TR 85.42

ESTIMATION OF THE RATE OF A DISCRETE-TIME MULTIVARIATE POINT PROCESS

John Gubner and Prakash Narayan¹

Electrical Engineering Department

University of Maryland

College Park, Maryland 20742

Abstract

We introduce the notion of a discrete-time, multivariate point process which can arise in the modeling of an optical communication system. We wish to estimate the rate of this process at time t given the past of the process up to time t-1. This requires the computation of a certain conditional expectation; we perform this computation by introducing an absolutely continuous change of measure and then applying the generalized Bayes' rule.

¹This research was sponsored by the Office of Naval Research under grant no.N0001485-G-0102 and by the Minta Martin Fund for Aerospace Research from the University of Maryland at College Park.

I. Introduction

Suppose that a laser beam, whose intensity is modulated by an information source, strikes a photodetector which is a part of the receiver of an optical communication system. Suppose that the beam is also influenced by external random phenomena; this occurs, for example, if the beam passes through a turbulent atmosphere [1]. The occurrence of photoelectrons at the detector can then be modeled as a doubly-stochastic, time-space Poisson process [1]. It is often necessary to compute the conditional expectation of the rate of such a process, for example, in performing a likelihood ratio test (Snyder [2], Chapter 2 and Chapter 6). In general, the computation of this conditional expectation is quite difficult, although results are available if the rate process has a Gaussian form, and the photodetector surface is very large: in addition, results for linear estimates are available when the photodetector surface is arbitrary, but the rate process still has a Gaussian form [3], (see also [4, 5] for related filtering results).

Let D represent the photosensitive surface of the photodetector. It is well known that the probability is negligible that more than one photoelectron will occur in the entire region D during a time interval of length Δt , if Δt is sufficiently small. Let D_1, \ldots, D_K , be a partition of D into disjoint subregions. Let Δt be "sufficiently small," and let $n_t(k)$ denote the number of photoelectrons occurring in the region D_k , during an interval $(t, t + \Delta t]$. We should expect that for each $1 \le k \le K$, $n_t(k)$ takes only the values 0 or 1. In addition, we can have $n_t(k) = 1$ for at most one k: for $i \ne k$, we must have $n_t(i) = 0$. In this paper we formulate the discrete-time version of the rate-estimation problem by introducing the notion of a discrete-time, multivariate point process. By adapting the continuous-time procedures found in (Bremaud [6], Chapter IV; see also pp. 69-70, 80 of Chapter III), we solve the problem of estimating the rate of a discrete-time, multivariate point process. (For more general discrete-time procedures, see [7, 8]).

II. Problem Statement

Let $K \ge 1$ be a fixed integer. Let (Ω, F, P) be a probability space on which all the random variables in this section are defined. We call $\{n_t(k); t \ge 1, 1 \le k \le K\}$ a discrete-time, multivariate point process if each $n_t(k)$ takes only the values 0 and 1 and if the events $\{n_t(k) = 1\}, 1 \le k \le K$, are disjoint, so that simultaneous events do not occur. Next, let G_0 denote the trivial σ -field on Ω , and set

$$G_t \stackrel{\triangle}{=} \sigma \{ n_s(k); 1 \leq s \leq t, 1 \leq k \leq K \}.$$

Now, let X be a sub- σ -field of F, and let

$$F_t \stackrel{\triangle}{=} G_t \vee X : t > 0$$

denote the smallest σ -field containing $G_t \bigcup X$. We assume that the random variables

$$\lambda_t(k) \stackrel{\triangle}{=} \mathbf{E} [n_t(k) \mid \mathbf{F}_{t-1}]; \quad t \geq 1,$$

are actually **X**-measurable (note that $\mathbf{X} = \mathbf{F}_0$) with *known* joint distributions. For example, we might take $\mathbf{X} = \sigma(X)$ for some random variable X with known distribution function F(x). Then each $\lambda_t(k)$ would be some Borel function of X. Clearly, the joint distributions of the $\{\lambda_t(k); t \geq 1, 1 \leq k \leq K\}$ would be known, at least in principle. Now, observe that $\lambda_t(k) = \mathbf{P}(n_t(k) = 1 \mid \mathbf{F}_{t-1})$; since we assume that simultaneous events do not occur,

$$\sum_{k=1}^{K} \lambda_{t}(k) = \mathbf{P} \left(\bigcup_{k=1}^{K} \{ n_{t}(k) = 1 \} \mid \mathbf{F}_{t-1} \right).$$

This implies that $p_t \stackrel{\triangle}{=} 1 - \sum_{k=1}^K \lambda_t(k)$ is also a conditional probability, and hence, nonnegative and bounded above by 1.

