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 Cancer is the second leading cause of death globally. Tumors form intricate 

ecosystems in which malignant and immune cells interact to shape disease progression. Yet, 

the molecular underpinnings of tumorigenesis and immunological responses to tumors are 

poorly understood, limiting their manipulation to elicit favorable clinical outcomes. This thesis 

lays conceptual frameworks for investigating the molecular interactions taking place in tumors 

as well as the diversity of the immune response to cancer. 

 In the molecular level of individual cancer cells, the phenotypic effect of 

perturbing a gene’s activity depends on the activity level of other genes, reflecting the notion 

that phenotypes are emergent properties of a network of functionally interacting genes. In the 

context of cancer, contemporary investigations have primarily focused on just one type of 

functional genetic interaction (GI) – synthetic lethality (SL). However, there may be additional 



  

types of GIs whose systematic identification would enrich the molecular and functional 

characterization of cancer. This thesis describes a novel data-driven approach called EnGIne, 

that applied to large-scale cancer data identifies 71,946 GIs spanning 12 distinct types, only a 

small minority of which are SLs. The detected GIs explain cancer driver genes’ tissue-

specificity and differences in patients’ response to drugs, and stratify breast cancer tumors into 

refined subtypes. These results expand the scope of cancer GIs and lay a conceptual and 

computational basis for future studies of additional types of GIs and their translational 

applications. 

 Furthermore, tumor growth is continuously shaped by the immune response. 

However, T cells typically adopt a dysfunctional phenotype may be reversed using 

immunotherapy strategies. Most current tumor immunotherapies leverage cytotoxic CD8+ T 

cells to elicit an effective anti-tumor response. Despite evidence for clinical potential of CD4+ 

tumor-infiltrating lymphocytes (TILs), their functional diversity has limited our ability to 

harness their anti-tumor activity. To address this issue, we have used single-cell mRNA 

sequencing (scRNAseq) to analyze the response of CD4+ T cells specific for a defined 

recombinant tumor antigen, both in the tumor microenvironment and draining lymph nodes 

(dLN). New computational approaches to characterize subpopulations identified TIL 

transcriptomic patterns strikingly distinct from those elicited by responses to infection, and 

dominated by diversity among T-bet-expressing T helper type 1 (Th1)-like cells. In contrast, 

the dLN response includes Follicular helper (Tfh)-like cells but lacks Th1 cells. We identify an 

interferon-driven signature in Th1-like TILs, and show that it is found in human liver cancer 

and melanoma, in which it is negatively associated with response to checkpoint therapy. Our 

study unveils unsuspected differences between tumor and virus CD4+ T cell responses, and 

provides a proof-of-concept methodology to characterize tumor- control CD4+ T cell effector 

programs. Targeting these programs should help improve immunotherapy strategies. 



  

 
A non-technical overview 

 

This dissertation discusses two central problems to cancer development: the interconnected 

processes taking place within tumors along with the diversity of the immune response to cancer. 

 

Genetic interactions: The formation of malignant tumors is determined by complex 

interactions between many genes, therefore we cannot use an individual gene to eradicate 

cancer without assessing the state of its network of interactions. We designed new 

computational methodologies to characterize multiple types of interactions across thousands of 

genes which provides an improved characterization of tumorigenesis. These findings should 

help monitoring disease progression and tailoring the appropriate treatment to specific 

individuals based on their tumor-specific features. 

 

T cell responses to tumors: The complexity of immune responses to cancer is not well 

characterized. Hence, we have limited capabilities in controlling the immune system to 

eradicate cancer. We use new computational approaches and biological technologies to 

characterize the functional diversity of immune responses to tumors. Therefore, we open 

possibilities for designing new ways to manipulate anti-tumor immune responses for clinical 

benefit. 
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Chapter 1: Introduction 

Malignant tumors develop through a complex process shaped by accumulation of genetic 

alterations conferring selective growth advantage and activating complex mechanisms to evade 

being recognized and eliminated by the immune system. This chapter provides an overview of 

the basic elements governing tumorigenesis and immune responses to tumors. 

 

Determinants of cancer development 

 

Unlike single cell organisms such as bacteria, animals are composed of an ecosystem of cells 

which reproduce and coordinate their behavior via multiple communication mechanisms. 

Oncogenesis, or cancer development, is characterized by defying the set of rules governing 

normal coordinated development and activity in multicellular organisms to provide an 

uncontrolled proliferative capacity, thus posing a threat to the host organism. 

Genomic alterations drive oncogenesis 

During normal process of cell division, the process in which a cell gives rise to two daughter 

cells, genetic information is copied and stored. Random errors that alter the genetic sequence 

(mutations) may occur during this process and may result in altered cellular functions 

(Vogelstein et al., 2013; Weinberg, 1983). In rare cases, such alterations are advantageous 

and provide the cell, providing higher proliferation, migration or survival capacity than other 

cells while also suppressing the regulatory processes meant to check and control such 

aberrations.  

A wide variety of mechanisms, termed the ‘hallmarks of cancer’ (Hanahan and 

Weinberg, 2000, 2011; Lazebnik, 2010), are involved in this transformation, including 
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evasion of normal control of cell division (mitosis) and programmed cell death (apoptosis), 

the ability to establish new blood vessels, suppression and evasion of the immune system and 

the capacity to colonize distant tissues. The next sections will focus on the cell survival 

capacity and immune response interaction in depth as they are most relevant to the topics 

discussed in this dissertation. 

Over time, mutated cells divide and give rise to a malignant tumor. Malignant 

tumors, unlike benign lesions, pose a threat to healthy cellular ecosystem by means of 

migrating to distant organs (metastasis) (Chambers et al., 2000; Fidler, 2003; Nguyen et al., 

2009) and an unlimited proliferation at these new sites. Importantly, cancers undergo an 

evolutionary process where each cancer cell may accumulate its own set of selectively 

advantageous mutations (driver mutations), rendering it and its decedents a phenotypically 

distinct clone (Greaves and Maley, 2012). Thus, tumors evolve into a heterogeneous 

collection of clones with different molecular makeups. Each of which may respond 

differently to therapeutic interventions, making it harder to develop a single therapeutic 

regimen to eradicate the disease.  

The number of mutations varies considerably (average of 33 to 66 mutations) across 

a variety of tissue origins, corresponding to distinct cancer types (Vogelstein et al., 2013). 

Skin (melanoma) and lung cancers outrank other tissues by accumulating hundreds of 

mutations owing to their direct exposure to mutagens such as ultraviolet light and cigarette 

smoke, respectively. The majority of mutations reflect single-base substitution (such as A>T 

or C>G) while the minority of mutations account for insertions or deletions. Additional types 

of genetic alterations include changes in the number of chromosomes (aneuploidy) as well as 

deletions and translocations of whole segments of genomes, thereby affecting many genes at 

a time. 
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Cancers evade normal cell-cycle control and apoptosis 

One of the central mechanisms through which cancers obtain an unlimited proliferative 

capacity is carried out by avoiding the normal life cycle imposed on normal cells. 

Particularly, the proper regulation of cell division and cell death is heavily disrupted. Cell 

division processes are orchestrated in part by extracellular growth and anti-growth signals. 

Cancer cells are insensitive to anti-growth signals and lack dependence on growth signals. 

Additionally, cancer cells are typically resistant to induced apoptosis (programmed cell 

death) by multiple mechanisms. Tumor Protein P53 (encoded by TP53) has a central role in 

inducing cell cycle arrest and apoptosis upon cellular stress such as DNA damage (Harris, 

1996; Junttila and Evan, 2009). Mutations of deleterious consequence on the function of 

TP53, i.e., those which prevent the proper function of the protein, confer tumors with the 

ability to evade apoptosis.  

Cancers evade recognition by the immune system 

In addition to avoiding normal growth and death signals, cancers evolve to bypass anti-tumor 

responses generated by the host’s adaptive immune system. The adaptive arm of the immune 

system specializes in generating cells specific to a variety of foreign genetic sequences 

(antigens), which are naturally presented on the surface of all nucleated cells. The mutated 

genomes of cancer cells present with new and unfamiliar peptides, termed neo-antigens 

(Linnemann et al., 2015; Segal et al., 2008; Sjoblom et al., 2006). Upon immune recognition, 

immune cells may destroy cancer cells and eradicate the tumor. However, cancers activate 

sophisticated mechanisms to prevent proper immune surveillance or hijack the immune 

response for their benefit by blocking inflammation signals and driving tolerance (Schreiber 

et al., 2011).  
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Cancer drivers as diagnostic markers and therapeutic agents 

To understand the genetic drivers of oncogenesis, studies have identified genes contributing 

to increased risk to develop cancer. These efforts have guided the development of strategies 

to monitor disease progression and designing drugs to change the course of disease. 

 

Identification of cancer drivers 

Cancer-critical genes were classified into two main categories: oncogenes and tumor-

suppressors. While oncogenes are genes with the potential to promote oncogenesis when 

overactivated by genetic alterations which disrupt the normal regulation of that gene, tumor 

suppressor genes (TSG) inhibit tumorigenesis by slowing proliferation, correcting genetic 

alterations or inducing apoptosis (Weinberg, 1991). Once the functions of TSGs are lost by 

genomic alterations affecting both copies of the gene (alleles), the appropriate regulation of 

cellular processes is disrupted, thus leading to tumor development. 

Owing to the different mechanism by which oncogenes and tumor suppressors affect 

tumorigenesis, the methods used to identify such genes differ. The Ras oncogene family was 

identified by introducing DNA fragments extracted from human tumors to cells in a culture 

dish (in vitro) (Harvey, 1964). Some of these cells outgrow others and show a transformed 

phenotype. In contrast, tumor suppressors, such as the retinoblastoma protein (Rb), were 

identified by deleting both copies of a specific band on chromosome 13 which is visibly 

abnormal in retinoblastoma patients (Weinberg, 1995). Recent advances in sequencing 

technologies allowed the identification of genomic loci with recurring mutations and 

associations to tumor growth, suggesting new candidate oncogenes and tumor suppressors. 

To date, almost 600 genes were implicated in a variety of cancer types (Futreal et al., 2004).  
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Clinical applications of cancer drivers 

Cancer driver genes provide means to characterize the molecular makeup of tumors, and most 

importantly, identify potential interventions to change the course of disease favorably. 

Targeting specific cancer genes which were altered in a patient’s tumor provides an 

opportunity to induce selective killing of cancer cells without interfering with healthy tissue 

processes. For instance, overactivation of the human epidermal growth factor receptor 2 

oncogene (HER2, coded by ERBB2) in breast cancer patients is responsible for regulating cell 

growth, differentiation and migration, leading to aggressive tumor growth and poor clinical 

prognosis (Citri and Yarden, 2006; Mendelsohn and Baselga, 2006). Therefore, HER2 is 

being used in clinical settings as diagnostic marker allowing to stratify patients and guide the 

appropriate therapeutic regimen (Stuhlmiller et al., 2015a). Additionally, the antibody 

Trastuzumab is being used to block the receptor and inhibit its function, thereby slowing 

down disease progression of HER2+ patients. Thus, cancer genes are being used in clinical 

settings to either monitor or constrain the progression of oncogenesis. 

Cancers develop resistance to therapeutic agents 

Although drug targeting of oncogenes such as HER2 have shown promise in therapeutic 

settings and shrink tumor size considerably, patients typically develop resistance to therapy 

which allows tumors to relapse (Holohan et al., 2013). Resistance may originate intrinsically 

from mechanisms present before treatment or through mechanisms acquired during therapy. 

Intrinsic mechanisms involve the presence of a multiple tumor clones carrying a distinct 

mutational profile. While some are sensitive to the drug administration, others may be 

resistant, allowing them to continue proliferating (Greaves and Maley, 2012). Cancer stem 

cells (CSC) were suggested to be a tumor subpopulation with stem cell-like properties, 

providing the continuous ability for self-renewal and the capacity to repopulate tumors after 

drug administration (Al-Hajj et al., 2004; Butti et al., 2019). They are quiescent which 
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renders them resistant to chemotherapies which target cells undergoing rapid proliferation. 

CSC are thought to be an underrepresented subpopulation of tumor cells, suggesting that their 

genomic profiling by traditional techniques may be limited and thereby divert clinical efforts 

to target the majority of non-stem-like tumor cells. 

An alternative theory suggests that the continuously changing mutational landscape 

of the tumor (Negrini et al., 2010) may allow tumor cells to compensate over the inhibition of 

a single oncogene by modulating the expression levels of other genes (Bertotti et al., 2015; 

Rathert et al., 2015), thereby indicating that resistance may be an acquired property of 

tumors. Although initial responses may be effective in reducing tumor size, resistance to 

therapy may render the treatment ineffective. For instance, targeting of HER2-positive breast 

cancers with Trastuzumab is typically bypassed by activating mutations in PIK3CA or 

activation of redundant signaling pathways including IGF1 and HER3. These observations 

exemplify the inherent limitation of independent studies of cancer genes without 

consideration of their vast network of functionally interacting genes, which may have an 

important role in determining therapeutic outcomes. In contrast, studies of cancer genes in the 

context of their interacting genes should provide the basis for rational drug targeting based on 

the molecular susceptibilities of individual patients. 
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Genetic interactions enable developing improved therapeutic strategies 

 

Cellular functions are mediated by functionally interacting networks of genes. Functional 

genetic interactions (GIs), whereby the phenotypic effects of a gene’s activity are modified 

by the activity of another gene, are thus a key to understanding complex diseases, including 

cancer, which involves an interplay among a myriad of genes (Ashworth et al., 2011; Jerby-

Arnon et al., 2014; Kelley and Ideker; Lu et al., 2013; Wong et al., 2004; Zhong and 

Sternberg, 2006). This section explores the recent efforts in discovering genetic interactions 

and the challenges implicated in developing new methods for identifications of new types of 

genetic interactions. 

Synthetic Lethality 

In cancer genomics, three types of GIs have been studied so far showing major roles in 

disease progression and patient survival and suggesting novel therapeutic avenues. The vast 

majority of GI studies to date have focused on synthetic lethal (SL) gene pairs, describing the 

relationship between two genes whose individual inactivation results in a viable phenotype 

while their combined inactivation is lethal to the cell (Ashworth et al., 2011; Miyamoto et al., 

2015; Sajesh et al., 2013; Stuhlmiller et al., 2015b). For instance, DNA repair is maintained 

by two distinct pathways, one that relies on PARP protein and the other which requires 

BRCA proteins (BRCA1 and BRCA2). While both pathways are active in healthy cells, some 

cancer cells lose the BRCA-dependent pathway and increase their dependence on the PARP-

dependent pathway (Figure 1.1). Hence, disruption of PARP yields irreparable genomic 

instability and selective cancer cell death as only those cells experience dual inactivation of 

DNA repair pathways. This mechanism is being utilized in clinical settings by administrating 

PARP inhibitors (such as Olaparib) to BRCA-deficient patients and activating the lethal SL 
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interaction in cancer cells. Thus, inhibiting SL partners of a gene that is inactivated in a given 

tumor allows for selective killing of tumor cells (Ashworth et al., 2011; Jerby-Arnon et al., 

2014; Kroll et al., 1996). 

 

 

Figure 1.1: Utilizing DNA repair mechanisms for selective anti-tumor therapies. Both 
DNA repair pathway 1 (PARP-dependent) and 2 (BRCA-dependent) are active in healthy 
cells while pathway 2 is inactivated in some cancer cells due to a genetic alteration. Inhibiting 
pathway 1 across all cells activates a lethal SL interaction selectively in cancer cells. 

 

Additional genetic interaction types 

Another related class of GIs are Synthetic Dosage Lethal (SDL) interactions, where the 

underactivity of one gene together with the over-activity of another gene is lethal but not 

either event alone (Megchelenbrink et al., 2015; Stuhlmiller et al., 2015b; Szappanos et al., 

2011). SDLs are promising for oncogenes, many of which are difficult to target directly, by 

targeting their SDL partners (Luo et al., 2009; Rathert et al., 2015). A third class of GIs are 

Synthetic Rescues (SR), where a change in the activity of one gene is lethal to the cell but an 

DNA replication

Healthy cells

DNA damage

Repair by 
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1 2

Cancer cells
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alteration in its SR partner ‘rescues’ cell viability. SRs may play a key role in tumor relapse 

and emergence of resistance to therapy (Hartwell et al., 1997; McLornan et al., 2014). Indeed, 

previous investigations have shown that the overall numbers of functionally active SLs and 

SDLs in a given tumor sample are highly predictive of patient survival (Megchelenbrink et 

al., 2015). 

Unbiased characterization of the landscape of genetic interactions 

These three interaction types however represent just the ‘tip of the GI iceberg’, as there are 

many additional types of GI that can be defined at a conceptual level, and whose systematic 

exploration may have important functional ramifications for cancer therapy. To address this 

gap, we have developed a novel data-driven computational pipeline, called “EnGIne” 

(Encyclopedia of clinically significant GIs in cancer). 

EnGIne identifies clinically relevant genetic interactions by associating molecular 

data with patients’ survival. To enable the unbiased study of genetic interactions, EnGIne 

addresses multiple key limitations of large-scale survival analysis. Patient survival is a 

complex phenotype which depends on a wide range of genomic and environmental factors. 

Multiple clinical and demographic confounding factors contribute to variation in the 

molecular makeup of tumors, in patient survival and in the response to therapy. EnGIne 

models and controls for such confounders to identify molecular patterns which generalize 

across patient cohorts. Additionally, genome wide discovery of interactions between any pair 

of genes (overall 200 million pairs corresponding to 20,000 genes) is hampered by 

computational bottlenecks which EnGIne bypasses by incorporating a set of increasingly 

stringent filters. Finally, EnGIne’s findings are shown to generalize to independent datasets, 

which demonstrates that this methodology is not over fitting dataset-specific features and can 

learn meaningful insights into the context-specific effects of genes involved in oncogenesis.  
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Immune responses to tumors 

 
Multicellular organisms’ ability to defend themselves from harmful invaders (pathogens) 

relies on the immune system which contributes to the elimination and control of a wide range 

of pathogens, including viruses, bacteria and fungi. The two arms of the immune response, 

the innate and the adaptive responses, act in concert to prevent pathogens from harming the 

host by complementary mechanisms (Gajewski et al., 2013; Zuniga et al., 2015). 

The innate and adaptive immune system 

Unlike the adaptive immune response, the innate response is non-specific to a particular 

invader, which allows for a fast reaction to pathogens in the scale of hours rather than days. It 

allows to recognize molecular patterns characteristic of invaders, destroy infected cells and 

activate immune cells of the adaptive immune response via dendritic cells. In contrast, the 

adaptive immune response provides the ability to tailor the immune response to the specific 

properties of new invaders. By creating an almost unlimited diversity of T and B cells 

recognizing different foreign molecules (antigens), the adaptive immune response is able to 

initiate a targeted response against any known or unknown pathogen. 

