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Adaptive and responsive survey designs rely on estimates of survey data collection 

parameters (SDCPs), such as response propensity, to make intervention decisions during 

data collection. These interventions are made with some data collection goal in mind, 

such as maximizing data quality for a fixed cost or minimizing costs for a fixed measure 

of data quality. Data quality may be defined by response rate, sample representativeness, 

or error in survey estimates. Therefore, the predictions of SDCPs are extremely 

important. 

Predictions within a data collection period are most commonly generated using fixed 

information about sample cases, and accumulating paradata and survey response data. 

Interventions occur during the data collection period, however, meaning they are applied 

based on predictions from incomplete accumulating data. There is evidence that the 



incomplete accumulating data can lead to biased and unstable predictions, particularly 

early in data collection. 

This dissertation explores the use of Bayesian methods to improve predictions of SDCPs 

during data collection, by providing a mathematical framework for combining priors, 

based on external data about covariates in the prediction models, with the current 

accumulating data to generate posterior predictions of SDCPs for use in intervention 

decisions. 

This dissertation includes three self-contained papers, each focused on the use of 

Bayesian methods to improve predictions of SDCPs for use in adaptive and responsive 

survey designs. The first paper predicts time to first contact, where priors are generated 

from historical survey data. The second paper implements expert elicitation, a method for 

prior construction when historical data is not available. The last paper describes a data 

collection experiment conducted using a Bayesian framework, which attempts to 

minimize data collection costs without reducing the quality of a key survey estimate. In 

all three papers, the use of Bayesian methods introduces modest improvements in the 

predictions of SDCPs, especially early in data collection, when interventions would have 

the largest effect on survey outcomes. Additionally, the experiment in the last paper 

resulted in significant data collection cost savings without having a significant effect on a 

key survey estimate. This work suggests that Bayesian methods can improve predictions 

of SDCPs that are critical for adaptive and responsive data collection interventions.  
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1. Summary Introduction 

Survey organizations concern themselves with metrics of data collection progress, cost 

and quality when designing surveys and managing survey data collection operations. 

Particularly, as data collection costs increase alongside survey nonresponse, there is a 

clear need to implement data collection designs that are both cost-effective and high 

quality to meet the continuing needs of policy makers and researchers that rely on survey 

data.  

Metrics of data collection progress, cost and quality are created based on a specific 

survey’s data collection goals, and are monitored in an effort to determine whether data 

collection is staying “on track” or not. If not, survey managers may respond in a variety 

of ways to help the survey meet expectations. Providing feedback to survey interviewers, 

reassigning workload, or extending data collection by a short time are common ad hoc 

changes to data collection procedures, implemented as needed to help reach survey data 

collection goals in interviewer-assisted surveys. Case prioritization, tailored data 

collection, and mode switching have been tested in a variety of settings in order to 

evaluate the potential of a variety of data collection features to help improve survey 

outcomes. More recently, adaptive and responsive survey designs have emerged as a 

more structured way of intervening in data collection based on cost and quality metrics.  

Regardless of the type of monitoring or intervention under consideration for 

implementation, all of these strategies require survey managers to develop expectations 

of what “should” happen during data collection, or the expected change in data collection 

outcomes if a particular intervention is carried out. These expectations allow survey 

managers to determine if data collection is progressing as expected. If not, and if an 
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intervention is determined to be necessary, expectations help evaluate whether the 

intervention worked as expected.  

This dissertation focuses on how the expectations of progress, cost and quality metrics 

are created, specifically during the data collection process. Currently, it is very common 

for data collection organizations to generate expectations using historical or current round 

survey data. For example, a simple expectation of progress based on historical data may 

be that 80% of sample cases are attempted 20% of the way through data collection. That 

expectation could be based on just the prior implementation, or an average of several 

prior implementations.  

Historical data is also used in a more nuanced way than simple averages. For example, 

survey managers could build a predictive model for expected data collection costs, based 

on covariates available prior to data collection. After building the model on the prior 

round of data collection, the estimated coefficients can be applied to the current round of 

data collection to generate predicted costs at the case level. Data collection costs can then 

be monitored with respect to the expected cost. Response propensity models can be 

estimated in a similar way with historical data, and could be used early in data collection 

to identify cases that are less likely to respond. Those cases may be identified as requiring 

an intervention. Finally, historical data may be used to create predictive models for 

survey responses. By applying these models to current round data, expectations of survey 

estimates could be created. Then, as responses are collected, metrics of quality like mean 

squared error of the actual versus the predicted estimates, or the stability of estimates 

over time could be monitored throughout data collection, leading to interventions that 

may include stopping data collection for particular cases.  
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Current data can be used similarly, but in this case, the accumulating current round data 

is used to estimate predictive model coefficients, and those coefficients are used to 

estimate predictions for the remainder of the current sample. For example, response 

propensity can be calculated at a point in data collection, based on the response status for 

all cases at that time. Estimating response propensity at different times throughout a data 

collection period will result in different predictions, based on the amount of data 

accumulated.  

While these approaches are common in practice, there are drawbacks to using only 

historical data or only current data to develop these expectations. Using only historical 

data to develop expectations requires several assumptions. Most significantly, this 

process assumes that the current implementation of the survey will proceed very similarly 

to past implementations. If there are time lags between implementations or changes in 

response behavior over time, this may not be a reasonable assumption. Additionally, 

using only historical data to set expectations means that if the current implementation 

does not follow the past implementations, there is no systematic way to update 

expectations with the new information from the current implementation. Ignoring 

historical data and focusing only on the current implementation to develop these 

expectations assumes that partial data collected during the early part of a data collection 

implementation is representative of data that will be collected later in that same 

implementation. If the survey implementations are fairly similar over time, this may 

ignore valuable predictive information.  

This dissertation explores the potential of a Bayesian framework for generating 

predictions of parameters of interest during a survey data collection. Bayesian models for 
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prediction utilize both historical and current data, in an attempt to overcome the 

limitations of each of the two sources used independently. For any data collection 

parameter of interest (e.g., time to contact with a respondent, response propensity, etc.), 

prior beliefs are constructed from information external to the current round of data 

collection. The point estimates and standard errors generated from that external 

information reflect the fact that external data is being used as an initial assumption for the 

coefficient estimates. Then, those priors are updated as the current data is accumulated, 

resulting in posterior predictions that take both sources of data into account. The strength 

of the prior coefficient, determined by its standard error, is a reflection of confidence in 

the prior being representative of the current round of data collection.  

Due to its relative novelty in survey data collection, the use of a Bayesian framework for 

generating these predictions during data collection requires validation of its usefulness, 

from both simulations and experimental implementations. The research contained in this 

dissertation contributes both types of evidence, using large national surveys that have 

characteristics common to many other surveys. This research is part of a broader research 

agenda in Bayesian methods for improving survey outcomes.  

This dissertation includes three self-contained papers, each focused on the use of 

Bayesian methods to improve predictions of survey data collection parameters for use in 

adaptive and responsive survey designs. The first paper incorporates Bayesian methods 

when predicting time to first contact, where priors are generated from historical survey 

data. The second paper implements and evaluates expert elicitation, a method for prior 

construction when historical data is not available. The last paper describes a data 

collection experiment conducted using a Bayesian framework, which attempts to 
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minimize data collection costs without reducing the quality of a key survey estimate. In 

all three papers, the use of Bayesian methods introduces modest improvements in the 

predictions of survey data collection parameters, especially early in data collection, when 

interventions would have the largest effect on survey outcomes. Additionally, the 

experiment in the third paper resulted in significant data collection cost savings without 

having a significant effect on a key survey estimate. While areas for improvement are 

discussed throughout these papers, this dissertation suggests that Bayesian methods can 

improve predictions of survey data collection parameters that are critical for adaptive and 

responsive data collection interventions. 
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2. Predicting Time to Respondent Contact in Cross-Sectional Surveys Using 
a Bayesian Approach 

Stephanie Coffey1, Michael R. Elliott2,3,4, James Dahlhamer5 
1 Joint Program in Survey Methodology, University of Maryland 

United States Census Bureau, Washington, DC 
2 Survey Research Center, Institute for Social Research, University of Michigan 

3 Michigan Program in Survey Methodology, University of Michigan 
4 Department of Biostatistics, University of Michigan  

5 National Center for Health Statistics, Hyattsville, Maryland 
 

Abstract 

Monitoring and reducing time to respondent contact can help reduce nonresponse due to 

noncontact in surveys. In order to intervene based on data monitoring, survey managers 

need an estimate of expected time to respondent contact. Surveys currently estimate these 

types of expectations, often using historical means, models built from historical data, or 

models built using the current, partial, round of data collection. We propose a new 

method that, under a Bayesian framework, utilizes historical data in the form of priors on 

model coefficients and combines those with current accumulating data to estimate 

posterior predictions of the expected time to contact. Results demonstrate that the 

Bayesian method results in lower root mean squared error of predictions of time to 

contact than the other, more commonly used, methods. 

2.1 Introduction 

Making contact with a survey respondent is an important part of the data collection 

process. Noncontact makes up a significant portion of nonresponse in face-to-face 

surveys. Durrant and Steele (2013) discuss six large, government-sponsored, face-to-face 

household surveys carried out in the UK that have noncontact rates ranging from eight 
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percent to 40 percent of sample cases. Williams and Brick (2017) report that for nine 

government-sponsored, primarily face-to-face household surveys in the United States, 

noncontact rates as a portion of nonresponse ranged from four percent to 40 percent in 

2014, the most recent year included in the paper. Additionally, Willimack and Dalzell 

(2006) found that noncontact was even a significant component of nonresponse in 

establishment surveys, though their focus is on nonresponse follow-up by telephone.  

Groves and Couper (1998) discuss methods for dealing with noncontact, including 

increasing the number of contact attempts in face-to-face surveys. Without making 

successful contact, it is not only impossible to obtain cooperation and a completed 

interview, but it may also be impossible to determine the eligibility of a case, affecting 

response rates, nonresponse adjustments, and ultimately, variances of estimates. 

Additionally, if noncontact is related to the survey items of interest, nonresponse due to 

noncontact may also introduce or increase nonresponse bias in survey estimates.  

Because a successful contact on the first attempt is not guaranteed, interviewers must 

make attempts early enough in the data collection period to make contact with all sample 

units. Waiting too long into the data collection period to begin making attempts could 

lead to nonresponse that is due to insufficient progress rather than post-contact reluctance 

or refusals. Further, the data collection resources that are expended making these attempts 

that do not result in a contact can increase overall survey costs without improving 

response rates, and increase measures of costs used for evaluations, such as costs-per-

case or costs-per-complete.  
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A lag between first attempt and first contact means there is a time gap between first 

attempt and the ultimate resolution of a case. If an interviewer never makes contact, it is 

difficult to resolve the case correctly with respect to eligibility or refusal status. 

Additionally, if long lags are accompanied by several unsuccessful attempts, the 

interviewer may not be optimizing their attempts to obtain a contact, while increasing 

survey costs. Finally, as the end of data collection approaches, long lags mean that cases 

that have not been worked might never be completed, affecting response rates.  

In order to improve survey outcomes, survey managers might want to reduce the lag 

between a first attempt and first contact with a sample member by intervening with 

respect to individual cases shortly after a first contact attempt is made. Those 

interventions could reflect different passive or active levels of management at different 

points during data collection. A more passive intervention might simply involve field 

supervisors informing interviewers of the cases that are expected to be difficult to make 

contact with once the first attempt is made. Alternatively, an interviewer whose cases are 

approaching (or exceeding) expected lag times might prompt feedback from a supervisor, 

and the earlier that intervention can occur, the faster an improvement might be made 

(Maitland, Hubbard and Edwards 2016). An active intervention could involve reassigning 

cases from an interviewer who is taking longer than expected to make contact with a 

sample unit to an interviewer with a smaller remaining workload, or one who is making 

contact with their sample units within the expected timeframe.  

In order to implement any of these interventions during the data collection period, it is 

necessary to first determine how long it “should” take to make contact with a particular 

sample unit. Once estimates of expected lags are generated, supervisors then can use 
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those expectations to provide input, feedback, or implement other interventions. Ideally, 

these estimates of expected lag would be produced during the data collection period 

itself, and as close to the time of the first contact attempt as possible, in order to facilitate 

interventions while the interviewers have time to alter their behavior. Therefore, these 

estimates are actually predictions of the expected lag between the first contact attempt 

and the first contact with a respondent.  

Currently, interim predictions of estimators of progress, cost or quality are generated 

during survey data collection, and the most common prediction made is response 

propensity. Groves and Heeringa (2006) developed discrete time logistic regression 

models (Singer and Willett 2003) for the National Survey of Family Growth (NSFG) to 

predict the propensity to respond at the next contact attempt in order to determine the 

phase capacity of a data collection operation. In Schouten, Cobben and Bethlehem (2009) 

and Schouten, Shlomo and Skinner (2011), daily estimates of response propensity were 

used to generate representativeness (R-) indicators, which are then used to identify over- 

and under-represented groups of cases, with respect to the overall selected sample. 

Chesnut (2013) used discrete time logistic regression to predict the daily propensity to 

respond to the American Community Survey (ACS) by web, in order to determine the 

optimal time to switch nonresponding cases to the mail mode. West and Groves (2013) 

used discrete time logistic regression models to estimate the probability of responding at 

the next contact. These probabilities were used to compute difficulty-adjustments in 

interviewer evaluation metrics. Coffey, Reist and Miller (2019) generated predictions for 

propensities in order to identify cases for adaptive interventions.  
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In all of these examples, only the current round of data collection was used to generate 

predictions, including sample information, administrative data known that could be 

linked to the sample, and paradata (Couper 2000; 2017) accumulated up to each 

prediction time. Wagner and Hubbard (2014) demonstrated that, by relying only on the 

partial current data as it accumulates, predictions generated from this partial data might 

be biased. As a result, intervention decisions made based on these predictions can be 

inefficient or even harmful. When only the current round of data is utilized, one is 

effectively extrapolating the relationships found between covariates and outcomes using 

partial paradata, collected during the early part of fieldwork. The implicit assumption, 

then, is that the data collected in the early part of data collection is representative of data 

that will be collected later. Wagner and Hubbard (2014) demonstrated that this 

assumption does not necessarily hold. Further, relying only on current data does not 

leverage potentially valuable historic or external information.  

There are some examples in the literature of utilizing historical data. Historical data does 

not necessarily mean prior contact information for the same case, as in a longitudinal 

survey. Prior data could also include a prior implementation of the same survey. 

Peytchev, Rosen, Riley, Murphy and Lindblad (2010) and Roberts, Vandenplas and 

Stahli (2014) used prior survey wave data to classify cases into response propensity strata 

which were then used for data collection tailoring. Calinescu, Bhulai and Schouten 

(2013) simulated a static adaptive design to minimize mode effects for a given cost using 

historical response data and population register data to assign cases to particular data 

collection protocols. In these applications, the implicit assumption is that the 

relationships between covariates and outcomes found in prior rounds of data collection 
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would remain the same in the current round of data collection, meaning that the current 

round of the survey will behave very similarly to the data on which the estimates of the 

model coefficients are based. Errors or acceptable ranges around these expectations might 

be created through the use of historical deviations or ad hoc heuristics for acceptable 

tolerances, but do not take into account the information being gathered during the current 

fieldwork period.  

Peytchev (2014) provides an example of using both historical data and current data to 

implement a response propensity-based intervention in the National Intimate Partner and 

Sexual Violence Survey (NISVS). Historical data were used to generate estimates of 

response propensities and contact attempts that would be saved by stopping work on 

cases below a particular response propensity, in order to generate a threshold for cutting 

off contact attempts in the current round of data collection. While this leverages historical 

data in the current survey implementation, the author states that this method also has 

drawbacks, including the fact that the thresholds set are not “responsive to current data 

collection outcomes”.  

In the present context, we are not developing a model to predict response propensity, but 

are instead predicting the length of time between the first contact attempt and the first 

successful contact for a case. However, the assumptions required when using only current 

data, or only historic data, to generate predictions are the same and so suffer from the 

same disadvantages. This manuscript develops a Bayesian method of combining 

historical datasets and current information to make a more accurate prediction of the lag 

between first contact attempt and first successful contact, which could be useful 

information for minimizing nonresponse due to non-contact. While this is not a 
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commonly used monitoring metric in survey management, clinical trials predict and 

monitor similar types of progress indicators – subject accrual rates and times. Zhang and 

Long (2012) provide a review of methods used for predicting accrual rates. In clinical 

trials, as in surveys, insufficient recruitment can lead to poor data quality, and an inability 

to make statistical statements. As a result, monitoring and reacting to shortfalls in 

recruitment can be an important part of clinical trial management. Kim, Han, and 

Youngblood (2018) propose a method of monitoring managers of clinical trials that 

provides ongoing feedback based on the existing recruitment data that can alert managers 

if recruitment needs are unlikely to be met, allowing for potential reactions or 

interventions, similar to our purpose here.  

A logical approach to leveraging information from past rounds of data collection, while 

also using information about the current round of data collection is Bayesian modeling 

with informative priors. Wagner and Hubbard (2014) and Schouten et al. (2018) discuss 

the potential benefits of using Bayesian methods to improve predictions during data 

collection to support responsive and adaptive designs, respectively. Here, we find this 

method is particularly valuable for inference about contact lag, since occurrence of the 

first contact attempt is an important time-varying covariate within a data collection period 

that is not well-estimated by early data. We apply our methodology to predict contact 

lags in the National Health Interview Survey, using monthly survey data from July, 2014 

through June, 2016.  

The remainder of this manuscript is organized as follows. Section 2.2 describes the 

National Health Interview Survey and relevant auxiliary data sources. Section 2.3 

describes the time to event models used to predict contact lag, and the construction of the 
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prior distributions necessary to implement the Bayesian methods. Section 2.4 provides 

results, comparing the proposed Bayesian methods with other standard alternatives, 

including using only current data, and using only previous data. Section 2.5 concludes 

with a discussion of the results and directions for future work.  

2.2 Description of Data 

2.2.1 The National Health Interview Survey 

The National Health Interview Survey (NHIS) is the principal source of information on 

the health of the civilian noninstitutionalized population of the United States and is one of 

the major data collection programs of the National Center for Health Statistics (NCHS). 

The main objective of the NHIS is to monitor the health of the United States population 

through the collection and analysis of data on a broad range of health topics. 

The NHIS is a cross-sectional household interview survey that is carried out monthly. 

The sample design follows a multistage area probability design that permits the 

representative sampling of households and non-institutional group quarters (e.g., college 

dormitories). First, the entire United States is divided into approximately 1,700 primary 

sampling units (PSUs), which can consist of a county, a small group of adjacent counties, 

or a metropolitan statistical area. A selection of PSUs is made, with some metropolitan 

areas being selected with certainty (self-representing PSUs), while others are sampled 

probabilistically (non-self-representing PSUs). Within those selected PSUs, clusters of 

households and non-institutional group quarters are selected for interview. Additionally, 

an oversample is taken for geographies with higher expected populations of particular age 

and race/ethnicity groups. Interviewing for the NHIS is conducted continuously 

throughout each calendar year. Each month is its own self-contained data collection 
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period, and each quarter, interim estimates are produced from the prior three months, 

which make up a representative subset of the overall annual NHIS sample.  

The U.S. Census Bureau is the data collection agent for the NHIS. Survey data are 

collected continuously throughout the year by Census interviewers. The NHIS consists 

primarily of face-to-face interviews conducted in respondents’ homes, but follow-ups to 

complete interviews may be conducted over the telephone. A telephone interview may 

also be conducted when the respondent requests one or when road conditions or travel 

distances would make it difficult to schedule a personal visit before the required 

completion date (NCHS 2018). We used two years’ worth of monthly data collection 

periods, spanning the months from July, 2014 to June, 2016 for this work.  

2.2.2 Auxiliary Data Sources 

Four data sources were used for this evaluation, in addition to the NHIS sample itself. 

The first is the Census Bureau Planning Database (PDB) (Census 2016), a detailed 

dataset including sociodemographic information at the block group level that is produced 

using data from 5-year ACS estimates (Census 2008) and the Decennial Census. This 

dataset is created every year, and for this evaluation, we used the 2016 version of the 

PDB. Second, we obtained a dataset of some basic employment information about 

interviewers, including which regional office an interviewer belongs to and their 

experience level on the NHIS. 

We also utilized two sources of paradata, the Neighborhood Observation Instrument 

(NOI) and the Contact History Instrument (CHI). In the NOI, interviewers are asked to 

record information about the housing unit and neighborhood from their own observations. 
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These neighborhood observations require no contact with the respondent, and ideally are 

reported prior to contact with the respondent. For the CHI, on the other hand, 

interviewers record the date, time and outcome of each contact attempt and information 

about interactions with sample persons. Additionally, the CHI includes information about 

the field management structure, including which interviewers are assigned to work each 

case and whether a case was reassigned during the field period.  

These data sources were selected for this application partially because of their 

availability, but also because they include the types of data identified in Groves and 

Couper (1998) for predicting outcomes like household contactability and survey 

cooperation or response propensity. Here, we are predicting the time between first 

attempt and  first contact, however, many of the same predictors could be useful 

explanatory covariates for our purposes, as well. The NHIS was selected for this 

application due to the collection of both the NOI and the CHI, as this leads to an 

expanded set of paradata that can be used to predict the lag between first attempt and first 

contact.  

2.3 Model Selection 

Our first consideration was for the category of model used for our predictions. In the 

NHIS, contact is made with the sample unit at the first contact attempt approximately 

60% of the time. This results in a lag of zero days (“zero lag”) between the day of the 

first attempt and the day of first contact. The remainder of sample units have a lag of at 

least one day, and while contact is eventually made with most sample units, some sample 

units never have a successful contact, meaning the true observed lag length is censored. 
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Additionally, as Table 1 shows, for cases with positive lags, the variance of the lags is 

much larger than the mean lag, across all months covered by this study.  

Table 1. Mean and Variance of Lag in Days between First Attempt and First Contact by Interview Month 

Interview 
Month 

Number 
of Cases 

% Cases 
with Lag > 0 

Mean(Lag) 
if Lag > 0 

Var(Lag) 
if Lag > 0 

07/2014   5200 0.4171 8.890 48.67 
08/2014 5100 0.3990 8.216 41.90 
09/2014 4900 0.4131 7.941 42.54 
10/2014 5300 0.4236 8.009 43.89 
11/2014 5000 0.3895 7.837 40.78 
12/2014 5100 0.4058 9.192 48.30 
01/2015 5600 0.3861 8.178 39.93 
02/2015 5400 0.4181 8.464 44.49 
03/2015 5400 0.3984 8.658 49.41 
04/2015 5800 0.4165 8.396 41.84 
05/2015 5400 0.4026 8.424 45.74 
06/2015 5600 0.3842 8.072 43.88 
07/2015 5400 0.3938 8.589 40.90 
08/2015 5200 0.3929 8.385 46.09 
09/2015 5100 0.4003 8.449 43.12 
10/2015 5300 0.4015 8.847 49.48 
11/2015 5000 0.3754 8.062 42.60 
12/2015 4800 0.3915 9.684 59.51 
01/2016 5200 0.3876 7.797 35.65 
02/2016 6000 0.3952 8.657 42.47 
03/2016 6600 0.3893 8.861 51.00 
04/2016 6000 0.3947 8.665 43.58 
05/2016 5700 0.3951 8.448 44.40 
06/2016 5800 0.4009 8.724 47.89 

 

Additionally, Table 1 shows that, for the 40% percent of cases where contact is not made 

on the first attempt, the average and variance of the lag in days is similar across months 

of data collection. Below, Table 2 shows that within a month, however, the average lag 

and the variance of the lag differs by the week in which the first contact attempt was 
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made. As the time remaining in data collection decreases, the lag between the first 

attempt and first contact also decreases. This makes some intuitive sense. As a fixed data 

collection period progresses, there is less remaining time for cases to be contacted, and so 

interviewers may make contact attempts closer together, or at higher frequency in order 

to make contact with the sample member. Additionally, interviewers may have fewer 

remaining cases in their workloads, and so more attention can be paid to those remaining 

cases. Lags were averaged over all 24 months of data collection that were used in our 

application to generate Table 2.  

Table 2. Mean and Variance of Lag in Days between 1st Attempt and 1st Contact by Week of 1st Attempt 

Week of Data 
Collection 

Mean(lag) 
if Lag > 0 

Var(lag)  
if Lag > 0 

1 8.891 48.81 
2 7.763 33.56 
3 5.770 16.94 
4 3.716 9.94 

 

Table 2 suggests that the time point during data collection when the first attempt is made 

(either day or week) is an important predictor for the lag between that first attempt and 

first successful contact. In order to accommodate this time-varying parameter and retain 

in the analysis the cases whose lag was censored (because a contact was never made), we 

made the decision to model the time until first contact using a survival function. One 

benefit of using a survival model is that the model can account for censoring in the 

outcome variable, meaning that cases that have a first attempt but no contact can still be 

included in the model. This would not be possible with a negative binomial model, or 

other inflated count models. However, two characteristics of our data meant that a 

survival model alone was not sufficient for modeling the time to first contact. First, 
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survival models are used to estimate the time, 𝑡𝑡 > 0, until an event of interest happens. 

Therefore, a survival model would not provide predictions for the 60% of cases where 

contact was made on the first attempt, who effectively have a time to first contact 𝑡𝑡 = 0 

(Klein and Moeschberger 2003).  

The second complication is that many of the variables available for prediction are only 

available after the first attempt is made. Again, in a production setting where the goal is 

to prospectively predict the time to first contact, these variables would not be available 

prior to data collection. Therefore, they could not be used to aid prediction of a contact on 

the first attempt (a zero lag), but they could be used to predict the length of the lag given 

the fact that contact was not made on the first attempt. Table 3 below shows the five data 

sources, sample data items from that source, when that source would be available during 

a typical data collection period, and whether the data items from the source are fixed or 

time-varying.  
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Table 3. Data Sources and their Availability for Use in Prediction of Lag 

Data Source Sample Items 
Availability 
for Inclusion 
in Models 

Fixed or 
Time- 
Varying 

Sample File • Block-Level Geography 
• Census Management Region 

Prior to Data 
Collection 

Fixed 

Planning 
Database 

• % of Housing Units with No 
Health Insurance Plans 

• % of Housing Units Vacant 

Prior to Data 
Collection 

Fixed 

Interviewer 
Information 

• Experience on the NHIS Prior to Data 
Collection 

Fixed 

Interviewer 
Observations 

• Evidence of Children 
• Evidence of Smoking 

After the First 
Contact Attempt 

Fixed 

Contact  
History 
Instrument 

• Count of Contact Attempts 
• Activities Completed on Attempts 
• Case Reassignment Indicator 

After the First 
Contact Attempt 

Time- 
Varying 

 

Table 3 shows that while all of these sources would be available for use to predict the lag, 

provided it was greater than zero, only the first three data sources would be available 

prior to data collection in order to predict whether contact would be made on the first 

attempt or whether there would be a positive lag. As a result, we employed a hurdle 

model in order to combine two different processes – one that would predict the likelihood 

of making contact on the first attempt, and a second that would predict the lag between 

the first attempt and first contact, given that contact was not made on the first attempt. An 

alternative to a hurdle model would be to simply wait until a first attempt was made for a 

case and, if the first attempt did not result in a contact, use the paradata collected from 

that first attempt to estimate only a time-to-first-contact model. However, that would 

mean cases would need to be attempted prior to modeling, and so there would be no way 

to predict the length of the lag prior to the first attempt. This could ignore information 
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that might be useful for interviewers; if they knew which cases were likely to have longer 

lags, they may plan their workdays differently than they would without that information.  

2.3.1 Hurdle Models 

A hurdle model (Mullahy 1986) is useful when one believes there are two separate 

processes at work – one that generates zeros (in our case, “zero lags”, where the 

interviewer makes contact on the first attempt) and the other that generates some positive 

lag (Ma et al. 2015). Additionally, hurdle models are similar to negative binomial models 

(Rose et al. 2006) in the fact that they are appropriate for count data with overdispersion, 

where the variance is larger than the mean. However, where negative binomial models 

assume that a single underlying process governs both the generation of excess zeroes and 

the nonzero values, hurdle models allow the data generation processes to be different. 

There is a “hurdle” that must be crossed before the outcome is a nonzero value. Then, for 

those that cross the hurdle, a different distribution predicts the outcome variable, the lag 

between first attempt and contact. This was a useful model structure for our application. 

As shown in Table 1, approximately 60% of our sample units have a lag of zero days, and 

the variance of the non-zero lags is much larger than the mean. Additionally, this model 

would allow us to incorporate different predictors in each of the portions of the model, 

which would not have been possible without the hurdle model.  

We chose to use a logistic regression model to predict the hurdle portion of the model, 

which determine whether contact would be made on the first attempt. Then, for each of 

the 24 months of data collection, we used all records with a positive lag to determine 

which parametric distribution for the survival portion of the model was most appropriate. 

We evaluated the empirical distribution of positive lags (without controlling for any 
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factors) against Poisson, Weibull, Gamma, and Lognormal distributions both visually and 

with goodness-of-fit statistics, using the fitdistrplus  package in R. Figure 1 below 

shows panels for each of the four distributions evaluated for one data collection month to 

illustrate how different time-to-event distributions compare with the theoretical 

distribution for a given month.  

 
Figure 1. Four Parametric Survival Distributions Compared to Empirical Distribution of Lag (in Days) 

The red curves (or bars in the case of the Poisson distribution) show the theoretical 

distribution of the four proposed distributions for modeling the lag between first attempt 

and first contact. The Poisson distribution displays histogram bars at discrete values, 

rather than a smooth curve, because it is not a continuous distribution. The black bars, 

which are the same in all four plots, display the empirical distribution of the actual lag 

between first attempt and first contact, based on the actual data. The black line shows the 

smoothed distribution. The Poisson distribution provided the worst fit, followed by the 

lognormal distribution. The Weibull and Gamma distributions were similar in their fits, 
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and so to make a determination, we also looked at Chi-Square tests, AIC and BIC. For 

this particular month, the AIC and BIC were both smaller for the Weibull, and the Chi-

Square test was larger. Looking at all 24 months, the Weibull had smaller AIC and BIC 

scores more often than the Gamma distribution, so we elected to use a Weibull 

distribution for model fitting and prediction. There was little difference between it and 

the Gamma distribution, however, so either could be a reasonable choice.  

2.3.2 Survival Models 

 Survival models, or time-to-event models, attempt to estimate the time until some event 

happens. Both non-parametric and parametric survival modeling are common, though 

here we focus on parametric survival models, in order to take advantage of the shape of 

the distribution to help us predict the lag between the first attempt and first contact.  

Several related functions are important for survival modeling (Klein and Moeschberger 

2003, Ch.2). First, the survival function provides probability that an event occurs after 

time t, and is written: 

𝑆𝑆(𝑡𝑡) = Pr(𝑇𝑇 > 𝑡𝑡) = � 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
∞

𝑡𝑡
   , 

where the probability density function, 𝑓𝑓(𝑡𝑡), is integrated from the time point of interest, 

𝑡𝑡, to infinity to calculate the probability of an event happening after time 𝑡𝑡. The 

cumulative distribution function, which represents the probability that an event occurs by 

time 𝑡𝑡, is written:  

𝐹𝐹(𝑡𝑡) = 1 − 𝑆𝑆(𝑡𝑡) = Pr(𝑇𝑇 ≤ 𝑡𝑡) = � 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡

0
  . 
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These two expressions are helpful for explaining how likely an event is to occur before or 

after a certain point in time; however, it is often of interest whether an event will happen 

at a particular instant in time. This quantity is explained by the hazard function, which is 

the instantaneous risk of an event happening in the next moment. The hazard function is 

defined as: 

𝜆𝜆(𝑡𝑡) = lim
𝑑𝑑𝑑𝑑→0

�
Pr(𝑡𝑡 ≤ 𝑇𝑇 < (𝑡𝑡 + 𝑑𝑑𝑑𝑑)|𝑇𝑇 ≥ 𝑡𝑡)

𝑑𝑑𝑑𝑑
� =

𝑓𝑓(𝑡𝑡)
𝑆𝑆(𝑡𝑡)

   , 

where the hazard is the probability of an event happening in the next small window of 

time, divided by the size of that window of time, 𝑑𝑑𝑑𝑑, as that window shrinks to zero. The 

hazard function can also be written as the quotient of the probability distribution function 

and the survival function.  

These relationships are important for estimating the expected time-to-event, but 

particularly so when the event of interest is right-censored for a particular case, that is, 

when the event has not yet occurred in the observation time window (Klein and 

Moeschberger 2003, Ch.3). Using the probability density function, the survival function 

and the hazard function, we can explain how each individual case contributes to the 

overall likelihood of the distribution.  

If the event has occurred at time 𝑡𝑡, the likelihood can be written:  𝐿𝐿 = 𝑓𝑓(𝑡𝑡) = 𝑆𝑆(𝑡𝑡)𝜆𝜆(𝑡𝑡)  . 