Our objective is to compute

$$\hat{\lambda}_t(k) \stackrel{\triangle}{=} \mathbf{E} [n_t(k) | \mathbf{G}_{t-1}]$$

in terms of the known joint distribution of $\{\lambda_s(k); 1 \le s \le t, 1 \le k \le K\}$.

III. A Reformulation of the Problem

We shall solve our problem by reformulating the probabilistic setting above on a different probability space, (Ω, \tilde{F}, Q) . On (Ω, \tilde{F}, Q) let $\{\nu_t(k); t \geq 1, 1 \leq k \leq K\}$ be a discrete-time, multivariate point process. In a manner analogous to that outlined in the previous section, we take \tilde{C}_0 to be the trivial σ -field on Ω , and set

$$G_t \stackrel{\triangle}{=} \sigma\{ \nu_{\bullet}(k); 1 \le s \le t, 1 \le k \le K \}; t > 1.$$

Next, let $\hat{m{X}}$ be a sub- σ -field of $\hat{m{F}}$, and set

$$\tilde{\boldsymbol{F}}_t \stackrel{\triangle}{=} \tilde{\boldsymbol{G}}_t \vee \tilde{\boldsymbol{X}} ; \quad t \geq 0.$$

We now assume that

$$\mathbf{E}_{\mathbf{Q}}[\nu_{t}(k) \mid \hat{F}_{t-1}] = \mu_{t}(k),$$
 (1)

where the $\{\mu_t(k)\}$ are arbitrary constants satisfying $\mu_t(k) > 0$ and $q_t \triangleq 1 - \sum_{k=1}^K \mu_t(k) > 0$. (The symbol $\mathbf{E}_{\mathbf{Q}}$ denotes expectation with respect to the measure \mathbf{Q}). As a consequence of the above assumption, under the measure \mathbf{Q} , each $\nu_t(k)$ is independent of G_{t-1} . In addition, the σ -field G_t is independent of the σ -field \mathbf{X} (see Appendix). Next, let the random variables $\{\lambda_t(k): t \geq 1, 1 \leq k \leq K\}$ defined on Ω be \mathbf{X} -measurable and have the same joint distributions under \mathbf{Q} as $\{\lambda_t(k): t \geq 1, 1 \leq k \leq K\}$ (defined on Ω) under \mathbf{P} .

Given the preceding probabilistic setting on $(\hat{\Omega}, \hat{F}, \mathbf{Q})$, we make the following definitions. Let

$$p_{t} \stackrel{\triangle}{=} 1 - \sum_{k=1}^{K} \lambda_{t}(k) ; \quad t \ge 1,$$

$$l_{t} \stackrel{\triangle}{=} \sum_{k=1}^{K} \left(\frac{\lambda_{t}(k)}{\mu_{t}(k)} - \frac{p_{t}}{q_{t}} \right) \nu_{t}(k) + \frac{p_{t}}{q_{t}} ; \quad t \ge 1,$$

$$(2)$$

and

$$L_t \stackrel{\triangle}{=} \prod_{t=1}^t l_t \; ; \quad t \ge 1,$$

with $L_0 \equiv 1$. Observe that the denominators in (2) are nonzero and deterministic. Also, $0 \le \lambda_t(k) \le 1$ Q-a.s., and hence, p_t is clearly bounded and Q-integrable. (Recall that the joint distributions of the $\{\lambda_t(k)\}$ under Q are the same as those of the $\{\lambda_t(k)\}$ under P). Consequently, l_t and L_t are Q-integrable. Since $\sum_{k=1}^{K-1} \lambda_t(k) = 1 - p_t$, and $\sum_{k=1}^{K} \mu_t(k) = 1 - q_t$, it is easy to see that $\mathbf{E}_{\mathbf{Q}}[l_t \mid \hat{F}_{t-1}] = 1$. Since $L_t = L_{t-1}l_t$, it is clear that

$$\mathbf{E}_{\mathbf{Q}}[L_{t} \mid \mathbf{F}_{t-1}] = L_{t-1}; \tag{3}$$

i.e., L_t is an \tilde{F}_t -martingale under Q. Since, $\mathbf{E}_Q[L_t] = \mathbf{E}_Q[L_1] = \mathbf{E}_Q[l_1] = 1$, we can define a new measure $\tilde{\mathbf{P}}$ on \tilde{F}_t by

$$\tilde{\mathbf{P}}(F) \stackrel{\triangle}{=} \int_{F} L_{t} d\mathbf{Q} ; F \in \tilde{\mathbf{F}}_{t}.$$

