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Continental crust and the underlying lithospheric mantle make up the 

continental lithosphere of the Earth. Our understanding of its structure and 

composition is limited by the inaccessibility of Earth’s deep interior. Seismic imaging 

utilizing complementary seismic data provides unique constraints on the present-day 

structure of continental lithosphere. However, while recent efforts have improved the 

resolution of seismic images, the quantification of uncertainties remains challenging 

due to the non-linearity and the non-uniqueness of the geophysical inverse problem. 

To gain insights into the composition, formation, and evolution of the continental 

lithosphere, an interdisciplinary approach that incorporates seismological, 

geodynamical, and geochemical contributions is needed. In this dissertation, I 



  

implement a model-space search approach – transdimensional Bayesian inversion – to 

explore seismological constraints of continental lithosphere. I utilize seismic 

observables including Rayleigh and Love wave dispersion, Rayleigh wave ZH ratio, 

and Ps receiver functions to invert for shear velocity (Vs), compressional velocity 

(Vp), density (ρ), and radial anisotropy (ξ) profiles of lithospheric structure. I begin by 

systematically investigating the effects of parameterization choices on inversion 

results using synthetic tests. Then, I proceed to tackle several technical challenges 

regarding the accurate retrieval of multi-parameter velocity structures from large 

seismic arrays in the presence of sediment layers. Finally, I apply these techniques to 

create a shear velocity model (TBI-NGP) of the lithosphere across the Northern Great 

Plains of the United States using data from the EarthScope Transportable Array. This 

probabilistic seismic model enables statistical assessment of the elastic properties in an 

Archean craton and Paleoproterozoic orogen. Subsequently, I incorporate seismic 

constraints with geophysical and geochemical measurements to infer the composition 

of continental crust in the region. 
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Chapter 1: Introduction 

The lithosphere is Earth’s outermost rigid shell part that consists of the crust 

and the underlying lithospheric mantle. The lithosphere can be classified into oceanic 

and continental due to remarkable distinctions that have been observed between the 

two, especially in the crust. Earth’s oceanic crust is relatively thin (<8km) and young 

(<200 Myr) with a mafic composition. In contrast, the continental crust is thick (25 – 

70 km), billions of years old, and is more differentiated. The continental crust 

preserves rocks with diverse lithologies, offering a unique opportunity to study the 

formation and evolution of the Earth. The continental crust evolved from a 

predominantly mafic composition to today’s andesitic composition with a vertically 

stratified layered structure (e.g. Christensen and Mooney, 1995; Rudnick and Gao, 

2003; Huang et al., 2013; Hacker et al., 2015). Unlike the relatively well-constrained 

upper crust, the nature of the mid and lower continental crust is still unclear as direct 

observations are limited. Seismic imaging serves as a unique and robust approach to 

pose constraints on the elastic properties of Earth’s inaccessible interior.  

Recent development in seismic imaging techniques (Shapiro et al., 2005; 

Langston and Liang, 2008; Lin et al., 2012) and installation of massive seismic arrays 

(e.g. EarthScope USArray Transportable Array) provide an opportunity for obtaining 

high-resolution, comprehensive seismic constraints on the structure and properties of 

Earth’s continental lithosphere. Successfully leveraging these techniques and multiple 

datasets requires the simultaneous application of complementary seismic observables, 

as well as the development of joint inversion techniques that can handle flexible 
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parameterizations and disparate noise characteristics of the datasets. Moreover, to 

further incorporate the seismic constraints with geochemistry, geodynamics, and 

petrology studies, a single best-fit model from classical seismic inversion scheme 

without accurate quantification of uncertainties is insufficient.   

I hypothesize that by applying Bayesian inference into the seismic inversion, 

the representative sample of the set of acceptable models given the data – which we 

call the ensemble solution – will allow us to quantify the uncertainties of the inversion 

result. Recent studies have also suggested that transdimensional sampling methods, in 

which the number of parameters describing the interior itself is treated as unknown, 

are advantageous in problems with multiple parameter types, which are common in 

seismology.  

I will briefly introduce the transdimensional Bayesian (TB) method for seismic 

inversion at the beginning of this dissertation. I will then demonstrate the application 

of TB inversion two seismic observables: surface wave dispersion and Rayleigh wave 

ZH ratio. Surface wave dispersion is the measurement of propagation velocity for 

seismic surface waves. The frequency dependence of their sensitivity to Earth’s 

structure allows them to be used to constrain Earth’s subsurface structure. Rayleigh 

wave ZH ratio is a measurement of the ellipticity of its particle motion, being the ratio 

of the vertical to horizontal amplitude of particle motion for a Rayleigh wave. It is 

shown to be sensitive to elastic properties and density in Earth’s crust. While inversion 

of these two data types has been widely used for constraining the lithosphere structure, 

particularly since the emergence of ambient seismic noise measurements, systematic 



 

 3 
 

studies of the model parameter uncertainties and trade-offs are limited. The TB 

approach is well suited for such quantification due to its less restrictive 

parameterization and probabilistic framework.  

In Chapter 2 of this dissertation, I focus on three aspects of seismic inversion: 

data sensitivities, assumed scaling among parameters (compressional wave speed, VP, 

shear wave speed, VS, density and radial anisotropy) and parameterization choices. In 

an ideal case, the inversion results should be dominated by data sensitivity without 

introducing potential bias. We show that under realistic circumstances, while surface 

wave data provide relatively strong constraints on the posterior distribution of VS and, 

to a lesser extent, VP, common parameterization choices can potentially bias structure 

estimates. This is particularly the case for radial anisotropy (ξ) – which refers to 

transverse isotropy with a vertical axis of symmetry and no azimuthal dependence – 

due to the inability to distinguish variations of VP and density from those of ξ. Inferred 

results therefore depend substantially on the parameterization and scaling choices. 

Two types of model parameterization are proposed for TB inversion involving 

multiple types of parameters. I demonstrate that by implementing an independent 

parameterization for different physical quantities, the inversion can avoid imposing 

identical model geometry across multiple types of model parameters, and obtain better 

model estimates with reduced trade-offs. I advocate for such a parameterization in TB 

inversion of radial anisotropy using surface wave data, and when targeting disparate 

VP and VS structures such as those associated with the α-β quartz transition.  
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As a short note on material in Chapter 2, I document the technical details of 

my implementation for predicting surface wave dispersion and ZH ratio for a layered 

model based on the work by Lai and Rix (1998). The MATLAB-based program 

improves the prediction compared to standard techniques by taking into account the 

sphericity and radial anisotropy of the Earth. 

To further constrain the sharp change of seismic velocities within the 

continental lithosphere, receiver functions are included for a joint inversion together 

with surface wave dispersion. Receiver functions are time series computed from three-

component seismograms that are related to the seismic response of Earth structure 

near the receiver. Joint inversion including receiver function data has recently 

proliferated in crustal seismology due to the development of model-space search 

approaches. There are several challenges to the application of joint inversion to data 

from large seismic arrays that span across various tectonic settings. A key 

complication to the interpretation of seismic data arises due to the heterogeneous near-

surface sedimentary layers. This issue has been addressed in the literature by imposing 

stronger prior information of the inversion (Shen et al., 2013, 2016) or by degradation 

of receiver function data (Chai et al., 2015). However, there remain substantial 

published studies that do not address or discuss the issue directly, despite being 

situated in areas where sediment-related contamination of receiver functions is to be 

expected.  

In Chapter 4 of this dissertation, I investigate the reliability of crustal structure 

inferences using an implementation of transdimensional Bayesian joint inversions. I 
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show that reverberations from shallow layers such as sedimentary basins produce 

spurious low-velocity zones when inverted together with surface wave data of 

insufficiently high frequency. Therefore, reports of such layers in the literature based 

on inversions using receiver function data should be re-evaluated. I demonstrate that a 

simple resonance-removal filter can suppress these effects and yield reliable estimates 

of crustal structure, and I document the details of its implementation in receiver-

function based inversions. 

Chapter five of this dissertation is an application of transdimensional Bayesian 

joint inversion of a large seismic array based on the theoretical development of the 

preceding chapters. I focus on the lithospheric seismic imaging of the Northern Great 

Plains (NGP) of the United States using Transportable Array data. I present a shear 

velocity model – THB-NGP – for the top 100 km of the Northern Great Plains 

following accurate characterization of the sedimentary basin. Seismic velocity 

structures of different tectonic settings are quantitatively analyzed and then 

incorporated with lab measured wave speed to infer the composition of the NGP mid-

lower crust. Together with previous geochemical, petrological studies of the Northern 

Great Plains crust, I discuss implications of our work for the formation and evolution 

of the Archean crust and the Paleoproterozoic orogenic belts. 
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Chapter 2: Consequences of Parameterization Choices in Surface 
Wave Inversion: Insights from Transdimensional Bayesian 
Methods 
 
Gao, C., & Lekić, V. (2018). Consequences of parameterization choices in surface 
wave inversion: insights from transdimensional Bayesian methods. Geophysical 
Journal International, 215(2), 1037-1063. https://doi.org/10.1093/gji/ggy310 
 

Abstract  

Inversion of surface wave data for crustal and upper mantle structure is a staple 

of passive seismology, particularly since the advent of techniques enabling surface 

wave dispersion and Rayleigh wave ellipticity measurements from ambient noise. 

Recent development and application of transdimensional Bayesian (TB) seismic 

inversion offers an approach to quantify model parameter uncertainties and trade-offs 

with fewer assumptions than traditional methods. Using synthetic tests, we investigate 

choices in the implementation of TB for the inversion of surface wave dispersion and 

Rayleigh wave ellipticity to constrain the structure of Earth’s continental lithosphere. 

We focus on three aspects of the inversion: limitation of data sensitivity, assumed 

scaling among parameters (compressional wavespeed, Vp, shear wavespeed, Vs, 

density, radial anisotropy), and parameterization choices. We show that while surface 

wave data provide relatively strong constraints on the posterior distribution of Vs and, 

to a lesser extent, Vp, common parameterization choices can potentially bias structure 

estimates. This is particularly the case for radial anisotropy (ξ), due to the inability to 

distinguish variations of Vp and density from those of ξ. Inferred results therefore 

depend substantially on the parameterization and scaling choices. We illustrate how 

layered parameterizations can, in the TB framework, recover smoothly-varying 



 

 7 
 

profiles, and quantify the number of layers recoverable at different levels of 

measurement uncertainty. Finally, we propose two types of model parameterization 

for TB inversion involving multiple types of parameters. We demonstrate that by 

implementing an independent parameterization for different physical quantities, we 

can avoid imposing identical model geometry across multiple types of model 

parameters, and obtain better model estimates with reduced trade-offs. We advocate 

for such a parameterization in TB inversion of radial anisotropy using surface wave 

data, and when targeting disparate Vp and Vs structures such as those associated with 

�-� quartz transtion. 
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2.1 Introduction 

Seismic surface waves are strongly excited by shallow earthquakes, and more 

easily recorded at large epicentral distances compared to body waves due to lesser 

geometrical spreading. Because their sensitivity to structure depends on frequency, 

their propagation velocity does as well. Therefore, measurements of surface wave 

dispersion (SWD) provide constraints on crustal and upper mantle structure with 

excellent global coverage and high lateral resolution (e.g. Romanowicz, 2002). Indeed, 

seismic tomography based on surface wave dispersion has been widely used to 

constrain the 3-D shear wave velocity in crust and upper mantle both on a global scale 

(Montagner and Tanimoto, 1991; Trampert and Woodhouse, 1996; Shapiro and 

Ritzwoller, 2002; Ekstrom et al., 2014; Pasyanos et al., 2014) and regional scale (e.g. 

Simons et al., 2002; Huang et al., 2003; Yao et al., 2006, 2008; Lin et al., 2008; 

Wagner et al., 2012). Differences between the dispersion of Rayleigh and Love waves 

led to the discovery of radial anisotropy in the upper mantle (Anderson, 1961; Aki, 

1968), and are now routinely used to constrain profiles and lateral variations of radial 

anisotropy of Earth’s crust and upper mantle (Panning and Romanowicz, 2004; 

Kustowski et al., 2008; Ferreira et al., 2010). The particle motion of fundamental 

mode Rayleigh wave is elliptical. The measurement of the ratio of the vertical to 

horizontal amplitude of particle motion (ZH ratio) can be shown to be sensitive to 

elastic properties and density in the crust, and has also been used to constrain shallow 

Earth structure (Boore and Toksoz, 1969; Tanimoto and Rivera, 2008; Yano et al., 

2009; Lin et al., 2014).  
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Inferring Earth properties from seismic data is a non-unique inverse problem 

because seismic observables provide only limited constraints (Franklin, 1970). Love 

and Rayleigh waves depend on density and 13 independent elastic parameters (e.g. 

Chen and Tromp, 2007), which can vary laterally and with depth. Therefore, 

inversions of SWD and ZH ratio data inherently involve significant non-uniqueness 

due to trade-offs among model parameters; when linearized and posed in terms of 

matrix inversion, the large number of model parameters yields singular matrices 

requiring regularization for a solution to be obtained. To best represent the Earth’s 

structure given the available seismic observation, certain assumptions are often made 

to simplify the model. For example, the structure may be assumed to be layered or to 

vary smoothly with depth (e.g. Constable et al., 1987). Within each layer, the elastic 

properties might be assumed to be isotropic, so that they can be described with just 

three parameters: density (ρ), shear (Vs) and compressional (Vp) wavespeed. Another 

common assumption is that of radial anisotropy (transverse isotropy), which involves 

three additional parameters: the squares of the ratios of wavespeeds of horizontally 

and vertically-polarized waves, ξ = (V��/V�
)� and, φ = (V��/V�
)� respectively, as 

well as a parameter, η, describing wavespeeds at intermediate directions. 

Even with these simplifying assumptions, constraints provided by SWD data 

are insufficient to reliably infer all the model parameters, particularly those to which 

the seismic observables are weakly sensitive – such as Vp, φ, η, and ρ. Based on 

empirical trends, variations in these parameters are often scaled to variations in better-

resolved parameters such as Vs (e.g. Brocher, 2005) and ξ (e.g. Montagner and 

Anderson, 1989). Indeed, φ, η, are assumed and remain a workhorse of structural 
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seismology. Recently, global tomographic models in which the scaling relationships 

are allowed to vary with depth or laterally have also been performed (e.g. Simmons et 

al., 2009; Moulik and Ekstrom, 2016).  

Standard inversion approaches are ill-suited for studying how parameterization 

choices and scaling assumptions affect the accuracy of seismic structures inferred 

from surface wave data. To start with, a certain amount of regularization – in the form 

of smoothing, damping, or a priori covariance among parameters – must be imposed to 

obtain a solution in the first place. Uncertainty analysis developed for linear(izable) 

problems can be applied (e.g. Backus and Gilbert, 1967; Tarantola and Valette, 1982) 

to study the tradeoffs between inferences of Vs, Vp, and density. However, SWD and 

ZH ratios depend on elastic properties in a non-linear way; their sensitivity to a 

parameter of interest can depend on the value of that and other parameters. Therefore, 

these linear approaches may not be appropriate. Even if they were appropriate, the 

analysis may depend on the parameterization – for example, for different choices of 

number and thickness of layers – limiting their generalizability. On the other hand, 

model space search methods do not require an inversion to be performed, and offer the 

potential to quantify the uncertainty of inferences even in highly non-linear problems 

(Mosegaard, 1998). Yet, application of these approaches to over-parameterized 

problems is stymied by the curse of dimensionality (e.g. Tarantola. 2005), and has, 

until recently, required the parameterization to be chosen prior to inversion.  

To better represent the uncertainties from seismic imaging results and to 

incorporate complementary seismic observables with increasingly available 

measurements, seismic transdimensional Bayesian (TB) inversion has been developed 
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(Malinverno, 2002; Bodin et al., 2009; Agostinetti and Malinverno, 2010; Bodin et al., 

2012). Under a Bayesian framework, all information is described in terms of 

probabilities. This allows for data uncertainties as well as prior assumptions about 

model parameters to be explicitly accounted for. Furthermore, since Bayesian 

inversion seeks an ensemble solution instead of a single best-fitting model, 

quantification of uncertainties of inferred model parameters and correlations between 

them is relatively straightforward. In contrast to traditional inversion methods, which 

treat the number of model parameters as a constant chosen prior to inversion, 

transdimensional inversion includes it as an unknown determined by the data 

(Sambridge et al., 2013). With a more flexible model parameterization, 

transdimensional inversion also more easily accommodates multiple data types with 

different, and therefore complementary, sensitivities to the seismic structure.  

The TB method offers a new opportunity to quantify effects of 

parameterization choices and assumptions of scaling among parameters, enabling a 

reassessment of uncertainties in surface wave dispersion and insight into outstanding 

questions, such as the origin of the relatively poor agreement among radially 

anisotropic global shear velocity models (Chang et al., 2015). Under a TB framework, 

we can eliminate scaling assumptions as well as assumptions concerning the number 

and thickness of structural layers, while simultaneously constraining multiple model 

parameters to various degrees.   

In this paper, we use TB inversion to systematically explore the ability of 

surface wave dispersion and ZH ratios to constrain profiles of Vs, Vp, ρ, and ξ beneath 

a seismic station, under various model parameterization choices. Synthetic data of 
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these two observables are inverted individually and jointly to investigate the 

complementarity of data sensitivity, the consequences of parameterization choices, 

and the influence of assumptions about scaling relationships between physical 

quantities.  

 

2.2 Method 

2.2.1 Seismic Bayesian Inversion  

Bayes’ theorem (Bayes and Price, 1763) relates the probability (p) of an model 

(m) conditional on a dataset (d), written as �(�|�), to the probability of observing the 

dataset given a model, i.e. �(�|�):   

�(�|�)  =  �(�|�) × �(�)�(�)     (2.1) 

Here the model is represented by a vector quantity that includes all the model 

parameters of interest. Similarly, all observed data comprise a vector d. The aim of 

Bayesian inference is to quantify the posterior probability density �(�|�), which is 

the probability density of the model parameter given the observed data (Smith 1991).  

The term �(�) is called the evidence.  Notice that �(�) is not a function of m, and 

should remain constant as we vary the model parameter under the same setting, 

allowing us to write: 

�(�|�)  ∝  �(�|�) × �(�)     (2.2)  
Seismic inversion is the procedure of using the measurements made on seismic 

records (i.e. data, d) to infer a model (m) that quantitatively describes the Earth’s, 

typically inaccessible, interior. In such case, the posterior is the probability of certain 
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seismic structure given the observation and the prior. It is therefore proportional to the 

product of likelihood -- the probability of observing the data given a seismic structure 

– and the prior probability on the model parameters. While the forward problem of 

predicting the outcome of some measurements given a complete description of the 

physical system has a unique solution, the inverse problem does not. This non-

uniqueness arises both from data measurement errors and the insufficiency of 

information contained in the data. Unlike many common approaches to solving such 

inverse problems, which seek to reduce the non-uniqueness by introducing prior 

information in the form of smoothing or damping operators (e.g. Constable et al., 1987; 

Menke, 2012), the Bayesian approach embraces the non-uniqueness and represents it 

in probabilistic terms.  

The prior 

In the Bayesian framework, the prior information �(�) is used to describe our 

knowledge about the parameters that describe the model prior to introducing data 

(Sivia, 2006). If the parameters that we are interested in inferring correspond to an 

unknown number n of physically non-overlapping regions, the prior can be separated 

into two terms: 

�(�) =  �(�� , �) = �(��|�) × �(�)     (2.3) 

Here �� stands for the parameters describing the seismic structure (Vp, Vs, 

density and the physical location of the regions). We use a uniform distribution for n 

over the interval � =  � ∈ " | �#$% < � ≤ �#()}. Hence, 

�(�) =  + 1∆�      -. � ∈ �       0       01ℎ345-63    (2.4) 
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where ∆� =  (�#() − �#$%). 

In this study, the target model is parameterized in depth using Voronoi nuclei 

(Aurenhammer, 1991); the region nearest to a given Voronoi nucleus is defines a layer 

of constant elastic parameters specified for that Voronoi nucleus. The boundary 

between adjacent layers is defined as the midpoint between two Voronoi nuclei (See 

Figure 2.1). Since we are interested in the profiles of multiple types of parameters, we 

propose two different parameterization schemes, illustrated in Figure 2.1.  
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Figure 2.1 Two schemes for using Voronoi nuclei (squares) to characterize a 1D 
isotropic seismic velocity model (Vs – blue, Vp – dashed, ρ – black). In the “attached” 
scheme (left panel), each Voronoi nucleus carries all three parameters (Vs, Vp and 
density). In the “independent” scheme (right panel), the three types of parameters are 
carried by independent sets of Voronoi nuclei. The 2nd Voronoi nucleus is labeled in 
both panels to illustrate differences between the two parameterization schemes. The 
model shown in left panel is the target model used to generate synthetic data inverted 
in later sections. 

 
For the first type of parameterization, we allow each Voronoi nucleus to 

specify all types of parameters. We call this type of parameterization “attached”. 

Given a number of cells �, the probability distributions for the 4 × � parameters, 1D 
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Voronoi nucleus position (z), shear velocity (Vs), compressional velocity (Vp) and 

density (9) are assumed to be independent from each other, and so can be written as:  

�(��|�) = �(:|�) × �(;<|�) × �=;>?�@ × �(9|�)    (2.5) 

To minimize the amount of prior information introduced, we assume uniform 

distributions over specific intervals. For example, if we define B< = C;<,$ ∈ ℛ ?E#$% <
;$ < E#()} we have: 

�=;<,$|�@ =  + 1∆;<      -. ;<,$ ∈ B<     0       01ℎ345-63     (2.6) 

where ∆; = (E#() − E#$%). Since the shear velocity in each Voronoi nucleus is 

assumed to be independent (i.e. no smoothing is imposed), 

�(;<|�) = G �(;<,$|�)%
$HI     (2.7) 

Similarly, we can write:  

�=;>?�@ = G �(;>,$|�)%
$HI    (2.8) 

�(9|�) = G �(9$|�)%
$HI     (2.9) 

For a 1D-layered model, the possible positions of the Voronoi nuclei are distributed 

along depth. If we assume that there are N possible positions for n Voronoi nuclei, 

there are then 
M!%!(MO%)!  possible configurations. Again, we assign an equal probability 

to each of the configurations, and can then write: 

�(:|�) =  P "!�! (" − �)!QOI     (2.10) 
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Combining together equations (2.3) (2.4) (2.5) (2.6), the full prior probability density 

function can be written as:  

�(�)
=  R �! (" − �)!"! (∆;<)%(∆;>)%(∆9)%∆�      -.(� ∈ � S�� ∀- ∈ [1, �], ;<$ ∈ B<, ;>$ ∈ B>, 9$ ∈ BW)0                                                                                    01ℎ345-63     (2.11) 

 

For the second type of parameterization, we assign independent sets of 

Voronoi nuclei to each type of parameter. Hence we call this type of parameterization 

“independent”. In this case, we have  

�(��|�) = G �=:?�X@ × �=��,X?�X@Y
XHI    (2.12) 

Here ��,X stands for the elastic parameters (Vs, Vp, and 9) the Voronoi nuclei carry. 

