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        Combinatorial synthesis consists of high throughput fabrication and rapid 

characterization of compositionally varying samples to speed up the process of materials 

development. In this thesis, synthesis of composition spreads of artificial multiferroic thin 

film heterostructures consisting of alternating layers of 3PbTiO (PTO) - 42OCoFe (CFO) 

has been demonstrated using our combinatorial pulsed laser deposition (PLD) system. In 

the spread samples, the average composition changes continuously from pure PTO to 

pure CFO so that we can observe the changes in physical properties as a function of 

average composition. 

          The coexistence of ferromagnetic and ferroelectric properties has been 
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observed in a large extended region between pure CFO and PTO. An unexpected peak in 

the dielectric property has been observed in the middle of the spread, and it was identified 

as the composition where the ferroelectric phase transition takes place in PTO doped with 

CFO. The cT  of ferroelectricity is found to be tunable from 500 ℃ to room temperature 

by controlling the average volume ratio of CFO and PTO. We have also found that the 

magnetic anisotropy in the materials changes by introducing PTO to CFO.  
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Chapter 1 Combinatorial Synthesis 

 

1.1 Introduction to combinatorial synthesis 

The development of computer technology in the recent decades has led to 

permanent changes in our society. The combination of computers and electronics has 

contributed to a revolution of automation, and it allows us to perform tasks in a far more 

efficient way than before. In industry, there is always a demand for high efficiency and 

better products. From the point of view of materials scientists, this translates to constant 

and urgent need for materials with better performance in fields such as electronic 

materials. Thus, there is a need for quick exploration of novel materials. Traditional 

Edisonian way of discovering materials often cannot meet our need in the rapidly 

changing world. We need faster, less expensive and better materials exploration 

techniques in synthesis as well as characterization areas.  

Combinatorial synthesis was born in this background. The combinatorial 

strategy allows one to rapidly fabricate and characterize a large number of different 

materials. The combinatorial idea was first introduced in the pharmaceutical industry in 

1980s in order to speed up the efficiency of drug discovery. Affymax was one of first 

companies to use combinatorial synthesis to speed up the exploration of catalytic 
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antibodies. Peter G. Schultz, the founder of Affymax, extended this approach to inorganic 

materials in 1993 [1,2]. In this approach, a large number of compositionally varying 

samples are made simultaneously. Rapid screening of the samples is carried out to 

identify compositions with desirable physical properties. Fig. 1.1 shows one version of a 

thin film combinatorial synthesis experiment. 

 

 

Fig. 1.1 The flow diagram of a thin film combinatorial approach to materials 

 

This thesis focuses on two main steps in combinatorial synthesis experiment: 

high throughput fabrication and rapid characterization. First, fabrication of samples with 
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different compositions in a short time is required. High throughput fabrication, which is 

making samples at a much higher speed than the traditional way, is a main point of 

combinatorial synthesis. For this purpose, deposition of a composition spread or a 

discrete library on an individual substrate is performed. In such combinatorial samples, 

up to thousands of samples can be made simultaneously under the same processing 

condition. Second, since we have many samples to be examined, rapid measurements of 

the properties of samples are necessary.  

In this thesis, pulsed laser deposition (PLD) was carried out to perform 

fabrication of composition spreads. Scanning probe microscopes, namely, a scanning 

microwave microscope and a scanning SQUID microscope were used to perform 

characterization of the spreads. A scanning X-ray microdiffractometer was used to 

quickly obtain mapping of phases in the spreads. 

 At the end of 1980s, it was estimated that there were about 24,000 known 

inorganic materials, out which of 16,000 were binary compounds and 8,000 were ternary 

compounds [3]. This seems like a large number, but if we count the number of possible 

compounds formed by selecting three or four elements randomly from the periodic tables, 

there are more than 30,000 ternary and 500,000 quaternary compounds, most of which 

are unexplored. Systematically studying these compounds by the traditional one-by-one 
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method is simply not practical, and we would never be able to study all the possible 

compounds. However, if we could employ the combinatorial approach, we can begin to 

think about studying a large number of compounds rapidly.  

There have been combinatorial studies on different classes of materials including 

superconductors, dielectric/ferroelectric materials, and ferromagnetic materials. We 

believe that the role of the combinatorial strategy will continue to expand in the future 

materials research because of its extremely efficient nature. It can speed up the 

exploration of new materials not only by allowing systematically variation of 

compositions, but also by enabling variation of processing conditions such as the 

fabrication temperature.   

 

1.2 Thin film fabrication 

  Modern semiconductor technology and the electronics industry are largely 

based on the thin film technology. By depositing thin layers of materials on suitable 

substrates, materials properties can be reproduced at small scales and in the form which is 

amenable to making devices. 

          In the semiconductor industry, epitaxial growth of films, where a single 

crystal film is coherently deposited on a crystalline substrate, is widely used. There are 
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two types of epitaxial films: homoexpitaxy which refers to the case in which the film and 

substrate are the same material (ex: Si deposited on a Si wafer), and heteroepitaxy, where 

a film and a substrate are different materials. Combinatorial synthesis entails growing 

different materials on different substrates, and thus this is heteroexpitaxy. It is well known 

that materials properties such as magnetic and electrical properties of materials are 

determined by how the films grow on the substrates.  

          Due to the mismatch of lattice constants between the materials of interest and 

the substrate, elastic tensile or compressive stress can be introduced in the film. The strain 

is relaxed when the thickness is more than the critical thickness (hc). The critical 

thickness depends on the difference in lattice constants of the film material and the 

substrate, and it is proportional to the inverse of misfit strain. Once the film thickness is 

larger than hc, dislocations would start to appear at the interface to reduce the stress, and 

the film gets relaxed. Such case is shown in Fig. 1.2. 
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Fig. 1.2 Relaxed Epitaxy 

 

There are three basic modes of thin film growth. These are: (1) Volmer-Weber 

(island) (2) Frank-Van der Merwe (layer), and (3) Staranski-Krastanov. We discuss these 



 - 7 -

modes briefly:  

(1) Volmer-Weber (island growth): When the atoms deposited have a stronger bond to 

each other than to the substrate, they will nucleate to small clusters and grow in 

islands to three dimensions. This mode most likely happens where there is a 

significant lattice mismatch between the substrate and the film.  

(2) Frank-Van der Merwe (layer mode): In contrast, if the force between deposited atoms 

and the substrate is stronger than the bonds between atoms themselves, it results in 

the layer structure. This mechanism is in 2-D mode.  

(3) Staranski-Krastanov mode: It’s possible to have a growth mode in which both of the 

above mechanisms take place. Because the strain energy increases with the thickness, 

the layer structure starts to develop into the island growth where dislocations would 

form to lower the strain energy abruptly above the critical thickness (hc).  