(Technically, we should show that the family $\{L_t\}$ is uniformly integrable. However, for our purposes this is not necessary since if we wish to compute $\mathbf{E} [n_r(k) \mid G_{r-1}]$ for some τ , we can select any finite $T \geq \tau$ and then restrict our attention to $1 \leq t \leq T$). Observe that since $L_0 = 1$, $\tilde{\mathbf{P}} = \mathbf{Q}$ on $\tilde{\mathbf{X}}$. If $\tilde{\mathbf{E}}$ denotes expectation with respect to the measure $\tilde{\mathbf{P}}$, it is not hard to verify (since simultaneous events do not occur) that

$$\tilde{\mathbf{E}} \left[\nu_{t}(k) \mid \tilde{\boldsymbol{F}}_{t-1} \right] = \mathbf{E}_{Q} \left[\nu_{t}(k) \frac{L_{t}}{L_{t-1}} \mid \tilde{\boldsymbol{F}}_{t-1} \right]
= \mathbf{E}_{Q} \left[\nu_{t}(k) l_{t} \mid \tilde{\boldsymbol{F}}_{t-1} \right]
= \tilde{\lambda}_{t}(k).$$
(4)

where the first equality in (4) follows from the generalized Bayes' rule. Now, since $\tilde{P}=Q$ on \tilde{X} .

$$\tilde{\lambda}_t(k) = \tilde{\mathbf{E}} \left[\nu_t(k) \mid \tilde{\boldsymbol{F}}_{t-1} \right]$$

under \mathbf{P} is probabilistically equivalent to $\lambda_t(k)$ under \mathbf{P} . In fact, we can make the following

statement. The probabilistic relationships among

$$\{n_t(k)\}, \{\lambda_t(k)\}, \{F_t\}, \{G_t\}, \text{ and } \mathbf{X}$$

under P are the same as those among

$$\{\nu_t(k)\}, \{\lambda_t(k)\}, \{\bar{F}_t\}, \{\bar{G}_t\}, \text{ and } \bar{X}$$

under \mathbf{P} . In the next section we shall compute $\mathbf{E} [\nu_t(k) \mid \mathbf{G}_{t-1}]$ explicitly as a Borel function of $\{\nu_t(i): 1 \le s \le t-1, 1 \le i \le K\}$. From the statement above, it follows that $\mathbf{E} [n_t(k) \mid \mathbf{G}_{t-1}]$ will be equal to the same Borel function applied to $\{n_t(i): 1 \le s \le t-1, 1 \le i \le K\}$.

IV. Calculations

In this section we compute \mathbf{E} [$\nu_{t}(k)$ | G_{t-1}]. By Bayes' rule,

$$\tilde{\mathbf{E}} \left[\nu_{t}(k) \mid \tilde{\mathbf{G}}_{t-1} \right] = \frac{\mathbf{E}_{Q} \left[\nu_{t}(k) L_{t} \mid \tilde{\mathbf{G}}_{t-1} \right]}{\mathbf{E}_{Q} \left[L_{t} \mid \tilde{\mathbf{G}}_{t-1} \right]}.$$
(5)

Next, observe that

$$\mathbf{E}_{\mathbf{Q}}\left[L_{t} \mid \tilde{\mathbf{G}}_{t-1}\right] = \mathbf{E}_{\mathbf{Q}}\left[\mathbf{E}_{\mathbf{Q}}\left[L_{t} \mid \tilde{\mathbf{F}}_{t-1}\right] \mid \tilde{\mathbf{G}}_{t-1}\right] = \mathbf{E}_{\mathbf{Q}}\left[L_{t-1} \mid \tilde{\mathbf{G}}_{t-1}\right]$$