This expression represents the fact that the case survived up until time 𝑡𝑡, represented by 

𝑆𝑆(𝑡𝑡), and then had the event occur in the instant, 𝜆𝜆(𝑡𝑡), of time 𝑡𝑡. For right-censored cases 

where the event has not occurred by time 𝑡𝑡, only the survival function contributes to the 

likelihood, which is written: 𝐿𝐿 = 𝑆𝑆(𝑡𝑡). 
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As a result, the full likelihood, where 𝛿𝛿𝑖𝑖 is an indicator for whether the event has occurred 

for the 𝑖𝑖𝑡𝑡ℎ case, can be written: 

𝐿𝐿 = �𝑓𝑓(𝑡𝑡)𝛿𝛿𝑖𝑖𝑆𝑆(𝑡𝑡)(1−𝛿𝛿𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= �𝑆𝑆(𝑡𝑡)𝜆𝜆(𝑡𝑡)𝛿𝛿𝑖𝑖
𝑛𝑛

𝑖𝑖=1

  . 

We will use these relationships in the next section when defining the likelihood for the 

Weibull hurdle model. 

2.3.3 The Weibull Hurdle Model 

In this setting, the prediction of interest, 𝑦𝑦𝑖𝑖, is the length of time in days that would elapse 

between the first contact attempt and the first contact with a household sample member 

for the 𝑖𝑖𝑡𝑡ℎ case. The hurdle model estimates two processes. For each observation, with 

probability (1 − 𝜋𝜋𝑖𝑖), the outcome variable, lag, is zero, and with probability (𝜋𝜋𝑖𝑖), a non-

zero outcome is estimated. Given these two factors, the probability distribution function 

for an observation can be written as: 

𝑓𝑓(𝑦𝑦𝑖𝑖) = 𝐼𝐼(𝑦𝑦𝑖𝑖 = 0) (1 − 𝜋𝜋𝑖𝑖)(0) + 𝐼𝐼(𝑦𝑦𝑖𝑖 > 0) (𝜋𝜋𝑖𝑖)𝑔𝑔(𝑦𝑦𝑖𝑖;𝛼𝛼,𝛽𝛽 ) =  (𝜋𝜋𝑖𝑖)𝑔𝑔(𝑦𝑦𝑖𝑖;𝛼𝛼,𝛽𝛽 ) 

where 𝑔𝑔(𝑦𝑦𝑖𝑖;𝛼𝛼, 𝛽𝛽) is the probability distribution function (p.d.f.) of the Weibull 

distribution, 𝜋𝜋𝑖𝑖 = ln � 𝜌𝜌𝑖𝑖
1+𝜌𝜌𝑖𝑖 

� is the link function with a logistic distribution; 𝜌𝜌𝑖𝑖 =

exp(𝜸𝜸′𝒛𝒛𝒊𝒊) based on the individual case’s covariate(s), 𝒛𝒛𝒊𝒊; 𝑦𝑦�𝑖𝑖 = (𝜋𝜋𝑖𝑖)𝑔𝑔(𝑦𝑦𝑖𝑖) is the estimate 

of the outcome using the estimated regression parameters; 𝛼𝛼 is the scale parameter of the 

Weibull distribution; and 𝛽𝛽 is the shape parameter in the Weibull distribution. (Gelman et 

al. 2013). 
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As in section 2.3.2, the p.d.f., and therefore the likelihood, of the Weibull distribution 

incorporates both the survival function, 𝑆𝑆(𝑡𝑡𝑖𝑖), for all cases, and the hazard function, 

𝜆𝜆(𝑡𝑡𝑖𝑖), for those cases where the event of interest, contact with the respondent, has 

occurred. The likelihood function for the Weibull model can be written: 

𝐿𝐿 = �𝑆𝑆(𝑡𝑡𝑖𝑖)�𝜆𝜆(𝑡𝑡𝑖𝑖)�
𝛿𝛿𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 𝑒𝑒−�
𝑦𝑦𝑖𝑖
𝛼𝛼 �

𝛽𝛽

�����
𝑆𝑆(𝑡𝑡𝑖𝑖)

�
𝛽𝛽
𝛼𝛼
�
𝑦𝑦𝑖𝑖
𝛼𝛼
�
𝛽𝛽−1

�
���������

𝜆𝜆(𝑡𝑡𝑖𝑖)

𝛿𝛿𝑖𝑖

   . 

This formulation provides the flexibility to include cases in the model for which contact 

has not yet occurred (right censored cases). In the event that there is no censoring, which 

would happen in a retrospective analysis where the event occurred for all cases, both the 

survival function and hazard function would contribute for all cases.  

Incorporating the likelihood for the Weibull distribution into the hurdle model 

formulation, we obtain the following full p.d.f. for the Weibull hurdle model: 

𝑓𝑓(𝑦𝑦𝑖𝑖) = (𝜋𝜋𝑖𝑖)�𝑒𝑒
−�𝑦𝑦𝑖𝑖𝛼𝛼 �

𝛽𝛽

�
𝛽𝛽
𝛼𝛼
�
𝑦𝑦𝑖𝑖
𝛼𝛼
�
𝛽𝛽−1

�
𝛿𝛿𝑖𝑖

�  .  

The full likelihood can then be written as follows: 

𝐿𝐿(𝛾𝛾,𝛼𝛼,𝛽𝛽) = ��
1

1 + 𝑒𝑒𝑧𝑧𝑖𝑖′𝛾𝛾
�

(1−𝑑𝑑𝑖𝑖)

��
𝑒𝑒𝑧𝑧𝑖𝑖

′𝛾𝛾

1 + 𝑒𝑒𝑧𝑧𝑖𝑖′𝛾𝛾
�
𝑑𝑑𝑖𝑖

𝑦𝑦𝑖𝑖>0

𝑛𝑛

𝑖𝑖=1

� �𝑒𝑒−�
𝑦𝑦𝑖𝑖
𝛼𝛼 �

𝛽𝛽

�
𝛽𝛽
𝛼𝛼
�
𝑦𝑦𝑖𝑖
𝛼𝛼
�
𝛽𝛽−1

�
𝛿𝛿𝑖𝑖

�
𝑦𝑦𝑖𝑖>0 

   ,  

where 𝑑𝑑𝑖𝑖 is an indicator specifying there will be a lag between the first attempt and first 

contact, and 𝛿𝛿𝑖𝑖 is an indicator noting whether contact has occurred by the time of model 

estimation, or whether the case should be considered censored. The first term in the 
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likelihood represents the probability that there will not be a lag between the first event 

and the first contact; that is, contact will be made on the first attempt. The second term 

represents the probability that there will be a positive lag, and the last term in the 

likelihood represents the survival portion of the model, accounting for censoring.  

While this likelihood is complicated, and includes parameters for both the binary process 

and the time-to-event process, maximum likelihood estimation simplifies the expression 

somewhat. More importantly is that MLE shows that the different contributing terms can 

be maximized separately allowing the model to be estimated in parts, computationally. 

The log-likelihood can initially be written : 

𝑙𝑙𝑙𝑙(𝛾𝛾,𝛼𝛼,𝛽𝛽) = �(1 − 𝑑𝑑𝑖𝑖)(−𝑙𝑙𝑙𝑙𝑙𝑙 �1 + 𝑒𝑒𝑧𝑧𝑖𝑖
′𝛾𝛾�

𝑛𝑛

𝑖𝑖=1

+ � (𝑑𝑑𝑖𝑖)𝑧𝑧𝑖𝑖′𝛾𝛾(−𝑙𝑙𝑙𝑙𝑙𝑙 �1 + 𝑒𝑒𝑧𝑧𝑖𝑖
′𝛾𝛾�

𝑦𝑦𝑖𝑖>0

+ � �
𝑦𝑦𝑖𝑖
𝛼𝛼
�
𝛽𝛽

+ 𝛿𝛿𝑖𝑖�𝛽𝛽 − 𝛼𝛼 + (𝛽𝛽 − 1)(𝑦𝑦𝑖𝑖 − 𝛼𝛼)�
𝑦𝑦𝑖𝑖>0

  . 

As a result of this construction, the portion of the model that predicts the binary outcome 

(lag/no lag), and the portion of the model that predicts the lag length, can be estimated 

separately (Smithson and Merkle 2013, Chapter 5). As a result, throughout this 

application, we estimate the two parts of the model separately, as shown in Appendix G. 

However, we refer to this as a single model, as the goal of this prediction is to determine 

the expected lag between first attempt and first contact, and both portions of this model 

are needed to arrive at that prediction.  
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2.3.4 Variable Reduction and Model Building 

We combined the datasets described in Table 3 to create two sets of analytic files for each 

monthly NHIS sample from July 2014, through June, 2016. The first set were summary 

files and consisted of one record per sampled household, with all fixed covariates, and the 

final status of all time-varying covariates. The second set were attempt-level files and 

consisted of one record per attempt per sampled household, with all fixed covariates, and 

the most-recent status of all time-varying covariates.  

Using the summary files, we first attempted to reduce the set of variables through both 

factor analysis and latent class analysis, in order to reduce potential collinearity as well as 

obtain a parsimonious model. These efforts were not successful in yielding data 

reduction. We then executed backwards stepwise regression (for both the logistic and 

Weibull portions of the model) on each monthly summary file, and only retained 

variables that were significant at the p < 0.05 level in over 10% of those models (e.g., at 

least 3 months out of 24). The logistic regression model was estimated using the glm() 

function in base R, while the Weibull model was estimated with the survival 

package. The final list of explanatory variables used to predict the lag between first 

attempt and first contact is in Table 4 below.  
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Table 4. Covariates Included in Model to Predict Lag 

Variable Description Logistic Weibull 
Lag (in Days) Between 
Initial Attempt and Initial 
Contact 

Dependent Variable  X 

Non-Zero Lag Indicator Dependent Variable (Derived from 
Lag (in Days) Dependent Variable) X  

Day of First Attempt 
Integer (1 – 31) noting the day of 
month when the first attempt was 
made 

X X 

Regional Office (RO) Highest Level of Field Organization 
at Census – 6 Levels for the US  X 

Interviewer Experience 
Measure 

Indicator identifying interviewers 
who have worked on NHIS less than 
1 year.  

X  

Reassignment Indicator 
Indicator to identify cases that have 
experienced one or more 
reassignments during data collection 

 X 

% Mobile Homes Percentage (0-100) of housing units 
with these characteristics in a Census 
Block Group from PDB 

X  

% Vacant Units X  

% College Graduates 
Percentage (0-100) of population 
with these characteristics in a Census 
Block Group from PDB 

X  
% Not HS Graduates X  
% Without Health 
Insurance X  

% Urbanized Population X  
% Vacant Units *  
Day of First Attempt Interaction Variable from PDB X  

Existence of Bars on 
Windows 

Indicator based on interviewer 
observations 

 X 

Evidence of a Wheelchair 
at HU  X 

Evidence of Children at 
HU  X 

Below Average 
Condition of HU 

 X 

Barriers to Accessing HU  X 
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The variables that were retained as significant in each of the models, shown in Table 4, 

make some intuitive sense. The NHIS is a cross-sectional survey, and so the interviewer 

may not know very much about their specific cases before visiting. However, general 

geographic information or interviewer characteristics, like their experience with the 

survey in general, may be correlated with making a successful contact on the first 

attempt, which results, mathematically, in a zero lag. Perhaps the interviewer has cases in 

an area (described by PDB variables) that is overall more responsive to survey requests, 

and a respondent is more likely to answer the door, or where individuals are home more 

often so that contact is more likely to be made. It is reasonable then that variables from 

the PDB would appear in the logistic regression portion of this model, as this is 

information known before attempts on the household are made. On the other hand, the 

non-zero (positive) lag process, which represents the lag between attempt and contact, 

may have something to do with best practices within their supervisory structure, once 

contact is not made on the first attempt, or using interviewer reactions to observations 

they make about the sample unit itself and its members. Therefore, the NOI variables 

appeared in the Weibull portion of the model.  

It is important to note that this variable selection process could only be undertaken 

because we were conducting a retrospective analysis, and therefore had the true lag 

length available to us. In a situation where historical data are not available, one would not 

be able to identify a priori the most significant variables across a large number of 

months. Instead, a broad array of variables might be included in the prediction process 

until the estimation stabilized, or until there was enough historical data to conduct 

variable selection. We discuss the benefits and limitations of this process in Section 5. 
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2.4 Predicting Time to First Contact: Methods 

For this application, we used 24 months of data from the NHIS, covering the time period 

from July 2014 through June 2016. For each month, the prediction of interest was the 

length of time in days that would elapse between the first contact attempt and the first 

contact with a household sample member. We generated these predictions using either 

current data only, historical data only, or the combination of both through the use of 

priors generated from historical data which are then updated with current accumulating 

data. 

1) The first method uses accumulating data throughout the current round only to 

estimate a Weibull hurdle model, and then uses those parameters to predict the 

expected lag for each open case in the current month. We will refer to this as the 

current method.  

2) The second method uses historical data to estimate the mean expected lag. The 

expected lag for all cases in the current month, then, is just the overall average lag 

of the three prior months, ignoring any additional information. We will refer to 

this method as the mean method.  

3) The third method estimates the parameters for a Weibull hurdle model from 

historical data, and then uses the point estimates of those parameters to predict the 

expected lag for each open case in in the current month. We will refer to this as 

the historical method.  

4) The fourth method combines the current method and the historical method 

statistically. Estimates of the parameters for a Weibull hurdle model from 
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historical data and their standard errors are incorporated as priors in a Bayesian 

Weibull hurdle model that also leverages accumulating data for the current month. 

Then, posterior predicted values of the lag based on the priors and current data are 

estimated for each open case in the current month. We will refer to this as the 

Bayesian method. 

For methods that leverage historical data, three consecutive months were used as the 

historical data, and the next month was considered the current month, the period of 

predictive interest. For example, if October 2014 was the predictive period of interest, 

July, August, and September of 2014 would be used to generate the mean for Method 2, 

coefficients and standard errors for model covariates for Method 3, and point estimates 

and standard errors for incorporation as priors in Method 4.  

The mean method is clearly the simplest to implement. However, using a single number 

from the end of data collection is only useful if progress throughout a self-contained data 

collection period is constant during that period. If not, the mean method may work well 

some of the time (e.g., early in data collection), but not at other times, like the end of data 

collection. Table 2 suggests that the mean method may not be particularly useful for this 

reason. Additionally, because it uses historical data only, this method is useful is only if 

data collection periods behave similarly, which may not be true for a variety of reasons, 

including seasonality effects, changes to the data collection instrument, or external 

factors that affect data collection progress, like severe weather.  

The historical and current methods include time-varying covariates, such as the day of 

first attempt and case reassignment status, so that more information about the data 
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collection process can be incorporated into the predictions. However, the historical 

method only uses historical data, again requiring the current data collection period to be 

nearly identical to historical data collection period to be useful. The current method only 

uses current round data, suffers from the right censoring of open cases, and ignores 

potentially useful historical information that could help create meaningful expectations.  

The Bayesian method leverages information from past rounds of data collection, while 

also using information about the current round of data collection is to take advantage of a 

Bayesian modeling approach with informative priors. We accomplish this by first fitting 

a Weibull hurdle model using three months of historical data to obtain parameter 

estimates (𝜸𝜸�,𝜷𝜷�), and the associated variances, 𝑉𝑉(𝜸𝜸�,𝜷𝜷�). These parameters capture the 

time-varying nature of some of the covariates within a single data collection period in a 

survival model framework.  

Assuming approximate normality by the properties of maximum likelihood estimates, we 

form priors, 𝑃𝑃(𝜸𝜸,𝜷𝜷)~𝑁𝑁 ��𝜸𝜸�𝜷𝜷�� , 𝑐𝑐𝑉𝑉�(𝜸𝜸�,𝜷𝜷�)� where 𝑐𝑐 is a constant that controls the degree to 

which the prior information is used in the daily estimation procedure. We vary the value 

of 𝑐𝑐 to demonstrate how c can be used to (relatively) weight historical and current data in 

the posterior predictions. The standard errors were based on 3 months of data, so we 

inflated them by a factor of √3 to represent one month of data, or a factor of 3 to 

represent 1/3 of a month of data. This resulted in five values for 𝑐𝑐, and therefore the 

standard errors around the coefficients, representing 1/3 month, 1/2 month, 1 month, 2 

months, and three months. Once these priors were obtained, a Weibull hurdle model is 

estimated each day using the data available up to that day in the current month, combined 
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with the previously obtained prior. The brms package was used to conduct resampling 

and estimation for Bayesian inference of parameters and estimation of posterior 

predictions. The code for generating predictions via all methods for a given day and 

month are provided in Appendix Table 5 summarizes the methods and their main 

characteristics.  

Table 5. Summary of Prediction Methods by Data Types Used 

 
 

Data Used 

Method 1: 
Current 
Method 

Method 2: 
Mean 

Method 

Method 3: 
Historical 
Method 

Method 4:  
Bayesian 
Method 

Historical  
Data 

 X X 
X 

(as priors) 

Accumulated  
Current Data 

X   X 

 

We repeat these predictions for twenty-one sets of data collection periods, which are 

made up of a historical period (3 months) and current period (one month). The four 

methods will be compared primarily using measures of mean prediction bias (MPB) and 

root mean square prediction error (RMSE). The MPB is defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚 =
1
𝑛𝑛
� �𝑦𝑦�𝑚𝑚𝑖𝑖 − 𝑦𝑦𝑖𝑖�

𝑛𝑛

𝑖𝑖=1
 

and the RMSE for the 𝑚𝑚th method is defined as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚 =  �
1
𝑛𝑛
� �𝑦𝑦�𝑚𝑚𝑖𝑖 − 𝑦𝑦𝑖𝑖�

2𝑛𝑛

𝑖𝑖=1
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where 𝑛𝑛 is the number of cases in the accumulated current month dataset, 𝑦𝑦�𝑖𝑖 is the 

predicted value of the lag, 𝑦𝑦, for the 𝑖𝑖th case, and 𝑦𝑦𝑖𝑖 is the true value of the lag, 𝑦𝑦. The 

percent difference between the RMSE for the 𝑚𝑚th method and the method selected as the 

baseline is calculated as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝑚𝑚1𝑚𝑚𝑏𝑏 =  100 ∗ �
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚 − 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑏𝑏

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑏𝑏
� 

Percent change in the MPB can be calculated similarly. The expectation is that the 

Bayesian method will produce predictions of the expected lag closer to that of the actual 

lag, resulting in a smaller overall MPB and RMSE, as the modeling procedure is 

effectively borrowing strength across the historical data and current data to make a 

prediction. For this evaluation, we do not use design-adjusted variance estimates. We are 

concerned primarily with prediction of outcomes within a single survey sample, and 

therefore focused on internal validity of the predictions, rather than attempting to create 

predictions or estimates for the full target population.  

2.5 Results 

2.5.1 Comparison of Four Predictive Methods 

In order to compare the four discussed methods for predicting lag (current (C), mean (M), 

historical (H), and Bayesian (B)), we first compare the MPB and RMSE of the prediction 

of the lag for each of the four methods, and then plot improvements of the Bayesian 

method over its closest competing method. Predictions of the expected lag and the 

resulting MPB and RMSE of those predictions depend not only on the prediction method 

used, but also on when the prediction is made during data collection, which we refer to as 
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the cut point. This is because each day, new cases are attempted for the first time, and 

contact is being made in other cases. Therefore, we are attempting to predict the expected 

lag for a pool of cases that is changing on a daily basis. In order to evaluate the quality of 

predictions, we evaluate RMSE at several cut points in data collection, after days 2, 4, 6, 

8, 10, 15, 20 and 25. As data accumulate over time, the effectiveness of different methods 

may change. All figures are generated using ggplot2 in the R programming language.  

Figure 2 and Figure 3 below display estimates of MPB and RMSE for predictions of the 

lag. For each cut point during each of the 21 time periods, we used all open, uncontacted 

cases to generate estimates of bias and RMSE. The boxplots were then generated using 

the MPBm and RMSEm for all m time periods. Here, we initially discuss results for the 

Bayesian method where the variance is scaled to represent 1/3 of a month of data 

collection. Later, we discuss the impact of increasing the contribution of the prior.  

Figure 2 shows that all methods underestimate the actual lag between first attempt and 

first contact throughout the data collection process. Additionally, as data collection goes 

on, the underestimation MPB increases. It is also evident that, until day 15, all methods 

that use historical data in some form (M, H, and B) outperform the current method with 

respect to MPB. While the three methods that use historical data all perform similarly late 

in data collection, the historical and Bayesian methods perform better than the mean 

method until day 10. The Bayesian method appears to provide small improvements over 

the historical method over the 21 time periods, as evidenced by central tendencies of 

estimates of the mean being closer to zero.  
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Figure 2. Bias by Prediction Method for All Open and Uncontacted Cases on Cutpoint Day 'd' 

We see the same pattern in the RMSE of the lag predictions in Figure 3. The current 

method performs worse than the other methods until mid-way through the data collection 

period, and the other three methods are competitive with each other. Again, the Bayesian 

method appears to provide small improvements over the historical method, as the central 

tendencies and intraquartile ranges are smaller in the Bayesian method than in the 

historical method.  
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Figure 3. RMSE by Prediction Method for All Open and Uncontacted Cases on Cutpoint Day 'd' 

In addition to the overall predictive abilities of the four different methods, we are 

particularly interested in the temporal effectiveness of the predictions. In other words, we 

are interested in how well we can predict the expected lag near the point in time of the 

first attempt, when we are close to the entry point of a given case into the dataset. Just 

after the initial contact attempt, we have the least data and the most time to implement an 

intervention if needed. In order to explore this, we generated Figure 2 and Figure 3 again, 

but limited the cases included to those worked within two days of the cutpoint. So, when 

𝑑𝑑 = 4, only cases that were first attempted on day 2 or 3 are included in the estimates of 

MPB or RMSE. On day 25, only those cases first attempted on days 23 and 24 are 

included.  

Figure 4 below displays the MPB in prediction of lag for recent cases. While following 

the same general pattern, there are some differences from Figure 2. Most notable is that 
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as time progresses through the data collection period, the MPB in predicting lag for 

recent cases is much smaller (the bias is closer to zero) for all cases, whereas in Figure 2, 

the under-estimation MPB increases over time. Again, the current data method performs 

the worst until late in data collection, but here, it never really outperforms the historical 

or Bayesian methods. Late in data collection, the mean method begins outperforming 

other methods, but this is not consistent throughout data collection. Again, we see that the 

central tendencies of the bias in the Bayesian method are closer to zero than in the 

historical method, demonstrating a small improvement.  

 
Figure 4. Bias by Prediction Method for Recent Open and Uncontacted Cases on Cutpoint Day 'd' 

Figure 5 examines the RMSE of predictions of lag for recent cases, and continues to 

demonstrate that the use of historical information is generally helpful for improving 

predictions. Additionally, throughout data collection, the Bayesian method provides small 

improvements in the central tendencies of RMSE over the historical method.  
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Figure 5. RMSE by Prediction Method for Recent Open and Uncontacted Cases on Cutpoint Day 'd' 

Figures 2 through 5 display either the MPB or RMSE of predictions, focusing on when 

during data collection a prediction was made. Figure 6 plots the percent change in RMSE 

and MPB of the Bayesian method where the prior is equivalent to 1/3 of a month from 

the historical method. Each point on the scatter plot is for a time point within a data 

collection period, and recent case and older cases are plotted separately. For example, one 

data point in the plot of recent cases would be for the measures of MPB and RMSE on 

Day 4, for cases first attempted on Day 2, in a given data collection period.  
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Figure 6. % Change in RMSE and Bias of Bayesian vs. Historical Method by Recency of 1st Attempt 

Most of the data points fall in the southwest quadrant, representing a reduction of both 

RMSE and MPB in the Bayesian method when compared to the historical method. This 

is true for both recent and older cases. Additionally, when there are improvements in 

MPB and RMSE, those improvements have a larger range (reductions in the MPB and 

RMSE reaching 20% and 10% respectively) than the situations where the MPB or RMSE 

increase when the Bayesian method is used (increases generally limited to 10% increases 

in MPB and 5% increases in RMSE). Taken together, this suggests the Bayesian 

approach can improve predictions, even if the improvements are small.  

2.5.2 Effect of Varying the Strength of the Prior 

Thus far, we have only examined the benefits of the Bayesian method when a prior 

equivalent to one-third of one month of data is used for prediction. However, we can vary 

the prior in order to weight the posterior prediction more or less towards the current data. 
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In Figure 7 below, we replicate Figure 6 and compare the percent change in RMSE and 

bias of the Bayesian method when compared to the historical method varying the 

strength of the prior from 1/3 of a month to three months. Again, we split the cases into 

recent cases (top row) and older cases (bottom row).  

 
Figure 7. % Change in RMSE and Bias of Bayesian vs. Historical Method  

by Recency of 1st Attempt and Strength of Prior 

Moving from left to right, as the prior increases in strength, the posterior is weighted 

more strongly to the prior, generated from historical data. This is visible in the 

scatterplots, as the percent differences between the Bayesian method and the historical 

method shrink toward zero. The weaker priors weight the likelihood, or the current 

accumulating data, more strongly in the posterior, resulting in larger differences from the 

historical method. Here, the weaker priors lead to larger reductions (in the lower left 

quadrant) in the bias and RMSE than increases (in the upper-right quadrant) than stronger 
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priors. Still, for most prediction points shown above, the Bayesian approach provides 

benefits over only using the historical data.  

2.5.3 Application 

We also considered a simple application of these models to demonstrate a potential 

implementation of this method during data collection. By obtaining more accurate 

predictions of the expected lag soon after the first attempt, we maximize the opportunity 

for identifying cases likely to have a longer than desirable lag time and for intervening in 

data collection to improve outcomes. If it were possible to identify cases likely to have 

excessive lags, survey managers might consider interventions at the interviewer level to 

reduce the lag until the first contact, ranging from simply informing the interviewer that 

the case may be more difficult to contact than usual to reassignment of the case to a 

different interviewer.  

We defined an “excessive lag” to be any lag predicted to be over four days. While this is 

an arbitrary number, at the Census Bureau, field supervisors monitor casework to ensure 

that there is not a gap of more than three days between contact attempts for monthly 

surveys. Time between contact attempts is not the same concept as time between an 

attempt and a successful contact; however, there is no current definition for what would 

constitute an excessive lag. If interviewers are expected to make contact attempts at least 

once every three days, setting an excessive lag at four days can be considered to mean a 

case where contact is not expected to be made in the next one or two contact attempts.  

We then used the predicted lags for cases that have not been contacted at a particular 

point during data collection to classify cases into those with acceptable or excessive 
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predicted lags. We also classify the true lags as normal or excessive. This allows us to 

calculate sensitivity and specificity (Altman and Bland 1994) for the different prediction 

methods. In order to focus on the early to middle portion of data collection when 

interventions are more likely to have an effect, we identified five points during data 

collection – days 4, 6, 8, 10, and 15 – to carry out this classification exercise.  

Sensitivity is the proportion of true excessive lags, as measured by the actual lag, that are 

correctly classified using the different prediction methods. Specificity is proportion of 

true acceptable lags, as measured by the actual lag, that are correctly classified using the 

different prediction methods. These measures of prediction quality have operational 

implications, as well. Classifying all cases as having excessive lags means that the 

resources available to spend on interventions are being spread across all cases, making 

those interventions impossible or at least less effective. Similarly, classifying all cases as 

having acceptable lags means no intervention is carried out. As a result, there needs to be 

a balance between sensitivity and specificity. Figure 8 and Figure 9 below provide ranges 

of sensitivity (Figure 8) and specificity (Figure 9) across the 21 time periods for six 

different cut points in the first half of data collection, and comparing the two illustrates 

that balance. In these figures, the current method is labeled “C”, the mean method is 

labeled “M”, the historical method is labeled “H”, and the Bayesian methods are referred 

to by the strength of the prior:  B_0033 uses c = 1/3, or one-third of a month; B_0050 

uses c = 1/2 , or one-half of a month; and B_0100, B_0200, and B_0300 use c = 1, 2, and 

3, respectively, or one, two and three full months of data collection. As c increases, the 

contribution of the prior (relative to the likelihood) increases. 
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Figure 8. Sensitivity of Classification of Lags as Excessive Using a Cutoff of Four Days 

 

Figure 9. Specificity of Classification of Lags as Excessive Using a Cutoff of Four Days 
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 Both the current and mean methods have extreme values for the mean of sensitivity and 

specificity across all time periods. Conceptually, this means that very few cases with 

excessive lags were categorized as such, and nearly all cases with acceptable lags were 

correctly classified. In an intervention situation, we would intervene on very few cases 

given these classifications. For the mean method, this occurs simply because the 

historical average lag time was smaller than four days, and so no case would be predicted 

to have an excessive lag. If we had made the threshold for an excessive lag less (e.g., 2 

days), all cases would be predicted to have excessive lags because the historical average 

lag is greater than 2 days. This is a function of the fact that the mean method is an overly 

simple method for predicting lags in future data collection periods. The current method, 

on the other hand, does generate lags based on models that are updated with 

accumulating paradata. However, the coefficients that are estimated and then applied to 

open cases are only based on the subset of paradata that has been accumulated so far. 

Those coefficients may not reflect the true relationships between covariates and true lag 

when only partial data has been collected, and in this case, biases the predicted lags 

downward, resulting in low sensitivity and high specificity.  

The historical method performs more similarly to the Bayesian method, generally with 

lower sensitivities and higher specificities. While the historical method relies only on 

historical data, similar to the mean method, it outperforms the mean method because it is 

model-based and can therefore account for differences in both fixed and time-varying 

effects. This results in a distribution of predicted lags that is closer to the distribution of 

the true lags, rather than a single point estimate for all cases, as occurs when the mean 

method is used. The Bayesian method provides a range of values for sensitivity and 
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specificity. With the exception of day 2, stronger priors result in higher sensitivity in 

predictions, but lower specificity. This effectively means that, while stronger priors 

correctly identify cases that will have excessive lags, they also cause more cases with 

acceptable true lags to be incorrectly classified. Depending on the nature of potential 

interventions, sensitivity may be prioritized over specificity, or vice versa. 

A receiver-operator characteristic (ROC) analysis can be used to evaluate the different 

methods by comparing the tradeoffs between sensitivity and specificity (Zou, O’Malley 

and Mauri 2007). Figure 10 shows a generic ROC curve, where sensitivity is plotted 

against (1-specificity). The line marked “C” displays the ROC curve for random chance 

predictions, and has an area under the curve (AUC) of 0.50. The point marked “A” is the 

theoretical best ROC, when both sensitivity and specificity equal 1, meaning no cases are 

misclassified. In this case, the ROC curve would extend up the y-axis and then across to 

the x-axis value of 1.0, leading to an AUC of 1.0. Generally, ROC curves look like the 

line marked “B”, falling between “A” and “C”.  

 

Figure 10. Example Receiver-Operator Characteristic Curve 
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We can use this ROC space to compare our five predictive methods at the different 

cutpoints shown in Figures 8 and 9 by calculating the Cartesian distance of each of the 

sensitivity-specificity pairs from perfect discrimination (x,y)=(0,1). The shorter the 

distance, the more successful the prediction method.  

In order to summarize our results from Figures 8 and 9 above, we use the 25th, 50th, and 

75th percentiles of sensitivity and specificity to come up with a below average, average, 

and above average estimate of the distance from perfect discrimination for the eight 

prediction methods over the 21 time periods in this application. We carry out these 

calculations for each of the eight time periods shown in Figures 8 and 9. Results are 

summarized in Table 6 below.  

Table 6. Summary of Prediction Methods by Data Types Used 

Day 
Percentile 
Sensitivity 
Specificity 

Distance from Perfect Discrimination by Prediction Method 

Current Mean Historical 
Bayesian Methods 

c = ⅓ c = ½  c = 1 c = 2 c = 3 

2 
p25 1.121 1.000 0.814 0.900 0.859 0.808 0.830 0.845 
p50 1.000 1.000 0.683 0.804 0.796 0.742 0.695 0.670 
p75 0.523 1.000 0.572 0.658 0.646 0.643 0.580 0.566 

4 
p25 1.000 1.000 0.827 0.891 0.874 0.867 0.834 0.837 
p50 1.000 1.000 0.683 0.671 0.688 0.732 0.732 0.773 
p75 1.000 1.000 0.559 0.479 0.495 0.533 0.583 0.612 

6 
p25 1.000 1.000 0.811 0.810 0.822 0.845 0.854 0.843 
p50 1.000 1.000 0.675 0.684 0.680 0.733 0.761 0.769 
p75 1.000 1.000 0.554 0.526 0.557 0.574 0.620 0.659 

8 
p25 0.872 1.000 0.810 0.821 0.834 0.837 0.871 0.874 
p50 0.809 1.000 0.672 0.671 0.702 0.734 0.769 0.793 
p75 0.697 1.000 0.551 0.581 0.597 0.637 0.633 0.652 

10 
p25 0.865 1.000 0.795 0.867 0.862 0.883 0.891 0.907 
p50 0.814 1.000 0.666 0.675 0.711 0.736 0.787 0.795 
p75 0.761 1.000 0.546 0.542 0.549 0.552 0.597 0.634 

15 p25 1.000 1.000 0.785 0.859 0.868 0.879 0.894 0.895 
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p50 1.000 1.000 0.645 0.644 0.695 0.736 0.762 0.806 
p75 0.992 1.000 0.547 0.550 0.536 0.562 0.593 0.595 

 

Consistent with the analyses reported earlier in this paper, the historical method and the 

Bayesian method where c = 1/3 provide the best combinations of sensitivity and 

specificity. Early in data collection, particularly days 4 and 6, the Bayesian method is 

superior to the historical method, and on days 8 and 10, the historical method is superior. 