T and B cell responses to foreign peptides 

The adaptive immune response is divided into antibody responses and T cell mediated 

responses. The antibody responses are mediated by B cells which produce proteins 

(antibodies) that either block pathogens from infecting host cells or mark pathogens for 

destructions by the innate immune system (Pieper et al., 2013). T cell mediated responses 

provide a diverse range of other functions, both in providing help for other immune cells to 

mount effective responses as well as by direct killing of infected host cells (Halle et al., 2017; 

Krueger et al., 2017). T cells recognize foreign antigens which are presented on major 
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histocompatibility complex (MHC) found on the surface of host cells (Davis and Bjorkman, 

1988). This mechanism allows the adaptive immune system to monitor the contents of host 

cells and discover those infected with proteins derived from foreign invaders. Although both 

T and B cells originate from hematopoietic stem cells in the bone marrow, T cells mature in 

the thymus. After maturation, naive T and B cells migrate to lymph nodes where they meet 

antigens and get activated upon meeting the antigen they are specific to (i.e., their cognate 

antigen), thus becoming effector cells (Figure 1.2). Effector cells will migrate to the 

inflammation site in order to eliminate or control the invaders. 

 

 

Figure 1.2: Lymphocyte are activated in the lymph nodes and migrate to the tumor 
microenvironment to control tumor growth. Dendritic cells carry antigens from the tumor 
site into the lymph nodes. After being activated by dendritic cells, CD4+ and CD8+ T cells, 
and B cells migrate to the tumor microenvironment to eliminate the tumor. 

 

CD4+ T cell balance between inflammation and immunosuppression 

T cells are presented with antigens through two classes of MHC proteins which serve 

different functions. Cytotoxic CD8+ T cells capable of killing infected cells are presented 

with antigens on MHC class I expressed on all nucleated cells. In contrast, CD4+ T helper 

cells are activated by recognizing peptides presented on dendritic cells by MHC class II and 
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provide helper functions to control the magnitude of the immune response (Bluestone et al., 

2009; Sakaguchi et al., 2008).  

Upon activation, specific subsets of CD4+ T cells induce inflammation by secreting 

pro-inflammatory molecules (such as IFN-g) (Qin and Blankenstein, 2000). Conversely, 

regulatory CD4+ T cells suppress the immune response (immunosuppression) to prevent the 

immune response from excessive inflammation which may be destructive for healthy tissues 

(Sakaguchi et al., 2008). Thus, CD4+ T cells have an essential role in modulating the immune 

response and controlling the delicate balance between inflammation to immunosuppression. 

CD4+ and CD8+ T cells protect against cancer 

The mutations acquired by cancer cells result in the generation of molecules that may appear 

foreign to T cells (neo-antigens), which may in turn activate an anti-tumor response. T cells 

recognizing tumor neo-antigens were shown to provide effective means to fight cancer 

(Figure 1.3). However, immune responses are typically dampened due to the induction of 

immunosuppressive microenvironment driven by the activation of inhibitory receptors such 

as Programmed Cell Death 1 (Pdcd1 which codes for PD-1). Consequently, novel therapies 

aim to unleash effective anti-tumor immune responses by blocking inhibitory receptors (Borst 

et al., 2018; Gajewski et al., 2013; Ribas and Wolchok, 2018; Rosenberg and Restifo, 2015; 

Wei et al., 2017). 

CD4+ T cell diversity limit clinical progress 

Cytotoxic CD8+ T lymphocytes are being exploited in clinical settings due to their ability to 

recognize tumor neo-antigens and kill cancer cells (Ott et al., 2017; Rosenberg and Restifo, 

2015). However, effective anti-tumor immunity relies on a complex interplay between 

diverse lymphocyte subsets that remain poorly characterized. CD4+ T helper cells, which are 

essential for effective immune responses and control the balance between inflammation and 
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immunosuppression (Bluestone et al., 2009; Borst et al., 2018; Sakaguchi et al., 2008; Zhu et 

al., 2010), have recently emerged as potential therapeutic targets (Aarntzen et al., 2013; Borst 

et al., 2018; Hunder et al., 2008; Malandro et al., 2016; Mumberg et al., 1999; Ott et al., 

2017; Tran et al., 2014; Wei et al., 2017). 

CD4+ helper cells contribute to the priming of CD8+ T cells and to B cell functions in 

lymphoid organs (Ahrends et al., 2017; Borst et al., 2018; Crotty, 2015).  CD4+ T helper type-

1 (Th1) cells secrete the cytokine IFN-g and affect tumor growth by targeting the tumor 

microenvironment (TME), antigen presentation through MHC class I and II, and other 

immune cells (Alspach et al., 2018; Beatty and Paterson, 2001; Bos and Sherman, 2010; 

Kammertoens et al., 2017; Qin and Blankenstein, 2000; Tian et al., 2017). Conversely, Th2 

cells can promote tumor progression and regulatory T cells (Treg) mediate immune tolerance, 

suppressing the function of other immune cells and thus preventing ongoing anti-tumor 

immunity (Chao and Savage, 2018; DeNardo et al., 2009; Tanaka and Sakaguchi, 2017). 

 

 

Figure 1.3: Antigen-specific T cell responses to tumor neo-antigens. CD4+ and CD8+ T 
cells perform various functions upon encountering their cognate antigen on tumor cells. 
Binding of PD-L1 to PD-1 renders T cells dysfunctional which prevents successful anti-
tumor responses. PD-1 blockade reinvigorates T cell function to elicit an effective immune 
response. 
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Challenges in characterizing T cell diversity 

Despite the anti-tumor potential of CD4+ T cells, disentangling their functional diversity has 

been the limiting factor for pre-clinical and clinical progress. Investigations of CD4+ T cell 

diversity leveraged the basic notion where distinct cell types harbor distinct molecular 

compositions. Thus, identifying subsets of cells with unique molecular makeup has the 

potential to identify novel cell types. 

While several studies have assessed the diversity of Treg cells or their specificity to 

tumor antigens (tumor-reactivity) (Ahmadzadeh et al., 2019; Chao and Savage, 2018 ; De 

Simone et al., 2016; Malchow et al., 2013; Plitas et al., 2016; Zhang et al., 2018; Zheng et al., 

2017a), the functional diversity of conventional (non-Treg) tumor-infiltrating lymphocytes 

(TILs) has remained poorly understood. Studies measuring average gene expression across a 

bulk of cells (bulk RNA sequencing) have limited power at identifying new, and especially 

rare functional cell states. Conventional single-cell approaches (e.g. flow or mass cytometry) 

overcome this obstacle by providing protein-abundance measurements at the single cell level, 

but are necessarily restricted to a limited number of hypothesis-based targets they can 

analyze, thus limit the unbiased identification of novel subpopulations. 

Recent studies, whether of human or in experimental tumors, have leveraged a 

genome-wide RNA sequencing technique at the single cell level (scRNAseq) to perform 

unbiased clustering analysis of thousands of cells to identify novel subpopulations. However, 

these studies did not distinguish tumor antigen-specific from bystander CD4+ T cells, even 

though bystanders may form the vast majority of conventional (non-Treg) T cells in the TME 

(Ahmadzadeh et al., 2019; Azizi et al., 2018; Duhen et al., 2018; Sade-Feldman et al., 2018; 

Simoni et al., 2018; Zhang et al., 2018; Zheng et al., 2017a), in particular in draining 

lymphoid organs, where immune responses are typically initiated. 
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To address these challenges, we applied the resolution of scRNAseq to a tractable 

experimental system assessing tumor-specific responses both in the tumor and in lymphoid 

organs. While scRNAseq provides an unprecedented opportunity to investigate cellular 

diversity, the platform suffers from low signal to noise ratio. We designed computational 

analyses to characterize cell subpopulations in high resolution using a data-driven approach 

to determine the appropriate resolution while controlling for false discovery of 

subpopulations. To compare the transcriptomes of the identified subpopulations across 

distinct tissue-origins and experimental designs, we develop a strategy to mitigate context 

specific effects while retaining important signal originating from cell lineage-defining 

biological factors. These strategies enabled us to find novel TIL subpopulations and 

correspond them to multiple preclinical and clinical datasets. 

Our analyses dissect the complexity of the CD4+ T cell response to tumor antigens, 

both in the tumor itself and in draining lymphoid organs, and identify broad transcriptomic 

divergences between anti-tumor and anti-viral responses. Emphasizing the power of this 

approach, new transcriptomic patterns identified in the present study are also found in CD4+ 

T cells infiltrating human tumors and correlate with response to checkpoint therapy in human 

melanoma. 
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Chapter 2: Discovery of multi-type genetic interactions in 
cancer 
 

Functional genetic interactions (GIs) underlie the complexity of cellular phenotypes and 

disease. Synthetic lethality provided opportunity to develop selective killing of cancer cells 

(Kaelin, 2005), but represented only a small subset of the spectrum of genetic interactions. 

This chapter describes our novel methodology to characterize the diversity of genetic 

interactions using the EnGIne pipeline. EnGIne substantively expands the current knowledge 

of genetic interactions in cancer, laying a strong conceptual and computational foundation for 

future studies of additional GI types. 

 

Pancancer identification of putative genetic interactions 

 
We applied EnGine to analyze 5,157 TCGA (Weinstein et al., 2013) samples of 18 different 

cancer types, identifying clinically significant GIs of 12 distinct types. Using drug response 

data from TCGA (Weinstein et al., 2013) and molecular drug target information, we show 

that the detected GIs are associated with response to therapy by specific drugs. Their 

activation patterns can account for the tissue-specificity of known driver genes and stratify 

breast cancer into clinically relevant subtypes.  

Overview of the Encyclopedia of Genetic Interactions (EnGIne) Pipeline 

The overall EnGine pipeline is summarized in Figure 2.1 and the technical details are 

provided in the Methods section. Given a large set of tumor transcriptomes (Figure 2.1A), we 

first partition the expression level of each gene into low, medium and high, following our 

previous approach to identify SL interactions (Lee et al., 2018). Thus, for a pair of genes, 

there are 9 = 3 × 3 combinations, or bins, of possible co-activity states for the two genes 
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(Figure 2.1B). For a given ordered pair of genes, each tumor sample maps to exactly one of 

the 9 bins. Our goal is to identify GI pairs of the form (x, y, b, ±α) such that for the specific 

gene pair (x, y), the tumors in which the joint activity of (x, y) maps to bin b have a 

significant fitness advantage (+) or disadvantage (-) with effect size α, relative to all other 

tumors whose activity of (x, y) maps to a different bin. The effect size	α is estimated by 

measuring the difference in the survival curves between those patients where the activity of 

(x, y) is in bin b in their tumors and those where it is not, as depicted in Figure 2.1C; note 

that for most gene pairs, there may not be any bin exhibiting a significant fitness differential. 

A significant GI pair (x, y, b, ±α)		is termed functionally active in a particular tumor if the co-

activity states of (x, y) in that tumor fall in bin b.  We hypothesized that the patients whose 

tumor has a larger number of functionally active interactions with negative tumor fitness 

effects will have better prognosis and conversely, the patients whose tumor has a larger 

number of functionally active interactions with positive tumor fitness effects will have poorer 

prognosis. 

 



 

 

18 
 

 

Figure 2.1: Overview of the EnGIne pipeline. 

Given a large set of tumor transcriptomes (A), we first partition the expression level of each 
gene into low, medium, and high activity state, resulting in 9 joint activity state bins for any 
two genes (B). Each combination of a gene pair and bin b induces a bipartition of the set of 
tumor samples based on whether the co-activity levels of the gene pair in a specific tumor is 
in bin b. The first step of EnGIne screens for the gene pairs that show distinct survival trends 
in the two sets of tumors in any of the bins, based on log-rank test (C). Next, for a gene pair 
and a bin identified in (C), we test whether the putative gene interaction in bin b has a 
differential effect on tumor fitness, by testing for depletion or enrichment of samples in the 
bin b relative to expectation based on individual genes (D). Finally, for each retained gene 
pair, in each of the 9 bins separately, we fit a Cox proportional hazards model to assess 
whether being in a particular bin is associated with a distinct (positive or negative) pattern of 
patient survival, followed by correction for multiple hypotheses testing (E). The output of 
EnGIne is (i) a list of GIs of each of the 12 types studied, and (ii) GI profile in each of the 
individual tumor samples, defined as activity state of each GI in the tumor sample (F). 
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Step-wise filtering of multi-type genetic interaction candidates 

We analyzed 5,157 TCGA (Weinstein et al., 2013) samples for 18 cancer types. First, as an 

initial screening, we performed a Log-Rank survival test (depicted in Figure 2.1C) for each 

gene pair in each of the 9 bins. To make this computationally feasible and to limit the burden 

of multiple testing correction in the subsequent steps, we used an extremely stringent cutoff 

for the log rank test leading to the retention of about 1/1,000 gene pairs surveyed, resulting in 

223,946 gene pairs that exhibit a significant association with survival in one of the 9 bins. 

Second, if a potential GI in bin b has a differential effect on tumor fitness, we expect the 

number of tumors that map to bin b to be relatively enriched (for a ‘+’ interaction positively 

affecting tumor survival), or depleted (for a ‘-‘ interaction negatively affecting tumor 

survival). Thus, we applied an additional filter (Figure 2.1D) to retain the GIs exhibiting a 

consistent patient survival and tumor fitness enrichment or depletion statistic, yielding 

179,444 gene pairs. Third, for each retained gene pair, in each of the 9 bins, we implemented 

a Cox proportional hazards model, specifically controlling for age, cancer-type, gender, and 

race, to assess whether a tumor being in a particular bin is associated with patient survival, 

either positively or negatively (Figure 2.1E). Finally, we applied an empirical False 

Discovery Rate (FDR) correction based on the significance of the Cox interaction term of the 

179,444 gene pairs relative to those obtained for randomly shuffled gene pairing as the null 

control. 

At a False Discovery Rate (FDR) < 1%, this resulted in 71,946 predicted GIs across 

the 9 bins, of the form (x, y, b, ±α), which form the final set of TCGA (Weinstein et al., 

2013) inferred GIs (Figure 2.1E). Considering the symmetry among bins (bin 2 ~ bin 4 

corresponding to low-medium expression interaction; bin 3 ~ bin 7 corresponding to low-

high expression interaction; bin 6 ~ bin 8 corresponding to medium-high expression 

interaction), there are 6 unique types of interaction bins, and considering the two directions of 
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the effect size yields a total of 12 basic types of GIs. We ascertained the robustness of the 

pipeline to changes in the quantile boundaries for the 3×3 bins and to changes in the log-rank 

and FDR thresholds (Appendix A Extended Results 1). 

 

The landscape of multi-type GIs 

 
EnGIne identified 71,946 clinically significant GIs of 12 different types, ~0.02% of all the 

possible candidate gene pairs and GI types tested. To gain insight into their biological 

significance, we analyzed their correspondence to known interactions and known cancer 

genes, and whether the observed effects generalize to additional datasets. 

 

PIN-supported GIs are enriched with cancer genes 

Considering the expectation that neighboring genes in the protein interaction network (PIN) 

are more likely to be involved in a GI (Schaefer et al., 2012), to obtain a smaller but more 

biologically grounded PIN-supported GI network, we retained only the gene pairs that are 

separated by two or fewer edges in the PIN. This PIN-supported GI network was composed of 

1704 GIs involving 1786 genes (Table A.1) that included 133 known cancer genes (Cosmic 

dataset) (Futreal et al., 2004) associated with various cancer types (enrichment p-value = 

2.5×10-22) and 50 breast cancer specific (Intogen dataset) (Gonzalez-Perez et al., 2013) driver 

genes (enrichment p-value = 7.7×10-13). 

Unbiased GI identification reveals unexpected interaction type diversity 

The distribution of the detected 1704 PIN-supported GIs across the 12 GI types reveals that 

previously characterized interactions may represent only a small fraction of the overall 

interaction landscape (Figure 2.2A).  SL interactions are surprisingly one of the least abundant 
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types of identified GIs, and so are SDLs (1% of all GIs). Remarkably, the positive “anti-

symmetric” type of SLs, in which the joint low activity of the two interacting genes is 

associated with a higher tumor fitness, is 3 times more abundant than SLs. 

The interaction between the Cosmic Cancer Census genes GNAQ and JAK2 is one 

example of such a positive interaction in bin 1 (Figure A.1). GNAQ, encoding Gq, and JAK2 

are both downstream targets in a signaling pathway with several functions pertinent to cancer, 

including endothelial cell maintenance and vascular remodeling (Kawai et al., 2017). 

Interestingly, the two most abundant types of pan-cancer GIs correspond to bin 2 and bin 6) 

where one of the genes has medium level of activity and only the extreme activity of its partner 

gene reveals a phenotypic effect. For most GI bins, we see a higher proportion of GIs exerting 

a positive effect on tumor fitness, consistent with the hypothesis that the GIs uncovered during 

the evolution of cancer are under positive selection. The above distribution trends are quite 

similar for the full 71,946 GI network (Figure A.2A). Additionally, we ascertained that the 

inferred GIs are not dominated by correlated gene expression patterns (Appendix A Extended 

Results 2). 

Context specific effects of cancer drivers 

Cancer genes that encode transcription factors, such as MYC and KLF4, have proven difficult 

to target directly (Lambert et al., 2018; Li et al., 2018). One important application of EnGIne 

is to identify candidate interaction partners of the difficult-to-target cancer genes for indirect 

interventions.  To assess this capability, we identified the GI partners of several cancer genes 

using target-specific FDR. Figure 2.2B shows survival patterns for different activity state 

combinations of breast tumor suppressor ERCC2, a transcription-coupled DNA excision repair 

gene (Benhamou and Sarasin, 2002; Bernard-Gallon et al., 2008), and a breast cancer oncogene 

KLF4, a zinc finger transcription factor (Akaogi et al., 2009). It reveals two interesting trends: 

As expected, the over-activation of the oncogene and under-activation of the tumor suppressor 
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(bin 3) results in poorer patient survival than expected from the individual gene effects (bins, 

1, 2, 6, and 9). However, surprisingly, the survival curve reveals a reversal of the effect of the 

tumor suppressor ERCC2 inactivity on survival when the oncogene KLF4 has medium activity 

(bin 2), whose individual activity is associated with better survival; the (ERCC2, KLF4) 

interaction exemplifies the relevance of medium expression bins in this study. 

