 

and unobservable nodes. Identifying observables and unobservables shows which 

sensors are important and which are not. The pre-computation results can emphasize 

what part of the measurement needs improvement in terms of rate and accuracy. 

 

Figure 5-1: Example BN with observable and unobservable nodes. 

Observable)Node) Unobservable)Node)
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Consideration for sensors selection includes the parameters to be monitored, 

requirements for physical characteristics of PHM sensor system, requirements for 

functional attributes of PHM sensor system, cost, reliability, and availability. Sensor 

system performances to be considered are accuracy, sensitivity, precision, resolution, 

measurement range, repeatability, linearity, uncertainty, response time, stabilization 

time, and physical attributes such as size, weight, and shape. 

Other functional attributes to be considered are power management, memory 

management, sampling rate, cost, reliability, and availability. Signals coming from 

sensors can be noisy, low amplitude, or biased. Therefore, there is need for signal pre-

processing, such as signal conditioning, denoising, vibration signal compression. 

After that signals are then processing in both time domain and frequency spectrum for 

feature selection and extraction. 

BN modeling enables easy integration of information from different sources, 

including experimental data, historical data, and prior expert opinion. Therefore, 

different type of sensors can be combined within the network. BN also includes and 

retains all the uncertainties within the system. These uncertainties generated from 

sensors may be induced by the varying and uncertain environments, the 

unpredictability of hardware and software, noisy and ambiguous sensor systems, and 

incomplete and uncertain knowledge of the physics of dynamic systems. 



 

 75 

 

5.2 System Monitoring 

Pre-computation allows on-line tracking of the state of the system, including the 

status of unobserved variable. While some factors are expected to remain constant or 

go through predictable cycle over system operating period, some factors change over 

time depending on degradation of components in the system. Inference calculations of 

these factors require a combination of their empirical or physics of failure model and 

the measurement values. Recursive (sequential) Bayesian estimation is required for 

probabilistic inference process in which the hidden (unobserved) variables of a 

dynamic system are estimated based on uncertain observations, e.g. due to error in 

measurement. (Rabiei & Modarres, 2013). 

Let 𝐷! be a node representing the value observed from a detector/sensor to measure 

variable 𝜃!, 𝑝 𝜃! 𝜃!!!  represent system dynamic, and 𝑝 𝐷! 𝜃!  represent 

observation model.  Figure 5-2 shows dynamic representation of variable 𝜃!  and its 

observed value over time. 

 

Figure 5-2: Dynamic representation of a variable. 
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The procedure for updating the belief about the system state as new information 

becomes available is called Bayesian recursive filtering. 

 𝑝 𝜃!|𝐷!:! =
𝑝 𝐷! 𝜃! 𝑝 𝜃!|𝐷!:!!!
𝑑𝜃  𝑝 𝐷! 𝜃! 𝑝 𝜃!|𝐷!:!!!

 (5-1) 

Under certain assumptions, such as when the system is linear Gaussian, the belief 

state will be of a known parametric form and computationally efficient solutions to 

the filtering problem (e.g. Kalman filter, extended Kalman filter, unscented Kalman 

filter) are available (Kalman, 1960) (Julier & Uhlmann, 1997). Outside such 

assumptions, a computationally feasible method for inference in the DBN is particle 

filtering, a form of sequential Monte Carlo based on Bayesian recursive filtering. 

Common particle filtering methods are based on sequential importance sampling 

(SIS) (Chen, 2003) (Appendix D). 

Using the pre-computation method, values of these variables can be derived 

instantaneously, making it possible to continuously monitor all variables in the 

system. This provides more up-to-date and complete information of the system state 

than the traditional RUL estimation method. 

5.3 Probabilistic Prognosis of Remaining Useful Life 

Diagnostic capabilities traditionally have been applied at or between the initial 

detection of a system, component, or subcomponent failure and complete system 
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catastrophic failure. More recent diagnostic technologies are enabling detections to be 

made at much earlier incipient fault stages. 

Prognostics and health management (PHM) refers specifically to the phase involved 

with predicting future behavior, including remaining useful life (RUL), in terms of 

current operating state and the scheduling of required maintenance actions to 

maintain system health. RUL quantifies the amount of time until a system reaches 

some failure criterion, e.g. fault magnitude or performance metric crosses a threshold 

or system is no longer operable. Ideally, the uncertainty in RUL is quantified by 

estimating the distribution of RUL, resulting in a probabilistic prognosis.  

RUL is estimated by calculating the amount of time that the component critical 

parameter will reach a critical value, 𝐶!"#$ given the model and the current state of 

degradation. For an exponential model: 

 𝑅𝑈𝐿 = 𝑇!"#$%&' =
1

±𝐴! 𝐹!,… ,𝐹!
𝐶!"#$ − 𝐶

𝐶

!/!

 (5-2) 

With inference pre-computation results, RULs related to each failure mechanism can 

be estimated at any state of the system and at any point in time, given the trajectory of 

the degradation process. Table 5-1 shows the RUL estimation algorithm. 
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Table 5-1: RUL estimation algorithm 

Algorithm: RUL estimation 

Input: component critical parameter history ( 𝑪𝟎,… ,𝑪𝑻 ), component related 
variables (𝑿𝑪), degradation function (𝑭𝑪), critical parameter threshold (𝑪𝒕𝒉), current 
time (𝑻), time step (∆𝒕), database of inference results 

Output: RULs related to possible trajectories for all 𝑪 

01. for each 𝑪 as 𝑪𝒊 

02.     match 𝑪𝟎𝒊 ,… ,𝑪𝑻𝒊  to a trajectory of 𝑪𝒊 with certain values of 𝑿𝑪,𝒊 given 𝑭𝑪, 

03.     for 𝒕 increment by ∆𝒕 until 𝑪𝒕𝒊  reaches 𝑪𝒕𝒉𝒊  

04.         look up the database for 𝑪𝒕𝒊  given 𝑪𝒕!∆𝒕𝒊  and 𝑿𝑪,𝒊 

05.         if 𝑪𝒕𝒊  reaches 𝑪𝒕𝒉𝒊  

06.                 estimate and store RUL for 𝑪𝒊 

07.  return RUL estimates 

 

Even though there are many possible trajectories, no MCMC inference is required 

because RULs can be retrieved by recursively going through the inference database. 

And since it is only for component critical parameters, which are modular according 

to the proposed modeling approach, the number of computations is much smaller 

compared to large number of iterations in MCMC inference. 

5.4 Anomaly Detection 

Aside from monitoring the health of the system, it is crucial to be able to detect any 
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unexpected anomaly that could potentially cause system failure. There are three types 

of anomaly detection: 

1. Value Checks: check whether the values are plausible. The values must follow 

certain constraints of the particular model, such as “the value cannot be zero” or “the 

value must always increase or decrease over time”. They also have to be within the 

expected ranges. 

 𝜃! − 𝜃!!! < 𝜖!,! (5-3) 

Where 𝜖!,! depends on the sensitivity of variable status due to the change over time 

Δ𝑡 = 𝑡! − 𝑡!!!. 

2. Relationships Checks: check the relationship between nodes in the system, whether 

they follow the dependencies encoded in the model. Given the model 𝑆, the values of 

observable parameters {𝜃!!}, and the state of system in the previous time slice {𝜃!!!}, 

the observable values follow the relationship constraints within the model. 

 𝑝 𝜃!! |𝑆, 𝜃!!! > 𝜖! (5-4) 

Where 𝜖! is the minimum acceptable probability of the observable values. 