 

1.3 Combinatorial thin film synthesis using pulsed laser deposition (PLD) 

Pulsed laser deposition (PLD) is extensively used in research for metal oxide 

thin films and devices [4].   

The idea of PLD is based on the fact that most nonmetallic materials strongly 

absorb radiation at ultraviolet range. The laser beam hits the target surface where the laser 
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energy is converted into thermal, chemical, and mechanical energy to cause target atoms 

to be ablated from the surface, and the highly directional plasma plume is formed. The 

plasma plume, containing energetic atoms, molecules, ions, and electrons is highly 

stoichiometric, which is crucial to making multicomponent metal oxide thin films at 

different partial pressures. By switching between different targets using a carousel, a 

variety films and multilayers can be easily made in a single pump-down. Fig. 1.3 shows 

the basic set-up of a PLD system. A heated substrate is at the other end of plasma plume. 

The substance ablated from a target is transported to and deposited on the substrate. 

During and after the deposition, reactive gases such as oxygen or nitrogen are usually 

injected into the deposition chamber to adjust the stoichiometry of the film.  

PLD has several advantages which make it a unique tool among various thin film 

deposition techniques: (1) it is relatively simple, (2) one can have excellent control of the 

deposited thickness, and (3) it can produce highly stoichimetric films.  

Let us discuss these points:  

(1) Simplicity: PLD is one of the simplest thin film deposition techniques. From Fig. 1.3, 

one can see that the basic components of a PLD system are a target holder and a substrate 

holder in a vacuum chamber.  
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Fig. 1.3 Basic set-up of a PLD system 

 

(2) Excellent control of the thickness of the film: The thickness of a film depends on the 

amount of materials arriving on the substrate, which is related to the number of the pulses 

the laser generates. The pulse rate can be changed from 1 Hz to 50 Hz, and the deposition 

rate in oxide system is typically on the order of 0.1 Å/shot in our system. The thickness of 

a thin film can be controlled very precisely and easily at nm range by changing the 

repetition rate and the number of laser pulses. 

(3) Highly stoichimetric transfer of materials: Because of the highly non-equilibrium 

nature of the PLD process, there is good stochiometric transfer of the target material. The 

non-equilibrium nature comes from the short pulse duration and the short wavelength of 
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the laser beam. 

The PLD process also has two major disadvantages. First, the uniformity and 

the limited size of the plume is the major limitation of PLD. Although the size of plume 

depends on the target material, the laser energy, and the background gas pressure, the 

typical size of the plume is about 10mm in diameter for our standard oxide deposition 

condition ( 2O partial pressure: 100 mTorr,). For the target-substrate distance of 10cm, this 

results in a uniform thickness film in a spot about 10mm in diameter. The highly 

directional plume results in the gradient of thickness and composition outside of this spot. 

Second, the macroscopic particulates in the plasma plume from the splash effect, which 

are enhanced with increasing laser energy, cause the film to have non-smooth surface. 

The simplest approach to reduce the amount of particulates is to decrease the laser energy 

and make a rotational target holder. They can be further eliminated by employing 

advanced techniques such as a velocity selector.  

 

1.3.1 The set-up of our pulsed laser deposition system 

     The PLD system we are using in our group (shown in Fig. 1.4) is composed of: (1) 

a vacuum chamber connected to a turbo pump, (2) a carousel capable of carrying up to 

six targets, (3) a Lamda Physics LPX 300 pulsed excimer laser, and (4) a combinatorial 
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pulsed laser deposition flange, which I will describe in detail in 1.3.2. The operation of 

system is managed by a computer program so that it can control the laser pulse rate, the 

number of shots, switching of the targets, and the shutter motion on the flange to perform 

spatially selective shadow deposition. 

The components are discussed in more details. 

(1) The vacuum chamber: A stainless steel chamber connected to a turbo pump can be 

pumped down to 710− Torr (Fig. 1.4). The carousel and the flange are mounted on it, and 

they are taken out for cleaning after every deposition. A UV window, which allows the 

laser beam to pass through, is also a critical component in the PLD system. The window 

material, UV grade quartz in our system, needs to be transparent for both visible and 

ultraviolet light. 

       

         Fig. 1.4 The combinatorial PLD chamber 
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(2) Carousel: There are six target holders on our carousel (Fig. 1.5) which is driven by 

two motors connected to the computer. The carousel is used to switch between targets. 

This allows us to make a multilayer film in a single-run deposition. The carousel also 

rotates the targets, and the rotation during deposition helps to minimize the generation of 

macroscopic particulates and maintain a constant deposition rate.   

      

     Fig. 1.5 The carousel capable of carrying up to six targets 

 

(3) LPX 300: The Lamda Physics LPX 300 (Fig. 1.6) is an excimer laser with the 

wavelength of 248nm (KrF). The pulse rate ranges from 1 Hz to 50Hz, and the energy is 

adjustable from 400 mJ to 1 J. In an excimer laser, excited gases release energy at certain 

wavelengths. By simply changing the combination of reactive gases, different energies 
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and wavelengths can be obtained. For example, KrF, ArF, and XeCl are used for 248 nm, 

193 nm, and 308 nm, respectively. 

        

       Fig. 1.6 Lamda Physics LPX-300 excimer laser 

 

1.3.2 The combinatorial pulsed laser deposition flange 

     The design of our combinatorial thin-film deposition flange (Fig. 1.7) makes our 

deposition chamber a very unique PLD system [5]. The flange houses a 1.5-in. diameter 

sample-mounting heater plate, which can go as high as 800 ℃, and a two-dimensional 

shuttering system, which allows spatially selective deposition on different parts of a 

substrate. We can use the combinatorial thin-film deposition flange to make a variety of 

combinatorial libraries and composition spreads. The flange is very compact, and it has 
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essentially every component we need to perform combinatorial experiments. It is 

approximately 19 in. in height and weighs 25 lb. We can place it in any PLD chamber 

with 8 in. flanges. In fact, it can also be used on any physical vapor deposition systems to 

perform shadow deposition.  

      The main features of the flange are the feedthroughs and motors which are used to 

drive the automated shutter system which is controlled by a computer program. The 

motors are used to rotate chains to which the shutters are connected. The motors are 

outside the chamber while the chains are inside. The shutter system is a two-axis system, 

and one shutter moves in the x-direction while the other moves in the y-direction. The 

shutters are two overlapping steel sheets driven by the chains. The schematic drawing of 

the shutters is shown in Fig. 1.8.  
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(a) 

    

(b) 

              

Fig. 1.7 Picture of a combinatorial flange. (a) Outside part of the flange. The 

feedthroughs are connected to the motors. (b) Top view of the vacuum side of the flange. 

