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We develop simulation optimization algorithms for determining the traffic light

signal timings for an isolated intersection and a network of two-signalized intersec-

tions modeled as single-server queues. Both problem settings consider traffic flowing

in one direction. The system performance is estimated via stochastic discrete-event

simulation. In the first problem setting, we examine an isolated intersection. We

use smoothed perturbation analysis to derive both left-hand and right-hand gradient

estimators of the queue lengths with respect to the green/red light lengths within a

signal cycle. Using these estimators, we are able to apply stochastic approximation,

which is a gradient-based search algorithm. Next we extend the problem to the case

of a two-light intersection, where there are two additional parameters that we must

estimate the gradient with respect to: the green/red light lengths within a signal

cycle at the second light and the offset between the two light signals. Also, the

number of queues increases from two to five. We again derive both left-hand and

right-hand gradient estimators of the all queue lengths with respect to the three



aforementioned parameters. As before, we are able to apply gradient-based search

based on stochastic approximation using these estimators. Next we reexamine the

two aforementioned problem settings. However, this time we are solely concerned

with optimization; thus, we model the intersections using three different stochas-

tic fluid models, each incorporating different degrees of detail. From these new

models, we derive infinitesimal perturbation analysis gradient estimators. We then

implement these estimators on the underlying discrete-event simulation and are able

to apply gradient-based search based on stochastic approximation using these es-

timators. We perform numerical experiments to test the performance of the three

gradient estimators and also compare these results with finite-difference estimators.

Optimization for both the one-light and two-light settings is carried out using the

gradient estimation approaches.
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ACRONYMS

AIMSUM Advanced Interactive Microscopic Simulator for Urban and Non-Urban
Networks

CORSIM Corridor Simulation

CRONOS Control of Networks by Optimization of Switchovers

DES Discrete-event simulation

DNP Degenerate nominal path
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FHWA Federal Highway Administration

GSMP Generalized semi-Markov process
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IPA Infinitesimal perturbation analysis

MAXBAND arterial timing program that optimizes band-width based on a mixed-
linear integer programming technique

NETSIM Network simulation program developed by FHWA

NP Nominal path

OPAC Optimized Policies for adaptive control

PA Perturbation analysis

PP Perturbed path

PRODYN Real-time traffic control system

RHODES Real Time Hierarchical Optimized Distributed Effective System

SA Stochastic approximation

SCOOT Split cycle offset optimisation technique

SD Symmetric-difference
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SFM Stochastic fluid model

SIGCAP Signalized intersection capacity analysis program

SIGSET Signalized intersection traffic signal settings

SimTraffic micro simulation and animation of vehicular traffic software

SMARTEST Simulation modeling applied to road transport European scheme test

SPA Smoothed perturbation analysis

SPSA Simultaneous perturbation stochastic analysis

TRANSYT Traffic Network Study Tool

VISSIM Visual traffic simulation tool
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SELECTED NOTATION

Lq(t) = # cars in queue q at time t

L̄q(t) = average queue length for queue q up to time t

=
1

t

∫ t

0

Lq(x)dx

N = # red-green cycles simulated

L̄ = average number in traffic system

Tq = length of green light period for queue q

Fq = service time distribution for queue q with mean 1/µq, and p.d.f. fq

Gq = interarrival time distribution for queue q with mean 1/λq, and p.d.f. gq

θ = vector of controllable variables

β(∆θ) = critical event change due to a perturbation ∆θ

Z = characterization, which is the set of conditioning quantities on the

sample path on which the conditional contribution is estimated
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Chapter 1

Introduction

1.1 Problem Statement

Traffic congestion poses an ever increasing problem for major metropolitan

areas across the United States and abroad. As the population continues to grow

and the number of licensed drivers increases, the problem will inevitably worsen. The

cost of traffic congestion goes far beyond the numerous lost hours by vehicle drivers

due to congestion delays. Traffic congestion has negative environmental and health

consequences as well. Environmentally, traffic congestion results in increased fuel

consumption and air pollution. In terms of health consequences, traffic congestion

leads to increased stress and mental and physical discomfort, which may contribute

to a lower quality of life. Additionally, congestion slows the transportation of goods

and services, which results in higher prices for consumers.

There are many causes of traffic congestion, such as weather, vehicular ac-

cidents, reckless driving, poor road design and road construction work zones. Al-

though there are strategies employed to minimize these contributing factors, they

rely heavily on the compliance of individual drivers; therefore, they are not always

effective. As such, there is a need to focus on factors that can be more effectively

controlled. Some of these factors include improved road infrastructure, access lim-

itations and traffic controls. While all of these factors can be altered in order to
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reduce traffic congestion, some of these factors are more difficult to alter than oth-

ers. One of the most obvious means of reducing traffic is the construction of more

roadways; however, that approach has serious limitations. Traffic congestion and

its associated problems will continue to increase, because roads and highways are

unlikely to expand enough to alleviate the problems due to the cost and limited land

supply. Therefore, other more cost efficient and feasible strategies are needed.

