TECHNICAL RESEARCH REPORT

Elastic Windows: Improved Spatial Layout and
Rapid Multiple Window Operations

by E. Kandogan and B. Shneiderman

T.R. 95-89

' INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by
the National Science Foundation

‘ ‘ Engineering Research Center Program,
‘. the University of Maryland,

Harvard University,

" and Industry

CAR-TR-786 Sept. 1995
CS-TR-3522
ISR-TR-95-89

Elastic Windows: Improved
Spatial Layout and Rapid Multiple Window Operations

Eser Kandogan and Ben Shneiderman™

Human-Computer Interaction Laboratory
Center for Automation Research, Department of Computer Science
Institute for Systems Research*
University of Maryland, College Park, MD 20742-3255
kandogan @cs.umd.edu, ben@cs.umd.edu
Tel: (301) 405-2680

Abstract

Most windowing systems follow the independent overlapping windows approach, which emerged
as an answer to the needs of the 80s' applications and technology. Advances in computers, display
technology, and the applications demand more functionality from window management systems. Based on
these changes and the problems of current windowing approaches, we have updated the requirements for
multi-window systems to guide new methods of window management. We propose elastic windows with
improved spatial layout and rapid multi-window operations. Multi-window operations are achieved by
issuing operations on a hierarchically organized group of windows in a space-filling tiled layout.
Sophisticated multi-window operations like Hook, Pump, Minimize, Restore, Move and Relocate have
been developed to handle fast task-switching and to structure the work environment of users to their rapidly
changing needs. We claim that these multi-window operations and the tiled layout decrease the cognitive
load on users. Users found our prototype system to be comprehensible and enjoyable as they playfully
explored the way multiple windows are reshaped.

Keywords: Window Manager, CAD, Task Switching, Multi-window operations, Personal Role
Manager, Programming Environment, Navigation Problem

HCH

;—d

The Human-Computer Interaction Laboratory (HCIL) is an
interdisciplinary effort within the Center for Automation
Research. The main participants are faculty, staff, and students
from the Department of Computer Science, Department of
Psychology, and College of Library and Information Services at
the University of Maryland, College Park, MD.

http://www.cs.umd.edu/projects/hcil/
ftp ftp.cs.umd.edu/pub/hcil

email hcil-info@cs.umd.edu

For single technical reports or information not
available at the ftp site or our url please write to:

Janet Sumida
Human-Computer
Interaction Laboratory
A.V. Williams Building
University of Maryland
College Park MD 20742

INTRODUCTION

It is widely believed that windowed environments are su-
perior to non-windowed ones. However, an early study by
Bury et al. [4] (1985) comparing users’ performance in win-
dowed systems to non-windowed systems revealed that task-
completion time in windowed systems can be longer due to
window arrangement time. A detailed analysis, however,
showed that actual times spent on solving a task were lower
in windowed environments compared to non-windowed envi-
ronments. Their experiments also showed that the error rates
in windowed environments were significantly lower. Al-
though systems compared in these experiments were rather
old, the results clearly indicate that benefits of windowing
can be overshadowed by the extra time spent on window
housekeeping activities.

Card et al. [5] identified seven functional uses of multiple
windows. Among these, independent control of multiple
programs, referred to here as multitasking, is the most sig-
nificant. Basically, it is the ability of users to work on dif-
ferent tasks in separate windows. Analyses of work flow
determined that people deal with many tasks concurrently
with frequent switches between tasks [2]. For example, a
researcher preparing a paper might draw the figures in one
window while writing the text of the document using an edi-
tor in another window. Multitasking results in improvements
on the overall user performance due to the decreased aver-
age task-completion time. Windowing systems must provide
good mechanisms for task-switching to make multitasking
more beneficial.

Windowing is also useful in the case of a single task. Itis pos-
sible to reduce the cognitive load on users by allowing them
to examine other windows for supplementary information for
the task at hand or use task-aids like cut-and-paste.

As stated by Card et al. [S], the computer display is used
not only as a communication medium but also as an external
memory for users. Thus having all the necessary informa-
tion on the screen and filtering out unnecessary windows is
a required property of windowing systems. Malone [12] ob-
served that the way people organize papers on their desk helps
them to structure their work and reminds them of unfinished
tasks. As Funke et al. [9] suggested, windowing systems
should support users to integrate, organize, compare, distill,
summarize, and apply the information.

Today’s windowing systems do not differ much in their basic
principles of window management. Almost all systems fol-
low the independent overlapping windows approach, where
windows are allowed to overlap each other, operations on
windows are performed one at a time, and size and location
of each window is independent.