Additionally, on day 2, the Bayesian method with stronger priors (c = 2 and c = 3) 

perform better than either the historical method or the Bayesian method with a weaker 

prior (c = 1/3). Given the need to obtain higher quality predictions early in data 

collection, the Bayesian method provides a slight advantage when considering equally 

balanced sensitivity and specificity.  

2.6 Discussion and Future Work 

This paper discussed several methods for generating predictions for the estimated lag (in 

days) between first attempt and first contact for a case in the NHIS. The difficulty in 

estimating these lags arises from the fact that we are making predictions as data 

collection progresses, meaning we are using partial data that is not necessarily 

representative of the full data collection. We evaluated four methods that utilize current 

data and historical data to different degrees: using current data only, using historical data 

to estimate a mean expected lag, using historical data to estimate model coefficients that 

were then used to score the current dataset, and using historical data to estimate priors 

that are then combined with current data to create posterior predictions of estimated lag.  
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The results showed that utilizing data external to the current data collection, in this case 

historical survey data, can be useful for improving predictions in the current month. If 

there is more variation in the lag between first attempt and contact within a data 

collection period than there is variation across data collection periods, historical data can 

be a useful way to complement the partial data in the current data collection period, 

filling in the gaps in what we know about the relationship of certain covariates with the 

expected lag.  

Additionally, both of the model-based methods that incorporate historical data were 

superior to the historical mean method, particularly earlier in the data collection period. 

Because of the time-varying nature of the day of the first attempt covariate (cases worked 

earlier generally have longer lags than cases first attempted very late), the historical 

method and the Bayesian method were able to capture that variability, resulting in better 

predictions, particularly near the point of first attempt. Further, the model-based methods 

improved estimates with relatively little additional information – there is some low level 

geographic information, minimal interviewer information, and the day of first attempt. 

Improvements could be more significant with more information, either for individual 

cases in a longitudinal setting, or just richer auxiliary frame data even in a cross-sectional 

setting.  

When considering the historical method versus the Bayesian method, the Bayesian model 

provided modest improvements over the historical data model, and those gains were 

observed throughout the data collection period. Early in data collection the benefit of the 

Bayesian model was that external data can be incorporated into the prediction process as 

priors. Those priors can help improve the stability of predictions when working with the 
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partially accumulated, sparse data that exist early in the data collection period. Later in 

data collection, the current data takes over, reducing bias that might have been introduced 

by considering historical data only, although the prior continues to reduce the variance of 

the predictive coefficients, stabilizing the posterior predictions of expected lag.  

The Bayesian method also offers flexibility in how much influence the prior has on the 

posterior prediction, in the form of the constant, c. By increasing the value of c, the 

strength of the prior increases, and for this application, a stronger prior resulted in smaller 

RMSE than a weak prior or using the historical predictors as fixed coefficients. A strong 

prior may be particularly valuable early in data collection, when the current data would 

have been missing many cases, and have many cases that were attempted, but not 

contacted.  

There are limitations to the model-based predictions, though these are not all specific to 

the Bayesian method. From a data quality perspective, the NOI and the CHI data are self-

reported by interviewers, who are expected to record outcomes of contact attempts 

immediately after they occur. Some research has considered potential errors in this source 

of data. West and Kreuter (2013) discussed how neighborhood observations may 

constitute guesses on the part of interviewers, and erroneous observations decrease the 

predictive power of these covariates. Separately, Biemer, Chen and Wang (2013) raised 

concerns about interviewers under-reporting contact attempts. The CHI could be used to 

identify undesirable interviewer behaviors (Bates et al. 2010), such as high numbers of 

contact attempts or the repetitive use of contact strategies, causing a reduction in the 

recording of contact attempts that may draw attention. However, the two events used for 
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our predictions – first contact attempt and first successful contact – are desirable 

behaviors, hopefully reducing the likelihood these go unreported.  

Additionally, as illustrated in the Results section, the predictive models did not perform 

consistently across all time periods included in this analysis. This is likely a function of 

our decision to fix the set of covariates across all time periods, rather than allowing them 

to vary based on which variables were most predictive for the prior three months, 

potentially ignoring a seasonal effect of specific variables, or simply natural variation in 

which variables were most predictive. We required any variable retained after the 

backwards stepwise regression discussed in the model selection discussion to be a 

significant predictor in at least seven of the 21 time periods. In doing this, we were able 

to achieve a smaller, more parsimonious model, and simplify the coding required to 

extract priors from the data. However, we may also have excluded variables that were 

highly predictive during selected time periods. This limitation could be mitigated by 

either including a larger set of model covariates throughout all time periods, or allowing 

the variables included in the model-based methods to vary over time.  

Generally, the variables included in the models, and how the priors are developed, are 

complexities without straightforward solutions. Here, because the NHIS is an ongoing 

survey with available paradata, we were able to obtain several sources of data from the 

frame and interviewer observations. Additionally, as this application was based on 

analyzing retrospective data, we were able to build an analytic file and conduct variable 

selection and build a model using information over the 24 months in order to reduce the 

set of covariates to those that were predictive of our outcomes in at least a third of the 

included time periods. However, in a true prediction situation, models would have to be 
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built from existing (historical) data only. Even more difficult, priors for a new survey 

may need to be generated from somewhat dissimilar surveys, or other sources of 

information. Despite these limitations, the Bayesian method generally resulted in lower 

RMSE of predictions, which translated into the identification of cases with excessive lags 

at a higher sensitivity than the other methods. When sensitivity and specificity were 

considered equally in prediction evaluation, the Bayesian method performed slightly 

better early in data collection, though the historical method was certainly competitive. . 

Future work could extend into several different areas. First, more work could be done to 

append more useful auxiliary variables onto the survey data, and potentially include a 

flexible set of model covariates over time, in order to observe whether larger 

improvements can be found from the Bayesian model when the underlying model has a 

better fit. For example, the planning database information that was appended to the 

sample represented low-level aggregate information about the block group in which a 

sample case was located. If information about the specific household were available, the 

model may have more predictive power. Additionally, it could be useful to have 

information about past response behavior for the sampled household (in the same or 

different surveys), or more information about past contact rates of the interviewers 

making contact attempts. While the Bayesian methods showed improvement over the 

historical and other methods, predicted lags were still generally underestimating the true 

lag, sometimes by several days. Therefore, better external covariates that can be 

appended to the frame could lead to even larger reductions in the MPB and RMSE of 

predicted lags. Additionally, this method should be replicated for different estimators in 
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different data collection settings. Ongoing surveys would benefit from the ability to 

leverage their historical data to improve survey outcomes.  

Research might also focus on identifying an appropriate value of c. For this application, 

we varied the value of c, allowing the priors to represent a range of 1/3 of a month of data 

to 3 months of data for the results in order to demonstrate the effect of prior data strength 

on the posterior predictions of lag. However, the optimal value for c may be a prediction-

specific issue. Additionally, tradeoffs between sensitivity and specificity may be 

considered when interventions are potentially resource intensive. It may be worth 

selecting a prior that provides prioritizes sensitivity over specificity if the intervention is 

lower risk or requires fewer resources. On the other hand, for an intensive or expensive 

intervention, prioritizing specificity, in order to avoid applying the intervention to 

misclassified cases, may be more important.  

Finally, it is important to consider how to utilize these improved predictions during data 

collection. This lag, for example, could be used to identify cases that are at risk of non-

completion because of the predicted time it would take after making a first attempt to 

make contact with a particular sample member, as demonstrated in the hypothetical 

application. Interviewers working on those cases could be alerted to this risk and coached 

or given different instructions for how to work those cases. Additionally, if at-risk cases 

were clustered within specific interviewers, additional training could be provided to 

mitigate the risk of excessive lags on survey outcomes. Obtaining more accurate 

estimates for progress metrics such as the one examined here could be useful for 

monitoring, or intervening in, data collection operations.   



54 

3. What Do You Think? Using Expert Opinion to Improve Predictions of 
Response Propensity Under a Bayesian Framework 

Stephanie Coffey1, Brady T. West2, James Wagner2, Michael R. Elliott2,3 
1 Joint Program in Survey Methodology, University of Maryland 

United States Census Bureau, Washington, DC 
2 Survey Research Center, Institute for Social Research, University of Michigan 

3 Department of Biostatistics, University of Michigan 
 

Abstract 

Responsive survey designs introduce protocol changes to survey operations based on 

accumulating paradata. Case-level predictions, including response propensity, can be 

used to tailor data collection features in pursuit of cost or quality goals. Unfortunately, 

predictions based only on partial data from the current round of data collection can be 

biased, leading to ineffective tailoring. Bayesian approaches can provide protection 

against this bias. Prior beliefs, which are generated from data external to the current 

survey implementation, contribute information that may be lacking from the partial 

current data. Those priors are then updated with the accumulating paradata. The 

elicitation of the prior beliefs, then, is an important characteristic of these approaches. 

While historical data for the same or a similar survey may be the most natural source for 

generating priors, eliciting prior beliefs from experienced survey managers may be a 

reasonable choice for new surveys, or when historical data are not available. Here, we 

fielded a questionnaire to survey managers, asking about expected attempt-level response 

rates for different subgroups of cases, and developed prior distributions for attempt-level 

response propensity model coefficients based on the mean and standard error of their 

responses. Then, using respondent data from a real survey, we compared the predictions 

of response propensity when the expert knowledge is incorporated into a prior to those 
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based on a standard method that considers accumulating paradata only, as well as a 

method that incorporates historical survey data. 

3.1 Introduction 

Responsive Survey Design (RSD; Groves and Heeringa, 2006) relies on accumulating 

paradata (i.e. data about the process of collecting survey data, see Couper 2000, 2017) 

and response data in order to introduce changes to data collection protocols or tailor data 

collection features to specific cases. These changes are made in pursuit of a survey goal, 

such as quality improvement or cost control. Unfortunately, by relying only on the partial 

current data as it accumulates, predictions generated from this partial data may be biased 

(Wagner and Hubbard 2014) and, as a result, decisions made based on these predictions 

can be inefficient or even harmful.  

Recently, survey researchers have introduced Bayesian approaches (Schouten et al. 2018) 

to mitigate this bias by supplementing the current accumulating data with prior beliefs, 

generated from external data such as past implementations of the same survey or the 

survey methodological literature (West, Wagner, Coffey and Elliott 2019). While priors 

generated from past implementations of the same survey may be the most informative for 

a particular survey, that solution is not always an option. New surveys, or surveys whose 

designs have changed dramatically, may need to develop priors from different data 

sources. West et al. (2019) explored using a literature review to source prior information 

for response propensity models in the National Survey of Family Growth (NSFG). While 

priors from the literature review did not perform as well as priors from historical NSFG 

data, they outperformed model predictions made only using current accumulating 

paradata, particularly in the middle portion of the data collection period.  
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The present study evaluates another potential source of prior information. Here, expert 

knowledge was elicited from survey managers (“experts”), through a self-response 

questionnaire designed to collect their predictions of attempt-level response rates, or 

changes in those expected response rates, for various types of sample members. Given 

those survey responses, pooled priors were created from expert respondent data. The 

structure of the items in the questionnaire completed by the experts mimicked that of the 

existing response propensity model. We then evaluated these priors’ ability to improve 

predictions of response propensity in the National Survey of Family Growth (NSFG) 

relative to only using partial data from the current round or using historical data as an 

alternative source for the development of priors. This manuscript discusses the content of 

the questionnaire, the identification of experts, the method for generating priors, and an 

evaluation of how the information from expert elicitation affects the bias and root mean 

squared error (RMSE) of the daily predictions of response propensity. We found that 

priors based on expert opinion led to modest improvements in prediction during the 

middle and late portions of data collection when compared to using only current round 

data. Additionally, we found that priors based on expert opinion were sometimes 

competitive with, though generally did not outperform, an approach that used historical 

data evaluated in West et al. (2019). We also identified several ways to improve upon our 

elicitation process that may lead to further improvements in predictions based on expert 

opinion over methods more commonly used in RSDs.  
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3.2 Background 

3.2.1 Responsive Survey Design 

Responsive survey design (RSD; Groves and Heeringa 2006) has emerged as a 

framework for maintaining or improving survey outcomes in an increasingly difficult 

survey climate. Increasing data collection costs, and decreasing cooperation and response 

rates, have caused survey methodologists and managers to explore alternatives to the 

prevailing “one path fits all sample members” approach to data collection operations 

(Axinn, Link and Groves 2011). Instead, RSD uses accumulating paradata and response 

data to make changes to later data collection protocols. These changes attempt to increase 

data quality in some specified way or control costs, relative to continuing with the 

standard data collection protocol. Types of protocol changes may include introducing 

another mode (Coffey, Reist and Miller 2019), changing the effort spent on specific cases 

(Rosen et al. 2014), or a change in tokens of appreciation combined with subsampling 

(Wagner et al. 2012).  

In an RSD, one of the most common ways to tailor data collection features to specific 

cases is with predicted propensity scores. Based on frame data and accumulated paradata, 

these predictions can be used to alter data collection operations. Various surveys have 

utilized propensity scores to differentially implement a variety of data collection features, 

including protocol assignment (Peytchev, Rosen, Riley, Murphy and Lindblad 2010; 

Roberts, Vandenplas and Stahli 2014), incentives (Chapman 2014), and allocation to 

nonresponse follow-up (Laflamme and Karaganis 2010; Thompson and Kaputa 2017) in 

hopes of improving survey outcomes. 
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Paradata from the current round of data collection provide useful predictors of survey 

outcomes, such as response propensity, for the sampled cases currently receiving 

recruitment effort. In an RSD, targeted interventions are applied to cases during the data 

collection period in order to shift response propensities in pursuit of a cost- or quality-

related survey goal, necessitating high quality predictions of these propensities. However, 

during the survey period when an RSD would be implemented, the accumulating 

paradata are “incomplete” relative to the final data, in that completed cases and incoming 

data from early in the data collection period may not be representative of that which will 

be collected later in data collection. As a result, only using the accumulating data from 

the current round of data collection could result in biased predictions of response 

propensity (Wagner and Hubbard 2014) or reduced prediction performance when 

predicted propensities are classified into response categories, either of which could lead 

to inefficient decisions. In this paper, we focus on the error in the predictions of response 

propensity scores, as opposed to the secondary step of classification error.  

In order to improve predictions, survey practitioners often use external data that may be 

more representative of a full data collection period. It is relatively common to estimate 

the coefficients of a predictive model using historical data, such as a prior 

implementation of the survey, and then apply those coefficients to the current round of 

data collection (Schouten, Calinescu and Luiten 2013; Schouten, Wagner and Peytchev 

2017; Schouten, Mushkudiani, Shlomo, Durrant, Lundquist and Wagner 2018). While 

this method provides data that might be representative of an entire data collection, it 

ignores current data in the prediction process.  
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More recently, survey researchers have begun exploring Bayesian approaches that utilize 

both external and current data in the prediction process. Prior beliefs are generated from 

external data, most commonly historical data from the same survey, and those priors are 

then updated as the current data accumulates. Schouten et al. (2018) discuss using 

Bayesian methods for predicting response and cost under different scenarios. Through 

simulation, they demonstrate value in the Bayesian methods in terms of reduced RMSE 

of predictions, while stressing that misspecification of the priors with respect to the true 

data should be relatively small. Empirical evidence is also emerging (West et al. 2019) 

that combining published estimates or historical information and current round 

information in a Bayesian setting can improve prediction.  

3.2.2 Empirical Evidence and Sources of Prior Information 

West et al. (2019) compared the performance of predictions of response propensity in the 

NSFG, a nationally representative quarterly survey in the U.S., when Bayesian methods 

are used versus when only current data is used. The Bayesian methods incorporated 

external information in the form of priors, either from past implementations of the NSFG 

or from published research on propensity models found through a literature review. 

Results demonstrated that the Bayesian approaches consistently reduced both the bias and 

the mean squared error (MSE) of predicted response propensities, particularly in the 

middle of data collection, when an RSD may be implemented. This was true for either 

source of prior information -- the historical data or the literature review.  

The quality of the prior information is directly related to its ability to improve predictions 

of interest, and so the source of prior information is an important consideration. It seems 

reasonable that historical data from the same survey would result in the most informative 
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priors for the prediction of interest; however, there may be cases where this information 

is not available. New surveys, for example, would not have access to historical 

information. Additionally, surveys that have undergone significant redesign, such as 

introducing a new mode, changing an incentive amount, or dropping a screening 

interview, may find that priors based on historical paradata are no longer available.  

There may be cases where even a literature review produces limited or no useful external 

information. In the case where a survey has an unusual or unique target population, or the 

prediction of interest is not as common as response propensity, there may not be 

sufficient information in the literature from which to develop priors. In these cases, where 

there is an absence of objective information, expert opinion may be the only option for 

generating the necessary information for prior construction. Expert opinion is often used 

implicitly in survey planning – experienced survey managers may provide input into 

expected response rates to help determine sample sizes, or for estimating budgets. 

Additionally, they may help explain variation progress or response rates during data 

collection. Transforming expert opinion into priors explicitly incorporates this 

information into the prediction model.  

3.2.3 Expert Elicitation 

Clinical trials and health care evaluations often rely on prior beliefs for a variety of 

reasons. Dallow, Best and Montague (2018) describe a protocol for eliciting expert 

opinion in order to improve the drug development process. Mason et al. (2017) propose a 

practice for leveraging expert opinion in the analysis of randomized controlled trials 

when there are missing observations for patients. Additionally, Boulet et al. (2019) 

demonstrate the use of expert opinion in a variable selection process for personalized 
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medicine. When novel treatments are tested, or prior trials have very small sample sizes 

or are otherwise not comparable, expert opinion can be relied upon for developing priors 

(Hampson, Whitehead, Eleftheriou and Brogan 2014). 

Spiegelhalter et al. (2004, Ch. 5) as well as O’Hagan (2019) provide overviews of the 

expert elicitation process, and the potential biases that may arise in priors elicited from 

individuals. Availability bias may arise when experts are asked about easily recalled 

events – they may estimate a higher or lower probability than is accurate. For example, if 

survey experts have recently seen frequent reports of language barriers along with 

increasing non-interview rates, the experts may inflate the effect that a language barrier 

has on overall response rate or response propensity, even if there are other contributing 

factors to increasing non-interview rates. Anchoring bias may lead experts to shrink 

intervals between different categories or groups based on a provided piece of information 

or their initial elicited quantity or probability. Once an expert learns from the elicitation 

instrument, or offers through the elicitation process, that the expected response rate for 

one group is 45%, future answers about different subgroups may be biased towards 45%.  

Overconfidence bias may lead to distributions of the priors with insufficient variance. 

This may occur when elicitation happens in small groups and some strongly opinionated 

experts convince others of their opinion, a behavior also known as groupthink. 

Alternatively, in individual elicitation, overconfidence bias may arise because of the 

expectation of experts that they have, in fact, a greater amount of expertise than they 

actually do, resulting in under-reported uncertainty. Conjunction fallacy bias may arise 

when a particular event is given a higher estimated probability when it is the subset of 

another event. For example, on any given contact attempt, the probability that any open 
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case will have had a callback request and response is necessarily smaller than the 

probability that any open case will respond. However, an expert may suggest the 

opposite, thinking that having a callback request makes response much more likely. This 

bias is often due to the rarity of one of the two events, which in this case would be the 

callback request. Finally, hindsight bias may arise if the expert is asked to provide a prior 

expectation after looking at the current data. Awareness of all of these types of bias is 

useful in the design of the expert elicitation process.  

Spiegelhalter et al. (2004, Ch. 5) also discuss four common methods for elicitation: 

informal discussion, structured interviewing, structured questionnaires, and computer-

based elicitation. Each of these methods requires different amounts of interaction with 

experts, and allows for different levels of complexity of prior development. Additionally, 

these authors discuss three methods for combining information when multiple experts are 

utilized: arriving at a consensus value among all experts, arithmetic pooling, or retaining 

individual priors. O’Hagan (2019), whose elicitation method elicits distributions from 

experts, discusses the combination of those distributions to generate a pooled empirical 

distribution for the prior.  

Here, we adapted the concept of expert elicitation of priors from the clinical trials 

literature. Our goal was to evaluate whether expert opinion can be helpful when little 

objective data is available for generating priors for the coefficients in a logistic regression 

model used to estimate propensity of response. In this application, we elicited opinion 

from experts independently through an internet questionnaire, and used arithmetic 

pooling to combine the elicited information into priors for models used to generate daily 

predictions of response propensity in the NSFG.  
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3.3 Data and Methods 

3.3.1 Overview of the National Survey of Family Growth 

The NSFG is conducted by the National Center for Health Statistics, under contract with 

the Institute for Social Research (ISR) at the University of Michigan. The NSFG, in its 

current iteration, is a cross-sectional survey for which data were collected continuously 

throughout the calendar year from 2011-2019. In a given year, four data collection 

operations are conducted, with data being collected from four independent, nationally 

representative samples. The field operations for each sample last three months, or one 

quarter (e.g., January to March, April to June). The survey selects a national sample of 

U.S. housing unit addresses each quarter of the year. The target population from which 

the NSFG selects these four independent national samples is 15 – 49 year old persons 

living in the U.S. (Lepkowski, Mosher, Groves, West, Wagner and Gu 2013). The NSFG 

is a two-stage survey, meaning there is first a screener interview to determine eligibility, 

followed by the main interview. Interviewers first visit randomly sampled households and 

attempt to screen the households for eligibility. Within eligible households, one of the 

eligible individuals is randomly selected to complete the main survey interview, which 

usually takes 60-80 minutes and covers a variety of fertility-related topics.  

NSFG paradata are aggregated on a daily basis and used to predict the probability that 

active households will respond to either the screening interview or the main interview. 

Survey managers might use these predictions for prioritization of active cases (e.g., 

Wagner et al. 2012) or for stratifying the sample when selecting a subsample of active 

cases for the new data collection protocol after 10 weeks (Wagner et al. 2017). At this 

point, managers may oversample high-propensity cases, or offer a higher token of 
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appreciation to encourage response. Accurate model-based predictions are thus essential 

for maximizing the efficiency of the data collection effort in any given quarter. For 

purposes of this study, we focus on models for the probability of responding to the initial 

screening interview. 

3.3.2 Response Propensity Models in the NSFG 

For this application, we used data from five quarters of the NSFG (Quarters 16 – 20), 

covering the June 2015 to September 2016 time period. For each of the five quarters, our 

prediction of interest was the probability of response to the screening interview at the 

next contact attempt, using either the current accumulating paradata only, or the 

combination of priors generated from expert elicitation and the current accumulating 

paradata. We also compared these methods to the best performing method in West et al. 

(2019), which combined current accumulating paradata with priors based on historical 

data from the eight preceding quarters of data collection.  

In order to compare predictions generated from our proposed method with those 

discussed in West et al (2019), we used the same predictive modeling approach (discrete 

time logistic regression), and the same set of predictors of screener response propensity. 

In that paper, eight quarters (or two years) of the NSFG (Quarters 13 – 20) were 

combined into a stacked dataset containing all contact attempt records and a binary 

outcome for each record that indicated whether the screener interview was completed on 

that particular attempt or not. The authors then fit a discrete time-to-event logistic 

regression model to this dataset to identify significant predictors. Available predictors 

included sampling frame information, linked commercially-available data, and NSFG 

paradata, all of which have been used to predict response propensity in the NSFG (West 
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2013; West and Groves2013; West et al. 2015). The authors used a backward selection 

approach to model-building, retaining all predictor variables that appeared in all eight 

quarters with a p-value less than 0.05 based on a Wald test for all regression parameters 

associated with a given variable.  

They then included two predictor variables that were important for sampling and 

weighting in order to control for sampling domain in the response propensity model. The 

first was the sociodemographic domain of each housing unit, based on the percentage of 

the population in the Census Block Group containing the segment that is Black and/or 

Hispanic as reported in U.S. Census data. The second was a three-level categorical 

variable indicating whether a case was in a self-representing area, a non-self-representing 

metropolitan statistical area (MSA), or a non-MSA non-self-representing area. Self-

representing sampling areas are geographic sampling domains that are large enough to be 

sampled with certainty in a probability proportionate-to-size sample, and, therefore, 

represent only themselves during weighting and estimation. These two variables were 

initially included in the backwards stepwise procedure, but were not found to be 

statistically significant, and so were not retained. However, after consultation with data 

collection managers, these two variables were added back into the response propensity 

model in order to control for sampling domain in the predictive model.  

All retained predictors from the backward selection process carried out in West et al. 

(2019), including their estimated coefficients and standard errors, are listed in Appendix 

A. Several predictors came from each available data source: the sampling frame, 

commercially-available data, and paradata. By using the same list of predictors, and the 

same discrete-time logistic regression model specification, we are able to compare the 
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effect that priors based on expert elicitation have on the predictions of response 

propensity, versus excluding prior information, or using priors from historical data. The 

focus of our analysis is on the relative performance of these methods given a particular 

model.  

3.3.3 Design of Prior Elicitation Process 

For this proof-of-concept study, we wanted our prior information to be based upon a 

relatively large group of experts (𝑛𝑛 ≅ 20) to generate a reasonable distribution from 

which to estimate priors. Our target sample size meant that elicitation methods requiring 

significant interaction with experts, including informal discussion and structured 

interviewing, were not feasible. As a result, we created and distributed a structured 

questionnaire to selected experts, who could then respond at their convenience. The 

questionnaire asked experts to provide their opinions on attempt-level response rates for 

subgroups with various types of characteristics, and, in some cases, opinions on changes 

to response rates based on certain characteristics.  

The questionnaire included the significant predictors found in the retrospective analysis 

of the NSFG response propensity model, as described in Section 3.2. These predictors 

include items from the sampling frame, including geographic and sampling strata 

information, as well as time-varying attempt-level information, derived from 

accumulating paradata. Fixed characteristics include sampling frame or commercially 

available data, like the 9-level Census Division geographic variable. In the questionnaire, 

we asked experts their opinions on their expected response rates for each of the nine 

categories. Time-varying covariates were based on paradata and include indicators for 

past contact or instances of the sample member expressing questions, comments or 
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concerns. In the questionnaire, we requested information about the expected change in 

response rate for characteristics like each additional contact attempt, or whether the 

sample member expressed comments on concerns on the most recent contact attempt. We 

also asked experts to provide their experience with survey data collection by selecting 

one of three categories: 0 to 4 years, 5 to 15 years, and 15 or more years.  

We solicited feedback from two survey experts prior to distributing the questionnaire in 

order to get basic feedback about content, complexity, and readability. In some cases, 

edits resulting from this initial feedback changed the format of the questions to make 

them easier to understand and answer. This meant that the format of the questions did not 

always match the format of the predictor in the propensity model. The final version of the 

questionnaire can be found in Appendix B, and in the Center for Open Science repository 

(https://osf.io/3kxzb/) at the Open Science Framework (log-in required).  

Given the target number of experts, we opted to develop priors through arithmetic 

pooling of all respondent information. At the same time, we wanted to avoid the biases 

mentioned by Spiegelhalter et al. (2004, Ch. 5). In order to avoid anchoring bias while 

still eliciting reasonable responses, we provided an overall expected attempt-level 

response rate (24%), but did not provide anchor points for any particular category in the 

survey, allowing the experts to provide input for all items and categories. To avoid 

hindsight bias (Schouten et al. 2018) arising from the fact that experts at ISR also 

conduct the NSFG, we recruited additional experts from the U.S. Census Bureau 

(Census). These additional experts have experience managing interviewer-administered 

data collections, but do not have experience with the NSFG or its data. By soliciting 

predictions from two geographically dispersed survey organizations with varying 

https://osf.io/3kxzb/
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familiarity with the NSFG, we also hoped to protect against overconfidence bias 

(Schouten et al. 2018), which can lead to prior distributions that are too narrow and do 

not accurately reflect the uncertainty in the prior.  

At both ISR and Census, we worked with senior survey managers to identify experienced 

interviewer supervisors, field directors, and survey methodologists who were 

knowledgeable about survey processes and reviewed progress data on a daily basis as 

part of their job responsibilities. We recruited eight individuals from ISR, and 12 from 

Census (two from each of the six regional offices). During March 2019, the recruited 

experts were asked to complete the questionnaire, and were encouraged to provide 

feedback, either directly or through a scheduled debriefing. We summarize the feedback 

received in the Results section.  

3.3.4 Method for Deriving Priors 

We obtained 20 sets of expert responses about the effects on attempt-level response rates 

of various characteristics of sample members and paradata items, subject to some item 

nonresponse. We used arithmetic pooling to combine the priors and generate an expected 

mean and standard error for a coefficient in an attempt-level response propensity model 

(Spiegelhalter et al. 2004, Ch. 5). 

Before pooling, however, we had to convert the estimates of differences in response rates 

to model coefficients for use in a logistic regression model. When categorical variables 

are included as predictors in a logistic regression model, the estimated coefficients are 

generally interpreted with respect to a reference category. Therefore, the mathematical 

manipulation involved identifying a reference category, calculating odds ratios with 
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respect to the reference category, and then taking the natural log of the odds ratio to 

obtain a logistic regression model coefficient, or beta. We first did this for each 

respondent’s information individually.  

Formula 1 below demonstrates how to calculate the coefficient for the 𝑘𝑘𝑡𝑡ℎ category of the 

𝑗𝑗𝑡𝑡ℎ item for the 𝑖𝑖𝑡𝑡ℎ expert, 𝛽̂𝛽𝑖𝑖𝑖𝑖𝑖𝑖, given the estimated probability of response for category k 

of interest, 𝑝̂𝑝𝑖𝑖𝑖𝑖𝑖𝑖, and the estimated probability of response for a reference category R, 

𝑝̂𝑝𝑖𝑖𝑖𝑖𝑖𝑖.  

             𝛽̂𝛽𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙 �
𝑝̂𝑝𝑖𝑖𝑖𝑖𝑖𝑖/(1 − 𝑝̂𝑝𝑖𝑖𝑖𝑖𝑖𝑖)
𝑝̂𝑝𝑖𝑖𝑖𝑖𝑖𝑖/(1 − 𝑝̂𝑝𝑖𝑖𝑖𝑖𝑖𝑖) 

�                                        

Using gender as an example (abbreviated 𝐺𝐺 in the expression below), assume that the 𝑖𝑖𝑡𝑡ℎ 

respondent estimates the expected call-level response rate for female sample members to 

be 85% (as opposed to 70% for males), and male is the reference category. The beta for 

female sample members, for the 𝑖𝑖𝑡𝑡ℎ expert, would be:  

          𝛽̂𝛽𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙 �
𝑝̂𝑝𝑖𝑖𝑖𝑖𝑖𝑖/(1 − 𝑝̂𝑝𝑖𝑖𝑖𝑖𝑖𝑖)
𝑝̂𝑝𝑖𝑖𝑖𝑖𝑖𝑖/(1 − 𝑝̂𝑝𝑖𝑖𝑖𝑖𝑖𝑖) �

= 𝑙𝑙𝑙𝑙 �
0.85/(1 − 0.85)
0.70/(1 − 0.70) �

= 0.8873      

Continuous variables were converted to model parameters using the same formula but 

with a slightly different explanation. For these items in the questionnaire, expert opinion 

was elicited about the change in response propensity, given some unit change in the 

continuous variable. For example, survey managers were asked to provide their expected 

change in response rate for each additional contact attempt made on a sample member, 

and a survey manager might have responded saying they would expect a -10% change, or 

a 10% reduction, in response propensity for each additional contact attempt.  
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However, unlike standard linear regression, where there is linear change for every unit 

increase, logistic regression results in exponential change for each unit increase, meaning 

the change in response propensity is dependent on which unit increase is being 

considered (e.g. from 1 to 2 attempts, or from 8 to 9 attempts). In the case of continuous 

variables, we did not have a defined reference category, and so the reference is always to 

the average attempt-level response rate of 24%.  

If the 𝑖𝑖𝑡𝑡ℎ expert believes increasing the number of contact attempts, 𝑗𝑗, by one would 

change the attempt-level response rate by some amount, we can adapt Equation (1) above 

for a continuous variable. While we do not have a defined reference category, we have 

the overall average attempt-level response rate, 24% and the expected change provided 

by the expert, 5%. This results in a model coefficient of: 

             𝛽̂𝛽𝑖𝑖𝑖𝑖 = ln�
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  (𝑛𝑛 + 1)�
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  (𝑛𝑛)�    

� = 𝑙𝑙𝑙𝑙 �
0.29/0.71
0.24/0.76 �

= 0.2573 . 