This and several other examples of GIs involving a cancer driver gene 

(Supplementary File 1) demonstrate that the context-specific effects of driver genes may show 

very different trends than their previously established effects as individual genes. Figure A.3 

shows the extended GI-network (71,946 GIs prior to PIN filtering) involving the Cosmic and 

Intogen driver genes. In addition, and consistent with MYC’s role as an oncogene, the GIs 

occurring when MYC has low activity mostly have negative effect on tumor fitness. However, 

when MYC is activated, we find that the low expression of PUF60, one of the known regulators 

of MYC (Matsushita et al., 2014; Rahmutulla et al., 2013), is associated with higher tumor 

fitness (type +3 interaction, HR = 1.37, p-value = 5.0E-04) (Figure 2.2D). In contrast, we find 

that high expression of MYC does not significantly contribute to poorer prognosis when PUF60 

is expressed at medium or high levels (p-value = 0.9). Thus, this result underscores the 

importance of molecular context in developing anti-MYC treatments. 
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Figure 2.2: Broad distribution and characteristics of the detected GIs and context-
specific effect of cancer driver genes on survival. 

(A) Distribution of the 1704 significant PIN-supported GIs across 9 joint activity bins. The 
fractions of GIs in each bin are shown for GIs with positive (blue) and negative (red) effect 
on tumor fitness. Only the data in the lower triangle of the matrix are shown as the GIs are 
symmetric relative to the genes in a pair. (B) The Kaplan-Meier (KM) survival curve of GI 
involving ERCC2, a transcription-coupled DNA excision repair gene, known to be a breast 
cancer tumor suppressor, and KLF4, a zinc finger transcription factor known to be oncogenic 
in breast cancer, reveals increasingly poor survival by over-activation of the oncogene and 
under-activation of the tumor suppressor (bin 3). Strikingly, the effect of ERCC2 inactivity on 
survival is reversed when KLF4 has medium activity level (bin 2). (C) The predicted GIs 
involving the oncogene MYC. (D) KM survival curve of GI involving MYC and its regulator 
PUF60. High expression of MYC is associated with poor prognosis specifically at low 
activation of PUF60. 
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Validations of EnGIne-identified GIs 

We validated EnGIne by comparing its SL predictions to previously reported SLs identified 

via large in vitro screens (Bommi-Reddy et al., 2008; Lord et al., 2010; Luo et al., 2009; Steckel 

et al., 2012; Turner et al., 2008). Each of the three filtering steps of EnGIne (Figure 2.1C-E), 

could discriminate the experimentally determined SLs from the non-SLs, with ROC-AUCs of 

0.63 (p-value = 0.0005), 0.62 (p-value = 0.001), and 0.59 (p-value = 0.012), respectively. These 

results are significant, albeit of modest accuracy (reflecting the widely known discrepancy 

between in-vitro and in-vivo data (Williams et al., 2000)), support the contribution of each of 

the individual steps in EnGIne. 

In addition, we find the PIN-supported GIs to be predictive of patient survival both in 

cross-validation setting in TCGA (Weinstein et al., 2013) as well as in an independent breast 

cancer METABRIC (Curtis et al., 2012a) dataset (Curtis et al., 2012b) (Figure A.4A, 

Appendix A Extended Results 3). The prediction accuracy quantified via the concordance 

index (CI) show that GI based prediction compares favorably with the gene-wise approach. A 

bigger improvement is observed in the independent METABRIC (Curtis et al., 2012a) dataset 

(concordance » 0.64), testifying that the GI-based approach is generalizable, while the 

individual gene-based approach fails to generalize (concordance » 0.51). Figure A.4B depicts 

the survival prediction accuracy of each GI type. Interactions involving both genes in their wild 

type mid-activity levels (i.e. bin 5) have negligible predictive power on survival, testifying that 

more extreme levels of expression of at least one of the two genes tend to be involved in 

functional GIs affecting survival. In addition, we have excluded the possibility that additional 

confounders may impact our results (Appendix A Extended Results 4). 
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GIs activation is associated with drug response 

 

To establish the prognostic value of the GIs inferred by EnGIne, we have associated the GI 

activation scores to patient drug response. By estimating the activation of gene interactions 

involving target genes of each drug, we demonstrate the GI significance for developing 

precision drug administration strategies. 

 

Assessment of GIs activation across responders and non-responders 

To avoid circularity, we applied EnGIne to identify GIs based only on TCGA (Weinstein et al., 

2013) samples that do not have drug response information, and tested the predicted GIs’ ability 

to discriminate responders from non-responders in the ‘unseen’ TCGA (Weinstein et al., 2013) 

samples where the drug response information is available. Notably, because the considered 

drugs are inhibitory, it suffices to focus on GI bins 1, 2, and 3, where one of the genes (the 

drug’s target) has low activity. For a given drug and cancer type having data on responders and 

non-responders, we analyzed the GIs involving each of the drug targets (identified via target-

specific FDR). 

We then tested whether the frequencies of GI activation in responders and the non-

responders are significantly different using a Fisher exact test (Fisher, 1922). For positive GIs, 

we expect a lower GI activation frequency among responders and the opposite for negative GIs 

(e.g., as in the case of SL-type GIs). However, owing to very small and unbalanced numbers 

of responders and non-responders (5 to 35 samples per response group per drug), the Fisher 

test is underpowered, and we therefore tested whether the overall distribution of the obtained 

ratio of GI activation frequency in responders and non-responders are lower than those obtained 

using randomly shuffled drug-response labels using paired Wilcoxon tests (Wilcoxon, 1945), 

performed separately for each drug-cancer type pair. 
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Differential drug target GI activation between responders and non-responders 

We considered the 12 drug-cancer type pairs that have RECIST (Response Evaluation Criteria 

In Solid Tumors) (Eisenhauer et al., 2009) drug response following treatment for at least 10 

patients (at least 5 responders and 5 non-responders) in TCGA (Weinstein et al., 2013). Each 

of the 6 basic GI types was tested for the 12 drug-cancer type pair. Overall, in 18 of the 72 tests 

(5 fold enrichment for P £ 0.05) of drug-cancer type combinations, GIs of a particular type 

exhibit statistically significant differential activation frequencies between responders and non-

responders consistent with the expected effects of the GIs (Figure 2.3A). Reassuringly, several 

of those significant drug-target GI’s are in bin 1, which contains the SLs, consistent with 

previous reports showing the role of SLs in mediating drug response (Jerby-Arnon et al., 2014; 

Lee et al., 2018). Among the drugs, Gemcitabine, Lomustine, and Paclitaxel exhibit differential 

GI activation for most GI types (aggregate p-values ranging from 4×10-16 to 2×10-11). 

We also explored the most differentially activated individual GIs. Imposed an 

empirical FDR threshold of 0.01 on the Fisher test p-value yielded 521 GIs for the 12 drug-

cancer type combinations (Table A.2). Individual genes comprising the 521 GIs are closer to 

each other in the PPI network relatively to shuffled pairs (Wilcoxon p-value < 0.001, Methods) 

and have a significantly increased number of direct PPI interactions between them (Fisher P < 

0.02, Methods).  

Context-specific effects of Paclitaxel-mediated BCL2 inactivation  

As an illustrative test case, we explored the GIs associated with the response to Paclitaxel, in 

TCGA (Weinstein et al., 2013) Head and Neck Squamous Cell Carcinoma (HNSC) cohort. 

Paclitaxel inhibits the proteins encoded by BCL2, TUBB1, and MAP based on DrugBank (Law 

et al., 2014). We identified a GI involving the inactivation of BCL2 (known to suppress 

apoptosis, indirectly inhibited through phosphorylation (Ruvolo et al., 2001)) and the over-

activation of ITPR1 (Inositol 1,4,5-trisphosphate receptor type 1, also known as IP3 receptor 
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type 1), negatively affecting tumor fitness (GI type -3). Interestingly, our analysis shows that 

this GI is functionally active among the responders at a significantly higher ratio than among 

non-responders (odds-ratio » 11.1). 

The interaction between ITPR1 and BCL2 is well characterized (Chen et al., 2004; 

Oakes et al., 2005; Rong et al., 2009); one of these studies suggests that BCL2 also interacts 

with the two other human paralogs ITPR2 and ITPR3, but these interactions are not represented 

in the PIN used in this study and were therefore not detected. BCL2 exerts its oncogenic effect 

by inhibiting ITPR3-mediated channel opening and Ca2+ release from the endoplasmic 

reticulum, and thus preventing cancer cell apoptosis. Our analysis strongly suggests that BCL2 

inhibition by Paclitaxel is especially effective when the ITPR1 expression is abundant, enabling 

effective Ca2+ release. Additional Paclitaxel targets TUBB1 and MAP2 are also linked with 

ITPR1/BCL2 through GIs with literature evidence for experimentally validated or putative 

interactions (by STRING DB (Szklarczyk et al., 2015)) (Figure 2.3B), suggesting promising 

avenues for additional studies. 

 

GIs explain cancer driver genes’ tissue-specificity 

 

Many of the known cancer driver genes affect tumor initiation and development in a tissue-

specific manner, despite the cancer gene being expressed in other tissues as well. Next, we 

explored whether the GIs can explain the tissue-specificity of cancer genes. 

Assessment of GI activation across tissue-specific driver genes 

We identified 15 oncogenes and 20 tumor suppressors whose effects are likely to be restricted 

to specific cancer types, based on preferentially high mutation rates in those cancer types, 
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including breast, bladder, and gastric cancer (Table A.3). For each cancer driver, we assigned 

a risk score to each patient by aggregating functionally active GIs involving the driver gene 

defined using target-specific FDR; for oncogenes, only the bins with high oncogene activity 

and for tumor suppressors, only the bins with low tumor suppressor activity were considered. 

We hypothesized that for a cancer gene, the risk score will be greater in tissues where the cancer 

gene is implicated relative to other tissues. Indeed, for 15 out of 35 (~43%; 5 oncogenes and 

10 tumor suppressors) driver genes, the observations are consistent with our hypothesis 

(Wilcoxon rank-sum test, FDR < 0.1, Table A.3). 

HLF lung- and breast-specificity is captured in GI network activity 

HLF, a bZIP transcription factor, has been linked to lung and breast cancer based on its 

significantly greater missense mutation frequency in those cancer types (Gonzalez-Perez et al., 

2013). We observed a significant difference (FDR < 1.07×10-12) in GI activation risk score for 

breast and lung cancer relative to the other tissues. Specifically, we found that positive GIs are 

preferentially activated in these two tissues while negative GIs are preferentially activated in 

the other tissues, consistent with the increased tumor fitness in these two foreground tissues 

(Figure 2.3C,D). Overall, these results suggest that cancer type-specific effects of many driver 

genes may be explained by their tissue-specific GI network activity. 

  



 

 

29 
 

 

Figure 2.3: Differential GI activation between drug response groups and tissues. 
(A-B) Drug response analysis. (A) For each drug (left row labels) and each cancer type 
(right row label) combination, and for each GI type (columns), the heat plot shows the 
significance of differential activation of GIs in responders and non-responders consistent with 
expectation. The last column shows the significance when all GI types are aggregated. (B) 
The network shows the inferred functional interactions (based on STRING (Szklarczyk et al., 
2015)) among the genes interacting with Paclitaxel targets, as well as inferred GI types. 
(C-D) Tissues specificity analysis. For the HLF-specific GI network, the figure shows the 
activity states of GIs in breast and lung cancers (C - foreground tissues) and in other cancer 
types (D - background tissues). The edge weight (thickness) represents the fraction of 
samples in which the GI was functionally active. Several GIs are differentially active in the 
two sets of cancer types. The figure also depicts cell surface proteins among the HLF’s GI 
partners. The GI network-based sample-specific risk score is significantly higher (q-value < 
1.07×10-12) in breast and lung cancer relative to other cancer types, potentially mediated by a 
selective activation of positive GIs in the foreground tissues and negative GIs in the 
background tissues. 
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GIs have potential prognostic implications in breast cancer 

We investigated whether functionally active pan-cancer GIs in a tumor may provide an 

alternative methodology to tumor stratification into sub-types. We focus on breast cancer 

because it has a large number of samples in TCGA (Weinstein et al., 2013) and because a 

second independent dataset, METABRIC (Curtis et al., 2012a), is publicly available. 

 

Stratifying breast cancer tumors based on their GI profiles 

To obtain a GI-based representation of each breast cancer sample, we quantified the functional 

activity (a binary indicator) of each PIN-supported GI detected in TCGA (Weinstein et al., 

2013), rather than generating BRCA-specific network, thus avoiding potential circularity of 

inference and prediction within samples sharing similar characteristics. Based on this 1704-

dimensional binary vector representation of each tumor sample we clustered the 1981 breast 

cancer samples in the independent METABRIC (Curtis et al., 2012a) dataset using a 

conventional Non-Negative Matrix Factorization (NMF). Optimal clustering was achieved 

(maximum value of the Dunn index, Methods) for 10 clusters (Figure A.7A). Upon closer 

inspection of the distributions of known breast cancer subtypes in these clusters (Figure A.7B) 

we merged two of the clusters, thus yielding 9 clusters for further analyses.  

Kaplan-Meier curves (Figure 2.4A) and statistical analysis show that the 9 clusters 

have distinct survival characteristics with an overall mean hazard ratio (HR) difference of 1.94 

(p-value below the lowest reportable threshold and shown as 0). The distinct survival 

characteristics are consistent with analysis performed using the full 71,946 GI network (Figure 

A.7C). Figure A.8A shows the survival characteristics obtained for the previously published 

clustering of the METABRIC (Curtis et al., 2012a) samples. As evident, both approaches 

obtain similar survival separation levels, but exhibit differences in their histopathological 
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composition. Currently, breast cancer has 5 well-established clinically distinct subtypes based 

on the tumors’ histopathological attributes. Figure 2.4B shows the fractions of each known 

subtypes among the 9 GI-based clusters. Several clusters are highly associated with specific 

subtypes such as Basal [triple-negative] (cluster 5), Luminal A (clusters 3,4) etc. Others show 

association with several subtypes, e.g., Luminal A and B both have high fractions in cluster 8. 

Interestingly, the basal subtype, which are largely triple-negative and have poor prognosis, 

correspond to a distinct cluster in our analysis (cluster 5), consistent with their distinct clinical 

status. In the original METABRIC (Curtis et al., 2012a) publication, 50% of the samples were 

left unassigned to any of their 10 clusters, while our GI-based clustering covers all samples.  

GI-based stratification provides improved predictive value 

We find the GI based approach to provide improved survival predictive value over the classical 

histopathological ones (Figure 2.4C,D). There are two situations in which the GI-based 

clustering leads to a different classification of patients for survival analysis: (1) cases where 

known histopathological breast cancer subtypes are split across multiple GI-based clusters (e.g. 

Luminal B across clusters 1, 2 and 8), and conversely (2), cases where one GI-based cluster 

harbors multiple known histopathological subtypes (e.g. cluster 2 contains Her-2 and Luminal 

B subtypes). In the former case, we find that the 1989 Luminal B tumors that are split across 

different GI-based clusters exhibit statistically significant (P < 7.14×10-6) distinct survival 

trends (Figure 2.4C), supporting the GI approach in separating the Luminal B tumors. 

Likewise, in the latter case, we find that the survival trends of Her-2 and Luminal B 

histopathological subtype samples that are assigned to the same GI-based cluster 8 do not show 

a significant difference (P < 0.203) in their survival trends (Figure 2.4D), suggesting that the 

GI-based stratification may in some instances provide better survival prognosis relative to 

histopathology-based stratification. 
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We systematically identified 6 additional instances of the above two scenarios where 

(1) a known tumor histopathological subtype was split across multiple GI-based clusters or (2) 

multiple known histopathological subtypes were assigned to the same GI-based cluster (and 

each cluster has at least 30 samples). In each instance of the first kind we tested for statistically 

significant differences in survival and in each instance of the second kind we tested for lack 

thereof. As shown in Figure A.9, in 5 out of 6 instances we found that the GI-based clusters 

provided a more accurate survival prognosis. In contrast, we identified 4 cases of the second 

kind in the original METABRIC (Curtis et al., 2012a) clusters and found that none of their 

survival trends were significantly different (Figure A.10). Thus, these results demonstrate that 

the GI approach performs better than clustering based on histopathological subtypes or 

METABRIC (Curtis et al., 2012a) clustering based on gene expression profiles, in terms of 

survival prognosis. 

GI-based clusters are characterized by distinct mutational profiles and GI types 

To explore potential mutational basis of the GI-based clusters in another way, we assessed 

whether the samples in GI-based clusters harbor distinct mutations patterns. We identified 196 

genes (Table A.4) with significantly greater mutation frequency in one or more of the clusters, 

relative to their overall mutation frequency in breast cancer. Figure 2.4E shows the mutational 

frequency profiles of these genes across the 9 clusters. Overall, the differentially mutated genes 

across the GI based clusters include 10 cancer drivers: CDK12, CDKN1B, DNAJB1, ERBB2, 

EXT2, FCGR2B, FNBP1, HOXC13, PDGFRB, and SEC24D. A more detailed discussion of 

the potential biological significance of some of these mutations is provided in the 

Supplementary Results. We note that no mutation data was used in the GIs inference via 

EnGIne.  

Additionally, we quantified the fraction of each of the 12 types of functionally active 

GIs among the samples in each cluster. Figure 2.4F shows the active GI profiles of each cluster, 
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and reveals two broad subgroups, one including clusters 4, 3, 8, and 1 and another including 

clusters 2, 5, 6, and 7. Interestingly, the two subgroups clearly segregate in terms of their 

survival, testifying that the classification into GI types captures a simplified yet robust 

characterization of the clinical prognosis. The first broad subgroup of tumors (clusters 4, 3, 8 

and 1) are characterized by high fractions of type +2 and +6 GIs, both of which involve a 

medium expression and low expression bin. Therefore, this analysis demonstrates the relevance 

of considering medium expression states in molecular stratification. Figure A.11 compares the 

GI-profiles of clusters revealed in the TCGA (Weinstein et al., 2013) and the METABRIC 

(Curtis et al., 2012a) breast cancer data and shows a high degree of consistency. A global 

comparison of the GI profiles of the 9 clusters in the two datasets shows a Spearman correlation 

of 0.67 (p-value = 2.4×10-14) between the GI types composition of these clusters, implying that 

GI-profiles are a robust characteristic of breast cancer tumors across different tumor 

collections. Thus, the GI-based clustering demonstrates a proof of principle for improved 

stratification of breast cancer tumors into classes with distinct survival prognosis and 

mutational profiles. 
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Figure 2.4: Breast cancer patient stratification. 
(A) Mean survival curves of the individuals in the 9 inferred GI-based breast cancer 
subtypes. 
(B) Cluster subtype composition based on PAM50 breast cancer sub typing (Bernard 
et al., 2009). 
(C-D) Survival trends of tumors of known histopathological cancer subtypes within 
and across GI-based clusters. (C) Luminal B samples that are split across GI-based 
clusters 1, 2 and 8 show significant survival differences. (D) Her2 and Luminal-B 
type tumors that are included within the GI-based cluster 2 exhibit similar survival 
trends. 
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(E) Mutational profile of GI-based breast cancer subtypes. Mutation profiles of 196 
genes (rows) across the 9 GI-based clusters (columns). For each gene and each 
cluster, the figure depicts the fraction of samples in the cluster in which the gene is 
mutated. 
(F) GI types composition of the GI-based breast cancer subtypes in the METABRIC 
dataset. In clustering the samples based on GI profile, each GI is probabilistically 
assigned to a single cluster, based on which, the composition of GIs assigned to each 
cluster is obtained. The x-axes represent the 12 GI types (6 activity bins and 2 
directional effects on survival), and the y-axes represent the clusters. The colors 
represent the fraction of cluster-assigned GIs of each GI type.   
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Chapter 3: Single-cell resolution profiling of tumor-reactive 
CD4+ T-cells 
 

Experimental system to identify tumor antigen-specific CD4+ T cells   

 

To track tumor antigen-specific CD4+ T cells in-vivo, we set up a tractable experimental 

system where tumor cells present antigens derived from a well characterized glycoprotein, 

allowing to isolate CD4+ T cells exhibiting reactivity to that glycoprotein after exposure to 

the tumor microenvironment. Using computational approaches to characterize subpopulations 

with distinct transcriptional profiles, we identify novel CD4+ T cell subsets. 