Unlike the first scheme, the number and the position of the Voronoi nuclei are 

independent from each other for different elastic parameters. In this way, we do not 

force all type of elastic parameters to be attached to a single Voronoi nucleus, which 

ideally will allow a more flexible parameterization. Similarly, we have 

�=��,X@ =  �X! (" − �X)!"! =∆��,X@%Z∆�X      -. (�X ∈ � S�� ∀- ∈ [1, �X], ��,X ∈ B)    (2.13) 

Each of the two types of parameterization has certain advantages for particular 

problems; we will further explore this in this paper in the joint inversion of SWD and 

ZH ratios in the discussion section. Bodin et al., (2016) described an alternative type 

of parameterization where additional parameters constraining anisotropy are proposed 

on existing isotropic shear velocity structures, and such proposed model is accepted 
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based on the constraints from data only. Since all the anisotropic parameters are 

proposed attaching to the velocity layers, the geometry of the anisotropic structure will 

depend on the velocity structure to some degree. This kind of parameterization appears 

to lie between the two we proposed in terms of the dependence among different types 

of parameters.  

Likelihood function 

The likelihood �(�|�) quantifies how likely we would be to observe the data 

if the actual structure were described by the set of parameters in vector �. We use a 

least squares misfit function to describe the consistency between the predicted and 

observed data: 

Φ(�) =  \](�) −  �^_ \�     (2.14) 

where ](�) is the predicted data and ^_� is the estimated variance describing the data 

uncertainties. This misfit function is appropriate for data with normally-distributed 

errors, and yields the following likelihood:  

�(�|�) ∝ exp c−d(�)2 e    (2.15) 

In the rest of this paper, we do not explicitly contaminate our synthetic data 

with noise because our likelihood function takes into account the effect of noise if we 

assume it to be uncorrelated across different periods, as is commonly done in the 

literature.  
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2.2.2 Transdimensional Sampling 

Bayes’ theorem quantifies how the posterior distribution is affected by the 

choice of the prior. The assumptions we make in formulating the inversion influence 

the outcome. In seismic inversion, assumptions about number of parameters are often 

made to fit the linearized inverse problem and to reduce non-uniqueness. These 

assumptions are often motivated by previous knowledge about the studied region. The 

risk in making these assumptions is that they could be biased or incorrect. The 

geophysical inversion literature abounds in examples in which the choice of the 

parameterization affects the inversion to different extents due to different degrees of 

correlation among model parameters. As an example, Trampert and Snieder (1996) 

showed how truncated expansions of basis functions could bias seismic tomography 

models. The motivation for applying a transdimensional sampling method into the 

inversion is to allow flexibility that does not require, but can nevertheless 

accommodate, strong prior assumptions about the model parameterization.  

Allowing a flexible parameterization without any regulation may lead to 

another problem, where the model will contain complexities arising from attempting 

to fit details of the data as closely as possible. Since the data we measure contains 

error due to both instrumental and environmental noise sources, fitting the detailed 

data is ill-advised. The Bayesian formulation of model selection is naturally 

parsimonious (Malinverno, 2000; Sivia et al., 2006); Malinverno (2002) showed that 

this is also the case with transdimensional Bayesian inversion. This means that if we 

have two competing models with different numbers of parameters that both fit the data 

equally well, the Bayesian formulation will favor the simpler model. Combining the 
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transdimensional sampling method and the Bayesian framework, transdimensional 

Bayesian inversion therefore allows a more flexible parameterization with fewer 

assumptions made. 

 

2.2.3 Reversible Jump Markov Chain Monte Carlo For Multi-Parameter Seismic 

Structure 

We apply a reversible-jump Markov chain Monte Carlo algorithm to carry out 

the transdimensional Bayesian inversion. The Markov chain Monte Carlo (McMC) is 

an iterative algorithm that draws random steps from a desired distribution; with 

sufficient number of iterations, the models are sampled proportional to their posterior 

probability, p(m|d). The rjMcMC algorithm consists of two stages, proposing a new 

model (m’) by perturbing the current model (m) and deciding accepting or rejecting it.   

In a case of transdimensional sampling, the acceptance probability is: 

� = min i1, �(�j)�(�|�j)k(�, �|�j, �j)�(�)�(�|�)k(�j, �j|�, �) |l|m   (2.16) 

Note that here the proposal ratio is different than in the fixed parameterization case. l 

is the Jacobian matrix of the transformation from m to m’. It is needed to account for 

the scale change only when there is a dimension change during the sampling process 

(Green 2003). In our case of discrete Voronoi positions, |l| equals to one (Bodin et al., 

2009). Therefore, the Jacobian is unity for each case of the rjMcMC sampling process 

and can be ignored.  

An important part of designing an rjMcMC is choosing how to perturb the 

current model � into �’ with some randomness, i.e. how to efficiently sample the 

parameter space. A schematic representation of our rjMcMC algorithm is shown in 
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Figure 2.2. Following the approach of Bodin et al., (2009), we perturb the current 

model by randomly choosing one the four options with equal probability. However, 

since we propose two parameterization schemes for dealing with the multi-parameter 

seismic structure, the Markov chain could behave differently, especially when 

dimension changes are involved. We derive the relevant expressions in the Appendix. 
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2.2.4 Target Model and Forward Problem 

To test the performance of the transdimensional Bayesian joint inversion, we 

choose a realistic isotropic, layered target model (left panel of Figure 2.1) for the 

synthetic tests. The target model has a 3 km thick sedimentary layer, underlain by a 

two-layer crystalline crust with Moho at 31 km depth. The upper mantle shallower 

than 70 km is represented by three layers with increasing velocity. The velocities 

remain constant below 70 km. In the target model, Vs, Vp and density follow the 

empirical relations from Brocher (2005). The target model is designed in this way for 

the convenience of later discussion of scaling relationship effects. To predict SWD 

and ZH ratios, we use the reflectivity method (Aki and Richard, 2002; Hisada, 1994) 

to solve the eigenvalue problem for both Rayleigh wave and Love wave in an elastic, 

vertically heterogeneous medium, based on the implementation of Lai and Rix (1998). 

Later in the discussion about TB inversion of radial anisotropy, we modify the forward 

code to compute the surface wave dispersion given elastic parameter A, C, N, L, and F 

according to Harkrider and Anderson (1962) and Bhattacharya and Arora (1997). The 

code also takes into account the sphericity of the Earth based on the formulation of 

Bhattacharya (1996). The technical details of the implementation can be found in 

chapter 3 of this dissertation. We validate our implementation by comparing our 

predictions to those from MINEOS (Masters et al., 2011) for the upper 200 km of the 

PREM model (Dziewonski and Anderson, 1981). Given the same period range, our 

implementation costs around 0.1 second to predict SWD, which is much faster than 

MINEOS. All of the software is written in MATLAB. 
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2.3 Results 

2.3.1 TB Inversion of SWD 

We perform transdimensional Bayesian inversion of both Rayleigh and Love 

wave dispersion data computed from synthetic input structures in the 5 to 100 sec 

period range. This period range covers both the ambient noise data range and part of 

the teleseismic data range. For teleseismic earthquake data, the surface wave 

dispersion data are usually measured between approximately 30 s and 250 s (Laske 

and Masters, 1996; Ekstrom et al., 1997; van Heijst and Woodhouse, 1999; Boschi 

and Ekstrom, 2002; Trampert and Woodhouse, 2003; Ekstrom 2011; Ma et al., 2014). 

The dispersion data below 25 second period are relatively difficult to measure from 

teleseismic data due to scattering and potential for cycle skipping. Dispersion 

measurements made on ambient noise correlations are typically in the ~5 to 40 s range 

(e.g. Ekstrom, 2014). The combination of these two period ranges comprehensively 

constrains Vs in the crust and upper mantle. We choose to not include dispersion data 

at periods larger than 100 s, because their primary sensitivity is below the depth range 

of interest in this manuscript (upper 70 km). The uncertainty of surface wave 

dispersion measurements can be affected by data quality (e.g. signal-to-noise ratio), 

data coverage (e.g. distribution of earthquakes and stations), and measurement method 

(e.g. whether or not the smoothness of the dispersion curves is exploited). We assign a 

realistic 3% uncertainty to the dispersion measurements at each period, and assume 

that measurements at different frequencies are uncorrelated. It should be noted that the 
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assumption of uncorrelated data uncertainty, while ubiquitous in the literature, 

warrants further investigation. 

In this test we only invert for Vs due to the limited constraints surface wave 

dispersion data have for Vp and density. We assign an uniform prior between 2.5 km/s 

and 5.5 km/s for Vs. Bodin et al., (2009) suggested that when the data constraints are 

strong enough, the choice of the broad prior has little effect on the posterior. Our 

synthetic tests with different priors for Vs support such conclusion. Meanwhile, the 

choice of prior range for weakly constrained model parameters such as density during 

SWD inversion could significantly affect the posterior. For example, when inverting 

for Vs and density using SWD with independent parameterization, we find that 

broadening the prior range twice for density would resulting the preferred number of 

layer from the posterior to change from 5 to 3, while broadening the Vs prior range 

does not change the preferred number of layer from the posterior. During the 

inversion, the Vp and density are calculated using the empirical relations according to 

Brocher (2005), as used in the synthetic model (see Figure 2.1). We want to point out 

that assuming a scaling relationship imposes additional prior information, requiring 

fewer model parameters to be inverted for. When the scaling relation is properly 

chosen, it will help reduce the variation in the posterior yielding tighter constraints on 

parameters of interest. Theoretically, an incorrect scaling relation on Vp and Vs will 

bias the estimates of both parameters. However, our synthetic tests suggest that for 

typical Vp/Vs ranges for crustal studies, imposing incorrect Vp/Vs only biases Vp 

estimates while the Vs estimates remain indistinguishable from the posterior obtained 

with the correct Vp/Vs. We find this to be the case even when only Rayleigh wave 
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dispersion is used in the inversion. We attribute this behavior to the much greater 

sensitivity of Vs compared to Vp for surface wave dispersion data. On the other hand, 

not assuming a scaling relation corresponds to a less informative prior; due to the 

naturally parsimonious nature of Bayesian inference, given the same observation, this 

will lead to a more simplified posterior. In later sections, we introduce more data types 

in joint inversions, allowing us to release Vp and density from the empirical scaling 

relations and allow them to vary independently.  

The rjMcMC starts with a random initial structure. After a burn-in period 

during which the convergence is achieved, we save the accepted models into the 

ensemble solution, for a total of 5 million iterations. Due to the nature of the Markov 

chain, each time we perturb the current model, only a small part of the proposed model 

is different from the current model. Therefore, consecutive models are highly 

correlated, even when the acceptance rate is optimal.  To increase the independence of 

the model ensemble, we choose to save every 100th sampled model. We primarily rely 

on two approaches to assess the progress of the rjMcMC chain and to estimate the 

number of iterations needed to achieve convergence. First, we monitor how misfit 

evolves with iterations, making sure that it remains low. Second, we run several chains 

with different starting models and compare the statistical properties of the ensemble 

solutions obtained from each. For each chain’s ensemble solution, we calculate the 

root-mean-square deviation to ensure that they are indistinguishable from one another 

after the burn-in period (See Figure 2.A1 and Figure 2.A2).   
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Figure 2.3 (left) Vs depth distributions retrieved using transdimensional Bayesian 
inversion of synthetic surface wave dispersion data. The ensemble solutions are 
displayed as probability density functions at each depth, with warmer colors 
corresponding to higher posterior probabilities, and the solid red line denoting the 5% 
trimmed mean of the posterior. The target model (black dashed lines) is used to 
generate synthetic data. Synthetic data (red) with specified 1σ uncertainties for 
Rayleigh (right top) and Love (right bottom) waves; data predicted by the ensemble 
solution plotted as probability density functions. 

 

The posterior model density plot is shown in Figure 2.3.  At every 1 km, we 

evaluate all the seismic velocities from the ensemble and normalize them to compute 

the probability density function (PDF). The PDF is represented so that warm colors 

correspond to higher probability and cool colors indicate lower probability. We want 

to point out that in such PDF plots, the absolute value of the probability is a function 

of the bin size used in plotting. Therefore, in some cases low absolute probability 
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density does not necessarily represent poor resolution. The target model is plotted as a 

black dashed line for reference. It can be seen that we are able to resolve absolute Vs 

at different levels along the depth range allowed in the inversion. We find that Vs is 

constrained better at shallow compared to deeper depths in terms of posterior variance, 

mainly due to the sharper sensitivity kernel for shallow Vs structure from short period 

surface wave dispersion. It can also been seen that while the SWD is able to constrain 

the absolute value of Vs, it tends to retrieve the sharp velocity jump in the target 

model as a smooth transition. This is expected from the fact that SWD measurements 

depend on the integral of elastic properties across a range of depths. The uncertainties 

of Vs below 50km seem to decrease with depth; we interpret this as a result of the fact 

that the period range of SWD we use here (up to 100 second) still has substantial 

sensitivity between 50km and 70km and only one single layer is preferred by the TBI 

at this depth range.  

2.3.2 TB Inversion of ZH Ratios 

Having explored the ability of surface wave dispersion constraining shear 

velocity structures, we turn our attention to ZH ratios, and perform a 

Transdimensional Bayesian inversion of ZH ratios computed for the same synthetic 

model shown in Figure 2.1. Due to difficulty of reliably measuring ZH ratios at long 

periods (Ferreira and Woodhouse, 2007), we restrict our attention to the 5-40 s period 

range, and assign 1% uncorrelated uncertainty to the observation at each period. In 

reality, depending on whether standard deviation of the repeat measurements or the 

standard deviation of the mean of the repeated measurement is used, the measurement 

error for ZH ratios could be as large as 3% to 10% (See Lin et al., 2012 and Lin et al., 
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2014); however, to illustrate the ability of ZH ratios to constrain elastic properties, we 

choose a relatively small value of uncertainty that might be achieved under ideal 

circumstances.  

Our initial tests show that, compared to SWD, ZH ratios have limited potential 

for constraining elastic properties deeper than 20 km. When we invert for Vs, Vp and 

density using an attached-type parameterization, without assuming scaling relationship 

among parameters, the retrieved seismic structure shows large variations along depth 

and absolute Vp, Vs and density values are systematically biased at most depths. Even 

when we restrict the parameter space to the upper 25 km, the ensemble solutions show 

that we are unable to resolve the profiles of Vs, Vp, and density simultaneously. 

Motivated by this finding, we invert only for Vs, and use empirical relations of 

Brocher (2005) to scale to Vp and density.  

As with the ZH ratio inversion, the total number of rjMcMC iterations is 5 

million, of which the first 2.5 million are the burn-in period, in all ZH ratio individual 

inversions in this section. The convergence rate of ZH ratios individual inversion is 

similar to the SWD inversion. With different starting models, the Markov chain is 

considered to have converged after about ~2 × 10o iterations. Therefore, we consider 

2.5million iteration to be a safe choice for burn-in period. As is shown in Figure 2.4, 

the retrieved seismic structure is well constrained in terms of Vs, and fit to data is 

excellent. 
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Figure 2.4 (left) Vs profile retrieved from transdimensional Bayesian inversion using 
synthetic ZH ratio data. The ensemble solutions are displayed as probability density 
functions at each depth, with warmer colors corresponding to higher posterior 
probabilities, and the solid red line denoting the 5% trimmed mean of the posterior. 
The target model (black dashed lines) is used to generate synthetic data. (right) Data 
fit of ZH ratio inversion. The red stars with their associated uncertainties (1σ error 
bars) are the synthetic data used as an input of the TBI, while the color tracks the 
probability density of the data predicted by the ensemble. 

 

The TBI tests using ZH ratios are very informative. First, they show that 

compared to SWD, ZH ratios have limited ability to resolve structure below the crust. 

The shallow sensitivity of ZH ratios is well documented in the literature, with 

investigators usually using this data to constrain structure in the uppermost crust (e.g. 

Lin et al., 2012). Second, even though the strength of ZH ratios is their sensitivity to 

Vp, Vs and density, allowing a unconstrained inversion with all three types of 

parameters perturbed achieves very little resolution of structure due to nearly-total 

trade-offs among parameters. When we reduce the number of parameters by fixing 
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scaling relationships among them, we achieve better outcomes. Therefore, we should 

keep in mind that without additional constraints, it might not be practical to resolve an 

accurate and precise seismic structure from ZH ratios alone. These additional 

constraints could come either from the prior, such as by imposing scaling relationships 

among parameters appropriate for the geological setting of the inversion, or from the 

inclusion of other seismic observables to perform a joint inversion, such as surface 

wave dispersion, which is the next topic we turn our attention to. 

 

2.3.3 TB Joint Inversion of SWD and ZH Ratios 

In the previous sections, we showed that TB inversion is able to retrieve 

seismic structures with an adaptive parameterization using seismic observables one at 

a time.  Here we conduct a transdimensional Bayesian joint inversion by combining 

the Rayleigh wave dispersion, Love wave dispersion, and ZH ratios. The motivation 

for doing joint inversion is to combine the strengths of different seismic data types to 

invert for a more comprehensive structure. The expected improvement in the ability to 

retrieve Vp and density structure also makes joint inversion a good example to 

illustrating the differences between the two types of parameterization proposed in this 

study.  
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Figure 2.5 Vs (left), Vp (middle), density (right) retrieved from transdimensional 
Bayesian joint inversion using synthetic SWD and ZH ratio data. In this test all three 
types of parameters have independent parameterization. The ensemble solutions are 
displayed as probability density functions at each depth, with warmer colors 
corresponding to higher posterior probabilities, and the solid red line denoting the 5% 
trimmed mean of the posterior. The target model (black dash lines) is used to generate 
synthetic data. 

 
Figure 2.6 Vs (left), Vp (middle) and density (right) retrieved from transdimensional 
Bayesian joint inversion using synthetic SWD and ZH ratio data. In this test all three 
types of parameters share the same geometry. The ensemble solutions are displayed as 
probability density functions at each depth, with warmer colors corresponding to 
higher posterior probabilities, and the solid red line denoting the 5% trimmed mean of 
the posterior. The target model (black dash lines) is used to generate synthetic data. 
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We first invert for Vp, Vs and density using the independent type 

parameterization. To better illustrate the data sensitivity, we do not impose any scaling 

factors between Vs, Vp and density. We want to point out that throughout this study, 

when Vp is inverted, it is actually parameterized as Vp/Vs ratio. Inverting Vs and 

Vp/Vs ratio is equivalent to inverting Vs and Vp if given the same prior.   As is shown 

in Figure 2.5, both Vs and Vp are well constrained above 20 km in terms of absolute 

value and variance compared to either of the individual inversion. When it comes to 

deeper structure, the variance of Vp increases significantly. Our calculation of 

normalized root-mean-square error for Vp and Vs ensemble (Figure 2.A3) also shows 

that Vs is better constrained than Vp at most of the depths. The behavior of the joint 

inversion is consistent with our expectations: SWD is able to constrain Vs in crust and 

upper mantle (with some sensitivity to Vp), while ZH ratios are able to constrain Vp 

and Vs in the crust. The preferred model from the density ensemble has two layers, 

while the Vs and Vp structures favor a five-layer model. This is because the much 

weaker data constraints on density yield density structures that are simpler than the 

actual target model or the retrieved Vp and Vs structures when inverted using an 

independent parameterization, in accordance with the lesser ability to resolve this 

parameter.  

The attached type parameterization is much more common in the seismic 

literature on the inversion of surface wave data than is the independent type 

parameterization discussed above (e.g. Shapiro and Ritzwoller, 2002; Yao et al., 2008; 

Chai et al., 2015; Shen & Ritzwoller 2016). In Figure 2.6, we show the retrieved 
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structures using an attached type parameterization. The density ensemble shows a 

better fit to the true model, and contains more detailed structure. We should keep in 

mind that by using an attached type parameterization, we impose a more informative 

prior that all types of parameters share the same geometry. When such prior 

information is valid, we could expect a better-resolved structure. This also suggests 

that prior assumptions about co-variance of parameters should be justified before 

being applied to actual inversion because their effects are significant, particularly for 

ill-resolved parameters like density. To illustrate the potential pitfalls of using 

attached-type parameterization, we show an example where synthetic data in 

computed for a structure in which the density does not share the same geometry with 

Vs and Vp. When we use the attached type parameterization to perform a TB 

inversion of this data, the retrieved density structure exhibits artifacts that reflect the 

major features of Vs structure. This leads to a biased and misleading estimate of 

density (See Figure 2.A4).  
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2.4 Discussion 

2.4.1 Transdimensional vs. Fixed-parameterization Inversion 

 
Figure 2.7 (left) Vs depth distributions retrieved using Bayesian inversion of synthetic 
surface wave dispersion data when parameterization is fixed to the same 
parameterization used to compute the synthetic dispersion data. The ensemble 
solutions are displayed as probability density functions at each depth, with warmer 
colors corresponding to higher posterior probabilities, and the solid red line denoting 
the 5% trimmed mean of the posterior. The target model (black dashed lines) is used 
to generate synthetic data. (middle) Kullback-Leibler divergence for TBI of surface 
wave dispersion (red triangle) and fixed-parameterization inversion of surface wave 
dispersion (blue star). (right) Root-mean-square error for TBI of surface wave 
dispersion (red triangle) and fixed-parameterization inversion of surface wave 
dispersion (blue star). 

 
In Section 2.3.1, we showed that transdimensional Bayesian inversion can 

recover a Vs profile from surface wave dispersion measurements while treating the 

number of model parameters as an unknown. However, inversion of surface wave 

dispersion data is most frequently done with a fixed parameterization (e.g. Hermann, 

2013). To gain insight into the relative advantages and disadvantages of a 

transdimensional inversion, we perform a Bayesian inversion with a fixed 

parameterization and compare our results to those obtained in Section 2.3.1. Using a 
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starting model with the correct geometry, we only perturb the shear velocity during the 

Markov chain Monte Carlo. The retrieved ensemble structure is showed in Figure 2.7. 

Like the transdimensional inversion, the fixed-parameterization inversion is able to 

recover the Vs. However, while both the absolute value and variance of Vs are well 

constrained at shallow depths (<31km), the variances at deeper depths increase 

significantly. We calculate the Kullback-Leibler divergence (KLD) for the posterior of 

both inversions with respect to their prior probability density function. The KLD for 

discrete probability distributions is defined as: 

 

pqr(s||t) =  u s(-) v0] s(-)t(-)$         (2.17) 

 

The KLD from Q to P, denoted DKL(P‖Q), can be interpreted as the information 

gained when one revises one's beliefs from the prior probability distribution Q to 

the posterior probability distribution P (Kullback & Leibler, 1951). In Bayesian 

statistics, when P is the posterior and Q is the prior, KLD can be interpreted as a 

measure of the information gained from the data that transformed the prior distribution 

into the posterior distribution. The calculated KLD (Figure 2.7, middle panel) shows 

that the fixed-parameterization inversion produced posterior solutions containing less 

information at deeper depths compared to the transdimensional inversion. A similar 

conclusion can also be drawn based on the comparison of root-mean-square error of 

these two tests (see Figure 2.7 right panel), which shows that, at deeper depths, TBI 

yields lower errors than the fixed parameterization inversion.  
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The apparent superiority of TBI may be counterintuitive, since the fixed-

parameterization inversion imposed a stronger and perfectly accurate prior (since the 

parameterization was fixed to that of the target model). Generally, the more restrictive 

the prior is, the less uncertain the posterior should be. However, in this case, due to the 

trade-offs between shear velocities at different depths, the variance of the posterior is 

larger than the one using TBI. We stress that the relative advantage of TBI over 

traditional fixed-parameterization inversion would be even greater in the more realistic 

scenario using actual, rather than synthetic, surface wave dispersion measurements, 

because in that scenario, the parameterization would not be known a priori. Moreover, 

the ensemble result from TBI allows statistical inferences of potential discontinuities 

along depths because of the less restrictive assumptions made on parameterization 

(Bodin et al., 2012).  
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2.4.2 Resolving Gradual Changing Seismic Structures Using Layered 

Parameterizations 

 
Figure 2.8 Vs depth distributions retrieved using transdimensional Bayesian inversion 
of synthetic surface wave dispersion data. The period range of SWD used is 5 to 100 s 
in the left panel and 2 to 100 s in the right panel. The ensemble solutions are displayed 
as probability density functions at each depth, with warmer colors corresponding to 
higher posterior probabilities, and the solid red line denoting the 5% trimmed mean of 
the posterior. The target model (black dashed lines) is used to generate synthetic data. 