We note at this point that, while we have elicited priors on a linear scale, linking these 

back to the logistic scale changes the interpretation. We provide more consideration of 

this issue in the Discussion section. 

To pool the expert information, we then took an arithmetic mean, 𝛽̂̅𝛽𝑗𝑗𝑗𝑗 (or 𝛽̂̅𝛽𝑗𝑗 for 

continuous items), of the coefficients from the expert respondents. The standard error of 

the prior, 𝑆𝑆𝑆𝑆 �𝛽̂̅𝛽𝑗𝑗𝑗𝑗�, was estimated by dividing the standard deviation of the coefficients 

from the respondents by the square root of the number of respondents.  
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             𝛽̂̅𝛽𝑗𝑗𝑗𝑗 =
1
𝑛𝑛
�𝛽̂𝛽𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

                                                  

             𝑆𝑆𝑆𝑆 �𝛽̂̅𝛽𝑗𝑗𝑗𝑗� = �
1

𝑛𝑛(𝑛𝑛 − 1)
��𝛽̂𝛽𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛽̂̅𝛽𝑗𝑗𝑗𝑗�

2
𝑛𝑛

𝑖𝑖=1

                            

We chose to transform each expert response into an odds ratio, take the log, and then pool 

the individual log-odds ratios for a few reasons. Mathematically, by first transforming 

each expert response into a log-odds ratio before pooling, we are working under the 

assumption that the log-odds are normally distributed, as opposed to the response rate or 

response propensity, which is how the experts provided their opinions. We felt this 

assumption was reasonable. First, response rates and response propensities are bounded 

at (0,1), and are not normally distributed, whereas the log-odds can take on any number 

on the real line. Additionally, the log-odds is a linear function, while the function for the 

odds (and for probabilities) are multiplicative and exponential, which suggests that the 

log-odds might converge to a normal distribution more quickly than the odds, given 

enough sample size.  

Operationally, by generating a model coefficient for each expert, we were able to 

calculate a mean and standard error for each model coefficient. If we had first taken the 

mean of the expert response first, and then transformed that estimate to obtain our model 

coefficient, we would no longer be able to generate a variance, as we would have only 

one estimate.  
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For each covariate of interest, we used �𝛽̂̅𝛽𝑗𝑗𝑗𝑗, 𝑆𝑆𝑆𝑆 �𝛽̂̅𝛽𝑗𝑗𝑗𝑗�� to define a normal prior 

distribution in our prediction models. Each prior was based on a maximum of 20 

responses, but item-level nonresponse reduced the number of responses to varying 

degrees (see Table A2 for individual response counts). Due to the small sample sizes, we 

ignored the potential covariance between the coefficients, resulting in a variance-

covariance matrix that is only non-zero on the diagonal. This is different from the 

methods evaluated in West et al. (2019) that utilize historical data to generate priors. For 

those methods, including the historical method replicated in our results, estimated 

covariances were generated from the existing historical data.  

Appendix C provides the prior information, �𝛽̂̅𝛽𝑗𝑗𝑗𝑗, 𝑆𝑆𝑆𝑆 �𝛽̂̅𝛽𝑗𝑗𝑗𝑗��, for each covariate included 

in the propensity models, provided that there were at least three contributing respondents. 

Further, an Excel spreadsheet available in the online supplementary material provides a 

template for estimating these priors for the survey items in the propensity model. For 

demonstration purposes, simulated data are included in the table, including missing cells, 

which would occur should an expert not respond to a particular question.  

3.3.5 Methods for Predicting and Evaluating Response Propensities 

Each of the five NSFG quarters of interest (Quarters 16 through 20, representing June 

2015 – September 2016) were analyzed independently to introduce replication in our 

analysis. First, we used the expert opinions to generate the prior distributions for the 

response propensity model coefficients as described above. These priors were used for all 

five quarters.  
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We generated our “target” prediction at the case level for each of the five evaluation 

quarters by fitting a discrete time-to-event logistic regression model using the predictors 

identified in the backward selection model discussed in Section 3.2 to all contact attempt 

records from that quarter. This allowed us to estimate a “final” probability of responding 

to the screener interview at the last contact attempt for each case. Because this model 

uses all available information for a given quarter, we consider this the benchmark against 

which the prediction methods under evaluation will be compared. Table 7 below shows 

the ROC-AUC values when all contact attempt records were used to predict final 

response.  

Table 7. Model Fit Statistics for In-Sample Predictions of Response, 5 Evaluation Quarters 

 Q16 Q17 Q18 Q19 Q20  

ROC-AUC 0.711 0.682 0.661 0.690 0.654  
Nagelkerke-
Pseudo R2 0.143 0.115 0.089 0.130 0.086  

 

These model fit statistics are reflect the in-sample performance of the models 

demonstrate that the variable selection procedure from West et al. (2019), where these 

statistics are extracted from, yielded a reasonable list of predictors for our target response 

propensity. From that point, we are concerned with the case-level differences from the 

target propensity that the different methods produce. 

Then, we generated daily predictions of response propensity based on contact history data 

accumulated prior to each day. Our baseline predictions came from the model using only 

accumulating current round paradata. Our proposed predictions came from the model that 

also incorporated prior information from expert opinion. Additionally, we included 
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predictions that incorporate prior information from historical data, as presented in West et 

al. (2019). In that paper, the authors found that the historical data method performed the 

best in their application. We include the historical data method here so we can understand 

how well the expert elicitation method performs when compared to both the “current data 

only” method and one of the historical data methods evaluated in West et al. (2019). 

Prediction of daily response propensity for each of these three methods is carried out just 

as it would have been if the approach were to be employed during data collection. For 

each of the five quarters of interest, we use the accumulated contact attempt record 

information (with a screener response indicator for each record) up to day d to estimate 

the coefficients for the discrete time logistic regression model for that data collection 

period. Then we use those coefficients to predict the response propensity at the next 

contact attempt for all cases who were nonrespondents on day d. We repeat this for each 

day of data collection from Day 7 to Day 84.  

Using only the current quarter of paradata, the response propensity, 𝑝̂𝑝𝑖𝑖𝑖𝑖, was modeled as 

follows: 

             𝑝̂𝑝𝑖𝑖𝑖𝑖 = 𝑝̂𝑝(𝑦𝑦𝑖𝑖𝑖𝑖 = 1|𝑋𝑋𝑖𝑖𝑖𝑖) =
exp�∑ 𝛽̂𝛽𝑣𝑣𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉

𝑣𝑣=0 �
1 + exp�∑ 𝛽̂𝛽𝑣𝑣𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉

𝑣𝑣=0 �
                      

where 𝑦𝑦𝑖𝑖𝑖𝑖 is the response status for the 𝑖𝑖𝑡𝑡ℎ case after a contact attempt on the 𝑑𝑑𝑡𝑡ℎ day, 

and 𝑋𝑋𝑖𝑖𝑖𝑖 is the set of predictors 𝑣𝑣 for the 𝑖𝑖𝑡𝑡ℎ case after the 𝑑𝑑𝑡𝑡ℎ day. These predictors may 

be fixed (e.g., geographic predictors) or time-varying (e.g., prior contact status). The 𝛽̂𝛽𝑣𝑣 

are estimated coefficients for the 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 predictors. They are estimated from the likelihood 
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in equation (5) based on the contact attempt records that have been accumulated through 

day 𝑑𝑑.  

𝐿𝐿�𝛽̂𝛽0, … , 𝛽̂𝛽𝑣𝑣� = ���
exp�∑ 𝛽̂𝛽𝑣𝑣𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉

𝑣𝑣=0 �
1 + exp�∑ 𝛽̂𝛽𝑣𝑣𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉

𝑣𝑣=0 �
�
𝑦𝑦𝑖𝑖𝑖𝑖

�1 − �
exp�∑ 𝛽̂𝛽𝑣𝑣𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉

𝑣𝑣=0 �
1 + exp�∑ 𝛽̂𝛽𝑣𝑣𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉

𝑣𝑣=0 �
��

(1−𝑦𝑦𝑖𝑖𝑖𝑖)𝑑𝑑

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

The only difference between the target prediction and the baseline, current-data only 

method is the time at which the prediction is made. For the target predictions, all contact 

attempt records from a given quarter are used (𝑑𝑑 is after the last contact attempt is made 

in a given quarter); for the baseline method, only data accumulated through day 𝑑𝑑 are 

used.  

In a Bayesian setting (Gelman et al. 2013), the likelihood matches the frequentist 

formulation. The only estimated parameters in this expression are the 𝛽̂𝛽𝑣𝑣, and so these are 

the parameters for which priors are defined. As described in Section 3.4, we assumed a 

normal distribution, 𝛽𝛽𝑣𝑣~𝑁𝑁(𝜇𝜇𝑣𝑣,𝜎𝜎𝑣𝑣2), for our priors with the mean and variance based on 

our expert elicitation procedure. The posterior multiplies the prior over the parameters in 

the likelihood to combine the information, as shown in equation (6): 

𝑝𝑝𝑝𝑝𝑝𝑝�𝛽̂𝛽0, … , 𝛽̂𝛽𝑣𝑣� = ����
exp�∑ 𝛽̂𝛽𝑣𝑣𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉

𝑣𝑣=0 �
1 + exp�∑ 𝛽̂𝛽𝑣𝑣𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉

𝑣𝑣=0 �
�
𝑦𝑦𝑖𝑖𝑖𝑖

�1
𝑑𝑑

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

− �
exp�∑ 𝛽̂𝛽𝑣𝑣𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉

𝑣𝑣=0 �
1 + exp�∑ 𝛽̂𝛽𝑣𝑣𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉

𝑣𝑣=0 �
��

(1−𝑦𝑦𝑖𝑖𝑖𝑖)

� × �
1

�2𝜋𝜋𝜎𝜎𝑣𝑣2
𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
�
𝛽𝛽𝑣𝑣 − 𝜇𝜇𝑣𝑣 
𝜎𝜎𝑣𝑣

�
2

�
𝑣𝑣

𝑣𝑣=0

   

In the Bayesian version of the prediction, it is clear that the priors add additional 

information to the prediction. This can be beneficial when the likelihood is based on very 
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sparse data, or partial data that are not representative of the full data collection process, 

both of which occur earlier in the data collection process. Code in the SAS 9.4 

programming language that can be used to carry out these predictions is available in the 

online supplementary materials.  

For each method, we will compare predictions for each contact attempt on each day of 

the data collection quarter to the “target” predictions (based on all cumulative data) in 

order to generate daily estimates of the bias and root mean squared error (RMSE) for the 

predictions. The mean daily bias for the 𝑚𝑚𝑡𝑡ℎ method is defined as: 

             𝐵𝐵𝑚𝑚 =
1
𝑛𝑛
� �𝜌𝜌�𝑚𝑚𝑖𝑖 − 𝜌𝜌𝑖𝑖�

𝑛𝑛

𝑖𝑖=1
                                          

and the daily RMSE for the 𝑚𝑚th method is defined as: 

            𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑚𝑚 =  �
1
𝑛𝑛
� �𝜌𝜌�𝑚𝑚𝑖𝑖 − 𝜌𝜌𝑖𝑖�

2𝑛𝑛

𝑖𝑖=1
                                  

We then summarized those estimates using boxplots for three different parts of data 

collection: early (day 7 – 30), middle (day 31 – 60), and late (day 61 – 84).  

The end-of-data-collection response propensity is not the only possible target, but this 

choice does allow us to evaluate whether the use of Bayesian approaches with 

informative priors can reduce error in the predictions of response propensity at a given 

contact attempt versus using only current round paradata. Additionally, we will be able to 

evaluate whether the use of expert opinion (in the absence of historical data) can perform 

similarly to the historical data, were it available.  
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3.4 Results 

3.4.1 Descriptive Statistics for Selected Priors 

We first wanted to understand if ISR experts have different expectations than Census 

experts, potentially due to the varying familiarity with NSFG or simply being a part of a 

different survey organization. We also collected information about the experts’ length of 

experience with survey data collection, thinking opinion may vary with length of 

experience and more experienced managers may provide more useful information. We 

then examined distributions of the individual experts’ betas, generated using Equations 

(1) and (2) above, by organization and experience level. Here we provide examples of 

these distributions to illustrate similarities and differences in the provided opinions. Due 

to the small sample sizes, we do not provide tests of significance with respect to these 

differences. Instead, we are interested in the means and general trends of the expert 

opinion by category in order to understand, at a high level, if different types of experts 

provide different information.  

We first examined distributions of coefficients related to two time-varying covariates, 

Contact Status and Concerns Status. Contact Status had three possible response 

categories: if there was ever contact with the sample member, contact on the previous 

attempt, or if there had never been contact with the respondent, which was used as the 

reference category. Concerns Status had four possible response categories: if concerns 

were ever expressed by the sample member, if concerns were expressed on the previous 

visit, if strong concerns were ever expressed, or if no concerns were ever expressed (the 

reference category). We looked at how responses differed by organization (Figure 11 and 

Figure 13) and level of experience (Figure 12 and Figure 14).  
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For both variables, we found largely the same results. There were no large differences 

found in the point estimate for the priors by survey organization, shown.  

 
Figure 11. Coefficients for Contact by Organization 

 
Figure 12. Coefficients for Contact by Experience 

When examining the priors by level of experience (Figure 12 and Figure 14), 

interviewers with 0-4 or 5-10 years of experience generated similar point estimates for 

the betas, while experts with fifteen or more years of experience showed differences with 

respect to the point estimates. Specifically, experts with 15 or more years of experience 

appear to perceive, on average, that any one covariate has less of an impact on response 

propensity than do experts with less experience.  
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Figure 13. Coefficients for Concerns by Org 

 
Figure 14. Coefficients for Concerns by Experience 

Other questionnaire items showed more clear differences between the survey 

organizations. Figure 15 shows the effect of various types of listing procedures on 

response propensity, versus listing alone on foot. Here, there are not only differences in 

the means by survey organization, particularly for listing in a car with another person and 

on foot with another person, the means are in the opposite directions from the reference 

category, and the Census Bureau estimates are highly variable compared to estimates 

from ISR. In this particular case, feedback showed that Census Bureau experts did not see 

a link between listing method and response propensity, resulting in highly variable 
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responses. We discuss the additional expert feedback that we received on the survey later 

in Section 3.5.  

 
Figure 15. Estimated Betas for Listing Procedure by Organization 

Figure 16 below displays the distributions of the betas by survey organization for the 

effect of evidence of a language other than English being spoken at home. Here, Census 

Bureau experts feel that evidence has a more negative effect on response propensity than 

ISR experts do. This may have to do with differences in the availability of bilingual 

interviewers or language specialists.  

 
Figure 16. Estimated Betas for Likely Non-English Speaker by Organization 
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Understanding these similarities and differences is important for selecting the most 

appropriate experts to interview. Depending on the survey of interest, it might be more 

important to select interviewers with specific skill sets, such as language specialties. It 

may also affect which questions are included on the questionnaire, or which priors are 

actually used in the prediction model. In the case of listing procedure, the feedback 

obtained might suggest ignoring the prior information for some or all of the experts, and 

either using an uninformative prior or dropping the variable from the model.  

3.4.2 Comparison of Methods 

For each quarter, we treated the final prediction of response propensity, based on all 

accumulated contact data for the quarter, as the unbiased “target” prediction of response 

propensity. For each method, we then generate daily estimates of bias and RMSE with 

respect to the target prediction. Figure 17 through Figure 22display the performance of 

the Bayesian method using expert elicitation (EXPERT) to the current data-only method 

(Standard) and the precision-weighted prior Bayesian method (PWP) from West et al. 

(2019) that incorporates historical data. Our primary interest was to evaluate whether 

predictions generated using priors derived from expert opinion would be of higher quality 

than those generated using current data only, assuming historical data were not available 

for use. However, we were also interested in how the priors from expert opinion perform 

versus priors from historical data, which were evaluated in West et al. (2019). Because 

this was a retrospective analysis, we were able to examine both of these questions. Figure 

17, Figure 19, and Figure 21 present the summarized distributions of estimated bias, 

while Figure 18, Figure 20, and Figure 22 present the summarized distributions of 

estimated RMSE.  
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Figure 17 and Figure 18 focus on the early portion of data collection, from day 7 through 

day 30 (24 days). For each quarter, the 24 daily estimates of bias (Figure 17) or RMSE 

(Figure 18) were summarized using box plots. Early in data collection, the expert 

elicitation (EXPERT) method has a small but inconsistent effect on the bias and RMSE 

versus the standard method. For example, in quarters 19 and 20, the EXPERT method 

results in mean, median, and intraquartile ranges of both the bias and RMSE of the 

predictions that are slightly closer to zero than the Standard method, signifying an 

improvement. However, in quarter 16, the EXPERT method performs worse than the 

Standard method with respect to the mean and median values of bias and RMSE, and 

delivers no improvement in quarter 17. Overall, however, neither the PWP nor the 

EXPERT method offer consistent improvement over the Standard method early in data 

collection.  

 
Figure 17. Bias in Propensities by Quarter (Early) 
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Figure 18. RMSE of Propensities by Quarter (Early) 

 

Figure 19 and Figure 20 below represent the middle portion of data collection from day 

31 to day 60. Beginning on day 31, there are noticeable reductions in the bias and RMSE 

of predictions for the EXPERT method. In all five quarters, the central tendencies of both 

the bias and the RMSE, as well as the intraquartile range, are shifted towards zero versus 

the Standard method. Further, in quarter 19, neither of the metrics have interquartile 

ranges that overlap between the Standard and EXPERT methods. For the most part, the 

PWP method continues to perform at least as well as the EXPERT method on measures 

of bias and RMSE, though the EXPERT method is certainly competitive, particularly in 

quarters 18 and 20. Here, unlike in the early portion of data collection, there is a clear 

benefit to using priors from expert elicitation if historical data are not available.  
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Figure 19. Bias in Propensities by Quarter (Mid) 

 
Figure 20. RMSE of Propensities by Quarter (Mid) 

During the final third of data collection, shown below in Figure 21 and Figure 22, we 

continue to see that the EXPERT method leads to reduced measures of bias and RMSE 

versus the Standard method. These improvements are generally smaller than those found 

in Figure 19 and Figure 20. Over the course of data collection, as more data are 

accumulated, it is likely that the Standard method improves in its ability to predict 

response, leading to smaller differences between the Bayesian methods and the Standard 

method. Additionally, it is more mixed as to whether the historical method or the expert 

opinion method is superior.  
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Figure 21. Bias in Propensities by Quarter (Late) 

 
Figure 22. RMSE of Propensities by Quarter (Late) 

These results show that for this application, the PWP method results in the most 

consistent improvements in bias and RMSE of predictions of response propensity. 

However, the results also show that, in the absence of historical information, predictions 

that incorporate expert opinion still generally outperform the standard method, and can be 

a useful way to improve predictions of response propensity during data collection for the 

purposes of an RSD.  

3.5 Feedback from Survey Experts on Prior Questionnaire Development 

Within two weeks of receiving questionnaire responses, we elicited feedback from 

experts in order to uncover issues with the questionnaire and identify potential areas for 
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improvement. The experts had feedback in three main areas: the concepts identified in the 

questionnaire, how those concepts were translated into variables and categorical 

subgroups, and the lack of anchor points throughout the questionnaire.  

The design of the questionnaire was driven by the variables available from the frame or 

from paradata. However, the concepts measured in the questionnaire did not always 

match concepts considered by the recruited experts. In our questionnaire, the experts 

provided two examples of this issue. In one instance, the predictive covariates from 

existing data sources were not meaningful concepts for survey managers. Mail Delivery 

Point Type is a categorical variable providing information on how mail is delivered to an 

address. This variable comes from the commercially available data and has several 

different categories that were significant in the variable selection model discussed in 

Section 3.2. However, when we included this variable (and all significant categories) on 

the expert questionnaire, only three out of 20 survey managers responded for any of the 

categories. During debriefing, survey managers explained that they did not have any 

experiential evidence that there was a relationship between response propensity and mail 

delivery. As a result, the survey managers generally declined to provide information for 

this concept.  

On the other hand, survey managers explained that they do make use of concepts that 

were not included on the questionnaire. When providing feedback, one survey manager 

from the Census Bureau mentioned “perceived safety in a neighborhood” as a predictor 

of response propensity. In this case, this category was not included on the questionnaire 

because it was not a significant predictor in the response propensity model described in 

Section 3.2. It may be worthwhile to elicit information about predictors suggested by 
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field experts, in order to capture information about predictors the experts find informative 

or predictive. This would allow confirmation that those particular items do not offer more 

explanatory power than the items retained from the propensity model.  

In addition to defining meaningful concepts, it was also important to translate each 

concept into a variable that generated informative predictions, to the extent possible. This 

included determining whether a variable should be categorical or continuous, and, if 

categorical, how to define subgroups. Again, we found two clear examples of this issue. 

First, there were some instances where the categories that we provided in the expert 

questionnaire were not the same as those in the baseline model. As an example, age of 

householder, sourced from the sampling frame, was defined in the current model as 

having four categories: 18 - 44; 45 - 59; 60+; and Missing. In the questionnaire, we only 

included three categories to simplify the response options: Under 50; 50+; and Missing. 

Age of the householder is provided on the sampling frame as a continuous variable, so in 

this instance, the different classifications posed no issues for generating predictions of 

response propensity. However, if the questionnaire included categories that were not able 

to be derived from the existing frame or paradata, the priors derived from expert 

information would not easily translate to covariates in the existing data.  

The survey experts also suggested that the functional form of some of our variables was 

not ideal. For example, on the questionnaire, we asked the experts to predict the change 

in attempt-level response rates for every $10,000 increase in household income over the 

median. At least one expert suggested that the relationship was likely not linear, and a 

better way to elicit opinion might be categorical, such as using quartiles of household 

income. This would better represent what the experts suggested, which was that the top 
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and bottom quartiles of household income would have a lower attempt-level response rate 

than those in the middle two quartiles.  

The experts also provided feedback regarding anchor points. In designing the 

questionnaire, we made a conscious decision to only include the overall attempt-level 

response rate, 24%, in the introduction, leaving it up to respondents to generate all 

subgroup level response rates. This was primarily to avoid generating anchoring bias 

among the survey expert responses. However, while survey managers were comfortable 

ordering different subgroups of a variable, from highest to lowest predicted response 

rates, and even defining relative differences, they were less comfortable defining an 

initial response rate for one category, in order to then provide response rates that reflected 

the subgroup ordering and relative differences. We found evidence of this in the response 

data itself. Survey managers provided responses for nearly all questions, but on occasion, 

the predicted response rate ranges varied significantly (e.g., one manager might have all 

subgroup response rates in a range of 20% to 40%, while another would provide 

responses in a range of 60% or 80%). One survey manager suggested providing an 

anchor point for one subgroup in the categorical variable, from which they could then 

provide the relative differences for the remainder of the subgroups. We provided an 

overall anchoring point in order to facilitate estimates of effect levels. The 24% value 

acts as an “intercept” attempt-level response rate, from which specific categories of the 

questionnaire deviate. However, we did not provide any category-level anchor points in 

an effort to avoid anchoring bias. There was a concern that if we provided the overall 

attempt level response rate (24%) in addition to an anchor point for one of the categories, 

the experts would focus on the relationships between categorical response rates and the 
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overall response rates. For example, had we provided the 24% overall attempt-level 

response rate, and a response rate of 35% for female respondents, the expert may ignore 

their own expertise to provide a response rate around 13% in order to have the categorical 

response rates roughly match the overall attempt-level response rate. Our goal was to 

provide the minimum necessary amount of background information to allow the experts 

to use their own judgement to the fullest extent possible.  

3.6 Discussion 

We hypothesized that in the absence of historical survey data, survey researchers would 

be able to generate priors from the experiences of survey managers that lead to improved 

predictions of response propensity over those made from just the data available for the 

current round of data collection. The results of this study demonstrate that eliciting expert 

opinion is a useful way to generate priors and improve prediction of response 

propensities. Particularly after the first month of the NSFG data collection process, priors 

generated from expert opinion resulted in predictions of next-contact response propensity 

with both lower bias and RMSE than predictions based on only current round data. One 

potential explanation for why the Bayesian methods did not improve the predictions in 

the first month of data collection is that the early experience in any quarter is highly 

variable. That is, in Bayesian terms, the likelihood varies from quarter to quarter in the 

first few weeks. The observed data are somewhat more stable after 30 days, but do not 

normally align with the final model until near 60 days into the quarter. Hence, it is during 

that interval – i.e. after the first 30 days but before the 60th day of the quarter – that the 

prior information is most useful.  
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This prior elicitation process is significantly more involved than building models from 

existing historical data. Developing a questionnaire, conducting data collection with 

survey experts, aggregating and organizing the response data, and generating priors may 

be time consuming, particularly as the number of covariates increases. As a result, 

eliciting expert opinion for generating priors may not always be the ideal solution. In our 

experience, the large majority of the time and effort was spent on the initial development 

of the questionnaire. We would expect changes, adaptations, and future implementations 

to require much less effort. Experts themselves spent, on average, less than an hour on the 

actual survey. Assuming a pay rate of $50 per hour, the actual elicitation portion of the 

survey would cost roughly $1,000. We can imagine numerous applications where this 

type of expenditure would be worth this cost, as in the case where a new survey has a 

specific target population that may not have coefficients well-estimated by the published 

literature. Further, this method may be useful for mathematically incorporating expert 

opinion into predictions of response rates for budgetary purposes, sample sizes, and 

power calculations. Given the high costs of face-to-face data collection, improved 

response propensity predictions may help data collection managers make better decisions 

in an adaptive or responsive design framework. Evaluating of the ability of predictions 

based on such an approach to improve data collection outcome is an interesting direction 

for future research. We are currently pursuing experimental work in this area. 

Through the process of designing and implementing the questionnaire, debriefing the 

survey managers, and analyzing the collected data, we identified four areas survey 

researchers should consider when developing and implementing expert elicitation 

surveys. These areas include the selection of concepts for inclusion into the survey; the 
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translation of those concepts into covariates and/or categories; the potential need for 

anchor points for categorical covariates; and lastly, the selection of experts for the survey. 

Attention to these areas will lead to information from experts that is more helpful for 

generating priors, which are ultimately combined with current data to generate posterior 

predictions of response propensity.  

For this particular questionnaire, through debriefings and response analysis, we observed 

several opportunities for improvement in the design process for expert surveys. Mindful 

selection of concepts and the subsequent translation of categorical variables will help 

experts provide more informative prior expectations. By working with experts to 

determine which data fields on the frame and in the paradata effectively translate to 

concepts used by survey managers, the value of the elicited information may increase. 

Additionally, it may uncover concepts used by survey managers when developing ad hoc 

expectations for response propensities that are not currently provided by data systems. 

There may be an opportunity then for expert opinion to motivate a modification of 

existing systems, either by appending an additional piece of information from the survey 

frame (if available), or capturing this concept in paradata, potentially through interviewer 

observations.  

In order for experts to provide opinions on attempt level response rates for a survey, 

particularly when they are unfamiliar with the exact topic questionnaire, it may be helpful 

to provide context to the survey managers about general attempt-level response rates, or 

even provide an anchor point for one category of a variable. Providing an anchor point 

for a particular subgroup may be a reasonable solution to this issue, but it may increase 

anchoring bias in the remainder of the experts’ responses. Additionally, in the case of 
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categorical covariates in a logistic regression, it may not be absolutely critical. 

Generating priors requires constructing odds ratios, using one subgroup as a reference 

category. Because of this, odds ratios focus on the relative difference between a category 

of interest and a baseline category more than point estimates of response propensities 

provided by the survey managers. As a result, if the ordering and relative differences are 

accurate, that may be sufficient for generating relatively useful priors.  

Associated with this is the fact that continuous variable were queried about on a linear 

scale, while the logistic regression modeling assumes a log-odds scale. For categorical 

variables this transformation is straightforward, since there is only a fixed set of options 

for the categorical variable to take; for continuous covariates, however, extrapolations 

outside of the specific values considered lead to different predictions. Thus, if an expert 

suggests that an additional contact attempt increasing the probability of a successful 

contact from 5% from a 24% baseline, this yields a beta parameter of 0.26; thus five 

contact attempt increases the odds of contact by 𝑒𝑒(5∗0.26) = 3.67, to 54%, instead of the 

49% on the linear scale, and at 81% after transformation from the log-odds scale for 10 

contact attempts, vs. 74% on the original linear scale. Hossack, Hayes and Barry (2017) 

have proposed eliciting priors at a series of quantiles of the continuous predictor values in 

order to better approximate the log-odds transformation; we leave this as a future 

extension. 

An iterative process to address these issues is difficult to carry out without collaboration 

with the targeted experts and may not be possible in all situations. However, if it is 

possible to first validate a questionnaire with some experts, keeping in mind the potential 

biases like overconfidence and anchoring biases, the resulting questionnaire may have 
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more predictive power. Similarly, the SHELF method, proposed by O’Hagan (2019) 

relies on a significant amount of interaction with the experts throughout the elicitation 

process in order to elicit a probability distribution form each expert. While this method 

can be highly informative, providing both a point estimate and a measure of uncertainty 

for each expert’s opinion, the number of items in our questionnaire would not have 

allowed for this level of individual interaction.  

We also used the variability in the point estimates across our sample of experts to 

determine the variability in the prior distribution. This simplified the task of constructing 

the prior, since the experts were required only to supply point estimates, not estimates of 

uncertainty. This required a relatively large sample size of experts compared to many 

such elicitation studies. It also allowed us to take advantage of the Central Limit Theorem 

to utilize a normally-distributed prior, which in turn allowed more direct comparisons 

with West et al. (2019); alternatively, more heavy-tailed priors (e.g., t-distributions with 

small degrees of freedom) could be used. We did not rescale the prior to account for this 

sample size; one could construct a prior based on a “pseudo-sample size” of 𝑚𝑚 by 

multiplying 𝑆𝑆𝑆𝑆 �𝛽̂̅𝛽𝑗𝑗𝑗𝑗� in (4) by �𝑛𝑛/𝑚𝑚 (that is, standard deviation of the arithmetic mean 

by the square root of 𝑚𝑚 rather than the square root of the actual number of respondents). 

Alternatively, one could elicit estimates of uncertainty as well as point estimates from the 

expert sample, and use information for both the direct elicitation and the sampling 

variability to construct the variance of the prior; we leave this to future research. 

A limitation of our approach is that we used historical data to determine the key 

covariates to include in our survey of experts. We did this in order to make a fair 
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comparison with historical data in our analysis, but in practice one might at best have 

data available from other studies with greater or lesser degrees of similarity. Indeed, one 

might have no historical data whatsoever from which to build a propensity model, in 

which case one would have to rely on experts’ opinion about potentially predictive items 

to develop an effective model for response propensity. As noted in Section 5, querying 

experts for the key covariates may have advantages over model selection, even if 

historical data is available from similar studies.  

Finally, it is important to elicit expert opinion from appropriate individuals, based on the 

survey characteristics. Experts at ISR were identified through discussions with survey 

managers to identify appropriate individuals. At the Census Bureau, we worked with 

senior leadership in the Field Directorate to identify the two “most knowledgeable” 

survey managers in each of the six regional offices. This provided geographic coverage 

over the entire country and, we hoped, significant experience in demographic surveys that 

could be translated into priors for response propensity prediction. We did not include any 

other requirements in our identification of survey managers for interview. After 

collecting responses, we found that survey experience ranged anywhere from ‘0-4 years’ 

to ’15 or more years’, and we found potential correlations between experience and 

predictions of attempt-level response rates predictions for some covariates. Due to the 

small sample size, we cannot conclude that these correlations are meaningful. However, 

it is useful to consider whether additional requirements would be useful when identifying 

experts. Relevant experience, either with respect to survey topic (e.g., health, education, 

etc.), operations (e.g., multimode vs. in-person interviewer-administered), or other 

characteristics, may lead to more informative expert opinion for incorporating into priors.  



95 

4. Optimizing Data Collection Interventions to Balance Cost and Quality 
Under a Bayesian Framework  

Stephanie Coffey1, Michael R. Elliott2,3 
1 Joint Program in Survey Methodology, University of Maryland 

United States Census Bureau, Washington, DC 
2 Survey Research Center, Institute for Social Research, University of Michigan 

3 Department of Biostatistics, University of Michigan 
 

Abstract 

All aspects of a survey design, from the length of the survey period, to the mode of data 

collection, to individual data collection features like incentives or mailings, will affect 

both who responds to a survey and how much it costs to obtain their response. In order to 

conduct data collection successfully in a budget-conscious environment, decisions related 

to survey design require balancing concepts of data quality and costs. Recently, 

responsive survey designs have emerged as a way to tailor data collection features to 

specific subgroups or specific cases within a data collection period in order to save costs 

and/or improve survey outcomes. For the most part, however, responsive designs in the 

survey methodological literature do not incorporate actual survey response data into their 

decision framework. Here, we report on a responsive design experiment in the National 

Survey of College Graduates that incorporates optimization as a way to minimize data 

collection costs for a small increase in the root mean squared error of a key survey 

estimate. We demonstrate both the benefits of Bayesian methodology for the optimization 

problem as well as the ability to incorporate optimization during live data collection. 

