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Salmonella and other pathogenic organisms that infect poultry and other livestock can 

originate from feed or the environment.  Technologies to control Salmonella infection 

in poultry are important measures taken to reduce turkey and poultry production 

losses.  A study was designed to determine extrusion conditions that optimized 

microbial inactivation in feed using the Extru-tech E325 single-screw extruder.  

Bacillus stearothermophilus was selected as the indicator organism after no viable 

cells of Salmonella typhimurium were detected when 28.5 % moisture content mash 

feed (wet basis) was extruded at 83 oC extruder barrel exit temperature with a 7 second 

feed retention time in the extruder barrel. Spores of  B. stearothermophilus inoculated 

into a standardized feed formulation consisting of 60% corn meal, 30 % soybean meal, 



 

 and 10% animal protein blend, by mass, respectively, was used to investigate the 

effect of 3 extrusion variables on microbial inactivation. The 3 variables were extruder 

barrel exit temperature (T), mash feed moisture content (Mc), and mean retention time 

of feed in the extruder barrel (Rt).  A rotatable central composite statistical design was 

used with 3 factors and five levels. The quadratic response surface model fit to acid 

producing, thermophilic organisms and artificially inoculated Bacillus 

stearothermophilus spore inactivation data was used to predict extrusion conditions 

that maximized inactivation.  The response surface indicated a stationary point within 

the design region that was a saddle at T = 81 oC, Mc = 27.6 % wet basis (wb) and  

Rt = 8 s resulting in 0.170 log cycles of acid producing, thermophilic organisms and B. 

stearothermophilus spore inactivation.  An estimated ridge of maximum inactivation 

showed a maximum of 1.03 log cycles at T = 110 oC, Mc = 24.5 % wb and Rt = 11 s. 

Because the least severe extrusion conditions (T = 83 oC, Mc = 28.5  % wb and Rt = 7 

s) completely inactivated S. typhimurium in the standardized feed, it was speculated 

that all S. typhimurium cells would be inactivated at any set of extruder conditions 

within the central composite design region. 
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1. INTRODUCTION 
 
Under certain conditions of ambient temperature and humidity, contamination of 

agricultural commodities with microorganisms is unavoidable.  Decontamination 

techniques must then be considered for such products.  Molds and bacteria such as 

Salmonella, Bacillus spp., Listeria and pathogenic Escherichia coli often contaminate 

grain, feed ingredients and animal feed.  These microorganisms are transmitted to 

livestock through consumption of contaminated feedstuffs (Wyatt, 1995) and 

ultimately affect the human food supply (Cox et al., 1986).  

 

Some of Salmonellae cause diseases that have adverse financial implications on the 

poultry industry; poultry and other livestock are considered important sources of 

Salmonellae species that cause human Salmonellosis (Ekperigin et al., 1991). In a 

study to investigate the feasibility of producing and maintaining Salmonella-free 

turkeys, Pomeroy et al. (1989) reported that contaminated feed might have been the 

source of Salmonella contamination in the turkey breeding stock that had been 

Salmonella-free for over three years. The United States Advisory Committee on 

Salmonella reported that production of Salmonella-free feed is dependent on 

determination of optimum combinations of temperature, heating time, and moisture 

content of the feed that will kill Salmonellae contained in the feed.  Providing 

Salmonella-free feed is considered an essential part of efforts to control Salmonella in 

poultry (Liu et al., 1969). 
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Pomeroy et al. (1989) reported that measures to control production losses related to 

Salmonella infections in turkey operations in the United States cost about $10 million 

yearly. Contaminated feed, eggs and the environment are the main sources of 

Salmonella infection in poultry (Ekperigin et al., 1991).  As few as one colony-

forming unit of Salmonella per gram of feed is all that is required to initiate infection 

in poultry feed. In order to eliminate Salmonella from poultry flocks, it necessary to 

raise poultry on Salmonella-free feed (Schleifer et al., 1984; Liu et al., 1969).   Lieu et 

al. (1969) further observed that optimum combinations of temperature, heating time 

and feed moisture content required to kill the Salmonellae in feed during processing 

may be defined, but there were no equipment that can achieve the desired 

temperatures under practical conditions.  Combinations of extrusion or pelleting 

conditions used in the manufacture of feed vary widely and are often not carefully 

controlled; the moisture content of feed required to produce a desired pellet quality 

varies with the feed formulation (Levine, 1992).  

 

It is recognized that excessive heat application can reduce the nutritional value of feed 

and drugs as well as increase the cost of heating, adding moisture, subsequent cooling, 

and drying. The heat energy input for manufacture of feed should be minimized as 

long as it produces a nutritious and pathogen-free product. 
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2. LITERATURE REVIEW 
 

2.1 Effect of Thermal Processing on Feed Microorganisms 

 

Ekperigin et al. (1991) examined raw and processed poultry mash feed for Salmonella 

and other enteric organisms as a means of evalulating the efficiency of a new pelleting 

process in destroying microorganisms.   The new pelleting process, thoroughly mixed 

poultry mash with steam and other hot gases in a vertical conditioner before pelleting. 

The hot gases were generated by direct combustion in an evaporator. Salmonella was 

not isolated from pelleted mash feed in any of the samples examined. In assessing the 

dissemination of Salmonella from hatchery to the broiler farm and from the broiler 

farm to the processing plant, Bhatia and McNabb (1980) reported that properly 

pelleted feed did not seem to be an important source of infection.  In a survey of the 

Dutch feed industry, Veldman et al. (1995) reported that mash feeds were more (21 %) 

frequently contaminated than pelleted feeds (1.4%). Of the feed ingredients examined, 

they found fishmeal to be the most frequently contaminated (31 %) followed by corn 

grits at 27 %.  They also showed that thermotrophic Enterobacteriaceae were useful 

markers of the rate of contamination of feedstuff with Salmonella as well as the 

efficiency of decontamination by pelletization.  In studies to assess the feasibility of 

producing Salmonella-free turkeys, Pomeroy et al. (1989) reported that when pelleted 

feed with no animal protein products except fish solubles was given to flocks of 

turkeys over a period of about 11 years, no Salmonellae were isolated from the feed on 

the farm.   
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Likimani et al. (1990) observed that extrusion cooking could be used as a 

decontamination process.  It also destroyed microorganisms in products that were 

rehydrated before consumption such as reconstituted drinks. 

 

Chemical composition as well as the particle size of a feed formulation may affect the 

thermal susceptibility of feed microorganisms (Lui et al., 1969). The authors further 

observed that the virulence of Salmonellae surviving thermal processing that reduces 

their population by several logs might be greatly decreased. 

 

In conducting studies to examine the destruction of liquid or freeze-dried spore 

suspensions of B. stearothermophilus during extrusion processing of a starch-protein-

sucrose biscuit mix using a twin screw extruder, Bouveresse et al. (1982) and Van de 

Velde et al. (1984) observed 5 to 8 log10 reductions in spore populations at 

temperatures between 150 and 180 oC.  In studies directed at examining the potential 

for bacterial spore injury during extrusion cooking, Likimani et al. (1990) extruded an 

18 % moisture corn and soybean (70 and 30%, w / w) mix inoculated with viable 

spores of B.  globigii.  They used a single screw extruder with the barrel temperature 

in zone 1 of the extruder maintained at 80 oC while varying the temperature in zone 2 

from 100 to 120 and 140 o C, mass temperatures. The extruder was operated at two 

mass residence times of 25.5 and 11.2 s. The authors reported injury to B. globigii at 

100 o C as indicated by the reduced recovery of viable spores by the minimum growth 

requirement medium-1. They observed extensive spore destruction at 120 and 140 o C 

with no detectable spore injury; similar numbers of spores were detected with all 
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culture media. Further, Likimani et al. (1990) concluded that extrusion cooking under 

those conditions was an adequate heat activation treatment and that additional heat 

shocking might have served only to damage the spores. Recovery of injured spores 

required the inclusion of additional nutrients beyond those found in the minimum 

requirement medium. In addition, heat shocking for spore activation after extrusion 

was unnecessary before enumeration. 

 

 

2.2 Bacillus Species 

 

Spores are the dormant form of bacteria that allow them to survive unfavorable 

environmental and nutritional conditions (Leboffe and Pierce, 1996).  Bacterial spores 

may be located in the middle of the cell, at the end of the cell, or between the end and 

middle of the cell; they are resistant to heat and chemicals. Leboffe and Pierce (1996) 

also noted that Bacillus and Clostridium are among the few genera of bacteria that 

produce spores.  

 

 

2.2.1 Cell Wall Structure 

 

All vegetative cells of spore-forming bacteria are Gram-positive (Foster, 1994).  The 

cytoplasmic membrane of a vegetative cell is surrounded by a 20-50 nm thick cell wall 

composed of 40 % or more peptidoglycan (Shockman and Barrett, 1983). A mature 
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dormant endospore is surrounded by a thick cell wall consisting of an inner and outer 

layer of peptidoglycan namely the primordial and spore cortex, respectively (Figure 

2.1) (Foster, 1994).  In the primordial cell wall, most muramic acid residues in the 

peptidoglycan are substituted with a peptide side chain. In contrast, approximately 

50% of the muramic acid residues in the peptidoglycan of the spore cortex are present 

as muramic acid delta-lactam (Warth, 1978; Foster, 1994). 

 
 
 

Core 

Primordial 
cell wall 

Cortex 

Coats 

 

Figure 2.1.  An illustration of a mature dormant spore of Bacillus species. 

 

2.2.2 Mechanisms of Resistance to Heat Damage 

 
Spores are much more resistant than their vegetative cell counterparts to a variety of 

environmental stresses, such as heat, chemicals and radiation (Setlow, 1994).  Optimal 

growth of spore formers, spore protoplast water content, specific mineral content, 

temperature of sporulation and cortex size are key parameters that can be used to 

predict heat resistance of spore formers (Gerhardt and Marquis, 1989).  Warth (1978a) 
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observed that generally, thermophiles produce more heat resistant spores than 

mesophiles, which produce more heat resistant spores than psychrophiles. Further, 

spores with less water in the protoplast are more heat resistant than those with higher 

water content (Beaman and Gerhardt, 1986).  Beaman and Gerhardt also observed that 

sporulation at higher temperatures within an organism’s normal growth range resulted 

in spores with more dehydrated protoplasts and greater heat resistance. In addition, 

mineralization enhances heat resistance in part by increasing protoplast dehydration as 

well as by other protective mechanisms against dry heat damage (Marquis et al., 

1994). Warth (1985) estimated that spore internal water activity (aw) of 0.7 was 

required to achieve the degree of thermal stabilization of enzymes found in spores. It 

is generally accepted that the presence and size of the spore cortex significantly 

influence heat resistance of spores (Marquis et al., 1994).  These authors also found 

that the major functions of the cortex are to maintain osmotic dehydration of the spore 

protoplast during its formation and to resist water movements into the protoplast later 

during spore mineralization. 

 

 

2.2.3 Bacillus Species in Feed Commodities 

 

B. stearothermophilus has been used as an indicator organism of bacterial inactivation 

during extrusion cooking (Bouveresse et al., 1982 and Van de Velde et al., 1984).  

Spores of B. stearothermophilus have been used as sterilization indicators since they 

are among the most heat-resistant spores encountered in foods (van de Velde et al., 
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1984).  Traditionally, B. stearothermophilus and Clostridium sporogenes spores have 

been used in inoculated experimental pack studies to asses the effectiveness of a 

sterilization process (Ocio et al., 1996).   

 

 



 9

2.2.4 Bacillus stearothermophilus in Food Spoilage 

 

B. stearothermophilus is the organism commonly implicated in thermophilic flat sour 

spoilage of low-acid canned foods (AOAC, 1995; Ayres et al., 1980). Bacillus species 

commonly ferment carbohydrates producing short-chain fatty acids that give rise to a 

sour taste however they do not produce enough gas, if any, to cause the flat ends of the 

can to bulge outwards under pressure hence the “flat sour” description (Walker and 

Wolf, 1971).  Olson and Sorrells (1992) observed that as long as holding temperatures 

were not allowed to rise above 43 oC for canned low-acid foods with pH no lower than 

5.3, thermophilic flat sour spoilage is not common.  The authors further noted that 

exposure of canned low-acid food products containing viable spores of thermophilic 

organisms to temperatures above 43 oC for long periods of time may result in flat sour 

spoilage. 

 

Heat-induced thermal resistance may contribute to errors when estimating time for a 

sterilization process in canning (Etoa and Michiels, 1988). It is for this reason that 

come-up time is minimized to reduce the potential for heat-induced thermal resistance. 

Come-up time is the time required to raise product temperature from its ambient state 

to the desired sterilization temperature during a sterilization process in canning.  

Mafart and Leguerinel (1997) reported that while calculations used in thermal 

processing in the food industry are based on the exponential death rate of heated 

spores, spores that are not activated during the thermal process may be sub lethally 

injured and unable to grow on a medium under conditions such as unfavorable 
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incubation temperatures. The injured spore population ought to be accounted for in the 

calculations. The authors further noted that of the factors that influence cell repair 

after thermal injury, culture medium and incubation temperature have the most impact. 

These two factors influence both the ratio of cell recovery and estimated thermal 

resistance values.  Moreover one disadvantage of conventional survival models 

applied in canned food industries is that heat resistance estimates are made by 

recovering heat-activated surviving spores or cells at optimal incubation conditions 

(Mafart, 2000). At non-optimal incubation temperatures or in acid recovery media 

supplemented with salt, heat resistance is often underestimated. 

 

 

2.2.5 Thermal Resistance of Bacillus Spores  

 

Heat resistance of microorganisms is often quantified in decimal reduction time (Dx) 

values (Russel, 1982; Gerhardt and Marquis, 1989; Setlow, 1992). Decimal reduction 

time is defined as the time required to reduce cell or spore population at a constant 

temperature of X oC to 10% of its original value.  It is the time required to kill 90% of 

a cell or spore population at a specified temperature.  The z value is defined as the 

temperature increase required to cause a tenfold reduction in Dx value for that 

organism (Teixeira, 1992).  In general, the Dx values of spores at a temperature of (X 

+ 40) oC are approximately comparable to those of their vegetative cell counterparts at 

a temperature of X oC (Setlow, 1994). Bacillus stearothermophilus spores have 

exceptionally high resistance to heat with D120C values ranging between 4.0 and 5.0 
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minutes and a z-value of between 7.8 and 12.2 oC (Olson and Sorrells, 1992).  For this 

reason it is normal to find commercially sterile low-acid canned foods containing 

spores of B. stearothermophilus. D120C means decimal reduction time of an organism 

at 120 oC.  Proper cooling after thermal processing and maintenance of appropriate 

storage temperatures are used to prevent flat sour spoilage.  Segner et al. (1963) 

demonstrated that B. stearothermophilus spores showed the same thermal resistance in 

3:1 milk concentrate as when they were suspended in phosphate buffer. Frankline et 

al. (1959) however found that B. stearothermophilus spores were more heat resistant 

when suspended in water than in milk. Mayou and Jezeski (1977) observed that spores 

of B. stearothermophilus showed lower thermal resistance when suspended in 10 % 

reconstituted milk than in 0.01 M phosphate buffer, pH 6.5.  They further observed 

that increasing the pH of phosphate buffer from 6.5 to 7.2 had little effect on spore 

resistance, while the same increase in pH of reconstituted 10 % milk resulted in a 

marked increase in the apparent heat resistance of B. stearothermophilus spores.  

Mayou and Jezeski  (1977) noted that spores harvested from microbiological media 

may show different thermal resistance than spores of the same strain sporulated in a 

natural environment. 

 

Lefebvre and Antipa (1982) observed that the transformation of bacterial spores from 

a dormant and heat-resistant state into a thermolabile and metabolically active cell 

involves two stages namely activation and germination.  They noted that the spore 

loses its fundamental heat resistance first, then other changes take place that lead to 

germination.  In their review of work by several investigators, Etoa and Michiels 
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(1988) concluded that for B. stearothermophilus spores, germination and loss of heat 

resistance occurred best after heat-shock treatment at 100 or 110 oC.  The authors 

reported a 28.5 % increase in the heat resistance of spores in distilled water and a 62% 

increase in heat resistance of spores in nutrient medium within the first 60 minutes of 

incubation at 100 oC. While it is recognized that at sublethal temperatures some spores 

enter heat-induced dormancy rather than germinate (Rossignol and Vary, 1979). Etoa 

and Michiels (1988) observed that B. stearothermophilus spores acquired 

supplemental heat resistance that they described as “heat-induced resistance.” They 

concluded that the longer the spores were held at sublethal temperatures, the greater 

might be the increase in spore heat resistance.  It is generally recognized that, in 

addition to temperature, factors such as pH and water activity of the heating medium 

greatly influence the survival of heated cells or spores (Mafart, 2000). 

 

In general, acidification depresses the thermal resistance of spores, the degree of the 

effect being dependent on the microorganism (Martinez et al., 1997).  In studies that 

mostly involved vegetative cells suspended in oil, many investigators have indicated 

that these microorganisms had higher thermal resistance than those suspended in water 

(Rodrigo et al., 1999). In studies to explore the effects of two vegetable oils on various 

spores of Bacillus and Clostridium spp., Molin and Snygg (1967) found that thermal 

resistance increased more in Bacillus subtillis and Clostridium botulinum type E than 

in the other spores studied. Thermal resistance increases depended on the type of lipid 

used.  In a similar study, Ababouch and Busta (1987) observed that spores of Bacillus 

and Clostridium species were more heat-resistant in olive oil than in the other 
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vegetable oils studied despite the water activity of olive oil being higher than that of 

the other vegetable oils. Rodrigo et al., (1999) observed that B. stearothermophilus 

spores showed reduced thermal resistance in food at 115, 118, 121 and 125 oC, 

respectively.  Setlow (1994) summarized the D65C values of B. subtilis as being less 

than 15s for vegetative cells but 105 hours for wild-type spores.  The same author 

reported D85C and D95C values of 320 and 14 minutes, respectively, for B. subtilis.  

 

 

2.2.6 Sources of Bacillus Spores 

 

Spores of B. stearothermophilus are found in soil, spices, sugar, flour, and other 

ingredients (Stumbo, 1973).  Bacterial spores gain entry into canneries through these 

media.  Within the canneries, spore numbers may increase where appropriate 

propagation conditions exist. The author also noted that methods of spore 

contamination control in a food production plant include proper sanitation and use of 

food ingredients with acceptable spore population levels. 

 

 

2.2.7 Injury of Microbial Cells or Spores 

 

Injured microorganisms are important in food processing and preservation because 

they may repair their damage, multiply, and present a potential to cause spoilage and 

health hazards (Likimani et al., 1990). These authors further noted in their reviews that 
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food processing treatments such as heating, cooling, irradiation and use of chemicals, 

when applied at sub lethal levels, can cause injury to microbial spores or vegetative 

cells. Likimani et al. (1990) also observed that few studies have been done on the 

destruction of bacterial spores during extrusion cooking.  Adams (1978) demonstrated 

that injured or damaged microbial entities express the injury through their inability to 

grow under conditions normally suitable for the proliferation of uninjured organisms; 

injured organisms might need more complex or different cultural and nutritional 

requirements for growth (Hurst, 1984).    

 

 

2.2.8 Sporulation Media  

 

Supplementation of culture media with divalent cations affects the heat resistance of 

bacterial spores.  Russell (1982) reviewed the work of several investigators and 

concluded that with the exception of high concentrations (close to 0.1 %), inclusion of 

manganese sulphate in culture media for the production of B. stearothermophilus 

spores does not have a major effect on the heat resistance of the spores.  Chemically 

defined media can be used to produce B. stearothermophilus spores with reproducible 

heat resistance (de Guzman et al., 1972).  Mayou and Jezeski (1977) produced spores 

of B. stearothermophilus by inoculating plates of nutrient agar supplemented with 40 

ppm manganese sulphate with vegetative cells of the organism and incubating at 55 oC 

for 72 hours. 
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2.2.9 Water Activity (aw) and Bacterial Spore Properties 

 

The water activity (aw) of a food product or solution is the ratio of water vapor 

pressure of the food or solution (p) to that of pure water (po) at the same temperature 

given by Raoult’s law (Hallstrom, 1992) (Equation 2.1). 

 aw = p / po       (2.1) 

Water activity (aw) has a direct impact on microbiological safety of food. Salting, an 

ancient way of preserving foods, works by reducing aw of the food commodity. 

Microorganisms typically grow best between values of 0.995 and 0.980 with most 

microbes ceasing growth at aw below 0.9000 (Singh and Heldman, 2001a).  The 

investigators further noted that aw influences the storage stability of foods since some 

food spoilage processes are regulated by water.  Murrell and Scott (1966) 

demonstrated that the spores of B. stearothermophilus increase in thermal resistance as 

water activity (aw) decreases, with the maximum resistance occurring at an aw of 0.2. 

The authors further postulated that bacterial spores are most heat-resistant when 

nearly, but not completely, dry because water hydrates some component(s) of the 

spore to produce marked stabilization against the effects of elevated temperatures. 

Proteins or complexes containing proteins are involved in the stabilization.   

 

 

2.2.10 Thermal Activation of Bacterial Spores 
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Heat activation of mould spores was discovered when red moulds appeared in large 

numbers on carbonized trees after forest fires (Keynan and Evenchik, 1969).  Heat was 

first used to activate bacterial spores in 1919 (US patent number 138, 978, Weizmann, 

C. 1919). Russel (1982) noted that different species of sporeformers varied in their 

temperature requirements for activation with B. stearothermophilus and other 

thermophilic and thermotolerant bacteria requiring from 105 - 115 oC for optimal 

activation.  Segner et al. (1963) demonstrated that prolonged heating of spores of B. 

stearothermophilus at 100 oC failed to give the desired heat-shock effect. They 

concluded that heating from 100 to 120 oC for 1 minute produced the activation 

treatment desired resulting in a tenfold increase in the viable spore count of B. 

stearothermophilus compared with counts after heat-shock treatments at 100 oC or 

lower temperatures.   
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2.2.11 Recovery of  B. stearothermophilus Spores 

 

After a heat-shock treatment of samples at 100 oC for 20 minutes,  Mayou and Jezeski 

(1977) used dextrose tryptone agar as the recovery medium to enumerate spores of B. 

stearothermophilus in studies to determine the effect of using milk as the heating 

menstruum on apparent heat resistance of the organism.   Olson and Sorrels (1992) 

observed that optimum recovery of heated B. stearothermophilus spores occured best 

at 45 to 50 oC, in neutral media with distilled water as the diluent and heating medium, 

respectively.  These authors recommended dextrose tryptone agar as the recovery 

media. 

  

 

2.3 Salmonellae Species 

 

2.3.1 Salmonellosis in Humans 

 

Salmonella infection in humans often occurs through consumption of poultry-meat 

products contaminated with Salmonella. The prevalence of Salmonella in poultry 

products is frequently traceable to the farm level (Rose et al., 1999).  It is estimated 

that the reported cases of Salmonella infections worldwide represent between 1 and 10 

% of the real incidence of the disease in humans (Oosterom, 1991). Human 

salmonellosis is a serious problem all around the world; pigs and poultry, and to a 

lesser degree cattle and sheep, are the major sources of Salmonella. From 
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epidemiological studies, Oosterom (1991) further reported that fecal excretion by 

human carriers, domesticated and wild animals carriers, and the disposal of slaughter 

offal, sludge, slurry and manure all contribute to the spread of Salmonella in the 

environment.  Environmental sources of Salmonella in turn contaminate surface 

waters from which birds, rodents and insect may further transmit the organism to 

animal feed.  In a study to determine the mode of transmission of S. enteritidis in 

patients, Muhlenberg (1992) established that contaminated feed was the primary 

source of contamination in livestock; subsequent consumption of contaminated food 

of animal origin by humans resulted in salmonellosis. 

 

 

2.3.2 Sources of Salmonella Contamination in Feeds 

 

Smeltzer et al. (1980) evaluated the quality of feeds with respect to Salmonella 

contamination and found 44 out of the100 stock feeds examined were positive. They 

found significantly greater total aerobic bacteria, coliforms, fungi and Salmonella 

count in mash feeds than in crumbles and pellets. Salmonella counts ranged from  

1.2 CFU / 100 g to greater than 147 CFU / 100 g feed. Kohler (1993) conducted a 

study to evaluate the environmental sources of Salmonella. The author detected 

Salmonella in soil samples contaminated with bird feces, and demonstrated that 

recontamination from the environment was the major source of Salmonella in feed 

plants. In studies to determine the persistence of S. enteritidis in poultry production 

operations, Davies and Wray (1996) established that the organism persisted for at least 
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one year in an empty trial house in which naturally infected broiler breeder birds had 

previously been housed.  They also reported that the organism was frequently found 

surviving outside poultry houses in small litter pockets and fan dust at plants that had 

previously been cleansed and disinfected. Artificially contaminated S. enteritidis 

appeared to persist in bird droppings, floor and fan dust, and in feed in feed troughs 

for at least 26 months. In surveys of the Dutch poultry feed industry, Veldman et. al. 

(1995) found that 10 % of the 360 samples taken were contaminated with Salmonella. 

They found twenty-eight serotypes in all; the serotypes isolated most frequently were 

not the same as those encountered in poultry flocks. Environmental samples were 

taken from fecal material from pig pens, building doors, windows, floors, ventilation 

units, dust and farm accessories to identify possible sources of contamination and to 

study the distribution of Salmonella within herds of pigs in Quebec, Canada (Letellier 

et al., 1999).  Most of the samples were positive. Flies and rodents sampled within the 

farm precincts were also positive for Salmonella.  In a study to asses the association of 

management factors, environmental prevalence, and general hygiene condition in the 

chicken house to Salmonella contamination of broilers at harvest, Rose et al. (1999) 

found that Salmonella contamination of day-old chicks was significantly related to 

Salmonella contamination of the flock at the end of the production period.  Of the 

flocks surveyed, 70 % of those contaminated with Salmonella also showed at least one 

contaminated environmental sample. Rose et al. (1999) further determined that the risk 

for Salmonella contamination was increased when feed trucks were parked near the 

entrance of the change room and when feed mash rather than small pellets was given 

to day old-chicks. 
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Ekperigin et al. (1991) investigated the effects of a pelleting process on the microbial 

load of poultry feed. Five to 10 % of samples tested positive for Salmonella.  In a 

study to evaluate the feasibility of producing Salmonella-free turkeys, Pomeroy et al. 

(1989) reported that contaminated feed was suspected to be the source of Salmonella 

in the flocks of turkeys found to have Salmonella.  

2.3.3 Control of Salmonellae Infection 

 

The spread of Salmonellae during the slaughtering process of broiler chickens is 

difficult to control.  For this reason, control measures to reduce the prevalence of the 

organism before slaughtering is a recommended practice (Rose et al., 1999).  

Ekperigin and Nagaraja (1998) observed that control of Salmonella contamination 

involved action to prevent establishment of the organism in the food animal or its 

immediate neutralization if it did establish itself; commercial vaccines were 

effectively used to control Salmonella infection under some circumstances although 

they were of limited value in controlling all Salmonella. The authors described 

prevention of Salmonella infection as involving keeping the organism away from the 

host animal through the knowledge of its epidemiology or the diseases it caused. They 

suggested that producing Salmonella-free food animals, husbandry practices that 

precluded environmental Salmonella as well as the use of pelleting techniques for 

producing Salmonella-free feeds, would be effective ways to prevent Salmonella 

infection in humans. Further, animal housing to keep rodents, wild birds, and insects 
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away from the immediate environment of food animal production facilities would be 

preventive measures against Salmonella infection in humans.   

 

 

2.3.4 Thermal Death Time of Salmonella 

 

Pomeroy et al. (1989) used commercially available, naturally contaminated dry meat 

and bone meals with modified thermal death time tubes to determine that Salmonellae 

in the meals were not destroyed when a temperature of 77 o C was used for a period of 

15 minutes.  At 82 oC, Salmonellae was consistently destroyed after 7 minutes. In a 

third meal with a higher fat content and relatively high level of Salmonella 

contamination, 91 oC for 7 minutes was required for consistent destruction of the 

bacteria although 88 oC was sometimes sufficient. They found that when a relatively 

heat resistant strain of S. senftenberg was inoculated in sterile meal, lower 

temperatures were sufficient to destroy the added Salmonellae. They concluded that 

heat tolerance studies on Salmonellae using naturally contaminated meals rather than 

artificially contaminated meals would be more representative of the true thermal 

resistance of the organisms. In a separate heat tolerance study using naturally 

contaminated meals and a pugmill, Pomeroy et al. (1989) found that samples were 

negative for Salmonellae when they were heated to 70 oC or above over a period of 50 

minutes.  Raising the temperature in a pugmill up to 82 o C over a period of 63 

minutes resulted in consistent destruction of Salmonellae. They also concluded that 
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the severity of the heat treatment required to destroy Salmonellae in naturally 

contaminated meals varies considerably for different meals.   

 

 

2.3.5 Heat Resistance of Salmonella 

 

Liu et al. (1969) determined that the heat resistance of Salmonellae, like that of most 

microorganisms, is much greater in products containing less than 12 % moisture than 

at higher moisture levels.  They found that the Dx value of S. seftenberg 775W in 

simulated-naturally-contaminated meat and bone meal at 60 o C decreased at a 

decreasing rate as the feed moisture content increased. Dx value of an organism is its 

decimal reduction time at a temperature of T. It is the time in minutes required to 

reduce the organism’s viable population density to 10% of its original value by 

thermal means at a temperature of T. It has also been reported that the thermal 

resistance of Salmonellae is higher in natural than in artificially contaminated products 

(Rasmussen et al., 1964; Liu et al., 1969).  Liu et al. (1969) found that the minimum 

temperature of the conditioner required to kill all the Salmonellae in the feed during 

commercial feed pelleting was 88 o C.  

 

 

2.4 Feed Inoculation with Bacterial Cells or Spores 
 

In order to prepare inocula, Flowers et al. (1987) ground freeze-dried pellets of 

bacterial cells by using a mortar and pestle and then mixed the cells into samples of 
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dry powdered, granulated or semi-solid test products to form the seed inocula. Liu et 

al. (1969) prepared inocula for artificial contamination of feed in thermal death time 

studies by adding 24-hour Trypticase Soy Broth (TSB) culture of the test organism to 

quantities of feed stabilized at various moisture contents in mason jars that were 

refrigerated for about 1 week in order to stabilize the cell population.  They mixed the 

inoculum for periods of about 2 minutes each day to secure an even distribution of the 

cells during the one week refrigeration.  Ten grams of the feed inoculum was added to 

90 grams of the test material in a mason jar and mixed for 4 minutes.  This 

contaminated feed was then added to 50 pounds of chick starter feed at room 

temperature and mixed mechanically for half an hour to give approximately 103 cells 

per gram of feed. 

 

 

2.5 Extrusion Cooking Technology 
 

Food extrusion is the operation that shapes a dough-like food material by forcing it 

through a specifically designed restriction called a die (Riaz, 2000); food ingredients 

are forced to flow, under one or various conditions of mixing, heating and shear, 

through a die that forms and/or expands the ingredients as the extrudate exits the 

extruder (Riaz, 2001). Food extruders consist of turning screws that convey food 

material through a stationary barrel. The barrel and screw are typically segmented. 

