

ABSTRACT

Title of Document: COMPUTATIONAL ALGORITHM FOR
DYNAMIC HYBRID BAYESIAN NETWORK
IN ON-LINE SYSTEM HEALTH
MANAGEMENT APPLICATIONS

 Chonlagarn Iamsumang, Ph.D., 2014

Directed By: Professor Ali Mosleh, and Professor Mohammad
Modarres, Reliability Engineering Program,
Department of Mechanical Engineering

With the increasing complexity of today’s engineering systems that contain various

component dependencies and degradation behaviors, there has been increasing

interest in on-line System Health Management (SHM) capability to continuously

monitor (via sensors and other methods of observation) system software, and

hardware components for detection and diagnostic of safety-critical systems.

Bayesian Network (BN) and their extension for time-series modeling known as

Dynamic Bayesian Network (DBN) have been shown by recent studies to be capable

of providing a unified framework for system health diagnosis and prognosis. BN has

many modeling features, such as multi-state variables, noisy gates, dependent

failures, and general posterior analysis. BN also allows a compact representation of

the temporal and functional dependencies among system components. However, one

of the barriers to applying BN in real-world problems is limitation in adequately

handle “hybrid models”, which contain both discrete and continuous variables, with

both static and time-dependent failure distributions.

This research presents a new modeling approach, computational algorithm, and an

example application for health monitoring and learning in on-line SHM. A hybrid

DBN is introduced to represent complex engineering systems with underlying physics

of failure by modeling a theoretical or empirical degradation model with continuous

variables. The methodology is designed to be flexible and intuitive, and scalable from

small, localized functionality to large complex dynamic systems. Markov Chain

Monte Carlo (MCMC) inference is optimized using a pre-computation strategy and

dynamic programming for on-line monitoring of system health. Proposed Monitoring

and Anomaly Detection algorithm uses pattern recognition to improve failure

detection and estimation of Remaining Useful Life (RUL). Pre-computation inference

database enables efficient on-line learning and maintenance decision-making. The

scope of this research includes a new modeling approach, computation algorithm, and

an example application for on-line SHM.

COMPUTATIONAL ALGORITHM FOR DYNAMIC HYBRID BAYESIAN
NETWORK IN ON-LINE SYSTEM HEALTH MANAGEMENT APPLICATIONS

By

Chonlagarn Iamsumang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2014

Advisory Committee:
Professor Ali Mosleh, Co-Chair
Professor Mohammad Modarres, Co-Chair
Professor Michel Cukier
Professor Monifa Vaughn-Cooke
Professor Gregory Baecher (Dean's Representative)

© Copyright by

Chonlagarn Iamsumang

2014

 ii

Dedication

To my parents and my brother,

who always believe in me.

You sacrificed so much,

and made it all possible.

 iii

Acknowledgements

This dissertation would not have been possible without the support of my professors,

colleagues, friends, and family. There are not enough words to describe how grateful

and thankful I am for everything they have done for me during these years.

I would like to express my utmost gratitude to my advisors, Dr. Ali Mosleh and Dr.

Mohammad Modarres, for their kind guidance, invaluable support, and trust above

and beyond what I could have asked for. They have taught me everything about

research and I am forever indebted for all the opportunity they have given me.

I would also like to thank my advisory committee, Dr. Gregory Baecher, Dr. Michel

Cukier, and Dr. Monifa Vaughn-Cooke, for their helpful feedback and valuable

advice throughout the completion of my dissertation.

I am tremendously grateful for the opportunity to work at the Office of Research

Administration. I have met some of the most kind and thoughtful people here, and I

enjoyed every minute working with them. More importantly, Sally Egloff and Paul

Kurt Flicks are the best bosses I have worked with in my life.

I would like to thank my colleagues and classmates, Abdallah Al Tamimi, Elaheh

Rabiei, Anahita Imanian, Yuandan Li, Gary Paradee, Victor Ontiveros, Azadeh

Keshtgar, Suzi Schroer, Matthew Dennis, Nsimah Ekanem, Mehdi Amiri, Reuel

Smith, and Nuhi Faradani. I feel privileged to have studied and worked with such an

 iv

amazing group of people. Discussing and working together to solve various problems

with them in the office was one of the most rewarding and satisfying time of my life.

I am grateful to all my friends who make the journey enjoyable and meaningful. I feel

extremely fortunate to have met Claire Kao, Kyle Springer, Pedro Pires, Joo Park, JD

Jones, Brooke Okada, Amy Ding, ThSA friends, and Frisbee friends. My thanks to all

the great time we had together.

Finally and above all, I would like to thank my family for their love, understanding,

and encouragement. Thanks to my parents who taught me the importance of

education and sacrificed above and beyond for me to be able to achieve this

accomplishment. Thanks to my brother who always be there and be such an example

for me to lookup to. Thanks to Pa’Lek for her unconditional love and support since I

was a born. This dissertation is dedicated to them.

 v

Table of Contents

Dedication ... ii	

Acknowledgements .. iii	

Table of Contents .. v	

List of Tables .. vii	

List of Figures .. viii	

Chapter 1: Introduction ... 1	

1.1 Bayesian Network in System Health Management .. 1	

1.2 Research Objectives .. 3	

1.3 Scope of this Research .. 4	

1.4 Organization of this Dissertation .. 6	

Chapter 2: Review of the State of the Art ... 7	

2.1 Bayesian Network ... 7	

2.1.1 Definition ... 8	

2.1.2 Inference in a Bayesian Network ... 10	

2.1.3 Hybrid Bayesian Network .. 12	

2.1.4 Dynamic Bayesian Network .. 13	

2.2 Bayesian Network in Reliability Applications ... 14	

2.2.1 General reliability .. 14	

2.2.2 Reliability applications .. 16	

2.2.3 Bayesian Network in System Health Management 17	

2.2.4 Software ... 19	

Chapter 3: Proposed Modeling Methodology ... 20	

3.1 Degradation Model for System Health Management 20	

3.1.1 Proposed Hybrid Bayesian Network .. 20	

3.1.2 Component Critical Parameters ... 22	

3.1.3 Functional Probability Node Interface ... 25	

3.2 Dynamic Bayesian Network ... 29	

3.3 Inference with Markov Chain Monte Carlo .. 32	

3.3.1 Bayesian inference ... 32	

3.3.2 Markov Chain Monte Carlo ... 33	

3.4 Example .. 38	

Chapter 4: Computational Approach .. 44	

4.1 Inference pre-computation .. 44	

4.2 Dynamic Programming ... 49	

4.3 Computation Time Optimization .. 54	

4.4 Efficient Dependency Algorithm .. 57	

4.5 Example .. 62	

Chapter 5: System Health Monitoring and Prognosis ... 72	

5.1 Sensors .. 72	

5.2 System Monitoring ... 75	

5.3 Probabilistic Prognosis of Remaining Useful Life ... 76	

 vi

5.4 Anomaly Detection ... 78	

5.5 Example .. 81	

Chapter 6: Parameter and Structure Learning ... 83	

6.1 Parameter learning .. 83	

6.2 Structure learning and discovery .. 86	

Chapter 7: Maintenance and Decision Making ... 88	

7.1 Condition-based Maintenance .. 89	

7.2 Risk Informed Decision Making ... 90	

Chapter 8: Example Application ... 93	

8.1 Unmanned Aerial Vehicle (UAV) .. 93	

8.2 System Health Management for UAV .. 94	

8.3 Quadcopter .. 95	

8.4 Technical Specifications ... 96	

8.5 Components and Functionalities ... 99	

8.6 Component Failure Modes and Failure Mechanisms 103	

8.7 Bayesian Network Modeling .. 105	

8.8 Sensor Data ... 111	

8.9 Pre-computation .. 112	

8.10 System Monitoring ... 114	

8.11 Remaining Useful Life .. 116	

8.12 Anomaly Detection ... 117	

8.13 Learning .. 119	

8.14 Maintenance .. 121	

Chapter 9: Conclusion ... 124	

9.1 Summary ... 124	

9.2 Contributions .. 125	

9.3 Suggested Future Research ... 127	

Appendices .. 128	

Appendix A: Metropolis-Hasting Algorithm .. 128	

Appendix B: Gibbs sampling .. 132	

Appendix C: Adaptive Rejection Sampling .. 134	

Appendix D: Kalman Filter and Sequential Importance Sampling 137	

 vii

List of Tables

Table 4-1: Dynamic programming algorithm for pre-computation 52	

Table 4-2: Common component factor algorithm .. 61	

Table 4-3: Ranges and distribution parameters of J and T ... 62	

Table 4-4: Ranges and distribution parameters of L and T .. 69	

Table 5-1: RUL estimation algorithm ... 78	

Table 8-1: Quadcopter prototype technical specifications .. 98	

Table 8-2: Quadcopter components and functionalities ... 99	

Table 8-3: Quadcopter component failure modes ... 103	

Table 8-4: Failure mode BN and degradation function .. 107	

Table 8-5: Internal sensor data .. 111	

Table 8-6: External sensor data ... 111	

 viii

List of Figures

Figure 3-1: Overview of different levels in SHM BN .. 20	

Figure 3-2: SHM Bayesian network at specific time t. ... 22	

Figure 3-3: Typical exponential degradation function. ... 26	

Figure 3-4: Overlap of probability distribution of component status and its threshold.

 ... 27	

Figure 3-5: Relationship between functionality probability node and its components.

 ... 28	

Figure 3-6: Two-time-slice representation of a SHM DBN 30	

Figure 3-7: Example of different degradation trajectories of 𝐶. 31	

Figure 3-8: Example BN for an advanced integrated circuit 38	

Figure 3-9: BN of EM in the IC example. .. 40	

Figure 3-10: Plot of critical parameter C of the EM example over time. 41	

Figure 3-11: Plot of example data of J and T over 100 hours. 42	

Figure 3-12: Inference result for component status C with 10,000 iteration samples. 42	

Figure 3-13: Reliability probability of Al-strip on EM failure mode over time. 43	

Figure 4-1: Pre-computation process .. 45	

Figure 4-2: Example component degradation with 5th percentile, and 95th percentile

values. ... 47	

Figure 4-3: Component Gaussian distribution. ... 48	

Figure 4-4: Example cases where dynamic programming reduces number of

computations ... 51	

Figure 4-5: Inference pre-computation time with and without dynamic programming.

 ... 53	

Figure 4-6: Illustrated plots for addition of inference results. 56	

Figure 4-7: Proposed BN for SHM. .. 57	

Figure 4-8: BN of components with common factor. ... 58	

Figure 4-9: Proposed BN with an observable common factor. 59	

Figure 4-10: Proposed BN with an unobservable common factor 59	

Figure 4-11: Probability distribution of the common factor. 60	

Figure 4-12: Plots of J and T parameters over all selected percentile values. 63	

Figure 4-13: Current density and temperature parameters data set 64	

Figure 4-14: Plot of component degradation under electromigration vs. time. 65	

Figure 4-15: The difference between results with and without pre-computation

method. .. 65	

Figure 4-16: Error of inference result vs. number of parameter selections. 66	

Figure 4-17: BN of a component with EM and SM degradations 67	

Figure 4-18: Plot of number of computation vs. number of components with the same

dependent factor .. 71	

Figure 5-1: Example BN with observable and unobservable nodes. 73	

Figure 5-2: Dynamic representation of a variable. ... 75	

Figure 5-3: Timeline comparison for pattern recognition against traditional failure

 ix

detection. ... 80	

Figure 5-4: Time difference for failure detection between pattern recognition and

traditional method. .. 82	

Figure 6-1: Example BN with a hidden structure. .. 86	

Figure 7-1: Diagram of the proposed SHM process. .. 88	

Figure 8-1: The Aeryon Scout. ... 97	

Figure 8-2: Diagram of components in a quadcopter. .. 102	

Figure 8-3: Quadcopter BN model. .. 106	

Figure 8-4: Electromigration BN .. 107	

Figure 8-5: Stress migration BN. .. 107	

Figure 8-6: TDDB BN. ... 108	

Figure 8-7: HCI BN. ... 108	

Figure 8-8: Corrosion BN. .. 109	

Figure 8-9: Fatigue BN. .. 109	

Figure 8-10: Creep induced failure BN. ... 110	

Figure 8-11: Thermal Expansion BN. ... 110	

Figure 8-12: Example of quadcopter pre-computation results over the ranges of

factors .. 113	

Figure 8-13: Quadcopter component reliability with normal operation data (blue) and

temperature/humidity cycle data (red). ... 114	

Figure 8-14: Quadcopter functional probabilities with normal operation data (blue)

and temperature/humidity cycle data (red). .. 115	

Figure 8-15: Quadcopter system reliability with normal operation data (blue) and

temperature/humidity cycle data (red). ... 116	

Figure 8-16: Quadcopter component RUL estimates with 5th and 95th percentile

uncertainties. ... 117	

Figure 8-17: Quadcopter frame fatigue model estimations (blue line) and periodic

measurements (black dots) with uncertainties. ... 118	

Figure 8-18: Quadcopter frame fatigue model estimations (blue line), periodic

measurements (black dots), updated model estimation with measurement error
(red line). ... 119	

Figure 8-19: Quadcopter frame fatigue model estimations (blue line), periodic
measurements (black dots), updated model estimation with parameter learning
(red line). ... 120	

Figure 8-20: Quadcopter frame fatigue model estimations (blue line), periodic
measurements (black dots), updated model estimation with structure learning
(red line). ... 121	

Figure 8-21: Quadcopter components RUL estimates at t = 0 over a range of
operating temperature. .. 122	

Figure 8-22: Quadcopter sensitivity analysis at different time during a normal
operating condition. .. 123	

 1

Chapter 1: Introduction

1.1 Bayesian Network in System Health Management

With the increasing complexity of today’s engineering systems that contain various

component dependencies and degradation behaviors, there has been increasing

interest in on-line System Health Management (SHM) capability to continuously

monitor (via sensors and other methods of observation) system software, and

hardware components for detection and diagnostic of safety-critical systems. The

ability to have accurate on-line system monitoring improves maintenance decision-

making to reduce cost and avoid possible critical failure. A key requirement for

realization of such capability in practice is ability of the modeling and computational

framework handle the complexity of component dependencies and failure behaviors,

such as sequence-dependent failures and functional dependencies.

Bayesian Network (Pearl, 1986) (Jensen, 2001) and their extension for time-series

modeling known as Dynamic Bayesian Network (Murphy K. , 2002) have been

shown by recent studies to be capable of providing a unified framework for system

health diagnosis and prognosis (Ferreiro, Arnaiz, Sierra, & Irigoien, 2011)

(Schumann, Rozier, Reinbacher, Mengshoel, Mbaya, & Ippolito, 2013) (Pourali &

Mosleh, 2013). BN has many modeling features, such as multi-state variables, noisy

gates, dependent failures, and general posterior analysis (Wilson & Huzurbazar,

2007) (Langseth & Portinale, 2007). BN also allows a compact representation of the

 2

temporal and functional dependencies among system components (Boudali & Dugan,

2006).

The main advantages of using BN in system reliability are its simplicity in

representing systems and efficiency in obtaining component associations. Another

important benefit of BNs is that they enable us to integrate information from different

sources, including experimental data, historical data, and prior expert opinion. This

feature is particularly useful for the reliability assessment of fault tolerant systems,

where failure data from tests and field operations are sparse and obtained from

diverse sources of information. BN is particularly well suited for modeling systems

that we need to monitor, diagnose, and make predictions about, all in the presence of

uncertainty.

However, one of the barriers to applying BN in real-world problems is limitation in

adequately handle “hybrid models”, which contain both discrete and continuous

variables, with both static and time-dependent failure distributions. Despite the

advances in needed methodologies,, applications of BNs as mainstream technology

for SHM problems remain limited. To date, the BN framework has only partially

addressed these limitations (Lauritzen & Jensen, 2001) (Lerner U. N., 2002) (Shenoy,

2006). For instance the vast majority of BNs used in real world applications are either

purely discrete or purely continuous.

For hybrid BNs containing mixtures of discrete and continuous nodes with non-

Gaussian distributions, exact inference becomes computationally intractable (Boyen

 3

& Koller, 1998). The common approach to handling (non-Gaussian) continuous

nodes is to discretize them using some pre-defined range and intervals (Neil, Tailor,

Marquez, Fenton, & Hear, 2007). This is cumbersome, error prone and usually

inaccurate.

Even though a universal framework for hybrid BN is currently impracticable, special

case algorithms can be effective in SHM where a relatively small subset of possible

values covers a large portion of all possible values typically encountered. This paper

presents a hybrid BN-based methodology for component degradation modeling and a

health monitoring of complex systems.

The approach enables on-line probabilistic diagnosis and prognosis of a system by

optimizing Markov Chain Monte Carlo (MCMC) inference with pre-computation and

dynamic programming to reduce the computation time and number of inferences

required. The pre-computation inference database is then used for efficient health

monitoring and system learning.

1.2 Research Objectives

Followings are the objectives of this research:

• Create modeling framework and algorithms for on-line health monitoring of

complex systems. The structure must be flexible and intuitive, and can be

scaled from localized functionality to a large complex dynamic system. The

 4

model is based on physics of failure and empirical results, minimizing

probabilistic expert opinion.

• Address and overcome limitations of tracking and diagnosing complex

systems with mixtures of discrete and continuous variables where the system

dynamics are nondeterministic, not all aspects of the system are directly

observed, and the sensors are subject to noise.

• Implement computational algorithm that allows on-line system health

monitoring and remaining useful life prediction for efficient maintenance to

avoid critical failure. The algorithm should include anomaly detection,

parameter learning, and discovery of hidden network structure through

continuous monitoring.

1.3 Scope of this Research

This research presents new modeling approach, computational algorithm, and

example application for on-line SHM. Its contributions can be summarized into the

following main categories:

• Introduce a new modeling approach using hybrid DBN. The model includes:

a. Identifying and categorizing different layers within SHM BN.

b. Using hybrid DBN with component-based model to represent complex

engineering systems in a way that it allows accurate representation of

underlying physics of failure by using empirical degradation model

 5

with continuous variables.

c. Creating a well-defined interface between continuous system

component status and discrete system functionality part of the

network.

• Develop computational algorithm for on-line monitoring and diagnosing

complex systems. The algorithm includes:

a. MCMC inference for hybrid DBN.

b. Inference pre-computation algorithm to allow instantaneous inquiry of

system health.

c. Dynamic programming for MCMC inference to reduce the overall

computation time and complexity.

• Implement on-line system monitoring and prognosis from the proposed

modeling approach and computational algorithm. This includes:

a. Monitoring system health and component status to detect any anomaly

and predict remaining useful life.

b. Continuous learning of network parameters and structure from data

obtained during operation.

c. Providing information to improve on-line decision making for system

maintenance or in an event that a critical failure occurs

• Demonstrate the capabilities of this methodology by applying it to a real

world application.

 6

1.4 Organization of this Dissertation

This dissertation is arranged into the following chapters.

• Chapter 2 presents literature review and past works that are related to the use

of BN in reliability and prognosis health management.

• Chapter 3 presents the proposed modeling approach for BN in SHM.

• Chapter 4 presents the computational algorithm, including precomputation

and dynamic programming for the proposed model.

• Chapter 5 presents the use of proposed model and computational algorithm for

health monitoring, anomaly detection, and prognosis in on-line SHM

• Chapter 6 presents the method for parameter and structure learning of the

network during an on-line operation.

• Chapter 7 presents the methodology for decision-making regarding to

maintenance and operation management.

• Chapter 8 presents an example in unmanned aerial vehicle application.

• Chapter 9 presents the summary of this research, contributions, and suggested

future work.

 7

Chapter 2: Review of the State of the Art

2.1 Bayesian Network

A Bayesian Belief Network, Bayesian Network, or hierarchical Bayesian model is a

probability graphical model that represents a set of random variables and their

conditional dependencies via a directed acyclic graph (DAG). It consists of a set of

interconnected nodes, where each node represents a variable in the dependency model

and the connecting arcs represent the causal relationships between these variables.

Each node or variable may take one of a number of possible states or values. The

belief in, or certainty of, each of these states is determined from the belief in each

possible state of every node directly connected to it and its relationship with each of

these nodes. The belief in each state of a node is updated whenever the belief in each

state of any directly connected node changes.

BN and influence diagrams (IDs) were invented in the mid 1980s (Howard &

Matheson, 1984) to represent and reason with large multivariate discrete probability

models and decision problems. First major publication on the subject appeared in

1988 (Pearl, 1986). Using exact Inference, Pearl’s message passing algorithm

messages (probabilities/likelihood) propagate between variables. After finite number

of iterations, each node has its correct beliefs. This only works for pure discrete or

pure Gaussian and singly connected network where inference is done in linear time.

 8

There are four advantages of using BN: (Heckerman D. , 2008)

One – BNs can readily handle incomplete data sets. When one of the inputs is not

observed however most models will produce an inaccurate prediction because they do

not encode the correlation between input variables. BNs offer a natural way to encode

such dependencies.

Two – BNs allow one to learn about causal relationships. Help gain understanding

about the problem domain and allow us to make predictions in the presence

interventions

Three – BNs in conjunction with Bayesian statistical techniques facilitate the

combination of domain knowledge and data

Four – Bayesian method in conjunction with BNs and other types of models offers an

efficient and principled approach for avoiding the over fitting data. All the data can

be use for training.