by equation (3). In addition,

$$\begin{split} \mathbf{E}_{\mathbf{Q}} \left[\ \boldsymbol{\nu}_{t}(k) \ \boldsymbol{L}_{t} \ \middle| \ \tilde{\boldsymbol{G}}_{t-1} \right] &= \mathbf{E}_{\mathbf{Q}} \left[\ \mathbf{E}_{\mathbf{Q}} \left[\ \boldsymbol{\nu}_{t}(k) \ \boldsymbol{L}_{t} \ \middle| \ \tilde{\boldsymbol{G}}_{t} \ \right] \ \middle| \ \tilde{\boldsymbol{G}}_{t-1} \right] \\ &= \mathbf{E}_{\mathbf{Q}} \left[\ \boldsymbol{\nu}_{t}(k) \ \mathbf{E}_{\mathbf{Q}} \left[\ \boldsymbol{L}_{t} \ \middle| \ \tilde{\boldsymbol{G}}_{t} \ \right] \ \middle| \ \tilde{\boldsymbol{G}}_{t-1} \right]. \end{split}$$

Hence, (5) can be rewritten as

$$\tilde{\mathbf{E}} \left[\nu_{t}(k) \mid \tilde{\mathbf{G}}_{t-1} \right] = \frac{\mathbf{E}_{\mathbf{Q}} \left[\nu_{t}(k) \, \mathbf{E}_{\mathbf{Q}} \left[L_{t} \mid \tilde{\mathbf{G}}_{t} \right] \mid \tilde{\mathbf{G}}_{t-1} \right]}{\mathbf{E}_{\mathbf{Q}} \left[L_{t-1} \mid \tilde{\mathbf{G}}_{t-1} \right]} .$$
(6)

Before proceeding further, it will be convenient to introduce the following notation. For each $t \ge 1$, let

$$\nu_t \triangleq [\nu_t(1), \ldots, \nu_t(K)]'$$

where ' denotes transpose. Then u_t is a K-dimensional random vector. Now, let

$$\overline{\nu}_t \stackrel{\Delta}{=} \{ \nu_1, \ldots, \nu_t \}'$$

Clearly, $\overline{\nu}_t$ is a tK-dimensional random vector. Next, let

$$z_t \stackrel{\Delta}{=} [z_t(1), \ldots, z_t(K)]'$$
 and $\overline{z}_t \stackrel{\Delta}{=} [z_1, \ldots, z_t]'$

denote "dummy" variables in \mathbb{R}^{K} and \mathbb{R}^{tK} , respectively. Define

$$h_t(z_t) = \sum_{k=1}^K \left(\frac{\lambda_t(k)}{\mu_t(k)} - \frac{p_t}{q_t} \right) z_t(k) + \frac{p_t}{q_t}, \tag{7}$$

and

$$\tilde{h}_{t}(z_{t}) = \sum_{k=1}^{K} \left(\frac{\lambda_{t}(k)}{\mu_{t}(k)} - \frac{p_{t}}{q_{t}} \right) z_{t}(k) + \frac{p_{t}}{q_{t}}.$$

Clearly, $h_t(z_t)$ is an X-measurable random variable and $h_t(z_t)$ is an X-measurable random variable. In fact, $h_t(z_t)$ under Q is probabilistically equivalent to $h_t(z_t)$ under P. It is then clear that the same can be said of

$$H_t(\overline{z}_t) \stackrel{\Delta}{=} \prod_{\bullet=1}^t h_{\bullet}(z_{\bullet}), \tag{8}$$

and

$$\widetilde{H}_{t}(\overline{z}_{t}) \triangleq \prod_{s=1}^{t} \widetilde{h}_{s}(z_{s}).$$

Next observe that $l_t = \hat{h}_t(\nu_t)$, and that $L_t = \hat{H}_t(\overline{\nu}_t)$. We are now ready to compute $\mathbf{E}_{\mathbf{Q}}[L_t \mid \mathbf{G}_t]$ in (6) for each $t \geq 1$. (Note that $\mathbf{E}_{\mathbf{Q}}[L_0 \mid \mathbf{G}_0] = \mathbf{E}_{\mathbf{Q}}[L_0] = 1$). Observe that $L_t = \hat{H}_t(\overline{\nu}_t)$ is an \mathbf{X} -measurable function of a \mathbf{G}_t -measurable random vector. Since \mathbf{X} and \mathbf{G}_t are independent under \mathbf{Q} , it follows that

$$\mathbf{E}_{\mathbf{Q}}\left[\tilde{H}_{t}(\overline{\nu}_{t}) \mid \tilde{G}_{t}\right] = \mathbf{E}_{\mathbf{Q}}\left[\tilde{H}_{t}(\overline{z}_{t})\right] \big|_{\overline{z}_{t} = \overline{\nu}_{t}}.$$