3. Failure trajectories check: check whether the component degradation processes are 

within the expected ranges. This detects if certain trajectories of a processes will 



 

 80 

 

make the component parameters reach critical thresholds earlier than anticipated. 

 𝑇!"#$%&' 𝜃|𝑆, {𝜃0,𝜃1,… ,𝜃𝑡} ≪ 𝑇!"#$%&' 𝜃|𝑆  (5-5) 

These trajectories can be detected using pattern recognition of the current state of the 

system comparing to the predicted trajectories in the database from pre-computation. 

Since pattern recognition captures trajectories of failure processes before component 

critical value reaches a certain threshold, it can detect possible failure earlier than 

checking failure probability of the component. Figure 5-3 shows a timeline 

comparison between pattern recognition and traditional failure detection estimate. 

 

Figure 5-3: Timeline comparison for pattern recognition against traditional failure detection. 

The pattern recognition algorithm uses the RUL estimates from pre-computation 

inference database to predict time to failure.  

𝑅𝑈𝐿! = RUL trajectory! ≈ 𝑅𝑈𝐿(𝑚𝑎𝑡𝑐ℎ𝑒𝑑 {𝜃!,𝜃!,… ,𝜃!}! ) 

Therefore, using the database, the RUL of the system can be tracked, and 

continuously monitored for possible failure much earlier before failure probability 

reaches the threshold. 
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5.5 Example 

Consider the EM failure example in previous chapter. The trajectory RUL database 

can be created from the generated inference pre-computation database. 

Using the same setup. Assuming the following values: 

 

𝐴! = 5×10!!", 𝑟 = 2,𝑚 = 3,𝑄 = 0.8,𝐾! = 0.0000862 

𝜇!!! = 0.7,𝜎!!! = 0.1 
(5-6) 

By simulating 50 data sets of J and T, Figure 5-4 shows the time differences between 

trajectory pattern recognition method and traditional failure detection estimation.  The 

difference shows how much earlier the pattern recognition method detects incoming 

failure before the traditional method and it increases proportionally with the total time 

to failure of the component for the given dataset.  
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 Figure 5-4: Time difference for failure detection between pattern recognition and 

traditional method.  
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Chapter 6: Parameter and Structure Learning 

In addition to monitoring health of the system, if data obtained during an operation 

turn out to be much different from the expected model, it’s crucial that the model gets 

updated to correct the discrepancies. Learning the parameters and structure of a BN 

can be considered a specific example of the general problem of selecting a 

probabilistic model that explains a given set of data (Friedman, Nachman, & Peer, 

1999).  

6.1 Parameter learning 

Assume that the joint probability distribution for X can be encoded in some network 

structure S. 

 𝑝 𝒙|𝜽!, 𝑆! = 𝑝(𝑥!|𝐩𝐚! ,𝜽! , 𝑆!)
!

!!!

 (6-1) 

𝜽! is the vector of parameters for the distribution 𝑝(𝑥!|𝐩𝐚! ,𝜽! , 𝑆!) 

𝜽! is the vector of parameter (𝜃! ,… ,𝜃!) 

𝑆! is the event (hypothesis) that the joint probability distribution can 

be factored according to S 

The problem of learning probabilities in a Bayesian network can be stated as follows: 

given a random sample 𝐷 = 𝑥!,… , 𝑥!  and the prior distribution  𝑝 𝜽!|  𝑆!  , 
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compute the posterior distribution  𝑝 𝜽!|  𝐷, 𝑆! . 

To compute the posterior efficiently and in closed form, two assumptions must be 

made.  

1. There are no missing data (the data set D is complete) 

2. The elements of parameter vector 𝜽! are mutually independent. That is, 

 𝑝 𝜽!|  𝑆! = 𝑝(𝜽!"|𝑆!)
!!

!!!

!

!!!

 (6-2) 

In the case of Bayesian learning, instead of seeking point estimates, we seek a 

posterior distribution (density) over network parameterizations p(θ|D), conditioned on 

the data. This posterior can in turn be used to identify point estimates (such as the 

mean or the mode), or one can otherwise take the average over all possible 

parameterizations. In the complete data case, we have a simple closed form, when a 

suitable prior over parameters is assumed. 

If data set D is incomplete (has missing values), the parameter learning task is more 

difficult since, in general, there is no tractably computable closed form. However, 

there are still effective learning algorithms for this case, such as gradient ascent, 

Gibbs sampling and expectation-maximization (EM). Such algorithms are often 

iterative, and intuitive, make inferences about the data to complete the missing 

values, which in turn are used to update the model parameters. 
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A further approximation is based on the observation that, as the sample size increases, 

the effect of the prior 𝑝 𝛉!|S!  diminishes. Thus, we can approximate 𝛉! by the 

maximum likelihood (ML) configuration of 𝜽!: 

 𝜽! = argmax𝜽! 𝑝 𝐷|𝜽!, 𝑆
!  (6-3) 

There are many techniques for finding a maximum likelihood (ML) or maximum a 

posteriori (MAP). One class of them is gradient-based optimization. For example, 

using gradient ascent, a local maximum can be found by following the derivatives of 

𝑔 𝜽!  or the likelihood 𝑝 𝐷|𝜽!, 𝑆! . 

Another technique for finding a local ML or MAP is the expectation-maximization 

(EM) algorithm (Dempster, 1977). EM is an efficient iterative procedure that searches 

for maximum likelihood estimates, in the presence of missing data. At a high level, 

each iteration of the EM algorithm consists of two steps: The E-step, and the M-step. 

We start with some initial guess of the network parameters. In the expectation, or E-

step, we compute expected counts, based on our current estimates. In the M-step, we 

treat the expected counts like complete data, and compute the maximum likelihood 

estimates from them. We typically repeat this iterative process until it no longer 

improves the likelihood. 

With the proposed pre-computation database, the observed variables can be adjusted 
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according to the physics of failure model to compensate for the error in model 

parameters. 

6.2 Structure learning and discovery 

Besides differences in model parameters, there is a possibility of a hidden structure 

that is not expected when BN is implemented. Figure 6-1 shows an example of an 

unanticipated factor of a degradation process affecting another degradation process. 

With modular design and pre-computation database, hidden relationship can be 

discovered simply by Bayesian inference. 

 

Figure 6-1: Example BN with a hidden structure. 

If the network structure that encodes the physical joint probability distribution for X 

is uncertain and can be improved. The uncertainty can be encoded by defining a 
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variable whose states correspond to the possible network-structure hypotheses 𝑆!, 

and assessing the probabilities 𝑝 𝑆! . Then, given a random sample D, the posterior 

distribution 𝑝 𝑆!|𝐷  and 𝑝 𝜽!|𝐷, 𝑆!  can be computed and used to compute 

expectations of interest. For example: 

 𝑝 𝑥!!!|𝐷 = 𝑝 𝑆!|𝐷
!!

𝑝 𝑥!!!|𝜽!, 𝑆! 𝑝 𝜽!|𝐷, 𝑆! 𝑑𝜽! (6-4) 

In performing the sum, we assume that the network-structure hypotheses are mutually 

exclusive. 

The computation of 𝑝 𝑆!|𝐷  is straightforward using Bayes’ theorem: 

 𝑝 𝑆!|𝐷 =
𝑝 𝑆! 𝑝 𝐷|𝑆!

𝑝(𝐷)  (6-5) 

Where p(D) is a normalization constant that does not depend upon structure. Thus, to 

determine the posterior distribution of network structure, we need to compute the 

marginal likelihood of the data 𝑝 𝐷|𝑆!  for each possible structure.  
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Chapter 7: Maintenance and Decision Making 

Decision-making methodologies in SHM take RUL estimates derived from prognosis 

to develop and select maintenance policies or perform condition-based maintenance. 