The independent overlapping windows principle emerged as
an answer to the needs of 80’s applications and technology.
80’s applications were mostly single-window applications,
with all the information related to a task in one window.
Thus, it was preferable to have independent size and location
for each window/task. Since these applications were single-
window applications, task-switching was not a big problem.
When users wish to continue with the task previously aban-

doned, the window for that task has to be found on the screen
and brought to the front.

With the typical early 80’s display resolution (640 x 480)
it was not possible to display two page-sized documents on
the screen simultaneously. Overlapping windows came as
a solution to the small-screen problem by allowing more
windows to be open simultaneously.

Resolutions like 1280 x 1024 are quite common these days,
which is roughly four times the 80’s resolution. Besides
the resolution, display speed increased as well, which made
sophisticated animations feasible. Animations in windowing
systems help users to understand the result of operations and
decrease the cognitive load.

With advances in computer technology, more demanding
applications come into existence. Computer-Aided Design
(CAD), and Computer-Aided Engineering (CAE) are typi-
cal multi-window applications. In these applications, it is
typically necessary to open many windows displaying si-
multaneously different parts or representations of the system
under design. With the increase in the number of windows,
visualizing simultaneously all the necessary information for a
task became difficult. As the number of windows per task in-
creases, task-switching becomes more time-consuming since
more windows need to be opened/closed or moved/resized
under the independent overlapping windows approach. Due
to the independence of windows, each window must be oper-
ated separately. Longer delays due to housekeeping further
increase task-completion time because of the loss of users’
mental task context, which implies a non-linear cost curve
as the number of windows per task increases. Contents of
short-term memory are not only affected by the time that
passes, but also by the type of work carried out during that
time period. Window housekeeping is an activity related to
the computer domain and not to the users’ task [17]. Thus,
time spent on window management substantially increases
the disruptive effect on the short-term memory.

Multiplicity of actions is one mechanism to improve perfor-
mance. Use of regular expressions, wild-cards, and aliases
are some of the ways to accomplish multiplicity in tradi-
tional command languages. In recognition of the need for
multi-window operations, some windowing systems, like X
Windows, introduced a limited parenthood relationship. With
a single action families of windows can be opened or closed.
However, the multiplicity of window operations in current
systems is limited.

Bly and Rosenberg [3] characterized the requirements of
multi-window systems as the ability of the windows to con-
form to their contents and the ability of the system to relieve
the user of window management.

On the basis of the problems discussed, we have updated
these requirements:

o support multi-window operations to promote organization
and coordination of windows according to tasks.

o allow fast task-switching and resumption.

o free users’ cognitive resources to work on task related op-
erations rather than to window management operations.

o use screen space efficiently and productively for the tasks.
e allow fast temporary window arrangements.

Systems developed to address some of these requirements are
described in the Related Work section at the end of the paper.

BASIC PRINCIPLES OF ELASTIC WINDOWS

Our method is based on three principles: hierarchical window
organization, space-filling tiled layout, and multi-window op-
erations.

Hierarchical window organization supports users structuring
their work environment according to tasks. The hierarchi-
cal organization of windows allows users to map their task
hierarchy onto the nested rectangle tree structure. Window
operations can be applied at any level of the hierarchy, which
makes multi-window operations possible. Operations are is-
sued to the root of a subtree of windows, where changes due
to the operation are propagated to lower-level windows in
that subtree e.g. groups of windows can be minimized, and
resized together. Typically, people organize papers on their
desk as piles, and move all of them simultaneously. Hierar-
chical organization and applicability of window operations at
any level allow rapid task-switching, even when the number
of windows is large.

We have chosen the tiled window layout as our window or-
ganization style. Although it is possible to present windows
visually as a hierarchy in the overlapping window layout us-
ing some form of cascading, we have found tiled layouts
more suitable for the purposes of satisfying the requirements.
In tiled layouts, hierarchies of windows can be easily rep-
resented by the borders surrounding the subwindows. Sub-
windows at the same level in the hierarchy can be placed ei-
ther horizontally adjacent, vertically adjacent, or mixed (Fig-
ure 1). This feature allows some flexibility in the placement
of windows under the same hierarchy and allows windows
to conform to their content. The content of windows is an
important constraint on which users determine the shape and
size of windows.