2.1.1 Definition

A Bayesian network for a set of variables 𝒙 = 𝑥!,… , 𝑥! consists of

1. a network structure S (direct acyclic graph) that encodes a set of conditional

independence assertions about variables in x

 9

2. a set P of local probability distributions associated with each variable

The joint probability distribution for x is given by

 𝑝 𝒙 = 𝑝(𝑥!|𝐩𝐚!)
!

!!!

 (2-1)

Where 𝐩𝐚! denotes the parents of node 𝑥!

From the chain rule of probability

 𝑝 𝒙 = 𝑝(𝑥!|π!)
!

!!!

 (2-2)

Where π! ⊆ 𝑥!,… , 𝑥!!! such that 𝑥! and 𝑥!,… , 𝑥!!! are conditionally

independent.

The initial tasks to build a BN are (Heckerman D. , 1995):

1. Correctly identify the goals of modeling

2. Identify many possible observations that may be relevant to the problems

3. Determine what subset of those observations is worthwhile to model

4. Organize the observations into variables having mutually exclusive and

collectively exhaustive states

 10

2.1.2 Inference in a Bayesian Network

Because a BN for a given system determines a joint probability distribution for the

whole system, in principle we can use the BN to compute any probability of interest.

Using the conditional independencies encoded in a Bayesian network, the

computation can be made more efficient.

Bayesian inference requires a prior probability distribution for the parameters

𝑃 𝜃!,… ,𝜃! . The prior could be subjective based on expert opinions or objective

based on observed frequencies.

When combine a prior distribution for the parameters with the conditional distribution

for the observed data, we get a joint distribution for all quantities related to the

problem:

 𝑃 𝜃!,… ,𝜃! , 𝑥!, 𝑥!,… , = 𝑃 𝜃!,… ,𝜃! 𝑃 𝑥!, 𝑥!,… 𝜃!,… ,𝜃! (2-3)

 𝑃 𝜃!,… ,𝜃! , 𝑥!, 𝑥!,… , = 𝑃 𝜽 𝑃(𝑥!|𝜽)
!

 (2-4)

From this, we can derive Bayes’ Rule for the posterior distribution of the parameters,

given observed values for 𝑋!,… ,𝑋!:

 𝑃 𝜽|𝑥!,… , 𝑥! =
𝑃 𝜽|𝑥!,… , 𝑥!
𝑃 𝑥!,… , 𝑥!

=
𝑃 𝜽 𝑃(𝑥!|𝜽)!

!!!

𝑃(𝜃) 𝑃(𝑥!|𝜃)!
!!! 𝑑𝜃

 (2-5)

 11

The posterior can also be expressed as proportionality in terms of the likelihood:

 𝑃 𝜽|𝑥!,… , 𝑥! ∝ 𝑃 𝜽 𝐿(𝜽|𝑥!,… , 𝑥!) (2-6)

This shows how introduction of a prior converts the expression of relative plausibility

contained in the likelihood into an actual probability distribution over parameter

space.

The Bayesian framework can provide a predictive distribution for an unobserved

case, 𝑋!!!, given the values observed for 𝑋!,… ,𝑋! (Neal, 1993):

 𝑃 𝑥!!!|𝑥!,… , 𝑥! = 𝑃 𝑥!!!|𝜃 𝑃(𝜃|𝑥!,… , 𝑥!)𝑑𝜃 (2-7)

Note that the Bayesian predictive distribution is not based on a single estimate for the

parameters, but is instead an average of the predictions using all possible values of

the parameters, with each prediction weighted by the probability of the parameters

having those values.

Once the BN structure and nodes probability distributions have been defined,

reliability analysis can be carried out using standard BN inference algorithms

(Lauritzen & Spiegelhalter, 1988) (Jensen, Lauritzen, & Olesen, 1990). Several

efficient algorithms exist to compute exact marginals of posterior distributions for

discrete BNs and to solve discrete influence diagrams exactly (Shachter, 1986)

(Shenoy, 1992). Neapolitan (Neapolitan, 2004) shows that by assuming that every

 12

variable follows a Gaussian distribution, the inference process for continuous

networks simplifies as it can be shown that a linear combination of Gaussian

distributions results in another Gaussian distribution.

As inference in BNs was found to be NP-hard in general (Cooper G. F., 1990),

attention was paid to heuristic and stochastic techniques to help solve the problem. It

was then found that approximate inference is also NP-hard (Dagum & Luby, 1993).

However approximate inference do have wider range of applicability. Some of the

most prevalent inexact techniques are based on Monte Carlo methods; the paper of

Cousins et al. (Cousins, Chena, & Frisse, 1993) have a short tutorial on the subject in

relation to Bayesian network inference, whereas the paper of Dagum and Horvitz

(Dagum & Horvitz, 1993) analyses the performance of simulation algorithms using a

Bayesian perspective. However, exact inference is generally a computationally

intractable problem (Boyen & Koller, 1998).

2.1.3 Hybrid Bayesian Network

The state of the art exact algorithm for mixtures of Gaussians hybrid BNs is the

Lauritzen-Jensen (Lauritzen & Jensen, 2001) algorithm. This requires the conditional

distributions of continuous variables to be conditional linear Gaussians (CLG), and

that discrete variables do not have continuous parents.

If a BN has discrete variables with continuous parents, Murphy (Murphy K. , 1999)

uses a variational approach to approximate the product of the potentials associated

 13

with a discrete variable and its parents with a CLG. Lerner (Lerner U. N., 2002) uses

a numerical integration technique called Gaussian quadrature to approximate non-

CLG distributions with CLG, and this same technique can be used to approximate the

product of potentials associated with a discrete variable and its continuous parents.

Shenoy (Shenoy, 2006) proposes approximating non-CLG distributions by mixtures

of Gaussians using a nonlinear optimization technique, and using arc reversals to

ensure discrete variables do not have continuous parents. The resulting mixture of

Gaussians BN is then solved using Lauritzen-Jensen algorithm.

Moral et al. (Moral, Rumi, & Salmeron, 2001) proposes approximating probability

density functions (PDFs) by mixtures of truncated exponentials (MTE), which are

easy to integrate in closed form. Since the family of MTE is closed under

combination and marginalization, the Shenoy-Shafer architecture can be used to solve

the MTE BN. Another common method is dynamic discretization algorithm, which is

given by Neil (Neil, Tailor, Marquez, Fenton, & Hear, 2007).

2.1.4 Dynamic Bayesian Network

Dynamic Bayesian Network (DBN) framework (Dean & Kanazawa, 1989) allows a

compact representation of the temporal (and functional) dependencies among the

system components and event-dependent failure behaviors, characteristic of fault-

tolerant systems, avoiding the state space explosion problem of the Markov Chain

based approaches to Dynamic Fault Tree (DFT) analysis (Bechta Dugan, Bavuso, &

Boyd, 1992). The key to DBNs is that they are specified in two parts, a prior

 14

Bayesian network that specifies the initial conditions and a transition Bayesian

network that specifies how variables change from time to time.

The most original paper is presented by Dean and Kanazawa (Dean & Kanazawa,

1989) or Freidman et al. (Friedman N. , 1998). In addition Murphy and Mian

(Murphy & Mian, 1999) show modeling of data using DBN. Ghahramani

(Ghahramani, 1998) examines the topic from the perspective of learning and Flesch

and Lucas (Flesch & Lucas, 2007) consider DBNs where the transition network can

change over time.

2.2 Bayesian Network in Reliability Applications

Estimation of systems reliability using BN dates back as early as 1988 (Barlow,

1988). The first real attempt to merge the efforts of the two communities is probably

the work of Almond (Almond, 1992), where he proposes the use of the graphical

belief tool for calculating reliability measures concerning a low-pressure coolant

injection system for a nuclear reactor A number of early studies have attempted to use

BNs (Pearl, 1993) (Jensen, 2001) to provide a unified framework for reliability

modeling and analysis of complex systems. Works on system safety and Bayesian

Networks (BNs) were originally developed in (Kang & Golay, 1999).

2.2.1 General reliability

Bobbio et al. (Bobbio, Portinale, Minichino, & Ciancamerla, 2001) show how to

 15

improve the analysis of dependable systems by mapping fault trees into Bayesian

networks. Singh et al. (Singh, Cortellessa, Cukic, Gunel, & Bharadwaj, 2001)

presents their work on reliability estimation in component-based systems. They

classify the component-based system reliability estimation methods into three as

state-based models, path-based models and additive models.

Murphy (Murphy K. , 2002) introduces DBN to provide a unified framework for

reliability modeling and analysis of complex systems. Lerner et al. (Lerner, Parr,

Koller, & Biswas, 2000) propose a new approach to this task, based on the framework

of hybrid DBN. These models contain both continuous variables representing the

state of the system and discrete variables representing discrete changes such as

failures; they can model a variety of faults, including burst faults, measurement

errors, and gradual drifts.

Mahadevan and Rebba (Mahadevan & Rebba, 2005) propose a methodology based on

Bayesian statistics to assess the validity of reliability computational models when

full-scale testing is not possible. Sub-module validation results are used to derive a

validation measure for the overall reliability estimate. BNs are used for the

propagation and updating of validation information from the sub-modules to the

overall model prediction.

Boudali and Dugan present two great papers to cover both discrete-time BN

reliability modeling and analysis framework (Boudali & Dugan, 2005) and introduce

a method for reliability assessment in dynamic systems by using temporal BN

 16

(Boudali & Dugan, 2006). Langseth and Portinale (Langseth & Portinale, 2007)

discuss the properties of the modeling framework that make BNs particularly well

suited for reliability applications, and point to ongoing research that is relevant for

practitioners in reliability.

Wilson and Huzurbazar (Wilson & Huzurbazar, 2007) extend their use to multilevel

discrete data and discuss how to make joint inference about all of the nodes in the

network. This article extends complex systems modeling using BNs for multilevel

discrete data. Weber and Jouffe (Weber & Jouffe, 2006) present a methodology that

will help developing Dynamic Object Oriented Bayesian Networks (DOOBNs) to

formalize such complex dynamic models that are dynamically modeled and

controlled to optimize the diagnosis and the maintenance policies. Recently, Doguc et

al. (Doguc & Ramirez-Marquez, 2009) present a holistic method for constructing a

Bayesian network (BN) model for estimating system reliability. BN is a probabilistic

approach that is used to model and predict the behavior of a system based on

observed stochastic events.

2.2.2 Reliability applications

Bayesian network has been applied to many applications during the course of the

years as seen in the example papers below:

• Bouissou and Ourghanlian (Bouissou, Martin, & Ourghanlian, 1999)

developed assessment of a safety- critical system including software using a

 17

Bayesian belief network for evidence sources.

• Gran and Helminen (Gran & Helminen, 2001) provide a BN structure for

nuclear power plants and introduce a hybrid method for estimating the

reliability of the plant.

• Wooff et al. (Wooff, Goldstein, & Coolen, 2002) use Bayesian graphical

models for software testing.

• Neil et al. (Neil, Fenton, Forey, & Harris, 2003) suggest using Bayesian

Networks to access vehicle reliability.

• Helminen and Pulkkinen (Helminen & Pulkkinen, 2003) present a BN-based

method for reliability estimation of computer-based motor protection relay.

• Kipersztok and Provan (Kipersztok & Provan, 2003) show framework for

diagnostic inference of commercial aircraft systems.

• Fenton et al. (Fenton, Neil, & Marquez, 2008) use Bayesian Networks to

predict software defects and reliability.

2.2.3 Bayesian Network in System Health Management

BNs have established themselves as an indispensable tool in artificial intelligence and

in the domain of system health management, including diagnosis and prognosis. They

are being used effectively by researchers and practitioners more broadly in science

and engineering. BNs are particularly well suited to modeling systems that need to be

monitored, diagnose, and make predictions about, all under the presence of

 18

uncertainty.

BNs provide a simple and natural language for modeling problems in systems health

management. Moreover, they support a variety of probabilistic queries, which provide

a means to qualitatively and quantitatively reason about system health and reliability.

Further, there are a variety of effective and principled approaches to inducing

Bayesian networks from data, with or without prior expert knowledge.

DBNs in System Heath Management provide diagnostic and prognostic capabilities.

They have shown promise in several recent applications. Dong and Yang (Ming &

Yang, 2008) use DBNs combined with particle filtering to estimate the RUL

distribution of drill bits in a vertical drilling machine. Tobon-Mejia et al. (Tobon-

Mejia, Medjaher, Zerhouni, & Tripot, 2012) use mixtures of Gaussian HMMs (a form

of DBN) to estimate the RUL distributions for bearings. The junction tree algorithm

is used for exact inference.

The following are a few examples of research works that were done recently in the

area of System Health Management.

• Ferreiro et al. (Ferreiro, Arnaiz, Sierra, & Irigoien, 2011) use BN model in

prognostics and SHM for aircraft line maintenances. The article presents the

global framework of a health management system as a new concept in aircraft

line maintenance. This framework allows the transformation of the traditional

maintenance (preventive and corrective, time based) into a predictive

 19

maintenance based on prognostic techniques.

• Schumann’s (Schumann, Rozier, Reinbacher, Mengshoel, Mbaya, & Ippolito,

2013) implementation provides a novel approach of combining modular

building blocks, integrating responsive runtime monitoring of temporal logic

system safety requirements with model-based diagnosis and Bayesian

network-based probabilistic analysis.

• Choi et al. (Choi, Zheng, Darwiche, & Mengshoel, 2011) has recently written

a tutorial on BNs for SHM.

2.2.4 Software

Many BN tools are available to the practitioners. Examples of commercial tools

available online include Hugin (http://www.hugin.com/), BayesiaLab

(http://www.bayesia.com/) and Netica (http:// www.norsys.com/). BUGS

(http://www.mrc-bsu. cam.ac.uk/bugs/) is a general-purpose modeling framework

where inference is based on simulation.

Other popular alternatives include, UCLA’s SamIam (Sensitivity Analysis, Modeling,

Inference and More), Kevin Murphy’s Bayesian Network Toolbox for use in Matlab

computing environments, and the University of Pittsburgh’s GeNIe & SMILE system,

which includes specialized features for BNs used in diagnostic applications. There are

also a variety of commercial systems for modeling and reasoning in BNs.

 20

Chapter 3: Proposed Modeling Methodology

3.1 Degradation Model for System Health Management

3.1.1 Proposed Hybrid Bayesian Network

For SHM modeling, it is advantageous and intuitive to consider a hybrid system,

typically with the variables such as time and temperature being modeled as

continuous and the system’s functionality probability being discrete.

Figure 3-1: Overview of different levels in SHM BN

The proposed complex system hybrid BN can be separated into 5 levels as shown in

Figure 3-1, according to the typical characteristics of the nodes. The BN combines

high-level functionality nodes with low-level physical variables representing failure.

F1#

Θ1
F1#

C1#

Θm
F1#

F2#

Θ1
F2# Θm

F2#

Fn#

Θ1
Fn# Θm

Fn#

Component#Cri/cal#Parameters#

Factors#

Hyper7Parameters#

P# Func/onality#Probabili/es#

Ck#

Pl#

S# System#

 21

Here are the descriptions of each level:

1. System node: this is the highest level of nodes with no children. It represents the

state of the whole system and usually indicates whether or not the system is

working as intended.

2. Functionality probability nodes: these nodes are designed to be abstract discrete

nodes that represent various functionalities, which are required for the system to

operate.

3. Component critical parameter nodes: these are continuous nodes representing

status of physical components and structures susceptible to specific failure

mechanisms in the system. These values should be measurable directly or

indirectly.

4. Factor nodes: these nodes show contributors to the degradation of the

components. They can be component internal factors related to material

properties or physical characters, or they can be external factors such as

environmental stress or temperature.

5. Hyper-parameter nodes: these nodes are hyper-parameters that describe

probability distributions of the factors.

It is to be noted that each level does not have to be only one layer as shown in Figure

3-1, it can be a combination of different layers of nodes that have the same type.

 22

3.1.2 Component Critical Parameters

Reliability concerns arise when some critically important materials or devices

degrade with time. Let C represent a critically important material/device parameter.

This parameter degrades over the life of the component. The value itself can either

increase (threshold voltage of a semiconductor device, increase in leakage of a

capacitor, increase in resistance of a conductor) or decrease (decrease of pressure in a

vessel, decrease of spacing between mechanical components, decrease in lubricating

properties of a fluid). Figure 3-2 presents the SHM Bayesian network at specific time

𝑡. The shade areas show continuous nodes that are related to each component.

Figure 3-2: SHM Bayesian network at specific time t.

An example of a degradation process can be derived from a Taylor expansion about

Pt1$

F1$

Θ1
F1$

Ct1$

Θm
F1$

Fn$

Θ1
F1$ Θm

F1$

Ptl$

St$

C01$

F1$

Θ1
F1$

Ctk$

Θm
F1$

Fn$

Θ1
F1$ Θm

F1$

C0k$

 23

𝑡 = 0, which produces the Maclaurin Series, assuming that C changes monotonically

and relatively slowly over the lifetime of the material/device:

 𝐶 𝑡 = 𝐶!!! +
𝜕𝐶
𝜕𝑡 !!!

𝑡 +
1
2
𝜕!𝐶
𝜕𝑡!

!!!
𝑡! +⋯ (3-1)

By assuming that the higher order terms in the expansion can be approximated by

simply modeling degradation of component/device parameter C with a power-law

equation:

 𝐶 = 𝐶! 1± 𝐴!𝑡! (3-2)

where 𝐶! is the value of 𝐶 at 𝑡 = 0, 𝐴! is material/device-dependent coefficient, and

𝑚 is the power-law exponent. Both 𝐴! and 𝑚 are parameters that can be learned from

component/device degradation data. Summation (+) is used when the parameter 𝐶

increases with time, while subtraction (-) is used when the parameter 𝐶 decreases

with time

The parameter 𝐴! is generally material/microstructure dependent. It is not only a

function of material variations, but also a function of other factors, such as electrical,

thermal, mechanical and chemical environments to which the device is exposed.

 𝐴! = 𝐴! 𝐹!,… ,𝐹! (3-3)

 24

Therefore, we have:

 𝐶 = 𝐶! 1± 𝐴! 𝐹!,… ,𝐹! 𝑡! (3-4)

𝑑𝐶
𝑑𝑡 = ±𝑚𝐶!𝐴! 𝐹!,… ,𝐹! 𝑡!!! (3-5)

𝑚 and other parameters are considered to be constant for the component/device.

Considering a Bayesian network at a time slice of a given system, 𝑡 is then constant

and indicates the current life of the component/device.

For a component/device to fail, the amount of degradation must reach a critical value,

𝐶!"#$. Therefore, the time to failure, 𝑇!"#$%&' , is then:

 𝑇!"#$%&' =
1

±𝐴! 𝐹!,… ,𝐹!
𝐶!"#$ − 𝐶!

𝐶!

!/!

 (3-6)

Values of the factors are continuously distributed and parameters of the distribution

can be shown explicitly as 𝜃 node.

 𝐹 = 𝐹 𝜃!,…𝜃! (3-7)

There are three general time-dependent models for degradation. The choice of model

and the model parameters can be extracted from the observed degradation data.

Power-Law:

 25

 𝐶 = 𝐶! 1± 𝐴! 𝐹!,… ,𝐹! 𝑡! (3-8)

Exponential:

 𝐶 = 𝐶! exp ±𝐴! 𝐹!,… ,𝐹! 𝑡 (3-9)

Logarithmic

 𝐶 = 𝐶! 1± ln 𝐴! 𝐹!,… ,𝐹! 𝑡 + 1 (3-10)

The choice of model and the model parameters can be extracted from observed

degradation data.

3.1.3 Functional Probability Node Interface

Since the component parameter and their parents are continuous nodes, and the

functionality probability nodes are discrete, the interface between these different

types of nodes becomes critical. In general hybrid BNs, when continuous nodes have

discrete parents, there are simple conditional inference techniques such as in

conditional linear Gaussian (CLG) model. Difficulty arises when discrete nodes have

continuous parents, which is the case for our SHM network. However in this case,

even though discrete functionality probability nodes have continuous component

status nodes, they are related by degradation thresholds.

Discrete functionality nodes can contain more than two states with thresholds

 26

between the transitions of one state to the other. Let the threshold value between

functionality states 𝑖 and 𝑗 be 𝐶!!,!/!. The most common case would be state 𝑖

denoting “component function”, and state j denoting “component does not function”.

Let 𝑃! be the probability of functional state being 𝑖. The probability 𝑃! is then the

probability that the component status 𝐶 is lower than the threshold value 𝐶!!,!/!.

Figure 3-3 shows a hypothetical component exponential degradation function and the

overlap of probability distributions of 𝐶 and 𝐶!!,!/!.

Figure 3-3: Typical exponential degradation function.

Figure 3-4 shows the overlap of probability distributions of 𝐶, lower threshold

𝐶!!,!!!/!, and higher threshold 𝐶!!,!/!!!. If the distribution 𝐶 is moving to the left as

the component is degrading, the probability of being in state 𝑖 − 1 is increasing, and

the probability of being in state 𝑖 + 1 is decreasing.

C"

t"

Ccrit"

tth"

C0"
C"

Cth,i/j"

 27

Figure 3-4: Overlap of probability distribution of component status and its threshold.