One shutter with a square aperture is mounted for making composition spreads. 
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Fig. 1.8 A schematic top view of the combinatorial flange shutter assembly. 

Masks/shutters and the heater plates are replaceable. Different aperture layouts are used 

to fabricate different combinatorial libraries or spreads. (a) Aperture pattern used for 

discrete libraries. (b) Aperture pattern used for composition spreads.  

 

      Immediately below the shutter is the heater plate which can be continuously 

rotated in an automated manner. The distance between the heat plate and the shutter is an 

important parameter which we need to take into account for deposition at elevated 

temperatures. It should be long enough to keep the shutter from touching the substrate. At 

the same time, we would like to bring the shutter as close to the substrate in order to 

create well-defined shadow deposited features on a substrate. This distance is determined 

Drive chains x-y movable shutter/masks 

with cutout apertures 

rotatable heater plate 

(a) (b)
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by the different films making at the different temperatures. 

      The shutter sheets are replaceable, and a variety of patterns can be cut in the 

shutters to achieve various shadow deposition geometries. For example, we can make a 

simple square window to make binary composition spreads. Composition spreads were 

proven to be an excellent tool for rapidly mapping composition-property phase diagrams 

[6,7,8,9]. On a binary composition spread, a linearly changing continuous composition 

gradient is created by moving a shutter during deposition. In particularly, two targets, A 

and B, are ablated by the laser beam, and the ablated materials go through the open 

aperture on the shutter, which glides over the substrate, resulting in a deposition of a 

wedge thickness-profiled thin film. The shutter can move at different speeds to allow us 

to vary the wedge thicknesses. We can control the thickness of each layer to be less than 

one unit cell. This is used to obtain solid solution of A and B. In contrast, if the thickness 

is larger than one unit cell, superlattice structures can be obtained. The details of this 

composition spread fabrication strategy are presented in Chapter 2. 

 

1.4 The techniques to screen combinatorial thin films 

        One needs to be able to perform rapid screening in combinatorial experiments 

since many different compositions are made together on a single substrate. Scanning 
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techniques are very useful for this purpose. We have a scanning X-ray 

microdiffractometer to obtain structure and phase information. To confirm the actual 

compositional gradient of spread samples, we use wavelength dispersion spectroscopy 

(WDS). Scanning superconducting quantum interface device (SQUID) microscopy 

provides mapping of the magnetic properties. The linear dielectric constant and the 

non-linear dielectric signals can be obtained from the scanning near-field microwave 

microscope at microwave frequencies. We also work with Dr. Bendersky in National 

Institute Standards and Technology to perform transmission electron microscopy (TEM) 

of our samples. 
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Chapter 2 Exploration of artificial multiferroic thin films using 3PbTiO - 42OCoFe  
composition spread 

 

 

                Artificial multiferroic thin films were explored using composition spreads. 

Multiferroics are materials that have more than one type of ferroic properties. There are 

three types of ferroic properties being talked about in this thesis, namely, ferromagnetic, 

ferroelectric, and ferroelastic properties. Materials with ferromagnetic, ferroelestric, and 

ferroelastic properties have a spontaneous magnetization, polarization, and deformation, 

which can be reoriented by the applied magnetic field, electric field, and by applied stress, 

respectively. In multiferroic materials, at least two of three properties coexist. The 

coupling between ferroelectricity and ferroelasticity is well known in transducer 

applications while there are other coupling mechanisms such as the one between 

ferroelasticity and ferromagnetism is magnetostriction. In this thesis, we focus on 

artificial magnetoelectric materials, where ferroelectrity and ferromagnetism coexist [10]. 

In particular, we have studied artificial nanocomposites consisting of 3PbTiO  

and 42OCoFe  using superlattice composition spreads. A series of superlattice 

composition spreads were fabricated using our combinatorial thin film synthesis strategy. 

This thesis focuses on the synthesis of composition spreads of multiferroic thin film 
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heterostructures consisting of alternating layers of PbTiO3-CoFe2O4 and the 

corresponding measurements are also shown. We have varied the thickness of each layer 

in different spreads which make up the superlattice. Various measurements were 

performed on the spreads: scanning microwave microscopy and scanning SQUID 

microscopy were used to map the dielectric and magnetic properties across the spreads, 

respectively. We also used the scanning X-ray microdiffractor to characterize the structure 

and found a phase transition which takes place at certain compositions leading to a 

maximum in the dielectric constant at these compositions. Wavelength dispersive 

spectroscopy (WDS) was used to confirm the composition variation across the spreads, 

and transmission electron microscopy was performed to obtain microstructural 

information. We have found that the materials actually display a strong departure in 

microstructural properties from the intended superlattice structures. We have found a 

range of composition where ferroelectricity and ferromagnetism can coexist.  

 

2.1 Magnetoelectric materials  

    Magnetoelectricity takes place in a ferroelectric-ferromagnetic multiferroic material 

where there is a coupling between the two ferroic properties. Such materials can exhibit 

the magnetoelectric effect where magnetization is modulated by an electric field or the 
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applied magnetic field causes a change in the electric polarization. This property which 

comes from the coupling of magnetization and charge polarization can be expressed by 

Eq. (1) and (2) [11]: 

Pi  =  (χe)ijEj + αij Hj                                                                         (1) 

Mi = (χm)ijHj + (αij/µ0) Ej                                              (2) 

 

where  P is the polarization. 

  χe is the electric susceptibility.  

 χm is the magnetic susceptibility. 

 αij is the magnetoelectric coefficient. 

 H is the magnetic field. 

 E is the electric field. 

 and µ0 is the magnetic permeability in vacuum. 

 

There are many potential applications of the magnetoelectric effect. Compact 

and less expensive magnetic-field sensors with high sensitivity can be made by detecting 

the changes in the electric polarization caused by a varying magnetic field [12]. A new 

type of memory storage devices is also possible, where data can be written using one 
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ferroic property and read through another [13].  