-a- -b- -Cc-

Figure 1: Example layouts of sub-windows in a two-
level hierarchy: a) Horizontally adjacent b) Vertically
adjacent c) Mixed

As Cohen et al. [7] stated, overlapping window layouts are
difficult to handle when large numbers of windows must all
be visible at once, and they come and go rapidly. Tiling is
especially useful for applications that generate a large number
of short-lived windows [7].

We have taken a space-filling tiled approach, called elastic
windows, in order to use screen space productively, avoiding
the wasted background of the overlapped windows approach.
Groups of windows stretch like an elastic material as they are
being resized, and other windows shrunk to make space.

We claim that multi-window operations decrease the load
on the cognitive abilities of users by decreasing the number
of window operations. Operations like multi-window open,
close, hook, pump, minimize, restore, move, and relocate
enable users to change the window organization quickly to
compare, filter, and apply the information.

Resize operations like hook and pump help the user to com-
pare information in separate windows; move and relocate
operations enable fast organization of windows to quickly
changing demands; minimize and restore operations help the
user to filter-out unnecessary information as well as enabling
fast task-switching. Our system takes advantage of spatial
memory, which is important for remembering the window
contents. Thus minimized windows are shown in the same
position with reduced size. Minimized windows also remind
users of unfinished tasks. It is possible to restore a group of
windows rapidly and easily by a single operation to their pre-
vious sizes. The Restore operation helps users to reconstruct
their previous working environments easily.

THE ELASTIC WINDOW

In addition to the window contents, each elastic window con-
sists of borders surrounding the content area from four sides,
a title on the upper border, and a gadget to the left of the title.

The gadget is used to invoke a menu for some of the window
operations, whereas the borders are mainly used for resize
operations. Basically, the border is dragged using the mouse,
until the appropriate size is reached. Immediate visual feed-
back is provided during the operation using animations that
slowly stretch the border. The corners of the border are used
for diagonal resizing, while the rest of the border is used for
one-dimensional resizing.

Borders are also used to indicate hierarchical groupings of
windows. Border coloring gradually changes according to
the level of the window in the hierarchy to make groupings
recognizable. Border thickness is important since deep nest-
ing may result in more space being used for borders instead
of useful information. During our design, we have found that
borders as thin as 3-4 pixels are easily operable.

The effect of changes in window size on the content depends
on the application. For example, upon down-sizing a window
used for viewing a document, it might be preferable to see the
same content but with smaller font sizes; but when designing
a system in a CAD system, keeping the same zooming factor
and clipping might be preferable. When clipping is used,
facilities like scrollbars are needed to move the viewing area.
Similar arguments can be made for other content types like
images and icons. The choice is made by the application
program, based on users’ preference. The action is initiated
when the window manager sends a window size update.

Only windows at the leaf level contain information. Windows
at higher levels are containers for their children windows.

Users can set the minimum window size. Even when the
window is so small that its contents are not fully visible, it
still gives users some information about its content because of
the spatial placement and reminds users of unfinished tasks;
and it can be enlarged rapidly and easily if needed.

ELASTIC WINDOW OPERATIONS

The elastic window operations, which allow simultaneous
changes to multiple windows are:

¢ Open/Close o Minimize/Restore
o Resize ¢ Move/Relocate
Open/Close Operations:

With the open operation, the window contents can be deter-
mined either prior to or after the operation. In the former case,
the window contents, selected before, are displayed as soon
as the window is opened, whereas in the latter case an empty
window is opened, which can be used either as a container
for subwindows or its contents can be filled by users.

A new window can be opened by double-clicking on the
border of an existing window or by selecting from the menu.
Double-clicking on a border causes the existing window to be
pushed according to the position of the border to open space
for the newly created window.

1S Bk 8l |

Figure 2: Mail-tool example: a) initial screen b) Multi-
open operation

Select-drag-drop can be used to achieve multi-open opera-
tion. First, data objects are selected from other windows,
dragged, and then dropped in an empty window, causing as
many windows, all in one group, to be opened as the car-
dinality of the selection. Each such window contains some
information related to the data object e.g. a detailed view or
another representation. Since all these windows are opened
in one group, it is also possible to close all of them at once.
For example, this feature can be used in the mail-tool appli-
cation (Figure 2) to view all incoming mail messages from a
person with a single operation. The new messages are shown

[Approach [Resize | Open | Move |
Independent 17 3 >9
Elastic 1 1 0

Table 1: Comparison of the number of window opera-
tions in the Mail-tool example

iconized in the left window. Old messages are displayed
as icons, grouped hierarchically in separate windows on the
right. First, the user opens an empty window to the left of
the OldMail Window by double-clicking on the left border of
the OldMail Window. The available space is partitioned to
windows at the same level according to their sizes before the
operation. The new window has the same size as the Old-
Mail window. When the user selects the icons, representing
incoming messages, from the NewMail Window, drags and
drops them into the empty window all of the windows con-
taining messages are opened at the same time. Comparison of
the elastic windows approach with the independent overlap-
ping windows approach in terms of the number of operations
in this example is shown in Table 1.