 
In our inversion for 1D layered seismic structure, we assumed that elastic 

properties remain constant within each layer. While such assumption is widely made 

in SWD inversion, gradient-based model parameterization has also been employed in 

the literature (Gosselin et al., 2017). Since our inversions are inherently parsimonious, 

this assumption sets up an inconsistency between layered profiles preferred by the 

prior information (via parameterization), and gradual ones potentially preferred by 
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realistic data. To test the implications of this assumption for resolving gradually 

changing velocity structures, we perform the following test. We compute synthetic 

Love and Rayleigh wave dispersion data in a target model with a 31 km thick crust, 

within which the Vs increases linearly from 3.0 km/s to 3.6 km/s. The shear velocity 

jumps from 3.6 km/s to 4.2 km/s at Moho, and then increases linearly to 4.74 km/s at 

the depth of 70 km. Vp and density are scaled to Vs, following the empirical relations 

from Brocher (2005) in both the target model and the later synthetic tests. We use both 

Rayleigh and Love wave dispersion data from 5 s to 100 s with uncertainties of 3% to 

invert for shear velocity, and obtain the Vs profiles shown in Figure 2.8 (left panel). 

We find that despite parameterizing the inversion with layers of constant properties, 

the ensemble solution partially resolves the gradually increasing velocity. The greatest 

exception occurs in the upper crust (above around 12 km), where the model ensemble 

shows a velocity jump overlaid by constant velocities. When surface wave dispersion 

data between 2 s and 5 s period are included, the model ensemble better resolves the 

gradually increasing velocity structure at the top of the crust (Figure 2.8, right panel). 

This test shows that the lack of data constraints in the uppermost crust is the main 

reason for the oversimplified structure. We can see a similar tendency of the inversion 

toward constant-velocity layers at the bottom of the model, where constraints from the 

data decrease once more. These tests suggest that throughout most of the crust, 

velocity gradients can be retrieved using TBI even with a layered parameterization; 

nevertheless, interpretations of gradients from inversions parameterized with constant-

property layers should be cautious in areas where data constraints are less strong.  
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Figure 2.9 Posterior probability distribution of the number of layers in the retrieved 
ensemble for transdimensional inversion of surface wave dispersion measurements 
with different measurement uncertainties. The period range of both Rayleigh and Love 
wave dispersion used is 2 to 100 s.  

 

Aside from the period range of SWD, a large measurement error could be 

another cause for the limited data constraint, because greater measurement error 

degrades the amount of information contained in the data. Here we test the effect of 

different measurement errors on the model complexity of the retrieved solution. We 

perform transdimensional inversion of 2 to 100 s Rayleigh and Love wave dispersion 

data with data measurement uncertainties ranging from 0.05% to 20%. The target 

model used to generate synthetic data is the same gradually changing model shown in 

Figure 8. For each test, we validate the convergence of the rjMcMC with the 
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procedure described in Section 2.3.1, and then use the distribution of number of layers 

for the retrieved ensemble as a measure of model complexity. As is shown in Figure 

2.9, as data measurement uncertainty increases, the preferred number of layers for the 

retrieved ensemble decreases. Since the target model has a gradually changing 

velocity with depth, a decrease in the preferred number of layers would eventually 

lead to an over-simplified structure that does not accurately reflect velocity gradients 

with depth. 

 

2.4.3 Attached vs. Independent Parameterizations 

Despite the popularity of TB approaches, little discussion has concerned the 

parameterization of inversions involving multiple types of physical parameters. For 

model space search approaches – such as TB inversion – the number of model 

parameters is not limited by the number of measurements. This enables us to employ 

different parameterization schemes in the inversions, and quantify the effect of these 

choices on the posterior solution. Bodin et al., (2016) proposed a parameterization 

scheme for anisotropy inversion in which anisotropic parameters are proposed based 

on the existing isotropic structure. In this paper, we discussed two types of 

parameterization for dealing with multi-parameter problems: attached and 

independent.  
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Figure 2.10 Vs (left) and Vp/Vs ratio (right) depth distribution retrieved using 
transdimensional Bayesian inversion of synthetic surface wave dispersion data. 
Independent parameterization is used for Vs and Vp/Vs ratio in this test. The ensemble 
solutions are displayed as probability density functions at each depth, with warmer 
colors corresponding to higher posterior probabilities, and the solid red line denoting 
the 5% trimmed mean of the posterior. The target model (black dashed lines) contains 
a jump in Vp/Vs due to the α-β quartz transition that is not accompanied by a change 
in Vs [Diaferia and Cammarano, 2017]. 
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Figure 2.11 Vs (left) and Vp/Vs ratio (right) depth distribution retrieved using 
transdimensional Bayesian inversion of synthetic surface wave dispersion data. 
Attached parameterization is used for Vs and Vp/Vs ratio in this test. The ensemble 
solutions are displayed as probability density functions at each depth, with warmer 
colors corresponding to higher posterior probabilities, and the solid red line denoting 
the 5% trimmed mean of the posterior. The target model (black dashed lines) contains 
a jump in Vp/Vs due to the α-β quartz transition that is not accompanied by a 
change in Vs [Diaferia and Cammarano, 2017]. 

 

In regions where the geotherm is sufficiently high, the α-β quartz transition is 

expected to occur in the middle-lower crust, resulting in a sharp Vp/Vs ratio increase 

that is not accompanied by a significant change in Vs (Kuo-Chen et al., 2012; Diaferia 

and Cammarano, 2017). We show a synthetic test where the target model has a 

simplified one-layer crust on top of mantle Vs structure, and impose a mid-crustal 

Vp/Vs ratio increase from 1.7 to 1.8 representing the effects of the α-β quartz 

transition. This model is motivated by Figure 4 of Diaferia and Cammarano (2017). 

We perform TBI of surface wave dispersion data (5-100 second range) using 
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independent and attached parameterization of Vs and Vp/Vs ratio. The ensemble 

results show that when independent parameterization is applied (Figure 2.10), the 

inversion resolves both the Vs and Vp/Vs structure accurately, despite the distinct 

geometries. However, when attached parameterization is applied (Figure 2.11), the 

retrieved structure of Vp/Vs is strongly affected by the resolved geometry of Vs, to 

which the data is primarily sensitive.  

This test illustrates how parameterization choices can be crucial to detecting 

complex structures with distinct geometries for different seismic parameters.  

Specifically, it shows that surface wave studies aiming to detect the α-β quartz 

transition in the middle-lower crust should employ a parameterization flexible enough 

to not preclude its detection.  

 

2.4.4 Constraining Radial Anisotropy Using TB Inversion 

In our previous synthetic tests, we assumed isotropic, layered structure, which 

may not always be an appropriate assumption to make, depending on the geological 

setting of the seismic station being analyzed.  Due to lattice-preferred orientation 

(LPO) of anisotropic minerals or shape-preferred orientation (SPO) of different rock 

layers or fractures, seismic wave velocities will depend on polarization and 

propagation directions (Crampin et al., 1984). Studying seismic anisotropy in the crust 

and upper mantle can provide us insights into crust and mantle deformation (Kendall, 

2000; Becker et al., 2003), mantle composition (Montagner and Anderson, 1989), 

lithosphere and asthenosphere coupling (Silver and Holt, 2002; Becker et al., 2006), 

and the net rotation of the lithosphere (Becker, 2008). Here, we restrict our attention to 
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radial anisotropy, in which the elastic properties of the medium can be described by 5 

independent elastic coefficients (w, x, y, z, "; Love, 1911) at each location. Seismic 

observations including surface waves and normal mode data are often used to 

constrain the radial anisotropy of the Earth (e.g. Ekstrom and Dziewonski, 1998; Lekic 

and Romanowicz, 2011; Chang et al., 2014; Moulik and Ekstrom, 2014). Radial 

anisotropy in the Earth is often due to layering. However, recently studies also suggest 

that a large portion of anisotropy presented in the tomographic models may be due to 

unmapped discontinuities (Bodin et al., 2015).  

To study shear wave radial anisotropy, we use the Voigt average isotropic 

shear wave velocity Vs and radial anisotropy parameter | = (E��/E�
)� instead of 

isotropic shear velocity alone to represent the seismic structure. With limited studies 

discussing the relationship between isotropic Vs and | geometries, we propose to use 

independent parameterization to represent such ignorance. 

For the synthetic test, we set the vertical shear wave velocity E�
 for the target 

model to be same as the Vs value from the isotropic target model we used in previous 

sections. We set the horizontal shear wave velocity E�� to be different from the E�
 

structure so that the radial anisotropy parameter | = (E��/E�
)� has a value of 1.149 

between 19 km and 50 km and a value of 1.000 at other depths (Figure 2.12, black 

dashed line). Vp and density in the target model are derived from isotropic Vs using 

the empirical relationship from Brocker et al., (2005). To systematically investigate 

the effects of parameter trade-offs and data uncertainties on the retrieved structures, 

we perform a series of synthetic tests with different combinations of parameter types 

and data uncertainties. 
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Figure 2.12 Anisotropy inversion with independent parameterization and no scaling 
on Vp. The ensemble solutions (Vs on the left, } on the right) are displayed as 
probability density functions at each depth, with warmer colors corresponding to 
higher posterior probabilities, the solid red line denoting the 5% trimmed mean of the 
posterior, and the magenta line denoting its mode. The target model (black dashed 
lines) is used to generate synthetic data.  

We start by inverting surface wave dispersion data, assuming a 2% 

measurement error uncorrelated between periods. Here we invert for Vs, |, and Vp 

without assuming scaling relationships between any of them. In order to study the 

effect of trade-offs between different model parameters in a systemic way, we scale 

density to Vs, using expressions in Brocher et al., (2005). The prior on | is set to be a 

uniform distribution between 0.81 and 1.21. The retrieved structure is shown in Figure 

2.12. Compared to the velocity structures, the ensemble of | spreads widely across the 

prior space. Despite the large variance, the inversion is able to resolve an anisotropic 

layer between 19 and 50 km. In Figure 2.12, we plot the trimmed mean and the mode 

of the posterior PDF to better illustrate the inversion result. Both the trimmed mean 
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value and the mode are overestimated between 10 and 19 km, as can be seen by 

comparing them against the target structure shown in black.   

 

Figure 2.13 Parameter trade-offs and marginal posterior PDF at 15 km (upper), 35 km 
(middle), and 55 km (bottom) from the radial anisotropy inversion with no scaling 
relation assumed between Vs and Vp. Left panels show the scatter plot of Vs and } 
values from the 10,000 models in the ensemble solution. The scatter plot is colored by 
the density of points to better reveal the parameter trade-off. Warm colors denote 
higher probabilities and cool colors denote lower probabilities. Middle panels show 
colored scatter plots but for Vp and } values in the ensemble. The right panels are the 
marginal posterior PDF of }. The true value at that depth is plotted as red dashed line. 
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In Figure 2.13, we show the scatter plots colored by their density from the 

posterior PDF of Vs, Vp and | at three different depths. The scatter plots between Vp 

and | show that there are trade-offs between these two parameters. These tradeoffs 

result from the fact that in a radially anisotropic medium, Rayleigh waves, whose 

sensitivity is primarily to V~�, are also sensitive to Vp, while Love waves, whose 

primary sensitivity is to V~�, are not sensitive to Vp. This tradeoff between Vp and | 

limits our ability to retrieve radial anisotropy given the limited constraints provided by 

surface wave dispersion data.  Similarly, we test the tradeoff between density and | by 

performing an inversion for Vs, | and density without assuming a fixed scaling 

relationship between them, while fixing the Vp scaling to Vs, using the expressions in 

Brocher et al., (2005). The target model is same as the one in Figure 2.12. The 

retrieved structure of | is shown in Figure 2.14 (left). While the ensemble results 

resolve an anisotropic structure approximately between 19 km and 50 km, both the 

trimmed mean and the mode are underestimated within this depths range. Moreover, 

the thickness of the anisotropic layer is not well constrained. We interpret this as a 

result of tradeoff between density and | limiting our ability of resolving radial 

anisotropy giving the limited constraints provided by surface wave dispersion data. 
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Figure 2.14 Anisotropy inversions with independent parameterization and no scaling 
on density (left) / correct scaling on Vp and density (right). The ensemble solutions are 
displayed as probability density functions at each depth, with warmer colors 
corresponding to higher posterior probabilities, the solid red line denoting the 5% 
trimmed mean of the posterior, and the magenta line denoting its mode. The target 
model (black dashed lines) is used to generate synthetic data.  

To validate the effect of the trade-off on the inference of |, we apply the same 

empirical relationship from Brocher et al., (2005) used in the target model to derive 

both Vp and density from Vs in our synthetic test to reduce the trade-off between Vp, 

density and |. We keep the rest of the inversion set-up the same as in the previous two 

tests. The retrieved | structure is shown in Figure 2.14 (right). Compared to the tests 

with no scaling applied to Vp or density, the radial anisotropy structure is better-

constrained at several depths. The estimated | from the mode of posterior PDF is 

closer to the true value between 24 and 48 km. The mode of the ensemble in this test 
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also better tracks the thickness of the anisotropic layer. We plot the marginal posterior 

PDF in Figure 2.15 at several depths to better illustrate the retrieved | against the 

actual structure. In Figure 2.15 we also show the scatter plot between Vp and |, which 

illustrated the reduced Vp- | trade off compared to the results shown in Figure 2.13.  

 

Figure 2.15 Parameter trade-offs and marginal posterior PDF from the radial 
anisotropy inversion with correct scaling relation between Vp and Vs at 15 km (upper), 
35 km (middle), and 55 km (bottom). Left panels show the scatter plot of Vs and } 
values from the 10,000 models in the ensemble solution.. Middle panels are the 
colored scatter plots but for Vp and }. The right panels are the marginal posterior PDF 
of }. The true value at that depth is plotted as red dashed line.  
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These three tests together show that the tradeoffs between Vp and | as well as 

between density and | affect the inversion result for |. This means that without 

introducing additional data, applying a proper scaling between Vp, density and | helps 

resolve the radial anisotropy; however, on the other hand, Vp-Vs-density scaling 

assumptions need to be carefully made since an unsuitable scaling could bias the 

estimate of |. As a comparison, in Figure 2.16 we show the retrieved anisotropy 

structure where we apply a constant Vp/Vs ratio of 1.68 as the scaling during the 

inversion. As expected, the incorrect scaling biases our estimate of Vp. The retrieved 

anisotropy structure also deviates from the true value at several depths. We estimate 

an anisotropic layer between 24 km and 48 km for the correct scaling case, while for 

the fixed Vp/Vs case, the anisotropic layer is only recovered between 23 km and 38 

km. In Figure 2.16, we calculated the root-mean-square error (RMSE) of the 

ensembles for the three radial anisotropy tests against the true value from the input 

model. It can be seen that when assumptions about Vp-Vs scaling are incorrect, the 

disagreement between the posterior and the true value is the largest between 20 km 

and 50 km, which covers most of the anisotropic layer. The RMSE in the incorrect 

scaling case can be as large as 0.16, while the largest RMSE in the correct scaling is 

0.12.  
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Figure 2.16 (left) Anisotropy inversion with independent parameterization and a fixed 
Vp/Vs ratio of 1.68. The ensemble solutions are displayed as probability density 
functions at each depth, with warmer colors corresponding to higher posterior 
probabilities, the solid red line denoting the 5% trimmed mean of the posterior, and 
the magenta line denoting its mode. The target model (black dashed lines) is used to 
generate synthetic data. (right) Root-mean-square error of radial anisotropy inversion 
ensemble against the input model. The blue curve is the TB inversion with fixed 
Vp/Vs = 1.68 using Rayleigh and Love wave dispersion. The red curve is the same 
inversion except using no Vp-Vs scaling. The black curve uses the correct Vp-Vs 
scaling as the input model while the rest of the setting is same as the previous two. 

 

Roy and Romanowicz (2017) investigated the effect of assuming a fixed 

Vp/Vs on the inversion of surface wave dispersion and converted body wave (P-to-S) 

data for Vs radial anisotropy. By comparing results obtained fixing Vp/Vs to those 

obtained treating Vp/Vs as unknown, they concluded that the slight difference in the 

choice of Vp/Vs would not affect the retrieved structure.  While the inclusion of body 

wave data does not provide direct constraint on radial anisotropy, it is expected to 
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improve the constraints on the depths and impedance contrasts across discontinuities 

in the velocity structures, and indirectly lead to better resolution of radial anisotropy. 

Therefore, the work of Roy and Romanowicz (2017) complements the analysis 

presented here, in which we explore the effects of scaling assumptions on inversion of 

surface wave dispersion alone, without including observables such as receiver function. 

Furthermore, unlike this study, Roy and Romanowicz (2017) assume the geometry of 

variations in isotropic Vs and radial anisotropy to be the same. As is discussed in 

Section 2.3.3, when such assumption is justified, it helps resolve the posterior; our 

study provides a different, complementary perspective on how different 

parameterization choices could affect the resolution of radial anisotropy. 

 

2.5 Conclusion 

Transdimensional Bayesian inversion has recently gained increasing attention 

in the area of geophysics. Its applications to various topics including seismic 

tomography (Young et al., 2013; Petrescu et al., 2016; Calo et al., 2016; Burdick and 

Lekic, 2017; Olugboji et al., 2017), earthquake source inversion (Dettmer et al., 2014), 

receiver function estimation (Kolb and Lekic, 2014), controlled source exploration 

geophysics (Ray et al., 2014; Gehrmann et al., 2015), and geoacoustic inversion 

(Dettmer et al., 2010), and viscosity inversion (Rudolph et al., 2015), show the utility 

of flexible yet naturally parsimonious parameterization in geophysical inversion as 

well as the capability of uncertainty quantification of inversion results that better 

represent the data sensitivity. 
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In this paper, we first show that we are able to retrieve seismic structures using 

surface wave dispersion and Rayleigh wave ZH ratio individually and together with 

less restrictive assumptions. Our synthetic tests suggest that although SWD and the 

ZH ratios are sensitive to Vp, Vs and density to various degrees, neither dataset is 

individually able to resolve a comprehensive structure. However, because of the 

flexibility of the transdimensional inversion, we can easily combine the ZH ratio data 

with surface wave dispersion in a joint inversion. We show that TB inversion can take 

advantage of the complementary sensitivity of the two data types to simultaneously 

constrain the continental lithosphere Vs structure, as well as the crustal Vp structure. 

By comparing the results from the transdimensional inversion and inversion 

with fixed but correct parameterization, we illustrate that a fixed parameterization with 

strong prior information could bias the estimate of model parameters. One might argue 

that given a fixed but correct parameterization, the inversion results should represent 

the true uncertainties of the model parameters. However, the estimates of model 

parameters include not just the value of elastic parameters but also their distribution 

along depth (i.e. layering). A fixed parameterization is equivalent to using a prior that 

assumes no uncertainty for the latter, which affects the estimates of the former due to 

model parameter trade-offs.  

While 1D layered model with constant elastic value within the layer is 

assumed in our transdimensional Bayesian inversion, our synthetic tests suggest that 

given robust data constraints, the layered structure parameterization is still able to 

resolve structures in which elastic properties change gradually with depth. We show 

that the limited SWD resolution and large measurement error could both result in 
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gradient structures appearing oversimplified when using parameterizations based on 

constant-velocity layers.  

We then explore the effects of choices of parameterization on the retrieval of 

isotropic and anisotropic structure from surface wave inversion. Specifically, we 

propose and contrast two distinct parameterization choices: attached, in which all 

parameters of interest share the same geometry; and, independent, in which the 

geometry of different physical parameters can vary.  

Using synthetic tests, we show that the attached type scheme tends to yield 

results whose geometry is mainly determined by the parameter that is best constrained 

by the data at hand. When other parameters share the same geometry with the best-

resolved parameter, the use of attached-type parameterization is advised (See Figure 

2.7). On the other hand, when parameters do not share the same geometry, the 

estimate of weakly constrained parameter could be biased due to trade-offs (See 

Figure 2.A4). The attached-type parameterization we discuss in this study is similar to 

the scheme proposed by Bodin et al. (2016), since parameters of different type share 

the same geometry. It differs from the Bodin et al. scheme, in that since the 

anisotropic structure is sampled by adding/removing anisotropic parameters from an 

existing layer, our attached type parameterization assumes uniform prior on the 

additional parameters and samples them together.  

The independent type parameterization we introduce offers a more flexible 

parameterization containing less prior information. By assuming no correlation 

between the geometry of different parameters, we are able to detect potentially 

complex structures with distinct geometries of different parameters while using an 
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optimally parsimonious number of parameters. This situation would accompany the α-

β quartz transition as shown in Figure 2.10 and discussed in section 2.4.3. 

Additionally, it would be expected in the presence of a layer of partial melt where Vs 

drops dramatically but Vp does not, which might be associated with volcanic regions, 

regions with elevated temperatures in the lower crust, or even glacial firn aquifers 

recently seismically characterized in Greenland (Montgomery et al., 2017). 

Seismic Bayesian inversion has been used to investigate the radial anisotropy 

of the Earth (Shapiro and Ritzwoller, 2002; Beghein and Trampert, 2004; Beghein et 

al., 2014; Calo et al., 2016). In particular, Calo et al. (2016) applied a transdimensional 

inversion using surface wave dispersion as well as receiver function data, and relied 

on empirical scaling laws between Vs and Vp to reduce parameter trade-offs. Here we 

show that inferences of radial anisotropy from surface wave dispersion are affected by 

prior information imposed on the inversion process. Specifically, applying proper 

scaling relations between Vp, Vs and density helps improve the constraints on radial 

anisotropy, while inaccurate assumptions about Vp-Vs-density scaling can bias 

estimates of radial anisotropy.  

Previous studies have highlighted the potential of unmodeled crustal structure 

to bias inferences of upper mantle radial anisotropy (e.g. Bozdag and Trampert, 2008; 

Lekic et al., 2010; Ferreira et al., 2010), but the effect of Vp-Vs-density scaling 

assumptions has not garnered equal attention. Therefore, we stress that careful choices 

must be made to prevent the estimates of radial anisotropy from being biased due to 

unmodeled Vp and density structure. We find that trade-offs between Vp and radial 
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anisotropy can increase root-mean-square error by 33% in estimates of radial 

anisotropy.   

Our inversion for radial anisotropy adopts an independent parameterization in 

which the geometries of isotropic Vs and | are not assumed to be the same. With 

fewer assumptions made to avoid potential bias in the inversion results, we are able to 

resolve the main anisotropic feature in the synthetic model. The independent-type 

parameterization scheme is particularly appropriate since radial anisotropy need not 

share the same geometry as isotropic wavespeeds, as pointed out by Montagner (2002). 