 
 
Tracking tumor-specific CD4+ T cells 
 
We retrovirally expressed the lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) 

in colon adenocarcinoma MC38 cells, using a vector expressing mouse Thy1.1 as a reporter 

(Figure B.1A). Subcutaneous injection of the resulting MC38-GP cells produced tumors 

allowing analysis of immune responses by day 15 after injection. We tracked GP-specific 

CD4+ T cells through their binding of tetramerized I-Ab MHC-II molecules associated with 

the GP-derived GP66 peptide (Crawford et al., 2014; Schulz et al., 1989). Such CD4+ cells 

were found in the tumor and draining lymph node (dLN) of MC38-GP tumor-bearing mice, 

but neither in non draining LN (nLN) from MC38-GP mice, nor in mice carrying control 

MC38 tumors (Figure B.1B). 

To study the CD4+ T cell response to tumor antigens, we aimed to produce genome-

wide single cell mRNA expression profiles (scRNAseq) in CD4+ tumor-infiltrating 

lymphocytes (TILs) and CD4+ dLN cells. We sorted GP66-specific T cells from dLNs, as 
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these were the only subset of dLN CD4+ T cells for which tumor specificity could be 

ascertained. Among TILs, we noted that ~87% of GP66-specific CD4+ T cells expressed 

Programmed Cell Death 1 (PD-1, encoded by Pdcd1, Figure B.1C), a marker of persistent 

antigenic stimulation (Agata et al., 1996). Thus, to obtain a broad representation of antigen-

specific TILs, not limited to GP-specific cells, we used PD-1 expression as a surrogate for 

tumor antigen specificity and purified tumor CD4+ CD44+ PD-1+ T cells (PD-1hi TIL) for 

scRNAseq. We verified critical conclusions of the scRNAseq analyses by flow cytometry, 

comparing GP66-specific and PD-1hi TILs. 

 

Tumor-responsive CD4+ T cells are highly diverse 
 
We captured GP66-specific dLN (dLN) and PD-1hi TIL (TILs hereafter) CD4+ cells using the 

10x Chromium scRNAseq technology (Zheng et al., 2017b); additionally, we captured GP66-

specific CD4+ splenocytes from LCMV (Armstrong strain)-infected mice (Matloubian et al., 

1994) as a technical and biological reference (Figure B.1D, called ‘LCMV cells’ here). We 

excluded cells of low sequencing quality (low number of detected genes), potential doublets, 

and B cell contaminants, leaving 566 dLN, 730 TILs, and 2163 LCMV CD4+ cells for further 

analyses (Table B.1). 

We defined groups of cells sharing similar transcriptomic profiles using Phenograph 

clustering (Levine et al., 2015). Consistent with previous studies (Ciucci et al., 2019), 

LCMV-responding cells segregated into transcriptomic patterns characteristic of follicular 

helper T cells (Tfh, providing help to B cells) and type-1 T helper cells (Th1, secreting the 

cytokine IFN-g), among other subsets (Figure B.2A). Tfh cells expressed Tcf7 (encoding the 

transcription factor Tcf1), Cxcr5, and Bcl6 genes, whereas Th1 cells expressed Tbx21 

(encoding the transcription factor T-bet), Ifng (IFN-g), and Cxcr6. Low resolution clustering 

of TILs and dLN cells identified 5 main groups (Figure B.2B). Groups I and II displayed 
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features of Th1 cells, although group II differed by higher expression of Cxcr3, a chemokine 

receptor implicated in T cell trafficking (Xie et al., 2003) and lower expression of Ifng. Group 

III was characterized by expression of genes typical of regulatory T (Treg) cells, including 

Foxp3 and Il2ra, encoding CD25, the IL-2 receptor a subunit. Group V had attributes of Tfh 

cells, including expression of Bcl6 and Cxcr5, while group IV had intermediate levels of Bcl6 

and Cxcr5 but higher levels of Ccr7, which preferentially marks memory cell precursors at 

the early phase of the immune response (Ciucci et al., 2019; Fritsch et al., 2005; Marshall et 

al., 2011; Pepper and Jenkins, 2011). 

Increasing the resolution of subpopulation identification 

To further characterize CD4+ T cell populations, we developed a user-independent, data-

driven approach to increase clustering resolution while controlling for false discovery of 

clusters. Applying such high-resolution clustering separately to TILs and dLN cells, we 

identified 15 clusters (TIL clusters t1-t7 and dLN clusters n1-n8), refining the original five 

main groups (Figure 3.1A). Revealing unexpected diversity among Th1-like TILs, group I 

and II resolved into 5 subpopulations, including a distinct cluster (t5) expressing higher levels 

of Il7r (encoding the IL-7 receptor a chain) and lower levels of Tbx21 and Ifng. Only cluster 

group III (Tregs) included both TIL and a small subset of dLN cells and expressed 

intermediate levels of Tbx21. Groups IV and V, the bulk of dLN cells, resolved into 5 and 2 

clusters, respectively. In contrast to high Tbx21 expression across most TIL subpopulations, 

and consistent with flow cytometric analysis, dLN cells did not exhibit Th1 attributes nor 

high Tbx21 expression (Figure 3.1A, B.2C and B.2D). 

To support these observations, we analyzed the pooled TILs and dLN cells by t-

Distributed Stochastic Neighbor Embedding (t-SNE), a dimensionality reduction approach 

that positions cells on a two-dimensional grid based on transcriptomic similarity (Laurens van 
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der Maaten, 2008). Although performed on the pooled populations, t-SNE recapitulated the 

minimal overlap between TIL and dLN transcriptomic patterns (Figure 3.1B, left), 

irrespective of parameter selection controlling the balance between local and global 

similarities (Figure B.2E). The populations remained separated based on their TIL or dLN 

origin even after controlling for potential confounders (including TCR engagement on dLN 

cells as a result of GP66-tetramer-based purification (Appendix B Extended Data and 

Figure B.5), number of unique molecular identifiers (UMIs), and expression of ribosomal 

and mitochondrial coding genes, Figure B.2F). Furthermore, the five cluster groups (3.1A 

and B.1B) almost completely segregated from each other when projected on the t-SNE plot 

(Figure 3.1B, right). Overlay of gene expression confirmed co-localization of cells 

expressing high levels of cluster-characteristic genes (Figure 3.1C).  

Reproducibility assessment of subpopulations 

To verify the reproducibility of these observations, we analyzed a biological replicate 

consisting of 1123 TILs and 675 dLN GP66-specific cells captured from a separate set of 

tumors (Figure B.2G and Table B.1). Because batch-specific effects can potentially 

confound co-clustering from distinct experiments, we separately clustered cells from each 

replicate and compared these clusters to assess reproducibility. Within each experiment, we 

generated cluster-specific fold-change (FC) vectors recording expression of each gene in a 

cluster relative to all other clusters, thus bypassing potential capture-specific biases. We then 

evaluated pair-wise correlations between FC vectors of clusters across the two replicate 

experiments to identify clusters with significant transcriptome similarity (reproducible 

clusters). We found significant inter-experiment matches between most clusters (Figure 

3.1D), supporting the reproducibility of the underlying transcriptomic patterns. We filtered 

out the irreproducible clusters, retaining overall 40 out of total 47 clusters across TILs, dLN 
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and LCMV cells. Thus, scRNAseq analysis of tumor-specific CD4+ T cells identifies an 

unsuspected diversity of transcriptomic programs in the tumor microenvironment and dLN. 
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Figure 3.1: Characterization of CD4+ TIL, dLN and LCMV transcriptomes by 

scRNAseq. 

(A-D) TILs and dLN cells from WT mice at day 14 post MC38-GP injection 
analyzed by scRNAseq. (A) Heatmap shows row-standardized expression of selected genes 
across TIL and dLN clusters. Bar plot indicates the number of cells in each cluster relative to 
the total TIL or dLN cell number. (B) tSNE display of TILs and dLN cells, grey-shaded by 
tissue origin (left) or color-coded by main group (right, as defined in A). (C) tSNE (TIL and 
dLN cell positioning as shown in B) display of normalized expression levels of selected 
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genes. (D) Heatmap shows Pearson correlation between clusters’ FC vectors (as defined in 
text) across the two replicate experiments for TILs (left) and dLN (right). 

(E) TILs, dLN and LCMV cells from replicate experiments I and II analyzed by 
scRNAseq. Heatmap shows row-standardized expression of selected genes across clusters. 
Group II (purple) t5 separated into a distinct component from t3-4 (as defined in text). 
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Correlation analyses mitigate tissue-context-specific factors   

Meaningful comparison of phenotypes across scRNAseq datasets requires a methodology for 

synthetic integration of datasets. We demonstrate that correlation analysis provides a 

sensitive strategy to identify hidden correspondences between datasets. 

 

Tissue-context-specific factors drive conventional clustering 

Comparison of TILs, dLN, and LCMV cells showed little overlap, including between TILs 

and dLN cells (Figure B.2H, left). Thus, we considered that the impact of tissue of origin on 

the transcriptome was the primary driver of clustering and masked potential commonalities in 

effector programs. Indeed, most TIL subpopulations had attributes of tissue residency, 

including low S1pr1 and Klf2 expression, and high expression of Cd69 and Cxcr6, 

contrasting with LCMV and most tumor dLN clusters (Figure 3.1E) (Bai et al., 2007; 

Carlson et al., 2006; Kumar et al., 2017). Only group III Tregs, and separately cells 

undergoing cell cycle clustered together regardless of origin (Figure B.2H, right). These 

observations prompted us to search for potential underlying similarities among these 

disparate transcriptomic patterns. We found that data integration approaches designed to 

uncover similarities across experimental conditions could not overcome the strong separation 

resulting from biological context (Figure B.3A), and had limited ability to reveal functionally 

relevant differences (e.g. between Foxp3+ and Foxp3– TILs, Figure B.3B) (Butler et al., 

2018). 

Correlation analysis identifies correspondence among highly diverse transcriptomic patterns 

We considered the correlation analysis used above for cluster reproducibility assessment. 

This analysis distributed the set of 40 reproducible clusters into 6 ‘meta-clusters’ (with 

manual curation attaching meta-cluster 1b to 1a) (Figure 3.2A and Table B.2). Four meta-
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clusters (1, 3, 5 and 6) comprised cells of more than one tissue context (Figure 3.2A, right); 

meta-clusters 3 and 5 covered previously noted similarities among Treg and cycling cells, 

respectively, and meta-cluster 1 included cells with Tfh transcriptomic patterns (Figure 3.2A, 

right). Thus, the increased sensitivity of the correlation analysis establishes relatedness 

among the highly diverse transcriptomic patterns identified by conventional clustering. 

 

Characterizing transcriptomic similarities 

We further characterized the meta-clusters by identifying their defining overexpressed genes. 

Genes driving the Treg meta-cluster (meta-cluster 3 encompassing group III) included Foxp3, 

Il2ra and Ikzf2 (Figure 3.1E) and costimulatory molecules Icos and Tnfrsf4, encoding Ox40 

(Figure 3.2B left, Figure 3.1E), consistent with flow cytometric analysis (Figure 3.2D). In 

contrast, Gzmb (encoding the cytotoxic molecule Granzyme B) and Lag3 were overexpressed 

in TIL Tregs relative to dLN Tregs (and relative to other TIL subsets) (Figure 3.2B right, 

3.2C, 3.2E). Thus, the similarity analysis both confirmed the shared Treg circuitry across 

TILs and dLN and identified TIL-specific Gzmb cytotoxic gene expression in TIL Tregs. 

Unexpectedly, and contrasting with Foxp3-expressing Treg clusters, the correlation 

analysis failed to detect similarities between the three groups of T-bet-expressing cells, which 

were distributed into meta-clusters 2 (TILs group II t3-4), 4 (LCMV cells) and 6 (TILs group 

I t1-2) (Figure 3.2A). These clusters differed in their relative expression of multiple genes 

encoding for transcription factors, costimulatory molecules, and cytokines or chemokines or 

their receptors (Figure 3.1E). While all of them expressed T-bet, expression levels 

substantially differed among clusters. Other transcriptional regulators, including Stat4, Sub1 

(a transcriptional co-activator) and Prdm1 showed cluster-specific expression. Compared to 

LCMV-responsive Th1 cells, T-bet-expressing TIL clusters also showed higher expression of 

Il12rb, Il7r and Il10ra, and distinct patterns of chemokine and chemokine receptor 
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expression. Relative to the other T-bet-expressing cells, TILs group II t3-4 differed by lower 

expression of Bhlhe40, a transcription factor controlling inflammatory Th1 fate determination 

(Sun et al., 2001; Yu et al., 2018) and the upregulation of multiple type I IFN-induced genes 

(Ifit), including their downstream transcription factors Irf7 and Irf9 (Figure 3.2F top, 3.2G, 

B.3C), suggesting a specific impact of interferon type 1 signals in the tumor 

microenvironment. Thus, we designated group II t3-4 as interferon stimulated cells (Isc 

hereafter) and group I t1-2 as Th1. 

Aside from not expressing these interferon type 1 signals, Th1 TILs differed from other 

T-bet-expressing cells by expressing Killer Cell Lectin (Klr) genes (Figure 3.2F bottom, 

3.2G, B.3C), characteristic of terminally differentiated effector cells (Joshi and Kaech, 2008; 

Jung et al., 2010). Of note, Th1 TILs did not express the Natural Killer (NK) T cell-specific 

transcription factor PLZF, indicating they were not NK T cells (Figure B.3D). Importantly, a 

recent study of human colon cancer identified a CD4+ TIL subset with elevated Bhlhe40 

expression (Zhang et al., 2018). This subset was clonally expanded and enriched in tumors 

with micro-satellite instability, suggesting specificity for tumor antigens. Th1 TILs identified 

in our study exhibited features characteristic of the human colon TIL subset, including 

expression of Bhlhe40 and Lag3 (Figure 3.2G and B.3C), but differed in downregulation of 

Gzmb, Irf7 and several other molecules (overall 40 upregulated and 10 downregulated genes 

out of total 216 human colon Th1 genes, GSEA (Subramanian et al., 2005) p = 0.001, Table 

B.3). This suggested that the impact of Bhlhe40 expression on the TIL transcriptomes is 

largely consistent but also context-specific. 
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Figure 3.2: Correlation analysis identifies cluster effector fate relatedness and 

divergence. 

(A) Heatmap defines meta-clusters based on Pearson correlation between TIL, dLN and 
LCMV cluster FC vectors (as defined in text) (left). Indicator tables show tissue origin and 
cell type color-code per cluster (right). 

(B-E) Comparison of dLN Tregs and TIL Tregs (respectively clusters t6-7 and n1 as 
shown in Figure 3.1A). (B) Contour plots of dLN Treg (orange) or TIL Treg (blue) cell 
distribution according to scRNAseq-detected normalized expression of Icos vs. Tnfrsf4 (left) 
and Gzmb vs. Lag3 (right). (C) Violin plot of Lag3 and Gzmb scRNAseq expression in Treg 
vs. non-Treg TIL and dLN populations (Unpaired T test, ** p < 0.01, *** p < 0.001); bands 
indicate quartiles (25th, 50th and 75th quantile). (D) Overlaid protein expression of ICOS in 
FoxP3+ TILs, dLN cells and splenocytes from tumor-free mice control. (E) Protein 
expression contours of Granzyme B vs. LAG3 in FoxP3+ TILs and FoxP3+ dLN cells. 
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(F-G) Comparison of TIL Th1 and Isc (respectively clusters t1-2 and t3-4 as shown in 
Figure 3.1A) to LCMV Th1 (as shown in Figure 3.1E and S2A) (F) Contour plots of TILs 
group I Th1 (orange) and group II Isc (blue) cell distribution according to scRNAseq-detected 
normalized expression of Irf7 vs. Ifit3b (top) and Klrc1 vs. Lag3 (bottom). (G) Heatmap 
shows row-standardized expression of differentially expressed genes across TILs group II Isc, 
TILs group I Th1 and LCMV Th1. 

 

Similarity analysis identify potential link between dLN and TIL Th1 

Meta-cluster 6 unexpectedly associated Th1 TILs and a dLN Ccr7+ cluster (Group IV cluster 

n5) (Figure 3.2A), suggesting a potential link between TILs and dLN. The association was 

driven by Bhlhe40, the TNF superfamily members 8 (Tnfsf8 encoding CD30L) and 11 (Tnfsf11 

encoding RANKL), DNA-Binding protein inhibitor Id2 (Figure 3.3A and 3.1E). The potential 

connection between Ccr7+ dLN cells and Ifng+ TIL Th1 was specific to Ccr7+ cluster n5, which 

segregated from n6 and other dLN subsets (Tfh and Treg) based on higher expression of Ifng 

(but not Tbet) and of Cd200 (Figure 3.3B). Flow cytometry identified a corresponding CD200hi 

subset among CXCR5loCCR7+ (group IV) but not CXCR5+CCR7– Tfh cells (Figure 3.3C, 

B.3E and B.3F). Multiple dLN Ccr7+ clusters displayed central memory precursor-like (Tcmp) 

features defined in LCMV infection (Ciucci et al., 2019), including the expression of 

transcription factors Tcf7, Klf3 and Rora, but lacked expression tissue residence mark Cd69 

(Figure 3.1E) (overall 18 upregulated and 12 downregulated genes out of total 69 Tcmp genes 

(Ciucci et al., 2019), Table B.3). This indicated modest correspondence with previous 

assessments of T cell memory. 

Transcriptomic divergences between tumor- and viral-responsive CD4+ T cells 

Meta-cluster 1 comprised LCMV Tfh clusters and dLN group V Tfh clusters (Figure 3.2A). 