When the Open operation is selected from the menu, a sub-
window is opened inside the existing empty window. This
way hierarchical windows can be created on the fly.

A window is closed by selecting the Close operation from
the menu. When a window is closed, the freed space is
partitioned to other windows at the same level proportional
to their previous sizes. The Close operation can also be
applied to windows at any level of the hierarchy. Closing a
higher level window will close all its subwindows as well.

Resize Operations:

There are two kinds of resize operations: Pump and Hook.
While the effect of the Pump is time-dependent, the Hook
operation requires the user to drag on the border of a window.

The Pump operation can be invoked by selecting Pump from
the menu and then pressing either the left or right button of the
mouse either on the border or inside the content area of a win-
dow. Pumping of windows at higher levels in the hierarchy
can be done by pressing only on the border. Pressing the left
(right) button causes window size to be enlarged (reduced) in
all directions according to the duration of press.

Hook operations are activated by pressing a mouse button on
the border and then dragging the mouse until the appropriate
size is reached. Both unidirectional and bidirectional hook
are possible which work either horizontally, vertically, or
diagonally. In bidirectional hook, both the borders resize by
the same amount.

Resize operations also affect other windows on the same level
of hierarchy. They result in either a push or pull depending
on the border dragged and the direction of drag (Figure 3). In
3.a, Window C pulls windows A and B, since the left border of
Window C is dragged to the right. In 3.b, Window B pushes
windows C, D, and E, since the right border of Window B is
dragged to the right. Windows not affected are grayed in the
figure.

-a- -b-

Figure 3: Effect of resize operations on other windows:
a) Pull effect b) Push effect

When the size of a higher level window changes, the effects
of that change are propagated down the root of the subtree
to lower-level windows. New sizes for these windows are
calculated proportional to their previous sizes. Users of our
prototype system found these operations to be comprehensi-
ble and even fun.

Minimize/Restore Operations:

Windows at any level of the hierarchy can be minimized by
selecting from the menu. Windows minimized appear in the
same location, but with only their title shown in a rectangular
region. Figure 4 shows the results of three Minimize oper-
ations made on the original layout in 4.a. Figure 4.b is an
example of horizontal minimization, whereas 4.c is an exam-
ple of vertical minimization. Figure 4.d shows the result of
the minimize operation applied to windows at a higher level.

Figure 4: Minimize operations: a) Initial Layout b) Win-
dow B minimized c¢) Window A minimized d) Window C
minimized

A minimized window can be reopened with its previous size
by the Restore operation. The Restore operation is invoked
by double-clicking on the minimized window.

The Minimize operation is primarily used to abandon a task
for a while and open up space for other tasks. The minimized
window can be reopened with a single Restore operation with
the size before the operation. Hence, Minimize/Restore op-
erations allow fast task-switching and resumption. A similar
effect could be achieved by resizing the windows to very
small sizes. Later, these windows can be resized to their
original size to continue with the work abandoned.

Move/Relocate Operations:

The Move operation changes the position of a window or
hierarchy of windows without changing the size. This opera-
tion can be visualized as shifting a window without changing
its position relative to its siblings. The Move operation is
accomplished by dragging with the middle button pressed
(Figure 5.a).

Figure 5: Move/Relocate operations: a) Window D
moved down b) Window E relocated to the right of
Window C

The Relocate operation is used to relocate a window or group
of windows to any position in the hierarchy. The Relocate
operation is accomplished by first selecting from the menu
and then double-clicking on a border as in the Open oper-
ation (Figure 5.b). Minimized windows can be moved and
relocated as well.

SCENARIOS

Personal Role Manager:

The Personal Role Manager (PRM) provides users with a
role-centered environment, where people can structure the
screen layout and the interface tools to match their roles [18].
The goal is to simplify and speed the coordination of tasks.
Thus, fast access to partners, schedules, tools, and documents
regarding each role, and fast switching between roles is a
requirement of PRM.