The screw consists of a splined shaft with a keyway onto which several flight sections, 

and shearlocks/steamlocks, respectively, are slipped and locked in place (Riaz, 2001).  
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During extrusion cooking of cereal grains and protein blends, moistened, granular or 

flour-like materials are converted into a dough; starchy components gelatinize 

resulting in high moisture uptake and an increase in dough viscosity. Hydrated protein 

constituents may influence elasticity and the gas-holding capacity of the dough (Rokey 

and Huber, 1994).  Temperatures as high as 200 oC can be achieved during the 

extrusion cooking process. The residence time of feed at such elevated temperatures is 

kept short, 5 to 10 seconds, to maximize the benefits of heating on digestibility, 

inactivation of anti-nutritional factors, and pasteurization, respectively, while 

minimizing nutritional destruction. 

 

Extrusion cooking has been practiced for nearly 50 years. The food extruder has been 

developed into a high-temperature-short-time equipment used to process a variety of 

food ingredients into finished food commodities from its initial role of mixing and 

forming pasta and ready-to eat cereals (Harper, 1984). Further, Harper observed that 

more research is needed to give users and manufactures of extruders recommendations 

on measurement of key extrusion variables.  Of primary interest are the screws and 

barrel wear over time, increase of throughput by increasing slip at the root of the 

screw, measurement of pertinent extrusion parameters such as product and barrel 

temperatures and the accuracy of the measurements, and pressure measurement behind 

the die. The use of computers to monitor and adjust extrusion conditions needs to be 

explored. Harper (1984) lamented the lack of detailed knowledge despite a 

considerable body of literature on the impact of extrusion on food nutritional value. 

He suggested the kinetics of microorganism destruction and aflotoxin inactivation 
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during extrusion cooking as possible research topics for the future. He reported that 

little is known about the effect of extrusion on the fiber fractions of cereals and how 

their biological activity may be altered. 

 

A single screw extruder operates like a high viscosity pump. The plasticized food 

product moistens the inner wall of the barrel but due to the grooving, no slip 

conditions apply around the inner wall of the barrel (van Zuilichem et al., 1997). The 

moving surface drags the product with a low mechanical efficiency longitudinally 

along the barrel, the larger part of the power being dissipated in the form of heat. In 

twin-screw extruders with intermeshing screws, the product is constrained and 

physically prevented from rotating with the screw (Frame, 1994).  Here the frictional 

force between the product and the barrel wall is less important than in single screw 

extruders. 

 

High temperature short time expanders and extruders are equipment in which feed that 

is heated to high temperatures in a high-pressure zone is subjected to a rapid decrease 

in pressure on exit from the die.  This sudden decrease in pressure ruptures cell 

structures and organelles (Plavnik and Sklan, 1995).   An expander is a high 

temperature-short-time thermal processing device that is similar in its operation to an 

extruder. Expanders typically are designed to increase feed pellet durability (Fairfield, 

1994). It is constructed similar to an extruder, with a thick walled barrel, heavy screw 

and attachments for steam addition. It is equipped with a conical discharge valve at the 

discharge end, which provides an adjustable annular gap, distinguishing it from the 
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extruder. Exposure to elevated temperatures and sudden pressure changes, 

respectively, during processing using expanders or extruders alter the structure, texture 

and specific gravity of the feed (Armstrong, 1993). 

 

 

2.6 Residence Time Distribution in Extruders 
 

The time that feed mash spends in the extruder barrel is the extruder retention time, a 

measure of the duration of exposure of feed mash and indigenous microorganisms to 

processing conditions of heat, steam and mechanical shear. The rotation of the screw 

relative to the barrel wall creates cross channel flow which mixes material in the 

channel between screw flights as it is dragged down the barrel (Frame, 1994). Because 

of longitudinal and axial mixing, flow of material within the extruder barrel cannot be 

represented as simple plug-flow. Retention time may be better represented as a 

residence time distribution (RTD) function (van Zuilichem et al., 1997). RTD is a 

mathematical expression that describes the dwell time of mash feed components 

within the extruder with respect to time. RTD of feed in an extruder is one of the 

important operating conditions that affect mixing and chemical properties of feed 

during extrusion processing (Peng et al., 1994). RTD in an extruder is a useful way of 

determining optimal processing conditions for mixing, cooking, and shearing reactions 

during the process (Ganjyal and Hanna, 2002). Fichtali and van de Voot (1989) 

observed that from the knowledge of the RTD function one can estimate the residence 

of mass flow as well as other variables such as the degree of mixing and the average 
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total strain exerted on the mass during its transition. Retention time of feed in the 

extruder barrel was used in this research.  
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2.7 Summary from Literature Review 
 

1. Agricultural commodities are found in environments that make their 

contamination by bacteria and molds inevitable. Decontamination techniques 

are often necessary to eliminate such contamination. 

2. Contaminated eggs and the environment are the major sources of Salmonella 

infection that result in significant production losses in poultry operations. 

Poultry as well as other livestock are considered important sources of 

Salmonella species that cause human salmonellosis. 

3. While feed processing conditions that could kill Salmonella may be defined, 

control of these conditions in extrusion and pelleting equipment is difficult. 

4.  Whereas mash feed are frequently contaminated with Salmonella, pelleted 

feed often test negative for Salmonella.  Animal protein components of feed 

formulations are believed to be the main source of Salmonella in mash feed. 

5. B. globuli spores survived extrusion processing at 100 oC for 25.5 s.  No spores 

were detected at 140 oC. 

6. Processing at under sub-lethal temperature and time conditions imparts heat-

induced thermal resistance to organisms.  Come up time during thermal 

processing of food is minimized to prevent this phenomenon. 

7.  B. stearothermophilus naturally reside in soil, and on raw food commodities. 

Their spores are among the most heat-resistant spores encountered in foods.  

They have been used in inoculated food packs to assess the effectiveness of 

sterilization processes. 
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8. B. stearothermophilus is not a human pathogen but is commonly implicated in 

thermophilic flat sour spoilage of canned foods.  Storage of canned food 

products below 43 oC typically reduces the risk of such spoilage. 

9. Decimal reduction, Dx, values at 120 oC of up to 5 minutes, and z values 

between 7.8 to 12.2 oC have been reported for B. stearothermophilus spores. 

For this reason it is common to find commercially sterile foods containing B. 

stearothermophilus spores. 

10. Germination and loss of heat resistance of B. stearothermophilus spores occurs 

best after a heat shocking treatment at 100 – 110 oC. 
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3. OBJECTIVES 
 

The objectives of this  study were to:  

1) Determine the effect of extruder barrel exit temperature, mean retention 

time of mash feed in the extruder barrel, and mash feed moisture 

content on acid producing, thermophilic organisms and artificially 

inoculated B. stearothermophilus spore survival. 

2) Develop a mathematical model using a central composite statistical 

design and the response surface method, and from the model develop 

response surface plots. 

3) Estimate optimum extrusion process conditions that maximize acid 

producing, thermophilic organisms and B. stearothermophilus spore 

inactivation within the range of parameter settings used in the study. 
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4. EQUIPMENT 

 
4.1 Feed Milling and Mixing 

 

Figure 4.1 shows the Roskamp roller mill (Model DP900-12, SN 435386, California 

Pellet Mill Co., Waterloo, Iowa) used to grind corn and soybean. Once ground, feed 

was conveyed in a U-trough conveyor illustrated in Figure 4.2, to the ribbon mixer 

(Model number TR63-796, Hayes and Stolz Industrial Manufacturing Company, 

Fortworth, Texas) (Figures 4.3a and 4.3b), where a predetermined amount of pre-

ground, pre-bagged animal protein blend was manually added. Mixed feed was 

conveyed by a U-trough conveyor and collected in storage barrels equipped with 

rubber O-rings on the lids to prevent moisture exchange between dry feed and 

environmental air when the barrels were sealed. Figure 4.4 illustrates the sequence of 

feed milling and mixing processes. Figure 4.5 shows storage barrels used to store feed 

during the studies. 

 

4.2 Weighing Device for Manual Mash Feed Moisture Control 

 

Predetermined amounts of tap water required in dry feed to obtain desired mash feed 

moisture content, and batches of dry feed (10 kg), respectively, were weighed using 

the Weigh-Tronix scale (Weigh-Tronix scale - indicator, model number W1-125, 

Toledo base, model number 2155, Fairmont, Minnesota). 
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Figure 4.1.  A roller mill (green) used to prepare the standardized feed formulation in 
the studies (Roskamp, Model DP900-12, SN 435386, California Pellet Mill Company. 
Waterloo, Iowa). 
 

 

Figure 4.2.  A section of the U-trough drag conveyor, paddle and chain guide used in 
the studies. 
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Figure 4.3a.  A side view of the ribbon mixer (gray) used to mix corn meal, soybean 
meal and animal protein blend, respectively, to form the standardized feed formulation 
used in the studies. 
 
 
 
 
 

 
 

Figure 4.3b.  A top view of the ribbon mixer used in the studies showing the ribbons 
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Figure 4.4.  An illustration of feed milling and mixing process used in the studies. 
Arrows indicate direction of feed conveyance. 
 
 

 
 

 

Figure 4.5 Storage of standardized feed formulation in sealed barrels. Barrel lids were 
equipped with O-rings to prevent moisture exchange between feed and environmental 
air. 
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The weighing scale consisted of a weighing platform connected to a liquid crystal 

display indicator by a cord as shown in Figure 4.6. The weighing unit’s accuracy was 

± 0.05 kg. 

 
 
 

 

Figure 4.6.  A Weigh-Tronix  scale showing the loading ramps on either side of the 
weighing platform and a 10-kg batch of feed in a  mixing container placed on the 
weighing platform (Weigh -Tronix scale indicator: Model Number W1-125, Toledo 
base: Model Number 2155. Fairmont, Minnesota). 
 
 
 

4.3 Vortex Mixer 
 

A variable speed, touch-activated vortex mixer equipped with a start/stop switch was 

used to thoroughly mix spore and cell suspensions in water through a vortex mixing 
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action during the serial dilution and inocula preparation procedures. A flat head 

provided for tube or flask mixing. 

 

 

4.4 Refrigerator 

 

A refrigerator was used to maintain the temperature of dry feed inoculum of B. 

stearothermophilus spores between 0 and 4 ± 2 oC until used. 

 

 

4.5 Autoclave 
 

An autoclave (Eagle Series, Model 2321) was used to sterilize culture media and 

glassware for use during aseptic techniques of the microbial methods.  A sterilizing 

temperature of 121 oC for 15 minutes was used. 

 

 

4.6 Weighing Balance 
 

Portable bench top balances sensitive to 0.1 g with a 2 kg capacity were used to weigh 

media during culture media preparation and feed samples during microbial and 

particle size distribution analyses, respectively (PG-S Electronic Scale, Model 5002-

SDR, ; Model PM34-K, Mettler Instruments, Stown, New Jersey). 
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4.7 Colony Counter 
 

The Darkfield Quebec Colony Counter was used to manually count bacteria colonies 

quickly and accurately. The Darkfield Quebec colony counter provided even, glare-

free illumination. It was equipped with an annular reflector to spread light from a light 

bulb uniformly over the entire culture plate, a lens to magnify bacterial colonies and 

an adjustable focusing rod that allowed rotation of the lens for easy access to culture 

plates and a white-ruled counting plate. Contrasted against the darkfield 

background, colonies were bright and readily distinguishable from other structures in 

the culture media. 

 

 

4.8 Biohazard Safety Cabinet 

 

Microbial analysis of acid producing, thermophilic organisms and B. 

stearothermophilus spores and S. typhimurium cells were carried out in a biohazard 

safety cabinet class II that provided a work area that was sterile (Model 240, 

Contamination Control Incorporated, Lansdale, Pennsylvania). The safety cabinet 

consisted of a lamina flow hood, which filtered air and then passed it over an enclosed 

work surface. A barrier of filtered air also protected the operator from any infectious 

agents during the procedures. 
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4.9 Direct Microscopic Spore Count and Cell Enumeration Equipment 

 

The Petroff-Hausser counting chamber (Hausser scientific, Blue Bell, Pennsylvania) 

was used to estimate the spore count in the initial B. stearothermophilus suspension 

that was used to prepare the feed inoculum. It consisted of a grid of etched squares of 

a given area covered with a glass cover slip positioned at a fixed height above the 

etched surface (Splittstoesser, 1992; Smith, 2000). Each small square (Figure 4.7) in 

the counting chamber grid of the Petroff-Hausser chamber had an area of 0.0025 mm2 

and the chamber or well above each small square was 0.1 mm deep, giving a volume 

above a small square of 2.5 x 10-4 mm3 or 2.5 x 10-7 mL. The Petroff-Hausser counting 

chamber -was placed under the objective of the light microscope (Model CHT 800064, 

Olympus Optical Company Limited, Japan). 

 

 

 

Figure 4.7.  Illustration of a portion of the Petroff-Hausser counting chamber grid with 
a small square highlighted as a bold square. 
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4.10 Incubation Equipment 

 

A steam cabinet (Figure 4.8) was used for heat shocking acid producing, thermophilic 

organisms and B. stearothermophilus spores in feed samples.  Pour plated samples of 

acid producing, thermophilic organisms and B. stearothermophilus spores in feed and 

spread plated samples of S. typhimurium cells in feed, respectively, were incubated in 

an incubator set to a suitable temperature (heat shocked spores of acid producing, 

thermophilic organisms and Bacillus stearothermophilus at 60 - 65 oC or Salmonella 

typhimurium at 37 oC VIP Imperial II CO2 incubator with dual chambers, dual control. 

Lab-line Instruments Incorporated, Melrose Park, Illinois). 

 

 

 

Figure 4.8.  A custom made steam cabinet used for heat shocking acid producing, 
thermophilic organisms and Bacillus stearothermophilus spores at 100 oC for 15 
minutes. A gate valve used to control the steam flow rate is shown on the insulated 
steam line to the right of the steam cabinet.  



 40

4.11 Determination of Feed Particle Size Distribution  

 

A nest of sieves and the sieve shaker shown in (serial number 8-200-3834.  Endecotts 

Octagon 200, London, England) were used to analyze the particle size distribution of 

the standardized feed formulation. 

 

  

4.12 Paddle Mixer and Mixing Container 

 

A Hobart paddle mixer (Model H600, Hobart Corporation, Troy, Ohio) was used to 

mix dry feed with feed inoculum and tap water, respectively, for mash feed moisture 

control (Figure 4.9). 

 

 

Figure 4.9 Mash feed moisture content control. Mixing feed with predetermined 
amounts of water using a Hobart paddle mixer (Model H600, Hobart corporation, 
Troy, Ohio). 
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4.13 Feed Moisture Content Determination 

 
4.13.1 Vacuum Oven 
 
 

A vacuum oven (Fisher scientific, Model 285A) was used to dry mash feed samples 

and extrudate samples, respectively, for moisture content determination.  

 

 

4.13.2 Dessicator 

 

Dry feed samples were transferred to a dessicator containing indicating drierite 

(anhydrous Calcium sulfate impregnated with Cobalt chloride) for storage. Figure 4.10 

shows the dessicator used in the studies. 

 

Figure 4.10.  A custom made desiccator used to hold dry feed samples during 
reweighing after oven drying. Aluminum feed sample trays and partially hydrated 
(pink drierite are shown inside the dessicator. 
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 4.14 Feed Water Activity Measurement 

 

An Aqualab water activity (aw) meter (Model CX-2, Decagon Devices Inc., Pullman, 

Washington) was used to measure the amount of free, unbound or active water present 

in feed samples.  This device determines water activity from the relative humidity of 

the air surrounding the sample when the air and the sample are at equilibrium. The 

sample is loaded in an enclosed space where the equilibrium occurs. 

 

 

4.15 Extru-tech E325 Single-Screw Extruder 
 

Extru-tech E325 (Extru-tech, Sabetha, Kasnsas) single-screw extruder was used in the 

studies. It is a single-screw cooking extruder developed for the purpose of research 

and development. The E325 cooking extruder has been scaled down proportionately 

from extru-Tech’s larger production units in order to provide data that are 

representative of actual production conditions (Extru-Tech, Sabetha, Kansas).  The 

extruder consists of the following components: 1) a feed delivery system, 2) a 

tempering or preconditioning system, 3) extruder barrel and 4) the die and knife 

configurations.  Feed was delivered to the continuous agitation bin by an auger system 

(Figure 4.11). Preconditioning involving addition of moisture and steam in the 

preconditioner was not performed in this study. Three temperature probes (Table A 1, 

Appendix A) for measuring barrel temperature in different cooking zones were 

installed on the extruder barrelheads as shown in Figure 4.12.   The knife assembly 

was not used in this study to enhance operator safety. 
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4.15.1 Feed Delivery System 

 

Consistent and uniform delivery of feed ingredients to the extruder is necessary to 

ensure efficient operation of the extruder.  Feed mash (batches of 10 kg) was held in 

the continuous agitation feed bin.  The feeders consisted of a rotating shaft with 

radially attached paddles to agitate the feed blend, and a variable feed auger to convey 

the feed blend to the preconditioner (Figure 4.11).  The auger was operated at one 

speed throughout the study.  The operating speed was determined experimentally as 

described in procedures under “Feed Delivery Rate”. Feed mash was conveyed to the 

preconditioner through an auger conveyor system capable of providing uniform flow 

at any desired extrusion rate.
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Figure 4.11  Diagram of Extru–tech E325 (Extru – tech, Sabetha, Kansas) single screw extruder and its major accessories.
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4.15.2 Extruder Preconditioner 

 

In the preconditioner cylinder (Figure 4.11), mash feed is continuously mixed and heated. No 

liquid blends were added at the preconditioner in this study. Typically, the intense mixing of 

the feed blend coupled with the ability to vary the retention time during the preconditioning 

phase allows the moisture levels to be maintained at an optimum (Hauck et al., 1994). The 

retention time of the preconditioner was not varied in this study.  Atmospheric conditioning 

chambers (e.g. the preconditioning chamber) usually provide up to 240 seconds retention 

during which time the feed blend is heated and individual particles absorb moisture.  The 

same authors further observed that preconditioning process enhances flavor development and 

improves the final feed texture.  

 

 

4.15.3 Extruder Barrel Components 

 

The extruder assembly consisted of the barrel and screw configurations for a single screw 

cooking extruder (Figure 4.12). Extruder heads make up the housing and provide the wall of 

the flow channel, the extruder screw configuration propels the extrudate from the inlet to the 

die, the steam locks disrupt the extrudate flow increasing mixing and the conversion of 

mechanical energy into heat, while the extruder die provides resistance to flow at the exit end 

of the barrel and shapes the final product of the extrusion process (Hauck et al., 1994). In the 
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feeding zone, the low-density discrete particles of feed exiting the preconditioner are 

transported into the extruder barrel. 

 

 

 

 

 

Figure 4.12.  Diagram of Extru – tech E325 (Extru – tech, Sabetha, Kansas) single screw 
extruder showing from top to bottom the extruder barrel, screw and shaft, respectively.  Top 
drawing: Arrows from left to right show the feeding zone, barrel heads 1 - 4 and exit 
temperature probe locations, respectively. Center drawing: arrows on the top side of the screw 
illustrate the location of the screws while arrows on the lower side indicate the location of 
steam locks. 
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This material is then propelled further into the interior of the kneading zone where the 

material is compressed to increase the degree of fill of the flow channels.  Steam injected into 

the barrel jacket further raises the temperature of feed. Particles of the feed material begin to 

agglomerate in this zone. In the final cooking zone, temperature and pressure increase rapidly 

resulting in the desired final product texture, density, color and functional properties. 

 

 

4.15.4 Die and Knife 

 

The design of the die affects expansion, uniformity and appearance of the final product.  A 

custom made die consisting of a 2.2 cm diameter central hole drilled in a 6 mm thick steel 

plate was used throughout the study (Figure B 1 in Appendix B).  The knife is driven by a 

variable speed drive motor and is secured close to the face of the die.  The knife assembly 

was not used in this study for safety reasons.  Figure 4.13 shows a dimensioned diagram of 

the entire extruder assembly including the die and knife assembly just beyond the extruder 

barrel.
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Figure 4.13.  A dimensioned assembly of Extru–tech E325 single screw extruder (Extru-tech, Sabetha, Kansas).
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5. PROCEDURES 

 

A single screw extruder (Extru-tech E325, Extru-tech, Sabetha, Kansas) was used to 

process a standardized feed formulation artificially inoculated with an indicator 

organism during the studies.  It was necessary to obtain an estimate of workable 

extruder operating conditions and the ranges of its selected independent variables 

namely extruder barrel exit temperature (T), mash feed moisture content (Mc), and 

retention time of feed in the extruder barrel (Rt).  It was also necessary to select and 

prepare an appropriate inoculum of indicator organism in an appropriate form for 

inoculating test feed samples. Once the indicator organism was selected, it was 

desirable to establish cultural methodology for its recovery and enumeration in the test 

feed samples. 

  

 
5.1 Feed Milling 

 

Corn and soybean, respectively, were conveyed by an auger and ground using a roller 

mill (Roskamp Roller Mill, Model DP900-12, SN 435386, California Pellet Mill Co., 

Waterloo, Iowa) as described in the equipment section under “Feed Milling and 

Mixing”.  
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5.2 Preliminary Studies 

 

5.2.1 Feed Delivery Rate  

 

Mash feed was delivered through the continuous agitation feed bin with its delivery 

auger running at a predetermined constant speed. To estimate the feeding rate, mash 

feed flow was diverted from the feeding zone into a bucket for a known duration of 

time (1 minute).  Feed mash collected in a bucket for the time duration was weighed 

using a weighing balance (Weigh-Tronix scale - indicator, model number W1-125, 

Toledo base, model number 2155, Fairmont, Minnesota). The feeding rate estimation 

was repeated 3 more times.  An average feeding rate that produced an adequate 

throughput of extrudate without stalling the extruder was determined.  

 

 

5.2.2 Determination of Mash Feed Moisture Content Range for Extrusion 

 

It was desirable to estimate a workable range of mash feed moisture content to use in 

the extrusion studies. The minimum mash feed moisture content that could be 

extruded without causing the extruder to stall was determined by extruding feed 

containing 16.5, 20.5, and 24.5 % moisture, wet basis. The maximum range of mash 

feed moisture was determined by extruding mash feed containing 26.5, 28.5, 30.5 and 

32.5 % moisture , wet basis. The maximum mash feed moisture content was reached 

when extrudate appeared too soft and uncooked.
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5.2.3 Estimation of Retention Time of Feed in the Extruder Barrel 

  

Feed retention time in the extruder barrel was estimated experimentally according to 

the following procedure. The extruder barrel speed indicator was calibrated in Hertz; 

one Hertz was one revolution / second or 2∏ radians / second. 

1. The feed bin delivery auger was operated at a preset constant rate of 360 rpm 

(6 Hz) while the extruder barrel speed was varied between 1500 rpm  (25 Hz) 

and 5400 rpm (90 Hz). 

2.  With the extruder barrel speed running at 25 Hz, a scoop of mash feed was 

manually added to the extruder barrel feeding zone to fill the extruder barrel 

flow channel. 

 

3. Once the extruder barrel flow channel was filled, a separate scoop of mash 

feed was added to the extruder barrel feeding zone.  

 

4. The time duration lapsed between addition of mash feed to the extruder barrel 

feeding zone and the emergence of extrudate at the extruder barrel exit was 

measured with a stop watch. This procedure was repeated two more times. 

 

5. The extruder barrel speed was then increased to 1800 (30), 3000 (50), 3600 

(60), 4200 (70), 4800 (80), and 5400 (90) rpm (Hz), respectively, while 

repeating step 4 of these procedures for each of the extruder barrel speeds.  
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6. The time and extruder speed were recorded. Steps 1 through six were repeated 

two more times for a total of three replications. 

 

 

5.3 Inoculum Preparation 

 

5.3.1 Propagation Media for S. typhimurium 

 

Nutrient broth (Difco,  Sparks, Maryland) was used to propagate S. typhimurium.   
 
Ingredients of nutrient broth: 
 

Beef extract     3.0 g 
Peptone     5.0 g 

 
Eight grams of premixed dry ingredients were weighed and 1 L of deionized water 

added to dissolve the ingredients. Nutrient broth was then autoclaved in a screw-cap 

bottle for 15 minutes at 121 oC. 

 

 

5.3.2 Dry Chalk Inoculum of Salmonella typhimurium  

 

Salmonella was selected as a representative pathogenic organism commonly 

encountered in feed commodities (Rose et al., 1999).  Dry chalk inoculum was 

prepared by submerging blocks of chalk (Triangle A & E Incorporated, Oklahoma 

City, Oklahoma) for 12 hours in nutrient broth culture of S. typhimurium, drying the 



 53

chalk blocks in an incubator set to 37 oC to their original dry weight and then 

pulverizing the dried chalk using a motor and pestle to obtain a powdered inoculum.  

 

 

5.3.3 Dry Feed Inoculum of Salmonella typhimurium 

 

One kg of dry feed was inoculated with 15 mL of nutrient broth culture of S. 

typhimurium previously incubated at 37 oC for 24 hours. Inoculated dry feed was 

shaken vigorously by hand in 30 cm arcs for 5 minutes in a sterile stomacher bag. The 

shaking was repeated two more times to secure a homogeneous dry feed inoculum. 

 

 

5.3.4 Enumeration of Salmonella typhimurium in Dry Chalk Inoculum 

 

 Enumeration of viable bacterial cells was performed using the approved methods of 

the American Association of Cereal Chemists (method 42-40, AACC, 1995a) 

procedures. The initial 10-1 dilution was prepared by weighing out 10 g of dry chalk 

inoculum in a sterile sampling container and adding nutrient broth to make 100 g of 

suspension. To make the 10-2 dilution, 1 mL of the 10-1 dilution was transferred to a 

test tube containing 9 mL of nutrient broth. Subsequent ten fold dilutions were 

obtained similarly by transferring 1 mL of a dilution to dilution blanks consisting of 9 

mL of nutrient broth in test tubes. One hundred micro liters of appropriate dilutions 

were plated on McConkey agar (Difco, Becton Dickinson and Company, Sparks, 
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Maryland) plates with 100 ppm nalidixic acid. Each batch of McConkey agar plates 

prepared was tested for its selectivity using the test organism and a negative control (a 

strain of S. typhimurium susceptible to nalidixic acid). 

 

5.3.5 Bacillus stearothermophilus  

 

An organism that would not be completely inactivated by extrusion conditions 

expected using the Extru-Tech E325 cooking extruder was sought. A mesophile (S. 

typhimurium) and a thermophile (B. stearothermophilus) were used. Other indigenous 

acid producing thermophiles in the feed were enumerated as well.  B. 

stearothermophilus 12980 (American Type Culture Collection (ATCC), Rockville, 

Maryland) was selected for the extrusion studies since spores of B. stearothermophilus 

are among the most heat-resistant spores (van de Velde et al., 1984).  B. 

stearothermophilus spores have been used in inoculated experimental pack studies to 

asses the effectiveness of a sterilization process (Ocio et al., 1996).  

 

5.4 Propagation and Harvesting of Bacillus stearothermophilus Spores 
 

A vial containing the dehydrated pellet of B. stearothermophilus 12980 (ATCC, 

Rockville, Maryland) was disinfected with alcohol-dampened gauze. From a test tube 

containing 6 mL of nutrient broth, 1 mL of nutrient broth (Difco, Becton Dickinson 

and Company, Sparks, Maryland) was aseptically pipetted and used to rehydrate the 

pellet.  The rehydrated pellet was aseptically transferred back into the test tube 
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containing nutrient broth and the mixture vortexed to thoroughly mix the material. 

Using a sterile loop, plates of  trypticase soy agar (TSA) were streaked with this 

suspension.  The plates were inverted and incubated at 55 oC for 24 hours. 

 

B. stearothermophilus 12980 spores were propagated on plates of TSA (Difco Manual, 

1998) supplemented with MnSO4 (100 mgL-1) by aseptically inoculating the plates 

with pure isolates of B. stearothermophilus 12980, the plates were incubated at 55 oC 

for 5 days, and then further incubated at room temperature for an extra 5 days on the 

bench top.  Once the plates were transferred from the 55 oC incubator, they were 

sealed with parafilm to minimize drying of the media.  Growth on each TSA plate was 

scraped from the agar surface with a sterile loop and aseptically transferred into a 

centrifuge tube containing 10 mL of sterile water. The mixture was vortexed 

thoroughly to obtain a suspension of B. stearothermophilus 12980 spores. 

  

 

5.5 Initial Liquid Inoculum of B. stearothermophilus 12980 Spores 

 

A suspension of B. stearothermophilus 12980 spores was prepared by aseptically 

transferring growth of B. stearothermophilus on one agar plate into 5 mL of deionized 

water in a centrifuge tube and vortexing thoroughly (5 to 10 seconds) to mix using a 

vortex mixer. An estimate of spore concentration in this suspension was made using 

the direct microscopic count. 
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5.5.1 Direct Microscopic Count of Bacillus stearothermophilus12980 

 

The following procedure was followed. 

1. The sample was diluted so that the concentration of bacterial spores would 

equal 5 to 15 spores in each small square in the grid of the counting chamber. 

2. The suspension was added to the counting chamber using a pipette. 

3. The spores were allowed to settle for about 5 minutes. 

4. The counting chamber was placed on the stage of the light microscope. 

 

 

A sufficient number of squares to give a total count of about 600 spores were 

counted for greatest accuracy. Manual counts were made at 630 X 

magnification. Spore density in the suspension was obtained using Equation 

5.1.  

 

 

 Original spore density  = SPSQ / (vssqx df)  (5.1) 

Where: 

 SPSQ = average number of spores per small square 

 vssq = volume above a small square, 2.5 x 10-7 mL 

 df = dilution factor, dimensionless 
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The dilution factor was obtained by using Equation 5.2. 

 

df = v1 / v2       (5.2) 

Where: 

 v1 = volume of sample to be diluted, mL 

 v2 = combined volume of sample and diluent, mL 

 

5.5.2 Limits of Detection of Spores by Direct Microscopic Count 

 

The lower and upper limits of the number of spores in a sample that could be detected 

by the direct microscopic count method using the Petroff-Hausser counting chamber 

were determined as follows (Equations 5.3 and 5.4). The lower and upper limits were 

based on the minimum and maximum, respectively, number of spores per small square 

that could be counted accurately. The volume of each small square was 2.5 x 10-7 mL 

 

Lower limit = df  x 2 x 107 spores / mL   (5.3)  

Upper limit = df x 6 x 107 spores / mL   (5.4) 

Where: 

df = dilution factor of sample of spores 
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5.6 preparation of Dry Feed Inoculum of B. stearothermophilus 12980  
 

To prepare feed inoculum , 10 mL of B. stearothermophilus ATCC 12980 spore 

suspension containing (3 ± 0.02 )x 106 spores / 20 mL was pipetted and aseptically 

added to 1 kg of the standardized feed formulation in a container with a lid. The lid 

was replaced and its contents vigorously shaken manually for 5 minutes in a 30 cm 

arc. Feed inoculum was then refrigerated at 4 oC until used. 

 

 

5.7 B. stearothermophilus Spore Enumeration Media 
 

The American Association of Cereal Chemists (AACC) method specifies dextrose 

tryptone agar for use in isolating thermophilic organisms from food products (Method 

42 – 40, AACC, 1995a). In “flat sour” spoilage, bacterial growth lowers the pH of 

canned food products by 0.3 – 0.5 while the ends of the can remain flat as a result of 

low or no gas production.  Dextrose tryptone agar can also be used to isolate 

thermophilic flat sour spore formers such as B. stearothermophilus (Difco Manual, 

1998). 