Let a functionality node have 𝑛 states, the probabilities of being in these states are

𝑃!,… ,𝑃!. Assume the state of the functionality node changes monotonically

according to the component degradation status:

 𝐶!!,!!!/! < 𝐶!!,!/!!! for 𝑖 = 2,… ,𝑛 − 1 (3-11)

Therefore,

 𝑃! = 𝑝𝑟𝑜𝑏 𝐶 > 𝐶!!,!!!/! 𝑎𝑛𝑑 𝐶 < 𝐶!!,!/!!! (3-12)

Analytically, 𝑃! can be calculated from the following convolution equation:

𝑃! = 𝑝 𝐶!!,!!!/! ∙ 𝑝 𝐶

!!!,!/!!!

!!!,!!!/!

!

!!!,!!!/!

!!!,!/!!!

!!

∙ 𝑝 𝐶!!,!/!!! 𝑑𝐶𝑑𝐶!!,!/!!!𝑑𝐶!!,!!!/!

(3-13)

C"Cth,i'1/i" Cth,i/i+1"

 28

If there are many component critical parameters contributing to this functionality then

the state of the functionality node conditionally depends on comparison between the

status of each component and its threshold values.

𝑃!!…!! = 𝑝𝑟𝑜𝑏 𝐶!!!,!!!!/!! < 𝐶! < 𝐶!!!,!!/!!!! ,… ,𝐶!!!,!!!!/!! < 𝐶!

< 𝐶!!!,!!/!!!!
(3-14)

For example, the functionality is in functioned state when 𝐶! > 𝐶!!!,!/! and

𝐶! > 𝐶!!!,!/!, but it is in not functioned state when 𝐶! > 𝐶!!!,!/! or 𝐶! > 𝐶!!!,!/!.

This conditional probability can be dealt with conditional probability table (CPT) the

same way as in discrete Bayesian network.

Probability functionality part of the SHM Bayesian network is shown in Figure 3-5.

Figure 3-5: Relationship between functionality probability node and its components.

Please note that 𝐶!! is shown in brackets because it is possible to have more than one

Pt#

C1t#

{C1Th}#

Ckt#

{CkTh}#

 29

threshold values, depending on the number of states of the functionality.

3.2 Dynamic Bayesian Network

DBN is a BN that includes a temporal dimension. This new dimension is managed by

time-indexed value 𝑡 to indicate time stage of the nodes. A set of nodes at certain

stage contains random variables relative to time slice 𝑡. An arc that links two

variables belonging to different time slices represents a temporal probabilistic

dependence between these variables. Variables can be modeled to have impact on the

future distribution of the other variables. These impacts are defined as transition

probabilities between the stats of variables at time step 𝑡 and 𝑡 + ∆𝑡.

A DBN describes the joint distribution of a set of variables 𝜽. This is a complex

distribution, but may be simplified by using the Markov assumption due to slow

changing degradation mechanisms in SHM. The Markov assumption requires only

the present state of the variables 𝜽! to estimate 𝜽!!!, i.e. 𝑝 𝜽!!!|𝜽!,… ,𝜽! =

𝑝 𝜽!!!|𝜽! where 𝑝 indicates a probability density function and bold letters indicate

a vector quantity. Additionally, the process is assumed to be stationary, meaning that

𝑝 𝜽!!!|𝜽! is independent of t.

For SHM Bayesian network, the main variables that change between time slices are

component parameters. Components degrades over time, therefore, the status of

components at a certain time slice depend on their status at the previous time slice

 30

and the factors affecting the degradation processes during that transition.

 𝑝 𝐶! = 𝑝 𝐶|𝐶!!∆! , 𝐹!!,… ,𝐹!! (3-15)

Given that 𝐹!! is the average value of factor 𝑖 between time slice 𝑡 − ∆𝑡 and 𝑡.

Figure 3-6: Two-time-slice representation of a SHM DBN

Figure 3-6 shows a two-time-slice representation of a dynamic SHM Bayesian

network. ∆𝑡 should be set according to the system under interest and how often the

parameters can be observed, such as frequency of sensor signals.

At any point in time during system operation, any value of variables in the system can

be derived by probabilistic inference to compare with its expected value to see if the

P1t$

F1t$

Θ1
F1,t$

C1t$

Θm
F1,t$

Fnt$

Θ1
F1,t$ Θm

F1,t$

Ckt$

Plt$

St$

P1t+Δt$

F1t+Δt$

Θ1
F1,$t+Δt$

C1t+Δt$

Θm
F1,$t+Δt$

Fnt+Δt$

Θ1
F1,$t+Δt$ Θm

F1,$t+Δt$

Ckt+Δt$

Plt+Δt$

St+Δt$

 31

probability is still in the acceptable range and the system as a whole is working as

intended. With continuous monitoring, the trajectories of the degradation processes

can be estimated form our knowledge of the health of the system. We can then use

this information to estimate remaining useful life (RUL) of components and plan

maintenance accordingly.

Figure 3-7 shows example of different degradation trajectories of component critical

parameter 𝐶 depending on the conditions and factors of the system during operation.

Figure 3-7: Example of different degradation trajectories of 𝐶.

Change to 𝐶 can be measured either as degradation of a component’s critical health

parameter or as damage to the component. Health degradation and damage are

related, but one is usually easier to be measured than the other. However, both will

reach critical thresholds where the component fails.

C"

t"

Cth"

tth"

C0"

Expected"degrada/on"process""

Faster"degrada/on"process"

Slower"degrada/on"process"

 32

3.3 Inference with Markov Chain Monte Carlo

3.3.1 Bayesian inference

The BN is a model for the variables and their relationships. Therefore, it can be used

to answer probabilistic queries about them. The main application is to use BN to

realize updated knowledge of the states of a subset of variables, when the other

variables (the evidence variables) are observed.

To begin, we recall that Bayes’ rule with continuous variables is written as:

 𝑝 𝜃|𝐷 =
𝑝 𝐷 𝜃 𝑝 𝜃
𝑑𝜃 𝑝(𝐷|𝜃)𝑝 𝜃

 (3-16)

where 𝜃 is the parameter of interest and 𝐷 is data or evidence. 𝑝 𝜃|𝐷 is then the

posterior probability of getting parameter value 𝜃 when data value 𝐷 is presented.

Therefore, the Bayes’ rule in this case is:

 𝑝 𝜃|𝐷 = 𝑝 𝐷 𝜃 𝑝 𝜃 / 𝑑𝜃 𝑝(𝐷|𝜃)𝑝 𝜃

 posterior likelihood prior evidence
(3-17)

In real world SHM applications, it may be difficult to calculate full marginal

distributions analytically. Therefore, sampling techniques need to be used to

approximate the distributions instead. Expected values of a distribution can be

estimated as follow:

 33

 𝐸 𝑝 𝜃|𝐷 ≈
1
𝑁 𝑝 𝜃(!)|𝐷

!

!!!

 (3-18)

where 𝜃(!),… ,𝜃(!) are the sample values of parameter 𝜃.

There are many ways to sample these values, the key idea is to let 𝜃 values be points

in state space and find a way to walk around so that the likelihood of visiting any

point 𝜃 is proportional to 𝑝 𝜃 . Therefore, the sampler will spend more time sampling

from the distribution where the probability is high, and spending less time sampling

from where the probability is low.

3.3.2 Markov Chain Monte Carlo

In Bayesian inference, we need a good description of the posterior distribution. If we

cannot achieve that description through formal analysis, nor through dense-grid

approximation, then we can generate a lot of representative values from the posterior

distribution and use those values to approximate the posterior.

Markov Chain Monte Carlo (MCMC) algorithm (Cousins, Chena, & Frisse, 1993)

(Dagum & Horvitz, 1993) generates a random walk such that each step in the walk is

completely independent of the steps before the current position. The proposed next

step has no dependence on where the walk has been before, and the decision to reject

or accept the proposed step has no dependence on where the walk has been before.

Any such process in which each step has no memory for states before the current one

 34

is called a (first order) Markov process, and a succession of such steps is a Markov

chain.

A Markov chain can be defined as a sequence of generated random variables, say

𝑋!,𝑋!,𝑋!,… , such that at each time 𝑡 ≥ 0, the next state 𝑋!!! is sampled from a

distribution 𝑝 𝑋!!!|𝑋! . The main property of a Markov chain is the fact that, given

that one knows 𝑋!, the next state does not depend of any state before 𝑋!.

An important definition is the stationary distribution, which does not depend on 𝑡 or

the initial state, given that the current state depends directly from the initial one. We

can represent this distribution as 𝜙. Furthermore, we can note that, as t increases, the

sampled points will look like dependent ones from 𝜙.

Thus, after several generations of samples, these ones will be approximately

dependent from 𝜙. Under this assumption, the expectation of 𝑔(𝑥) can be done

according with these several generations.

 𝜃!" =
1

𝑛 −𝑚 𝑓(𝑋!)
!

!!!!!

 (3-19)

Any simulation that samples a lot of random values from a distribution is called a

Monte Carlo simulation. For integration simulation, the algorithm is called Monte

Carlo integration.

 35

Let 𝑔(𝑥) be a function and suppose we want to compute φ.

 𝜑 = 𝑔 𝑥 𝑑𝑥
!

!
 (3-20)

Thus, the value of 𝜑 can be approximated by sampling values 𝑋!,𝑋!,… ,𝑋! from a

distribution.

 𝜑 = 𝐸(𝑔 𝑥) ≈
1
𝑚 𝑔(𝑋!)

!

!!!

 (3-21)

According to the laws of large number, increasing the value of m corresponds to more

accuracy in this approximation but only if the samples 𝑋! are independent.

Therefore, in Bayesian analysis, expected values of a posterior distribution can be

estimated as follow:

 𝐸 𝑝 𝜃|𝐷 ≈
1
𝑇 𝑝 𝜃(!)|𝐷

!

!!!

 (3-22)

Where 𝜃(!),… ,𝜃(!) are the sample values of parameter 𝜃.

There are many ways to sample these values, the key idea is to let 𝜃 values be points

in state space and find a way to walk around so that the likelihood of visiting any

point 𝜃 is proportional to 𝑝 𝜃 . Therefore, the sampler will spend more time sampling

 36

from the distribution where the probability is high, and spending less time sampling

from where the probability is low.

MCMC algorithms are a general class of computational methods used to produce

samples from distribution (in Bayesian, MCMC is used to produce samples from

posterior distribution). They are often easy to implement and can be used to simulate

very high dimensional posterior distribution.

The basic goal of an MCMC algorithm is to simulate values (also called samples or

draws) from the posterior distribution of a parameter vector. Inference about likely

parameter values, or functions of parameter values, is then based on these simulated

values. Letting the jth value in such a sequence of draws of the parameter vector 𝜃 be

denoted by 𝜃(!). MCMC algorithms have the property that the distribution of the jth

iterate in the sequence of sampled values converges to a random sample drawn from

the posterior distribution as j becomes large. In general, successive draws from the

posterior are correlated, but this correlation tends to die out as the interval between

draws increases. Thus, if a large number of sample updates are performed, the last

group of sampled values in the sequence, say 𝜃(!),𝜃(!!!),… ,𝜃(!!!), represents a

(dependent) sample from the posterior distribution of interest. The iterations,

𝜃(!),… ,𝜃(!!!), are known as burn-in and do not represent samples from the posterior

distribution.

Viewed from slightly more general perspective, MCMC algorithms produce random

 37

walks over a probability distribution. By taking a sufficient number of steps in this

random walk, the MCMC simulation algorithm visits various regions of the parameter

space in proportion to their posterior probabilities. We can, for inferential purposes,

summarize the iterates obtained in these random walks much as we would summarize

an independent sample from the posterior distribution.

Previous descriptions show how the expected value of 𝜃 by Monte Carlo integration

and Markov chains can be obtained. The latter seems to solve the problem of finding

a suitable approximation of the expected value to 𝑔(𝑥). However, we must guarantee

that the stationary distribution corresponds exactly to the distribution of interest. The

method that constructs a Markov chain and guarantees this condition is the well-

known Metropolis-Hastings algorithm (Appendix A). For the case that the complete

joint posterior cannot be analytically determined and cannot be directed sampled, but

all the conditional distributions can be determined and directly sampled, Gibbs

sampling technique can be useful (Appendix B). Gibbs sampling simplifies a complex

high-dimensional problem by breaking down into simple, low dimensional problems.

In the cases where evaluation of full conditional density is computationally

expensive, Adaptive Rejection Sampling (ARS) can be used to draw samples with

fewer evaluations (Appendix C). The algorithm only works with probability density

functions that are log-concave, which is usually the case for Bayesian applications.

 38

3.4 Example

To demonstrate the proposed methodology, SHM of an advanced integrated circuit

(IC) was considered. Reliability of semiconductor devices may depend on assembly,

use, and environmental conditions. Stress factors affecting device reliability include

gas, dust, contamination, voltage, current density, temperature, humidity, mechanical

stress, vibration, shock, radiation, pressure, and intensity of magnetic and electrical

fields.

The dominant failure modes of ICs are different depending on materials, usage,

configurations, and applications. Let C be component critical parameter related to

each failure mechanism and P be the functionality probability of failure of each

material/device. Figure 3-8 shows an example BN for ICs with the following failure

mechanisms: electromigration (EM), stress migration (SM), and corrosion (Cor) in

Al-alloy metal strips, thermal-cycling fatigue (TCF) in Si-chips, and time-dependent

dielectric breakdown (TDDB) and hot-carrier injection (HCI) in MOSFET devices.

Figure 3-8: Example BN for an advanced integrated circuit

PAl$ PSI$ PMOS$

SIC$

CEM$ CTCF$ CTDDB
CSM CCor$ CHCI

$

 39

The conditional probability density of the system node, 𝑆!" , is then:

 𝜋 𝑆!" = 𝑝(𝑆!"|𝑃!" ,𝑃!" ,𝑃!"#) (3-23)

 𝜋 𝑆!" = 𝑝(𝑆!"| 𝐶!" ,𝐶!" ,𝐶!"# , 𝐶!"# , 𝐶!""# ,𝐶!"#) (3-24)

Each component critical parameter contains sub-network with continuous factor

nodes and structure for that specific failure mechanism. For example the model

generally used to describe EM time-to-failure takes the form:

 𝑇𝐹 = 𝐵! 𝐽(!) − 𝐽!"#$
(!)

!!
exp

𝑄
𝐾!𝑇

, (3-25)

where 𝑇𝐹 is the component time to failure. 𝐵! is a process/material-dependent

coefficient. 𝐽(!) is the electron current density. 𝐽!"#$
(!) is a critical (threshold) current

density which must be exceeded before significant EM is expected. 𝑛 is the current

density exponent. 𝑄 is the activation energy.

Using degradation model of component/device parameter C with the power-law

equation:

 𝐶 = 𝐶! 1− 𝐴! 𝐽(!),𝑇 𝑡! (3-26)

We can derive at the following relationship:

 40

 𝐶 = 𝐶! 1− 𝐴! ∙ 𝐽(!) − 𝐽!"#$
(!)

!
∙ exp

−𝑄
𝐾!𝑇

𝑡! (3-27)

Since both current density 𝐽(!) and temperature 𝑇 are expected to be normally

distributed between time t-1 to t,

 𝐽 ! =𝒩 𝜇!,𝜎! , 𝑇 =𝒩 𝜇! ,𝜎! (3-28)

In the context of simple health monitoring in this example, 𝐴!, 𝑄, 𝑟, and 𝑚 are

considered to be constant parameters representing material/device internal factors.

These parameters can also be modeled with probabilistic distributions.

The BN model of EM in the IC example is shown in Figure 3-9.

Figure 3-9: BN of EM in the IC example.

J(e)%

μJ% σJ%

T%

μT% σT%

Ct%

Pt%

Ct,Δt%

A0%

r%

m%

Q%

J(e)crit%

 41

Consider an Al-alloy under high temperature operation, with expected current density

of J = 2×106 A/cm2 and at expected temperature of T = 200 °C. Assuming an

activation energy of Q = 0.8 eV and the current density exponent of n = 2. Using

conservative design approach, assume Jcrit = 0.

Let 𝐶! = 1. The following parameters were derived empirically and 𝐾! is the

Boltzmann’s constant. Time is in hours.

 𝐴! = 5×10!!", 𝑟 = 2,𝑚 = 3,𝑄 = 0.8,𝐾! = 0.0000862 (3-29)

Figure 3-10 shows a plot of the critical parameter C degrades over time.

Figure 3-10: Plot of critical parameter C of the EM example over time.

For example at 𝑡 = 100, we can infer the value and its distribution of component

critical parameter 𝐶 from the evidence data of 𝐽 and 𝑇, shown in Figure 3-11.

0 50 100 150 200

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

t (hours)

C

 42

Figure 3-11: Plot of example data of J and T over 100 hours.

From the data, we have normal distributions for both J and T, with the following

means and standard deviations.

 𝜇! = 2×10!𝐴/𝑐𝑚!,𝜎! = 1×10!𝐴/𝑐𝑚!, 𝜇! = 200℃,𝜎! = 0.5℃ (3-30)

Figure 3-12 shows the MCMC inference result for 𝐶 with 10,000 iteration samples

(trace plot on the left and density plot on the right).

Figure 3-12: Inference result for component status C with 10,000 iteration samples.

0 20 40 60 80 100

1.
90

1.
95

2.
00

2.
05

2.
10

t (hours)

J
(M

A/
cm

^2
)

0 20 40 60 80 100

19
6

20
0

20
4

t (hours)

T
(C

el
si

us
)

0 2000 4000 6000 8000 10000

0.
92

0.
93

0.
94

0.
95

0.
96

iteration

C

0.92 0.93 0.94 0.95 0.96

0
10

20
30

40
50

60

density.default(x = result)

N = 10000 Bandwidth = 0.0008633

D
en

si
ty

 43

The mean value of C is 0.940, with standard deviation of 0.00612.

Given that from the testing, the threshold distribution of the component critical

parameter for EM failure mode has the following mean and standard deviation:

 𝜇!!! = 0.7,𝜎!!! = 0.1 (3-31)

Using Equation (3-10), we can calculate the probability that the component critical

parameter has not reach the failure threshold. Figure 3-13 shows reliability

probability of Al-strip on EM failure mode over time.

Figure 3-13: Reliability probability of Al-strip on EM failure mode over time.

100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t (hours)

Pr
ob

ab
ilit

y

 44

Chapter 4: Computational Approach

In highly complex systems, a MCMC algorithm requires large amount of

computational time for inference in hybrid DBN. The computation time grows

exponentially with each additional layer of network and becomes infeasible with a

large number of nodes. The computation time makes the use of Hybrid DBNs

impractical for on-line health monitoring of complex systems. To solve this problem,

special case algorithms for SHM are introduced to reduce the number of

computations and the amount of time required for each computation.

4.1 Inference pre-computation

Since the physical parameter values are expected to be in certain ranges, it is possible

to perform pre-computation for all combinations of possible values in the known

ranges. The results are then stored in a database, such that they can be pulled quickly

to approximate the BN inferences. More computation may be conducted and more

results added to the database while monitoring the health of the system such that the

database could provide better coverage of the possible computations that may be

needed in the future. Figure 4-1 illustrates the pre-computation process to replace the

computations required during the operating phase.

With a continuous range of parameter values, it is impossible to pre-compute every

possible outcome. The goal of pre-computation is to cover enough values of the

observable parameters so that the values of unobservable parameters can be

 45

interpolated from the results. There are two factors in considering the selection of

possible values.

Figure 4-1: Pre-computation process

There are two types of parameters:

1. Observable parameters: these parameters that can be directly observed or

measured. The values then can be used to infer other parameter values

2. Unobservable parameters: these parameters cannot be observed directly given

the system and available sensors/measurements. The values can only be

inferred from other parameters.

Our pre-computation then consists of inferences from values of observables

parameters to unobservable parameters. Essentially, we have to select all different

combinations of possible observable parameters values to perform MCMC inference

!me$

Failure$
Design$Phase$ Opera!ng$Phase$

Computa!on$

!me$

Failure$
Design$Phase$ Opera!ng$Phase$Pre6computa!on$

 46

There are two factors in considering the selection of possible values.

First is the range of observable parameters after a time period ∆𝑡. The selections

should cover full range of possible values. There should be at least one selected value

at lower bound and one selected value at upper bound. The common range is from 5th

percentile to 95th percentile, or more accurately 0.5th percentile to 99.5th percentile.

Second is the number of selections within the bound: the higher the number of

selections, the more accurate results from interpolation will be. The density of

selections should be proportional to the probabilistic density of the observable

parameters. For example, if there is N number of selections per variable, the

selections are:

 𝐶! = 𝐶!!"#!! ,𝐶!!"#!!"! ,𝐶!!"#!!!"! ,…𝐶!!!"!!! (4-1)

 𝛿 =
𝑝!!"! − 𝑝!"#
𝑁!"#"$%&'(! − 1

 (4-2)

Therefore, for a given measurement interval ∆𝑡, we can estimate the set of possible

values and use those values to pre-computed possible outcomes.

There are two different types of observable parameters. The first one is the

parameters that change over time. This is usually the case for component status

parameters. For pre-computation to be feasible, the changes must be predictable. For

a component status parameter, the change in value can be computed from its

 47

degradation equation for a given ∆𝑡. Figure 4-2 shows example expected value, 5th

percentile, and 95th percentile values.

Figure 4-2: Example component degradation with 5th percentile, and 95th percentile values.

