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Predicting stream flow is essential for safe and economic planning and design

of hydraulic structures. This study uses the observed channel cross-section from

LiDAR data and physical concepts of shear stress to estimate bankfull discharge

(Qbf ). Assuming that Qbf is the median of the annual peak flow distribution, a

2-parameter Extreme Value Type I distribution was fitted to predict discharge to a

200-year return period. The method was compared with gauged sites in low-order

streams (less than 90-meter bankfull width) resulting in SE/SY = 1.31 for Qbf and

SE/SY = 1.90 for the 200-year return period discharge; model precision is poor.

However, the relative bias (-15% to +15%) demonstrates that on average results are

similar to gauged data. Relationships between flow and channel geometry assure

a quick way to estimate stream data and can serve as a tool used prior to apply-

ing conventional hydrologic methods such as flow routing and regional regression

equations.
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Chapter 1

Introduction

Accurate stream discharge measurements are important for flood risk analysis

and many other hydrological studies. Rivers act as a freshwater source for terrestrial

life, yet the discharge is often poorly documented since the existing direct observa-

tions are inadequate and some observation stations have been interrupted or discon-

tinued (Sichangi et al., 2016). In remote locations it is often difficult to obtain stream

flow information because of the difficulty in making the discharge measurements

necessary to define rating curves or stage-discharge relationships (Nathanson et al.,

2012). For much of the world, river gauge measurements are rare, nonexistent, or

proprietary. Even well monitored countries have sparsely distributed networks, thus

limiting current understanding of water losses along river courses, habitat changes,

and flood risk (Hunger and Döll, 2007; Stahl et al., 2012). This lack of knowledge

represents an acute problem, given the possible acceleration of the water cycle due

to global warming (Huntington, 2006).

1.1 Importance of a Rapid Estimation Method

There are several ways of predicting river discharge flow at ungauged sites, but

those more frequently used consider the use of recurrence interval flow regression

equations (watershed geometry) and flow routing (rainfall-runoff). The regression
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equations (e.g., McCandless et al. (2003)), while reliable, also depend on geographic

properties, making it difficult to reapply the same methodology or equations for

different regions. Also, the equations must be updated frequently in order to keep

track of recent rainfall events and climate change. Although the regression equation

method can be applied very quickly, it is often desirable to be able to obtain an even

more rapid estimate of the flood discharge of a particular frequency for a specific site.

Rainfall-runoff modeling is difficult and relies on spatially distributed precipitation

data, excellent characterization of the physical properties of the watershed and a

model of the appropriate runoff processes; for larger watersheds it is actually a

rainfall-runoff-routing problem (Beven and Beven, 2001). Therefore, rainfall-runoff

modeling works best for calculation of overland flow runoff from simple surfaces

in small basins (e.g. small urbanized areas). These hydrologic models are both

time-consuming in data collection and often in computation resources (Wharton

and Tomlinson, 1999)

Discharge is an integrative measure of the watershed response and rainfall

data are usually point data, and runoff modeling requires detailed spatial data to

provide accurate responses. Therefore, the use of independent data to estimate

river discharge is unsettled from a geomorphologic point of view (e.g., runoff does

not affect the amount of rainfall); precipitation and watershed characteristics define

the shape of a river (there is not enough involvement the other way around). This

results in a model where the output will be constant over the years unless there is

a major change in the climate or catchment physiology.

An alternative method is to estimate discharge from dependent variables such
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as bankfull properties and critical shear stress values. A model that uses only

dependent data has the advantage of not using any roughness or rainfall data as an

input. Since the physics and dynamics of the whole system are so complex and hard

to track, some assumptions must be made to fully develop even the most reliable

method for flow estimation.

Estimating flow using evidence of the last flood magnitudes, which gave shape

to the stream, is based on the amount of sediment transported, which is expected to

change after the next peak flood (Olsen et al., 1997). But, events of a catastrophic

magnitude are rare and usually separated by a long interval of time, so that it is

almost impossible for a single person to compare changes brought about by two

such events at the same place and to generalize about their effects on the landscape

(Gupta and Fox, 1974).

The Manning equation (Manning, 1891) or other similar expressions have been

used for more than a century in modeling open channel flow. One often identified

drawback of such approaches is their reliance on an empirical coefficient (here, the

Manning coefficient) of roughness, which can vary with stream stage (Comiti et al.,

2007; López et al., 2007).

The philosophy behind the hydraulic geometry method (HGM) proposed in

this study is simple: “A 100-year rainfall does not necessarily cause a 100-year

flood”. Channel geometry equations that relate discharge to channel width or chan-

nel cross section are considered to be the most reliable (Bhatt and Tiwari, 2008).

Furthermore, discharge estimates using both effective river width and stage infor-

mation consistently outperform those using only stage data (Sichangi et al., 2016).
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1.2 Goals and Objectives

The goal of this research is to predict low-probability discharge using only

the information given by the river cross-section geometry and bed material. This

study compares bankfull discharge values obtained from multi-year discharge records

at gauged sites with computations of bankfull discharges from hydraulic geometry

relations, and sediment transport threshold values. The bankfull discharge is then

used as an input to estimate predictions of low probability flow (200-year recurrence

interval or less) by applying an Extreme Value Type I (EVTI) distribution with

parameters α and β from the method of moments. The study explores the possibility

of predicting discharge using only geometric in-site information given by LiDAR

data and the equations of Leopold and Maddock (1953) and (Parker, 1978a,b) in

hydraulic geometry relationships and Shields number values, respectively, in order

to bypass the geographical/location assumptions. This method is not expected to

be better than those that already exist, but to be quicker and easier to apply as a

screening tool or a prior check for more detailed models.

1.3 Literature Review (Overview)

A review of completed and ongoing research has been conducted to identify

current knowledge or methodologies that may be appropriate for predicting low

probability discharge on ungauged streams from hydraulic geometry and critical

shear stress values.

The study of remotely sensed bankfull discharge based on geometry is not
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new; many authors such as Gleason and Smith (2014), and Bhatt and Tiwari (2008)

worked with estimation of bankfull discharge or rating curves from remotely sensed

data. But the majority of research in this field focuses on large rivers (> 50 meters

wide). In contrast to the coarse resolution of satellite observations used for the

extraction of hydraulic properties at global scales, high-resolution imagery has been

used for decades to produce digital terrain models, for example King et al. (2018)

created rating curves from aerial imagery using many hydraulic assumptions. These

studies demonstrate the accuracy of extracting digital surface models (DSMs) of

river banks from aerial imagery, but stop short of integration with hydraulic mod-

eling to estimate river discharge.

Many authors such as Singh (2003), Bjerklie et al. (2005), and Nathanson et al.

(2012) have worked on the estimation of bankfull discharge and predicting flow by

applying regression equations which involve regional information. But none of them

have applied distribution functions in order to predict discharge.

The theory for estimating bankfull discharge is mainly based on Leopold and

Maddock (1953) hydraulic geometry relations and sediment transport threshold

Shield’s number Parker (1978a,b).
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1.3.1 Hydraulic Geometry Relations and Threshold Discharge

At-a-station hydraulic geometry (AHG) theory relates geometric stream fea-

tures to bankfull discharge by assuming a power-law connection.

Bbf = aQb
bf (1.1)

Dbf = cQf
bf (1.2)

where Qbf is bankfull discharge; Bbf and Dbf are bankfull width and depth, re-

spectively; and the coefficients and exponents a, b, c, and f are empirical best fit

parameters, which were first described by Leopold and Maddock (1953), and are

an often-used framework in river remote sensing (Smith et al., 1996; Smith and

Pavelsky, 2008; Pavelsky, 2014). At-many-stations hydraulic geometry (AMHG)

is a recently discovered geomorphic phenomenon holding that the coefficients and

exponents in traditional AHG are stable and predictable for a given river, thus

linking individual cross sections to one another along a river (Gleason and Smith,

2014). Using simple geometric relationships, it is possible to use the same equation

structure for bankfull section area.

Abf = pQm
bf (1.3)

where p is the Area-Coefficient (a× c) and m the Area-Exponent (b+ f). Leopold

(1994) stated that most investigations have concluded that the bankfull discharge

recurrence intervals ranges from 1.0 to 2.5 years. Also, (Leopold and Maddock,
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1953) demonstrated that values of b = 0.42 and f = 0.28 are suitable for the at-

a-station hydraulic geometry equations for a wide range of geographic settings and

stream sizes. However, the coefficients (a,c) are related to regional and geographic

data. Since these parameters are sensitive to stream geometry, therefore some as-

sumptions and changes in the coefficients can be observed when analyzing the river

geomorphology.

1.3.2 Bankfull Sediment Transport Threshold

Geometric relationships do not give too much information on their own, be-

cause of the geographical dependence of the parameters. It is also possible to define

the bankfull discharge as shear stress threshold in which the momentum of flow is

enough to give a temporary stable geometry to the channel bankfull cross-section.

Parker (1978a,b) and Paola et al. (1992) developed a simple theory for bankfull char-

acteristics of rivers. The the formulation is based on a resistance equation describing

quasi-normal bankfull flow, transport of bed material load at quasi-equilibrium, and

a specified bankfull Shields criterion as follows:

τ ∗bf50 =
τbf

g(ρs − ρ)d50

= constant (1.4)

τbf = ρgRbfS (1.5)

where τ ∗bf50 is the non-dimensional channel-formative Shields number, τbf is the

reach-averaged mean bed shear stress [Pa], ρ and ρs are water and grain density

values, respectively [kg/m3], d50 is median bed grain size [m], and Rbf is the bankfull

7



hydraulic radius [m].