We verified that the abundance of dLN Tfh cells was similar in mice carrying MC38-GP and 

MC38 tumors (Figure B.3G), indicating that this response is not a consequence of GP 

expression. Flow cytometric analysis confirmed key Tfh attributes in dLN and LCMV cells 
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(Figure 3.3D), although dLN Tfh cells differed from LCMV-responsive Tfh cells by lower 

expression of Icos and the upregulation of the transcription factor Maf (Figure 3.3E, 3.1E 

and B.3H). Unexpectedly, meta-cluster 1 associated the dLN and LCMV Tfh clusters with a 

subpopulation of group II TILs (cluster t5) (Figures 3.2A and 3.1A), based in part on 

intermediate expression of Tcf7 (1.6 fold relative to other TIL subpopulations) (Figure 3.3F 

and 3.1E), a transcription factor preventing terminal differentiation of effector CD8+ T cells, 

including TILs (Brummelman et al., 2018; Im et al., 2016; Kurtulus et al., 2019; Siddiqui et 

al., 2019; Wu et al., 2016; Zhou et al., 2010). Flow cytometric analysis confirmed the 

abundance of GP66-specific IL7R+ TILs (Figure 3.3G). In addition, the Tcf7int t5 cluster 

showed expression of the transcription factor Klf2 and its downstream target Sphingosine-1-

phosphate receptor 1 (S1pr1) (Bai et al., 2007; Carlson et al., 2006), indicating retention of a 

cell trafficking transcriptional program (Figure 3.3F and 3.1E) and contrasting with the 

interferon-driven Isc TILs. Thus, we designated cluster t5 of group II TILs as putative non-

resident cells (nRes hereafter). 

Thus, the meta-cluster analysis overcomes divergences resulting from tissue of origin 

and conventional effector programs to identify subdominant transcriptomic similarities 

among conventional (non-Treg) cells. To further delineate the relationships between such 

subsets, we used Reversed Graph Embedding (Trapnell et al., 2014), which has been used to 

estimate progression through transcriptomic states. This placed the dLN Tfh and TIL Th1 and 

Isc at the end of an inferred path (Figure 3.3H), nRes TILs in the middle of the continuum 

and Ccr7+ dLN cells between Tfh and nRes. These analyses, combined with the similarities 

described by meta-clustering, support the notion that the tumor-responsive CD4+ T cell 

response may be characterized as a transcriptomic continuum; they confirm the 

transcriptomic distance between Th1 and Isc TILs, even though both subsets express T-bet, 

the Th1-defining factor. 
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Figure 3.3: Tissue- and subpopulation-specific transcriptomic alterations. 

(A) Violin plots of differentially expressed genes across TILs group I Th1, dLN group IV 
Ccr7+ (respectively clusters t1-2 and n5 as shown in Figure 3.1A) and all other TIL and dLN 
populations. 

(B) Heatmap shows row-standardized expression of differentially expressed genes across 
dLN Ccr7+ clusters (group IV n5-6) and other dLN clusters (Treg and Tfh clusters n1 and n7-
8, respectively). 

(C) Top panel shows protein expression contours of CXCR5 vs. CCR7 in FoxP3- dLN 
cells. Bottom panel shows overlaid protein expression of BCL6 and CD200 in CCR7+ and 
CXCR5+ dLN cells and naive CD4+ splenocytes from tumor-free mice control. 

(D) Protein expression contours of CXCR5 vs. PD-1 in dLN and LCMV cells. 
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(E) Contour plot of dLN group V Tfh (red, clusters n7-8) and LCMV Tfh (blue) cell 
distribution according to scRNAseq-detected normalized expression of Icos vs. Maf (top). 
Overlaid protein expression of ICOS in dLN and LCMV Tfh cells and naive CD4+ 
splenocytes from tumor-free mice control (bottom). 

(F) Heatmap shows row-standardized expression of differentially expressed genes across 
TILs Isc and nRes clusters (as defined in text, group II t3-4 and t5, respectively) and all other 
TIL clusters (Th1 and Treg clusters t1-2 and t6-7, respectively). 

(G) Fractions of IL7R+FoxP3- cells out of total PD-1+ or GP66+ TILs. 
(H) Trajectory analysis of PD-1+ TILs and GP66+ dLN cells indicating individual cells 

assignment into a transcriptional continuum trajectory. Group II nRes cluster (t5) is color-
coded in orange in contrast to annotations in other figures. 
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Correspondence to T cell dysfunction and human tumors 

 
We reasoned that expression of a dysfunction-exhaustion program (Thommen and 

Schumacher, 2018) may account for the limited relatedness between LCMV and TIL Th1 

cells, as TILs were sorted on high PD-1 expression for scRNAseq. 

 

TILs subpopulation-specific dysfunction gene programs 

To assess the impact of exhaustion on TIL subpopulation, we defined TIL Th1, Isc, nRes and 

Treg gene signatures as the genes preferentially expressed in each subpopulation relative to 

all other TILs (Table B.4). Consistent with expression of multiple exhaustion marks in TILs 

(Figure 3.4A), we find a significant overlap between multiple viral-response exhaustion gene 

signatures (MSigDB) (Liberzon et al., 2015) and the Th1 and Treg signatures (Table B.5). 

Separate analysis of a previously reported gene signature characterizing CD4+ T cell 

dysfunction during chronic infection (Crawford et al., 2014) indicated a significant overlap 

with the Isc signature, whereas the overlap of that signature with Th1 and Treg signatures 

was more limited (Figure B.4A, Table B.6).  

We next examined if the expression of exhaustion genes was homogenous among those 

TIL subpopulations. Because the overlap with the viral exhaustion signature (Crawford et al., 

2014) was too limited for this analysis, we considered a signature encompassing dysfunction 

marks shared across cancer and chronic viral infection (Chihara et al., 2018). While 55 genes 

from TIL Th1, Isc, and Treg signatures were also part of this broader dysfunction signature, 

overlap was heterogeneous, with a pattern of mutually exclusive gene activation among TIL 

subpopulations (Figure 3.4B). This identifies dysfunction programs specific of effector 

subtypes (Figure 3.4B, Table B.6). Of note, we did not detect overlap between any 

dysfunction-exhaustion signature and nRes cells (Figure 3.4B, Table B.6). This is in line 
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with these cells’ residual expression of Tcf7, which in CD8+ T cells marks cells with 

conserved response capabilities (Brummelman et al., 2018; Im et al., 2016; Siddiqui et al., 

2019; Wu et al., 2016). 

The Isc signature correlates with poor clinical prognosis in human tumors 

Last, we examined if MC38-GP TIL transcriptomic patterns were observed in human TILs. 

We analyzed published CD4+ Human liver cancer TILs (TILHLC) scRNAseq data pooled 

across six treatment-naive patients (Zheng et al., 2017a). High resolution clustering separated 

the TILHLC cells into 11 clusters, which could be combined into groups displaying features of 

Th1, Isc, Treg TILs and cells undergoing cell cycle (Figure 3.4C). While pooled analysis of 

mouse MC38-GP CD4+PD-1+ TILs (TIL) with TILHLC only identified similarities between 

cells undergoing cell cycle (Figure B.4B and B.4C), cluster correlation analysis indicated 

significant similarities between TIL and TILHLC Tregs, cell cycle, and Isc clusters (Figure 

3.4D, top). We focused on the TIL Isc pattern, which differed the most from previously 

reported Th1 and Treg transcriptomic profiles. Comparison of overexpression patterns in TIL 

Isc to the human counterpart indicated a significant overlap which included type I IFN-

induced genes and the key transcriptional regulator of type I interferon IRF7 (Figure 3.4D 

bottom and Table B.7). Thus, the Isc signature newly identified among mouse CD4+ TILs is 

found in human tumors. 

These finding were not unique to liver tumors, as analysis of CD4+CD3+ human 

melanoma TILs (Sade-Feldman et al., 2018) across 48 lesions (TILMel) identified a cluster 

enriched in Isc characteristic genes, among other populations (Figure B.4D). To investigate 

the relationships between Isc transcriptomic program and clinical prognosis, we evaluated the 

association between the expression in TILMel of Isc signature genes (defined in MC38-GP TILs) 

and patient response to checkpoint therapy. Relative to responders, non-responsive tumors had 
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significantly higher fractions of cells expressing Isc signature genes (49 out of 108 genes, 

adjusted p-value < 0.05), including the signal transducer STAT1 and the transcriptional 

regulators IRF9 and IRF7 (Figure 3.4E and Table B.8). This indicated negative association 

between the Isc transcriptomic program and patient response to checkpoint therapy. Thus, the 

methods used in the present study identify transcriptomic programs shared by multiple tumor 

types and of potential prognostic significance. 
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Figure 3.4: Correspondence to human data and dysfunction gene signatures. 

 (A) Heatmap shows row-standardized expression of selected exhaustion genes across 
TIL, dLN and LCMV clusters from replicate experiments I and II. 

(B) Analysis of IL-27 signature genes overlapping with TIL subpopulation characteristic 
genes. Heatmap shows Pearson correlation (left) and row-standardized expression of 
overlapping genes across TIL Th1, Treg, Isc and nRes cells (respectively clusters t1-2, t6-7, 
t3-4 and t5 as shown in Figure 3.1A) (right). 

(C) Analysis of TILHLC (as defined in text). Heatmap shows row-standardized expression 
of selected TIL characteristic genes across TILHLC clusters. 

(D) Heatmap defines meta-clusters based on Pearson correlation between TILHLC and TIL 
cluster FC vectors (top). Overlap of genes characteristic of human liver TIL Isc cluster with 
mouse TIL Isc gene signature (bottom). 
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(E) Analysis of TILMel (as defined in text). Box plots show the percentage of cells 
expressing selected interferon signaling characteristic genes out of total CD4+CD3+ cells 
across responder and non-responder lesions (Unpaired Wilcoxon test, * p < 0.05, ** p < 0.01, 
*** p < 0.001). 
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Chapter 4: Discussion and Perspective 

 

This dissertation describes new analytical tools providing improved understanding of the 

clinically-relevant functional interactions in cancer and of the diversity of immune responses 

to tumors. Using high-throughput molecular data from preclinical cancer models and 

pancancer clinical studies, the computational frameworks described here touch upon central 

problems of the fight against cancer and the linkage between genotype to phenotype, 

including patient survival and response to therapy, and the phenotypic diversity of anti-tumor 

immune responses. 

 

Genetic interactions 

Analyzing molecular and clinical data across thousands of tumors of dozens of types, we 

comprehensively map the landscape of 12 basic GI types in cancer. Our work extends previous 

investigations of gene interactions in cancer, which have been almost entirely focused on 

synthetic lethality (SLs, corresponding to positive effect on survival in bin 1), with a few 

studies of synthetic dosage lethality (SDL: corresponding to bins 3 and 7), to a total of 12 types 

of interactions. The identified GIs are predictive of patient survival and drug response, explain 

tissue-specificity of cancer driver genes, and reveal novel functionally and clinically relevant 

breast cancer subtypes. 

The EnGIne pipeline has bypassed multiple computational bottlenecks by 

incorporating a Log-Rank analysis allowing to filter gene pairs lacking association with 

survival regardless of interaction type and applying increasingly stringent methodologies 

requiring substantial computation time, thereby detecting highly significant multi-type GIs. 
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Thus, EnGIne provides an unprecedented opportunity to conduct an unbiased whole-genome 

analysis of multi-type genetic interactions. 

The high number of hypotheses being tested poses a significant limitation to data-

driven approached for genetic interactions discovery. EnGIne enables to resolve this limitation 

by using thousands of tumor samples and generating a large-scale background distribution of 

shuffled GIs for defining the GI significance cutoffs. While this approach is plausible for 

pairwise genetic interaction identification, the problem exacerbates in studying more complex 

hypotheses such as exploration of higher-order interactions (e.g. gene triplets). Thus, future 

studies may consider limiting the hypotheses space by exploring higher-order GIs involving a 

specific gene of interest, thereby reducing the problem to a pairwise GI identification task. 

Alternatively, increasing the number of samples by integrating additional data sources into a 

dataset several folds larger than TCGA may enable such exploration, but computational power 

will become the bottleneck. 

In addition to increasing the statistical power, integrating information across cancer 

types allowed EnGIne to identify shared transcriptional patterns, rather than tissue-context-

specific patterns. While most cancer studies focus on a specific tissue of interest, we 

hypothesized that although different cancer types are vastly divergent in transcriptomic 

profiles, some shared mechanisms may be identified and reflected in genetic interactions. Our 

findings support the paradigm of developing generalized diagnostic tools and therapies for 

treatments across multiple cancer types. Similarly, we chose to integrate and identify 

commonalities across various demographic groups rather than studying various them 

independently. However, previous studies recognized distinct molecular and clinical patterns 

across genders and races (Dorak and Karpuzoglu, 2012; Yuan et al., 2016). Building tissue-

specific GI networks may be of interest for future investigations, provided larger scale datasets. 

Thus, while integrative analysis enables the discovery of shared molecular patterns, GI 
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networks may be highly polymorphic across clinical- and demographic-groups. Given the 

statistical power discussion above, such investigations may benefit from focusing the analysis 

on specific target genes of interest rather than conducting full genome-wide analysis as 

described here. Furthermore, contrasting the tissue-specific GI networks’ information should 

identify molecular patterns exclusive to specific cancers and may enhance our understanding 

of the properties of tumorigenesis unique to each tissue. 

Additional complexity inherent to genetic interaction inference originates from 

modeling interaction effects versus individual gene effects. Genetic studies in yeast (Costanzo 

et al., 2016; van Leeuwen et al., 2017) considered pair-wise interactions relative to additive 

phenotypic effect on cell viability in vitro. Our study has bypassed assumptions pertaining the 

nature of the individual gene effect by incorporating their information in a regression model 

and identifying cases where the interaction term is deemed highly informative for survival 

prediction in addition to the individual gene information. 

In contrast to previous data-driven approaches for GI identification used in-vitro cell 

line viability measurements across genome-wide knock-out experiments, allowing to assess the 

concordance between in-vivo to in-vitro data. However, knock-out in-vitro experiments do not 

capture the GIs involving overactivation states of genes, thus preventing the generalization of 

previous methodologies to multi-type (including medium and high expression levels) in-vitro-

supported GI discovery. Therefore, future large-scale in-vitro studies may benefit the 

investigation of genetic interactions provided that the experimental techniques allow for more 

sensitive control of gene expression levels and capture cell line viability differences across low, 

medium and high expression levels, similarly to our binning approach. This would allow 

biologically meaningful integration of in-vivo and in-vitro data into the EnGIne model as well 

as provide the ability to perform follow-up experimental validation studies of multi-type GIs. 
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Multiple factors are worth considering when deciding on the strategy to assign tumors 

into bins based on gene activity levels. For instance, a previous study of synthetic lethality in 

glioblastoma (Szczurek et al., 2013) defined the high (low) state as mRNA expression higher 

than the 80th quantile (lower than the 20th quantile, respectively). We chose to partition gene 

activity into 3 quantiles of low, medium, and high activity levels within cancer samples. We 

have shown the robustness of the detected GIs (Appendix A Extended Results 1). Besides its 

simplicity and being non-parametric, our strategy naturally allows us to search for cases where 

even the normal (or medium) levels of expression of a gene may be associated with fitness or 

survival effects, depending on the states of other genes (e.g., bins 2 and 6). 

The diagnostic implications of the GI network include multiple key strategies for 

prioritizing drug administration based on patient-specific genomic features. First, the GI 

network can be used to estimate the impact of a drug target gene inhibition or activation, 

providing opportunity to administer drugs based on the anticipated functional impact of each 

drug. Additionally, given a specific drug intervention, resistance mechanisms can be modelled 

by identifying the positive interactions that could be activated post-treatment. Consequently, 

one may estimate an optimal combination therapy inducing high negative GI impact on cancer 

cells and minimizing positive impact associated with resistance. 

Given that EnGIne is using bulk RNA-Sequencing rather than single-cell genomic 

measurements, the pipeline is limited in sensitivity to identify molecular patterns of tumor 

clones. Since tumors are composed of multiple phenotypically distinct subpopulations, the 

molecular patterns identified in this study represent the average trends across the highly 

heterogeneous tumors. Functional studies of GI activation within tumor clones using 

scRNAseq should provide a substantially advance our understanding of sensitivity or resistance 

to therapy. 
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One caveat of genome-wide association studies is asserting which genomic features 

are causal to change the course of disease. While statistical association between genotypes to 

phenotypes may be informative for developing diagnostic tools, clinical interventions rely on 

factors whose modification would cause an alteration in the clinical outcome. The association 

versus causality problem may exacerbate in large scale association study of pairwise genomic 

features, such as the analysis described in this thesis. Our correlation analysis indicated that the 

set of identified GIs is not dominated by correlated features, thus demonstrating that the 

diversity and abundance of multi-type interactions is likely to be representative of the true 

diversity. However, integrating additional molecular data types, such as cell lines, mutation, 

copy number variation (CNV) and protein expression may enable identifying a smaller set of 

GIs exhibiting consistent trends across a larger feature space and therefore providing additional 

confidence in their putative causal role. Experimental validations will be required to 

demonstrate the causal role of these GIs in pre-clinical models. 

The set of functionally active GIs provides a complementary molecular 

characterization of tumors to those obtained by histology and contemporary individual gene-

based transcriptomic profiles. A better concordance of the GI-based breast cancer subtypes 

with survival trends may be partly because GIs were inferred based on their impact on survival. 

However, interestingly, the detected subtypes are additionally marked by distinct mutational 

profiles, which were not utilized in inferring the GIs. Overall, these results underscore the 

importance of molecular context represented by functionally active GIs. 

Identifying pairwise gene interaction is only a first step toward capturing the true 

complexity of cellular networks. Future work can go beyond the 12 basic GI types studied here 

to investigate more complex GI types that involve different compositions of these basic types; 

for instance, a given interacting gene pair can confer tumor fitness benefit in multiple co-

activity bins and reduce tumor fitness in others. Thus, while the results presented here go 



 

 

61 
 

markedly beyond previous definitions and analyses of GIs, they only begin to explore the full 

scope and clinical potential of GI-based analyses of cancer, awaiting future investigations. 
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CD4+ T cell diversity by scRNAseq 

Using scRNAseq and data-driven computational approaches, our investigation of tumor-

responding CD4+ T cells identifies an unsuspected transcriptomic diversity. While recent 

scRNAseq studies shed light on the Treg component of CD4+ TILs (Ahmadzadeh et al., 2019; 

Azizi et al., 2018; Zhang et al., 2018; Zheng et al., 2017a), our study assessed the 

transcriptomic patterns of both regulatory and conventional components, in the tumor itself 

and in draining lymphoid organs. We identify new transcriptomic patterns and find a 

heterogeneous distribution of exhaustion gene signatures among TILs subtypes, highlighting 

the need for extensive analyses of cell-specific effects of treatments targeting exhaustion 

genes. 