One of the most promising ways to reduce traffic congestion is better utiliza-

tion and control of the existing infrastructure through efficient management of traffic

systems. A traffic system is defined as the passage of vehicles through a road infras-

tructure. Roadways, controls (e.g., traffic signals, stop signs), drivers and vehicles

are the four principal elements of these systems [38]. Traffic control is the process

by which the passage of vehicles through a road infrastructure is governed. It is

quite evident that the efficiency of traffic control directly depends on the efficiency

and relevance of the control methodologies. Poor traffic control can lead to traffic

congestion, whereas well-designed traffic control plans, such as efficient traffic signal

timings, can significantly reduce traffic congestion. In fact, in traffic systems that

contain traffic signals, control of traffic light signal timings is one of the least expen-

sive and most effective means of reducing vehicular congestion in metropolitan road

networks [43]. This is especially true in times of peak traffic flow, such as during

morning and evening rush hours. Traffic signal management is one of the fastest

methods to achieve traffic congestion improvements. While building new roads can

takes years, a new traffic signal plan can be implemented in a matter of weeks.

Traffic signals are controlled by a plan that controls when and how to change
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phases. The plans used to guide these changes, known as traffic signal manage-

ment (control), vary in complexity. The four control parameters for traffic signal

management are:

• Offset: time between cycle starts of different signals;

• Stage specification: outlines what options (go straight, turn left, etc.) a vehicle

has at any given time at each intersection;

• Cycle time: time it take a signal to progress through all stages;

• Split: portion of a cycle that the signal is green for each direction.

1.2 Literature Review

There are three main types of plan for traffic signal control: fixed-time (or pre-

timed), semi-actuated, and fully-actuated. Fixed-time plans are the simplest type of

control plans. Each phase of the light lasts for a specific duration of time before the

next phase begins. This type of plan uses historical data to determine and preset

the signal timings. This type of system is used at many traffic lights. These settings

are independent of the current traffic situation; however, some fixed-time control

plans use multiple signal setting plans based upon the time of day. The advantage

of fixed-time plans is that they require no extra hardware. In many cases, fixed-

time plans are the only reasonable type of plan that can be implemented. The cost

of vehicles sensors and detectors prohibit their installation at many intersections.

Actuated plans are traffic responsive, which are more advanced but require vehicle
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sensors and detectors to acquire real-time data. For the most part, there are no pre-

set signal timings in these plans; they set the timings based upon current and/or

predicted traffic demand at the intersection. There are some actuated plans that

choose a fixed-time plan based on current traffic situation. Even for a fully actuated

plan, fixed-time plans are still employed as a back-up in case of sensor malfunction.

Most fixed-time optimization approaches at signals without sensors are brute force

methods, which require traffic data to be collected and analyzed.

In the research literature, the problem of efficient traffic flow via traffic sig-

nal management has been studied and reviewed via many different optimization

methods.

1.2.1 Single Intersection

When considering a single intersection, there are two main fixed-time strate-

gies, stage-based and phase-based. Stage-based strategies determine the optimal

split and cycle times. Phase-based strategies take it one step further and also de-

termine the optimal stage specifications.

Two of the well-known stage-based fixed-time strategies for a single inter-

section, SIGSET [1] and SIGCAP [2], were proposed by Allsop in 1971 and 1976,

respectively. When given m specified stage specifications, SIGSET and SIGCAP will

determine the optimal split and cycle times. SIGSET performs this optimization by

deriving capacity constraints and an objective function. The objective function is

a nonlinear delay function derived by Webster [47]. SIGSET seeks to minimize the
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total delay. As a result, the optimization problem becomes a linearly constrained

nonlinear programming problem. SIGCAP seeks to maximize the intersection’s ca-

pacity. Slight changes are made to the capacity constraints via the demands. These

changes lead to a linear programming problem.

Phase-based fixed-time strategies [27] solve a similar type of problem. The

problem addressed in stage-based strategies is extended to consider different staging

specifications. These approaches determine split and cycle times, as well as stage

specification in order to optimize the total delay or system capacity. The extension of

determining stage specifications adds binary variables into the optimization problem,

which leads to a binary mixed integer linear programming problem. This type of

problem requires an application of a branch-and-bound method that acquire an

exact solution. This causes the computation time to be greater than that of the

stage-based fixed-time strategies.

As stated before, actuated plans use real-time data. The data is usually pro-

vided by detectors that are 40 meters upstream from the intersection. The plan

basically employs some form of logic to make decisions on the traffic signal based

upon the collected data at these detectors. One of the simplest actuated plans can

be explained as follows. The light is kept green for some Gmin (minimum green light

length); if a vehicle is detected, then the light is allowed to stay green for an addi-

tional Gextra (small increment of time) time. The green light gets Gextra additional

time until Gmax (maximum allowable green light length) is reached.

