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Abstract

We introduce the notion of a discrete-time. multivariate point process which can arise in
the modeling of an optical communication system. We wish to estimate the rate of this pro-
cess at time { given the past of the process up to time t—1. This requires the computation of
a certain conditional expectation: we perform this computation by introducing an absolutely

continuous change of measure and then applying the generalized Bayes’ rule..
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I. Introduction

Suppose that a laser beam, whose intensity is modulated by an information source,
strikes a photodetector which is a part of the receiver of an optical communication system.
Suppose that the beam is also influenced by external random phenomena; this occurs, for
example, if the beam passes through a turbulent atmosphere {1]. The occurrence of photoelec-
trons at the detector can then be modeled as a doubly-stochastic, time-space Poisson process
[1]. It is often necessary to compute the conditional expectation of the rate of such a process,
for example, in performing a likelihood ratio test (Snyder {2], Chapter 2 and Chapter 6). In
general, the computation of this conditional expectation is quite diflicult, although results are
available if the rate process has a Gaussian form. and the photodetector surface is very large:
in addition, results for {inear estimates are available when the photodetector surface is arbi-
trary, but the rate process still has a Gaussian form [3]. (see also (4, 5] for related filtering

results).

Let D represent the photosensitive surface of the photodetector. It is well known that
the probability is negligible that more than one photoelectron will occur in the entire region
D during a time interval of length At, if At is sufficiently small. Let D, ..., Dy, be a
partition of D into disjoint subregions. Let At be ‘“sufficiently small,”” and let n, (k) denote
the number of photoelectrons occurring in the region Dy, during an interval (£, t + At]. We
should expect that for each 1<k <A, n (k) takes only the values 0 or 1. In addition, we
can have n, (k) = 1 for at most one k: for ¢ ¢ k, we must have n, (1) = 0. In this paper we
formulate the discrete-time version of the rate-estimation problem by introducing the notion
of a discrete-time, multivariate point process. By adapting the continuous-time procedures
found in (Bremaud |6, Chapter IV, see also pp. 69-70, 80 of Chapter 1II), we solve the prob-
lem of estimating the rate of a discrete-time, multivariate point process. (For more general

discrete-time procedures, see [7, 8] ).



II. Problem Statement

Let K >1 be a fixed integer. Let ( Q, I', P ) be a probability space on which all the
random variables in this section are deflned. We call { n,(k); t >1, 1<k <K } a discrete-
time, multivariate point process if each n, (k) takes only the values 0 and 1 and if the events
{n. (k) =1}, 1<k <K, are disjoint, so that simultaneous events do not occur. Next, let &,

denote the trivial o-field on 2, and set
G, 2 of{n(k)1<s<t,1<k<K }.
Now, let X be a sub-o-field of F', and let
F, 2 ¢, vX; t>o
denote the smallest o-fleld containing &, U X . We assume that the random variables
A (k) 2 E [ n(k) | Fo.,):, t21,

are actually X -measurable (note that X = J';) with known joint distributions. For example,
we might take X = o(X) for some random variable X with known distribution function
F(z). Then each X\, (k) would be some Borel function of X . Clearly, the joint distributions
of the { \((k); t >1, 1<k <K } would be known, at least in principle. Now, observe that
AN(k)=P(n,(k)y=1 | F,_,); since we assume that simultaneous events do not occur,

K K

Y ak)y=P| U{nk)y=1}| Fi,

k=1 k=1

K

1- 37 X (k) is also a conditional probability, and hence, nonnega-
k=1

e

This implies that p,

tive and bounded above by 1.
Our objective is to compute
A(k) 2 E{n(k) | G,,)

in terms of the known joint distribution of { A, (¢ ); 1<s <t, 1<k <K }.



III. A Reformulation of the Problem

We shall solve our problem by reformulating the probabilistic setting above on a
different probability space, (0, F', Q). On (0, F, Q) let { v, (k); t>1,1<k <K } bea
discrete-time, multivariate point process. In a manner analogous to that outlined in the pre-

vious section, we take &, to be the trivial o-field on €, and set
G, 2 o{v,(k)1<s<t,1<k<K }; t>1.