Results include a comparison of the data collection costs and RMSE of a survey estimate 

in the experimental treatment group to a control group that follows the standard NSCG 

data collection pathway. 
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4.1 Introduction 

Survey design requires balancing concepts of data quality and costs, and understanding 

the cost and quality properties of different data collection features is critical for managing 

survey operations and for making improvements in future survey rounds. Information 

about how successful a particular data collection feature is at yielding response, or how 

the historical response behavior of sample cases predicts their future behavior, can be 

used to better estimate survey data collection outcomes, like expected costs and response 

rates. This, in turn, can offer insight on how to offer or mix modes, how to target 

incentives, and generally how to adapt data collection features to meet survey cost and 

quality goals.  

Developing expectations regarding the performance of different response modes can help 

determine which modes to offer in a survey, and additionally, how to order those modes. 

Survey organizations choose to mix modes in order to balance competing priorities and 

attract different types of respondents. De Leeuw (2005) provides an overview of mixed- 

or multimode surveys, and describes their use as the “opportunity to compensate for the 

weaknesses of each individual mode at affordable cost”. Survey operations in a 

multimode survey may vary the types of contacts, the response options provided, or both, 

and the different modes may be offered simultaneously or in a sequential order. As de 

Leeuw (2005) points out, multimode surveys have most commonly been used to reduce 

nonresponse error. Cost savings gained by using less expensive modes may allow for a 

longer data collection period. Alternatively, different modes may appeal to different 

sample persons, and so offering multiple modes may reduce the selection bias that results 

from offering a single mode. Multimode surveys still follow a standardized data 



97 

collection protocol for all cases, but offer a more diverse set of contact and response 

options within that standardized protocol.  

Adaptive and responsive survey designs take this framework further by relaxing the 

traditional standardization in order to adapt data collection features to sample members in 

pursuit of some data collection goal. Schouten et al. (2017) discuss adaptation as a 

concept, pointing out that sample members are different. This results in different 

preferences for completing a survey request, and may require different features to elicit 

that cooperation. As a result, predictions of data collection characteristics such as 

response propensity (West et al. 2020), response mode (Schouten et al. 2018), and costs 

(Wagner, West and Elliott 2020) are critical for making interventions in adaptive and 

responsive designs.  

Typically, metrics such as response rate and response propensity are used as proxies for 

data quality when making data collection interventions. This leads to interventions where 

the highest response propensity cases are prioritized to increase response rates (Peytchev 

et al. 2010); cases with the largest base weights are prioritized in order to decrease the 

sizes and variability of nonresponse adjustments (Wagner et al. 2012); or extra effort is 

applied to under-represented cases to improve balance (Coffey, Reist and Miller 2019) , 

among other examples. However, these methods ignore the impact each case might have 

on actual survey estimates.  

Ideally, survey methodologists would know whether a particular sample member would 

respond to a particular data collection pathway or feature (response propensity), the data 

collection resources associated with that pathway or feature (cost), and the ability of the 
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sample member to impact the quality of the information collected in the survey (response 

data). If this information were known, sample members could be assigned to the optimal 

data collection pathway to balance costs and quality. For example, if some sample 

members would respond to inexpensive pathways, this allows other sample members to 

be assigned to more expensive pathways, potentially increasing response rates, and 

decreasing the variance of estimates generated from survey response data while staying 

within the survey budget. Alternatively, if the assignment of all sample members to their 

most effective pathways for data quality would exceed the survey budget, some sample 

units could be assigned to cheaper data collection modes based on how impactful a 

sample member would be on the survey data.  

These parameters of interest are not known prior to data collection, however, so we must 

rely on predictions of these parameters to effectively allocate sample members to 

different data collection pathways. Schouten et al. (2018) simulate how the data 

collection pathway assignment for cases could be generated prior to the start of data 

collection, or in-between rounds of data collection for a survey that is in the field 

regularly. The authors utilize a Bayesian framework to incorporate historical information 

into predictions of response propensity, costs, and survey response data in order to 

determine whether cases should be assigned to a self-response internet mode, an 

interviewer-assisted face-to-face mode, or a combination. In the authors’ examples, the 

predictive models based on historical data are used to define fixed business rules that 

assign cases to treatment paths.  

It is also possible to make decisions during the data collection period, which would allow 

optimization based not only on the information obtained from prior rounds of data 
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collection or external sources, as in Schouten et al. (2018), but also on updated historical 

expectations given accumulating information from the current round. Paiva and Reiter 

(2017) demonstrate, through simulation, the implementation of stopping rules based on 

accumulating survey response data. Adapting or optimizing data collection pathways 

during a data collection period can be useful when a survey has a long data collection 

period, has natural decision points like mode changes, or when there is enough time or 

change between implementations of a survey that the predictive power of models based 

only on historical data suffers. However, in order to intervene in an effective way, it is 

important that the predictions upon which the interventions are made are as accurate as 

possible. West, Wagner, Coffey and Elliott (2020) and Coffey, West, Wagner and Elliott 

(2020) show that, when data collection interventions are carried out during a data 

collection period in a responsive or adaptive design, a Bayesian framework can improve 

predictions by statistically leveraging both historical data and accumulating data from the 

current round of data collection.  

This manuscript discusses a dynamic adaptive design experiment in the 2019 National 

Survey of College Graduates (NSCG), where data collection interventions were carried 

out in order to minimize costs while avoiding a large increase in the root mean squared 

error of a key survey estimate, the mean respondent-reported salary. Throughout the 2019 

data collection period, we generated predictions for overall response propensity, response 

propensity by phase, data collection costs, and salary for all non-responding cases. We 

used these predictions at natural points in data collection, when more expensive modes 

were being introduced, in order identify a subset of nonresponding cases to not receive 

the new mode. The selection of cases was based on their overall response propensity and 
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predicted value of salary. The goal of this experiment was to demonstrate that 

interventions could be applied during data collection that would reduce data collection 

costs without reducing the quality of survey response data.  

The remainder of this manuscript is organized as follows. Section 4.2 describes the 

National Survey of College Graduates and includes information on the sample design, the 

data available for this application, data collection operations, and past experiences with 

adaptive and responsive designs. Section 4.3 discusses the predictive models for the 

survey parameters of interest, including overall response propensity, respondent-reported 

salary, and data collection costs. We demonstrate, using historical data, that generating 

predictions under a Bayesian framework results in less bias and error in predictions of 

survey parameters of interest, such as response propensities and survey responses, 

particularly in the early and middle parts of the NSCG, when interventions are available 

and more likely to have an impact on costs. These results add to the recent evidence that 

Bayesian methods for prediction perform better than methods relying on either only 

historical survey data, or only current, accumulating data (West et al. 2019; Coffey et al. 

2020). Section 4.4 explains the structure of our data collection experiment, including the 

experimental design, the planned intervention points, the steps of optimizing the selection 

of cases for the intervention, and the evaluation methods for the experiment. Section 4.5 

summarizes each of the three intervention points. Section 4.6 details the results of the 

experiment, and the manuscript ends with some discussion and directions for future work 

in Section 4.7.  
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4.2 Description of the Data 

4.2.1 National Survey of College Graduates 

The National Survey of College Graduates (NSCG) is a longitudinal survey that collects 

information on the employment, educational attainment, and demographic characteristics 

of the college-educated population in the United States with a focus on those educated or 

employed in a science or engineering field. The National Center for Science and 

Engineering Statistics (NCSES) within the National Science Foundation (NSF) conducts 

the NSCG with the U.S. Census Bureau serving as the data collection contractor. In this 

data collection contractor role (and with active NCSES input), the U.S. Census Bureau 

designs and implements the data collection features and schedule for the survey, as well 

as any embedded experiments.  

The target population of the NSCG covers non-institutionalized individuals under the age 

of 76 with at least a bachelor’s degree who reside in the United States, as of the reference 

date for a given survey implementation. In 2010, the NSCG began implementing a 

rotating panel design with sample drawn from respondents to the American Community 

Survey (ACS), and past rounds of the NSCG. This means that for the 2015 NSCG, the 

new sample was drawn from the 2013 ACS respondents, and returning sample from the 

2013 NSCG included respondents to the 2011 and 2009 ACS that met the above-defined 

eligibility requirements (Fecso, Frase and Kannankutty 2012).  

The sample size for any given round of the NSCG is approximately 124,000 individuals, 

of which approximately 40% is new sample. The NSCG uses a stratified sampling 

design, and stratification cells are defined by demographic group, highest degree type, 

field of occupation, and field of degree. These classifications are derived from responses 
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to the ACS for the new sample, and from responses to past NSCG interviews for 

returning sample. Within stratification cells, a combination of probability proportional to 

size or systematic random sampling (depending on the stratification cell) are used to 

select the NSCG sample.  

As NSCG cases are selected from ACS respondents, they inherit the ACS final person-

level weights as their initial “population weight” (Hall, Cohen, Finamore and Lan 2011; 

NCSES 2015). Those weights are then adjusted to account for sample selection in the 

NSCG to obtain the NSCG base weights. The variability of weights from the ACS, in 

part due to subsampling in the ACS (U.S. Census Bureau 2014, pp 14-15), coupled with 

differential sampling within stratification cells leads to more variable weights than a 

typical national survey, which typically use a two-stage self-weighting design. (U.S. 

Bureau of Labor Statistics and U.S. Census Bureau 2006, Chapter 3). Additionally, cases 

in the NSCG are assigned replicate weights prior to data collection that are then subject 

to adjustments including nonresponse and raking in order to obtain a set of final replicate 

weights that can be used for point and variance estimation (White and Opsomer 2011, 

2012; Opsomer, Breidt, White and Li 2016). New cases, set to receive their first 

interview, are referred to throughout this document as “New Cohort”. Returning cases, 

who have been interviewed at least once, are referred to as “Old Cohort”. For example, 

the 2015 NSCG New Cohort was sampled out of the 2013 ACS, and will be considered 

Old Cohort during 2017, 2019 and 2021. New cohort nonrespondents are dropped after 

the first interview period and are not included in the old cohort. This means that all old 

cohort cases have responded at least once to the NSCG. The adaptive design experiment 

in this manuscript only includes the New Cohort. 
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4.2.2 NSCG Data Collection Schedule 

The data collection schedule in the NSCG follows a sequential multimode design and 

runs for approximately 26 weeks every other year. Data are collected using one of three 

modes: self-administered web interviews, mail questionnaires, and telephone interviews. 

Prior research (Finamore and Dillman 2013) on mode ordering and response mode found 

that NSCG sample members are most likely to respond via the mode offered initially, 

which led to a mode sequencing most sensitive to cost. 

A “web push” phase lasts for the first eight weeks of data collection. During this time, 

invitations are mailed with a username and password requesting the sample person to 

respond via the web instrument. In week 8, a paper questionnaire is introduced for 

nonrespondents who were unwilling or unable to respond by web. In week 12, remaining 

nonresponding cases are sent to a Computer Assisted Telephone Interviewing (CATI) 

operation for nonresponse follow-up (NRFU).  

Pre-defined “influential” cases, or those that have a high weighted response influence 

(Sarndal and Lundstrom 2008; Coffey and Reist 2014), also receive a prepaid $30 

incentive card with their Week 1 web invitation. There are other operations throughout 

data collection, including automated telephone reminders, email reminders, and postcard 

or letter mailed reminders. Additionally, there are exceptions to the traditional data 

collection pathway; for example, cases could call into the Telephone Questionnaire 

Assistance (TQA) line and request a paper questionnaire, or respond to the survey with 

an interviewer on the spot. Despite these exceptions, the vast majority of cases follow the 

traditional data collection pathway. Figure 23 displays the main characteristics of the 

typical NSCG data collection design (with reminder contacts noted with an “R”). 
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Figure 23. Major Scheduled Operations During the NSCG 

For the purposes of this paper, we can classify these operations into four data collection 

phases, as shown in Table 8 below. As data collection progresses, the variety of modes 

available to the majority of the sample population is increased.  

Table 8. Contact Phases in the NSCG 

Phase Primary Modes Weeks Days 
1. Web Push Phase Web 0 – 7 -6 – 49 
2. Mail Questionnaire Phase Web, Mail 8 - 11 50 – 77 
3. Telephone Follow-up Phase Web, Mail, CATI 12 – 17 78 – 119 
4. Late Follow-Up Phase Web, Mail, CATI 18 – 26 120 – 182 

 

It is expected, then, that the distribution of remaining sample members responding by 

particular modes will change as modes like mail or telephone are more widely 

introduced. Additionally, due to both the cumulative contacts, and the fact that modes 

introduced later are generally more expensive, the cost of earlier responders will be 

different than that for later responders.  

4.2.3 Data Sources 

Four sources of data were used for this application, in addition to the NSCG sample 

itself. First, because the NSCG is sampled out of the ACS, we were able to obtain 

response data to the ACS (Census 2019) at a point two years before a case entered the 
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NSCG. For a 2015 NSCG new cohort case, then, we have 2013 ACS response data. 

Some of the responses are used to carry out sampling for the NSCG, but we explored a 

large number of additional covariates as potential predictors of parameters of interest. We 

were also able to incorporate one piece of ACS paradata – the mode of response. The 

ACS, like the NSCG, has a sequential multimode design, and so response mode is an 

indicator of both resistance of the survey request and cost of obtaining the survey 

response.  

Second, we incorporated several types of paradata from the NSCG. The NSCG does not 

have an in-person interviewer component, so the majority of the paradata is operational, 

e.g., counts of log-ins to the web instrument; dates and types of outbound mailings; date, 

time and outcome of outbound telephone calls; and records of any incoming assistance 

requests coming from sample members. Operational paradata also includes undeliverable 

mail information from the US Postal Service (USPS 2009).  

Third, we have available to us the data collection costs of nearly all data collection 

features, including incentives, printing and mailing letters and questionnaires, post-data 

collection processing for paper questionnaires, and average costs for unproductive calls 

and telephone responses. These specific costs are provided by the survey operations team 

and allow us to estimate a case-level cost-per-case, rather than an aggregate average cost-

per-case. Table 9 below shows an example list of contact and response types and their 

costs in the NSCG. 
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Table 9. Sample Costs per Case for Data Collection Features in the 2015 NSCG 

Week Type Cost ($) 
N/A Fixed Development Costs 3.21 

0 Prenotice Letter 0.87 
1 Phase 1 Web Invitation Letter 0.93 
1 Phase 1 Questionnaire 3.09 
2 Reminder Letter 0.87 
5 Reminder Letter 0.98 
6 Reminder Letter 0.98 
8 Phase 2 Web Invitation 0.97 
8 Phase 2 Questionnaire Mailing 3.13 
9 Reminder Postcard 0.67 
12 Phase 3 Web Invitation (Start CATI) 0.78 
13 Reminder Letter 0.77 
16 Reminder Letter 1.26 
18 Phase 4 Web Invitation Letter 6.69 
18 Phase 4 Questionnaire Mailing 7.63 
20 Phase 4 Reminder Letter 1.26 
23 Phase 4 Reminder Letter 0.80 
24 Final Letter 0.79 

Several Automated Telephone Reminder 0.10 
Several Email Reminder 0.01 

Any Paper Response 24.72 
Any CATI Nonresponse Attempt 2.07 
Any CATI Response 45.91 
Any TQA Response 31.82 

 

Finally, we use the accumulating NSCG responses for predicting survey outcomes, as 

well as for evaluating those predictions against actual survey outcomes.  

4.2.4 Adaptive and Responsive Design in the NSCG 

Starting in 2013, the NSCG has incorporated adaptive survey design experiments into 

their data collection operations. The experiments have focused on different aspects of 

adaptive survey designs, starting with a proof of concept, maturing to a study on whether 

data quality metrics could be improved through dynamic interventions, and finally 
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focusing on automation of interventions. From the data quality perspective, past NSCG 

adaptive design experiments have focused on improving representativeness, a measure of 

data quality (Coffey, Reist and Miller 2019).  

While interventions were applied in support of this goal, the interventions were not made 

under any formal decision rule framework, nor did we prospectively predict the expected 

change in response or costs by implementing an intervention on a particular subset of 

cases. In other words, the cost savings and relatively stable response rates have largely 

“just worked out”. However, it is possible that we could have obtained better results by 

maintaining a neutral cost per case, and intervening on more cases (or reducing contact 

effort on fewer cases), which could have further improved response rates. Alternatively, 

we could have attempted to minimize cost without decreasing representativeness, as a 

way to find data collection resources available for reallocation without hurting the target 

data quality metric. Additionally, there is also no guarantee that, in the future, continuing 

to intervene as we have in the past will result in the same outcomes of cost savings and 

stable response rates. Further, while representativeness is often considered a proxy for 

nonresponse bias, the interventions made historically do not take into account any 

expected effect on key estimates, such as the root mean squared error or the size of 

nonresponse adjustments.  

In order to evaluate the effect of adaptive design on key survey estimates of the NSCG, 

while applying cost-efficient decision rules, we propose a dynamic adaptive design 

implementation under a Bayesian framework (Elliott 2017).  
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4.3 Predicting Survey Data Collection Parameters of Interest 

In order to make effective intervention decisions, we would ideally like to know, for a 

given sample member in a data collection pathway, if they will respond, and if so, when 

during the survey they will respond, and how they will respond. This information would 

allow us to allocate sample members to different data collection pathways in order to 

minimize costs while obtaining a given measure of data quality (or alternatively, 

maximize a measure of data quality for a fixed cost). We do not know these pieces of 

information a priori, however, and so we must rely on predictions. Further, as we want to 

make interventions during the data collection period, we will be relying on interim 

predictions, meaning we are generating predictions of end-of-data-collection parameters 

with only partially accumulated data.  

In this section, we define each survey data collection parameter necessary for our 

experiment. In the Introduction, we mentioned the need to predict response propensity, 

response data, and cost. We first discuss the methods by which we will evaluate the 

different prediction methods. For both response propensity and survey response data, we 

use historical NSCG data in order to compare three methods for estimating response 

propensity and the survey response data.  

1) The first method generates predictions using only data from the current survey 

implementation as paradata and response data accumulate. Model coefficients 

used in a predictive model for a survey parameter of interest are estimated using 

the accumulated data up through time 𝑡𝑡, and those coefficients are used to 

generate predictions for non-responding cases at time 𝑡𝑡. This means that over 

time, as new data is accumulated for open cases, the estimates of the coefficients 
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(and the resulting estimated parameters) may change. We refer to this method as 

the current method.  

2) The second method generates predictions using the complete set of paradata and 

response data from a prior implementation of the survey. Here, model coefficients 

are estimated using the full set of historical data, and are then applied to current 

round cases at each prediction time. In this case, the estimated coefficients are 

fixed, meaning that not only do the coefficients ignore any of the accumulating 

data during the current round, they also assume the values of the coeficients are 

constant. As a result, this method fails to account for uncertainty in the estimates 

of the coefficients. If all covariates in the predictive model are fixed, the 

predictions in the current round that are based on historical coefficients will never 

change. If on the other hand the predictive model includes time-varying 

covariates, a prediction for an individual case may change, despite the fixed 

coefficients, as the value of one of the covariates changes. We refer to this method 

as the historical method.  

3) Finally, the third method is a statistical combination of the first two methods. 

First, coefficients used in a predictive model for a survey parameter of interest 

and their standard errors are estimated using a past implementation of the survey, 

as in the historical method. Those coefficients and their standard errors are then 

used to define prior distributions which are then updated by the accumulating data 

for the current month. The resulting posterior estimates of the model coefficients 

are then used to generate predictions of survey parameters of interest in the 

current round. We refer to this as the Bayesian method. 
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We used the 2017 NSCG as our evaluation period for these three methods. For the 

historical and Bayesian methods, historical model coefficients and standard errors were 

estimated from the 2015 NSCG. The cases eligible for inclusion in this evaluation were 

those from the 2015 and 2017 NSCG adaptive design experiments. We identified these 

cases for two main reasons. First, there are often several experiments embedded in the 

NSCG, and we wanted to estimate coefficients that were based on the standard NSCG 

data collection survey design. The adaptive design experiments included both treatment 

(NSCG Adaptive Design Treatment, or NADT) and control (NSCG Adaptive Design 

Control, or NADC) group. These samples were both selected to be representative of the 

full data collection population and are 8,000 cases each. Therefore, the NADC group 

would serve as the set of cases from which we could evaluate the predictive power of 

these three different methods on a sample of the NSCG that was not confounded with any 

other experiments.  

For response propensity and survey response data, we used the 2015 NADC cases to 

conduct variable selection for a predictive model. We output and stored the estimated 

coefficients to use in both the historical and Bayesian prediction methods, as described 

above. Then, using the 2017 NADC, we generated predictions weekly or at the end of 

each phase for each of our parameters of interest during the 2017 data collection period, 

using the accumulating 2017 paradata and response data.  

In order to evaluate the three methods, we compared the weekly case-level predictions 

generated by each method to the end-of-data-collection case-level “target estimate” for 

each parameter. That target estimate was generated using the complete set of 2017 

paradata and response data at the end of data collection, after all information about the 
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data collection period was known and available. In the case of response propensity, we 

used the final case-level estimates of response propensity in the 2017 NADC as the target 

estimate. Similarly, for the response data, we used the final case-level reported salary for 

respondents as the target estimate. We evaluated the three methods on measures of mean 

prediction bias (MPB) and root mean squared prediction error (RMSE) with respect to 

the target estimate. 

The historical method only uses historical data, and for this method to be effective for 

prediction, the current data collection period needs to be very similar to the historical data 

collection period to be useful. This may be an unreasonable assumption for intermittent 

surveys, surveys where design changes may occur between rounds, or surveys that see 

large shifts in response behavior, such as a large decrease in contactability by phone, or a 

large increase in response by web. The current method only uses current round data, and 

therefore assumes that data accumulated early in data collection are representative of 

outcomes later in data collection. This could be especially problematic in a sequential 

multimode design, such as the NSCG, where some modes are not even available until late 

in data collection. Additionally, the current method ignores potentially useful historical 

information that could help create meaningful expectations.  

The Bayesian method is, conceptually, a combination of the other two methods. A logical 

approach to leveraging information from past rounds of data collection, while also using 

information about the current round of data collection is to take advantage of a Bayesian 

modeling approach with informative priors. We can accomplish this by first fitting an 

appropriate predictive model using prior survey data to obtain parameter estimates and 

the associated variances. These parameters capture relationships between covariates and 
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outcomes when accumulated data represents a full data collection period, though not the 

one of interest.  

For response propensity and survey response data, we assume an approximately normal 

distribution for the prior parameters by the properties of maximum likelihood estimation. 

Means and variances for the prior parameters are estimated once from historical data, and 

so are fixed values. Once the priors for all coefficients are obtained, a predictive model is 

estimated periodically using the data available up to that day in the current data collection 

period, combined with the previously obtained prior. This way, historical information can 

be used to set baseline expectations for survey data collection outcomes, and current 

round information can be used to update those expectations. This ability to borrow 

strength from historical information but still reflect the current data collection reality is 

an important benefit when data collections are intermittent, and there may be changes in 

how sample members respond to the survey. Similar to the work carried out in Chapter 2 

of this dissertation, we evaluated the difference in prediction quality when the priors were 

scaled to represent one-half of a data collection sample (by doubling the variance) versus 

a full data collection sample. The full data collection period was more successful at 

improving predictions of response propensity and survey data, and so we limited our 

discussion to the full data collection sample.  

Our expectation is that the Bayesian method will produce predictions closer to the actual 

survey data collection outcomes, as the modeling procedure is effectively borrowing 

strength across the historical data and current data to make a prediction. The results in 

this section aim to support the use of the 2017 NADC group for generating priors for use 

in the 2019 NSCG adaptive design experiment.  
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4.3.1 End of Data Collection Response Propensity 

In order to make effective interventions in data collection, it is important to understand 

whether a sample member will respond to a particular data collection pathway. For 

example, if one sample member is equally likely to respond to an inexpensive pathway 

and a more expensive pathway, assigning that sample member to the less expensive 

pathway would make resources available to assign a reluctant sample member to the 

more expensive pathway in order to obtain response. We therefore need to ensure that we 

are basing our interventions on reasonable estimates for response propensity.  

We used the same methodology found in Wagner and Hubbard (2014), West et al. 

(2020), and Coffey et al. (2020) to estimate and evaluate response propensities. We 

started with the 2015 NADC cases, and fit a logistic regression model to the final binary 

response status (respondent or nonrespondent) for those cases, using a rich set of 

covariates from the frame and accumulated paradata. We used a backwards selection 

procedure, retaining all variables that had a p-value of at least 0.25. We took this 

inclusive view of predictors as we are concerned about out-of-sample prediction, and 

want to protect against eliminating variables from the model that may be predictive for 

some time periods but not others.  

We removed three paradata items that were strongly associated with response but were 

not explanatory predictors so much as observations that are endogenous to the data 

collection process:  the number of web logins, the number of mailings, and the number of 

outbound CATI calls. Nearly all sample members who access the web instrument finish 

the survey in the web. Additionally, they generally finish the survey on the first log-in. 

Therefore, while this variable was highly associated with response, it is not useful for 
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prediction. The number of mailings and the number of outbound CATI attempts were 

also strongly associated with response. As data collection progresses, cases that remain 

non-responders are reluctant sample members, and generally have lower response 

propensities than cases that responded early. Additionally, in the NSCG, as data 

collection progresses, additional modes are introduced. Questionnaires are not available 

until at least week 8, and outbound telephone attempts in CATI do not start until week 

12. The coefficients for number of mailings and number of outbound telephone attempts 

are negative, so as these contact types accumulate, response propensity decreases. 

However, it also means that prior to week 8, cases who should have lower estimated 

response propensities may have their propensities biased upward as these modes are not 

yet available. Table 10 displays the variables retained after this step.  

Table 10. Retained Predictors for Response Propensity Model, 2015 NADC 

Variable Name 
Age Group 

Demographic Group 
Highest Degree Earned 

Science and Engineering Degree Indicator 
Full-Time/Part-Time Work 

Veteran’s Status 
Internet Access Type 

Incentive Sent 
ACS Response Mode 

Contact Research Indicator 
Refusal Indicator 

Cumulative Web Logins 
Cumulative Mailings 

Cumulative Telephone Attempts 
 

 Both measures suggest a reasonable set of predictive covariates.Appendix D displays all 

predictors retained in the model, with their parameter estimates, standard errors, and 
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significance. The in-sample ROC-AUC when including all binary predictors listed in 

Appendix D was 0.769, and the response rates by predicted probability percentile (using 

2% wide cutoffs) are shown below in Figure 24. Both measures suggest a reasonable set 

of predictive covariates. 

 
Figure 24. Response Rates by Predicted Probability Percentile, 2015 NADC, Simplified Model 

We used the list of predictive covariates above as the list of predictors in the 2017 

NADC. Each week, we used frame data, the most-up-to-date accumulated paradata, and 

response status to estimate coefficients in a logistic regression model. We then used these 

coefficients to estimate the likelihood that a particular case would respond to the NSCG 

by the end of data collection. These predictions were for the current method. While the 

list of covariates remained the same between 2015 and 2017, the models were refit 

weekly as new paradata accumulated. We used the last prediction from this method (after 

Week 26) as the "target" response propensity. Additionally, the parameters and standard 

errors from Appendix D were retained for use in the historical and Bayesian methods for 

predicting response in the 2017 NSCG.  
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In order to generate predictions using the historical method, we simply applied the 

coefficients estimated from the 2015 data to the weekly records in 2017. Here the 

variables and coefficients did not change, but the response propensities could change 

weekly as time-varying covariates (e.g., paradata) accumulated. 

Lastly, we generated predictions of the final response propensity using the Bayesian 

method. Using the model coefficients that were estimated from the 2015 data, as well as 

their standard errors, and assuming approximate normality of the maximum likelihood 

estimates for regression parameters (Rao et al. 2008), we generated normal priors for 

each covariate in the predictive model, 𝑁𝑁~(𝜇𝜇,𝜎𝜎2), where 𝜇𝜇 is the mean and 𝜎𝜎2 is the 

variance of the coefficient estimate. We ignored correlation in these parameters, treating 

them as independent. This is a limitation of this work and we return to this point in the 

Discussion. Using PROC MCMC in the SAS 9.4 programming language, we then 

generated posterior estimates for each model coefficient by taking 4,000 Monte Carlo 

simulations (20,000 thinned by 5) of the posterior distributions of the coefficients based 

on the priors and likelihood which had information up through week 𝑡𝑡. We then estimated 

the response propensities from each of those draws, and averaged them in order to arrive 

at a predicted response propensity for each case in each week.  

In order to evaluate the three models against each other, we calculated the difference 

between the weekly case-level estimate for the final response propensity generated by 

each method, 𝜌𝜌�𝑖𝑖𝑖𝑖𝑚𝑚, and the target response propensity, 𝜌𝜌𝑖𝑖𝑇𝑇. We then used these estimates of 

prediction error to look at the weekly distribution of prediction error for all 

nonresponding cases during that week, as well as the weekly mean prediction bias (MPB) 
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and RMSE. MPB averages the individual case-level errors described above over the 

number of open cases, 𝑛𝑛: 

             𝑀𝑀𝑀𝑀𝐵𝐵𝑡𝑡𝑚𝑚 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜌̅𝜌�𝑡𝑡𝑚𝑚) =
1
𝑛𝑛
� (𝜌𝜌�𝑖𝑖𝑖𝑖𝑚𝑚 − 𝜌𝜌𝑖𝑖𝑇𝑇)

𝑛𝑛

𝑖𝑖=1
   ,                                      

and the daily RMSE for the 𝑚𝑚th method is defined as: 

            𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑡𝑡𝑚𝑚 =  �1
𝑛𝑛
∑ (𝜌𝜌�𝑖𝑖𝑖𝑖𝑚𝑚 − 𝜌𝜌𝑖𝑖𝑇𝑇)2𝑛𝑛
𝑖𝑖=1    .                              Figure 25 through Figure 27 

compare boxplots of the error in predictions of final response propensity on a weekly 

basis for each of the three methods. Figure 25 displays the earliest part of data collection, 

weeks 1-6. For the first four weeks of data collection, the historical method results in 

central tendencies of the error that are closest to zero, while the Bayesian method 

outperforms the current method. However, starting in week 5, the Bayesian method has a 

median error near zero, and an intraquartile range that is smaller than the current method. 

This suggests that even as early as week 5, the Bayesian method can improve predictions 

of final response propensity by leveraging both historical and current survey data.  
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Figure 25. Error in Predictions of Final Response Propensity for Open Cases, Weeks 1-6 

In fact, in historical rounds of the NSCG (Coffey, Reist and Miller 2019), week 6 is 

generally the earliest point in data collection when cases are identified for adaptive 

interventions, so these early improvements are valuable, in a practical sense.  

Figure 26 depicts the middle portion of data collection, from week 7 through week 16. In 

the NSCG, this is when the bulk of contact attempts occur, and when the paper 

questionnaire and outbound telephone operations (CATI) are introduced.  
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Figure 26. Error in Predictions of Final Response Propensity for Open Cases, Weeks 7-16 

Up through week 12, the Bayesian method continues to have median and intraquartile 

ranges of prediction error more centered around zero than the historical method, as well 

as a smaller total range than the current method. After week 12, the current method 

begins to outperform the other methods when examining the median error, though the 

Bayesian method still produces a smaller total range of error.  

Figure 27 displays the end of data collection, from week 17 through week 26. Towards 

the end of data collection, the all three methods converge toward an error of zero, as more 

paradata is accumulated, and fewer cases remain open. By the end of data collection the 

prediction error in the current method is zero, as our target prediction is the final 

response propensity under the current method. However, the error in the other two 

methods also shrinks toward zero.  
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Figure 27. Error in Predictions of Final Response Propensity for Open Cases, Weeks 17-26 

In addition to the distributions of prediction error for each of the methods, we can also 

look at the mean prediction error generated by the three different methods. Figure 28 is a 

plot of the weekly mean bias generated by each of the three prediction methods. This plot 

provides evidence that, on average, the Bayesian method outperforms the other methods 

from approximately week 5 through week 20, and consistently outperforms the current 

method until the end of data collection.  
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Figure 28. Mean Bias in Predictions of Final Response Propensity for Open Cases, Weeks 1-26 

Figure 29 shows a similar pattern in the estimated RMSE of predictions of final response 

propensity. Right at the start of data collection, the historical method performs best, but 

starting at week 5, and continuing throughout most of data collection, the Bayesian 

method results in consistent (albeit small) improvements in the RMSE of predicted 

response propensity.  

