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Prior research shows that electronic word of mouth (eWOM) wields considerable 

influence over consumer behavior. However, as the volume and variety of eWOM 

grows, firms are faced with challenges in analyzing and responding to this 

information. In this dissertation, I argue that to meet the new challenges and 

opportunities posed by the expansion of eWOM and to more accurately measure its 

impacts on firms and consumers, we need to revisit our methodologies for extracting 

insights from eWOM. This dissertation consists of three essays that further our 

understanding of the value of social media analytics, especially with respect to 

eWOM. In the first essay, I use machine learning techniques to extract semantic 

structure from online reviews. These semantic dimensions describe the experiences of 

consumers in the service industry more accurately than traditional numerical 

variables. To demonstrate the value of these dimensions, I show that they can be used 



 

  

to substantially improve the accuracy of econometric models of firm survival. In the 

second essay, I explore the effects on eWOM of online deals, such as those offered by 

Groupon, the value of which to both consumers and merchants is controversial. 

Through a combination of Bayesian econometric models and controlled lab 

experiments, I examine the conditions under which online deals affect online reviews 

and provide strategies to mitigate the potential negative eWOM effects resulting from 

online deals. In the third essay, I focus on how eWOM can be incorporated into 

efforts to reduce foodborne illness, a major public health concern.  I demonstrate how 

machine learning techniques can be used to monitor hygiene in restaurants through 

crowd-sourced online reviews. I am able to identify instances of moral hazard within 

the hygiene inspection scheme used in New York City by leveraging a dictionary 

specifically crafted for this purpose. To the extent that online reviews provide some 

visibility into the hygiene practices of restaurants, I show how losses from 

information asymmetry may be partially mitigated in this context. Taken together, 

this dissertation contributes by revisiting and refining the use of eWOM in the service 

sector through a combination of machine learning and econometric methodologies. 
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Chapter 1 Introduction 

In recent years, there has been a rapid increase in the volume and reach of 

electronic word of mouth (eWOM) available to consumers.  With the rise in 

connectivity through the Internet and web 2.0 tools focused on sharing, platforms 

aggregating eWOM, such as online reviews sites and review dashboard providers, 

have become mainstream. For example, Yelp receives over 142 unique million 

visitors every quarter. Similarly, Trip Advisor has aggregated more than 225 million 

traveler reviews, while Amazon sells over 150 million products with customer 

reviews.  Aggregators like ReviewTrackers and Podium.co provide dashboards that 

allow firms to quickly respond to their online reviews in one location, rather than 

tracking individual eWOM sites. The popularity of these sites and business models 

suggests that consumers have evolved into content creators and even critics.   While 

most online reviews platforms focus on traditional categories like restaurants and 

hotels, there has also been an expansion to include other categories, such as the 

critical choice of a physician or dentist, for which 35% of consumers say they have 

searched reviews (Keckley and Coughlin 2012).    

Online reviews also wield significant influence on consumer choice.  For 

example, a 2014 consumer report estimates that almost 90% of consumers have 

looked at reviews in the last 12 months to help them make a decision on a local 

business.  Further, 40% of consumers read reviews on a regular basis (Bright Local 

2014).  Apart from being an important tool in consumers’ decision-making choices, 

these reviews also have significant influence in shaping opinions about businesses.  

Recent consumer surveys estimate that 72% of consumers say that positive reviews 
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increase trust in a business or product, while over 80% of consumers trust online 

reviews as much as personal recommendations (Bright Local 2014; Deloitte 2014).  

Moreover, the popularity and influence of these reviews to consumers and firms has 

given rise to a new breed of business models. For example, we now have companies 

dedicated solely to managing what consumers are saying online about products and 

services, such as Reputation.com, CzarMetrics, and Luminoso. 

The rise of this consolidated consumer knowledge, through improved access 

to information and expanded opportunities to share experiences, poses a significant 

challenge to businesses as they attempt to fulfill the expectations of better-informed 

consumers.  Two concurrent movements in the technology space make this a 

compelling question for firms. First, the volume and variety of online reviews 

available to the consumer from multiple platforms has expanded significantly in the 

last decade, often leading firms and managers to feel overwhelmed by the quantity of 

the discourse available (cite). Needless to say, manually understanding and 

responding to individual queries and feedback on such sites is simply not feasible any 

more, leading to a significant gap in the literature on how existing research in online  

reviews may be extended to a world where volume has exploded. Second, a lot of the 

earlier work focused on numerical data such as review valence and review volume – 

both of which captured economic significance in terms of quality and demand (cite). 

However, much of the current content in eWOM is unstructured and available in the 

form of free-form text, images, and sound. Analyses of review volume and valence 

may be overlooking insight that may be generated from these other sources of data.  
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In this dissertation, I focus attention on extending the considerable prior 

literature in online reviews and eWOM to contexts where the volume of discourse as 

well as the text available in the discourse is appropriately utilized. As businesses learn 

to react to and harness this growing power of consumers through eWOM platforms, 

concurrent research is needed to develop newer models, based on more modern text-

analytic and experimental methodologies, that inform managers as well as researchers 

on how to generate actionable learning from eWOM. I argue that to meet the new 

challenges and opportunities posed by the expansion in reach, relevance and volume 

of eWOM, we need to revisit our methodologies and models. In this doctoral 

dissertation, I include three essays on social media analytics, each of which build on 

seminal work on online reviews and firm performance by combining econometric 

models with lab experiments and text analysis to generate insights from large 

corpuses of online reviews.  

In the first essay of this proposal (Chapter 2), I describe how to extract the 

semantic structure behind the text in online reviews to predict firm performance 

outcomes.   Given the importance and relevance of eWOM, it is not surprising that 

management scholars, especially in information systems and marketing, are interested 

in understanding the relationship between eWOM and firm performance outcomes.  

However, a salient gap in this literature is being able to extract meaning from the 

collective corpus of opinions captured in the text of online reviews (Archak et al. 

2011; Cao et al. 2011).  The first essay aims to fill this gap through the application of 

existing machine learning techniques to analyze a large corpus of text in online 

reviews.  Our aim is to discover the themes behind online reviews in a single service 
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context using an automated, data-driven approach that can provide benefits to 

platforms, merchants, and consumers. Furthermore, and as proof of concept to the 

value of our proposed semantic themes, I attempt to predict a critical firm 

performance outcome, firm survival, using longitudinal econometric models. The 

models provided in the essay show that prediction based on the semantic themes 

provides a significant improvement beyond survival models that are only predicated 

on numerical scores that have been used thus far in the literature, speaking to the 

value of the semantic themes.  

In the second essay (Chapter 3), I explore the effect on eWOM of online 

deals, one of the most popular and controversial tools in the current marketing mix.  

These deals are one of the most popular online marketing tools.  Groupon, for 

example, has over 200 million active subscribers and receives over 160 million 

unique monthly visitors. Despite the apparent popularity behind these daily deals 

platforms, however, there are many diverging opinions about their value to both 

consumers and merchants.  In fact, multiple surveys find that only approximately half 

of merchants make a profit from running such deals (Dholakia 2010; BusinessInsider 

2011). 

Moreover, the long-term effect of deals on the reputations of merchants has 

been questioned.  Early findings in the computer science literature suggest that the 

effect of Groupon promotions on online reviews is strictly negative (Byers et al. 

2012a; 2012b).  However, I question the generalizability of these results and build on 

existing marketing theories to understand the mechanisms behind the effect of online 

deals on online reviews.  Indeed, previous theories suggest that the direction of the 



 

 
 

5 
 

effect of marketing efforts (i.e. negative vs. positive) on consumer perceptions can 

depend on a number of factors.  For example, in some cases consumers may respond 

positively to such promotions because they perceive the deal as a sign of high 

confidence from the merchant, while in other contexts such promotions may smack of 

desperation and hence elicit a negative response from consumers (Kirmani and 

Wright 1989). I build on this theoretical work to understand the conditions under 

which online deals affect a merchant's eWOM. Moreover, I take into account the 

merchant’s competitive landscape, which typically includes other merchants and their 

competitive actions.  Thus, I am able to identify the effect on eWOM for a merchant 

when its competitors offer online deals.  I provide managerially relevant implications 

and possible strategies for mitigating the potential negative eWOM effects resulting 

from online deals.  

In the third essay (Chapter 4), I expand the application of social media 

analytics beyond the typical contexts of marketing and sales.  I focus on how social 

media can be used in the efforts to decrease foodborne illness, which is a significant 

public health concerns.  There has been a recent public policy push in many cities in 

the U.S., such as Seattle and San Francisco, to establish a framework to publicize the 

results of restaurant health inspections to consumers.  The motivations for 

implementing such programs are straightforward.  For example, a study of Seattle 

restaurants showed that restaurants with improper food hygiene practices had 16 

times greater risk of a foodborne outbreak (Irvin et al. 1989).  In this essay, I follow 

the implementation of a restaurant letter-grading program by the New York City 

Department of Health and Mental Hygiene, one of the most ambitious public health 
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initiatives of Mayor Bloomberg’s administration. One of the main goals of this 

program is to provide the public with information about inspection results and, in 

turn, provide restaurants with an incentive to follow best food safety practices.  

Beginning in July 2010, restaurants were required to prominently display a letter 

grade (A, B, or C) in their establishments. Using recent advances in machine learning 

to process the text in online reviews for restaurants in New York, I create and validate 

and social media hygiene dictionary to measure the hygiene of restaurants over time.  

I then show, using this proposed methodology, moral hazard in the manner in which 

restaurants achieve high scores in the program. I find that many restaurants use the 

design of the restaurant grading program in New York to their advantage and in fact 

perform at lower levels of hygiene than they are able to.  I provide strategies and 

insights for policy makers to better design incentives, penalize underperforming 

restaurants, and better protect consumers from foodborne illness. 

In summary, the three essays contribute to the literature in information 

systems in two specific ways. First, I revisit the question of how crowd-sourced 

content, such as eWOM and online reviews, are linked through the firm’s demand 

side to questions of firm performance. While prior work has focused on performance 

outcomes associated with consumer choice and willingness to pay, I respond to calls 

for broadening the footprint of social media research beyond choice by considering 

outcomes that are of considerable importance, such as firm survival and hygiene 

ratings. Second, where much of the literature has focused on the numerical scores that 

are typically attached to eWOM, developing systematic models for combining the 

text-based information in addition to the numerical data has remained understudied in 
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the IS literature. Through the use of lab experiments, semantic analysis and the 

creation of a context-specific dictionary, I propose new models of performance that 

incorporate text as well as numerical information. It is my belief that given 

contemporaneous progress in research in machine learning as well as eWOM in 

information systems, such hybrid approaches to understanding the impact of eWOM 

on businesses will become mainstream. The essays in my dissertation contribute to 

this growing trend. In the next chapter, I describe the first essay in detail. 
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Chapter 2  More Than Just Words: Service Quality Dimensions 

in Online Reviews and Firm Survival 

 

Introduction 

A recurring theme within service operations research and practice has been 

the need to establish the relationship between elements of service quality with overall 

performance of the service provider (Chase and Apte 2007). Elements of service 

quality that are attuned to providing customers with the ideal customer experience 

should ideally lead to customer loyalty, increased revenues, positive word of mouth, 

and even stock prices (Zeithaml et al. 1996, Ramdas et al. 2013). Within the research 

domain, this relationship has been viewed through the lens of the service profit-chain 

(Heskett et al. 1994) or the capabilities-service quality-performance (C-SQ-P) triad 

(Roth and Jackson 1995), frameworks that provide a holistic view of the service 

provider model. For service operations professionals, this research has implications 

for service design (Goldstein et al. 2002), i.e. the specific combination of processes, 

people skills, technologies, and materials that are integrated to provide the “planned” 

service. If services are designed well and executed to meet customer expectations, 

customer loyalty and profitability should follow (Sasser et al. 1997, Roth et al. 1997). 

Thus, a vital part of this research stream has been to specify models that associate 

specific attributes of service design and delivery to measures of operational and 

financial performance for the service provider (Chase and Apte 2007, Soteriou and 

Zenios 1999). 
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While intellectually appealing, empirically establishing the relationship 

between service quality or customer feedback and financial outcomes is not without 

challenges, a significant one being finding appropriate measures of service quality 

and customer feedback that are scalable and easily available to the service provider 

(Voss et al. 2008, Rosenzweig et al. 2011). To capture service quality, scholars have 

used surveys such as the ServQual instrument (Roth and Jackson 1995, Parasuraman 

et al. 1988) as well as indirect indicators of quality, such as wait times and service 

errors (Soteriou and Zenios 1999). However, these approaches are potentially limited 

as they are time-consuming for the customer (Cronin and Taylor 1992), hard to 

generalize across providers (Roth and Jackson 1995), and not fully scalable (Roth and 

Menor 2003). Furthermore, as the service sector becomes “experience-oriented” 

(Pine and Gilmore 1999), wherein customer engagement and enthusiasm are more 

important than simply providing good quality service (Voss et al. 2008, Pullman and 

Gross 2004), alternative sources of information on customer feedback and service 

quality are needed so that better information on the quality of service design can be 

extracted. Indeed, (Pullman and Gross 2004, p.553) write that “successful 

experiences are those that the customer finds unique, memorable and sustainable over 

time, would want to repeat and build upon, and enthusiastically promote via word of 

mouth.” Evidence of such engaging service encounters is unlikely to appear in large-

scale surveys aimed at the average consumer. This information is potentially 

available through one source that allows individual consumers to provide detailed 

feedback on their experiences, while also becoming increasingly ubiquitous and 

influential in the context of services - online reviews. 
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Online reviews have long been a topic of considerable interest and promise, 

starting with the early days of electronic commerce (Dellarocas 2003). Moving 

beyond simply influencing online sales (Chevalier and Mayzlin 2006), positive online 

reviews, representing word of mouth, have also been associated with a host of service 

contexts such as offline business outcomes such as offline retail sales (Duan et al. 

2008), hotel services (Ye et al. 2009), and even medical care (Gao et al. 2012). When 

viewed as a data source, online reviews typically contain multiple pieces of 

information that can be used as indicative of service quality and customer 

engagement. At an aggregate level, overall service quality can be gauged by the star 

rating, typically on a 1-5 scale. Researchers have also used the number of reviews 

provided in a given time period to measure traffic associated with the service 

provider (Dellarocas and Narayan 2006). However, if experience-based services 

require a deeper measure of customer engagement, i.e. “emotionally engaged 

customers” (Voss et al. 2008, p.247), these numerical measures, though representing 

an aggregate positive or negative sentiment towards the service provider through the 

star rating and length of the review, are not enough. The text of the online reviews 

represent a vital and viable source of such information (Cao et al. 2011) that convey 

the benefits of ubiquity, scale, and relevance for the service provider. In this paper, 

we thus focus on extracting value from the text present in online reviews that go 

beyond the overall sentiment already captured in the various numerical data 

available. 

While early work extracting elements of text from online reviews has focused 

on positive or negative sentiment, word counts and readability scores (Ghose and 



 

 
 

11 
 

Ipeirotis 2011), less research has considered extracting semantic meaning from the 

actual text of the reviews themselves, even though they represent a collective corpus 

of opinions, judgments, evaluations and suggestions of customers (Archak et al. 

2011, Cao et al. 2011). As a consequence, business outcomes that are part of standard 

service operations models (such as the service-profit-chain or the service quality-

performance relationship) are likely to be better explained by augmenting the oft-

used ratings and review volume variables with information contained within the text. 

We use text-mining techniques to extract semantic information representing service 

design themes (Goldstein et al. 2002) from the text of online reviews on service 

providers. Subsequently we use these semantic factors, in addition to numerical 

review data, to explain an economic outcome fundamentally related to the health of 

the service provider – business survival (Rosenzweig et al. 2011). If profitability is 

linked inextricably to customer engagement and excitement, the lack of this 

engagement reflected in online reviews should indicate impending business failure 

over time. We thus show that the semantic themes extracted from the review text 

provide greater explanatory power of the survival of service providers, relative to 

baseline models that only include numerical review data in addition to other 

contextual variables of importance (Parsa et al. 2011). This approach builds on prior 

work linking service quality dimensions to performance, with two important 

differences. First, we allow the review text to generate themes rather than specify 

them, a priori, and second, we provide a much deeper and systematic measure of 

consumer feedback than would be possible through survey research or individual 

customer queries. 
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The specific context we model pertains to online reviews for restaurants in a 

large metropolitan area in the United States. The restaurant industry is one of the 

definitive experience-based service industries in the U.S. (Zeithaml et al. 1993). We 

collect a comprehensive set of online reviews, including text and numerical data, of 

restaurants within the Washington D.C. metropolitan area over a period of nine years 

from one popular review platform. The dataset includes reviews on all restaurants 

that were operating in the area at any point during this nine-year time period, 

including those that closed during the observation window. In total, we have access to 

over 130,000 reviews with 50,000 pages of review text associated with over 2,400 

restaurants. We first identify restaurants that closed during specific time periods and 

then match these restaurants to those that are identical or similar but have remained 

open, thereby creating a case-control set. Second, we use the full corpus of restaurant 

reviews to identify the semantic dimensions that characterize consumer experience. 

Third, we estimate a series of econometric specifications to explain restaurant closure 

through both numerical and semantic measures. 

Our semantic analysis identifies five specific components within review text 

that allow a deeper reflection of a restaurant’s service themes (Chase and Apte 2007). 

These components reflect distinct aspects of a restaurant’s service offering, and the 

viability of the business, such as overall quality, food quality, wait times and 

ambience. Econometric models that incorporate the semantic themes provide 

significantly greater explanatory power than models where the themes are omitted. In 

addition, we show that each semantic theme likely provides a different measure of the 

quality of the restaurant’s service design (Goldstein et al. 2002) beyond the 
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quantitative information provided by ratings and number of reviews. The semantic 

themes we identify are also better able to capture the experience aspect of services, 

providing a fuller reckoning of restaurant quality not captured by ratings and review 

volume. They thus provide a better way to capture unobservable quality and are 

likely to be better predictors of financial or business outcomes. 

Our work contributes to existing work in service operations in several ways. 

Though considerable work in service operations has related aspects of service design 

to firm performance, little work has explicitly looked at the text provided by 

customers on their experiences, through online reviews. If the next generation of 

service innovations involve “experiences” (Pine and Gilmore 1999, Heineke and 

Davis 2007), unstructured and non-traditional sources of feedback, like those 

provided through online reviews and social media, become increasingly relevant. 

However, these sources provide large volumes of text, beyond the ability of 

individuals (such as a restaurateur) to absorb. Our work thus extends models of the 

value of service design (Voss et al. 2008, Rosenzweig et al. 2011, Ramdas et al. 

2013) by using text analysis techniques to identify service themes. We validate these 

themes by estimating models of survival, thereby adding to the the critical service 

quality-performance link in service operations (Heineke and Davis 2007). 

Second, we add to the literature on online reviews by augmenting models of 

electronic word of mouth (eWOM) that primarily use rating and review volumes as 

independent variables. In the spirit of Archak et al. (2011) and Cao et al. (2011), we 

provide a more comprehensive model of the effects of eWOM in the service sector. 

As eWOM becomes increasingly influential in retail and online settings, the large 
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amounts of text available can be tapped to streamline service design; our work here 

provides one such methodology for doing so. Finally, our work provides an analytical 

tool that can be used by service providers, potential investors, as well as platforms 

like Yelp strategically. Restaurants can analyze their own reviews using our model 

and identify processes that need improvement. In addition, firms like Yelp.com and 

OpenTable.com can use these dimensions to provide specific guidance to both 

consumers and businesses. Our approach here can also be adapted to other service 

contexts, such as hotels and retailers, easily as long as reasonably large datasets of 

text-based reviews are available. While the semantic themes in other contexts will no 

doubt change, the underlying approach is generalizable to other service contexts and 

economic outcomes as well. 

Background and Theory 

Measuring Service Quality in Service Operations 

Understanding the strategic importance of service quality, from consumer 

feedback, has been a major part of the research agenda in service operations (Heineke 

and Davis 2007). Beginning with numerous case and correlational studies 

highlighting the role of service or product quality in organizations (Schoeffler et al. 

1974, Juran and Gryna 1980, Hart et al. 1989, Schlesinger and Heskett 1991, 

Schneider and Bowen 2010), scholars have sought to link quality improvements 

within service design to firm performance. (Buzzell and Gale 1987, pg.7), for 

example, assert: “in the long run, the most important single factor affecting a business 

unit’s performance is the quality of its products and services relative to those of 
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competitors.” 

Beyond anecdotal cases, scholars have also proposed several theoretical 

frameworks through which to analyze the service quality-performance relationship. 

Rust et al. (1994, 1995), for example, propose treating service or product quality as 

an investment on the part of the service provider and appropriately define “return on 

quality” (ROQ) to postulate the mechanisms by which quality improvements yield 

positive financial returns. They argue that service quality investments should increase 

financial success by providing cost reductions, increased customer retention and 

attracting new customers. Alternatively, the service-profit chain model (Heskett et al. 

1994, Sasser et al. 1997) argues that service quality and customer satisfaction lead to 

customer loyalty, which in turns leads to improved financial returns for the firm, 

thereby providing the service provider with a strong incentive to focus on service 

design. The service-profit chain has also received some empirical validation through 

empirically showing the relationship between service quality, customer satisfaction 

and financial outcomes (Sasser et al. 1997, Roth et al. 1997, Soteriou and Zenios 

1999). A third approach to modeling the performance implications of service quality 

comes from (Roth and Jackson 1995) who propose the operational capabilities, 

service quality, and performance triad (C-SQ-P), arguing that service firms capable of 

delivering superior quality do so because they employ a generic set of capabilities 

better than competitors. They validate the model empirically using data from the 

banking sector. 

While this research stream has empirically established the link between 

service quality and firm outcomes within multiple service settings, a significant 
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challenge has remained creating operational methods within the firm to measure 

quality and customer satisfaction on an ongoing basis (Rust et al. 1995). To this end, 

scholars have used a variety of methods to measure service quality or customer 

satisfaction over the years. Early research applied manufacturing-based metrics of 

quality to the service context, using numerical indicators of quality that reflected a 

production process approach (Wyckoff 1984). For example, Reichheld and Sasser 

(1990) proposed service firms count service ‘defects’, Hart (1988) counted 

dissatisfied customers communication, and Soteriou and Zenios (1999) used 

customer wait times and “service errors”. 

However, as services became more intangible, such manufacturing-based 

approaches became less directly relevant. The definition of service quality changed 

from defects to the extent to which customer expectations are met through the service 

encounter, thereby providing a superior consumer experience (Parasuraman et al. 

1985, Gro¨nroos 1990, Reeves and Bednar 1994). Zeithaml et al. (1990), for 

example, note “only customers can judge quality; all other judgments are essentially 

irrelevant.” To measure whether a customer’s needs and expectations have been met, 

scholars proposed a variety of survey instruments administered to various customers 

to gather specific feedback. A notable methodology used here was SERVQUAL 

(Parasuraman et al. 1985, 1993), containing 22 questionnaire items, attempting to 

measure the gap between expectations and perceptions at the time of service. 

Variations on SERVQUAL include SERVPERF (Cronin and Taylor 1994) and the 

more recent HEdPERF (Abdullah 2006). 

Despite finding wide adoption by scholars and practitioners (Metters and 



 

 
 

17 
 

Marucheck 2007), researchers have questioned the applicability of such survey 

instruments (and other similar approaches to collecting consumer feedback) to 

different service contexts and industries (Roth and Jackson 1995, Cronin and Taylor 

1992, Carman 1990). Creating such surveys, with their requisite statistical properties, 

is particularly difficult in the service industry, where individual customers in varying 

service types (banks versus restaurants, for instance) place different weights on 

various service attributes (Carman 1990, Garvin 1988). Moreover, surveys are time-

consuming for customers (Cronin and Taylor 1992); provide limited validity across 

similar providers, making benchmarking difficult (Roth and Jackson 1995); do not 

capture individual heterogeneity (Garvin 1988); and are hard to scale (Roth and 

Menor 2003). Thus, defining operational measures of service quality remains a 

challenge (Metters and Marucheck 2007). 

The limitations of survey-based or production-based measures of customer 

engagement or service quality are exacerbated when viewed through the changes in 

the service industry, where customer experiences are increasingly becoming central 

(Pine and Gilmore 1999).1 Service providers need to find sources of consumer 

engagement that accurately describe and capture the experiences of consumers, but 

without the effort and intrusive nature of surveys (Voss et al. 2008). To the extent 

that customers are “emotionally engaged” with the brand or the service, they are 

likely to display loyalty as well as act as ambassadors for the service provider (Voss 

et al. 2008). Thus, online reviews, i.e., electronic word of mouth, have emerged as a 

                                                
 
1 Such a shift is observable even in practice within the retail sector: 
http://www.nytimes.com/2015/08/14/business/ economy/stores-suffer-from-a-shift-of-behavior-in-
buyers.html 
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viable source of consumer information that could be used to gather feedback on 

consumer engagement as well as measure emotional engagement with the services 

offered. We review the literature in online reviews next. 

Online Reviews 

Prior to the Internet and the extensive use of electronic networks, word of 

mouth has been influential in affecting the diffusion of innovations and shaping 

consumer attitudes and choices (Katz and Lazarsfeld 1955, Buttle 1998). With the 

rise of the Internet, and the extensive deployment of eWOM applications, consumers 

have become accustomed to using online reviews to make decisions, with over 60% 

of US consumers reporting high or medium level of influence from online reviews in 

their purchasing decisions (Openshaw et al. 2014). Correspondingly, the process by 

which online reviews are generated has also been of interest to service providers and 

researchers alike (Mudambi and Schuff 2010, Forman et al. 2008). Indeed, providing 

online reviews and interacting with other consumers online has been included in a set 

of critical behaviors representing customer engagement in services research (Van 

Doorn et al. 2010). Firms thus have a strong incentive to encourage their consumers 

to provide online reviews of their services and products, and even choose to interact 

with consumers through such forums in cases where service recovery is needed (Gu 

and Ye 2014).  