Paola et al. (1992) proposed the assumption of constant bankfull Shields num-

ber in modeling the morphodynamics of streams, Figure 1.1 shows the Shields num-

ber against nondimensional discharge, Q̂, defined as,

Q̂ =
Q

d2
50

√
ρs−ρ
ρ
gd50

(1.6)

Despite a considerable amount of scatter, the diagram allows the following ap-

proximate estimates of bankfull Shields number for gravel-bed and sand-bed streams

based on averages (Parker, 1978a,b; Dade and Friend, 1998).

Gravel-Bed: τ ∗bf50 = 0.0487

Sand-Bed: τ ∗bf50 = 1.86

The considerable scatter in the different bankfull dimensionless shear stress

values are probably due to differing fractions of wash load versus bed material load,

differing amounts and types of floodplain vegetation, or different hydrologic regimes.

Also, a threshold for a bankfull section slope around S∗ = 0.001 for gravel and sand

bed streams can be observed and be useful for estimating and differentiating when

each shear stress threshold should be used (Figure 1.2).
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Figure 1.1: Average Shields number (Eq. 1.4) of gravel and sand bed streams
(Parker, 2004). Q̂ is dimensionless discharge, which is inversely related to median
bed particle diameter.

Figure 1.2: Slope of gravel and sand bed streams (Parker, 2004). Q̂ is dimensionless
discharge, which is inversely related to median bed particle diameter.
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The main assumption is that flows less than the bankfull discharge value do

not significantly alter the channel shape, consistent with with the concept that

many streams are threshold channels at the bankfull stage, and the evolution of

river cross-section is towards a quasi-equilibrium bankfull Shields number (Parker,

1978a,b). The main complications would be variable fractions of wash load versus

bed material load, variable types of floodplain vegetation, and different hydrologic

regimes.

Shear stress and the Shield’s number are related to hydraulic geometry through

the bankfull section relationship. However, the first approach needs a regional anal-

ysis to calibrate the coefficients, and the second approach only works in a bankfull

section. Therefore, by combining both approaches it is possible to identify the

bankfull section and compute its respective discharge.

1.4 LIDAR to Obtain Stream Morphology Data

Recently, LiDAR scanning techniques have gained popularity for the collec-

tion of topographic data and for remote sensing of river channels (Wobus et al.,

2006; Snyder, 2009). The main issue in measuring channel cross-sections by Li-

DAR is that it does not measure elevation through water (i.e., bathymetry) because

visible-frequency light is reflected by water). Therefore, most of the key points are

measured on top of the stream resulting in water surface elevation data rather than

bed elevation, but assumptions and/or different approaches can be undertaken to

compensate this issue.
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The use of LiDAR-derived data as an input for modeling theoretical rating

curves opens a realm of possibility to remotely sense and monitor stream discharge

in channels in remote locations. This study serves as a proof-of-concept for the utility

of LiDAR-derived channel geometry in a physically based rating curve model.
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Chapter 2

Methods

The hydraulic geometry method is intended for application to ungauged sites.

The method is applied to gauged sites in the state of Maryland (US) as a test. The

procedure consists of:

1. Fit the observed annual peak discharge data to the EVTI distribution, and

predict gauge-based discharges for return periods 2, 5, 10, 20, 50, 100, and

200 years (annual exceedance probabilities 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, and

0.005, respectively).

2. Determine bankfull depth and discharge from the LiDAR cross-section data.

3. Use the bankfull discharge to find the parameters of the hydraulic geometry-

based EVTI distribution.

4. Compare the gauge- and LiDAR-derived bankfull discharge.

5. Predict to 200-year discharges based on hydraulic geometry.

6. Compare the HGM and gauge-based to 200-year discharges.

Figure 2.1 gives an overview of the methodology used in the study. The fol-

lowing sections describe the steps.
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Figure 2.1: HGM method
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2.1 Observed Data (Gauges) Filtering

Peak annual streamflow data were obtained from the USGS (2019) database

(only for stations in the state of Maryland), for a total of 275 stations. An Extreme

Value Type I (EVTI) distribution (Gumbel) was applied to each gauge that had

more than 30 years of recorded data. Using 30 years or more of data for each

station will allow a prediction of low probability flow with a good confidence level

(Rossi et al., 1984). The EVTI parameters were estimated using the method of

moments.

This screening was complemented by testing and correlating (Q-Q plots) the

EVTI results (population) to ensure it has a good fit. A two-sample correlation

coefficient was computed to ensure goodness of fit (Q-Q plot), as an example Figure

2.2 shows the correlation coefficients for one site. As a criterion, only the sites that

had a Pearson correlation coefficient greater than 0.96 were retained for further

analysis. This filtering process retained a total of 30 stations with extrapolated low

probability flow (Return periods of 2, 5, 10, 20, 50, 100, and 200) to be compared

with the Hydraulic Geometry Method. Table 2.1 shows the selected gauges and

their statistical properties.

2.2 Cross-Section Geometry Data

To extract geometry information LiDAR data were downloaded from the iMAP

service of the state of Maryland (MD-iMAP, 2019). The data were collected between

2011 and 2019 at different point densities, depending on county; publicly available
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Figure 2.2: Q-Q Plot for Site #6 with a r=0.9856

Table 2.1: Gauge data properties for annual peak discharge

Site # Record Length (years) x̄ [m3/s] s [m3/s] Median [m3/s] CV [-]

1 66 23.88 13.87 19.71 0.58
2 64 4.87 3.14 3.92 0.64
3 43 10.88 10.32 7.08 0.95
4 70 70.96 48.61 58.62 0.69
5 91 120.45 67.46 102.22 0.56
6 43 49.28 34.00 41.63 0.69
7 51 89.17 58.55 63.15 0.66
8 74 75.32 43.58 60.88 0.58
9 31 5.13 4.95 3.34 0.97
10 36 38.82 20.96 31.57 0.54
11 42 28.50 24.33 16.98 0.85
12 77 94.05 68.40 75.89 0.73
13 51 27.72 15.46 27.04 0.56
14 35 26.12 15.09 21.69 0.58
15 35 45.96 30.79 32.00 0.67
16 39 43.27 20.22 40.21 0.47
17 63 108.95 67.33 87.78 0.62
18 69 87.25 45.25 77.87 0.52
19 91 254.15 138.06 210.11 0.54
20 54 3.72 2.89 2.96 0.78
21 90 92.12 63.90 73.34 0.69
22 70 93.55 70.40 60.74 0.75
23 77 272.86 112.43 254.29 0.41
24 43 27.96 16.61 26.45 0.59
25 30 41.21 24.01 31.15 0.58
26 76 138.82 71.98 112.42 0.52
27 94 196.38 81.98 187.17 0.42

Note: CV = x̄/s

15



Figure 2.3: Sites and gauges locations
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for each county they are provided in 1-m or finer resolution gridded elevation. The

data are offered in many geographical location classifications (key points, ground,

bridge deck, etc.). Since this research is interested only in river cross-section, the

LiDAR data were obtained for ground and water classifications.

One of the issues with LiDAR is that key points in the measurements may

have a significant amount of noise, caused by vegetation and/or structures in the

ground. This issue can be compensated by applying a tolerance criterion for the

elevation. To ensure a smooth fit of the average cross-section a tolerance difference

of 3 meters between each sequentially data key point was applied.

Other issue, as mentioned before, is that LiDAR does not give bathymetry

information, therefore, many of the key points are measured on top of the stream

resulting in water surface elevation data. It is assumed that LiDAR measurements

were done in low flow conditions. Considering low-probability, high volume dis-

charge, baseflow is relatively unimportant from a flow magnitude point of view,

therefore baseflow will not be considered part of the flow and the LiDAR-derived

water surface is treated as stream bed for this research. An analysis of computed

bankfull data would indicate how important it is to allow for the baseflow of the

streams to impact the bankfull discharge predictions, since wider streams have more

baseflow influence on the bathymetry.

A straight centerline must be applied to define the perpendicular cross-sections.

This centerline must be done through the stream lowest points (inverts) across the

cross-sections. It is important that the centerline has significant length in order to

be representative, but also short enough to avoid meandering. A 50- or 100-meter
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centerline was assumed to be representative for estimating slope for an average cross-

section with 5 meters of spacing; the centerline slope will be assumed the same as

the water surface slope for this length. Within the reached sampled, channel cross-

sections were extracted every 5 meters; the use of this interval is a compromise

between the attempt to obtain as much a continuous record of variation in channel

form as possible, and that necessary to cover representative portions of the stream

(given that natural channels have heterogeneity, i.e. riffles, pools, etc.). The length

of each cross-section should be enough to extract all of the information from the, yet

unknown, bankfull depth. To assure full coverage of all of the streams, a 200-meter

line of perpendicular cross-sections to each side of the centerline was extracted from

the LiDAR on each cross-section and site, as shown in Figure 2.7 for site #5.

Figure 2.4: Centerline and cross-section lines drawn on LiDAR elevation grid (Site
#12)
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To ensure a good prediction, LiDAR data were reviewed before applying the

method. This review was accomplished by observing a consistent trend of points

towards a smooth average cross section. If this condition was not satisfied then the

site was discarded for the purpose of this research, as shown in Figure 2.5.

Figure 2.5: Example of unacceptable LiDAR data cross-section near gauge Hydro-
logic Unit 01646550. Note: Station was discarded.

Geometric properties were estimated from the cross-sections, such as: S(L),

B(d), A(d), P (d), andD(d), where d is any depth of the cross-section measuring from

the assumed channel invert; (at this point in the analysis, any d could potentially

be identified as bankfull depth), and L is the length of the centerline, which is

determined by inspection of the LiDAR DEM to be representative of the reach

containing the gauge (between 50 and 200 meters).

An average cross-section was computed by taking the mean of each LiDAR
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point on the same pixel location distance on the reach. Places where the elevation

decreased compared to the previous point (counting from the lowest elevation in

the channel) were filled for each cross-section to ensure model stability and avoid

irrational drops in discharge while increasing the depth (Figure 2.7).