From the remarks preceding equation (8), we have

$$\mathbf{E}_{\mathbf{Q}}\left[L_{t} \mid \tilde{\mathbf{G}}_{t}\right] = \mathbf{E}\left[H_{t}(\bar{z}_{t})\right] \big|_{\bar{z}_{t} = \bar{\nu}_{t}}.$$

We now set

$$f_t(\overline{z_t}) \stackrel{\triangle}{=} \mathbf{E} [H_t(\overline{z_t})].$$
 (9)

Note that $f_t(\overline{z_t})$ is a deterministic function of $\overline{z_t}$. Equation (6) becomes

$$\mathbf{\tilde{E}}\left[\nu_{t}(k) \mid \mathbf{\tilde{G}}_{t-1}\right] = \frac{\mathbf{E}_{\mathbf{Q}}\left[\nu_{t}(k) f_{t}(\overline{\nu}_{t}) \mid \mathbf{\tilde{G}}_{t-1}\right]}{f_{t-1}(\overline{\nu}_{t-1})}.$$

We can write

$$\mathbf{E}_{\mathbf{Q}}\left[\nu_{t}(k) f_{t}(\overline{\nu}_{t}) \mid \mathbf{G}_{t-1}\right] = \mathbf{E}_{\mathbf{Q}}\left[\nu_{t}(k) f_{t}(\overline{\nu}_{t-1}, \nu_{t}) \mid \mathbf{G}_{t-1}\right].$$

Now, equation (1) implies that ν_t is independent of G_{t-1} under Q. Therefore,

$$\mathbf{E}_{\mathbf{Q}}\left[\ \nu_{t}(k)\ f_{t}(\overline{\nu}_{t})\ |\ \widetilde{\mathbf{G}}_{t-1}\ \right] = \mathbf{E}_{\mathbf{Q}}\left[\ \nu_{t}(k)\ f_{t}(\overline{z}_{t-1},\nu_{t})\ \right] \big|_{\overline{z}_{t-1} = \overline{\nu}_{t-1}}.$$

Since simultaneous events do not occur, it is trivial to compute

$$\begin{split} \mathbf{E}_{\mathbf{Q}} \left[\nu_{t}(k) f_{t}(\overline{z}_{t-1}, \nu_{t}) \right] &= f_{t}(\overline{z}_{t-1}, e_{k}) \mathbf{Q}(\nu_{t}(k) = 1) \\ &= \mu_{t}(k) f_{t}(\overline{z}_{t-1}, e_{k}), \end{split}$$

where e_k is the standard unit vector in \mathbb{R}^K with a 1 in the k th position and a 0 in the other K-1 positions. We conclude that

$$\widetilde{\mathbf{E}}\left[\nu_{t}(k)\mid \widetilde{\mathbf{G}}_{t-1}\right] = \frac{\mu_{t}(k)f_{t}(\overline{\nu}_{t-1}, e_{k})}{f_{t-1}(\overline{\nu}_{t-1})},$$

and hence.

$$\mathbf{E} [n_{t}(k) \mid \mathcal{G}_{t-1}] = \frac{\mu_{t}(k) f_{t}(\overline{n}_{t-1}, c_{k})}{f_{t-1}(\overline{n}_{t-1})}.$$

with the obvious meaning of the symbol \overline{n}_{t-1} .

V. Summary

We have shown that if $\{n_t(k): t \ge 1, 1 \le k \le K\}$ is a discrete-time, multivariate point process residing in the probabilistic setting outlined in Section II, then

$$\mathbf{E} [n_t(k) \mid \mathcal{G}_{t-1}] = \frac{\mu_t(k) f_t(\overline{n}_{t-1}, e_k)}{f_{t-1}(\overline{n}_{t-1})},$$

where $f_t(\overline{z}_t)$ is given by equations (7), (8), and (9).