  Unfortunately, there are very few single phase magnetoelectric materials in 

nature, and the magnetoelectric effect appears to be very weak in these materials. 32OCr  

is the first magnetoelectric material discovered by Astrov in 1960, but its magnetoelectric 

effect is too weak for commercial applications [14]. Even after three decades, there are 

very few natural magnetoelectric materials. 3BiFeO  shows very weak magnetoelectric 

property based on the thin-film forms instead of bulk materials [15]. 52OGdMn  single 

crystals only show the magnetoelectric behavior below 39 K [16]. The contradiction of 

the general principles of ferromagnetism and ferroelectricity is believed to be the reason 

that there are so few magnetoelectric materials in nature. 3d-orbital electrons are 

necessary for creating spin polarization in ferromagnetic materials. However, for most 

ferroelectric perovskite oxides, there are no 3d-orbital electrons in the B-site atoms 

because the p-orbital electrons are preferable. This competition between two 

ferro-properties was illustrated in a first-principle density functional theory (DFT) [13]. It 

was shown that the off-center distortion essential in ferroelectric materials is reduced by 

the d-orbital electrons in a transition metal, necessary for ferromagnetism. This indicates 

that additional driving forces which might come from electrons or lattice is necessary to 

obtain a useful magnetoelectic property.  
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Since natural magnetoelectric materials are rare, researchers have tried to make 

artificial magnetoelectric materials by combining materials with different ferroic 

properties. Fig. 2.1 is a triangle showing how a magnetoelectric property can be obtained 

by the product of properties [17]. In artificial magnetoelectric materials, piezoelectric and 

piezomagnetic properties couple together through the mechanical/lattice property of the 

material, to cause the magnetoelectric effect. From the way pieozoelectric and 

piezomagnetic properties couple together, we can define the magnetoelectric coefficient  

 

e
P

H
e

∂
∂

∂
∂

= .α                                                         (3) 

 

where e is the induced strain,  

H is the magnetic field 

P is the polarization 

 

 This shows that the magnetoelectric property can arise from the coupling through 

induced strain.  
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Fig. 2.1 The triangle shows the coupling of ferroelectricity and ferromagnetism through 

the mechanical/lattice property of the material to make artificial magnetoelectric 

composite materials.  

 

The first artificial megnetoelectric material was made by J. Van Den Boomgaard 

by combining a ferroelectric (piezoelectric) 3BaTiO  and a ferromagnetic 

(piezomagnetic) 42OCoFe  in a eutectic sintered composite [ 18 , 19 , 20 , 21 ]. The 

magnetoelectric coefficient α from this experiment was 0.13 V/ (cm x Oe) which was far 

below that predicted from the theoretical calculation (5V/cm x Oe) [22]. The reason for 
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the low value might be the unfavorable phases which were formed at a high fabrication 

temperature over 1000 ℃.  

Researchers turned to make layered composites to eliminate this drawback. To 

enhance the magnetoelectric effect, Harshé et al proposed to use epoxy to create the 

bilayered or multilayered composite structures. [13]. There are two advantages to making 

layered composites instead bulk eutectic: First, the piezoelectricity can be improved due 

to the ease of poling of the piezoelectric layers. In addition, the piezoelectric property is 

well separated from the piezomagnetic layers. Many magnetoelectric materials based on 

layered structures have been reported. These include composite of (Pb,Zr)TiO3 (PZT) – 

Tb0.3Dy0.7Fe1.92 (Terfenol-D), PZT-NiFeO4, Polyvinylidenefluoride (PVDF) – Terfenol-D, 

laminate Pb(Mg1/3Nb2/3)O3 – PbTiO3 (PMN-PT) – Terfenol-D,  PZT – FeCoSiB, PZT – 

CoFe2O4, PZT – (La,Sr)MnO3, PZT – (La,Ca)MnO3 and BaTiO3 (BTO) – BiFeO3 [23, 24, 

25]. 

These results are all based on bulk materials. Our research in this thesis focuses 

on the properties of layered thin films.   
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2.2 Fabrication of 3PbTiO (PTO) and 42OCoFe (CFO) layered thin film composition 

spreads 

Almost all research on artificial magnetoelectric materials at present time are 

focusing on bulk composites. Even the layer-structured composites are in bulk forms. 

Thin film heterostructures provide a new configuration to explore this property and 

advantages over bulk: 1) layered structures can be used to control the thickness of 

alternating piezoelectric and pieomagnetic layers at nanometer scale; 2) thin film devices 

based on the magnetoelectric property can be investigated.  

There are several requirements for the materials we are using to synthesize the 

layered structures: 1) the ferromagnetic material needs to be the insulator and has high 

magnetostriction, 2) the ferroelectric material needs to have a high piezoelectric 

coefficient. Based on these reasons, we selected 3PbTiO  (PTO) as the ferroelectric 

material and 42OCoFe (CFO) as the ferromagnetic material. 

We use our combinatorial PLD technique to make PTO-CFO composition spread 

samples in which the average composition changed continuously from pure PTO to pure 

CFO so that we can investigate the changing physical properties as well as coupling as a 

function of average composition.  

The composition variation takes place in 6 mm. At both ends of the spreads, 
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there are 2 mm of pure end composition which can provide a reference in measurements. 

Fig. 2.2 shows the top view and a cross section schematic of a spread sample. 
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Fig. 2.2 (a) Top view of composition spread. There is a 2mm pure PTO and a 2mm pure 

CFO end on each side. The average composition is continuously changing over 6mm 

from one end to the other. (b) Schematic cross section view of a spread sample.  

 

Cross section
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All samples are grown on 10mm x 10mm (001) magnesium oxide (MgO, cubic 

with a=0.42 nm) substrates at 600 ℃. CFO has a cubic structure with a lattice constant 

a=0.839 nm, and PTO has a tetragonal structure with a= 0.39 nm and c= 0.42nm. 

Although these materials have different structures, the mismatch between twice the lattice 

constant of PTO and the lattice constant of CFO is around 5%, and we found they can be 

grown together heteroexpitaxially on (001) MgO substrates. CFO and PTO targets are 

ablated by a KrF (248 nm) excimer laser. The oxygen partial pressure during the 

deposition was 65 mTorr. 

A number of PTO- CFO composition spread samples were made. They were 

made to be superlattice composition spreads and there was more than one unit cell of 

PTO and CFO at the two ends of each wedge layer. This was done to ensure some 

integrity in properties of the respective materials since PTO and CFO are not known to 

form a solid solution.  

The total thickness of a spread film is fixed at 300 nm across the spread. For 

synthesizing the spreads, a single shutter with a square window as shown in Fig. 1.10 (b) 

is used, and the deposition set up in the chamber is as shown in Fig. 2.3. Fig. 2.4 

illustrates the relation between laser pulses, shutter motion, and the growth of CFO and 

PTO. In this figure, the shutter is moving to the left when PTO target is ablated by the 
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laser to grow wedge-like PTO layers, and it is moving back to the right when the CFO 

target is ablated to make wedge-like CFO layers.  

 

Fig. 2.3 The set up in the chamber for making composition spreads. The shutter with a 

single square window is moving back and forth as targets are ablated.  