The representative slope of the cross-section was computed by taking the mov-

ing average (with a period of a fifth of the length of the centerline) of the invert

for each cross-section along the centerline. This method ensures a smooth stream

line without being affected by LiDAR noise effects. The smoothed slope values were

averaged to obtain a single slope, S, for each site. As an example, Figure 2.6 displays

the effects of the smoothing process.

Figure 2.6: Longitudinal profile of cross-section invert elevation (Site #3), showing
smoothing
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Figure 2.7: Average cross-section and LiDAR data (Site #21) showing filling of dips. Left is not filled, Right is filled.
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2.3 Identifying Bankfull Shear Stress Discharge

The bankfull discharge is interpreted as a threshold on sediment stability (Car-

ling, 1988); therefore, a stable channel would be defined by flows smaller than the

threshold. The stability factor is a function of bankfull cross-section characteristics

and bedload composition. For gravel-bed the Shield’s shear stress is significantly

lower than for sand-bed because sediment transport is easier on sand (Parker et al.,

2007). Also, the stability factor can be translated to a nondimensional shear stress

(bankfull Shields number: Eqns. 1.4, 1.5). With cross-section data, estimating

shear stress is easy to do and does not need a lot of computational resources. The

hydraulic radius is defined as the area divided by the wetted perimeter of the flow

cross section. However, for a bankfull hydraulic radius, it is necessary to know

before-hand the bankfull depth, since the bankfull depth dictates all cross-section

parameters. For a range of possible channel depths, shear stress, τ
′

bf and bankfull

discharge q
′

bf , can be computed as if that depth were the bankfull depth; each depth

is thus a tentative bankfull depth (d
′

bf ); further testing identifies which depth sat-

isfies all requirements (equations) to be identified as the section’s unique bankfull

depth, d
′

bf . As an example, Figures 2.8 and 2.9 illustrate the relation between these

parameters. Channel depth is increased from invert to 2.0 m in increments of 0.1

meters; f and τ
′

bf and q
′

bf are calculated at each tentative bankfull depth, d
′

bf . The

bankfull depth is assumed to not be higher than 2 meters (in order to avoid changes

in elevation due to roads or similar infrastructures).

22



Figure 2.8: Depth vs. tentative bankfull shear stress computed for each depth as-
suming each depth as bankfull (Site #6)

Figure 2.9: Depth vs. tentative bankfull discharge computed for each depth assuming
each depth as bankfull (Site #6)
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A bed-slope approach was used to estimate bedload sediment size using (Parker,

2004) diagram (Figure 1.2). The nondimensional bankfull shear stress estimation

with bedload information implies a median grain size (d50). With grain size in-

formation a Manning coefficient can be estimated using one (or more) of many

Manning-diameter relations (Kim et al., 2010), like the ones shown in Table 2.2.

These equations are most accurate when water is sufficiently deep that stream bed

composition creates elements with roughness height much less than depth, analo-

gous to the ε/D relationship in pipe flow (Kim et al., 2010). In this case the average

of the three respective equations (Eq. 2.1) was used as the characteristic Manning

coefficient. Once the Manning coefficient has been estimated it is possible to apply

the Manning equation to the stream cross-section using a tentative bankfull depth,

d
′

bf .

n =
n1 + n2 + n3

3
(2.1)

where ni are the different estimates of roughness from Table 2.2.

Table 2.2: Equations to determining Manning’s roughness coefficient from grain size

Author Equation

Strickler (1923) n1 = 0.047d
1/6
50

Keulegan (1938) n2 = 0.039d
1/6
50

Bray (1979) n3 = 0.0495d0.16
50
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2.4 Identifying The Bankfull Section Through Hydraulic Geometry

In order to find the true bankfull discharge from the tentative values, a second

approach was used by applying AHG relationships. Physically, it is expected that

the relationship between discharge and area (Eq. 1.3) changes when flow in a given

channel increases from in-bank to out-of-bank. The depth at which a recognizable

change occurs is the bankfull depth. Area curves are generated using exponent values

(m in Eq. 1.3) from the literature, and calculating the coefficient (p in Eq. 1.3) for

each depth using the tentative bankfull discharge calculated as described in Section

2.3. The bankfull depth is identified as the point in the curve where p changes most

rapidly (greatest slope). This method is less biased than visually inspecting each

cross-section, and it’s assured that the bankfull extracted data will all have the same

definition. Values of the exponents b = 0.42 (Eq. 1.1) and f = 0.28 (Eq. 1.2) from

the literature was used for this model, further analysis will be conducted in order

to estimate the effect of this assumption.

Combining the HG and the shear stress approaches, is essentially finding two

unknowns (bankfull discharge and depth) from two equations (AHG and critical

shear stress), which can be solved by defining a bankfull section for an identified

area with coefficient values from the Area-Coefficient plots (channel breakpoint from

baseflow to floodplain). The area coefficient, p, is calculated for each tentative bank-

full depth, d
′

bf , analyzed in Section 3.4. A slope analysis of this curve will help iden-

tify the bankfull discharge that satisfies both approaches. The incremental value

(0.1 meters) is also consistent to identify correctly the floodplain when estimating

25



the bankfull breakpoint; using a smaller value could cause to retrieve changes into

the error range of the LiDAR data and, therefore, wrong bankfull section identifica-

tion. As an example Figure 2.10 shows the maximum slope in the Area-Coefficient

diagram.

Figure 2.10: Area-coefficient value (Site #6) computed for each tentative bankfull
discharge.

A curve of Area-Coefficients p and tentative bankfull discharge were analyzed

to identify the steepest slope (slope breakpoint) in the curve (abrupt change). The

slope was calculated by using the log values of the discharge.

Slope breakpoint = max

{
pi+1 − pi

log(qi+1
bf )− log(qibf )

}
(2.2)

Each HG-derived bankfull flow value can be compared to the gauge-based 2-year
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return period discharge. Overall accuracy of the method is evaluated by calculating

statistics of all the analyzed locations: systematic error (mean error) and non-

systematic error (SE/SY ). Many authors identify bankfull discharge as a 2-year

return period (Leopold, 1994).

2.5 Low Probability Prediction/Extrapolation

The previous method will result in a computed bankfull discharge. Continuing

to assume thatQbf represents the 2-year return period, the calculatedQbf is assumed

to represent the median annual peak value in estimating the parameters of the HG-

based EVTI. To estimate the two parameters of the EV TI(α, β), an additional

sample moment is required. The coefficient of variation (CV ) of annual peak flows

can be used to estimate the standard deviation of the population. The average CV

values of all the Maryland gauges with a record of 15 years or more was computed

(Table 3.1), and was assumed to represent the population. The EVTI parameters

were estimated using the median and the assumed CV .

CV =
s

x̄
(2.3)

α = x̄− γβ (2.4)

β = s

√
6

π
(2.5)

Qbf = α− βln(ln(2)) (2.6)

Having defined the EVTI distribution with the α and β parameters, it is
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possible to extrapolate the assumed 2-year return period discharge (bankfull) to a

200-year return period. These HG-based predictions can be compared to extrapo-

lated gauge-based data with the EVTI parameters estimated by Method of Moments

from observed data. A SE/SY (non-systematic error) value was computed compar-

ing gauge-based and HG-based QT at all study sites for selected return periods, T,

to analyze the results consistency. Also, an individual analysis was made for each

site using a frequency-discharge plot. These plots will show the mean relative error

(MRE) of the model and observed discharges, as shown as an example in Figure

2.11.

Figure 2.11: Model and observation frequency curves (Site #7). Note: QMod: EVTI
parameters estimates from HGM bankfull Q and assumed CV . QObs EVTI parameter
estimated from annual peak data. MRE=Mean Relative Error
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2.6 Effects of Assumptions on Model Accuracy

A number of quantities are assumed in the analysis; it is important to assess

how the assumptions affects the model results: the area exponent (Eq. 1.3), bankfull

return period, and CV of annual peak flow (Eq. 2.3). For the area-exponent m,

values can range from 0.5 to 1.0 (Singh, 2003). According to the literature bankfull

return period usually ranges between 1.5 and 2.5 years (Leopold, 1994). For CV ,

a range according to the observed standard deviation, s(CV ), was analyzed. The

analysis for these values will show the impact on the accuracy between the gauge-

based and HG-based EVTI (since the CV assumption does not affect the bankfull

estimation).

0.5 < m < 1.0 (2.7)

1.5 < Tbf < 2.5 (2.8)

C ′V = CV ± std(CV ) (2.9)
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Chapter 3

Results

3.1 Average Cross-Section

Average cross-sections were estimated using the available elevation LiDAR

data set. LiDAR data on some gauges had a significant amount of noise due to

vegetation and structures near the stream, therefore, four of them were discarded

from the sample. A total of 27 sites were left for analysis. Table 3.2 shows bankfull

values according to the Area-Coefficient method (Sections 2.3-2.4).

3.2 Area-Coefficient Bankfull Identification

Table 3.1 shows the computed bankfull values (HGM). Sites with bankfull

width >90 meters showed greater relative error (RE) than the low-order streams.

This can be mainly because of the baseflow covering substantial part of the bathymetry,

changing the accuracy of the predictions.