Elastic windows can be used in the design of PRMs. In Fig-
ure 6, two snapshots of the PRM of a student are shown. This
student has a number of other roles like the organization of
a birthday party, home duties and job responsibilities. As
shown in Figure 6.a, this student is working on two projects
at work, and takes two classes this semester. Documents,
partners, and tools for each role are displayed in a hierar-
chical organization. Windows for the student role are on
the left, while windows related to the job are on the right
below the windows for birthday organization and home du-
ties. Comparison of the elastic windows approach with the
independent overlapping windows approach in terms of the
number of operations is shown Table 2.

Emw

tar

geEditor subclass declor

closs wInmeetitor : public vinageedte (

plic,
/4 naxea for ouerrides from vkisdiged
WdndTYPED_FLEL_DECLARATIOM(MyLnogeEdi tor),

*MyDbialog suxlus decloration

i closs mosatog . peiic vatatos |

7/ mocro far the stondord versions of the

L
I -xu ':-vmw Tides fr 7" r.clnwu,:v-ln‘lnri and deslruciors

tuped
L nm.mum(w log),

77 virtusl mesber function owerrides
void Obser veapplytnoge(vinoge xinoge);

77 mxro for definittons of vidndtyped overrides | B
NdTYPED_FULL_DEFTRITION (Wylmmeedior, vieage] [

/4 maxra for the stondord versions of the
7/ racessory canstructars ond destry
Vloodoh] eIN.IHE. m-:veu(mnlq "~ vdtatog),

7/ virtual aewwr function overcides

vo1d clase(void),

virtual 1nt ondieeut tondoun(vevent aevent),
virtual int undisout tonup(vevent revent),

il - *HWyDtiaolog micloss decloation

Bl 7/ nacra for detinitiom of vidndtiped overrides
fif viindrerep i _DeFINzIon(mpichog, veialog, WAL,

Figure 6: PRM Example: a) Initial Screen b) Focus on
class report and project

| Approach [| Resize | Open | Minimize | Move |
Independent 6 2 16 >6
Elastic 2 2 4 0

Table 2: Comparison of the number of window opera-
tions in the PRM example

Window layout can give an overview of roles, as well as be
customized according to personal preference. In Figure 6.b,
the layout has been customized to enable the student to ref-
erence the code in Network class, while working on the code
for Multimedia project at work.

With the use of multiple window operations, as well as resize,
minimize, and restore operations, users can focus on their
roles rather than arranging windows. Fast switching among
roles enables users to work at their own pace, with minimum
distraction due to window housekeeping.

Programing Environment:

Programmers typically need to reference different parts of
the code, such as data declarations, procedure declarations,
bodies, invocations, and the main program as well as the doc-
umentation regarding its structure like charts, and execution
diagrams. The Edit-Compile-Run-Debug cycle is repeated

many times during program development. During the Edit
phase, when some part of a program needs to be referenced,
typically programmers search to find the right place. When
considering a change that would affect many parts of the
program, cognitive effort is exerted to remember how that
change might affect different parts of the code. Since man-
aging many windows is difficult, typically two windows are
used, for example one containing the procedure body, and an-
other, called the reference window, to view the invocations of
that procedure in different parts of the program. The search
in the reference window is made sequentially forcing the pro-
grammer to remember code seen earlier while deciding on
the effects on the current position.

With the use of multi-window operations, it may be possible
to improve the efficiency of program development. At this
phase of the development of our system, only the window
operations have been implemented with no connections to
applications. To better describe the uses of the system, we
inserted the images of the debugger, compiler, and charts into
windows in Figure 7.

Initially, the screen contains windows for the code of the data
declarations with its chart below, the code of a procedure
above the organization diagram of the program, and debugger
and compiler windows above the window of the application
with its output (Figure 7.a). When an error is detected in a
procedure during debug phase, a multi-open operation can be
issued to view all the invocations of that procedure. There are
anumber of ways todo this. One of the possibilitiesis to click
on the procedure name which pops up a menu of functions.
Upon selecting the Open Invocation Locations function, all
the segments of the program calling that procedure are piaced
in separate windows all in one group (Figure 7.b). This
layout helps users in making the decisions concerning the
change, since all five references are shown on the screen at
the same time. The windows containing the code for the data
declarations and its chart have been minimized. Since both
of these windows are in one group, only a single Minimize
operation is made. Similarly debugger, compiler, application
and output windows are all minimized with a single Minimize
operation for better visibility. It is possible to concentrate on
each of these invocation locations one at a time, by the use
of bidirectional vertical hook (Figure 7.c). Switching interest
between these windows is possible by the use of the resize
operations. Once the decisions concerning the change have
been made, all reference windows can be minimized with a
single operation since they are all in the same group. Later,
when editing the planned changes in the procedure body part,
all these reference windows can be reexamined by a single
Restore operation.