MgO substrate 

Laser beam 
Targets 

plume 

Moving shutter 
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Fig. 2.4 The illustration of the shutter motion for the growth of a layered composition 

spread structure. The shutter is moving to the left when the PTO target is ablated while it 

is moving to the right for the growth of CFO layers. 

 

In our PLD system, the thickness of each layer is controlled by several parameters: 

shutter motion speed, the laser pulse rate, and the total number of laser pulses. Below 

CoFe2O4
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shows an example of the parameters used in one cycle to make a spread sample.  

Shutter 

motion 

sequence no. 

Target Motor speed 

(rpm) 

Shutter 

moving 

distance 

(mm) 

Laser pulse 

rate (Hz) 

Number of 

laser shots 

1 PTO 200 -6 8 39 

2 None 500 -10 0 0 

3 CFO 100 6 20 195 

4 None 500 10 0 0 

Table 2.1 A set of parameters used to run a program for making 3x (the thickness of each 

wedge layer is 3 times of CFO lattice constant) PTO-CFO spread. Each sequence number 

includes one set of parameters in the computer program. Sequence number 1 and 3 are 

where PTO and CFO wedge layers are deposited, respectively. Sequence number 2 and 4 

are where the shutter gets reset. In this 3x spread, the computer program will repeat this 

procedure for 119 cycles to make the film 300 nm thick everywhere.   

 

Due to the different deposition rates for CFO and PTO targets, the deposition time 

and the laser pulse rate are different for each target even if their wedge thickness is to be 
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the same. In the computer program, we use the shutter speed to control the deposition 

time which, together with laser pulse rate is used, to control the thickness of one wedge 

layer. Between the depositions of two targets, we need sequences of shutter motion in 

order to set the shutter at the starting point for the next deposition.  

The total thickness of the spread film is 300 nm everywhere in the sample while 

the thickness of each wedge layer was varied from one to multiple unite cells. A series of 

composition spreads were made where the thick end of each wedge layer for both CFO 

and PTO was approximately 0.84 nm, 2.52 nm, 5.04 nm, 8.4 nm, and 12.6 nm which 

correspond to 1x, 3x,10x, and 15x the unite cell of CFO, respectively. 

 

2.2.1 Piezomagnetic material: 42OCoFe ( 42OAB ) 

42OCoFe  has a very complicated structure. It has the spinel ferrite structure 

with a stoichiometry denoted by 42OAB , where A is a divalent transition metal ion or a 

mixture of a trivalent and a monovalent metal ion. A spinel is basically a cubic structure 

in which −2O  ions form an fcc lattice. It requires eight formula equivalent 42OAB  to 

form a repeating unit cell which contains 32 −2O  ions, 64 tetragonal sites (A sites) and 

32 octahedral sites (B sites). However, only 8 tetragonal and 16 octahedral sites are 

occupied so that the ratio of the number of atoms between A atoms and B atoms is 1:2. 
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Fig. 2.5 is a schematic drawing of the spinel structure. 

CFO is known to have highly anisotropic magnetic properties and has been 

widely used in magnetic media and microwave device applications. It has been reported 

that the easy axis of an CFO epitaxial thin film grown on a (001) MgO substrate is out of 

plane [26].  

  

 

Fig. 2.5 Schematic drawing of the spinel structure [27]   

 

2.2.2 Piezoelectric material: 3PbTiO  

3PbTiO (PTO) is a perovskite in which Ti ions are surrounded by six oxygen 

ions in octahedral sites. Pb and O ions constitute an fcc lattice with Ti ions on octahedral 
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interstices as shown in Fig. 2.6. At temperatures higher than the ferroelectric cT , PTO 

has a cubic structure while it becomes tetragonal with the Ti ion in an off-center position 

to give rise spontaneous polarization below cT . In ferroelectric materials, there exists a 

domain structure, which is similar to ferromagnetic materials, with a net spontaneous 

polarization in the domain.  

 

Fig. 2.6 Perovskite structure of 3PbTiO  Pb and O ions constitute a fcc lattice with Ti 

ions on octahedral interstices 
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2.3 Characterization of dielectric properties of PTO-CFO composition spreads 

       In this experiment, we use the near-field scanning microwave microscope to 

map the dielectric property on the spread samples (Fig. 2.7). The near-field microwave 

microscopy has been proven to be a powerful, non-destructive tool for mapping microwave 

dielectric properties of combinatorial samples with high spatial resolution [28, 29, 30]. 

Due to the fact that the propagating electromagnetic wave can’t carry information smaller 

than the wavelength λ, the only two ways to improve the resolution is either to use a higher 

energy source to get a shorter wavelength, or to use the near-field technique. The concept 

of near-field is that a very small object can be detected if it is placed very close to the light 

source. We use a tip-structure scanning microwave probe for the near-field microwave 

microscopy. This microscope has been demonstrated as an ideal tool for combinatorial 

samples since it provides rapid and non-destructive measurement with the very high 

resolution (down to sub µm) [31, 32]. Figure 2.7 shows the basic set-up of this 

microwave microscope. It is composed of a high-Q λ/4 coaxial cavity with an STM tip 

mounted to the center conductor, which protrudes through an aperture in the bottom plate. 

The tip will be brought very close to the sample to do the measurement. By measuring the 

shift of Q and the resonant frequency, we can calculate the dielectric constant by applying 

the perturbation theory. 
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Fig. 2.7 The schematic drawing of the scanning microwave microscope in our laboratory. 

 

In addition to the linear dielectric constant, the non-linear dielectric signal, 

which is proportional to the non-linear dielectric constant, can also be measured with this 

microwave microscope by applying an electric field on the sample. The non-linear 

dielectric constant is the tunable part of the dielectric constant, and thus it is a direct 

indication of ferroelectricity. It changes with the applied electric field.  
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The general relationship between the electric displacement D, the polarization P, 

and the applied electric field E can be written as: 

 

Di = Pi + ∑
j

E j(εij + ∑
k
ε ijk Ek+………..)                             (1) 

where D is the displacement, P is the polarization. 

 E is the electric field. 

 εij is the second order dielectric constant. 

 and εijk is the third order dielectric constant. 

 

The effective dielectric constant εeff (Eq. (2)) is defined as the derivative of displacement 

with the electric field. 

εeff = ji ED ∂∂ /  = εij + ∑
k
ε ijkEk +………..                                  (2) 

In Eq (2), εij is the linear part of dielectric constant, and the others are higher order terms. 

The 1st order non-linear dielectric signal εijk can be extracted as the difference between 

the total effective dielectric constant and the linear dielectric constant (eq. (2)) while 

applying an electric field to the sample. The non-linear signal we can measure is usually 

the 1st order non-linear dielectric signal εijk. The higher order terms are negligible small. 