In this study, we considered three sources of uncertainty: limitation of data 

sensitivity; assumed scaling among parameters; and the choice of parameterization, 

including both the number of parameters and attached vs. independent 

parameterizations for multi-parameter problems. The discussion of different sources of 

uncertainties presented herein should help inform choices for inversions on surface 

wave measurements on their own and in combination with other, complementary data 

types (e.g. receiver functions). While better constraints on seismic velocity profiles are 

expected when combining multiple seismic observables, it is necessary to attribute the 

influence of certain parameterization choices. This becomes particularly important for 

inferences of parameters such as radial anisotropy and density – which are less well 

constrained by available data – since our findings suggests that model 

parameterization can significantly bias them. 
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2.6 Appendix 

2.6.1 Acceptance Probabilities for Attached and Independent Parameterization 

Attached Type Parameterization 

For the “attached” type parameterization, all three elastic parameters are 

assigned to one Voronoi nucleus. Below, we specify the proposal probabilities 

corresponding to each of the four possible steps in the Markov chain: change, move, 

birth, and death. 

1) Change 

Randomly choose one of the Voronoi nuclei and randomly change all three 

parameters (Vp, Vs and 9) based on a normal distribution with specified standard 

deviation. The proposal ratio is given by: 

k�<(;<j|;<) =  1
�̂<√2� exp �− (;<j − ;<)�2 �̂<� �   (2. w1) 

The proposed value of Vs is denoted by a prime, and is obtained by: 

;<j = ;< + � �̂<    (2. w2) 

where �̂< is the standard deviation for perturbations to Vs, and � is a random number 

generated from the standard normal distribution. Expressions for Vp and density are 

analogous:  

k�>=;>j ?;>@ =  1
�̂>√2� exp +− =;>j − ;>@�2 �̂>� �   (2. w3) 

;>j = ;> + � �̂>    (2. w4) 
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kW(9′|9) =  1
Ŵ√2� exp �− (9j − 9)�2 Ŵ� �    (2. w5) 

9j = 9 + � Ŵ    (2. w6) 

In this type of model perturbation, the expressions for the proposal ratios can be used 

to compute the final acceptance probability. Equations 2.A1, 2.A3, and 2.A5 clearly 

satisfy detailed balance conditions: 

k�<(;j<|;<)  =  k�<(;<|;′<)    (2. w7) 

k�>=;j>?;>@ = k�>=;>?;′>@    (2. w8) 

kW(9′|9) = kW(9|9′)    (2. w9) 

Since the three parameters are perturbed at the same time, we have 

k�<(;j<|;<)k�>=;j>?;>@kW(9′|9) =  k�<(;<|;′<)k�>=;>?;′>@kW(9|9′)    (2. w10) 

Therefore, 

k(�|�′)k(�′|�) = 1    (2. w11) 

2) Move 

In a move step, the depth of a randomly chosen Voronoi nucleus is perturbed 

based on a normal distribution with specified standard deviation.  

k�(�$j|�$) =  1
�̂√2� exp �− (�$j − �$)�2 �̂� �   (2. w12) 

Even though the model parameterization changes, the number of Voronoi nuclei does 

not change, so no additional parameter is added in this step. When considering the 

proposal ratio of changing from � to �’, equation 2.A12 clearly satisfies detailed 

balance:  

k�(�j$|�$) =  k�(�$|�′$)    (2. w13) 
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Therefore, 

k(�|�′)k(�′|�) = 1    (2. w14) 

3) Birth 

In the birth step, we randomly choose a depth defined by the uniform prior, 

and create a new Voronoi nucleus. The velocity and density values corresponding to 

the newly created nucleus are drawn from normal distributions centered on the current 

values of Vp, Vs and density at the chosen depth. The standard deviations of the 

normal distributions ( �̂>�, �̂<�, Ŵ�) can differ from, but in this study are fixed to be 

the same as, ones used in the Change step.  

The proposal probability for assigning a velocity ;<j to the new Voronoi 

nucleus (denoted by subscript � + 1) is given by:  

k(;<j|�) =  1
�̂<�√2� exp +− =;<,%�Ij − ;<,$@�2 �̂<�� �    (2. w15) 

where ;<,$ is the velocity of the Voronoi nucleus closest to the depth of the newly-born 

nucleus. Analogous expressions can be written for Vp and density:  

k=;>j ?�@ =  1
�̂>�√2� exp +− =;>,%�Ij − ;>,$@�

2 �̂>�� �     (2. w16) 

k(9j|�) =  1
Ŵ�√2� exp �− (9%�Ij − 9$)�2 Ŵ�� �     (2. w17) 

We now turn our attention to defining the probabilities related to the depth of the 

Voronoi nucleus. Assume that we have � Voronoi nuclei in the current model �, and 

there are " possible positions in total for placing a Voronoi nucleus. The probability 

of having a (� + 1)1ℎ Voronoi nucleus in the rest of the available positions will be:  
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k(�j|�) =  1" − �    (2. w18) 

The reverse process is to delete the added Voronoi nucleus from �’. The probability of 

deleting one Voronoi nucleus from (� + 1) nuclei is 

k(�|�j) =  1� + 1    (2. w19) 

The associated probabilities of removing the elastic parameters when their associated 

Voronoi nucleus is deleted are: 

k(;<|�j) = 1    (2. w20) 

k=;>?�j@ = 1    (2. w21) 

k(9|�j) = 1    (2. w22) 

We write the proposal ratio as:  

k(�|�′)k(�′|�) =  k(�|�′)k(�j|�) k(;<|�′)k(;<j|�) k(;>|�′)k(;>j |�) k(9|�′)k(9′|�)    (2. w23) 

Substituting expressions A.15-A.22 into equation A.23, we obtain: 

c�����j����j���e�$��� =  (��)� �� �����������(MO%)(%�I) exp i=��,���  O��,¡@�
������ + =��,���  O��,¡@�

������ +
(W���  OW¡)������ m  

(2.A24) 

4) Death 

The death step is the exact reverse of the birth step, since one of the existing n 

Voronoi nuclei, denoted by index j, is randomly chosen and deleted to create a model 

�’ with (� − 1) nuclei. For the death step, since it is supposed to be the exact reverse 
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step of birth, here we consider the situation of changing from � to (� − 1) Voronoi 

nuclei, we have  

ck(�|�j)k(�j|�)e_�(�� = �
�̂<� �̂>� Ŵ�(2�)Y �� (" − � + 1) exp − ¢=;<,Xj − ;<,$@�

2 �̂<�� − =;>,Xj − ;>,$@�
2 �̂>��

− (9Xj − 9$)�2 Ŵ�� £ 

 (2.A25) 

where index i denotes the Voronoi nucleus closest to the deleted nucleus. 

5) Acceptance Probability 

With the expression of proposal probabilities, we can now specify the 

acceptance probabilities for the attached parameterization. In the move and change 

step, the number of model parameters does not change, and the proposal ratios are 

unity. The acceptance probability can be written as:  

�(�j|�) = min i1, �(�j)�(�) ∙ �(�|�j)�(�|�) m   (2. w26) 

Since the dimension of the model does not change, and the priors on all the parameters 

are uniform, the prior ratio will be either zero or unity, and the acceptance probability 

can be simplified to:  

�(�j|�) = Rmin i1, �(�|�j)�(�|�) m     -. ∀- ∈ [1, �], ;6- ∈ B6, ;�- ∈ B�, 9- ∈ B90                                               01ℎ345-63     (2. w27) 

 

For a birth step, according to equation (2.11), the prior ratio takes the form   
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c�(�j)�(�) e�$���
= R � + 1(" − �)∆;<∆;>∆9    -. (� + 1) ∈ �, S�� ;<,%�Ij  ¥B< , ;>,%�Ij ∈ B>, 9%�Ij ∈ BW0                                                                                        01ℎ345-63     (2. w28) 

 

Substituting (2.15), (2.A24), and (2.A28) into (2.16), the acceptance probability 

becomes 

�(�j|�)�$���

=
¦§̈
§©= �̂<� �̂>� Ŵ�@(2�)Y ��∆;<∆;>∆9 exp +=;<,%�Ij − ;<,$@�2 �̂<�� + =;>,%�Ij − ;>,$@�

2 �̂>�� + (9%�Ij − 9$)�2 Ŵ�� − d(�j) − d(�)2 �
                                      -. (� + 1) ∈ �, S�� ;<,%�Ij  ¥B< , ;>,%�Ij ∈ B>, 9%�Ij ∈ BW0                                                                                                                    01ℎ345-63

    (2. w29) 

 

For the death step, the prior ratio should be the inverse of equation (2.A28), except we 

change from n nuclei to (n-1) nuclei. Therefore, substituting (2.15), (2.A25) into 

(2.16), we have: 

�(�j|�)_�(��

= ª ∆;<∆;>∆9
�̂<� �̂>� Ŵ�(2�)Y �� exp +− =;<,Xj − ;<,$@�

2 �̂<�� − =;>,Xj − ;>,$@�
2 �̂>�� − =9Xj − 9$@�

2 Ŵ�� − d(�j) − d(�)2 �  -. (� − 1) ∈ �
0                                                                                                        01ℎ345-63     (2. w30) 

 

Independent Type Parameterization 

In the “independent” type parameterization, we have three independent sets of 

Voronoi nuclei, each specifying Vs, Vp or density. When changing the current model 

in the Markov chain, we first randomly choose one out of the three types of 

parameters (Vs, Vp, density) with equal probability. Once a specific type of parameter 
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is chosen, the rest of the process and the proposal probabilities are identical to that 

described in Bodin et al., (2009).  

Once the type of parameter to perturb is chosen, it is straightforward to derive 

the acceptance probability. We take perturbing density as an example. When choosing 

to change the density value or to move one of the Voronoi nuclei (denoted by index i), 

the dimension of the model does not change. Therefore, we have:  

�(�j|�) = Rmin i1, �(�|�j)�(�|�) m     -. ∀- ∈ [1, �], 9- ∈ B90                                               01ℎ345-63     (2. w31) 

For a birth step: 

�(�j|�)�$���

= ª= Ŵ�@(2�)I ��∆9 exp �(9%�Ij − 9$)�2 Ŵ�� − d(�j) − d(�)2 �    -. (� + 1) ∈ �, S�� 9%�Ij ∈ BW 0                                                                           01ℎ345-63 (2. w32) 

where n is the number of Voronoi nuclei defining the density structure. Finally, for the 

death step in which Voronoi nucleus j is deleted, and Voronoi nucleus i is the 

remaining nucleus closest to the deleted one, we have:  

�(�j|�)_�(�� = ª ∆9
Ŵ�(2�)I �� exp +− =9Xj − 9$@�

2 Ŵ�� − d(�j) − d(�)2 �  -. (� − 1) ∈ �
0                                                                              01ℎ345-63     (2. w33) 
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2.6.2 Convergence Analysis for TB Inversion of SWD 

 
Figure 2.A1 The evolution of misfit along the rj-McMC with different starting 
models. Four starting models with different initial numbers of layers are used here to 
invert surface wave dispersion data between 5 s and 100 s. Every 100th model from a 
total of 10 million iterations is plotted on a linear (top) and logarithmic (bottom) x-
axis. After about « × ¬­® iterations, all four rj-McMC remain at a low misfit. We 
choose a burn-in period of «. ® × ¬­¯ iterations to ensure the rj-McMC have converge 
before sampling the ensemble solution. 
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Figure 2.A2 Root-mean-square deviation of Vs posterior probability density functions 
from TB inversion of surface wave dispersion using four different starting models. We 
use the following equation to calculate to root-mean-square deviation (RMSD) for the 
four ensembles. 

°±²p�<(:) = ³∑ (µ$(:) − µ¶(:)······)�%(¸)$HI �(:)    (2. w34) 

 
Here z stands for the depth; n stands for the number of bins used to discretize the PDF; µ$(:) is the value of the PDF at the depth z; µ¶(:)······ is the mean value of the PDF across 
four ensembles. The RMSDs of the four ensembles are close to each other and have 
low absolute values across all depths. This confirms that after the chosen burn-in 
period, the ensemble results from different starting models are indistinguishable from 
each other. 
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2.6.3 Normalized root-mean-square error of Vs and Vp posterior from Figure 2.5 

 

Figure 2.A3 Normalized root-mean-square error of Vs (red) and Vp (blue) inversion 
ensemble against the input model. The ensemble is taken from test shown in Fig. 5 
where Vs, Vp and density are inverted using SWD and ZH ratio. RMSE of Vs and Vp 
are normalized by their mean at that given depth.  
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Chapter 3: Short Note on Surface Wave Dispersion Calculation 
of a Radial Anisotropic Spherical Earth 

 

To predict SWD and ZH ratios, we use the reflectivity method (Kennet and 

Kerry, 1979; Aki and Richard, 2002; Hisada, 1994) to solve the eigenvalue problem 

for both Rayleigh wave and Love wave in an elastic, vertically heterogeneous 

medium, based on the implementation of Lai and Rix (1998).  

Consider an isotropic and multilayered half-space medium, the free 

elastodynamic equation without source term can be written, in frequency domain, as 

(see Aki and Richard, 2002) 

−9(X)¹�º(X)(», ¹) = ¼½(X) + 2¾(X)¿ÀÀ ∙ º(X)(», ¹) − ¾(X)À × À × º(X)(», ¹)    (3.1) 

for :(XOI) < : < :(X), j = 1, 2, 3, … , N, N+1. Where 0 = :(Á) < :(I) < ∙∙∙ < :(X) < ∙∙∙
< :(M) < :(M�I) = +∞; 9(X), ½(X),  ¾(X) are the density and Lame parameters for the 

jth layer, respectively. For horizontal layered media, the seismic wavefield can be 

represented and studied in terms of an equation of the type (Aki and Richard, 2002): 

��: Ã(X)(:) = Ä(Å)Ã(X)(:)    (3.2) 

Ã(X)(:) is the motion-stress vector for the jth layer, for P-SV waves it has dimensions 

of 4x1, for SH waves it has dimensions of 2x1. The constant matrix Ä(Å) has 

dimensions of 4x4 and 2x2 for P-SV and SH waves, respectively. This becomes a 

linear differential eigenvalue problem with displacement eigenfunctions (first two 

terms of Ã(X)(:)) and stress eigenfunctions (last two terms of Ã(X)(:)). It has been 



 

 69 
 

shown (Aki and Richard, 2002) that inside each layer, the analytic solution for 

equation (3.2) has the following form: 

Ã = Æ ∙ Ç(:) ∙ È   (3.3) 

Several techniques have been proposed and developed for solving this linear 

eigenproblem (Thomson, 1950; Haskell, 1953; Kennett, 1983). For the multi-layered 

media in our case, we use the method proposed by Kennett and Kerry (1979) and 

developed by other researchers (Luco and Apsel, 1983; Chen, 1993; Hisada, 1994). It 

is based on the use of reflection and transmission coefficients to construct reflection 

and transmission matrices for a stratified media. The readers are referred to the studies 

cited above for the details of the method and implementation as they are well 

documented in the literature. 

The flat-layered Earth model needs to be modified, especially for propagation 

of long-period surface wave, to take into account the sphericity of the Earth. The 

Earth-flattening transformation is introduced in seismology (Alterman et al., 1961; 

Biswas and Knopoff, 1970; Bhattacharya, 1996) to simulate the wave propagation in a 

spherical layered Earth using a formulation in isotropic flat-layered Earth. A new 

depth variable z is introduced as: 

4 = S exp(−: S⁄ ) , 04 : = −S ∙ ln (4/S)     (3.4) 

Here, a is the radius of the Earth, r is the distance from the center of the Earth. The 

transformation for velocities can be written as: 

� = (S 4⁄ )�Á    (3.5) 

� = (S 4⁄ )�Á    (3.6) 
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�Á and �Á are the shear and compressional velocity in the flat-layered model, 

respectively. 

Arora et al., (1996) showed that assuming the elastic parameter λ, µ is 

proportional to rp, where r is the radial distance from the center of the Earth and p is 

an arbitrary constant, the solutions of the equations of P-SV motion can be written in 

form of exponential functions. We choose � = −2 in our study as Bhattacharya (1996) 

shows that the Earth-flattening transformation becomes further simplified for P-SV 

motion when � = −2. The expression for the displacement-stress matrix is shown to 

be similar as the one obtained from a flat Earth. Bhattacharya and Arora (1997) further 

extended the study to solve for the equations of P-SV motion for radial-anisotropic 

medium. As for propagation of Love wave in radial-anisotropic layered model, 

Anderson (1962) showed that the equations of SH motion can be solved by 

substituting two pseudo-parameters into the isotropic displacement-stress matrix. We 

discuss the details of this work in the later section. 

To take into account the sphericity and radial anisotropy of the Earth, we 

modify the reflectivity method to compute the surface wave dispersion given elastic 

parameter of the transverse isotropic medium A, C, N, L, and F according to Anderson 

(1962) and Bhattacharya and Arora (1997). We then write 

[w, x, ", z, y, 9] = [wÁ, xÁ, "Á, zÁ, yÁ, 9Á(4 S⁄ )O�] × (4 S⁄ )>   (3.7) 

Here, ρ is the density. wÁ, xÁ, "Á, zÁ, yÁ are the elastic parameter in the flat-layered 

model. It has been shown that the wave propagation in a transverse isotropic spherical-

layered Earth, the displacement field of P-SV motion can be written as fourth-order 

differential equation: 
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�ËÌ�:Ë − [±I + ±� − ±Y] ��Ì�:� + [±I±� − ±Ë]Ì = 0    (3.8) 

x here can be either the vertical displacement ν or radial displacement µ. The 

expression for ±I, ±�, ±Y, ±Ë are 

±I = k�S� + 1xÁ i�(� + 1)S� zÁ + 4(wÁ − "Á + kyÁ)S� − ¹�9m    (3.9) 

±� = (1 − k)�S� + 1zÁ P�(� + 1)S� wÁ − 2"ÁS� − ¹�9Q    (3.10) 

±Y = �(� + 1)S� (zÁ + yÁ)�xÁzÁ     (3.11) 

±Ë = �(� + 1)S� [2(wÁ − "Á) + kyÁ + (1 − k)zÁ]�S�xÁzÁ     (3.12) 

k = −(� + 1)/2     (3.13) 

The roots (eigenvalues) of equation (8) can then be written as: 

ÍÎ,Ï� = Ð(±I + ±� − ±Y) ± Ò(±I + ±� − ±Y)� − 4(±I±� − ±Ë)Ó /2    (3.14) 

Write the displacement-stress matrix as: 

Ã = [Ò�(� + 1)Í, ¾, −Ò�(� + 1)Ô, −^]Õ    (3.15) 

Recall that the displacement-stress matrix can be written the in form Ã = Æ ∙ Ç(:) ∙ È, 

where elements of E are given by  
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ÖII = −1 Ö�I = −×Î 

ÖYI = zÁ[ÍÎ + (k − 1)/S + Ò�(� + 1)×Î/S]  
ÖËI = xÁ×ÎÍÎ + (2yÁ + xÁk)×Î/S − Ò�(� + 1)yÁ/S 

ÖI� = ×Ï Ö�� = 1  

ÖY� = −zÁ[×ÏÍÏ + (k − 1)×Ï/S + Ò�(� + 1)/S] 
ÖË� = −xÁÍÏ − (2yÁ + xÁk)/S + Ò�(� + 1)yÁ×Ï/S   (3.16) 

 

Ei3 is obtained from Ei1 by replacing ÍÎ by −ÍÎ and Ei4 is obtained from Ei2 by 

replacing ÍÏ by −ÍÏ (i = 1, … , 4). Ò�(� + 1)/S can be replaced by 

Ò[Ø� − 1/(4S�)] , where k is wave number. ×(, ×� are given as below: 

×( = [Í((zÁ + yÁ) −  2(wÁ − "Á) + kyÁ + (1 − k)zÁ}/S]Ò�(� + 1)/SxÁÍ(� + ¹�9Á − [4(wÁ − "Á + kyÁ) + xÁk�]/S� − zÁ�(� + 1)/S�     (3.17) 

×Ï = ¼−ÍÏ(zÁ + yÁ) −  2(wÁ − "Á) + kyÁ + (1 − k)zÁ}/S¿Ò�(� + 1)/SzÁÍÏ� + ¹�9Á + [2"Á − zÁ(1 − k�)]/S� − wÁ�(� + 1)/S�     (3.18) 

Therefore, the normal modes and Green’s function can be obtained by using E given 

in equation (3.16) and eigenvalues given in equation (3.14) in the implementation of 

isotropic flat-layered Earth in Rix and Lai (1998). 

The propagation of Love wave in a transverse isotropic spherical-layered Earth 

is much simpler to modify from the isotopic flat-layered case. We first perform the 

Earth-flattening transformation using equation (3.4), (3.5), (3.6). Anderson (1962) 

showed that upon the substitution of the following pseudo-parameters 



 

 73 
 

�(X)j = c"(X)z(X) eI/� �(X)    (3.19) 

¾(X)j = (z(X) ∙ "(X))I/�    (3.20) 

into the displacement-stress matrix for Love waves (Haskell, 1953), it is equivalent to 

the isotropic case. Here �(X), the thickness of the jth layer is replaced by �(X)j ; ¾(X)j  is 

the psudo-rigidity of the jth layer.  

We validate our implementation by comparing our predictions to those from 

MINEOS (Masters et al., 2011) for the upper 1000km of the anisotropic PREM model 

(Dziewonski and Anderson, 1981). Given the same period range, our implementation 

costs around 0.1 second to predict SWD, which is much faster than MINEOS. All of 

the software is written in MATLAB. Figure 3.1 shows the comparison between the 

predictions of MINEOS and the reflectivity method assuming isotropic flat PREM and 

anisotropic spherical PREM. In Figure 3.2, we plot the different between the 

reflectivity method and the MINEOS prediction, our radial anisotropic spherical 

PREM prediction shows only 0.3% relative difference for Rayleigh wave and 1% 

relative difference for Love wave. 



 

 74 
 

 
Figure 3.1 Rayleigh (top) and Love (bottom) wave dispersion prediction of PREM 
model top 1000 km structure. Black triangles represent the normal mode prediction 
from MINEOS (Masters et al., 2011); blue stars represent the reflectivity method 
prediction using isotropic flat-layered PREM; red stars represent the reflectivity 
method prediction using radial anisotropic spherical PREM. 
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Figure 3.2 Differences between Rayleigh (top) and Love wave dispersion prediction 
of PREM model top 1000 km structure between MINEOS and reflectivity method. 
Blue triangles represent the value of reflectivity method prediction using isotropic flat-
layered PREM subtract from MINEOS prediction; red triangles represent the 
reflectivity method prediction using radial anisotropic spherical PREM subtract from 
MINEOS prediction. 



 

 76 
 

Chapter 4: Spurious Low Velocity Zones in Joint Inversion of 
Surface Waves and Receiver Functions 
 
Gao, C.,  Cunningham, E., & Lekic, V., Spurious low velocity zones in joint inversion 
of surface waves and receiver functions. In revision with Geophysical Journal 

International.  
 

Abstract 

Low-velocity layers within the crust can indicate the presence of melt and 

lithologic differences with implications for crustal composition and formation. 

Seismic wave conversions and reverberations across the base of the crust or intra-

crustal discontinuities, analyzed using the receiver function method, can be used to 

constrain crustal layering. This is commonly accomplished by inverting receiver 

functions jointly with surface wave dispersion. Recently, the proliferation of model-

space search approaches has made this technique a workhorse of crustal seismology. 