The $\mu_t(k)$ introduced in Section III were arbitrary; if we set $\mu_t(k) = \frac{1}{K+1}$ for all t and all k in the preceding equations, we find that

$$\mathbf{E} [n_{t}(k) \mid G_{t-1}] = \frac{a_{t}(\overline{n}_{t-1}, e_{k})}{a_{t-1}(\overline{n}_{t-1})},$$

where

$$a_t(\overline{z}_t) \stackrel{\triangle}{=} \mathbf{E} \left[\prod_{s=1}^t \left(\sum_{k=1}^K (\lambda_s(k) - p_s) n_s(k) + p_s \right) \right].$$

Appendix

For $1 \le s \le t$, let z_s denote either the zero vector in \mathbb{R}^K or any standard unit vector in \mathbb{R}^K . In this appendix we prove that if $E \in \mathbb{X}$, then (using the notation of Sections III and IV)

$$\mathbf{Q}(\nu_t = z_t, \ldots, \nu_1 = z_1, E) = \left(\prod_{i=1}^t \mathbf{Q}(\nu_i = z_i)\right) \mathbf{Q}(E).$$

Since $\bar{C}_t = \sigma\{ \nu_1, \ldots, \nu_t \}$, this will prove that \bar{C}_t and \bar{X} are independent under Q.

Proof. Using the definition of conditional probability,

$$\mathbf{Q}(\ \nu_{t}=z_{t}\,,\,\ldots\,,\,\nu_{1}=z_{1},\,E\)=\int_{\{\ \nu_{t-1}=z_{t-1},\,\ldots\,,\,\nu_{1}=z_{1},\,E\ \}}\mathbf{Q}(\ \nu_{t}=z_{t}\ |\ \tilde{\boldsymbol{F}}_{t-1}\)\ d\mathbf{Q}. \tag{10}$$

Since simultaneous events do not occur, if $z_t = e_k$, $\mathbf{Q}(\nu_t = z_t \mid \mathbf{F}_{t-1}) = \mu_t(k)$. If $z_t = 0$,

$$\mathbf{Q}(\nu_t = z_t \mid \mathbf{F}_{t-1}) = 1 - \sum_{k=1}^K \mu_t(k)$$
. Since $\mathbf{Q}(\nu_t = z_t \mid \mathbf{F}_{t-1})$ is deterministic,

$$Q(\nu_t = z_t \mid \tilde{\boldsymbol{F}}_{t-1}) = Q(\nu_t = z_t).$$

Hence (10) becomes

$$\mathbf{Q}(\nu_{t}=z_{t},\ldots,\nu_{1}=z_{1},E)=\mathbf{Q}(\nu_{t}=z_{t})\mathbf{Q}(\nu_{t-1}=z_{t-1},\ldots,\nu_{1}=z_{1},E).$$

The remainder of the proof by induction is clear.

QED

Acknowledgement

It is a pleasure to thank Professor A. M. Makowski for several illuminating discussions on the applications of an absolutely continuous change of measure to filtering problems.

References

- [1] D. L. Snyder, "Applications of Stochastic Calculus for Point Process Models Arising in Optical Communication," pp. 789-804 in Communication Systems and Random Process Theory, ed. J. K. Skwirzynski, Sijthoff and Noordhoff, Alphen aan der Rijn, The Netherlands (1978).
- [2] D. L. Snyder, Random Point Processes, John Wiley & Sons, New York (1975).
- [3] J. Gubner and P. Narayan, "Estimation of the Rate of a Doubly-Stochastic Time-Space Poisson Process," Systems & Control Letters, Submitted, (1985).
- [4] D. L. Snyder and P. M. Fishman, "How to Track a Swarm of Fireflies by Observing Their Flashes," *IEEE Transactions on Information Theory*, vol. IT-21, pp. 692-695 (Nov. 1975).
- [5] I. B. Rhodes and D. L. Snyder, "Estimation and Control Performance for Space-Time Point-Process Observations," *IEEE Transactions on Automatic Control*, vol. AC-22, No. 3, pp. 338-346 (June 1977).
- [6] P. Bremaud, Point Process and Queues, Martingale Dynamics, Springer-Verlag, New York (1981).
- [7] P. M. Bremaud and J. H. van Schuppen, Discrete Time Stochastic Systems: Part I: Stochastic Calculus and Representations, Report No. 7603a, Department of Systems Science and Mathematics, Washington University, St. Louis (1976).
- [8] P. M. Bremaud and J. H. van Schuppen, Discrete Time Processes: Part II: Estimation Theory, Report No. 7603b, Department of Systems Science and Mathematics, Washington University, St. Louis (1976).