Even though most conventional (Foxp3–) tumor-responsive TILs express T-bet, the 

Th1-defining transcriptional regulator, our study identifies novel and diverse transcriptomic 

patterns with unexpectedly little similarity to prototypical virus-responsive Th1 cells. This 

includes a strong TIL-specific IFNg response across subpopulations. Thus, conventional 

helper effector definitions, derived from studies of responses to infection, are inaccurate 

descriptors of responses to tumors. The newly identified Th1-like transcriptome with marks 

of type I IFN stimulation highlights this conclusion: it was observed among TILs but not 

LCMV-responding cells, even though LCMV drives a strong type I IFN innate immune 

response (Cousens et al., 1999).  

The role of type I IFN in cancer is not well characterized. Previous studies associated 

type I IFN with both inflammation and immunosuppression in cancer (Snell et al., 2017). 

However, our cluster similarity analysis projects the interferon-responsive transcriptomic 

pattern onto human tumors, overcoming potential sample disparity, and demonstrates its 

association with poor response to checkpoint therapy. This suggests a negative impact of a 

strong type I IFN signalling on anti-tumor responses in the context of therapies such as PD-1 
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blockade. Follow-up studies will provide additional insight into the role of Isc TILs and their 

emergence in the context of anti-tumor responses. Initially, flow cytometric analysis of Isc 

genes may enable isolating these cells and facilitate functional validations. Such 

investigations may demonstrate the effects of depleting or enriching the tumor 

microenvironment with Isc TILs on tumor growth in pre-clinical models. Additionally, 

intervention in IFN stimulation mechanisms on CD4+ T cells may demonstrate the ability to 

control the Isc population abundance in-vivo. Consequently, these findings may be translated 

into clinical settings as predictive biomarkers allowing to monitor the patient response to 

checkpoint blockade or developing therapeutic agents to modify the lymphocyte population 

composition and induce durable anti-tumor responses. 

Investigating tumor-specific T cell responses in draining lymphoid organs revealed 

striking differences with TILs. The absence of Th1 cells from tumor dLN was unexpected 

and contrasted with infections, including with LCMV or with Leishmania major, a typical 

Th1-driving parasite with kinetics of clinical progression similar to that of experimental 

tumors, and in which Th1 dLN cells are important contributors to the response (Belkaid et al., 

2000). In contrast, the tumor elicited strong, tumor-specific Foxp3-negative Tfh-like 

responses in dLN. While Tfh differentiation may divert T cells from more efficient (e.g. 

IFNg-producing) anti-tumor differentiation, it provides support for the tantalizing possibility 

that tumor-elicited B cell responses could be exploited against cancer (Carmi et al., 2015). It 

is also possible that this subset includes a stem cell-like component similar to the Cxcr5+ 

CD8+ dLN T cells that serve as targets for immunotherapy targeting PD-1 signaling (Im et al., 

2016), or cells with similar properties in the tumor micro-environment (Siddiqui et al., 2019). 

Studying the migration and differentiation dynamics may validate the similarity and 

trajectory analysis which was suggestive of a connection between Ccr7+ and nRes 

(Tcf7+S1pr1+) transcriptional program in dLN to Th1 and Isc subsets in TME. To this end, 
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blocking lymphocyte migration or tracking lymphocytes during migration will shed light into 

the origins of Th1 and Isc in secondary lymphoid organs. An alternative explanation to the 

disconcordant transcriptomic patterns between dLN and TIL may originate from obtaining 

only a single snapshot of the population composition at day 15 after MC-38GP injection 

rather than multiple time points. Since the migration dynamics between the dLN and the 

TME may occur earlier than 15 days post-injection, a time-course analysis of population 

composition should indicate whether the TIL-specific subpopulations leave the dLN prior to 

adopting the Th1 and Isc transcriptomic features or alternatively, they develop these features 

early and leave shortly after tumor engraftment. 

While we have focused on the prognostic utility of the Isc gene signature, a similar 

strategy can be used to model the multiple associations between subpopulation and clinical 

responses. By measuring continuous phenotypes such as tumor growth or patient survival, 

one may integrate the abundance of all the identified subpopulations in a multiple regression 

model. Integrative analysis of the full diversity of TIL subpopulations may inform us of the 

joint contribution of cell types and states to the anti-tumor capacity of the immune response. 

Given these associations, one may validate them in pre-clinical models by modifying the 

population composition in-vivo and measuring tumor growth. These studies will pave the 

way for rational combination therapies designed to alter immune composition in patients. 

The data-driven approaches introduced in this work will allow researchers to perform 

unbiased investigations of scRNAseq datasets without imposing arbitrary constraints on the 

analysis outcomes, such as the clustering resolution. Previous studies have defined the 

clustering resolution based on presumptions on the population composition or according to 

saturation of explained variance as a function of number of clusters. However, these 

approaches are insufficient for unbiased exploratory analysis of poorly characterized cell 

populations. Our framework allows to measure the confidence one should assign to multiple 
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high resolution clustering analyses and provide guidance in determining the appropriate 

resolution. 

Furthermore, we provide the means to conduct large scale comparative analysis across 

experiments, tissue environments and experimental settings, including correspondence 

between preclinical and clinical genomic measurements (i.e. mouse to human 

transcriptomes). Thus, the analytical approaches described in this thesis provide new ways to 

assess the extent of which transcriptomic patterns are shared or distinct across settings and 

establish the relevance of pre-clinical findings in human tumors. Additionally, we identify 

reproducible marker genes contributing the divergent phenotypes across experimental settings 

and establish the putative drivers of shared or unique molecular patterns across datasets. 

Future work will extend on the computational contributions by introducing a 

hierarchical structure to the clustering analyses. Hierarchical modelling should provide 

improved sensitivity in differential expression analysis and marker discovery. Additionally, 

hierarchical tree structure may be transformed into a decision tree, allowing the use of 

hierarchy-defining genes to classify new cells into the correct subpopulation. This idea may 

resolve the limitation where certain subpopulations defined via conventional clustering are 

deemed unresolved as they may contain a mixture of cell types. 

In conclusion, this study provides a high-resolution characterization of tumor-

reactive CD4+ T cell responses in lymphoid organs and the tumor microenvironment. We 

identify previously unrecognized transcriptomic patterns among tumor-specific T cells and 

provide an extensive mapping of the CD4+ T cell immune response against cancer. We 

describe new analytical approaches of broad applicability, including to clinical data, that 

combine high resolution dissection of transcriptomic patterns and synthetic data integration to 

identify correspondences between apparently unrelated cell differentiation states. 
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Appendix A - Genetic Interactions 
 

Extended Results 

1. Robustness analysis of genetic interactions 

We assessed the robustness of threshold selection throughout the EnGIne pipeline, including: 

a) Modifications of bin quantile boundaries: we kept the 3×3 structure and either 

increased or decreased the corner bins by 10%, corresponding to ~170 added or 

removed samples per bin 

b) Log-rank p-value based most significant quantile: scanning between top 5% – 30% 

c) Cox regression FDR threshold: scanning between 0.01 – 0.1  

Notably, the relatively small changes in binning thresholds described in (a) result in moving 

hundreds of samples in or out of the bins (170 ~ 340 samples), thus it is a significant change 

of the bin size and composition. For computational tractability of exploring a large parameter 

space, we limited the set of genes to 557 Cosmic Cancer Census (Futreal et al., 2004) genes 

(Tier 1 and 2) corresponding to 154,846 possible gene pair combinations. As shown in Table 

A.7, for the alternate binning, across all log-rank thresholds, 57%-96% of the gene pairs are 

recapitulated. Likewise, setting the log-rank quantile threshold to 0.8 (top 20% retained), 

across various Cox FDR thresholds, 45%-56% of the GI detected using the default setting are 

captured. For instance, at log-rank threshold = 0.8 and Cox regression FDR = 0.1 yields 

~33,000 GIs (regardless of the binning threshold), and these include 53%~55% of the GIs 

defined using the original binning method. While the EnGIne pipeline offers users to set the 

above parameters, to demonstrate the utility of EnGIne in the main results we have used a 
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more stringent Log-rank p-value based quantile and Cox FDR in the genome wide analysis to 

make the execution time of the pipeline tractable. 

2. Correlation analysis of genetic interactions 

To assess whether the full GIs network is dominated by correlated gene expression patterns, 

we compared between correlations found between GI pairs to shuffled GIs. For a pair of GIs 

A = (x1,y1) and B = (x2,y2), we defined the Pearson correlation statistic (PCS) between A and 

B as 𝑀𝑖𝑛(𝜌(𝑥5, 𝑥6), 𝜌(𝑦5, 𝑦6)), quantifying whether the two GIs are independently inferred. 

Then, we calculated the PCS for GI pairs within each GI type and compared them to PCS 

calculated for the shuffled GI pairs from the same GI type. Given the high number of GIs and 

the infeasible number of pairs to test, we selected up to 1000 GIs randomly from each GI type 

and calculated the corresponding shuffled GI list of the same length. The PCS comparisons 

indicated similar distributions of the actual and shuffled GIs across all GI types (Figure 

A.2B, Table A.8). Although GI type +9 exhibited higher PCS relative to shuffled, the effect 

size was marginal (Table A.8). Thus, we conclude that the full GI network is not dominated 

by correlated gene expression patterns. 

3. GI based prediction of patient survival 

Recall that a GI is represented by a quadruple comprising of a gene pair (x,y), a symmetric 

bin b (1, 2, 3, 5, 6, 9; Figure 2.1), and its effect on tumor fitness (positive or negative), and a 

GI is deemed functionally active in a specific tumor sample if the joint expression levels of 

the genes x, y, in the tumor fall in bin b. We turned to assess the extent to which the 

aggregate effect of functionally active GIs in a tumor predicts patient survival (the individual 

GIs are indeed inferred while considering survival but here, we are interested in the predictive 

power of their combined effects). The naïve tumor-specific GI survival score is computed as 
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the difference between the number of functionally active GIs in a tumor with positive effect 

on survival and the number of those with negative effect on survival. 

We compared the GI-based survival prediction accuracies with a comparable gene-

level approach (which is based on assessing the expression levels of the genes that are 

significantly associated with patient survival) as well as a combined gene and GI-based 

approach. Figure A.4A shows the survival prediction accuracy using the widely used C-

index (CI) metric, both via cross-validation within TCGA (Weinstein et al., 2013) and on 

independent METABRIC (Curtis et al., 2012a) breast cancer dataset. As shown, pan-cancer 

risk prediction based on the predicted GIs compares favorably with the comparable gene-

level approach both in cross-validation, and more so on the METABRIC (Curtis et al., 2012a) 

independent dataset － suggesting good generalizability. 

Applying the fully supervised individual gene-level approach (Yuan et al., 2014) 

(individual gene feature selection based on association with survival, further dimensionality 

reduction with LASSO Cox and a final Cox model to obtain genes’ coefficients for survival 

risk prediction) yields a comparable accuracy in cross validation (CI » 0.63) but a lower 

accuracy over the independent dataset (CI » 0.55). Finally, a previous study has reported a CI 

of 0.71 using a supervised approach specifically on Kidney Renal Clear Cell Carcinoma 

(KIRC). We ensured that a lower gene-wise accuracy that we observe is not simply due to our 

filtering and implementation (methods); applying the fully supervised individual gene-level 

approach on KIRC subset of the filtered dataset yields CI » 0.71, recapitulating the accuracy 

reported in the original publication (Yuan et al., 2014). 

In Figure A.4B, we present the performance of the GI-based approach using each of 

the 6 GI types. As evident, interactions involving both genes in their wild type mid-activity 

levels have negligible predictive power on survival, testifying that more extreme levels of 
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gene expression tend to be involved in functional GIs affecting survival. Figure A.5 shows 

the performance based on an alternative metric where we dichotomized the extreme (at 

varying thresholds from 10% to 50%) predicted low- and high-risk groups and quantified the 

difference in their area under their KM survival curves . The survival prediction performance 

of the full compendium of 12 (positive and negative) GI types is shown in Figure A.6. 

4. Assessment of potential confounding factors 

We assessed genomic-instability and tumor purity as potential confounding factors and found 

that the vast majority of the discovered GIs remain highly significant. The genomic instability 

index measures the relative amplification or deletion of genes in a tumor based on the SCNA 

(Bilal et al., 2013) and the tumor purity is an estimate of the proportion of cancer cells in the 

sample (Aran et al., 2015). We recomputed the controlled Cox survival step (Figure 2.1E) 

for all the candidates and shuffled candidates obtained from the previous step of the pipeline, 

with the addition of the two covariates － genomic instability and tumor purity, to calculate 

the empirical FDR threshold (0.01 quantile). We obtain 77630 confounder-corrected GIs 

where (1) 60302 of the 71946 original GIs and (2) 1405 of the 1704 original PPI GIs were 

detected. Modifying the FDR threshold to 0.1 yields a list of 154450 confounder-corrected 

GIs which contain almost all of the 72k original GIs with the exception of 48 GIs that are not 

included (these 48 GIs remain the exception when increasing the FDR quantile threshold to 

0.2, reflecting the set of highly confounded GIs, Table A.6). 45 of the confounded GIs 

involve DEFB21, a member of the beta subfamily of defensins (antimicrobial peptides), 

suggesting that the majority of the confounded effects are limited to one gene as oppose to a 

wide-spread phenomenon. None of the GIs is discussed in the main text are affected by this 

additional confounding control. 
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5. Quality assessment of TCGA Breast cancer data 

The TCGA (Weinstein et al., 2013) breast cancer cohort is composed of several subsets of 

independent studies, with potential batch effects and other confounders. To assess the quality 

of the TCGA (Weinstein et al., 2013) breast cancer molecular and clinical data, we analyzed 

the association with survival of 79 known breast cancer genes (Intogen dataset (Gonzalez-

Perez et al., 2013)). We find 31 (~40%) of the genes to be significantly associated with 

survival (P < 0.05). Finally, although the TCGA (Weinstein et al., 2013) cohort may be noisy 

due to the data collection procedures, we find the survival prediction accuracy of the 

discovered GIs to generalize to the METABRIC (Curtis et al., 2012a) dataset, supporting a 

reasonable quality of the data. 
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Extended Figures 

 
Figure A.1: The Interaction between the cancer genes GNAQ and JAK2 as an example 
of a positive interaction in bin-1. 
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Figure A.2: GI abundance distribution and correlation analysis. 
(A) Distribution of the 71,946 significant GIs across 12 joint activity bins. The fractions of GIs 
in each bin are shown for GIs with positive (blue) and negative (red) effect on tumor fitness. 
Only the data in the lower triangle of the matrix are shown as the GIs are symmetric relative to 
the genes in a pair. 
(B) Correlation between GI pairs and shuffled GI pairs across the 12 activity bins. Minimum 
statistic distribution of Pearson correlation between genes defining the Real GIs (non-shuffled, 
red) and Shuffled GIs (blue). 
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Figure A.3: The GI-network involving the known driver genes. Nodes color coded by 
oncogenic role (yellow – driver gene, purple – oncogene, red – tumor suppressor, blue – 
unknown). Edges color coded by GI type. 
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Figure A.4: GI-based approach survival risk prediction performance.  
(A-B) Survival prediction accuracy. The prediction accuracy (y-axes) is measured by the 
concordance of predicted and observed survival (C-index), where 0.5 represents the null 
expectation. (A) C-index comparison between the individual gene-wise approach, the GI-
based approach and the approach that aggregates both individual gene signals and the GIs. 
The accuracy is estimated based on cross-validation within TCGA (Weinstein et al., 2013) 
(red) as well as in an independent METABRIC (Curtis et al., 2012a) breast cancer dataset 
(blue). The individual gene approach performs poorly in cross validation and fails in the 
independent validation while the GIs achieve superior accuracy in both validation 
approaches. (B) Comparison of cross-validation prediction accuracies when the 6 different 
GIs types are used in isolation. ‘All’ on x-axis refers to overall GI-based prediction accuracy 
using all six types (Significant predictions relative to null expectation (p-value < 0.01) are 
marked by an asterisk). 
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Figure A.5: Survival analysis performance scores based on an alternative metric. 
We dichotomized the extreme (at varying thresholds from 10% to 50%) predicted low- and 
high-risk groups and quantified the difference in their area under their Kaplan Meyer (KM) 
survival curves.  
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Figure A.6: GI-based approach survival risk prediction performance across all GI 
types.  
GI-based approach survival risk prediction performance restricting to GIs in each of the 6 
bins and further segregated them into those with positive and negative effects on survival. 
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Figure A.7: GI-based Breast cancer patient clustering analysis. 
(A) Dunn’s index clustering quality score for varying number of clusters. (B) Breast cancer 
subtype distribution in NMF clustering using 10 clusters. (C) Survival characteristics of 
clustering analysis performed using the full GI network. 
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Figure A.8: Cluster clinical subtype composition based on PAM50 breast cancer sub-
typing. 
(A) METABRIC (Curtis et al., 2012a) original publication clustering survival trends. (B) 
Cluster composition based on refined GI clusters, (C) Cluster composition provided in the 
original METABRIC (Curtis et al., 2012a) publication. 
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Figure A.9: GI clustering accuracy measures relative to histopathological types. 
This Figure shows six tested cases containing at least 30 samples including: three cases of 
known histopathological breast cancer subtypes are split across multiple SPAGE-based 
clusters (of which two exhibit statistically significant distinct survival trends) and three cases 
of SPAGE-based clusters harboring multiple known histopathological subtypes (of which two 
do not show a significant difference in their survival trends, consistent with the expectation). 
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Figure A.10: METABRIC clustering accuracy relative to histopathological types. 
Among four tested cases containing at least 30 samples, two cases of known 
histopathological breast cancer subtypes are split across multiple METABRIC clusters (of 
which neither exhibits statistically significant distinct survival trends) and two cases of 
METABRIC clusters harboring multiple known histopathological subtypes (of which both 
show a significant difference in their survival trends, inconsistent with the expectation).  
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Methods 

Data origins and bin construction 

We downloaded The Cancer Genome Atlas (TCGA (Weinstein et al., 2013)) (Chang et al., 

2013) molecular profiles and clinical covariates via the Broad Firehose 

(https://gdac.broadinstitute.org/, downloaded on Jan 28, 2016). This covers RSEM-normalized 

RNAseq data, mutation, and clinical information such as age, sex, race, tumor types, and 

overall survival of the 8,749 patients (data quality testing is described in Appendix A 

Extended Results 5). Drug response information was downloaded from TCGA (Weinstein et 

al., 2013) data portal available in the form of RECIST criteria (Eisenhauer et al., 2009) and 

mapped using DrugBank (Law et al., 2014) database V4.0. For the drug response analysis, to 

consider only gene inactivation mechanism, we excluded those drugs whose DrugBank 

mechanism of action label is either potentiator, inducer, positive allosteric modulator, 

intercalation, stimulator, positive modulator, activator, partial agonist, or agonist. 