 

Formula per liter for dextrose tryptone agar: 

Bacto tryptone      10 g 
Bacto dextrose        5 g 
Bacto agar      15 g 
Bacto brom cresol purple            0.04 g 
Final pH 6.7 ± 0.2 at 25 oC 
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Dextrose tryptone agar contains tryptone, which provides carbon, and nitrogen for the 

general growth requirements of the bacterial cells. Dextrose is the carbohydrate source 

while brom cresol purple is the pH indicator. A change in color of the medium from 

purple to yellow indicates dextrose fermentation (Figure 5.1). Thirty grams of dextrose 

tryptone agar was suspended in 1.0 L of deionized water and then heated, while 

agitating with a magnetic stirrer, to a boil. The agar was allowed to boil for one minute 

and then it was autoclaved for 15 minutes at 121 oC. The agar was used in the pour 

plating technique for B. stearothermophilus recovery and enumeration. 

 

 

Figure 5.1.   A plate of dextrose tryptone agar illustrating the changes that occur after 
incubation at 55 oC for 36 – 48 hours. The left hand side of the plate was not 
inoculated. The right hand side of the plate was inoculated with Bacillus coagulans 
(Difco, 1995). 
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5.8 Salmonella typhimurium Enumeration Media 
 

McConkey agar (Difco, 1998) supplemented with 100 ppm of MnSO4 (Manganese 

sulfate) was used for the recovery and enumeration of S. typhimurium in feed (method 

42-25A, AACC, 1995b).   

 

Formula per liter for McConkey agar was as follows: 

Polypeptone        3.0 g 
Peptone       17.0 g 
Lactose       10.0 g 
Bile salts No. 3        1.5 g 
NaCl2          5.0 g 
Neutral red        0.03 g  
Agar        13.5 g 

 

Dry ingredients of McConkey agar were weighed and dissolved in 1 L deionized 

water. The agar was heated to a boil while being agitated with a magnetic stirrer.  

Next, the agar was autoclaved for 15 minutes at 121 oC, cooled to 45 – 50 oC and 

poured into 15x100 mm petri dishes. Poured plates were allowed to dry covered for at 

least 2 hours. Final plate pH was 7.1± 0.1.  A 10% stock solution of nalidixic acid (Lot 

number 95H5009, Sigma Chemical Company, St. Louis, Montana) was prepared by 

adding 0.5 g nalidixic acid into a 250 mL beaker and then adding deionized water to 

make up 5 g of solution. One mL of filter sterilized 10% stock solution was added to 1 

L of McConkey agar to produce the desired McConkey with 100 ppm nalidixid acid 

agar.   
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5.9 Feed Inoculation with Dry Feed Inoculum 
 

5.9.1 Serial Dilution Technique 

 

Dilutions of feed suspension were selected for pour plating to yield plates containing 

25 to 250 colonies.  Serial dilutions were used to dilute cultures containing large 

numbers of organisms, for example 3.0 x 106 CFU per mL of broth to a manageable 

number, such as 30 organisms per mL, without the use of a tremendous amount of 

diluent.  The original dilution was diluted in progressive steps as shown in the top row 

of Figure 5.2 (Smith, 2000.) 

 

 

5.9.2 Enumeration of Salmonella typhimurium in Control and Inoculated Feed 

 

The following procedure was used to enumerate Salmonella typhimurium (method 42-

25A, AACC, 1995b). 

1. Using aseptic techniques, 25 g of control or inoculated feed sample was 

weighed in a sterile 250-mL sampling container placed on a weighing scale (± 

0.01g). 

2. Deionized water was added to make up 250 g of suspension. The sampling 

container lid was tightly replaced and the suspension shaken vigorously in 30 

cm arcs for 2 minutes by hand to make the 10-1 dilution.  
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3. Serial dilutions were prepared from the 10-1 dilution prepared in step 2 above 

by transferring 1mL of the suspension into a test tube containing 9 mL of 

deionized water. Subsequent serial dilutions were prepared similarly. 

4. 100 micro liters of appropriate dilutions were plated in duplicates on 

McConkey agar supplemented with 100 ppm nalidixic acid. 

5. Inoculated plates were incubated for 24 hours at 37 oC. 

6. Colonies on plates were counted after 24 hours of incubation using the 

Darkfield Quebec colony counter (Model 3330. Darkfield Quebeck, Buffalo, 

New York). 

 

 

5.9.3 Decimal Dilutions of B. stearothermophilus Spores in Initial Liquid Inoculum 

 

Dilution blanks consisting of 9 mL deionized water were prepared in test tubes. One 

mL of the initial suspension was aseptically transferred to the first dilution blank to 

make the 10-1 dilution. After thoroughly vortexing the 10-1 dilution, 1 mL was 

transferred to the next dilution blank using a separate sterile pipette tip to make the  

10-2 dilution. Subsequent decimal dilutions were prepared using the serial dilution 

technique, transferring 1 mL quantities into dilution blanks by using a separate sterile 

pipette tip for each dilution (Figure 5.3).   
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Figure 5.2.  Preparation of dilutions from an initial suspension of Bacillus stearothermophilus spores in distilled water.
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While the spore sample was agitated 1 mL samples of appropriate dilutions were 

transferred to 250-mL Erlenmeyer flask containing 100 mL sterile dextrose tryptone 

agar at a temperature of between 50 and 60 oC.  Samples were then heat shocked at 

100 oC for 15 minutes.  After heat shocking, samples were cooled rapidly in a cold 

water bath to 50 - 60 oC.  Samples were then equally distributed into 4  sterile Petri 

plates under a laminar flow biohazard hood (model 240, serial number 19795B, 

Contamination). Four plates were used instead of the 5 specified in method 42 – 40 

procedures of the AACC (AACC, 1995a) because the 100 mL samples could not 

completely cover the bottom of 5 plates. 

 

 

5.9.4 Enumeration Bacterial Spores in Control and Inoculated Feed 

 

The AACC method 42-40 procedures were used for spore enumeration (AACC, 

1995a). Twenty grams of each feed sample was weighed in a sterile sampling 

container set on a portable bench top weighing scale. Deionized water was then added 

till the scale read 100 g. The container lid was tightly replaced and the suspension 

vigorously shaken by hand for 10 seconds in a 30 cm arch to obtain a uniform 

suspension of feed in water. Serial dilutions were prepared from this initial 1:5 

dilution by aseptically transferring 10 mL quantities of suspension into 90 mL dilution 

blanks consisting of deionized water in 250-mL sterile sampling containers with lids 

(Figure 5.3). 
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While the suspension was agitated, 20 mL of the feed suspension was pipetted using a 

large bore pipette into a 250-mL Erlenmeyer flask containing 100 mL sterile dextrose 

tryptone agar at a temperature of between 50 and 60 oC. The flask was placed in the 

steam cabinet and heat shocked at 100 oC for 15 minutes. A thermometer was set in a 

250-mL flask containing 100 mL dextrose tryptone agar as a temperature control. 

After heat shocking, samples were cooled rapidly in a cold water bath to 50 - 60 oC 

after which the entire mixture was equally distributed into 5 sterile Petri plates under a 

laminar flow biohazard hood (model 240, serial number 19795B, Contamination 

 

 
 

Figure 5.3.  Preparation of dilutions from an initial 1:5 (20 g feed: 100 g feed and 
water) of feed in deionized water. DTA = dextrose tryptone agar. 

 



 66

Control Incorporated, Lansdale, Pennsylvania). A similar temperature control flask 

was exposed to the same heating and cooling conditions as the test sample to monitor 

the heat shocking and cooling steps of the procedures. Plates were allowed to dry 

partially covered for 45 minutes to 1 hour at room temperature under the laminar flow 

biohazard hood then incubated at 60 - 65 oC for 24 hours (VIP Imperial II CO2 

incubator with dual chambers, dual control. Lab-line Instruments Incorporated, 

Melrose Park, Illinois ). Colonies were counted between 16 and 24 hours using a 

colony counter (Model 3330, Darkfield Quebeck, Buffalo, New York). 

 

 

5.10 Determination of Spore Density by Cultural Method 
 

Spore density of B. stearothermophilus in feed was determined using Equation 6. 

Spore density = spore count x df    (5.5) 

Where: 

spore density = spore count / 20 g feed 
 
spore count = sum of spore counts in 5 plates poured from mixture of  

100 mL dextrose tryptone agar and 20 mL suspension of  
a selected  dilution 

 
 df  = dilution factor (5 x 103), an initial suspension of 20 g  

inoculated feed was suspended in 80 g deionized water,  
3 decimal dilutions of 10-1 each were serially made from  
the initial suspension 
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5.11 Limits of Detection of Spores in Feed by Cultural Methods 

 

The lower limit of detection was based upon the lowest number of bacterial colonies per plate (25 CFU) 

that could be counted accurately (Smith, 2000).   As an example, suppose that for a 20 g feed sample 

there were 25 CFU on each of the five plates poured. The total number of CFU would be 125 CFU per 

20 g of feed.  This may be rounded of to 1.2 x 102 CFU / 20 g of feed (2 significant figures). Similarly, 

the upper limit of detection was based on the greatest number of bacterial colonies per plate (250 CFU) 

that could be counted accurately (Smith, 2000).  For a 20 g feed sample, if 250 CFU were counted on 

each of the five plates poured, the total would be 1250 CFU / 20 g of feed. This rounds off to 1.2 x 103 

CFU / 20 g of feed. The lower and upper limits of detection of spore in feed by cultural 

methods were estimated as follows (Equations 5.6 and 5.7).  

Lower limit of detection = df x 1.2 x 102,  
spores / 20 g feed  (5.6) 

 
 Upper limit of detection = df x 1.2 x 103, 
      spores / 20 g feed  (5.7) 
Where: 

Lower and upper  
limits of detection   = least and greatest, respectively, detectable 

number of spores per 20 g of feed  
 
df    = dilution factor (5 x 103), based on an  
     initial suspension of 20 g of inoculated  
     feed suspended in 80 g deionized water 
then 3 serial dilutions of 10-1 each of this  

 

 

5.12 Sensitivity and Specificity of Spore Enumeration Method 

 

Spores of B. stearothermophilus were artificially added to mash feed containing 

indigenous acid producing, thermophilic microorganisms in order to elevate the total 
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feed spore density (CFU / g of feed) such that a detectable level of spores were left in 

the feed after extrusion cooking under the conditions used in this study.  Sensitivity of 

the method used to recover and enumerate bacterial spores in the test feed can be 

expressed as the ratio of the spore density (CFU / g feed) as determined by the method 

to the predicted spore density (CFU / g feed) based upon the amount of artificially 

inoculated spores (Equation 5.8). It measures the ability of the method to detect the 

targeted organism in the feed sample.  

 
Ssen  = (SDobserved / SDpredicted) x 100%  (5.8)  

Where: 

 Ssen  = sensitivity, % 

 SDobserved = spore density as observed by enumeration method,  
CFU / g  feed 

 

 SDpredicted  = predicted spore density as based on amount of  
    artificially inoculated spores, CFU / g  feed 
 

Specificity measures the ability of the enumeration media to correctly recover the 

targeted organism using a specified enumeration media. It can be expressed as the 

ratio of the density of the targeted organisms recovered to the total number (targeted + 

any other) of organisms recovered from the feed sample using the enumeration media 

(Equation 5.9).  

 
 Sspe  = (Rtargeted / Rtotal) x 100 %   (5.9) 

Where: 

 Sspe  = specificity of enumeration method,% 
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 Rtargeted  = density of targeted organism recovered from feed  
    sample, CFU / g feed 
 
 Rtotal  = density of all organisms recovered from feed sample  
    using a specified enumeration media, CFU / g feed 

 

 Spores of all indigenous acid producing,, thermophilic organisms present in the feed 

and artificially inoculated B. stearothermophilus were recovered using method 42 – 40 

of the AACC procedures (AACC, 1995a). Because the bacterial spores used in this 

research were a mixed culture, sensitivity and specificity, respectively, of the spore 

enumeration method was not determined. 

 

 

5.13 Standardized Feed Formulation 
 

A standardized feed formulation consisting of 60 % corn meal, 30 % soybean meal, 

and 10% animal protein blend was prepared at the site of the experiment. Corn meal 

(Cooperative Milling, Gettysburg, Pennsylvania) was prepared using a roller mill 

(serial number 435386, Roskamp roller mill, Waterloo, Iowa). Soybean meal 

(Cooperative milling, Gettysburg, Pennsylvania) and animal protein blend (AKEYS 

Incorporated, Lewisburg, Ohio) were obtained from commercial suppliers of animal 

feed products. Tables C 1, C 2 and C 3, respectively, in Appendix C contain  

specifications of the standardized feed formulation by constituent. Feed formulation 

was stored at ambient temperature in sealed barrels until used. 
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5.14 Determination of Particle Size Distribution 
 

5.14.1 Method of Sieving 

 

One large batch of the standardized feed formulation (2000 pounds) was prepared and 

used throughout the studies.  Representative samples were taken from this batch of 

feed by sampling from different but equally spaced locations in a horizontal plane and 

different depths in randomly selected storage barrels.  This particle size distribution 

analysis was included to describe the standardized feed formulation used in the 

studies. The American Society of Agricultural Engineers (ASAE) method ASAE 

S319.3 was used in sieving feed samples as follows (ASAE Standards, 2002).  

1. A nest of 8 test sieves was arranged in order of descending sieve opening 

(US sieve numbers 4, 10, 18, 20, 35, 60, 100 and 200). 

2. 100 g of feed sample was placed on the top sieve of the nest of sieves and 

shaken using the Octagon 200 test sieve shaker (serial number 8-200-3834.  

Endecotts Octagon 200, London, England) until the mass of material on 

any one sieve reached an end-point (15 minutes).  

3. Mass of material on each screen was determined using a weighing scale 

(serial number N54689, model PM34-K, Mettler Instruments, Stown New 

Jerser) and recorded.  
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5.14.2  Data Analysis 

 

This analysis was completed in order to describe the standardized feed formulation 

used in the studies. Particle size was presented as cumulative distributions (Table D 1 

in Appendix D).  Geometric mean diameter, geometric standard deviation of log 

normal distribution by mass, and geometric standard deviation of particle diameter by 

mass were determined based on derivations by Pfost and Headley (1976) (Equations 

5.10, 5.11, and 5.12). 

 dgw = log-1[ ∑(Wilog di) / ∑Wi ]    (5.10) 

 Slog = [ ∑Wi(log di-log dgw)2/∑Wi ]0.5   (5.11) 

 Sgw = 10Slog       (5.12) 

Where: 

 di = nominal sieve aperture size of the ith sieve, microns 

 dgw = geometric mean diameter of particles by mass, microns 
 
 Slog = geometric standard deviation of log-normal distribution by mass 

in ten-based logarithm, dimensionless 
 

 Sgw = geometric standard deviation of particle di by mass, microns 
  

Wi = mass on ith sieve, g 
  

 log-1(x)= 10x, x being a variable 
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5.15 Feed Mash Moisture Content Control 
 

To obtain feed of the desired moisture content, a predetermined amount of tap water 

was added to 10 kg of feed mash and the two mixed for 10 minutes using a paddle 

mixer (Model H600, Hobart corporation, Troy, Ohio)(Figure 4.9).  A mixing container 

was tared on a weighing balance (Weigh-Tronix scale – indicator model number W1-

125, base model number 2155, Weigh-Tronix incorporated, Fairmont, Minnesota); 10 

kg of dry feed and a previously determined amount of water were then added. The 

amount of tap water, MW, required in 10 kg (MAF ) of dry feed was determined using 

Equation 5.13.  This method of feed moisture regulation provided for a more precise 

control of the feed moisture content than the regulation of feed moisture content by 

addition of water and steam at the extruder barrel. Two replications of moisture 

content determinations were made of the following targeted mash feed moisture 

content: 26%, 28%, 30%, 32%, and 34 %, respectively, wet basis. 

 

MW = MAF (McD – McAF) / (100 – McD)   (5.13) 

Where: 

MW = mass of water added, kg 

 MAF = mass of ambient feed, before addition of water, kg  

McAF = moisture content of ambient feed, before addition of water, wb 

McD = targeted moisture content of feed, % wb 
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5.16 Mash Feed Moisture Content Measurement 
 

Following mixing of 10 kg – batches of ambient feed with predetermined amounts of 

water, two 100 g - feed - samples were extracted from the surface and the center of the 

10 kg - batches of mash feed for moisture content analysis.  The batches of mash feed 

were not inoculated with B. stearothermophilus spores. The approved methods of the 

American Association of Cereal Chemists (Method 44 - 01, AACC, 1995c) were used 

in this measurement. Samples were prepared and analyzed as follows: 

1. Two grams of well-mixed mash feed were accurately weighed in a covered dry 

dish using an electronic scale, (PG 5002-S Delta range, model number 5002-

SDR, serial number 1116313872, Mettler Toledo, Columbus, Ohio).  With 

caps loosened, samples were heated at 98 – 100 oC for about 5 hours to a 

constant dry weight in a partial vacuum equivalent to 30 mmHg using the 

Isotemp Vacuum Oven (Fisher scientific, Model number 285A). Dry air was 

admitted into the oven to return oven chamber to atmospheric pressure before 

removing samples. 

2. Samples were transferred to a desiccator (Figure 4.10) to cool to room 

temperature  

3. Mass of samples were observed and recorded soon after they reached room 

temperature. 

4. Moisture content was determined using Equation  5.14 (AACC, 1995c). 
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Percent moisture (%)  = 100 x (Mwet – Mdry) / Mwet  (5.14) 

Where: 

 Mwet    = mass of feed sample before drying, g 

 Mdry    = mass of feed sample after drying, g 

 

 

 
5.17 Feed Wetting and Drying Experiment 

 

An experiment was conducted where about 5 g samples of feed were dried, rewetted to 

achieve the 24.5 to 32.5 % (wet basis) range of feed moisture covered in this research 

and then dried again to see if all the rewetting water was recovered. Amounts of water 

added to the 5 g feed samples were estimated using Equation 5.13.  Drying was 

accomplished using an Isotemp® oven (Model 655F, Fisher Scientific) similar to the 

one described under Section 4.13.1 (“Vacuum oven”); an aluminum tray containing a 

layer of indicating drierite (anhydrous calcium sulfate impregnated with cobalt 

chloride) was placed in the oven to control oven air humidity.  The following 

procedure was used. 

1. Approximately 5.5 g samples of the standardized feed formulation were 

weighed in 15 separate aluminum weighing pans using an electronic scale 

(PG 5002-S Delta range, model 5002-SDR, Mettler Toledo, Columbus, 

Ohio) . Weighing pans were labeled with symbols indicating a predicted 

moisture level and a replicate number (3 replicates each for moisture levels 
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24.5 %, 26.5 %, 28.5 %, 30.5% and 32.5% wet basis, respectively). Weight 

data of each sample was recorded. 

 
2. Samples were then dried at 98 – 100 oC for 5 hours. 

3. Dried samples were transferred to a desicator (Fisher Scientific) similar to 

the one described under Section 4.13.2 (“Desiccator”) and allowed to cool 

for 10 minutes. 

4. To each sample, a predetermined amount of water corresponding to the 

predicted moisture level was added, 3 replicates for each moisture level as 

indicated in 1) above. Rewetted feed samples were then dried at a 

temperature of 98 – 100 oC for 5 hours in the Isotemp® oven (Model 655F, 

Fisher Scientific). The amount of water in grams added to each sample was 

recorded. 

5. Redried feed samples were reweighed and the weight of each one recorded. 

 

 

 
5.18 Mash Feed Water Activity (aw) Measurement 

 

A water activity meter (model CX-2, Decagon devices incorporated, Pullman, 

Washington) was used to measure aw of the mash feed.  Mash feed samples used in 

this determination were collected as described in procedures under “Mash Feed 

Moisture Content Measurement”.  A 2 g sample of mash feed was placed in a sample 

tray and inserted into the reading chamber of the water activity meter. Values of aw 

were observed directly on the meter’s liquid crystal display after a 1 to 15 minute 
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equilibration depending on the sample. The meter sounded (intermittent beeps) when 

equilibration was complete. 

 

 

5.19 Mash Feed Inoculation with B. stearothermophilus Spores 
 

 

An amount of feed inoculum required in 10 kg of feed mash that would give 

approximately 2.0 x 107 spores / 20 g of feed was determined using Equation 5.15. 

 

  

 

MFI = MMF (CFUD - CFUMF) / (CFUFI - CFUD)  (5.15) 

Where: 

 MFI = mass of feed inoculum, kg  

 CFU = colony forming unit 

 CFUD = desired spore concentration in final inoculated feed mash  
CFU / g feed 

  
 CFUMF = spore concentration in mash feed, CFU / g feed 
  

CFUFI = spore concentration in feed inoculum, CFU / g feed 
 

 MMF = mass of mash feed, kg  
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5.20 Experimental Design 

 

5.20.1 Central Composite Design 

 

Some of the desirable characteristics of experimental designs for response surface 

estimation include: 1) the ability to estimate experimental error variance, and 2) allow 

for a test of lack of fit to the model. In addition, designs should efficiently estimate the 

model coefficients and predict responses (Kuehl, 2000). Central composite designs are 

2n factorial treatment designs with 2n additional treatment combinations referred to as 

the axial points along the coordinate axes of the coded factor levels.  Equation 5.16 

(Kuehl, 2000) gives the number of experimental units required for the central 

composite design with n independent variables.  Central composite designs are more 

economical in terms of experimental units and enable the estimation of quadratic 

response equations (Kuehl, 2000).  Table 5.1 summarizes all the combinations 

(treatments) of independent extrusion variables required for the central composite 

design used in these studies. 

 

Nv = 2n + 2n + m      (5.16) 

Where; 

 Nv = total number of independent variable combinations required in a  
rotatable central composite design 

 
n = number of independent variables, 

 m =  replication at the center of the central composite design 
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A response surface model was used because the experimental variables were 1) 

continuous, and 2) used to derive levels of extrusion independent variables that 

optimized spore inactivation, that is, a maxima, or a series of independent variable 

combinations that produced maximum spore inactivation. 

 
 
Table 5.1.  A list of feed extrusion independent variables.  Treatments were 
combinations of feed extrusion independent variables. Treatments were arbitrarily 
assigned numbers 1 through 15. 
   

        

Treatment 
Extruder Barrel 

Exit Temperature, T
oF (oC) 

Moisture Content
of Mash Feed, 

Mc (% wb) 

Retention Time 
of Feed in Extruder 

Barrel, Rt (s) 
        
    

1 170 (77) 28.5 7 
2 182 (83) 26.5 5 
3 182 (83) 26.5 9 
4 182 (83) 30.5 5 
5 182 (83) 30.5 9 
6 200 (93) 24.5 7 
7 200 (93) 28.5 3 
8 200 (93) 28.5 7 
8 200 (93) 28.5 7 
8 200 (93) 28.5 7 
8 200 93) 28.5 7 
8 200 (93) 28.5 7 
8 200 (93) 28.5 7 
9 200 (93) 28.5 11 
10 200 (93) 32.5 7 
11 217 (103) 26.5 5 
12 217 (103) 26.5 9 
13 217 (103) 30.5 5 
14 217 (103) 30.5 9 
15 230 (110) 28.5 7 
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Five levels of each one of the 3 variables coded as –α, -1, 0, 1, and α, respectively, 

were chosen on the basis of preliminary test results that were used to determine the 

possible ranges of each of the variables (Table 5.2). The value of α  = (2n)1/4, the axial 

point, was selected to obtain a rotatable, spherical central composite design, where n is 

the number of variables. Further, 6 runs of the design center point were selected for 

each replicate to obtain uniform precision of the spore inactivation  at all points 

equidistant from the center of the central composite design (Kuehl, 2000).  Table 5.3 

summarizes a complete set of runs for one replication of the experiment in coded 

units.  A spherical design region was desirable because the extruder could not be 

operated at one or more of the extremes of the design region, and it was strongly 

suspected that the response would express a simple maxima or minima within the 

study variable ranges. 

 

Table 5.2.  Coded Levels of Extrusion Cooking Variables (Cochran And Cox, 1957). 
 
 

              

  Coded 
level -1.682 -1 0 1 1.682 

      Variable             
        

Rta, s  3 4.62 7 9.38 11 
Tb, oC  77 83 93 103 110 

Mcc,% wb  24.5 26.5 28.5 30.5 32.5 
              

 
aRt retention time, bT = extruder barrel exit temperature, cMc = mash feed moisture 
content 
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5.20.2 Split-Plot Design 

 

Extruder barrel exit temperature was hard to vary during the experiment and was 

therefore used to restrict the randomization order by grouping sets of runs together that 

had the same extruder barrel exit temperature or runs were grouped such that extruder 

barrel exit temperature of a set of runs was in an ascending order.  Because feed 

samples taken from not more than four runs could be appropriately analyzed for B. 

stearothermophilus spore density in one experiment day, runs were grouped into sets 

of four runs per day.  Table G 1 in Appendix H lists the order of experimental runs 

during the studies. 

 

The experiment consisted of extruding a standardized feed inoculated with B. 

stearothermophilus spores to determine spore inactivation achieved at various extruder 

settings.  The three feed extrusion variables considered were: 1) moisture content of 

feed mash (Mc), 2) extruder barrel exit temperature (T), and 3) retention time of feed 

in the extruder barrel (Rt). To prepare feed for the experiment, each of four batches of 

ambient moisture feed (10 kg) were mixed with specified amounts of moisture 

corresponding to four runs of an experiment day using a paddle mixer. Keeping 

extruder barrel exit temperature at a specified level, four runs were performed 

involving levels of the other two factors, Mc and Rt. 
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Table 5.3. The Central composite design showing a complete set of experimental units 
(treatments) in coded levels for three variables (Cochran and Cox, 1957). Treatments 
were arbitrarily identified with numbers 1 through 15. Key: Rt = retention time of feed 
in extruder barrel (s), T = temperature at extruder barrel exit (oC), Mc = mash feed 
moisture content, % wet basis.  
 

        

Treatment T, oC 
Mc, % 

wb Rt, s 
        
    

1 77 28.5 7 
2 83 26.5 5 
3 83 26.5 9 
4 83 30.5 5 
5 83 30.5 9 
6 93 24.5 7 
7 93 28.5 3 
8 93 28.5 7 
8 93 28.5 7 
8 93 28.5 7 
8 93 28.5 7 
8 93 28.5 7 
8 93 28.5 7 
9 93 28.5 11 
10 93 32.5 7 
11 103 26.5 5 
12 103 26.5 9 
13 103 30.5 5 
14 103 30.5 9 
15 110 28.5 7 
        

    
        

Treatment T, oC Mc, % wb Rt, s 
        
    
1 77 28.5 7 
2 83 26.5 5 
3 83 26.5 9 
4 83 30.5 5 
5 83 30.5 9 
6 93 24.5 7 
7 93 28.5 3 
8 93 28.5 7 
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8 93 28.5 7 
8 93 28.5 7 
8 93 28.5 7 
8 93 28.5 7 
8 93 28.5 7 
9 93 28.5 11 
10 93 32.5 7 
11 103 26.5 5 
12 103 26.5 9 
13 103 30.5 5 
14 103 30.5 9 
15 110 28.5 7 
        

 

 

The object of the experiment was to build a response surface model that describes the 

effect of the extrusion cooking process on B. stearothermophilus spores in feed.  The 

selected model consisted of linear terms, quadratic terms, and cross product terms of 

the three factors. 

 

5.21 Statistical Procedures 
 

Normality tests were performed on residuals of Log (No/N), where No and N are the 

initial and final spore count in CFU / 20 g feed, respectively.  Once the normality 

requirements were met, a response surface model was obtained since factors involved 

in the experiment were: 1) continuous, and 2) would be used to derive an important 

feature, namely levels of variables that optimized the response (stationary point).  Data 

was fit to a regression curve for the inactivation of B. stearothermophilus spores. 

Response surface analysis was used to estimate the model coefficients, perform a lack 

of fit test and to obtain the stationary point and it’s estimated value using the response 
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surface regression (RSREG) procedure of SAS (Freund and Littell, 2000). The mean 

day within replicate effect for each set of four runs performed on each experiment day 

was obtained using the “mixed procedure” of SAS (Littell et al., 1996). Each 

dependent observation was then adjusted for day within replicate variation before 

performing the RSREG procedure on the data set. The “ridge max” option in RSREG 

procedure was included to generate the ridge of maximum response, which is, the 

series of extrusion treatments that maximized spore inactivation. The analysis was 

based on a second-degree polynomial with three explanatory factors. 
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6. RESULTS AND DISCUSSION 
 
 

6.1 Particle Size Distribution 
 
 
Particulate material is normally described by its mean particle size and particle size 

distribution (PSD). Figure 6.1shows the cumulative particle size distribution of the 

feed. The analysis of PSD was completed to describe the standardized feed 

formulation used in the studies. The standardized feed formulation showed a log 

normal distribution (Figure 6.1).  Therefore PSD was expressed as a geometric mean 

diameter (GMD) and the geometric standard deviation (Table D 1 in Appendix D). 

The geometric mean particle diameter was 648 microns with a geometric standard 

deviation of 1.89 microns. Particle size affects the rate of heat and moisture flows into 

the interior of the feed particle during extrusion cooking (Bouvier, 2001). Fourier’ 

second law deals with the rate of heat flow while Fick’s second law governs the mass 

flux per unit area, respectively, into the interior of the feed particle as shown in 

Equation 6.1.  As an example, thermal diffusivity for starch materials at ambient 

temperature is about 10-7 m2 / s while the water diffusivity (D) is nearly 10-9 m2 / s 

(Bouvier, 2001). Consider a feed particle in the standardized feed formulation at 

moisture content of 28 % wet basis. Assuming the particle density of 1500 kg / m3, for 

starch (Singh and Heldman, 2001e), and a dry particle interior, we get a moisture 

concentration at the surface of 368.4 kg / m3.  From Equation 6.1(Singh and Heldman, 

2001b), the mass flow rate per unit area, m˙/ Ad, can be calculated as follows:  
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(m˙/ A) = (1 x 10-9 m2 / s) x (368.4 kg / m3) / (648 x 10-6 m / 2) giving a flux of 

0.00114 kg / s m2 of water into the interior of the particle. This information may be 

useful in estimating the time necessary to humidify the particles homogeneously, that 

is hydration time, during preconditioning as part of extrusion cooking. 

 m˙ = - D A (dc / dx)     (6.1)  

Where: 

 m˙ = mass flow rate of diffusing substance, kg / s 

 D = diffusivity of diffusing substance, m2 / s  

Ad = area across which diffusion of a substance occurs, m2 

 dc = change in concentration of diffusing substance, kg / m3 

 dx = change in linear distance in the direction of mass transfer of  
   diffusing substance, m 
 

  
6.2 Manual Control of Feed Moisture Content Prior to Extrusion  

 

Manual feed moisture content control by addition of predetermined amounts of water 

to 10 kg samples of mash feed was found to be adequate as indicated by a slope of the 

calibration curve which was 0.95 and R2 value equal to 0.98 (predicted versus 

observed feed moisture content) (Figure 6.2).  Table E 1.1 in Appendix E contains the 

mean moisture content data used to plot Figure 6.2.  Feed moisture content was 

calculated using equation 5.12. The same procedure of manual feed moisture content 

control was employed for every experimental run.  Observed feed moisture content 

were on average lower than predicted feed moisture content by 1.5%.  Values of 

observed feed moisture content were adjusted for that difference.
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Figure 6.1   Particle size distribution curve of the standardized feed prior to extrusion (60% corn meal, 30% soybean meal and 10% 
animal protein blend, by weight) prior to extrusion. The data points represent three replicates (rep 1 – rep 3) plotted on logarithmic 
scales. 
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Figure 6.2.  A calibration curve for mash feed moisture content estimation. Two 
replicates were used in this determination. wb = wet basis. 