 
Figure 29. RMSE in Predictions of Final Response Propensity for Open Cases, Weeks 1-26 
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Most intervention opportunities in the NSCG occur between weeks 6 and 16, and so the 

Bayesian framework is a reasonable way to combine current and external data to improve 

predictions of response propensity without reducing the quality of those predictions.  

4.3.2 Survey Response, Self-Reported Salary  

In order to determine how much information a sample unit would contribute to the 

quality of estimates generated from survey response data, we also need to understand 

how a sample unit would actually respond in the NSCG. We selected one key survey item 

that is important to the NSCG, self-reported salary. The NSCG is often used by education 

and employment researchers estimating mean salaries by different types of occupations, 

or for different sampling domains, so any interventions should be applied in a way to 

avoid increasing error in the estimate of mean of salary. We therefore need to ensure that 

we have high quality predictions of respondent salary so that our interventions are based 

on reasonable estimates for both individual case-level predicted salary, and predicted 

mean salary. While we are focusing on one response item here, surveys generally have 

many key estimates. We return to this point in the Discussion.  

The NSCG requests sample members report their salary, a continuous variable. Because 

salary often has a right-skewed distribution, we examined several transformations of the 

variable, in order to determine how best to obtain a linear model. Figure 30 below shows 

the distribution of the actual response variable, followed by three transformations: the 

log, square root and cube root. Taking the cube root of salary results in a distribution 

most similar to the normal distribution, based on visual examination. As a result, we will 

take the cube root of salary for the 2015 NADC group, and estimate a linear model of the 

form: 



123 

(𝑦𝑦𝑖𝑖𝐿𝐿)1/3 = 𝑋𝑋𝑖𝑖𝑇𝑇𝛽̂𝛽 + 𝜖𝜖𝑖𝑖 

where 𝑦𝑦𝑖𝑖𝐿𝐿 is the estimated salary for the 𝑖𝑖𝑡𝑡ℎ case using the 𝐿𝐿𝑡𝑡ℎ method, 𝑋𝑋𝑖𝑖 is the vector of 

predictive covariates for the 𝑖𝑖𝑡𝑡ℎ case, and 𝛽𝛽 is the vector of predictive model coefficients.  

 
Figure 30. Distributions of Transformations of Self-Reported Salary vs Normal Distribution in 2015 NADC 

Table 11 below lists all variables with a p-value of 0.25 or less. The full list of binary 

indicator variables, coefficients and standard errors is in Appendix E.  
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Table 11. Retained Predictors for Reported Salary Model, 2015 NADC 

Variable Name 
ACS Response Mode 
Major Field of Degree 
Demographic Group 
Disability Indicator 

Census Geographic Division 
Working Status/Financial Quintile Variable 

Highest Degree Earned 
Broad Occupation Category 

Science and Engineering Occupation Indicator 
Sex 

Central City, MSA, Outside of MSA 
Health Insurance Coverage Indicator 

Absent from Work Indicator 
Looking for Work Indicator 

Poverty Status Indicator 
Public Healthcare Coverage Indicator 

Science and Engineering Field of Degree Indicator 
Home Rental/Ownership Status 

Number of Vehicles at Housing Unit 
Weeks Worked Past 12 Months 

Access Internet by DSL Service Indicator 
No Internet Access on Handheld Device Indicator 

Number of Bedrooms in Housing Unit 
Hours of Work in a Week 

Cube Root of Personal Income 
Cube Root of Wages 

Cube Root of Retirement Income 
 

Figure 31 below illustrates some diagnostics for the in-sample performance of the final 

model. While the model only has an R-squared of 0.56, it is notable that when looking in 

the bottom quadrant of the diagnostic plot (Residuals), over 60% have a residual very 

close to zero. That percentage of cases is higher than expected, based on the kernel of the 

normal distribution included in that plot. However, looking at the remainder of the 
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diagnostics, it is clear that while the center of the distribution of self-reported salary is 

well explained by this model, the residuals along the tails can grow large – this model 

overestimates the true value of salary for cases at the low end of the distribution, and 

underestimates the true value for those at the high end.  

  
Figure 31. Model Fit Diagnostics for In-Sample Prediction of Self Reported Salary 

This does not mean that the predictive model is not useful – it is more important to how 

the three potential methods, current, historical, and Bayesian methods perform relative to 

each other. Similar to the final response propensity models, we retained the list of 

predictors found significant in the 2015 NADC for use in estimating a predictive model 

for self-reported salary. We refit the model weekly to generate predictions based on 
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coefficients estimated from frame information and the accumulating 2017 response data. 

We used the actual survey responses of salary as the “target" self-reported salary. 

Additionally, the parameters and standard errors from Appendix E were retained for use 

in the historical and Bayesian methods for predicting self-reported salary in the 2017 

NSCG. Unlike the predictions of response propensity, the quality of predictions of survey 

responses can only be evaluated for cases that ultimately responded in the NSCG.  

With the model coefficients that were estimated from the 2015 data, their standard errors, 

and borrowing from the approximate normality of maximum likelihood estimates of 

regression coefficients, we generated Normal priors for each covariate in the predictive 

model, 𝑁𝑁~(𝜇𝜇,𝜎𝜎2), , where 𝜇𝜇 is the mean and 𝜎𝜎2 is the variance of the coefficient 

estimate. Similar to the model construction for response propensity, here we ignored 

correlation in these parameters, treating them as independent. Using PROC MCMC in the 

SAS 9.4 programming language, we then generated posterior estimates for each model 

coefficient by taking 2,000 Monte Carlo simulations (10,000 thinned by 5) of the 

posterior distributions of the coefficients based on the priors and the likelihood, which 

included information up through week 𝑤𝑤. We then estimated the value of salary from 

each of those draws, and averaged them in order to arrive at a predicted response salary 

for each case in each week.  

Final nonrespondents would not have a response value to compare to the predicted 

values; therefore, while we generate predictions for all open cases, we drop final 

nonrespondents from the evaluation in this section. For this evaluation, we do not use 

design-adjusted variance estimates. We are concerned primarily with prediction of 

outcomes within a single survey sample, and therefore focused on internal validity of the 
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predictions, rather than attempting to create predictions or estimates for the full target 

population. The NSCG does have very variable weights, however, and so we return to 

this point in the Discussion.  

In order to evaluate the three models against each other, we calculated the difference 

between the weekly case-level prediction of salary generated by each method, 𝑦𝑦�𝑖𝑖𝑖𝑖𝑚𝑚, and 

the target value of salary, 𝑦𝑦𝑖𝑖𝑇𝑇, based on actual survey responses. We then used these 

estimates of prediction error to look at the weekly distribution of prediction error for all 

open cases during that week, as well as the weekly mean prediction bias and RMSE. 

MPB averages the individual case-level errors described above over 𝑛𝑛, the number of 

open cases that ultimately responded to the survey question in the 2015 NADC group: 

             𝑀𝑀𝑀𝑀𝐵𝐵𝑡𝑡𝑚𝑚 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑦𝑦��𝑡𝑡𝑚𝑚) =
1
𝑛𝑛
� (𝑦𝑦�𝑖𝑖𝑖𝑖𝑚𝑚 − 𝑦𝑦𝑖𝑖𝑇𝑇)

𝑛𝑛

𝑖𝑖=1
   ,                                      

and the weekly RMSE for the 𝑚𝑚th method is defined as: 

            𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑡𝑡𝑚𝑚 =  �
1
𝑛𝑛
� (𝑦𝑦�𝑖𝑖𝑖𝑖𝑚𝑚 − 𝑦𝑦𝑖𝑖𝑇𝑇)2

𝑛𝑛

𝑖𝑖=1
   .                               

Figure 32 through Figure 34 compare boxplots of the error in predictions of self-reported 

salary on a weekly basis for each of the three methods. In general, there is little difference 

between the three methods when looking at the boxplots. Figure 32 displays the earliest 

part of data collection, weeks 1-6. Both the historical method and the Bayesian method 

provide small benefits by reducing the full range and intraquartile range of errors slightly. 

Additionally, the median error in the Bayesian method is squarely at zero, a very small 

improvement over the other methods.  
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Figure 32. Error in Predictions of Final Response Propensity for Open Cases, Weeks 1-6 

The fact that even the current method performs similarly to both the historic method and 

the Bayesian methods suggests that even early in data collection, when response rates are 

low, it is possible to use the accumulating response data to generate a model nearly as 

good as when a full data collection period worth of historical data is used.  

Figure 33 and Figure 34 illustrate the middle and later parts of data collection. All three 

models perform similarly to each other, with the Bayesian method producing slight 

improvements in the median and overall range of prediction error. Starting around week 

9, the median error of the historical and Bayesian methods moves slightly closer to zero, 

suggesting that the current data collection period is slightly different from the historical 

period.  
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Figure 33. Error in Predictions of Final Response Propensity for Open Cases, Weeks 7-17 

One interesting observation in Figure 34 below is for the last week of data collection. The 

current method does a worse job of predicting the value of salary for open cases at the 

end of data collection, while both the historical and Bayesian method have median errors 

closer to zero and reduced overall ranges of error. This suggests that individuals 

responding very late may actually be different (at least in their self-reported salary) than 

individuals responding early, because the model coefficients estimated from current 

accumulating data generates worse predictions of salary than either of the other two 

methods.  
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Figure 34. Error in Predictions of Final Response Propensity for Open Cases, Weeks 18-26 

Figure 35 plots the mean bias in predictions of salary for open cases on a weekly basis. 

Early in data collection the Bayesian method generates predictions for open cases with 

the least bias, on average, when compared to the actual survey responses from those 

cases. This is a similar observation as in Figure 28, which depicts the mean bias in 

estimates of response propensity for open cases. Throughout the remainder of data 

collection, the Bayesian and current methods perform similarly, and both outperform the 

historical method on this metric.  
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Figure 35. Mean Bias in Predictions of Cube Root of Salary for Open Cases, Weeks 1-26 

While the improvements in prediction are not as clear here, in the prediction of self-

reported salary, as they were in the predictions of response propensity, here we see that 

the Bayesian method performs at least as well as the current or historical methods.  

While the improvements in prediction are small, using the Bayesian method early in data 

collection helps to hedge against the lower performance of either the historical or current 

methods early in data collection, This is evidenced in Figures 28 and 35 by smaller mean 

prediction error of the Bayesian method than either of the other two methods. Taken 

together, these Figures suggest that external data and currently accumulating data can be 

combined in a Bayesian framework without jeopardizing the quality of predictions of 

SDCPs during the data collection period. 

4.3.3 Data Collection Costs 

Data collection costs are generally driven by two major factors: what mode a case 

responds in, and when during the data collection period a sample member responds. This 
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is because modes of contact and response have very different costs, and because the 

longer a sample member remains a nonrespondent, the more data collection resources are 

typically expended on trying to obtain cooperation response. These generalities are true 

in the NSCG, as well. Sample members can choose to respond using one of three modes 

in the NSCG: mail, paper, or CATI. In order to obtain the average accumulated costs for 

each potential response mode in each of the four phases described in Table 8, we 

constructed case-level cost estimates for the 2017 NADC group. Available historical 

operational data includes detailed information on what data collection features were 

applied to a particular case, and cost documentation, like what is summarized in Table 9, 

provided estimated costs per feature, including mailing costs, costs of an unsuccessful 

contact attempt in CATI, etc.  

As shown in Figure 23, web is offered early and exclusively, and so nearly all response in 

Phase 1 occurs by web. However, as data collection continues, new modes are 

introduced, allowing sample members to respond by paper questionnaire or telephone 

interview, and potentially increasing data collection costs. Table 12 summarizes the total 

cumulative costs associated with being a respondent by phase and mode, or to be a final 

nonrespondent, assuming the standard data collection strategy.  

Table 12. Costs by Response Phase and Mode, 2017 NADC 

Response Mode Phase 1 Phase 2 Phase 3 Phase 4 

Web $17.05 $34.10 $43.22 $69.96 

Mail $41.77 $58.82 $67.94 $94.68 

CATI $67.28 $84.33 $93.45 $120.19 

Nonresponse    $69.96 
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It is clear that, as data collection continues, obtaining a response becomes more 

expensive, regardless of the mode of response, and a web response is always the cheapest 

mode of response. However, web respondents’ costs still increase during data collection 

because a case that does not respond until late in data collection will still receive all of 

the mailings and telephone calls that applied to nonrespondents.  

To illustrate how interventions could reduce data collection costs, Table 13 summarizes 

the costs of response by phase and mode if, for example, a case was not sent to CATI in 

phase 3, and did not receive any phase 4 mailings or invitations. While the costs in phase 

1 and phase 2 are the same as in Table 12, we see the costs of phase 3 and phase 4 

reduced in two ways. First, no telephone calls would be made in phases 3 or 4, so a case 

could not respond in CATI. However, the cost of unsuccessful CATI calls would not be 

added to either the costs of late phase response costs or the final nonresponse cost. 

Similarly, by reducing mailings, the cost of ignored mail packages is removed from all 

phase 4 costs. In this instance, a case could still respond by mail, using the questionnaire 

that was sent in Phase 2. However, the reduction in additional mailings and unsuccessful 

CATI calls still reduces the cost of a mail response occurring in phase 4.  

Table 13. Costs by Response Phase and Mode, 2017 NADC, Fewer Contacts 

Response Mode Phase 1 Phase 2 Phase 3 Phase 4 

Web $17.05 $34.10 $34.81 $34.81 

Mail $41.77 $58.82 $59.53 $59.53 

CATI $67.28 $84.33 N/A N/A 

Nonresponse    $34.81 
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It is important to note that the costs in each of the table cells include the costs of 

nonresponse in prior phases. For example, Table 13 shows that a response via paper 

questionnaire in phase 2 costs $58.82. That cost all costs incurred in phase 1 and phase 2, 

as well as the cost of a mail response in phase 2. This structure is useful operationally 

when trying to predict costs by response phase and mode.  

Most simply, the estimated cost for a case can be expressed as an expected value: 

𝐸𝐸(𝐶𝐶𝑖𝑖) = 𝑝̂𝑝𝑖𝑖�𝐶̂𝐶𝑖𝑖𝑅𝑅� + (1 − 𝑝̂𝑝𝑖𝑖)�𝐶̂𝐶𝑖𝑖𝑁𝑁�  , 

where 𝑝̂𝑝𝑖𝑖 is the response propensity for the 𝑖𝑖𝑡𝑡ℎ case, 𝐶𝐶𝑖𝑖𝑅𝑅 is the estimated cost of a 

response, and 𝐶𝐶𝑖𝑖𝑁𝑁 is the estimated cost for a nonresponse. The estimate for 𝑝̂𝑝𝑖𝑖 is generated 

by the predictions discussed in Section 4.3.1 above. In order to generate estimates for 𝐶̂𝐶𝑖𝑖𝑅𝑅 

and 𝐶̂𝐶𝑖𝑖𝑁𝑁, we need to consider not only the costs associated with response in a particular 

phase and mode (or final nonresponse), but also how likely response is to occur in a 

particular phase and mode.  

As Table 12 and Table 13 illustrate, there are 13 potential response classes a sample 

member can fall into: response in one of three modes, during any of the four data 

collection phases, or a final nonrespondent. Table 14 shows the proportion of 2017 

sample members that fell into each of the thirteen categories.  



135 

Table 14. End of Phase Response Propensity, Conditional on Prior Phase Nonresponse, 2017 NADC 

Response Mode Phase 1 Phase 2 Phase 3 Phase 4 

Web 39.33% 5.49% 4.83% 4.40% 

Mail 0.01% 3.10% 0.60% 1.30% 

CATI 1.00% 0.83% 1.79% 2.36% 

Nonresponse    34.98% 

 

This means we can estimate 𝐶̂𝐶𝑖𝑖𝑁𝑁 using the predicted response propensity from 4.3.1, and 

the estimated cost of being a final nonrespondent from Table 12. Estimating 𝐶̂𝐶𝑖𝑖𝑅𝑅, however 

requires the estimated probability of responding by each mode in remaining phases, 

conditional on prior phase nonresponse and response by the end of data collection. Table 

15 shows the conditional response probabilities for future phases, assuming the case will 

respond, estimated from the 2017 NADC,  

Table 15. Response Proportions by Phase Assuming Final Response 

Response P1 P2 P3 P4 
 Assuming Nonresponse After Phase 1 

Web N/A 22.23% 19.54% 17.82% 
Mail N/A 12.56% 2.43% 5.27% 
CATI N/A 3.34% 7.24% 9.57% 

 Assuming Nonresponse After Phase 2 
Web N/A N/A 31.59% 28.81% 
Mail N/A N/A 3.93% 8.51% 
CATI N/A N/A 11.70% 15.47% 

 Assuming Nonresponse After Phase 3 
Web N/A N/A N/A 54.57% 
Mail N/A N/A N/A 16.12% 

CATI N/A N/A N/A 29.30% 
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To illustrate the process of constructing an estimated cost, assume that at the end of phase 

2, an open case has an estimated final response propensity (estimated using the method 

described in Section 4.3.1) of 𝑝̂𝑝𝑖𝑖 = 0.42. The estimated cost can be first written as: 

𝐸𝐸(𝐶𝐶𝑖𝑖) = 0.42�𝐶̂𝐶𝑖𝑖𝑅𝑅� + 0.58�𝐶̂𝐶𝑖𝑖𝑁𝑁�  . 

The overall nonresponse cost is $69.96, taken directly from Table 12. The estimated cost 

of a response, 𝐶̂𝐶𝑖𝑖𝑅𝑅, can be calculated as follows: 

𝐶̂𝐶𝑖𝑖𝑅𝑅 = ��𝑟̂𝑟𝑖𝑖𝑚𝑚𝑐𝑐𝑖𝑖𝑚𝑚

𝑚𝑚𝑝𝑝≥3

   , 

where 𝑟̂𝑟𝑖𝑖𝑚𝑚 is the likelihood of the 𝑖𝑖𝑡𝑡ℎ case to respond in the 𝑚𝑚𝑡𝑡ℎmode in the 𝑝𝑝𝑡𝑡ℎ phase, 

and 𝑐𝑐𝑖𝑖𝑚𝑚 is the estimate of the data collection costs for the 𝑖𝑖𝑡𝑡ℎcase to respond in the 

𝑚𝑚𝑡𝑡ℎmode in the 𝑝𝑝𝑡𝑡ℎ phase. Using the conditional distribution of response phase and 

mode, conditional on nonresponse through phase 2, and the case being a final respondent, 

we can substitute the appropriate values and obtain: 

𝐶̂𝐶𝑖𝑖𝑅𝑅 = 0.3159 ∗ $43.22 +  0.0393 ∗ $67.94 +  0.1170 ∗ $93.45 +  0.2881 ∗ $69.96 

+  0.0851 ∗ $94.68 +  0.1547 ∗ $120.19 = $74.06 

The overall estimated cost, 𝐸𝐸(𝐶𝐶𝑖𝑖), then is equal to 0.42($74.06) + 0.58($69.96) =

$71.68. We can construct these cost tables assuming different adaptive strategies, where 

certain features are applied or withheld. 

We attempted to build a multinomial logistic regression model to predict the response 

phases and modes displayed in Table 14, using covariates similar to those used to predict 

response propensity and salary. However, the available covariates showed little ability to 
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discriminate any mode of response from nonresponse, likely because of the rarity of mail 

and CATI respondents. The resulting models had very high specificity, as nearly all open 

cases were simply predicted to be nonrespondents, but sensitivity was extremely low. As 

a result, we made the decision to assign prior round conditional probabilities to the 

current round in order to generate likelihoods to respond via each mode during each 

phase. This means that, for example, in the 2019 NSCG, all nonresponding cases after 

Phase 1 would be assigned an 9.2% chance of responding in the web in Phase 2, based on 

the proportion of cases that responded by web in Phase 2 in 2017 (5.49%/(100% −

40.34%). Similarly, we use the average costs for response by phase and mode to assign 

estimated costs to cases. This means that our inputs to the 2019 experiment (which come 

from 2017 data) were treated as though they have no error, leading to a deterministic 

prediction for expected costs, rather than being drawn from a predictive distribution. 

While we use these estimates of mean costs for the purposes of cost prediction in our 

experiment, not all cases responding by a particular mode in a particular phase have 

exactly the same costs – there is some variability. We return to this issue in the 

Discussion.  

4.4 2019 NSCG Adaptive Design Experiment 

Methodologically, adaptive design experiments in past implementations of the NSCG 

have focused on improving representativeness, a measure of data quality. While we have 

intervened on cases in order to meet this goal, we have not done this under any formal 

decision rule framework, nor have we estimated the expected change in response or data 

collection costs by implementing an intervention on a particular subset of cases. In other 

words, the cost savings and relatively stable response rates have been fortunate outcomes 
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from making sensible interventions during data collection. However, it is possible that we 

could have obtained better results by maintaining a neutral cost per case, and intervening 

on more cases (or reducing contact effort on fewer cases), which could have further 

improved response rates. In order to evaluate the effect of adaptive design on a key 

survey estimate in the NSCG while applying cost-efficient decision rules, we 

implemented an adaptive design experiment under a Bayesian framework (Elliott 2017).  

4.4.1 Experimental Design 

The goal of the 2019 experiment was to use dynamic adaptive design to reduce costs 

without causing a large increase in the RMSE of a key survey estimate, the mean of self-

reported salary. Additionally, we wanted to leverage both historical and current 

accumulating information in a Bayesian framework in order to maximize the information 

used to generate interim predictions of response propensity and salary.  

The experiment compares one group of cases that were managed by responsive design 

decisions (Treatment), and one group managed using the standard production 

methodology (Control). The experiment included 16,000 cases selected from the new 

cohort (i.e., their first NSCG interview) split evenly across the Treatment and Control 

groups. The cases were drawn using a systematic random sample with a cluster of two 

cases. NSCG sampling variables, including ACS response information and demographic 

information, as well as other operational variables like having a valid mailing address and 

phone number on the frame were used in the systematic sampling to ensure the cases in 

the Treatment and Control were representative of the NSCG sample in general, and had 

comparable characteristics to each other. Once the sample was drawn, the first case in the 

cluster was assigned to the Treatment and the second to the Control.  
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In order to reduce data collection costs, we needed to apply interventions at times when 

data collection costs would be increasing for a typical nonrespondent. Referring back to 

Figure 23 and Table 8, there are three main points where data collection costs increase 

more than linearly for nonresponding cases. At week eight, a paper questionnaire is 

introduced; at week 12, outgoing telephone data collection (CATI) begins, and at week 

18, a late mail strategy combines several mailings to encourage late non-responders to 

complete the survey. In particular, the week 8 and 12 interventions appear to increase 

data collection costs significantly. A paper questionnaire in more expensive to mail, and 

requires significantly more processing after return (e.g., scanning, keying, etc.) than a 

response in the web instrument. CATI introduces interviewers, further increasing data 

collection costs. As a result, we identified these three points for the interventions 

described in Table 16.  

Table 16. Intervention Strategies for 2019 Experiment 

Data Collection  
Week Standard Strategy Alternate Strategy 

8 Send paper questionnaire  
to nonrespondents 

Withhold questionnaire;  
Send additional web invite 
letter 

12 Begin CATI operation  
for nonrespondents 

Exclude case from CATI;  
Send additional web invite 
letter 

18 Conduct late mail operations  
for nonrespondents 

Exclude case from late mail  
operations 

 

Using these intervention points, we constructed all possible sets of data collection 

features that could be applied to a case, shown below in Figure 36. The top (yellow) 

pathway is the standard production data collection pathway, where at each decision point, 

we keep the case in the standard strategy. All cases in the control group followed this 
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pathway during data collection. Additionally, in the treatment group, cases that were not 

a part of any of the interventions also followed this pathway. At the other extreme, the 

bottom (orange pathway) represents the minimum data collection strategy, where at each 

decision point, we reduce the effort, and therefore the cost, of features applied to a case. 

Here, at Week 8, we replace the mail questionnaire with a web invitation; at Week 12, we 

do not send the case to CATI, and send another web invitation; and at Week 18, we do 

not send the final set of contact mailings. In the middle, we see all of the available 

combinations.  

 

Figure 36. All Possible Case-Level Data Collection Pathways Based on Intervention Decision Points 
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At each decision point, there are only two options for each case in the next phase – the 

case either remains in the current strategy, receiving all standard data collection features 

going forward, or is switched to the alternate strategy for the next feature, which reduces 

effort and cost. This binary choice allows us to compare the predicted effect on response 

propensity, cost, and quality of allocating sets of cases to a reduced data collection 

strategy from the one they are in at any given point in time. While we were able to 

generate predictions for response propensity, cost and data quality using the models 

discussed in Section 4.3, estimating the expected effect of switching a case to an alternate 

strategy was not a parameter we could estimate easily. These particular data collection 

interventions had not been carried out as part of a randomized experiment in the past, and 

so we did not have an obvious choice of predicted effect size. We used the results 

presented in Coffey, Reist and Miller (2019) to generate an estimate of the expected 

change in response rate due to adaptive interventions. Cases who were assigned to 

reduced effort interventions saw their response rates drop by approximately 5% when 

compared to similar cases that were not assigned to reduced effort interventions. Cases 

were not assigned to those interventions in a randomized way, but the interventions 

presented in that publication were the most similar to those utilized here. As a result, we 

assumed a 5% reduction in the predicted response rate for a case each time a case is 

assigned to a lower effort strategy in this experiment as well.  

Figure 36 illustrates that, at each intervention point, a decision must be made about which 

cases to assign to the alternate data collection feature. This decision could be made in a 

number of ways. Cases could be randomly assigned to each of the two features; cases 

with the lowest predicted response propensities could be allocated to the lower (or 
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higher) effort and cost feature; or as we elected to do, cases with predicted salary values 

close to the predicted mean salary value would be allocated to the lower effort and cost 

data collection feature. Similarly, the decision about how many cases to switch to the 

alternate data collection strategy could be carried out in a number of ways. An arbitrary 

case count could be used (e.g., move 10% of nonresponding cases); an external threshold 

could be used (e.g., move all cases with a predicted response propensity under 35%); or 

as we chose, cases should be moved until we find the point where the tradeoffs in cost 

savings and loss of data quality (increase in RMSE) are optimized.  

4.4.2 Optimization Steps 

We wanted to identify sample units that would have the smallest impact on the mean of a 

key survey estimate, and assign those units to a less expensive set of data collection 

features, in order to reduce data collection costs, while still giving them an opportunity to 

respond in the less expensive mode. A given sample unit may not contribute much 

information to the mean of a key survey estimate when the sample unit-level response is 

very similar to the overall mean. By simulating a change in strategy over increasing sets 

of nonrespondents based on how similar the predicted case-level value for salary would 

be to the predicted mean value for salary, we were able to balance the reduction in cost 

and increase in RMSE in an optimal way. At each of the three intervention time points, 𝑡𝑡, 

we carried out a set of optimization steps in order to determine which cases would 

receive the alternate, lower cost, strategy. In addition to the textual description below, a 

visual step-by-step graphic is included in Appendix F. At each intervention point: 

1) Impute estimate of salary for all non-responding cases, using the methodology 

discussed in Section 4.3.2.  
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2) Generate an estimate for mean salary, 𝑦𝑦��𝑇𝑇, using the survey response for 

respondents and imputed estimate for nonrespondents. This will be considered the 

unbiased “target” parameter of interest. This is calculated as: 

𝑦𝑦��𝑡𝑡𝑇𝑇 = �� 𝛿𝛿𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖
𝑖𝑖∈𝑆𝑆

+ (1 − 𝛿𝛿𝑖𝑖𝑖𝑖)𝑦𝑦�𝑖𝑖�   , 

where  𝑦𝑦𝑖𝑖 is the actual value of self-reported salary for the 𝑖𝑖𝑡𝑡ℎ case, provided by 

each of the respondents, and 𝑦𝑦�𝑖𝑖 is the imputed value of salary for the 𝑖𝑖𝑡𝑡ℎ case, 

provided by each of the nonresponding, cases at intervention time 𝑡𝑡. 𝛿𝛿𝑖𝑖𝑖𝑖 = 1 for 

respondents, and 𝛿𝛿𝑖𝑖𝑖𝑖 = 0 for nonrespondents.  

3) Use the estimate of mean salary to generate a distance, 𝑑̂𝑑𝑖𝑖𝑖𝑖 = (𝑦𝑦�𝑖𝑖𝑖𝑖 − 𝑦𝑦��𝑡𝑡𝑇𝑇) for all 

nonresponding cases at intervention time 𝑡𝑡.  

4) Sort cases by increasing values of 𝑑̂𝑑𝑖𝑖𝑖𝑖. At each intervention point, cases will be 

identified for interventions by increasing values of 𝑑̂𝑑𝑖𝑖𝑖𝑖.  

5) At each of the three intervention points, 𝑡𝑡, generate two expected data collection 

cost estimates for each case, one assuming the case remains in its current strategy, 

𝑐̂𝑐𝑖𝑖𝑖𝑖
𝑆𝑆0, and one assuming the case is switched to the alternate strategy, 𝑐̂𝑐𝑖𝑖𝑖𝑖

𝑆𝑆𝐴𝐴. These 

costs are generated using the methodology explained in Section 4.3.3.  

6) At each of the three intervention points, obtain two posterior estimates of 

response propensity for all unresolved cases, one assuming the case remains in its 

current strategy, 𝑝̂𝑝𝑖𝑖𝑖𝑖
𝑆𝑆0, and one assuming the case is switched to the alternate 

strategy, 𝑝̂𝑝𝑖𝑖𝑖𝑖
𝑆𝑆𝐴𝐴. The response propensity for the current strategy, 𝑝̂𝑝𝑖𝑖𝑖𝑖

𝑆𝑆0, is generated 
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using the methodology explained in Section 4.3.1. The response propensity for 

switching a case to the alternate strategy, 𝑝̂𝑝𝑖𝑖𝑖𝑖
𝑆𝑆𝐴𝐴, is calculated by penalizing 𝑝̂𝑝𝑖𝑖𝑖𝑖

𝑆𝑆0 by 

five percentage points, so 𝑝̂𝑝𝑖𝑖𝑖𝑖
𝑆𝑆𝐴𝐴 = �𝑝̂𝑝𝑖𝑖𝑖𝑖

𝑆𝑆0 − 0.05�. 

7) Using a Bernoulli random trial, with (𝑝𝑝,𝑛𝑛)~(𝑝̂𝑝𝑖𝑖𝑖𝑖
𝑆𝑆𝑗𝑗 , 1), where 𝑗𝑗 = {0,𝐴𝐴}, determine 

stochastically whether the case will be a respondent under each strategy. A 

nonresponding case at intervention point 𝑡𝑡 that is predicted to be a respondent has 

a predicted response indicator value 𝛿̂𝛿𝑖𝑖𝑖𝑖 = 1. 

8) Generate a new estimate of mean salary, 𝑦𝑦��𝑡𝑡
𝑆𝑆0, assuming all cases stay in the 

current strategy, 𝑆𝑆0, dropping all cases who are considered nonrespondents in step 

7, when 𝑗𝑗 = 0. Using this new estimate of mean salary, which accounts for 

predicted nonresponse, and the unbiased target mean from Step (2), generate a 

measure of RMSE of the mean value of salary. RMSE for strategy 𝑆𝑆0 is defined: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑦𝑦��𝑡𝑡
𝑆𝑆0� = �𝑦𝑦��𝑡𝑡

𝑆𝑆0 − 𝑦𝑦��𝑡𝑡𝑇𝑇�
2

+ Var�𝑦𝑦��𝑡𝑡
𝑆𝑆0�   , 

where the first term represents the squared bias of the predicted mean, 𝑦𝑦��𝑡𝑡
𝑆𝑆0, versus 

the target mean, 𝑦𝑦��𝑡𝑡𝑇𝑇, and the second term is the variance of the predicted 

mean,𝑦𝑦��𝑡𝑡
𝑆𝑆0. The variance term is defined: 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑦𝑦��𝑡𝑡
𝑆𝑆0� =

1
∑ �𝛿𝛿𝑖𝑖𝑖𝑖 + (1 − 𝛿𝛿𝑖𝑖𝑖𝑖)𝛿̂𝛿𝑖𝑖𝑖𝑖�𝑖𝑖∈𝑆𝑆

��𝛿𝛿𝑖𝑖𝑖𝑖�𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦��𝑡𝑡
𝑆𝑆0�

2

𝑖𝑖∈𝑆𝑆

+ (1 − 𝛿𝛿𝑖𝑖𝑖𝑖)𝛿̂𝛿𝑖𝑖𝑖𝑖�𝑦𝑦�𝑖𝑖𝑖𝑖 − 𝑦𝑦��𝑡𝑡
𝑆𝑆0�

2
�  , 
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where the squared differences of observed respondents’ (𝛿𝛿𝑖𝑖𝑖𝑖 = 1) reported values 

of salary, 𝑦𝑦𝑖𝑖𝑖𝑖 versus the predicted mean 𝑦𝑦��𝑡𝑡
𝑆𝑆0, and the squared differences of the 

case-level predictions of salary, 𝑦𝑦�𝑖𝑖𝑖𝑖, versus the predicted mean for nonresponding 

cases predicted to be respondents (𝛿𝛿𝑖𝑖𝑖𝑖 = 0, 𝛿̂𝛿𝑖𝑖𝑖𝑖 = 1) are summed and averaged 

over the total number of observed respondents and predicted respondents.  