While advanced diagnostics and prognostics provide vital information, good decision 

making with that information requires a methodology that effectively utilizes 

available information.  

 

Figure 7-1: Diagram of the proposed SHM process. 

Figure 7-1 shows a diagram of the proposed SHM process where empirical model and 

sensors information are used to generate pre-computation results, which are use for 

health monitoring to the system. If anomaly is detected during an operation, fault 

diagnosis is processed to help with maintenance decision-making. Past operation data 

that leads to anomaly is then used for parameter and structure learning to update the 
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model for future health monitoring and prognosis. 

7.1 Condition-based Maintenance 

Condition-based maintenance (CBM) is the use of machinery run-time data to 

determine the machinery condition and hence its current fault/failure condition, which 

can be used to schedule required repair and maintenance prior to breakdown. Since 

corrective/reactive maintenance can have severe performance costs, preventive/ 

scheduled maintenance is important to replaces parts before the end of their useful 

life.  

CBM optimizes the tradeoff between maintenance costs and performance costs by 

increasing availability and reliability while eliminating unnecessary maintenance 

activities. The benefits of implementing CBM include: increased system availability, 

increased system reliability, reduced maintenance costs, and reduced inventories.  

Potential of PHM is to reduce operational and support cost (O&S), reduce life-cycle 

total ownership cost (TOC), and improved safety of machinery and complex systems. 

There are several ways to management the cost, such as maintenance planning cost 

avoidance, discrete event simulation maintenance planning model, fixed-schedule 

maintenance interval, and precursor to failure monitoring. 

To perform a cost-benefit analysis, first there needs to be an established baseline 

condition. Then use a condition-based maintenance to reduce breakdown maintenance 
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cost. The number of maintenance events that may be avoided is estimated by 

thresholding failure probabilities of critical components and computing approximate 

times to failure. The aggregate life-cycle cost can then be calculated, including 

intangible benefits and the projected cost of CBM. CBM implementation costs 

include nonrecurring costs, recurring costs, infrastructure costs and nonmonetary 

considerations and maintenance culture. 

7.2 Risk Informed Decision Making 

Risk-informed decision-making is the process of using information about risk to 

assist in decision-making. This would include decisions regarding actions such as: 

frequency of inspection; need for increased instrumentation; need for additional 

technical studies; assessment of how uncertainties affect the level of risk; sufficiency 

of evidence to support the need for remedial action; selection of a remedial action to 

address an identified deficiency; prioritization of projects or actions; and the sequence 

in which remedial actions are taken. 

Risk-informed decision making is distinguished from risk-based decision making in 

that it is a fundamentally deliberative process that uses a diverse set of performance 

measures, along with other considerations, to inform decision making. The process 

acknowledges the role that human judgment plays in decisions, and that technical 

information cannot be the sole basis for decision making. This is not only because of 

inevitable gaps in the technical information, but also because decision making is an 
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inherently subjective, values-based enterprise. In the face of complex decision 

making involving multiple competing objectives, the cumulative wisdom provided by 

experienced personnel is essential for integrating technical and nontechnical factors to 

produce sound decisions (NASA, 2010). 

It is crucial for decision maker to have as much as information as possible at the time 

of decision making to ensure the best possible outcome. In mission critical 

applications where decisions need to be made in a short period of time, on-line 

system health monitoring becomes crucial. A complete picture of the state of the 

system helps prioritize the response action to avoid failures. 

The proposed methodology not only provides on-line system health information, the 

inference pre-computation database gives the decision makers a tool to inquire 

expected values of system parameters given knowledge about some of the parameters. 

This is very useful for comparing different available choices and scenarios. And the 

results can be computed quickly even in a large complex engineering system. 

Pre-computation database enables system operator to perform online sensitivity 

analysis of all components in the system. The analysis computes the overall system 

reliability given that a particular component is considered to have zero failure 

probability. 

 𝑝 𝑆 ! = 𝑃 𝑆| 𝐶!,𝐶!,… ,𝐶! ,… ,𝐶! ,𝑝 𝐶! = 1   𝑓𝑜𝑟  𝑖 = 1…𝑛 (7-1) 



 

 92 

 

Result of the analysis will show which component degradation process predominantly 

influents the overall system health, and how much system reliability will increase 

after a repair or replacement. Combine this information with the costs of components 

or the repair costs, the operator can make the most cost effective decision to improve 

the system reliability. 
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Chapter 8: Example Application 

8.1 Unmanned Aerial Vehicle (UAV) 

Unmanned aerial vehicle (UAV) is an aircraft without a human pilot aboard. Its flight 

is controlled either autonomously by onboard computers or by the remote control of a 

pilot on the ground or in another vehicle. 

Since their creation, UAVs have found many uses in police, military, and in some 

cases, civil applications. Currently, UAVs are most often used for the following tasks: 

• Aerial Reconnaissance – UAVs are often used to get aerial video of a remote 

location, especially where there would be unacceptable risk to the pilot of a 

manned aircraft.  

• Scientific Research – In many cases, scientific research necessitates obtaining 

data from hazardous, or remote locations.  

• Logistics and Transportation – UAVs can be used to carry and deliver a 

variety of payloads.  

• Oil, gas, and mineral exploration and production. UAVs can be used to 

perform geophysical surveys, in particular geomagnetic surveys. For above-

ground pipelines, this monitoring activity could be performed using digital 

cameras mounted on one or more UAVs. 

Some of the first UAVs were called “drones” and were not autonomous, because they 
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required constant control input from a remote human pilot. Computer technology now 

allows UAVs to make their own decisions, or fly autonomously. Autonomous flight 

involves the UAV making decisions as it flies. 

Generally, autonomous flight consists of the following operations: 

• Interpreting sensor input, and merging the input of multiple sensors 

• Communicating with ground stations, satellites, and other UAVs and aircraft 

• Determining the ideal course to fly for a given mission, based on sensor input. 

• Determining the best maneuvers to perform for a given task 

• In some cases, cooperating with other UAVs to accomplish a common task. 

8.2 System Health Management for UAV 

There is a need for advanced health management systems for UAV to be able to do 

the following, in case of anomalies: 

• Can quickly and reliably pinpoint failures,  

• Carry out accurate diagnosis of unexpected scenarios, and,  

• Based upon the determined root causes, make informed decisions that 

maximize capabilities to meet mission objectives while maintaining safety 

requirements and avoiding safety hazards.  

This system is perfect for demonstration of the proposed methodology because of the 
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following reasons: 

• It’s a mission critical application. Failure is catastrophic. 

• It requires high precision information with uncertainties, such as flying path 

and altitude. 

• It’s a fairly complex system. There are many components/functionalities and 

many types of failure modes. 

• There are possibilities of operating under harsh conditions/environment. 

• It benefits from remote computation/decision. A powerful onboard computer 

is not available. With this methodology it only need onboard storage unit. 

8.3 Quadcopter 

A quadcopter is picked for the example application due to its ubiquity recently in 

many applications. A quadcopter, also called a quadrotor helicopter, quadrotor is a 

multirotor helicopter that is lifted and propelled by four rotors. Quadcopters are 

classified as rotorcraft, as opposed to fixed-wing aircraft, because their lift is 

generated by a set of rotors. 