We show that reverberations from shallow layers such as sedimentary basins produce 

spurious low-velocity zones when inverted for crustal structure with surface wave data 

of insufficiently high frequency. Therefore, reports of such layers in the literature 

based on inversions using receiver function data should be re-evaluated. We 

demonstrate that a simple resonance-removal filter can suppress these effects and yield 

reliable estimates of crustal structure, and advocate for its use in receiver-function 

based inversions.  
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4.1 Introduction 

Constraints on the layering and seismic velocities of Earth’s continental crust 

provide key insights on its composition and formation (e.g. Christensen and Mooney, 

1995; Rudnick and Fountain, 1995). However, accurate quantification of crustal 

velocity structures from seismological observations is challenging, with primary 

constraints often coming from active-source experiments (for a recent review, see 

Mooney, 2015). Recently, passive source seismic investigations of continental crust 

structure have benefited from the installation of massive seismic arrays (e.g. USArray 

Transportable Array; Superior Province Rifting Earthscope Experiment [Zhang et al., 

2016]) and the development in improved imaging techniques (Shapiro et al., 2005; 

Langston and Liang, 2008; Kumar & Bostock, 2008; Rychert and Harmon, 2016).  

Consequently, efforts at combining different seismic observables to improve 

the constraints on crustal models have grown. Among those, joint inversions of 

surface wave dispersion (SWD) and receiver functions (RFs) (Özalaybey et al., 1997; 

Julia et al., 2000; Tkalčić et al., 2006; Bodin et al., 2012; Shen et al., 2013; Chai et al., 

2015) have gained in popularity due to their complementary constraints: absolute 

seismic velocities from SWD and sharp impedance contrasts from RFs. The resulting 

crustal models revealed features in greater detail and with smaller uncertainties, 

including sharp discontinuities in the lithospheric mantle (Calo et a., 2016; Bodin et 

al., 2016) and crustal low velocity zones in various tectonic settings (Ward et al., 

2014; Li et al., 2017; Li et al., 2018).  
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While the complementarity of SWD and RF sensitivity helps reduce the non-

uniqueness of the seismic inverse problem (e.g. Özalaybey et al., 1997), differences in 

their inherent resolving power can introduce inconsistencies between the two data 

types (e.g. Chai et al., 2015). The consequences of these inconsistencies on the 

inversion results have not been adequately quantified, especially across diverse 

geologic settings. Additional complications arise in regions where the low-velocity 

sedimentary layers overlay crystalline continental crust; the strong impedance contrast 

at the bottom of the sediment layer can produce high amplitude, long duration 

reverberations in the RFs that could bias estimates of crustal thickness (Yeck et al., 

2013; Yu et al. 2015). 

In this study, we assess the potential for artifacts in joint seismic inversions for 

crustal structure using a novel implementation of transdimensional Bayesian inversion 

of SWD and RFs measured across 49 stations of the EarthScope Transportable Array. 

We focus on the Trans-Hudson Orogen and Superior Craton, part of which is overlain 

by the Williston Basin.  We compare our results with analyses using synthetic data and 

discuss approaches for mitigating these effects. 
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4.2 Data and Method 

 
Figure 4.1 (a) Sediment thickness (Marshak et al., 2017) across the study area 
(magenta box in inset); Transportable Array (TA) stations (triangles). Red triangles 
show the stations where sediment correction is not needed, green triangles show the 
stations where the sediment correction is applied in order to retrieve reliable posterior. 
The green triangles with black contour are the stations where spurious low velocity 
zones are resolved when sediment correction is not applied to RFs for the joint 
inversion.  (b) Ps RFs and (c) Love wave phase velocities at the TA stations shown in 
Fig.1a, sorted by longitude from west to east. Three stations are highlighted in (b) as 
they will be discussed in detail in the paper. 

 

4.2.1 Ps Receiver Functions from Transportable Array  

We focus on the east side of the Williston Basin where the thickness of the 

sedimentary layer varies from 0 to 5 km (See Figure 4.1(a)) from east to west (e.g. 
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Marshak et al., 2017; Nelson et al., 1993), and utilize data from EarthScope 

Transportable Array.  

At each station, we compute P-to-s receiver functions using 300 second three-

component waveforms around the P arrival time from Mw>5.5 events at 30-90° 

epicentral distance, which are transformed into the P-SV system using the free-surface 

transform matrix (Kennett, 1991) by minimizing the SV energy on the P component at 

the time of the P arrival. We follow the Abt et al. (2010) procedure and cull the dataset 

to include data with a minimum Z-to-R cross correlation of 0.3, and a maximum 25s 

discrepancy between the automatically determined arrival time and prediction for 

ak135. We window the P and SV waveforms prior to deconvolution and apply a fourth 

order Butterworth band-pass filter to waveforms of 0.03-1 Hz. We then use the 

iterative time domain deconvolution with Gaussian half-amplitude half-width of ~0.5 s 

to calculate the receiver functions (Ligorria and Ammon, 1999).  

This yields between 76 and 338 RFs at each station, which we divide into 2-6 

equal-sized bins based on their ray parameters to explicitly account for ray-parameter 

dependence of RF waveforms. In each RF bin, we apply bootstrap sampling to 

compute the average Ps RF and estimate its uncertainty. Figures 4.S1 – 4.S3 shows the 

individual Ps RFs as well as the average Ps RFs after binning for the three stations 

discussed in this paper. Due to the limited deployment time (18 – 24 months) of the 

Transportable Array, RF analyses using TA data generally suffer from incomplete 

back-azimuthal coverage. In this study, we pre-check the RFs with respect to back 

azimuth to make sure they do not exhibit strong signs of azimuthal anisotropy (Figure 

4.S1 – 4.S3). Since we already binned the receiver functions based on their ray-
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parameter, and the limited number of events available for the Transportable Array, it is 

impossible to further divide the dataset by backazimuth to account for anisotropy 

while maintaining robustness of the RF estimates. In Figure 4.S1 – 4.S3, individual 

RFs are colored according to their bin number based on the ray parameter, as 

described in the main text, to illustrate that this binning allows us to account for 

potential amplitude variations within the RF. 

The average Ps RF for each station are arranged by longitude and shown in 

Figure 4.1(b). Strong reverberations at the beginning of the Ps RFs are observed to the 

west, suggesting a layer on top of the crust bounded by large impedance contrast; such 

signal is not seen to the east. Both features are consistent with the trend of basement 

depth from Marshak et al. (2017).  To quantify uncertainty of binned RFs, we could 

use RFs within bins as samples for estimating the data covariance matrix (CD). 

However, the relatively small number of samples available for this computation 

reduces its reliability, and yields singular and ill-conditioned CD (e.g. Ledoit and 

Wolf, 2004). Instead, we represent CD with 3 parameters (Kolb and Lekic, 2014) 

obtained by minimizing the L1 norm to the average covariance vs. lag time estimated 

across RFs (See Figure 4.2). The data covariance matrix is estimated at each station 

following the procedure illustrated in Figure 4.2; therefore, our noise parameterization 

should be able to capture different noise characteristics at different locations. 
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Figure 4.2 Noise characterization of receiver functions. (top left) Data covariance 
matrix estimated from 338 Ps receiver functions calculated at station MDND-TA. (top 
right) A Toeplitz-type data covariance matrix constructed from the average covariance 
as a function of lag-time determined from the data covariance matrix in the top left. 
(bottom left) Data covariance from Toeplitz type data covariance matrix versus type 3 
parameterization proposed by Kolb and Lekic (2014) as a function of lag time. 
(bottom right) Covariance matrix corresponding to best-fit type 3 parameterization to 
the average covariance as a function of lag-time. 

 

4.2.2 Surface Wave Dispersion From Transportable Array 

At the station coordinates, we also extract Rayleigh and Love wave dispersion 

curves between 5 and 40s period from the transdimensional hierarchical Bayesian 

(THB) phase velocity maps (Olugboji et al., 2017) based on ambient noise 

measurements of Ekström (2017). The THB approach used to create the phase velocity 

maps yields ensembles of solutions, enabling uncertainties to be quantified. Figure 1c 
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shows the Love wave dispersion data projected onto the TA stations in the study area; 

the dispersion curves arranged by station longitude reflect the trends of the 

sedimentary thickness map, confirming that sediment thickness variations manifest 

clearly in the SWD data. However, unlike the Ps RF data, SWD data on the edge of 

the Williston basin do not bear the signature of the sediment layer even at the shortest 

period measured (See B29A – D31A from Figure 1b and Figure 1c). This difference 

will be further discussed in the results section. 

 

4.2.3 Transdimensional Bayesian Joint Inversion with a Progressive Inclusion Scheme 

Joint inversions of SWD and RFs are highly non-linear and non-unique (e.g. 

Ammon et al., 1990). Though linearized inversions have been performed in the past 

(Owens et al., 1984; Kosarev et al., 1993), they are easily trapped by local minima, 

making the final model strongly dependent on the starting model.  Furthermore, 

linearized inversions often seek a single model that minimizes the misfit function and 

approximate uncertainty of the model parameters in ways that may not adequately 

represent the full uncertainty. Here, we opt for a Bayesian inversion using a model-

space sampling framework that embraces the non-linearity and non-uniqueness of 

seismic inversion. Seismic Bayesian joint inversions of SWD and RFs with fixed 

parameterizations (Shen et al., 2013; 2016) have been used to retrieve an ensemble of 

lithospheric shear velocity structures compatible with the data, enabling uncertainty 

quantification on a dataset of continental scale. To allow a more flexible 

parameterization that introduces less prior information, a transdimensional sampling 

method was proposed and applied to the joint inversion of SWD and RFs (Agostinetti 



 

 84 
 

and Malinverno, 2010; Bodin et al., 2012). Unlike most of the seismic inverse 

problems, transdimensional inversions treat the number of model parameters as an 

unknown. It has been shown that the posterior distribution acquired through 

transdimensional Bayesian (TB) inversions is naturally parsimonious (Malinverno, 

2002) due to the Bayesian formulation of model selection (Malinverno 2000; Sivia et 

al., 2006). This property of TB inversions punishes more complicated models and 

therefore restricts the inverse problem from over-fitting the data.  Instead, TB 

inversions produce an ensemble solution where the model complexity is primarily 

determined by the data itself.  

Implementations of TB inversions of SWD and RFs have previously been 

described in the literature (e.g. Bodin et al., 2012). We adopt a similar approach by 

applying a reversible jump Markov chain Monte Carlo (rj-McMC) algorithm, but 

differ from Bodin et al. (2012) in some respects: 1. We explicitly use covariance 

matrices representing data uncertainty, ensuring optimal information extraction from 

the two data types; 2. We do not impose fixed Vp-Vs and density-Vs scaling 

relationships based on prior knowledge, because inverting for Vp/Vs and density along 

with Vs minimizes potential bias (Dettmer et al., 2015; Kim et al., 2016; Gao and 

Lekic, 2018). We assign uniform distributions between 0.5-5.5 km/s, 1.6-1.9, and 2.6-

3.1 g/cm3 for Vs, Vp/Vs and density, respectively; 3. We implement a progressive 

inclusion scheme for the RF data, which is described below.  

A major challenge for probabilistic sampling approaches is achieving 

convergence quickly and efficiently exploring the model space, especially when 

involving multi-modal density functions such as those associated with RF inversion. 
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We use a progressive-inclusion scheme to optimize convergence. We start by 

inverting SWD data for 5·105 iterations using the approach of Gao and Lekic (2018), 

who found that convergence is approached in around 105 iterations regardless of 

starting model. Using the latter 2.5·105 steps, we construct an estimate of a velocity 

structure that we then use as a starting model for the joint inversion of SWD and RF 

data. The joint inversion also proceeds in a progressive fashion, initially including the 

first 3s of the Ps RFs to compute the likelihood using the Mahalanobis distance (for 

1·105 iterations), before proceeding to include the first 5s for additional 1·105 

iterations, and finally inverting the 15s-long Ps RFs for additional 3·105 iterations to 

complete the inversion. 1·104 samples are drawn from this final chain to create the 

ensemble solution, which can be used to compute the uncertainty on the Vp and Vs 

inferences. During final segment of the progressive inclusion, we ensure the misfit 

remains low and stable along the iteration after the burn-in period. Additionally, we 

verify that the statistical properties of the models do not change between the first and 

second half of the ensemble. Finally, we also show the comparison of the model 

prediction from the posterior and the observation (right panel of Figures 4.S4 – 4.S6) 

to assess the convergence of the rj-McMC.  
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4.3 Results 

4.3.1 Joint Inversion of SWD and Ps RFs 

 

Figure 4.3 VS depth distributions from transdimensional Bayesian inversion of surface 
wave dispersion and Ps RFs for stations C25A-TA (left), C31A-TA (middle), C35A-
TA (right). The ensemble solutions are displayed as probability density functions at 
each depth, with warmer colors corresponding to higher posterior probabilities, and 
the solid red line denoting the 5% trimmed mean of the posterior. NB: The low-
velocity layer at 8 -17 km depth at C31A is likely an artifact (see discussion in Section 
4.4). 

 

We perform a TB joint inversion of SWD and Ps RFs at three TA stations 

within the study area, selected as archetypes of different scenarios controlled by the 

thickness of the sedimentary layer (Figure 4.3). The sedimentary layer thicknesses for 

C25A, C31A and C35A are approximately 4, 1 and 0 km, respectively (Marshak et al., 

2017). Though we invert for structure down to 100 km depth, here we only present the 

top 70 km in order to highlight the crustal structure. To aid in the identification of 
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layering in the ensemble models, we compute and plot the probability of a VS change 

– called a transition probability – at every 1 km depth (see Figures 4.S4 – S6). 

The posterior distributions of VS retrieved from the joint inversion are 

intriguing. For station C35A, we see a 36 km thick, two-layer crustal structure. 

According to the transition probability, the most abrupt VS jump within the crust 

occurs around 20 km. The average shear velocity above 20km is 3.62 km/s, while the 

average shear velocity between 21 km and 36 km is 3.86 km/s. No sedimentary layer 

is resolved at this location. The SWD and RF predicted by the ensemble solution 

reasonably fit the observations (Figure 4.S6), confirming that the models are 

consistent with the data.   

Unlike C35A, both C25A and C31A resolve a thin, low velocity layer at 

shallowest depths, which we interpret as the sedimentary layer. The posterior 

distribution of VS at C25A resolves two layers within the 2.9 km thick sediment 

package (See Figure 4.S7 for a zoomed in version): The top layer has an average VS of 

1.12 km/s and a thickness of 0.8 km; the bottom layer has an average shear velocity of 

2.47 km/s and a thickness of 2.1 km. No clear crustal layering is resolved for this 

station and the Moho depth is around 50 km where the trimmed mean of VS changes 

from 3.8 to 4.6 km/s. The VS structure retrieved from C31A station shows a one-layer, 

0.8 km thick sedimentary layer (See Figure 4.S7). Based on the estimate of trimmed 

mean, the shear velocity changes drastically from 1.90 to 3.74 km/s right below the 

sedimentary layer. While the crust beneath C31A appears to be relatively fast in VS in 

the upper crust, VS drops significantly at around 8 km depth to 3.57 km/s, and an intra-

crustal LVZ appears to span the 8-17 km depth range. To demonstrate that such LVZ 
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feature is not due to the choice of the summary statistics of the trimmed mean, we 

analyze the posterior distribution obtained by the Bayesian inversion, which is shown 

in Figure 4.S7. A multi-modal velocity distribution below the C31A sediment layer is 

observed across the ensemble, demonstrating the non-uniqueness of the inversion due 

to lack of data constraints. The posterior distribution of C31A between the depth of 5 

and 15 km appears to be non-Gaussian, with a switch of skewness from positive to 

negative around 8 km. In contrast, the posterior at the same depth for C25A is more 

Gaussian-like with a tighter variation, suggesting a relatively well-constrained velocity 

structure. In Figure 4.S8, we show the individual models from the ensemble solution – 

representing samples from the posterior – sorted by their fit to the data in an ascending 

order. This arrangement makes it very clear not only that a significant portion of the 

posterior bears a clear LVZ signature in the mid-crust of C31A, but that LVZs are 

more prominent on the left, meaning that models with LVZ are preferred by the data. 

The Moho depth is inferred at 40 km. For both stations, the SWD and RF predicted by 

these structures agree well with observations (Figure 4.S4, S5). 
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4.3.2 Joint Inversion of SWD and Ps RFs, Correcting for Sediment Layer 

 
Figure 4.4 (left) VS depth distributions from TB inversion of SWD and resonance-
removed Ps RF data at station C31A-TA. The ensemble solutions and the 5% trimmed 
mean of the posterior (red) are shown as in Figure 4.3. (right top) Comparison of RFs 
before (blue) and after (red) applying the resonance removal filter. (right bottom) 
Autocorrelation of original RF showing how Δt and r0 are measured. 

 

The significant impedance contrast between the sedimentary layer and the 

underlying crystalline crust can produce large amplitude reverberations that appear as 

a decaying, oscillatory signal in RFs. These shallow layer reverberations can overprint 

signals from direct conversions across the Moho and other intra- and sub-crustal 

interfaces, making it difficult to resolve accurate crustal structure (Zelt and Ellis, 

1999). Yu et al. (2015) proposed an approach to effectively remove such near surface 

reverberation by applying a resonance removal filter. To assess the significance of 
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these reverberations to joint SWD and RF inversion for crustal structure, we use this 

filter to obtain resonance-removed RFs that we invert jointly with SWD data using our 

TB approach.  

To construct the resonance removal filter, the travel time of the S reverberation 

in sediment, ∆t, and the relative strength of the Ss reverberation, rÁ are needed. The 

effect of the reverberation removal filter on the RFs can be dramatic. Figure 4.4 shows 

a comparison between the original mean RF and the mean resonance-removed RF for 

station C31A. It can be seen that the potential sediment reverberation right after the 

direct sediment conversion has been significantly reduced after applying the filter, 

clarifying signals from later lag-times, corresponding to greater depths.  

After computing the resonance removal filter for each station, we repeat our 

joint TB inversion using the resonance-removed RFs but introduce a fixed one-layered 

“sediment” at the top of the model. Since the travel time of the S reverberation in 

sediment, ∆t, is used to construct the removal filter, our fixed “sediment” layer needs 

to have the correct combination of thickness and VS to be consistent with the ∆t. 

During the inversion, we first propose a VS value for the “sediment” layer, VÚÁ, and 

then calculate the thickness, H, using the equation:  

Û =  (∆1 2⁄ )ÜE<ÝO� − ��,     (4.1) 

 where p stands for the median ray parameter of the binned receiver function. At each 

step of the rj-McMC chain, we introduce a 1-in-5 chance of perturbing V<Ý  in the range 

of 0 – V<� km/s; where V<� is the shear velocity value of the layer right beneath the 

fixed “sediment” layer. This allows H to vary during the inversion while remaining 

consistent with the resonance removal filter.  
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The VS posterior distribution of the inversion is show in Figure 4.4. The 

retrieved sedimentary layer has a thickness of 1 km and an average VS of 2 km/s, 

which is similar as the sedimentary layer resolved in the inversion with original RFs. 

The most prominent difference between the two inversion results is the crustal 

structure. In this inversion, no crustal LVZ is resolved; the VS increases from 3.59 

km/s to 4.04 km/s along the depth, with one abrupt VS jump around 18 km. The Moho 

depth is inferred at 37 km.  

Apart from the inversion with station C31A, we also perform TBI with SWD 

and resonance-removed RFs for C25A, where the rj-McMC struggles to converge. 

Given the same number of iterations, the retrieved ensemble for C25A (Figure 4.S9) 

resolves multiple sharp VS drops within a small depth range. Meanwhile, the predicted 

RFs and Love wave dispersion at 5, 6 second from the ensemble fits poor with the 

observation, suggesting the inversion is unable to converge, especially for the shallow 

structure. 

 

4.4 Discussion 

The TB inversion results from the three selected stations show intriguing and 

contrasting effects of sediment on the retrieval of structure. The three selected seismic 

stations are located in the Superior Craton and Trans-Hudson Orogen (Whitmeyer and 

Karlstrom 2007). Crustal LVZs are not expected in this region, and active source 

seismological studies find no evidence for them (Nelson et al., 1993). At C35A, where 

no sediment layer is present, the TB inversion resolves a seismic structure where the 

VS increases with depth. In that case, our implementation of rj-McMC with a 
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progressive inclusion scheme enables a fast, stable convergence. The shear velocity 

structure is well constrained in terms of both absolute value and sharp changes such as 

crustal layering and Moho. 

At station C31A, lying on 1 km of sediment, we resolve the sedimentary layer 

in both inversions, whether using the original RFs or the resonance-removed RFs. 

However, the inversion using the original RFs also contains an unexpected LVZ in the 

mid-crust; no LVZ is present in the inversion of RFs where sedimentary 

reverberations have been removed. We interpret the LVZ retrieved as an artifact 

resulting from the non-uniqueness of inverting RFs containing large amplitude 

oscillatory reverberations together with SWD measurements that lack constraints on 

the sedimentary layer, either because it is too thin for the period range of SWD or 

because it is a local feature not resolved in the construction of the phase velocity 

maps. Another possibility is that although both RFs and SWD contain sufficient 

constraints at the topmost depth, they introduce conflicting information leading to the 

spurious LVZ. To rule out this possibility, we conduct a TB joint inversion with the 

SWD starting from 15 to 40s and uncorrected RFs (Figure 4.S10). In this way, we 

further reduce the strength of SWD at shallow depths. The retrieved ensemble still 

resolves a crustal LVZ, consistent with the interpretation that the presence of LVZ is 

not due to the conflicting constraints but is instead due to lack of constrains on 

absolute VS. This implies that crustal velocity structure should be carefully examined 

when SWD measurements in short period are unavailable, or when only RFs are used. 
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We confirm the paucity of SWD constraint on the sediment at C31A, by 

performing a TB inversion using only SWD. The retrieved VS structure (Figure 4.S11) 

does not resolve any low-velocity layer on top of the crust, strongly suggesting that the 

SWD data do not see a low-velocity layer. Meanwhile, the RF data show large 

amplitude oscillations at early lag times (Figure 4.4), indicating the existence of a 

large impedance contrast at shallow depths. When only the Ps RF is used in the TB 

inversion (Figure 4.S12), the retrieved Vs structure resolves as spurious mid-crustal 

low-velocity layer, as expected. We stress that absolute velocities are not well 

constrained in the RF only inversion due to lack of data sensitivity. Once we apply the 

resonance removal filter, the signals after the first peak are significantly reduced, 

confirming that the signal comes from the sediment reverberation, rather than from 

abrupt, intra-crustal Vs drops. Therefore, in joint inversions of SWD and uncorrected 

RFs, constraints on VS in the shallowest few kilometers only come from the first few 

seconds of the RFs, which, on their own, only very weakly constrain VS (e.g. Bodin et 

al., 2012). However, since this part of the RFs is dominated by both the direct 

conversion and sedimentary multiples, the joint inversion readily obtains structures 

with redundant sharp velocity changes due to the lack to constraints on absolute VS. 

To further investigate the origin of the intra-crustal LVZs, we carry out 

synthetic tests that reproduce them and illustrate why applying resonance removal to 

the RFs helps prevent their appearance. Figure 4.5(a) shows two simple velocity 

models constructed to allow differences in predicted SWD and RFs to be 

straightforwardly attributed to the presence of a sediment layer. One model (red) has 1 

km of sediment (VS=1.5 km/s), on top of a two-layer crust with a Moho depth of 
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41km. The VS is 4.3 km/s below the Moho. The second model is identical to the first, 

except that it lacks a sediment layer. Differences in predicted SWD due to the 

sediment are limited to only the shortest periods (Figure 4.5(b)); given that typical 

measurement uncertainties in this period range are ~0.1 km/s, they would be difficult 

to detect in realistic data. However, the differences between RFs due to the sediment 

are much more prominent; S wave reverberations within the sediment produce large 

amplitude oscillations that overprint the direct Moho conversion. 