9) Using the ranking from Step (3), simulate switching open cases into the alternate 

strategy, starting with the case with the minimum 𝑑̂𝑑𝑖𝑖𝑖𝑖. Switch over open cases in 

two-percentile increments, e.g., 2%, 4%, 6%, etc. Estimate 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑦𝑦��𝑡𝑡
𝑆𝑆𝐴𝐴�, where 

𝐴𝐴 = {2, 4, 6, … ,96, 98, 100} based on the percentage of open cases being switched 

to the alternate strategy using the formula from Step (8), substituting 𝛿𝛿𝑖𝑖𝑖𝑖
𝑆𝑆𝐴𝐴 and 𝑦𝑦��𝑡𝑡

𝑆𝑆𝐴𝐴 

for each intervention group. Each of these groups is increasing in size, likely 

leading to larger cost savings, and larger increases in RMSE, and represents a 

potential intervention group.  

10) Using the same process as Step (5), substitute the expected data collection costs in 

the alternate strategy for cases that are switched. Generate a total expected data 

collection cost for each simulated switch (e.g., 2%, 4%, 6%, etc. of open cases).  

11) For each potential intervention group, calculate the ratio of the RMSE, 

�
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑦𝑦��𝑡𝑡

𝑆𝑆𝐴𝐴�

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑦𝑦��𝑡𝑡
𝑆𝑆0�
�, and cost, �𝐶̂𝐶𝑡𝑡

𝑆𝑆𝐴𝐴

𝐶̂𝐶𝑡𝑡
𝑆𝑆0� for the intervention vs. baseline. If the strategy 

results in a cost savings, the cost ratio will be below one. If the strategy results in 

an increase in RMSE, the RMSE ratio will be above one.  



146 

12) For each potential intervention group, 𝑆𝑆𝐴𝐴, find the product of the RMSE and cost 

ratios, 𝑂𝑂𝑆𝑆𝐴𝐴 = �
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑦𝑦��𝑡𝑡

𝑆𝑆𝐴𝐴�

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑦𝑦��𝑡𝑡
𝑆𝑆0�
� �𝐶̂𝐶𝑡𝑡

𝑆𝑆𝐴𝐴

𝐶̂𝐶𝑡𝑡
𝑆𝑆0�. The optimal set of cases to switch to the 

alternate strategy satisfies min
𝐴𝐴

{𝑂𝑂𝑆𝑆2 ,𝑂𝑂𝑆𝑆4 ,𝑂𝑂𝑆𝑆6 , … ,𝑂𝑂𝑆𝑆𝐴𝐴 , … ,𝑂𝑂𝑆𝑆100 , }.  

4.5 Summary of Interventions 

For each intervention time period, we provide the following information: 

1) The unweighted response rate. Interventions are limited to nonrespondents at the 

time of intervention; 

2) A plot of the ratio of cost vs. the ratio of RMSE when different percentages of 

open cases are switched to the alternate strategy.  

3) Information about the identified intervention, including the number of cases 

switched to the alternate strategy, the expected effect on data collection costs, and 

the expected effect on the RMSE of salary.  

4.5.1 Week 8:  Replace Paper Questionnaire with Web Invite Letter 

The first cost-saving intervention occurred at week 8, when open cases would be sent a 

paper questionnaire. For the majority of the sample, this is the first time a paper 

questionnaire is available to the respondent. While offering new modes of response can 

encourage additional response, sending a paper questionnaire and processing a paper 

response are both more expensive operations than sending web invites and processing 

internet data. It may not be worth it to incur those additional costs for cases that are not 

contributing new information to the survey estimate. Cases must be identified for 
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intervention at the end of week 6 for this intervention in order to allow the mail centers to 

prepare the correct packages for individual cases.  

Table 17 shows the response rate at the end of week 6 in the treatment and control 

groups, and the mean of predicted salary. When calculating the mean we used the actual 

survey response variable if the sample member responded; otherwise, we used the 

predicted value.  

Table 17. Information Prior to First Intervention 

 Treatment (NADT) Control (NADC) 
Unit Response Rate 31.33% 30.67% 

Mean Predicted Salary $62,997.28 $62,287.51 
 

We carried out the steps in Section 4.4.2, simulating the effects on RMSE of the mean of 

salary and data collection costs of moving up to 16 sets of open cases (2%, 4%, …, 32%). 

The “most optimal” intervention would reduce our estimates of cost and RMSE as close 

to zero as possible. Realistically though, interventions that reduce effort likely reduce the 

response rate and increase the RMSE. Therefore, we are looking for the best tradeoff 

between cost reduction and RMSE increase. We can evaluate intervening on different 

subsets of the open cases by comparing ratios of cost and RMSE of a given iteration 

versus the baseline.  

Our goal was to find the 𝑂𝑂𝑆𝑆𝐴𝐴 = �
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑦𝑦��𝑡𝑡

𝑆𝑆𝐴𝐴�

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑦𝑦��𝑡𝑡
𝑆𝑆0�
� �𝐶̂𝐶𝑡𝑡

𝑆𝑆𝐴𝐴

𝐶̂𝐶𝑡𝑡
𝑆𝑆0� from Section 4.4, Step (12). Figure 

36 shows the effect on data collection costs plotted along the y-axis versus the effect on 

RMSE of mean salary, plotted along the x-axis.  
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Figure 37. Ratios of Cost and RMSE to Minimize Optimization Function 

The general trend is as expected; as more cases have their mail questionnaire replaced 

with a web invite letter, the cost decreases, but due to the falling response rate from those 

who would respond by paper but not web, the RMSE increases. In this instance, both the 

differences are small. Even when 30% of open cases are moved to the alternate data 

collection strategy, overall data collection costs are only predicted to be reduced by 

approximately 0.6%. Similarly, the RMSE is only expected to increase 0.8%.  

The small effects on both cost and RMSE may be for a few reasons. First, this 

intervention simply removes a mailed questionnaire from the Week 8 mailing. This does 

not preclude cases from receiving a later mailed questionnaire (in week 18), and so there 

is still a chance (though a small one) that cases could respond by paper, thus incurring the 

cost of processing paper questionnaires. Further, this intervention does not preclude a 

case from being included in CATI in week 12 or in the late mail strategy in week 18. 

Lastly, this intervention is made in week 6, which is relatively early in the NSCG data 
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collection period. As a result, cases may still have relatively high response propensities, 

so the Bernouilli check that determines whether a case is a respondent or not may still 

classify most cases as respondents, thus reducing the effect on RMSE as well.  

In Figure 37, we plot the optimization function, 𝑂𝑂𝑆𝑆𝐴𝐴 against the percent of cases switched 

to the alternate data strategy. The plot clearly shows that when 10% of open cases are 

switched to the alternate strategy of receiving a web invite instead of a questionnaire, the 

function is minimized.  

 
Figure 38. Minimization Function by Percent of Cases Switched to Alternate Strategy 

Therefore, we will send approximately 550 cases in the treatment to the alternate 

strategy. All other open cases continue to follow the standard production methodology. 

Figure 36 shows that we should expect to a see a reduction of 0.2% in data collection 

costs, and an increase in RMSE of 0.00%. Therefore, we do not expect this particular 

intervention to have a large effect on data collection outcomes.  
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4.5.2 Week 12:  Replace Telephone Nonresponse Follow-Up with Web Invite Letter 

Our second cost-saving intervention came in week 12, when we can choose to hold cases 

out of CATI nonresponse follow-up. As shown in Table 12, CATI is a large cost driver in 

the NSCG, and so sending fewer cases to the operation could result in significant data 

collection cost savings.  

Table 18 shows the counts of respondents and nonrespondents at the end of week 11 in 

the treatment and control, and the mean of predicted salary. When calculating the mean 

and standard deviation, we used the actual survey response variable if the sample member 

responded; otherwise, we used the predicted value. 

Table 18. Information Prior to Second Intervention 

 Treatment (NADT) Control (NADC) 
Unit Response Rate 40.91% 42.08% 

Mean Predicted Salary $71,731.16 $71,752.54 
 

We again carried out the steps in Section 4.4.2, simulating the effects on RMSE of salary 

and data collection costs of moving up to 50 sets of open cases (2%, 4%, …, 100%) to 

the alternate data collection strategy. Figure 38 shows the effect on cost plotted along the 

y-axis versus the effect on RMSE, plotted along the x-axis. Here, we plotted all 50 

possible scenarios, from where none of the cases are held out of CATI, to where 100% of 

cases are held out of CATI. We were interested in the effect of CATI on cost and RMSE, 

as it is such a large cost driver.  
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Figure 39. Ratios of Cost and RMSE to Minimize Optimization Function 

Again, the general trend is as expected; as more cases are not sent to CATI, the cost 

decreases, but due to the falling response rate, the RMSE increases. However, in this 

figure, there seem to be varying effects on RMSE of moving small (< 30%) of cases to 

the alternate strategy. Then there is a nearly linear relationship between cost decreases 

and increases in RMSE up through 80% of cases being moved to the alternate strategy. 

After 80%, further shifts seem to have smaller effects on cost, and the RMSE starts to 

decrease. This may be evidence that cases with predictions of salary that are very 

different from the target estimate becoming nonrespondents. This would reduce the 

RMSE by shrinking the tails of the distribution of salary, which would not be beneficial 

to analysts who rely on this data to understand the distribution of salary among this 

population, or for those carrying out subgroup analyses.  

Figure 39 is the same plot, but restricted to switching less than 30% of open cases to the 

alternate strategy. When fewer than 6% or more than 24% of cases are switched, we 
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again see a linear relationship, but in between those two percentages, there does seem to 

be a tradeoff between cost and RMSE.  

 

Figure 40. Ratios of Cost and RMSE to Minimize Optimization Function, Less than 30% of Cases Switched 

When we plot the minimization function in Figure 40, we see that there is, in fact, a local 

minimum of the optimization function at around 12% of cases.  



153 

 

Figure 41. Minimization Function by Percent of Cases Switched to Alternate Strategy 

Therefore, we will send approximately 565 cases in the treatment to the alternate 

strategy. Looking again at Figure 39, we expect to see a reduction of about 5.5% of data 

collection costs, and an increase of about 1.5% in the RMSE of salary.  

Again, open cases not part of this group of 565 continue to follow the standard 

production methodology. This means that, potentially, a case could have been selected 

for the Week 8 intervention, but not selected for the Week 12 intervention. In practice, 

this would mean that case did not receive a paper questionnaire, but did receive CATI 

nonresponse follow-up contacts starting in Week 12. 

4.5.3 Week 18:  Withhold Late Contact Strategies 

The final cost saving intervention came in week 18, when sample members receive a set 

of late mailings, including an additional questionnaire, a web invite, and a final reminder. 

We can choose to not send any mailings to open cases; however, this is a binary choice. 

Either the case receives all three mailings, or receives none of them. This decision had to 
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be made by the end of week 16 to allow the mailings centers time to prepare the correct 

packages.  

Table 19 shows the counts of respondents and nonrespondents at the end of week 16 in 

the treatment and control, and the mean of predicted salary. When calculating the mean, 

we used the actual survey response variable if the sample member responded; otherwise, 

we used the predicted value. 

Table 19. Information Prior to Third Intervention 

 Treatment (NADT) Control (NADC) 
Unit Response Rate 48.92% 50.17% 

Mean Predicted Salary $74,253.20 $74,213.25 
 

We carried out the optimization steps in Section 4.4.2 one final time, simulating the 

effects on RMSE of salary and data collection costs of moving up to 50 sets of open cases 

(2%, 4%, …, 100%) to the alternate data collection strategy. Figure 41 shows the effect 

on cost plotted along the y-axis versus the effect on RMSE, plotted along the x-axis. 

Here, we plotted all 50 possible scenarios, from all of the open cases receiving the final 

contact strategy, to no cases receiving the final contact strategy. While the final contact 

mailings have a smaller effect on cost than the CATI operations in phase 3, we see a 

pattern similar that seen in Figure 38. Between 12% and 24%, we see a potential spot 

where there are tradeoffs between cost reductions and RMSE increases. Switching 

between 24% and 60% of cases results in a similarly linear relationship that we saw in 

Figure 38.  
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Figure 42. Ratios of Cost and RMSE to Minimize Optimization Function 

Figure 42 is the same plot, again restricted to switching less than 30% of open cases to 

the alternate strategy. When fewer than 14% or more than 22% of cases are switched, we 

again see a linear relationship, but in between those two percentages, there does seem to 

be a tradeoff between cost and RMSE. All open cases not selected for this intervention 

received the Week 18 late contact strategies, following the standard production 

methodology. 
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Figure 43. Ratios of Cost and RMSE to Minimize Optimization Function, Less than 30% of Cases Switched 

When we plot the minimization function in Figure 43, we do not see a local minimum in 

the optimization function like we saw in Figure 40. However, there does seem to be an 

inflection point around 20%. After that point, the reductions in cost are smaller and 

increases in RMSE are larger.  
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Figure 44. Minimization Function by Percent of Cases Switched to Alternate Strategy 

Therefore, we will send approximately 800 cases in the treatment to the alternate 

strategy. Looking again at Figure 42, we expect to see a reduction of about 1.2% of data 

collection costs, and an increase of about 0.8% in the RMSE of salary.  

4.6 Results 

Our main interest was to see if we could intervene on cases in a strategic way so that we 

would be able to save data collection resources without jeopardizing the quality of a key 

survey estimate, the mean of self-reported salary. Successfully reducing expended data 

collection resources while maintaining quality in an optimization framework would allow 

survey managers to make decisions about how to allocate resources during data collection 

without harming the quality of the information produced by the survey.  

4.6.1 Estimated Data Collection Costs (Treatment vs. Control) 

During the experiment, we used estimated costs for particular data collection features 

(like a letter mailing or an unsuccessful telephone contact attempt) based on 2017 
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production cost data. Cumulatively, we expected our three interventions to reduce costs 

by approximately 6.9% (0.2% for the first intervention, 5.5% for the second intervention, 

and 1.2% for the third intervention).  

After this experiment ended, we were able to use the actual costs for 2019 data collection 

features provided by the data collection production staff. By adding up the costs for all 

applied data collection features in the treatment versus control group, we were able to 

generate summary statistics about the data collection costs. Table 20 displays the median, 

mean, and total cost per case in the treatment versus control.  

Table 20. Cost Comparison between Treatment and Control 

 Sample 
Size 

Median  
Cost-per-Case 

Mean  
Cost-per-Case 

Total Data 
Collection Costs 

Treatment 8,000 $20.22 $26.81 $214,569.06 
Control 8,000 $27.81 $29.57 $236,620.15 

 

The median cost-per-case is approximately 25% lower in the treatment than in the 

control, while the average cost per case is approximately 9.3% lower in the treatment. 

Similarly, the total data collection costs for all cases was approximately 9.3% lower in 

the treatment than in the control. The 9.3% reduction in data collection costs is similar to 

the 6.9% reduction we expected based on our data collection interventions.  

Using a two-tailed, two-sample z-test to estimate the difference in the mean costs of the 

treatment and control with 𝛼𝛼 = 0.05 results in a test statistic of -6.68, an so we reject the 

null hypothesis.  
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𝑧𝑧 =
(𝑥̅𝑥𝑇𝑇 − 𝑥̅𝑥𝐶𝐶)

���𝜎𝜎𝑇𝑇
2

𝑛𝑛𝑇𝑇
� + �𝜎𝜎𝐶𝐶

2

𝑛𝑛𝐶𝐶
��

=
(26.81 − 29.57)

���25.342
8000 � + �26.892

8000 ��

= −6.68 

The mean costs per case are significantly different, with the treatment group having a 

lower average cost-per-case. Additionally, a 10% reduction in overall and average costs 

and a 25% reduction in median costs is a practically significant result that is important for 

evaluating the effect of this optimization on operational realities.  

4.6.2 Self-Reported Salary (Treatment vs. Control) 

During the experiment, we stochastically determined which cases would respond under 

each data collection strategy using a Bernoulli test centered around the predicted final 

response propensity for each case. Determining who responded allowed us to then obtain 

estimates of mean salary based on a combination of survey responses and our predictions 

for nonrespondents. After data collection we have the complete set of response data with 

which to compare actual survey responses. In order to determine the impact our data 

collection interventions had on the quality of this statistic, we compare both the RMSE 

and estimates of the mean salary in the treatment and control to determine whether our 

intervention resulted in large shifts in this key survey estimate.  

Table 21 displays information about which sample members are included in the 

estimation of unweighted mean salary, as well as the median, mean and standard 

deviation within each treatment group. Estimating mean salary in the NSCG requires 

logic that excludes a number of cases, including those that respond but are not working 

(and so do not report a salary), and those who have responded, and may be working, but 

skip that item in the survey.  



160 

Table 21. Summary Statistics about Survey Response 

 Treatment Control 
Sample Size 8,000 8,000 
 Proportion of Sample 
Nonrespondents1 42.95% 41.80% 
Respondents, Not Working1 7.68% 7.28% 
Respondents, Working, Item Skipped1 5.35% 5.71% 
Respondents Reporting Salary2 44.03% 45.21% 
 Mean Unweighted Estimates 
Median Salary $72,000.00 $73,000.00 
Mean Salary $84,082.10 $85,336.98 
Standard Deviation of Salary $62,776.24 $77,278.77 
1Excluded from Estimates of Salary   
2Included in Estimates of Salary   

After taking these exclusions into consideration, we estimated the unweighted mean and 

median values for salary for the respondents. The median salary in the treatment group is 

$1,000 less than in the control group. The mean salary is approximately $1,255 lower in 

the treatment than in the control, representing a 1.5% difference in the point estimate of 

the mean. We used a two-tailed z-test for means with an 𝛼𝛼 = 0.05 to evaluate whether 

the mean salary in the two groups were significantly different. The sample sizes were 

based upon the study group sample size and the respondents that reported salary, as those 

were the only individuals included in the estimation of mean salary.  

𝑧𝑧 =
(𝑥̅𝑥𝑇𝑇 − 𝑥̅𝑥𝐶𝐶)

���𝜎𝜎𝑇𝑇
2

𝑛𝑛𝑇𝑇
� + �𝜎𝜎𝐶𝐶

2

𝑛𝑛𝐶𝐶
�� 

=
(84,082.10 − 85,336.98)

���62,776.242
3,522.4 � + �77,278.772

3616.8 ��

= −0.75 

 

The test, however, leads to a test z-score of -0.75, and so we do no not reject the null 

hypothesis. The mean salary estimates in the treatment and control are not statistically 

significantly different.  
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Based on our interventions, we expected the RMSE in the treatment group to be 

approximately 2.3% larger than in the control group (0.0% increase for the first 

intervention, 1.5% for the second intervention, and 0.8% for the third intervention). In 

order to estimate the RMSE for the treatment and control groups, we assume the mean of 

the control group is the true estimate, and use the formula: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦��𝑚𝑚) = (𝑦𝑦��𝑚𝑚 − 𝑦𝑦�)2 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦��𝑚𝑚)  , 

where 𝑦𝑦��𝑚𝑚 is the estimated mean of salary for method 𝑚𝑚. The RMSE of salary in the 

treatment and control groups, respectively, were 62,788.78 and 77,278.77. This 

represents an 18.75% reduction in the RMSE in the treatment group versus the control 

group. In order to explain why this result was so different from our expectations, Table 

22 displays the bias and RMSE for salary in the treatment and control when salary was 

restricted to less than $1,000,000 versus unrestricted for eligible respondents.  

Table 22. Comparison of Bias and RMSE for Different Salary Cutoffs 

Salary Cutoff for Estimation $1,000,000 No Limit 
Treatment Group Treatment Control Treatment Control 
% Respondents Included 100.00% 99.94% 100.00% 100.00% 
Mean Salary ($) 84,082.10 84,250.02 84,082.10 85,336.98 
RMSE Salary 62,776.47 61,940.82 62,788.79 77,278.77 
Bias in Mean Salary ($) -167.92 -1,254.88 
% Difference RMSE 1.35% -18.75% 

 

When salary is restricted to all responses under $1,000,000, all of the respondents in the 

treatment group are included in the estimate. However, a small proportion (< 0.06%) are 

excluded from the estimate because the reported salaries are above the $1,000,000 

threshold. When this restriction is placed on the cases included in the estimate of mean 



162 

salary, we see that the bias in mean salary in the treatment group versus the control group 

is less than $200, and the RMSE of the treatment group is 1.35% larger than the control 

group. This is much closer to what the predicted effect of our interventions would be.  

When we remove the restriction on salaries that are included in the estimate, a few more 

cases with extreme salaries are included, increasing the variance of salary in the control 

group to the point where the treatment group shows a large reduction in RMSE. Due to 

the very small number of influential responses in the treatment group that not only cause 

a relatively large shift in the mean (>$1,000), these cases are likely outliers.  

When they are excluded, we see a slight increase in the RMSE to balance out the 

reduction in cost discussed in 4.6.1, as expected based on our experimental predictions. 

This is an important finding, as it demonstrates that we can meaningfully reduce costs, as 

shown in Section 4.6.1 without causing a sizeable increase in the RMSE of mean salary. 

4.6.3 Unweighted Response Rate (Treatment vs. Control) 

As a secondary measure, we wanted to evaluate the effect of our interventions on 

unweighted response rate. While this experiment focuses on RMSE of salary as the 

measure of data quality, survey managers commonly utilize response rate as another 

measure of data quality. Table 23 displays the response rates and percentages of response 

coming from different modes in the treatment and control groups.  

Table 23. Summary Statistics about Unweighted Response Rates 

 Treatment Control 
Sample Size 8,000 8,000 
Unweighted Response Rate 57.08% 58.23% 
Percent of Response from Web 85.92% 83.50% 
Percent of Response from Mail 8.59% 10.32% 
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Percent of Response from CATI 5.50% 6.18% 
 

The treatment group has a slightly lower unweighted response rate. Using a two-tailed z-

test for two proportions with 𝛼𝛼 = 0.05, however, leads to a test z-score of -1.47.  

𝑧𝑧 =
(𝑝̂𝑝𝑇𝑇 − 𝑝̂𝑝𝐶𝐶)

��𝑝̂𝑝(1 − 𝑝̂𝑝) � 1
𝑛𝑛𝑇𝑇

+ 1
𝑛𝑛𝑐𝑐
�� 

=
(0.5708 − 0.5823)

��(0.5766)(0.4234) � 2
8,000��

= −1.47 

As a result of the test, we do no not reject the null hypothesis. The final response rates 

between treatment and control are not significantly different. We also observed small 

shifts in response behavior due to our data collection interventions. The proportion of 

respondents that responded via web was 2.4% higher in the treatment group versus the 

control group (p <0.05), and fewer respondents responded by mail or telephone, though 

those differences were not significant. These shifts make sense – cases identified for our 

interventions had a reduced number of modes by which they could respond. Cases could 

always respond by web, but we removed both paper questionnaires and telephone in 

order to save costs. So, if cases that were identified for interventions responded to the 

NSCG, they were more likely to respond by web, accounting for the small increase in the 

proportion of response coming from web in the treatment versus the control. Again, these 

results show that our intervention methodology was able to meaningfully reduce data 

collection costs without causing a negative effect on response rates.  

4.7 Discussion and Future Work 

The goal of this research was to implement a responsive design experiment using 

Bayesian methods in order to leverage external data to minimize a function of cost and 
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RMSE of a key survey estimate, salary. This research was largely successful. Results 

from our experiment indicate that it is possible to implement Bayesian prediction 

methods during data collection to inform adaptive interventions. Further, this 

methodology resulted in reduced costs without reductions in data quality. We were able 

to significantly reduce the mean and median estimates of data collection costs-per-case 

by 9% and 25%, respectively, without causing significant changes to estimates of the 

mean salary, the RMSE of mean salary, or unweighted response rates.  

Building upon recent work (West et al. 2019; Wagner et al. 2020; Coffey et al. 2020), the 

first part of this chapter illustrated improvements in predictive models of both final 

response propensity and salary provided by the use of Bayesian methods. In particular, 

we found that Bayesian methods lead to smaller estimates of bias in predictions of final 

response propensity and salary, especially early in data collection when the accumulating 

data from the current survey implementation may be sparse.  

From there, we illustrated how we used the predictive models for final response 

propensity and salary, as well as deterministic models for estimated costs, in order to 

intervene in data collection at points when the cost of new data collection features in the 

NSCG is increasing. We identified cases that had predicted values of salary closest to our 

estimated average salary in order, as they would have the least effect on the overall 

distribution of salary. We simulated the effect on estimated data collection cost and 

estimated RMSE of salary when different percentages of open cases were moved to an 

alternate, less expensive, data collection strategy. By minimizing an optimization 

function, we were able to find the percentage of cases that led to the optimal tradeoff 

between cost and RMSE, based on our predictive models. After data collection we found 



165 

that data collection costs were 10% lower in the treatment group than in the control, 

which was significantly different, and we found no significant differences in the 

unweighted average estimate of salary or in the unweighted response rate.  

This research does have limitations, suggest potential areas for future work. Most 

significantly, this experiment focused on the RMSE of one key survey item. However 

most demographic surveys collect data for many items. It is possible that the cases we 

identified as low impact with respect to salary will be highly impactful with respect to 

another survey item. A multivariate approach to identifying cases for intervention would 

help ensure that data quality was maintained across many key survey items as data 

collection costs were reduced. The multivariate approach might also help with 

determining the optimal cutoff when local or global minima in the optimization function 

are not obvious, as we saw in Section 4.5.3. Interventions could be restricted to cases 

considered to be low impact across all key survey items (i.e., the intersection), or perhaps 

a proportion (e.g., low impact for 50% of key survey items).  

Second, while Bayesian versions of predictive models were incorporated into the 

optimization framework, there are areas of improvement in the model construction steps. 

First, when estimating model coefficients for use in our Bayesian priors, we ignored 

correlation between the covariates, instead treating them as independent. Coefficients 

would be more accurate, and Bayesian predictions might show further improvement if the 

correlation was accounted for. Further, we did not successfully develop Bayesian models, 

or any predictive models at all, for the estimated data collection costs. While the 

deterministic models performed reasonably well based on our experimental results, large 

shifts in response behavior or in costs related to data collection operations could render 
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the deterministic models useless. One of the benefits of Bayesian methods is the 

continuous statistical learning that protects against poor assumptions. In other words, if 

our Bayesian priors, based on historical cost information, were wildly incorrect, at least 

the current cost information would be incorporated, hopefully improving the posterior 

predictions of data collection costs. Therefore, more work on the models predicting costs 

and response by phase and mode is important. Classification algorithms other than 

logistic regression may improve the predictions of response phase and mode. Wagner et 

al. (2020) evaluates different methods for predicting data collection costs, such as 

Bayesian Adaptive Regression Trees (BART), that could be applied in this setting. 

Alternatively, models like piecewise exponential models explored by Li and colleagues 

(2012; 2015) could help overcome the difficulties we found during model specification.  

Third, this work should be extended to incorporate survey weights. In this experiment, 

our measure of impact was the distance a case’s value of predicted salary was from the 

mean predicted value of salary. However, when weights are highly variable (as they are 

in the NSCG), the weighted mean may be significantly different from the unweighted 

mean. Further, highly variable weights may have an impact on measures of the RMSE 

when they are incorporated. Base weights could be incorporated into most of the 

statistical models here to evaluate their effect on which cases might be selected for 

intervention. Additionally, weighting procedures like nonresponse adjustments could be 

incorporated during the steps that generate point estimates and the RMSE of key survey 

items. Weight variability can increase the variance of survey estimates once nonresponse 

is taken into account, which could have an impact on the RMSE of different data 

collection strategies and allocations.  
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Finally, with respect to experimentation, this work would be enhanced by experiments 

that include a “random” intervention group in addition to the control group. A random 

intervention group would demonstrate the benefit of the optimization methods over 

selecting a random subset of cases to move to an alternate data collection strategy. While 

this work can be partially completed through simulation, it is not possible to completely 

isolate the effect on cost and response of switching sample members into alternative data 

collection strategies without a randomized experiment. Additionally, a sequential, 

multiple assignment, randomized trial (SMART) design could be used to isolate the 

effects of including or excluding specific data collection features. In a SMART design, 

cases that were nonrespondents at decision points in data collection would be randomized 

among different available treatment options (Lei et al. 2012). This would allow for post-

experimental analysis to estimate the effect of particular data collection interventions 

(e.g., replacing a paper questionnaire with a web invite), rather than simply penalizing the 

predicted response propensity by an arbitrary amount to obtain an estimate of the 

response propensity for a case under an alternate data collection strategy.  

Despite these limitations, the results of this experiment clearly demonstrate that both 

Bayesian methods and optimization methods can be implemented in a production setting 

to intervene in data collection and reduce data collection costs without hurting data 

quality. Carrying out research identified above to overcome the limitations of this study 

would improve specific outcomes, and also improve the generalizability of the findings. 

These benefits could lead to increased adoption of these techniques for balancing cost-

quality tradeoffs in large survey data collections.  
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Appendix A:  Significant Predictors of Final Screener Response Propensity 

Appendix A displays the coefficients and standard errors for all retained predictors of 

screener response propensity in the final discrete time logit model for call-level data from 

the eight most recent quarters, after applying backward selection (n = 119,981 calls; 

Nagelkerke pseudo R-squared = 0.09; AUC = 0.66).  

Predictor Coefficient StdErr 
Intercept -2.56 0.32 
Mail Delivery Point Type: Missing 0.08 0.03 
Mail Delivery Point Type: A 0.03 0.02 
Mail Delivery Point Type: B -0.04 0.03 
Mail Delivery Point Type: C -0.09 0.03 
Interviewer-Judged Eligibility: Missing 2.46 0.10 
Interviewer-Judged Eligibility: No 0.63 0.07 
Segment Listed: Car Alone 0.03 0.02 
PSU Type: Non Self-Representing 0.06 0.03 
PSU Type: Self-Representing (Not Largest 3 MSAs) 0.03 0.03 
Previous Call: Contact 3.97 0.28 
Previous Call: Different Window -0.12 0.02 
Previous Call: Building Ever Locked 0.32 0.05 
Previous Call: Building Locked 2.16 0.14 
Previous Call: Strong Concerns Expressed 0.26 0.04 
Previous Call: No Contact 2.26 0.13 
Previous Call: Other Contact, No Concerns Expressed -1.35 0.25 
Previous Call: Concerns Expressed -1.58 0.26 
Previous Call: Soft Appointment -1.03 0.30 
Previous Call: Call Window Sun.-Thurs. 6pm-10pm  0.07 0.03 
Previous Call: Call Window Fri.-Sat. 6pm-10pm 0.08 0.02 
No Access Problems in Segment -0.05 0.02 
Evidence of Other Languages (not Spanish) -0.09 0.03 
Census Division: G -0.14 0.03 
Census Division: B -0.32 0.03 
Census Division: D -0.22 0.03 
Census Division: H -0.24 0.03 
Census Division: C -0.20 0.03 
Census Division: F -0.27 0.04 
Census Division: E -0.20 0.03 
Census Division: A -0.19 0.04 
Contacts: None -0.68 0.24 
Contacts: 1 -0.54 0.22 
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Contacts: 2 to 4 -0.42 0.19 
Segment Domain: <10% Black, <10% Hispanic -0.04 0.02 
Segment Domain: >10% Black, <10% Hispanic -0.04 0.02 
Segment Domain: <10% Black, >10% Hispanic 0.01 0.03 
Percentage of Segment Non-Eligible (Census Data) -0.01 <0.01 
Interviewer-Estimated Segment Eligibility Rate -0.55 0.12 
Interviewer-Estimated Household Eligible -0.09 0.02 
Segment Type: All Residential 0.04 0.02 
Log(Number of Calls Made) -0.60 0.03 
Log(Number of Calls Made) x No. Prev. Contacts -0.04 0.01 
CML* HoH Age: 35-64 -0.12 0.02 
CML Adult Count: Missing -0.13 0.04 
CML Adult Count: 1 -0.09 0.03 
CML Adult Count: 2 0.01 0.03 
CML Asian in HH: Missing 0.21 0.04 
CML Asian in HH: No 0.20 0.05 
CML HoH Gender: Missing -0.03 0.02 
CML HoH Gender: Female -0.01 0.02 
CML HoH Income: $35k-$70k 0.12 0.02 
CML HoH Income: less than $35k 0.14 0.02 
CML HH Own/Rent: Missing -0.06 0.03 
CML HH Own/Rent: Owned -0.02 0.02 
CML Age of 2nd Person: Missing -0.13 0.03 
CML Age of 2nd Person: 18-44 -0.15 0.03 
No Respondent Comments 0.08 0.04 
Non-Contacts: None -0.51 0.08 
Non-Contacts: 1 -0.25 0.05 
Non-Contacts: 2-4 -0.03 0.03 
Occupancy Rate of PSU -0.26 0.10 
Respondent Other Concerns 0.18 0.06 
Physical Impediment to Housing Unit: Locked  -0.35 0.03 
Day of Quarter 0.01 <0.01 
Respondent Concerns Expressed: None -1.25 0.15 
Respondent Concerns Expressed: Once 0.15 0.09 
Single Family Home / Townhome -0.22 0.03 
Structure with 2-9 Units -0.29 0.04 
Structure with 10+ Units -0.21 0.04 
Respondent Concern: Survey Voluntary? -0.46 0.15 
Respondent Concern: Too Old 0.60 0.15 

* CML denotes that the variable came from a commercial data source. 
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Appendix B:  Questionnaire for Expert Elicitation 
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Appendix C:  Coefficients and Standard Errors of Priors 
Based on Expert Elicitation 

Appendix C displays the standard normal prior definitions, �𝛽̂̅𝛽𝑗𝑗𝑗𝑗, 𝑆𝑆𝑆𝑆 �𝛽̂̅𝛽𝑗𝑗𝑗𝑗��, for the same 

predictors included in the NSFG response propensity model described in Appendix A. 