A signal generator is used to apply a low frequency oscillating voltage (1 KHz, 16V) 
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between the microscope tip and a metallic electrode on the back side of the sample 

substrate to modulate the effective dielectric constant of the sample. 

       Linear dielectric constant measurements at 1GHz on 15x spread sample (wedge 

thickness: 12.6 nm) are shown in Fig. 2.8. The measurement is taken as a function of the 

position and consequently a function of the average composition on the sample. The 

general trend is that the dielectric constant decreases toward the CFO end. In all spreads, 

we observe a peak in the dielectric constant at composition away from the pure PTO end, 

and here we take the 15x sample as a representation.  
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Fig. 2.8 Linear dielectric constant measurements on 15x sample (wedge thickness: 12.6 

nm). There is a peak for the dielectric constant around composition at (PTO) 0.85-CFO 0.15.  

 

 We also measured the non-linear dielectric signal across the spreads. The peaks 

are even more evident in the non-linear dielectric measurement, and it seems that the 

peaks occur at the same composition as the linear dielectric constant near the average 

composition of (PTO) 0.85-CFO 0.15. No non-linear signal was observed in the 1x sample. 
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Fig. 2.9 Non-linear dielectric signal on 15x spread (wedge thickness: 12.6 nm).   
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2.4 Characterization of composition variation across the spreads using Wavelength 

dispersive spectroscopy (WDS) 

          Wavelength dispersive spectroscopy (WDS) is a widely used tool for 

determining compositions of materials. Unlike energy dispersive spectroscopy (EDS) 

which collects all energy distribution at once to show a histogram of counts versus energy, 

in this technique, individual wavelengths are detected at different points on the Rowland 

circle by coupling the motion of a sample and the detector in WDS. Both techniques 

detect the emitted X-ray from a sample upon electron beam irradiation. Compared to 

EDS, WDS provides a higher resolution due to its better ability to separate wavelength 

peaks.     

          In our experiment, WDS was used as an effective tool to verify the 

composition variation across the spreads. Fig. 2.10 shows the atomic mole ratio as a 

function of position on a 15x spread sample. It shows that the composition variation in 

the spread is approximately as we designed it to be, and the composition varies linearly.  
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Fig. 2.10 Atomic composition distribution versus position on the 15x spread, measured by 

WDS. 

 
2.5 Structural phase characterization of PTO-CFO composition spread using X-ray 

diffractometer (XRD) 

   Fig. 2.11 shows the scanning X-ray microdiffractometer we use to determine 

the structure in materials. It is a D8 DISCOVER with GADDS by Bruker-AXS, equipped 

with a two-dimensional (2-D) area detector (diameter: 11.5 cm) and an x-y-z stage for 

combinatorial screening to characterize the out-of-plane lattice constant of the film across 
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the spread samples. The most important features of this tool are the automated X-Y stage 

which allows us to scan many points at once, and the two-dimensional area detector. Fig. 

2.12 shows the detection schematic of this diffractomter. In contrast to the traditional 

point detector which can only detect the diffracted beams in the detection plane, the 2-D 

area detector can pick up the signals at certain angle range along the Z-direction in Fig. 

2.12, which contain the χ information. This operational mode, which is called the ω 

scan, is very useful to study epitaxial films. If the sample is polycrystalline, the diffracted 

beams will form a cone in the 3-d space. This cone will intersect with the plane on the 

area detector to form a ring while on a point detector it would only give a spot. If the 

sample is a single crystal, it would give a spot.  
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Fig. 2.11 Bruker-AXS scanning X-ray microdiffractor with an automated X-Y stage. The 

area detector is on the right.   
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Fig. 2.12 The schematic drawing of the diffraction geometry using a 2-D area detector. A 

range of 2θ and χ are detected simultaneously.  

 

        In order to understand the unexpected peak behavior in dielectric properties at 

composition away from the pure PTO end in our spreads, a phase evolution measurement 

was carried out using the scanning X-ray microdiffrectometer. Fig. 2.13 shows the result 

for 15x sample, where the intensity is plotted as a function of the average composition 

and the 2θangle. The (002) and (200) tetragonal-PTO peaks gradually merge together to 

become the (200) cubic PTO peak around the composition of 0.150.85 (CFO)(PTO) −  

with increasing CFO content from the PTO end. Thus, we can associate the highest linear 

dielectric constant and the non-linear dielectric signal to the phase transition between 
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tetragonal and cubic phases. 

 

Fig. 2.13 The X-ray microdiffraction at room temperature for 15x sample: the intensity as 

a function of the 2θangle and the average composition. The phase transition from the 

tetragonal-PTO to the cubic-PTO occurs at the average composition of 

0.20.8 (CFO)(PTO) − .  

 

       We plot the linear dielectric constant, the non-linear dielectric signal, and 

d-value variation (calculated from the diffraction data) together to clearly illustrate the 

relation between the dielectric constant properties and the phase transition in Fig. 2.14.  
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Fig. 2.14 Dielectric constant and the d value vs. composition on 15x and 3x spread 

samples. The positions of the dielectric peaks correspond to the PTO ferroelectric 

transition. The d value is half the lattice constant for PTO calculated from X-ray result. 
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   In addition, the temperature-dependent phase evolution can be carried using 

the temperature stage of the diffractometer. Since the ferroelectric phase transition 

happens at ferroelectric Tc, the temperature-dependent X-ray measurements on spread 

sample can give us the relation between composition and Tc. Fig. 2.15 (a) shows how we 

determine Tc. It shows one set of X-ray diffraction patterns at different temperatures. The 

two peaks belonging to the tetragonal phase gradually merge into one peak belonging to 

the cubic PTO. We assume that the temperature at which the two peaks of the tetragonal 

phase merge into one peak of the cubic phase is the ferroelectric phase transition 

temperature. Fig 2.15 (b) shows the phase transition temperatures ( cT ) versus 

composition from the room temperature to 600 ℃ for several compositions from the 15x 

sample. From the measurement, cT  of pure PTO is about 510 ℃ which is consistent 

with the bulk data. With increasing CFO content, cT  is brought down, and it goes to the 

room temperature at the composition around 0.150.85 (CFO)(PTO) − . This indicates that 

the cT  is tunable by controlling the content of CFO into PTO. 
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Fig. 2.15 (a) X-ray diffraction patterns for pure PTO at different temperatures. (b)The 

phase transition temperature cT  versus average PTO composition for 15x sample.  