RE =
QMod −QObs

QObs

(3.1)

MRE =
1

N

∑ QMod −QObs

QObs

(3.2)
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Table 3.1: HGM and observed bankfull discharge

Site # Model Qbf [m3/s] Observed Qbf [m3/s] RE

1 6.83 21.60 -68%
2 2.68 4.36 -39%
3* 332.24 9.19 +3515%
4* 197.97 62.98 +214%
5 23.24 109.37 -79%
6 24.47 43.69 -44%
7 137.83 79.55 +73%
8 75.31 68.16 +10%
9 1.36 4.32 -68%
10 44.19 35.37 +25%
11 6.66 24.50 -73%
12 73.36 82.81 -11%
13 61.47 25.18 +144%
14 1.27 23.64 -95%
15 13.72 40.90 -66%
16 272.69 97.89 +179%
17 119.94 79.82 +50%
18* 194.05 231.47 -16%
19* 218.98 3.24 +6655%
20 11.65 81.62 -86%
21 17.04 81.99 -79%
22* 402.88 254.39 +58%
23 2.02 25.23 -92%
24 55.36 115.91 -52%
25 35.27 37.27 -5%
26 138.82 127.00 +9%
27 53.20 182.91 -71%

Note: Model values correspond to discharge in the Area-Coefficient breakpoint.
Observed values come from the EVTI for a 2-year return period.
* High-order streams exluded from further analysis.
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Table 3.2: Computed bankfull geometry by hydraulic geometry method

Site # Hydrologic Unit USGS Gauge Name B [m] D [m] S [-] A [m2]

1 01485000 Pocomoke River Near Willards 28.8 0.5 0.0001 559.0
2 01486000 Manokin Branch Near Princess Anne 16.7 0.5 0.0001 458.4
3 01489000 Faulkner Branch At Federalsburg 109.9 1.8 0.0033 164.3
4 01491000 Choptank River Near Greensboro 139.4 1.9 0.0005 122.1
5 01580000 Deer Creek At Rocks 18.6 1.2 0.0008 32.7
6 01581500 Bynum Run At Bel Air 23.1 1.1 0.0027 44.5
7 01581700 Winters Run Near Benson 30.8 1.9 0.0086 44.8
8 01582000 Little Falls At Blue Mount 39.3 1.5 0.0029 60.3
9 01583580 Baisman Run At Broadmoor 6.2 0.2 0.0310 31.7
10 01583600 Beaverdam Run At Cockeysville 38.6 1.7 0.0001 76.5
11 01584050 Long Green Creek At Glen Arm 10.7 0.5 0.0242 39.1
12 01584500 Little Gunpowder Falls At Laurel Brook 28.6 1.9 0.0016 41.6
13 01585200 West Branch Herring Run At Idlewylde 19.1 1.7 0.0109 25.7
14 01586210 Beaver Run Near Finksburg 15.1 0.2 0.0029 121.1
15 01586610 Morgan Run Near Louisville 43.8 0.5 0.0022 120.6
16 01595000 North Branch Potomac River At Steyer 71.3 1.9 0.0010 99.9
17 01597500 Savage Riv Bl Savage Riv Dam Near Bloomington 86.7 1.2 0.0046 150.7
18 01614500 Conococheague Creek At Fairview 164.2 1.3 0.0001 287.5
19 01617800 Marsh Run At Grimes 103.8 1.9 0.0025 122.8
20 01619500 Antietam Creek Near Sharpsburg 70.0 0.4 0.0001 203.7
21 01637500 Catoctin Creek Near Middletown 47.3 0.8 0.0003 122.8
22 01639000 Monocacy River At Bridgeport 161.4 1.9 0.0005 201.8
23 01641000 Hunting Creek At Jimtown 18.8 0.3 0.0001 588.2
24 01649500 Northeast Branch Anacostia River At Riverdale 20.4 1.8 0.0053 26.3
25 01653500 Henson Creek At Oxon Hill 22.1 1.3 0.0052 102.6
26 03075500 Youghiogheny River Near Oakland 83.0 1.0 0.0145 154.2
27 03076500 Youghiogheny River At Friendsville 58.9 0.4 0.0521 215.2

Note: B: Bankfull width, D: Bankfull Depth, S: Slope, A: Bankfull Area
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3.3 CV values on gauged sites

Consistency on the observed sites was found for the coefficient of variation

of the annual peak discharge (Figure 3.1) for gauges with more than 15 annual

measurements on record. The CV values (N = 146) averaged 0.85 (s = 0.37) showing

a low variability in the gauges annual flow. The mean value was used to compute

the model EVTI parameters.

Figure 3.1: Coefficient of variation (CV ) of annual peak flow for all gauges (N=146)
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3.4 Model Accuracy

For the accuracy measures a Relative Mean Error (RME) and Root Mean

Squared Error (RRMSE) were computed. The model error is defined as:

E = Qbf,m −Qbf,g (3.3)

where m indicates the HGM, and g indicates gauge data (observed). Relative mean

error (bias) is average error divided by measured (gauge) average, as follows:

RME =

∑
E
n∑
Qbf,g
n

=
Ē

Qbf,g

(3.4)

Relative Root Mean Square Error (RRMSE) is the square root of mean squared

error, divided by the standard deviation of the measured (gauge) average, or the

non-systematic error (SE/SY ):

RMSE =

√∑
E2

df
(3.5)

RRMSE =
RMSE

s(Qbf,g)
= SE/SY (3.6)

where df is degrees of freedom for the mean squared error calculation (equal to

number of observation/model pairs).
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3.4.1 Bankfull Discharge

Bankfull depth and discharge were modeled at 27 sites and compared to Q (2-

year) from in-situ gauge data with an absolute mean relative error of 467% (median

of 73%), shown in (Table 3.1). The maximum percent errors occurred at sites #3

and #19, with the HGM overpredicting by two orders of magnitude. The sources

of these errors are discussed later.

However, this strategy takes into account various morphological classes of

streams and assumes negligible baseflow discharge. When considering only the nar-

rower streams (low-order sites), the mean relative mean error (absolute value) for

the same properties lowers to a mean of 80%, and a median of 71% (Table 3.1).

On the other hand, a calculation of model error (N=27), resulted in a non-

systematic error (SE/SY ) value of 1.52 (Figure 3.2). When not considering the

wider streams (N=22), the same value improves to 1.31 (Figure 3.3). These results

show that stream size does not improve the overall accuracy of the model, even

though there is an improvement in the relative bias (RME) from 29% to -15%.
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Figure 3.2: Computed and gauged bankfull discharge for all streams (N=27). Note:
The label on each point is the Site # shown in Table 3.1

Figure 3.3: Computed and gauged bankfull discharge for low-order streams as de-
fined by bankfull Width (N=22). Note: The label on each point is the Site # shown
in Table 3.1
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3.4.2 Predicted Discharge

The area-coefficients (Section 2.4) for identified bankfull sections were used

to compute annual exceeding probability discharges for both gauged and predicted

data. This approach identifies the geometry relevance on the parameter p, useful to

identify breakpoints in the tetntative values.

Figure 3.4 displays the prediction results. The model showed poor SE/SY val-

ues but with consistent bias results in low-order streams. The extrapolation from

the bankfull flow was computed for a maximum recurrence interval of 200 years,

with a SE/SY value ranging between 1.57 and 1.90, indicating poor accuracy be-

tween predicted HGM and observed gauged data with a tendency to overpredict the

discharges (Table 3.3). Even though the bias is low and remains below 15%, the ac-

curacy of the predictions is poor for low-order streams. These is explained by a loss

of precision when extrapolating to lower probability discharges, as seen in Figure 3.4.

Table 3.3: Model accuracy: Bankfull discharge (2-year) from HGM, other return
periods from EVTI

T
[years]

All Streams Low-Order Streams

RME
RMSE
[m3/s]

RRMSE
SE/SY

RME
RMSE
[m3/s]

RRMSE
SE/SY

2 0.29 99.91 1.52 −0.15 59.14 1.31
5 0.56 192.68 2.03 0.00 105.11 1.57
10 0.65 255.67 2.23 0.06 137.05 1.68
20 0.71 316.46 2.37 0.09 168.08 1.75
50 0.76 395.41 2.50 0.12 208.52 1.82
100 0.79 454.68 2.57 0.14 238.95 1.86
200 0.82 513.79 2.63 0.15 269.33 1.90
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Figure 3.4: Discharge predictions for various return periods from gauge-based (Obs) and model-based (Mod) EVTI (low-order
streams only, N=22)
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3.5 Effect of Area-Exponent Assumption on Model Bias

When considering a constant Area-Exponent m (Eq. 1.3) and non-dimensional

shear stress values, the error of the assumptions is introduced in the sole Area-

Coefficient value. An analysis on the exponential value in the AHG equation shows

that even though the exponential values change drastically, the steepest slope in

the Area-Coefficient curve still shows the bankfull section with low bias for Area-

Exponent (m) values between 0.5 and 0.8, which is in the range recommended by the

literature (Figure 3.5). However, when moving away from those values the model

accuracy drops in terms of both bias and precision.

Figure 3.5: Area-exponent assumption effect on model bias (Relative Mean Error).
Note: Nominal value of 0.70 (Leopold and Maddock, 1953) added for reference.
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3.6 CV Effect on Model Bias

A constant CV was used to estimate the parameters for EVTI. An analysis on

the effect of this assumption showed that (inside the standard deviation values of

the CV ) the results are still acceptable. For each of the 22 locations analyzed, the

relative mean error between the model-based and gauge-based EVTI was calculated

(return periods from 2 to 200 by 1 year). The average of the 22 RME values lay in the

range between -50% and +50% (Figure 3.6). This analysis could also explain that

the variation between sites is not regional, and values between the previous range

are valid for every site. Also, the lower the CV assumed value the model tends to

underpredict the results, this could explain a relationship between the variation in

flow measurement and cross-section data.
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Figure 3.6: CV value assumption effect on model bias. Note: Nominal value of 0.85
added for reference.

3.7 Effects of Bankfull Discharge Assumption on Model Bias

Assuming a bankfull discharge of 2-year return period is considered appropri-

ate within the literature. The assumed bankfull return period ranged between 1.2

and 2.5 years. The relative mean error for various return periods between the model

and the observed data (N=22) do change considerably. From 1.8 to 2.2 years of

assumed bankfull return period the relative mean error ranges between -25% and

+25%; values outside of this range are not recommended. Figure 3.7 displays the

different bias values for each return period prediction when assuming a different

bankfull return period (i.e., changing Eq. 2.5).
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Figure 3.7: Bankfull return period assumptions effect on model bias. Note: Nominal
value of T=2 years added for reference.
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Chapter 4

Conclusions

4.1 Overview

The HGM discharge retrieval method advanced here yields reasonably unbi-

ased retrievals of river discharge when derived solely from LiDAR data. The results

show a non-systematic error ranging from 1.3 to 1.9, for both bankfull and predicted

discharges, meaning that the precision is poor and gets worse for lower probability

flows.