Unlike most helicopters, quadcopters use 2 sets of identical fixed pitched propellers; 

2 clockwise (CW) and 2 counter-clockwise (CCW). These use variation of RPM to 

control lift and torque. Control of vehicle motion is achieved by altering the rotation 

rate of one or more rotor discs, thereby changing its torque load and thrust/lift 
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characteristics. 

Quadcopter is useful in public safety applications, such as crime or accident 

investigation, intelligence and evidence gathering, traffic and crowd control, tactical 

operations (barricade, hostage, raid) search and rescue, fire control and damage 

assessment, and emergency and disaster response. It also has been use in industrial 

commercial, such as infrastructure inspection, 3D models and volumetric analysis, 

precision agriculture, gas leak detection, environmental and wildlife monitoring, 

photography, site and infrastructure security, and construction site planning and 

monitoring 

8.4 Technical Specifications 

The prototype that will be used for technical specifications in this analysis is the 

Aeryon Scout show in Figure 8-1. 
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Figure 8-1: The Aeryon Scout. 

The Aeryon Scout (Aeryon Labs Inc., 2014) is a Vertical Take-Off and Landing 

(VTOL) sUAS – ideal for providing an immediate eye in the sky for public safety, 

commercial and industrial users. The Scout can be operated beyond the line of sight 

up to 3 kilometres (1.9 miles) from the user. It is controlled with a Tablet PC-based 

interface and piloted by pointing to an area on the map. The Scout constantly 

monitors external conditions such as wind speed, as well as internal functions, such as 

battery level, allowing it to make an automated decisions en route to return home, 

land immediately or hover and wait. 

Table 8-1 shows specifications of the Aeryon Scout that will be used in this analysis. 
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Table 8-1: Quadcopter prototype technical specifications 

Technical Specification Value 

Endurance Up to 25 minute flight time (with payload) 

Wind Tolerance 
30 mph (50 kph) sustained 

50 mph (80 kph) gusts 

Environmental Temperature Range -22 –122°F (-30 – 50°C) 

Line-of-Sight Range 2,500 ft. (750 m) integrated capability 

Altitude 
1,500 ft. (450 m) AGL 

15,000 ft. (4,500 m) MSL 

Launch & Recovery Method Vertical Take-Off and Landing (VTOL) 

Dimension 
28 in. (72 cm) diameter,  

8.5 in. (20 cm) height 

Weight 3 lbs (1.4 kg) 

Radio Frequencies 900 Mhz, 2.4 GHz 

Control and Data Link Low-latency all-digital network 

Security Secure network pairing, AES 256 bit 
encryption 
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8.5 Components and Functionalities 

Table 8-2 lists the components of quadcopter and their related functionalities. The 

table also includes details of each component for use in the analysis. 

Table 8-2: Quadcopter components and functionalities 

Component Functionality Detail 

Frame The structure that holds all 

the components together 

Carbon fiber, Aluminum alloy 

connector, Width: 498mm, Height: 

80mm, Weight 240g 

Propeller Converting rotational 

motion into thrust 

10x4.5 SF Props 2pc Standard 

Rotation/2 pc RH Rotation 

Rotors Provide the necessary 

thrust to propel the craft 

Brushless DC motors, 1650rpm/V, 

7.2v-11.1v, Max Power: 180w, 

Max Current: 17.5A, No Load 

Current: 1.3A, Thrust: 520g 

Electronic Speed 

Controller (ESC) 

Motor controller board that 

has a battery input and a 

three phase output for the 

motor 

Plush 25 Brushless Speed 

Controller, Continuous Current 

25A, Burst Current: 35A, BEC 

Mode Linear, BEC: 5v/2A, • Motor 

speed: (Maximum): 210000 RPM 

(2 poles), 70000 RPM (6 poles), 

35000 RPM (12 poles) 
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Component Functionality Detail 

Inertial 

Measurement 

Unit (IMU) 

An electronic sensor device 

that measures the velocity, 

orientation and 

gravitational forces 

Triple Axis Accelerometer & Gyro 

Breakout, 3-axis gyroscope and a 3-

axis accelerometer, onboard Digital 

Motion ProcessorTM (DMPTM), 

I2C Digital-output of 6 or 9-axis 

MotionFusion data, Input Voltage: 

2.3 - 3.4V, Tri-Axis angular rate 

sensor (gyro) with a sensitivity up 

to 131 LSBs/dps and a full-scale 

range of ±250, ±500, ±1000, and 

±2000dps, Tri-Axis accelerometer 

with a programmable full scale 

range of ±2g, ±4g, ±8g and ±16g, 

Digital-output temperature sensor 

Flight Control 

Board (FCB) 

Microcontroller KK2.0 Multi-rotor LCD Flight 

Control Board, Atmel Mega324PA 

8-bit AVR RISC-based 

microcontroller with 32k of 

memory, Piezo buzzer, 6 Pin 

USBasp AVR Programming 

interface, Signal from Receiver: 

1520us, Signal to ESC: 1520us 
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Component Functionality Detail 

Power 

Distribution 

Board 

Distribute power to ESC 

and rotors 

Gold plated, Current: 4 x 20A 

Outputs (MAX), Power Input: 

XT60 with 12AWG wire, Motor 

output: 4 x 3.5mm Female bullet 

plug, Aux output: 2 pin JST 

compatible 

Wiring Transfer power and 

electronic signal 

Pure copper, pure silicone, Temp 

rating: 200Deg C Guage: AWG 16# 

Battery Power Source Lithium Polymer (LiPo), 3 Cell 

(3S) 11.1 volts, 2200MAH, 20C 

constant discharge rate (30C burst 

discharge rate), Connector Plug: 

XT60 connector 

RC Transmitter/ 

Receiver 

Transmit/Receive control 

signal 

2.4ghz ISM Frequency Range, 

Resolution: 1024, Modulation: 

GFSK, Spread Spectrum Mode: 

FHSS, Channel: 7 (inc RX Battery 

Input, Power: 4.5v ~ 9.6v/<30ma 

 

The components can be separated in to 4 categories: flight control system, structure, 

power, and communication. Figure 8-3 presents a diagram showing the categories and 

the relationships among components. 



 

 102 

 

 

Figure 8-2: Diagram of components in a quadcopter. 
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8.6 Component Failure Modes and Failure Mechanisms 

The first step is to identify the failure modes and their factors within the system. For 

each component, the dominant failure modes and mechanisms are shown in Table 

8-3.  

Table 8-3: Quadcopter component failure modes 

Component Failure Modes Failure Mechanisms Factors 

Frame Structure Failure 

Mechanical Fastener 
Failure 

Fatigue-induced 
Fracture (fr-fat) 

Creep-induced 
Fracture (fr-cr) 

Stress 

Vibration 

Temperature 

Propeller Loss of function 

Overspeeding 

Overtorque 

Blade/propeller 
separation 

Fatigue-induced 
Fracture (pr-fat) 

Creep-induced 
Fracture (pr-cr) 

Corrosion-induced 
Failures (pr-co) 

Cycle stress 

Moisture 

Vibration 

Temperature 

Rotor Actuator Fault 

Overheating 

Motor shaft failure 

Bearing failure 

Rotor failure 

Misalignment 

Overspeeding 

Fatigue (rot-fat) 

Corrosion (rot-co) 

Thermal Expansion 
(rot-te) 

Moisture 

Vibration 

Temperature 

Cycle stress 

Current 

Transient 
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Component Failure Modes Failure Mechanisms Factors 

Electronic Speed 
Controller (ESC) 

Burnout 

Conduction failure 

Software failure 

Overvoltage 

 

Electromigration 
(esc-em) 

Thermal Expansion 
(esc-te) 