 

 

6.3 Mean Treatment Moisture Content and aw of Feed Before and After Extrusion 

 

No statistical analysis was completed on feed aw because it was not controlled for in 

the studies.  Feed aw values of the 15 treatments were between 0.830 and 0.959.  

Although no trend in aw of feed across treatments was observed, it was speculated that 

the thermal resistance of acid producing thermophilic organisms and B. 

stearothermophilus spores in the feed would be less than the maximal value as 

predicted for B. stearothermophilus by Murrell and Scott (1966) at an aw value of 

0.2000. The moisture content of feed before and after extrusion was compared for 
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each of the 15 extrusion conditions tested during the studies. Figure 6.3 shows a bar 

chart of these results.  Raw data used in the moisture content determination is 

contained in Tables E 1.1 and E 1.2 in Appendix E.  Observed mash feed moisture 

content was estimated by subtracting 1.5 % from predicted mash feed moisture content 

values, 1.5% being the mean difference between predicted and observed values 

obtained during calibration (Figure 6.2).  All observed mash feed moisture contents 

based on this adjustment was used in the response surface model analysis.  In most of 

the extrusion treatments, the moisture content of extrudate was lower than that of the 

mash feed prior to extrusion. No pattern in moisture reduction relative to Mc, T or Rt 

was observed. This reduction in moisture content was attributed to evaporation of 

moisture as a result of an interaction between retention time of feed in the extruder 

barrel and the high temperatures within the extruder barrel experienced by feed during 

extrusion. Moisture content measurement data of ambient feed in storage barrels are 

contained in Table E 1.3 and Figure E 1, respectively, in Appendix E.  Moisture 

content of ambient feed did not change in storage during the 8-week study period.   

 

Table E 1.4 and Figure E 2 show the results of the feed drying and rewetting 

experiment. All the rewetting water was recovered from each sample tested in the 

range of the feed moisture content tested (Table E 1.4 and Figure E 2). It was 

concluded that the standardized feed did not retain any of the water added to the 

samples during drying. The method used to estimate observed mash feed moisture 

content was not influenced by water binding by feed particles.  
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Figure 6.3   A bar chart showing mean observed moisture content of feed before 
extrusion (Mci) and observed moisture content of extrudate (Mcf) under different 
extrusion treatments. Treatments are predetermined combinations of extruder barrel 
exit temperature, feed moisture content and retention time of feed in the extruder 
barrel, respectively. Table 5.1 relates treatment numbers to the set of treatment 
variables. 

 

 

6.4 Feed Retention Time in Extruder Barrel 

 

A calibration curve was developed and used to select extruder barrel speeds in Hertz 

that produced desired retention times of feed in the extruder barrel, respectively. 

Figure 6.4 shows calibration results.  Extruder barrel speed was displayed in Hertz 

(equivalent to revolutions per second). The calibration curve was used to determine 
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extruder barrel speed in Hertz corresponding to desired retention time of feed in the 

extruder barrel in seconds.  Raw data for the calibration is summarized in Table E 2 in 

Appendix E. 
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Figure 6.4.  A calibration curve used for estimating extruder barrel speed in Hertz 
(equivalent to revolutions per second) required to produce desired feed retention time 
in the extruder barrel in seconds, respectively. Three replicates were used. 
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6.5 Feed Delivery Rate 

 

The feed delivery auger of the live feed bin was set to run at 6 Hz for all treatments 

during the studies. Throughput of extrudate at this speed (94 ton/hour) was adequate 

and did not cause the extruder to stall (Table 6.1). 
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Table 6.1.  Mash feed delivery rate. SE = standard error of the mean. 
 

    
Feed Delivery Rate  

   
   

kg/s ton /hour 

Trial 

Mass of 
Feed 

Collected 
(kg) 

Time 
Elapsed 

(s) 

    
     
1 1.5 60 0.025 90 
2 1.6 60 0.027 96 
3 1.6 60 0.027 96 
     

Mean 
Feed 

Delivery 
Rate 

  0.026 94 

Standard 
Error   0.00096 3.5 

 

 

6.6 Dry Inoculum Preparation Studies 

 

6.6.1 Recovery of Salmonella typhimurium from Feed 

 

The nalidixic acid resistant strain of S. typhimurium and a negative control (nalidixic 

acid susceptible strain of S. typhimurium) were inoculated on McConkey agar 

supplemented with 100 ppm nalidixic acid and brain heart infusion agar, respectively. 

Results of these studies are shown in Table 6.2.   These results indicate that the use of 

McConkey agar with 100 ppm nalidixic acid to selectively isolate the test organism in 

feed samples was effective since the growth of the nalidixic acid susceptible strain of 

S. typhimurium was inhibited by the media while the test organism was successfully 

isolated.   
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Table 6.2 .  Growth results of the test organism (nalidixic acid resistant S. 
typhimurium) and a control on selective and non-selective media, respectively. “+” = 
growth. “-“ = no growth. 
 
 

 

McConkey agar 
supplemented with 
100 ppm nalidixic 

acid 

Brain heart infusion agar 

Test organism, nalidixic acid resistant S. 
typhimurium + + 

   
Negative control, smooth variant of S.typhimurium

DT104 - + 

 
 
 

The test organism was recovered from feed samples inoculated with dry chalk 

inoculum of nalidixic acid resistant S. typhimurium but not from uninoculated feed 

samples, respectively, prior to extrusion.  No detectable cells of the test organism were 

recovered from the extrudate when feed with 24.5 % (wet basis) moisture was 

extruded for 3 seconds at the lowest extruder barrel temperature of 82 oC. In addition, 

no detectable cells of the test organism were recovered under more severe extrusion 

conditions tested as shown in Table 6.3.  It was concluded that S. typhimurium was not 

an appropriate organism for exploring extrusion conditions that optimized bacterial 

inactivation over the permissible ranges of the Extru-Tech E325 extruder.  In seeking 

an organism with greater thermal resistance than S. typhimurium, B. 

stearothermophilus was selected. 
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Table 6.3.  Summary of Salmonella typhimurium population densities in feed 
inoculated with dry chalk inoculum before and after extrusion cooking, respectively. 
Treatments were arbitrarily assigned to letters Ao through A4 for identification. T = 
extruder barrel exit temperature, Mc = feed moisture content, wb = wet basis, Rt = 
retention time, CFU = colony forming units. 
 
 

             

Treatment T, oC Mc, % 
wb Rt, s Sample 

Description CFU / 20g feed 

       
     Mean SE 
             
             

A0 * 24.5 * Uninoculated feed 0 0 
A1 * 24.5 * Inoculated feed 5.2E+04 1.9E+04
A2 82 24.5 3 Inoculated feed 0 0 
A3 103 24.5 3 Inoculated feed 0 0 
A4 103 24.5 4 Inoculated feed 0 0 
             
* Missing data since feed was not extruded. Two temperature settings in the 
mid section of the 77 to 110 oC range of extruder barrel exit temperatures were 
selected in order to rapidly assess whether S. typhimurium cells would 
withstand extrusion conditions over the whole range of temperatures. 

 

 

Dry feed inocula of S. typhimurium showed higher densities (Table 6.4) of the test 

organism prior to extrusion than dry chalk inoculum indicating that use of dry feed 

inoculum to elevate bacterial loads in feed would be more appropriate than dry chalk 

inoculum in these studies.  No detectable cells of the test organism were recovered 

from extrudate following extrusion under conditions summarized in Table 6.4. Tables 

F 1.1 and F 1.2 in Appendix F show the complete S. typhimurium inoculum data 

obtained during the studies. This result was consistent with results obtained previously 

in which feed inoculated with dry chalk inoculum of S. typhimurium and extruded 

showed no detectable cells of the test organism.    



 95

 
 
Table 6.4  Summary of Salmonella typhimurium population densities before and after 
extrusion cooking of feed inoculated with dry feed inoculum of Salmonella 
typhimurium. T = extruder barrel exit temperature, Mc = feed moisture content, wb = 
wet basis, Rt = retention time, CFU = colony forming units. 
 

 
     

     
Density before extrusion,

CFU / 20 g of feed 
Density after extrusion, 

CFU / 20 g of feed 
 

Treatment T, oC Mc, 
% wb Rt, s Sample Sample Sample

Mean  SE CFU / 20 g 
feed 

         
A 83 28.5 7 1 5.6E+08 
A 83 28.5 7 2 5.6E+08 

5.6E+08 0.0E+00 0 

B 88 28.5 7 1 5.2E+08 
B 88 28.5 7 2 3.9E+08 

4.6E+08 9.2E+07 0 

C 103 28.5 7 1 4.4E+08 
C 103 28.5 7 2 6.1E+08 

5.3E+08 1.2E+08 0 

                  
 SE = standard error of the mean CFU / 20 g of feed 

 

6.6.2 Recovery of Bacillus stearothermophilus Spores from Feed  

 

Results of the spore count in dry feed inoculum of B. stearothermophilus are shown in 

Table 6.5. Spore densities in the range of 2.0 x 106 – 3.0 x 106 per 20 g of feed were 

obtained. Spores of acid producing, thermophilic organisms and B. stearothermophilus 

were recovered from dry feed inoculum after doubling the duration of heat shocking to 

increase thermal stress on spores beyond those achieved during the first 15 minutes of 

heat heating. Similarly, it was expected that the Extru-Tech E325 single-screw 

extruder would provide thermal stress to bacterial spores beyond that achieved by heat 

shocking at 100 oC for 15 minutes. A summary of recovery of spores from feed using 
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deionized or tap water to manually control mash feed moisture content is presented in 

Table F 2.1 in Appendix F.  Complete spore enumeration data in the dry feed 

inoculum are contained in Table F 2.2 in Appendix F.  It was concluded that B. 

stearothermophilus was a more suitable test organism than S. typhimurium for 

investigating the optimum feed extrusion conditions that maximized spore inactivation 

using the Extru-Tech E325.  

 

 

6.6.3 Direct Microscopic Spore Count 

 

A direct microscopic spore count of B. stearothermophilus in dry feed inoculum was 

made using the Petroff-Hausser counting chamber (Hausser Scientific, Blue Bell, 

Pensylvania). A mean density of (3.6 ± 0.05) x 106 CFU / 20 g feed was obtained. The 

spore count of B. stearothermophilus in feed obtained by the direct microscopic count 

using the Petroff-Hausser counting chamber (Table F 3 in Appendix F) was higher 

than that obtained by the cultural methods using dextrose tryptone agar as the pour 

plating media (Table 6.5). This was to be expected because whereas the cultural 

method recovered only the viable spores, the direct microscopic method of spore 

enumeration represented all spores in the sample, that is, viable and culturable as well 

as viable but non-culturable spores. The difference in spore densities obtained by the 

two methods might also be attributed to inherent random errors of the two methods. 
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Table 6.5.  Summary of B. stearothermophilus spore densities in dry feed inoculum. 
CFU = colony forming units. SE = standard error of the mean. 
 
 

          
  CFU / 20g feed 

Sample 
Description Replicate  Mean SE 

          
     

Control feed 1 1.1E+04 
Control feed 2 1.0E+04 

1.0E+04 2.5E+02 

Feed inoculum 1 2.3E+06 
Feed inoculum 2 2.3E+06 

2.3E+06 1.4E+04 

Inoculated feed* 1 2.8E+06 
Inoculated feed* 2 2.9E+06 

2.9E+06 2.8E+04 

          
*Sample heat shocked twice (15 min. x 2 = 30 min.) at 100 oC to  
subject B. stearothermophilus and other acid producing,  
thermiphilic spores in the feed to extra thermal stress   
expected in the Extru-Tech E325 singles-screw extruder. 
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6.6.4 Stability of B. stearothermophilus Spores in Refrigerated Dry Feed Inoculum 

 

Figure 6.5 shows the spore densities of B. stearothermophilus in refrigerated dry feed 

inoculum over a period of 7 weeks.  It was concluded that spore densities remained in 

the desired region of 1.0 x 106 CFU / 20 g of feed during the studies ( 8 weeks). 

 

 

6.6.5 Inoculation of Mash Feed with B. stearothermophilus Dry Feed Inoculum 

 

Estimation of dry feed inoculum of B. stearothermophilus required in 10 kg of mash 

feed to produce approximately 2.0 x 107 CFU / 20 g feed was based on the following 

estimates. The spore density in mash feed, CFUMF, was estimated to be 1.0 x 104  

CFU / g feed and spore density in dry feed inoculum, CFUFI, equal to 1.0 x 107  

CFU / g feed (Table 6.5). Equation 5.13 was then used to estimate the dosage required.  

 

 

6.6.6 Use of Deionized Versus Tap Water to Modify Feed Moisture Content 

 

The results of B. stearothermophilus spore densities in the standardized feed treated 

with deionized or tap water are presented in Figure 6.6 and Table F 2.1 in Appendix F.  

It was concluded that the use of tap water to manually modify the moisture content of 

the standardized test feed did not significantly affect the spore count of the artificially 

inoculated spores in the feed.
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Figure 6.5.  Spore count of Bacillus stearothermophilus and other acid producing,, thermophilic organisms in dry feed inoculum 
over a two-month storage period. Spore count was determined for duplicate 20 g inoculum samples by a cultural method using 
dextrose tryptone agar as the pour plating media.
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Figure 6.6.  Comparison of spore densities of artificially inoculated Bacillus stearothermophilus spores in feed whose moisture 
content was modified by adding predetermined amounts of deionized or tap water, respectively.
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6.7 Feed Extrusion Studies 
 

Figure 6.7 shows the mean spore inactivation of acid producing, thermophilic 

organisms and B. stearothermophilus in feed for each of the combinations of extrusion 

variables. Of the 15 treatments tested during the studies, treatments 9 and 12 showed 

the highest percent inactivation of 65 and 64, respectively.  Treatments 3 and 10 

showed the least percent inactivation of 25 and 15, respectively. Table 6.6 summarizes 

the means of spore inactivation of 15 different extrusion conditions expressed as log 

reduction and as a percentage of initial spore densities in feed inoculated with B. 

stearothermophilus. In addition, the appearances of extrudates obtained from the 15 

different treatments tested are shown in Figures H 1 – H 15 in Appendix H.   It was 

noted that the greatest spore inactivation occurred under the following conditions: 93 – 

103 oC extruder barrel exit temperature, 26.5 – 28.5 % moisture content and 7 – 10 s 

retention time of feed in the extruder barrel.  No pattern in appearance of extrudates 

was observed across treatments. 
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Figure 6.7. A bar chart showing mean spore inactivation of acid producing, 
thermophilic organisms and artificially inoculated Bacillus stearothermophilus under 
different extrusion cooking conditions. Treatments are predetermined combinations of 
extruder barrel exit temperature, mash feed moisture content and retention time of feed 
in the extruder barrel, respectively (Table 5.1). 

 
 



 103

Table 6.6.  A summary of the mean spore inactivation of acid producing,, thermophilic 
organisms and artificially inoculated Bacillus stearothermophilus under different 
extrusion cooking conditions. No = CFU / 20 g feed prior to extrusion, N = CFU / 20 g 
feed after extrusion. CFU = colony forming units. Means were not tested for 
significant differences because a continuous response surface was preferred for 
showing extrusion conditions that maximized spore bacterial inactivation. 

 
 

                

 Extrusion Cooking Variables 
Reduction in Spore Population of acid 

producing, thermophilic organisms 
and Bacillus stearothermophilus  

                
             

Treatment 

Extruder 
Barrel Exit 

Temperature, 
oC 

Feed 
Moisture 
Content, 
% wet 
basis 

Retention 
Time of 
Feed in  
Extruder 
Barrel, s 

Log (No/N) Percent  

     Mean SE Mean SE, % 
                
        

1 77 28.5 7 0.23 0.087 40.7 18.2 
2 83 26.5 5 0.35 0.064 55.2 13.8 
3 83 26.5 9 0.13 0.216 25.1 39.3 
4 83 30.5 5 0.24 0.187 42.3 35.0 
5 83 30.5 9 0.14 0.121 28.1 24.3 
6 93 24.5 7 0.26 0.158 45.6 30.6 
7 93 28.5 3 0.14 0.088 27.8 18.3 
8 93 28.5 7 0.17 0.054 32.6 11.7 
9 93 28.5 11 0.46 0.330 65.3 53.2 
10 93 32.5 7 0.08 0.221 15.9 39.8 
11 103 26.5 5 0.28 0.035 47.3 7.7 
12 103 26.5 9 0.44 0.093 64.1 19.4 
13 103 30.5 5 0.16 0.051 31.4 11.0 
14 103 30.5 9 0.18 0.151 34.1 29.4 
15 110 28.5 7 0.22 0.055 40.3 11.9 
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6.8 Response Surface Model for Bacterial Spore Inactivation 

 

A response surface model analysis with uncoded units was used to predict Log (No/N) 

for B. stearothermophilus spores inoculated into a standardized feed formulation and 

subjected to different conditions of extruder barrel exit temperature, mash feed 

moisture content and retention time of feed in the extruder barrel, respectively.  Data 

obtained using central composite design in the studies would not allow three-way  

terms such as T by Mc by Rt. The model was of the form shown in Equation 6.2. 

  

Y = α0 + α1X1 + α2X2 + α3X3 + α4X1
2 + α5X2

2 + 

α6X3
2 + α7X1 X2 + α8X1 X3 + α9X2 X3  (6.2) 

 Where: 

 Y = Log (No/N), dimensionless 

No = CFU / 20 g feed prior to extrusion, colonies per 20 g feed 

N = CFU / 20 g feed after extrusion, colonies per 20 g feed 

CFU =  colony forming units, colonies 

α0 = constant term, dimensionless 

α1…9 = coefficients, units are the inverses of the units of variables  
  corresponding to respective coefficient 
 
X1 = extruder barrel exit temperature, oC, 

X2 = mash feed moisture content, % wet basis, 

X3 = retention time of feed in extruder barrel, s 
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Gibson et al. (1987) observed that empirical models are primarily concerned with 

practical consequences and are used to describe data under prevailing experimental 

conditions.  The authors further noted that while such models were straight forward 

and frequently took the form of polynomial equations, they were 1) non-linear, 2) 

valid only over the range of variables covered in the data, 3) often had no theoretical 

basis, and 4) had numerous parameters with no biophysical meaning.  The final 

response surface model for the inactivation of B. stearothermophilus spores during 

extrusion using the Extru-Tech E325 extruder is presented in Equation 6.3. 

 

Log (No/N) = 0.0702 – 0.00958T + 0.143Mc – 0.377Rt  

+ 0.000307T2 - 0.00236TMc + 0.00101Mc2  

+ 0.00319TRt - 0.000929RtMc  

+ 0.00918Rt2     (6.3) 

Standard Error: 0.0226 log cycles at center of central  

Composite  statistical  design to 0.0511 log cycles at a  

radius of 1.0 coded units  

Where: 

 No = CFU/ 20 g of feed before extrusion cooking, 

 N = CFU/ 20 g of feed after extrusion cooking, 

 T = Extruder barrel exit temperature, oC, 

Mc = Moisture content of feed before extrusion cooking, % wet basis, 

Rt = Retention time of feed in the extruder barrel, s 
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Model parameter estimates and their standard errors are contained in Table 6.7.  The 

order of experimental runs is presented in Table G 1 in Appendix G.  The Shapiro-

Wilk test is a test for the null hypothesis that the input data values are a random 

sample from a normal distribution. In this test of normality of the data, it is only 

necessary to examine the probability associated with the test statistic. A Shapiro-Wilk 

statistic of 0.977 (p = 0.316, α = 0.05) was obtained on the distribution of residuals 

indicating that the normality assumption was satisfied (Table G 2.1, Appendix G). The 

quartile data on residuals shown in Table G 2.2 in Appendix G indicated that the 

minimum and maximum were approximately symmetrical about the median value of 

the residuals. Figure G 1.1 in Appendix G also shows that residuals were on the 

average equal for all treatments. The stem and leaf and box plot shown in Figure G 1.2 

indicates that there were no significant outliers.  The plot of the standardized residuals 

verses standard deviations of observed residuals adequately coincided with that of the 

normally distributed population of residuals with the same standard deviation as the 

observed residuals (Figure G 2.3, Appendix G) as shown by the “*” and “+” in the 

plot. Overall, results of the normality assumption tests performed on residuals showed 

that residuals were normally distributed with a mean of zero.    

 

Linear, quadratic and cross product components of the model, respectively, were 

significant; the overall model was significant indicating that inactivation acid 

producing, thermophilic organisms and of B. stearothermophilus spores in log (No/N) 
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due to extrusion was adequately explained by the extrusion variables (T, Mc and Rt) 

(p < 0.0001 at α = 0.05, Table G 2.3 in Appendix G).  Table G 2.4 summarizes the 

results for the analysis of contribution of independent extrusion cooking variables to 

the overall response surface model. All three independent variables were significant. 

Rt was most significant. A lack-of-fit test is a statistical test of the hypothesis that the 

model is sufficient, often indicating whether any important variables are missing or 

misspecified in the functional part of the model and may be helpful if the plots leave 

any doubt. The non-significant lack of fit test on the model showed that the quadratic 

model was adequate (p = 0.136 at α = 0.05, Table G 2.5 in Appendix G).  

 

Appendix I contains a summary of data set used to generate the response surface 

model. Standard errors of spore inactivation ranged between 0.0226 and 0.0511 log 

cycles at the center and surface of spherical shell with coded radius of 1.682 of the 

central composite statistical design, respectively.  Control of temperature along the 

extruder barrel might improve the model prediction capacity.  Whereas the extruder 

barrel exit temperature could be controlled consistently, temperatures of the preceding 

barrelheads were hard to control.  A more precise method of measuring retention time 

might also improve the model prediction capacity.  More variables, such as pH, salt 

and fat contents of mash feed, respectively, in addition to the three considered during 

the studies might be required to completely explain the response of B. 

stearothermophilus to extrusion. 
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The only stationary point obtained within the range of Extru-Tech E325 extruder 

variables was a saddle point.  Table 6.8 shows the coordinates of the saddle point. A 

saddle point does not have any significant value from the stand point of feed extrusion. 

A maxima within the range of the Extru-Tech E325 extruder variables would indicate 

the point of maximal spore inactivation. 
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Table 6.7.  Estimates of response surface model parameters for Bacillus 
stearothermophilus inactivation during extrusion cooking in a single screw extruder 
(Extru-tech E325, Extru-tech, Sabetha, Kansas).  wb = wet basis. SE = standard error. 
 

      
Estimates of 
Coefficients Estimate SE 

      
   

Intercept 0.0703 4.012 
Ta -0.00958 0.04064

Mcb 0.143 0.1847 
Rtc -0.377 0.1717 
T*T 0.000307 0.000153

Mc*T -0.00236 0.000982
Mc*Mc 0.00101 0.002747
Rt*T 0.00319 0.000982

Rt*Mc -0.000929 0.004912
Rt*Rt 0.009181 0.002747

      
aT = extruder barrel exit temperature (oC), bMc = mash feed moisture content (% wb), 
cRt = retention time of feed in extruder barrel (s). 
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Table 6.8. Stationary point. Stationary point was a saddle point.  Predicted response 
value at the saddle point was 0.170 logs. 
 

    
Variable Estimated value at stationary point, (saddle point)  

    
  

Ta, oC 81 
Mcb, % wb 28 

Rtc, s 8 
    

 

aT = extruder barrel exit temperature (oC), bMc = mash feed moisture content (% wb), 
cRt = retention time of feed in extruder barrel (s). 
 

 

 

 

Predicted log reduction at the saddle point was 0.170.  An estimated ridge of 

maximum inactivation of spores was generated to show the desirable region of 

extrusion conditions that maximized spore inactivation of the test organism (Table 

6.9). Experimental treatments that showed the greatest inactivation of B. 

stearothermophilus spores (treatments 9 and 12 in Table 6.6) fell within the estimated 

ridge of maximum response. Treatments that showed the least inactivation of test 

organism spores were located outside the estimated ridge of maximum response. 
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Table 6.9  Estimated ridge of maximum inactivation of acid producing,, thermophilic 
and B. stearothermophilus spores. SE = standard error, T = extruder barrel exit 
temperature, Mc = mash feed moisture content, Rt = retention time of feed in extruder 
barrel. 
 
 

           

Coded 
Radius 

Estimated 
Spore 

Inactivation,
Log10(No/N) 

SE T, oC Mc, % wb Rt, s 

           
      

0.0 0.166 0.0226 93.5 28.5 7.0 
0.1 0.183 0.0225 94.2 28.2 7.3 
0.2 0.204 0.0224 95.1 28.1 7.5 
0.3 0.229 0.0224 96.0 27.9 7.8 
0.4 0.259 0.0.228 97.0 27.7 8.1 
0.5 0.294 0.0242 98.1 27.6 8.4 
0.6 0.333 0.0268 99.1 27.5 8.7 
0.7 0.376 0.0307 100.1 27.4 9.0 
0.8 0.425 0.0362 101.1 27.2 9.3 
0.9 0.478 0.0430 102.2 27.1 9.6 
1.0 0.536 0.0511 103.2 27.0 9.9 

1.682 1.030 - 110.0 24.5 11.0 
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6.9 Constant Extruder Barrel Exit Temperature 
 

It was predicted that at constant extruder barrel exit temperature (T) in the 77 to 83 oC 

range, increasingly greater spore inactivation would occur if mash feed with greater 

moisture content were extruded for shorter (3 to 6 s) feed retention  times in the 

extruder barrel (Figures 6.8 and 6.9). The color bar indicates spore inactivation values 

of the response surface corresponding to the range of colors.  In a review on heat 

activation of bacterial spores, Russel (1982) observed that thermal death curves of B. 

stearothermophilus showed three phases : 1) a sharp initial rise in viable count, due to 

heat activation of dormant spores, followed by 2) a slow rate of death which gradually 

increased to, 3) the logarithmic death phase at a maximal rate. It was speculated that 

some spores might have exhibited the rise in viable count described above (1) during 

the entire range of Rt values (3 to 11 s) when extruding feed in the 77 to 83 oC range 

of T values.  This might explain the reduced inactivation of bacterial spores at longer 

retention times (in the 2 to 8 s range) in the extruder barrel.  In moving from constant 

T of 77 to 83 oC, the high Rt (11 s) and low Mc (24.5 % wb) corner of the response 

surface shifted upwards by 48 % while the rest of the corners shifted downwards  

indicating greater inactivation efficiency at the higher temperatures. The average 

slopes of the surface remained negative with respect to Rt and positive with respect to 

Mc, respectively.  This result was expected because thermal inactivation of bacterial 

spores is primarily influenced by temperature at which the process is carried out 

(Likimani et al., 1990).  
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Figure 6.8.  Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing,, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 77 oC extruder barrel exit temperature. The arrow points to the 
corner of the surface nearest the reference axis.  No, N = spore count per 20 g feed 
before and after extrusion cooking. The color bar indicates spore inactivation values of 
the response surface corresponding to the range of colors. 

 

At the higher constant extrusion temperatures in the 77 to 83 oC range however, the 

average slope of the response surface was positive but was reduced with respect to 

mash feed moisture content (Mc) as observed in moving from Figure 6.8 to Figure 6.9.  

This reduction in slope might be attributed to the diminishing benefit of higher 

moisture content of feed beyond a threshold value thought to be between 26.5 and 

28.5 %, wet basis. The curvature of the response surface along the Rt axis in Figures 
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6.8 and 6.9 was significant (quadratic effect, p = 0.007 at α = 0.05, Table G 2.1 in 

Appendix G). 

 

 

 
 

Figure 6.9.  Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing,, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 83 oC extruder barrel exit temperature. The arrow points to the 
corner of the surface nearest the reference axis. No, N = spore count per 20 g feed 
before and after extrusion cooking. 
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It was predicted that mash feed with greater moisture content had greater thermal 

conductivities than mash feed with lower feed moisture content (Figure 6.10).  At 

lower steam and heat flow rates corresponding to the 77 – 83 oC range of extruder 

barrel exit temperature, the temperature experienced by spores at equilibrium 

conditions was greatly influenced by the thermal conductivity of the feed.  
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Figure 6.10.  Predicted variation of thermal conductivity of corn with moisture 
content.  Corn was selected for simplicity and because it constituted the largest 
proportion of the feed formulation. The plot is based on linear interpolation of thermal 
conductivity data for corn at 0.91 and 30.2 % wet basis, respectively (Singh and 
Heldman, 2001f). 

 
 

 

Spores of the test organism in feed with greater moisture content were thus exposed to 

increasingly higher temperatures (Figure 6.11) than spores in feed with lower moisture 
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content due to higher heat transfer rates achieved at greater thermal conductivity 

values (Equation 6.4). Within the extruder barrel, lower temperature drops between 

the inner wall and the location of a bacterial spore imply that the spore at that location 

would experience temperatures closer to that of the extruder barrel wall, that is, higher 

temperatures. 
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Figure 6.11.  A graph illustrating variation of temperature drop, dT, between extruder 
barrel wall and a spore in the feed formulation located at a distance, x, from the 
extruder barrel wall.  Predicted dT was based on setting the value of qx.(dx/A) in 
Equation 6.4 to 1 for simplicity. 

 

The rate of conductive heat flow through feed material may be modeled as follows 

(Equation 6.4) (Singh and Heldman, 2001c).  
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qx = -kcAh (dT/dx)      (6.4) 

Where: 

 qx = rate of heat flow in x direction, Watts, 

 kc = thermal conductivity of feed material, W/m.oC, 

 Ah = area normal to x direction through which heat flows, m2, 

 dT = temperature drop between heat source, extruder barrel wall and  
   spore location, oC 
 
 dx = thickness of feed material between heat source and spore  

location in the direction of heat flow, m 
 

The temperature gradient dT/dx is negative since temperature decreases as the distance 

from the source of heat increases.  Supposing that, the major source of heat during 

extrusion was steam in the extruder barrel jacket, the following may be deduced from 

Equation 6.4. Assuming equilibrium conditions, a bacterial spore at a distance, x, from 

the inner wall of the extruder barrel would be subjected to higher temperatures (lower 

dT values) if feed material had higher thermal conductivity, all other variables (qx, dx 

and A) being the same. Higher thermal conductivities would maximize time of 

exposure of spores to the equilibrium temperature. 

 

In the 93 – 110 oC range of T, the response surface model indicated that spore 

inactivation decreased as mash feed moisture content increased.  Conversely, greater 

spore inactivation was achieved at higher Rt.  Figures 6.12 to 6.14 show response 

surfaces of bacterial spore inactivation due to extrusion at constant T values of 93, 103 

and 110 oC, respectively. In moving from T = 93 oC to T = 110 oC the response 

surface generally shifted upwards, the high Rt edge showing greater increment than 
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the low Rt edge.  It was speculated that at the higher T range, evaporation of moisture 

from feed at the extruder barrel exit (observed as explosive puffing) might have 

lowered average moisture content of feed and through that decreased the average 

thermal conductivity of feed during extrusion.  Bacterial spores in feed with reduced 

thermal conductivity thus experienced lower equilibrium temperatures in the extruder 

barrel than expected.   