For this case, the range of possible values grows over time. Therefore, the number of

selection should increase proportionally with the range to keep the interval between

selected values the same, thus, keep the accuracy of interpolation constant.

The other type of observable parameters is constant parameters. These parameters are

usually Gaussian distributed, shown in Figure 4-3. For this case, the range always

stay constant, therefore, the selections remain the same throughout the life of the

component.

C"

t"
ti+Δti"

C0"

Expected"value"

5th"Percen7le"

95th"Percen7le"

ti"

 48

Figure 4-3: Component Gaussian distribution.

If the observed values are always in the predicted range, the accuracy of the results

depends upon the number of selections for pre-computation. The number of selections

is the number of selections at each time-slice multiplied by the number of

measurement intervals. The number of pre-computations is then the number of

selections for each observable, times the number of observables parameters.

 𝑁!"#!!"#$%&'&(") = 𝑁!"#"$%&'(!,!,!!(!∆!)

!

!!!

!!/∆!

!!!

 (4-3)

Where 𝑁!"#"$%&'(!,!,! is the number of selections of observable parameter 𝑖 at time 𝑡. 𝑛

is the number of observable parameters, and 𝑇! is the component life.

The total computation time then can be estimated.

F"
5th"Percen+le" 95th"Percen+le"mean"

 49

 𝑇!"#!!"#$%&'&(") = 𝑁!"#!!"#$%&'&(") ∙ 𝑇!"#$!%#!!"#!!"#$%&'&(") (4-4)

For MCMC computation, the average computation time is proportional to the number

iterations. The higher the number of iterations, the higher accuracy of the result will

be. Therefore, there is a tradeoff between computation time and accuracy. For pre-

computation, the decision between higher number of value selections or higher

number of iteration per computation must be made.

4.2 Dynamic Programming

Dynamic programming is a method for solving complex problems by breaking them

down into simpler subproblems. It is applicable to problems exhibiting the properties

of overlapping subproblems and optimal substructure. When applicable, the method

takes far less time than naive methods that do not take advantage of the subproblem

overlap.

In general, to solve a given problem, we need to solve different parts of the problem

(subproblems), and then combine the solutions of the subproblems to reach an overall

solution. Often when using a more naive method, many of the subproblems are

generated and solved many times. The dynamic programming approach seeks to solve

each subproblem only once, thus reducing the number of computations: once the

solution to a given subproblem has been computed, it is stored the next time the same

solution is needed, it is simply looked up. This approach is especially useful when the

 50

number of repeating subproblems grows exponentially as a function of the size of the

input.

Using dynamic programming can reduce the pre-computation time for BN inference

drastically. Instead of computing full inferences for each set of evidence values,

dynamic programming algorithm retain marginal results that can be reused with

similar set of evidence values.

The core of dynamic programming is the Memoization Methodology, which consists

of the following:

• Start with a backtracking algorithm

• Look up the problem in a table; if there's a valid entry for it, return that value

• Otherwise, compute the problem recursively, and then store the result in the

table before returning the value

The algorithm has three steps:

1. Use a logic-sampling algorithm and degradation model to generate all possible

evidence values according to its probability of occurring. Not all evidence

nodes have to be instantiated for each case, only the evidence nodes that are

required for observing nodes are instantiated.

2. Check and construct a cache by comparing each generated case to those

already in the cache. If the case is found to be new, then determine the joint

probability of the case’s evidence using the algorithm in the third step.

 51

3. The marginal posterior-probability distributions over the diagnosis nods are

determined, then the values of the evidence nodes, the joint probability of the

evidence set, and the marginal posterior-probability distributions for the

diagnosis node are stored in the cache.

Figure 4-4 shows two example cases where dynamic programming can reduce the

number of computation. The first case is when nodes have the same set of parent

nodes, thus the same sets of possible marginal probability distributions for discrete

nodes. The second case is when continuous parameters have several trajectories that

can reach the same values after some period of time.

	
 	
 	

Figure 4-4: Example cases where dynamic programming reduces number of computations

In addition, if more computations are needed during an operation in the event where

evidence values reaches the bound of expected values, dynamic programming provide

a set of marginal results that can be used for possible faster inference of values

C"

P1"

P3"
P2"

P4" P5"

t"P1"

P3"
P2"

P4" P5"

 52

outside the pre-computed cache.

According to the algorithm and the proposed modeling approach, the computation

should start from each individual component failure mechanism, and then compute

the functionality probability from lower-level nodes (related to failure mode) to

higher-level (system functionality) nodes. Table 4-1 shows the algorithm to generate

pre-computed database, using dynamic programming.

Table 4-1: Dynamic programming algorithm for pre-computation

Algorithm: Dynamic Programming for Pre-Computation

Input: unobserved variables (𝑿𝑼), observed variables (𝑿𝑬), variable starting values
(𝑿𝟎), variable change function over time (𝑭𝒙), variable number of selections (𝑵𝑺),
time range (𝑻), time step (∆𝒕)

Output: database containing unobserved values given observed values and time

01. for 𝒕 increment by ∆𝒕 until 𝑻

02. generate selected possible values of 𝑿𝒕𝑬 according to 𝑵𝑺 and 𝒕

03. for each combination of selected 𝑿𝒕𝑬

04. if the inference result of 𝑿𝒕𝑼 given 𝑿𝒕𝑬 is not in the database

05. compute inferences for 𝑿𝒕𝑼 given 𝑭𝒙 and 𝒕, and 𝑿𝒕!𝟏𝑼 in the database

06. if 𝑿𝒕𝑼 is within the range 𝜺 of any 𝑿′𝒕𝑼 already in the database

07. store 𝑿′𝒕𝑼 in the database

08. else

09. store 𝑿𝒕𝑼 in the database

10. return the database

 53

Consider a complex system with N number of components in the system,

 𝜋 𝑆 = 𝑝 𝑆|𝑃!,𝑃!,… ,𝑃! (4-5)

Since both exact and approximate inferences have been found to be NP-hard (Cooper

G. F., 1990) (Dagum & Luby, 1993), the computation complexity for both discrete

functionality and continuous component degradation model are exponential in the

network’s treewidth. Figure 4-5 shows a plot presenting differences between pre-

computation time with and without dynamic programming. Without storing marginal

probability distribution results for further computations, all approximate inference

computations are required for pre-computation, increasing the computation time

exponentially with network’s treewidth.

Figure 4-5: Inference pre-computation time with and without dynamic programming.

Using dynamic programming, the number of computation can be reduced drastically

 54

depending on the amount of approximation. Without dynamic programming, the

number of computation required for C is:

𝑁!"#$%&'&(") = 𝑁!!!"#"!"#$%& ∙ 𝑁!!!"#"$%&'(! ∙ 𝑁!!!"#$%&

∙ 𝑁!"#$!!"#$%&
(4-6)

With dynamic programming, results in the cases where C values are close to previous

calculations can be pulled from the cache, thus reduce 𝑁!!!"#$%& and 𝑁!"#$!!"#$%&,

and reduce 𝑁!"#$%&'&("). The reduction in number of computation depends on the

range of parameter distributions and the level of acceptable approximation.

4.3 Computation Time Optimization

To optimize for the best pre-computation results, priority of computation becomes

significant. The order of computation should start from small localized parts of the

network, and then go up to the functionality probabilities and system to maximize the

benefits of dynamic programming.

One advantage of the isolation among component sub-tree is that time intervals do

not have to be uniform for all components. Measurement/inspection intervals can be

based on the rate of component degradation and possible change to component

parameters. They can also be dynamically changed during the life a component

depending on its status.

 55

For example there can be less frequency of measurements during the early life of a

component due to less probability of failure. Then increase the frequency when the

component approaches the end of life.

 ∆𝑡 ∝
1
∆𝐶 (4-7)

The time interval between measurements, ∆𝑡, should then be inverse proportional to

the amount of change of the parameter 𝐶. Therefore, the sampling rate around a

certain evidence value will be proportional to the probability that the evidence value

could happen and how much different in values to the possible values around it at

certain period of time.

If the observed values are always in the predicted range, the accuracy of the results

depends upon the number of selections for pre-computation. The number of selections

is the number of selections at each time-slice multiplies be the number of

measurement intervals. The number of pre-computations is then the number

selections for each observable times the number of observables parameters.

 𝑁!"#!!"#$%&'&(") = 𝑁!"#"$%&'(!,!,!!(!∆!)

!

!!!

!!/∆!

!!!

 (4-8)

Where 𝑁!"#"$%&'(!,!,! is the number of selections of observable parameter 𝑖 at time 𝑡. 𝑛

is the number of observable parameters. 𝑇! is the component life.

 56

The total computation time then can be estimated.

 𝑇!"#!!"#$ = 𝑁!"#!!"#$ ∙ 𝑇!"#$!%#!!"#!!"#$ (4-9)

For MCMC computation, the average computation time is proportional to the number

iterations. The higher the number of iterations, the higher accuracy of the result will

be. Therefore, there is a tradeoff between computation time and accuracy. For pre-

computation, the decision between higher number of value selections or higher

number of iteration per computation must be made.

Figure 4-6: Illustrated plots for addition of inference results.

In addition, the pre-computation process does not have to stop at the start of an

operation. Database of pre-computation results can be updated for more possible

inference computation values, resulting in higher accuracy and larger range of

covered values. Figure 4-6 shows how more results can be added between existing

results.

C"

t"

C0"

C"

t"

C0"

ti"

 57

4.4 Efficient Dependency Algorithm

In the case that components in the system are dependent on each other because they

have common factors, an efficient algorithm is required to maintain efficiency of the

proposed modular component model. Figure 4-7 shows a modular component

Bayesian Network model for System Health Management.

Figure 4-7: Proposed BN for SHM.

While the components are separated by their physical and functionality, there are

possibilities that different components are sharing the same environmental factors,

such as temperature, humidity, etc.

Figure 4-8 shows an example of a 2-component system where both components share

the same factor (Ft
1,n and Ft

2,1). The common approach is to combine the nodes,

however, this method is not ideal due to the following reasons:

1. Even though the components share the same factor, it is very likely that there

Pt1$

Ct1$

Ptl$

St$

Ct(11$

Ft1,1$ Ft1,n$

Ctn$Ct(1n$

Ftn,1$ Ftn,n$

 58

is a spatial difference between them. By combining the nodes, the possibility

of decoupling them is eliminated from future analysis. For example if two

components are directly in contact with each other and are assumed to always

have the same temperature, there is a chance that in some scenarios, the two

components are separated due to an external event or unexpected degradation.

The model should be flexible enough to handle this situation.

2. When identical nodes are combined into common nodes of multiple

components, the component models can no longer be treated in separate

modules computationally. This leads to a large increase in complexity and

computation time.

Figure 4-8: BN of components with common factor.

Let Dt be a node representing the value observed from a detector/sensor that measures

the common factor. If the common factor is observable, factor Ft
1,n and Ft

2,1 can be

directly derived from the measurement value of Dt. Therefore, inference calculations

for each component stay modular. Figure 4-9 show the proposed BN with an

Pt1$

Ct1$Ct&11$

Ft1,1$ Ft1,n$

Ct2$Ct&12$

Ft2,1$ Ft2,n$

 59

observable common factor.

 𝑝 𝐶! = 𝑝 𝐶|𝐶!!∆! , 𝐹!!,… ,𝐹!! (4-10)

 𝑝 𝐹!
!,! = 𝑝 𝐹!

!,!|𝐷! (4-11)

Figure 4-9: Proposed BN with an observable common factor.

If the common factor is unobservable, the inference calculation can be done by

placing a “hidden node” Dt as an imaginary measurement node between Ft
1,n and Ft

2,1,

shown in Figure 4-10.

Figure 4-10: Proposed BN with an unobservable common factor

Pt1$

Ct1$Ct&11$

Ft1,1$ Ft1,n$

Ct2$Ct&12$

Ft2,1$ Ft2,n$

Dt$

Pt1$

Ct1$Ct&11$

Ft1,1$ Ft1,n$

Ct2$Ct&12$

Ft2,1$ Ft2,n$

Dt$

 60

Since Ft
1,n and Ft

2,1 are more likely to have the same value, p(Ft
1,n,Ft

2,1) is expected to

have a distribution similar to the distribution shown in Figure 4-11.

Figure 4-11: Probability distribution of the common factor.

One method to reduce computation complexity and keep the inference calculation

modular is to incorporate pre-computation approximation. Pre-computation generates

possible subsets of values of variables according to their probability distribution.

For this case:

 𝑓𝑜𝑟 𝑝 𝑃!!|𝐶!!,𝐶!! ~∀𝑖, 𝑗 𝑝 𝑃!!| 𝐶!! ! , 𝐶!! ! (4-12)

Therefore, the combination of 𝐶!! ! , 𝐶!! ! that have higher probability are those

for which values of Ft
1,n and Ft

2,1 are close to each other.

 𝑝 𝐶!! ! , 𝐶!! ! |𝐹!
!,! ≈ 𝐹!

!,! > 𝑝 𝐶!! ! , 𝐶!! ! |𝐹!
!,! ≠ 𝐹!

!,! (4-13)

Ft1,n&

Ft2,1&E(Ft2,1)&

E(Ft1,n)&

p(Ft1,n,&Ft2,1)&

 61

Using this method, the most probable explanation (MPE) can be derived from the pre-

computation database. Table 4-2 shows the proposed algorithm to compute inferences

for common component factors.

Table 4-2: Common component factor algorithm

Algorithm: Common component factor inference

Input: unobserved common factor variables (𝑿𝑼), observed variables (𝑿𝑬), variable
starting values (𝑿𝟎), variable change function over time (𝑭𝒙), variable number of
selections (𝑵𝑺), time 𝒕

Output: inference values of unobserved common factor variables

01. for each 𝑿𝑼 as 𝒙𝑪

02. for each component that has 𝒙𝑪 factor

03. if full conditional probability 𝒙𝑪 has been stored

04. retrieve and return 𝒙′𝑪

05. else check if 𝒙𝑪 can be computed for full conditional probability

06. compute and store 𝒙′𝑪

07. if none of 𝒙𝑪 can be computed for full conditional probability

08. compute marginal probability for each 𝒙𝑪

09. compute most probable expected value of 𝒙′𝑪 from marginal probabilities

10. store 𝒙′𝑪

11. return inference values of 𝑿𝑼

 62

4.5 Example

Consider an Al-alloy in the previous example under the same high temperature

operation, with current density J = 2×106 A/cm2 and at a metal temperature T = 200

°C. Assuming an activation energy of Q = 0.8 eV and the current density exponent of

n = 2. Using conservative design approach, assume Jcrit = 0.

To generate pre-computation results for EM, first we need to find the ranges of the

observable factors, J and T, shown in Table 4-3.

Table 4-3: Ranges and distribution parameters of J and T

Parameter 5th Percentile 95th Percentile Mean Standard
Deviation

𝜇! 1.7×106 2.3×106 2.0×106 1.8×105

𝜎! 0.5×105 1.5×105 1.0×105 3.0×104

𝜇! 190 210 200 6.0

𝜎! 0.5 1.5 1 0.30

Let 𝑁!"#"$%&'(! = 19:

 𝛿 =
𝑝!!"! − 𝑝!"#
𝑁!"#"$%&'(! − 1

=
95− 5
19− 1 = 5 (4-14)

 63

Therefore,

𝜇! !"#"$%"&
= 𝜇!!!! , 𝜇!!"!! , 𝜇!!"!! ,… 𝜇!!"!!

𝜎! !"#"$%"&
= 𝜎!!!! ,𝜎!!"!! ,𝜎!!"!! ,…𝜎!!"!!

𝜇! !"#"$%"& = 𝜇!!!! , 𝜇!!"!! , 𝜇!!"!! ,… 𝜇!!"!!

𝜎! !"#"$%"& = 𝜎!!!! ,𝜎!!"!! ,𝜎!!"!! ,…𝜎!!"!!

(4-15)

Figure 4-12 shows plots of J and T parameters over all selected percentile values.

Figure 4-12: Plots of J and T parameters over all selected percentile values.

0.2 0.4 0.6 0.8

1.
7

1.
9

2.
1

2.
3

Percentile

M
ea

n
of

 J
 (M

A/
cm

^2
)

0.2 0.4 0.6 0.8

0.
06

0.
10

0.
14

Percentile

SD
 o

f J
 (M

A/
cm

^2
)

0.2 0.4 0.6 0.8

19
0

19
5

20
0

20
5

21
0

Percentile

M
ea

n
of

 T
 (C

el
si

us
)

0.2 0.4 0.6 0.8

0.
6

1.
0

1.
4

Percentile

SD
 o

f T
 (C

el
si

us
)

 64

Then we compute C from all the possible combinations values of J and T parameters,

and possible set of value C at time t. Then store the results in the database. With the

proposed SHM BN modeling method, these data can be used for all similar

components at any location and time.

Given the data set shown in Figure 4-13 of 𝐽(!) and 𝑇 during an operation.

Figure 4-13: Current density and temperature parameters data set

Figure 4-14 shows a plot of component degradation under electromigration vs. time at

different current density and temperature from the data set, with expected degradation

trend for J=2×106 A/cm2, T=200°C and J=2.3×106 A/cm2, T=210°C.

0 50 100 150 200 250

1.
95

2.
05

2.
15

2.
25

t (hours)

M
ea

n
of

 J
 (M

A/
cm

^2
)

0 50 100 150 200 250

0.
10

0.
15

0.
20

t (hours)

SD
 o

f J
 (M

A/
cm

^2
)

0 50 100 150 200 250

19
9

20
1

20
3

20
5

t (hours)

M
ea

n
of

 T
 (C

el
si

us
)

0 50 100 150 200 250

1.
0

1.
5

2.
0

t (hours)

SD
 o

f T
 (C

el
si

us
)

 65

Figure 4-14: Plot of component degradation under electromigration vs. time.

Figure 4-15 shows the difference between the traditional inference result and the

result from pre-computation method. The results are almost the same, with less than

0.25% error.

Figure 4-15: The difference between results with and without pre-computation method.

0 50 100 150 200 250

0.
2

0.
4

0.
6

0.
8

1.
0

t (hours)

C

J=2e6,T=200
J=2.3e6,T=210
From data

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t (hours)

C

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t (hours)

C

Without pre−computation
With pre−computation

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

t (hours)

Er
ro

r (
%

)

 66

As mentioned in the previous section, with pre-computation method, the accuracy of

inference computation depends mainly on the number of selections of possible values

of the variables. Figure 4-16 shows the percentage error of inference result of

reliability probability due to the EM failure mechanism at t = 200 hours as a function

of number of selections of J and T parameters. The error decreases as the number of

selection increases until it reaches a point where the error remains roughly the same.

From this result, the optimal number of selection is around 10 to 15 selections.

Figure 4-16: Error of inference result vs. number of parameter selections.

The optimal number of selections depends on the accuracy required by the particular

application and how much pre-computation time is available. In more complex

system, the number of selections should also be varied depending on the sensitivity of

each variable.

To demonstrate common factor computational algorithm, consider the Al-strip in the

5 10 15 20 25 30

0
10

20
30

40
50

No. of Selections

Er
ro

r (
%

)

 67

IC example with both electromigration (EM) and stress migration (SM) degradations.

Let CEM and CSM be component critical parameter degrading under EM and SM

respectively.

 𝐶!" = 𝐶!!" 1− 𝐴!!" 𝐽(!) − 𝐽!"#$
(!)

!!"
exp

−𝑄!"

𝐾!𝑇
𝑡!!" (4-16)

 𝐶!" = 𝐶!!" 1− 𝐴!!" 𝐿 !!" exp
−𝑄!"

𝐾!𝑇
𝑡!!" (4-17)

𝐽(!) is the electron current density. 𝐽!"#$
(!) is a critical (threshold) current density which

must be exceeded before significant EM is expected. 𝐿 is the tensile stress in the

metal for a constant strain.

The BN model of a component affected by EM and SM is shown in Figure 4-17.

Figure 4-17: BN of a component with EM and SM degradations

J(e)%

μJ% σJ%

T%

μT% σT%

CEMt%

Pt%

CEMt.1%

A0
EM%

rEM%

mEM%

QEM%

J(e)crit% L%

μσ% σσ%

T%

μT% σT%

CSMt%CSMt.1%

A0
SM%

rSM%

mSM%

QSM%

 68

Assume 𝐽(!), L, and 𝑇 are expected to be normally distributed between time t-1 to t,

 𝐽(!) =𝒩 𝜇!,𝜎! , 𝐿 = 𝜇! ,𝜎! ,𝑇 =𝒩 𝜇! ,𝜎! (4-18)

With traditional BN modeling, both failure modes have temperature as a common

factor. Therefore, the component parameters, CEM and CSM, have the same parent

node, T. In this case, any approximate inference will require full marginal distribution

of both failure mode variables. The amount of time for sampling and computation

increases exponentially with the number of variables in the inference calculation.

With the proposed technique, the failure modes stay modular and approximate

inferences can be achieved at much lower cost because of lower number of variables

in the calculation. For this example, approximate inference calculation will only

involve parameters of failure mode EM and failure mode SM, but not both of them

combined.

Given an example where 𝐶!", 𝐽(!), and 𝐿 are observables and T is an unobservable.

Traditionally, to get and inference for T, the following marginal distribution

computation is required.