If online reviews represent customer engagement, it would follow that the 

performance of service firms on such online platforms should be associated with firm 

performance. Considerable prior work has focused on establishing these 

relationships, such as the effect of online reviews on sales and consumer choice 
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(Chen and Xie 2008), loyalty (Yoo et al. 2013), trust (Awad and Ragowsky 2008), 

and brand image (Dellarocas 2003). These studies typically use econometric models 

to explain some form of business outcome by using one or a combination of these 

numerical measures: dispersion (variance of the ratings), valence (the numerical 

rating), and volume (the number of ratings) (Dellarocas and Narayan 2006). The 

studies focusing on the effect of eWOM on firm performance have also spanned a 

variety of research contexts: television ratings (Godes and Mayzlin 2004), movie box 

office sales (Liu 2006, Dellarocas et al. 2007, Duan et al. 2008), beer sales (Clemons 

et al. 2006), and medical care (Gao et al. 2012). 

A common element in much of this work is the use only of the numerical 

variables associated with online reviews discussed earlier - valence, dispersion, and 

volume. As Archak et al. (2011) note, there are a number of potential issues with only 

using these numerical variables to represent the consumer experience. First, by 

compressing a complex customer engagement to a single number, product or service 

quality is assumed to be one-dimensional, which is most likely inaccurate. Second, 

individual preferences are highly heterogeneous, so a single number might not be 

sufficient to convey the same information to everyone (i.e. a 4-star review might be 

differently perceived). Third, ratings have been shown to have significant bias (Li 

and Hitt 2008, Chen and Lurie 2013). Given these reasons, recent work has argued 

that a more granular approach to capturing customer engagement and service quality 

is warranted from such sources (Van Doorn et al. 2010). A significant opportunity is 

available therefore to consider not only the numerical data, but also the text of the 

reviews, which provide a more detailed and personalized account of the service 
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experience. 

Some early work has adopted this strategy of analyzing the economic impact 

of text information and thematic structures present in online reviews (Decker and 

Trusov 2010, Archak et al. 2011, Netzer et al. 2012). Building on this research, we 

adopt a robust and scalable approach based on latent semantic analysis (LSA) 

(described later) of review text. LSA allows the identification of semantic themes 

within a corpus of review text and scores each service provider’s reviews on these 

themes, allowing deeper measurement of the provider’s service quality in addition to 

numerical scores. Such a data-driven approach builds on the wide availability of large 

amounts of text within online platforms as well as provides adaptability to the 

specific services provided, thereby addressing the point made by Zeithaml (1988): 

“To bridge the gap between specific characteristics and the abstract concepts of 

quality, it is useful to consider service quality in terms of broader dimensions.” Once 

we extract such dimensions of service quality, we need to relate them, in addition to 

the available numerical data, to a measure of firm performance. In the next section, 

we provide arguments for why they influence survival, a critical outcome in service 

operations. 

Service Quality and Survival 

We argue that the information provided through online reviews has significant 

implications for the health and wellbeing of the service provider, and therefore study 

the association between consumer feedback provided through such reviews and the 

survival of the firm. Prior work has attested to the importance of survival as an 

important outcome in the services context (Kalnins and Mayer 2004, Rosenzweig et 
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al. 2011). We thus build on earlier work in service operations showing the 

relationship of service quality to financial outcomes (Chase and Apte 2007), as well 

as the connection between online reviews and firm performance (Chen and Xie 

2008), business survival specifically here. 

The survival of restaurants has been examined in the hospitality research area 

in some detail through in-depth case studies (Parsa et al. 2005, 2011) and through 

large-scale analyses using BLS data (Luo and Stark 2015). The factors identified 

through such sector-specific analyses fall well within the purview of prior research 

studying organizational survival. Two broad sets of factors have been identified to be 

influential in explaining survival; ecological factors around the firm, and factors 

associated with human capital, i.e. capabilities of the firm itself (Brüderl et al. 1992).  

Ecological factors refer to the competitive environment around the firm, the presence 

of strong institutional support, and resource munificence (Castrogiovanni 1991, 

Carroll and Khessina 2005). On the other hand, firm-specific attributes, such as the 

experience and skills of the founding team, the extent to which the new firm can rely 

on external resources (such as networks through franchises), and funding 

relationships, can also influence survival (Bates 1990, Kalnins and Mayer 2004, 

Bayus and Agarwal 2007, Luo and Stark 2015). 

Within this stream of work, the specific role played by consumer feedback 

from online reviews (representing consumer acceptance and approval) has not been 

addressed. The closest analog emerges from papers studying the impact of media 

coverage on firm performance (Pollock and Rindova 2003, Pollock et al. 2008, 

Petkova et al. 2013) wherein commentary on firms from traditional media outlets 
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influences the reputation and brands of firms positively. Similar effects on firm 

reputation have been observed from discourse in social media (Luo et al. 2013) but 

not specifically from reviews of the firm’s products and services itself. In 

hypothesizing the effects of online reviews on survival, we argue for two causal 

mechanisms. First, online reviews help firms gain attention from potential customers 

and be included in the consumers’ consideration set (Dellarocas 2003, Roberts and 

Lattin 1997). Second, details provided within the reviews help consumers form 

judgments of the relative merits of the service provider (Ludwig et al. 2013), thereby 

increasing “conversion”, i.e. consumption of the service. 

Gaining the attention of potential consumers is usually the first step in any 

service encounter, especially in experience service settings (Rosenzweig et al. 2011). 

Attention is typically linked to the salience and availability of a stimulus (Davenport 

and Beck 2013, Pollock et al. 2008). The more salient information is available for the 

decision, the greater the likelihood that the decision maker invokes the availability 

heuristic (Sunstein 2002), thereby actively considering the object receiving the salient 

discourse (Roberts and Lattin 1997). In the service sector, online reviews have 

become increasingly salient in helping garner attention for the focal provider, thus 

allowing the entry of the provider into the consumer’s consideration set (Vermeulen 

and Seegers 2009). A recent survey reported that 92% of users consider using a local 

businesses with a 4-star online rating while only 13% do so for a business with 1 

star2, attesting to the salience of online reviews in general. Beyond the rating, review 

text outlining specific interactions with the service provider in persuasive and 

                                                
 
2 https://www.brightlocal.com/2014/07/01/local-consumer-review-survey-2014/ 
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informative text is likely to also contribute to enhancing the salience of the service 

provider, thereby increasing the odds of the marginal consumer including the service 

provider in his or her consideration set (Cao et al. 2011). 

Beyond entering the consideration set of consumers, service providers are 

evaluated by potential consumers before actual consumption. Evaluation requires 

judgment and depends on the presence and level of specific attributes (Fiske and 

Taylor 2013), which in the context of online reviews requires processing the 

information contained in the text and noting details of the service experiences 

provided by prior consumers. In fact, the BrightLocal survey cited above showed that 

85% of consumers surveyed read up to 10 reviews before making consumption 

decisions. The text in reviews therefore needs to reflect the positive “experience” that 

consumers need to make positive judgments. High quality service providers are likely 

to generate more text in their reviews that are associated with and indicative of 

engaging consumer experiences, expressed with enthusiasm and conviction (Pullman 

and Gross 2004). By contrast, lower quality providers will garner review text that are 

bland and do not mention any specifics of the consumers’ interactions with the 

restaurant. An engaged restaurant review (“great good, wonderful ambience, low wait 

time, attentive wait staff and positive overall experience”) is likely to significantly 

influence judgments, leading to consumption and repeat business. We argue that 

these influences may convey more effect than the numerical ratings per se. 

When viewed in aggregate, service providers with higher ratings as well as 

strongly persuasive content in their reviews are likely to signal strength and quality in 

their competitive environments, thereby influencing first-time consumers. In addition, 
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the presence of positive ratings and text will also enhance the likelihood of repeat 

business and loyalty, thereby increasing the financial viability of the service provider 

(Parsa et al. 2005). In the aggregate, signals within online reviews conveying 

positivity and engagement should be linked to overall sales and profitability, thereby 

enhancing the odds of survival. We test these expectations in the restaurant context 

within one metropolitan area and describe, next, the methodology and data we use in 

our empirical analysis. 

Methodology 

Research Context 

For this study, we have chosen to focus on restaurants in a large U.S. 

metropolitan area, Washington, D.C.  Prior literature (Mangold et al. 1999, Gu et al. 

2012) suggests that restaurants and other high involvement services provide a more 

ideal context through which to study the effectiveness of eWOM. We focus on 

restaurants since these represent a common and ubiquitous service context where 

online reviews are used extensively (Lu et al. 2013). As a first step, we first identify 

all current and open restaurants in the D.C. area, as of December 2013, using the 

Washington D.C. municipal city database. This process provides us with a master list 

of more than 2000 restaurants that are “going concerns” during the time of analysis. 

Subsequently, we assemble a comprehensive list of restaurant closures in the D.C. 

area, drawing from two data sources.3 First, we collect search results of restaurants 

                                                
 
3 While it is possible to consider restaurants in Northern Virginia or Maryland, there are regulatory and 
tax implications within D.C. that are significantly different. Therefore, to reduce unobservable 
heterogeneity in our analysis, we focus only on restaurants that are located in D.C. We also omit 
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reported as closed on Yelp.com and FourSquare.com. Second, we collect reports of 

restaurant closings from Eater.com and Gaylot.com, two sites dedicated to local 

culinary events including restaurant openings and closings. In total, this data 

collection effort results in a list of 575 restaurants that closed between 2005 and 2013. 

Out of these 575 restaurants from the D.C. metropolitan area, some were located 

close to D.C. but in Northern Virginia and Maryland, which were deleted, leaving us 

with 446 restaurants located inside the District. Finally, we manually confirmed that 

these 446 restaurants truly closed instead of changing locations or other non-closure 

events. While this set of closed restaurants may not be comprehensive, it constitutes a 

representative cross-section of cuisines, segments and geographical locations within 

D.C.  Therefore, for the purposes of our analysis, i.e. understanding the effect of 

reviews and review text on restaurant closures, our sample of closed restaurants is 

adequate and appropriate. The sources that we use to gather data on closed restaurants 

also provide reasonable dates regarding the actual closure event. Therefore, we are 

able to approximate the closing period of the restaurant to the nearest quarter (each 

time unit represents a quarter), which is the highest level of granularity possible. 

Coarsened Exact Matching (CEM) 

While it is possible to estimate longitudinal models of restaurant closure using 

only this set of closed restaurants (reported later in the paper), in order to identify 

factors that are associated with business outcomes (i.e. restaurant closure), it is ideal 

to augment this dataset with restaurants that have remained open. This matching 

                                                                                                                                      
 
franchises of fast food firms, since they are typically treated as extensions of the brand and are unlikely 
to be reviewed independently. 
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process ensures balance across covariates to be used in regression and also account 

for unobservable variables that may be particular to the set of closed restaurants. For 

example, some idiosyncratic factor that is unobservable to us may influence the 

closure of low-priced restaurants, but not high-priced restaurants. In such contexts, it 

is possible to mistakenly attribute the effect to other variables that are observable. 

Through matching, we are able to reduce, by a significant amount, the impact of such 

unobservable factors that may affect specific restaurant types. Matching also ensures 

that survival models of similar restaurants are estimated within the dataset, thereby 

minimizing potential bias.4 To this end, we create a set of similar (matched) 

restaurants that have remained open through our observation period, thereby 

comparing restaurants that have closed (treated cases) with restaurants that have not 

closed (controls) but that are otherwise as closely matched as possible on all other 

observable characteristics. We implement Coarsened Exact Matching (CEM), 

introduced by Iacus et al. (2011b) and shown to be a monotonic imbalance bounding 

(MIB) matching method with several beneficial statistical properties compared with 

prior Equal Percent Bias Reducing models (Rubin 1976), such as Propensity Score 

Matching (PSM) and Mahalanobis distance-based matching. In the words of Iacus et 

al. (2011b), CEM “generates matching solutions that are better balanced and 

estimates of the causal quantity of interest that have lower root mean square error 

than methods under the older existing class, such as based on propensity scores, 

Mahalanobis distance, nearest neighbors, and optimal matching”. Given the 

longitudinal structure of our data and the fact that closures are much less common 
                                                
 
4 We also repeat our analysis on the set of closed restaurants only, with consistent results, as discussed 
later. 
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over time, a technique like CEM is better equipped to handle our context than other 

matching methodologies, such as PSM (Iacus et al. 2011b). Operationalizing CEM 

consists of three main steps, after identifying the set of variables to be used in 

matching treated cases (closed restaurants) to one or more controls (open restaurants): 

1. Temporarily coarsen each matching variable, i.e. iteratively classify (recode) 

each variable into smaller strata or partitions so that the “substantively 

indistinguishable values of the variable are grouped together and assigned the 

same numerical value” (Iacus et al. 2011a, p.8), thus “coarsening” the variable 

2. Sort all the observations (cases and controls) into strata that contain all the 

possible interactions of the stratified matching variables 

3. Discard the observations in any stratum that does not include at least one 

treated and one control unit and revert to the “uncoarsened” measure, thereby 

allowing the final dataset to have optimal balance of treated and control units 

within each stratum. 

Starting with an initial list of 2,021 potential control restaurants (representing all 

open restaurants in our dataset), we follow the progressive coarsening method 

outlined in Iacus et al. (2009) to select the matching variables. The matching 

variables we use are listed in Table 2.1 and, consistent with prior work (Lu et al. 

2013), include all characteristics (excluding review text) of the restaurant observable 

from Yelp.com. Since we have a longitudinal dataset, we match each closed 

restaurant with open restaurants exactly in the time-period exactly before the focal 

restaurant closed. Thus, ensuring that each closed restaurant is matched to a similar 
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open restaurant during the most relevant time-period. To ensure completeness of the 

panel, we include such matched restaurants across the full period of our panel (i.e. 

2005-2013). A key goal of the matching process is make sure that the treated and 

control groups are balanced (Iacus et al. 2011a), i.e. their covariates have similar 

distributional characteristics. Table 2.2 displays an imbalance table of our numerical 

matching variables, a preprocessing step recommended by Iacus et al. (2009) to 

evaluate the balance of variables in the case and control samples. The L1 statistic, 

introduced by Iacus et al. (2009), is a univariate measure of the imbalance between 

treated and control units, which is very low for our numerical variables. However, we 

do observe imbalance between treated and control units in the distribution of the 

number of reviews at the 25, 50, 75, and 100 percentiles, which also indicates the 

extent to which a matching procedure like PSM would have led to significant 

imbalance between the two samples. The results of our CEM procedure results in 446 

closed restaurants (the entire closed sample) matched to 605 open restaurants (out of 

2,021 possible). Thus, the final sample is based on a 1: 𝑘 matching, shown to be 

desirable in previous work (Stuart 2010). A comparison of the matched and treated 

samples (Table 2.3) show near-identical values on covariates. We stress here that in 

comparison to propensity score matching, where the method tried to find a match for 

every treated unit, the focus in CEM is to only include appropriate matches in 

subsequent analyses. Therefore, the fact that the final sample does not include exactly 

𝑘 matches for all treated units does not signify a weakness of the matching process. 

Rather, it conveys the notion that the matched dataset achieves balance on observable 

covariates across treated and control groups, thereby allowing unbiased estimation of 
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treatment effects. 

Finally, we collect online reviews for each restaurant from Yelp.com. This data 

collection resulted in over 35,000 online reviews for closed restaurants and over 

67,000 reviews from open restaurants between 2005 and 2013. This set of over 

130,000 online reviews contains roughly 15 million words collectively used in our 

text-mining methodology and econometric models, described in the next section. 

Before detailing these procedures, we briefly introduce text analysis and the general 

statistical tools used in this paper. 

Extracting Service Themes from Text 

With the review text we follow the standard preprocessing procedures of 

transforming text to lowercase, removing words composed of less than 3 characters 

and very common words called stopwords, and stemming words. The general 

objective underlying these pre-processing steps is to emphasize meaningful words by 

removing uninformative ones, and to keep the number of unique terms that appear in 

the corpus from becoming extremely large, one of the main computational challenges 

in text mining. Examples of stopwords include “the”, “and”, and “of”. Stemming 

refers to the process of removing suffixes, so that words like values, valued and 

valuing are all replaced with valu. We use the Porter stemming algorithm, which 

iteratively applies linguistic rules to identify and remove suffixes. Porter stemming is 

a standard algorithm implemented in most text mining software, including the “tm” 

(text mining) package (Feinerer and Hornik 2012) within R (R Core Team 2013), 

used for our analysis. 

After preprocessing the text, we utilize a topic modeling technique called 
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Latent Semantic Analysis (LSA) to represent each review with a set of numerical 

covariates that capture service themes within the review text. LSA is a classical 

technique for extracting such themes (often called topics, factors or dimensions in 

related fields) from text data. It strongly resembles Principal Component Analysis for 

numerical data, as both techniques are based on the Singular Value Decomposition 

(SVD) (see the Appendix for a detailed discussion of SVD in the context of text). 

Recently probabilistic approaches, such as Latent Dirichlet Allocation 

(commonly referred to as topic modeling Blei et al. 2003), for recovering themes in 

text have become popular. While these probabilistic approaches can recover more 

interpretable results from the perspective of data exploration and information 

retrieval, they also require several parameters to be defined for estimation and results 

can change each time the estimation is performed on the same dataset. These features 

create significant challenges for assessing statistical significance and stability of 

results when combining the extracted service themes with econometric models. One 

of LSA’s comparative advantages is that it is essentially parameter-free and returns 

the same results each time that LSA is applied to the data, thus enabling more 

accurate econometric estimation that are used to derive managerial insights. Further 

discussion on how LSA compares to its probabilistic alternatives is also provided in 

the Appendix. 

Similar to PCA, it is necessary to first evaluate how many semantic themes 

may emerge from applying LSA to the reviews dataset. The process of identifying the 

most suitable number of themes, referred to as cross-validation, suggested five 

service themes underlying the review text (described in detail in the Appendix). Once 
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the themes are identified, each review is represented with numerical scores for each 

of the extracted themes (akin to PCA loadings), and each theme has a list of rank 

ordered keywords (shown in Table 2.4) that we inspect to understand the semantic 

meaning behind the extracted themes. We note that in many such text-based settings, 

it is up to the researcher to examine the underlying text associated with a specific 

theme and evaluate their relevance. In our case, as shown in Table 2.5, phrases from 

top reviews that load heavily on each service theme are interpretable and consistent 

with an underlying service dimension. Therefore, we name the five themes: 

Quality_Overall, Food_Efficiency, Food_Quality, Responsiveness and Atmosphere. 

We note that one could follow other strategies, such as simply naming the theme with 

the most important keyword that emerges from the analysis. However, to ensure 

meaningful and accurate results, we prefer to utilize domain knowledge when 

assigning the variable names. In our analysis, we discover interpretable weights 

assigned to individual words that could be used to understand the concepts behind 

each of the themes, hence the variable names associated with each of the five themes. 

To extract insights and combine the text analysis with an econometric 

framework, we then summarize this information into a panel dataset where each 

restaurant-time period is the unit of observation. Specifically, we aggregate the data 

for each restaurant (restaurant variables, reviews characteristics, and the calculated 

LSA themes) within quarterly (three-month) periods. Restaurants without reviews in 

a time period are excluded. We also exclude restaurants-time periods occurring 

before the first review of the restaurant or after restaurant closure, thus resulting in an 

unbalanced panel data set. For each of the variables in our panel, we only consider 



 

 
 

32 
 

the new reviews that were added on Yelp for that restaurant in the previous time 

period (i.e. one quarter). In the case of the semantic components calculated through 

LSA, we average the reviews’ loadings (weights) on each of the five components 

observed in the previous period (quarter). As a robustness check, we also perform our 

analysis by aggregating data at the monthly level instead of the quarterly level, with 

strongly consistent results.5 We next describe the econometric models estimated for 

survival, using all the data made available through online reviews, including those 

created through LSA. 

Econometric Models and Estimation 

The outcome variable of interest in our dataset of reviews is the variable 

Closure+,, which equals 1 if restaurant 𝑖 has closed at time 𝑡 (denoting year-quarter) 

and 0 otherwise. The independent variables of interest are: fixed restaurant 

characteristics RestChars+, such as price point of restaurant 𝑖; time-varying review 

characteristics RestChars+,, such as number of reviews during time period 𝑡 for 

restaurant 𝑖; and LSA variables LSA+,, which includes the average value of each LSA 

variable over all reviews of restaurant 𝑖 occurring in time period 𝑡. While it is 

possible to include the actual sentiment of the review as well (calculated on (−1,1) 

where 0 represents neutral tone), we observe that this variable is highly correlated 

with the numerical rating for each review. This correlation is not surprising since 

positive sentiment in the review, suggesting overall satisfaction with the restaurant, 

should garner higher review rating (Cao et al. 2011). Therefore, we only include 

                                                
 
5 These results are available upon request. 
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rating in our models (robustness tests replacing rating with sentiment provide 

identical results). We also note that the explanatory ability of our models rest on the 

reasoning that the latent service quality themes identified through LSA are relevant, 

beyond the effects of aggregate rating or sentiment. 

Further, following Card and Krueger (2000) and Parsa et al. (2005, 2011), we 

control for the specific geographical location of the restaurant, Loc+, which includes 

the restaurant’s zip codes (12 in total), and we control for the competitive 

environment of each restaurant by including competition variables Comp+,, such as 

the number of reviews of the competitors of restaurant 𝑖 at time 𝑡. For each restaurant 

𝑖, we define competitors as restaurants with the same price point and location. All 

independent variables were scaled and centered. Building on Chevalier and Mayzlin 

(2006) and Archak et al. (2011), we model the impact of review characteristics and 

themes on the closure of restaurants while controlling for restaurant characteristics. 

Our baseline econometric model therefore is:  

Closure+,>? = 𝑏+B + 𝛽B + 𝛾RestChars+ + 𝛿RestChars+, + 𝛼LSA+, + 𝜌Loc+

+ 𝜉Comp+, + 𝜖+,, 

where 𝛾 and 𝛿 are vectors containing the sets of coefficients corresponding to 

restaurant and review characteristics respectively, 𝛼 contains the coefficients 

corresponding to the LSA variables, and 𝜌 and 𝜉 are vectors containing the set 

coefficients corresponding to location and competition. As suggested by Ghose and 

Ipeirotis (2011), we also control for the review length and the readability scores of 
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each review.6 All dependent and independent variables used in the analysis are 

described in Table 2.6, and summary statistics of each variable are shown in 

Table 2.7. The correlation matrix for the coefficients of each variable is shown in 

Table 2.8. 

Longitudinal Generalized Linear Models 

We proceed to model our specification using a generalized linear mixed 

model (GLMER) as described by McCulloch and Neuhaus (2001) with a binomial 

family using a logit link and a random intercept (equivalent to a panel logit model). 

As part of the generalized linear model, we estimate different variations on the 

baseline model with and without the semantic themes. We start with a regression 

specification that assumes that in each period, a restaurant chooses whether or not to 

exit the market. Clearly, while many factors influence this decision, the information 

within online reviews received in the preceding period captures one aspect of 

restaurant quality that may be significantly associated with the decision to exit the 

market. Therefore, we estimate the following models. 

Model 1 only includes restaurant and review characteristics:  

Closure+,>? = 𝑏+B + 𝛽B + 𝛾RestChars+ + 𝛿RestChars+, + 𝜌Loc+ + 𝜉Comp+, + 𝜖+,. 

 Model 2 includes restaurant and review characteristics and the LSA variables:  

Closure+,>? = 𝑏+B + 𝛽B + 𝛾RestChars+ + 𝛿RestChars+, + 𝛼LSA+, + 𝜌Loc+

+ 𝜉Comp+, + 𝜖+,. 
                                                
 
6 While we report model results using word length and the SMOG readability index following Ghose 
and Ipeirotis (2011) as the measures for the review length and readability, respectively, we also run 
similar models with other review length and readability measures, such as character length, the number 
of sentences, the Automated Readability Index (ARI), the Fog-Gumming readability index and the 
Coleman-Lindau readability index. These results are consistent and are available upon request. 
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Model 3 is the same specification as Model 2, except that the sample of restaurants 𝑖 

are restricted to the set of closed restaurants 𝛺, i.e., we require that 𝑖 ∈ 𝛺. Model 3 

allows us to examine the robustness of the results to the matching process. In addition 

to Models 1-3, we fit two additional models using a generalized linear model (GLM) 

with a binomial family using a logit link as well as fixed effects for each restaurant 

and year. The added fixed effects provide more conservative coefficient estimates 

and allows restaurant-specific heterogeneity to be accounted for. The first GLM 

model (Model 4) applies an exchangeable correlation structure, while the Model 5 

applies an AR(1) correlation structure. The correlation structure pertains to how 

observations from the same restaurant, i.e. within a group, are assumed to be 

correlated, and thus affect the standard error calculations but not the coefficient 

estimates themselves. An exchangeable correlation structure assumes that every pair 

of observations in a group has the same correlation. Alternatively, an AR(1) 

correlation structure assumes that observations that are closer in time are more 

strongly correlated with each other, a pattern that has been observed in prior work in 

online reviews (Moe and Trusov 2011).7 In general, evaluating the correlation 

structure in a GLM model through the application of different structures is important 

in assessing model reliability and adding credence to the model results (Liang and 

Zeger 1986). We thus estimate the following two specifications: Model 4 adds fixed 

effects for restaurant and year, assuming an exchangeable correlation structure:  

Closure+,>? = 𝛽B + 𝛽+ + 𝜃OPQRS + 𝛿RestChars+, + 𝛼LSA+, + 𝜖+,
TUV, 

                                                
 
7 In further robustness tests, we estimated models with lagged variables using more than 1-period lags 
for the semantic components. The current period variables remained significant, while the lags were 
not significant. Therefore, we only report the model specifications that do not include lagged variables. 
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where Year, is the year portion of the year-quarter time period 𝑡 and ranges from 

2004 to 2013. Model 5 also has fixed effects for restaurant and year, assuming an 

autoregressive AR(1) correlation structure:  

Closure+,>? = 𝛽B + 𝛽+ + 𝜃OPQRS + 𝛿RestChars+, + 𝛼LSA+, + 𝜖+,
XY(?). 

The results of each model are displayed in Table 2.9. These models show that 

a number of variables are significant in their associations with restaurant closure. 

First, certain fixed restaurant characteristics have a significant effect on the 

probability of restaurant closure. Restaurants in the higher-priced segments and 

certain cuisines (e.g. American food) have a higher probability of closure. Second, as 

the literature has previously shown, numerical review characteristics are significant 

predictors of restaurant closure, with both the average rating and number of reviews 

being strongly negatively associated with the probability of closure (𝑝 < 0.001). 