 

 

 

 
Figure 6.12.  Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing,, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 93 oC extruder barrel exit temperature. The arrow points to the 
corner of the surface nearest the reference axis.   No, N = spore count per 20 g feed 
before and after extrusion cooking.   
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As the moisture content of mash feed increased, it took more heat to raise the 

temperature of a fixed volume of feed due to increased mass per unit volume and to 

supply the sensible heat requirement of the higher moisture feed.  In addition to the 

reduction in thermal conductivity of feed due to evaporative moisture loss from feed, 

absorption of heat to supply the required latent heat of vaporization reduced the total 

amount of heat available for spore inactivation.  Lowered thermal conductivity of the 

feed and absorption of latent heat of vaporization by evaporating moisture at higher 

constant extrusion temperatures in the range of 93 – 110 oC might account for the 

negative slope along the Mc axis of the response surfaces (Figures 6.12 – 6.14).   

Inactivation of bacterial spores was greater at higher Rt values.   
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Figure 6.13.  Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing,, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 103 oC extruder barrel exit temperature. The arrow points to the 
corner of the surface nearest the reference axis. No, N = spore count per 20 g feed 
before and after extrusion cooking.  



 121

 
Figure 6.14.  Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 110 oC extruder barrel exit temperature. The arrow points to the 
corner of the surface nearest the reference axis. No , N = spore count per 20 g feed 
before and after extrusion cooking.  

 

 

 
In moving from constant T values of 93 to 103 and then to 110 oC during extrusion, 

the response surface shifted upwards indicating increasingly greater spore inactivation 

at higher extrusion temperatures.  The slope of the response surface became more 

positive with respect to Rt but more negative with respect to Mc, respectively.   
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It was speculated that evaporation of moisture from feed at higher constant extrusion 

temperatures might have reduced water activity (Tables E 1.1 and E 1.2 in Appendix 

E) of feed and stabilized spores making them more resistant to thermal inactivation. In 

studies to elucidate the role of dehydration on heat stability of organisms and proteins, 

Warth (1985) observed that when bound water starts to be removed, at aw < 0.93, 

stability greatly increases.  

 

 

6.10 Constant Mash Feed Moisture Content 
 

The model predicted that at constant Mc between 24.5 and 26.5 % wb, increasingly 

greater spore inactivation would occur at higher T and Rt values, respectively, in the 

upper half of the T range (Figures 6.15 and 6.16).   In Figures 6.15 and 6.16, the 

average slopes of the response surface with respect to Rt and T were both positive.  In 

moving from constant Mc of 24.5 to 26.5 % the average slopes decreased but 

remained positive with respect to Rt and T, respectively.  At higher constant Mc the 

low T edge of the response surface shifted upwards while the high T edge shifted 

downward indicating lower spore inactivation at the higher moisture levels.  At the 

lower range of Mc tested, spore inactivation was predominantly influenced by T and 

Rt of extrusion.  Greater inactivation occurred when extrusion was performed at 

higher T for longer Rt in the upper half of the T range.  In a review of the application 

of moist heat for sterilization, Russel (1982) noted that during ultra high temperature 
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treatments (130 – 150 oC), only the heating and holding times contributed to the 

overall sporicidal effect on bacterial spores.   

 

 

 

 

 

 
Figure 6.15.  Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 24.5% mash feed moisture content. The arrow points to the 
corner of the surface nearest the reference axis. No, N = spore count per 20 g feed 
before and after extrusion cooking. 
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Figure 6.16.  Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 26.5% mash feed moisture content. The arrow points to the 
corner of the surface nearest the reference axis. No, N = spore count per 20 g feed 
before and after extrusion cooking.  

 
 

 

The lethality of the extrusion process increased rapidly with increases in both T and  

Rt.  At higher constant Mc values (28.5 to 32.5 % in Figures 6.17 to 6.19), the average 

slope of the response surface remained positive with respect to Rt, in the upper half of 

the T range.   In the 3 to 7 s range of Rt, the average slope of the response surface with 

respect to T was negative and became increasingly more negative at higher Mc.   
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Figure 6.17.  Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 28.5% mash feed moisture content. The arrow points to the 
corner of the surface nearest the reference axis. No, N = spore count per 20 g feed 
before and after extrusion cooking, respectively. 
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Figure 6.18.  Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 30.5% mash feed moisture content. The arrow points to the 
corner of the surface nearest the reference axis. No, N = spore count per 20 g feed 
before and after extrusion cooking, respectively. 

 

 

 

The low T edge of the response surface also continued to shift upwards while the high 

T edge shifted downward as higher Mc was selected.  It was speculated that at higher 

constant Mc, evaporation of moisture from feed might have been a predominant factor 

in reducing available heat for spore inactivation as well as increasing the thermal 

resistance of spores due to lowered feed aw values during extrusion. 
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Figure 6.19.  Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 32.5% mash feed moisture content. The arrow points to the 
corner of the surface nearest the reference axis. No , N = spore count per 20 g feed 
before  and after extrusion cooking, respectively. 
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6.11 Constant Retention Time of Feed in the Extruder Barrel 
 

Figures 6.20 to 6.24 show the response surface of B. stearothermophilus inactivation 

at constant Rt values of 3, 5, 7, 9 and 11, respectively.  In moving progressively from 

3 to 11s constant Rt values, greater spore inactivation was achieved at higher Rt values 

indicated by the tilt of the entire response surface about an axis near the 93 oC axis. 

 

   

 

Figure 6.20  Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 3 s feed retention time in the extruder barrel. The arrow points 
to the corner of the surface nearest the reference axis. No, N = spore count per 20 g 
feed before and after extrusion cooking, respectively.  
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Both T and Mc affected spore inactivation.  Greater inactivation occurred at higher T 

values but in the lower range of Mc values or the lower range of T values but the 

higher range of Mc values. It was speculated that in these ranges of T and Rt values, 

respectively, evaporative moisture losses were not predominant.   

  

 

Figure 6.21  Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 5 s feed retention time in the extruder barrel. The arrow points 
to the corner of the surface nearest the reference axis. No, N = spore count per 20 g 
feed before and after extrusion cooking, respectively. 
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When conditions that increased evaporative moisture loss prevailed, heat available for 

thermal inactivation of spores was reduced. This, combined with an increase in 

thermal resistance of spores at the reduced feed aw, might have contributed to the 

lower inactivation of spores under those conditions.   The slope of the response surface 

with respect to T rapidly increased as Rt increased but did not appear to change much 

with respect to Mc as Rt increased.  Higher evaporative moisture losses at higher T 

and Mc values might have contributed to the lower spore inactivation observed in the 

response surfaces. 

 

Figure 6.22   Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 7 s feed retention time in the extruder barrel. The arrow points 
to the corner of the surface nearest the reference axis. No, N = spore count per 20 g 
feed before and after extrusion cooking, respectively. 
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Figure 6.23   Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 9 s feed retention time in the extruder barrel. The arrow points 
to the corner of the surface nearest the reference axis. No, N = spore count per 20 g 
feed before and after extrusion cooking, respectively 
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Figure 6.24  Response surface plot showing spore inactivation (Log (No/N)) of acid 
producing, thermophilic organisms and artificially inoculated Bacillus 
stearothermophilus at 11 s feed retention time in the extruder barrel. The arrow points 
to the corner of the surface nearest the reference axis. No, N = spore count per 20 g 
feed before and after extrusion cooking, respectively 

 
 

 

6.12 Response Surface Model Validation 
 

The mean values of observed log reduction of B. stearothermophilus spores to 

inactivation due to extrusion were compared with predicted response values at all the 

levels of T, Mc and Rt tested.  The correlation procedure (PROC CORR) was used to 

obtain a Pearson’s correlation coefficient of 0.545 (SAS Release 8.2, 2001). This 
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indicates that the fitted response surface model explained 55 % of the B. 

stearothermophilus spore inactivation observed during the studies. The remaining  

45 % would possibly be explained by other extrusion variables not controlled in these 

studies such as, control of temperature of some extruder barrel heads, pH of mash 

feed, and salt and fat contents of mash feed, respectively.  

 

 

6.13 Secondary Models 
 

Primary models describe changes in bacterial numbers as a function of time under 

specified environmental and cultural conditions. Models that describe the responses of 

one or more parameters of a primary model changing as a result of changes in 

environmental (such as pH, aw or temperature) or cultural conditions are considered 

secondary models (McDonald and Sun, 1999). 

 

 During thermal processing, the rate of inactivation of microbial populations is 

considered to follow first order kinetics represented by Equation 6.5 (Juneja et al., 

2001).  

N = Noe-kt      (6.5) 

 

Equation 6.5 may be rearranged as shown in Equation 6.6, a form that allows 

linearization using logarithm to base ten. 
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N = No10-t/Dx     (6.6) 

Where: 

 N = microbial population at time t, CFU/ unit of mass or volume 

 No = initial microbial population, CFU/ unit of mass or volume 

 t = duration of time, units of time 

 CFU = colony forming units 

 k = death rate of the microbial population or rate constant of  
   inactivation  of bacterial population, min 
 

The death rate, k, of a microbial population may be related to its decimal reduction 

time, Dx, by Equation 6.7. 

 

k = 2.303 / Dx     (6.7) 

Where: 

Dx = decimal reduction time at a specified temperature, units of time 

 

A regression model of k as a function of extruder barrel exit temperature, T, and feed 

moisture content prior to extrusion, Mc, was obtained (Equation 6.8). Table 6.10 

summarizes the model parameters and their standard errors for k. 

  

k = 0.332 + 0.00017T - 0.00901 Mc,   (6.8) 

Table G 2.6 indicates that the model significantly explained the variation of k as a 

function of T and Mc (p = 0.040 at α = 0.05).
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Table 6.10.  Estimated model coefficients for the death rate, k, as a function of T and  
Mc. T = extruder barrel exit temperature (oC), Mc = mash feed moisture content, wet 
basis, SE = standard error of the variable/parameter estimate. 
 

Variable / Parameter Estimate SE 
   

Intercept 0.332 0.126 

T 0.00017 0.000759 

Mc -0.00901 0.00348 

 

A plot of the predicted Dx values versus Mc (Figure 6.25) for acid producing, 

thermophilic organisms and B. stearothermophilus may be used to select the retention 

time of feed in the extruder barrel required to produce a desired level of spore 

inactivation when extruding feed of known moisture content at a given setting of 

extruder barrel exit temperature. As an example, suppose we wished to extrude feed 

with moisture content of 26.5 % wb at an extruder barrel exit temperature setting of 

110 oC.  These conditions indicate an estimated decimal reduction time of 0.4 minutes 

(Figure 6.25).  In order to achieve 1 decimal reduction of viable spores we would 

require a retention time of feed in the extruder barrel of 0.4 minutes. Figure 6.25 

indicates that spores of acid producing, thermophilic organisms and B. 

stearothermophilus in feed with higher moisture content required longer retention 

times in the extruder barrel at a given setting of extruder barrel exit temperature to 

achieve the same level of spore inactivation. This phenomenon may be explained by 

the absorption of latent heat of vaporization by free moisture in the feed matrix during 

extrusion cooking.  Moisture evaporation might have had a net cooling effect thereby 

reducing the severity of the thermal inactivation process on bacterial spores.
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Figure 6.25. Variation of predicted decimal reduction time of acid producing, thermophilic organisms and Bacillus 
stearothermophilus with moisture content of feed. Curves in the plot were obtained by combining Equations 6.7 and 6.8 to give   
Dx = 2.303 / (0.332 + 0.00017T - 0.00901 Mc).
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The Arrhenius equation (Equation 6.9) can be used to estimate the influence of 

temperature on the rate constant of bacterial inactivation (Singh and Heldman, 2001d). 

Sing and Heldman also showed that Equation 6.9 may be used to estimate the enthalpy 

of inactivation of bacterial spores or cells at a temperature of T when the thermal 

resistance constant, z, is known. 

 
 k = Be-Ea/(RTk)      (6.9) 
Where: 

k = rate constant of inactivation, per unit of time 

B  = function constant 

Ea = activation energy, kJ/kg 

R = ideal gas constant (8.314), kJ/kg. oC 

Tk = extruder barrel exit temperature, K 

 

It can be shown that enthalpy of inactivation of bacterial spores or cells can be 

calculated as a function of temperature T and thermal resistance z, respectively 

(Equation 6.10) (Singh and Heldman, 2001d): 

 Ea = 19.15T2 / z     (6.10) 

Where: 

T = temperature (of extruder barrel exit, in this application), oC 

 z =  thermal resistance constant for the spores, oC 
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The average thermal resistance of  acid producing, thermophilic organisms and B. 

stearothermophilus spores, z, was estimated using Equation 6.11 (Singh and Heldman, 

2001). 

 

z = 10 / log Q10      (6.11) 

Where: 

Q10 = the effect of temperature on the inactivation rate, in increasing  
  from temperature 1 to temperature 2 (a 10 oC rise),  
  dimensionless 

 

Q10 values for bacterial spores in the feed at various moisture contents were estimated 

using Equation 6.12.  The values of the inactivation constant (k) were obtained using 

the empirical model of k at the given feed moisture contents and temperature values, 

respectively, obtained earlier (Equation 6.8). 

Q10 = k2 / k1       (6.12) 

Where:  

 k1 = rate constant of inactivation at temperature 1, per unit of time 

 k2 = rate constant of inactivation at temperature 2, per unit of time 

 

Extrusion managers could use Figure 6.26 to predict thermal energy requirements of 

the extrusion process when extruding feed at given moisture content at a specific 

extruder barrel temperature that would inactivate B. stearothermophilus spores. This 

information would be useful, within the tested range, in selecting extruder barrel 

heating rates that would supply the required thermal energy to achieve desired levels 
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of bacterial inactivation during extrusion. As an example, suppose we desired to 

inactivate acid producing, thermophilic organisms and B. stearothermophilus spores in 

feed at 30 % (wet basis) extruded with the extruder barrel exit temperature set to100 

oC.  From Figure 6.26, we follow the 100 oC axis to the 30 % curve and then read off 

the heating requirement on the activation energy axis (175 kJ/kg). A Steam flow rate 

in the extruder barrel jacket that delivered at least 175 kJ/kg of feed would be 

required.  Heating rates lower than that would not be adequate for inactivation of the 

bacterial spores in the feed matrix. 
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Figure 6.26.  Variation of predicted activation energy (Ea) with extruder barrel exit temperature (T) at various feed moisture content 
(Mc), wet basis. The plots were obtained by combining Equation 6.10, 6.11 and 6.12. 
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7. CONCLUSIONS 
 

1. A quadratic response surface model was fit to data on acid producing, thermophilic 

organisms and B. stearothermophilus spore inactivation obtained from the feed 

extrusion cooking studies. The stationary point within the central composite design 

region was a saddle point. A ridge of maximum response was therefore estimated in 

order to obtain extruder settings within the measured range that optimized B.  

stearothermophilus spore inactivation. The response surface model predicted that the 

maximum reduction in acid producing, thermophilic organisms and B. 

stearothermophilus of 1.03 log cycles would be obtained when the E325 Extru-Tech 

single-screw extruder was operated at T = 110 oC, Mc  = 24.5 % wb and Rt = 11 s, 

respectively (coded radius of 1.682  in the central composite statistical design for good 

data). 

2. No S. typhimurium cells were recovered in the standardized feed after extrusion of 

mash feed of 28.5 % wet basis moisture content at 83 oC for 7 s. Up to one log cycle 

reduction in acid producing, thermophilic organisms and B. stearothermophilus spore 

populations in the standardized feed formulation was achieved during extrusion using 

the E325 Extru-Tech single screw extruder. 

3. In general, thermal processing is designed to eliminate mesophilic organisms and not 

thermophilic organisms such as B. stearothermophilus (Meng and Schaffner, 1997). It 

was predicted that most pathogenic organisms in feed would be inactivated by 

extrusion cooking using the E325 Extru-Tech single screw extruder through selecting 
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extruder conditions in the response surface within the measured range that maximized 

acid producing, thermophilic organisms and B. stearothermophilus spore reduction.  

4. Spores of Bacillus stearothermophilus were more suitable indicator organisms than 

cells of Salmonella typhimurium in a standardized feed formulation for studying the 

effects of extrusion on bacterial inactivation. 

5. Refrigerated, dry feed inoculum of Bacillus stearothermophilus adequately remained 

stable in the region of 2.0 x 107 CFU / 20 g of feed for 2 months. 
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8. SUGGESTIONS FOR FURTHER STUDY 
 

1. Improve the extruder barrel temperature control by providing independent steam lines 

for each extruder barrel head. 

2. Increase the number of temperature probes along the extruder barrel. 

3. Inclusion of pressure transducers to monitor pressure applied on the feed due to the 

extrusion process. 

4. Use of bacterial spore count techniques that take into account viable but non-

culturable spores in feed. 

5. Include in the experimental design other extrusion variables such as mash feed pH, 

salt and fat contents, residence time distribution of feed in the extruder barrel and 

pressure exerted on the feed during extrusion. 

6. Include in the experimental design other measurable continuous response variables 

such as energy consumption of the extruder during extrusion, physical and nutritional 

properties of the extrudate.  

7. Use of the extruder die and knife assembly to form distinct pellets upon extrusion, in 

contrast with the continuous pellets obtained in these studies. Use a pellet drier to dry 

the feed pellets.  Measure the pellet durability index (DI) and use DI as a response 

variable in the analysis of the effect of extrusion variables on physical properties of 

the product (feed pellet).  

8. Effect of extrusion cooking on aflatoxins, molds and other important organisms. 
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9. APPENDICES 
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9.1 APPENDIX A 
 
 

Description of Extruder Barrel Temperature Probes
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Table A 1.  Description of extruder barrel temperature probes. 
 
 
 

        

Location of 
temperature 
probe on 
extruder barrel 

Temperature probe 
type Model Manufacturer 

        

    

Feeding zone Bimetal dial type 52-2185 H. O. Trerice company, Oak Park, 
Michigan 

Extruder barrel 
zone number 1 Bimetal dial type CR3007E Trend instruments incorporated, 

Kenner, Louisiana 

Extruder barrel 
zone number 4  Bimetal dial type CR3007E Trend instruments incorporated, 

Kenner, Louisiana 

Extruder barrel 
exit 

Type T 
thermocouple 
(copper/constantan 
wire) 

 Extru-Tech Incorporated, 
Sabetha, Kansas 
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9.2 APPENDIX B 
 

Experimental Extruder Die Drawings 
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Figure B 1.  Dimensioned drawings of plan, front and side elevation views of extruder barrel die used in the studies.  The die was 
fabricated using a steel plate. Dimensions are in mm. 
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9.3 APPENDIX C 
 

Specifications of constituents of the standardized feed formulation 
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Table C 1. Animal feed ingredients specification for corn meal. 
 
 
 

Supplier:  Cooperative milling, Gettysburg, Pennsylvania. 
Product:  Whole corn (yellow)  
Packaging:   22.68 kg (50 lb) bags 
Product number: SSC-24-911500 
 
 

 

 

 

 

  

Table C 2.  Animal feed ingredients specifications for soy bean meal. 
 
 
 
Supplier:  Cooperative milling, Gettysburg, Pennsylvania 
Product:  Plant protein products, soy bean meal HI PRO 
Packaging:  22.68 kg (50 lb) bags 
Product number: CM-24-924900 
 
Guaranteed analysis      Percent 
 
Crude protein  (min)     47.50 
Crude fat  (min)       0.70 
Crude fiber  (min)       3.60 
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Table C 3.  Animal feed ingredients specification for animal protein blend. 
 
 
 
Supplier:  AKEY Incorporated, Lewisburg, Ohio 
Product:  Animal protein blend, premium layer premix 
Product number: 45338-5002 
 
Guaranteed analysis       
 
Selenium (Se)  (min)     120 ppm 
Zinc (Zn)  (min)     2.00 % 
Vitamin A  (min)     1600000 IU/lb 
Vitamin D3       600 000 IU/lb 
Vitamin E       2000 IU/lb 
 
Ingredients 
 
Vitamin A, acetate in gelatin, vitamin D3 supplement vitamin E supplement, riboflavin 
supplement, d-calcium pantothenate, niacin supplement, vitamin B12 supplement, 
menadione sodium bisulfite complex, choline chloride, folic acid, manganous oxide, 
ferrous sulfate, copper sulfate, basic copper chloride, zinc oxide, sodium selenite, 
ethylene diamine, dihydroiodide, calcium carbonate, mineral oil and roughage 
products. 
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9.4 APPENDIX D 
 

Feed Particle Size Distribution 
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Table D 1.  Particle size distribution of a standardized feed formulation consisting of 60 % corn meal, 30 % soybean meal and 10 % 
animal protein blend. dgw = geometric mean diameter of feed particles by mass, Slog = geometric standard deviation of log-normal 
distribution by mass in ten-based logarithm. Wi = mass of feed material on ith sieve. Sgw = geometric standard deviation of feed 
particle diameter by mass. 
 
 

    Mass of feed on sieve, (Wi, g)               

     Trial           

US Screen 
No 

d, 
microns 1 2 3 4 5 Mean Wi, g P, % Percent finer 

by weight logdi Wilogdi 
(logdi-
logdgw) 

Wi(logdi-
logdgw)2 

                            
              
4 4760 0 0 0.0 0.0 0.0 0.0 0.0 100.0 3.68 0.00 0.86 0.000 

10 2000 3.8 4 3.4 3.5 3.1 3.6 3.6 96.4 3.30 11.75 0.48 0.833 
18 1000 43.9 44.8 43.8 43.7 42.5 43.7 44.7 51.6 3.00 131.22 0.18 1.458 
20 850 13 13.8 9.8 10.2 10.4 11.4 11.7 39.9 2.93 33.51 0.11 0.143 
35 500 20.3 20.7 20.7 20.9 21.3 20.8 21.3 18.7 2.70 56.08 -0.12 0.292 
60 250 10.7 13.8 10.8 12.3 16.0 12.7 13.0 5.7 2.40 30.50 -0.42 2.238 
100 150 6.4 1.1 6.8 6.8 3.6 4.9 5.1 0.6 2.18 10.75 -0.64 2.032 
200 75 0.1 0.1 1.9 0.3 0.5 0.6 0.6 0.0 1.88 1.09 -0.94 0.515 
Pan 0 0 0 0.1 0.0 0.0 0.0 0.0      

Summation       97.8 100.0   274.91  7.511 
                            
              

dgw, microns  648             
slog 0.277             
sgw, microns 1.89             
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9.5 APPENDIX E 
 

Feed Moisture Content and aw Data, Estimation of Retention Time of Feed in the 
Extruder Barrel for E325 Extru-Tech Extruder, Observed Moisture Content of Stored 
Feed  and Results of Feed Drying and Rewetting Experiment, and Linear Interpolation 

of Thermal Conductivity Data for Corn 



 155

Table E 1.1.  Feed moisture content measurement.  Predicted and observed moisture 
content of feed mash before extrusion, % wet basis. Mc = moisture content. aw = 
Observed water activity. Taw = temperature in aw meter sample chamber. 

 
 
                    

Predicted 
MC 

(wb, %) 
Sample 

Mass of 
Weighing 

dish + 
Wet feed 

(g) 

Dry feed 
+ 

Weighing 
dish (g) 

Weighing 
dish 
(g) 

Dry 
feed 
(g) 

Observed 
Mc 

(wb, %) 

Mean 
observed 

Mc 
(wb, %) 

aw Taw 
(oC) 

                    
          

26 1 4.58 4.09 2.57 1.52 24 0.907 22.3 
26 2 4.61 4.11 2.60 1.51 25 

25 
0.922 23.0 

28 1 4.62 4.09 2.62 1.47 27 0.931 22.6 
28 2 4.56 4.04 2.56 1.48 26 

26 
0.934 22.8 

30 1 4.58 4.00 2.56 1.44 29 0.944 22.8 
30 2 4.62 4.04 2.61 1.43 29 

29 
0.946 22.9 

32 1 4.61 3.99 2.61 1.38 31 0.959 22.8 
32 2 4.57 3.96 2.57 1.39 31 

31 
0.953 23.2 

34 1 4.56 3.92 2.56 1.36 32 0.959 23.0 
34 2 4.63 3.98 2.63 1.35 33 

32 
0.956 23.2 
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Table E 1.2.  Observed moisture content of feed after extrusion and feed water activity 
at specified extrusion conditions represented by treatments (moisture content of mash 
feed, extruder barrel exit temperature and retention time of feed in the extruder barrel). 
Mc = moisture content. aw = Observed water activity. Taw = temperature in aw meter 
sample chamber. 
 

                   

Treatment Sample 

Mass of 
Weighing 

dish + Wet 
feed (g) 

Mass of 
Dry feed 

+ 
Weighing 
dish (g) 

Mass of 
Weighing 
dish (g) 

Mass 
of Dry 

feed (g) 

Observed 
Mc 

(wb, %) 

Mean 
observed 

Mc 
(wb, %) 

aw Taw 
(oC) 

                   
          
1 1 4.58 4.02 2.58 1.44 28 0.939 23.7 
1 2 4.59 4.05 2.58 1.47 27 

27 
0.939 23.7 

2 1 4.60 4.09 2.58 1.51 25 0.942 24.4 
2 2 4.65 4.11 2.64 1.47 27 

26 
0.925 24.1 

3 1 4.63 4.16 2.62 1.54 23 0.917 24.0 
3 2 4.62 4.10 2.61 1.49 26 

25 
0.924 23.9 

4 1 4.62 4.01 2.62 1.39 31 0.947 23.8 
4 2 4.58 3.95 2.58 1.37 32 

31 
0.952 23.8 

5 1 4.59 3.97 2.59 1.38 31 0.947 23.9 
5 2 4.62 4.02 2.61 1.41 30 

30 
0.850 23.8 

6 1 4.64 4.17 2.63 1.54 23 0.915 24.0 
6 2 4.58 4.11 2.57 1.54 23 

23 
0.912 24.1 

7 1 4.58 4.04 2.58 1.46 27 0.939 23.9 
7 2 4.60 4.04 2.60 1.44 28 

28 
0.930 23.9 

8 1 4.58 4.00 2.57 1.43 29 0.938 24.1 
8 2 4.6 4.04 2.6 1.44 28 

28 
0.936 24.0 

9 1 4.6 4.01 2.58 1.43 29 0.923 24.0 
9 2 4.6 4.06 2.6 1.46 27 

28 
0.929 24.1 

10 1 4.63 3.98 2.6 1.38 32 0.953 24.0 
10 2 4.56 3.92 2.56 1.36 32 

32 
0.956 24.1 

11 1 4.55 4.02 2.55 1.47 27 0.941 24.1 
11 2 4.62 4.12 2.62 1.5 25 

26 
0.931 24.2 

12 1 4.51 4.02 2.5 1.52 24 0.916 24.2 
12 2 4.59 4.06 2.57 1.49 26 

25 
0.795 23.9 

13 1 4.63 4.01 2.62 1.39 31 0.951 24.1 
13 2 4.68 4.07 2.65 1.42 30 

30 
0.832 23.9 

14 1 4.59 3.98 2.58 1.4 30 0.954 24.5 
14 2 4.56 3.94 2.55 1.39 31 

31 
0.95 24.1 

15 1 4.59 4 2.57 1.43 29 0.943 24.3 
15 2 4.57 3.96 2.56 1.4 30 

30 
0.830 24.2 
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Table E 1.3.  Observed moisture content of stored feed over the 8-week study period. 
Feed was stored in sealed storage barrels. Mc = moisture content, % wet basis (wb). 
 
 

Week Sample 

Weighing 
Dish + 

Wet Feed 
(g) 

Dry Feed 
+ 

Weighing 
Dish (g) 

Weighing 
Dish (g) 

Dry 
Feed (g) 

Observed 
Mc (wb, %) 

              
       

1 1 4.58 4.32 2.58 1.74 13.0 
1 2 4.57 4.32 2.57 1.75 12.5 
1 3 4.59 4.33 2.59 1.74 13.0 
2 1 4.58 4.32 2.58 1.74 13.0 
2 2 4.60 4.34 2.6 1.74 13.0 
2 3 4.62 4.36 2.62 1.74 13.0 
3 1 4.60 4.35 2.6 1.75 12.5 
3 2 4.61 4.35 2.61 1.74 13.0 
3 3 4.59 4.34 2.59 1.75 12.5 
4 1 4.61 4.35 2.61 1.74 13.0 
4 2 4.58 4.32 2.58 1.74 13.0 
4 3 4.61 4.36 2.61 1.75 12.5 
5 1 4.59 4.33 2.59 1.74 13.0 
5 2 4.61 4.34 2.61 1.73 13.5 
5 3 4.59 4.33 2.59 1.74 13.0 
6 1 4.59 4.34 2.59 1.75 12.5 
6 2 4.58 4.32 2.58 1.74 13.0 
6 3 4.59 4.32 2.59 1.73 13.5 
7 1 4.59 4.33 2.59 1.74 13.0 
7 2 4.61 4.35 2.61 1.74 13.0 
7 3 4.59 4.33 2.59 1.74 13.0 
8 1 4.59 4.34 2.59 1.75 12.5 
8 2 4.61 4.35 2.61 1.74 13.0 
8 3 4.61 4.35 2.6 1.75 12.9 
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Figure E 1.  Moisture content of ambient feed (% wet basis) in sealed storage barrels 
over the 8-week study period. 
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Table E 1.4.  Results of the feed drying and rewetting experiment. Feed samples were dried, rewetted within the range of mash feed 
moisture content covered in this research and redried to verify that all the rewetting water was recovered during drying. Mc = feed 
moisture content (%, wb), Amb Feed = moisture content of feed in storage barrel (%, wb), Rep = replicate, wb = wet basis (%). 
 
Predicted 

Mc  
(%, wb) 

Rep 

Wet Feed 
+ 

Weighing 
Dish (g) 

Dry Feed 
+ 

Weighing 
Dish (g) 

Weighing 
Dish (g) 

Wet 
Feed 
(g) 

Dry 
Feed 
(g) 

Initial 
Feed Mc 
(%, wb) 

Rewetting 
Water (g) 

Rewetted 
Feed + 

Weighing 
Dish (g) 

Redried Feed 
+ 

Weighing 
Dish (g) 

Recovered 
Water (g) 

Rewetted 
Feed Mc, 
(%, wb) 

             
             

26 1 6.470 5.85 0.990 5.48 4.86 11.3 1.880 7.73 5.820 1.91 28.3 
26 2 6.440 5.83 0.990 5.45 4.84 11.2 1.750 7.58 5.790 1.79 27.2 
26 3 6.440 5.83 0.980 5.46 4.85 11.2 1.890 7.72 5.800 1.92 28.5 
28 1 6.430 5.83 0.990 5.44 4.84 11.0 1.260 7.09 5.780 1.31 21.5 
28 2 6.420 5.82 0.980 5.44 4.84 11.0 2.120 7.94 5.780 2.16 31.0 
28 3 6.430 5.83 0.980 5.45 4.85 11.0 2.140 7.97 5.790 2.18 31.2 
30 1 6.360 5.77 0.980 5.38 4.79 11.0 2.330 8.10 5.740 2.36 33.1 
30 2 6.440 5.83 0.990 5.45 4.84 11.2 2.100 7.93 5.800 2.13 30.7 
30 3 6.480 5.88 0.990 5.49 4.89 10.9 2.660 8.54 5.830 2.71 35.9 
32 1 6.440 5.83 0.990 5.45 4.84 11.2 2.460 8.29 5.790 2.50 34.2 
32 2 6.430 5.83 0.990 5.44 4.84 11.0 2.590 8.42 5.790 2.63 35.4 
32 3 6.490 5.87 0.980 5.51 4.89 11.3 2.590 8.46 5.850 2.61 34.9 
34 1 6.120 5.54 0.990 5.13 4.55 11.3 2.530 8.07 5.500 2.57 36.3 
34 2 6.470 5.86 0.980 5.49 4.88 11.1 2.560 8.42 5.830 2.59 34.8 
34 3 6.450 5.85 0.990 5.46 4.86 11.0 2.620 8.47 5.820 2.65 35.4 

Amb Feed 1 3.000 2.79 1.000 2.00 1.79 10.5 0.000 2.79 2.780 0.01 0.6 
Amb Feed 2 3.000 2.78 0.980 2.02 1.80 10.9 0.000 2.78 2.780 0.00 0.0 
Amb Feed 3 3.000 2.78 0.980 2.02 1.80 10.9 0.000 2.78 2.770 0.01 0.6 
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Figure E 2. A graphical representation of the feed drying and rewetting experiment. 
Feed samples were dried, rewetted and dried again to verify that all rewetting water 
was recovered by drying.  Data from 3 replicates of the 5 levels of feed moisture 
content ( 24.5, 26.5, 28.5, 30.5 and 32.5 %, wet basis) were used in this plot. 
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Table E 2.  Estimation of retention time (s) of feed in the extruder barrel at different 
barrel speeds (Hertz, equivalent to revolutions per second). 
 