Next, let X be a sub-o-field of F', and set

F, 2 Gt\/axli t>o0.
We now assume that
Eqlue(h) | Foyl= (k). (1)
where the { (k) } are arbitrary constants satisfying p(k)>o0 and

K
@ & 1- 37 u(k) > 0. (The symbol Eq denotes expectation with respect to the measure
k=1

Q). As a consequence of the above assumption, under the measure Q. each v, (k) is indepen~
dent of &,_,. In addition, the o-fleld &, is independent of the o-field X (see Appendix).
Next, let the random variables { X, (k): t >1, 1<k <K } defined on 2 be X -measurable

and have the same joint distributions under Q as { A, (k); t >1, 1<k <K } (defined on 03)

under P.

Given the preceding probabilistic setting on (2, F', Q ), we make the following

definitions. Let

- K -
pe & 1- 3 M(k) 5 t21,

k=1
K [ MN(E) p ,
DY #'ik; - ——';' vk) + <= t2L, 2
k=1 t t

and




t
LtA= I_Il'; 121,

e=1

with L, = 1. Observe that the denominators in (2) are nonzero and deterministic. Also,

0< X (k) <1 Q-as., and hence, p, is clearly bounded and Q-integrable. (Recall that the

joint distributions of the { A, (k) } under Q are the same as those of the { A, (k) } under P).

K - - K
Consequently,  and L; are Q-integrable. Since Y X (k) =1-p,, and 3 p (k)
k=1 k=1

= 1-¢q, itiseasy toseethat Eq [ | F, ,]=1. Since Ly = L,_;, it is clear that

EQ[Ll | F.,l=0L_: (3)

ie., L, is an I, -martingale under Q. Since. Eq [L; | =Eqg[L,] =Eqg[{,] =1, we can

defilne a new measure i’ on Eh‘, by
P(F) & fr L dQ; FeF,.

(Technically, we should show that the family { L, } is uniformly integrable. However, for
our purposes this is not necessary since if we wish to compute E [ n (k) | &,_, ] for some 7,
we can select any finite 7 27 and then restrict our attention to 1<t <T). Observe that
since Lo =1, i) = Q on X.' If iE denotes expectation with respect to the measure i’ it is
not hard to verify (since simultaneous events do not occur) that

- - L -
Efv(k) | Fei]=Eqlulh) 7~ | Fiyl

t-1

—Bo vl | Foy) (4)
:;‘l(k).

where the first equality in (4) follows from the generalized Bayes’ rule. Now, since P = Q on

X,
MNGE)=E (v, (k) | F,,)

under P is probabilistically equivalent to A, (k) under P. In fact, we can make the following



statement. The probabilistic relationships among

{n(E)}, {N(K)}. {F, }, {6, }. and X
under P are the same as those among

(v} (MK} {Fo ) (€} and X

under P. In the next section we shall compute E [ v, (k) | G,_, | explicitly as a Borel func-
tion of {v,(1);1<s<t-1,1<i<K }. From the statement above, it follows that
E[n(k) | G,;,] will be equal to the same Borel function applied to

{n(1)1<s<t-1, 1< <K }.

IV. Calculations

In this section we compute E { v, (k) | &,_,]. By Bayes’ rule,

i : Equik) L | Gyl
E (v, (k) l G, = = : (5)
EqglL | G,

Next, observe that
EQ[L¢ I él—l}ZEQ[EQ{Lf | Ezt—n] | ét—lleQ[Ll-l | ét—x]
by equation (3). In addition,
Eq u(k) L | Gy} =EqiEqlu(k)L | 61| €y

=Eq [t (k)Eq[L | 4:7,] | éc-x]~

Hence, (5) can be rewritten as

- - Eq v (k)Eq [ L | €011 6]
El{v(k) | G, l= :