Users seeking to use this method in ungauged basins should adopt the assump-

tions described through this research, and carefully analyze the different recurrence

interval outputs, as little variation in some of the assumptions can result in major

deviations from the observed data. It is important to note that the reaches used for

the model must remain mass conserved and free of tributaries or outflows, and users

should avoid choosing reaches near receiving waters, confluences, and hydrologic

controls (as these conditions can impact the cross section averaging and bankfull

data). Rivers narrower than 90 meters are likely to be well retrieved from LiDAR

data and are less susceptible to negligible baseflow assumptions. The recommended

geomorphic criteria (low-order) is essential to implement a remote sensing elevation

dataset into the model without bathymetric information, since otherwise when con-

sidering all the streams (low- and high-order) the accuracy for bankfull discharge is
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worse.

This method can serve as a tool used prior to applying conventional hydrologic

methods such as flow routing and regional regression equations, with values ranging

between -50% and +50% compared with gauged streams. The HGM can easily

give predictions to 200-year return period discharges in those streams where the

bankfull cross-section is well defined and baseflow is not significant (in order to

retrieve accurate topographic data).

A method that does not rely on roughness parameters and rainfall events

changes the perspective as to how hydrologists estimate and predict discharge; this

work aids to understand non-conventional and dynamic flow geomorphology. By

considering all of the previous limitations, further research is needed to understand

better the use of hydraulic geometry relations and the use of dependent data for

hydrologic modeling.

4.2 Discussion and Limitations

The method is simple to apply, but it has a major cost. The large number

of assumptions invokes unavoidable errors which have to be clarified in order to

correctly use the HGM.

Bankfull section dynamics make this problem very hard to solve. It is very

probable that the natural flow of the stream would dynamically change the shape

of the bankfull cross section. When using dependent data for estimating discharge,

one major assumption is that the bank is in equilibrium with the flow. Also, it is
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possible for the streams’ cross-sections to change in time due to human involvement.

This dynamic change is not measured in this research, but it has to be taken into

account when comparing sites having many years of data and/or urban development

upstream. On the other hand, some tidal influence of low elevation streams can

change the stream bed by deposition of fine particles.

When assuming negligible baseflow, the model is using water surface as bathymetry.

This approach can work for channels with smaller sections and considerable low

baseflow (as shown). But for bigger streams, the theory would not work unless

bathymetric data is used. Fortunately, there are techniques that can potentially

overcome this problem. For instance, the HawkEye technique (bathymetric LiDAR)

uses a combination of NIR and green light that can provide both terrestrial and

bathymetric topographic information (Bailly et al., 2010); however, this technique

has a coarser resolution, which may limit potential usefulness, especially in small

streams. Maybe using a merged approach between both datasets can have better

estimates for low-order streams.

Gravel and sand bed distinction, only from slope, based on the concept that

steeper flows transport more mass. This approach can be improved by considering

other methods. For example a Rouse suspended sediment profile (Dietrich, 1982)

can be used to categorize the stream bed, focusing on the predominant sediment

size above the convergence point. Also, a region-based assumption of bed material

is often correct since it reflects insight on ongoing sediment transport. Also, some

considerations must be taken into account when implementing Strickler-type equa-

tions. These equations are recommended to use in wide-shallow channels where the
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hydraulic radius can be replaced by the mean depth, and are not suitable when the

bedform effect is predominant (Yen, 1992). Other major factor not taken into ac-

count is the presence of vegetation, which can be included to improve the Manning

coefficient equations.

Averaging the cross-sections could change the characteristic section of the

stream. This way the bias in the measurements of the LiDAR key points is reduced,

but it also takes into account trends in elevation that can be caused by natural chan-

nel expansion or contraction. Also, using arbitrary cross sections can create some

human bias by mistakenly choosing some wrong centerlines that are meandering or

misaligned compared to the actual stream line. This latter concern can drastically

change the average slope value and cause wrong site data retrieval. Also, the cross-

section averaging method used in this research uses a fill-in function to improve the

channel geometry configuration, but this can change the geometry parameters of

the model by reducing the active section of the stream. To compensate for LiDAR

error it is suggested to do a manual inspection of the sites and measure in-situ a

representative cross-section.

This approach might also be beneficial in cases where stream morphology is

changing over time and, thus, frequent updates of the rating curves are necessary

(Nathanson et al., 2012). However, airborne LiDAR scanning today is still quite

expensive. The high cost might be partially compensated for by the ease with which

rating curves and stream monitoring could be performed even at remote locations

using the methodology outlined in this study.

Using the abrupt change method certainly reduces the human bias of observing
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and selecting a bankfull section, but it also must be used correctly. The increment

depth used for each iteration in the calculation can lead to estimating the Area-

Coefficient slope with very close or far away points. Therefore, an incremental

depth value must be chosen that resembles the data length of the average cross

section.

Correctly selecting and using the appropriate centerline and assumptions, re-

spectively, can change drastically the outcome of the method. However, the ap-

proach used in this research demonstrate how using only in-situ remote sensed mea-

surements it is possible to estimate and predict low probability discharge values

to some extent. Finally, further research can be done by using a better elevation

dataset, one that could read bathymetry, and by selecting more gauge data sites.
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Appendix A

Streamflow and LiDAR Data

This appendix includes information about the data used as an input for this

method. This information includes LiDAR data and USGS gauge information along

with the data screening process. Also, the matlab and python code used in the

process is attached at the end of the appendix.

A.1 Gauged Sites Data

The data was obtained from the NWIS. The data was retrieved on 2019-02-13

17:56:41 EST.

Some of the this data that may not have received NWIS Director’s approval.

Any such data values are qualified as provisional and are subject to revision. Pro-

visional data are released on the condition that neither the USGS nor the United

States Government may be held liable for any damages resulting from its use.

Table A.1: Gauge Data

# Hydrologic Unit Gauge Name State Years of Data N

1 01484719 Bassett Creek Near Ironshire MD 2003 - 2012 10

2 01485000 Pocomoke River Near Willards MD 1950 - 2017 66

3 01485500 Nassawango Creek Near Snow Hill MD 1950 - 2017 68

4 01486000 Manokin Branch Near Princess Anne MD 1951 - 2016 64

5 01486100 Andrews Branch Near Delmar MD 1967 - 1976 10

6 01486500 Beaverdam Creek Near Salisbury MD 1930 - 2017 60

7 01489000 Faulkner Branch At Federalsburg MD 1950 - 2011 43

8 01489500 Rewastico Creek Near Hebron MD 1950 - 1960 9

9 01490000 Chicamacomico River Near Salem MD 1951 - 2016 47

10 01490800 Oldtown Branch At Goldsboro MD 1967 - 1976 10

11 01491000 Choptank River Near Greensboro MD 1948 - 2017 70

12 01491050 Spring Branch Near Greensboro MD 1967 - 1976 10

Continued on next page
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# Hydrologic Unit Gauge Name State Years of Data N (years)