 𝜋 𝑇! = 𝑝(𝑇!|𝐶!!" ,𝐶!!" ,𝐶!!!!" ,𝐶!!!!" , 𝐽!
! , 𝐿!) (4-19)

With the proposed methodology, pre-computation of the following inferences for 𝑇!

are computed for all possible values of other parameters with respect to each failure

 69

mode.

 𝜋 𝑇!!" = 𝑝(𝑇!|𝐶!!" ,𝐶!!!!" , 𝐽!
!) (4-20)

 𝜋 𝑇!!" = 𝑝(𝑇!|𝐶!!" ,𝐶!!!!" , 𝐿!) (4-21)

The following table shows the ranges of the parameter of L in N/m2 and T in Celsius,

shown in Table 4-4.

Table 4-4: Ranges and distribution parameters of L and T

Parameter 5th Percentile 95th Percentile Mean Standard
Deviation

𝜇! 1.5×108 2.5×108 2.0×108 3.0×107

𝜎! 0.5×106 1.5×106 1.0×106 3.0×105

𝜇! 190 210 200 6.0

𝜎! 0.5 1.5 1 0.30

If at time t = 100 hours,

𝜇!!!!!" = 0.975,𝜎!!!!!" = 0.005

𝜇!!!" = 0.973,𝜎!!!" = 0.005

𝜇!! = 2×10!, 𝜇!! = 1×10!

(4-22)

 70

From the pre-computation result of EM failure mode,

 𝜇!! = 202.51,𝜎!! = 1.214 (4-23)

With 19 selections in the previous example, the closest parameter values are:

 𝜇!!"!! = 202.31,𝜎!!"!! = 1.202 (4-24)

Given that,

 𝜇!!!!!" = 0.975,𝜎!!!!!" = 0.005 (4-25)

Therefore, from the pre-computation of SM failure mode,

 𝜇!!!" = 0.895,𝜎!!!" = 0.013 (4-26)

This also allows instantaneous inquiry of the states of degradations of all components

in the system without computing full inference of all nodes every time there is new

information. In real applications, a sensor on tensile stress may collect data every

second, while another sensor on current density collect data every a tenth of a second.

The health information of the system can be updated every tenth of a second, without

having to performing approximate inference for EM failure mode as often.

Consider a more complex example where the system consists of 50 electrical

components that have 2 failure modes. Figure 4-18 shows a plot of amount of time

 71

required as a function of number of failure modes that have the same dependent

factor. Assume an approximate inference requires 10,000 iterations to reach

reasonably accurate result. Using the proposed technique, the computation stays

roughly the same, while traditional computation time increases exponentially with the

number of dependent failure modes.

Figure 4-18: Plot of number of computation vs. number of components with the same

dependent factor

5 10 15 201e
+0

4
1e

+2
2

1e
+4

0

No. of Components

N
o.

 o
f C

om
pu

ta
tio

ns

5 10 15 201e
+0

4
1e

+2
2

1e
+4

0

No. of Components

N
o.

 o
f C

om
pu

ta
tio

ns

Traditional
Proposed Technique

 72

Chapter 5: System Health Monitoring and Prognosis

This section presents methods to apply the proposed modeling approach and

computation algorithms for on-line health monitoring, prognosis, and anomaly

detection of a complex system.

5.1 Sensors

One of the most important steps when implementing designing the system for health

monitoring is identifying the observables and how to obtain the measurements. This

is accomplished by adding sensors. It’s crucial to the effectiveness of health

monitoring to deploy the correct sensors at the best possible placements.

There are two classes of sensors that are important to system monitoring for fault

diagnosis and prognosis. The first one is traditional transducers aimed at monitoring

mechanical, structural, performance and operational, and electrical/electronic

properties that relate to failure mechanisms of mechanical, structural, and electrical

systems. The second class is for sensor systems that are placed specifically to track

system properties that are related directly to their failure mechanisms.

The main categories of sensors include mechanical/structure sensor systems, such as,

accelerometers for vibration measurement, strain gauges, and ultrasonic sensor

systems, performance/operational sensors, temperature sensors/thermography, electric

measurements, such as Eddy-current proximity probes and microelectromechanical

 73

system (MEMS) sensors. The physical effects these sensors are detecting are thermal,

electrical, mechanical, humidity, biological, chemical, optical, and magnetic. A

typical sensor system includes sensors, onboard analog-to-digital (A/D) converters,

onboard memory, embedded computational capabilities, data transmission, and power

source or supply.

With the propose methodology, BN shows clearly what critical parameters and

factors required measurement in order to infer the health of the system due to

dominant degradation processes. Figure 5-1 shows and example BN with observable

and unobservable nodes. Identifying observables and unobservables shows which

sensors are important and which are not. The pre-computation results can emphasize

what part of the measurement needs improvement in terms of rate and accuracy.

Figure 5-1: Example BN with observable and unobservable nodes.

Observable)Node) Unobservable)Node)

 74

Consideration for sensors selection includes the parameters to be monitored,

requirements for physical characteristics of PHM sensor system, requirements for

functional attributes of PHM sensor system, cost, reliability, and availability. Sensor

system performances to be considered are accuracy, sensitivity, precision, resolution,

measurement range, repeatability, linearity, uncertainty, response time, stabilization

time, and physical attributes such as size, weight, and shape.

Other functional attributes to be considered are power management, memory

management, sampling rate, cost, reliability, and availability. Signals coming from

sensors can be noisy, low amplitude, or biased. Therefore, there is need for signal pre-

processing, such as signal conditioning, denoising, vibration signal compression.

After that signals are then processing in both time domain and frequency spectrum for

feature selection and extraction.

BN modeling enables easy integration of information from different sources,

including experimental data, historical data, and prior expert opinion. Therefore,

different type of sensors can be combined within the network. BN also includes and

retains all the uncertainties within the system. These uncertainties generated from

sensors may be induced by the varying and uncertain environments, the

unpredictability of hardware and software, noisy and ambiguous sensor systems, and

incomplete and uncertain knowledge of the physics of dynamic systems.

 75

5.2 System Monitoring

Pre-computation allows on-line tracking of the state of the system, including the

status of unobserved variable. While some factors are expected to remain constant or

go through predictable cycle over system operating period, some factors change over

time depending on degradation of components in the system. Inference calculations of

these factors require a combination of their empirical or physics of failure model and

the measurement values. Recursive (sequential) Bayesian estimation is required for

probabilistic inference process in which the hidden (unobserved) variables of a

dynamic system are estimated based on uncertain observations, e.g. due to error in

measurement. (Rabiei & Modarres, 2013).

Let 𝐷! be a node representing the value observed from a detector/sensor to measure

variable 𝜃!, 𝑝 𝜃! 𝜃!!! represent system dynamic, and 𝑝 𝐷! 𝜃! represent

observation model. Figure 5-2 shows dynamic representation of variable 𝜃! and its

observed value over time.

Figure 5-2: Dynamic representation of a variable.

θt#2%

Dt#2%

θt#1%

Dt#1%

θt%

Dt%

p(θt|θt#1)%

p(Dt|θt)%

 76

The procedure for updating the belief about the system state as new information

becomes available is called Bayesian recursive filtering.

 𝑝 𝜃!|𝐷!:! =
𝑝 𝐷! 𝜃! 𝑝 𝜃!|𝐷!:!!!
𝑑𝜃 𝑝 𝐷! 𝜃! 𝑝 𝜃!|𝐷!:!!!

 (5-1)

Under certain assumptions, such as when the system is linear Gaussian, the belief

state will be of a known parametric form and computationally efficient solutions to

the filtering problem (e.g. Kalman filter, extended Kalman filter, unscented Kalman

filter) are available (Kalman, 1960) (Julier & Uhlmann, 1997). Outside such

assumptions, a computationally feasible method for inference in the DBN is particle

filtering, a form of sequential Monte Carlo based on Bayesian recursive filtering.

Common particle filtering methods are based on sequential importance sampling

(SIS) (Chen, 2003) (Appendix D).

Using the pre-computation method, values of these variables can be derived

instantaneously, making it possible to continuously monitor all variables in the

system. This provides more up-to-date and complete information of the system state

than the traditional RUL estimation method.

5.3 Probabilistic Prognosis of Remaining Useful Life

Diagnostic capabilities traditionally have been applied at or between the initial

detection of a system, component, or subcomponent failure and complete system

 77

catastrophic failure. More recent diagnostic technologies are enabling detections to be

made at much earlier incipient fault stages.

Prognostics and health management (PHM) refers specifically to the phase involved

with predicting future behavior, including remaining useful life (RUL), in terms of

current operating state and the scheduling of required maintenance actions to

maintain system health. RUL quantifies the amount of time until a system reaches

some failure criterion, e.g. fault magnitude or performance metric crosses a threshold

or system is no longer operable. Ideally, the uncertainty in RUL is quantified by

estimating the distribution of RUL, resulting in a probabilistic prognosis.

RUL is estimated by calculating the amount of time that the component critical

parameter will reach a critical value, 𝐶!"#$ given the model and the current state of

degradation. For an exponential model:

 𝑅𝑈𝐿 = 𝑇!"#$%&' =
1

±𝐴! 𝐹!,… ,𝐹!
𝐶!"#$ − 𝐶

𝐶

!/!

 (5-2)

With inference pre-computation results, RULs related to each failure mechanism can

be estimated at any state of the system and at any point in time, given the trajectory of

the degradation process. Table 5-1 shows the RUL estimation algorithm.

 78

Table 5-1: RUL estimation algorithm

Algorithm: RUL estimation

Input: component critical parameter history (𝑪𝟎,… ,𝑪𝑻), component related
variables (𝑿𝑪), degradation function (𝑭𝑪), critical parameter threshold (𝑪𝒕𝒉), current
time (𝑻), time step (∆𝒕), database of inference results

Output: RULs related to possible trajectories for all 𝑪

01. for each 𝑪 as 𝑪𝒊

02. match 𝑪𝟎𝒊 ,… ,𝑪𝑻𝒊 to a trajectory of 𝑪𝒊 with certain values of 𝑿𝑪,𝒊 given 𝑭𝑪,

03. for 𝒕 increment by ∆𝒕 until 𝑪𝒕𝒊 reaches 𝑪𝒕𝒉𝒊

04. look up the database for 𝑪𝒕𝒊 given 𝑪𝒕!∆𝒕𝒊 and 𝑿𝑪,𝒊

05. if 𝑪𝒕𝒊 reaches 𝑪𝒕𝒉𝒊

06. estimate and store RUL for 𝑪𝒊

07. return RUL estimates

Even though there are many possible trajectories, no MCMC inference is required

because RULs can be retrieved by recursively going through the inference database.

And since it is only for component critical parameters, which are modular according

to the proposed modeling approach, the number of computations is much smaller

compared to large number of iterations in MCMC inference.

5.4 Anomaly Detection

Aside from monitoring the health of the system, it is crucial to be able to detect any

 79

unexpected anomaly that could potentially cause system failure. There are three types

of anomaly detection:

1. Value Checks: check whether the values are plausible. The values must follow

certain constraints of the particular model, such as “the value cannot be zero” or “the

value must always increase or decrease over time”. They also have to be within the

expected ranges.

 𝜃! − 𝜃!!! < 𝜖!,! (5-3)

Where 𝜖!,! depends on the sensitivity of variable status due to the change over time

Δ𝑡 = 𝑡! − 𝑡!!!.

2. Relationships Checks: check the relationship between nodes in the system, whether

they follow the dependencies encoded in the model. Given the model 𝑆, the values of

observable parameters {𝜃!!}, and the state of system in the previous time slice {𝜃!!!},

the observable values follow the relationship constraints within the model.

 𝑝 𝜃!! |𝑆, 𝜃!!! > 𝜖! (5-4)

Where 𝜖! is the minimum acceptable probability of the observable values.

3. Failure trajectories check: check whether the component degradation processes are

within the expected ranges. This detects if certain trajectories of a processes will

 80

make the component parameters reach critical thresholds earlier than anticipated.

 𝑇!"#$%&' 𝜃|𝑆, {𝜃0,𝜃1,… ,𝜃𝑡} ≪ 𝑇!"#$%&' 𝜃|𝑆 (5-5)

These trajectories can be detected using pattern recognition of the current state of the

system comparing to the predicted trajectories in the database from pre-computation.

Since pattern recognition captures trajectories of failure processes before component

critical value reaches a certain threshold, it can detect possible failure earlier than

checking failure probability of the component. Figure 5-3 shows a timeline

comparison between pattern recognition and traditional failure detection estimate.

Figure 5-3: Timeline comparison for pattern recognition against traditional failure detection.

The pattern recognition algorithm uses the RUL estimates from pre-computation

inference database to predict time to failure.

𝑅𝑈𝐿! = RUL trajectory! ≈ 𝑅𝑈𝐿(𝑚𝑎𝑡𝑐ℎ𝑒𝑑 {𝜃!,𝜃!,… ,𝜃!}!)

Therefore, using the database, the RUL of the system can be tracked, and

continuously monitored for possible failure much earlier before failure probability

reaches the threshold.

!me$

Opera!on$ Failure$

Tradi!onal$Failure$Detec!on$

Pa5ern$Recogni!on$

 81

5.5 Example

Consider the EM failure example in previous chapter. The trajectory RUL database

can be created from the generated inference pre-computation database.

Using the same setup. Assuming the following values:

𝐴! = 5×10!!", 𝑟 = 2,𝑚 = 3,𝑄 = 0.8,𝐾! = 0.0000862

𝜇!!! = 0.7,𝜎!!! = 0.1
(5-6)

By simulating 50 data sets of J and T, Figure 5-4 shows the time differences between

trajectory pattern recognition method and traditional failure detection estimation. The

difference shows how much earlier the pattern recognition method detects incoming

failure before the traditional method and it increases proportionally with the total time

to failure of the component for the given dataset.

 82

 Figure 5-4: Time difference for failure detection between pattern recognition and

traditional method.

120 140 160 180 200 220 240 260

12
14

16
18

20
22

24

time to failure (hours)

Ti
m

e
D

iff
er

en
ce

 to
 d

et
ec

t f
ai

lu
re

 (h
ou

rs
)

 83

Chapter 6: Parameter and Structure Learning

In addition to monitoring health of the system, if data obtained during an operation

turn out to be much different from the expected model, it’s crucial that the model gets

updated to correct the discrepancies. Learning the parameters and structure of a BN

can be considered a specific example of the general problem of selecting a

probabilistic model that explains a given set of data (Friedman, Nachman, & Peer,

1999).

6.1 Parameter learning

Assume that the joint probability distribution for X can be encoded in some network

structure S.

 𝑝 𝒙|𝜽!, 𝑆! = 𝑝(𝑥!|𝐩𝐚! ,𝜽! , 𝑆!)
!

!!!

 (6-1)

𝜽! is the vector of parameters for the distribution 𝑝(𝑥!|𝐩𝐚! ,𝜽! , 𝑆!)

𝜽! is the vector of parameter (𝜃! ,… ,𝜃!)

𝑆! is the event (hypothesis) that the joint probability distribution can

be factored according to S

The problem of learning probabilities in a Bayesian network can be stated as follows:

given a random sample 𝐷 = 𝑥!,… , 𝑥! and the prior distribution 𝑝 𝜽!| 𝑆! ,

 84

compute the posterior distribution 𝑝 𝜽!| 𝐷, 𝑆! .

To compute the posterior efficiently and in closed form, two assumptions must be

made.

1. There are no missing data (the data set D is complete)

2. The elements of parameter vector 𝜽! are mutually independent. That is,

 𝑝 𝜽!| 𝑆! = 𝑝(𝜽!"|𝑆!)
!!

!!!

!

!!!

 (6-2)

In the case of Bayesian learning, instead of seeking point estimates, we seek a

posterior distribution (density) over network parameterizations p(θ|D), conditioned on

the data. This posterior can in turn be used to identify point estimates (such as the

mean or the mode), or one can otherwise take the average over all possible

parameterizations. In the complete data case, we have a simple closed form, when a

suitable prior over parameters is assumed.

If data set D is incomplete (has missing values), the parameter learning task is more

difficult since, in general, there is no tractably computable closed form. However,

there are still effective learning algorithms for this case, such as gradient ascent,

Gibbs sampling and expectation-maximization (EM). Such algorithms are often

iterative, and intuitive, make inferences about the data to complete the missing

values, which in turn are used to update the model parameters.

 85

A further approximation is based on the observation that, as the sample size increases,

the effect of the prior 𝑝 𝛉!|S! diminishes. Thus, we can approximate 𝛉! by the

maximum likelihood (ML) configuration of 𝜽!:

 𝜽! = argmax𝜽! 𝑝 𝐷|𝜽!, 𝑆
! (6-3)

There are many techniques for finding a maximum likelihood (ML) or maximum a

posteriori (MAP). One class of them is gradient-based optimization. For example,

using gradient ascent, a local maximum can be found by following the derivatives of

𝑔 𝜽! or the likelihood 𝑝 𝐷|𝜽!, 𝑆! .

Another technique for finding a local ML or MAP is the expectation-maximization

(EM) algorithm (Dempster, 1977). EM is an efficient iterative procedure that searches

for maximum likelihood estimates, in the presence of missing data. At a high level,

each iteration of the EM algorithm consists of two steps: The E-step, and the M-step.

We start with some initial guess of the network parameters. In the expectation, or E-

step, we compute expected counts, based on our current estimates. In the M-step, we

treat the expected counts like complete data, and compute the maximum likelihood

estimates from them. We typically repeat this iterative process until it no longer

improves the likelihood.

With the proposed pre-computation database, the observed variables can be adjusted

 86

according to the physics of failure model to compensate for the error in model

parameters.

6.2 Structure learning and discovery

Besides differences in model parameters, there is a possibility of a hidden structure

that is not expected when BN is implemented. Figure 6-1 shows an example of an

unanticipated factor of a degradation process affecting another degradation process.

With modular design and pre-computation database, hidden relationship can be

discovered simply by Bayesian inference.

Figure 6-1: Example BN with a hidden structure.

If the network structure that encodes the physical joint probability distribution for X

is uncertain and can be improved. The uncertainty can be encoded by defining a

 87

variable whose states correspond to the possible network-structure hypotheses 𝑆!,

and assessing the probabilities 𝑝 𝑆! . Then, given a random sample D, the posterior

distribution 𝑝 𝑆!|𝐷 and 𝑝 𝜽!|𝐷, 𝑆! can be computed and used to compute

expectations of interest. For example:

 𝑝 𝑥!!!|𝐷 = 𝑝 𝑆!|𝐷
!!

𝑝 𝑥!!!|𝜽!, 𝑆! 𝑝 𝜽!|𝐷, 𝑆! 𝑑𝜽! (6-4)

In performing the sum, we assume that the network-structure hypotheses are mutually

exclusive.

The computation of 𝑝 𝑆!|𝐷 is straightforward using Bayes’ theorem:

 𝑝 𝑆!|𝐷 =
𝑝 𝑆! 𝑝 𝐷|𝑆!

𝑝(𝐷) (6-5)

Where p(D) is a normalization constant that does not depend upon structure. Thus, to

determine the posterior distribution of network structure, we need to compute the

marginal likelihood of the data 𝑝 𝐷|𝑆! for each possible structure.

 88

Chapter 7: Maintenance and Decision Making

Decision-making methodologies in SHM take RUL estimates derived from prognosis

to develop and select maintenance policies or perform condition-based maintenance.

While advanced diagnostics and prognostics provide vital information, good decision

making with that information requires a methodology that effectively utilizes

available information.

Figure 7-1: Diagram of the proposed SHM process.

Figure 7-1 shows a diagram of the proposed SHM process where empirical model and

sensors information are used to generate pre-computation results, which are use for

health monitoring to the system. If anomaly is detected during an operation, fault

diagnosis is processed to help with maintenance decision-making. Past operation data

that leads to anomaly is then used for parameter and structure learning to update the

Empirical/Physics.
of.failure3Model3

Pre.computa7on3with3
Dynamic3Programming3

Data3
Collec7on3

Health3
Monitoring3

Sensor3Placement3
and3Iden7fica7on3

Observables3and3
Unobservables3Iden7fica7on3

Anomaly3
Detec7on3

Fault3Diagnosis3

Maintenance3Decision3

Parameter/Structure3
Learning3

 89

model for future health monitoring and prognosis.

7.1 Condition-based Maintenance

Condition-based maintenance (CBM) is the use of machinery run-time data to

determine the machinery condition and hence its current fault/failure condition, which

can be used to schedule required repair and maintenance prior to breakdown. Since

corrective/reactive maintenance can have severe performance costs, preventive/

scheduled maintenance is important to replaces parts before the end of their useful

life.

CBM optimizes the tradeoff between maintenance costs and performance costs by

increasing availability and reliability while eliminating unnecessary maintenance

activities. The benefits of implementing CBM include: increased system availability,

increased system reliability, reduced maintenance costs, and reduced inventories.

Potential of PHM is to reduce operational and support cost (O&S), reduce life-cycle

total ownership cost (TOC), and improved safety of machinery and complex systems.

There are several ways to management the cost, such as maintenance planning cost

avoidance, discrete event simulation maintenance planning model, fixed-schedule

maintenance interval, and precursor to failure monitoring.

To perform a cost-benefit analysis, first there needs to be an established baseline

condition. Then use a condition-based maintenance to reduce breakdown maintenance

 90

cost. The number of maintenance events that may be avoided is estimated by

thresholding failure probabilities of critical components and computing approximate

times to failure. The aggregate life-cycle cost can then be calculated, including

intangible benefits and the projected cost of CBM. CBM implementation costs

include nonrecurring costs, recurring costs, infrastructure costs and nonmonetary

considerations and maintenance culture.