The PIN was obtained from a previously published resource called HIPPIE (version 

2.0, http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/), which aggregates physical protein 

interaction data from 10 source databases and 11 studies (Schaefer et al., 2012). This network 

consists of 15,673 human proteins and 203,159 interacting pairs. 

We performed gene expression binning specifically for each combination of cancer 

type, race and gender. Furthermore, we control for various clinical and demographic group 

specific effects. Because using small groups of samples may result in insufficiently robust 

models, we filtered rare combinations of clinical and demographic groups, resulting in 5,157 

mRNA samples derived from patients spanning 18 cancer types, 3 races and 2 genders. The 

data were not stratified by stage and grade for three reasons: 1) the grade is missing for most 

cancer types 2) the stage/grade system varies across tumor types 3) further stratification would 
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result in further loss of data due to small group sizes. We applied quantile normalization within 

each sample of the expression data. The METABRIC (Curtis et al., 2012a) breast cancer dataset 

(Curtis et al., 2012) (as described in reference (Jerby-Arnon et al., 2014)) consists of 1989 

microarray samples and was used for independent validation. Similarly, quantile normalization 

was applied in each sample 

Identification of genetic interactions associated with cancer patient survival 

As shown in Figure 2.1, we divided the range of each gene’s expression across tumor samples 

into 3 equal-sized bins that correspond to the 3 activity states: low, medium and high 

expression. Given a gene pair, each tumor sample is thus mapped into one of the 9 joint activity 

states of the two genes. The choice of dividing a gene’s activity into three classes, while 

somewhat arbitrary, was made in consideration of interpretability of functional states and 

robustness of inference. However, to account for differences in expression distributions across 

clinical and demographic confounders, we apply a subpopulation specific binning approach. 

We considered the following categorical confounders: cancer type, race, and gender. We 

considered the combination of confounder states for which there were at least 100 tumor 

samples (Table A.5). Our binning is thus not confounded by various clinical and demographic 

variables. 

The GI pipeline consists of three steps that successively refine the predictions to arrive at high-

confidence set of predicted GIs. As such, the number of all pair-wise combinations of genes is 

excessively large to apply a comprehensive Cox regression model. For the principal analysis 

shown in the manuscript, specific parameter thresholds were chosen to make the subsequent 

analysis tractable, but users of the GI pipeline may choose other thresholds. To inform such 

decisions, we did a robustness analysis of the parameter settings with a smaller input set of 

gene pairs (Appendix A Extended Results 1). 
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Step 1: Log-Rank. In the first step, for each of the ~163 million gene pairs, say (x,y), we 

compute the Log-rank statistics (Harrington and Fleming, 1982) estimating the survival 

difference between the samples that map to one of the 9 activity bins and the other 8 bins. We 

implemented the log-rank test in C++ for computational speed. To control for gene-wise effect, 

we compare the Log-rank statistics of the gene pair (x,y) (in a bin) with those for (x,U) and 

separately with those for (V,y), where U and V represent all other genes. For a candidate gene 

pair (x,y), we consider Log-rank(X,Y) to be significant if it is among the top 0.1% relative to 

all (x,U) and top 0.1% among all (V,y) gene pairs. This threshold of 0.1% (1/1000) can be 

controlled by the user. We retain a gene pair if it is deemed significant in any of the 9 bins. 

This procedure retained 223,946 gene pairs of the total of ~163M. 

Step 2: Molecular enrichment and depletion. For a gene interaction having positive 

(respectively, negative) effect on survival, we expect the tumor having that interaction to be 

under negative (respectively, positive) selection, and therefore we expect the fraction of such 

tumors (i.e., those mapped to the corresponding activity bin relative to the interacting gene pair 

to be depleted (respectively, enriched). We only retained the potentially interacting gene pairs 

for which the fraction of samples in a particular bin, suggested by the log-rank test, were lower 

(bottom 45 percent) or respectively, greater (top 45 percent among all gene pairs) than 

expectation, reducing the number of GIs to 271,096 across 179,444 gene pairs. Recall that a 

gene pair can participate in multiple GIs corresponding to multiple bins and effect on survival. 

The threshold of 45% can be controlled by the user. Our choice of threshold ascertained that 

molecular enrichment/depletion is consistent with log-rank test without being overly punitive. 

 Step 3: Cox proportional hazard test. The Cox proportional hazards model is the most widely 

accepted approach for modeling survival while accounting for censored data as well as 

confounding factors. For each gene pair passing the filter at step 2, we modeled its effect on 

survival in each of the 9 bins using the interaction status 𝜆 (active if the sample mapped to the 
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bin and inactive otherwise), along with the confounders. Specifically, we introduced the 

expression levels of the two individual genes 𝜎5, 𝜎6 to model each gene’s independent effect 

on survival, and additionally, clinical and demographic confounders, namely, cancer type, race, 

gender, and age. The model is stratified based on the discrete confounders, to account for 

differences in the baseline hazard (risk) characteristics. We did not control for tumor stage and 

grade as these classifications reflect the very same tumor characteristics our model aims to 

capture, and such control would prevent us from learning an important element of the disease. 

Control for genomic-stability and tumor purity as a potential confounder is described in 

Appendix A Extended Results 4. 

𝑟𝑖𝑠𝑘	~	𝜎5 +	𝜎6 + 𝜆 + 𝑎𝑔𝑒 + 	𝑠𝑡𝑟𝑎𝑡𝑎(𝑡𝑦𝑝𝑒, 𝑔𝑒𝑛𝑑𝑒𝑟, 𝑟𝑎𝑐𝑒) 

Cox modeling provides a p-value representing the significance of the effect of joint gene pair 

activity on survival. To obtain a null distribution for the p-values, we repeated this process for 

corresponding list of randomly shuffled pairs (only among the pairs qualifying step 2 above). 

We retained ~71K gene pairs in the above the most significant 99th quantile of the null p-values 

distribution as an empirical FDR control. 

Optional Step 4: Filtering by protein interactions. To gain additional confidence in the 

predicted GIs, given the greater tendency (and expectation) for neighbors in the Protein 

Interaction Network (PIN) to exhibit functional interactions (see Results), we further refined 

the GI set by retaining the pairs that are found within distance of 2 in the HIPPIE PIN. Overall, 

we obtain a set of 1704 GIs that exhibit molecular and clinical evidence in cancer as well as 

evidence from the PIN network. 

Survival Risk Assessment 

We applied a semi-supervised approach to assign a risk score to each patient according to the 

functionally active GIs in the sample. Consider a GI involving genes x and y conferring a 
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positive effect on the tumor fitness in a particular bin B (Figure 2.1). If in a sample, genes x 

and y fall in bin B, then the GI is said to be ‘functionally active’ in the sample, and a score of 

+1 is contributed to the overall tumor ‘fitness’. Likewise, if the GI has negative effect on the 

tumor fitness, then a score of -1 is contributed. The overall risk score given a set of GIs is the 

sum of the individual GI +1 or -1 scores. For each sample, we computed the overall risk score 

(either in a bin-specific and effect direction-specific fashion, or overall). However, to make our 

approach comparable to gene-wise approaches (Yuan et al., 2014), we assigned each gene the 

sum of the contributions by all active GIs involving that gene, with multiplicity for gene pairs 

involved in multiple GIs. The estimated gene-wise GI score is used as a predictor variable in a 

Cox model along with the confounding factors discussed above to predict patient’s survival. 

  For cross validation, this model was trained on the same data used for the GIs training 

and then validated on its cross-validation counterpart. For independent validation, the model 

was trained on the full TCGA (Weinstein et al., 2013) dataset, and tested on the independent 

METABRIC (Curtis et al., 2012a) breast cancer data with 1989 samples (Curtis et al., 2012). 

The prediction accuracy is estimated in terms of the C-index (Harrell et al., 2005). Several 

previous publications have assessed survival risk prediction accuracy based on dichotomized 

analysis where samples are separated into distinct low- and high-survival groups and their 

survival curves then compared (Harrington and Fleming, 1982), which is prone to 

overestimating prediction accuracy. For comparison, we also performed accuracy estimation 

following the dichotomized comparison of survival risks between the extreme cases of 

predicted survival risk groups, for variable thresholds to define the extreme (such as top versus 

bottom 10% or top versus bottom 20% and so on, Figure A.5). 

To compare the GI-based survival prediction with the individual gene approach, we 

implemented an analogous scheme for individual genes where the gene expression values were 

discretized into 3 expression levels (low, medium and high), and the discretized representation 
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was used as a predictor variable in a controlled Cox regression model to obtain the significance 

(p-value) of each gene with respect to survival prediction. The most significant predictors (top 

5%) were chosen and precisely used as described for the GIs survival prediction procedure. An 

analogous procedure was used to estimate the prediction accuracy based on both individual 

gene effects and GIs. 

Identifying gene target(s)-specific GIs  

To investigate the GIs involving specific genes of interest (e.g., one or more target 

genes inhibited by a drug), we used a modified gene set-specific FDR approach. For a set of 

one or more genes X, we compare the GI significance (Cox regression p-value) of GIs 

involving any gene in X across the quadruples derived from step 2 (Molecular 

enrichment/depletion). We defined significant GI interactions as those where the GI 

significance is more extreme than (lower p-value, higher quantile) the 90th quantile of shuffled 

GIs involving any member of X. 

Applications of genetic interactions 

Characterization of differential GI activation between drug-response groups  

We retrieved the drug response data as explained in the first subsection of Methods; some 

patients have response information, and some do not. We inferred the GIs involving each drug’s 

known target gene based on the TCGA (Weinstein et al., 2013) samples that do not have that 

drug’s response information to avoid circularity and filtered based on FDR restricted to the 

target-specific GIs (using target-specific FDR above). For each of the drug-specific GIs, we 

compared its activation frequency (whether the GI was functionally active or inactive) among 

the responders (stable disease, partial response and complete response categories) and non-

responders group (clinical progressive disease categories), using one-sided Fisher's exact test 

(Fisher, 1922), where the alternative hypothesis was that negative (respectively, positive) GIs 
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are more frequently active among responders (respectively, non-responders). However, given 

the extremely small and imbalanced sample sizes, and the conservative nature of Fisher’s exact 

test (Berkson, 1978), we tested whether the overall distribution of the obtained odds-ratios are 

lower than those obtained using randomly shuffled drug-response labels, using one-sided 

Wilcoxon tests (Wilcoxon, 1945). We thus obtained a p-value for each drug-cancer type pair, 

segregated by GI type.  

Then, for each gene pair in the inferred GIs list and, as a control, in a shuffled list of 

size 10x as the original GIs list size, we computed the distance between the genes in the PPI 

network (Schaefer et al., 2012). We then used one-sided Wilcoxon tests (Wilcoxon, 1945) to 

assess whether GI gene pairs are closer to each other than random expectation. Alternatively, 

we also compare the number of directly GI gene pairs having direct interaction using one-sided 

Fisher's exact test (Fisher, 1922).  

 

Characterization of tissue-specific effect of cancer driver genes 

A study (Rubio-Perez et al., 2015) of genes’ somatic mutation profile across cancer types has 

identified and characterized the tissue specificity of 459 candidate drivers. For each such 

candidate, we matched the driver role annotation (oncogene or tumor-suppressor) obtained 

from the Cosmic Census (Futreal et al., 2004) cancer genes dataset, to obtain a set of 33 tumor 

suppressors and 25 oncogenes matching the tissue/tumor type annotations. For each of these 

58 genes, we calculated the significant GI interactions involving this gene (target-specific 

FDR). We further excluded genes with 5 or fewer interactions or with 300 or fewer samples 

where they are expressed, reducing the set of genes of interest to 20 tumor suppressors and 15 

oncogenes spanning 10 cancer types (Table A.3). For a gene, a sample-specific risk score was 

calculated based on the functionally active GI partners of the gene (as above for the drug 

response analysis above), but only considering high activity bin for oncogenes and low-activity 
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bins for tumor suppressors.  For each gene, the cancer types are partitioned into affected types 

(cancer types affected by the driver) and the other unaffected cancer types. Using a one-sided 

Wilcoxon rank-sum test, we tested for higher risk score in the samples in the affected cancer 

type in comparison to those in unaffected types. After correcting for multiple hypotheses 

testing, 15 out of the 35 (~43%) driver genes were found to have significant tissue-specific GI-

based risk score (FDR q-value < 0.1, Table A.3). 

 

Breast cancer tumor stratification 

We represent a tumor sample as a vector indicating the functional activity status of each 

predicted GI. This provides a survival-cognizant alternative to the widely-used gene expression 

profile representation of a sample. We used this representation to partition the METABRIC 

(Curtis et al., 2012a) (as well as independently for TCGA (Weinstein et al., 2013)) breast cancer 

patients into clusters using Non-Negative Matrix Factorization (NMF using the brunet 

algorithm and assigning each sample to the cluster with the highest weight) (Lee and Seung, 

2000; Paatero and Tapper, 1994), which has suitable statistical properties and has been shown 

to be effective in a variety of contexts (Lee and Seung, 1999). Since NMF requires a 

predetermined number of clusters, we performed the analysis for 2-15 clusters, and assessed 

their fitness using Dunn’s index (Dunn†, 1974), which quantifies compactness within and 

separation across clusters. The hazard-ratio significance values were computed for each pair of 

clusters, while the p-values were generated using multi-class log-rank test. For comparison 

purposes, to match our estimated clusters’ sizes to previously published METABRIC (Curtis 

et al., 2012a) cluster sizes (~900 samples), we constrained the number of samples in each 

cluster to the 1000 samples that were found to be most highly associated with the cluster. Each 

cluster’s GI profiles were constructed as follows. Our clustering approach – NMF, assigned 

each GI to a single cluster. For each cluster, and for each of the 12 GI-types (6 bins in Figure 
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2.1 and the two directional effects on survival), we obtain the frequency of GIs of that type, 

relative to all GI assigned to the clusters.  

Mutation frequency analysis was performed on the TCGA (Weinstein et al., 2013) 

clusters. We defined the gene-wise mutation frequency as the fraction of samples in the cluster 

in which the gene has a mutation predicted to be deleterious as explained in the next paragraph. 

Then, we tested whether the mutation frequency distribution of each gene differs significantly 

across clusters using Chi-square tests. The genes with significant Chi-square statistic (FDR q-

value < 0.1) were then used to illustrate the mutational profiles of the clusters.  Each mutation’s 

predicted effect on the protein function was obtained from the cBioPortal repository. Out of 

the 196 differentially mutated genes, 138 genes had matching extended mutation information 

indicating their SIFT (sorts intolerant from tolerant amino acid substitutions) and PolyPhen 

(polymorphism phenotyping) predictions. We calculated a gene-wise fraction of mutations 

predicted to have a significant effect on the protein, separately for SIFT and PolyPhen.  

The breast cancer subtypes were derived using the widely accepted PAM50 

algorithm (Bernard et al., 2009). The METABRIC (Curtis et al., 2012a) PAM50 subtypes 

were annotated in the original publication (Curtis et al., 2012), while the TCGA (Weinstein et 

al., 2013) breast cancer subtypes were calculated using the original published class centroids 

(Bernard et al., 2009).  

Software distribution 

The EnGIne software is available on GitHub [https://github.com/asmagen/SPAGEfinder]. 

The GI network is accessible online via a web portal [https://amagen.shinyapps.io/spage/]. 
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Appendix B – CD4+ T Cell Diversity 
 

Extended Figures 

 

 
 

Figure B.1: Characterization of antigen-specific CD4+ T cell responses in MC38 colon 

adenocarcinoma tumors. 

(A) Left panel shows overlaid protein expression of Thy1.1 in MC38 and MC38-GP 
cells. Right panel shows immunoblot analysis of GP protein expression in HEK293T cells, 
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HEK293T cells transfected with pMRX-GP-IRSE-Thy1.1 plasmid, MC38 cells or MC38-GP 
cells. 

(B) C57BL/6 mice were subcutaneously injected MC38 or MC38-GP cells and analyzed 
at day 14 post-injection. Left panel shows protein expression contours of GP66 vs. control 
(AS15 peptide from T. gondii) class II tetramer staining in TILs, dLN and nLN from MC38 
and MC38-GP tumor-bearing mice. Right panel shows the number of GP66+ TILs per gram 
of tumor and total number of GP66+ dLN and nLN cells, separately for MC38 and MC38-GP 
tumor-bearing mice (Unpaired Mann-Whitney U test, ** p < 0.01, *** p < 0.001, NS: not 
significant). 

(C) Top panel shows protein expression contours of GP66 tetramer staining vs. PD-1 in 
TILs. Bottom panel shows the percentage of PD-1+ cells out of GP66+ TILs. 

(D) GP66-specific CD44+CD4+ splenocytes were isolated from WT animals 7 days post-
infection with LCMV Armstrong. Protein expression contour of populations used for 
scRNAseq captures from MC38-GP tumor-bearing mice (left: TILs PD-1 vs. CD44, middle: 
dLN GP66 vs. AS15 control) and LCMV Armstrong infected mice (right: GP66 vs. CD44). 
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Figure B.2: Characterization of immune responses to LCMV and MC38-GP by 

scRNAseq. 

(A) GP66-specific CD4+ splenocytes from WT animals 7 days post-infection with LCMV 
Armstrong analyzed by scRNAseq. Heatmap shows row-standardized expression of selected 
genes across LCMV clusters. 

(B-G) TILs and dLN cells from WT mice at day 14 post MC38-GP injection analyzed by 
scRNAseq. (B) Heatmap shows row-standardized expression of selected genes across main 
TIL and dLN groups (as defined in text). (C) Protein expression contours of FoxP3 vs. Tbet 
in CD44+GP66+ dLN cells (left) and in CD44+CD4+ splenocytes from tumor-free mice 
control (right). (D) Protein expression contours of FoxP3 vs. Tbet in PD-1+ and GP66+ TILs 
(left) and in CD44+CD4+ splenocytes from tumor-free mice control (right). (E) tSNE display 
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of TILs and dLN cells generated using different parameter combination of perplexity and 
number of iterations, grey-shaded by tissue origin. (F) tSNE displays of TILs and dLN cells, 
grey-shaded by tissue origin, post confounder corrections. (G) scRNAseq analysis of TILs 
and dLN cells from replicate experiment II. Heatmap shows row-standardized expression of 
selected genes across TIL and dLN clusters (left). tSNE display of TILs and dLN cells, grey-
shaded by tissue origin (right). 