 

Voltage 

Vibration 

Temperature 

Inertial 
Measurement 
Unit (IMU) 

Sensor Fault 

Loss of signal 

Incorrect signal 

Calibration Error 

Stress Migration 
(imu-sm) 

Corrosion (imu-co) 

 

Vibration 

Temperature 

Humidity 

Flight Control 
Board 

Loss of Control 
Board 

Overheating 

Software/Firmware 
Errors 

Overvoltage 

Electromigration 
(fcb-em) 

Stress Migration 
(fcb-sm) 

Time-Dependent 
Dielectric 
Breakdown (fcb-
tddb) 

Hot-Carrier Injection 
(fcb-hci) 

Temperature 

Voltage 

Vibration 

Humidity 

Electric field 

Current 

Tensile stress 

Battery Overheating 

Depletion 

Electrode Cracking 

Corrosion (bat-co) 

Thermal Expansion 
(bat-te) 

Voltage 

Temperature 

Vibration 

Humidity 
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Component Failure Modes Failure Mechanisms Factors 

RC Transmitter/ 
Receiver 

Loss of transmitter 

Overvoltage 

Electromigration (rc-
em) 

Time-Dependent 
Dielectric 
Breakdown (rc-tddb) 

Hot-Carrier Injection 
(rc-hci) 

Current 

Electric field 

Voltage 

Temperature 

Wiring Cable Failures 

Connector Failure 

Short Circuits 

Excessive Ohmic 
heating 

Overvoltage 

Electromigration (wi-
em) 

Corrosion (wi-co) 

Thermal Expansion 
(wi-te) 

 

Vibration 

Temperature 

Voltage 

Current 

Humidity 

 

8.7 Bayesian Network Modeling 

Using the component functionalities and their failure modes, we can construct the BN 

for this quadcopter, shown in Figure 8-3. The nodes can be identified using the 

following abbreviations. 

Functionalities: system (sys), flight related (flight), structure support (struct), flight 

control (contr), electronics (elec), power (pow), communication (com). 

Components: frame (fr), propeller (prop, pr), rotor (rot), electronic speed controller 
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(esc), inertia measurement unit (imu), flight control board (fcb), wire (wi), battery 

(bat), remote control transmitter/receiver (rc). 

Degradation mechanisms: fatigue (fat), creep (cr), corrosion (co), thermal expansion 

(te), electromigration (em), stress migration (sm), time-dependent dielectric 

breakdown (tddb), hot-carrier injection (hci). 

 

Figure 8-3: Quadcopter BN model. 

!sys!

flight! !com!

struct!

contr!

frame! !prop!
elec!

!pow!

!fr5
fat! !fr5cr! !pr5

fat!
!pr5
cr!

!pr5
co!

rotor! !esc! !imu! !fcb!

!bat!

!rc!

!wire!

!bat5
co!

!bat5
te!

!rot5
fat!

!!rot5
co!

!rot5
te!

!esc5
em!

!esc5
te!

!imu5
sm! !imu5

co!

!fcb5
tddb!

!fcb5
hci!

!fcb5
sm!

!fcb5
em!

!rc5
em!

!rc5
hci!

!wi5
em!

!wi5
co! !wi5

te!

!rc5
tddb!



 

 107 

 

Table 8-4 shows each failure mode BN with their degradation function and 

explanation of the related factors. 

Table 8-4: Failure mode BN and degradation function 

Failure Mechanism Degradation Function 

Electromigration 

 

Figure 8-4: Electromigration BN 
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Figure 8-5: Stress migration BN. 
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Failure Mechanism Degradation Function 

Time-Dependent Dielectric 

Breakdown (TDDB)  

 

Figure 8-6: TDDB BN. 
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Hot-Carrier Injection (HCI)  

 

Figure 8-7: HCI BN. 
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Failure Mechanism Degradation Function 

Corrosion 

 

Figure 8-8: Corrosion BN. 

𝐶 = 𝐶! 1− 𝐴!e
! !
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!!
!!! 𝑡!  

• 𝐴! is a process/material-dependent 

parameter 

• 𝑏 is the reciprocal humidity dependence 

parameter 

• 𝑅𝐻 is the relative humidity expressed 

as a %  

• 𝑄 is the activation energy 

Fatigue  

 

Figure 8-9: Fatigue BN. 
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Failure Mechanism Degradation Function 

Creep Induced Failure 

 

Figure 8-10: Creep induced failure BN. 
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• 𝐿!"#$% is the yielding stress 

• 𝑟 is an empirically determined exponent 

• 𝑄 is the activation energy 

Thermal Expansion 

 

Figure 8-11: Thermal Expansion BN. 
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• 𝑟 is an empirically determined exponent 

• 𝑄 is the activation energy 
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8.8 Sensor Data 

There are sensors in both the IMU and flight control board that measure temperature, 

vibration, current, voltage, and humidity. Strain gauge can be installed on the frame 

and propeller to measure stress. Table 8-5 and Table 8-6 shows the sensor data and 

there ranges for this applications. Flight control board collects data from the sensors 

at the sampling rate of 10 Hz. 

Table 8-5: Internal sensor data 

Sensor/Data Unit Range 

Voltage Volt 0-15 

Current A 0-25 

Propeller Rotation Speed RPM 0-1650 

Battery Storage mAh 0-2200 

 

Table 8-6: External sensor data 

Sensor/Data Unit Range 

Temperature Celsius -25 - 100 

Humidity % RH 0 - 100 

Mechanical Stress N/m2 1×108 - 8×108 
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With the above sensor information, we can identify observables and unobservables in 

the system. Assuming all components experience the same temperature and humidity 

in the air, and the same vibration throughout the structure, these factors are classified 

as common and observables. Voltage, current, and stress are different for each 

component. Some of them are observables sand some of them are unobservables. 

8.9 Pre-computation 

The next step is to do inference pre-computation for unobservable values from all the 

possible observable values. Figure 8-12 show examples of pre-computation inference 

results for the critical failure parameters of all the failure modes in the quadcopter 

model at the over the range of external factors. Model parameters used in the 

calculations are derived from various empirical sources (McPherson, 2010) (Ashby & 

Jones, 2005) (Anderson, 1995) (Silbey & Alberty, 2001) (Sze, 2002).  
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Figure 8-12: Example of quadcopter pre-computation results over the ranges of factors 
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8.10 System Monitoring 

With the inference pre-computation database, we have complete information about 

the state of the system over time given data of the observables. Figure 8-13, Figure 

8-14, and Figure 8-15 show the reliability of components, functionality probabilities, 

and system reliability, respectively. All of the plots show results from two different 

sets of data; one is under normal conditions, and the other is under 100 hours 

temperature and humidity cycle (T = 25-75°C, RH = 50-100%). 

 

Figure 8-13: Quadcopter component reliability with normal operation data (blue) and 

temperature/humidity cycle data (red). 
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Figure 8-14: Quadcopter functional probabilities with normal operation data (blue) and 

temperature/humidity cycle data (red). 
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Figure 8-15: Quadcopter system reliability with normal operation data (blue) and 

temperature/humidity cycle data (red). 

8.11 Remaining Useful Life 

With the inference pre-computation database, searching through the data, given the 

trajectory of parameter values provide RUL estimation of all components at any point 

in time. Using the previous temperature/humidity cycle data example, Figure 8-16 

shows RUL estimates of all 9 components in the system with uncertainties. 
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Figure 8-16: Quadcopter component RUL estimates with 5th and 95th percentile uncertainties. 