By the close interaction of an application with the window
manager as in the multi-open in this example, dramatic im-
provements can be achieved in the users’ performance. This
example also demonstrates the use of multi-window opera-
tions to reduce the burden of window management and the
use of the Minimize/Restore operations to allow easy task-
switching.

7% VARIABLE DECLARATIONS 7 LeadGeneralspace A+ Debugger

f ¥’
Mybialog “mybialog; void LeadGeneralsSpace()
{

cun'la‘lo? "tub‘la'lo* e vinage “TempInage;
NameDialog “nameDialeg; I vicenviewIcon “TempXcon;
MyTimer nyTime

) TenpInage = new vimage(BlankpaperinageRasource);
windowItem »0TdWI; FERH Templcon = (viconviewIcom *) new viconviewIcon();
windowCollection *Mywe; Templcon->setinage(CIvV->Getview(), TempInage);

TanpIcon->satNane((vchar =)("Pwlrs") f;

veurssr * lmd(urs.r' BlankPaperIcow = TempIcon;
voursor ~badcur:
veurser "originﬂcursor, GIV ->AddIcon(TenpIcon);
TempImnage = ne vimage(TrashImageResource);
void *SELECTED = NULL; TempIcon = (viconviewIton *) neww viconviewIcon();
int SELECTEDTYPE = 0; Templcon—>SatInage(GIv->Gatview(), Tomplmam),
int SELECTEDNIM = 0 i Tenplcon->SatNane((vchar *)("Trash"));

H Trashlcon = TempIcon;

vispath *path;
int Tracklp, TrackDelta, (4474 —>Alldl(on('renpuon),

TrackDaltaX, TrackDeltay, H TempInage = L

TrackDeltaz, TrackMotion; Templcon = (vitnmimuon ") new viunvi-ulton().
int T = -t : TenpIcon—»SetImage(GIV->GetView(),TempImage);
int OLDX, OLDV; TampIcon->setNane((vchar *)('My Mai'lhu:".?:

B o e oot

MyMailicon = TenpIcon; . "
int 1ra(lm|g = 0; it 31 Show "y & %w
}n “ tick G -MM!cnn(nnguonz. - 5; € th Sh 45 @éuﬂmw }
nt lsnou actick = 0; TenpInage = nev vinage(MailBoxInageResource); . ey

Tenplcon = {viconviewIcon *) new viconviewIton(); Slice; a I_ﬁm_\f
UpDomainview ~<tpDC; Tenplcon->setinage(CIvV->Gatviow(), TenpInage); .
CownDomainviaw **DownbDC; TenpIcon->satNane((vchar ~)("'US Fost* g N
LeftDomainview “*LeftDC; MailBoxIcon = TempIcon;
Rightoonaimview =~RightDC;
ZoomButton “~ZBC; 3 Iy ->Addicon(TenpIlcon);
TempImage = new vimage(BlankenvelopeInageResource); K Tak: 20

wdamainnhdace xXUnnhdarve e N

TempIcon = (viconviawIcon %) paw viunvi-ml:on():

MBR 'Flmld: 87

RS-

N
H

Master Control H ¥:

wideks ¢

e - OMTE) schervaccrian - SeTTaresersd),
Laprlletiathertont sttt

i o premeenrimr
-m
vt > sttt A S
Fiiimemrr et ol] — e e [P
T i R P om Wy TR M,

e et wrmttties o> Geslmctise,beter D | | T3 cersatacHasO. o

Tmaprase < s vinson(oloms s sogeanonr
R gt et 1)
Lt R g
befter = mr vehar V) e el 7

Sihwtac ™ mttael aupurisivie s Gatsalachion) iemtstiacr o
et serte ;) P it]

7}

e)
e e
BRI L

IS,
: S

T L v ttcroncasviar -+ corsatec fomegorlge ot FUNTR oA ooktact, sasmah 4ct) sasinspssanerce)
A i Tuctienty T e T iraatee ’“ 1o :5"' e Drcan,
Tt > rkaaN orkar o rrodk T eles o et ot cnen sty tns ke STk B -
R s Tenli H

i
: [— " . pe o
; sty 55 rtaarstactye catstd, e cavOD -
R T TR it Ay e L - sty o s & _0.“"""'.,..--,..4>
o e e B e it steen e, LG St eog st
st e e e T e S
3 Saciovent - \ H ian + Tavosc = el CEY 3™ i icen + Torwiive, .
b "',...."“‘."’..,: a3 o nariestrae emtone o OWTarTVim =) st WyTeio)] o e, N
T pvetsopmsencat: Tt + epmheimce) H
ipppmgiinDy s e cewon i e o i RO ey i H
4 e esmra)T gt > et Tl U T S Tty i
; achstaty st} p st L PR e, e et H
prit o ey B i e P o H
2 av el hgremac Dais st matmly H
S e fad—g Yoo Mttt Toneiaas e vinopoth bt opesnopetesewcads H
LR A P A — b Badgeyerispyy R gl P b