(a) 

(b) 
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2.6 Characterization of magnetic properties of PTO-CFO composition spread  

      The room temperature scanning SQUID is used to characterize the magnetic 

properties across the spread samples (Fig. 2.16). The scanning SQUID microscope 

consists of several components: the SQUID sensor which works as a flux-to-voltage 

transducer, micro-positioning mechanism, a cryogenically cooled dewar, and a computer 

responsible for recording data and controlling the position of sample stage in order to 

obtain a magnetic flux distribution of a the sample. The sensor made of superconductor 

(YBa2Cu3O7-x) is enclosed in a vacuum chamber and is thermally isolated from the 

atmosphere by a 25 μm sapphire window. The sample should be brought to the sample 

as close as possible in order to maximize the spatial resolution and the signal, and the 

distance between the sample and the window is typically 150 μm.  

       We magnetize our samples in the in-plane direction although pure CFO films are 

known to have the out-of-plane direction as the easy axes [17]. This is because currently, 

we only have an algorithm that allows us to compute in-plane magnetization from 

magnetic field distribution. Our strategy here is to use the trend of in-plane remanent 

magnetization as an indication of the overall magnetic properties by mapping the field 

emanating from the sample [33].  
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Fig. 2.16 The schematic drawing of a scanning SQUID microscope 

 

      The result shows that the composition which shows maximum remanent 

magnetization is not the pure CFO region. Fig. 2.17 (a) is the magnetic field image 

obtained by a scanning SQUID for the 15x sample magnetized in plane. The blue and red 

false colors correspond to the magnetic poles at the edges of the sample, and the contrast 

shows the intensity of magnetization. The area with light and constant color at the top of 

the spread is the region of the pure CFO; the area with high intense dipoles immediately 

below the pure CFO end is where the maximum remanent magnetization is observed. 

This figure clearly shows that the maximum remanet magnetization is not at the pure 

CFO region. In order to verify that this effect comes from materials of intended 
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compositions due to PLD deposition artifacts, we made a separate spread sample which is 

designed to have a longer region of pure CFO, and the composition spread region start at 

5 mm from the edge of the sample instead of 2mm in the standard samples. The result is 

shown in Fig. 2.17 (b). The maximum magnetization is at the position which corresponds 

to the same composition where the peak is observed in standard samples. Thus this 

peaking behavior is a real effect which comes from the synthesized materials. 
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          (a)                                   (b) 

2.17 (a) Mapping of field emanating from composition spread samples obtained by a 

scanning SQUID microscope with a standard 15x sample. The red and blue colors 

represent the two poles at the opposite ends of the sample, and the contrast shows the 

intensity of magnetization. (b) Mapping of a special spread sample with 5mm pure CFO 

region at the end. The dashed lines mark where the spread is. 

 

       The position at which maximum remanent magnetization is observed occurring 

at 0.150.85 CFOPTO −  for all samples. Fig. 2.18 shows the dependence of the measured 

field as a function of position (composition) for different composition spread samples. It 
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shows that the samples with a smaller wedge layer thickness have the higher 

magnetization peak value. From the literature and our experiments, CFO shows strong 

magnetic anisotropy. We note that the easy axis of the pure CFO thin film grown on a 

MgO substrate with (001) orientation is out of plane: the out-of-plane remanence is much 

higher than the in-plane remanence. We have made several single composition samples of 

pure CFO and 0.80.2 CFOPTO −  which are made in the same way as compositions in the 

spreads. These samples are characterized using a regular SQUID to measure the M-H 

loop. As expected, the saturation magnetization decreases as PTO is introduced. The 

observed trend indicates that with increasing amount of PTO, the in-plane remanent 

magnetization increases and out-of-plane romance decreases. We found that the magnetic 

anisotropy changes dramatically by introducing PTO into CFO. This phenomenon is 

clearly seen in Fig. 2.19  
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Fig. 2.18 Field measured by scanning SQUID across composition spreads. The field is 

due to the in-plane remanent magnetization. The bar indicates the region where the 

maximum field takes place. 
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Fig. 2.19 (a) The in-plane and out-of-plane hysteresis loops for pure CFO sample. (b) The 

in-plane and out-of-plane hysteresis loop for 0.80.2 CFOPTO −  samples. Note that the 

in-plane remanent magnetization of 0.80.2 CFOPTO −  is larger than that of pure CFO. 

 

(a) 

(b) 
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        The purpose of this experiment was to find a region where magnetization and 

ferroelectricity coexist. Fig. 2.20 plots the non-linear dielectric signal and magnetization 

(calculated from the measured field) as a function of composition for the 15x sample. We 

see that indeed we have a region that has a reasonable non-linear dielectric signal and 

robust magnetism coexisting in the middle of the spread.  

 

Fig. 2.20 The non-linear dielectric signal and the in-plane remanent magnetization as a 

function of composition across the 15x (12.6 nm) composition spread.  
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2.7 Transmission Electron Microscopy of PTO-CFO films 

        We have had TEM performed on our samples by Dr. Leo Bendersky of 

National Institute Standards and Technology. TEM studies provide essential information 

about the microstructural details of the films. The bright and dark field images give us the 

real space microstructure in the films, and the electron diffraction patterns give us local 

crystallography information about the presentation of materials at microscopic level. 

Such information is difficult to obtain with standard XRD.  

The 15x spread sample was cut into 10 pieces which were numbered 1 to 

10 from the pure PTO end, to be examined by cross sectional TEM at different 

compositions. From the diffraction patterns, it was confirmed that the films had grown in 

a heteroexpitaxtial way. Fig. 2.21 shows the dark-field image and the (100) diffraction 

pattern from the position where the composition was roughly 0.10.9 CFOPTO − . Because 

of the tetragonal nature of PTO, there are two sets of PTO patterns which are marked as 

g1 and g2 in Fig. 2.21(c). They form the twin structure in the diffraction in Fig. 2.21(a), 

(b), and in Fig. 2.22. For this composition, we do not see any distinct CFO features. This 

seems to indicate that CFO and PTO have formed a solid solution at this composition. 

The total thickness of the film is very close to 300nm as we calculated.   
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(c) 

  

Fig. 2.21 Cross sectional TEM of the 15x composition spread taken at approximately 

0.10.9 CFOPTO − (a) dark field imagine using g1 vector in (c) (b) dark field image using 

g2 vector (c) (100) TEM diffraction pattern.  

200 nm 

(a) 

200 nm 

(b) 
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Fig. 2.22 TEM image of 0.10.9 CFOPTO −  in the 15X spread sample. It shows the twin 

structures from the tetragonal PTO. 

 

Fig. 2.23 is the TEM image from the 15X spread sample at the composition 

0.90.1 CFOPTO −  where the peak in remanent in-plane magnetization was observed. 

From the appearance of both PTO and CFO diffraction patterns in Fig. 2.23(c), we see 

that both materials coexist separated in good crystalline forms at this composition. Fig. 