  

      

Replicate 
Extruder barrel 

speed, Hz Retention time, s 
      
1 25 11.8 
2 25 11.0 
3 25 11.2 
1 30 10.0 
2 30 9.6 
3 30 10.0 
1 50 8.3 
2 50 6.6 
3 50 7.1 
1 60 6.0 
2 60 6.0 
3 60 6.0 
1 70 5.0 
2 70 5.0 
3 70 4.0 
1 80 4.9 
2 80 3.5 
3 80 4.0 
1 90 3.0 
2 90 3.0 
3 90 3.0 
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Table E 3.  Summary of linear interpolation of thermal conductivity data for corn at 
0.91 and 30.2 % wet basis moisture content at 8 - 52 oC. Temperature drops associated 
with thermal conductivity values are presented based on setting [qx.(dx/Ah)] = 1, for 
simplicity. Rearranging Equation 6.4 yields dT = -[qx (dx / Ah)] / kc.  
 

    
Corn, yellow dust 

    
Moisture 
Content, 
% wet 
basis 

Temperature, oC
Thermal 

conductivity, k 
(W/m.K) Temperature 

drop, dT (oC) 
    
    

0.91 8 - 52 0.141  
30.2 8 - 52 0.172  

    
Source: Sing and Heldman (2001)  
    
    

Interpolation 
    
    

26 8 - 52 0.168 5.97 
27 8 - 52 0.169 5.93 
28 8 - 52 0.170 5.89 
29 8 - 52 0.171 5.86 
30 8 - 52 0.172 5.82 
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9.6 APPENDIX F 
 

Dry Feed Inoculum Preparation Studies (Salmonella typhimurium in Chalk and in 
Feed, Bacillus stearothermophilus Spores in Dry Feed) 
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Table F1.1.  Summary of S. typhimurium population densities in dry chalk inoculum, inoculated feed and extruded feed inoculated 
with dry chalk inoculum prior to extrusion. “*” indicates feed not extruded. “control” refers to uninoculated feed, “inoculated” 
refers to feed inoculated with dry chalk inoculum. 
 
 

                          
Extruder Variables 

T, oC Mc, 
% wb 

Rt, 
s 

CFU / 20g of feed (20*CFU/d/v) 
Treatment 

   

Sample 
Description Rep Sample

Serial 
Dilution 
Plated, 

(d) 

Volume 
plated, 
mL (v) 

Plate 
count 
CFU 

 Mean SE 
                          
              

A0 * 26 * Control  1 1 0.10 0.1 0 0.00E+00 
A0 * 26 * Control  1 2 0.10 0.1 0 0.00E+00 
A0 * 26 * Control  2 1 0.10 0.1 0 0.00E+00 
A0 * 26 * Control  2 2 0.10 0.1 0 0.00E+00 

0 0 

                      
A1 * 26 * Inoculated 1 1 0.10 0.1 29 5.80E+04 
A1 * 26 * Inoculated 1 2 0.10 0.1 28 5.60E+04 
A1 * 26 * Inoculated 2 1 0.10 0.1 34 6.80E+04 
A1 * 26 * Inoculated 2 2 0.10 0.1 12 2.40E+04 

5.2E+04 1.9E+04

              
A2 82 26 3 Inoculated 1 1 0.10 0.1 0 0.00E+00 
A2 82 26 3 Inoculated 1 2 0.10 0.1 0 0.00E+00 
A2 82 26 3 Inoculated 2 1 0.10 0.1 0 0.00E+00 
A2 82 26 3 Inoculated 2 2 0.10 0.1 0 0.00E+00 

0 0 
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Table F1.1.  (‘cont.). 
 
 

                          
Extruder Variables 

T, oC Mc, 
% wb 

Rt, 
s 

CFU / 20g of feed (20*CFU/d/v) 
Treatment 

   

Sample 
Description Rep Sample

Serial 
Dilution 
Plated, 

(d) 

Volume 
plated, 
mL (v) 

Plate 
count 
CFU 

 Mean SE 
                          
              

A3 103 26 3 Inoculated 1 1 0.10 0.1 0 0.00E+00 
A3 103 26 3 Inoculated 1 2 0.10 0.1 0 0.00E+00 
A3 103 26 3 Inoculated 2 1 0.10 0.1 0 0.00E+00 
A3 103 26 3 Inoculated 2 2 0.10 0.1 0 0.00E+00 

0 0 

                          
              

A4 103 26 4 Inoculated 1 1 0.10 0.1 0 0.00E+00 
A4 103 26 4 Inoculated 1 2 0.10 0.1 0 0.00E+00 
A4 103 26 4 Inoculated 2 1 0.10 0.1 0 0.00E+00 
A4 103 26 4 Inoculated 2 2 0.10 0.1 0 0.00E+00 

0 0 
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Table F 1.2.  Summary of S. typhimurium population densities in feed inoculated with dry feed inoculum before and after extrusion, 
respectively. Initial dilution of feed suspension was 0.2. Treatments were arbitrarily assigned letters A, B, and C, respectively, for 
identification. Trt = treatment. 
 
 

 Extruder barrel head 
temperature, oC       Before extrusion 

 
After extrusion 

 Spore inactivation 

Trt Barrel section 
temperature, oC Mc, % wb Rt, s Rep Sample

Volume 
plated, 

mL 

Decimal 
dilution of 

initial dilution 
plated 

CFU, per 
plate 

CFU / 
20 g of 
feed,  
(No) 

CFU, per 
plate 

CFU/ 20 
g of 

feed,  
(N) 

Log10 
(No/N) 

{100*(No-
N)/No}%

 Entrance 1 4 Exit                  

                                  
                 

A 41 68 54 83 30 7 1 1 0.1 1.0E-04 56 5.6E+08 0 0.0E+00 7.45 100 

A 41 60 52 83 30 7 1 2 0.1 1.0E-04 56 5.6E+08 0 0.0E+00 7.45 100 

B 41 60 52 88 30 7 1 1 0.1 1.0E-04 52 5.2E+08 0 0.0E+00 7.41 100 

B 41 63 54 88 30 7 1 2 0.1 1.0E-04 39 3.9E+08 0 0.0E+00 7.29 100 

C 40 66 52 103 30 7 1 1 0.1 1.0E-04 44 4.4E+08 0 0.0E+00 7.34 100 

C 40 66 52 103 30 7 1 2 0.1 1.0E-04 61 6.1E+08 0 0.0E+00 7.48 100 
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Table F 2.1.  Comparisons of Bacillus stearothermophilus spore population densities in artificially inoculated feed mixed with 
deionized and tap water, respectively. 
 
 

        
    
    

Deionized water used to modify 
moisture content of  

ambient feed 

Tap water used to modify 
moisture content of ambient feed

Sample Plate 
Number

Initial 
dilution 

  20 g : 100 
g 

Decimal 
dilution 
of initial 
dilution 
poured 

Spore 
count 
per 

plate 

Spores in 
5 plates 

CFU / 20 g 
feed  
( N1) 

Spore 
count per 

plate 

Spores 
in 5 

plates 

CFU / 20 g 
feed  
( N2) 

N1/N2) 

1 1 0.20 1.00E-02 306 1426 7.1E+05 290 1415 7.1E+05 1.01 
1 2 0.20 1.00E-02 291   299    
1 3 0.20 1.00E-02 303   298    
1 4 0.20 1.00E-02 278   278    
1 5 0.20 1.00E-02 248   250    
2 1 0.20 1.00E-02 300 1400 7.0E+05 298 1398 7.0E+05 1.00 
2 2 0.20 1.00E-02 280   281    
2 3 0.20 1.00E-02 250   260    
2 4 0.20 1.00E-02 293   280    
2 5 0.20 1.00E-02 277   279    
1 1 0.20 1.00E-02 200 1144 5.7E+05 205 1155 5.8E+05 0.99 
1 2 0.20 1.00E-02 250   252    
1 3 0.20 1.00E-02 225   230    
1 4 0.20 1.00E-02 221   223    
1 5 0.20 1.00E-02 248   245    
2 1 0.20 1.00E-02 215 1119 5.6E+05 210 1114 5.6E+05 1.00 
2 2 0.20 1.00E-02 250   261    
2 3 0.20 1.00E-02 213   200    
2 4 0.20 1.00E-02 223   220    
2 5 0.20 1.00E-02 218   223    
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Table F 2.1.  (‘cont.) 
 

      
   
   

Deionized water used to 
modify moisture content of 

ambient feed 

Tap water used to modify 
moisture content of ambient 

feed 

Sample Plate 
Number

  

Decimal 
dilution of 

initial 
dilution 
poured 

Spore 
count 
per 

plate 

Spores in 
5 plates 

CFU / 20 g 
feed  
( N1) 

Spore 
count 

per plate 

Spores 
in 5 

plates 

CFU / 20 g 
feed  
( N2) 

N1/N2) 

                    
1 1 1.00E-02 203 1124 5.6E+05 200 1123 5.6E+05 1.00 
1 2 1.00E-02 247   250    
1 3 1.00E-02 218   215    
1 4 1.00E-02 230   228    
1 5 1.00E-02 226   230    
2 1 1.00E-02 214 1119 5.6E+05 210 1120 5.6E+05 1.00 
2 2 1.00E-02 253   259    
2 3 1.00E-02 214   220    
2 4 1.00E-02 221   215    
2 5 1.00E-02 217   216    
1 1 1.00E-02 208 1149 5.7E+05 210 1156 5.8E+05 0.99 
1 2 1.00E-02 241   238    
1 3 1.00E-02 246   248    
1 4 1.00E-02 224   225    
1 5 1.00E-02 230   235    
2 1 1.00E-02 125 1250 6.3E+05 130 1250 6.3E+05 1.00 
2 2 1.00E-02 237   230    
2 3 1.00E-02 271   265    
2 4 1.00E-02 340   345    
2 5 1.00E-02 277   280    
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Table F 2.2.  Summary of acid producing, thermophilic organisms and B. 
stearothermophilus population densities in dry feed inoculum, by the cultural method. 
Samples of dry feed inoculum were heated for 30 minutes to increase thermal stress on 
spores beyond that provided by the standard 15 minute heat shocking treatment. 
Similarly, extrusion cooking was expected to achieve thermal stress on spores beyond 
the heat shocking treatment. 

              

Sample Plate 
number 

Initial 
suspension, 
20 g feed: 

100 g 
suspension 

Dilution of 
initial 

suspension 
poured 

CFU / 
plate  

Total 
CFU in 5 

plates 

CFU / 20 g 
feed 

              
       

Control feed 1 0.20 1.00E-01 40 211 1.06E+04 
Control feed 2 0.20 1.00E-01 50   
Control feed 3 0.20 1.00E-01 40   
Control feed 4 0.20 1.00E-01 46   
Control feed 5 0.20 1.00E-01 35   
Control feed 1 0.20 1.00E-01 44 204 1.02E+04 
Control feed 2 0.20 1.00E-01 44   
Control feed 3 0.20 1.00E-01 45   
Control feed 4 0.20 1.00E-01 37   
Control feed 5 0.20 1.00E-01 34   

Feed inoculum 1 0.20 1.00E-03 109 468 2.34E+06 
Feed inoculum 2 0.20 1.00E-03 88   
Feed inoculum 3 0.20 1.00E-03 80   
Feed inoculum 4 0.20 1.00E-03 96   
Feed inoculum 5 0.20 1.00E-03 95   
Feed inoculum 1 0.20 1.00E-03 86 464 2.32E+06 
Feed inoculum 2 0.20 1.00E-03 108   
Feed inoculum 3 0.20 1.00E-03 98   
Feed inoculum 4 0.20 1.00E-03 78   
Feed inoculum 5 0.20 1.00E-03 94   
Feed inoculum* 1 0.20 1.00E-03 99 565 2.83E+06 
Feed inoculum* 2 0.20 1.00E-03 116   
Feed inoculum* 3 0.20 1.00E-03 96   
Feed inoculum* 4 0.20 1.00E-03 120   
Feed inoculum* 5 0.20 1.00E-03 134   
Feed inoculum* 1 0.20 1.00E-03 100 573 2.87E+06 
Feed inoculum* 2 0.20 1.00E-03 115   
Feed inoculum* 3 0.20 1.00E-03 100   
Feed inoculum* 4 0.20 1.00E-03 136   
Feed inoculum* 5 0.20 1.00E-03 122   

              
* Heat shocked for 30 minutes at 100 oC, twice the standard duration   
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Table F 3.  Direct microscopic count results of Bacillus stearothermophilus spores in 
dry feed inocululum obtained using a Petroff-Hausser counting chamber.  
 
 

    
 Spore Count Per Small Square 

Observation 
 

Replicate 
 

 1 2 3 
       
    

1 8 9 8 
2 6 7 7 
3 7 9 9 
4 7 8 9 
5 9 9 10 
6 10 12 7 
7 12 10 9 
8 9 11 7 
9 7 7 9 
10 8 8 11 
11 9 8 9 
12 8 7 7 
13 7 10 8 
14 9 11 9 
15 9 9 7 
16 8 7 9 
17 10 6 10 
18 12 8 14 
19 11 9 12 
20 9 12 7 
21 8 10 9 
22 7 14 8 
23 13 9 9 
24 14 8 8 

       
    
 Spore Count, 

Spores / 20 mL  SE 

    
 3.6.E+06  5.4.E+04 
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Table F 4.  Bacillus stearothermophilus spore count in dry feed inoculum over a 
seven-week storage period by the cultural method. 
                

Week Sample 
Plate 

number 
Initial dilution, 
20 g : 100 g 

Decimal 
dilution of 

initial dilution 
poured CFU / plate

Total CFU 
in 5 plates 

CFU / 20 g 
feed  

                
1 1 1 0.20 1.00E-03 43 
1 1 2 0.20 1.00E-03 45 
1 1 3 0.20 1.00E-03 46 
1 1 4 0.20 1.00E-03 50 
1 1 5 0.20 1.00E-03 57 

241 1.21E+06

1 2 1 0.20 1.00E-03 47 
1 2 2 0.20 1.00E-03 52 
1 2 3 0.20 1.00E-03 61 
1 2 4 0.20 1.00E-03 45 
1 2 5 0.20 1.00E-03 47 

252 1.26E+06

2 1 1 0.20 1.00E-03 40 
2 1 2 0.20 1.00E-03 46 
2 1 3 0.20 1.00E-03 45 
2 1 4 0.20 1.00E-03 49 
2 1 5 0.20 1.00E-03 48 

228 1.14E+06

2 2 1 0.20 1.00E-03 49 
2 2 2 0.20 1.00E-03 50 
2 2 3 0.20 1.00E-03 63 
2 2 4 0.20 1.00E-03 46 
2 2 5 0.20 1.00E-03 48 

256 1.28E+06

3 1 1 0.20 1.00E-03 44 
3 1 2 0.20 1.00E-03 46 
3 1 3 0.20 1.00E-03 44 
3 1 4 0.20 1.00E-03 52 
3 1 5 0.20 1.00E-03 58 

244 1.22E+06

3 2 1 0.20 1.00E-03 48 
3 2 2 0.20 1.00E-03 52 
3 2 3 0.20 1.00E-03 65 
3 2 4 0.20 1.00E-03 44 
3 2 5 0.20 1.00E-03 48 

257 1.29E+06

4 1 1 0.20 1.00E-03 43 
4 1 2 0.20 1.00E-03 44 
4 1 3 0.20 1.00E-03 48 
4 1 4 0.20 1.00E-03 48 
4 1 5 0.20 1.00E-03 48 

231 1.16E+06

4 2 1 0.20 1.00E-03 48 
4 2 2 0.20 1.00E-03 50 
4 2 3 0.20 1.00E-03 62 
4 2 4 0.20 1.00E-03 46 
4 2 5 0.20 1.00E-03 48 

254 1.27E+06
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Table F 4.  (‘cont.’) 
 

        

Week Sample Plate 
number 

Initial dilution, 
20 g : 100 g 

Decimal 
dilution of initial 
dilution poured

CFU / plate Total CFU 
in 5 plates 

CFU / 20 g 
feed 

        
        
5 1 1 0.20 1.00E-03 44 
5 1 2 0.20 1.00E-03 46 
5 1 3 0.20 1.00E-03 48 
5 1 4 0.20 1.00E-03 51 
5 1 5 0.20 1.00E-03 49 

238 1.19E+06 

5 2 1 0.20 1.00E-03 48 
5 2 2 0.20 1.00E-03 51 
5 2 3 0.20 1.00E-03 63 
5 2 4 0.20 1.00E-03 46 
5 2 5 0.20 1.00E-03 48 

256 1.28E+06 

6 1 1 0.20 1.00E-03 44 
6 1 2 0.20 1.00E-03 46 
6 1 3 0.20 1.00E-03 48 
6 1 4 0.20 1.00E-03 53 
6 1 5 0.20 1.00E-03 58 

249 1.25E+06 

6 2 1 0.20 1.00E-03 49 
6 2 2 0.20 1.00E-03 50 
6 2 3 0.20 1.00E-03 63 
6 2 4 0.20 1.00E-03 46 
6 2 5 0.20 1.00E-03 48 

256 1.28E+06 

7 1 1 0.20 1.00E-03 46 
7 1 2 0.20 1.00E-03 44 
7 1 3 0.20 1.00E-03 46 
7 1 4 0.20 1.00E-03 52 
7 1 5 0.20 1.00E-03 56 

244 1.22E+06 

7 2 1 0.20 1.00E-03 46 
7 2 2 0.20 1.00E-03 50 
7 2 3 0.20 1.00E-03 63 
7 2 4 0.20 1.00E-03 46 
7 2 5 0.20 1.00E-03 48 

253 1.27E+06 

8 1 1 0.20 1.00E-03 46 
8 1 2 0.20 1.00E-03 44 
8 1 3 0.20 1.00E-03 48 
8 1 4 0.20 1.00E-03 53 
8 1 5 0.20 1.00E-03 56 

247 1.24E+06 

8 2 1 0.20 1.00E-03 47 
8 2 2 0.20 1.00E-03 56 
8 2 3 0.20 1.00E-03 60 
8 2 4 0.20 1.00E-03 46 
8 2 5 0.20 1.00E-03 45 

254 1.27E+06 
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9.7 APPENDIX G 
 

Randomization of Feed Extrusion Treatments, 
Results of Test for Normality of Distribution of Residuals and ANOVA Tables for the 

Response Surface and Secondary Models



 174

Table G 1.  Order of extrusion experimental runs.  Runs were grouped in a way that 
simplified and minimized the need to change extruder barrel temperature. T = 
Extruder barrel exit temperature, Mc = moisture content of feed mash, and Rt = 
retention time of feed in the extruder barrel. 
 

   Extruder Variables 
Replicat

e Day 
Treatm

ent T, oF T, oC Mc, % wb Rt, s 
       
       

1 1 5 182 83 30.5 9 
1 1 7 200 93 28.5 3 
1 1 8 200 93 28.5 7 
1 1 6 200 93 24.5 7 
1 2 3 182 83 26.5 9 
1 2 12 218 103 26.5 9 
1 2 14 218 103 30.5 9 
1 2 15 230 110 28.5 7 
1 3 2 182 83 26.5 5 
1 3 4 182 83 30.5 5 
1 3 13 218 103 30.5 5 
1 3 1 170 77 28.5 7 
1 4 8 200 93 28.5 7 
1 4 9 200 93 28.5 11 
1 4 10 200 93 32.5 7 
1 4 11 218 103 26.5 5 
1 5 8 200 93 28.5 7 
1 5 8 200 93 28.5 7 
1 5 8 200 93 28.5 7 
1 5 8 200 93 28.5 7 
2 1 8 200 93 28.5 7 
2 1 8 200 93 28.5 7 
2 1 2 182 83 26.5 5 
2 1 3 182 83 26.5 9 
2 2 8 200 93 28.5 7 
2 2 9 200 93 28.5 11 
2 2 10 200 93 32.5 7 
2 2 15 230 110 28.5 7 
2 3 8 200 93 28.5 7 
2 3 8 200 93 28.5 7 
2 3 13 218 103 30.5 5 
2 3 14 218 103 30.5 9 
2 4 4 182 83 30.5 5 
2 4 5 182 83 30.5 9 
2 4 11 217 103 26.5 5 
2 4 12 217 103 26.5 9 
2 5 1 170 77 28.5 7  

      

    
   Extruder Variables 
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Replica
te Day 

Treatm
ent T, oF T, oC Mc, % wb Rt, s 

       
       

1 1 5 182 83 30.5 9 
1 1 7 200 93 28.5 3 
1 1 8 200 93 28.5 7 
1 1 6 200 93 24.5 7 
1 2 3 182 83 26.5 9 
1 2 12 218 103 26.5 9 
1 2 14 218 103 30.5 9 
1 2 15 230 110 28.5 7 
1 3 2 182 83 26.5 5 
1 3 4 182 83 30.5 5 
1 3 13 218 103 30.5 5 
1 3 1 170 77 28.5 7 
1 4 8 200 93 28.5 7 
1 4 9 200 93 28.5 11 
1 4 10 200 93 32.5 7 
1 4 11 218 103 26.5 5 
1 5 8 200 93 28.5 7 
1 5 8 200 93 28.5 7 
1 5 8 200 93 28.5 7 
1 5 8 200 93 28.5 7 
2 1 8 200 93 28.5 7 
2 1 8 200 93 28.5 7 
2 1 2 182 83 26.5 5 
2 1 3 182 83 26.5 9 
2 2 8 200 93 28.5 7 
2 2 9 200 93 28.5 11 
2 2 10 200 93 32.5 7 
2 2 15 230 110 28.5 7 
2 3 8 200 93 28.5 7 
2 3 8 200 93 28.5 7 
2 3 13 218 103 30.5 5 
2 3 14 218 103 30.5 9 
2 4 4 182 83 30.5 5 
2 4 5 182 83 30.5 9 
2 4 11 217 103 26.5 5 
2 4 12 217 103 26.5 9 
2 5 1 170 77 28.5 7 
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Table G 1. (‘cont.). 
 
 
  

              
   Extruder Variables 

Replicate Day Treatment T, oF T, oC Mc, % wb Rt, s 
              
        
2 5 6 200 93 24.5 7 
2 5 7 200 93 28.5 3 
2 5 8 200 93 28.5 7 
3 1 9 200 93 28.5 11 
3 1 10 200 93 32.5 7 
3 1 13 217 103 30.5 5 
3 1 14 217 103 30.5 9 
3 2 8 200 93 28.5 7 
3 2 8 200 93 28.5 7 
3 2 8 200 93 28.5 7 
3 2 8 200 93 28.5 7 
3 3 8 200 93 28.5 7 
3 3 8 200 93 28.5 7 
3 3 15 230 110 28.5 7 
3 3 1 170 77 28.5 7 
3 4 11 217 103 26.5 5 
3 4 12 217 103 26.5 9 
3 4 4 182 83 30.5 5 
3 4 5 182 83 30.5 9 
3 5 7 200 93 28.5 3 
3 5 6 200 93 24.5 7 
3 5 2 182 83 26.5 5 
3 5 3 182 83 26.5 9 
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Table G 2.1.  Normality statistics of the distribution of residuals. 

 
 

    
Test Statistic Criterion p Value

    
    

Shapiro-Wilk 0.977 Pr < W 0.316 
    

 
 
 

 
 
 
Table G 2.2.  Univariate results of normality assumption testing on residuals.  Quartile 
information on residuals. Variable tested was residuals. Max = maximum, Min = 
minimum, Q1, Q3 are 25% and 75% quartiles, respectively. 
 
 

      
Quartile  Estimate

      
   
100% Max  0.2171 
99%  0.2171 
95%  0.1251 
90%  0.0876 
75% Q3  0.0491 
50% Median 0.0043 
25% Q1  -0.0417
10%  -0.1102
5%  -0.1239
1%  -0.2699
0% Min  -0.2698
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Figure G 1.1.   Plot of residuals versus treatment. Treatment = predetermined combinations of extrusion conditions of feed moisture 
content, extruder barrel temperature and retention time of feed in the extruder barrel.  Key: A = 1 observation, B = 2 observations, 
etc.
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   Stem Leaf                    #             Boxplot 

                          20 7                        1                0 
                          18 
                          16 
                          14 1                        1                | 
                          12 2                        1                | 
                          10 78                       2                | 
                           8 550                      3                | 
                           6 139                      3                | 
                           4 6671358                  7             +-----+ 
                           2 3443447                  7             |     | 
                           0 099138                   6             *--+--* 
                          -0 8871074                  7             |     | 
                          -2 533620                   6             |     | 
                          -4 9855031                  7             +-----+ 
                          -6 4                        1                | 
                          -8 9                        1                | 
                         -10 973                      3                | 
                         -12 62                       2                | 
                         -14                                           | 
                         -16 6                        1                | 
                         -18 
                         -20 
                         -22 
                         -24 
                         -26 0                        1                0 
                             ----+----+----+----+ 
                         Multiply Stem.Leaf by 10**-2 

Figure G 1.2.  Test for normality of distribution of residuals. Stem and leaf and box plot.
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                      0.21+                                                * + 
                          |                                                ++ 
                          |                                             +++ 
                          |                                           +* 
                          |                                        ++* 
                          |                                      +* * 
                          |                                   +*** 
                          |                                 +*** 
                          |                              ***** 
                          |                           **** 
                          |                         *** 
                          |                      *** 
                     -0.03+                   ***+ 
                          |               *****+ 
                          |              * ++ 
                          |             +*+ 
                          |           *** 
                          |        **+ 
                          |      ++ 
                          |   +++* 
                          | ++ 
                          |+ 
                          | 
                          | 
                     -0.27+  * 
                           +----+----+----+----+----+----+----+----+----+----+ 
                               -2        -1         0        +1        +2 

 

Figure G 2.3.  Normal probability plot (residuals versus standard deviation). “+” indicate location of a normally distributed 
population of residuals with the same standard deviation as that of the observed residuals indicated by  “*”. 
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Table G 2.3.  ANOVA table for the response surface model for acid producing, 
thermophilic organisms and Bacillus stearothermophilus spore inactivation during 
feed extrusion.  
 

            
Regression DF MS R-square F p  
            
      
Linear 3 0.083 0.253 9.03 < 0.001 
Quadratic 3 0.042 0.127 4.52 0.007 
Cross product 3 0.051 0.153 5.46 0.003 
Total model 9 0.059 0.533 6.34 < 0.001 
            

 
 
 
 
Table G 2.4.  ANOVA table for the contribution of independent variables to the overal 
response surface model for acid producing, thermophilic organisms and Bacillus 
stearothermophilus spore inactivation during feed extrusion.  
 

          
Variable DF MS F p  

          
     

T 4 0.055 5.94  0.0005 
Mc 4 0.046 4.96 0.0019 
Rt 4 0.073 7.91 < 0.0001 
          

 

 

Table G 2.5.  ANOVA table for lack of fit test for the response surface model. 
 

          
Residual DF MS F p  

          
     

Lack of fit 5 0.015 1.78 0.136 
Pure error 45 0.009   
Total error 50 0.009   

          
 



 182

 

Table G 2.6.  ANOVA table for the secondary model, k. 
 
 

          
Source DF MS F P 
          
     
Model 2 0.0015 3.41 0.040 
Error 57 0.00044   
Corrected total 59    
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9.8 APPENDIX H 
 

Appearance of Extrudates Under 15 Different Extru-Tech E325 extruder Settings 
Tested 
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Figure H 1.  Extrudate obtained with Extru-Tech E325 extruder operating at 77 oC 
extruder barrel exit temperature, 28.5% wet basis mash feed moisture content and 7 s 
retention time of feed in the extruder barrel (Treatment 1). Inactivation of acid 
producing, thermophilic organisms and Bacillus stearothermophilus spores was 
40.7±18.2 %. 

 

Figure H 2.  Appearance of extrudate obtained with Extru-ech E325 extruder operating 
at 83 oC extruder barrel exit temperature, 26.5% wet basis mash feed moisture content 
and 5 s retention time of feed in the extruder barrel (Treatment 2). Inactivation of acid 
producing, thermophilic organisms and Bacillus stearothermophilus spores was 
55.2±13.8 %. 
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Figure H 3.  Appearance of extrudate obtained with Extru-ech E325 extruder operating 
at 83 oC extruder barrel exit temperature, 26.5% wet basis mash feed moisture content 
and 9 s retention time of feed in the extruder barrel (Treatment 3). Inactivation of acid 
producing, thermophilic organisms and Bacillus stearothermophilus spores was 
25.1±39.3 %. 

 

Figure H 4.  Appearance of extrudate obtained with Extru-ech E325 extruder operating 
at 83 oC extruder barrel exit temperature, 30.5% wet basis mash feed moisture content 
and 5 s retention time of feed in the extruder barrel (Treatment 4). Inactivation of acid 
producing, thermophilic organisms and Bacillus stearothermophilus spores was 
42.3±35.0 %. 



 186

 

Figure H 5.  Appearance of extrudate obtained with Extru-ech E325 extruder operating 
at 83 oC extruder barrel exit temperature, 30.5% wet basis mash feed moisture content 
and 9 s retention time of feed in the extruder barrel (Treatment 5). Inactivation of acid 
producing, thermophilic organisms and Bacillus stearothermophilus spores was 
28.1±24.3 %. 

 

Figure H 6. Appearance of extrudate obtained with Extru-ech E325 extruder operating 
at 93 oC extruder barrel exit temperature, 24.5% wet basis mash feed moisture content 
and 7 s retention time of feed in the extruder barrel (Treatment 6). Inactivation of acid 
producing, thermophilic organisms and Bacillus stearothermophilus spores was 
45.6±30.6.1%. 



 187

 

 

Figure H 7.  Appearance of extrudate obtained with Extru-ech E325 extruder operating 
at 93 oC extruder barrel exit temperature, 28.5% wet basis mash feed moisture content 
and 3 s retention time of feed in the extruder barrel (Treatment 7). Inactivation of acid 
producing, thermophilic organisms and Bacillus stearothermophilus spores was 
27.8±18.3 %. 

 

Figure H 8.  Appearance of extrudate obtained with Extru-ech E325 extruder operating 
at 93 oC extruder barrel exit temperature, 28.5% wet basis mash feed moisture content 
and 7 s retention time of feed in the extruder barrel (Treatment 8). Inactivation of acid 
producing, thermophilic organisms and Bacillus stearothermophilus spores was 
32.6±11.7 %. 
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Figure H 9.  Appearance of extrudate obtained with Extru-ech E325 extruder operating 
at 93 oC extruder barrel exit temperature, 28.5% wet basis mash feed moisture content 
and 11 s retention time of feed in the extruder barrel (Treatment 9). Inactivation of 
acid producing, thermophilic organisms and Bacillus stearothermophilus spores was 
65.3±53.2 %. 