Notice that the RUL estimates becomes steadier over time as it gains more 

trajectories information, even though the data cycle remains the same. 
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operating range and provide an upper bound of the RUL of the component. For 

example, the expected possible temperature range of the quadcopter is -25 to 100°C. 

If a user operate the quadcopter at temperature higher than 100°C, the system will 

detect that the temperature is out of range and provide the updated maximum RUL 

estimate. This is crucial information to have when using the system in extreme 

conditions. 

Besides detecting and predicting failures, a periodic measurement of normally 

unobservable parameters in the system can be used to detect model errors. Figure 

8-17 shows a plot of fatigue degradation model of the quadcopter frame and a series 

of visual crack measurements translated to component critical parameter scale.  

 

Figure 8-17: Quadcopter frame fatigue model estimations (blue line) and periodic 

measurements (black dots) with uncertainties. 
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values are higher than the expected measurement uncertainties. The frame is 

subjected to 400 MN/m2, with C expected to be 0.996, 0.969, 894 at 2500, 5000, and 

7500 hours respectively. However, C is measured to be 0.92, 0.86, and 0.72 with 

possible 0.05 measurement uncertainty instead. When anomaly is detected, the 

component is then flagged for system learning. 

8.13 Learning 

There are three possible model errors to be considered for system learning in order to 

correct the model according to the evidences. First is error of the sensor or 

measurement device. In this case, the differences between measurement values and 

model values are consistent. Figure 8-18 shows fatigue degradation of the quadcopter 

frame with ∆𝐶 = 0.1  measurement error. 

 

Figure 8-18: Quadcopter frame fatigue model estimations (blue line), periodic measurements 

(black dots), updated model estimation with measurement error (red line). 
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Second is error in model parameters. In this case, actual degradation process appears 

to be faster or slower than the expected model degradation. The model parameters can 

be updated using the parameter learning algorithm with the measurement values 

evidence. Figure 8-19 shows fatigue degradation of the quadcopter frame where the 

updated model 𝐴!  is twice the value of expected model 𝐴!. 

 

Figure 8-19: Quadcopter frame fatigue model estimations (blue line), periodic measurements 

(black dots), updated model estimation with parameter learning (red line). 

Third is error in model structure. In this case, degradation process changes according 

to an outside factor that was not included in the model. The model structure can be 

updated using the structure learning algorithm to find hidden relationship between 

other observables in the system with this degradation process. Figure 8-20 shows 

fatigue degradation of the quadcopter frame where fatigue degradation is affected by 

relative humidity of 100% during the time between 2500 and 500 hours. 
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Figure 8-20: Quadcopter frame fatigue model estimations (blue line), periodic measurements 

(black dots), updated model estimation with structure learning (red line). 

8.14 Maintenance 

By comparing RUL estimates over the range of operating conditions, the operator is 

able plan maintenance for each individual component according to the expected use. 

Figure 8-21 shows each component RUL estimates at 𝑡 = 0 over a range of 

temperature from 0 to 100°C. This plot provides information for maintenance 

planning and comparison between component degradation processes.  
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Figure 8-21: Quadcopter components RUL estimates at t = 0 over a range of operating 

temperature. 

During an online operation, sensitivity analysis can be performed at any point in time 

to identify which component mostly affects reliability of the system. Figure 8-22 

shows sensitivity analysis of the system operating under a normal condition at 

different time. Each point represents system reliability probability given that the 

specific component has zero probability of failure. The operator can use this 

information to decide which component replacement is the most cost-effective to 

increase the system reliability.  
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Figure 8-22: Quadcopter sensitivity analysis at different time during a normal operating 

condition. 
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Chapter 9: Conclusion 

9.1 Summary 

This research presents new modeling approach, computational algorithms, and an 

example application for on-line System Health Management. Hybrid dynamic 

Bayesian Network modeling is introduced to represent complex engineering systems 

in a way that it allows accurate representation of underlying physics of failure by 

using empirical degradation model with continuous variables. The proposed 

computational algorithms enable on-line monitoring and diagnosing complex systems 

by utilizing pre-computation and dynamic programming methods with Markov Chain 

Monte Carlo inference. Pre-computation inference database can then be used for 

efficient continuous health monitoring, probabilistic prognosis of remaining useful 

life, and anomaly detection with pattern recognition. Algorithm for system parameter 

and structure learning is also included along with methods for maintenance decision-

making. 

Main advantages of the proposed methodology: 

• Systematic approach based on physics of failure makes it easy to be modeled 

and implemented in any engineering system. 

• The model allows different types of information to be combined together and 

includes complete information about the uncertainties. 
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• The method can be used in many applications from small to large scale and at 

any location, since it does not required powerful computation unit during an 

operation. 

• Possible applications include nuclear power plant, oil pipeline, automobile, 

aircraft, and any mission-critical system that requires on-line health 

monitoring. 

9.2 Contributions 

The main contributions of this work can be summarized as follows: 

• Introduced a new modeling approach using hybrid DBN. 

a. Proposed a systematic modeling of SHM with 5 different layers to 

include both higher-level discrete functional probability part and 

lower-level continuous component critical parameters related to 

degradation failure modes. 

b. Created a well-defined interface between discrete and continuous 

variables that allows tractable approximate MCMC inference of any 

variable in the network. 

• Developed computational algorithm for on-line monitoring and diagnosing of 

complex systems. 

a. Developed inference pre-computation algorithm to store pre-computed 

values of unobservables to allow instantaneous inquiry of system 
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health. 

b. Applied dynamic programming algorithm to significantly reduce the 

overall computation time and complexity of pre-computation process. 

c. Implemented an efficient algorithm for dependency between variables 

in the network. 

• Used the proposed modeling approach and computational algorithm for on-

line system monitoring and prognosis. 

a. Created efficient method for monitoring of system health and 

component status to detect any anomaly and predict remaining useful 

life. 

b. Implemented pattern matching algorithm for failure trajectories to 

identify possible failure earlier than the traditional method. 

c. Applied BN learning algorithm to give the system continuous update 

of network parameters and structure from data obtained during 

operation. 

d. Showed that the proposed method provides information to improve on-

line decision-making for system maintenance or in an event that a 

critical failure occurs. 

• Demonstrated the capabilities of this methodology by applying it to an 

unmanned aerial vehicle application. 
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9.3 Suggested Future Research 

• Recode the prototype R program in Java to improve efficiency and reduce 

computation time. Java is also cross-platform, so the program can be run in 

any operating system with Java runtime environment. 

• Implement Graphical User Interface (GUI) for the software. 

• Add built-in models for dominant failure modes/mechanisms of common 

materials/components.  
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Appendices 

Appendix A: Metropolis-Hasting Algorithm 

Metropolis-Hastings algorithm (Hastings, 1970) structure is extremely simple and can 

be described by the following steps: 

1. Initialize X0; set t = 0  
2. Repeat { 

a. Sample a point Y from q(.|Xt) 
b. Sample a Uniform (0,1) random variable U 
c. If (U <= α(Xt,Y)) set Xt+1 = Y 
d. Otherwise set Xt+1 = Xt 
e. Increment t }. 

Here, Y is defined as a candidate point from a proposal distribution q(.|Xt), where 

this distribution can have any form and the stationary distribution of the chain will be 

𝜋. 

Furthermore, the candidate Y can be chose by a probability α. 