13 01491500 Tuckahoe Creek Near Ruthsburg MD 1951 - 2017 22

14 01492000 Beaverdam Branch At Matthews MD 1950 - 2011 34

15 01492050 Gravel Run At Beulah MD 1966 - 1975 11

16 01492500 Sallie Harris Creek Near Carmichael MD 1952 - 2017 47

17 01492550 Mill Creek Near Skipton MD 1966 - 1976 11

18 01493000 Unicorn Branch Near Millington MD 1948 - 2017 69

19 01493112 Chesterville Branch Near Crumpton MD 1996 - 2017 13

20 01493500 Morgan Creek Near Kennedyville MD 1951 - 2017 66

21 01494000 Southeast Creek At Church Hill MD 1952 - 1965 14

22 01494150 Three Bridges Branch At Centreville MD 2007 - 2017 11

23 01494500 Jacobs Creek Near Sassafras MD 1952 - 1956 5

24 01495000 Big Elk Creek At Elk Mills MD 1884 - 2017 86

25 01495500 Little Elk Creek At Childs MD 1949 - 1999 12

26 01495800 Long Creek Near Chesapeake City MD 1979 - 1981 3

27 01496000 Northeast Creek At Leslie MD 1949 - 1999 37

28 01496080 Northeast River Tributary Near Charlestown MD 1967 - 1975 10

29 01496200 Principio Creek Near Principio Furnace MD 1967 - 1999 27

30 01577940 Broad Creek Tributary At Whiteford MD 1971 - 1985 16

31 01578310 Susquehanna River At Conowingo MD 1968 - 2017 50

32 01578475 Octoraro Creek Near Richardsmere MD 2006 - 2017 12

33 01578500 Octoraro Creek Near Rising Sun MD 1884 - 1999 44

34 01578800 Basin Run At West Nottingham MD 1967 - 1976 10

35 01579000 Basin Run At Liberty Grove MD 1949 - 1999 23

36 01580000 Deer Creek At Rocks MD 1926 - 2017 91

37 01580200 Deer Creek Near Kalmia MD 1967 - 1977 11

38 01580520 Deer Creek Near Darlington MD 2000 - 2017 18

39 01580700 Swan Creek At Swan Creek MD 2008 - 2017 10

40 01581000 Bynum Run Near Bel Air MD 1951 - 1955 5

41 01581500 Bynum Run At Bel Air MD 1945 - 2017 43

42 01581649 James Run Near Belcamp MD 2004 - 2017 13

43 01581657 Cranberry Rn At Aberdeen MD 1988 - 1988 2

44 01581658 Cranberry Run At Perryman MD 1987 - 1988 3

45 01581690 Bear Cabin Branch Near Bel Air MD 2009 - 2009 1

46 01581700 Winters Run Near Benson MD 1967 - 2017 51

47 01581750 Winters Run Hd Of Otter Pt Creek Near Bel Air MD 2006 - 2017 5

48 01581752 Plumtree Run Near Bel Air MD 2002 - 2017 16

49 01581757 Otter Point Creek Near Edgewood MD 2000 - 2017 18

50 01581810 Gunpowder Falls At Hoffmanville MD 2001 - 2017 17

51 01581830 Grave Run Near Beckleysville MD 2000 - 2017 18

52 01581870 Georges Run Near Beckleysville MD 2000 - 2017 18

53 01581920 Gunpowder Falls Near Parkton MD 2000 - 2017 18

54 01581940 Mingo Branch Near Hereford MD 2000 - 2009 10

55 01581960 Beetree Run At Bentley Springs MD 2000 - 2017 18

56 01582000 Little Falls At Blue Mount MD 1933 - 2017 74

57 01582500 Gunpowder Falls At Glencoe MD 1978 - 2017 38

58 01582510 Piney Creek Near Hereford MD 1966 - 1979 14

59 01583000 Slade Run Near Glyndon MD 1948 - 2011 36

60 01583100 Piney Run At Dover MD 1982 - 2017 28

61 01583495 Western Run Tributary At Western Run MD 1967 - 1976 10

62 01583500 Western Run At Western Run MD 1945 - 2017 73

63 01583570 Pond Branch At Oregon Ridge MD 1984 - 2017 22

64 01583580 Baisman Run At Broadmoor MD 1965 - 2017 31

65 01583600 Beaverdam Run At Cockeysville MD 1956 - 2017 36

66 01583800 Long Quarter Branch At Lutherville MD 2014 - 2017 4

67 01583980 Minebank Run At Loch Raven MD 1997 - 2004 9

Continued on next page
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# Hydrologic Unit Gauge Name State Years of Data N (years)

68 01584000 Gunpowder Falls Near Carney MD 1950 - 1964 15

69 01584050 Long Green Creek At Glen Arm MD 1976 - 2017 42

70 01584500 Little Gunpowder Falls At Laurel Brook MD 1926 - 2017 77

71 01585075 Foster Branch Near Joppatowne MD 2015 - 2017 2

72 01585090 Whitemarsh Run Near Fullerton MD 1995 - 2017 23

73 01585095 North Fork Whitemarsh Run Near White Marsh MD 1992 - 2009 17

74 01585100 Whitemarsh Run At White Marsh MD 1960 - 2017 56

75 01585104 Honeygo Run Near White Marsh MD 2000 - 2017 18

76 01585105 Honeygo Run At White Marsh MD 1991 - 1993 3

77 01585107 Windlass Run Near White Marsh MD 1992 - 1993 2

78 01585140 West Branch Canal Cr At Aberdeen Proving Groun MD 2000 - 2000 1

79 01585200 West Branch Herring Run At Idlewylde MD 1958 - 2017 51

80 01585219 Herring Run At Sinclair Lane At Baltimore MD 2014 - 2017 4

81 01585225 Moores Run Trib. Near Todd Ave At Baltimore MD 1997 - 2017 21

82 01585230 Moores Run At Radecke Ave At Baltimore MD 1997 - 2017 21

83 01585300 Stemmers Run At Rossville MD 1960 - 1989 29

84 01585400 Brien Run At Stemmers Run MD 1959 - 1986 29

85 01585500 Cranberry Branch Near Westminster MD 1949 - 2017 69

86 01586000 North Branch Patapsco River At Cedarhurst MD 1946 - 2017 72

87 01586210 Beaver Run Near Finksburg MD 1983 - 2017 35

88 01586500 North Branch Patapsco River Near Reisterstown MD 1928 - 1952 26

89 01586610 Morgan Run Near Louisville MD 1983 - 2017 35

90 01587000 North Branch Patapsco Riv Near Marriottsville MD 1929 - 1960 31

91 01587050 Haymeadow Branch Tributary At Poplar Springs MD 1966 - 1976 11

92 01587500 South Branch Patapsco River At Henryton MD 1949 - 1979 32

93 01588000 Piney Run Near Sykesville MD 1932 - 1974 43

94 01588500 Patapsco River At Woodstock MD 1897 - 1908 10

95 01589000 Patapsco River At Hollofield MD 1933 - 2017 61

96 01589025 Patapsco River Near Catonsville MD 2011 - 2017 7

97 01589035 Patapsco River Near Elkridge MD 2011 - 2017 7

98 01589100 East Branch Herbert Run At Arbutus MD 1956 - 2017 52

99 01589180 Gwynns Falls At Glyndon MD 1999 - 2017 19

100 01589197 Gwynns Falls Near Delight MD 1999 - 2017 19

101 01589200 Gwynns Falls Near Owings Mills MD 1959 - 1975 17

102 01589238 Gwynns Falls Tributary At Mcdonogh MD 1999 - 2017 18

103 01589240 Gwynns Falls At Mcdonogh MD 1958 - 1984 21

104 01589290 Scotts Level Branch At Rockdale MD 2006 - 2017 12

105 01589300 Gwynns Falls At Villa Nova MD 1956 - 2017 54

106 01589305 Powder Mill Run Near Lochearn MD 2006 - 2017 12

107 01589312 Dead Run Near Catonsville MD 2008 - 2017 10

108 01589315 Dead Run At Woodlawn MD 2008 - 2017 10

109 01589316 Dead Run Tributary Near Woodlawn MD 2008 - 2017 10

110 01589317 Tributary To Dead Run Tributary At Woodlawn MD 2008 - 2017 10

111 01589320 Dead Run Tributary At Woodlawn MD 2008 - 2017 10

112 01589330 Dead Run At Franklintown MD 1960 - 2017 47

113 01589340 Rognel Hgts Storm Sewer Outfall At Baltimore MD 1999 - 2010 12

114 01589351 Maidens Choice Run At Wilkens Ave At Baltimore MD 2001 - 2005 4

115 01589352 Gwynns Falls At Washington Blvd At Baltimore MD 1999 - 2017 19

116 01589440 Jones Falls At Sorrento MD 1958 - 2017 52

117 01589464 Stony Run At Ridgemede Road At Baltimore MD 2004 - 2015 12

118 01589478 Jones Falls At Maryland Ave At Baltimore MD 1981 - 2004 7

119 01589480 Jones Falls Near Mouth At Baltimore MD 1981 - 1982 2

120 01589500 Sawmill Creek At Glen Burnie MD 1933 - 2017 49

121 01589501 Sawmill Creek Tributary At Bwi Near Ferndale MD 1995 - 2003 8

122 01589512 Sawmill Creek At Crain Hwy At Glen Burnie MD 1984 - 1994 6

Continued on next page
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# Hydrologic Unit Gauge Name State Years of Data N (years)