 

Figure H 10.  Appearance of extrudate obtained with Extru-ech E325 extruder 
operating at 93 oC extruder barrel exit temperature, 32.5% wet basis mash feed 
moisture content and 7 s retention time of feed in the extruder barrel (Treatment 10). 
Inactivation of acid producing, thermophilic organisms and Bacillus 
stearothermophilus spores was 15.9±39.8 %. 
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Figure H 11.  Appearance of extrudate obtained with Extru-ech E325 extruder 
operating at 103 oC extruder barrel exit temperature, 26.5% wet basis mash feed 
moisture content and 5 s retention time of feed in the extruder barrel (Treatment 11). 
Inactivation of acid producing, thermophilic organisms and Bacillus 
stearothermophilus spores was 47.3±7.7 %. 

 

Figure H 12.  Appearance of extrudate obtained with Extru-ech E325 extruder 
operating at 103 oC extruder barrel exit temperature, 26.5% wet basis mash feed 
moisture content and 9 s retention time of feed in the extruder barrel (Treatment 12). 
Inactivation of acid producing, thermophilic organisms and Bacillus 
stearothermophilus spores was 64.1±19.4 %. 
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Figure H 13.  Appearance of extrudate obtained with Extru-ech E325 extruder 
operating at 103 oC extruder barrel exit temperature, 30.5% wet basis mash feed 
moisture content and 5 s retention time of feed in the extruder barrel (Treatment 13). 
Inactivation of acid producing, thermophilic organisms and Bacillus 
stearothermophilus spores was 31.4±11.0 %. 

 

 

Figure H 14.  Appearance of extrudate obtained with Extru-ech E325 extruder 
operating at 103 oC extruder barrel exit temperature, 30.5% wet basis mash feed 
moisture content and 9 s retention time of feed in the extruder barrel (Treatment 14). 
Inactivation of acid producing, thermophilic organisms and Bacillus 
stearothermophilus spores was 34.1±29.4 %. 
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Figure H 15.  Appearance of extrudate obtained with Extru-ech E325 extruder 
operating at 110 oC extruder barrel exit temperature, 28.5% wet basis mash feed 
moisture content and 7 s retention time of feed in the extruder barrel (Treatment 15). 
Inactivation of acid producing, thermophilic organisms and Bacillus 
stearothermophilus spores was 40.3±11.9 %.
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9.9 APPENDIX I 
 

Raw data: Temperature Across Extruder Barrel (oC) and Bacterial Spore Estimates, 
Before and After Extrusion (CFU / 20 g feed), respectively. 
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Table I 1.1.  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep1, day 1. Rep = replicate. 
 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial feed 
suspension 

(N) 

Log 
(No/N) 

                  
                  

1 5 20 27 83 82 1 1 1 0.20 1.00E-02 306 1426 7.13E+05 208 1164 5.82E+05 8.82E-02 
1 5 20 27 83 82 1 1 2 0.20 1.00E-02 291   225    
1 5 20 27 83 82 1 1 3 0.20 1.00E-02 303   226    
1 5 20 27 83 82 1 1 4 0.20 1.00E-02 278   230    
1 5 20 27 83 82 1 1 5 0.20 1.00E-02 248   275    
1 5 20 28 84 84 1 2 1 0.20 1.00E-02 300 1400 7.00E+05 188 1022 5.11E+05 1.37E-01 
1 5 20 28 84 84 1 2 2 0.20 1.00E-02 280   201    
1 5 20 28 84 84 1 2 3 0.20 1.00E-02 250   203    
1 5 20 28 84 84 1 2 4 0.20 1.00E-02 293   230    
1 5 20 28 84 84 1 2 5 0.20 1.00E-02 277   200    
1 7 20 38 60 93 1 1 1 0.20 1.00E-02 200 1144 5.72E+05 183 1021 5.11E+05 4.94E-02 
1 7 20 38 60 93 1 1 2 0.20 1.00E-02 250   182    
1 7 20 38 60 93 1 1 3 0.20 1.00E-02 225   199    
1 7 20 38 60 93 1 1 4 0.20 1.00E-02 221   244    
1 7 20 38 60 93 1 1 5 0.20 1.00E-02 248   213    
1 7 20 38 60 93 1 2 1 0.20 1.00E-02 215 1119 5.60E+05 167 1042 5.21E+05 3.10E-02 
1 7 20 38 60 93 1 2 2 0.20 1.00E-02 250   225    
1 7 20 38 60 93 1 2 3 0.20 1.00E-02 213   211    
1 7 20 38 60 93 1 2 4 0.20 1.00E-02 223   219    
1 7 20 38 60 93 1 2 5 0.20 1.00E-02 218   220    
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Table I 1.1.  (‘cont.). 
 

                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial feed 
suspension 

(N) 

Log 
(No/N) 

                  
                  
1 8 20 38 56 93 1 1 1 0.20 1.00E-02 203 1124 5.62E+05 151 886 4.43E+05 1.03E-01 
1 8 20 38 56 93 1 1 2 0.20 1.00E-02 247   147    
1 8 20 38 56 93 1 1 3 0.20 1.00E-02 218   194    
1 8 20 38 56 93 1 1 4 0.20 1.00E-02 230   208    
1 8 20 38 56 93 1 1 5 0.20 1.00E-02 226   186    
1 8 20 38 56 93 1 2 1 0.20 1.00E-02 214 1119 5.60E+05 186 1061 5.31E+05 2.31E-02 
1 8 20 38 56 93 1 2 2 0.20 1.00E-02 253   195    
1 8 20 38 56 93 1 2 3 0.20 1.00E-02 214   218    
1 8 20 38 56 93 1 2 4 0.20 1.00E-02 221   239    
1 8 20 38 56 93 1 2 5 0.20 1.00E-02 217   223    
1 6 20 32 52 93 1 1 1 0.20 1.00E-02 208 1149 5.75E+05 242 999 5.00E+05 6.08E-02 
1 6 20 32 52 93 1 1 2 0.20 1.00E-02 241   194    
1 6 20 32 52 93 1 1 3 0.20 1.00E-02 246   170    
1 6 20 32 52 93 1 1 4 0.20 1.00E-02 224   195    
1 6 20 32 52 93 1 1 5 0.20 1.00E-02 230   198    
1 6 20 32 49 94 1 2 1 0.20 1.00E-02 125 1250 6.25E+05 150 986 4.93E+05 1.03E-01 
1 6 20 32 49 94 1 2 2 0.20 1.00E-02 237   212    
1 6 20 32 49 94 1 2 3 0.20 1.00E-02 271   196    
1 6 20 32 49 94 1 2 4 0.20 1.00E-02 340   268    
1 6 20 32 49 94 1 2 5 0.20 1.00E-02 277   160    
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Table I 1.2.  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep1, day 2. Rep = replicate. 
 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

2 3 18 38 60 83 1 1 1 0.20 1.00E-02 61 698 3.49E+05 253 1171 5.86E+05 -2.25E-01 
2 3 18 38 60 83 1 1 2 0.20 1.00E-02 161   298    
2 3 18 38 60 83 1 1 3 0.20 1.00E-02 140   152    
2 3 18 38 60 83 1 1 4 0.20 1.00E-02 159   168    
2 3 18 38 60 83 1 1 5 0.20 1.00E-02 177   300    
2 3 18 38 52 83 1 2 1 0.20 1.00E-02 246 1202 6.01E+05 320 1260 6.30E+05 -2.05E-02 
2 3 18 38 52 83 1 2 2 0.20 1.00E-02 243   262    
2 3 18 38 52 83 1 2 3 0.20 1.00E-02 34   243    
2 3 18 38 52 83 1 2 4 0.20 1.00E-02 297   219    
2 3 18 38 52 83 1 2 5 0.20 1.00E-02 382   216    
2 14 18 35 82 103 1 1 1 0.20 1.00E-02 122 838 4.19E+05 176 518 2.59E+05 2.09E-01 
2 14 18 35 82 103 1 1 2 0.20 1.00E-02 215   114    
2 14 18 35 82 103 1 1 3 0.20 1.00E-02 274   98    
2 14 18 35 82 103 1 1 4 0.20 1.00E-02 120   67    
2 14 18 35 82 103 1 1 5 0.20 1.00E-02 107   63    
2 14 18 38 91 103 1 2 1 0.20 1.00E-02 149 1052 5.26E+05 74 513 2.57E+05 3.12E-01 
2 14 18 38 91 103 1 2 2 0.20 1.00E-02 195   98    
2 14 18 38 91 103 1 2 3 0.20 1.00E-02 236   133    
2 14 18 38 91 103 1 2 4 0.20 1.00E-02 211   120    
2 14 18 38 91 103 1 2 5 0.20 1.00E-02 261   88    
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Table I 1.2.  (‘cont.). 
 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

2 12 18 41 96 103 1 1 1 0.20 1.00E-02 207 1383 6.92E+05 41 416 2.08E+05 5.22E-01 
2 12 18 41 96 103 1 1 2 0.20 1.00E-02 288   39    
2 12 18 41 96 103 1 1 3 0.20 1.00E-02 315   128    
2 12 18 41 96 103 1 1 4 0.20 1.00E-02 353   106    
2 12 18 41 96 103 1 1 5 0.20 1.00E-02 220   102    
2 12 18 41 71 103 1 2 1 0.20 1.00E-02 329 1479 7.40E+05 179 605 3.03E+05 3.88E-01 
2 12 18 41 71 103 1 2 2 0.20 1.00E-02 283   133    
2 12 18 41 71 103 1 2 3 0.20 1.00E-02 239   124    
2 12 18 41 71 103 1 2 4 0.20 1.00E-02 274   86    
2 12 18 41 71 103 1 2 5 0.20 1.00E-02 354   83    
2 15 18 38 99 106 1 1 1 0.20 1.00E-02 182 1167 5.84E+05 88 619 3.10E+05 2.75E-01 
2 15 18 38 99 106 1 1 2 0.20 1.00E-02 242   85    
2 15 18 38 99 106 1 1 3 0.20 1.00E-02 264   134    
2 15 18 38 99 106 1 1 4 0.20 1.00E-02 261   130    
2 15 18 38 99 106 1 1 5 0.20 1.00E-02 218   182    
2 15 18 38 93 106 1 2 1 0.20 1.00E-02 236 1272 6.36E+05 149 1143 5.72E+05 4.64E-02 
2 15 18 38 93 106 1 2 2 0.20 1.00E-02 312   178    
2 15 18 38 93 106 1 2 3 0.20 1.00E-02 289   336    
2 15 18 38 93 106 1 2 4 0.20 1.00E-02 206   180    
2 15 18 38 93 106 1 2 5 0.20 1.00E-02 229   300    
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Table I 1.3.  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep1, day 3. Rep = replicate. 

 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

3 2 19 41 71 83 1 1 1 0.20 1.00E-02 164 1169 5.85E+05 134 629 3.15E+05 2.69E-01 
3 2 19 41 71 83 1 1 2 0.20 1.00E-02 319   128    
3 2 19 41 71 83 1 1 3 0.20 1.00E-02 257   166    
3 2 19 41 71 83 1 1 4 0.20 1.00E-02 216   124    
3 2 19 41 71 83 1 1 5 0.20 1.00E-02 213   77    
3 2 19 41 74 83 1 2 1 0.20 1.00E-02 372 1413 7.07E+05 174 741 3.71E+05 2.80E-01 
3 2 19 41 74 83 1 2 2 0.20 1.00E-02 288   163    
3 2 19 41 74 83 1 2 3 0.20 1.00E-02 270   146    
3 2 19 41 74 83 1 2 4 0.20 1.00E-02 263   120    
3 2 19 41 74 83 1 2 5 0.20 1.00E-02 220   138    
3 4 19 43 74 81 1 1 1 0.20 1.00E-02 300 1074 5.37E+05 79 464 2.32E+05 3.64E-01 
3 4 19 43 74 81 1 1 2 0.20 1.00E-02 268   88    
3 4 19 43 74 81 1 1 3 0.20 1.00E-02 187   77    
3 4 19 43 74 81 1 1 4 0.20 1.00E-02 169   144    
3 4 19 43 74 81 1 1 5 0.20 1.00E-02 150   76    
3 4 19 43 74 83 1 2 1 0.20 1.00E-02 161 969 4.85E+05 66 403 2.02E+05 3.81E-01 
3 4 19 43 74 83 1 2 2 0.20 1.00E-02 107   68    
3 4 19 43 74 83 1 2 3 0.20 1.00E-02 203   69    
3 4 19 43 74 83 1 2 4 0.20 1.00E-02 271   139    
3 4 19 43 74 83 1 2 5 0.20 1.00E-02 227   61    
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Table I 1.3.  (‘cont.). 
 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

3 13 19 43 77 102 1 1 1 0.20 1.00E-02 221 908 4.54E+05 67 478 2.39E+05 2.79E-01 
3 13 19 43 77 102 1 1 2 0.20 1.00E-02 228   70    
3 13 19 43 77 102 1 1 3 0.20 1.00E-02 165   104    
3 13 19 43 77 102 1 1 4 0.20 1.00E-02 163   116    
3 13 19 43 77 102 1 1 5 0.20 1.00E-02 131   121    
3 13 19 43 77 102 1 2 1 0.20 1.00E-02 210 786 3.93E+05 147 540 2.70E+05 1.63E-01 
3 13 19 43 77 102 1 2 2 0.20 1.00E-02 219   122    
3 13 19 43 77 102 1 2 3 0.20 1.00E-02 132   104    
3 13 19 43 77 102 1 2 4 0.20 1.00E-02 113   95    
3 13 19 43 77 102 1 2 5 0.20 1.00E-02 112   72    
3 1 19 41 79 79 1 1 1 0.20 1.00E-02 247 955 4.78E+05 69 500 2.50E+05 2.81E-01 
3 1 19 41 79 79 1 1 2 0.20 1.00E-02 204   101    
3 1 19 41 79 79 1 1 3 0.20 1.00E-02 194   100    
3 1 19 41 79 79 1 1 4 0.20 1.00E-02 176   101    
3 1 19 41 79 79 1 1 5 0.20 1.00E-02 134   129    
3 1 19 41 79 77 1 2 1 0.20 1.00E-02 292 1103 5.52E+05 64 467 2.34E+05 3.73E-01 
3 1 19 41 79 77 1 2 2 0.20 1.00E-02 225   111    
3 1 19 41 79 77 1 2 3 0.20 1.00E-02 232   99    
3 1 19 41 79 77 1 2 4 0.20 1.00E-02 156   105    
3 1 19 41 79 77 1 2 5 0.20 1.00E-02 198   88    
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Table I 1.4.  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep1, day 4. Rep = replicate. 

 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

4 8 22 28 54 93 1 1 1 0.20 1.00E-02 108 653 3.27E+05 61 381 1.91E+05 2.34E-01 
4 8 22 28 54 93 1 1 2 0.20 1.00E-02 157   94    
4 8 22 28 54 93 1 1 3 0.20 1.00E-02 110   74    
4 8 22 28 54 93 1 1 4 0.20 1.00E-02 132   92    
4 8 22 28 54 93 1 1 5 0.20 1.00E-02 146   60    
4 8 22 28 52 93 1 2 1 0.20 1.00E-02 52 542 2.71E+05 89 458 2.29E+05 7.31E-02 
4 8 22 28 52 93 1 2 2 0.20 1.00E-02 125   103    
4 8 22 28 52 93 1 2 3 0.20 1.00E-02 125   99    
4 8 22 28 52 93 1 2 4 0.20 1.00E-02 136   101    
4 8 22 28 52 93 1 2 5 0.20 1.00E-02 104   66    
4 9 20 27 49 93 1 1 1 0.20 1.00E-02 189 724 3.62E+05 37 221 1.11E+05 5.15E-01 
4 9 20 27 49 93 1 1 2 0.20 1.00E-02 133   30    
4 9 20 27 49 93 1 1 3 0.20 1.00E-02 158   55    
4 9 20 27 49 93 1 1 4 0.20 1.00E-02 105   50    
4 9 20 27 49 93 1 1 5 0.20 1.00E-02 139   49    
4 9 20 27 46 93 1 2 1 0.20 1.00E-02 127 715 3.58E+05 17 60 3.00E+04 1.08E+00 
4 9 20 27 46 93 1 2 2 0.20 1.00E-02 153   24    
4 9 20 27 46 93 1 2 3 0.20 1.00E-02 135   3    
4 9 20 27 46 93 1 2 4 0.20 1.00E-02 140   9    
4 9 20 27 46 93 1 2 5 0.20 1.00E-02 160   7    
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Table I 1.4.  (‘cont.). 
 

                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

4 10 20 27 43 93 1 1 1 0.20 1.00E-02 117 719 3.60E+05 59 359 1.80E+05 3.02E-01 
4 10 20 27 43 93 1 1 2 0.20 1.00E-02 140   48    
4 10 20 27 43 93 1 1 3 0.20 1.00E-02 136   102    
4 10 20 27 43 93 1 1 4 0.20 1.00E-02 187   100    
4 10 20 27 43 93 1 1 5 0.20 1.00E-02 139   50    
4 10 20 27 43 93 1 2 1 0.20 1.00E-02 141 824 4.12E+05 70 368 1.84E+05 3.50E-01 
4 10 20 27 43 93 1 2 2 0.20 1.00E-02 143   61    
4 10 20 27 43 93 1 2 3 0.20 1.00E-02 150   44    
4 10 20 27 43 93 1 2 4 0.20 1.00E-02 190   105    
4 10 20 27 43 93 1 2 5 0.20 1.00E-02 200   88    
4 11 19 24 43 103 1 1 1 0.20 1.00E-02 93 768 3.84E+05 83 393 1.97E+05 2.91E-01 
4 11 19 24 43 103 1 1 2 0.20 1.00E-02 121   64    
4 11 19 24 43 103 1 1 3 0.20 1.00E-02 147   63    
4 11 19 24 43 103 1 1 4 0.20 1.00E-02 192   125    
4 11 19 24 43 103 1 1 5 0.20 1.00E-02 215   58    
4 11 19 24 43 103 1 2 1 0.20 1.00E-02 107 816 4.08E+05 72 382 1.91E+05 3.30E-01 
4 11 19 24 43 103 1 2 2 0.20 1.00E-02 123   71    
4 11 19 24 43 103 1 2 3 0.20 1.00E-02 170   89    
4 11 19 24 43 103 1 2 4 0.20 1.00E-02 194   105    
4 11 19 24 43 103 1 2 5 0.20 1.00E-02 222   45    
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Table I 1.5.  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep1, day 5. Rep = replicate. 

 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

5 8 26 132 66 93 1 1 1 0.20 1.00E-02 167 805 4.03E+05 88 474 2.37E+05 2.30E-01 
5 8 26 132 66 93 1 1 2 0.20 1.00E-02 174   84    
5 8 26 132 66 93 1 1 3 0.20 1.00E-02 125   98    
5 8 26 132 66 93 1 1 4 0.20 1.00E-02 124   108    
5 8 26 132 66 93 1 1 5 0.20 1.00E-02 215   96    
5 8 26 132 63 93 1 2 1 0.20 1.00E-02 165 801 4.01E+05 89 479 2.40E+05 2.23E-01 
5 8 26 132 63 93 1 2 2 0.20 1.00E-02 177   86    
5 8 26 132 63 93 1 2 3 0.20 1.00E-02 123   100    
5 8 26 132 63 93 1 2 4 0.20 1.00E-02 126   110    
5 8 26 132 63 93 1 2 5 0.20 1.00E-02 210   94    
5 8 26 132 63 93 1 1 1 0.20 1.00E-02 119 908 4.54E+05 85 585 2.93E+05 1.91E-01 
5 8 26 132 63 93 1 1 2 0.20 1.00E-02 148   89    
5 8 26 132 63 93 1 1 3 0.20 1.00E-02 231   132    
5 8 26 132 63 93 1 1 4 0.20 1.00E-02 240   136    
5 8 26 132 63 93 1 1 5 0.20 1.00E-02 170   143    
5 8 26 132 63 95 1 2 1 0.20 1.00E-02 109 886 4.43E+05 86 583 2.92E+05 1.82E-01 
5 8 26 132 63 95 1 2 2 0.20 1.00E-02 138   92    
5 8 26 132 63 95 1 2 3 0.20 1.00E-02 240   130    
5 8 26 132 63 95 1 2 4 0.20 1.00E-02 230   135    
5 8 26 132 63 95 1 2 5 0.20 1.00E-02 169   140    
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Table I 1.5.  (‘cont.). 
 

                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

5 8 24 132 60 93 1 1 1 0.20 1.00E-02 112 1002 5.01E+05 75 519 2.60E+05 2.86E-01 
5 8 24 132 60 93 1 1 2 0.20 1.00E-02 174   98    
5 8 24 132 60 93 1 1 3 0.20 1.00E-02 239   126    
5 8 24 132 60 93 1 1 4 0.20 1.00E-02 249   112    
5 8 24 132 60 93 1 1 5 0.20 1.00E-02 228   108    
5 8 24 132 60 92 1 2 1 0.20 1.00E-02 109 993 4.97E+05 76 524 2.62E+05 2.78E-01 
5 8 24 132 60 92 1 2 2 0.20 1.00E-02 170   90    
5 8 24 132 60 92 1 2 3 0.20 1.00E-02 240   130    
5 8 24 132 60 92 1 2 4 0.20 1.00E-02 250   118    
5 8 24 132 60 92 1 2 5 0.20 1.00E-02 224   110    
5 8 24 132 60 95 1 1 1 0.20 1.00E-02 103 1150 5.75E+05 58 446 2.23E+05 4.11E-01 
5 8 24 132 60 95 1 1 2 0.20 1.00E-02 200   91    
5 8 24 132 60 95 1 1 3 0.20 1.00E-02 251   90    
5 8 24 132 60 95 1 1 4 0.20 1.00E-02 236   99    
5 8 24 132 60 95 1 1 5 0.20 1.00E-02 200   108    
5 8 24 132 60 93 1 2 1 0.20 1.00E-02 160 787 3.94E+05 82 471 2.36E+05 2.23E-01 
5 8 24 132 60 93 1 2 2 0.20 1.00E-02 165   92    
5 8 24 132 60 93 1 2 3 0.20 1.00E-02 109   114    
5 8 24 132 60 93 1 2 4 0.20 1.00E-02 263   85    
5 8 24 132 60 93 1 2 5 0.20 1.00E-02 250   98    
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Table I 2.1.  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep 2, day 1. Rep = replicate. 

 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

1 8 24 43 43 93 2 1 1 0.20 1.00E-02 76 613 3.07E+05 81 434 2.17E+05 1.50E-01 
1 8 24 43 43 93 2 1 2 0.20 1.00E-02 87   57    
1 8 24 43 43 93 2 1 3 0.20 1.00E-02 142   87    
1 8 24 43 43 93 2 1 4 0.20 1.00E-02 132   99    
1 8 24 43 43 93 2 1 5 0.20 1.00E-02 176   110    
1 8 24 43 43 93 2 2 1 0.20 1.00E-02 66 539 2.70E+05 88 504 2.52E+05 2.92E-02 
1 8 24 43 43 93 2 2 2 0.20 1.00E-02 100   105    
1 8 24 43 43 93 2 2 3 0.20 1.00E-02 106   86    
1 8 24 43 43 93 2 2 4 0.20 1.00E-02 130   130    
1 8 24 43 43 93 2 2 5 0.20 1.00E-02 137   95    
1 8 24 43 43 93 2 1 1 0.20 1.00E-02 79 713 3.57E+05 52 352 1.76E+05 3.07E-01 
1 8 24 43 43 93 2 1 2 0.20 1.00E-02 132   71    
1 8 24 43 43 93 2 1 3 0.20 1.00E-02 142   59    
1 8 24 43 43 93 2 1 4 0.20 1.00E-02 166   83    
1 8 24 43 43 93 2 1 5 0.20 1.00E-02 194   87    
1 8 24 43 43 93 2 2 1 0.20 1.00E-02 76 661 3.31E+05 90 457 2.29E+05 1.60E-01 
1 8 24 43 43 93 2 2 2 0.20 1.00E-02 95   95    
1 8 24 43 43 93 2 2 3 0.20 1.00E-02 93   87    
1 8 24 43 43 93 2 2 4 0.20 1.00E-02 170   94    
1 8 24 43 43 93 2 2 5 0.20 1.00E-02 227   91    
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Table I 2.1.  (‘cont.). 
 

                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

1 2 26 77 77 83 2 1 1 0.20 1.00E-02 77 707 3.54E+05 43 264 1.32E+05 4.28E-01 
1 2 26 77 77 83 2 1 2 0.20 1.00E-02 98   66    
1 2 26 77 77 83 2 1 3 0.20 1.00E-02 155   55    
1 2 26 77 77 83 2 1 4 0.20 1.00E-02 186   49    
1 2 26 77 77 83 2 1 5 0.20 1.00E-02 191   51    
1 2 26 68 71 84 2 2 1 0.20 1.00E-02 110 803 4.02E+05 73 350 1.75E+05 3.61E-01 
1 2 26 68 71 84 2 2 2 0.20 1.00E-02 116   67    
1 2 26 68 71 84 2 2 3 0.20 1.00E-02 178   65    
1 2 26 68 71 84 2 2 4 0.20 1.00E-02 178   77    
1 2 26 68 71 84 2 2 5 0.20 1.00E-02 221   68    
1 3 26 60 63 83 2 1 1 0.20 1.00E-02 80 720 3.60E+05 110 496 2.48E+05 1.62E-01 
1 3 26 60 63 83 2 1 2 0.20 1.00E-02 104   83    
1 3 26 60 63 83 2 1 3 0.20 1.00E-02 138   110    
1 3 26 60 63 83 2 1 4 0.20 1.00E-02 197   105    
1 3 26 60 63 83 2 1 5 0.20 1.00E-02 201   88    
1 3 26 54 57 84 2 2 1 0.20 1.00E-02 89 852 4.26E+05 50 350 1.75E+05 3.86E-01 
1 3 26 54 57 84 2 2 2 0.20 1.00E-02 96   73    
1 3 26 54 57 84 2 2 3 0.20 1.00E-02 191   85    
1 3 26 54 57 84 2 2 4 0.20 1.00E-02 256   70    
1 3 26 54 57 84 2 2 5 0.20 1.00E-02 220   72    
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Table I 2.2.  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep 2, day 2. Rep = replicate. 

 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

2 8 24 110 52 93 2 1 1 0.20 1.00E-02 56 492 2.46E+05 67 277 1.39E+05 2.49E-01 
2 8 24 110 52 93 2 1 2 0.20 1.00E-02 83   56    
2 8 24 110 52 93 2 1 3 0.20 1.00E-02 80   62    
2 8 24 110 52 93 2 1 4 0.20 1.00E-02 118   48    
2 8 24 110 52 93 2 1 5 0.20 1.00E-02 155   44    
2 8 24 110 52 93 2 2 1 0.20 1.00E-02 55 478 2.39E+05 60 268 1.34E+05 2.51E-01 
2 8 24 110 52 93 2 2 2 0.20 1.00E-02 81   66    
2 8 24 110 52 93 2 2 3 0.20 1.00E-02 76   46    
2 8 24 110 52 93 2 2 4 0.20 1.00E-02 116   43    
2 8 24 110 52 93 2 2 5 0.20 1.00E-02 150   53    
2 9 24 113 52 94 2 1 1 0.20 1.00E-02 64 454 2.27E+05 39 254 1.27E+05 2.52E-01 
2 9 24 113 52 94 2 1 2 0.20 1.00E-02 62   45    
2 9 24 113 52 94 2 1 3 0.20 1.00E-02 128   67    
2 9 24 113 52 94 2 1 4 0.20 1.00E-02 99   62    
2 9 24 113 52 94 2 1 5 0.20 1.00E-02 101   41    
2 9 24 116 52 94 2 2 1 0.20 1.00E-02 63 432 2.16E+05 72 411 2.06E+05 2.16E-02 
2 9 24 116 52 94 2 2 2 0.20 1.00E-02 68   85    
2 9 24 116 52 94 2 2 3 0.20 1.00E-02 114   99    
2 9 24 116 52 94 2 2 4 0.20 1.00E-02 85   80    
2 9 24 116 52 94 2 2 5 0.20 1.00E-02 102   75    
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Table I 2.2.  (‘cont.). 
 

                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

2 10 24 116 43 93 2 1 1 0.20 1.00E-02 99 569 2.85E+05 124 632 3.16E+05 -4.56E-02 
2 10 24 116 43 93 2 1 2 0.20 1.00E-02 100   143    
2 10 24 116 43 93 2 1 3 0.20 1.00E-02 125   141    
2 10 24 116 43 93 2 1 4 0.20 1.00E-02 122   105    
2 10 24 116 43 93 2 1 5 0.20 1.00E-02 123   119    
2 10 24 116 43 93 2 2 1 0.20 1.00E-02 90 601 3.01E+05 100 568 2.84E+05 2.45E-02 
2 10 24 116 43 93 2 2 2 0.20 1.00E-02 110   109    
2 10 24 116 43 93 2 2 3 0.20 1.00E-02 128   126    
2 10 24 116 43 93 2 2 4 0.20 1.00E-02 137   110    
2 10 24 116 43 93 2 2 5 0.20 1.00E-02 136   123    
2 15 24 107 57 110 2 1 1 0.20 1.00E-02 116 692 3.46E+05 96 532 2.66E+05 1.14E-01 
2 15 24 107 57 110 2 1 2 0.20 1.00E-02 129   110    
2 15 24 107 57 110 2 1 3 0.20 1.00E-02 147   113    
2 15 24 107 57 110 2 1 4 0.20 1.00E-02 136   118    
2 15 24 107 57 110 2 1 5 0.20 1.00E-02 164   95    
2 15 24 88 66 109 2 2 1 0.20 1.00E-02 131 773 3.87E+05 64 306 1.53E+05 4.02E-01 
2 15 24 88 66 109 2 2 2 0.20 1.00E-02 151   66    
2 15 24 88 66 109 2 2 3 0.20 1.00E-02 148   71    
2 15 24 88 66 109 2 2 4 0.20 1.00E-02 171   59    
2 15 24 88 66 109 2 2 5 0.20 1.00E-02 172   46    
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Table I 2.3.  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep 2, day 3. Rep = replicate. 