Tastsata = OwTmt *) Cvatterties - ST}
e i,

ittt T atacciaal ((ALt UL) cselictienl
i

- risdion “N(Hirrames “Kormtiton > Giseta)) -1 deth
rratimrie - GeTae e O o dote)

ovtsats < fmna o) cavestiti s anmiota);

VT (viatemttm
Pyt
R

-b- -

Figure 7: Programming Environment Example: a) Initial Screen b) Multi-open operation to see invocations c) Bidirectional
vertical Hook to create larger window

0. PEND 1t

Figure 8: An Example Hierarchical Menu Organization: a) Layout for novice use b) Layout displaying advanced menu
items for frequent users

Menu Organizer for Complex Applications:

A typical problem in complex applications with hundreds of
menu items is the organization of these items to enable fast se-
lection. In complex applications, users also have difficulties
in understanding the set of available and/or currently appli-
cable items. The usual nested menu structure falls short of
giving the user an overview of items. As the number of items
increases, it becomes hard to find the path to an item. This
is commonly referred as the navigation problem. Short-cut
key combinations come as a solution, but they are useful only
for expert users. The problem in the nested menu structure
is caused by the fact that only the highest level items and the
current path are displayed.

Our design principles are also applicable to this problem.
With the hierarchical layout, it is possible to give the user
an overview of the menu items available in the system. Us-
ing color coding, the current set of applicable items can be
shown. With the use of Minimize and Restore operations,
users can configure the organization of the items according
to their preference and the task. Thus, commonly used items
can be accessed with a single click no matter how deep in
the hierarchy they are. Figure 8 shows two snapshots of the
hierarchical organization of 97 items in a commercial CAE
package.

RELATED WORK

The Rooms system [10] uses multiple virtual workspaces,
where the overlapping window strategy is used in each of
these single-screen workspaces. Each task is devoted to a
workspace, where users can switch to other tasks using ei-
ther the overview or the doors between workspaces for rapid
transitions. Basically, the Rooms system tries to overcome
the problems due to the increase in the number of windows
by increasing the total screen space, by introducing multi-
ple virtual workspaces, and by techniques which allow fast
switching between workspaces. Also, it allows users to or-
ganize tasks into workspaces, where all windows belonging
to a single task exist. Windows belonging to a task are re-
stricted to fit in a single screen. Although it is possible to
partition tasks into subtasks and place each subtask in dif-
ferent workspaces and utilize doors for efficient transitions
between these workspaces, users can easily lose task context
since information for a task is distributed to multiple screens.
There is no mechanism which allows multi-window opera-
tions. Tasks are restricted to fit in a two-level hierarchy: the
overview level, and the workspace level.

RTL/CRTL [7, 8] uses constraint-based tiled window strat-
egy without hierarchy. Window management is based on
constraints on the presence, size, location, adjacency, align-
ment of windows, and degree of automation. Constraints
generally make systems harder to learn; simple general rules
with no exceptions are preferable.

CIWM [9] uses automated window management for win-
dow creation, sizing, placement, removal, and organization,
though user overrides are possible. The hybrid window layout
strategy is used, where the system tries to position windows
with no overlaps. In certain situations, however, overlaps are
allowed. Although automatic strategies in window manage-

ment relieve the burden of window management, direct user
control is preferable as in most HCI artifacts.

Xerox/Star and Windows 1.0 also used tiling, but hierarchical
organization and multiple operations were not provided.

CONCLUSION

We have attempted to determine the extended requirements of
multi-window systems adjusted for today’s applications and
technology. Characteristics of modern applications demand
more functionality than what is available in today’s window-
ing environments. Multi-window operations, organization
of windows by tasks, and capability to handle frequent task-
switching without demanding extensive cognitive abilities
are some of the requirements of future windowing systems.