7.2 Risk Informed Decision Making

Risk-informed decision-making is the process of using information about risk to

assist in decision-making. This would include decisions regarding actions such as:

frequency of inspection; need for increased instrumentation; need for additional

technical studies; assessment of how uncertainties affect the level of risk; sufficiency

of evidence to support the need for remedial action; selection of a remedial action to

address an identified deficiency; prioritization of projects or actions; and the sequence

in which remedial actions are taken.

Risk-informed decision making is distinguished from risk-based decision making in

that it is a fundamentally deliberative process that uses a diverse set of performance

measures, along with other considerations, to inform decision making. The process

acknowledges the role that human judgment plays in decisions, and that technical

information cannot be the sole basis for decision making. This is not only because of

inevitable gaps in the technical information, but also because decision making is an

 91

inherently subjective, values-based enterprise. In the face of complex decision

making involving multiple competing objectives, the cumulative wisdom provided by

experienced personnel is essential for integrating technical and nontechnical factors to

produce sound decisions (NASA, 2010).

It is crucial for decision maker to have as much as information as possible at the time

of decision making to ensure the best possible outcome. In mission critical

applications where decisions need to be made in a short period of time, on-line

system health monitoring becomes crucial. A complete picture of the state of the

system helps prioritize the response action to avoid failures.

The proposed methodology not only provides on-line system health information, the

inference pre-computation database gives the decision makers a tool to inquire

expected values of system parameters given knowledge about some of the parameters.

This is very useful for comparing different available choices and scenarios. And the

results can be computed quickly even in a large complex engineering system.

Pre-computation database enables system operator to perform online sensitivity

analysis of all components in the system. The analysis computes the overall system

reliability given that a particular component is considered to have zero failure

probability.

 𝑝 𝑆 ! = 𝑃 𝑆| 𝐶!,𝐶!,… ,𝐶! ,… ,𝐶! ,𝑝 𝐶! = 1 𝑓𝑜𝑟 𝑖 = 1…𝑛 (7-1)

 92

Result of the analysis will show which component degradation process predominantly

influents the overall system health, and how much system reliability will increase

after a repair or replacement. Combine this information with the costs of components

or the repair costs, the operator can make the most cost effective decision to improve

the system reliability.

 93

Chapter 8: Example Application

8.1 Unmanned Aerial Vehicle (UAV)

Unmanned aerial vehicle (UAV) is an aircraft without a human pilot aboard. Its flight

is controlled either autonomously by onboard computers or by the remote control of a

pilot on the ground or in another vehicle.

Since their creation, UAVs have found many uses in police, military, and in some

cases, civil applications. Currently, UAVs are most often used for the following tasks:

• Aerial Reconnaissance – UAVs are often used to get aerial video of a remote

location, especially where there would be unacceptable risk to the pilot of a

manned aircraft.

• Scientific Research – In many cases, scientific research necessitates obtaining

data from hazardous, or remote locations.

• Logistics and Transportation – UAVs can be used to carry and deliver a

variety of payloads.

• Oil, gas, and mineral exploration and production. UAVs can be used to

perform geophysical surveys, in particular geomagnetic surveys. For above-

ground pipelines, this monitoring activity could be performed using digital

cameras mounted on one or more UAVs.

Some of the first UAVs were called “drones” and were not autonomous, because they

 94

required constant control input from a remote human pilot. Computer technology now

allows UAVs to make their own decisions, or fly autonomously. Autonomous flight

involves the UAV making decisions as it flies.

Generally, autonomous flight consists of the following operations:

• Interpreting sensor input, and merging the input of multiple sensors

• Communicating with ground stations, satellites, and other UAVs and aircraft

• Determining the ideal course to fly for a given mission, based on sensor input.

• Determining the best maneuvers to perform for a given task

• In some cases, cooperating with other UAVs to accomplish a common task.

8.2 System Health Management for UAV

There is a need for advanced health management systems for UAV to be able to do

the following, in case of anomalies:

• Can quickly and reliably pinpoint failures,

• Carry out accurate diagnosis of unexpected scenarios, and,

• Based upon the determined root causes, make informed decisions that

maximize capabilities to meet mission objectives while maintaining safety

requirements and avoiding safety hazards.

This system is perfect for demonstration of the proposed methodology because of the

 95

following reasons:

• It’s a mission critical application. Failure is catastrophic.

• It requires high precision information with uncertainties, such as flying path

and altitude.

• It’s a fairly complex system. There are many components/functionalities and

many types of failure modes.

• There are possibilities of operating under harsh conditions/environment.

• It benefits from remote computation/decision. A powerful onboard computer

is not available. With this methodology it only need onboard storage unit.

8.3 Quadcopter

A quadcopter is picked for the example application due to its ubiquity recently in

many applications. A quadcopter, also called a quadrotor helicopter, quadrotor is a

multirotor helicopter that is lifted and propelled by four rotors. Quadcopters are

classified as rotorcraft, as opposed to fixed-wing aircraft, because their lift is

generated by a set of rotors.

Unlike most helicopters, quadcopters use 2 sets of identical fixed pitched propellers;

2 clockwise (CW) and 2 counter-clockwise (CCW). These use variation of RPM to

control lift and torque. Control of vehicle motion is achieved by altering the rotation

rate of one or more rotor discs, thereby changing its torque load and thrust/lift

 96

characteristics.

Quadcopter is useful in public safety applications, such as crime or accident

investigation, intelligence and evidence gathering, traffic and crowd control, tactical

operations (barricade, hostage, raid) search and rescue, fire control and damage

assessment, and emergency and disaster response. It also has been use in industrial

commercial, such as infrastructure inspection, 3D models and volumetric analysis,

precision agriculture, gas leak detection, environmental and wildlife monitoring,

photography, site and infrastructure security, and construction site planning and

monitoring

8.4 Technical Specifications

The prototype that will be used for technical specifications in this analysis is the

Aeryon Scout show in Figure 8-1.

 97

Figure 8-1: The Aeryon Scout.

The Aeryon Scout (Aeryon Labs Inc., 2014) is a Vertical Take-Off and Landing

(VTOL) sUAS – ideal for providing an immediate eye in the sky for public safety,

commercial and industrial users. The Scout can be operated beyond the line of sight

up to 3 kilometres (1.9 miles) from the user. It is controlled with a Tablet PC-based

interface and piloted by pointing to an area on the map. The Scout constantly

monitors external conditions such as wind speed, as well as internal functions, such as

battery level, allowing it to make an automated decisions en route to return home,

land immediately or hover and wait.

Table 8-1 shows specifications of the Aeryon Scout that will be used in this analysis.

 98

Table 8-1: Quadcopter prototype technical specifications

Technical Specification Value

Endurance Up to 25 minute flight time (with payload)

Wind Tolerance
30 mph (50 kph) sustained

50 mph (80 kph) gusts

Environmental Temperature Range -22 –122°F (-30 – 50°C)

Line-of-Sight Range 2,500 ft. (750 m) integrated capability

Altitude
1,500 ft. (450 m) AGL

15,000 ft. (4,500 m) MSL

Launch & Recovery Method Vertical Take-Off and Landing (VTOL)

Dimension
28 in. (72 cm) diameter,

8.5 in. (20 cm) height

Weight 3 lbs (1.4 kg)

Radio Frequencies 900 Mhz, 2.4 GHz

Control and Data Link Low-latency all-digital network

Security Secure network pairing, AES 256 bit
encryption

 99

8.5 Components and Functionalities

Table 8-2 lists the components of quadcopter and their related functionalities. The

table also includes details of each component for use in the analysis.

Table 8-2: Quadcopter components and functionalities

Component Functionality Detail

Frame The structure that holds all

the components together

Carbon fiber, Aluminum alloy

connector, Width: 498mm, Height:

80mm, Weight 240g

Propeller Converting rotational

motion into thrust

10x4.5 SF Props 2pc Standard

Rotation/2 pc RH Rotation

Rotors Provide the necessary

thrust to propel the craft

Brushless DC motors, 1650rpm/V,

7.2v-11.1v, Max Power: 180w,

Max Current: 17.5A, No Load

Current: 1.3A, Thrust: 520g

Electronic Speed

Controller (ESC)

Motor controller board that

has a battery input and a

three phase output for the

motor

Plush 25 Brushless Speed

Controller, Continuous Current

25A, Burst Current: 35A, BEC

Mode Linear, BEC: 5v/2A, • Motor

speed: (Maximum): 210000 RPM

(2 poles), 70000 RPM (6 poles),

35000 RPM (12 poles)

 100

Component Functionality Detail

Inertial

Measurement

Unit (IMU)

An electronic sensor device

that measures the velocity,

orientation and

gravitational forces

Triple Axis Accelerometer & Gyro

Breakout, 3-axis gyroscope and a 3-

axis accelerometer, onboard Digital

Motion ProcessorTM (DMPTM),

I2C Digital-output of 6 or 9-axis

MotionFusion data, Input Voltage:

2.3 - 3.4V, Tri-Axis angular rate

sensor (gyro) with a sensitivity up

to 131 LSBs/dps and a full-scale

range of ±250, ±500, ±1000, and

±2000dps, Tri-Axis accelerometer

with a programmable full scale

range of ±2g, ±4g, ±8g and ±16g,

Digital-output temperature sensor

Flight Control

Board (FCB)

Microcontroller KK2.0 Multi-rotor LCD Flight

Control Board, Atmel Mega324PA

8-bit AVR RISC-based

microcontroller with 32k of

memory, Piezo buzzer, 6 Pin

USBasp AVR Programming

interface, Signal from Receiver:

1520us, Signal to ESC: 1520us

 101

Component Functionality Detail

Power

Distribution

Board

Distribute power to ESC

and rotors

Gold plated, Current: 4 x 20A

Outputs (MAX), Power Input:

XT60 with 12AWG wire, Motor

output: 4 x 3.5mm Female bullet

plug, Aux output: 2 pin JST

compatible

Wiring Transfer power and

electronic signal

Pure copper, pure silicone, Temp

rating: 200Deg C Guage: AWG 16#

Battery Power Source Lithium Polymer (LiPo), 3 Cell

(3S) 11.1 volts, 2200MAH, 20C

constant discharge rate (30C burst

discharge rate), Connector Plug:

XT60 connector

RC Transmitter/

Receiver

Transmit/Receive control

signal

2.4ghz ISM Frequency Range,

Resolution: 1024, Modulation:

GFSK, Spread Spectrum Mode:

FHSS, Channel: 7 (inc RX Battery

Input, Power: 4.5v ~ 9.6v/<30ma

The components can be separated in to 4 categories: flight control system, structure,

power, and communication. Figure 8-3 presents a diagram showing the categories and

the relationships among components.

 102

Figure 8-2: Diagram of components in a quadcopter.

Power&Distribu-on&Board&

RC&Transmi6er/Reciever&

IMU&

Ba6ery&

Propellers&

Rotors&

Frame&

ESC&

Filgith&Control&Board&

Communica)on* Structure*

Flight*Control*System* Power*

 103

8.6 Component Failure Modes and Failure Mechanisms

The first step is to identify the failure modes and their factors within the system. For

each component, the dominant failure modes and mechanisms are shown in Table

8-3.

Table 8-3: Quadcopter component failure modes

Component Failure Modes Failure Mechanisms Factors

Frame Structure Failure

Mechanical Fastener
Failure

Fatigue-induced
Fracture (fr-fat)

Creep-induced
Fracture (fr-cr)

Stress

Vibration

Temperature

Propeller Loss of function

Overspeeding

Overtorque

Blade/propeller
separation

Fatigue-induced
Fracture (pr-fat)

Creep-induced
Fracture (pr-cr)

Corrosion-induced
Failures (pr-co)

Cycle stress

Moisture

Vibration

Temperature

Rotor Actuator Fault

Overheating

Motor shaft failure

Bearing failure

Rotor failure

Misalignment

Overspeeding

Fatigue (rot-fat)

Corrosion (rot-co)

Thermal Expansion
(rot-te)

Moisture

Vibration

Temperature

Cycle stress

Current

Transient

 104

Component Failure Modes Failure Mechanisms Factors

Electronic Speed
Controller (ESC)

Burnout

Conduction failure

Software failure

Overvoltage

Electromigration
(esc-em)

Thermal Expansion
(esc-te)

Voltage

Vibration

Temperature

Inertial
Measurement
Unit (IMU)

Sensor Fault

Loss of signal

Incorrect signal

Calibration Error

Stress Migration
(imu-sm)

Corrosion (imu-co)

Vibration

Temperature

Humidity

Flight Control
Board

Loss of Control
Board

Overheating

Software/Firmware
Errors

Overvoltage

Electromigration
(fcb-em)

Stress Migration
(fcb-sm)

Time-Dependent
Dielectric
Breakdown (fcb-
tddb)

Hot-Carrier Injection
(fcb-hci)

Temperature

Voltage

Vibration

Humidity

Electric field

Current

Tensile stress

Battery Overheating

Depletion

Electrode Cracking

Corrosion (bat-co)

Thermal Expansion
(bat-te)

Voltage

Temperature

Vibration

Humidity

 105

Component Failure Modes Failure Mechanisms Factors

RC Transmitter/
Receiver

Loss of transmitter

Overvoltage

Electromigration (rc-
em)

Time-Dependent
Dielectric
Breakdown (rc-tddb)

Hot-Carrier Injection
(rc-hci)

Current

Electric field

Voltage

Temperature

Wiring Cable Failures

Connector Failure

Short Circuits

Excessive Ohmic
heating

Overvoltage

Electromigration (wi-
em)

Corrosion (wi-co)

Thermal Expansion
(wi-te)

Vibration

Temperature

Voltage

Current

Humidity

8.7 Bayesian Network Modeling

Using the component functionalities and their failure modes, we can construct the BN

for this quadcopter, shown in Figure 8-3. The nodes can be identified using the

following abbreviations.

Functionalities: system (sys), flight related (flight), structure support (struct), flight

control (contr), electronics (elec), power (pow), communication (com).

Components: frame (fr), propeller (prop, pr), rotor (rot), electronic speed controller

 106

(esc), inertia measurement unit (imu), flight control board (fcb), wire (wi), battery

(bat), remote control transmitter/receiver (rc).

Degradation mechanisms: fatigue (fat), creep (cr), corrosion (co), thermal expansion

(te), electromigration (em), stress migration (sm), time-dependent dielectric

breakdown (tddb), hot-carrier injection (hci).

Figure 8-3: Quadcopter BN model.

!sys!

flight! !com!

struct!

contr!

frame! !prop!
elec!

!pow!

!fr5
fat! !fr5cr! !pr5

fat!
!pr5
cr!

!pr5
co!

rotor! !esc! !imu! !fcb!

!bat!

!rc!

!wire!

!bat5
co!

!bat5
te!

!rot5
fat!

!!rot5
co!

!rot5
te!

!esc5
em!

!esc5
te!

!imu5
sm! !imu5

co!

!fcb5
tddb!

!fcb5
hci!

!fcb5
sm!

!fcb5
em!

!rc5
em!

!rc5
hci!

!wi5
em!

!wi5
co! !wi5

te!

!rc5
tddb!

 107

Table 8-4 shows each failure mode BN with their degradation function and

explanation of the related factors.

Table 8-4: Failure mode BN and degradation function

Failure Mechanism Degradation Function

Electromigration

Figure 8-4: Electromigration BN

𝐶 = 𝐶! 1− 𝐴! 𝐽(!) − 𝐽!"#$
(!)

!
e

!!
!!! 𝑡!

• 𝐴! is a process/material-dependent

coefficient

• 𝐽 ! is the electron current density

• 𝐽!"#$
! is a critical (threshold) current

density

• 𝑟 is an empirically determined exponent

• 𝑄 is the activation energy

Stress Migration

Figure 8-5: Stress migration BN.

𝐶 = 𝐶! 1− 𝐴!𝐿!e
!!
!!! 𝑡!

• 𝐴! is a process/material-dependent

coefficient

• 𝐿 is the tensile stress in the metal for a

constant strain

• 𝑟 is an empirically determined exponent

• 𝑄 is the activation energy

J(e)%

μJ% σJ%

T%

μT% σT%

Ct%Ct+1%

A0
%

r%

m%

Q%

J(e)crit%

L"

μL" σL"

T"

μT" σT"

Ct"Ct(1"

A0
"

r"

m"

Q"

 108

Failure Mechanism Degradation Function

Time-Dependent Dielectric

Breakdown (TDDB)

Figure 8-6: TDDB BN.

𝐶 = 𝐶! 1− 𝐴!e !!!" e
!!
!!! 𝑡!

• 𝐴! is a process/material-dependent

parameter

• 𝛾 is the field-acceleration parameter

• 𝐸!" is the electric field in the oxide and

is given by the voltage dropped 𝑉!"

across the dielectric divided by the

oxide thickness 𝑡!"

• 𝑄 is the activation energy

Hot-Carrier Injection (HCI)

Figure 8-7: HCI BN.

𝐶 = 𝐶! 1− 𝐴!
𝐼!"#
𝑤

!

e
!!
!!! 𝑡!

• 𝐴! is a process/material-dependent

coefficient

• 𝐼!"# the peak substrate current during

stressing

• 𝑤 is the width of the transistor

• 𝑟 is an empirically determined exponent

• 𝑄 is the activation energy

Eox$

μEox$ σEox$

T$

μT$ σT$

Ct$Ct*1$

A0
$

r$

m$

Q$

γ$

Isub%

μI% σI%

T%

μT% σT%

Ct%Ct+1%

A0
%

r%

m%

Q%

w%

 109

Failure Mechanism Degradation Function

Corrosion

Figure 8-8: Corrosion BN.

𝐶 = 𝐶! 1− 𝐴!e
! !
!" e

!!
!!! 𝑡!

• 𝐴! is a process/material-dependent

parameter

• 𝑏 is the reciprocal humidity dependence

parameter

• 𝑅𝐻 is the relative humidity expressed

as a %

• 𝑄 is the activation energy

Fatigue

Figure 8-9: Fatigue BN.

𝐶 = 𝐶! 1− 𝐴! ∆𝜎 − ∆𝜎!"#$%&' !𝑡!

• 𝐴! is a process/material-dependent

parameter

• ∆𝜎 is the total stress range

• ∆𝜎!"#$%&' is the portion of total stress

range that is in elastic region

• 𝑟 is an empirically determined exponent

RH#

μRH# σRH#

T#

μT# σT#

Ct#Ct)1#

A0
#

r#

m#

Q#

b#

Δσ#

μΔσ#
#

σΔσ#

Ct#Ct'1#
r#

m#

A0
#

Δσe#

 110

Failure Mechanism Degradation Function

Creep Induced Failure

Figure 8-10: Creep induced failure BN.

𝐶 = 𝐶! 1− 𝐴! 𝐿 − 𝐿!"#$%
!e

!!
!!! 𝑡!

• 𝐴! is a process/material-dependent

coefficient

• 𝐿 is the constant applying stress

• 𝐿!"#$% is the yielding stress

• 𝑟 is an empirically determined exponent

• 𝑄 is the activation energy

Thermal Expansion

Figure 8-11: Thermal Expansion BN.

𝐶 = 𝐶! 1− 𝐴! 𝑇 − 𝑇! !e
!!
!!! 𝑡!

• 𝐴! is a process/material-dependent

coefficient

• 𝑇! is the temperature at which zero

stress exists in the material

• 𝑟 is an empirically determined exponent

• 𝑄 is the activation energy

L"

μL" σL"

T"

μT" σT"

Ct"Ct(1"

A0
"

r"

m"

Q"

Lyield"

T"

μT" σT"

T0"

Ct"Ct(1"

A0
"

r"

m"

Q"

 111

8.8 Sensor Data

There are sensors in both the IMU and flight control board that measure temperature,

vibration, current, voltage, and humidity. Strain gauge can be installed on the frame

and propeller to measure stress. Table 8-5 and Table 8-6 shows the sensor data and

there ranges for this applications. Flight control board collects data from the sensors

at the sampling rate of 10 Hz.

Table 8-5: Internal sensor data

Sensor/Data Unit Range

Voltage Volt 0-15

Current A 0-25

Propeller Rotation Speed RPM 0-1650

Battery Storage mAh 0-2200

Table 8-6: External sensor data

Sensor/Data Unit Range

Temperature Celsius -25 - 100

Humidity % RH 0 - 100

Mechanical Stress N/m2 1×108 - 8×108

 112

With the above sensor information, we can identify observables and unobservables in

the system. Assuming all components experience the same temperature and humidity

in the air, and the same vibration throughout the structure, these factors are classified

as common and observables. Voltage, current, and stress are different for each

component. Some of them are observables sand some of them are unobservables.

8.9 Pre-computation

The next step is to do inference pre-computation for unobservable values from all the

possible observable values. Figure 8-12 show examples of pre-computation inference

results for the critical failure parameters of all the failure modes in the quadcopter

model at the over the range of external factors. Model parameters used in the

calculations are derived from various empirical sources (McPherson, 2010) (Ashby &

Jones, 2005) (Anderson, 1995) (Silbey & Alberty, 2001) (Sze, 2002).