Interestingly, the effect of the number of reviews, representing foot traffic into the 

restaurant, is much stronger than that of average ratings in each time period, showing 

the importance of review volume. 

Regarding the semantic themes, we observe a range of p-values and 

coefficient magnitudes and signs. The coefficient of Quality_Overall is highly 

significant (𝑝 < 0.001 in 3 out of 4 models) and strongly negatively associated with 

closure. In contrast, the coefficient for Food_Efficiency is significant (𝑝 < 0.01 in 3 

out of 4 models) but positively associated with closure. Responsiveness is marginally 

significant (𝑝 < 0.1 in 2 out of 4 models) and negatively associated with closure. 

Strikingly, the magnitude of the marginal effect of Quality_Overall is much larger 

than that of the average rating in all models, and the magnitude of the marginal effect 
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of Food_Efficiency is larger than that of the average rating in all models, suggesting 

that certain thematic characteristics of review text might be more important than the 

ratings associated with reviews. However, not all semantic characteristics are 

significant. Food_Quality and Atmosphere are not significant in any of our models. 

Therefore, we find evidence not only that the content of the review text provides 

semantic structure that explains business outcomes, but that after controlling for all 

the possible dimensions of the review text in this context, certain dimensions affect 

restaurant closure more than others. 

The results from Quality_Overall and Responsiveness show negative 

coefficients, which is consistent with the notion that restaurants with reviews that 

clearly articulate quality and responsiveness are less likely to close (more likely to 

stay open, i.e. Closure+, = 0) . However, the positive coefficient for the 

Food_Efficiency component is puzzling, since it appears that the articulation of 

efficiency-related words in the review is associated with restaurant closure. We 

investigated this in some detail in our text by reading and analyzing several dozen 

reviews with high topic weights on this theme. We see that typical reviews with high 

weights on Food_Efficiency tend to use words like “wait”, “time” and “hour” in 

describing their experiences; the reviews tended to describe the waiting time 

involved, the use of the bar for waiting and the use of time measures in hourly 

intervals (half-hour, quarter of an hour).8 Even though there may not be clear 

negative sentiment attached to these reviews, the use of terms like “ask”, “wait” and 

“hour” are typically associated with negative outcomes in service contexts, given the 
                                                
 
8 It may be more appropriate to rename this theme “Food_Inefficiency” given the meaning conveyed in 
the reviews. 
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same overall ratings and review volume. Moreover, reviews that explicitly mention 

wait times associated with service are more likely to be negatively tinged. This could 

be one explanation for why this particular component is associated with higher odds 

of restaurant closure. Though physically scanning all 130,000 reviews for this 

information is daunting, the several dozen random reviews that we manually evaluate 

for this component suggested enough ambiguity around wait times and efficiencies 

articulated in the reviews for the focal restaurant. A restaurant that tends to show 

reviews with high topic weights on this theme would benefit from evaluating the 

efficiency of the restaurant’s operations from a timeliness perspective. 

The results from Model 3, which only includes closed restaurants and does 

not include the case-control matched data, are very similar to Model 2, which 

includes the matched sample. The similarity in the direction and pattern of results 

suggests that the matching process is not directly influencing any inferences we draw 

about the effects of the semantic themes. Finally, we note that including the LSA 

variables in the regression significantly improves the overall fit of the model, as 

suggested by a 25% reduction in the AIC of Model 3 compared with Models 1 and 2. 

The AIC reduction demonstrates noticeably better fitting models and highlights the 

significant value of the semantic information captured from the review text in the 

LSA variables, in the presence of traditional numerical variables. In the Appendix, 

we explore survival prediction using these models, and show that the enhanced model 

fits when using the semantic themes actually lead to more accurate predictions. 
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Robustness Check with the Cox Proportional Hazards Model 

We have thus far viewed restaurant closure as a binary variable, i.e., we 

assume that the restaurant decides in each period whether to remain open or close. 

However, the length of time a restaurant survived before closure varies greatly and 

provides information about the overall success of a restaurant before closure. 

Furthermore, the length of time a restaurant has survived allows us to differentiate 

between a restaurant that has been running for years and one that only opened in 

recent weeks or months (Luo and Stark 2015). Survival or duration models are 

designed to incorporate information on both cases for which an event of interest has 

occurred and those for which an event has not yet occurred, correcting for the effects 

of censoring (Lin and Wei 1989). We examine the effect of restaurant characteristics, 

review characteristics, and our themes on the failure rate of restaurants by using the 

semi-parametric Cox proportional hazards regression method (Cox 1972). The Cox 

model specifies the failure rate of restaurants ℎ+(𝑡), as the product of a vector of 

covariates 𝑋+′(𝑡)𝛽, and a time dependent baseline rate ℎB(𝑡), so that the form of the 

hazard function is given by:  

ℎ+(𝑡, 𝑋+′(𝑡), 𝛽) = ℎB(𝑡)𝑒`ab(,)c. 

To quantify the effects of restaurant and review characteristics on the timing of 

restaurant closure, we employ a Cox proportional hazards survival model including 

all the same variables as in Model 2 above. Because we make no claims about the 

functional form of time dependence, the Cox proportional hazards model offers a 

plausible approach to modeling survival in restaurants. 

The results of this model, shown in Table 2.10, are qualitatively similar to our 
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GLMER models in sign and significance. To allow comparisons to the previous GLM 

models, a positive (negative) coefficient in this model corresponds to a higher (lower) 

probability of closing. As in the GLMER model, higher rating and number of reviews 

are highly significant, with the number of reviews having a much stronger effect than 

average rating. Also consistent with GLMER models, Quality_Overall is highly 

significant (𝑝 < 0.001) and strongly negative, Food_Efficiency is significant (𝑝 <

0.01) but positive, and Responsiveness is marginally significant (𝑝 < 0.1) and 

negative. Again, we observe that marginal effects of the themes on closure 

(Quality_Overall, Food_Efficiency, and Responsiveness) are stronger than the 

marginal effect of the average rating of reviews for a time period, thus highlighting 

the importance of the LSA variables that capture the underlying content in review 

text. Also, we see the positive coefficient of Food_Efficiency, which suggests that the 

use of words associated with wait times and efficiency tend to provoke negative 

implications for quality. The remaining two themes, Food_Quality and Atmosphere, 

are not significant in this model. 

Cox proportional survival models assume the proportional hazards condition, 

which states that covariates are multiplicatively related to the hazard function. We 

test whether this assumption holds here. We follow the diagnostics tests suggested 

(Grambsch and Therneau 1994, Maindon-ald and Braun 2006) to implement both a 

regression and a graphical approach to test non-proportionality. In the regression 

approach, we measure the correlation of scaled Schoenfeld residuals and time (ρ) to 

test the proportionality of the main predictors in the model. None of the variables are 

statistically significant (p < 0.05), as shown in Table 2.11, indicating no violation of 
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the proportionality assumption. In a graphical approach, we plot the Schoenfeld 

residuals (Schoenfeld 1982), which are based on the individual contributions of a 

covariate to the derivative of the log partial likelihood (Hosmer et al. 2013). If the 

Schoenfeld residual shows a random pattern at each failure time, suggesting that the 

covariate effect does not change with respect to time, the proportionality assumption 

holds. Figure 2.1 does not show significant deviations from a horizontal line, 

indicating no systematic violations of the proportionality assumption, and thus 

consistency of the estimates and robustness of results. 

Discussion and Implications 

The question of how firms can leverage service quality and customer 

satisfaction metrics to improve firm performance has been on the agenda of service 

scholars since the early 1970s (Chase and Apte 2007). This question has inspired a 

large body of research on the strategic importance and measurement of service 

quality for organizations. Although scholars have identified a wide variety of 

measures for service quality relying mostly on questionnaires (Parasuraman et al. 

1985) and have successfully established a relationship between service quality and 

performance through multiple empirical frameworks (Heskett et al. 1994, Roth and 

Jackson 1995), this literature continues to bemoan the difficulty in defining 

standardized measures of quality for the service industry (Metters and Marucheck 

2007). This issue is particularly troublesome at a time when customers are 

increasingly focused on experiences (Pine and Gilmore 1999) and engagement (Voss 

et al. 2008), which are not easily captured by survey-based measures (Roth and 

Menor 2003). In the words of Soteriou and Zenios (1999), “In order to answer the 
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’how’ questions we need to address ’what’ questions first. What are the operational 

characteristics of a service that translate to customers’ high levels of quality?” 

In this study, we argue that online reviews, along with the large corpuses of 

text written by customers about their experiences with service operators, can be of 

significant value to measure customer satisfaction and to further understand the link 

between service quality and firm performance. One of our contributions is thus in 

applying text mining techniques to extract, from online reviews text, distinct service 

quality dimensions that bridge the gap between specific operational characteristics 

and service quality, often the focus of the extant work (Goldstein et al. 2002). We 

apply this approach to a comprehensive set of online reviews of restaurants in the 

Washington D.C. area from 2005 to 2013. The context of restaurants is particularly 

appropriate for a study of online reviews where a recent report by National 

Restaurant Association (2012) stated “Simply put: online reviews can help or break 

your business” and found that more than half of diners report that information a peer 

review site is likely to affect their decision to choose a restaurant. Through a series of 

econometric models, we provide strong evidence that the semantic components 

extracted from the review text firstly capture relevant information above and beyond 

numerical attributes, and second, are significant predictors of business outcomes such 

as business closure. Of the five components that were extracted from the text, three 

are significant predictors of restaurant closure. More importantly, we show that the 

marginal effects of these variables are significant even when accounting for the mean 

rating for the reviews in the same time period, suggesting that there is considerable 

information within the text that is likely used by human consumers of the reviews but 
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not accounted for in large-scale econometric models of performance. Our approach, 

founded on classical text analysis methods, allows us to extract relevant service 

quality dimensions associated with latent “restaurant quality”, thereby allowing for a 

fuller view of restaurant performance. 

Our work has limitations that are worth discussing. First, we focus on one 

specific segment of online reviews to analyze, raising questions about the 

applicability of this method to other contexts. As outlined above, we believe the 

methods can be extended but future work is needed to ensure generalizability. 

Second, we do not provide a comprehensive model of restaurant closure, and we do 

not have access to other factors that may be influential, such as revenue data and 

personnel issues within the merchant. Similarly, we do not consider information 

about the specific reviewer and their background that may color their reviews (Dai et 

al. 2012). These refinements are out of the scope of this paper and are also not the 

true objective of our work, which is to validate the process of service dimension 

identification through text analysis. Finally, we model survival, a discrete and final 

outcome variable. Other interim service operations outcomes may also be modeled 

with greater ease, such as health violations and responses to specific promotions; we 

are working on extending our models to these other contexts. 

Beyond the service operations context, our work contributes to the research 

on the strategic legitimation efforts carried out by organizations. A recent but 

growing literature has examined how various forms of communications contribute to 

the development of legitimacy and access to resources (Martens et al. 2007, Porac et 

al. 2002). However, much of this work has focused on content created and distributed 
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by traditional media outlets (Rindova et al. 2007, Kennedy 2008, Petkova et al. 

2013). In contrast, our study examines information created by customers in a social 

media platform where everyone can express their opinion. Our results show that 

legitimacy as well as quality signals can also be provided by the presence and textual 

content of these reviews as they influence the choices of future customers and 

ultimately firm survival. In line with Kennedy (2008), a study of the effect of press 

releases to the survival of 74 firms, we also are among the first (to our knowledge) to 

investigate the influence of social media on the survival of over 1000 merchants, an 

essential outcome in industrial organization. 

Our work also provides important insights to practitioners. Prior work argues 

that service providers learn from their interactions with customers, especially in the 

service context (Clark et al. 2013), but these benefits come with significant costs. In 

contrast, online reviews provide, with little cost, many essential pieces of 

information, beyond the numerical ratings, that are of considerable value to such 

merchants (Cao et al. 2011). Beyond Yelp, other sources of review text, such as 

OpenTable and TripAdvisor, are also available to the service provider. Clearly, 

assimilating all this data manually is infeasible for either the restaurateur or the 

consumer. However, this information does have economic implications for both the 

restaurateur (as we show here) and the consumer. To the extent that more granular 

firm-level data is available (such as sales, promotions or restaurant check sizes), 

further refinements of the underlying method are possible and the individual effects 

of semantic themes on these outcomes can be estimated. Moreover, using our 

approach, restaurant managers and potential investors can evaluate a restaurant’s 
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performance relative to that of its competitors, by considering the weights on the 

semantic components as well as the numerical ratings. Prior work in marketing has 

argued for the value in benchmarking for service organizations, primarily as a 

learning tool (Soteriou and Zenios 1999, Vorhies and Morgan 2005); our model 

allows for the development of quality-based benchmarking services for service firms. 

Alternatively, platforms owners, such as Yelp.com, could use our approach to 

create multi-dimensional scores of quality using review text that might more 

accurately translate the review text and describe the true quality of a restaurant. These 

methodologies, if implemented on large corpuses of text, could provide value-added 

services through benchmarking for merchants and quality-based trends for 

consumers. While firms like Yelp do provide consumers with aggregate statistics on 

the ratings of reviews received over time, they are limited when it comes to 

processing the text within these reviews. Our work would help address this gap in 

their offerings, and even raise the possibility of additional merchant-specific services 

for additional revenues. More broadly, our work also paves the way for more work 

that combines text analytic or data mining applications with econometric models, 

thereby capitalizing on the large and varied forms of crowd-sourced and social media 

that are increasingly becoming of relevance in the services context today. We believe 

that more such work is needed to allow managers to fully understand consumer 

engagement and to optimize their service design appropriately. 
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Appendix A: Text Analysis Methodology 

In this appendix, we discuss the procedures involved in analyzing text from 

the reviews in some detail. Note that, as mentioned in the main document, the text 

corpus of all online reviews for the restaurants in the final dataset undergoes 

preprocessing. After preprocessing the corpus, we construct a document-term matrix, 

which decomposes each document by the set of words contained in it. The matrix 

contains a column for each word that appears anywhere in the (preprocessed) corpus 

and a row for every document. Each matrix entry counts how often each term appears 

in each document. Let 𝑋 be the document-term matrix for a corpus with 𝑛 reviews 

and 𝑝 unique terms. To understand the relationship between 𝑛 documents and a 

response variable 𝑌+ (e.g. restaurant closure) one could simply use the document-term 

matrix 𝑋 as an input for a statistical model. One could try to estimate the following 

model  

𝑌 = 𝐹(𝑋𝛽 + 𝑍𝛾), 

where 𝑍 are control or other variables of interest, and 𝛽 and 𝛾 are the regression 

coefficients to be estimated. The coefficients 𝛽 would quantify how different words 

or phrases affect Y. In practice, however, such a model is not identifiable, because 

the number of terms 𝑝 is typically much larger than the number of observations 𝑛. 

One possible remedy to this problem is to perform dimension reduction. In 

fact, a common strategy in the eWOM literature is to replace the term document-

matrix with word count and valence (tone or sentiment). These variables can be 

computed by taking the sum over terms, 𝑋+hh  as the word count for document 𝑖, and 
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valence can be viewed as a weighted sum 𝑤hh 𝑋+h, where 𝑤h is positive or negative 

depending on the tone of the term. A drawback of using only word count and valence 

is that the underlying content within each document is not well captured. To address 

this shortcoming, we follow an alternative methodology that starts with the idea that 

many unique words can be summarized succinctly with a fewer number of keywords. 

For instance, one may try to combine the columns corresponding to beer, whisky, and 

gin with alcohol, if contextually appropriate. The underlying idea in the example is 

similar to that of Principal Component Analysis (PCA), where one replaces variables 

(words in the text setting) by their linear combination,  

𝑉 = 𝑋𝐻l, 

where columns of the 𝐾×𝑝 matrix 𝐻 are factor loadings that serve to reduce the 

column space of 𝑋 sufficiently for the model to be estimable. Thus, instead of the 

model in Equation 1, one tries to estimate:  

𝑌 = 𝐹 𝑉𝛽 + 𝑍𝛾 , 

where 𝛽 quantifies how themes in the text captured in the columns of 𝑉 affect 𝑌. In 

the next section, we discuss how a set representing 𝑉 is computed. 

A.1. Latent Semantic Analysis (LSA) 

Latent Semantic Analysis (Dumais 2004) is a matrix factorization technique 

that computes the factor loadings 𝐻 in Equation 2. The classical LSA model relies on 

Singular Value Decomposition (SVD), where the document-term matrix 𝑋 is 

decomposed as  

𝑋 = 𝑈p𝛴p𝐻pl, 

where 𝑈p and 𝐻p are orthogonal matrices, and 𝛴p is a 𝐾×𝐾 diagonal matrix with 
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positive entries. The interpretation of each column of 𝐻p is similar to that of PCA, 

where each column has length 𝑝 and contains weights that are used to take linear 

combinations of the columns (terms) of 𝑋. The weights also have the same function 

of projecting the data onto axes of greatest variation. The first axis, defined by the 

weights in the first column of 𝐻p, explains the most variation; the second column of 

𝐻p explains the second most variation and is orthogonal to previous columns, and so 

on. 

The relation in Equation 4 is exact when the inner rank 𝐾 = min(𝑛, 𝑝), i.e., 

the inner rank equals the rank of 𝑋. If 𝐾 < min(𝑛, 𝑝) then the equality no longer 

holds and Equation 4 is an approximation. However, in this case the Eckart-Young 

theorem (Eckart and Young 1936) establishes that the SVD-based approximation is 

the most accurate in the sense of minimizing the Frobenious norm:  

𝑈p𝛴p𝐻pl = argmin
u
||𝑋 − 𝐷||xy . 

Since the main goal of LSA is dimension reduction, 𝐾 is always chosen empirically 

to be relatively small in order to summarize the data effectively while achieving 

parsimony. Often a technique similar to examining a scree-plot in PCA is used to 

choose the number of components to retain, which can be constructed by plotting the 

singular values in 𝛴p. Another rigorous procedure to choose the number of 

components to retain is cross-validation, where the objective is to use random subsets 

of the data to fit LSA and another subset to assess its accuracy. The number of 

retained components is then cycled over and the one that corresponds to the lowest 

test error is chosen. Since we are primarily interested in factoring a matrix, we 

employ the two-dimensional cross validation of Owen and Perry (2009), which 
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selects sub-matrices for training and test data. The procedure for choosing the number 

of components to retain is statistically rigorous with consistency under appropriate 

regularity conditions (Owen and Perry 2009). As shown in the left panel of Figure 

2.2, this cross validation procedure indicates that we retain 3 components. 

LSA requires performing SVD on typically very large and sparse document-

term matrices, which can easily create extraordinary computational and memory 

demands when using the well-known power algorithm for computing singular 

vectors. To overcome these limitations, extensive work in numerical linear algebra 

has led to fast and memory-efficient algorithms. We use an augmented implicitly 

restarted Lanczos bidiagonalization algorithm (implemented in the R package 

“irlba”), which is an iterative approach for calculating singular vectors in large, 

sparse matrices that is numerically stable and efficient from both a computational and 

memory perspective (Baglama and Reichel 2014). Once a rank 𝐾 approximation has 

been estimated, then the 𝑖th document can be projected onto the space of 𝐻p with the 

following:  

𝑉 = 𝑋𝐻pl𝛴pz?,
𝑉 = [𝑉?, 𝑉y, … , 𝑉p],

 

where 𝑉?, 𝑉y, … , 𝑉p are new variables that capture the essential meaning of each 

document along different dimensions in the text. The purpose of right multiplying by 

𝛴pz? is to rescale each dimension by the percentage of variation that the component 

explains. As mentioned above, we select 3 components for our study, i.e. 𝐾 = 3. 

Accordingly, 𝑉?, 𝑉y, and 𝑉� are identified to be used in subsequent econometric 

models of restaurant closure. 

To understand the semantic meaning behind 𝑉?, 𝑉y and 𝑉�, we inspect the 
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words with largest positive and negative weights and assign theme names based on 

these keywords. We note that one could follow other heuristics that assign variable 

names with, for example, the word with the largest magnitude weight. However, to 

ensure meaningful and accurate results, we prefer to utilize domain knowledge when 

assigning the variable names. In our analysis, we discover interpretable weights 

assigned to individual words that could be used to understand the concepts behind 𝑉?, 

𝑉y and 𝑉�. With other datasets, it may be useful to also include phrases (called “n-

grams” in text mining) when constructing the term document-matrix to recover more 

unique representations. 

The top positively and negatively weighted words for each of the 3 retained 

components are shown in Table 2.4. Since 𝑋 only contains non-negative values, by 

the Perron-Frobenius theorem about eigenvectors of non-negative matrices (Meyer 

2000), the first component (column or set of factor loadings) of 𝐻p will contain 

exclusively non-negative weights. Thus, the first theme 𝑉? takes a strictly additive 

combination of words, emphasizing ones that are most “interesting” in the sense that 

they maximize variation. Accordingly, we find, on examining the words associated 

with 𝑉?, that it emphasizes words related to broad aspects of service quality at the 

restaurant. For instance, words like order, time and service may relate to reliability 

and responsiveness; words like menu and food may relate to the business context of 

variety and taste. We refer to 𝑉? as Quality_Overall for convenience throughout the 

rest of the document; it represents an overall sense of the quality and value provided 

by the restaurant and by virtue of being the first extracted dimension, captures the 

most “variance” in the review text (comparable to the first principal component in 
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PCA). Subsequent components are likely to be associated with more specific issues 

pertaining to the restaurant’s offerings. The second theme 𝑉y is a contrast between 

waiting time and food quality. If a review’s score is strongly positive, then words like 

order, time, wait, hour and minute are utilized, so the specific review with high 

positive weights on this component reflects an emphasis on efficiency of service. On 

the other end of this component, reviews that have high negative weights emphasize 

food quality and taste, with keywords such as dish, flavor, chicken, sauce and food. 

While 𝑉y can be entered directly into an econometric model, we note the 

underlying weights can be non-intuitive since the sign of the weights is arbitrary. For 

instance, words like “good” and “great” that have positive sentiment have negative 

weights, which can occur because the weights are not related to sentiment. They 

reflect the observed joint association of these words together in a review. Therefore, 

to avoid confusing caused by the positive / negative weights and to allow the 

variables to be more directly interpretable within a regression context, we split 𝑉y =

𝑉y> − 𝑉yz into its positive part (𝑉y> = 0.5(|𝑉y| + 𝑉y)) and negative part (𝑉yz =

0.5(|𝑉y| − 𝑉y)) so that each part has weights that are non-negative. If a document 

loads heavily on 𝑉y>, it likely focuses on efficiency-related issues – we call this theme 

Food_Efficiency. Similarly, if a document loads heavily on 𝑉yz, then it focuses on 

food quality and we call this theme Food_Quality. 

Along the same lines of logic, we observe that the third theme 𝑉� is a contrast 

between responsiveness (keywords are server, waiter and ask) and restaurant 

tangibles, like atmosphere and entertainment. If a review’s score is strongly positive, 

then it puts emphasis on the restaurant’s responsiveness, while if a review’s score is 
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strongly negative, then it puts emphasis on atmosphere and entertainment. 𝑉� is also 

split according to its positive and negative parts, which are referred to as 

Responsiveness and Atmosphere, respectively. 

Returning briefly to the GLMER and survival model results presented in the main 

text, we note that the first theme (Quality_Overall) by itself allows considerable 

semantic structure to be extracted from the text. Every additional component adds to 

the model of restaurant closure but likely with lower power, given the sample of the 

dataset (as shown in the right panel of Figure 2.2). As larger datasets become easily 

available, the ability to identify smaller non-zero marginal effects in the econometric 

models improves significantly. 

A.2. LSA and Other Topic Modeling Methods 

We note that there are alternative techniques, such as Latent Dirichlet 

Allocation (Blei et al. 2003) or Probabilistic LSA (Hofmann 1999) that could instead 

be used to construct the matrix of factor loadings H that are based on more 

appropriate distributional assumptions for text data. Specifically, these alternative 

approaches are founded on a Poisson distributional assumption, instead of joint 

normality, which is assumed by LSA. These alternative techniques have the same 

goal of representing a document by its conceptual content through the factor loadings. 

In fact, as shown in Arora et al. (2012), Latent Dirichlet Allocation and Probabilistic 

LSA can be written in the algebraic form of Equation 4, but with different constraints. 

Instead of orthogonality constraints, UK and HK are subject to probability constraints, 

which can improve interpretability of the learned topics. However, there are several 

properties of probabilistic models that lead us to prefer the classical SVD-based LSA 
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approach. First, probabilistic models often provide results that change each time the 

data is analyzed. As written in Blei (2012), “As for many modern probabilistic 

models of interest-and for much of modern Bayesian statistics-we cannot compute the 

posterior because of the denominator, which is known as the evidence. A central 

research goal of modern probabilistic modeling is to develop efficient methods for 

approximating it.” Typically the approximation requires some degree of 

randomization, which causes path-dependent solution, whereas the SVD-based LSA 

can be computed exactly. Given that our ultimate goal is to understand the economic 

impact of online reviews, the SVD-based LSA avoids the additional and open 

methodological challenges associated with probabilistic models of accurately 

computing standard errors, performing hypothesis tests, and so on, within an ensuing 

regression analysis. The second drawback of probabilistic models is that the 

components of 𝐻p are always highly positively correlated, since the potential 

improvement in interpretability is due to the relaxation of orthogonality constraints. 

In our experiments, Latent Dirichlet Allocation resulted in variables that were highly 

collinear, which would again create estimation issues in any ensuing analysis. Thus, 

uniqueness and orthogonality are properties of LSA that are advantageous for 

estimation of statistical and economic models in subsequent analysis. Moreover, as 

shown in Table 2.5, phrases from top reviews in each component are interpretable 

and consistent with the component keywords.9 

                                                
 
9 In the interest of robustness, we apply probabilistic LSA and Latent Dirichlet Allocation to our 
corpus of text. While the topics identified in such analyses closely resemble the themes identified 
through LSA, they do not have the benefits of orthogonality, which aid in regression analyses 
subsequently. We estimated GLM models using these themes as well and found broadly similar results 
in terms of two or three themes being significantly associated with survival. However, we found the 
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The use of LSA and our overall results raise interesting methodological 

questions for future research. The extant text mining literature assesses performance 

along primarily two dimensions: algorithmic properties and accuracy in information 

retrieval tasks. Further study of how different text mining algorithms compliment 

econometric regression modeling to inform business decision-making would be a 

valuable contribution to multiple fields within the business community. 