Elastic windows is a space-filling hierarchical tiled approach
that we believe satisfies the requirements. A prototype has
been developed with the window operations and the orga-
nization of windows by tasks implemented. More work is
needed on the interaction with the applications to make it
a general window manager. Coordination of windows by
task, like synchronized scrolling, hierarchical browsing, and
direct selection, will be studied. Both the usability of the
window management operations and their comprehensibility
need experimentation, but users are attracted to the playful
animations of elastic window interactions. The use of elastic
window management method as a navigation technique for
hierarchical menus warrants further research.

ACKNOWLEDGEMENT

We appreciate comments from Catherine Plaisant during the
project. We are grateful to Kent L. Norman, Charles Goodrich,
Gary Marchionini, Khoa Doan, Brett Milash, Kasim S. Can-
dan, and Egemen Tanin for their comments on the draft of this
paper. This research is supported by a grant from the National
Science Foundation under Grant No. NSF EEC 94-02384.

REFERENCES

1. Asahi, T., Turo, D., Shneiderman, B., Using treemaps
to visualize the analytic hierarchy process, to appear in
Information Systems Research, (Sept 1995).

2. Bannon, L., Cypher, A., Greenspan, S., Monty, M. L.,
Evaluation and Analysis of Users’ Activity Organization,
Proc. of the CHI’83, Human Factors in Computing Sys-
tems Conference, ACM, New York, NY, (1985), pp. 54-57.

3. Bly, S., Rosenberg, J., A comparison of tiled and overlap-
ping windows, Proc. CHI ’86 Conference - Human Fac-
tors in Computing Systems, ACM, New York, NY, (1986),
pp- 101-106.

4. Bury, K. F, Davies, S. E., and Darnell, M. J., Window
management: A review of issues and some results from
user testing, IBM Human Factors Center Report HFC-53,
San Jose, CA, (June 1985), 36 pages.

5. Card, S. K., Pavel, M., and Farrell, J. E., Window-based
computer dialogues, INTERACT 84, First IFIP Con-

ference on Human-Computer Interaction, London, UK,
(1984), pp. 355-359.

6. Card, S. K.,Henderson, A., A multiple virtual-workspace
interface to support task switching, Proc. CHI '87 Confer-
ence - Human Factors in Computing Systems, ACM, New
York, NY, (1987), pp. 53-59.

7. Cohen, E.S., Smith, E. T., Iverson, L. A., Constraint-based
tiled windows, IEEE Computer Graphics and Applications
6, 5, (May 1986).

8. Cohen, E. S,, Berman, A. M., Biggers, M. R., Camaratta,
J. C., Kelly, K. M., Automatic strategies in the Siemens
RTL tiled window manager, Proc. IEEE 2nd International
Conference on Computer Workstations, IEEE, Piscataway,
NI, (1988), pp. 111-119.

9. Funke, D. J.,, Neal, J. G., Paul, R. D., An approach to
intelligent automated window management, International
Journal of Man-Machine Studies 38, (1993), pp. 949-983

10. Henderson, A., Card, S. K., Rooms: The use of mul-
tiple virtual workspaces to reduce space contention in a
window-based graphical user interface, ACM Transactions
on Graphics 5, 3, (1986), pp. 211-243.

11. Lifshitz, J., Shneiderman, B., Multi-window browsing
strategies for hypertext traversal, Proc. 30th Annual Tech-
nical Symposium of the Washington, DC Chapter of the
ACM, (1991), pp. 121-131.

12. Malone, T. W., How do people organize their desks?
Implications for the design of office automation systems,
ACM Transactions on Office Information Systems, 1, pp.
99-112.

13. Myers, B., Window interfaces: A taxonomy of window
manager user interfaces, IEEE Computer Graphics and
Applications 8, 5, (September 1988), pp. 65-84.

14. Norman, K. L., Weldon, L. J., Shneiderman, B., Cog-
nitive layouts of windows and multiple screens for user

interfaces, International Journal of Man-Machine Studies
25, (1986), pp. 229-248.

15. Plaisant, C., Shneiderman, B., Organization Overviews
and Role Management: Inspiration for Future Desktop En-
vironments, Proc. IEEE 4th Workshop on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises,
(April 1995).

16. Plaisant, C., Carr, D., Shneiderman, B., Image browsers
taxonomy and design guidelines, IEEE Software 12, 2,
(March 1995), pp. 21-32.

17. Shneiderman, B., Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction: Second
Edition, Addison Wesley Publ. Co., Reading, MA, (1992),
Ch.9.

18. Shneiderman, B., Plaisant, C., The Future of Graphic
User Interfaces: Personal Role Managers, People and
Computers IX, Cambridge University Press, (1994)