The table notes which categories served as reference categories in the prior generation 

process, and also notes how many responses (out of a maximum of 20) that we received 

for each category. 

  All Respondents (max n = 20) 

Questions and Categories 
Count of Mean StdErr 

Responses Beta Beta 
Gender of Primary Householder (vs. Male)      

Female 20 0.336 0.063 
Missing 14 -0.465 0.257 

Age of Primary Householder (vs. 50 or Over)    
< 50 20 -0.370 0.108 

Missing 15 -0.831 0.293 
Number of Adults in HH (vs. 2 or More)    

1 20 0.066 0.198 
Missing 12 -0.732 0.219 

Race/Ethnicity of Primary Householder (vs. Asian)    
White 18 0.532 0.121 
Black 18 -0.031 0.173 

Hispanic 18 -0.118 0.112 
Other 13 -0.348 0.233 

Missing 12 -0.326 0.292 
Household Income Effect    

+$10,000 17 0.466 0.235 
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  All Respondents (max n = 20) 

Questions and Categories 
Count of Mean StdErr 

Responses Beta Beta 
Masked Census Division (vs. Region I)    

G 14 0.020 0.129 
B 14 -0.205 0.138 
D 14 0.041 0.141 
H 14 0.060 0.161 
C 14 0.133 0.170 
F 15 0.294 0.150 
E 15 0.057 0.145 
A 16 -0.050 0.192 

Race/Ethnicity Sampling Domain  
(vs. > 10% Black, > 10% Hispanic) 

   

< 10% Black, < 10% Hispanic 16 0.696 0.202 
> 10% Black, < 10% Hispanic 16 0.535 0.132 
< 10% Black, > 10% Hispanic 16 0.364 0.143 

    
Access Problems (vs. Other)    

Locked Buildings/Gated Communities 19 -0.687 0.190 
Seasonal Hazardous Conditions 18 -0.418 0.153 

Unimproved Roads 17 0.267 0.164 
None 10 1.091 0.189 

Evidence of Non-English Languages (vs. No)    
Yes 15 -0.725 0.163 

Neighborhood Age Effect    
10 years older than national average 17 0.520 0.099 

Occupancy Rate Effect    
10% increase in occupancy rates 16 0.187 0.170 

PSU Type (vs. Major Metropolitan Area)    
Minor Metropolitan Area 18 0.155 0.155 

Not Metropolitan 17 0.398 0.158 
Listing Procedure (vs. On Foot Alone)    

On Foot With Someone 11 0.787 0.607 
In a Car Alone 11 -0.066 0.135 

In a Car With Someone 11 0.795 0.614 
Structure Type (vs. Other)    

Single Family Home 5 1.172 0.567 
Structure with 2-9 Units 5 0.788 0.602 
Structure with 10+ Units 5 0.600 0.617 

Mobile Home 5 0.728 0.462 
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  All Respondents (max n = 20) 

Questions and Categories 
Count of Mean StdErr 

Responses Beta Beta 
Delivery Type (vs. Other)    

Curbline 3 0.917 0.590 
Neighborhood Delivery Collection Box 3 0.199 0.289 

Central 3 0.069 0.384 
Missing 3 0.000 0.000 

Physical Impediments (vs. Other)    
Locked Entrance 19 -0.096 0.206 

Doorperson or Gatekeeper 19 -0.627 0.117 
Access controlled via Intercom 19 -0.371 0.106 

None 14 1.076 0.155 
Attempt-Level Concerns Expressed (vs. No Concerns)    

Concerns Expressed on Previous Attempt 17 -1.347 0.434 
Concerns Expressed Not on Previous but Prior Attempt 17 -1.451 0.244 

Strong Concerns Ever Expressed 15 -2.228 0.593 
Attempt-Level Contact (vs. Never Contacted)    

Contacted at Previous Attempt 15 1.367 0.329 
Not Previous but Prior Contact 15 1.009 0.298 

Contact Observations (vs. Other)    
Ever Said "Too Old" 14 -0.532 0.336 

Comment re: Voluntary Nature of Survey 17 0.335 0.489 
Any Other Comments 14 0.118 0.182 

Never Made Comment 13 0.325 0.205 
Day of Field Period Effect    

Change in RR for Each Day of Field Period 12 0.213 0.078 
Call Window (vs. Weekday Day)    

Weekday Evening 19 1.203 0.193 
Weekend Day 19 1.052 0.166 

Weekend Evening 19 0.426 0.220 
Ever Requested Call-Back/Soft Appointment (vs. No)    

Yes 18 0.564 0.339 
Contact Attempt Effect    

Change in RR for Each Additional Contact 17 -0.058 0.109 
Contact*Contact Interaction Effect    

Change in RR for Each Add'l Call*Contact 13 0.177 0.228 
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Appendix D: Coefficients and Standard Errors from Historical (2017) Data 
for Predicting Response Propensity in the NSCG 

 

Variable Name Level DF Estimate SE p-value 
Intercept   1 -3.3751 0.4065 <.0001 
Age Group: 35-39 1 1 0.0834 0.0489 0.0880 
Age Group: 40-44 1 1 0.2031 0.0505 <.0001 
Age Group: 45-49 1 1 0.0824 0.0519 0.1120 
Age Group: 50-54 1 1 0.1609 0.053 0.0024 
Age Group: 55-59 1 1 0.2724 0.0554 <.0001 
Age Group: 60-64 1 1 0.2419 0.0589 <.0001 
Age Group: 65-69 1 1 0.4631 0.0754 <.0001 
Age Group: 70-75 1 1 0.5735 0.1064 <.0001 
Demographic Group: Hispanic 1 1 -0.1747 0.0466 0.0002 
Demographic Group: Black 1 1 -0.2615 0.0451 <.0001 
Demographic Group: Asian 1 1 -0.198 0.0425 <.0001 
Demographic Group: non-USCAB, Hispanic 1 1 -0.2948 0.0869 0.0007 
Demographic Group: non-USCAB, Asian 1 1 -0.1745 0.0473 0.0002 
Demographic Group: non-USCAB, Other 1 1 -0.244 0.0503 <.0001 
Census Division: Other 1 1 0.1992 0.1431 0.1641 
Census Division: West 1 1 0.2373 0.0593 <.0001 
Census Division: East South Central 1 1 0.1483 0.0718 0.0389 
Census Division: Mountain 1 1 0.0824 0.0556 0.1382 
Masters - Highest Degree Held 1 1 0.1758 0.0289 <.0001 
Doctorate – Highest Degree Held 1 1 0.3743 0.0718 <.0001 
Non-S&E Degree 1 1 -0.0886 0.0348 0.0110 
Works 30 Hours or Less per Week 1 1 -0.0588 0.0377 0.1187 
Works 50 Hours or More per Week 1 1 -0.1204 0.0467 0.010 
Indicator for Veteran’s Service 1 1 0.1379 0.0672 0.040 
Indicator for No Internet Access at Home 1 1 -0.1449 0.0743 0.0512 
Missing Information about Internet Access 1 1 -0.7603 0.1771 <.0001 
Responded to the ACS in Paper 1 1 -0.2297 0.0338 <.0001 
Responded to ACS in CATI 1 1 -0.431 0.0664 <.0001 
Responded to ACS by Personal Visit 1 1 -0.4938 0.0441 <.0001 
Indicator for Incentive Sent at Week 0 1 1 0.0972 0.04 0.0152 
One Trip to Research for New Contact Info 1 1 -1.1251 0.0626 <.0001 
Two or More Trips to Research for New Info 1 1 -1.5734 0.142 <.0001 
Indicator for a Refusal During Operations 1 1 -1.5515 0.0741 <.0001 
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Appendix E: Coefficients and Standard Errors from Historical (2017) Data 
for Predicting Cube Root of Salary in the NSCG 

 

Variable Name Level DF Estimate SE p-value 
Intercept  1 24.868 0.2276 <.0001 
Responded to ACS in CATI 1 1 -1.022 0.2198 0.0294 
Responded to ACS by Personal Visit 1 1 -0.552 0.0739 0.0422 
Responded to ACS by Group Qtr Operation 1 1 -4.631 2.2038 0.0018 
Field of Degree: Computer/Math Sciences 1 1 0.864 0.0825 0.0026 
Field of Degree: Engineering 1 1 1.29 0.0405 <.0001 
Demographic Group: Asian 1 1 0.828 0.0668 0.0014 
Indicator for Disability 1 1 -1.019 0.1361 0.0057 
Census Division: Pacific 1 1 0.478 0.0421 0.0197 
Income in 3rd Quintile of ACS Respondents 1 1 1.48 0.0638 <.0001 
Income in 4th Quintile of ACS Respondents 1 1 3.7 0.0824 <.0001 
Income in 4th Quintile of ACS Respondents 1 1 6.735 0.1449 <.0001 
Masters - Highest Degree Held 1 1 0.424 0.0279 0.0112 
Doctorate – Highest Degree Held 1 1 0.897 0.1067 0.006 
Occupation Code: Computer Scientist 1 1 0.793 0.1119 0.0178 
Occupation Code: Non S&E High Interest 1 1 1.108 0.0693 <.0001 
Non-S&E Occupation 1 1 -0.743 0.0449 0.0005 
Female 1 1 -0.807 0.0292 <.0001 
Living Outside Central City and MSA 1 1 -1.823 0.082 <.0001 
Not Working & Not Looking for Work 1 1 -0.317 0.0989 0.3131 
Poverty Indicator 1 1 3.388 0.2007 <.0001 
Private Healthcare Coverage 1 1 -1.837 0.1242 <.0001 
Public Healthcare Coverage 1 1 -1.228 0.146 0.0013 
Home is Owned with No Mortgage 1 1 -0.876 0.0558 0.0002 
No Vehicles at the Housing Unit 1 1 0.885 0.1422 0.0189 
Worked 40-47 Hours per Week in Last Year 1 1 -0.786 0.1114 0.0186 
Accesses Internet with DSL 1 1 -0.509 0.0354 0.0068 
No Handheld Computer in Housing Unit 1 1 -0.746 0.079 0.0079 
Four Bedrooms in Housing Unit 1 1 0.666 0.0342 0.0003 
Five or More Bedrooms in Housing Unit 1 1 1.056 0.0922 0.0005 
Works 30 Hours or Less per Week 1 1 -2.617 0.0715 <.0001 
Cube Root of Personal Income 1 1 0.274 0.0003 <.0001 
Cube Root of Wages 1 1 0.082 0.0002 <.0001 
Cube Root of Retirement Income 1 1 -0.174 0.0002 <.0001 
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Appendix F: Illustration of Optimization Steps at Intervention Points 
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Appendix G: Code for Generating Predictions of Expected Lag in Chapter 2 

###############################################################################  
# Predictions of Expected Lag Based Using Four Methodologies 2:34 PM 10/26/2020 
###############################################################################  

 
lagfunc1 <- function(b, d, eligday, b0033, b0050, b0100, b0200, b0300, w0033, 

w0050, w0100, w0200, w0300, outstuff) 
{ 
  ######################################################################### 
  #Create 3 month evaluaton dataset and 1 month prediction dataset 
  #3-month evaluation dataset comes from summary dataset 
  #1-month prediction dataset comes from the contact-level dataset 
   
  s <- b 
  f <- s+2 
  p <- s+3 
   
  evalfile <- subset(summary, t >= s & t <= f) 
  predbase <- subset(contact, t == p) 
   
  #Create calday shifts for graphing boxplots 
  predbase$shift_act <- predbase$calday + 0 
  predbase$shift_m1 <- predbase$calday + 0.15 
  predbase$shift_m2 <- predbase$calday + 0.30 
  predbase$shift_m3 <- predbase$calday + 0.45 
  predbase$shift_m4_033 <- predbase$calday + 0.60 
  predbase$shift_m4_050 <- predbase$calday + 0.75 
  predbase$shift_m4_100 <- predbase$calday + 0.90 
  predbase$shift_m4_200 <- predbase$calday + 1.05 
  predbase$shift_m4_300 <- predbase$calday + 1.20 
  head(predbase)   
   
  #Assign priors 
  pr_bin_0033 <- b0033 
  pr_bin_0050 <- b0050 
  pr_bin_0100 <- b0100 
  pr_bin_0200 <- b0200 
  pr_bin_0300 <- b0300 
  pr_wei_0033 <- w0033 
  pr_wei_0050 <- w0050 
  pr_wei_0100 <- w0100 
  pr_wei_0200 <- w0200 
  pr_wei_0300 <- w0300 
   
  ######################################################################### 
  #Prediction Method #1: Prior 3 Month Mean (Single Estimate) 
  mean_3mo <- mean(evalfile$lag_att_con)   
  predbase$m1_estlag <- mean_3mo 
  predbase$m1_res <- predbase$m1_estlag - predbase$lag_att_con 
  predbase$m1_resabs <- abs(predbase$m1_estlag - predbase$lag_att_con) 
  
  ######################################################################### 
  #Create datasets for Day d File 
  predday <- subset(predbase, eval(as.name(eligday)) == 1) 
  predday$daylag <- ifelse(predday$conday > d, (d - predday$calday + 1), 

predday$lag_att_con) 
  predday$daycens <- ifelse(predday$conday > d, 1, 0) 
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  ######################################################################### 
  #Prediction Method #2: Prior 3 Month Regression Parameters (Single Set of 

Parameters, Apply to Each Day) 
 
  #Logistic Regression Predicting Positive Lag from Historical Parameters 
  p_poslag_m2 <- glm(poslag ~ pct_College_ACS_10_14 +  
                  pct_Vacant_Units_ACS_10_14 + pct_No_Health_Ins_ACS_10_14 + 
                  pct_Not_HS_Grad_ACS_10_14 + pct_URBANIZED_AREA_POP_CEN_2010 +  
                  pct_Mobile_Homes_ACS_10_14 +  
                  expbas0_1 + calday + 
                  pct_Vacant_Units_ACS_10_14*calday,  
                  data = evalfile, family = "binomial") 
  summary(p_poslag_m2) 
 
  #Weibull Regression Predicting Lag Length from Historical Parameters 
  p_laglngth_m2 <- survreg(Surv(lag_att_con,status) ~ wkldro_22 + wkldro_23 + 
                    wkldro_25 + wkldro_29 + wkldro_31 + calday + prior_FR_1p + 
                    BARS_1 + WHEELCHAIR_1 + HHAGE_2 + ADDR_COND_2 + ACCESS_1, 
                    data=subset(evalfile, lag_att_con > 0),  
                    na.action=na.omit, dist="weibull", model=FALSE, x=FALSE, 

       y=TRUE, score=TRUE) 
  summary(p_laglngth_m2) 
  1/p_laglngth_m2$scale  
 
  ######################################################################### 
  #Method 2: Score attempted cases with historical model parameters 
  predday$m2_poslag <- predict(p_poslag_m2, predday, type="response")       
  predday$m2_laglngth <- predict(p_laglngth_m2, predday, type="response") 
  #Calculate Expected lag (Pr(poslag)*E(lag)) and residuals 
  predday$m2_estlag <- predday$m2_poslag*predday$m2_laglngth 
  predday$m2_res <- predday$m2_estlag - predday$lag_att_con 
  predday$m2_resabs <- abs(predday$m2_estlag - predday$lag_att_con) 
  head(predday) 
 
  ######################################################################### 
  #Prediction Methods #3 & #4: Applied Daily 
  # #3: Current Month Regression Parameters (Estimate per Day of Interest) 
  # #4: Fully Bayesian Estimates of Regression Parameters (Estimate per Day of 

Interest) 
  ######################################################################### 
  #Method 3: Predict lag using only current data 
  p_poslag_m3 <- glm(poslag ~ pct_College_ACS_10_14 +  
                  pct_Vacant_Units_ACS_10_14 + pct_No_Health_Ins_ACS_10_14 + 
                  pct_Not_HS_Grad_ACS_10_14 + pct_URBANIZED_AREA_POP_CEN_2010 +  
                  pct_Mobile_Homes_ACS_10_14 + expbas0_1 + calday + 
                  pct_Vacant_Units_ACS_10_14*calday, data = predday,  
                  family = "binomial") 
  summary(p_poslag_m3) 
  predday$m3_poslag <- predict(p_poslag_m3, predday, type="response") 
  p_weilag_m3 <- survreg(Surv(daylag,daycens) ~ wkldro_22 + wkldro_23 +  
                  wkldro_25 + wkldro_29 + wkldro_31 + calday + prior_FR_1p + 
                  BARS_1 + WHEELCHAIR_1 + HHAGE_2 + ADDR_COND_2 + ACCESS_1, 
                  data=subset(predday, daylag > 0), na.action=na.omit, 
                  dist="weibull", model=FALSE, x=FALSE, y=TRUE, score=TRUE) 
  summary(p_weilag_m3) 
  predday$m3_laglngth <- predict(p_weilag_m3, predday, type="response") 
  #Calculate Expected Lag and Residuals 
  predday$m3_estlag <- predday$m3_poslag*predday$m3_laglngth 
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  predday$m3_res <- predday$m3_estlag - predday$lag_att_con 
  predday$m3_resabs <- abs(predday$m3_estlag - predday$lag_att_con) 
  head(predday) 
  ########################################################################### 
  #Method 4: Predict lag using Bayesian posteriors combining historical and 

current data 
  #Positive Lag Prediction -- 5 values of "c" 
  p_poslag_0033 <- brm(poslag ~ pct_College_ACS_10_14 + 
                    pct_Vacant_Units_ACS_10_14 + pct_No_Health_Ins_ACS_10_14 + 
                  pct_Not_HS_Grad_ACS_10_14 + pct_URBANIZED_AREA_POP_CEN_2010 +  
                    pct_Mobile_Homes_ACS_10_14 + expbas0_1 + calday + 
                    pct_Vacant_Units_ACS_10_14*calday , data = predday,  
                    family = bernoulli(), prior <- pr_bin_0033, chains = 3, 
                    iter = 4000, warmup = 2000) 
  summary(p_poslag_0033) 
  assign("p_poslag_0033", p_poslag_0033, envir = .GlobalEnv) 
  p_poslag_0050 <- brm(poslag ~ pct_College_ACS_10_14 +  
                    pct_Vacant_Units_ACS_10_14 + pct_No_Health_Ins_ACS_10_14 + 
                  pct_Not_HS_Grad_ACS_10_14 + pct_URBANIZED_AREA_POP_CEN_2010 +  
                    pct_Mobile_Homes_ACS_10_14 + expbas0_1 + calday +  
                    pct_Vacant_Units_ACS_10_14*calday , data = predday,  
                    family = bernoulli(),prior <- pr_bin_0050, 
                    chains = 3, iter = 4000, warmup = 2000) 
  summary(p_poslag_0050) 
  assign("p_poslag_0050", p_poslag_0050, envir = .GlobalEnv) 
   
  p_poslag_0100 <- brm(poslag ~ pct_College_ACS_10_14 + 
                    pct_Vacant_Units_ACS_10_14 + pct_No_Health_Ins_ACS_10_14 + 
                  pct_Not_HS_Grad_ACS_10_14 + pct_URBANIZED_AREA_POP_CEN_2010 +  
                    pct_Mobile_Homes_ACS_10_14 + expbas0_1 + calday + 
                    pct_Vacant_Units_ACS_10_14*calday , data = predday,  
                    family = bernoulli(),prior <- pr_bin_0100,  
                    chains = 3, iter = 4000, warmup = 2000) 
  summary(p_poslag_0100) 
  assign("p_poslag_0100", p_poslag_0100, envir = .GlobalEnv) 
  p_poslag_0200 <- brm(poslag ~ pct_College_ACS_10_14 + 
                    pct_Vacant_Units_ACS_10_14 + pct_No_Health_Ins_ACS_10_14 + 
                  pct_Not_HS_Grad_ACS_10_14 + pct_URBANIZED_AREA_POP_CEN_2010 +  
                    pct_Mobile_Homes_ACS_10_14 + expbas0_1 + calday + 
                    pct_Vacant_Units_ACS_10_14*calday , data = predday,  
                    family = bernoulli(),prior <- pr_bin_0200, 
                    chains = 3, iter = 4000, warmup = 2000) 
  summary(p_poslag_0200) 
  assign("p_poslag_0200", p_poslag_0200, envir = .GlobalEnv) 
  p_poslag_0300 <- brm(poslag ~ pct_College_ACS_10_14 + 
                    pct_Vacant_Units_ACS_10_14 + pct_No_Health_Ins_ACS_10_14 + 
                  pct_Not_HS_Grad_ACS_10_14 + pct_URBANIZED_AREA_POP_CEN_2010 +  
                    pct_Mobile_Homes_ACS_10_14 + expbas0_1 + calday + 
                    pct_Vacant_Units_ACS_10_14*calday , data = predday,  
                    family = bernoulli(),prior <- pr_bin_0300, 
                    chains = 3, iter = 4000, warmup = 2000) 
  summary(p_poslag_0300) 
  assign("p_poslag_0300", p_poslag_0300, envir = .GlobalEnv) 
   
  #Predict Estimated Response Propensities based on c value  
  predday$m4_poslag_0033 <- predict(p_poslag_0033, predday, 

type="response")[,1] 
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  predday$m4_poslag_0050 <- predict(p_poslag_0050, predday, 
type="response")[,1] 

  predday$m4_poslag_0100 <- predict(p_poslag_0100, predday, 
type="response")[,1] 

  predday$m4_poslag_0200 <- predict(p_poslag_0200, predday, 
type="response")[,1] 

  predday$m4_poslag_0300 <- predict(p_poslag_0300, predday, 
type="response")[,1] 

  head(predday) 
   
  #Positive Lag Prediction -- 5 values of "c" 
  p_weilag_0033 <- brm(daylag|cens(daycens) ~ wkldro_22 + wkldro_23 +  
       wkldro_25 + wkldro_29 + wkldro_31 + calday + prior_FR_1p + 
       BARS_1 + WHEELCHAIR_1 + HHAGE_2 + ADDR_COND_2 + ACCESS_1, 
       data = subset(predday, daylag > 0),  
       family = weibull(link = "log", link_shape = "log"),  
       prior <- pr_wei_0033, chains=3, iter=4000, warmup = 2000) 
  summary(p_weilag_0033) 
  assign("p_weilag_0033", p_weilag_0033, envir = .GlobalEnv) 
  p_weilag_0050 <- brm(daylag|cens(daycens) ~  wkldro_22 + wkldro_23 +  
       wkldro_25 + wkldro_29 + wkldro_31 + calday + prior_FR_1p + 
       BARS_1 + WHEELCHAIR_1 + HHAGE_2 + ADDR_COND_2 + ACCESS_1, 
       data = subset(predday, daylag > 0),  
       family = weibull(link = "log", link_shape = "log"),  
       prior <- pr_wei_0050, chains=3, iter=4000, warmup = 2000) 
  summary(p_weilag_0050) 
  assign("p_weilag_0050", p_weilag_0050, envir = .GlobalEnv) 
  p_weilag_0100 <- brm(daylag|cens(daycens) ~ wkldro_22 + wkldro_23 +  
       wkldro_25 + wkldro_29 + wkldro_31 + calday + prior_FR_1p + 
       BARS_1 + WHEELCHAIR_1 + HHAGE_2 + ADDR_COND_2 + ACCESS_1, 
       data = subset(predday, daylag > 0),  
       family = weibull(link = "log", link_shape = "log"),  
       prior <- pr_wei_0100, chains=3, iter=4000, warmup = 2000) 
  summary(p_weilag_0100) 
  assign("p_weilag_0100", p_weilag_0100, envir = .GlobalEnv) 
  p_weilag_0200 <- brm(daylag|cens(daycens) ~ wkldro_22 + wkldro_23 +  
       wkldro_25 + wkldro_29 + wkldro_31 + calday + prior_FR_1p + 
       BARS_1 + WHEELCHAIR_1 + HHAGE_2 + ADDR_COND_2 + ACCESS_1, 
       data = subset(predday, daylag > 0),  
       family = weibull(link = "log", link_shape = "log"),  
       prior <- pr_wei_0200, chains=3, iter=4000, warmup = 2000) 
  summary(p_weilag_0200) 
  assign("p_weilag_0200", p_weilag_0200, envir = .GlobalEnv) 
  p_weilag_0300 <- brm(daylag|cens(daycens) ~ wkldro_22 + wkldro_23 +  
       wkldro_25 + wkldro_29 + wkldro_31 + calday + prior_FR_1p + 
       BARS_1 + WHEELCHAIR_1 + HHAGE_2 + ADDR_COND_2 + ACCESS_1, 
       data = subset(predday, daylag > 0),  
       family = weibull(link = "log", link_shape = "log"),  
       prior <- pr_wei_0300, chains=3, iter=4000, warmup = 2000) 
  summary(p_weilag_0300) 
  assign("p_weilag_0300", p_weilag_0300, envir = .GlobalEnv) 
   
   
  #Predict Estimated Positive Lag Lengths based on c value 
  predday$m4_laglngth_0033 <- predict(p_weilag_0033, predday, 

type="response")[,1] 
  predday$m4_laglngth_0050 <- predict(p_weilag_0050, predday, 

type="response")[,1] 
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  predday$m4_laglngth_0100 <- predict(p_weilag_0100, predday, 
type="response")[,1] 

  predday$m4_laglngth_0200 <- predict(p_weilag_0200, predday, 
type="response")[,1] 

  predday$m4_laglngth_0300 <- predict(p_weilag_0300, predday, 
type="response")[,1] 

  head(predday) 
   
  #Calculate estimated lag from propensity and predicted lag 
  predday$m4_estlag_0033 <- predday$m4_poslag_0033*predday$m4_laglngth_0033 
  predday$m4_estlag_0050 <- predday$m4_poslag_0050*predday$m4_laglngth_0050 
  predday$m4_estlag_0100 <- predday$m4_poslag_0100*predday$m4_laglngth_0100 
  predday$m4_estlag_0200 <- predday$m4_poslag_0200*predday$m4_laglngth_0200 
  predday$m4_estlag_0300 <- predday$m4_poslag_0300*predday$m4_laglngth_0300 
  #Calculate residuals 
  predday$m4_res_0033 = predday$m4_estlag_0033 - predday$lag_att_con 
  predday$m4_res_0050 = predday$m4_estlag_0050 - predday$lag_att_con 
  predday$m4_res_0100 = predday$m4_estlag_0100 - predday$lag_att_con 
  predday$m4_res_0200 = predday$m4_estlag_0200 - predday$lag_att_con 
  predday$m4_res_0300 = predday$m4_estlag_0300 - predday$lag_att_con 
  #Calculate absolute value of residuals 
  predday$m4_resabs_0033 = abs(predday$m4_estlag_0033 - predday$lag_att_con) 
  predday$m4_resabs_0050 = abs(predday$m4_estlag_0050 - predday$lag_att_con) 
  predday$m4_resabs_0100 = abs(predday$m4_estlag_0100 - predday$lag_att_con) 
  predday$m4_resabs_0200 = abs(predday$m4_estlag_0200 - predday$lag_att_con) 
  predday$m4_resabs_0300 = abs(predday$m4_estlag_0300 - predday$lag_att_con) 
  head(predday) 
   
  #Create MSE vector for cases that are have been attempted but not contacted 

by selected day 
  msefile <- data.table(subset(predday, predday$conday >= d)) 
  summ1 <- msefile[, list(time_id = b, day = d, method="m1", num= .N,  
       actual=mean(lag_att_con), pred=mean(m1_estlag), 
       bias=(mean(m1_estlag)-mean(lag_att_con)),  
       var=var(m1_estlag), diffsq=sum(m1_res^2)), by=calday] 
  summ2 <- msefile[, list(time_id = b, day = d, method="m2", num= .N,  
       actual=mean(lag_att_con), pred=mean(m2_estlag),  
       bias=(mean(m2_estlag)-mean(lag_att_con)),  
       var=var(m2_estlag), diffsq=sum(m2_res^2)), by=calday] 
  summ3 <- msefile[, list(time_id = b, day = d, method="m3", num= .N,  
       actual=mean(lag_att_con), pred=mean(m3_estlag),  
       bias=(mean(m3_estlag)-mean(lag_att_con)),  
       var=var(m3_estlag),  diffsq=sum(m3_res^2)), by=calday] 
  summ4_0033 <- msefile[, list(time_id = b, day = d, method="m4_0033", num= .N,  
       actual=mean(lag_att_con),pred=mean(m4_estlag_0033), 
       bias=(mean(m4_estlag_0033)-mean(lag_att_con)),  
       var=var(m4_estlag_0033),  diffsq=sum(m4_res_0033^2)), by=calday] 
  summ4_0050 <- msefile[, list(time_id = b, day = d, method="m4_0050", num= .N,  
       actual=mean(lag_att_con), pred=mean(m4_estlag_0050), 
       bias=(mean(m4_estlag_0050)-mean(lag_att_con)),  
       var=var(m4_estlag_0050),  diffsq=sum(m4_res_0050^2)), by=calday] 
  summ4_0100 <- msefile[, list(time_id = b, day = d, method="m4_0100", num= .N,  
       actual=mean(lag_att_con), pred=mean(m4_estlag_0100), 
       bias=(mean(m4_estlag_0100)-mean(lag_att_con)),  
       var=var(m4_estlag_0100),  diffsq=sum(m4_res_0100^2)), by=calday] 
  summ4_0200 <- msefile[, list(time_id = b, day = d, method="m4_0200", num= .N,  
       actual=mean(lag_att_con), pred=mean(m4_estlag_0200), 
       bias=(mean(m4_estlag_0200)-mean(lag_att_con)),  
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       var=var(m4_estlag_0200),  diffsq=sum(m4_res_0200^2)), by=calday] 
  summ4_0300 <- msefile[, list(time_id = b, day = d, method="m4_0300", num= .N,  
       actual=mean(lag_att_con), pred=mean(m4_estlag_0300),  
       bias=(mean(m4_estlag_0300)-mean(lag_att_con)),  
       var=var(m4_estlag_0300),  diffsq=sum(m4_res_0300^2)), by=calday] 
   
  mse_summ <- data.frame(rbind(summ1, summ2, summ3, summ4_0033, summ4_0050,   
                               summ4_0100, summ4_0200, summ4_0300)) 
  mse_summ$mse <- mse_summ$diffsq/mse_summ$num 
  head(mse_summ) 
  mse_summ <- mse_summ[order(mse_summ$calday, mse_summ$method),] 
   
   
  #Return List for Function 
  outobjs = list() 
  outobjs[[1]] = mse_summ 
  outobjs[[2]] = predday 
  outobjs[[3]] = p_poslag_m2 
  outobjs[[4]] = p_laglngth_m2 
  outobjs[[5]] = p_poslag_m3 
  outobjs[[6]] = p_weilag_m3 
  outobjs[[7]] = p_poslag_0033 
  outobjs[[8]] = p_poslag_0050 
  outobjs[[9]] = p_poslag_0100 
  outobjs[[10]] = p_poslag_0200 
  outobjs[[11]] = p_poslag_0300 
  outobjs[[12]] = p_weilag_0033 
  outobjs[[13]] = p_weilag_0050 
  outobjs[[14]] = p_weilag_0100 
  outobjs[[15]] = p_weilag_0200 
  outobjs[[16]] = p_weilag_0300 
   
  objnames <- c("mse_summ", "predday", "p_poslag_m2", "p_laglngth_m2", 

"p_poslag_m3", "p_weilag_m3", 
                "p_poslag_0033", "p_poslag_0050", "p_poslag_0100", 

"p_poslag_0200", "p_poslag_0300",  
                "p_weilag_0033", "p_weilag_0050", "p_weilag_0100", 

"p_weilag_0200", "p_weilag_0300") 
  names(outobjs) <- objnames 
   
  saveRDS(outobjs, file=paste0("/data/san_caesapp6/nscg/lagattcon/", outstuff, 

".rds")) 
 
  return(outobjs) 
} 
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