 113

Figure 8-12: Example of quadcopter pre-computation results over the ranges of factors

5000 20000

0.
0

0.
6

t (hours)

C
 fr
−f

at

5000 20000

0.
0

0.
6

t (hours)

C
 fr
−c

r

1000 4000

0.
0

0.
6

t (hours)

C
 p

r−
fa

t

1000 5000

0.
0

0.
6

t (hours)

C
 p

r−
cr

4000 10000

0.
0

0.
6

t (hours)

C
 p

r−
co

2000 5000
0.

0
0.

6
t (hours)

C
 ro

t−
fa

t
3000 7000

0.
0

0.
6

t (hours)

C
 ro

t−
co

0 15000

0.
0

0.
6

t (hours)

C
 ro

t−
te

4000 12000

0.
0

0.
6

t (hours)

C
 e

sc
−e

m

0 15000

0.
0

0.
6

t (hours)

C
 e

sc
−t

e

5000 20000

0.
0

0.
6

t (hours)
C

 im
u−

sm
4000 10000

0.
0

0.
6

t (hours)

C
 im

u−
co

5000 20000

0.
0

0.
6

t (hours)

C
 fc

b−
em

5000 20000

0.
0

0.
6

t (hours)

C
 fc

b−
sm

10000 25000

0.
0

0.
6

t (hours)

C
 fc

b−
td

db

6000 12000

0.
0

0.
6

t (hours)
C

 fc
b−

hc
i

2000 8000

0.
0

0.
6

t (hours)

C
 w

i−
em

5000 20000

0.
0

0.
6

t (hours)

C
 w

i−
co

5000 25000

0.
0

0.
6

t (hours)

C
 w

i−
te

4000 12000

0.
0

0.
6

t (hours)

C
 b

at
−c

o

0 15000

0.
0

0.
6

t (hours)

C
 b

at
−t

e

4000 12000

0.
0

0.
6

t (hours)

C
 rc
−e

m

5000 15000

0.
0

0.
6

t (hours)

C
 rc
−t

dd
b

6000 12000

0.
0

0.
6

t (hours)

C
 rc
−h

ci

 114

8.10 System Monitoring

With the inference pre-computation database, we have complete information about

the state of the system over time given data of the observables. Figure 8-13, Figure

8-14, and Figure 8-15 show the reliability of components, functionality probabilities,

and system reliability, respectively. All of the plots show results from two different

sets of data; one is under normal conditions, and the other is under 100 hours

temperature and humidity cycle (T = 25-75°C, RH = 50-100%).

Figure 8-13: Quadcopter component reliability with normal operation data (blue) and

temperature/humidity cycle data (red).

0 4000 10000

0.
0

0.
4

0.
8

t (hours)

C
 fr

am
e

0 4000 10000

0.
0

0.
4

0.
8

t (hours)

C
 p

ro
pe

llo
r

0 4000 10000

0.
0

0.
4

0.
8

t (hours)
C

 ro
to

r

0 4000 10000

0.
0

0.
4

0.
8

t (hours)

C
 e

sc

0 4000 10000

0.
0

0.
4

0.
8

t (hours)

C
 im

u

0 4000 10000

0.
0

0.
4

0.
8

t (hours)

C
 fc

b

0 4000 10000

0.
0

0.
4

0.
8

t (hours)

C
 w

ire

0 4000 10000

0.
0

0.
4

0.
8

t (hours)

C
 b

at
te

ry

0 4000 10000

0.
0

0.
4

0.
8

t (hours)

C
 rc

 115

Figure 8-14: Quadcopter functional probabilities with normal operation data (blue) and

temperature/humidity cycle data (red).

0 2000 6000 10000

0.
0

0.
4

0.
8

t (hours)

P
st

ru
ct

ur
e

0 2000 6000 10000

0.
0

0.
4

0.
8

t (hours)

P
el

ec
tri

c

0 2000 6000 10000

0.
0

0.
4

0.
8

t (hours)

P
po

we
r

0 2000 6000 10000
0.

0
0.

4
0.

8

t (hours)

P
co

nt
ro

l

0 2000 6000 10000

0.
0

0.
4

0.
8

t (hours)

P
fli

gh
t

0 2000 6000 10000

0.
0

0.
4

0.
8

t (hours)

P
co

m
m

un
ic

at
io

n

 116

Figure 8-15: Quadcopter system reliability with normal operation data (blue) and

temperature/humidity cycle data (red).

8.11 Remaining Useful Life

With the inference pre-computation database, searching through the data, given the

trajectory of parameter values provide RUL estimation of all components at any point

in time. Using the previous temperature/humidity cycle data example, Figure 8-16

shows RUL estimates of all 9 components in the system with uncertainties.

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t (hours)

P
sy

st
em

 117

Figure 8-16: Quadcopter component RUL estimates with 5th and 95th percentile uncertainties.

Notice that the RUL estimates becomes steadier over time as it gains more

trajectories information, even though the data cycle remains the same.

8.12 Anomaly Detection

With the RUL information, the system is able to monitor and detect when a

component reaches certain RUL threshold and flag it for maintenance. The system is

also capable of detecting an anomaly where an observable is out of its expected

0 4000 8000

0
40

00
10

00
0

t (hours)

RU
L

fra
m

e
 (h

ou
rs

)

0 4000 8000

0
20

00

t (hours)

RU
L

pr
op

el
lo

r
(h

ou
rs

)

0 4000 8000

0
20

00
40

00

t (hours)

RU
L

ro
to

r
(h

ou
rs

)

0 4000 8000

0
40

00

t (hours)

RU
L

es
c

 (h
ou

rs
)

0 4000 8000
0

40
00

80
00

t (hours)

RU
L

im
u

 (h
ou

rs
)

0 4000 8000

0
40

00
10

00
0

t (hours)

RU
L

fc
b

 (h
ou

rs
)

0 4000 8000

0
20

00
50

00

t (hours)

RU
L

w
ire

 (
ho

ur
s)

0 4000 8000

0
40

00

t (hours)

RU
L

ba
tte

ry
 (

ho
ur

s)

0 4000 8000
0

40
00

80
00

t (hours)

RU
L

rc
 (

ho
ur

s)

 118

operating range and provide an upper bound of the RUL of the component. For

example, the expected possible temperature range of the quadcopter is -25 to 100°C.

If a user operate the quadcopter at temperature higher than 100°C, the system will

detect that the temperature is out of range and provide the updated maximum RUL

estimate. This is crucial information to have when using the system in extreme

conditions.

Besides detecting and predicting failures, a periodic measurement of normally

unobservable parameters in the system can be used to detect model errors. Figure

8-17 shows a plot of fatigue degradation model of the quadcopter frame and a series

of visual crack measurements translated to component critical parameter scale.

Figure 8-17: Quadcopter frame fatigue model estimations (blue line) and periodic

measurements (black dots) with uncertainties.

Anomaly is detected when the differences of model estimated and the measured

0 5000 10000 15000

0.
0

0.
4

0.
8

t (hours)

C
 fr

am
e−

fa
tig

ue

 119

values are higher than the expected measurement uncertainties. The frame is

subjected to 400 MN/m2, with C expected to be 0.996, 0.969, 894 at 2500, 5000, and

7500 hours respectively. However, C is measured to be 0.92, 0.86, and 0.72 with

possible 0.05 measurement uncertainty instead. When anomaly is detected, the

component is then flagged for system learning.

8.13 Learning

There are three possible model errors to be considered for system learning in order to

correct the model according to the evidences. First is error of the sensor or

measurement device. In this case, the differences between measurement values and

model values are consistent. Figure 8-18 shows fatigue degradation of the quadcopter

frame with ∆𝐶 = 0.1 measurement error.

Figure 8-18: Quadcopter frame fatigue model estimations (blue line), periodic measurements

(black dots), updated model estimation with measurement error (red line).

0 5000 10000 15000

0.
0

0.
4

0.
8

t (hours)

C
 fr

am
e−

fa
tig

ue

 120

Second is error in model parameters. In this case, actual degradation process appears

to be faster or slower than the expected model degradation. The model parameters can

be updated using the parameter learning algorithm with the measurement values

evidence. Figure 8-19 shows fatigue degradation of the quadcopter frame where the

updated model 𝐴! is twice the value of expected model 𝐴!.

Figure 8-19: Quadcopter frame fatigue model estimations (blue line), periodic measurements

(black dots), updated model estimation with parameter learning (red line).

Third is error in model structure. In this case, degradation process changes according

to an outside factor that was not included in the model. The model structure can be

updated using the structure learning algorithm to find hidden relationship between

other observables in the system with this degradation process. Figure 8-20 shows

fatigue degradation of the quadcopter frame where fatigue degradation is affected by

relative humidity of 100% during the time between 2500 and 500 hours.

0 5000 10000 15000

0.
0

0.
4

0.
8

t (hours)

C
 fr

am
e−

fa
tig

ue

 121

Figure 8-20: Quadcopter frame fatigue model estimations (blue line), periodic measurements

(black dots), updated model estimation with structure learning (red line).

8.14 Maintenance

By comparing RUL estimates over the range of operating conditions, the operator is

able plan maintenance for each individual component according to the expected use.

Figure 8-21 shows each component RUL estimates at 𝑡 = 0 over a range of

temperature from 0 to 100°C. This plot provides information for maintenance

planning and comparison between component degradation processes.

0 5000 10000 15000

0.
0

0.
4

0.
8

t (hours)

C
 fr

am
e−

fa
tig

ue

 122

Figure 8-21: Quadcopter components RUL estimates at t = 0 over a range of operating

temperature.

During an online operation, sensitivity analysis can be performed at any point in time

to identify which component mostly affects reliability of the system. Figure 8-22

shows sensitivity analysis of the system operating under a normal condition at

different time. Each point represents system reliability probability given that the

specific component has zero probability of failure. The operator can use this

information to decide which component replacement is the most cost-effective to

increase the system reliability.

20 40 60 80 100

0
50

00
10

00
0

15
00

0

Temperature (Celsius)

RU
L

(h
ou

rs
)

frame
prop
rotor
esc
imu
fcb
wire
bat
rc

 123

Figure 8-22: Quadcopter sensitivity analysis at different time during a normal operating

condition.

0.
92

0.
94

0.
96

0.
98

Component

P
sy

st
em

t = 1000
t = 1500
t = 2000
t = 2500
t = 3000

frame pr rotor esc imu fcb wire bat rc

 124

Chapter 9: Conclusion

9.1 Summary

This research presents new modeling approach, computational algorithms, and an

example application for on-line System Health Management. Hybrid dynamic

Bayesian Network modeling is introduced to represent complex engineering systems

in a way that it allows accurate representation of underlying physics of failure by

using empirical degradation model with continuous variables. The proposed

computational algorithms enable on-line monitoring and diagnosing complex systems

by utilizing pre-computation and dynamic programming methods with Markov Chain

Monte Carlo inference. Pre-computation inference database can then be used for

efficient continuous health monitoring, probabilistic prognosis of remaining useful

life, and anomaly detection with pattern recognition. Algorithm for system parameter

and structure learning is also included along with methods for maintenance decision-

making.

Main advantages of the proposed methodology:

• Systematic approach based on physics of failure makes it easy to be modeled

and implemented in any engineering system.

• The model allows different types of information to be combined together and

includes complete information about the uncertainties.

 125

• The method can be used in many applications from small to large scale and at

any location, since it does not required powerful computation unit during an

operation.

• Possible applications include nuclear power plant, oil pipeline, automobile,

aircraft, and any mission-critical system that requires on-line health

monitoring.

9.2 Contributions

The main contributions of this work can be summarized as follows:

• Introduced a new modeling approach using hybrid DBN.

a. Proposed a systematic modeling of SHM with 5 different layers to

include both higher-level discrete functional probability part and

lower-level continuous component critical parameters related to

degradation failure modes.

b. Created a well-defined interface between discrete and continuous

variables that allows tractable approximate MCMC inference of any

variable in the network.

• Developed computational algorithm for on-line monitoring and diagnosing of

complex systems.

a. Developed inference pre-computation algorithm to store pre-computed

values of unobservables to allow instantaneous inquiry of system

 126

health.

b. Applied dynamic programming algorithm to significantly reduce the

overall computation time and complexity of pre-computation process.

c. Implemented an efficient algorithm for dependency between variables

in the network.

• Used the proposed modeling approach and computational algorithm for on-

line system monitoring and prognosis.

a. Created efficient method for monitoring of system health and

component status to detect any anomaly and predict remaining useful

life.

b. Implemented pattern matching algorithm for failure trajectories to

identify possible failure earlier than the traditional method.

c. Applied BN learning algorithm to give the system continuous update

of network parameters and structure from data obtained during

operation.

d. Showed that the proposed method provides information to improve on-

line decision-making for system maintenance or in an event that a

critical failure occurs.

• Demonstrated the capabilities of this methodology by applying it to an

unmanned aerial vehicle application.

 127

9.3 Suggested Future Research

• Recode the prototype R program in Java to improve efficiency and reduce

computation time. Java is also cross-platform, so the program can be run in

any operating system with Java runtime environment.

• Implement Graphical User Interface (GUI) for the software.

• Add built-in models for dominant failure modes/mechanisms of common

materials/components.

 128

Appendices

Appendix A: Metropolis-Hasting Algorithm

Metropolis-Hastings algorithm (Hastings, 1970) structure is extremely simple and can

be described by the following steps:

1. Initialize X0; set t = 0
2. Repeat {

a. Sample a point Y from q(.|Xt)
b. Sample a Uniform (0,1) random variable U
c. If (U <= α(Xt,Y)) set Xt+1 = Y
d. Otherwise set Xt+1 = Xt
e. Increment t }.

Here, Y is defined as a candidate point from a proposal distribution q(.|Xt), where

this distribution can have any form and the stationary distribution of the chain will be

𝜋.

Furthermore, the candidate Y can be chose by a probability α.

𝛼 𝑋,𝑌 = 𝑚𝑖𝑛 1,
𝜋 𝑌 𝑞 𝑋|𝑌
𝜋 𝑋 𝑞 𝑌|𝑋

Thus, it follows that:

𝜋 𝑋! 𝑞 𝑋!!!|𝑋! 𝛼 𝑋! ,𝑋!!! = 𝜋 𝑋!!! 𝑞 𝑋!|𝑋!!! 𝛼 𝑋!!!,𝑋!

And now we can obtain the detailed balance equation.

 129

𝜋 𝑋! 𝑃 𝑋!!!|𝑋! = 𝜋 𝑋!!! 𝑃 𝑋!|𝑋!!!

Finally, integrating both sides of above equation with respect to Xt we have:

𝜋 𝑋! 𝑃 𝑋!!!|𝑋! 𝑑𝑋! = 𝜋 𝑋!!!

The marginal distribution of Xt+1 is given by the equation above under the assumption

that Xt is from 𝜋. Thus, we can conclude that if Xt is from 𝜋, then Xt+1 will be also.

However, this only proves that the stationary distribution is 𝜋. It is necessary to prove

that 𝑃(!) 𝑋!|𝑋! will converge to the stationary distribution for a more complete

justification.

The first step in Metropolis-Hastings algorithms is to generate a candidate point,

denoted here by θ*. Often, the candidate point differs from the current value of the

parameter in only one or two components; for example, in the Weibull example, we

may alternate between updating the value of α and the value of β.

Some common method for generating the candidate value is via a uniform density or

normal density. In the case Weibull example, we can choose a uniform density and a

normal distribution with a modification to draw α and β.

In the case of using normal density in generating candidate θ* we add mean-zero

normal deviate to a single component of θ(j-1), say θi
(j-1). This means that we can

express the candidate value θ* as the vector with components

 130

θ* = θi
(j-1) + sZ,

θ* = θk
(j-1), for k ≠ i,

where Z is a standard normal deviate and s is an arbitrary constant. For continuous-

valued components of the parameter vector, let f(θ*|θi
(j-1)) denote the proposal density

used to generate θ* from θ(j-1). For example, the proposal density f(·) represents a

normal distribution with mean θi
(j-1) and standard deviation s. For discrete-valued

components of the parameter vector, f (…) represents the probability mass function

used to generate candidate points. The probability of moving from the candidate point

back to the original value is denoted, in a similar way, by f(θ(j-1)|θ*).

If we use normal density for generating a candidate in the Weibull example, we have

to modify the generating density because we want the proposed values of α and β to

have positive values. One way of simulating positive candidate values is to generate

candidates on the logarithmic scale and then transform them to the original scale.

That is, we might define candidate draws for α and β according to

log (α*) = log(α)(j-1) + vα where vα is sampled from Normal(0,σα)

log (β*) = log(β)(j-1) + vβ where vβ is sampled from Normal(0,σβ)

In theory, any density of mass function can serve as the proposal density as long as it

satisfies three conditions. First, the proposal density must allow us to move from any

subset of the parameter space to any other subset of the parameter space in a finite

 131

number of moves. Second, the proposal density cannot be periodic. Informally this

means that, in the long run, moves to any subset of the parameter space can occur at

any time. Finally, we require that the rule used to specify the proposal density

satisfies:

0 <
𝑓 𝜃∗|𝜃(!!!)

𝑓 𝜃(!!!)|𝜃∗
< ∞

for all values 𝜃(!!!) and 𝜃∗.

Having generated a candidate point 𝜃∗, we perform the second step in a Metropolis-

Hastings algorithm; we compute the probability that the candidate value will be

accepted as the next simulated value in the sequence. We call this quantity the

acceptance probability and denote its value by r. With this notation, the acceptance

probability r is defined as

𝑟 = 𝑚𝑖𝑛 1,
𝑝 𝜃∗|𝑑𝑎𝑡𝑎

𝑝 𝜃(!!!)|𝑑𝑎𝑡𝑎
𝑓 𝜃(!!!)|𝜃∗

𝑓 𝜃∗|𝜃(!!!)

In this formula, the acceptance probability represents the product of the ratio of the

posterior density evaluated at the candidate and current parameter values,

𝑝 𝜃∗|𝑑𝑎𝑡𝑎 / 𝑝 𝜃(!!!)|𝑑𝑎𝑡𝑎 , and the ratio of the proposal densities of the current

and candidate point, 𝑓 𝜃(!!!)|𝜃∗ / 𝑓 𝜃∗|𝜃(!!!) . The first ratio encourages the

algorithm to move to parameter values that have high posterior probability, and the

second ratio accounts for the fact that the proposal density might favor some values of

 132

the parameter over others. Note that if the proposal density is symmetric – that is, if

𝑓 𝜃(!!!)|𝜃∗ = 𝑓 𝜃∗|𝜃(!!!) – this second ratio is 1 and can be omitted from the

formula for the acceptance probability.

Having computed an acceptance probability, we perform the third step in a

Metropolis-Hastings algorithm. We accept or reject the candidate point with

probability equal to r. To do so, we draw a Uniform (0,1) random variable, say u, and

compare u to r. If u ≤ r, then we accept the candidate value and set 𝜃(!) = 𝜃∗. On the

other hand, if u > r, then we reject the candidate value and set 𝜃(!) = 𝜃(!!!) (that is,

we keep the same value). This process is repeated for each component of 𝜃.

The Metropolis algorithm is very general and broadly applicable. One problem with

it, however, is that the proposal distribution must be properly tuned to the posterior

distribution if the algorithm is to work well. If the proposal distribution is too narrow

or too broad, a large proportion of proposed jumps will be rejected and/or the

trajectory will get bogged down in a localized region of the parameter space.

Appendix B: Gibbs sampling

Gibbs sampling is a type of Markov chain Monte Carlo process where a random walk

starts at some arbitrary point, and at each point in the walk, the next step depends

only on the current position, and on no previous positions. The difference to other

random walk algorithms, such as Metropolis, is that at each point in the walk, one of

the component parameters is selected. The component parameter can be selected at

 133

random, but typically the parameters are cycled through in order. Gibbs sampling

then choose a new value for that parameter, by generating a random value directly

from the conditional probability against the other parameters.

𝑝 𝜃!| 𝜃!!! ,𝐷

Where 𝜃! is the selected parameter.

Gibbs sampling is especially useful when the complete joint posterior 𝑝 𝜃! ,𝐷 cannot

be analytically determined and cannot be directed sampled, but all the conditional

distributions, 𝑝 𝜃!| 𝜃!!! ,𝐷 , can be determined and directly sampled.

Let 𝜃(!) be a set of parameter values at each step of the walk, the Gibbs sampler

algorithm is as follow:

1. Specify initial values 𝜃(!) = 𝜃!
(!),… ,𝜃!

(!)

2. Repeat for 𝑗 = 1, 2,… ,𝑀

Generate 𝜃!
(!!!) from 𝑝 𝜃!|𝜃!

! ,𝜃!
! ,… ,𝜃!

!

Generate 𝜃!
(!!!) from 𝑝 𝜃!|𝜃!

!!! ,𝜃!
! ,… ,𝜃!

!

⋮

Generate 𝜃!
(!!!) from 𝑝 𝜃!|𝜃!

!!! ,𝜃!
!!! ,… ,𝜃!!!

!!!

3. Return the value 𝜃(!),𝜃(!),… ,𝜃(!)

 134

Appendix C: Adaptive Rejection Sampling

In the cases where evaluation of full conditional density is computationally

expensive, Adaptive Rejection Sampling (ARS) can be used to draw samples with

fewer evaluations. The algorithm only works with probability density functions that

are log-concave, which is usually the case for Bayesian applications.