 

 

Figure 4.5 (a) 1D synthetic VS model with (red) and without (blue) a sedimentary 
layer. (b) Associated Rayleigh and Love phase velocities and (c) Ps RFs from the 
model with (red) and without (blue) a sedimentary layer.  
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Figure 4.6 (left) VS depth distributions from TB inversion of synthetic SWD and Ps 
RF data. SWD data are generated for model without a sedimentary layer, while the Ps 
RF data is generated for the model with a sedimentary layer. The ensemble solutions 
are displayed as probability density functions at each depth, and the solid red line 
denoting the 5% trimmed mean of the posterior. (Right) Same as the left panel, except 
that the resonance removal filter has been applied to the Ps RF. The model used to 
generate Ps receiver function is showed in black dashed lines. 

 

In order to re-create a scenario where SWD measurement is incapable of 

constraining the sediment layer, we perform joint TB inversion using calculated SWD 

data from the model without sediment together with the RFs from the model with 

sediment. The retrieved VS structure (Figure 4.6 (left)) resolves a mid-crustal LVZ 

that does not exist in either synthetic model. After applying a reverberation removal 

filter to the RFs and repeating the inversion, the LVZ no longer appears in the 

retrieved VS structure (Figure 4.6 (right)).  
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One might argue that the spurious LVZ results from using SWD predicted 

from a model without a sediment layer. We agree that given sufficiently accurate and 

precise SWD measurements, the appearance of the spurious LVZ could be mitigated 

(Figure 4.S13). However, the situation illustrated by our synthetic test is common in 

practice mainly due to the way SWD is measured. Unlike RFs, which are single-

station-based observables, SWD curves are extracted from phase velocity maps whose 

resolution is imperfect due to data coverage and modeling assumptions. Therefore, 

while RF data are sensitive to the subsurface structure directly beneath the seismic 

station, surface wave dispersion curves might not be, particularly when dealing with 

structures of limited spatial extent and/or data from less dense seismic deployments. 

Previously, Chai et al. (2015) suggested that this potential discrepancy in 

sensitivity between RFs and SWD should be addressed by spatially smoothing the RFs 

to make their resolution more comparable to that of SWD maps. Here, we show that 

this degradation of RF data is not always needed. By applying a resonance-removal 

filter to our RFs, we are able to reduce the non-uniqueness of the inverse problem. 

Additionally, by requiring the two-way travel time of S wave in the sediment (∆t) to 

fit the value estimated from the autocorrelation of the RFs, we pose a stronger prior 

constraint on the TB inversion to help better constrain the sediment structure. 

However, crustal VS structures constrained from RFs only or RFs together with long 

period SWD data should be interpreted with extreme caution due the possibility of 

crustal artifacts.   

The joint inversion with SWD and resonance-removed RFs for station C25A 

does not converge in our tests. As is suggested by Yu et al., (2015), the resonance 
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removal filter may perform poorly when the sediment layer is too thick due to several 

reasons: the rapid decay of reverberations with time; weak impedance contrast at the 

bottom of the sediment layer that is unable to generate significant reverberations; or 

complexity within the sediment layer requiring more accurate modeling of the 

reverberations. At C25A, we believe that the complex sediment structure is the main 

reason for the failed convergence of the joint inversion. During the inversion, the 

resonance removal filter that is applied to all proposed RFs assumes a single-layer 

sediment, which is unlikely. On the contrary, the inversion with SWD and original 

RFs resolved a more realistic shear velocity structure, with no crustal artifacts. Unlike 

station C31A, the SWD data used for station C25A show a strong low velocity signal 

at shallow depths. Our inversion with only SWD for C25A confirms this observation 

(Figure 4.S14), the retrieved VS structure resolves a clear low-velocity sediment layer. 

We believe that the strong signal of the sediment layer in the SWD data, as well as the 

relatively low measurement error associated with them, helps better constrain the 

shallow part of the structure beneath C25A even without applying the resonance 

removal filter. Therefore, due to better constraints from SWD and the unsuitability of 

a single-layer resonance removal filter we advise that inversions use SWD and the 

original RFs in locations where the thick sediment layers are expected. We want to 

point out that although it is clear that the sediment removal filter to suitable for the 

thin, single layer sediment setting, sediment thickness should not be used as the sole 

criteria to determine whether or not to apply sediment correction. Both the layering 

and the frequency range of SWD used should also be considered. 
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With limited information of the sediment structure available as prior, it is 

challenging to determine the complexity of the sediment layering as a guidance for 

application of sediment removal filter before performing join inversion. Cunningham 

and Lekic (in review) proposed approaches for evaluating the effectiveness of the 

sediment removal filter by comparing the change of RF waveform as well as the fit of 

the RF auto-correlation to a decaying sinusoid. In Figure 4.1 (a), we highlighted the 

seismic stations where the sediment removal filter is needed to retrieve accurate 

velocity structures using green color. The sediment thicknesses beneath these stations 

are also shown in color. In addition, we show the comparisons between the joint 

inversion of original RFs and of the sediment-corrected RFs for five seismic stations 

in Figure 4.S15. Crustal LVZs are observed at all five stations, and are effectively 

removed by the sediment-correction.  

We also want to point out that applying a sediment resonance removal filter 

does not prohibit the retrieval of a real crustal LVZ. In Figure 4.S16, we show a 

synthetic test where a mid-crust LVZ is imposed in the true model. By performing TB 

joint inversion of SWD and sediment-corrected Ps RFs, the posterior is able to resolve 

the LVZ without significantly losing constraints on other features of the true model, 

such as the sediment layer and Moho.  

 

4.5 Conclusion 

In this chapter, we investigated the reliability of crustal structure inferences 

using an implementation of transdimensional Bayesian (TB) method capable of 

simultaneously inverting surface wave dispersion and receiver functions. We 
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documented that shallow sedimentary layers can produce spurious intra-crustal LVZs 

in joint seismic inversions and proposed an approach for removing these artifacts. We 

found that in locations where surface wave data and RFs show consistent signal of the 

shallowest layers – no sediment is expected by both data types or the sedimentary 

layer is sufficiently thick to be seen by both data types – TB joint inversions are able 

to retrieve realistic crustal structures. Finally, we showed that applying a sediment 

resonance removal filter to our RFs can effectively remove the sediment reverberation, 

enabling recovery of a more realistic crustal model without LVZs.  

Seismological studies have identified crustal LVZs in various geological 

settings (Kind et al., 1996; Beck & Zandt, 2002; Li et al., 2003; Zorin et al., 2002). 

While most such LVZs are reported in active orogens, some studies have suggested 

their presence in cratonic regions (Chen et al., 2015). Our results indicate that the 

inferences of LVZs from joint inversions should be scrutinized in sedimented regions. 

Furthermore, they provide guidance on best practices for avoiding spurious intra-

crustal LVZs and performing reliable joint inversion of SWD and RFs under different 

shallow-layer scenarios. 
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4.6 Supplementary Figures 

 
Figure 4.S1 Individual receiver functions at station C25A sorted by the back azimuth 
(left, top right for zoomed-in view between 300 and 321 degree). Bottom right panel 
shows the average RF at different bins based on their ray parameters. Individual RFs 
are colored based on their bin number in the left and top right panel using the same 
color scheme as bottom right panel. 
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Figure 4.S2 Individual receiver functions at station C31A sorted by the back azimuth 
(left, top right for zoomed-in view between 300 and 323 degree). Bottom right panel 
shows the average RF at different bins based on their ray parameters. Individual RFs 
are colored based on their bin number in the left and top right panel using the same 
color scheme as bottom right panel. 
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Figure 4.S3 Individual receiver functions at station C31A sorted by the back azimuth 
(left, top right for zoomed-in view between 300 and 323 degree). Bottom right panel 
shows the average RF at different bins based on their ray parameters. Individual RFs 
are colored based on their bin number in the left and top right panel using the same 
color scheme as bottom right panel. 
 
 



 

 103 
 

 
Figure 4.S4 (left) Vs depth distributions retrieved using transdimensional Bayesian 

inversion of SWD and Ps RF data from station C25A-TA (right: red). The ensemble 

solutions are displayed as probability density functions at each depth, with warmer 

colors corresponding to higher posterior probabilities, and the solid red line denoting 

the 5% trimmed mean of the posterior. (middle) Transition probability of the Vs 

ensemble calculated at every kilometer. Note that the transition probability only takes 

into account the occurrences of the velocity change, not the change of value associated 

with them. Therefore, when large amplitude velocity changes that have a low 

probability show up as simply low probability ones in the transition probability plots. 

Conversely, high probability but low amplitude velocity changes show up as high 

probabilities of transition. (right) From top to bottom: Rayleigh wave dispersion, Love 

wave dispersion, and original Ps receiver function data fit. Data are denoted in red 

while values predicted by the ensemble solution are plotted as probability density 

functions. The inversion scheme is described in the detailed method description 

section in the supporting information. 
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Figure 4.S5 Same as Figure 4.S4, but for station C31A-TA. 

 
 

 
Figure 4.S6 Same as Figure 4.S4, but for station C35A-TA. 
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Figure 4.S7 (left) Vs depth distributions at the top 15 km retrieved using 

transdimensional Bayesian inversion of surface wave dispersion and Ps receiver 

function data. The ensemble solutions are displayed as probability density functions at 

each depth, with warmer colors corresponding to higher posterior probabilities, and 

the solid red line denoting the 5% trimmed mean of the posterior. (right) Transition 

probability of the Vs ensemble calculated at every 100 meters. 
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Figure 4.S8 Individual 1D velocity models from the ensemble solution of C25A, 

C31A and C35A joint inversion (Figure 4.2) sorted by their misfit in an ascending 

order. 

 

 
Figure 4.S9 Same as Figure S1, except that the resonance removal filter has been 

applied to Ps receiver function for C25A-TA.  
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Figure 4.S10 Same as Figure 4.S2, but SWD in the 15 to 40 s range is used here 

instead of the 5 to 40 s period range used elsewhere. 
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Figure 4.S11 Vs (left) depth distributions retrieved using transdimensional Bayesian 

inversion of surface wave dispersion data from station C31A-TA. The ensemble 

solutions are displayed as probability density functions at each depth, with warmer 

colors corresponding to higher posterior probabilities, and the solid red line denoting 

the 5% trimmed mean of the posterior. (right) From top to bottom: Rayleigh wave 

dispersion, Love wave dispersion data fit. Data are denoted in red color; while values 

predicted by the ensemble solution are plotted as probability density functions. 
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Figure 4.S12 (left) Vs depth distributions retrieved using transdimensional Bayesian 
inversion of Ps RF data from station C31A-TA (right: red). The ensemble solutions 
are displayed as probability density functions at each depth, with warmer colors 
corresponding to higher posterior probabilities, and the solid red line denoting the 5% 
trimmed mean of the posterior. (right) Original Ps receiver function data fit. Data are 
denoted in red while values predicted by the ensemble solution are plotted as 
probability density functions.  
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Figure 4.S13 (left) Vs depth distributions retrieved using transdimensional Bayesian 

inversion of synthetic surface wave dispersion and Ps receiver function data. The 

ensemble solutions are displayed as probability density functions at each depth, with 

warmer colors corresponding to higher posterior probabilities, and the solid red line 

denoting the 5% trimmed mean of the posterior. The target model (black dashed lines) 

is used to generate synthetic data. (right) Transition probability of the Vs ensemble 

calculated at every kilometer. 
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Figure 4.S14 Same as Figure 4.S11, but for C25A-TA. 
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Figure 4.S16 Posterior of transdimensional Bayesian inversion of surface wave 
dispersion and sediment-corrected receiver functions for synthetic model (shown in 
black dashed line). The ensemble solutions are displayed as probability density 
functions at each depth, with warmer colors corresponding to higher posterior 
probabilities, and the solid red line denoting the 5% trimmed mean of the posterior. 
(right) From top to bottom: Rayleigh wave dispersion, Love wave dispersion, and 
original Ps receiver function data fit. Data are denoted in red while values predicted by 
the ensemble solution are plotted as probability density functions. 
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Chapter 5:  Seismic Imaging of the Northern Great Plains Crust 
 

Abstract 

The Northern Great Plains of the United States consists of geological provinces 

that have been created and modified over 2.5 Ga. The relatively well-preserved history 

makes it an ideal area to investigate the formation and evolution of ancient continental 

crust. In this study, we implement a transdimensional Bayesian joint inversion of 

surface wave dispersion and receiver functions to constrain the crustal structure of the 

Northern Great Plains (NGP). Significant portion of the region is covered by 

sedimentary basin, generating large, reverberational signals in the receiver functions 

that could interfere the direct Moho signal. We account for this effect by applying a 

resonance removal filter on the associated receiver functions. This allows us to 

retrieve a high-resolution shear velocity model for the NGP with accurate uncertainty 

estimates. High-velocity lower crust layers are widely observed among various 

tectonic settings of the NGP with different thicknesses. We further incorporate our 

seismic constraints with lab-measured wavespeeds of crustal rocks to infer the 

composition of middle and lower crust. Due to the elevated shear velocities, we infer a 

mafic lower crust for the Superior Craton, the Trans-Hudson Orogen and the Central 

Montana area. Using results from active source seismology, as well as geochemical 

and petrological constraints, we advocate for the presence of a partially eclogitized 

root for the Trans-Hudson Orogen (THO) lower crust, and argue that the lower crust 

of the westernmost Superior Craton bounded by the THO has been lost by 

delamination.  
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5.1 Introduction 

The continental crust is one of Earth’s unique features, as it is chemically 

evolved compared to that of other planets. Unlike oceanic crust, which is 

predominantly thin (<8 km), basaltic, and young (<200 Myr), the continental crust is 

thick (34.4 ± 4.1 km on average (Huang et al., 2013)), billions of years old, and is 

composed of diverse lithologies. While seismologists have constructed several global 

crustal seismic velocity models (Mooney et al., 1998; Laske et al., 2013), these suffer 

from assumptions made to reduce the non-uniqueness of seismic inversions and from 

extrapolations in poorly sampled areas. Furthermore, choices made during inversions 

– such as fixed parameterization and regularization – can complicate the full 

quantification of the model uncertainty (e.g. Gao and Lekic, 2018). 

Characterizing crustal structure using seismic data is challenging because 

accurate modeling requires both the absolute seismic velocities and the locations of 

sharp changes to be constrained well. However, no single data type provides strong 

constraints on absolute velocities and seismic discontinuities, suggesting that joint 

inversions of datasets with complementary sensitivity to crustal structure (e.g. receiver 

functions and surface waves) are desired. Recent development in seismic imaging 

techniques (Shapiro et al., 2005; Liang and Langston, 2008) and the installation of 

EarthScope Transportable Array provide an opportunity for better constraining the 

crustal structure across the US using both data types. In this study, we perform joint 

inversions of surface wave dispersion and receiver functions to leverage their 

complementary constraints. We implement a transdimensional Bayesian inversion 
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(Malinverno, 2002; Bodin & Sambridge 2009; Agostinetti & Malinverno 2010; Bodin 

et al. 2012) that can handle flexible parameterizations and disparate noise 

characteristics of the datasets. 

We focus the study on the Northern Great Plains of the United States, as it 

comprises areas with different tectonic histories, including Archean cratons and 

Paleoproterozoic orogens. The Northern Great Plains is an ideal location to study the 

formation and evolution of the continental crust. Archean-age Superior craton has 

some of the oldest crust on Earth, while the Trans-Hudson Orogen formed during the 

collision between the western Churchill and Superior plates 1.83--1.80 Ga ago 

(Corrigan et al., 2009). The THO is the best-preserved Paleoproterozoic orogenic belt 

on Earth as it did not experience any major tectonic activity since its formation, 

making it an ideal region to study Precambrian plate tectonics. The Archean Medicine 

Hat Block and Wyoming Craton are bounded to the east by the THO; the two Archean 

blocks are sutured together by the Great Falls tectonic zone (Gietti, 1966; O’Neill and 

Lopez, 1985; Mueller et al., 2002). Recent geological studies on igneous rocks of the 

Great Falls tectonic zone reflect a collisional boundary (Mueller et al., 2002; Harms et 

al., 2004). Additionally, the region is constrained by high quality data with uniform 

density from the Transportable Array. Finally, the region is characterized by uniformly 

low heat flow throughout, making it more reasonable to attribute lateral variations in 

seismic wavespeeds to composition rather than temperature (Figure 5.1 (b)).  

We carry out joint inversions of Ps receiver functions and surface wave 

dispersion (5-40s) for shear velocity (VS) profiles down to ~100 km depth beneath 

individual seismic stations across the region. We find that in order to retrieve accurate 
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and reliable crustal structure, it is necessary to correct for the effect of low-velocity 

sedimentary basins on the receiver function data. Upon applying sedimentary 

reverberation corrections at a subset of stations, we develop a three-dimensional VS 

model, TBI-NGP, for the top 100 km of the Northern Great Plains. We systematically 

analyze similarities and differences between velocity structures across different 

tectonic settings, and contextualize our findings with previous geochemical and 

petrological studies to further infer the composition and formation of the Northern 

Great Plains crust. 

 

5.2 Method and Data 

To fully incorporate the data uncertainties and to embrace the nonlinearity of 

joint inversion of SWD and RFs, we implement a transdimensional Bayesian (TB) 

approach to invert for 1D seismic velocity profiles. The model is represented by a 

vector quantity that includes all the model parameters of interest. Similarly, all 

observed data comprise a vector d. The aim of Bayesian inference is to quantify the 

posterior probability density �(�|�), which is the probability density of the model 

parameter given the observed data (Smith 1991).  

According to Bayes’ theorem (Bayes & Price 1763), the posterior probability 

density of the seismic inversion �(�|�) can be written as: 

�(�|�)＝�(�|�) × �(�)�(�)     (5.1) 

Note that the term �(�), evidence, is not a function of of m, and should remain 

constant as we vary the model parameter under the same setting. Then we have: 

�(�|�) ∝ �(�|�) × �(�)    (5.2) 
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where �(�) is the prior, it is used to describe our knowledge about the model 

parameters before looking at the data (Sivia and Skilling, 2006). We assign uniform 

prior distributions between 0.5-5.5 km/s for Vs and 1.6-1.9 ratio for Vp/Vs, and 

assume no scaling relation between them. �(�|�) is the likelihood that quantifies how 

likely we would be to observe the data if the actual model were described by the set of 

parameters in vector m. We use Mahalanobis distance to describe the consistency 

between the predicted and observed data: 

Φ(�) = (](�) −  �)ÕxÞOI(](�) − �)   (5.3) 

Here ](�) is the predicted data and xÞ is the data covariance matrix. The 

Mahalanobis distance determines the likelihood of the observed data given the model: 

�(�|�) =  1Ò(2�)%|xÞ| 3Oß(#)�     (5.4) 

where n is the number of points in the data vector. 

TB inversion is a model-space search approach based on the reversible jump 

Markov chain Monte Carlo, which allows the parameterization to adapt as needed to 

fit the data (Malinverno 2002; Bodin & Sambridge 2009). This property of TB 

inversion is advantageous when jointly inverting SWD and RFs, given their 

complementary data sensitivity. Our implementation – including a progressive 

inclusion scheme – is identical to the method described in chapter four. The inversion 

result yields an ensemble of velocity structures primarily constrained by the 

observations and can be used to quantitatively infer the subsurface structure. Although 

in this study we only focus on Vs structures, we invert for the top 100km of both Vs 

and Vp/Vs to avoid the potential bias from assuming a scaling relation between 

Vp/Vs. 
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Figure 5.1 (a)Tectonic setting and seismic stations of the study region. Archean 
Craton (>2.5 Ga), Trans-Hudson Orogen (1.9-1.8 Ga), Mid-Continental Rift (1.2-1.1 
Ga) and juvenile volcanic arc (2.0-1.8 Ga) are shown in red, blue, green and magenta 
dashed lines, respectively  (Whitmeyer and Kalstrom, 2007).  Transportable Array 
stations used for transdimensional Bayesian (TB) inversion in this study are shown in 
triangles. Triangles with black contours are stations where spurious crustal low-
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velocity zones are identified and effectively removed when sediment corrections are 
performed. Triangles with grey edges and no filled color are the stations eliminated in 
this study due to data qualify.  Triangles are colored according to their tectonic 
settings (Superior Craton -- red; Trans-Hudson Orogen -- blue; Central Montana -- 
cyan; rest of the stations -- gray). (b) Surface heat flow map of the NGP based on data 
collection from National Geothermal Data System. (c) Bouguer gravity anomaly map 
of the NGP (Kucks, 1999). (d) Magnetic anomaly map of the NGP (Bankey et al., 
2002) 

 

Figure 5.1 (a) shows the tectonic setting of the Northern Great Plains and the 

locations of 291 Transportable Array seismic stations used in this study. We use phase 

velocity maps from Olugboji et al., (2017) and extract both Rayleigh and Love wave 

dispersion curves between 5 and 40s at the station coordinates. Using ambient noise 

phase dispersion measurements of Ekstrom (2014), Olugboji et al. (2017) used 

transdimensional hierarchical Bayesian method to construct phase velocity maps, and 

associated ensemble solutions, which allow associated uncertainties and tradeoffs to 

be fully quantified. Figure 5.2 (top panels) shows examples of the surface wave 

dispersion curves with the associated uncertainties at four stations across the Northern 

Great Plains.  

Earthquakes with Mw > 5.5 in the 30-90° epicentral distance range are selected 

to compute P-to-s receiver functions. We use an iterative time-domain deconvolution 

method (Ligorria and Ammon, 1999) based on the data-processing algorithm of Abt et 

al., (2010). This yields between 66 and 592 RFs at each station. To accurately account 

for the ray-parameter dependence of RF waveforms, we divide the RFs into 2-6 bins 

depending on the available number of RFs. Due to the limited number of RFs 

available in each bin, it is not possible to reliably quantify the full covariance matrix 

(CD) describing noise in the RFs. Instead, we approximate CD at each station and for 
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each ray-parameter bin with a parameterized form advocated by Kolb and Lekic 

(2014). Values of the three quantities describing the CD in this approximation are 

obtained by minimizing the L1 norm to the average covariance vs. lag time estimated 

across RFs. We note that this representation of noise is more realistic than commonly 

assumed white noise (see Figure 4 in Kolb and Lekic, 2014). 

Figure 5.2 (lower panels) shows the average RFs in each bin at four stations 

representative of the study area. At each station, small variations in the RF amplitude 

are seen between bins due to ray-parameter dependence of transmission and reflection 

coefficients. Substantial differences in RF waveforms are observed in stations such as 

C25A-TA, where the complex sediment structure (Gao et al., in review) introduces 

contrasting direct and reverberational signals at different ray-parameters.  
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Figure 0.2 
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As can be seen in Figure 5.2, RF waveforms also vary drastically across 

stations. While the impedance-contrast variations from intra-crustal or Moho 

interfaces could lead to different amplitudes for the associated phases, a low-velocity 

sedimentary layer on top of the crystalline crust can introduce signals with much 

higher amplitudes and longer durations. An example can be found in Figure 5.2 by 

comparing the RFs from station G31A and D35A. Crust to sediment conversion phase 

and its reverberation dominate the RF waveform for station G31A, and obscured the 

Moho phase. For station D35A where sediment is absent, the Moho phase can be 

clearly identified at a lag time ~5 s. It has been shown that the sediment reverberations 

in the RFs could bias the estimates of crustal thickness (Yeck et al., 2013; Yu et al., 

2015). Recently, Gao et al., (in review) demonstrated that reverberations from shallow 

layers in Ps RFs could produce spurious low-velocity zones when inverted for crustal 

structure together with surface wave dispersion data.  