Appendix B: Post Hoc Analysis: Predicting Closure  

The performance of GLMs as predictive models has been extensively studied 

using a receiver operating characteristic (ROC) curve (Pepe 2000, Bensoussan et al. 

2009). One important feature of ROC curves is that they display the trade-offs 

possible between increasing the detection of true positives and increasing false 

positive rates as the positivity criterion varies. ROC curves are particularly useful for 

comparing models since tests are put on the same scale and the scale relates directly 

to the notion of accuracy (Pepe 2000). To generate out-sample prediction 

probabilities of restaurant closure as a function of time and generate the ROC curves 

for the GLMER models (Table 2.9), we perform longitudinal ten-fold cross-validation 

(Heagerty et al. 2000, Heagerty and Zheng 2005), which ensures that future 

observations do not predict past observations. Specifically, we divide the data into ten 

sequential groups of equal size. For each group 𝑘 = 2,… ,10, the model is trained on 

the previous 𝑘 − 1 groups and that model is used to generate predictions for group 𝑘. 

The associated ROC curves are shown in Figure 2.3, with their respective “Area 
                                                                                                                                      
 
best model improvement with LSA, as expected given the properties of LSA described here. These 
extended results are available upon request. 
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Under the Curve” statistics (AUC). We observe a large increase in the ability to 

predict when and if a restaurant will close from our baseline model (Model 1) without 

semantic variables to our models containing semantic variables (Model 2 and Model 

3). Moreover, our model with only closed restaurants (Model 3) has very similar 

performance to our model using the case-control data set (Model 2), showing that our 

predictive accuracy is not an artifice of the matching procedure. However, including 

both sets of restaurants is a more accurate reflection of the task facing restaurateurs 

and platform owners, since it is not known ex ante which restaurants are likely to 

close. The similarity of results from the closed set (Model 3) and those that include 

the matched sample (Model 2) is a sign of the robustness of our CEM-based matching 

method. 
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Chapter 3  Deal or No Deal? The Quality Implications of Online 

Daily Deals 

 

Introduction 

Daily deals offered by firms, such as Groupon and LivingSocial have become 

increasingly popular as consumers have flocked to their use; four out of ten New 

Yorkers reported using online deals for redemption at assorted retail outlets in 2014. 

Groupon, the market leader in daily deals, has over 53 million active customers, 200 

million subscribers and reports selling over 400 million individual deals thus far 

globally (Groupon 2015a). While these numbers suggest that such platforms are an 

unqualified success, the effects on merchants offering them are equivocal. On one 

hand, research shows that only 55% of merchants offering such deals actually made a 

profit, while 26% reported losses (Dholakia 2010). On the other hand, daily deals 

have also led to increased foot traffic, revenues and visibility for merchants at a lower 

customer acquisition cost (Dholakia 2011a, 2011b). Reports in the practitioner press 

reflect this equivocality; articles describing their effects on business outcomes for 

merchants outline both positive as well as negative effects, adding to the ambiguity 

surrounding deals (Clifford and Miller 2012, Agrawal 2013, Cohan 2012).  

In this paper, we focus on one specific business outcome that is associated 

with the offering of daily deals and also has implications for the long-term 

performance of the merchant offering deals – electronic word of mouth (eWOM). 

eWOM has emerged as an important factor, particularly in the services sector; 



 

 
 

57 
 

numerous studies have shown that eWOM associated with a firm and its products has 

a direct impact on firm performance metrics, such as sales, customer satisfaction, and 

brand evaluations (e.g., Chevalier and Mayzlin 2006, Clemons et al. 2006, Duan et al. 

2008, Chen and Xie 2008, Zhu and Zhang 2010). 88% of consumers read online 

reviews (representing the firm’s eWOM) to determine the quality of a local business, 

which then informs their purchase decisions (BrightLocal 2014). Thus, understanding 

the factors that affect eWOM is critical for merchants. Our work here address an 

important question in this domain: how does the offering of a daily deal affect the 

firm’s resulting eWOM? 

Studies on the question of whether daily deals influence brand evaluations, 

and the resulting eWOM discourse, have provided contradictory evidence thus far in 

the literature; on the one hand, Kimes and Dholakia (2011) find that a merchant’s 

brand equity suffers no loss as a result of offering daily deals. On the other hand, in a 

conference presentation, Byers et al. (2012a) report that the offering a Groupon has a 

strictly negative impact on resulting Yelp ratings of merchants, implying that those 

considering daily deals as part of their marketing mix should exercise caution. 

Interestingly, both perspectives are significantly at odds with extant research on price 

promotions and advertising (that bear distinct commonalities with online daily deals), 

which propose various mechanisms by which price promotions and advertising efforts 

may affect (even positively affect) brand attitudes and consumer perceptions of 

quality (Biswas et al. 2013, Chen and Kirmani 2015). This divergence in the literature 

regarding the effect of daily deals suggests not only a significant gap in our 

understanding of how daily deals may influence eWOM (inasmuch as eWOM reflects 
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brand attitude and quality perceptions) but also a need for further research evaluating 

this question, potentially using multiple methods to isolate the specific effect. 

In this paper, we address this gap; we extend prior work in marketing 

addressing price promotions and advertising to the online daily deal context. 

Eschewing the strong positions taken by Kimes and Dholakia (2011) and Byers et al. 

(2012a), we argue for a middle ground, contending that the effect deals may have on 

brand evaluations and eWOM will depend on the particular conditions of the 

merchant. Merchants who opt for daily deals are heterogeneous in terms of their 

characteristics as well as the environments in which they operate; we contend that this 

heterogeneity is likely to influence the manner in which daily deals affects their 

specific eWOM. More specifically, we focus on two sets of factors that moderate the 

impact of daily deal on eWOM. First, there is likely to be heterogeneity driven by 

specific merchant characteristics, such as the age of the merchant and the price 

segment in which the merchant operates. Second, the competitive environments in 

which merchants operate, especially the actions of competitors, may influence the 

focal merchants. The presence of daily deals in the competitive landscape thus may 

influence the response to a focal merchant’s daily deal.   

Prior work in marketing and IS provides theoretical arguments for why these 

moderators may indeed provide a more nuanced effect of daily deals on the resulting 

eWOM. Daily deals are effectively a combination of price promotions and opt-in 

advertisements (Edelman et al. 2011, Shivendu and Zhang 2013), since subscribers 

sign up to receive information about deals, which include elements of advertising 

copy and deep discounts. Research shows that the magnitude of a price promotion, in 
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dollar terms, tends to influence consumers’ response to the promotion; the larger the 

perceived difference between the consumers’ price expectation and the discounted 

price, the more positive the response (Grewal et al. 1998, Wu et al. 2004, Biswas et 

al. 2013). Thus, merchants in the premium price segment offering deep discounts 

should see a more positive response to deals than merchants in the lower price 

segment, even if the discount rate is the same. Alternatively, the persuasion 

knowledge model (Friestad and Wright 1994) asserts that promotional efforts 

perceived by consumers as appropriate and confident are likely to have a positive 

effect on brand evaluations, and potentially on eWOM. However, merchants 

perceived as defensive or desperate are likely to see a negative response to their 

promotional efforts (Kirmani 1990, Kirmani 1997, Chen and Kirmani 2105). 

Therefore, new merchants or merchants with strongly positive eWOM ex ante may 

garner more positive eWOM from offering daily deals in their attempt to gain new 

customers, in contrast to the negative effect shown by Byers et al. (2012a) or the null 

effect from Kimes and Dholakia (2011).  

Beyond these sources of merchant heterogeneity, the competitive environment 

around the merchant contributes by setting reference prices for the focal merchant 

(Mazumdar et al. 2005, Bell and Lattin 2000). If all merchants in the competitive 

market offer daily deals, effectively the consumer’s price expectation for similar 

products or services may shift lower towards the discounted price. In such contexts, 

merchants offering similar deals, partly as a response to competitive pressures, are 

unlikely to experience the noted negative effect. An interesting corollary to this 
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reasoning is the potential effect of deals offered by competitors on the focal merchant 

not offering a deal. These empirical questions remain unaddressed in the literature.  

Finally, it is possible that merchants underestimate the operational 

complexities from short-term demand spikes that arise from offering daily deals 

(Blattberg et al. 1995, Pauwels et al. 2002). Resource flexibility, and in particular 

workforce flexibility, is critical in being able to handle demand fluctuations (Ebben 

and Johnson 2005). Firms that are better at these capabilities will be able to better 

accommodate the demand increase resulting from offering daily deals and more likely 

to generate positive eWOM. However, these effects will manifest only after 

consumption, i.e. when the deal is redeemed, raising the open empirical question of 

pre-consumption versus post-consumption effects of the daily deal.  

To address these open questions empirically, we use data collected on 

restaurants as the focal industry; prior research shows that eWOM is of particular 

importance in this industry, as are daily deals, making it a suitable context for our 

study (Lu et al. 2013). Additionally, restaurant online reviews have been shown to 

reflect elements of quality, customer satisfaction, and referral intention (Chen and 

Laurie 2013), thereby allowing us to test the contingent effects of daily deals in this 

context.  We conduct our analysis in two stages. In the first stage, we use data on 

daily deals and online reviews of restaurants in a major metropolitan area in the 

United States over a 13-month period. Online reviews were collected from Yelp 

while deals information was acquired from Yipit, a deal aggregator. In addition to 

restaurants offering deals, we also collected eWOM data on a census of restaurants in 

the area, thereby providing us with a control set of restaurants that did not offer deals. 
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We test for heterogeneity in the effect of the deal on the resulting review valence for 

deal merchants (those who offer deals); in addition, we also test the effect of nearby 

competing deals on merchants who do not offer deals. Our results do indeed verify an 

average negative “Groupon effect” reported in the literature (Byers et al 2012a) but 

also that this effect is significantly moderated by merchant age and price segment. 

Interestingly, we also see strong evidence of a competitive effect; the presence of 

competing deals in the neighborhood affects eWOM even for those restaurants that do 

not offer deals. 

The econometric model based on secondary data does not allow us to 

differentiate whether the resulting moderation is based on redemption of the coupon, 

or if the deal changed the intrinsic evaluation of the restaurant, i.e. pre-consumption 

versus post-consumption effects of the deal. In the second stage of our analysis, we 

address this question through experiments. Building on Raghubir and Corfman (1999) 

who study the effect of past promotional activity on pre-trial evaluations, we study 

pre-consumption responses to daily deals using three lab experiments. The results 

show the presence of a deal effect on brand evaluation even when there is no 

possibility of consumption; thus, while operational flexibility is critical, we show that 

the hypothesized “deals” effect on eWOM exists even before the deal is redeemed. 

Our study contributes to the literature in multiple ways. First, we go beyond 

simply documenting a negative link between daily deals and online reviews; we show 

that these effects can be mitigated for merchants with specific characteristics. Second, 

we document, for the first time, the unique effects of competition in how daily deals 

affect brand evaluation and eWOM for both merchants offering deals and those that 
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choose not to. While competitive effects have been observed in the promotions 

literature in marketing (Mazumdar et al. 2005), we extend this to the newer context of 

online daily deals. Third, using a series of experiments, we are able to show how 

deals, combining elements of advertising and price promotions, can influence brand 

valuation even before consumption. Specifically, we note the high level of 

consistency between the results obtained from archival data and those obtained from 

experiments. We briefly discuss the theory regarding online deals and eWOM next 

before delving into the research methodology subsequently. 

Background and Theory 

Online daily deals, also referred to as group-buying deals, social coupons or 

group discount vouchers (Luo et al. 2014, Kumar and Rajan 2012), are discount 

coupons posted online through a platform, such as Groupon or LivingSocial.  These 

sites operate double-sided platforms (Parker and Van Alstyne 2005) on which 

merchants offer deals (on one side of the platform) while individuals buy the deals 

(on the other side of the platform).  The platform appropriately extracts revenues from 

the merchant side of the platform, while subsidizing the consumer side.  Platform 

owners typically work with merchants to offer deals for a specific period of time 

(usually 2 weeks). Once purchased, the deal’s discounted price can be redeemed over 

a longer time-period (typically three months after the deal is posted) at the merchant, 

with some conditions applied on the bundling of coupons or on the specific form of 

services offered (Dholakia 2010). Once the coupon expires, the consumer can still 

typically redeem the original dollar value of the coupon without the discount.  
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Since the launch of online deals in 2008, they have experienced strong 

growth, with IBIS reporting that between 2009 and 2014, revenues have grown at an 

annual rate of 147.1%, reaching $3.4 billion in 2014 (2015). Groupon and 

LivingSocial are market leaders, totally accounting for roughly 60% of the deals 

market. In recent years alone, the number of global active deals offered daily has 

grown from 180,000 in the first quarter of 2014 to 425,000 in the first quarter of 2015 

(IBIS 2015). Because of the continued popularity of daily deals with merchants, 

practitioner news outlets have argued that daily deals are a new and integral part of 

the online and mobile marketing mix for merchants (Tuten and Ashley 2011, 

Integreon 2012, Krasnova et al. 2013, Bharadwaj et al. 2013).  However, and despite 

their popularity with customers as well, online deals have remained a contentious 

subject in practice (Agarwal 2013, Cohan 2012).  

Within the academic literature, a small but growing body of work in 

marketing has focused on the extent to which deals affect firm performance. 

Specifically, scholars have provided insight into how offering a daily deal affects firm 

revenues (Dholakia 2010, Dholakia 2011a, Edelman et al. 2011, Dholakia and Kimes 

2011, Dholakia 2012, Reiner and Skiera 2013, Shivendu and Zhang 2013). In 

addition to revenue, Dholakia (2010, 2011a, 2011b) surveyed merchants to 

investigate the profitability of daily deals. The results, largely consistent with the 

practitioner press, indicate that only 50% of merchants offering deals actually made 

any surplus. One of the primary reasons for this is based on the observation that most 

consumers often do not spend more than the deal value (Dholakia 2011b). However, 

on the positive side, daily deals have been found to provide many of the immediate 
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benefits of price promotions observed in the literature (Guadagni and Little 1983, 

Neslin, Henderson, and Quelch 1985, Blattberg and Neslin 1990) by increasing foot 

traffic, revenues, and visibility for merchants, at a lower customer acquisition cost 

(Dholakia 2011a, 2012c). Beyond revenues and margins, how do daily deals 

influence the focal merchants’ electronic word of mouth?  We address this specific 

question next. 

Recent work has attempted to quantify the extent to which daily deals may 

influence a merchant’s brand attitudes and eWOM. In a survey of 931 U.S. 

consumers, Kimes and Dholakia (2011) examine consumer responses to daily deals 

and find there is no loss in brand equity for merchants offering deals. In fact, the 

authors comment: “To the contrary, respondents offered favorable comments about 

the restaurant and their dining experience” (p. 18). These authors also find that 

consumers are aware of the deals offered by multiple daily deal sites, with 50% or 

more of consumers reporting awareness of deals from Groupon, restaurant.com, 

LivingSocial, BuyWithMe, and TravelZoo.  Alternatively, Byers et al. (2012a, 2012b) 

focus on a single platform, Groupon, and report that offering a Groupon leads to an 

average 0.2 star rating decrease in Yelp10. Their study follows approximately 5,000 

Groupons from many categories in the U.S, which were then linked to the online 

reviews for that merchant on Yelp. While Kimes and Dholakia (2011), by virtue of 

their design, do not account for the heterogeneity among merchants who offer deals, 

Byers et al. (2012a) include all retailers offering Groupon deals without accounting 

again for the heterogeneity of deal merchants. We argue that there is likely a middle 

                                                
 
10 The authors refer to this as the “Groupon effect” in their analysis (Byers et al. 2012a). 
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ground here driven by heterogeneity of the merchants offering deals, and their 

competitive environments. Accounting for this heterogeneity will deliver, arguably, a 

more nuanced view of the effect of daily deals, suggesting that the negative or null 

effect from deals may not extend to all merchants. We consider the influence of these 

sources of heterogeneity below.  

As a first step, we note that daily deals represent a new online mixture of price 

promotions and opt-in advertisements (Edelman et al. 2011). Daily deal subscribers 

typically need to sign up with the platform (such as Groupon or LivingSocial) to 

access the deals and receive email messages with the equivalent of advertising copy 

for the merchants, which typically contain positively framed images and 

endorsements; these are akin to advertisements for the focal merchant (Shivendu and 

Zhang 2013). Additionally, daily deals represent price promotions, since they offer 

deep price discounts. We use these two aspects of daily deals to theoretically motivate 

the moderating effects of heterogeneity and competition in their effects on eWOM. 

Prior work has established that consumer expectations and attitudes are 

shaped by pricing strategies, more specifically, the promotional activities used by 

merchants (Mazumdar et al. 2005, Lynch and Ariely 2000, Yoon et al. 2014, Lee and 

Tsai 2015). Research has established that higher prices are associated with higher 

quality evaluations and more positive eWOM, all else being equal (McGregor et al. 

2007, Li and Hitt 2010). We are, however, interested in how the marginal effect of 

the daily deal on the resulting eWOM may change depending on the merchant’s 

characteristics, or more specifically, its price segment. Research studying the effects 

of price promotions on consumer attitudes and brand evaluations shows that the effect 
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is driven largely by the discounted dollar amount (Blattberg et al. 1995). Winer 

(1986) first proposed that the larger the difference between the initial price and the 

purchase price, the greater the resulting consumer utility and the more positive the 

consumer attitude towards the merchant or product. He argued that this effect is 

predicated on the discounted dollar value rather than the discount rate per se; this 

effect has been empirically observed in various other product contexts as well (Della 

Bitta et al 1981, Grewal et al. 1998, Wu et al. 2004, Biswas et al. 2013).  

Following this logic in the daily deals context, we argue that deep discounts 

offered by merchants in the low-price segment are likely to be viewed more 

negatively, given that the resulting dollar value of the discount is small. Additionally, 

if lower prices are already associated with lower quality, further price discounts in 

this context are likely to be viewed even more negatively by consumers. 

Alternatively, deals offered by high-price segment merchants start from an 

expectation of high quality (Li and Hitt 2010) and also offer consumers greater 

discounts in absolute value. Thus, merchants in the high-price segment may not 

experience the same negative effect on their eWOM as merchants operating in a 

lower-price segment. In fact, strong associations made between price and qualities, 

which benefit high-price merchants, may even lead to a positive response on eWOM 

for such merchants. These arguments suggest that the marginal effects of daily deals 

on ex post eWOM are likely to be significantly negative for low-price merchants 

(consistent with Byers et al. (2012a)) but not so for merchants in the premium 

segment.  
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To the extent that daily deals share features of opt-in advertisements, the 

persuasion knowledge model proposed by Friestad and Wright (1994) suggests that 

under certain conditions, the motivations behind such promotional efforts are 

perceived as appropriate and reflect confidence in the product or service advertised. 

However, in other contexts, promotional or advertising efforts may smack of 

desperation and produce negative brand evaluations (Kirmani 1997, Chen and 

Kirmani 2015). Extending this argument to the daily deals context suggests that 

merchants providing daily deals under conditions that reflect confidence may not 

receive negative eWOM but may actually benefit from such daily deals. One such 

contingency in which it is viewed as legitimate to offer price promotions and invest in 

advertising effort is when the business is new (McDougall and Robinson 1990, Carter 

et al. 1994); anecdotal evidence also suggests that new businesses may find it 

advantageous to offer daily deals to recruit new customers (BizJournals 2013). In 

contrast, established merchants offering deals may lead to perceptions of weakness 

and desperation. Whether the merchant is truly in such a state may not matter; if 

offering a daily deal leads to some subset of consumers to draw such conclusions, 

brand perceptions are likely to suffer, leading to a higher probability of negative 

eWOM ex post. We thus expect that the age of the merchant to influence the extent to 

which daily deals affect eWOM, leading to a testable proposition.  

Beyond sources of merchant heterogeneity, merchants do not operate in a 

vacuum, but within a competitive landscape that typically includes other merchants 

and their competitive actions, which cumulatively determines the options available to 

consumers. This competitive environment, in turn, contributes to setting reference 
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prices for the merchant segment (Mazumdar et al. 2005, Bell and Lattin 2000). 

Moreover, it is well accepted that price changes affect the demand for other products, 

through cross-price elasticity (Sethuraman et al. 1999). Frequent price promotions on 

a segment within a geographical area can also lead to lower reference prices for that 

category, which affects price perceptions of all merchants in that category (Mayew 

and Winer 1992). Thus, if nearby competitors offer frequent daily deals, the reference 

price for similar products or services should shift downward along with consumer 

quality expectations, and the resulting eWOM, on average (Li and Hitt 2010).  

However, it is likely that those merchants that offer deals, as a response of high deal 

competition, will not experience a negative deal effect as they are in fact matching 

prices with its competitors (Raghubir and Corfman 1995, 1999).  The eWOM 

literature has also documented how the competitive environment affects eWOM 

(Forman et al. 2009, Li et al. 2011, Jabr and Zheng 2013, Kwark et al. 2014).  This 

reasoning brings into sharp focus the possibility that nearby deals might also 

negatively affect merchants who never offered deals, leading to a perverse and 

unexplored effect of daily deals within a competitive market. We thus test for the 

effect on a focal merchant’s eWOM when its competitors offer daily deals but it does 

not.  

Beyond these theoretical mechanisms, and from an operations management 

perspective, some firms are better equipped to react to the demand fluctuations 

created by online deals. Previous work in the price-promotions and marketing 

literatures has shown that promotions can have a sudden and unpredictable effect on 

demand (Blattberg et al. 1995, Pauwels et al. 2002, Alvarez and Vázquez Casielles 
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2005). Moreover, it is well established that resource flexibility, and in particular 

workforce flexibility, are important firm attributes to handle demand changes (Paul 

and Jonathan 1991). For example, Ebben and Johnson (2005) show that flexible firms 

have very specific characteristics and that not all firms are able to achieve operational 

flexibility. Thus, it is plausible that certain merchants will be able to successfully 

accommodate the increased demand that results from online deals, while others will 

not. The practitioner press contains many such anecdotes, with a business owner 

recently stating: “We had thousands of orders pouring in that really we hadn't 

expected to have” (BBC 2011, 2012).  However, these effects should only be 

observable after the deal is redeemed and not necessarily before consumption. This 

highlights that there may be pre-consumption as well as post-consumption effects of 

daily deals on eWOM. While these differences are not directly observable using 

archival data, we address this question in more detail later in the paper.  

In summary, there is theoretical and anecdotal support for the notion that the 

effects of daily deals on eWOM are likely to be moderated by sources of merchant 

heterogeneity (price segment and merchant age) as well as competition. Given the 

multiple possible mechanisms for the effects of daily deals, rather than provide 

formal hypotheses, we allow the analysis to provide us with guidance. We next detail 

the data and methodology used to test for these effects. 
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Research Methodology 

Data 

We focus on online reviews and online deals for restaurants in a large U.S. 

metropolitan area, Washington, D.C.  Prior work in online reviews (Mangold et al. 

1999, Gu et al. 2012) suggests that restaurants provide a suitable context for studying 

eWOM, given the high-involvement nature of food. Existing research studying daily 

deals has also focused on services, particularly restaurants, to understand their appeal 

within this sector (Farahat et al. 2012). The online reviews for the restaurants in our 

sample were collected from Yelp.com, which has published over 14 million online 

reviews for restaurants, receives over 135 million monthly visitors, and is the market 

leader in North American online reviews (Yelp 2015). For the purposes of this study, 

we collected data on 2,012 restaurants operating in Washington, D.C., roughly 

comparable in volume to the 2,035 operating restaurants reported by the National 

Restaurant Association in D.C. for 2012, the focal year of our data collection11.  Each 

Yelp restaurant listing contains general information on restaurant characteristics, such 

as location, cuisine, price segment and ambience, and online review information, such 

as the average rating and number of reviews. Furthermore, we collected each 

individual review published for each restaurant, which resulted in 143,745 reviews 

between 2004 (Yelp’s initial release) and 2012. Each review contains a numerical 

rating, text comments, and timestamp. 

                                                
 
11 In order to reduce unobservable heterogeneity in our sample, we do not include restaurants in 
Northern Virginia or Maryland in our sample. Restaurants outside Washington, D.C., operate under 
different licensing, tax, and regulatory regimes, adding further complexities to our model that are 
outside the purview of this paper. 
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We match this dataset with data provided by Yipit.com, a service provider 

aggregating deal data across multiple daily deal platforms, for a 13-month period 

between December 2011 and December 2012.  We chose Yipit.com because it 

aggregates transaction data from over 97% of daily deal sites (Yipit.com 2015). 

Unlike prior research focused on measuring the effect a single daily deals vendor (e.g. 

Byers et al. 2012a), we observe deal offers from 31 vendors, including LivingSocial, 

Groupon, Google Offers, Yelp Deals, and other smaller vendors. In total we observe 

2,425 deals corresponding to 935 restaurants in Washington, D.C.  Each deal listing 

contains information about the merchant, such as phone number, name and 

geographical location; deal characteristics, such as price, discount and duration; and 

deal performance metrics, such as quantity sold and revenues generated from the deal. 

However, this dataset does not provide information on deal redemption.  Figure 3.1 

displays a typical daily deals timeline in our dataset, where the deal is sold for two 

weeks and can be redeemed for approximately 12 weeks after the sale period.  

These two data sources—Yelp and Yipit—form the core of our empirical data 

collection strategy.  To aggregate these into a single panel data set, we first 

summarize the review and deal data for each restaurant into two-week periods. Thus, 

our unit of analysis is restaurant-period12. This results in an unbalanced panel data set, 

since not all restaurants have reviews in every period. As our primary interest is 

modeling the deal-eWOM relationship, we discard any periods beginning before the 

start date of our deals data set.  Thus, our panel contains aggregated information for 

28 two-week time periods covering 13 months (from December 1, 2011, to December 
                                                
 
12 In robustness tests, we also perform our analyses with three-week and four-week periods, with 
consistent results. 
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31, 2012).  After aggregating and summarizing the dataset into two-week periods, we 

have 19,691 restaurant-period observations in the unbalanced panel. Figure 3.2 

displays the mean rating of reviews published in Yelp 100 days before and after a 

daily deal is initially offered for those restaurants that offer deals. Consistent with the 

results of Byers et al. (2012a), we observe a discontinuity in Yelp ratings before and 

after offering a deal in our dataset. 