 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

3 8 33 96 79 94 2 1 1 0.20 1.00E-02 75 476 2.38E+05 51 280 1.40E+05 2.30E-01 
3 8 33 96 79 94 2 1 2 0.20 1.00E-02 88   48    
3 8 33 96 79 94 2 1 3 0.20 1.00E-02 106   44    
3 8 33 96 79 94 2 1 4 0.20 1.00E-02 105   68    
3 8 33 96 79 94 2 1 5 0.20 1.00E-02 102   69    
3 8 33 91 79 94 2 2 1 0.20 1.00E-02 76 483 2.42E+05 36 209 1.05E+05 3.64E-01 
3 8 33 91 79 94 2 2 2 0.20 1.00E-02 89   27    
3 8 33 91 79 94 2 2 3 0.20 1.00E-02 100   60    
3 8 33 91 79 94 2 2 4 0.20 1.00E-02 110   41    
3 8 33 91 79 94 2 2 5 0.20 1.00E-02 108   45    
3 8 31 79 77 94 2 1 1 0.20 1.00E-02 73 481 2.41E+05 46 293 1.47E+05 2.15E-01 
3 8 31 79 77 94 2 1 2 0.20 1.00E-02 90   56    
3 8 31 79 77 94 2 1 3 0.20 1.00E-02 104   60    
3 8 31 79 77 94 2 1 4 0.20 1.00E-02 108   65    
3 8 31 79 77 94 2 1 5 0.20 1.00E-02 106   66    
3 8 31 74 77 93 2 2 1 0.20 1.00E-02 74 482 2.41E+05 39 255 1.28E+05 2.77E-01 
3 8 31 74 77 93 2 2 2 0.20 1.00E-02 91   44    
3 8 31 74 77 93 2 2 3 0.20 1.00E-02 103   59    
3 8 31 74 77 93 2 2 4 0.20 1.00E-02 112   50    
3 8 31 74 77 93 2 2 5 0.20 1.00E-02 102   63    
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Table I 2.3.  (‘cont.). 
 

                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

3 13 26 49 71 103 2 1 1 0.20 1.00E-02 75 421 2.11E+05 56 313 1.57E+05 1.29E-01 
3 13 26 49 71 103 2 1 2 0.20 1.00E-02 74   52    
3 13 26 49 71 103 2 1 3 0.20 1.00E-02 75   72    
3 13 26 49 71 103 2 1 4 0.20 1.00E-02 100   63    
3 13 26 49 71 103 2 1 5 0.20 1.00E-02 97   70    
3 13 26 49 71 103 2 2 1 0.20 1.00E-02 71 418 2.09E+05 47 289 1.45E+05 1.60E-01 
3 13 26 49 71 103 2 2 2 0.20 1.00E-02 73   60    
3 13 26 49 71 103 2 2 3 0.20 1.00E-02 71   61    
3 13 26 49 71 103 2 2 4 0.20 1.00E-02 103   56    
3 13 26 49 71 103 2 2 5 0.20 1.00E-02 100   65    
3 14 26 46 74 102 2 1 1 0.20 1.00E-02 70 421 2.11E+05 28 225 1.13E+05 2.72E-01 
3 14 26 46 74 102 2 1 2 0.20 1.00E-02 78   44    
3 14 26 46 74 102 2 1 3 0.20 1.00E-02 73   50    
3 14 26 46 74 102 2 1 4 0.20 1.00E-02 101   50    
3 14 26 46 74 102 2 1 5 0.20 1.00E-02 99   53    
3 14 26 46 74 103 2 2 1 0.20 1.00E-02 70 421 2.11E+05 35 221 1.11E+05 2.80E-01 
3 14 26 46 74 103 2 2 2 0.20 1.00E-02 76   54    
3 14 26 46 74 103 2 2 3 0.20 1.00E-02 70   53    
3 14 26 46 74 103 2 2 4 0.20 1.00E-02 102   36    
3 14 26 46 74 103 2 2 5 0.20 1.00E-02 103   43    
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Table I 2.4.  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep 2, day 4. Rep = replicate. 

 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

4 4 21 82 54 83 2 1 1 0.20 1.00E-02 132 599 3.00E+05 76 292 1.46E+05 3.12E-01 
4 4 21 82 54 83 2 1 2 0.20 1.00E-02 149   66    
4 4 21 82 54 83 2 1 3 0.20 1.00E-02 129   65    
4 4 21 82 54 83 2 1 4 0.20 1.00E-02 94   58    
4 4 21 82 54 83 2 1 5 0.20 1.00E-02 95   27    
4 4 21 82 54 83 2 2 1 0.20 1.00E-02 130 595 2.98E+05 57 281 1.41E+05 3.26E-01 
4 4 21 82 54 83 2 2 2 0.20 1.00E-02 150   49    
4 4 21 82 54 83 2 2 3 0.20 1.00E-02 128   63    
4 4 21 82 54 83 2 2 4 0.20 1.00E-02 93   57    
4 4 21 82 54 83 2 2 5 0.20 1.00E-02 94   55    
4 5 21 82 54 84 2 1 1 0.20 1.00E-02 130 587 2.94E+05 63 306 1.53E+05 2.83E-01 
4 5 21 82 54 84 2 1 2 0.20 1.00E-02 150   47    
4 5 21 82 54 84 2 1 3 0.20 1.00E-02 123   67    
4 5 21 82 54 84 2 1 4 0.20 1.00E-02 93   65    
4 5 21 82 54 84 2 1 5 0.20 1.00E-02 91   64    
4 5 21 82 54 84 2 2 1 0.20 1.00E-02 129 600 3.00E+05 53 322 1.61E+05 2.70E-01 
4 5 21 82 54 84 2 2 2 0.20 1.00E-02 149   66    
4 5 21 82 54 84 2 2 3 0.20 1.00E-02 131   75    
4 5 21 82 54 84 2 2 4 0.20 1.00E-02 96   61    
4 5 21 82 54 84 2 2 5 0.20 1.00E-02 95   67    
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Table I 2.4.  (‘cont.). 
 

                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

4 11 21 85 54 104 2 1 1 0.20 1.00E-02 173 679 3.40E+05 58 315 1.58E+05 3.34E-01 
4 11 21 85 54 104 2 1 2 0.20 1.00E-02 142   77    
4 11 21 85 54 104 2 1 3 0.20 1.00E-02 135   67    
4 11 21 85 54 104 2 1 4 0.20 1.00E-02 91   63    
4 11 21 85 54 104 2 1 5 0.20 1.00E-02 138   50    
4 11 21 85 54 104 2 2 1 0.20 1.00E-02 170 680 3.40E+05 86 396 1.98E+05 2.35E-01 
4 11 21 85 54 104 2 2 2 0.20 1.00E-02 145   92    
4 11 21 85 54 104 2 2 3 0.20 1.00E-02 140   79    
4 11 21 85 54 104 2 2 4 0.20 1.00E-02 90   73    
4 11 21 85 54 104 2 2 5 0.20 1.00E-02 135   66    
4 12 21 85 57 103 2 1 1 0.20 1.00E-02 170 683 3.42E+05 56 210 1.05E+05 5.12E-01 
4 12 21 85 57 103 2 1 2 0.20 1.00E-02 140   43    
4 12 21 85 57 103 2 1 3 0.20 1.00E-02 140   41    
4 12 21 85 57 103 2 1 4 0.20 1.00E-02 93   40    
4 12 21 85 57 103 2 1 5 0.20 1.00E-02 140   30    
4 12 21 85 57 103 2 2 1 0.20 1.00E-02 168 677 3.39E+05 46 190 9.50E+04 5.52E-01 
4 12 21 85 57 103 2 2 2 0.20 1.00E-02 146   47    
4 12 21 85 57 103 2 2 3 0.20 1.00E-02 140   33    
4 12 21 85 57 103 2 2 4 0.20 1.00E-02 92   22    
4 12 21 85 57 103 2 2 5 0.20 1.00E-02 131   42    
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Table I 2.5.  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep 2, day 5. Rep = replicate. 

 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

5 1 23 52 66 77 2 1 1 0.20 1.00E-02 70 585 2.93E+05 64 304 1.52E+05 2.84E-01 
5 1 23 52 66 77 2 1 2 0.20 1.00E-02 70   61    
5 1 23 52 66 77 2 1 3 0.20 1.00E-02 123   58    
5 1 23 52 66 77 2 1 4 0.20 1.00E-02 155   45    
5 1 23 52 66 77 2 1 5 0.20 1.00E-02 167   76    
5 1 23 52 66 77 2 2 1 0.20 1.00E-02 71 596 2.98E+05 98 499 2.50E+05 7.71E-02 
5 1 23 52 66 77 2 2 2 0.20 1.00E-02 73   109    
5 1 23 52 66 77 2 2 3 0.20 1.00E-02 128   114    
5 1 23 52 66 77 2 2 4 0.20 1.00E-02 170   100    
5 1 23 52 66 77 2 2 5 0.20 1.00E-02 154   78    
5 6 21 38 49 93 2 1 1 0.20 1.00E-02 121 707 3.54E+05 60 297 1.49E+05 3.77E-01 
5 6 21 38 49 93 2 1 2 0.20 1.00E-02 137   51    
5 6 21 38 49 93 2 1 3 0.20 1.00E-02 150   42    
5 6 21 38 49 93 2 1 4 0.20 1.00E-02 158   54    
5 6 21 38 49 93 2 1 5 0.20 1.00E-02 141   90    
5 6 21 38 49 93 2 2 1 0.20 1.00E-02 140 712 3.56E+05 48 319 1.60E+05 3.49E-01 
5 6 21 38 49 93 2 2 2 0.20 1.00E-02 123   46    
5 6 21 38 49 93 2 2 3 0.20 1.00E-02 161   79    
5 6 21 38 49 93 2 2 4 0.20 1.00E-02 148   76    
5 6 21 38 49 93 2 2 5 0.20 1.00E-02 140   70    
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Table I 2.5.  (‘cont.). 
 

                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

5 7 21 43 49 93 2 1 1 0.20 1.00E-02 70 583 2.92E+05 71 439 2.20E+05 1.23E-01 
5 7 21 43 49 93 2 1 2 0.20 1.00E-02 69   80    
5 7 21 43 49 93 2 1 3 0.20 1.00E-02 120   99    
5 7 21 43 49 93 2 1 4 0.20 1.00E-02 156   83    
5 7 21 43 49 93 2 1 5 0.20 1.00E-02 168   106    
5 7 21 43 49 93 2 2 1 0.20 1.00E-02 68 591 2.96E+05 66 321 1.61E+05 2.65E-01 
5 7 21 43 49 93 2 2 2 0.20 1.00E-02 71   70    
5 7 21 43 49 93 2 2 3 0.20 1.00E-02 124   62    
5 7 21 43 49 93 2 2 4 0.20 1.00E-02 158   61    
5 7 21 43 49 93 2 2 5 0.20 1.00E-02 170   62    
5 8 21 43 52 93 2 1 1 0.20 1.00E-02 69 584 2.92E+05 73 426 2.13E+05 1.37E-01 
5 8 21 43 52 93 2 1 2 0.20 1.00E-02 70   90    
5 8 21 43 52 93 2 1 3 0.20 1.00E-02 122   78    
5 8 21 43 52 93 2 1 4 0.20 1.00E-02 154   76    
5 8 21 43 52 93 2 1 5 0.20 1.00E-02 169   109    
5 8 21 43 52 94 2 2 1 0.20 1.00E-02 71 590 2.95E+05 75 411 2.06E+05 1.57E-01 
5 8 21 43 52 94 2 2 2 0.20 1.00E-02 70   82    
5 8 21 43 52 94 2 2 3 0.20 1.00E-02 121   85    
5 8 21 43 52 94 2 2 4 0.20 1.00E-02 160   81    
5 8 21 43 52 94 2 2 5 0.20 1.00E-02 168   88    
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Table I 3.1.  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep 3, day 1. Rep = replicate. 

 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

1 9 39 102 79 94 3 1 1 0.20 1.00E-02 118 632 3.16E+05 33 189 9.45E+04 5.24E-01 
1 9 39 102 79 94 3 1 2 0.20 1.00E-02 113   40    
1 9 39 102 79 94 3 1 3 0.20 1.00E-02 118   38    
1 9 39 102 79 94 3 1 4 0.20 1.00E-02 138   38    
1 9 39 102 79 94 3 1 5 0.20 1.00E-02 145   40    
1 9 39 93 74 93 3 2 1 0.20 1.00E-02 108 601 3.01E+05 60 256 1.28E+05 3.71E-01 
1 9 39 93 74 93 3 2 2 0.20 1.00E-02 100   42    
1 9 39 93 74 93 3 2 3 0.20 1.00E-02 110   55    
1 9 39 93 74 93 3 2 4 0.20 1.00E-02 140   41    
1 9 39 93 74 93 3 2 5 0.20 1.00E-02 143   58    
1 10 33 71 63 92 3 1 1 0.20 1.00E-02 57 324 1.62E+05 108 406 2.03E+05 -9.80E-02 
1 10 33 71 63 92 3 1 2 0.20 1.00E-02 53   82    
1 10 33 71 63 92 3 1 3 0.20 1.00E-02 61   72    
1 10 33 71 63 92 3 1 4 0.20 1.00E-02 79   58    
1 10 33 71 63 92 3 1 5 0.20 1.00E-02 74   86    
1 10 32 68 60 94 3 2 1 0.20 1.00E-02 60 330 1.65E+05 92 396 1.98E+05 -7.92E-02 
1 10 32 68 60 94 3 2 2 0.20 1.00E-02 55   80    
1 10 32 68 60 94 3 2 3 0.20 1.00E-02 64   80    
1 10 32 68 60 94 3 2 4 0.20 1.00E-02 81   57    
1 10 32 68 60 94 3 2 5 0.20 1.00E-02 70   87    
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Table I 3.1.  (‘cont.). 
 

                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

1 13 27 41 43 103 3 1 1 0.20 1.00E-02 71 453 2.27E+05 75 379 1.90E+05 7.75E-02 
1 13 27 41 43 103 3 1 2 0.20 1.00E-02 65   84    
1 13 27 41 43 103 3 1 3 0.20 1.00E-02 83   68    
1 13 27 41 43 103 3 1 4 0.20 1.00E-02 103   82    
1 13 27 41 43 103 3 1 5 0.20 1.00E-02 131   70    
1 13 27 41 43 103 3 2 1 0.20 1.00E-02 73 470 2.35E+05 90 316 1.58E+05 1.72E-01 
1 13 27 41 43 103 3 2 2 0.20 1.00E-02 68   68    
1 13 27 41 43 103 3 2 3 0.20 1.00E-02 81   69    
1 13 27 41 43 103 3 2 4 0.20 1.00E-02 108   41    
1 13 27 41 43 103 3 2 5 0.20 1.00E-02 140   48    
1 14 27 63 46 103 3 1 1 0.20 1.00E-02 73 463 2.32E+05 65 451 2.26E+05 1.14E-02 
1 14 27 63 46 103 3 1 2 0.20 1.00E-02 68   93    
1 14 27 63 46 103 3 1 3 0.20 1.00E-02 100   84    
1 14 27 63 46 103 3 1 4 0.20 1.00E-02 136   91    
1 14 27 63 46 103 3 1 5 0.20 1.00E-02 86   118    
1 14 27 63 46 103 3 2 1 0.20 1.00E-02 75 473 2.37E+05 65 470 2.35E+05 2.76E-03 
1 14 27 63 46 103 3 2 2 0.20 1.00E-02 70   108    
1 14 27 63 46 103 3 2 3 0.20 1.00E-02 138   96    
1 14 27 63 46 103 3 2 4 0.20 1.00E-02 102   101    
1 14 27 63 46 103 3 2 5 0.20 1.00E-02 88   100    
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Table I 3.2.  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep 3, day 2. Rep = replicate. 

 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

2 8 23 93 74 93 3 1 1 0.20 1.00E-02 68 414 2.07E+05 65 307 1.54E+05 1.30E-01 
2 8 23 93 74 93 3 1 2 0.20 1.00E-02 88   53    
2 8 23 93 74 93 3 1 3 0.20 1.00E-02 96   69    
2 8 23 93 74 93 3 1 4 0.20 1.00E-02 81   66    
2 8 23 93 74 93 3 1 5 0.20 1.00E-02 81   54    
2 8 23 116 77 93 3 2 1 0.20 1.00E-02 70 414 2.07E+05 66 320 1.60E+05 1.12E-01 
2 8 23 116 77 93 3 2 2 0.20 1.00E-02 86   58    
2 8 23 116 77 93 3 2 3 0.20 1.00E-02 90   70    
2 8 23 116 77 93 3 2 4 0.20 1.00E-02 88   68    
2 8 23 116 77 93 3 2 5 0.20 1.00E-02 80   58    
2 8 22 116 71 95 3 1 1 0.20 1.00E-02 80 420 2.10E+05 85 317 1.59E+05 1.22E-01 
2 8 22 116 71 95 3 1 2 0.20 1.00E-02 88   47    
2 8 22 116 71 95 3 1 3 0.20 1.00E-02 86   71    
2 8 22 116 71 95 3 1 4 0.20 1.00E-02 93   52    
2 8 22 116 71 95 3 1 5 0.20 1.00E-02 73   62    
2 8 22 116 71 92 3 2 1 0.20 1.00E-02 81 427 2.14E+05 81 319 1.60E+05 1.27E-01 
2 8 22 116 71 92 3 2 2 0.20 1.00E-02 89   50    
2 8 22 116 71 92 3 2 3 0.20 1.00E-02 90   70    
2 8 22 116 71 92 3 2 4 0.20 1.00E-02 92   53    
2 8 22 116 71 92 3 2 5 0.20 1.00E-02 75   65    
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Table I 3.2.  (‘cont.). 
 

                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

2 8 22 107 66 92 3 1 1 0.20 1.00E-02 81 410 2.05E+05 58 323 1.62E+05 1.04E-01 
2 8 22 107 66 92 3 1 2 0.20 1.00E-02 84   70    
2 8 22 107 66 92 3 1 3 0.20 1.00E-02 90   63    
2 8 22 107 66 92 3 1 4 0.20 1.00E-02 69   63    
2 8 22 107 66 92 3 1 5 0.20 1.00E-02 86   69    
2 8 22 99 66 93 3 2 1 0.20 1.00E-02 79 419 2.10E+05 59 324 1.62E+05 1.12E-01 
2 8 22 99 66 93 3 2 2 0.20 1.00E-02 90   69    
2 8 22 99 66 93 3 2 3 0.20 1.00E-02 88   65    
2 8 22 99 66 93 3 2 4 0.20 1.00E-02 90   68    
2 8 22 99 66 93 3 2 5 0.20 1.00E-02 72   63    
2 8 22 96 63 93 3 1 1 0.20 1.00E-02 81 406 2.03E+05 72 327 1.64E+05 9.40E-02 
2 8 22 96 63 93 3 1 2 0.20 1.00E-02 83   65    
2 8 22 96 63 93 3 1 3 0.20 1.00E-02 89   55    
2 8 22 96 63 93 3 1 4 0.20 1.00E-02 70   68    
2 8 22 96 63 93 3 1 5 0.20 1.00E-02 83   67    
2 8 22 85 60 93 3 2 1 0.20 1.00E-02 80 423 2.12E+05 66 329 1.65E+05 1.09E-01 
2 8 22 85 60 93 3 2 2 0.20 1.00E-02 89   67    
2 8 22 85 60 93 3 2 3 0.20 1.00E-02 86   58    
2 8 22 85 60 93 3 2 4 0.20 1.00E-02 93   70    
2 8 22 85 60 93 3 2 5 0.20 1.00E-02 75   68    
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Table I 3.3  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep 3, day 3. Rep = replicate. 

 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

3 8 28 99 49 77 3 1 1 0.20 1.00E-02 68 587 2.94E+05 70 428 2.14E+05 1.37E-01 
3 8 28 99 49 77 3 1 2 0.20 1.00E-02 69   93    
3 8 28 99 49 77 3 1 3 0.20 1.00E-02 128   80    
3 8 28 99 49 77 3 1 4 0.20 1.00E-02 150   110    
3 8 28 99 49 77 3 1 5 0.20 1.00E-02 172   75    
3 8 27 102 49 77 3 2 1 0.20 1.00E-02 68 501 2.51E+05 70 406 2.03E+05 9.13E-02 
3 8 27 102 49 77 3 2 2 0.20 1.00E-02 73   84    
3 8 27 102 49 77 3 2 3 0.20 1.00E-02 75   87    
3 8 27 102 49 77 3 2 4 0.20 1.00E-02 120   80    
3 8 27 102 49 77 3 2 5 0.20 1.00E-02 165   85    
3 8 24 110 46 93 3 1 1 0.20 1.00E-02 60 524 2.62E+05 69 418 2.09E+05 9.82E-02 
3 8 24 110 46 93 3 1 2 0.20 1.00E-02 75   68    
3 8 24 110 46 93 3 1 3 0.20 1.00E-02 70   78    
3 8 24 110 46 93 3 1 4 0.20 1.00E-02 151   95    
3 8 24 110 46 93 3 1 5 0.20 1.00E-02 168   108    
3 8 24 113 46 93 3 2 1 0.20 1.00E-02 70 510 2.55E+05 86 411 2.06E+05 9.37E-02 
3 8 24 113 46 93 3 2 2 0.20 1.00E-02 130   89    
3 8 24 113 46 93 3 2 3 0.20 1.00E-02 165   80    
3 8 24 113 46 93 3 2 4 0.20 1.00E-02 75   86    
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Table I 3.3.  (‘cont.). 
 

                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

3 8 24 113 46 93 3 2 5 0.20 1.00E-02 70   70    
3 15 24 116 46 93 3 1 1 0.20 1.00E-02 120 686 3.43E+05 98 539 2.70E+05 1.05E-01 
3 15 24 116 46 93 3 1 2 0.20 1.00E-02 130   113    
3 15 24 116 46 93 3 1 3 0.20 1.00E-02 145   120    
3 15 24 116 46 93 3 1 4 0.20 1.00E-02 131   110    
3 15 24 116 46 93 3 1 5 0.20 1.00E-02 160   98    
3 15 24 113 46 93 3 2 1 0.20 1.00E-02 128 778 3.89E+05 60 308 1.54E+05 4.02E-01 
3 15 24 113 46 93 3 2 2 0.20 1.00E-02 150   68    
3 15 24 113 46 93 3 2 3 0.20 1.00E-02 150   70    
3 15 24 113 46 93 3 2 4 0.20 1.00E-02 170   60    
3 15 24 113 46 93 3 2 5 0.20 1.00E-02 180   50    
3 1 24 82 52 105 3 1 1 0.20 1.00E-02 68 582 2.91E+05 60 310 1.55E+05 2.74E-01 
3 1 24 82 52 105 3 1 2 0.20 1.00E-02 69   63    
3 1 24 82 52 105 3 1 3 0.20 1.00E-02 125   61    
3 1 24 82 52 105 3 1 4 0.20 1.00E-02 150   78    
3 1 24 82 52 105 3 1 5 0.20 1.00E-02 170   48    
3 1 24 82 52 105 3 2 1 0.20 1.00E-02 70 595 2.98E+05 100 507 2.54E+05 6.95E-02 
3 1 24 82 52 105 3 2 2 0.20 1.00E-02 75   110    
3 1 24 82 52 105 3 2 3 0.20 1.00E-02 130   115    
3 1 24 82 52 105 3 2 4 0.20 1.00E-02 170   79    
3 1 24 82 52 105 3 2 5 0.20 1.00E-02 150   103    
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Table I 3.4.  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep 3, day 4. Rep = replicate. 

 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

4 11 24 107 52 103 3 1 1 0.20 1.00E-02 81 583 2.92E+05 54 361 1.81E+05 2.08E-01 
4 11 24 107 52 103 3 1 2 0.20 1.00E-02 126   68    
4 11 24 107 52 103 3 1 3 0.20 1.00E-02 144   90    
4 11 24 107 52 103 3 1 4 0.20 1.00E-02 124   85    
4 11 24 107 52 103 3 1 5 0.20 1.00E-02 108   64    
4 11 24 107 52 102 3 2 1 0.20 1.00E-02 100 588 2.94E+05 68 313 1.57E+05 2.74E-01 
4 11 24 107 52 102 3 2 2 0.20 1.00E-02 90   58    
4 11 24 107 52 102 3 2 3 0.20 1.00E-02 140   71    
4 11 24 107 52 102 3 2 4 0.20 1.00E-02 130   74    
4 11 24 107 52 102 3 2 5 0.20 1.00E-02 128   42    
4 12 26 102 49 103 3 1 1 0.20 1.00E-02 83 591 2.96E+05 35 310 1.55E+05 2.80E-01 
4 12 26 102 49 103 3 1 2 0.20 1.00E-02 130   48    
4 12 26 102 49 103 3 1 3 0.20 1.00E-02 140   62    
4 12 26 102 49 103 3 1 4 0.20 1.00E-02 128   76    
4 12 26 102 49 103 3 1 5 0.20 1.00E-02 110   89    
4 12 26 102 49 102 3 2 1 0.20 1.00E-02 99 584 2.92E+05 30 226 1.13E+05 4.12E-01 
4 12 26 102 49 102 3 2 2 0.20 1.00E-02 89   48    
4 12 26 102 49 102 3 2 3 0.20 1.00E-02 128   49    
4 12 26 102 49 102 3 2 4 0.20 1.00E-02 138   44    
4 12 26 102 49 102 3 2 5 0.20 1.00E-02 130   55    
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Table I 3.4.  (‘cont.). 
 

                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

4 4 27 27 49 84 3 1 1 0.20 1.00E-02 61 483 2.42E+05 78 463 2.32E+05 1.84E-02 
4 4 27 27 49 84 3 1 2 0.20 1.00E-02 65   103    
4 4 27 27 49 84 3 1 3 0.20 1.00E-02 118   99    
4 4 27 27 49 84 3 1 4 0.20 1.00E-02 129   91    
4 4 27 27 49 84 3 1 5 0.20 1.00E-02 110   92    
4 4 27 27 49 83 3 2 1 0.20 1.00E-02 64 498 2.49E+05 79 464 2.32E+05 3.07E-02 
4 4 27 27 49 83 3 2 2 0.20 1.00E-02 68   105    
4 4 27 27 49 83 3 2 3 0.20 1.00E-02 120   87    
4 4 27 27 49 83 3 2 4 0.20 1.00E-02 131   95    
4 4 27 27 49 83 3 2 5 0.20 1.00E-02 115   98    
4 5 27 27 46 84 3 1 1 0.20 1.00E-02 63 488 2.44E+05 78 491 2.46E+05 -2.66E-03 
4 5 27 27 46 84 3 1 2 0.20 1.00E-02 66   87    
4 5 27 27 46 84 3 1 3 0.20 1.00E-02 120   102    
4 5 27 27 46 84 3 1 4 0.20 1.00E-02 131   100    
4 5 27 27 46 84 3 1 5 0.20 1.00E-02 108   124    
4 5 27 27 49 83 3 2 1 0.20 1.00E-02 69 503 2.52E+05 83 414 2.07E+05 8.46E-02 
4 5 27 27 49 83 3 2 2 0.20 1.00E-02 68   96    
4 5 27 27 49 83 3 2 3 0.20 1.00E-02 123   77    
4 5 27 27 49 83 3 2 4 0.20 1.00E-02 140   69    
4 5 27 27 49 83 3 2 5 0.20 1.00E-02 103   89    
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Table I 3.5.  Temperature of extruder barrel zones and estimates of acid producing, thermophilic organisms and  Bacillus 
stearothermophilus spore count in feed before and after extrusion, respectively; Rep 3, day 5. Rep = replicate. 

 
                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

5 7 23 129 52 94 3 1 1 0.20 1.00E-02 69 580 2.90E+05 70 441 2.21E+05 1.19E-01 
5 7 23 129 52 94 3 1 2 0.20 1.00E-02 70   81    
5 7 23 129 52 94 3 1 3 0.20 1.00E-02 121   100    
5 7 23 129 52 94 3 1 4 0.20 1.00E-02 150   85    
5 7 23 129 52 94 3 1 5 0.20 1.00E-02 170   105    
5 7 23 124 49 93 3 2 1 0.20 1.00E-02 68 601 3.01E+05 70 329 1.65E+05 2.62E-01 
5 7 23 124 49 93 3 2 2 0.20 1.00E-02 73   71    
5 7 23 124 49 93 3 2 3 0.20 1.00E-02 130   60    
5 7 23 124 49 93 3 2 4 0.20 1.00E-02 160   63    
5 7 23 124 49 93 3 2 5 0.20 1.00E-02 170   65    
5 6 24 129 49 93 3 1 1 0.20 1.00E-02 120 705 3.53E+05 61 309 1.55E+05 3.58E-01 
5 6 24 129 49 93 3 1 2 0.20 1.00E-02 140   50    
5 6 24 129 49 93 3 1 3 0.20 1.00E-02 150   45    
5 6 24 129 49 93 3 1 4 0.20 1.00E-02 155   55    
5 6 24 129 49 93 3 1 5 0.20 1.00E-02 140   98    
5 6 24 129 49 93 3 2 1 0.20 1.00E-02 138 714 3.57E+05 50 327 1.64E+05 3.39E-01 
5 6 24 129 49 93 3 2 2 0.20 1.00E-02 150   40    
5 6 24 129 49 93 3 2 3 0.20 1.00E-02 158   80    
5 6 24 129 49 93 3 2 4 0.20 1.00E-02 130   81    
5 6 24 129 49 93 3 2 5 0.20 1.00E-02 138   76    
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Table I 3.5.  (‘cont.). 
 

                  
  Extruder barrel head temperature, oC      Before extrusion After extrusion  

D
a
y 

T 
r 
t 

Extrud
er 

barrel 
feeding 

zone 

Extruder 
barrel 
head 

number 
1 

Extruder 
barrel 
head 

number 
4 

Extruder 
barrel 
exit 

R
e
p 

S
a
m
p
l
e 

Plate 

Initial 
dilution 
(20 g: 
100 g) 

Decimal 
dilution of 

initial dilution 
poured 

Spore 
count, 

per 
plate 

Total 
number 

of 
spores 
on 5 

plates 

Spore 
count, per 
20 mL of 
original 

feed 
suspension 

(No) 

Spore 
count, 

per 
plate 

Total 
number 

of spores 
on 5 

plates 

Spore 
count, per 
20 mL of 

initial 
feed 

suspensio
n (N) 

Log 
(No/N) 

                  
                  

5 2 24 127 43 83 3 1 1 0.20 1.00E-02 78 703 3.52E+05 45 276 1.38E+05 4.06E-01 
5 2 24 127 43 83 3 1 2 0.20 1.00E-02 100   68    
5 2 24 127 43 83 3 1 3 0.20 1.00E-02 150   60    
5 2 24 127 43 83 3 1 4 0.20 1.00E-02 180   50    
5 2 24 127 43 83 3 1 5 0.20 1.00E-02 195   53    
5 2 24 127 43 83 3 2 1 0.20 1.00E-02 108 753 3.77E+05 75 338 1.69E+05 3.48E-01 
5 2 24 127 43 83 3 2 2 0.20 1.00E-02 218   60    
5 2 24 127 43 83 3 2 3 0.20 1.00E-02 239   60    
5 2 24 127 43 83 3 2 4 0.20 1.00E-02 98   73    
5 2 24 127 43 83 3 2 5 0.20 1.00E-02 90   70    
5 3 24 127 43 84 3 1 1 0.20 1.00E-02 81 724 3.62E+05 109 509 2.55E+05 1.53E-01 
5 3 24 127 43 84 3 1 2 0.20 1.00E-02 100   86    
5 3 24 127 43 84 3 1 3 0.20 1.00E-02 140   113    
5 3 24 127 43 84 3 1 4 0.20 1.00E-02 200   92    
5 3 24 127 43 84 3 1 5 0.20 1.00E-02 203   109    
5 3 24 129 46 83 3 2 1 0.20 1.00E-02 93 695 3.48E+05 48 351 1.76E+05 2.97E-01 
5 3 24 129 46 83 3 2 2 0.20 1.00E-02 102   75    
5 3 24 129 46 83 3 2 3 0.20 1.00E-02 195   86    
5 3 24 129 46 83 3 2 4 0.20 1.00E-02 215   69    
5 3 24 129 46 83 3 2 5 0.20 1.00E-02 90   73    
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