To correctly account for the effect of sediment reverberations on the RFs, we 

adopt the approach proposed by Gao et al., (in review), where a resonance-removal 

filter (Yu et al., 2015; Cunningham & Lekic, in review) is applied to effectively 

remove near-surface reverberations. For the purpose of comparison, we perform joint 

inversions of SWD and original RFs for all 291 stations, and then perform joint 

inversion of SWD and sediment corrected RFs for stations with thin sediment layers 

(< 2km). Figure 5.1 shows the seismic stations where crustal LVZ appeared when 

SWD and original Ps RFs are jointly inverted. Among the 291 stations, the posterior 

of 51 stations resolved LVZs which turned out to be artifacts, demonstrating the 
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importance of performing sediment corrections for the inversion. We further 

demonstrate this issue in the cross-sectional view in section 5.4.  

 

5.3 Results 

5.3.1 1D Vs Structure and Sediment Map 

Figure 5.3 shows the retrieved Vs structures beneath the same four stations as 

Figure 5.2 using the Transdimensional Bayesian inversion (TBI). The Vs structures 

beneath the four spatially distant stations demonstrate diverse features at all depths 

shown in Figure 3. Shallow low-velocity layers are resolved on top of the crystalline 

crust at H19A, C25A, G31A, but not at D35A. The 10km-thick layer with Vs values 

between 2.5km/s and 3.2km/s is related to the Yellowstone Hot Spot (Schutt et al., 

2008). We consider C25A and G31A as examples of thick and thin sediment 

structures inside the Williston Basin (See Figure 4, Marshak et al., 2017).  

The crustal structures of the four selected stations also differ from each other, 

preliminary estimate of crustal thickness based on the Vs change along depth ranges 

from 30km to 50km. Inferring the Moho depth without additional constraint can be 

challenging due to the potential high-velocity lower crust layer (Schulte-Pelkum et al., 

2017). Later in the discussion we further investigate the crustal properties based on 

velocity profiles grouped by tectonic setting. 
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Figure 0.3 
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Benefiting from the adaptive parameterization of TB inversion, we are able to 

resolve a detailed seismic sediment model of the Northern Great Plains. Moreover, 

when the resonance-removal filter is constructed, the two-way travel time of S wave is 

measured and implemented into the inversion as additional prior information, leading 

to well-constrained sediment structures.   

 

Figure 5.4 Sediment thickness of the Northern Great Plains estimated from TB join 
inversion using SWD and Ps RFs (upper) compared to basement digital elevation 
model from Marshak et al., 2017 (lower). 

 

Figure 5.4 shows a comparison between the estimated sediment thickness from 

this study and the basement digital elevation model from Marshak et al., (2017). We 

estimate the sediment thickness beneath each seismic station by measuring the depth 

at which the mean Vs reaches 2.5 km/s (referred as Z2.5, see Campbell and 
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Bozorgnia, 2008) for the first time. We then interpolate the estimate thickness to the 

whole area covered by seismic stations using a Natural-neighborhood method. Our 

sediment-thickness map shows a consistent contour and depth distribution of the 

Williston Basin compared to Marshak et al., (2017).  Our model is also able to capture 

smaller scale features such as the Big Horn Basin and the Powder River Basin in the 

northern Wyoming. This shows that passive-source seismology can constrain the 

large-scale sedimentary basin structure that is comparable to sediment maps that are 

constructed based on well log data or active-source seismological survey. 

 

5.3.2 Shear Velocity Structure of the Northern Great Plains 

Shear velocity maps of the Northern Great Plains around 20, 30 and 60 km 

depths are shown in Figure 5.5 as representations of the mid-crust, lower-crust and 

uppermost-mantle, respectively. To demonstrate the bulk property of the crust and 

uppermost mantle, we calculate the average velocity across a 5 km range for each 

map.  

The most notable feature in the uppermost mantle velocity map is the clear 

east-west dichotomy.  The shear velocity of the western part is significantly slower 

than the shear velocity of the eastern part, representing the tectonically more active 

region. Within the western part, smaller scale features such as the low velocity 

anomaly beneath the Snake River Plain (Braile et al., 1982; Shen et al., 2016) is also 

resolved.  
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Figure 5.5 Shear velocity map averaged between 18-22 km, 28-32 km, 58-62 km. 
Archean Craton (>2.5 Ga), Trans-Hudson Orogen (1.9-1.8 Ga), Mid-Continental Rift 
(1.2-1.1 Ga) and juvenile volcanic arc (2.0-1.8 Ga) are shown in red, blue, green and 
magenta dashed lines respectively  (Whitmeyer and Kalstrom, 2007). 

 

Contrasting crustal structures reflecting different tectonic histories are 

expected in this region (Whitmeyer & Karlstrom, 2007). Archean terranes (> 2.5 Ga) 

including the Superior Province, Medicine Hat block and Wyoming Province are the 

oldest crust in this region. Due to the limitation of the Transportable Array 

deployment, only the westernmost Superior craton in the US is studied in this work. 

Superior Craton is bounded to the west by the ca. 1.8 Ga Trans-Hudson Orogen. The 
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Trans-Hudson Orogen represents the Paleoproterozoic collision between Superior, 

Hearne, and Wyoming cratons (Hoffman, 1988; Ross and Villeneuve, 2003). The 

Wyoming Craton and the Medicine Hat block are sutured by the Great Falls tectonic 

zone (1.86 -- 1.71 Ga, Gietti, 1966; O’Neill and Lopez, 1985; Mueller et al., 2002). In 

this paper, we refer to this region with two Archean blocks and the volcanic arc 

between them as Central Montana. Crustal structure of younger regions, such as Mid-

continental Rift (1.2 – 1.1 Ga), is also resolved here.  

Although the Superior Craton, Medicine Hat Block and Wyoming Craton are 

all considered to be Archean crust, our VS map reveals contrasting properties between 

the westernmost Superior Craton and the other two cratons. At a depth of 20km, the 

average VS within Central Montana is about 3.8 km/s (See Figure 5.8(a)). The average 

VS within the Superior Craton is about 3.6 km/s (See Figure 5.8(c)), significantly 

slower than the Vs of Central Montana. At 30 km depth, the Central Montana region 

shows average VS around 3.9 km/s (See Figure 5.8(a)). Compared to Central Montana, 

the eastern part of the Superior Craton in the US shows slightly faster shear velocities 

between 3.9 and 4 km/s, the western part shows shear velocities larger than 4 km/s. 

It’s also worth noting that at both 20 km and 30 km, the bulk of THO shares a similar 

velocity with Central Montana. 
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5.4 Importance of Sediment Correction 

 
Figure 5.6 Cross-section view along latitude of the shear velocity structure at 
longitude 98°. TBI of SWD and original Ps receiver functions are shown in left panel; 
TBI of SWD and sediment corrected Ps receiver functions are shown in right panel.  

 

As is shown in Figure 5.1, 51 out of 291 TA stations from this study initially 

resolved a crustal LVZ when the sediment reverberation is not explicitly accounted 

for. All of the LVZs disappear applying a sediment resonance removal filter is applied. 

To further emphasize the potential significance of this issue, we show two cross-

sections of the Vs structures for comparison. In Figure 5.6, the right panel shows the 

cross-sectional view of Vs structure at longitude 98° from this study, where TBI of 

SWD and sediment corrected Ps receiver functions are used when thin sediment is 

present. On the left, we show the same cross-section where TBI of SWD and original 

Ps RFs are used. The cross section without sediment correction shows a clear LVZ at 

the depth range between 5 and 20 km. Contrarily, the cross section with sediment 

correction shows no sign of the LVZ. The sediment corrected cross section also shows 

different geometry of the Vs transition from 4 km/s to 4.4 km/s. As such transition is 

often used to infer the Moho, the crustal thickness estimated based on the left panel in 
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Figure 5.6 could be misleading. The comparison plot in Figure 5.6 shows that when 

the sediment reverberation in the RFs is not correctly accounted for, seismic inversion 

could result in artificial features that bias our estimate on crustal structures. 
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5.5 Discussion 
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Figure 5.7 Cross-section view of the mean shear velocity structure and the 68% 
credible interval along latitude of 48°, 47°, 46°, 45°. Tectonic boundaries are indicated 
on the top of each panel (MHB – Medicine Hat Block; GFTZ – Great Falls Tectonic 
Zone; WYO – North Wyoming Craton; THO – Trans-Hudson Orogen; SUP – 
Superior Craton). 

 

Lat = 46° SUP THO WYO 

Lat = 46° SUP THO WYO 

Lat = 45° SUP THO WYO 

Lat = 45° SUP THO WYO 

km/s 

km/s 
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Figure 5.7 shows the latitudinal cross-section view across the North Great 

Plains. We label tectonic boundaries on top of the cross section to help associate 

velocity structure to different tectonic settings. In addition, we calculate mega-

ensembles of Vs for different settings by combining ensemble solutions from three 

groups of seismic stations (Figure 5.8). The groups of stations, reflecting Central 

Montana, Trans-Hudson Orogen, and Superior Craton (Figure 5.1), are chosen based 

on the tectonic provinces from Whitmeyer and Kalstrom (2007). This mega-ensemble 

allows statistical inferences of Vs structure within different tectonic settings without 

losing the information of velocity variation from individual station.  

5.5.1 Superior Craton 

The top 20 km of the Superior Craton shows a relatively gradual increase of Vs 

from 3.5 km/s to 3.6 km/s. Starting around 20 km, the shear velocities increase to a 

value of 3.8 km/s. We interpret this change as a transition from upper-middle crust to 

lower crust due to the relatively abrupt velocity increase (See credible interval plots in 

Figure 5.7). The Moho depths within the Superior Craton vary from 30 km to 42 km 

based on TBI-NGP. Huang et al., (2013) estimated the crustal thickness of 37.5 ± 3.1 

km for Archean shield based on global crustal models. Generally, Archean crusts are 

considered to be structurally simple with a clear crust-mantle interface due the lack of 

tectonic activities. Seismological investigations of the Superior Craton within Canada 

using receiver functions and surface wave dispersion (Gilligan et al., 2016) 

constrained the Archean crust to be 38 -- 40 km thick with a sharp Moho. The thin 

crust with relatively uniform thickness of the Superior Craton has also been attributed 

to the elevated lower crustal temperature (Flament et al., 2011). As is also observed in 
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map view (Figure 5.5), the eastern part of the westernmost Superior Craton appears to 

have a crust thickness of 40 km, while the western part comprises a thinner crust of 

about 30 km. Combining the observations from Figure 5.7 and Figure 5.8, it is clear 

that the eastern part of the Superior Craton can be attributed to a typical Archean crust. 

The small Vs variation above 20 km in Figure 5.7 and Figure 5.8 suggests a uniform 

upper-mid crust within the Superior Craton. The western part only differ from a 

typical Archean crust in the lower crust. The thin Superior crust is bounded by the 

Paleoproterozoic THO (Hoffman et al., 1988) to the south. During the collision 

between THO and the Superior Craton, the lower crust of Superior Craton is believed 

to be retained along most of their edges (Hoffman et al., 1989). However, our seismic 

velocity structure shows an exception where the lower crust of Superior appears to be 

missing likely through a post-formation delamination process. 

 

5.5.2 Wyoming Craton, Medicine Hat Block, and Great Falls Tectonic Zone 

Montana and Wyoming consists of the other two Archean cratons in our study 

region. Wyoming Craton and Medicine Hat Block are Archean cratons sutured 

together by the Great Falls tectonic zone. In this study, we analyze these Archean 

blocks together with the Great Falls tectonic zone as one group (See Figure 1, Figure 

8) and compare its Vs structure with the Superior Craton. 

The cross-sectional view crustal structure shows that the Archean Crust in 

Central Montana differs from the southwestern Superior Craton. The Moho depth 

appears to vary from 40 km to 50 km, significantly deeper than the Moho depth of the 

southwestern Superior Craton. The active source seismological experiment DeepProbe 
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(Gorman et al., 2002) estimated the Moho depth between 49 km and 60 km based on 

compressional wave velocity model, which is deeper than our estimate. 

 

Figure 5.8 Ensemble of VS posteriors from Great Falls Tectonic Zone (left), Trans-
Hudson Orogen (middle) and Superior Craton (right). The ensemble solutions are 
displayed as probability density functions at each depth, with warmer colors indicating 
higher probability. The modes of the ensemble are plotted in black lines. Crust 1.0 VS 
models of the related regions are plotted in cyan. Note that Crust 1.0 is systematically 
slower than our model in the lower crust.  

 

Figure 5.8 shows the Vs variation from the mega-ensemble of Central 

Montana. The mode of Vs increases from 1.0 km/s to 3.5 km/s at the top 10 km, 

corresponding to the transition from the low-velocity sediment to crystalline crust. 

Unlike the relatively sharp Vs change around 20 km within the Superior Craton, no 

sharp Vs change is observed in this region. Vs gradually changes from 3.6 km/s to 3.9 

km/s between 10 km and 40 km. Larger Vs variation are also observed at this depth 

range compared to Figure 5.8(c), suggesting greater lateral heterogeneities at the mid-

to-lower crust range for Central Montana compared to the westernmost Superior 
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Craton. A clear Vs jump occurs around the depth of 45 km, while the Vs change at 60 

km does not appear to be abrupt (Figure 5.8). 

 

Previous passive source seismological studies using surface wave dispersion 

(Bensen et al., 2009), receiver functions (Gilbert, 2012), or joint inversion of the two 

(Shen et al., 2013; Shen et al., 2016) estimate a Moho depth between 40 km and 50 km 

for Central Montana, shallower the active source study results. Mahan et al., (2012) 

discussed the potential reasons of such discrepancy, including limited data constraints 

from individual inversion and model parameter trade-offs. Schulte-Pelkum et al., 

(2017) suggested that strong model parameter assumptions made for joint inversion 

could also lead to misinterpretation of the Moho depth from passive source 

seismology studies. While joint inversion with refined model parameterization in 

Schulte-Pelkum et al., (2017) allow for the  retrieval of the Moho at deeper depths 

consistent with active source studies, the uncertainties of the Moho depths are large. 

This leads Schulte-Pelkum et al., (2017) to interpret the Moho in Central Montana as a 

transitional interface partially due to metasomatic alteration (Mahan et al., 2012; 

Downes et al., 2004; Facer et al., 2009). The adaptive parameterization of TB 

approach allows the inversion to add/remove model parameters primarily based on the 

data constraints; therefore, no additional prior information is needed to accommodate 

the complex crustal structure in this region. However, such discrepancies between 

active source and passive source seismic imaging still exist with our TBI-NGP model. 

Crustal xenolith data in Central Montana (Mahan et al., 2012) are more 

consistent with the Moho depth based on active source studies. Gorman et al., (2002) 
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estimated a Vp exceeding 7 km/s between 40 and 60 km from active source seismic 

survey, significantly higher than the average continental crust Vp. For passive source 

studies using SWD and RFs, the primarily data sensitivity lies in Vs.  Figure 5.8(a) 

shows a Vs between 4.2 and 4.4 km/s at the depth range of 45 km 60 km. The origin 

and the composition of this anonymously high-velocity lower crust layer have been 

well studied and discussed by combining the seismic velocity structures and the 

crustal xenoliths (Mahan et al., 2012; Barnhart et al., 2012; Schulte-Pelkum et al., 

2017). The heterogeneous characteristics of the xenoliths as well as several recorded 

magmatic, rifting, and collisional events suggest the formation of the high-velocity 

lower crust layer as a result of periodic lower crust addition through magmatic or 

mechanical processes. 

 

5.5.3 Trans-Hudson Orogen 

Previously, active-source seismic surveys (McCamy & Meyer, 1964; Hajnal et 

al., 1984; Braile, 1989) have been conducted to study the crustal structure of the THO 

south, including Montana, North Dakota in the US as well as Saskatchewan in 

Canada. Crustal structures in this region are characterized as thick (45 -- 50 km) and 

heterogeneous. High-velocity lower crusts with Vp exceeding 7 km/s (also called 7.x 

layer) are widely seen in this region. The thickness of the 7.x layer ranges from 20 to 

25 km (Schulte-Pelkum et al., 2017), significantly thicker than the average of 7.x layer 

detected from refraction results in the North America. Passive-source seismological 

studies of the THO structure have recently proliferated due to the deployment of 

seismic arrays (e.g. HuBLE array, see Bastow et al., 2015). Several receiver function 
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studies constrained the crustal structure in the northern part of the THO (Thompson et 

al., 2010; Darbyshire et al., 2013; Gilligan et al., 2016). Crust in north THO has a 

thickness of 40-45 km; with an elevated Vp/Vs ratio (>1.75, Thompson et al., 2010), 

suggesting a more mafic crust. 

Seismic imaging that includes RFs in the THO can be challenging due to the 

overlying Williston Basin. We address this issue by applying a resonance-removal 

filter to the RFs, and then perform the TBI. The Vs mega-ensemble for THO in Figure 

5.8 shows a similar structure to the one in Central Montana. In addition, both the map 

view and the cross-sectional view of these two regions support this observation. The 

top 10 km of THO Vs structure shows the transition from the low-velocity sediment to 

the crystalline crust. Using the mode of the ensemble as an estimate for the bulk 

property, Vs ranges from 3.4 km/s to 3.7 km/s in the topmost crust. No abrupt Vs 

increase is observed between the depth of 10 km and 30 km, the mode of Vs is 3.8 

km/s. Starting from 30 km, Vs increases to reach 4 km/s. Based on the mode estimate, 

the most abrupt Vs increase below 10 km is observed between 41 km and 44 km, 

where the Vs increases from 3.9km/s to 4.3 km/s.  If we interpret this transition as the 

Moho, it would lead to a shallower estimate of crustal thickness compared to the 

active source studies. Consider the widely seen 7.x layer in this region, we interpret 

such transition around between 30 and 44 km as the change from the mid-crust to the 

high-velocity lower crust. The thickness of this high-velocity lower crust layer is not 

well constrained in THO, as the Moho discontinuity appear to be diffused in our Vs 

mega-ensemble. The crust thickness estimated by active source studies (McCamy and 



 

 141 
 

Meyer, 1964; Braile, 1989) is between 45 -- 50 km, leading to a thickness of 10 – 20 

km for the 7.x layer. 

The origin of this high-velocity lower crust could have further implication of 

the formation and evolution of the THO and the Archean crust. Eclogitization has 

been proposed as a possible explanation in orogenic settings due to its high density 

and high seismic velocity (Worthington et al., 2013). However, the seismic velocity of 

pure eclogite (4.5 -- 4.8 km/s, Worthington et al., 2013) is significantly faster than our 

observation of 4.3 -- 4.5 km/s. Nelson et al., (1992) suggested that eclogizited lower 

crust could have been delaminated during the process of orogenic collapse. Partially 

eclogitization might be a more likely scenario for our observation in THO. The 

presence of partially eclogized layer has been proposed in West Tibet (Zhang et al., 

2014) to account for the high seismic velocities and diffused Moho. Gilligan et al., 

(2016) proposed a partially eclogized root in the lower crust beneath the southern 

Baffin Island, a region affected by THO, due to the lack of structural characteristics 

associated with orogenic collapse of THO in the northern Hudson Bay. Baird et al., 

(1996) suggested that the THO within the US did not experience orogenic collapse. 

Our seismic velocity structure in THO is compatible with the partially eclogized root 

hypothesis. Additionally, this partially eclogized root could also help explain the 

formation and the subsidence history of the Williston Basin. The subsidence of 

Williston Basin started at 525 MA and lasted for 520 Myr. The subsidence record of 

Williston Basin shows that the subsidence accelerated sometime after the initiation 

(Haid, 1991). Hamdani et al., (1993) proposed a model that involves both thermal 

contraction and lower crust phase change. In this model, the dense eclogite root 
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resulting from the phase change in the lower crust would allow the acceleration of the 

subsidence process of the Williston Basin. Given the seismic constraints as well as the 

subsidence record, it is reasonable to expect a partially eclogized lower crust in the 

THO. 

 

5.6 Composition of Middle and Lower Crust 

The composition of the lower continental crust, especially in the old, stable 

part of the Earth, could have implication on the formation and evolution of Earth’s 

crust. Unlike the relatively well-studied upper continental crust, the composition and 

properties of the middle and lower continental crust are more difficult to determine. 

Inferences of middle and lower continental crust often rely on the combination of 

geophysical data, xenolith, and exposed terrains recording lower crustal pressure (e.g. 

Rudnick & Gao, 2003). 

There have been substantial efforts aimed at using seismic wavespeed to infer 

the composition of lower crust (Christensen & Mooney, 1995; Holbrook et al., 1992; 

Rudnick & Fountain 1995). A typical approach is to compare the seismic wavespeeds 

inferred by inversion of seismic data to the wavespeeds of crustal rocks measured in 

the laboratory; the measured crustal sections are then assigned to different tectonic 

settings and modeled as layered crustal structure. It has been shown in these studies 

that Vp structure shows clear variations among different tectonic settings. 

Furthermore, many studies have investigated the potential correlation between rock 

composition and Vp, Vs, or Vp/Vs. Christensen (1996) reported a correlation between 

Vp/Vs and SiO2 content for rocks with SiO2 content between 55 and 75 wt%. 
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Recently, Huang et al., (2013) reported the correlation between SiO2 content and 

laboratory measured Vp and Vs. While it has been argued that SiO2 estimated using 

this approach could bear large uncertainties due to several limitations, it is still a 

reasonable indicator for mafic lower crust composition with elevated seismic 

wavespeed (Hacker et al., 2015). 

In this paper, we adopt the reported Vs distributions for mafic and felsic 

endmembers of granulite and amphibolite from Huang et al., (2013), and combine our 

seismic structure to infer the SiO2 content of the NGP middle-lower crust. We 

implement a Bayesian analysis approach to achieve this goal. 

To incorporate the variation of the measured wavespeeds, we work directly 

with the normal distributions for the felsic and mafic endmembers instead of the mean. 

In Huang et al., (2013), the measured Vs are corrected for temperature and pressure 

using pressure and temperature derivatives of 2× 10OË km ∙ sOI  ∙ MPaOI and −4 ×
10 OËkm ∙ sOI  ∙ °COI (Christensen and Mooney, 1995; Rudnick and Fountain, 1995). 

A typical conductive geotherm equivalent to a surface heat flow of 60 mW ∙ mO� is 

assumed for the global average estimate. We follow the same approach, except that we 

correct the temperature effect by using regional surface heat flow from International 

Heat Flow Commission Database (IHFC, 2011; see Pollack et al., 1993) instead. We 

use surface heat flow of 60 mW ∙ mO�, 60 mW ∙ mO�, and 40 mW ∙ mO� for Central 

Montana, THO and Superior Craton respectively. We then calculate the associated 

geotherm using the following equation (Turcotte & Schubert, 2014):  

T = TÁ + qêyk + (qÁ − qê)hík (1 − eOî ïð� )     (5.5) 
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Here TÁ is the room temperature; qêis the mantle heat flow, we assume that 

mantle heat flow constribute to 60% of the surface heat flow qÁ (Pollack & Chapman, 

1977); k is the thermal conductivity of the continental crust, we choose a value of 

3.36 W ∙ mOI ∙ kOI; y is the depth; híis the reference length scale that equals to 10 km. 

The calculated regional geotherm are shown in the left panel in Figure 5.9 – 5.11. 