𝛼 𝑋,𝑌 = 𝑚𝑖𝑛 1,
𝜋 𝑌 𝑞 𝑋|𝑌
𝜋 𝑋 𝑞 𝑌|𝑋  

Thus, it follows that: 

𝜋 𝑋! 𝑞 𝑋!!!|𝑋! 𝛼 𝑋! ,𝑋!!! = 𝜋 𝑋!!! 𝑞 𝑋!|𝑋!!! 𝛼 𝑋!!!,𝑋!  

And now we can obtain the detailed balance equation. 
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𝜋 𝑋! 𝑃 𝑋!!!|𝑋! = 𝜋 𝑋!!! 𝑃 𝑋!|𝑋!!!  

Finally, integrating both sides of above equation with respect to Xt we have: 

𝜋 𝑋! 𝑃 𝑋!!!|𝑋! 𝑑𝑋! = 𝜋 𝑋!!!  

The marginal distribution of Xt+1 is given by the equation above under the assumption 

that Xt is from  𝜋. Thus, we can conclude that if Xt is from  𝜋, then Xt+1 will be also. 

However, this only proves that the stationary distribution is 𝜋. It is necessary to prove 

that 𝑃(!) 𝑋!|𝑋!  will converge to the stationary distribution for a more complete 

justification. 

The first step in Metropolis-Hastings algorithms is to generate a candidate point, 

denoted here by θ*. Often, the candidate point differs from the current value of the 

parameter in only one or two components; for example, in the Weibull example, we 

may alternate between updating the value of α and the value of β.  

Some common method for generating the candidate value is via a uniform density or 

normal density. In the case Weibull example, we can choose a uniform density and a 

normal distribution with a modification to draw α and β. 

In the case of using normal density in generating candidate θ* we add mean-zero 

normal deviate to a single component of θ(j-1), say θi
(j-1). This means that we can 

express the candidate value θ* as the vector with components 
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θ* =  θi
(j-1) + sZ, 

θ* =  θk
(j-1),   for k  ≠ i, 

where Z is a standard normal deviate and s is an arbitrary constant. For continuous-

valued components of the parameter vector, let f(θ*|θi
(j-1)) denote the proposal density 

used to generate θ* from θ(j-1). For example, the proposal density f(·) represents a 

normal distribution with mean θi
(j-1) and standard deviation s. For discrete-valued 

components of the parameter vector, f (…) represents the probability mass function 

used to generate candidate points. The probability of moving from the candidate point 

back to the original value is denoted, in a similar way, by f(θ(j-1)|θ*).  

If we use normal density for generating a candidate in the Weibull example, we have 

to modify the generating density because we want the proposed values of α and β to 

have positive values. One way of simulating positive candidate values is to generate 

candidates on the logarithmic scale and then transform them to the original scale.  

That is, we might define candidate draws for α and β according to 

log (α*) = log(α)(j-1) + vα  where vα is sampled from Normal(0,σα) 

log (β*) = log(β)(j-1) + vβ where vβ is sampled from Normal(0,σβ) 

In theory, any density of mass function can serve as the proposal density as long as it 

satisfies three conditions. First, the proposal density must allow us to move from any 

subset of the parameter space to any other subset of the parameter space in a finite 
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number of moves. Second, the proposal density cannot be periodic. Informally this 

means that, in the long run, moves to any subset of the parameter space can occur at 

any time. Finally, we require that the rule used to specify the proposal density 

satisfies: 

0 <
𝑓 𝜃∗|𝜃(!!!)

𝑓 𝜃(!!!)|𝜃∗
< ∞ 

for all values 𝜃(!!!) and 𝜃∗.  

Having generated a candidate point 𝜃∗, we perform the second step in a Metropolis-

Hastings algorithm; we compute the probability that the candidate value will be 

accepted as the next simulated value in the sequence. We call this quantity the 

acceptance probability and denote its value by r. With this notation, the acceptance 

probability r is defined as 

𝑟 = 𝑚𝑖𝑛 1,
𝑝 𝜃∗|𝑑𝑎𝑡𝑎

𝑝 𝜃(!!!)|𝑑𝑎𝑡𝑎
𝑓 𝜃(!!!)|𝜃∗

𝑓 𝜃∗|𝜃(!!!)
 

In this formula, the acceptance probability represents the product of the ratio of the 

posterior density evaluated at the candidate and current parameter values, 

𝑝 𝜃∗|𝑑𝑎𝑡𝑎 /  𝑝 𝜃(!!!)|𝑑𝑎𝑡𝑎 , and the ratio of the proposal densities of the current 

and candidate point, 𝑓 𝜃(!!!)|𝜃∗ /  𝑓 𝜃∗|𝜃(!!!) . The first ratio encourages the 

algorithm to move to parameter values that have high posterior probability, and the 

second ratio accounts for the fact that the proposal density might favor some values of 
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the parameter over others. Note that if the proposal density is symmetric – that is, if 

𝑓 𝜃(!!!)|𝜃∗ =  𝑓 𝜃∗|𝜃(!!!)  – this second ratio is 1 and can be omitted from the 

formula for the acceptance probability.  

Having computed an acceptance probability, we perform the third step in a 

Metropolis-Hastings algorithm. We accept or reject the candidate point with 

probability equal to r. To do so, we draw a Uniform (0,1) random variable, say u, and 

compare u to r. If u ≤ r, then we accept the candidate value and set 𝜃(!) = 𝜃∗. On the 

other hand, if u > r, then we reject the candidate value and set 𝜃(!) = 𝜃(!!!) (that is, 

we keep the same value). This process is repeated for each component of 𝜃. 

The Metropolis algorithm is very general and broadly applicable. One problem with 

it, however, is that the proposal distribution must be properly tuned to the posterior 

distribution if the algorithm is to work well. If the proposal distribution is too narrow 

or too broad, a large proportion of proposed jumps will be rejected and/or the 

trajectory will get bogged down in a localized region of the parameter space. 

Appendix B: Gibbs sampling 

Gibbs sampling is a type of Markov chain Monte Carlo process where a random walk 

starts at some arbitrary point, and at each point in the walk, the next step depends 

only on the current position, and on no previous positions. The difference to other 

random walk algorithms, such as Metropolis, is that at each point in the walk, one of 

the component parameters is selected. The component parameter can be selected at 
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random, but typically the parameters are cycled through in order. Gibbs sampling 

then choose a new value for that parameter, by generating a random value directly 

from the conditional probability against the other parameters. 

𝑝 𝜃!| 𝜃!!! ,𝐷  

Where 𝜃! is the selected parameter. 

Gibbs sampling is especially useful when the complete joint posterior 𝑝 𝜃! ,𝐷  cannot 

be analytically determined and cannot be directed sampled, but all the conditional 

distributions, 𝑝 𝜃!| 𝜃!!! ,𝐷 , can be determined and directly sampled. 

Let 𝜃(!) be a set of parameter values at each step of the walk, the Gibbs sampler 

algorithm is as follow: 

1. Specify initial values 𝜃(!) = 𝜃!
(!),… ,𝜃!

(!)  

2. Repeat for 𝑗 = 1, 2,… ,𝑀 

Generate 𝜃!
(!!!) from 𝑝 𝜃!|𝜃!

! ,𝜃!
! ,… ,𝜃!

!  

Generate 𝜃!
(!!!) from 𝑝 𝜃!|𝜃!

!!! ,𝜃!
! ,… ,𝜃!

!  

⋮ 

Generate 𝜃!
(!!!) from 𝑝 𝜃!|𝜃!

!!! ,𝜃!
!!! ,… ,𝜃!!!

!!!  