Of the initial 2,012 restaurants identified on Yelp, 1,390 had Yelp reviews 

published during this time period. Of these, 922 offered at least one deal during this 

time period, while the remaining restaurants did not. To confirm that the latter is an 

appropriate control group, we tracked the text of the reviews available for these 

restaurants back to 2004 (the earliest available dates on Yelp) for keywords indicating 

possible deals, such as deal, Groupon, online deal, and coupon,13 which is consistent 

with the approach used by Byers et al. (2012b). We found that fewer than 10% of 

these restaurants had one or more deal keywords from 2004 to 2012, and none had 

deal keywords during our study period or the preceding six months. This suggests that 

most of the restaurants in this group rarely or never offer deals, thereby forming an 

ideal “control” group. Conversely, for restaurants that do offer deals, we find deal 

keywords in 98% of the reviews during the corresponding deal periods.   

Our dependent variable of interest, 𝑅𝑎𝑡𝑖𝑛𝑔+,, is the average numerical rating 

of the reviews for restaurant 𝑖 published in time period 𝑡.  The primary independent 

variable of interest is 𝐷𝑒𝑎𝑙𝑠+,, which is equal to 1 if restaurant 𝑖 is engaging in one or 

more online deals during time period 𝑡 and 0 otherwise. A deal is considered offered 

                                                
 
13 A full set of keywords used to search for daily deals is available upon request from the authors.  
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during time period 𝑡 if that period overlaps with the deal sales period. We model 

contemporaneous effects on eWOM because brand evaluations are likely formed at 

the point of deal offers. Additionally, Yipit reports that over 40% of the deals bought 

are redeemed in the first two weeks; beyond this two-week period, additional 

confounding may influence eWOM, making identification harder.  

Since we are interested in evaluating the deal effect contingent on restaurant 

heterogeneity and competition, we define these variables as follows. Sources of 

restaurant heterogeneity, such as price segment and restaurant age, are collected from 

the Yelp restaurant listing. Deal intensity within the competitive environment is 

captured by 𝐷𝑒𝑎𝑙𝑠𝐼𝑛𝑍𝑖𝑝+,, equal to the number of deals being offered by competitors 

of restaurant 𝑖 during time period 𝑡, where a competitor is defined as any other 

restaurant in the same geographical area that has the same cuisine type and price 

segment.  Finally, we control for all other observable characteristics of the restaurant 

in Yelp, such as location, cuisine, ambience, and noise level. A full description of the 

variables used in our models can be found in Table 3.1.  Summary statistics and a 

correlation table for the resulting panel data set can be seen in Table 3.2 and 3.3, 

respectively. We now describe our econometric model. 

Empirical Model 

We model the effect of deals offered by a merchant and its nearby competitors 

on the ratings of that merchant over time, accounting for sources of heterogeneity and 

competition. We employ a hierarchical model to capture these effects on the 

merchant’s eWOM as follows.  First, to capture heterogeneity of longitudinal 
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dynamics across restaurants, we allow the effect of our variables of interest to vary 

across restaurant. As such, the first-level model in the hierarchy is: 

𝑅𝑎𝑡𝑖𝑛𝑔+, = 𝑏+� + 𝛽B + 𝛽?+𝐷𝑒𝑎𝑙+, + 𝛽y+𝐷𝑒𝑎𝑙𝑠𝐼𝑛𝑍𝑖𝑝+, + 𝛽�𝑅𝑒𝑠𝑡𝐼𝑛𝑍𝑖𝑝+ + 𝛽�𝐵𝑎𝑠𝑒𝑅𝑎𝑡𝑖𝑛𝑔+

+ 𝛽�𝐵𝑎𝑠𝑒𝑁𝑢𝑚𝑅𝑒𝑣𝑖𝑒𝑤𝑠+ + 𝜖+, 

where 𝑖 indexes restaurants and 𝑡 indexes time periods. Second, we argue that 

deal and competition effects might systematically vary based on restaurant 

characteristics. Hence, in the second-level model in our hierarchy, we regress each 

subject-level coefficient in the first level on all the observable characteristics of the 

restaurant captured in Yelp.  Thus the second-level model is: 

𝛽h+ = 𝛾B + 	𝛾h?𝑃𝑟𝑖𝑐𝑒+ + 𝛾hy𝐴𝑔𝑒+ + 𝛾h�
� 𝐿𝑜𝑐+

�
?y

��?

+ 𝛾h�
� 𝐶𝑢𝑖𝑠𝑖𝑛𝑒+

�
?�

��?

+ 𝛾h�
� 𝐶ℎ𝑎𝑟+

�
?�

��?

+ 𝜖h+, 

where 𝑗 ∈ 1, 2 	indexes the predictors in the first level (i.e. 𝐷𝑒𝑎𝑙+,, 𝐷𝑒𝑎𝑙𝑠𝐼𝑛𝑍𝑖𝑝+,), 𝑝 

indexes locations (zipcodes), 𝑞 indexes cuisine types, and 𝑟 indexes other restaurant 

characteristics (e.g. ambience, noise level, parking options).  𝐿𝑜𝑐+
� ,	𝐶𝑢𝑖𝑠𝑖𝑛𝑒+

�  and 

𝐶ℎ𝑎𝑟+
�  are binary variables. 

We model this specification using a Hierarchical Bayes model (Rossi and 

Allenby 2003, Gelman et al. 2014) to account for the observable and unobservable 

heterogeneity of the merchants.  Hierarchical Bayes (HB) models have been highly 

popular as a tool to model multi-faceted, non-linear phenomena (Rossi et al. 2012). 

Bayesian methods are particularly appropriate to the decisions modeled in marketing 

problems, where there are many units of analysis (e.g. customers or sites), each with 

multiple observations, and there is a desire to account for individual differences 

(Rossi and Allenby 2003) compared to OLS regression models. Furthermore, 
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previous work both in marketing and IS have used Bayesian methods to study the 

dynamics and effects of online reviews (e.g. Zhao et al. 2013, Trusov et al. 2010, 

Moe and Trusov 2011).  For example, both Dellarocas et al. (2007) and Dickinger 

and Mazanec (2008) analyze how online reviews affect firm performance using 

hierarchical models.  Similarly, Zhou and Duan (2010) model the impact of user 

reviews and professional reviews in the context of software downloads using a 

Bayesian framework. Thus, there is a significant body of work in the extant literature 

supporting the use of Bayesian methods to model the effects of online reviews and we 

base our Bayesian analyses on these established methods. 

Model Estimation and Results 

We estimate the specified model using a Bayesian Markov Chain Monte Carlo 

(MCMC) sampling methodology with standard conjugate diffuse priors.  Starting 

values were taken from the maximum likelihood parameter estimates from 

independent linear models estimated on the same dataset.  The MCMC chain was run 

for 10,000 iterations including an initial burn-in period of 1,200 iterations, and the 

chain achieved convergence quickly. The posterior distributions of the coefficients of 

8,800 draws were extracted and analyzed. 

Table 3.4 summarizes the posterior distributions of the model coefficients for 

the proposed HB specification.  Below, we report the posterior mean for each 

coefficient of interest, followed by the 95% highest posterior density (HPD) interval.  

In agreement with previous work (Byers et al. 2012a), we find a negative effect of 

offering an online deal.  In particular, we find that offering a deal results in a decrease 

in mean rating of 0.902 [0.672, 1.436] during the same period.  However, we also 
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find two strong moderators to this effect: price segment and restaurant age.  

Restaurants with a one-level higher price segment experience a reduction of the “deal 

effect” by 0.539 [0.211, 0.567].  Furthermore, younger restaurants are less negatively 

affected by deals, with a one standard deviation reduction in age implying a reduction 

in the deal effect of 0.665 [0.333, 0.748].  Thus, premium restaurants, as well as new 

ventures, experience less negative fallout from the offering of a deal.  

However, how does the presence of daily deals within the competition affect 

the restaurant? The results from the HB model show a significant negative effect of 

deal competition on the average rating for all restaurants.  For every deal offered by a 

proximal competitor, we find a decrease in mean rating of 0.235 [0.152, 0.368] during 

the same period. Surprisingly, this result extends even to those restaurants that rarely 

or never offer deals; the presence of deals in their neighborhood negatively affects 

their ratings as well. This effect is striking, since the offering of a deal by a 

neighboring restaurant should have no correlation with the focal restaurant’s eWOM. 

Yet, the results show evidence of a negative externality imposed by deal intensity in a 

market segment even on non-deal restaurants. Furthermore, we do not observe any 

significant moderation of this “deal competition effect” by characteristics of the focal 

restaurant – this effect is entirely based on the presence of deals in proximal 

competition, defined as restaurants in the same price segment, cuisine and 

geographical area. The fact that most restaurants in the control set have little or no 

deal activity (either through the Yipit dataset or through our keyword analysis of their 

existing reviews) suggests that these effects are based on spillovers from proximal 

“deal” restaurants. While this spillover effect of offering deals has been hinted at in 
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the practitioner press14, here we present empirical evidence of this effect for the first 

time to the best of our knowledge.  

Discussion 

Our empirical analysis of restaurant reviews and online deals demonstrates 

that offering a deal has an overall negative effect on the reviews arriving within the 

two-week period during which the deal was offered, consistent with Byers et al. 

(2012a). However, we add further nuance to this broad result by arguing and 

providing evidence for the influence of moderators of this effect. Specifically, we 

identify the price segment and age of the restaurant as moderators, suggesting 

systematically weaker negative effects for premium and new restaurants.  Most 

notably, we also find evidence for a deal competition effect. That is, all merchants 

(even those who never offer deals) are negatively affected by nearby competing 

merchants offering deals, showing that the effects of daily deals are not limited to 

participating merchants but also create spillover effects that impact other merchants.   

These conclusions are based on a large dataset and an unconstrained modeling 

framework that allows coefficient estimates to vary by merchant and controls for a 

range of factors that may affect the rating of the restaurant.  However, there may be a 

possibility that our findings are somewhat influenced by unobserved variables, 

selection issues, and/or reverse causality.  Reverse causality may be at play if 

merchants exhibiting poor performance (beyond what we observe in their online 

reviews) due to some unobservable factors, seek to influence their short-term online 

ratings by offering a deal (Farahat et al. 2012). In the presence of such an omitted 

                                                
 
14 http://www.cnbc.com/id/49092709 
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variable, our estimates of the deal effect would be biased.  However, we do not 

believe this to be likely here, since online deals in large cities typically go live several 

months after the terms of the deal are finalized (Groupon 2015b, LivingSocial 2015, 

GrouponWorks 2014, Zabranova 2012). In other words, the gap in time between the 

restaurant opting for a deal and the eventual offering of the deal is often several 

months, which is significantly longer than the two-week periods (or even a four-week 

periods, which provided similar results in robustness tests) we model. Therefore, the 

effects of reverse causality, in terms of previously unobserved lower ratings driving 

the decision to offer a daily deal, are unlikely here given the design of the analysis.   

One limitation of the negative “deal effect” identified by our empirical model 

is that we are unable to distinguish between negative eWOM due to a decrease in 

performance of the merchant during the deal period versus negative eWOM arising 

primarily from reduced quality expectations from a restaurant that is observed to offer 

a daily deal. That is, the negative response could be due to the impression that the 

focal restaurant offering a deal is “in distress”, thereby leading to lower reviews even 

amongst existing customers or those without coupons. Effectively, it is not clear if the 

actual consumption and redemption of a deal is needed for lowered brand evaluations 

and online ratings, or if reviewers respond to the fact that a restaurant is offering a 

daily deal and hence reduce their quality expectations.  

To address these issues, we complement our econometric analyses with three 

lab experiments, specifically designed to tease out these confounding effects and 

provide cleaner identification. In the first two experiments, we test for the effect of 

offering an online deal on consumer quality expectations without the possibility of 
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actual deal redemption to test for the moderating influence of price segment 

(Experiment 1) and restaurant age (Experiment 2).  We follow these up with Lab 

Experiment 3, in which we test for the deal competition effect. We describe these 

experiments in detail next. 

Lab Experiments: Testing the Pre-Consumption Effects of Daily 

Deals  

Experiment 1: Deals and Merchant Price 

Procedure, Data and Measures 

Experiment 1 tests whether consumers’ online evaluations of a merchant’s 

services are affected by online deals and whether the price segment of the merchant 

moderates this effect. Evidence of this effect was observed in the Bayesian analyses 

reported earlier. For the purposes of the experiment, 400 U.S. respondents (191 

women) between the ages of 18 and 63 (Meanage = 35) from Amazon’s Mechanical 

Turk (MTurk) were recruited for pay ($0.35) in this study.  This pool of participants 

has been shown to be reliable for experimental research (Goodman, Cryder, and 

Cheema 2013), to represent the broader population (Buhrmester, Kwang, and Gosling 

2011), and to generate high quality results (Ipeirotis et al. 2010). Further, we selected 

only workers with a Hit Approval Rate (HIT), or the rate of completed jobs that are 

approved by a worker, of 95% or above. Respondents were randomly assigned to one 

of four 2 (deal offered: yes vs. no) x 2 (price segment: high vs. low) between-subjects 

conditions. 
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Participants were first asked to review information about a restaurant and then 

assess the quality of the restaurant. We presented the aggregate information for the 

restaurant as displayed in Yelp. To avoid providing any biasing cues, we withheld 

any review text in the description of the restaurant. In all four (deal X price) 

conditions, the restaurant was named “Italian Kitchen” and given a fictional address 

to control for possible familiarity with an actual restaurant.  We were also careful to 

use the user interface of Yelp.com by using the exact same fonts and colors (shown in 

Figure 3.3). The stimuli were developed by selecting a restaurant from our Yelp data 

set with the most popular cuisine (Italian), an average number of reviews (65), and an 

average rating (4.0). Deal offered was manipulated by showing that the restaurant was 

offering a 50% off discount. This offer was not presented in the no-deal condition. 

Further, to create the high and low price conditions, we set the price segment of the 

restaurant to low ($) and high ($$$$). 

Brand evaluation was measured as a composite of purchase intention and 

perceived quality (r=0.87).  We adapted purchase intention from Jamieson and Bass 

(1989): “If you were thinking about going to an Italian restaurant, how likely would 

you be to visit this restaurant?” (1 = “very unlikely” to 7 = “very likely”).  Measures 

for perceived quality were adapted from Kirmani and Wright (1989): “Given the 

information provided about this restaurant, please rate the likely overall quality of this 

restaurant” (1 = ”very low" to 7 = “very high”). Finally, as a manipulation checks of 

pricing we asked respondents to rate the restaurant along two dimensions: price 

expectations (1 = “low-priced” to 7 = “high-priced”) and cost (1 = “cheap” to 7 = 
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“expensive”). We expect both the deal and price manipulations to affect these 

measures in this experiment.  

Results and Discussion 

The manipulation checks confirmed that participants in the no-deal condition 

(Mean = 4.56) find the restaurant higher priced than participants in the deal condition 

(Mean = 2.67; F(1, 396) = 4.69, p<0.05). Likewise, participants in the high price-

segment condition (Mean = 6.18) find the restaurants higher priced than participants 

in the low price-segment condition (Mean = 1.79; F(1, 396) = 4.2, p<0.05). 

Moreover, we find similar results with the cost manipulation check. 

More importantly, and following the results of HB model where price acts as a 

moderator of the deal effect on online ratings, we proceed to test for a significant deal 

X price interaction using ANOVA. We find a significant deal X price segment 

interaction effect (F(1,396) = 6.31, p <0.01; see Figure 3.4). A first set of planned 

contrasts show that for non-deal restaurants, a higher price segment had no significant 

effect on brand evaluation (Meanno deals-low = 5.14 vs. Meanno deals-high = 5.28; F(1,396) 

= 2.12, p=0.33). For deal-offering restaurants, however, having a higher price 

segment significantly increased brand evaluations (Meandeal-low = 3.94 vs. Meandeal-high 

= 5.6; F(1,396) = 3.59, p <0.05). A different set of planned contrasts show that for 

restaurants associated with a lower price segment, there is a significant decrease in 

brand evaluation when a deal is offered (Meanlow-non deal = 5.14 vs. Meanlow-deal = 3.94; 

F(1,396) = 4.11, p<0.05). However, this effect becomes marginally significant and 

positive for restaurants with a high price (Meanhigh-non deal = 5.28 vs. Meanhigh-deal = 

5.6; F(1,396) = 3.71, p=0.07). 
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Therefore, in a controlled setting without the possibility of consumption, 

unlike in our empirical model, we observe that the price segment of the restaurant 

moderates the negative effect of the deal on brand evaluations. These results suggest 

that even before visiting the restaurant and experiencing the service provided, there is 

a decrease in brand evaluations for certain merchants who offer online deals. This 

finding adds further evidence that certain merchants are more likely to be perceived 

as potentially “distressed”, regardless of their true financial status  (in our case the 

low-priced merchants, representing the non-premium segment) whereas other 

merchants will be perceived as “confident” (in our case the high-priced or premium 

merchants), as first suggested by Kirmani (1990). Beyond the price segment of the 

restaurant, is it possible that daily deals offered by new restaurants are viewed less 

negatively? We explore this contrast in the next experiment. 

Experiment 2: Deals and Merchant Age 

Procedure, Data and Measures 

Experiment 2 tests whether consumers’ brand evaluations are affected by the 

offering of a daily deal and whether the newness (age) of the restaurant moderates 

this effect. 398 respondents (175 women; ages 18-72, Meanage = 38) from MTurk 

participated for pay ($0.35) in this study.  Respondents were randomly assigned to 

one of four 2 (deal offered: yes vs. no) X 2 (new restaurant: yes vs. no) between 

subjects conditions.  The procedure and stimuli were identical to Experiment 1, 

except that for the new condition, we added a banner showing that the restaurant 

opened recently using existing Yelp’s user interface, as seen in Figure 3.3.  As in the 

previous study, participants were first asked to review the information in the 
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simulated webpage for the restaurant and then assess the quality of the restaurant. We 

again performed manipulation checks on the pricing and cost of the restaurant. As in 

the first study, we measure brand evaluation, which is a composite of purchase 

intention and perceived quality (r = 0.88). 

Results and Discussion 

The manipulation checks confirmed that participants in the no-deal condition 

(Mean = 4.50) find the restaurant higher priced than participants in the deal condition 

(Mean = 2.56; F(1, 394) = 4.61, p<0.05) with similar results with the cost 

manipulation check. More importantly, and reflecting the moderating role of age on 

the deals effect in our HB model, we find a significant deal X age interaction (F(1, 

394) = 6.44, p <0.02; see Figure 3.5). A first set of planned contrasts shows that for 

non-deal restaurants, being new had no significant effect on brand evaluation (Meanno 

deal-established = 5.84 vs. Meanno deal-new = 5.17; F(1, 398) = 1.15, p=0.28). For deal-

offering restaurants, however, being new significantly increased brand evaluations 

(Meandeal-established = 4.03 vs. Meandeal-new = 6.13; F(1,394) = 4.59, p <0.05). A 

different set of planned contrasts show that for already established restaurants, there 

is a significant decrease in behavioral intentions when a deal is offered (Meanestablished-

no deal = 5.84 vs. Meanestablished-deal = 4.03; F(1,394) = 5.32, p<0.05). However, this 

effect becomes marginally significant and positive for newly established restaurants 

(Meannew-no-deal = 5.17 vs. Meannew-deal = 6.13; F(1,394) = 3.40, p=0.06). 

 Therefore we observe that the newness of the restaurant does indeed 

moderate the negative effect of the deal in a controlled experimental setting, in 

agreement with our empirical results. These results also add credence to the notion 
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that brand evaluations (perceived quality and purchase intentions) of established 

restaurants decrease even before consumption simply by offering an online deal. By 

contrast, new restaurants are expected to offer daily deals as a way to incentivize new 

consumers to take a chance on the merchant (Dholakia 2012); thus, offering a deal 

does not reduce the perceptions of quality in such cases. We test for the effect of deal 

competition next. 

Experiment 3: Deals and Deal Competition 

Procedure, Data and Measures 

Experiment 3 tests whether consumers’ brand evaluations are affected if the 

focal merchant offers an online deal and if nearby competitors also offer online deals. 

404 respondents (187 women; ages 21-70, Meanage = 41) from MTurk participated for 

pay ($0.35) in this study.  Respondents were randomly assigned to one of four 2 (deal 

offered: yes vs. no) X 2 (deal competition: high vs. none) between subjects 

conditions.  The procedure and stimuli were identical to study 1 and 2, except that for 

the deal competition condition, we added a measure of the degree of deal competition 

for similar restaurants nearby. More specifically, a restaurant with high nearby 

competition a graphic that showed, consistent with Yelp’s user interface: “There are 

20 deals for similar restaurants in this area” as seen in Figure 3.3.  As before, 

participants were asked to first read information about the restaurant and then assess 

the quality of the restaurant followed by a manipulation check on the pricing and cost 

of the restaurant.  The measure are the same as in Experiment 1 and 2, brand 

evaluations, which is a composite of purchase intention and perceived quality (r = 

0.91). 
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Results and Discussion 

The manipulation checks confirmed that participants in the no-deal condition 

(Mean = 4.46) find the restaurant higher priced than participants in the deal condition 

(Mean = 2.11; F(1, 400) = 4.18, p<0.05) with similar results with the cost 

manipulation check. More importantly, and reflecting the role of competition in our 

HB model, we find a significant deal x deal competition interaction (F(1,400) = 6.74, 

p <0.01; see Figure 3.6). A first set of planned contrast show that for non-deal 

restaurants, having a high deal competition had a significant negative effect on brand 

evaluation (Meanno deal-no deal competition = 5.78 Vs. Meanno deal-deal competition = 4.19; F(1, 

400) = 5.92, p<0.02). For deal offering restaurants, however, high deal competition 

marginally increased brand evaluations (Meandeal-no deal competition = 3.78 vs. Meandeal-deal 

competition = 4.33; F(1,400) = 4.59, p <0.07). A different set of planned contrasts show 

that for restaurants with no nearby deal competition, there is a significant decrease in 

behavioral intentions when a deal is offered (Meanno deal competition-no deal = 5.78 vs. 

Meanno deal competition-deal = 3.78; F(1,400) = 4.92, p<0.05). However, this effect is not 

significant for restaurants with high nearby deal competition (Meandeal competition-no deal = 

4.19 vs. Meandeal competition-deal = 4.33; F(1,400) = 1.46, p=0.22). 

Therefore we observe evidence of a deal competition effect, reflecting our 

empirical model results. That is, even merchants who do not offer deals are affected 

by nearby competitors offering online deals.  In this study, however, we go beyond 

this finding and show that for merchants without nearby deal competition, offering a 

deal would lead to a significant decrease in brand evaluations. However, for 

merchants with high deal competition, we do not find evidence of any change in 
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brand evaluations as a result of offering a deal. This is in line with previous work 

suggesting that when the causes of promotions are attributable to external factors (i.e. 

high deal competition), there is no negative effect on the brand from offering a 

promotion (Raghubir and Corfman 1995, 1999). Our results show that in 

environments with high deal intensity, the negative effects associated with offering a 

deal are attenuated, as offering a deal here is viewed as standard practice with little or 

no penalty imposed on the merchant. In summary, we observe that the results from 

the econometric model using archival data, regarding the contingent effects of deals 

on eWOM, were fully supported by the three lab experiments presented here.  

Discussion and Managerial Implications 

The revenues from online deals are expected to climb to $5.5 billion in 2016 

according to industry analysts (BIA Kelsey 2014). However, these figures 

notwithstanding, offering daily deals in the service industry raises several questions 

about their effects on merchants to both practitioners and researchers. One article 

from CNBC proclaims “Groupon isn’t a Good Deal for Businesses”, while another 

one from the same website states, without irony or explanation, “Groupon is Good for 

Business”15. While directly linking daily deals to revenues or sales is challenging, we 

aim to shed light on how online deals and the competitive deal landscape affect 

consumer perceptions. We focus our work on the restaurant sector, where daily deals 

are highly popular, and evaluate the effect of deals on the resulting eWOM, captured 

through Yelp review valence. In a longitudinal analysis of restaurants reviews from 

                                                
 
15 www.cnbc.com/id/49092709, www.cnbc.com/id/49092710  
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Yelp.com and a data set covering the population of online deals offered by the same 

restaurants in a major metropolitan area in the U.S., we find evidence that restaurants’ 

short-term ex post ratings are generally negatively affected by offering a deal in line 

with previous work (Byers et al. 2012a).  

However, while the average effect of a deal is indeed negative, the individual 

effect for a restaurant depends on its characteristics and the extent to which deals are 

common in the competitive environment. Indeed, in specific contingencies, we show 

that the effect of the daily deal on eWOM may actually be positive. Restaurants 

operating in a higher priced segment experience responses to daily deals that appear 

considerably less negative and even positive, suggesting that these restaurants are 

viewed as offering deals from a position of confidence. Similarly, new restaurants are 

not penalized as much for offering daily deals as a way to recruit new customers, 

while established restaurants are more likely to be viewed as distressed when they 

offer deals (Friestad and Wright 1994). Finally, we show that deal intensity in the 

competition has a significant impact on eWOM; if deals appear to be part of the 

marketing mix within the competition, the negative effect on eWOM is muted for the 

focal restaurant. Surprisingly, we also observe that restaurants that do not offer deals 

are also affected by deal intensity in the competitive landscape, providing evidence of 

a clear spillover effect.  

Beyond our econometric results, we also attempted to replicate these findings 

in a controlled setting.  In Lab Studies 1 and 2, we find consistent support for the 

overall average negative effect of daily deals on brand evaluation, as well as a 

significant moderation effect of price segment and age. Indeed, our results reflect 
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Kirmani and Wright’s (1989) assertion that not all advertising and promotions are 

viewed positively. They write: “many people spontaneously assume high advertising 

expense implies managerial confidence and high quality unless […] desperation 

undermine is salient to them.”  Further, we are able to establish that the negative 

effects on eWOM from daily deals are not solely attributable to poor performance of 

the restaurant during redemption, as has been discussed in the press. Indeed, we find 

that even before there is any product or service consumption (as is the case with our 

lab subjects), the restaurant’s brand evaluation suffers. Furthermore, in Experiment 3, 

we replicate our empirical model’s finding that nearby competitors offering online 

deals are also affecting the rating of merchants.  