Given all the information above, we can write the temperature and pressure corrected 

velocity Vñ� as: 

Vñ� = VÁ + dVdT × (T − TÁ) + dVdP × ∆P    (5.6) 

We choose to use felsic fraction f, to model the SiO2 content so that when f varied 

from 0 to 1, it represent the SiO2 endmember from mafic to felsic. According to 

Bayes’ Theorem, if we are interested in the distribution of SiO2 content at certain 

depth given the seismic wavespeed, we have: 

P(.|VÚ) =  P(VÚ|.) × P(.)P(VÚ)     (5.7) 

Here, P(f) is uniform prior between 0 and 1. We sample the whole prior from 0 to 1 

with an increment of 0.05. For each value of f, we represent the P(VÚ|f) as normal 

distribution with the weighted mean (1-f)×Vmean_mafic + f×Vmean_felsic and variance (1-

f)2×stdmafic + f2×stdfelsic. P(VÚ) is a constant as it does not vary with f, therefore, it can 

be determined by computing the factor needed to make integral of P(.|VÚ) unity. We 

then marginalize along Vs to estimate the PDF of composition at certain depth h: 

P(.|h) = ô P(.|VÚ) ∙ P(VÚ|h)dVÚ     (5.8) 

Figure 5.9 – 5.11 shows the estimated the felsic fraction for the three regions 

discussed above using the mode of TBI-NGP assuming amphibolite and granulite 
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facies. As a comparison, we also compute the felsic fraction constrained by the 

CRUST1.0 model in the associated location. The Vs model for CRUST1.0 is shown in 

Figure 8 as well. The crustal thickness from CRUST1.0 is consistent with our estimate 

except in Central Montana, where the CRUST1.0 places the Moho at 48 km, 

compared to the TBI-NGP estimate of 60 km. 

 

Figure 5.9 Geotherm (left) and felsic fraction estimated based on Huang et al., (2013) 
for Central Montana using Vs of TBI-NGP (middle) and Crust 1.0 (right). The 
ensemble solutions are displayed as probability density functions at each depth, with 
warmer colors indicating higher probability. The modes of the ensemble are plotted in 
red lines. Black dashed lines indicate the estimated boundaries between upper and 
middle crust, as well as between middle and lower crust, the latter of which we 
associate with transition from amphibolite to granulate facies.  

CRUST1.0 parameterized the crust as upper, middle and lower crust, allowing 

us to directly estimate the composition of middle crust at explicit depth range. The 

depth ranges of middle crust for Central Montana, THO, and Superior Craton are 21 – 

37 km, 20 – 33 km, 12 – 25 km, respectively. Since we do not use a fixed 

parameterization within the crust, no boundary between upper crust and middle crust 

is imposed as priori information; instead, it can arise in the ensemble solutions as 



 

 146 
 

required by data. Here we used the global average upper crust thickness of 13.5 km 

based CRUST 1.0 as a reference boundary for the discussion. Combining the 

observation shown in section 5.3.2, we refer the depth range 13 – 27 km, 13 – 29 km, 

and 13 – 28 km as middle crust for Central Montana, THO, and Superior Craton (See 

black dashed lines in Figure 5.9 – 5.11). CRUST 1.0 assigned lower crustal depths 

between 38 – 49 km, 34 – 52 km, and 26 –44 km for Central Montana, THO, and 

Superior, respectively. The Moho variation of the TBI-NGP model is discussed in 

Section 5.5. At mid-crustal depths, temperature-pressure conditions associated with 

amphibolite metamorphic facies are present; whereas at lower-crustal depth, 

temperature-pressure conditions associated with granulite metamorphic facies are 

present (Huang et al., 2013). For all three regions, we assume amphibolite facies 

above the middle crust to infer the crustal composition given seismic wavespeeds. For 

the depth range below middle crust to 60 km, we granulite metamorphic facies to infer 

the crustal composition. We choose a wide depth range to cover the possible variation 

of crustal depth/thickness.  
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Figure 5.10 Geotherm (left) and felsic fraction estimated based on Huang et al., 
(2013) for Trans-Hudson Orogen using Vs of TBI-NGP (middle) and Crust 1.0 (right). 
The ensemble solutions are displayed as probability density functions at each depth, 
with warmer colors indicating higher probability. The modes of the ensemble are 
plotted in red lines. Black dash lines indicate the estimated boundaries between upper 
and middle crust, as well as between middle and lower crust, the latter of which we 
associate with transition from amphibolite to granulate facies. 

For both Central Montana and THO, CRUST 1.0 implies an intermediate 

composition with large uncertainties, indicating poorly constrained middle crust 

composition given CRUST 1.0 wavespeed. In contrast, our TBI results prefer a 

relatively mafic composition for the middle crust of both Central Montana and THO, 

although large uncertainties in the felsic fraction estimates mean that an intermediate 

to felsic composition cannot be ruled out. For Superior Craton, CRUST 1.0 velocities 

imply an intermediate composition with P(.|h) centered on a felsic fraction of 0.5. 

The TBI prefers a relatively more felsic middle crust, with P(.|h) centered on . =
0.75. Given the large uncertainties in both distributions, it is not conclusively 

determined whether the composition of Superior Craton middle crust is felsic or mafic. 

This difference in inferred crustal compositions results from the fact that the Vs 
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reported by CRUST 1.0 in middle crust is significantly slower than the TBI posterior. 

Given the extrapolations and parameterization assumptions used in constructing a 

global model like CRUST 1.0, it is reasonable to conclude that compositions implied 

by the higher resolution TBI results obtained with few prior assumptions should be 

favored. 

 

 

Figure 5.11 Geotherm (left) and felsic fraction estimated based on Huang et al., 
(2013) for Superior Craton using Vs of TBI-NGP (middle) and Crust 1.0 (right). The 
ensemble solutions are displayed as probability density functions at each depth, with 
warmer colors indicating higher probability. The modes of the ensemble are plotted in 
red lines. Black dash lines indicate the estimated boundaries between upper and 
middle crust, as well as between middle and lower crust, the latter of which we 
associate with transition from amphibolite to granulate facies. 

In the Superior Craton, both CRUST 1.0 and TBI-NGP results (29 – 42 km) 

favor a mafic lower crust, with CRUST 1.0 bearing more uncertainties than TBI-NGP 

due to its slower lower crust velocities. As is pointed out in Hacker et al., (2015), with 

Vp greater than 7.0 – 7.2 km/s, it is reasonable to infer a mafic composition in the 

lower crust. Similarly, in this study, when the observed Vs is significantly greater than 
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the measured mafic granulite Vs, we conclude that the lower crust is mafic (or 

ultramafic). In THO, both CRUST 1.0 and TBI-NGP prefer a mafic lower crust, with 

TBI-NGP requiring a mafic composition below 42 km. As is shown in Section 5.5.4, 

the elevated Vs observed in the lower crust and the subsidence history of Williston 

Basin favor a partially eclogitized lower crust in THO. A highly mafic composition is 

consistent with this hypothesis. In Central Montana, the CRUST 1.0 likely 

underestimated the crustal thickness; therefore, we discuss the lower crust composition 

at different depth range for different velocity models. Lower crust for CRUST 1.0 (38 

– 49 km) prefers a mafic composition with mode felsic fraction between 0 and 0.15. 

The lower crust retrieved from TBI shows more complex layering within the lower 

crust. Between 28 and 44 km, the TBI results prefer a mafic composition. Starting 

from 45 km a mafic composition is required by the observed high Vs. As is discussed 

in section 5.5.3, a heterogeneous lower crust due to multiple region tectonic events 

from Archean to Mesoproterozoic time is suggested based on crustal xenoliths study. 

Barnhart et al., (2012) reported a diverse range modal mineralogy and bulk major 

element chemical compositions of the lower crust xenoliths, however, the deepest 

xenoliths have basaltic compositions in general. The pressure-temperature estimates of 

their xenolith samples also demonstrate a more mafic composition with higher 

pressure. Therefore, a lower crust that starts with intermediate to mafic composition 

then transitions into a predominantly mafic composition with increasing depth is a 

plausible scenario for Central Montana. 
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5.7 Conclusion 

In this chapter, we present a crustal shear velocity model for the Northern 

Great Plains of the US using surface wave dispersion and receiver function data 

measured from 291 Transportable Array stations. The probabilistic inversion scheme 

presents results not with a single best-fit model, but by full probability density 

functions, allowing statistical inferences on the seismic velocity structures. 

A large portion of the North Great Plains is covered by low-velocity sediments 

that produce strong, reverberational signals in the RFs that can obscure the direct 

conversion from Moho. In chapter four, we showed that inversion of crustal structure 

with a thin sediment on top using RFs and insufficiently high frequency SWD could 

result in spurious crustal LVZ. Here we further emphasize, and illustrate with concrete 

examples, that sediment reverberations have to be appropriately accounted for in order 

to retrieve reliable crustal structure. We use parameters describing the sediment 

reverberation removal filters as additional prior constraints on the joint inversions, 

which yields more accurate sediment velocity and thickness estimates. Our sediment 

structure model is consistent and comparable to the industrial active source model as 

shown in Figure 5.4. 

The crustal structures display large variations among different tectonic settings 

of our studied region. To further incorporate the seismic constraints and the laboratory 

measured crustal rock wavespeeds, we estimate the SiO2 content in the middle-lower 

crust of the Northern Great Plains based on the compiled lab measurement from 

Huang et al., (2013) assuming amphibolite and granulite facies. We correct for the 

temperature and pressure effects of the laboratory-measured values for the 10-60 km 
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depth range, and then infer the felsic fraction given the seismic wavespeeds using a 

Bayesian inference process. We compare compositional inferences based on our TBI-

NGP results with those implied by the CRUST 1.0 model. 

In the Archean Superior Craton within US, we resolve a laterally uniform, and 

vertically highly stratified upper and middle crust. The crustal thickness of the 

Superior Craton ranges from 30 to 42 km. Our analysis of middle crust composition in 

the Superior Craton shows that, for both TBI-NGP and CRUST 1.0, a felsic to 

intermediate composition is preferred. It is worth noting that such inferences are 

associated with relatively large uncertainties, as shown in Figure 5.9. Assuming 

granulite facies for the lower crust, seismic wavespeeds of TBI-NGP require a mafic 

composition for the US portion of the Superior Craton. We observe an anomalous thin 

lower crust in western part of the Superior Craton compared to the eastern part. This 

anomalous lower-crustal thinning could result from post-formation delamination 

processes at the boundary between the Trans-Hudson Orogen and Superior Craton. 

The other two Archean blocks in this region, Wyoming Craton and Medicine 

Hat Block that are sutured by the Great Falls tectonic zone, show velocity structures 

distinct from those of the Superior Craton. The estimated crustal thickness between 49 

and 60 km is significantly great than that in the Superior Craton. This crustal 

thickening is likely a result of the collision and subduction in the Great Falls tectonic 

zone. Large Vs variations are also observed in the middle-lower crust of GFS, 

suggesting greater lateral heterogeneities compared to the Superior Craton. We 

observe a thick (~30 km), fast (Vs greater than 4 km/s) lower crust in the GFS. The 

elevated Vs is consistent with the 7.x layer (Vp > 7 km/s) constrained by active-source 
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studies in this region. Local crustal xenoliths studies (Barnhart et al., 2012; Mahan et 

al., 2012) propose a model of incrementally assembly of the 7.x layer due to periodic 

lower crust addition through magmatic and possibly mechanical processes. The SiO2 

content for the lower crust implied by TBI-NGP wavespeeds are consistent with this 

model, since ultra mafic composition is preferred in the GFS lower crust. 

The Paleoproterozoic Trans-Hudson Orogen in the Northern Great Plains 

shows a thickened (45 – 50 km) crust, likely due to the collision between the THO and 

the Archean terranes. The 7.x layer at the base of the crust is also widely observed in 

this region, ranging in thickness between 10 and 20 km. Partially eclogitized root in 

the lower crust has been proposed beneath the northern part of THO in southern Baffin 

Island (Gilligan et al., 2016), due to the lack of structural characteristics associated 

with orogenic collapse of THO in the northern Hudson Bay. We consider this is to be 

likely for THO in the Northern Great Plains as well, considering the elevated seismic 

wavespeeds together with the subsidence history of the overlying Williston Basin. 
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Chapter 6:  Summary and Outlook 

 

Understanding the composition, formation evolution of the continental 

lithosphere remains an important and challenging topic of geoscience. This 

dissertation contributes to the study of continental lithosphere from a seismological 

perspective, specifically using a transdimensional Bayesian approach. As is 

demonstrated by this work and many others (e.g. Bodin and Sambridge, 2009; Dettmer 

et al., 2010; Ray et al., 2014; Rudolph et al., 2015; Burdick and Lekic, 2017; Olugboji 

et al., 2017), transdimensional Bayesian geophysical inversion is capable of presenting 

accurate uncertainty estimates of the inversion results while imposing less-restrictive 

assumptions. The work carried out in this dissertation focuses on the seismic imaging 

of continental lithosphere, and consists of systematic synthetic investigation, method 

development, application, and model interpretation. 

The work shown in chapter two and chapter three are a combination of 

systematic synthetic tests and method development. It investigates the application 

transdimensional Bayesian inversion when the multiple types of elastic parameters (VP 

– VS – density – ξ) are inverted instead of one type. This is a relatively poorly 

discussed topic, yet there has been an increasing effort in interpreting the multi-

parameter seismic structures in the published literature.  In these chapters, I showed 

that due to the data sensitivity of seismic surface wave observables, the constraints on 

VP, density, and radial anisotropy are limited compares to the VS. The inversion results 

on these weakly constrained parameters can be biased by certain assumptions of the 

model parameterization. The synthetic tests and the discussion in chapter one could 
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help inform parameterization choices for further inversion of surface wave 

measurements alone and together with complementary observables (e.g. receiver 

functions).  

Figure 6.1 (Panning et al., 2017) shows an example of using TB inversion to 

study the synthetic test for crustal and lithospheric layering of Mars. The inversion is 

intended to demonstrate potential product from the Insight lander mission to Mars 

(Banerdt et al., 2013). With little prior knowledge on the structure of Mars, it is 

challenging to perform a classical inversion with a restrictive parameterization. TB 

inversion offers the adaptive parameterization that determines the model complexity 

mainly from the data themselves. Our joint inversion using synthetic receiver function 

and Rayleigh wave ZH ratio in Figure 6.1 is able to recover of both Vp and Vs in the 

crust and mantle lithosphere. This example shows the potential of using TB inversion 

to constrain planetary interior with limited observation. 
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Figure 6.1 Probability density functions (PDFs) for Vs (left) and Vp (right) obtained 
from a Bayesian inversion of synthetic receiver functions combined with Rayleigh 
wave ZH ratio measurements. The input model is shown by the black dashed line, and 
the mean model from each PDF is shown with a red line. 

 

Chapter two also introduced and compared two types of model 

parameterizations of 1D layered structure for the multi-parameter inversion problems. 

The independent parameterization imposes less-restrictive assumptions where 

different elastic parameters do not share identical model geometry. I advocate for this 

type of parameterization for such multi-parameter inversion as it allows better model 

estimates with reduced trade-offs. For example, the independent parameterization 

scheme is well suited for the application of constraining radial anisotropy using 

surface wave data and targeting disparate VP and VS structures such as those associated 

with α-β quartz transition. Figure 6.2 is another example for the possible disparate VP 

and VS structures of the firn of the southeastern Greenland ice sheet. Active source 
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surveys have been conducted to study the accumulation of melted snow within the firn 

pore space (Montgomery et al., 2017).  Since VS is more sensitive to the presence of 

water compared to VP, it can be expected to have different structures for VP and VS.  

Using body wave travel time and surface wave dispersion data, the transdimensional 

Bayesian inversion is able to retrieve the top 80-meter VP and VS structure (See figure 

6.2). The independent parameterization allows us to infer the VP/VS structure and 

estimate the depth and thickness of the aquifer layer. This ongoing collaborative 

project can also allow the attenuation to be inverted as another model parameter to 

take into account the high attenuation features within the aquifer. The 

transdimensional Bayesian approach is an inversion strategy that could be applied in 

the broad geophysical inverse problems. The method development part of this 

dissertation further broadens its application especially for joint inversions targeting 

retrieval of multi-parameter geophysical models.

 

Figure 6.2 Probability density functions (PDFs) for VS (left) and Vp (middle) obtained 
from a Bayesian inversion of P-wave travel time and Rayleigh wave dispersion. The 
Vp/VS ratio structure (right) is calculated from the VS and Vp ensemble. The mean 
model from each PDF is shown with a red line. 
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Chapter four shows the implementation of transdimensional Bayesian joint 

inversion with surface wave dispersion and receiver functions. Joint inversions of 

these two data types (and sometimes including ZH ratio, gravity data) have gain 

increasing attention in geophysical studies due to the complimentary data sensitivity. 

In addition to the TB inversion framework and parameterization choices introduced in 

chapter two, this chapter further demonstrates the data uncertainty quantification, 

especially for receiver function. A progressive-inclusion inversion scheme is also 

deployed to promote fast and stable convergence without significantly increasing the 

computational cost, which is a critical factor for inversions with large seismic array 

data. As I started conducting inversion with actual data from the Transportable Array, 

an alarming correlation between the presences of thin sedimentary layer and the 

apparent retrieval of a crustal low velocity zone is observed. I systematically show that 

these LVZs are artifacts resulting from large amplitude sediment reverberations 

combined with insufficient constraints from SWD data. I then demonstrate that the 

artificial LVZs disappear from joint inversion results when a simple sediment-removal 

filter is applied to the RFs, allowing reliable estimates of crustal structure. These 

findings call for previously claimed crustal LVZs obtained from similar data to be re-

evaluated (e.g. Horspool et al., 2006; Chen et al., 2015; Li et al., 2017). Therefore, I 

advocate best practices for constraining crustal structure using joint inversion of SWD 

and RFs under different shallow-layer scenarios. 

 

In this dissertation, Ps receiver functions are used to constrain the isotropic, 

flat-layered model. With the increasing effort on modeling the effects of anisotropy 
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and dipping layers on receiver functions, future work of TB inversion that incorporates 

receiver function with more complex modeling together with surface wave data could 

lead to more comprehensive seismic structures. While this dissertation only focuses on 

the top 100km of the continental lithosphere, straightforward addition of longer-period 

surface wave dispersion measurements from earthquake waveforms can help improve 

the resolution of deeper parts of the lithospheric mantle. Joint inversion including Sp 

receiver functions could also help constrain the structure of the lithospheric mantle, as 

signals from deeper discontinuities in the lithosphere are more easily interpreted in Sp 

receiver functions because they do not suffer from contamination by sediment 

reverberations.  

 
Chapter two, three and four tackled on several technical issues for retrieving 

reliable seismic imaging of the continental lithosphere using complementary data from 

large seismic array. As an application, I carried out joint inversion using surface wave 

dispersion and receiver function data from 291 Transportable Array seismic stations. 

The inversion results allow me to construct a shear velocity model for the top 100 km 

of the Northern Great Plains of the United States. The studied region comprises well-

preserved tectonic units including three Archean blocks and the Paleoproterozoic 

Trans-Hudson Orogen.  The bulk properties and variations of the seismic velocities 

within each tectonic unit are analyzed and interpreted along with geochemical and 

petrological studies in this region.  Our TBI-NGP model demonstrates contrasting 

structures between different tectonic settings. One noticeable feature observed across 

the majority of the NGP is the high velocity lower crust. The high seismic velocity in 

the lower crust could indicate a mafic composition, given the correlation between 
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seismic wavespeeds and the SiO2 content (e.g. Huang et al., 2013). I applied a 

Bayesian analysis to incorporate the seismic constraints and the laboratory measured 

crustal rock wavespeeds from Huang et al., (2013). By assuming amphibolite and 

granulite facies, I was able to infer the middle and lower crust composition for the 

different tectonic settings within the NGP. As a comparison, I performed composition 

estimates for both the TBI model and the reference global crust model CRUST 1.0. 

Due to the faster lower crust in the TBI model, both Archean blocks and the Trans-

Hudson Orogen suggest a mafic composition despite the contrasting crustal thickness. 

Together with active source seismic survey, geochemical and xenolith studies, the 

formation of the lower crust in NGP appear to be a results of different tectonic 

processes including periodic lower crust addition through magmatic and possibly 

mechanical processes in the Medicine Hat Block and Northern Wyoming Craton; a 

partially eclogitized root in the lower crust of Trans-Hudson Orogen and a well 

stratified and possibly partially delaminated Superior Craton. 

In chapter five of this dissertation, a crustal shear velocity model for the 

Northern Great Plains of the United States is presented and also compared to CRUST 

1.0. Unlike the global reference model, the TBI-NGP model yields higher resolution 

due to the dense seismic array and more accurate velocity structure due to the joint 

inversion. Accurate crustal model could benefit seismic imaging of the mantle, as 

crust correction is often needed for such study. In figure 6.3, I show a comparison plot 

to demonstrate that inaccurate crust model could lead to biased mantle structure. In 

this test, I use a PREM mantle structure down to 250 km, and impose the average TBI-

NGP crust model to predict the surface wave dispersion data. The other set of surface 
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wave dispersion data are predicted using the CRUST 1.0 model imposed on PREM 

mantle structure. For both sets, I perturb the mantle velocity by ± dln 2%. The figure 

shows that at certain period range, the surface wave dispersion prediction of Crust 1.0 

with a fast mantle could be replace by TBI-NGP with a normal mantle, meaning that 

the mantle velocities might be biased due to inaccurate crustal structure. 

 

Figure 6.3 (Left) One-dimensional crust and mantle velocity structures of PREM 
(black), TBI-NGP crust on top of PREM mantle (red), and CRUST 1.0 in NGP on top 
of PREM mantle (blue). (middle) Rayleigh wave prediction from the crust and mantle 
structure shown on the left, for both two models, the mantle structures are perturbed 
by ± dln 2%. (right) Same as the middle panel, but for Love wave dispersion. 

 

Chapter five also demonstrates one approach to infer crustal composition from 

seismic velocities. The ensemble nature of the TBI-NGP model allows me to 

incorporate seismic constraints with lab-measured wavespeeds for crustal rocks. An 

alternative method for estimating composition from seismic velocities is to use 

thermodynamic modeling to determine the mineral assemblages that crystallize from a 

particular bulk composition at given pressure and temperature. Seismic velocities (VP 

and VS) can then be estimated from the elastic properties of each mineral based on 
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mixture theory. This method allows calculation of seismic velocities over a large P-T 

range with small increment compared to the lab-measurement. Similar Bayesian 

analysis can be applied for this approach to infer the crustal composition. In the 

regions where both seismic data and crustal xenoliths are available, the geotherm 

could also be estimated by incorporating seismic velocities with predicted wavespeeds 

at different P-T condition. Since the composition of crustal xenoliths can be 

determined, assuming the xenoliths are representative of the bulk crust composition, 

one can narrow down the possible P-T condition of the crust based on the agreement 

between seismic velocities with predicted wavespeeds. A conditional probability like 

�(s, õ|E<�$<#$�) can be estimated using Bayesian analysis. Given the relatively well-

constrained pressure distribution along depths, the geotherm can then be estimated. 

With the increasing amount of seismic inversion conducted in a probabilistic fashion, 

it is reasonable to expect that interdisciplinary studies in geoscience would benefit 

from the incorporation of accurate, complementary knowledge to improve our 

understand of Earth’s composition, formation and evolution.  
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