3. Return the value 𝜃(!),𝜃(!),… ,𝜃(!)  



 

 134 

 

Appendix C: Adaptive Rejection Sampling 

In the cases where evaluation of full conditional density is computationally 

expensive, Adaptive Rejection Sampling (ARS) can be used to draw samples with 

fewer evaluations. The algorithm only works with probability density functions that 

are log-concave, which is usually the case for Bayesian applications. 

The basic idea of this algorithm is to adaptively form an upper envelope and lower 

squeezing functions, which creates upper and lower bounds of 𝑝 𝜃 . The envelope 

and squeezing functions are formed using sets of piecewise exponential distributions. 

These sets contain segments of one or more exponential distributions attaching from 

end to end. It can be easier to visualized in log space where logarithm of the 

probability density is covered be a series of straight-line segments. 

 

 Log-concavity density function with upper rejection envelope and lower squeezing function 
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By assuming log-concavity of 𝑝 𝜃 , we avoid the need to locate the supremum of 

𝑝 𝜃 . Adaptive rejection sampling reduces the probability of needing to evaluate 

𝑝 𝜃  further by updating the envelope and squeezing functions to incorporate the 

most recently acquired information about 𝑝 𝜃  after each rejection. 

The ARS algorithm is as follow (Gilks & Wild, 1992): 

Preliminaries: 

• Assume that 𝑔 𝜃 = 𝑐 ∙ 𝑝 𝜃  and 𝑔 𝜃  is continuous and differentiable 

everywhere in the domain of 𝑝 𝜃  

• Let ℎ 𝜃 = ln𝑔 𝜃  such that ℎ 𝜃  is concave everywhere in the domain 

Initialization Step: 

• Let 𝑇! = 𝜃!; 𝑖 = 1,… , 𝑘  be the k starting points. 

• If the domain is unbound to the left, choose 𝜃! such that ℎ′ 𝜃! > 0. If the 

domain is unbound to the right choose 𝜃! such that ℎ′ 𝜃! < 0. 

• Calculate the following functions with the k starting points: 

1. 𝑢! 𝜃 , which is the piece-wise linear upper envelope formed from the 

tangents to ℎ 𝜃  at each point in 𝑇!. 

2. 𝑠! 𝜃 = !"#!! !
!"#!! !! !!!

 

3. 𝑙! 𝜃 , which is the piece-wise linear lower squeezing function formed 
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from the chords between adjacent points in in 𝑇!. 

The tangent lines at 𝜃! and 𝜃!!! intersect at the point 

𝑧! =
ℎ 𝜃!!! − ℎ 𝜃! − 𝜃!!!ℎ! 𝜃!!! + 𝜃!ℎ! 𝜃!

ℎ! 𝜃! − ℎ! 𝜃!!!
 

For 𝑗 = 1,… , 𝑘 − 1 and 𝑧! is the lower bound of the domain and 𝑧! is the 

upper bound of the domain. 

The piecewise upper envelope is defined as 

𝑢! 𝜃 = ℎ 𝜃! + 𝜃 − 𝜃! ℎ! 𝜃!  

for 𝜃 ∈ 𝑧!!!, 𝑧! , similarly, the piece-wise lower squeezing function is 

defined as 

𝑙! 𝜃 =
𝜃!!! − 𝜃 ℎ 𝜃! + 𝜃 − 𝜃! ℎ 𝜃!!!

𝜃!!! − 𝜃!
 

for  𝜃 ∈ 𝜃! ,𝜃!!! , if 𝜃 < 𝜃! or 𝜃 < 𝜃!, 𝑙! 𝜃  is set equal to −∞. 

Sampling Step: 

• Sample a value 𝜃∗ from 𝑠! 𝜃  and sample a value 𝑤 independently from a 

uniform distribution 𝑈 0,1 . 

• Squeezing Test: if 𝑤 ≤ exp 𝑙! 𝜃∗ − 𝑢! 𝜃∗  then accept 𝜃∗, otherwise 
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evaluate ℎ 𝜃∗  and ℎ! 𝜃∗ , and perform the following rejection test. 

• Rejection Test: if 𝑤 ≤ exp ℎ! 𝜃∗ − 𝑢! 𝜃∗  then accept 𝜃∗ otherwise reject 

𝜃∗. 

Updating Step: 

• If ℎ 𝜃∗  and ℎ! 𝜃∗  were evaluated in the sampling step, include 𝜃∗ in 𝑇! to 

form 𝑇!!!. 

• Re-label the elements of 𝑇!!! in ascending order and construct functions 

𝑢!!! 𝜃 , 𝑠!!! 𝜃 , and 𝑙!!! 𝜃  on the basis of 𝑇!!!. 

• Increment 𝑘. Return to the sampling step if n points have not yet been 

accepted. 

With ARS, sampling of continuous, differentiable, and log-concave distribution using 

Gibbs sampling becomes more efficient. The number of evaluations decreases and 

has been shown empirically to be approximately in proportion of 𝑛! . 

Appendix D: Kalman Filter and Sequential Importance Sampling 

The process used by Kalman filter equations can be separated into a two- step 

updating process: 

• Step 1 is the time update in which the process model is used to project 

forward (in time) the state estimate and the error covariance estimate at the 

previous time step t-1 to obtain the a priori estimates at the current time step 
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t.  

• Step 2 is the measurement update in which the most recent observation Dt is 

used to update the a priori estimates to obtain the posterior estimates. The 

goal in this step is to use the additional information in the observation to 

improve the a priori estimates that were solely based on the process model. 

Only specific implementations of the Bayesian recursive filter such as the Kalman 

filter or grid-based methods for domains consisting of discrete variables provide 

analytical methods. Thus it is necessary to pursue approximate inference algorithms. 

Particle filtering is one technique that makes the filtering problem tractable. Particle 

filtering, i.e. sequential Monte Carlo (MC), is a method for approximating the 

distribution of the belief state. Common particle filtering method are based on 

sequential importance sampling (SIS), which improves upon the basic sequential MC 

by weighting point masses (particles) according to their importance sampling density, 

thus focusing on the samples that affect the posterior belief state the most. A SIS filter 

builds upon the basic ideas of MC integration and importance sampling. 

SIR is a sequential (i.e., recursive) version of importance sampling. As in importance 

sampling, the expectation of a function can be approximated as a weighted average: 

 𝑔 𝑥! 𝑑𝑥! = 𝑓 𝑥! 𝜋 𝑥! 𝑑𝑥! ≈ 𝑤!!𝑓(𝑥!!)
!

!!!

 (9-1) 

The transition prior probability distribution is often used as importance function, 
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since it is easier to draw particles (or samples) and perform subsequent importance 

weight calculations 

𝜋 𝑥!|𝑥!:!!!,𝐷!:! = 𝑝(𝑥!|𝑥!!!) 

A single step of sequential importance sampling is as follows: 

1. For i=1,…,N draw samples from the proposal distribution 

𝑥!!~𝜋 𝑥!|𝑥!:!!!! ,𝐷!:!  

2. For i=1,…,N update the importance weights up to a normalizing constant 

𝑤!! = 𝑤!!!! 𝑝 𝐷! 𝑥!! 𝑝(𝑥!!|𝑥!!!! )
𝜋 𝑥!|𝑥!:!!!! ,𝐷!:!

 

3. For i=1,…,N compute the normalized importance weights 

𝑤!! =
𝑤!!

𝑤!!!
!!!

 

Many variations of the SIS particle filter exist using different importance sampling 

densities, resampling techniques, and combinations of discrete and continuous 

variables. Resampling is a technique used to prevent a phenomenon called 

degeneracy, where a single particle accounts for a large proportion of the total weight 

of all particles. 
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