The basic idea of this algorithm is to adaptively form an upper envelope and lower

squeezing functions, which creates upper and lower bounds of 𝑝 𝜃 . The envelope

and squeezing functions are formed using sets of piecewise exponential distributions.

These sets contain segments of one or more exponential distributions attaching from

end to end. It can be easier to visualized in log space where logarithm of the

probability density is covered be a series of straight-line segments.

 Log-concavity density function with upper rejection envelope and lower squeezing function

 135

By assuming log-concavity of 𝑝 𝜃 , we avoid the need to locate the supremum of

𝑝 𝜃 . Adaptive rejection sampling reduces the probability of needing to evaluate

𝑝 𝜃 further by updating the envelope and squeezing functions to incorporate the

most recently acquired information about 𝑝 𝜃 after each rejection.

The ARS algorithm is as follow (Gilks & Wild, 1992):

Preliminaries:

• Assume that 𝑔 𝜃 = 𝑐 ∙ 𝑝 𝜃 and 𝑔 𝜃 is continuous and differentiable

everywhere in the domain of 𝑝 𝜃

• Let ℎ 𝜃 = ln𝑔 𝜃 such that ℎ 𝜃 is concave everywhere in the domain

Initialization Step:

• Let 𝑇! = 𝜃!; 𝑖 = 1,… , 𝑘 be the k starting points.

• If the domain is unbound to the left, choose 𝜃! such that ℎ′ 𝜃! > 0. If the

domain is unbound to the right choose 𝜃! such that ℎ′ 𝜃! < 0.

• Calculate the following functions with the k starting points:

1. 𝑢! 𝜃 , which is the piece-wise linear upper envelope formed from the

tangents to ℎ 𝜃 at each point in 𝑇!.

2. 𝑠! 𝜃 = !"#!! !
!"#!! !! !!!

3. 𝑙! 𝜃 , which is the piece-wise linear lower squeezing function formed

 136

from the chords between adjacent points in in 𝑇!.

The tangent lines at 𝜃! and 𝜃!!! intersect at the point

𝑧! =
ℎ 𝜃!!! − ℎ 𝜃! − 𝜃!!!ℎ! 𝜃!!! + 𝜃!ℎ! 𝜃!

ℎ! 𝜃! − ℎ! 𝜃!!!

For 𝑗 = 1,… , 𝑘 − 1 and 𝑧! is the lower bound of the domain and 𝑧! is the

upper bound of the domain.

The piecewise upper envelope is defined as

𝑢! 𝜃 = ℎ 𝜃! + 𝜃 − 𝜃! ℎ! 𝜃!

for 𝜃 ∈ 𝑧!!!, 𝑧! , similarly, the piece-wise lower squeezing function is

defined as

𝑙! 𝜃 =
𝜃!!! − 𝜃 ℎ 𝜃! + 𝜃 − 𝜃! ℎ 𝜃!!!

𝜃!!! − 𝜃!

for 𝜃 ∈ 𝜃! ,𝜃!!! , if 𝜃 < 𝜃! or 𝜃 < 𝜃!, 𝑙! 𝜃 is set equal to −∞.

Sampling Step:

• Sample a value 𝜃∗ from 𝑠! 𝜃 and sample a value 𝑤 independently from a

uniform distribution 𝑈 0,1 .

• Squeezing Test: if 𝑤 ≤ exp 𝑙! 𝜃∗ − 𝑢! 𝜃∗ then accept 𝜃∗, otherwise

 137

evaluate ℎ 𝜃∗ and ℎ! 𝜃∗ , and perform the following rejection test.

• Rejection Test: if 𝑤 ≤ exp ℎ! 𝜃∗ − 𝑢! 𝜃∗ then accept 𝜃∗ otherwise reject

𝜃∗.

Updating Step:

• If ℎ 𝜃∗ and ℎ! 𝜃∗ were evaluated in the sampling step, include 𝜃∗ in 𝑇! to

form 𝑇!!!.

• Re-label the elements of 𝑇!!! in ascending order and construct functions

𝑢!!! 𝜃 , 𝑠!!! 𝜃 , and 𝑙!!! 𝜃 on the basis of 𝑇!!!.

• Increment 𝑘. Return to the sampling step if n points have not yet been

accepted.

With ARS, sampling of continuous, differentiable, and log-concave distribution using

Gibbs sampling becomes more efficient. The number of evaluations decreases and

has been shown empirically to be approximately in proportion of 𝑛! .

Appendix D: Kalman Filter and Sequential Importance Sampling

The process used by Kalman filter equations can be separated into a two- step

updating process:

• Step 1 is the time update in which the process model is used to project

forward (in time) the state estimate and the error covariance estimate at the

previous time step t-1 to obtain the a priori estimates at the current time step

 138

t.

• Step 2 is the measurement update in which the most recent observation Dt is

used to update the a priori estimates to obtain the posterior estimates. The

goal in this step is to use the additional information in the observation to

improve the a priori estimates that were solely based on the process model.

Only specific implementations of the Bayesian recursive filter such as the Kalman

filter or grid-based methods for domains consisting of discrete variables provide

analytical methods. Thus it is necessary to pursue approximate inference algorithms.

Particle filtering is one technique that makes the filtering problem tractable. Particle

filtering, i.e. sequential Monte Carlo (MC), is a method for approximating the

distribution of the belief state. Common particle filtering method are based on

sequential importance sampling (SIS), which improves upon the basic sequential MC

by weighting point masses (particles) according to their importance sampling density,

thus focusing on the samples that affect the posterior belief state the most. A SIS filter

builds upon the basic ideas of MC integration and importance sampling.

SIR is a sequential (i.e., recursive) version of importance sampling. As in importance

sampling, the expectation of a function can be approximated as a weighted average:

 𝑔 𝑥! 𝑑𝑥! = 𝑓 𝑥! 𝜋 𝑥! 𝑑𝑥! ≈ 𝑤!!𝑓(𝑥!!)
!

!!!

 (9-1)

The transition prior probability distribution is often used as importance function,

 139

since it is easier to draw particles (or samples) and perform subsequent importance

weight calculations

𝜋 𝑥!|𝑥!:!!!,𝐷!:! = 𝑝(𝑥!|𝑥!!!)

A single step of sequential importance sampling is as follows:

1. For i=1,…,N draw samples from the proposal distribution

𝑥!!~𝜋 𝑥!|𝑥!:!!!! ,𝐷!:!

2. For i=1,…,N update the importance weights up to a normalizing constant

𝑤!! = 𝑤!!!! 𝑝 𝐷! 𝑥!! 𝑝(𝑥!!|𝑥!!!!)
𝜋 𝑥!|𝑥!:!!!! ,𝐷!:!

3. For i=1,…,N compute the normalized importance weights

𝑤!! =
𝑤!!

𝑤!!!
!!!

Many variations of the SIS particle filter exist using different importance sampling

densities, resampling techniques, and combinations of discrete and continuous

variables. Resampling is a technique used to prevent a phenomenon called

degeneracy, where a single particle accounts for a large proportion of the total weight

of all particles.

 140

Bibliography

Aeryon Labs Inc. (2014). Retrieved from http://www.aeryon.com

Almond, R. G. (1992). An extended example for testing graphical belief . Technical
Report 6, tatistical Sciences Inc.

Anderson, T. (1995). Fracture Mechanics, 2nd Edition. CRC Press.

Ashby, M., & Jones, D. (2005). Engineering Materials 1. Elsevier Publishing .

Barlow, R. (1988). Using influence diagrams. In Accelerated Life Testing and
Experts' Opinions in Reliability (pp. 145-50).

Bechta Dugan, J., Bavuso, S. J., & Boyd, M. A. (1992). Dynamic fault-tree models
for fault-tolerant computer systems. Reliability, IEEE Transactions on , 41
(3), 363-377.

Bobbio, A., Portinale, L., Minichino, M., & Ciancamerla, E. (2001). Improving the
analysis of dependable systems by mapping fault trees into Bayesian
networks. Reliability Enginnering System Safety , 71 (3), 249-60.

Boudali, H., & Dugan, J. B. (2006). A continuous-time Bayesian network reliability
modeling, and analysis framework. Reliability, IEEE Transactions on , 55 (1),
86-97.

Boudali, H., & Dugan, J. B. (2005). A discrete-time Bayesian network reliability
modeling and analysis framework. Reliability Engineering & System Safety ,
87 (3), 337-349.

Bouissou, M., Martin, F., & Ourghanlian, A. (1999). Assessment of a safety- critical
system including software: a Bayesian belief network for evidence sources.
Proceedings of the annual reliability and maintainability symposium;, (pp.
142-50).

Boyen, X., & Koller, D. (1998). Tractable inference for complex stochastic processes.
Proceedings of the Fourteenth conference on Uncertainty in artificial
intelligence .

Buntine, W. L. (1996). A guide to the literature on learning probabilistic networks
from data. IEEE Transactions on Knowledge and Data Engineering , 8 (2),
195-210.

Buntine, W. L. (1994). Operations for learning with graphical models . Journal of

 141

Artificial Intelligence Research , 2, 159-225.

Chen, Z. (2003). Bayesian filtering: From Kalman filters to particle filters, and
beyond. Statistics , 1-69.

Choi, A., Zheng, L., Darwiche, A., & Mengshoel, O. J. (2011). A Tutorial on
Bayesian Networks for System Health Management.

Cooper, G. a. (1992). A Bayesian method for the induction of probabilistic networks
from data. Machine Learning , 309-347.

Cooper, G. F. (1990). The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence , 42 (2-3), 393-405.

Cousins, S. B., Chena, W., & Frisse, M. E. (1993). A tutorial introduction to
stochastic simulation algorithms for belief networks. Artificial Intelligence in
Medicine , 5 (4), 315-340.

Dagum, P., & Horvitz, E. (1993). A Bayesian analysis of simulation algorithms for
inference in belief networks. Networks. 23 (5), 499-516.

Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian
belief networks is NP-hard . Artificial Intelligence , 60 (1), 141-154.

Daly, R., Shen, Q., & Aitken, S. (2011). Learning Bayesian networks: approaches and
issues. The Knowledge Engineering Review , 26 (2), 99-157.

Dean, T., & Kanazawa, K. (1989). A model for reasoning about persistence and
causation. Computational Intelligence , 5 (2), 142-150.

Dempster, A. L. (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society B , 1-38.

Devroye, L. (1986). Non-uniform Random Variate Generation. New York: Springer-
Verlag .

Doguc, O., & Ramirez-Marquez, J. E. (2009). A generic method for estimating
system reliability using Bayesian networks. Reliability Engineering & System
Safety , 94 (2), 542-550.

Fenton, N. E., Neil, M., & Marquez, D. (2008). Using Bayesian Networks to Predict
Software Defects and Reliability. Proceedings of the Institution of Mechanical
Engineers, Part O, Journal of Risk and Reliability , 222 (04), 701-712.

Ferreiro, S., Arnaiz, A., Sierra, B., & Irigoien, I. (2011). A Bayesian network model
integrated in a prognostics and health management system for aircraft line

 142

maintenance. Proceedings of the Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering , 225 (8), 886-901.

Flesch, I., & Lucas, P. (2007). Independence decomposition in dynamic Bayesian
networks. In K. Mellouli (Ed.), Proceedings of the Ninth European
Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECS- QARU 2007). Lecture Notes in Artificial Intelligence.
4724, pp. 560-571. Springer.

Friedman, N. (1998). The Bayesian structural EM algorithm. In G. F. Cooper (Ed.),
Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence (UAI-98) (pp. 129-138). Morgan Kaufmann.

Friedman, N., Nachman, I., & Peer, D. (1999). Learning bayesian network structure
from massive datasets. Proceedings of the Fifteenth conference on
Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intel ligence , 721{742.

Ghahramani, Z. (1998). Learning dynamic Bayesian networks. In Lecture Notes in
Artificial Intelligence (Vol. 1387, pp. 168-197). Springer.

Gilks, W. R. (1992). Adaptive rejection sampling for Gibbs sampling. Applied
Statistics , vol. 41, pp. 337-348.

Gilks, W. R., & Wild, P. (1992). Adaptive Rejection Sampling for Gibbs Sampling.
Appl. Statist. , 41 (2), 337-348.

Gran, B., & Helminen, A. (2001). A Bayesian belief network for reliability
assessment. Computer Safety, Reliability and Security (pp. 35-45). Springer
Berlin Heidelberg.

Hastings, W. K. (1970). Monte Carlo Sampling Methods Using Markov Chains and
Their Applications. Biometrika , 57 (1), 97-109.

Heckerman, D. (1995). A Tutorial on Learning with Bayesian Networks. Microsoft
Research.

Heckerman, D. (1995). A Tutorial on Learning with Bayesian Networks. Redmon,
WA: Microsoft Research Advanced Technology Division, Microsoft
Corporation.

Heckerman, D. (2008). A tutorial on learning with Bayesian networks. Springer

 143

Berlin Heidelberg.

Heckerman, D. M. (1995b). Real-world applications of Bayesian networks.
Communications of the ACM , 38.

Helminen, A., & Pulkkinen, U. (2003). Quantitative reliability estimation of a
computer-based motor protection relay using Bayesian networks. In Computer
Safety, Reliability, and Security (pp. 92-102). Springer Berlin Heidelberg.

Howard, R. A., & Matheson, J. E. (1984). Influence Diagrams. In The Principles and
Application of Decision Analysis (Vol. 2, pp. 719-762). Strategic Decisions
Group, Menlo Park.

Hugin Expert. (2007). http://www.hugin.com . Aalborg,, Denmark.

Jensen, F. (2001). Bayesian Networks and Decision Graph . Springer.

Jensen, F., Lauritzen, S. L., & Olesen, K. (1990). Bayesian updating in recursive
graphical models by local computations. Computational Statistics Quarterly ,
4, 260-282.

Julier, S. J., & Uhlmann, J. K. (1997). A new extension of the Kalman filter to
nonlinear systems. Int. symp. aerospace/defense sensing, simul. and controls ,
3 (26).

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems.
Journal of Basic Engineering , 82 (1), 35-45.

Kang, C. W., & Golay, M. W. (1999). A Bayesian belief network-based advisory
system for operational availability focused diagnosis of complex nuclear
power systems. Expert Systems with Applications , 17 (1), 21-32.

Kass, R. E. (1995). Bayes Factors. Journal of the American Statistical Association ,
Vol. 90, No. 430, pp. 773-795.

Kipersztok, O., & Provan, G. (2003). A framework for diagnostic inference of
commercial aircraft systems. In K. O. Agosta JM (Ed.), The first Bayesian
applications modeling workshop .

Langseth, H., & Jensen, F. V. (2003). Decision theoretic troubleshooting in coherent
systems. Reliab Eng Syst Safety , 80 (1), 49-61.

Langseth, H., & Portinale, L. (2007). Bayesian networks in reliability. Reliability
Engineering & System Safety , 92 (1), 92-108.

Lauritzen, S. L., & Jensen, F. (2001). Stable Local Computation with Conditional

 144

Gaussian Distributions. Stat. & Comp. , 11, 191-203.

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities
on graphical structures and their application to expert systems. Journal of the
Royal Statistical Society. Series B (Methodological) , 157-244.

Lauritzen, S. T. (1994). Diagnostic systems created by mo del selection metho ds: A
case study. AI and Statistics IV, volume Lecture Notes in Statistics, 89, ,
143{152.

Lerner, U. N. (2002). Hybrid Bayesian Networks for Reasoning About Complex
Systems. Standford University, Dep. of Comp. Sci. Stanford.

Lerner, U., Parr, R., Koller, D., & Biswas, G. (2000). Bayesian fault detection and
diagnosis in dynamic systems. In AAAI/IAAI (pp. 531-537).

Madigan, D. R. (1996). Bayesian model averaging. In Proceedings of the AAAI
Workshop on Integrating Multiple .

Mahadevan, S., & Rebba, R. (2005). Validation of reliability computational models
using Bayes networks. Reliability Engineering & System Safety , 87 (2), 223-
232.

McPherson, J. W. (2010). Reliability Physics and Engineering. Springer.

Ming, D., & Yang, Z.-b. (2008). Dynamic Bayesian network based prognosis in
machining processes. Journal of Shanghai Jiaotong University (Science) , 13,
318-322.

Moral, S., Rumi, R., & Salmeron, A. (2001). Mixtures of Truncated Exponentials in
Hybrid Bayesian Networks. In ECSQARU 2001. LNCS (LNAI) (Vol. 2143, pp.
156-167). Springer, Heidelberg.

Murphy, K. (1999). A Variational Approximation for Bayesian Networks with
Discrete and Continuous Latent Variables. In Uncertainty in Artificial
Intelligence (pp. 457-466). Morgan Kaufmann, San Francisco.

Murphy, K. (2002). Dynamic Bayesian Networks: Representation, Inference and
Learning. PhD thesis, UC Berkeley , Dept. Computer Science .

Murphy, K., & Mian, S. (1999). Modelling Gene Expression Data Using Dynamic
Bayesian Networks. Technical report, University of California, Berkeley,
Computer Science Division.

NASA. (2010). Handbook, NASA Risk-Informed Decision Making. , Office of Safety

 145

and Mission Assurance NASA Headquarters.

Neal, R. M. (1993). Proabilitic Inference Using Markov Chain Monte Carlo Methods.
Technical Report, University of Toronto, Department of Computer Science,
1993.

Neapolitan, R. E. (2004). Learning Bayesian Networks. Pearson Education.

Neil, M., Fenton, N., Forey, S., & Harris, R. (2003). Assessing Vehicle Reliability
using Bayesian Networks. In Global Vehicle Reliability, Edited by J. E. Strutt
and P.L. Hall (pp. 25-42). Professional Engineering Publishing.

Neil, M., Tailor, M., Marquez, D., Fenton, N., & Hear. (2007). Inference in Bayesian
Networks using dynamic discretisation. Statistics and Computing , 17 (3),
219-233.

Pearl, J. (1986). Fusion, Propagation and Structuring in Belief Networks. Artificial
Intelligent , 29, 241-288.

Pearl, J. (1993). Graphical models, causality, and intervention. Statistical Science , 8
(3), 266-273.

Pourali, M., & Mosleh, A. (2013). A Bayesian Approach to Sensor Placement
Optimization and System Reliability Monitoring. Journal of Risk and
Reliability , 227 (3).

Rabiei, M., & Modarres, M. (2013). A recursive Bayesian framework for structural
health management using online monitoring and periodic inspections.
Reliability Engineering & System Safety (112), 154-164.

Raftery, A. E. (1995). Bayesian Model Selection in Social Research. Sociological
Methodology, Vol. 25 , 111-163.

Robinson, R. (1977). Counting unlabeled acyclic digraphs. C.H.C. Little (Ed.),
Lecture notes in mathematics, , 622.

Schumann, J., Rozier, K. Y., Reinbacher, T., Mengshoel, O. J., Mbaya, T., &
Ippolito, C. (2013). Towards Real-time, On-board, Hardware-supported
Sensor and Software Health Management for Unmanned Aerial Systems.
Annual Conference of the Prognostics and Health Management Society.

Shachter, R. D. (1986). Evaluating Influence Diagrams. Operation Research , 34 (6),
871-882.

Shenoy, P. P. (2006). Inference in Hybrid Bayesian Networks Using Mixtures of
Gaussians. In Uncertainty in Artificial Intelligence (pp. 428-436). AUAI

 146

Press, Corvallis.

Shenoy, P. P. (1992). Valuation-Based Systems for Bayesian Decision Analysis.
Operation Research , 40 (3), 463-484.

Silbey, R., & Alberty, R. (2001). Physical Chemistry, 3rd Edition. John Wiley and
Sons.

Singh, H., Cortellessa, V., Cukic, B., Gunel, E., & Bharadwaj, V. (2001). A bayesian
approach to reliability prediction and assessment of component based systems.
Software Reliability Engineering, 2001. ISSRE 2001. Proceedings. 12th
International Symposium on (pp. 12-21). IEEE.

Spiegelhalter, D. a. (1990). Sequential updating of conditional probabilities on
directed graphical structures. Networks , 20:579-605.

Spiegelhalter, D., Thomas, A., & Best, N. (1996). Bugs 0.5 Bayesian inference using
Gibbs sampling manual (Version Ii). MRC Biostatistic Unit (1), 1-59.

Sze, S. (2002). Semiconductor Devices: Physics and Technology, 2nd Edition. John
Wiley and Sons.

Tobon-Mejia, D. A., Medjaher, K., Zerhouni, N., & Tripot, G. (2012). A Data-Driven
Failure Prognostics Method Based on Mixture of Gaussians Hidden Markov
Models. Reliability, IEEE Transactions on , 61 (2), 491-503.

Wakefield, J. C. (1991). Efficient generation of random variates via the ratio-of-
uniforms method. Statistics and Computing , vol. 1, pp. 129-133.

Weber, P., & Jouffe, L. (2006). Complex system reliability modelling with dynamic
object oriented bayesian networks (DOOBN). Reliability Engineering &
System Safety , 91 (2), 149-162.

Wilson, A. G., & Huzurbazar, A. V. (2007). Bayesian networks for multilevel system
reliability. Reliability Engineering & System Safety , 92 (10), 1413-1420.

Wooff, D., Goldstein, M., & Coolen, F. (2002). Bayesian graphical models for
software testing. IEEE Trans Software Eng , 28 (5), 510-25.