- (6)
EqlLi,y | Gl

Before proceeding further, it will be convenient to introduce the following notation. For each

t>1,let

e

o (1), .o v (KD,

Vg



-2

where ' denotes transpose. Then v, is a K -dimensional random vector. Now, let

Clearly, U, is a tK -dimensional random vector. Next, let
Z 2 [z2Q),...,2(K)) and 3, & {z,,...,7 )

denote ““dummy’ variables in RYX and RY , respectively. Define

K A (k) Pe Pt
h, = - _ k )
(&) kz=:1 Iu:(k) 9 )z'( S 7
and
N K ;\r(k) 7.71 I_’t
h = — k _—
() kz—:)) pe (k) 'n ]z‘( )t qe

Clearly, h,;{(z ) is an X -measurable random variable and h,(z ) is an X -measurable random
variable. In fact, h,(z,) under Q is probabilistically equivalent to k,(z ) under P. It is then

clear that the same can be said of

t
IT Az (8)

H(z) =
8 =1
and
- t -
H(z) 2 II hola).
6 ==
Next observe that I, = h,{(v,), and that L, = H,(V;). We are now ready to compute
Eq(L | G,} in (8) for each t>1. (Note that Eq{Ly | G} =Eq (Lo} =1).
Observe that L, = H,(V;) is an X -measurable function of a & ;-measurable random vector.

Since X— and @, are independent under Q, it follows that
EQ[Ht(T/t) ‘ Gt ]=EQ[H1(-Z_:)H‘ v,

=V

From the remarks preceding equation (8), we have



Eq(L | 6, |=E[H3))|

We now set
ft(Z)gE[Ht(?t)]- (9)

Note that f,(Z;) is a deterministic function of %; . Equation (6) becomes

fi:[u,(k) | {;H]z EQ[Vt(k)f,ED,) | €,
Jeawe )

We can write

EQ fve(k) fo(Dy) | G| = EQ [ve(k) Je (@i, vy) l G,
Now, equation (1) implies that v, is independent of &,_, under Q. Therefore,

Eq (v (k) J@) | 60y)=Eq [w(k) fiGpv)lls s

t-1
Since simultaneous events do not occur, it is trivial to compute
Equvik) fiGv) =[G &)Q(vi (k) = 1)
= (k) fe(ZTo ),
where ¢, is the standard unit vector in R* with a 1 in the k th position and a 0 in the other

K -1 positions. We conclude that

E [ve(k) | q}r_’ | — te (k) fe (@, 51:),
Jea@e )

and hence.

(k) fe(Rpn e)

E(n(k) | €, ]=
(R | G TR

with the obvious meaning of the symbol r, _,.



V. Summary
We have shown that if { n,(k): ¢t >1, 1<k <K } is a discrete-time, multivariate point

process residing in the probabilistic setting outlined in Section II, then

My (k )ft(ﬁ_t—p )
E (k G, ] = ,
Lmelk) | €oaal S ea(Fie-y)

where f,(Z ) is given by equations (7), (8), and (9).

for all ¢

The u, (k) introduced in Section II were arbitrary; if we set u, (k) = Kl
+1

and all k¥ in the preceding equations, we find that

Eln (k) | 6ry)= 2t

aea(f; )

where

¢ K
0(Z) S E[TI| 3 Oelk) = ping (k) + p, | ).
=1 \k=1
Appendix
For 1<s <t, let z, denote either the zero vector in R¥ or any standard unit vector in

RX . In this appendix we prove that if E€ X, then (using the notation of Sections IIT and

V)

¢ .
Q(Vt:ztf~~'rV1:zlvE)= HQ(V,=Z,) Q(E)

=1
Since &= o{ v,, . . ., v, }, this will prove that & and X are independent under Q.
Proof. Using the definition of conditional probability,

Qui=2,. .., i=2,E)= fu== | Firda (o

{viy=2_p--.¥y=2.E}
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Since simultaneous events do not occur, if z,=¢,, Q(v,= 2 | F,, )= p, (k). If z,= 0,

~ K -
Qui=12 | Fy,)=1-3 u(k). Since Q(v,= z | F,_, ) is deterministic,
k=1

Qlv, = 2 I I}l-l)=Q(Vt=zl )-

Hence (10) becomes

Qu=2z2,..., =2, E)=Q(vy =1z )Q(v _,= 2y, =2, E )
The remainder of the proof by induction is clear.

QED
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