123 01589522 Marley Creek At Harundale MD 1984 - 1985 2

124 01589795 South Fork Jabez Branch At Millersville MD 1990 - 2017 22

125 01590000 North River Near Annapolis MD 1932 - 1973 43

126 01590500 Bacon Ridge Branch At Chesterfield MD 1944 - 1990 35

127 01591000 Patuxent River Near Unity MD 1945 - 2017 73

128 01591350 Cattail Creek Near Cooksville MD 1978 - 1981 4

129 01591400 Cattail Creek Near Glenwood MD 1979 - 2017 39

130 01591500 Cattail Creek At Roxbury Mills MD 1945 - 1956 12

131 01591610 Patuxent River Below Brighton Dam Near Brighto MD 1972 - 2017 38

132 01591700 Hawlings River Near Sandy Spring MD 1979 - 2017 39

133 01592000 Patuxent River Near Burtonsville MD 1911 - 1944 34

134 01592500 Patuxent Riv Near Laurel MD 1945 - 2017 73

135 01593350 Little Patuxent River Trib. At Guilford Downs MD 1966 - 1976 11

136 01593370 L Pax Riv Trib Above Wilde Lake At Columbia MD 2013 - 2017 5

137 01593450 L Pax Riv Trib Above Lake Elkhorn Nr Guilford MD 2013 - 2017 5

138 01593500 Little Patuxent River At Guilford MD 1933 - 2017 85

139 01593710 Middle Patuxent River Near Simpsonville MD 1986 - 1995 9

140 01594000 Little Patuxent River At Savage MD 1933 - 2017 68

141 01594400 Dorsey Run Near Jessup MD 1949 - 2009 20

142 01594440 Patuxent River Near Bowie MD 1972 - 2017 41

143 01594445 Mill Branch Near Mitchellville MD 1966 - 1976 11

144 01594500 Western Branch Near Largo MD 1950 - 1974 25

145 01594526 Western Branch At Upper Marlboro MD 1985 - 2017 29

146 01594600 Cocktown Creek Near Huntingtown MD 1958 - 1976 19

147 01594670 Hunting Creek Near Huntingtown MD 1989 - 1998 10

148 01594710 Killpeck Creek At Huntersville MD 1986 - 1996 12

149 01594800 St Leonard Creek Near St Leonard MD 1958 - 2003 14

150 01594930 Laurel Run At Dobbin Rd Near Wilson MD 1980 - 2004 26

151 01594934 South Fork Sand Run Near Wilson MD 1980 - 1985 7

152 01594936 North Fork Sand Run Near Wilson MD 1980 - 2007 28

153 01594950 Mcmillan F Near Fort Pendleton MD 1987 - 2017 31

154 01594963 Nydegger Run Near Gorman MD 2013 - 2016 4

155 01595000 North Branch Potomac River At Steyer MD 1954 - 2017 63

156 01595500 North Branch Potomac River At Kitzmiller MD 1950 - 2017 67

157 01596005 Savage River Near Frostburg MD 1971 - 1985 14

158 01596050 Savage River Near Avilton MD 2013 - 2016 4

159 01596500 Savage River Near Barton MD 1948 - 2017 69

160 01597000 Crabtree Creek Near Swanton MD 1949 - 2016 36

161 01597500 Savage Riv Bl Savage Riv Dam Near Bloomington MD 1949 - 2017 69

162 01598000 Savage River At Bloomington MD 1924 - 1950 25

163 01598500 North Branch Potomac River At Luke MD 1900 - 2017 77

164 01598650 Sand Spring Run At Frostburg MD 2006 - 2008 2

165 01599000 Georges Creek At Franklin MD 1924 - 2017 88

166 01601100 Wills Creek At Ellerslie MD 2012 - 2015 3

167 01601420 Hoffman Drainage Tunnel At Clarysville MD 2016 - 2017 2

168 01601500 Wills Creek Near Cumberland MD 1924 - 2017 89

169 01603000 North Branch Potomac River Near Cumberland MD 1889 - 2017 90

170 01609000 Town Creek Near Oldtown MD 1928 - 2017 38

171 01609500 Sawpit Run Near Oldtown MD 1948 - 1975 25

172 01610000 Potomac River At Paw Paw WV 1877 - 2017 84

173 01610105 Pratt Hollow Tr At Pratt MD 1971 - 1986 15

174 01610150 Bear Creek At Forest Park MD 1965 - 1983 18

175 01610155 Sideling Hill Creek Near Bellegrove MD 1968 - 2017 29

176 01612500 Little Tonoloway Creek Near Hancock MD 1948 - 1964 17

177 01613000 Potomac River At Hancock MD 1889 - 2017 88

Continued on next page
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# Hydrologic Unit Gauge Name State Years of Data N (years)

178 01613095 Tonoloway Creek Near Hancock MD 2006 - 2017 12

179 01613150 Ditch Run Near Hancock MD 1965 - 1985 22

180 01613160 Potomac River Tributary Near Hancock MD 1965 - 1976 12

181 01613525 Licking Creek At Pectonville MD 2005 - 2017 13

182 01614500 Conococheague Creek At Fairview MD 1889 - 2017 91

183 01617800 Marsh Run At Grimes MD 1964 - 2017 54

184 01619000 Antietam Creek Near Waynesboro PA 1949 - 2017 32

185 01619320 Alb. Powell Fish Hatchery Sp. At Beaver Creek MD 1989 - 1998 10

186 01619475 Dog Creek Tributary Near Locust Grove MD 1966 - 1976 11

187 01619500 Antietam Creek Near Sharpsburg MD 1928 - 2017 90

188 01636845 Little Catoctin Creek Near Rosemont MD 2017 - 2017 1

189 01636846 Little Catoctin Creek At Rosemont MD 2017 - 2017 1

190 01637000 Little Catoctin Creek At Harmony MD 1948 - 1976 30

191 01637500 Catoctin Creek Near Middletown MD 1948 - 2017 70

192 01637600 Hollow Road Creek Near Middletown MD 1965 - 1976 11

193 01638500 Potomac River At Point Of Rocks MD 1889 - 2017 124

194 01639000 Monocacy River At Bridgeport MD 1933 - 2017 77

195 01639095 Piney Creek Tributary At Taneytown MD 1967 - 1976 10

196 01639140 Piney Creek Near Taneytown MD 1990 - 2002 12

197 01639375 Toms Creek At Emmitsburg MD 1986 - 1996 6

198 01639500 Big Pipe Creek At Bruceville MD 1948 - 2017 70

199 01640000 Little Pipe Creek At Avondale MD 1948 - 1979 31

200 01640500 Owens Creek At Lantz MD 1932 - 1984 53

201 01640700 Owens Creek Tributary Near Rocky Ridge MD 1967 - 1976 11

202 01640965 Hunting Creek Near Foxville MD 1982 - 1993 13

203 01640970 Hunting Creek Tributary Near Foxville MD 1982 - 1990 10

204 01640975 Hunting Creek Near Thurmont MD 1983 - 1985 4

205 01640980 Bear Branch Near Thurmont MD 1990 - 1995 5

206 01641000 Hunting Creek At Jimtown MD 1950 - 1991 43

207 01641500 Fishing Creek Near Lewistown MD 1948 - 2011 39

208 01641510 Fishing Creek Tributary Near Lewistown MD 1988 - 1995 8

209 01642000 Monocacy River Near Frederick MD 1889 - 1929 35

210 01642190 Monocacy River At Monocacy Blvd At Frederick MD 2003 - 2017 14

211 01642400 Dollyhyde Creek At Libertytown MD 1967 - 1976 10

212 01642438 Linganore Creek Near Libertytown MD 2008 - 2010 3

213 01642500 Linganore Creek Near Frederick MD 1933 - 1982 50

214 01643000 Monocacy River At Jug Bridge Near Frederick MD 1889 - 2017 89

215 01643395 Soper Branch At Hyattstown MD 2004 - 2017 14

216 01643495 Bennett Creek Tributary At Park Mills MD 1992 - 1993 2

217 01643500 Bennett Creek At Park Mills MD 1948 - 2017 68

218 01644371 Little Seneca Creek Tributary Near Clarksburg MD 2004 - 2017 14

219 01644372 Little Seneca Creek Tributary At Brink MD 2005 - 2017 13

220 01644375 Little Seneca Creek Tributary Near Germantown MD 2004 - 2017 14

221 01644380 Cabin Branch Near Boyds MD 2004 - 2017 14

222 01644388 Tenmile Creek Near Clarksburg MD 2014 - 2017 4

223 01644390 Tenmile Creek Near Boyds MD 2011 - 2017 7

224 01644420 Bucklodge Branch Tributary Near Barnesville MD 1967 - 1976 10

225 01644500 Great Seneca Creek Near Gaithersburg MD 1926 - 1929 5

226 01644600 Great Seneca Creek Near Quince Orchard MD 1998 - 2009 12

227 01645000 Seneca Creek At Dawsonville MD 1931 - 2017 87

228 01645200 Watts Branch At Rockville MD 1958 - 1987 30

229 01646500 Potomac River Near Wash, Dc Little Falls Pump TA 1931 - 2017 87

230 01646550 Little Falls Branch Near Bethesda MD 1945 - 1984 40

231 01647685 Williamsburg Run Near Olney MD 1967 - 1974 8

232 01647720 North Branch Rock Creek Near Norbeck MD 1967 - 1977 11

Continued on next page
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233 01647725 Manor Run Near Norbeck MD 1967 - 1974 8

234 01647740 North Branch Rock Creek Near Rockville MD 1968 - 1977 10

235 01647850 Turkey Branch Near Rockville MD 2007 - 2017 11

236 01649150 Paint Branch Tributary Near Colesville MD 2006 - 2017 11

237 01649190 Paint Branch Near College Park MD 2008 - 2017 10

238 01649500 Northeast Branch Anacostia River At Riverdale MD 1933 - 2017 80

239 01650050 Nw Branch Anacostia River At Norwood MD 1967 - 1976 10

240 01650085 Nursery Run At Cloverly MD 1967 - 1976 10

241 01650190 Batchellors Run At Oakdale MD 1967 - 1976 10

242 01650450 Bel Pre Creek At Layhill MD 1967 - 1974 8

243 01650500 Northwest Branch Anacostia River Nr Colesville MD 1924 - 2017 80

244 01650800 Sligo Creek Near Takoma Park MD 2009 - 2017 9

245 01651000 Northwest Br Anacostia River Nr Hyattsville MD 1933 - 2017 80

246 01653500 Henson Creek At Oxon Hill MD 1948 - 1978 30

247 01653600 Piscataway Creek At Piscataway MD 1966 - 2017 51

248 01658000 Mattawoman Creek Near Pomonkey MD 1950 - 2017 54

249 01660900 Wolf Den Branch Near Cedarville MD 1967 - 1979 14

250 01660920 Zekiah Swamp Run Near Newtown MD 1984 - 2017 33

251 01660930 Clark Rn Nr Bel Alton MD 1966 - 1976 11

252 01661000 Chaptico Creek At Chaptico MD 1948 - 1972 25

253 01661050 St Clement Creek Near Clements MD 1969 - 2017 48

254 01661430 Glebe Branch At Valley Lee MD 1968 - 1978 11

255 01661500 St Marys River At Great Mills MD 1947 - 2017 70

256 03075450 Little Youghiogheny River Trib. At Deer Park MD 1965 - 1975 12

257 03075500 Youghiogheny River Near Oakland MD 1936 - 2017 77

258 03075600 Toliver Run Tributary Near Hoyes Run MD 1965 - 1985 22

259 03075800 Poland Run Near Swanton MD 2008 - 2012 5

260 03075825 North Glade Run Near Swanton MD 2017 - 2017 1

261 03075850 Arrowhead Run At Thayerville MD 2017 - 2017 1

262 03075905 Cherry Creek At State Park Road Near Mchenry MD 2008 - 2017 9

263 03076100 Youghiogheny River At Hoyes MD 2011 - 2017 7

264 03076500 Youghiogheny River At Friendsville MD 1899 - 2017 94

265 03076505 Youghiogheny River Tributary Near Friendsville MD 1965 - 1975 12

266 03076600 Bear Creek At Friendsville MD 1965 - 2017 53

267 03076700 Buffalo Run Near Friendsville MD 2013 - 2016 4

268 03076800 Mill Run At Mineral Spring MD 2013 - 2016 4

269 03077700 North Branch Casselman River Trib. At Foxtown MD 1965 - 1975 12

270 03077940 South Branch Casselman River Near Bittinger MD 1977 - 1981 5

271 03078000 Casselman River At Grantsville MD 1948 - 2017 69

272 14847130 Birch Branch At Showell MD 2000 - 2017 18

273 15817530 Wheel Creek Near Abingdon MD 2010 - 2017 8

274 15839797 Minebank Run Near Glen Arm MD 2002 - 2017 16

275 15893510 Gwynns Run At Baltimore MD 2001 - 2004 3
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A.2 LiDAR Data

LiDAR data has been downloaded from the iMAP service of the state of Mary-

land, publicly available for each county at acceptable resolution (less than 1m x 1m).