Taken together, our results present a more complete view of how the recent 

and highly popular phenomenon of online daily deals affects consumer brand 

evaluations, leading to several theoretical contributions to the literature.  First, 

building on early work on daily deals by Kimes and Dholakia (2011) suggesting that 

daily deals do not affect brand equity and Byers et al. (2012a) suggesting that online 

deals decrease online ratings, we provide specific conditions under which online deals 

affect online reviews and brand evaluations.  The nuances in how deals affect 

consumer perceptions are important in being able to assess the true value of such 

programs. Second, our work extends the work of Friestad and Wright (1984) and 

Kirmani and Wright (1989) in understanding how consumers interpret a marketer’s 

efforts, motives, and tactics.  We show that in the current information-rich 

environment from online sources, consumers do form quality attributions based on 

the cues found in online reviews, online deals, and the particular conditions 
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characterizing each merchant. In fact, since consumers are keenly aware of the deep 

discounts found in online deals, they may be using information about the marketing 

campaigns of the merchant over time as indicators of the risks taken by the merchant 

to acquire customers (i.e. customer acquisition cost).  

We also report an intriguing spillover effect from daily deals to proximal 

restaurants that do not offer any deals but see their brand evaluations decrease. These 

results suggest that consumers do not interpret marketing efforts in a vacuum, 

especially deep price discounts of the sort offered by daily deal firms. In fact, by 

examining the promotional actions of nearby competitors, our work suggests that the 

consumers “schemer schema” for interpreting, evaluating, and responding to 

influence tactics from merchants, which was first proposed by Wright (1986), is more 

complex than previously thought of and includes not only the tactics of the focal 

merchant but the tactics used in relation with the competitive environment.  

Moreover, as Bharadwaj et al. (2013) argues, many firms have tried to use social 

media and other marketing tools in isolation. Our work suggests that an effective 

digital business strategy should take into account how online deals affect the social 

media standing of merchants. 

To our knowledge, we are among the first to outline the conditions under 

which market-specific quality determinants, such as the presence of proximal daily 

deals within the competition, affect an individual’s quality attributions. One possible 

explanation for the deal competitions effect is that a higher number of nearby 

competitors offering deals leads to a reduction in reference prices for the restaurant’s 

services.  That is, a drastic reduction in the price of some services might affect quality 
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attributions for all other merchant in that market.  This is important since it suggests 

that online review or electronic word of mouth for firms or merchants are likely to be 

affected by the actions of others, a form of cross-market elasticity that has not been 

addressed in the literature. Finally, we also contribute to the price promotions 

literature by suggesting that there are actually two layers in the effect promotions 

have on brand evaluations –a pre-consumption effect and a post-consumption effect.  

We are among the first to show that such pre-consumption effects are not only 

possible but also actually salient and likely reflect a combined influence of media, 

anecdotal evidence and offline word of mouth.  

Apart from these contributions, there are significant implications from our 

work for practice, especially for merchants and platform owners. While there has 

been significant recent media attention to the failures of daily deals merchants, we 

find conditions under which daily deals can be beneficial in terms of online reputation 

to merchants, which is a key question for both merchants and platform owners. A 

direct implication of our work for merchants offering daily deals or considering them 

is to more fully examine how their customers may perceive their motivations for 

offering such deep discounts and to understand their competitive environment as well. 

Established merchants offering daily deals may consider investing in alternative 

signals of quality or munificence that could help offset the perceptions of distress that 

may be conveyed involuntarily. Alternatively, these merchants could choose lower 

price discounts so as to allow modest demand increases without the commensurate 

negative brand perceptions. Similarly, restaurants operating in markets where deals 

are common should consider the effects of not offering deals; if their online 
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reputations suffer through the spillover effect, there might indeed be value in simply 

offering deals themselves. In either case, our results provide some guidelines for 

when and why merchants may opt to offer daily deals.  

For platform owners, such as Google and LivingSocial our work also raises 

many pertinent issues. First, since consumers appear to be interpreting online deals 

either as a signal of high confidence or desperation, the daily deals platform might 

want to highlight the cues signaling high confidence, through the selection of the 

merchant or the structuring of the promotion itself. Additionally, we believe that deal 

platforms could actually benefit from using and reporting the information available 

on the merchant in online reviews platforms, such as Yelp.com and Foursquare.com. 

For example, if some reviewers mention the words “deals, Groupon, or Living 

Social” in the text and seem to be pleased with the service and deal provided by the 

merchant, then the customers making quality inferences could take this information 

into account. Another interesting perspective raised by our work is the possibility of 

offering deals only for consumers on demand, i.e. offering deals to consumers around 

a particular area and the possibility of buying deals only when consumers are actually 

at the merchant’s place. Using the geographical location from mobile devices, for 

example, might allow daily deal vendors to showcase offers at the right time (i.e. just 

before consumption). Furthermore, our findings in regard to how deal competition 

affect the reviews of focal merchants, highlights the importance for daily deal 

platforms to appropriate select merchants at a given time in a given location to avoid 

potentially driving reference prices down for all merchants in a given segment. Our 

discussions with managers at a leading deal platform firm suggested that the firm was 
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indeed aware of these broader reference price effects and had considered strategically 

targeting selected retailers or merchants so as to avoid these externalities. We believe 

this is also an area where more research is warranted.  

Our study also has some important limitations. In regards to our empirical 

model, we are limited in our ability to generalize our findings since our data is for a 

single major city in the United States. However, we observe the population of online 

deals for over a year, which allows us to account for seasonality effects during the 

year. Further, while we are able identify a deal competition effect in our empirical 

model and confirm this effect in a controlled setting, we cannot rule out or 

specifically test individual mechanisms that might drive a decrease in ratings for focal 

merchants under high deal competition. Future work should address the specific 

mechanisms behind the deal competition effect to understand consumer choice given 

a range of different competitive environments.  This would be a more accurate 

representation of the current state of daily deal vendors and restaurants in many cities 

in the U.S, and is likely to require a series of studies using archival as well as 

experimental methods to truly establish the key causal mechanisms. Finally, there are 

many underlying drivers of restaurant eWOM and daily deals represent only one such 

driver. However, we have focused our attention here only on the marginal effect of 

deals and heterogeneity therein, where we believe we have cleaner identification.  

In summary, we provide the first empirical analyses of the heterogeneity in 

the response to daily deals in merchant eWOM, and show that restaurant 

heterogeneity and competition have a significant role to play in moderating the so-

called “Groupon effect” (Byers et al. 2012a). Our work also provides significant 



 

 
 

93 
 

managerial implications for platform firms like Groupon, as well as merchants who 

are customers of such platform firms. Our work helps to open up the black box of the 

daily deals effect to an extent, using both econometric as well as experimental 

methodologies. However, we believe that daily deals operate across product and 

service categories in many different ways, and much more work is necessary to fully 

understand their implications. While current online marketing and digital business 

strategies have accepted daily deals as a legitimate part of the retailers’ marketing 

mix, their interactions with consumer perceptions of quality as well as interactions 

with other elements of the marketing mix represent many open questions that provide 

many fruitful avenues of future research.  
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Chapter 4  Watch where you eat: Restaurant Hygiene 

Inspections in New York City and Moral Hazard 

 

Introduction 

There is significant public awareness of the importance of the nutritional 

content of food, or “watching what we eat”.  However, another important public 

health issue concerns the hygiene practices of food establishments, or where we eat  

(Jones and Angulo 2006). The CDC estimates that, as a result of foodborne illness, 

one in six Americans gets sick and approximately 3,000 Americans die each year 

(CDC 2016a). Many of these outbreaks are restaurant-related, with approximately 

60% of cases estimated to be a result of food prepared at restaurants (Hedberg et al. 

2006; Gould et al. 2013). Public policy makers have reacted by launching programs 

to inspect and certify the hygiene of restaurants.  The potential benefits of such 

programs are clear and have been empirically shown to decrease foodborne illness 

outbreaks, (Bucholz et al. 2002; Irwin et al. 1989), particularly in cities where the 

hygiene scores are publicized (Jin and Leslie 2009; Jin and Lee 2014). However, 

inspecting restaurants is a costly and time-consuming process, and real-time changes 

in hygiene quality are difficult to observe through infrequent inspections. Thus, as 

with any certification scheme with imperfect information (Shapiro 1986), there is a 

possibility for moral hazard. 

In this study, we provide evidence about moral hazard in restaurant hygiene 

by analyzing the New York City (NYC) restaurant inspection program.  NYC has one 
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of the highest number of restaurants per-capita in the world (Bloomberg 2015), and 

over 55% of lunches and dinners take place in restaurants (Zagat 2015). The NYC 

restaurant inspection program was started in 2010 in an effort to curb the city’s large 

number of food poisoning outbreaks.  The program assigns hygiene scores and 

corresponding grades (A, B or C), which are then displayed on a sticker on the front 

of the restaurant.  Consistent with previous findings in the literature, the program led 

to a 14% decrease in foodborne hospitalizations between 2010 and 2012 (Wong and 

Matis 2013) and observed an increase in the number of “A” grade restaurants from 

27% in 2010 to 41% in 2012 (Farley 2012).  

However, one particular aspect of the NYC inspection program is how it treats 

restaurants that do not achieve an A grade. While restaurants that achieve an A grade 

receive an ‘A’ sticker following inspection, those that do not instead receive a ‘P’ 

(Pending) grade sticker and are scheduled for re-inspection several weeks later.  In 

fact, the majority of restaurants in the program initially receive a P grade (with 

average scores that would yield a C grade) and then receive an A grade after the re-

inspection. The ‘P’ sticker is then replaced with the grade received in the re-

inspection. Clearly, these firms are able to meet high standards of hygiene.  However, 

in future inspection cycles, over 70% of these restaurants display a similar trend, 

again receiving a P grade (with average scores that would again yield a C grade), 

being scheduled for re-inspection, and finally achieving an A grade upon re-

inspection. 

Moral hazard is a framework that can help explain the difference between 

low, largely C-grade initial inspection scores, and high, largely A-grade re-inspection 
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scores. Under moral hazard, firms use the guarantee of a P grade in the initial 

inspection as a type of temporary insurance from the real inspection grade, then make 

quick and significant investments in hygiene quality that yield an A grade upon re-

inspection, when it counts in terms of public perception. Once a firm attains an A 

grade, the next inspection cycle can take several quarters, during which time firms 

lose their incentives to invest in proper hygiene.  At the center of this issue is the fact 

that it is not economically feasible to continuously monitor restaurant hygiene quality. 

NYC, for example, has over 20,000 restaurants, and inspections often take hours and 

require significant costs for the city in terms of organization and deployment and for 

restaurants in terms of lost revenue. NYC and some other cities rely on random 

inspections to choose restaurants for inspections at irregular intervals.  However, 

given the large scope of the NYC restaurant population, the NYC program is often 

criticized by the popular press for being backlogged and behind schedule (NY Times 

2012, NY Daily News 2015). 

But are restaurants with Grade Pending, Grade A, Grade Pending, Grade A 

(PAPA) trajectories inherently different from those with straight As (AA)? Or is their 

difference in scores during initial inspections and re-inspections explained by moral 

hazard? To identify the effects of moral hazard from restaurant heterogeneity, we 

propose a novel methodology to measure hygiene from consumer-generated content 

in social media.  We apply recent advances in machine learning and computer science 

to develop, test, and externally validate a social-media hygiene dictionary to measure 

the hygiene of restaurants continuously.  While inspection results are only measured 

at discrete time points, this provides a continuous measure of “user-reported hygiene” 
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for each restaurant over time.  One of the advantages of this methodology is that 

consumers act as inspectors inadvertently by sharing their content online, which also 

reduces concerns about of endogenous hygiene quality choices.   

To fully identify the effects of moral hazard, we take four different empirical 

strategies. First, we compare the hygiene inspection results of the group of restaurants 

that change their performance depending on the type of inspections with restaurants 

that get consistent scores independent of the type of inspection. We control for a 

number observable characteristics of restaurants (e.g. location, segment, cuisine) and 

inspectors (e.g. experience, previous scores). Second, we use a difference-in-

difference model to study the change in user-reported hygiene following an 

inspection that results in a P grade. With this model, we show that such inspections 

significantly improve hygiene practices as measured through our user-reported 

measure. Moreover, we show a differential effect for different types of 

establishments: for example, lower-priced restaurants display a greater change in 

user-reported hygiene, highlighting the role status may play in moral hazard. Third, 

we compare user-reported hygiene in the months before and after initial inspections 

and re-inspections, and we find that user-reported hygiene is strikingly different for 

restaurants with inconsistent inspections scores versus those with consistent 

inspection scores.  Finally, we conduct two robustness checks.  First, we show that 

user-generated hygiene is unlikely to be influenced by scores by comparing the user-

generated hygiene of restaurants before and after the introduction of the NYC 

inspections program and find no significant differences before and after the program 

in the consumer experiences shared in social media, thereby further allaying concerns 
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of endogeneity. Second, we show that, as expected, users can accurately predict 

hygiene problems that are observable by consumers while unable to predict hygiene 

problems that are unobservable (e.g. problems in the kitchen or paperwork). 

After controlling for restaurant characteristics, economic indicators, and 

inspector characteristics, we estimate that moral hazard explains approximately 30% 

of the A-grade restaurants in the NYC program and appear to showcase high quality 

in hygiene while in fact earn C-level inspection scores. The study also contributes to 

the emerging literature levering machine learning methodologies in economics 

(Athey 2015, Athey and Imbens 2015) by providing a methodology to measure 

hygiene quality based on user-generated content in social media.  Moreover, we build 

on prior work on public health surveillance showing that social media content can 

accurately identify episodes of foodborne illness (Harrison, et al. 2014) and is 

predictive of hygiene inspection scores (Kang et al. 2013) to provide, to the best of 

our knowledge, the first publicly available hygiene dictionary, which can be reused 

by other researchers or municipalities to identify worse offenders.  Finally, imperfect 

information about quality can have a large impact on individual and institutional 

behavior.  As the 2015 Chipotle hygiene scandal suggests (Wall Street Journal 2015), 

even highly successful and reputable firms can fail to follow proper hygiene 

practices, which may lead to serious public health concerns and significant brand 

damage. The current study aims to more fully inform the debate on how to design and 

structure incentives for efficient restaurant hygiene quality investments, leveraging 

the power of big data and social media analytics to tackle the organizational and 

economic barriers to continuous monitoring. 
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Context: The NYC Restaurant Inspection Program 

To operate a food service establishment in New York City, owners must have 

their restaurant inspected and graded by the NYC Department of Health and Mental 

Hygiene (Health Department from now on).  The program was started in 2010 during 

Mayor's Bloomberg administration with three goals: first, give consumers easy access 

to information about the quality of hygiene of restaurants; second, improve 

restaurants’ hygiene practices; and third, reduce the amount of restaurant-related 

foodborne illness. 

Food service establishments are defined as fixed-site food vendors, a category 

that includes restaurants, coffee shops, bars, nightclubs, and most cafeterias (DOHM 

2014).  The program excludes mobile food vending units or temporary food service 

establishments, such as food trucks, correctional facilities, and charitable 

organizations. As per the inspection program, every food service establishment 

receives an unannounced random inspection at least once per year from the Health 

Department. The visit may take place anytime the establishment is open to the public 

or preparing food.  The Health Department inspects approximately over 20,000 food 

service establishments each year to monitor their compliance with food safety 

regulations (DOHM 2012b). 

For each inspection, the inspector follows an established procedure to record 

in a mobile device the observed violations to the health code.  Lower inspection 

scores show better adherence to the Health Code.  Each violation is associated with a 

range of points, which depends on the type of violation and the risk it presents to the 

potential consumer. At the end of the inspection, the points are summed, and the total 
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becomes the final inspection score, which is made publicly available. Scores with 13 

or fewer points, 14 to 27 points, and 28 or more points result in A, B, and C grades, 

respectively. Figure 4.1 displays the grade cards that are displayed at the entrance of 

restaurants, which to comply with the health code must be displayed within 5 feet of 

the entrance. 

One element that makes the NYC program distinct from others in the country 

is their two-step inspection process (DOHM 2014; Ho 2012).  Each restaurant is 

inspected through an “inspection cycle”, which begins with an initial inspection, but 

which can also include a re-inspection to ensure that any identified problems have 

been corrected. If the initial inspection yields an A grade, the establishment receives 

and posts an ‘A’ sticker and is not subject to a re-inspection until the next inspection 

cycle (roughly 12-18 months later).  However, if a restaurant receives a B or C grade, 

the establishment is scheduled for re-inspection approximately within 3 months. 

Meanwhile, the restaurant posts a "grade pending" or ‘P’ sticker.  The score generated 

from the re-inspection, which may be an A, B or C grade, must be posted 

immediately unless the restaurant requests a hearing at the NYC Health 

Administrative Tribunal. Grade cards must be displayed within 5 feet of the entrance 

within clear view of consumers. Figure 4.2 shows an example grade card in a 

restaurant. 

There are several types of violations as specified in the in the NYC health 

code (DOHM 2016). First, violations are classified as “critical” or “general”.  Critical 

violations are ones that contribute the most to foodborne illness and pose a significant 

risk to consumers.  As such, critical violations receive more points than general 
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violations and represent more egregious hygiene risks.  For example, failing to 

maintain certain ingredients at a safe temperature is a critical violation and receives 

between 7 and 28 points, while failing to maintain a toilet facility clean is a general 

violation and receives between 2 and 5 points.  Furthermore, critical violations that 

pose an immediate “public health hazard” receive the highest number of points.  If a 

restaurant does not correct such violations before the end of the inspection, it may 

result in the restaurant being closed.   

The number of points received for a particular violation also depends on the 

condition level, which is the extent and frequency of the violation. Some violations 

have more condition levels and parameters than others. Conditions can vary from 

level 1 to level 5, with higher levels receiving higher numbers of points and 

signifying a more severe violation (DOHM 2011).  For example, the presence of a 

single contaminated food item would constitute a lower condition level (Level 1 and 

7 points) whereas the presence of 4 or more different contaminated food items would 

earn a higher condition level for the violation (Level 5 and 28 points). Figure A-3 in 

the appendix shows a partial list of violations, condition levels and corresponding 

points from DOHM (2010a). 

At the end of the inspection, the inspector reviews the results of the inspection 

with the operator, explains the violation and condition scores and makes suggestions 

to improve food safety. The inspector then issues an inspection report, which contains 

a list of all violations and their corresponding points and severity, and the total 

inspection score (DOHM 2010a).  Depending on the specific violations identified, 

restaurants are required to pay fines, which range from $200 to $2000 and may be 
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higher for repeated violations (DOHM 2012a).  As a further penalty, restaurants are 

automatically closed if they score a grade of C in three consecutive inspection cycles 

(DOHM 2014). 

In general, the program has enjoyed wide acceptance by consumers in NYC.  

A recent survey from Baruch College showed that 89% of New Yorkers of consider 

grades when dining, 91% approve of publicizing grades, and 77% feel more confident 

dining in an A grade restaurant (CUNY 2012). In terms of changing restaurant 

hygiene practices, the number of restaurants that receive an A grade at the end of an 

inspection cycle has increased significantly over time, from less than 30% in 2010, 

the first year of the program, to 42% in 2012 (CUNY 2011), and according to internal 

sources at the Health Department, 80% in 2014 (DOHM 2014). Restaurants have also 

received less severe and critical violations over time. Perhaps more importantly, the 

rates of foodborne illness in NYC have declined significantly; according to the CDC, 

NYC had over 2.1 million foodborne illness episodes in 2009 and approximately 1 

million in 2014 (CDC 2016b).  Moreover, there has been a decrease a 14% decrease 

in the reported cases in NYC of Salmonella, one of the most dangerous foodborne 

bacteria, between 2010 and 2013 (DOHM 2014). 

The Data: Inspections and Online Reviews for New York City 

The data on restaurant inspections is available through the NYC Open Data 

program (NYCOD).  NYC Open Data makes large amounts of public data generated 

by various New York City agencies and other City organizations available for public 

use (NYCOD 2016). The dataset contains information of all NYC restaurant 

inspections since the beginning of the restaurant grading program in 2010 and is 
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updated every month.  It includes restaurant-specific information, such as the 

restaurant’s address, phone, and cuisine; inspection-specific information, such as the 

inspection date, type, and resulting grade; and violation-specific information, such as 

the violation code, type, severity, and points.  A full list of the inspection dataset 

variables is available in Table 4.1. We supplement the information on each restaurant 

with restaurant-specific data from Yelp.com, which is the leading online reviews 

platform for restaurants with over 95 Million reviews in the third quarter of 2015 

(Yelp 2016). Restaurants in the two datasets are matched using the restaurant address 

and phone with over 95% overlap. The data in Yelp contains more detailed restaurant 

characteristics, such as price point, average consumer rating, hours, and parking 

options.  A list of these variables is also available in Table 4.1. 

We find that, as commonly reported, a majority of inspections result in A 

grades, and the proportion of A grades has been increasing year to year. Figure 4.3 

shows the grade distribution for the three years before and after the grading program 

started in 2010 (DOHM 2014). Further, Figure 4.4 illustrates that the distribution of A 

grades displays little geographical variance and illustrates the overall increase in the 

proportion of A grades between 2011 and 2015.  Likewise, Figure 4.5 illustrates a 

similar percentage of restaurants with an A grade in each of the five New York 

boroughs.  For example, in 2015 almost 90% of all restaurants in NYC received A 

grades, ranging from 87.7% in Queens to 90.2% in Manhattan.  Finally, the rate of A 

grades appears to be unrelated to poverty rates available also from NYC Open Data 

for matching boroughs and neighborhoods (2016), as illustrated in Figure A-1 in the 
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Appendix.  The NYC hygiene inspection program therefore appears to be successful 

across the board and not only in a single borough, neighborhood or economic group. 

While many restaurants eventually receive an A grade, these restaurants may 

have received that grade upon initial inspection or upon re-inspection. In fact, 

approximately 55% of restaurants that achieve an A grade actually receive a P Grade 

in their initial inspection, with an initial score that would have resulted in a B or C 

grade. The Health Department reports that there are 4,000 restaurants (or 

approximately 20% of all restaurants in NYC) with a P grade at any given time 

(Health Department 2015); Figure A-2 in the appendix illustrates this large proportion 

of restaurants with a P grade at a recent date in 2015 by plotting the grades over a 

map of NYC.  

Restaurants that receive an A grade in their initial inspection and those that 

receive an A grade upon re-inspection have significantly different initial inspection 

scores (MeanA = 8.75; MeanPA = 21.93; p<0.001 in a two-sided t-test). In fact, the 

median initial inspection score for restaurants that receive an A grade upon re-

inspection is 26.5, which is near the cutoff for a C grade, 28 points.  Yet upon re-

inspection, these restaurants are able to perform at A-grade level and achieve scores 

that are not significantly different from those of restaurants that achieve an A grade in 

their initial inspection (MeanA = 8.75; MeanPA = 9.45; p=0.76 in a two-sided t-test). 

These restaurants are therefore able to achieve high levels of hygiene despite 

committing significant, and often critical, hygiene violations in their initial 

inspections. 
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This behavior appears to be analogous to the one documented in classic 

contract theory, and in particular in signaling theory (Spence 1973; 2002), where 

firms (restaurants) aim to convey credible information, often regarding quality, to 

potential buyers (consumers) and where an impartial third party (Health Department) 

provides the certification or quality signal.  This has also been demonstrated more 

recently in the importance of brands signaling quality in online marketplaces 

(Waldfogel and Chen 2006) and in many other contexts, such as online auctions 

(Lewis 2011; Dimoka, Hong, Pavlou 2012), and investment options (Goldlücke and 

Schmitz 2014).  According to signaling theory, we would then expect firms that earn 

a P grade in their initial inspection, and thus signal a temporarily uncertain level of 

quality, to improve their inspection scores for the re-inspection and signal the highest 

possible hygiene level, an A grade.  

We proceed to test whether the possibility of earning a P grade, which is only 

available for initial inspections, causes an improvement in hygiene as measured by 

inspection scores. Effectively, we want to confirm our expectations from signaling 

theory that the public grading program incentivizes restaurants to improve their 

performance. We employ a longitudinal difference-in-differences (DiD) model, which 

allows the same restaurants to serve as treatment and control groups at different 

points in time. Since we are interested in understanding the effect an event or 

treatment has on a quality outcome for a particular subject over time, utilizing a 

difference-in-differences approach is an appropriate methodology for causal inference 

(Bertrand et al. 2004).  The essential idea of DiD is to examine a group of treated 

united before and after the treatment. In our case, restaurants are considered part of 
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the treatment group when an inspection occurs that has a possibility of a P grade 

(initial inspection) and are considered part of the control group when an inspection 

occurs that does not have the possibility of a P grade (re-inspection).  The control 

group is an important part of the DiD framework since other factors that influence 

hygiene maybe have changed over time (see Lechner 2011 for a thorough review of 

this literature).  

Moreover, a DiD framework is a particularly appropriate framework for our 

context for several reasons: First, the treatment (initial inspection) is randomly 

assigned and all restaurants receive the treatment at some point in the dataset.  This is 

of particular importance to identify a treatment effect in longitudinal models (Athey 

and Imbens 2006). Second, the common trends assumption, which asserts that the 

differences in the expected control outcomes over time are not related to being part of 

the treated or control group in the post-treatment period.  The implication is that if the 

treated group had not been subjected to the treatment, it would have experienced the 

same time trends.  Since all groups in our data belong to a single category of 

merchants, restaurants, and are located in the same geographical region, the common 

trends assumption is highly logical for our context. Third, having a high number of 

time periods (particularly similar time periods) and groups (particularly similar 

restaurants) of control units is important as it has been shown to provide more precise 

estimation of treatment effects, provide more reliable testing of the common trends 

assumption, and more precise inference (Lechner 2011).  