2.23 (a) appears to indicate presence of a layered structure near the substrate. These 

layered structures may be the cause of the change in anisotropy of the overall material, 

which in turn results in the enhanced in-plane remanent magnetization at this composition 

(Fig 2.19). 
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(b) 

 

Fig. 2.23 (a) TEM image at the composition 0.90.1 CFOPTO −  in 15x spread sample. The 

image is taken along the (110) direction (b) The (100) diffraction pattern. The bright spots 

belong to CFO, and the darker ones belong to PTO. Thus both materials coexist and 

appear to be in good crystalline forms at this composition.  

 

 

 

 

200 nm(a) 
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We have also looked at the 0.20.8 CFOPTO −  composition. In particular, we 

have studied this composition carefully using individually made samples with the 

layering thickness identical to that in the 15x composition sample. This composition is of 

interest become of the peak in the dielectric properties. Fig. 2.24 (a) shows the TEM 

image of a 15x 0.20.8 CFOPTO −  single composition sample. The PTO phase appears as 

isolated pancake-like particles surrounded by the CFO matrix in Fig. 2.24 (a). The same 

image also shows the layered overall structure, which illustrated in the cartoon: there are 

white thicker PTO layers “broken” by thinner dark CFO layers, and the “pancakes” 

resemble the way we intended to layer the structure during deposition. The diffraction 

patterns on this sample are shown in Fig. 2.24 (b). It shows that PTO and CFO have good 

crystalline structures. Due to the fact that twice the lattice constant of PTO is very close 

to that of CFO, we need to have both (100) and (110) diffraction patterns to distinguish 

and identify them. In the (100) pattern there are reflections only belonging to PTO, while 

only CFO gives certain reflections in the (110) pattern. The fact that CFO and PTO 

patterns appear in the (100) direction in (c) and the (110) direction in (d) indicates that 

they have good crystalline structures and that there is an epitaxial relation between them. 

Fig. 2.25 shows the plan view TEM image of the same sample. There are dark PTO 

grains surrounded by the white CFO matrix.  
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Fig. 2.24 (a) TEM image showing the cross section of a 0.20.8 CFOPTO −  single 

composition sample. The PTO phase appears as isolated pancake-like particles 

surrounded by the CFO matrix. White thicker PTO layers are broken by the thinner dark 

CFO layers. (b) The (100) diffraction pattern showing the reflection spots only belonging 

to PTO. (c) The (110) diffraction pattern showing the spots only belonging to CFO. 
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(a) 

 

                   (b) 

 

                               

Fig. 2.25 (a) TEM image showing the plane view of a 0.20.8 CFOPTO −  single 

composition sample. Dark PTO grains are surrounded by the white CFO matrix. (b) The 

(001) diffraction pattern shows the expitaxial relation between the two in this direction.  
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We have also looked at samples with other layering configurations. Fig. 2.26 is 

the TEM image from the 3x PTO-CFO spread at the composition of 0.20.8 CFOPTO − . 

The microstructure is very different from those seen in Fig. 2.24 from the 15x sample 

which is at the same composition. The clear PTO island-structure doesn’t exist in this 

case while PTO and CFO are still clearly crystalline as seen in the diffraction patterns. As 

we see here, samples with different layering configurations result in very different 

microstructure. We have thus found that 1) the microstructures of the films are drastically 

different from the intended superlattice structure and 2) there are regions in the “middle” 

of the spreads where there are clearly separated regions of CFO and PTO. These 

observations indicate presence of complex diffusion, phase nucleation, crystallization, 

and separation processes that take place during the film growth. Further TEM studies to 

understand the details are under way.  

 

 

 

 

 

 



 - 67 -

(a) 

 

 (b)                              (c)                 

 

                              

Fig. 2.26 (a) TEM image of 3x spread sample at composition 0.8PTO-0.2CFO. The 

structure is totally different with 15x sample at the same composition. (b) (100) 

diffraction pattern. (c) (110) diffraction pattern. From both diffraction patterns, PTO and 

CFO are seen to have good crystalline forms.  
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2.8 Magnetoelectric measurement 

     The ultimate purpose of this experiment is to discover magnetoelectric materials.  

We have successfully identified multiferroic compositions which exhibit strong dielectric 

non-linearly (which is a measure of ferroelectricity) and ferromagnetism. We believe that 

there is a great chance to obtain the magnetoelectric effect in this composition. There are 

two techniques we are using to study the occurrence of the magnetoelectric effect in our 

thin film samples: 1) measure the change in the dielectric properties using the microwave 

microscope while applying a magnetic field to the sample. An electromagnet has been 

mounted on the microwave microscope to perform this measurement. 2) We can measure 

the change in the remanent magnetization using SQUID while an electric field is applied. 

Both measurements are currently under way in our group.  

 

 

 

 

 

 

 



 - 69 -

Chapter 3 Conclusions and future work  

 

 3.1 Conclusions 

The fabrication of composition spreads of artificial bi-functional thin film 

heterostructures consisting of alternating layers of 3PbTiO (PTO) - 42OCoFe (CFO) has 

been demonstrated using the combinatorial PLD system. The coexistence of 

ferromagnetic and ferroelectric properties has been observed in a large extended region 

between pure CFO and PTO. Various physical properties were measured across the 

composition spread. Wavelength dispersive spectroscopy (WDS) was used to verify the 

composition variation across the spread. An unexpected peak in the dielectric property 

has been observed, and it was identified as the composition where the ferroelectric phase 

transition takes place in PTO doped with CFO. The cT  of ferroelectricity is found to be 

tunable from 500 ℃ down to room temperature by controlling the average volume ratio 

of CFO and PTO. We have also found that the magnetic anisotropy change dramatically 

by introducing PTO to CFO. Transmission electron microscopy (TEM) has been carried 

out to obtain microstructural information on our samples.  
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3.2 Future work 

The biggest future challenge lies in the magnetoelectric measurements which 

are currently under way. 

In addition to the measurement schemes described above, one can do other 

types of measurement if we had a bottom electrode in our samples. In particular, the 

bottom electrode would allow us to fabricate capacitors, which in turn would allow us to 

directly measure polarization as well as applying electric field in a straight forward 

manner (Fig 3.1). The material for the bottom electrode needs to be grown epitaxially on 

the substrate, and it has to allow both PTO and CFO to grow expitaxially on top. We are 

currently in the process of introducing a 3SrRuO  bottom electrode to our 

heterostructure.  
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Fig. 3.1 Schematic of a parallel-plate capacitor made with our multiferroic thin film. The 

bottom electrode can be used to make a capacitor for the magnetoelectric measurement. 
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