The data is offered in many classifications, like keypoints, ground, bridge deck, etc.

For this research, ground and water classifications were used.

Ground classification routine removes any non-ground points and generate

an accurate ground surface. The ground routine consists of three main parameters

(building size, iteration angle, and iteration distance); by adjusting these parameters

and running several iterations of this routine a ground surface is developed. The

water classification routine selects ground points within the water breakline polygons

and automatically classifies them as water. This hydrologic breaklines are collected

to define as what is called the hydro-flattening phase. Since LiDAR does not collect

bathymetry points, the ground points in the stream bed are actually water surface

points. These points can be defined as baseflow and will be overwrited with the so

called “water” points (flat base flow elevation) for this research. The average cross

section was extracted and plotted along with the LiDAR elevation keypoints.
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Figure A.1: Average Cross-Section Site #1

Figure A.2: Average Cross-Section Site #2
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Figure A.3: Average Cross-Section Site #3

Figure A.4: Average Cross-Section Site #4
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Figure A.5: Average Cross-Section Site #5

Figure A.6: Average Cross-Section Site #6
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Figure A.7: Average Cross-Section Site #7

Figure A.8: Average Cross-Section Site #8
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Figure A.9: Average Cross-Section Site #9

Figure A.10: Average Cross-Section Site #10
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Figure A.11: Average Cross-Section Site #11

Figure A.12: Average Cross-Section Site #12
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Figure A.13: Average Cross-Section Site #13

Figure A.14: Average Cross-Section Site #14
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Figure A.15: Average Cross-Section Site #15

Figure A.16: Average Cross-Section Site #16
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Figure A.17: Average Cross-Section Site #17

Figure A.18: Average Cross-Section Site #18
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Figure A.19: Average Cross-Section Site #19

Figure A.20: Average Cross-Section Site #20
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Figure A.21: Average Cross-Section Site #21

Figure A.22: Average Cross-Section Site #22
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Figure A.23: Average Cross-Section Site #23

Figure A.24: Average Cross-Section Site #24
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Figure A.25: Average Cross-Section Site #25

Figure A.26: Average Cross-Section Site #26
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Figure A.27: Average Cross-Section Site #27
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Appendix B

Theory

This chapter contains the basic theory behind the method developed in this

research and the abrupt change and frequency figures for each gauge.

B.1 Hydraulic Geometry Theory

Singh (2003) explains the “hydraulic geometry” as the relationships between

the mean stream channel form and discharge both at-a-station and downstream

along a stream network in a hydrologically homogeneous basin. The channel form

includes the mean cross-section geometry (width, depth, cross-section, meander

length), and the hydraulic variables which include the mean slope, mean friction,

and mean velocity for a given influx of water and sediment to the channel and the

specified channel boundary conditions. Leopold and Maddock (1953) expressed the

hydraulic geometry relationships for a channel in the form of power functions of

discharge as

B = aQb (1)

D = cQf (2)

V = kQm (3)

here B is the channel width; d is the flow hydraulic depth; V is the flow velocity;
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Q is the flow discharge; and a, b, c, f, k, and m are parameters. To equations (A.1,

A.2, and A.3), also added are

A = pQq (4)

S = sQy (5)

n = NQj (6)

where n is Manning’s roughness factor; S is slope; A is area; and N, p, q, s,

j, and y are parameters. Exponents b, f, m, q, j, and y represent, respectively, the

rate of change of the hydraulic variables B, d, V, A, S, and n as Q changes; and

coefficients a, c, k, p, N, and s are scale factors that define the values of B, d, V, A,

n, and S when Q = 1. The hydraulic variables, width, depth and velocity, satisfy

for rectangular channels the continuity equation:

Q = BdV (7)

Therefore, the coefficients and exponents in equations (A.1, A.2, and A.3)

satisfy:

ack = 1 (8)

b+ f +m = c1 (9)

The at-a-site hydraulic geometry entails mean values over a certain period,
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such as a week, a month, a season, or a year. The concept of downstream hydraulic

geometry involves spatial variation in channel form and process at a constant fre-

quency of flow. Richard (1982) has noted that the downstream hydraulic geometry

involving the channel process and form embodies two types of analyses both of which

are expressed as power functions of the form (Rhoads, 1991) given by equations (1a,

b). The first type of analysis is typified by the works of Leopold and Maddock

(1953) and Wolman (1955) who formalized a set of relations, such as equations

(A.1, A.2, A.3, A.4, and A.5), to relate the downstream changes in flow properties

(width, mean depth, mean velocity, area, slope and friction) to mean discharge.

This type of analysis describes the regulation of flow adjustments by channel form

in response to increases in discharge downstream, and has been applied at particular

cross-sections as well as in the downstream direction.

B.2 Bankfull Shields Number Theory

The Shield’s number is a nondimensional number used to calculate the initia-

tion of motion of sediment in a fluid flow, which can be related to the evolution of

river cross-section toward a quasi-equilibrium stage (bankfull). The theory behind

the bankfull Shield’s number is outlined in Parker (1978 a,b).

B.3 Extreme Value Type-I Distribution

In probability theory and statistics, the Generalized Extreme Value distribu-

tion Type-I (Gumbel distribution) is used to model the distribution of the maximum
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(or the minimum) of a number of samples of various distributions. This distribution

is widely used in hydrology for its logarithmic scale properties. The cumulative

distribution function of the Gumbel distribution is:

F (x;α, β) = e−e
(α−x)β

(10)

Where the location (µ) and scale (β) parameters are:

α = x̄− γβ (11)

β = s

√
6

π
(12)

γ is the Eulerg-Mascheroni constant nad θ is the standard deviation of the data.

Therefore, to extrapolate the data the distributions parameters must be computed

and the solve the distribution (where T is return period in years):

K(T ) = −log(−log(1− 1/T )) (13)

Q(T ) = α + βK(T ) (14)

When the Median is known, then the parameters can be computed using the

Median equation of the distribution.

Median = α− βlog(log(2)) (15)
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Appendix C

Graphical Results for All Sites

This chapter contains the plots used to estimate the bankfull breakpoint and

the frequency curves (predictions) for each site.

C.1 Area-Coefficient Curves and Identified Bankfull Section Plots

(abrupt change)

Figure 1: Area-Coefficient Curve Site #1
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Figure 2: Area-Coefficient Curve Site #2

Figure 3: Area-Coefficient Curve Site #3
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Figure 4: Area-Coefficient Curve Site #4

Figure 5: Area-Coefficient Curve Site #5

75



Figure 6: Area-Coefficient Curve Site #6

Figure 7: Area-Coefficient Curve Site #7
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Figure 8: Area-Coefficient Curve Site #8

Figure 9: Area-Coefficient Curve Site #9
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Figure 10: Area-Coefficient Curve Site #10

Figure 11: Area-Coefficient Curve Site #11
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Figure 12: Area-Coefficient Curve Site #12

Figure 13: Area-Coefficient Curve Site #13
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Figure 14: Area-Coefficient Curve Site #14

Figure 15: Area-Coefficient Curve Site #15
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Figure 16: Area-Coefficient Curve Site #16

Figure 17: Area-Coefficient Curve Site #17
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Figure 18: Area-Coefficient Curve Site #18

Figure 19: Area-Coefficient Curve Site #19
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Figure 20: Area-Coefficient Curve Site #20

Figure 21: Area-Coefficient Curve Site #21
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Figure 22: Area-Coefficient Curve Site #22

Figure 23: Area-Coefficient Curve Site #23
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Figure 24: Area-Coefficient Curve Site #24

Figure 25: Area-Coefficient Curve Site #25
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Figure 26: Area-Coefficient Curve Site #26

Figure 27: Area-Coefficient Curve Site #27
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C.2 Frequency-Discharge Plots

Figure 28: Frequency-Discharge Curves Site #1

Figure 29: Frequency-Discharge Curves Site #2
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Figure 30: Frequency-Discharge Curves Site #3

Figure 31: Frequency-Discharge Curves Site #4
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Figure 32: Frequency-Discharge Curves Site #5

Figure 33: Frequency-Discharge Curves Site #6
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Figure 34: Frequency-Discharge Curves Site #7

Figure 35: Frequency-Discharge Curves Site #8
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Figure 36: Frequency-Discharge Curves Site #9

Figure 37: Frequency-Discharge Curves Site #10
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Figure 38: Frequency-Discharge Curves Site #11

Figure 39: Frequency-Discharge Curves Site #12
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Figure 40: Frequency-Discharge Curves Site #13

Figure 41: Frequency-Discharge Curves Site #14
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Figure 42: Frequency-Discharge Curves Site #15

Figure 43: Frequency-Discharge Curves Site #16
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Figure 44: Frequency-Discharge Curves Site #17

Figure 45: Frequency-Discharge Curves Site #18
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Figure 46: Frequency-Discharge Curves Site #19

Figure 47: Frequency-Discharge Curves Site #20
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Figure 48: Frequency-Discharge Curves Site #21

Figure 49: Frequency-Discharge Curves Site #22

97



Figure 50: Frequency-Discharge Curves Site #23

Figure 51: Frequency-Discharge Curves Site #24
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Figure 52: Frequency-Discharge Curves Site #25

Figure 53: Frequency-Discharge Curves Site #26
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Figure 54: Frequency-Discharge Curves Site #27
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