The unit of analysis is restaurant-time period, where the unit of time is 

quarters (we find consistent results using months as the unit of time). The outcome 
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variable is the numerical inspection score resulting, which is available from the 

inspection report. We include two types of controls as suggested by Imbens and 

Wooldridge (2007), group-level and treatment-level.  Group-level controls, which 

have been shown to improve identification in DiD models, include all observable 

restaurant characteristics (e.g. price point, location).  Treatment-level controls, which 

help account for within-group variation and reduce standard errors (Imbens and 

Woolridge 2008), include inspector characteristics and the type of violations. 

Summary statistics for the DiD model are shown in Table 4.2. To check the 

appropriateness of a DiD framework, we test the common trends assumption using 

the leads and lags methods of Author (2003) and Pischke (2014).  We find no 

evidence of a violation of the common trends assumption. 

𝐼𝑁𝑆+, = 𝛽B + 𝛽?𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐺𝑟𝑜𝑢𝑝+ + 𝛽y𝐴𝑓𝑡𝑒𝑟𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡,

+ 𝛽�𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐺𝑟𝑜𝑢𝑝+ ∗ 𝐴𝑓𝑡𝑒𝑟𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, + 𝜸𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒔𝒊𝒕 + 𝜀+, 

Here, 𝐼𝑁𝑆+, is the numerical score resulting from an inspection of restaurant 𝑖 

during time period 𝑡. Table 4.3 displays the initial results from the difference-in-

differences model capturing the effect of an initial inspection with the possibility of a 

grade P on inspection scores. The results show a highly negative and significant (-

6.23; p<0.001) average treatment effect (ATE) of an initial inspection on inspection 

scores, illustrating that the occurrence of initial inspections leads to a significant 

improvement in hygiene performance following the inspection. Moreover, we see a 

differential treatment effect for restaurants in different price segments. Specifically, 

the ATE for high-priced restaurants (3-4 Yelp dollar signs) is less negative, as seen 

by the positive and significant interaction coefficient (1.47; p<0.01), while the ATE 
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for low-priced restaurants (1-2 Yelp dollar signs) is slightly more negative (-0.15; 

p<0.05). This suggests that more high-end establishments are more stable in their 

hygiene performance before and after initial inspections. 

From the DiD model, we conclude that the two-step inspection cycle policy of 

the Health Department indeed seems to be incentivizing restaurants to perform at 

higher levels of hygiene quality in the re-inspection. But how do restaurants perform 

in future inspections cycles? We find that approximately 85% of restaurants that 

achieve an A grade in their initial inspection also achieve an A grade in future initial 

inspections, while approximately 90% of restaurants that receive a P grade before 

achieving an A grade upon re-inspection do so again in future cycles. These two 

groups of A-grade restaurants, which we call “AA” and “PAPA” respectively, 

represent approximately 40% and 50% of all restaurants in NYC, illustrating that the 

majority of restaurants tend to repeat their behavior in inspection cycles over time. 

Figure 4.6 shows the inspection scores for all restaurants in these two groups for the 

first two inspection cycles; Figure 4.7 shows the corresponding average inspection 

scores.  The dramatic difference between re-inspection scores in the first inspection 

cycle and the initial inspection scores in the second inspection cycle for the PAPA 

group suggest that many restaurants only improve their quality when a re-inspection 

is imminent (i.e., an initial inspection has recently occurred). We propose moral 

hazard as an explanation for this behavior.  

More precisely, we argue that consistent with the information asymmetry 

literature (Stiglitz 2009), firms use regulatory frameworks, or government 

interventions, to their advantage, which may yield optimal outcomes for the firm.  In 
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the words of Stiglitz “Even when markets are efficient, they may fail to produce 

socially desirable outcomes. The wealthy and powerful may “exploit” others in an 

“efficient” way” (2009).  In our context, we propose that the behavior of PAPA firms 

is consistent with this argument as they take advantage of the P grade to produce 

suboptimal results in their hygiene quality. At the core of this issue is the high cost of 

perfect information or monitoring found in this literature (Akerlof 1970) and more 

recently the food safety literature (Starbird 2005).  Specifically, because the Health 

Department cannot continuously monitor hygiene, limiting our ability to measure 

restaurants’ hygiene quality before and after inspections and thereby identify moral 

hazard.   We therefore propose tracking hygiene quality through a secondary data 

source in order to identify how the behavior of different groups of restaurants (e.g. 

PAPA and AA) might differ. More exactly, we propose analyzing the text of online 

reviews using recent advances in machine learning to create a continuous measure of 

restaurant hygiene quality. We describe the machine learning procedure and its 

validation in the next section. 

Analysis and Results 

Creating a Social Media Sourced Hygiene Dictionary 

We construct a Social Media Sourced Hygiene Dictionary (SMASH) to 

extract information about restaurant hygiene from the text of online reviews. There is 

a large body of work studying online reviews in management (Dellarocas 2003). 

Typically, these user-generated comments have been linked to sales in the marketing 

and information systems literatures. (Chevalier and Mayzlin 2006, Forman et al. 
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2008). Moreover, online reviews have been studied in many contexts, such as film 

industry (Duan et al. 2008), hotel services (Ye et al. 2009), and the medical care (Gao 

et al. 2012).  However, most of these studies use numerical summaries, such as 

average ratings, in their analysis and largely ignore the text contained in the reviews. 

There is a small but growing literature, such as Decker and Trusov (2010), Archak et 

al. (2011) and Cao et al. (2011) that have attempted to summarize the corpus of text 

contained in the reviews. Closer to our context, and perhaps our closest analog is a 

conference poster from Kang et al. (2013), which uses the text in online reviews to 

predict inspection scores in the inspection program in Seattle. However, to the best of 

our knowledge, we are among the first to provide a scalable methodology for the 

analysis of social media text with the objective of grading hygiene in restaurants. 

The general idea behind SMASH is to use a thesaurus to repeatedly augment 

an initial seed list of hygiene words based on synonym and antonym relationships. 

Specifically, an initial set of hygiene-related words with labeled polarity, or strength 

of relatedness to hygiene, are first defined. This initial list of seed words is augmented 

using synonyms in WordNet (Miller 1995; Feinerer and Hornik 2016), a popular 

online dictionary and thesaurus. After the newly identified words are added to the 

seed list, the process of augmenting the seed words using WordNet is repeated. This 

iterative procedure continues until no more new synonyms can be found. Once the 

growing process has finished, the dictionary is manually curated to remove clear 

errors that result from homonyms.  For example, a word such as “roach” is short for 

“cockroach” (relevant) and also synonymous with “Mexican valium” and other drugs 

(not relevant). Instances like this are manually erased from the dictionary 



 

 
 

111 
 

We note that our overall procedure closely resembles the standard approach in 

the sentiment and opinion mining literature (Tsai et al. 2013; Feldman 2013; Liu 

2015) with one important extension. In sentiment mining, the initial set of seed words 

are often manually specified (see Valitutti 2004; Hu and Liu 2004).  However, 

manually specifying words for the context of hygiene is much less obvious compared 

to tonal sentiment and may be unduly influenced by the researcher’s own vocabulary 

or lack thereof.  Indeed, poorly created seed lists can lead to less accurate dictionaries 

(Tang et al. 2009).  Therefore, to mitigate this potential bias, we generate the initial 

word list through the Naïve Bayes classifier, a machine learning technique that 

identifies the initial word list in a data-driven manner following Liu (2015).  We 

discuss this technique next. 

Building the List of Seed Words 

We first introduce some notation that will help facilitate our discussion of the 

Naïve Bayes classifier (Hand et al. 2001; Tang et al. 2009). Suppose we are given a 

training dataset with 𝑛 documents that are labeled by their hygiene polarity, or 𝑑h, 

which we define as a binary variable denoting whether a review (document) 𝑗 is 

discussing hygiene negatively, where 𝑗 = 1,… , 𝑛. Let 𝑝 denote the total number of 

unique words that appear in all reviews, and let 𝑤h¯ denote the number of times word 

𝑘 occurs in review 𝑗 for 𝑘 = 1,… , 𝑝. 

The Naïve Bayes classifier estimates the probability that each document 

discusses hygiene negatively based on the word occurrences, i.e., 𝑃(𝑑h =

1|𝑤h?, 𝑤hy, … , 𝑤h�). Through an application of Bayes Rule, one could in principle 

directly calculate the probability: 
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𝑃 𝑑h = 1 𝑤h?, 𝑤hy, … , 𝑤h� =
𝑃 𝑤h?, 𝑤hy, … , 𝑤h� 𝑑h = 1 𝑃(𝑑h = 1)

𝑃 𝑤h?, 𝑤hy, … , 𝑤h�
. 

However, in practice calculating the joint distributions requires an unrealistically   

large amount of data (Hand et al. 2001). To overcome this issue, the joint distribution 

is simplified under the assumption of conditional independence: 

𝑃 𝑤h?, 𝑤hy, … , 𝑤h� 𝑑h = 1 = 𝑃 𝑤h¯ 𝑑h = 1
�

¯�?

. 

After applying the law of total probability (Ross 1996),  

𝑃 𝑤h?, 𝑤hy, … , 𝑤h� = 	 𝑃 𝑤h¯ 𝑑h = 1�
¯�? 𝑃(𝑑h = 1) + 𝑃 𝑤h¯ 𝑑h = 0�

¯�? 𝑃(𝑑h = 0), 

the probability that a document discusses hygiene negatively based on the word 

occurrences can be expressed as 

𝑃 𝑑h = 1 𝑤h?, … , 𝑤h� =
𝑃 𝑤h¯ 𝑑h = 1 𝑃(𝑑h = 1)�

¯�?

𝑃 𝑤h¯ 𝑑h = 1�
¯�? 𝑃(𝑑h = 1) + 𝑃 𝑤h¯ 𝑑h = 0�

¯�? 𝑃(𝑑h = 0)
	, 

where 𝑃(𝑤h¯|𝑑h = 1) and 𝑃(𝑤h¯|𝑑h = 0) can easily be calculated by inspecting how 

often the 𝑘th word appears in documents that are labeled as discussing hygiene 

negatively (𝑑h = 1) or those that are not (𝑑h = 0) (Hand et al. 2001). 

Thus, the conditional independence assumption is a fundamental one that 

defines the Naïve Bayes classifier. Even though from a probabilistic perspective 

the conditional independence assumption is not realistic, its performance in many 

different machine learning contexts has been demonstrated (Hand et al. 2001).  In 

fact, there is a long history of Naïve Bayes classification in text mining and sentiment 

analysis (see McCallum 1998; Sebastiani 2002; Go and Bhayani 2009; Feldman 2013 

and references therein). After estimating the Naïve Bayes classifier as described in 
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the next section, we sort all words by their estimated 𝑃(𝑤h¯|𝑑h = 1) and keep the top 

5% as the initial seed list. This ensures that words that are chosen are strongly 

associated with negative discussion of hygiene (see McCallum 1998; Sebastiani 2002; 

Go and Bhayani 2009; Feldman 2013 and references therein). 

Obtaining Training Data and Implementation 

To construct SMASH, we begin with a dataset containing the text of online 

reviews from Yelp.com for restaurants in our inspection dataset. This dataset contains 

approximately 1.3 million unique text reviews (documents), which are matched to 

85% of the restaurants in the inspections dataset. Restaurants are matched based on 

name, address and phone number, as described in the previous section. We performed 

standard preprocessing of all review text, such as converting to lower case, removing 

stopwords, and stemming (Feinerer and Hornik 2012). Since the Naïve Bayes 

classifier is a supervised learning technique that requires training data to estimate the 

conditional probabilities and define the initial seed words, we begin by creating a 

training dataset.   

In order to identify documents in which hygiene is discussed negatively (i.e. 

lower hygiene ratings from consumers), we first randomly sample 1,200 restaurants 

with high inspection scores, which are most likely to have hygiene problems, and 

then randomly sample one document for each selected restaurant. Since we have 

documents (reviews) from before the start of the NYC inspection program (prior to 

2010), we sample documents from before the start of the program (2004-2009) to 

avoid any potential bias on the reviews from the program. The next task is to 

manually assign a label regarding the hygiene relation of each document. We 



 

 
 

114 
 

recruited 1,200 subjects from Amazon Mechanical Turk (MTurk) for pay. This pool 

of participants has been shown to be reliable for empirical research (Goodman, 

Cryder, and Cheema 2013), to represent the broader population (Buhrmester, Kwang, 

and Gosling 2011), and to generate high quality results (Ipeirotis et al. 2010).  Each 

subject was asked, “Given a restaurant review, answer questions about whether a 

review indicates problems related to hygiene,” and was then presented a single 

document. After reading the document, the subject indicated whether the document 

was related to the hygiene of the restaurant using a 7-point scale, which was adopted 

from Egan et al. (2006). Subjects were also asked to select the type(s) of hygiene 

problem described (e.g. food preparation, cleanliness).  As a manipulation test, we 

also asked subjects to rate whether the document was positive or negative and 

checked whether subjects’ answers matched the numerical rating posted for a given 

review. We discarded nine responses based on this test because of the incorrect 

responses in the manipulation check.  Approximately 15% of the documents were 

labeled as regarding the hygiene of the restaurant; the labels for each review 𝑑+ were 

thus defined.   

To further verify the quality of the MTurk responses, we tested for the 

psychometric properties of the hygiene scale (Egan et al. 2006). The composite 

reliability was calculated and varied from 0.88 to 0.94, thereby establishing their 

reliability. Finally, as a robustness check, we ran a separate batch of 120 MTurk jobs 

with the same document, which produced a Kappa statistic of 0.81, signifying 

substantial inter-rater reliability (McHugh 2012).   
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These 1,191 training documents, their MTurk-generated labels 𝑑h, and the 

word occurrences 𝑤h¯ allow us to calculate 𝑃(𝑤h¯|𝑑h = 1), which forms the basis of 

the seed word list for SMASH. By expanding the seed word list using the synonym 

approach described above, we create a “dictionary” of hygiene from social media.  

This entire process was performed using single words, two-word phrases, and three-

word phrases, which are also known as n-grams of up to order three in natural 

language processing (Lodhi et al. 2002), so that the final dictionary contains single 

words along with two- and three-word phrases. For example, as a result of using n-

grams, phrases like "barely edible" are kept in our dictionary even when the 

individual words "barely" and "edible" are not included.  There is been a recent call in 

this literature to move beyond word-level analysis, since it is a simplification of 

language (see Cambria (2013) for a recent example). Therefore, we build on the 

majority of existing work that relies only on dictionaries based on individual words 

(see Liu 2015 and references therein).  However, for simplicity we refer to all words 

and phrases as “words”. 

Finally, for computational simplicity and because our final dictionary includes 

terms that may not have been observed in the training data (due to the augmentation 

step), in lieu of a formal probability we again build on classical approaches in 

sentiment analysis to define the word counts as a continuous measure of hygiene 

quality over time, which can be combined with inspections data to study the behavior 

restaurants before and after initial inspections.  For a given document 𝑗, the SMASH 

score is defined as the total number of times words in the SMASH dictionary appear 
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in the document. Letting 𝛿¯ = 1 if word 𝑘 is included in the SMASH dictionary and 0 

otherwise,  

WCh = 	 𝑤h¯𝛿¯¯ . 

where 𝑤h¯ is the number of times word 𝑘 appears in document 𝑗. For the purposes of 

our longitudinal econometric models, we can summarize the SMASH scores for a 

particular restaurant and time period by summing over the reviews published in that 

time period for that restaurant. The next section describes how we validate this 

measure and use it to investigate moral hazard in the context of the NYC restaurant 

inspections program. 

Validating SMASH 

Since we use reviews prior to the start of the inspection program to generate 

SMASH, we validate SMASH using a different, non-overlapping dataset after the 

program began in 2010. We fit the following longitudinal mixed effects model, where 

𝑡 indexes one-month16 time periods: 

𝐼𝑁𝑆+, = 𝛽?+ + 𝛽y𝑊𝐶+, + 𝛽�𝑅𝑎𝑡𝑖𝑛𝑔+, + 𝛽�𝑅𝑒𝑣𝑖𝑒𝑤𝑠+, + 𝛽�𝑃𝑟𝑖𝑐𝑒+ + 𝜸𝑪𝒉𝒂𝒓𝒔𝒊 + 𝜀+,. 

𝐼𝑁𝑆+, is the numerical score resulting from an inspection of restaurant 𝑖 during time 

period 𝑡. 𝑊𝐶+, is the total SMASH score of Yelp reviews of restaurant 𝑖 published in 

time period 𝑡, 𝑅𝑎𝑡𝑖𝑛𝑔+, is the average rating, and 𝑅𝑒𝑣𝑖𝑒𝑤𝑠+, is the number of 

reviews. 𝑃𝑟𝑖𝑐𝑒+ is the Yelp price segment of the restaurant (1-4 dollar signs), and 

𝑪𝒉𝒂𝒓𝒔𝒊 is a vector of other characteristics of restaurant 𝑖 available from Yelp.com 

such as parking options, payment methods, and ambiance. We normalize each 

                                                
 
16 We also fit the model using quarters as the unit of time and found consistent results. 
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variable to represent standard deviations from the mean. To account for restaurant 

heterogeneity, we also include fixed effects for each restaurant.   

Table 4.4 displays the results from this model (model 1). We observe that the 

coefficient for 𝑅𝑎𝑡𝑖𝑛𝑔+, is negative and significant (p<0.001), illustrating that 

negative reviews are associated with higher (worse) inspection scores.  The 

coefficient for our SMASH score is positive and also highly significant (p<0.001) and 

in fact has slightly higher magnitude than that of average rating.  To account for 

inspector heterogeneity as well as any potential time trends, we also fit a model with 

fixed effects for each inspector and time. The results for this model (model 2) are 

displayed in Table 4.4 and are consistent with the findings discussed above. 

While these models clearly show that consumers are able to observe some 

hygiene-related issues (and report these observations through social media), they may 

not be able to do so for all types of violations.  For example, consumers may be 

unable to accurately report on critical violations, such as the cleanliness of the 

kitchen, which are only observable by having full access to the restaurant premises. 

To test this potential limitation, we divide the inspections data set into two parts: part 

1 contains inspection scores made of critical violations; part 2 contains only the non-

critical violation scores.  As expected, we find that consumer feedback, as measured 

by either Yelp rating or SMASH, is unable to significantly explain critical violations 

(p=0.2 and p=0.41 respectively). On the other hand, consumer hygiene-related 

feedback, as measured by SMASH, is strongly associated with non-critical violations 

(p<0.001).  Interestingly, average Yelp ratings are only weakly associated with non-

critical violations (p=0.08) 
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Furthermore, we include a general sentiment measure for each review to 

check whether sentiment is able to explain inspection results equally or better than 

SMASH scores.  We find that sentiment is highly correlated with the average rating, 

as might be expected, but is uncorrelated with our hygiene dictionary.  More 

importantly, our results remain consistent after including sentiment in the model.  

As a final robustness check, we employ data from a recent competition 

sponsored by Harvard, Yelp.com, and DrivenData to use the text of online reviews to 

predict inspection scores for restaurants in Boston (DrivenData 2016).  Submissions 

were open to the public and the submission with the lowest prediction Root Mean 

Squared Logarithmic Error (RMSLE) was declared the winner. Using the program’s 

publicly available training and test datasets, we compare the performance of SMASH 

with the winning algorithm and find SMASH predictions to have approximately 3% 

large RMSLE, indicating similar predictive performance. 

Using SMASH to Show the Effect of Moral Hazard on 

Restaurant Hygiene  

Equipped with a methodology to monitor the hygiene of restaurants over time, 

we now proceed to study the behavior of restaurants prior to and following 

inspections by the Health Department.  In particular, as discussed in the Context and 

Data section, we focus on the behavior of A-grade restaurants that differ in their 

trajectories: those restaurants that consistently achieve an A grade in their initial 

inspections (AA) and those that consistently receive a P grade before achieving an A 

grade upon re-inspection (PAPA). We theorized that moral hazard may explain the 
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differences in initial inspections scores for these two groups, pictured in Figure 4.7. 

Using SMASH as a continuous measure of hygiene quality over time, we track the 

hygiene of restaurants in the PAPA group in the months after achieving an A grade, 

during which another inspection is unlikely. 

Our strategy is twofold. We first graphically display the SMASH trends after 

the inspections.  Figure 4.8 displays the daily SMASH score for 60 days following 

four different inspections of restaurants in the PAPA group: first initial inspection 

(plot 1), first re-inspection (plot 2), second initial inspection (plot 3), and second re-

inspection (plot 4). Lower SMASH scores indicate improved hygiene performance. 

Plot 1 displays a downward trend following an initial inspection, consistent with the 

results of our DiD model. Conversely, plot 2 shows an upward trend following re-

inspection, suggesting that the hygiene performance of restaurants in the PAPA group 

tends to immediately worsen after posting an A, with the safety of knowing that the 

next following inspection cycle will take place approximately a year later.  Plots 3 

and 4 show a similar pattern of improvement following an initial inspection and 

worsening after re-inspection.  

Second, we employ a longitudinal model to compare the SMASH scores of 

the AA and PAPA restaurants.  We consider daily SMASH scores in the 90 days 

following the inspection where an A was achieved (an initial inspection for the AA 

group and a re-inspection for the PAPA group). Letting 𝑂𝑓𝑓𝑠𝑒𝑡+, be the number of 

days since such an inspection for restaurant 𝑖, we fit the following model: 
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𝑊𝐶+, = 𝛽?+ + 𝛽y𝑂𝑓𝑓𝑠𝑒𝑡+, + 𝛽�𝑂𝑓𝑓𝑠𝑒𝑡+, ∗ 𝐴𝐴+ + 𝛽�𝑂𝑓𝑓𝑠𝑒𝑡+, ∗ 𝑃𝐴𝑃𝐴+

+ 𝛽�𝑅𝑎𝑡𝑖𝑛𝑔+, + 𝛽�𝑅𝑒𝑣𝑖𝑒𝑤𝑠+, + 𝛽µ𝑃𝑟𝑖𝑐𝑒+ + 𝜸𝑶𝒕𝒉𝒆𝒓𝑪𝒉𝒂𝒓𝒔 + 𝜀+,, 

where 𝑊𝐶+, is again the average SMASH score of restaurant 𝑖 at time 𝑡, and 𝐴𝐴+ and 

𝑃𝐴𝑃𝐴+ are indicators of restaurant 𝑖’s membership in group AA or PAPA, 

respectively.  As before, we control for restaurant characteristics and include a fixed 

effect for each restaurant. Results are displayed in Table 4.5 (model 1). While the 

main effect for 𝑂𝑓𝑓𝑠𝑒𝑡+, is approximately zero, the significant coefficient for the 

interaction term with 𝑃𝐴𝑃𝐴+ shows that the PAPA group displays a positive and 

significant trend in SMASH scores following re-inspection (p<0.001). However, the 

coefficient for the interaction with 𝐴𝐴+ is near zero, suggesting that the AA group 

displays consistent hygiene practices after conclusion of the inspection cycle. These 

results show that consumers are able to observe worsening levels of hygiene quality 

from restaurants in the PAPA group after posting an A grade in their re-inspections.  

For additional robustness, we add fixed effects for the reviewers generating the online 

review and find strongly consistent results (see Table 4.5, model 2).  

Conclusion  

This paper presents a detailed empirical analysis of the effects of moral hazard 

in a restaurant hygiene inspection program, which is to the best of our knowledge the 

first such analysis.  To surmount the limitations of the inspections data and 

continuously monitor hygiene, we propose a novel methodology to measure hygiene 

from the text of social media using crowdsourcing and recent advances in machine 



 

 
 

121 
 

learning.  We use this continuous measure to show evidence of moral hazard in the 

NYC hygiene inspection program. 

These effects appear to be important in the New York City restaurant industry, 

particularly for those restaurants that post A grades, which are the large majority of 

restaurants in NYC. Our results provide support for information asymmetry and basic 

contract theory. We observe clearly that without the threat of a low public hygiene 

grade and with long periods between inspection cycles, many restaurants tend to 

display worsening hygiene quality after a successful inspection. The results presented 

illustrate the need for safeguards against moral hazard in restaurant hygiene 

inspections programs, such as employing social media as a hygiene tracking tool 

through our proposed methodology. Other safeguards might include having shorter 

inspection cycles windows or posting initial inspection grades of B or C prior to re-

inspections.  

There are several limitations of the current study that should be noted.  First, 

we consider the restaurant grades program in NYC only, which limits the 

generalizability of our results. Second, while we use Yelp reviews to create a 

secondary measure of hygiene, other sources, such as Twitter, Facebook or even 

Instagram, could be incorporated to create a more comprehensive social media 

sourced hygiene detection tool. Finally, while we uncover moral hazard in this 

context, we do not propose a methodology for optimizing the scheduling of 

inspections. We aim to take this step in future work.   

In the words of the CDC and the New York City Health Department, 

"foodborne illness remains one of the top public health challenges for the city, the 
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state, and the entire country" (CDC 2016a). We believe that our approach to apply 

recent advances in machine learning to supplement inspections program with a 

continuous, social media-based measure of hygiene can be used to assist policy 

makers in the design and implementation of hygiene inspection programs. 
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Tables 

Table 2.1. Matching Variables 

Matching Variable Description 
Mean rating The average rating of the restaurant 
Number of reviews  The number of reviews of the restaurant 
Pricepoint The price point of the restaurant 
Cuisine  Dummies for the cuisine of the restaurant (e.g. American) 

Other attributes  Dummies for other restaurant attributes (e.g. attire, ambiance, 
noise level) 

 
Table 2.2. Imbalance Comparison Table 

Matching Variable Type L1 Min 25% 50% 75% Max 
Mean rating (diff) < 0.001 0 0 0 0 0 
Number of reviews (diff) < 0.001 0 -5 -19 -36 7 
Pricepoint (diff) < 0.001 0 0 0 0 0 

 
Table 2.3. Comparing Case and Control Samples 

Sample n Mean 
Rating 

Number of 
Reviews Pricepoint 

Case 446 3.26 54.80 1.76 
Control 605 3.31 59.50 1.65 

 
Table 2.4. Top Words Associated with Each Semantic Component 

Quality_Overall Food_Efficiency Responsiveness Food_Quality Atmosphere 
food place order good place 
good bar server veri crowd 
place order came great happi 
like time ask dish bar 

order one dish nice beer 
friend drink menu flavor neighborhood 
time  wait waiter chicken like 
great minut minut restaur food 
nice hour tabl sauc drink 

service ask meal food music 
	



 

 
 

124 
 

Table 2.5. Reviews Associated with the Identified Five Semantic Components 

Reviews that Load onto Quality Overall   

 “Food was okay. My shrimp tempura roll was good, but the donburi wasn't. The tempura ice cream 
was my favorite part of the meal.The service was pretty good. Our server was a genuine sweetheart so 
I might go again for the rolls and the service.Pretty place too.” 
“The atmosphere of the place was kind of weird. The food wasn't all that impressive for Thai food in 
the DC area… If you get \"Beef Red Curry\", you kind of expect more than 4 small pieces of beef… 
The service though was outstanding. The server was always around for water/drink refills and was very 
nice.” 
“We weren't seated in the main dining area (that's for the highrollers)... Palena was a good meal 
overall, not stressful as some good restaurants tend to get around the busiest dinner hours.” 