(H) TILs, dLN and LCMV cells from replicate experiments I and II analyzed by 
scRNAseq. tSNE plots show TILs, dLN, and LCMV cells, grey-shaded by origin (left) or 
color-coded by Treg or cell-cycle (Cycle) clustering assignment (grey for all other clusters) 
(right). 
  



 

 

95 
 

 
 

Figure B.3: Assessment of tissue-context-specific effects on clustering analyses and 

TILs-dLN heterogeneity. 

 (A-C) TILs, dLN and LCMV cells from replicate experiments I and II analyzed by 
scRNAseq. (A) Heatmap shows Euclidean similarity between cluster-specific average 
expression vectors (as defined in text) (left) annotated with cluster origin and cluster group or 
type (right). (B) Bar plot shows relative cluster composition of FoxP3+ or FoxP3- TILs and 
FoxP3- LCMV (no FoxP3+ cells found in GP66+ LCMV) after applying a data integration 
approach (Butler et al., 2018). (C) Heatmap shows row-standardized expression of TIL Isc 
and Th1 characteristic genes across TIL, dLN and LCMV clusters. 

(D) Overlaid protein expression of PLZF in GP66+ and PD-1+ TILs and CD44+NK1.1+ 
DN (double negative CD4-CD8-) thymocytes from tumor-free mice control. 
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(E) Mean fluorescence intensity (MFI) of BCL6 and CD200 in CXCR5+ or CCR7+GP66+ 
dLN cells relative to naive CD4+ splenocytes from tumor-free mice control (Unpaired t-test, 
** p < 0.005, **** p < 0.0001). 

(F) Percentage of CD200hi cells out of CCR7+CXCR5+ dLN cells. 
(G) Top panel shows protein expression contours of CXCR5 vs. PD-1 in CD44+CD4+ 

dLN cells from MC38 and MC38-GP tumor-bearing mice. Bottom panel shows percentage of 
Tfh cells out of total CD44+CD4+ T cells in dLN (left) and total number of Tfh cells (right). 

(H) Mean fluorescence intensity (MFI) levels of ICOS in LCMV Tfh and dLN Tfh 
relative to naive CD4+ splenocytes from tumor-free mice control (Unpaired t-test,  
 p < 10-5). 
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Figure B.4: Correspondence to human data and dysfunction gene signatures. 

(A) Heatmap shows row-standardized expression of selected exhaustion genes across TIL 
Th1, Treg and Isc clusters (respectively clusters t1-2, t6-7 and t3-4 as shown in Figure 3.1A). 

(B-C) Analysis of TILHLC and TILs (as defined in text). (B) tSNE plots show cells grey-
shaded by origin. (C) tSNE plots show cells color-coded by cell cycle signature activation 
level. 

(D) Analysis of TILMel (as defined in text). Heatmap shows row-standardized expression 
of selected TIL characteristic genes across TILMel clusters. 
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Extended data 

GP66-tetramer binding results in potential cross-linking of and signaling by the TCR of 

GP66-specific T cells. To model the transcriptomic effect of TCR engagement as a result of 

GP66-tetramer-based purification, we sought to compare LCMV-specific CD4+ T cells 

obtained either after GP66-tetramer purification or without tetramer-based purification. To 

enrich in such cells without tetramer staining, we noted that ~94% of GP66-specific CD4+ 

splenocytes from LCMV-infected mice express little or no IL7R [IL-7 receptor a chain] 

(Figure B.5A). Thus, we considered that most CD44hiCD4+Il7R+ splenocytes were not 

LCMV-specific, and sorted CD44+IL7R– (LCMV IL7R–) T cells for scRNAseq; in addition to 

antigen-specific CD44+ GP66-tetramer purified (LCMV GP66+) T cells (Figure B.5B). 

Pooled clustering of the two samples revealed 2 (out of 6) clusters heavily dominated by 

stained cells (Figure B.5C, top), suggesting staining bias limited to those clusters. As 

expected from GP66 tetramer engagement with the TCR, GP66-specific clusters were 

characterized by genes involved in T cell receptor signaling and NFKB signaling (Table 

B.9), while clusters containing cells from both samples displayed features of Tfh and Th1 

cells (Figure B.5C, bottom). We designated the GP66-characteristic genes as the TCR 

engagement GP66 signature (Table B.10) and regressed the activation scores of the signature 

from the expression matrix using a linear regression model fitted to each gene. 
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Figure B.5: Transcriptomic effects of TCR engagement as a result of GP66-tetramer-

based purification. 

(A-B) Analysis of CD4+ splenocytes from C57BL/6 animals 7 days post-infection with 
LCMV Armstrong. (A) Protein expression contour of GP66 tetramer staining vs. IL7R in 
CD4+ LCMV cells. (B) Protein expression contours of IL7R vs. CD44 (for LCMV IL7R- 
sample, left) and GP66 vs. CD44 (for LCMV GP66+ sample, right). 

(C) LCMV IL7R- and LCMV GP66+ cells analyzed by scRNAseq. Heatmap shows row-
standardized expression of selected genes across pooled LCMV IL7R- and LCMV GP66+ 
clusters (bottom). Bar plot indicates the number of LCMV IL7R- and LCMV GP66+ cells in 
each cluster relative to the total number of cells (top). 
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Methods 

scRNAseq data processing 

De-multiplexing, alignment to the mm10 transcriptome and unique molecular identifier 

(UMI) calculation were performed using the 10X Genomics Cellranger toolkit (v2.0.1, 

http://software.10xgenomics.com/single-cell/overview/welcome). Pre-processing, 

dimensionality reduction and clustering analyses procedures were applied to each dataset 

(that is, specific tissue origin in each experiment) independently to account for dataset-

specific technical variation such as sequencing depth and biological variation in population 

composition, as follows. We filtered out low quality cells with fewer than 500 detected genes 

(those with at least one mapped read in the cell). Potential doublets were defined as cells with 

number of detected genes or number of UMIs above the 98th quantile (top 2% owing to up to 

2% estimated doublets rate in the 10X Chromium system). Potentially senescent cells (more 

than 10% of the reads in the cell mapped to 13 mitochondrial genes) were also excluded. 

Library size (𝐿𝑆H, number of UMIs in cell j) normalization and natural log transformation 

were applied to each cell library, i.e., 𝑛𝑜𝑟𝑚HK = ln N
OPQR

S

TUR
+ 1W	to quantify the expression of 

gene i in cell j, where 𝑟𝑎𝑤HK is the number of reads for gene i in cell j. 

Highly variable genes were defined as genes with greater than one standard deviation 

of the dispersion from the average expression of each gene. However, to account for 

heteroscedasticity, variable genes were identified separately in bins defined based on average 

expression. PCA analysis was performed on the normalized expression of the set of dataset-

specific highly variable genes. We selected the top PCs based on gene permutation test (Buja 

and Eyuboglu, 1992). ‘Barnes-hut’ approximate version of t-SNE (van der Maaten, 2014) 

(perplexity set to 30, 10k iterations) was applied on the top PCs to obtain a 2D projection of 

the data for visualization.  
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 Gene signature activation was quantified relative to a technically similar background 

gene set as described in (Haber et al., 2017). Briefly, we identify the top 10 most similar 

(nearest neighbours) genes in terms of average expression and variance, then define the 

signature activation as the average expression of the signature genes minus the average 

expression of the background genes. GP66 tetramer staining signature definition is described 

in Appendix B Extended Data. Additionally, we defined lists of ribosomal, mitochondrial, 

and cell cycle genes (Kowalczyk et al., 2015) for confounder controls (Table B.10). 

High-resolution clustering analysis 

Phenograph clustering (Levine et al., 2015) using the top PCs (see dimensionality reduction) 

was performed independently on each dataset to allow full control of the clustering resolution 

based on dataset-specific coverage and heterogeneity features. The clustering resolution 

(number of clusters) is controlled by the K nearest neighbour (KNN) parameter. We designed 

a simulation analysis to estimate the optimal clustering resolution, i.e., at what resolution the 

clustering is superior in quality to clustering driven by technical biases inherent to scRNAseq, 

as follows. Here we define the clustering quality as the clustering modularity reported by 

Phenograph, which indicates intra-cluster compactness and inter-cluster separation. The 

simulations consist of repeating the clustering analysis on 100 shuffled expression matrices to 

estimate the ‘null’ distribution of the clustering quality, where the gene expression 

measurements are permuted within each cell to retain the cell-specific coverage biases. We 

repeated this process for varying value of the KNN parameter k to compare the clustering 

modularity of the original 𝑂Z to the shuffled 𝑆Z data. The final resolution was defined as the 

maximal resolution where  [\
U\
≥ 2. Pooled clustering analysis (joint rather than separated by 

dataset) and visualization was performed using PCA on the aggregate list of highly variable 

genes defined on each dataset. Clustering was done with and without controlling for 
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confounding factors (number of UMIs, number of detected genes and gene signatures 

activation of ribosomal, mitochondrial, cell cycle and GP66 staining signature). 

After obtaining the initial clusters and identifying the overexpressed genes in each 

cluster, we apply two filters: (1) we exclude small clusters of B cells (Cd79+ populations) 

from each dataset. (2) We identify PCs driven by B cell marker genes and remove the 

individual cells whose expression profile has high scores for those PCs (outliers). We then 

repeat the entire processing and clustering to prevent detecting highly variable genes and PCs 

driven by contaminations, which may in turn reduce the signal of other small populations of 

interest. 

Population matching analysis 

Differential expression was performed using Limma (version 3.32.10). We initially 

performed differential expression analysis between each cluster against the pool of all other 

clusters within a given dataset. Identified clusters were labelled as a known T cell subtype if 

the majority of the known subtype-defining genes were differentially over-expressed in that 

cluster. We then matched populations across experiments to assess the reproducibility of the 

populations and to uncover similarities across datasets that are masked due to overall tissue-

context-specific differences. To reduce the effects of tissue-context-specific effects on the 

similarity calculation, we used the fold change (FC) measure of each gene 𝐹𝐶ab =

〈deOfaOeghij〉
〈lPbZaOeghij〉

 (average of gene g in cluster c (foreground) relative to all other clusters 

(background) of the same dataset). Then we measured the Pearson correlation between the 

FC vectors of all pairs of clusters across datasets. We compare this approach with an 

alternative approach that uses Euclidean distances between the average expression vectors, 

defined as average expression of all genes in a cluster and a recent data integration approach 
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(Butler et al., 2018) following tutorial specifications 

[https://satijalab.org/seurat/immune_alignment.html; version 2.0.1]. 

Robust cluster calling and population comparisons 

For each dataset, we defined ‘robust clusters’ as those that had highly similar match in the 

biological replicate. High similarity is defined as Pearson correlation coefficient greater than 

~1.28 standard deviations from the mean for each dataset, corresponding to nominal p-value 

of 0.1. Hierarchical clustering was performed on the identified robust clusters using the inter-

cluster similarity matrix, where the similarity was defined as above using the Pearson 

correlation between the FC vectors. Using the vector of average expression vectors did not 

achieve similar result; specifically, using hierarchical clustering of the Euclidean distances 

between the clusters average expression vector retained the grouping of clusters based on 

origin tissue (Figure B.3A). 

We then analysed differential expression patterns for clusters belonging to each meta-

cluster, excluding cell cycle clusters. For a given pair of clusters of interest, A and B in 

datasets X and Y respectively, we performed three differential expression analyses: (1) 

differential expression in A relative to other clusters in X, (2) differential expression in B 

relative to other clusters in Y, and (3) differential expression in A relative to B. In addition to 

average expression differences, we quantified the detection rate of gene X as proportion of 

cells where 1 or more reads was mapped to X and prioritized differentially expressed genes 

exhibiting also differential detection across conditions. This analysis was performed for the 

two replicates separately and the results interpreted jointly; a gene was deemed as over-

expressed in cluster A in tissue X if it is over-expressed relative to other clusters in X as well 

as relative to B, in both replicates. Selected genes’ normalized scRNAseq expression 

measurements were visualized as contours, where zero (0) values were assigned random 

value drawn from a normal distribution centered around 0. 
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Trajectory analysis (Reversed Graph Embedding) of TIL populations (group I and II, 

excluding group III Tregs) was performed using Monocle (version 2.9.0, parameters 

max_components = 2, method = DDRTree). 

Correspondence to external gene signatures and human data 

For each TIL subpopulation (group I Th1, group II Isc, group II nRes and group III Treg) we 

selected overexpressed genes exhibiting differential detection (as defined above) relative to 

all other TILs across both experiments (Table B.4). 

Gene set enrichment analysis of immunologic gene signatures was performed using 

mSigDB (Liberzon et al., 2015) [C7: immunologic signatures database with clusterProfiler 

package (version 3.4.3). Other gene signatures discussed throughout were downloaded from 

the original publications’ supplementary materials. Correspondence to Tcmp signature was 

performed by differential expression of dLN Ccr7+ clusters n5-6 relative to other dLN and 

TIL (n1, n7-8, t1-7) rather than dLN subpopulations alone to satisfy the background 

conditions used in the original publication. IL-27 co-inhibitory gene signature heterogeneity 

was characterized by gene differential expression analysis across Th1, Isc, and Treg TIL, 

indicating which genes are preferentially expressed in one subpopulation versus the others. 

Human liver cancer TIL scRNAseq counts were downloaded from GEO [GSE98638]. 

Non-CD4+ T cells were filtered based on the classification in the original publication (Zheng 

et al., 2017a). Human gene symbols were translated to Mouse gene symbols using package 

biomaRt (version 2.37.8). Pre-processing, clustering and population matching analysis were 

applied as described above. Human melanoma TILs data scRNAseq counts were downloaded 

from GEO [GSE120575]. We selected CD4+ T cells as cells with at least one mapped read to 

CD4 and [CD3D or CD3E or CD3G], following the authors definition (Sade-Feldman et al., 
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2018). 108 out of 136 Isc signature genes were mapped to human gene symbols. The 

detection rate of each Isc signature gene (as defined above) in each lesion were used to assess 

differential detection across responders and non-responders. We used two-sided Wilcoxon 

test to quantify the significance of differential activation. 

Software distribution 

The computational pipeline is available on [https://github.com/asmagen/robustSingleCell]. 

The pipeline requires access to Slurm high-performance computing core for efficient 

simulation analyses. 

Experimental procedures 

Wet experimental work was performed by Dr. Jia Nie and provided as part of this dissertation 

for consistency and completeness. 

 

Mice. C57BL/6 mice were purchased from the National Cancer Institute Animal 

Production Facility and were housed in specific pathogen-free facilities. Animal procedures 

were approved by the NCI Animal Care and Use Committee. 

Cell lines and constructs. MC38 murine colon cancer cell lines (Corbett et al., 1975) 

were obtained from Jack Greiner’s lab and cultured in DMEM that contained 10% heat-

inactivated FCS, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 0.292mg/ml L-

glutamine, 100 pg/ml streptomycin, 100 U/mL penicillin, 10mM Hepes. MC38-GP cells were 

generated as follows: LCMV-gp gene was amplified from pHCMV-LCMV-Arm53b 

(addgene#15796) and inserted into pMRX-IRSE-Thy1.1 by BamH1 and Not1. Then pMRX-

Thy1.1 contained LCMV-gp gene was transfected into Plat E cell to package retrovirus. 

MC38 cell line was transduced by above retrovirus collection and followed by single cell 
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sorting in 96-well plate after 48hs. The monoclonal cell lines were identified by flow 

cytometry and western blot. 

LCMV infection model and Tumor model. 2 x 105 pfu of LCMV Armstrong 

(Matloubian et al., 1994) were injected intra-peritoneal in 6-12 weeks old C57BL/6 mice. 

Mice were analysed 7 days post infection. MC38 and MC38-GP tumor cells (0.5 × 106) were 

s.c. injected in the flank of C57BL/6 mice. 

Antibodies. Antibodies for the following specificities were purchased either from 

Affymetrix Becton-Dickinson Pharmingen or ThermoFisher Ebiosciences: CD4 (RM4.4 or 

GK1.5), CD8β (H35-17.2), CD45.2 (104), CD45 (30-F11), TCRβ (H57-597), CD5 (53-7.3), 

B220 (RA3-6B2), Siglec F (E50-2440), NK1.1 (PK136), CD11b (M1/70), CD11c (N418),  

CD44 (356 IM7), IL7R (A7R34), CCR7 (4B12), CXCR5 (SPRCL5), Bcl6 (K112-91), Lag3 

(C9B7W), Cxcr6(SA051D1), CD25(PC61.5), CD278(7E,17G9), PD-1 (J43), Foxp3(FJK-

16s), Granzyme B(FGB12), Tbet (4B10), CD200(OX-90). Streptavidin, MHC tetramers 

loaded with the Toxoplasma gondii AS15 (Grover et al., 2012) and LCMV GP66 peptides 

(AVEIHRPVPGTAPPS and DIYKGVYQFKSV, respectively) were obtained from the NIH 

Tetramer Core Facility. 

Cell preparation and flow cytometry. Lymph node and spleen were prepared and 

stained as previously described (Wang et al., 2008). For TIL preparation, tumors were 

dissected 14 to 18 days post-injection, washed in HBSS, cut into small pieces, and subjected 

to enzymatic digestion with 0.25mg/ml liberase (Roche) and 0.5mg/ml DNAase I (SIGMA) 

for 30 minutes at 37 degrees. The resulting material were passed through 70um filters and 

pelleted by centrifugation at 1500rpm. Cell pellets were resuspended in 44% Percoll (GE 

Healthcare) on an underlay of 67% Percoll and centrifuged for 20min at 1600 rpm without 

brake. TILs were isolated from the 44%/67% Percoll interface. Following isolation, cells 

were blocked with anti-FcγRIII/FcγRII (unconjugated, 2.4G2) and subsequently stained for 
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flow cytometry. Staining for AS15:I-Ab tetramer, GP66:I-Ab tetramer and CXCR5 was 

performed at 37 degrees for 1 hour prior to staining for other cell surface markers. For 

intracellular staining, cell surface staining were preformed first, following fixation using the 

Foxp3-staining kit (eBioscience). Flow cytometry data was acquired on LSR Fortessa 

cytometers (BD Biosciences) and analysed with FlowJo (TreeStar) software. Dead cells and 

doublets were excluded by LiveDead staining (Invitrogen) and forward scatter height by 

width gating. Purification of lymphocytes by cell sorting was performed on a FACS Aria or 

FACS Fusion (BD Biosciences).  

Single cell RNAseq. 3000-13000 T cells sorted from LCMV infected or tumor-bearing 

mice were loaded on the Chromium platform (10X Genomics) and libraries were constructed 

with a Single Cell 3′ Reagent Kit V2 according to the manufacturer instructions. Libraries 

were sequenced on multiple runs of Illumina NextSeq using paired-end 26x98bp or 26x57bp 

to reach a sequencing saturation greater than 70% resulting in at least 49000 reads/cell.   
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