Reviews that Load onto Food Efficiency  
“It took them 30 minutes to make 2 burgers.” 
“It's just as good as toki underground, and better yet there is not a ridiculous two hour wait...you order 
at the counter and they prepare it right away. you get your food within 5 min... it kept me coming back 
again and again.” 
 “We went on a weekday night.. and we were told there was a 15 minute wait. The host scooped us out 
of the bar not even a minute later with an available table.” 
“We got there earlier than our reservation time (7PM on a Thursday) and were able to be seated right 
away.” 

Reviews that Load onto Responsiveness   

“my medium well burger came out medium rare, and they put bacon on my wife's veggie burger (she 
did not ask for this obviously).” 
“I really, really liked the vending machine that was dispensing beer and cigarettes -- you had me at 
hello. I also thought the bartender was super friendly and accommodating” 
“Not only did the server have great difficulty comprehending the neatly written break-down, he came 
back and told us that we were $1 short of the \"suggested gratuity\" shown on the receipt.” 
“Service was prompt and pleasant” 
“My fiancé and I were gracious to be sat quickly at a one of the last tables in the full dining room set 
for four.... Notably, different members of the staff delivered plates and shared a little bit about what we 
were about to enjoy (without aimlessly listing off ingredients)” 
“Our waitress Rosalin(?) was nice enough, but very very confident and almost seemed like she was 
acting out a scene as she told us a bit about the restaurant and theme.” 

Reviews that Load onto Food Quality   

“The shrimp were perfect, really perfect, I had to resist stealing more from my friend. I enjoyed the 
fried oysters in cornmeal too. The shrimps were just really flavorful, just really good.” 

“The delicate rings of squid -- so exquisitely supple save for one or two pieces -- were served on a 
velvety polenta, fire-roasted tomato fondue, and fresh pesto. A perfectly portioned and divine way to 
begin what was about to be our oceanic adventure... The lobster was excruciatingly tender and sweet, 
paired with a clarified lemon-herb butter. The oysters were enormous and juicy, paired with a mouth-
puckering mignonette. The jumbo shrimp were bigger than jumbo, delicate meat executed perfectly, 
paired with a spicy cocktail sauce. The mussels were wonderfully plump and meaty.” 

“We consider it one of the best meals we've ever had so far.... Course after course titillated and awed, I 
loved every minute of it.” 
“everyone was really pleased with their food....The tempura was quite good. The soup was a little bit 
too salty and the dumpling really greasy, but overall, everything was good.” 
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“Corned beef sliders - good. Heavy, yummy…. Shepherd's pie …was just ground lamb and potatoes, 
…Lemon something for dessert - looked very yummy. Eh. Even the shortbread was eh.” 

Reviews that Load onto Atmosphere   

“The atmosphere of the place was kind of weird. There are rocks on the ceiling and it was a little bit 
too dark. I guess they were going for a cave theme, but the important question is WHY???” 
“It smells greasy. Atmosphere is lacking, but since this is more a take out place for lunch time, it 
doesn't have to have atmosphere. Then again, why not work a bit at it. Easiest first step - turn on some 
music, not much, not loud, just a little basic background. I understand New Orleans is famous for its 
music...and the guys working here might also like that.” 
“what i like about this place is you get great food for a very reasonable price in a laid back, low key, 
and personable environment.” 
	

Table 2.6. Variable Descriptions 

Variable  Description  
𝐶𝑙𝑜𝑠𝑢𝑟𝑒+,  1 if restaurant i is closed in time period 𝑡; 0 otherwise  
𝑚𝑒𝑎𝑛𝑟𝑎𝑡𝑖𝑛𝑔+,	  Average rating of reviews for restaurant i in time period 𝑡  
𝑛𝑢𝑚𝑟𝑒𝑣𝑖𝑒𝑤𝑠+,  Number of reviews for restaurant i in time period 𝑡 
𝑄𝑢𝑎𝑙𝑖𝑡𝑦_𝑂𝑣𝑒𝑟𝑎𝑙𝑙+,	  LSA measure for the overall experience in restaurant i in time period 𝑡 
𝐹𝑜𝑜𝑑_𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦+,	  LSA measure for the reliability and wait times in restaurant i in time period 𝑡 
𝐹𝑜𝑜𝑑_𝑄𝑢𝑎𝑙𝑖𝑡𝑦+,	  LSA measure for the food quality in restaurant i in time period 𝑡 
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠+,	  LSA measure for the service responsiveness in restaurant i in time period 𝑡 
𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒+,	  LSA measure for the atmosphere in restaurant i in time period 𝑡 
𝑃𝑟𝑖𝑐𝑒𝑝𝑜𝑖𝑛𝑡+	  Price point for restaurant 𝑖	 
𝑊𝐿+,	  Average word count of reviews for restaurant i in time period 𝑡 
𝑟𝑒𝑎𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦+,	  Average SMOG readability index of reviews for restaurant i in time period 𝑡 
𝑐𝑜𝑚𝑝_𝑚𝑒𝑎𝑛𝑟𝑎𝑡𝑖𝑛𝑔+,	  Average mean rating for restaurant 𝑖’s competitors in time period 𝑡  
𝑐𝑜𝑚𝑝_𝑛𝑢𝑚𝑟𝑒𝑣𝑖𝑒𝑤𝑠+,	  Number of reviews for restaurant 𝑖’s competitors in time period 𝑡  
𝑛𝑢𝑚𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟𝑠+,	  Number of competitors for restaurant 𝑖 in time period 𝑡	 

𝐶𝑢𝑖𝑠𝑖𝑛𝑒+
	
  

Set of binary variables indicating whether each of 16 cuisines is listed in 
cuisine type for restaurant 𝑖 (restaurants can have multiple cuisines)  

𝐿𝑜𝑐+	  Set of binary variables indicating the zip code of restauarant 𝑖  

𝑂𝑡ℎ𝑒𝑟𝐶ℎ𝑎𝑟𝑠+
	
  

Set of binary variables describing 15 other characteristics for restauarant 𝑖, 
such as payment method, parking, attire, group-friendly, kid-friendly, waiter, 
Wi-Fi, alcohol, etc.  
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Table 2.7. Summary Statistics 

VarID Variable Mean Std. Dev. 
1 𝑚𝑒𝑎𝑛𝑟𝑎𝑡𝑖𝑛𝑔+,  3.316 0.921 
2 𝑛𝑢𝑚𝑟𝑒𝑣𝑖𝑒𝑤𝑠+,  5.173 5.085 
3 𝑄𝑢𝑎𝑙𝑖𝑡𝑦_𝑂𝑣𝑒𝑟𝑎𝑙𝑙+,  0.002 0.001 
4 𝐹𝑜𝑜𝑑_𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦+,  0.001 0.001 
5 𝐹𝑜𝑜𝑑_𝑄𝑢𝑎𝑙𝑖𝑡𝑦+,  -0.001 0.001 
6 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠+,  0.001 0.001 
7 𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒+,  -0.001 0.001 
8 𝑃𝑟𝑖𝑐𝑒𝑝𝑜𝑖𝑛𝑡+  1.774 0.638 
9 𝑊𝐿+,  120.627 68.394 
10 𝑟𝑒𝑎𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦+,  9.387 2.037 
11 𝑐𝑜𝑚𝑝_𝑚𝑒𝑎𝑛𝑟𝑎𝑡𝑖𝑛𝑔+,	  3.313 0.362 
12 𝑐𝑜𝑚𝑝_𝑛𝑢𝑚𝑟𝑒𝑣𝑖𝑒𝑤𝑠+,  2.898 2.060 
13 𝑛𝑢𝑚𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟𝑠+,  39.203 25.245 

 
Table 2.8. Correlation Matrix 

VarID 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 1             
2 0.06 1            
3 -0.06 0.1 1           
4 -0.24 -0.02 0.26 1          
5 -0.13 -0.09 -0.26 0.16 1         
6 -0.18 0.09 0.23 0.21 -0.13 1        
7 -0.11 0.04 -0.21 -0.2 -0.04 0.14 1       
8 -0.05 0.24 0.22 -0.05 -0.23 0.2 0.05 1      
9 -0.08 0.09 0.14 0.12 -0.16 0.26 -0.1 0.21 1     
10 0.04 0.01 0.19 0.06 -0.04 0.06 -0.03 0.07 0.23 1    
11 0.09 -0.06 -0.02 -0.03 0 -0.02 0 -0.13 -0.01 0.01 1   
12 -0.07 0.21 0.04 -0.01 -0.07 0.1 0.07 0.15 0.02 -0.03 -0.13 1  
13 -0.01 0.01 -0.02 0.05 0.06 -0.06 -0.09 -0.11 -0.03 -0.01 -0.02 0.09 1 
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Table 2.9. GLMER Coefficient Estimates 

Variable 
Model 1:  

Base model 
Model 2: 
Semantic 
Variables 

Model 3:  
Closed Sample 

Model 4:  
Fixed Effects 

(EX) 

Model 5:  
Fixed Effects 

(AR-1) 
(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)  -5.29 (0.23) *** -5.33 (0.23) *** -2.94 (0.16) *** -2.55 (0.17) *** -2.59 (0.18) *** 

𝑚𝑒𝑎𝑛𝑟𝑎𝑡𝑖𝑛𝑔+,  -0.12 (0.05) ** -0.1 (0.05) * -0.1 (0.04) * -0.09 (0.01) * 0.1 (0.02) * 

𝑛𝑢𝑚𝑟𝑒𝑣𝑖𝑒𝑤𝑠+,  -2.07 (0.18) *** -2 (0.18) *** -1.58 (0.16) *** -2.04 (0.39) *** -2.06 (0.4) *** 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦_𝑂𝑣𝑒𝑟𝑎𝑙𝑙+,    -0.57 (0.17) *** -0.4 (0.17) * -0.97 (0.13) *** -0.99 (0.14) *** 

𝐹𝑜𝑜𝑑_𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦+,    0.19 (0.07) ** 0.15 (0.07) * 0.37 (0.09) *** 0.38 (0.09) *** 

𝐹𝑜𝑜𝑑_𝑄𝑢𝑎𝑙𝑖𝑡𝑦+,    -0.07 (0.06) -0.06 (0.06) -0.07 (0.08)  -0.07 (0.09) 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠+,    -0.12 (0.07) ψ -0.12 (0.00) 0.01 (0.12) 0.02 (0.12) 

𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒+,    0.05 (0.06) 0.08 (0.06) 0.03 (0.09) 0.02 (0.09) 

𝑃𝑟𝑖𝑐𝑒𝑝𝑜𝑖𝑛𝑡+  -0.05 (0.09) -0.03 (0.09) -0.02 (0.07)     

𝑊𝐿+,  -0.34 (0.07) *** 0.18 (0.21) 0.01 (0.26)     

𝑟𝑒𝑎𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦+,  -0.02 (0.05) -0.02 (0.05) 0.01 (0.05)     

𝑐𝑜𝑚𝑝_𝑚𝑒𝑎𝑛𝑟𝑎𝑡𝑖𝑛𝑔+,  -0.05 (0.06) -0.05 (0.06) -0.07 (0.05)     

𝑐𝑜𝑚𝑝_𝑛𝑢𝑚𝑟𝑒𝑣𝑖𝑒𝑤𝑠+,  0.48 (0.06) *** 0.48 (0.06) *** 0.56 (0.06) ***     

𝑛𝑢𝑚𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟𝑠+,  -0.02 (0.07) -0.02 (0.07) -0.08 (0.06)     

Cuisines  Included Included Included Included Included 

Location  Included Included Included Included Included 

OtherChars  Included Included Included Included Included 
Restaurant and year 
fixed effects 

Omitted Omitted Omitted Included Included 

n (observations) 16515 16515 4787 16515 16515 

groups (restaurants) 1035 1035 437 1035 1035 

AIC 3817.7 3565.1 2566.8     

QIC       2863 2286 

Table entries are Estimated Values (SE) with significance codes: ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05 ‘ψ’ p < 0.1  
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Table 2.10. Cox Proportional Hazards Results (Positive Values Contribute to 
Closing) 

Variable Estimated Values (SE) 
𝑚𝑒𝑎𝑛𝑟𝑎𝑡𝑖𝑛𝑔+,  -0.18 (0.04) * 
𝑛𝑢𝑚𝑟𝑒𝑣𝑖𝑒𝑤𝑠+,  -1.66 (0.16) *** 
𝑄𝑢𝑎𝑙𝑖𝑡𝑦_𝑂𝑣𝑒𝑟𝑎𝑙𝑙+,  -0.49 (0.16) ** 
𝐹𝑜𝑜𝑑_𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦+,  0.12 (0.01) * 
𝐹𝑜𝑜𝑑_𝑄𝑢𝑎𝑙𝑖𝑡𝑦+,  -0.07 (0.06) 
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠+,  -0.16 (0.07) ψ 
𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒+,  -0.02 (0.06) 
𝑃𝑟𝑖𝑐𝑒𝑝𝑜𝑖𝑛𝑡+  0.21 (0.07) ** 
𝑊𝐿+,  0.25 (0.14) 
𝑟𝑒𝑎𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦+,  0 (0.02) 
𝑐𝑜𝑚𝑝_𝑚𝑒𝑎𝑛𝑟𝑎𝑡𝑖𝑛𝑔+,  -0.01 (0.05) 
𝑐𝑜𝑚𝑝_𝑛𝑢𝑚𝑟𝑒𝑣𝑖𝑒𝑤𝑠+,  0.31 (0.07) * 
𝑛𝑢𝑚𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟𝑠+,  0.08 (0.05) 
Cuisines  Included 
Location  Included 
OtherChars  Included 

Number of observations: 16515 
Number of events: 454 

Likelihood ratio test: 352.5 on 28 df, p=0 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ψ’ 0.1 

 
	

Table 2.11. Proportionality Test To Verify Proportionality Assumption 

Variable 𝝆 𝝌𝟐 𝑷𝒓(> |𝒛|) 
𝑚𝑒𝑎𝑛𝑟𝑎𝑡𝑖𝑛𝑔+,  -0.06 1.01 0.47 
𝑛𝑢𝑚𝑟𝑒𝑣𝑖𝑒𝑤𝑠+,  0.03 0.05 0.56 
𝑄𝑢𝑎𝑙𝑖𝑡𝑦_𝑂𝑣𝑒𝑟𝑎𝑙𝑙+,  0.01 0.12 0.73 
𝐹𝑜𝑜𝑑_𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦+,  0.06 0.08 0.18 
𝐹𝑜𝑜𝑑_𝑄𝑢𝑎𝑙𝑖𝑡𝑦+,  -0.03 0.42 0.52 
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠+,  -0.02 0.15 0.73 
𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒+,  -0.01 0.22 0.76 
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Table 3.1. Variable Descriptions 

Variable Description 

𝑅𝑎𝑡𝑖𝑛𝑔+, Average rating of reviews published during time period 𝑡 for restaurant 𝑖 
𝐷𝑒𝑎𝑙+,  Binary variable indicating whether deal offered restaurant 𝑖 during time period 

𝑡 
𝑃𝑟𝑖𝑐𝑒+  Price segment of restaurant 𝑖 (number of Yelp dollar signs) 

𝐴𝑔𝑒+ The number of days from the first review published for restaurant 𝑖 to Dec. 1, 
2011 

𝐵𝑎𝑠𝑒𝑁𝑢𝑚𝑅𝑒𝑣𝑖𝑒𝑤𝑠+  Number of reviews for restaurant 𝑖 prior to Dec. 1, 2011 

𝐵𝑎𝑠𝑒𝑅𝑎𝑡𝑖𝑛𝑔Â  Rating for restaurant 𝑖 prior to Dec. 1, 2011 
𝑅𝑒𝑠𝑡𝐼𝑛𝑍𝑖𝑝+  Number of competitor restaurants of restaurant 𝑖 (same cuisine, price segment 

and zip code) 

𝐷𝑒𝑎𝑙𝑠𝐼𝑛𝑍𝑖𝑝+,  Number of deals being offered by competitors of restaurant 𝑖 during time 
period 𝑡 

𝑪𝒖𝒊𝒔𝒊𝒏𝒆𝒊 Binary variables indicating whether each cuisine (16 cuisines in total) is listed 
in the cuisine type for restaurant 𝑖 (restaurants may have multiple cuisines) 

𝑶𝒕𝒉𝒆𝒓𝑪𝒉𝒂𝒓𝒔𝒊 Binary variables describing other restaurant characteristics, such as: payment 
methods, parking, attire, group-friendly, kid-friendly, waiter, Wi-Fi, alcohol, 

etc. (15 in total) 
𝑳𝒐𝒄𝒂𝒕𝒊𝒐𝒏𝒊 Categorical variable for the zip code of the restaurant (12 in total) 

 

Table 3.2. Summary Statistics 

Variable Mean (SD) Range 
Ratingit 3.43 (1.07) 1, 5 
Dealit 0.03 (0.16) 0, 1 
Pricei 1.89 (0.72) 1, 4 
Agei 560 (14) 11, 2921 
BaseNumReviewsi 66.81 (129.24) 0, 1963 
BaseRatingi 3.47 (0.53) 1, 5 
RestInZipi 206.31 (88.27) 86, 330 
DealsInZipit 2.43 (2.13) 0, 12 

 



 

 
 

130 
 

Table 3.3. Correlation Table 

 Variable 1 2 3 4 5 6 7 8 

1 Ratingit 1.00 
  

 
    

2 Dealit -0.03 1.00 
 

 
    

3 Pricei 0.02 0.03 1.00  
    

4 Agei 0.13 0.05 0.01 1.00     
5 BaseNumReviewsi 0.10 0.02 0.15 0.22 1.00 

   
6 BaseRatingi 0.35 -0.04 0.01 0.02 0.19 1.00 

  
7 RestInZipi 0.01 -0.02 -0.05 0.07 0.03 0.01 1.00 

 
8 DealsInZipit -0.02 0.08 -0.03 0.05 0.01 -0.01 0.14 1.00 

 

Table 3.4. Multi-level Hierarchical Bayesian Results 

 
Mean (SD) HPD (Lower) HPD (Upper) 

First Level 
   

Intercept 0.845 (0.73) 0.785 0.922 
Dealit -0.902 (0.07) -1.436 -0.672 
BaseNumReviewsi 0.000 (0.00) -0.001 0.001 
BaseRatingi 0.855 (0.02) 0.798 0.986 
RestInZipi 9.245e-5 (1.29e-4) -1.141e-6 1.054e-4 
DealsInZipit -0.235 (0.04) -0.368 -0.152 

Second Level: 𝐷𝑒𝑎𝑙+,    
Intercept 0.055 (0.08) 0.017 0.222 
Pricei 0.539 (0.00) 0.211 0.567 
Agei -0.665 (0.00) -0.748 -0.333 

Second Level: 𝐷𝑒𝑎𝑙𝑠𝐼𝑛𝑍𝑖𝑝+,    
Intercept 0.111 (0.04) 0.051 0.287 
Pricei 0.001 (0.41) -0.112 0.241 
Agei -0.034 (0.55) -0.211 0.099 

Cuisines (16 in total) Included 
OtherChars (15 in total) Included 
Location (12 in total) Included 
Sample size (unique restaurants) N=19,691 (1,390) 
BIC 4783.4 
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Table 4.1 Variable Descriptions 

Dataset Variable (s) Description 
Open Data Boro NYC Borough 
Open Data Address Physical address 
Open Data Phone Phone number 
Open Data Cuisine Main cuisine declared 
Open Data Inspection Date The date the inspection took place 
Open Data Inspection Type They type of inspection (i.e. initial, re-inspection) 
Open Data Inspection Grade The grade received as a result of the inspection (i.e. A, B, C, or P) 
Open Data Violation Code The specific health code violation 
Open Data Violation Description Description of the health code violation 
Open Data Violation Critical 1 if the violation is a critical violation 
Open Data Violation Score The points added for the violation 
Yelp.com Rating The overall rating 
Yelp.com Number of Reviews Total number of reviews 
Yelp.com Price-point Price range of the restaurant 

Yelp.com OtherChars 

Hours, Takes Reservations, Delivery, Take-out, Accepts Credit 
Cards, Accepts Apple Pay, Good For, Parking Options, Bike 

Parking, Good for Kids, Good for Groups, Attire, Ambience, Noise 
Level, Alcohol Beer & Wine, Outdoor Seating, Wi-Fi, Has TV, 

Waiter Service, Caters 
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Table 4.2. Summary Statistics for the Difference-in-Differences Model 

 Measure Number 
Number of restaurants 24,625 
Number of inspections 493,804 
Mean inspections per restaurant 6.33 
Mean violation score per inspection 15.11 
Fraction of critical violations per inspection 31.24 
Restaurant characteristics:  

Mean Pricepoint 1.84 
Mean Yelp Rating 3.54 
Mean Yelp Number of Reviews 103 

 
Table 4.3. Difference-in-Differences Results 

Variable Estimate (SE) 
Treat (Initial Inspection) -6.23 (1.44) *** 
Rating -5.22 (3.01) * 
Reviews 0.0001 (0.00007) ψ 
Price (low-1-2) 0.0003 (0.0002) ψ 
Price (high 3-4) 0.004 (0.003) ψ 
Treat*price (low=1-2) -0.15 (0.08) * 
Treat*price (high=3-4) 1.47 (0.61) ** 
OtherChars Included 
  
Groups 23,393 
Observations 350,895 
Other characteristics Included 
Auto Correlation Standard Errors Included 
Robust Standard Errors Included 
Heteroskedasticity-Consistent 
Standard Errors Included 

Fixed Effects Restaurant, Inspector, time (yr-qt) 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ψ’ 0.1 
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Table 4.4. Linear Mixed Effects Model Results. DV=Inspection Scores 

 Model 1 Model 2 
Variable Estimate (SE) Estimate (SE) 
Intercept 0.73 (0.51) ψ 0.81 (0.68) 
WC 0.46 (0.16) ** 0.51 (0.17) ** 
Rating 0.43 (0.15) ** 0.37 (0.11) *** 
Reviews 0.008 (0.0055) ψ 0.007 (0.005) ψ 
Pricepoint 0.12 (0.11) 0.55 (0.45) 

OtherChars Included Included 

   
AIC 10,666 8,371 
BIC 10,639 8.338 
Groups 23,393 23,393 
Observations 1,052,685 1,052,685 
Fixed Effects Restaurant Restaurant, Inspector, Time (yr-month) 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ψ’ 0.1 
  

Table 4.5. Linear Mixed Effects Model Results. DV=SMASH WC Scores 90 
Days After Inspection 

 Model 1 Model 2 

Variable Estimate (SE) Estimate (SE) 

Intercept 0.98 (0.69) ψ 0.66 (0.41) ψ 
Offset 0.0005 (0.001) 0.01 (0.0065) ψ 

Offset*AA 0.01 (0.0055) * 0.01 (0.004) ** 

Offset*PAPA 0.73 (0.21) *** 0.80 (0.33) ** 

Rating 0.65 (1.22) 0.72 (0.91) 
Reviews -0.16 (0.44) -0.65 (0.83) 

Pricepoint 0.10 (0.85) 0.24 (0.64) 

OtherChars Included Included 

   

AIC 13,291 11,590 
BIC 13,349 11,611 

Groups 23,393 23,393 

Observations 1,579,028 1,579,028 
Fixed Effects Restaurant Restaurant, Reviewer 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ψ’ 0.1 
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Figures 

Figure 2.1. These plots depict the Schoenfeld residuals by the mean rating, the 
number of reviews, and the semantic variables Quality_Overall and 

Food_Efficiency. A non-zero slope is evidence against proportionality. 

	
	

Figure 2.2. Cross-Validation and Singular Values for LSA 
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Figure 2.3. ROC Curves for GLMER models 

	
	
 
 

Figure 3.1. Daily Deals Effects on eWOM: Timeline 
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Figure 3.2. Mean Yelp Rating by Offset from Daily Deal Offer Date 
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Figure 3.3. Lab Studies Stimuli Examples 
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Figure 3.4. Brand Evaluation as a Function of Deal Offered and the Price of 
Merchants 

 
 
 

Figure 3.5. Brand Evaluation as a Function of Deals Offered and the Age of 
Merchants 

 
 

Figure 3.6. Brand Evaluation as a Function of Deal Offered and Deal 
Competition 
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Figure 4.1. NYC Restaurant Hygiene Cards 

 
 

Figure 4.2. Placement of Grade Card in a NYC Restaurant 
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Figure 4.3. Grades over time (Before and After the NYC Grading Program) 

 
 

Figure 4.4. Restaurant with A Grades by Borough in 2011, 2013, and 2015 in 
NYC 
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Figure 4.5. Restaurant with A Grades by Borough from 2011 to 2015 

 
 

Figure 4.6. Score Trajectories from Restaurants that Consistently Score A in 
their Initial Inspections Versus those that Post a Grade P in their Initial 

Inspection 
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Figure 4.7. Average Scores of the Two Main Inspection Trajectories 

 
Figure 4.8. Trends in SMASH Score After Different Types of Inspections for 

PAPA 
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Appendix 

Figure A-1. Restaurant with A Grades by Neighborhood Poverty Rates in New 
York City 

 
 

Figure A-2. Restaurant Grades (Including Grade P) Over NYC's Map 
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Figure A-3. Inspector Worksheet Showing Violations and Conditions (DOHM 
2010b) 
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