There are more advanced versions of this type of plan, such as the one proposed

by Miller [34], where the decision to change stage is made every T seconds. That is,
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the plan determines what the time gains and loses, Mk, would be in all directions if

the decision to change stage is postponed by k ∗ T seconds, for k = 1, 2, ... seconds.

If Mk < 0 (i.e., no increase in performance) for all k, then the change is made

immediately; otherwise the change is postponed until the next evaluation period.

1.2.2 Network of Intersections

As with the single intersection case, there are both fixed-time and actuated

plans for networks of intersections. Two of the most popular fixed-time plans are

MAXBAND [31, 32] and TRANSYT [36].

The earliest version of MAXBAND optimizes with respect to the offsets for

n intersections of a two-way arterial. The splits and cycles are assumed given.

MAXBAND determines the optimal offsets based on maximizing the number of ve-

hicles that can travel within a given range without stopping. This leads to a binary

mixed integer linear programming problem. In later versions [7], some clever tech-

niques are employed in order to reduce the computational demands of the branch

and bound solution method. Stamatiadas and Gartner [44] have made extensions

to MAXBAND that make it applicable to networks of arterials. Gartner and oth-

ers continue to improve and extend MAXBAND for wider application and better

performance in [19, 20]. MAXBAND is in use worldwide.

Some of the most widely used traffic signal control strategies are based on

TRANSYT [36]. Since Robertson first introduced it in 1969, numerous improve-

ments and extensions have been made to it. TRANSYT-7F is the most current
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U.S. version of TRANSYT. This strategy is so widely accepted that it is often the

standard to which other strategies are compared. The basic idea of this method

is a hill-climbing algorithm. TRANSYT starts off with given values for split and

cycle times and offsets (note that the same cycle time is used for all intersections in

the network). The performance measures of interest are estimated using simulation

based upon the current system parameters. Next, the algorithm makes a slight per-

turbation to the system parameters and calculates the performance measures under

these changes. This process continues until (local) optimization of the performance

measures is achieved.

Robertson [37] made a natural progression from TRANSYT to SCOOT, which

is basically a traffic-responsive version of TRANSYT. SCOOT has been put into use

in over 150 cities in the United Kingdom. In SCOOT, real-time data is fed into a

network model. The model is run in real time to see what effects small perturbations

in cycle and split times, and offsets at individual intersections, will have on the

network. As with TRANSYT, if the perturbed control parameters turn out to

improve the performance measure of interest, then the changes are implemented on

the true network.

When it comes to actuated control strategies for networks of intersections,

some other methods employ a model-based optimization approach. The model-based

control strategy is a fairly new approach. The previously mentioned methods also

use models; however, this method makes use of very detailed models. Examples of

this type of strategy include OPAC [18], PRODYN [10], CRONOS [4] and RHODES

[39]. This approach uses a more detailed network model. It is based on pre-specified
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staging specifications. Based on the current stage and real-time data, it considers the

optimal set of switching times over some horizon. Several constraints are included

(e.g., minimum green light period) in this problem, allowing this strategy to attack

the problem as a dynamic optimization problem. For efficient real-time application,

a rolling-horizon procedure is employed. That is, the optimization time horizon is H

seconds; however, only the changes for the next H seconds are implemented. Then

the optimization problem is solved for an H second long horizon, and the process

repeats.

According to the FHWA [11], there is a significant void in signal timing plans,

because there is no model designed to provide signal settings for an isolated, actuated

intersection. It is possible to use some of the aforementioned plans to deal with this

problem; however, the FHWA views this approach as a work-around solution.

Gradient information can be valuable when it comes to system analysis, con-

trol and optimization. Of all the approaches reviewed, none make use of gradient

information, with the exception of TRANSYT which uses estimated “brute-force”

via actual perturbations. In this dissertation we use gradient information of a more

direct nature, namely via perturbation analysis. In fact, to the best of our knowl-

edge, this is the first successful application of perturbation analysis in the traffic

signal setting.
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1.3 Stochastic Optimization Tools

Stochastic optimization deals with finding the maximum or minimum of the

expected value of a specific performance measure of interest when only a noisy esti-

mation of the performance measure is available. In this dissertation we use Monte

Carlo simulation to analyze the traffic systems, which is modeled with random inter-

arrival and service times for the individual vehicles. While this is not an extremely

detailed model, it behaves well when verified against real data.

1.3.1 Simulation

Simulation is defined as the technique of imitating the behavior of a real-world

situation or system over time by means of an analogous model to gain information

more conveniently [3]. It is a powerful tool for analyzing dynamic stochastic systems,

and often the only means to model large and complex systems that arise in real-world

applications. Some of the advantages of simulation include:

• Ability to compress and expand time;

• Ability to control sources of variation;

• Ability to restore system state;

• Allows for alterations to system parameters without affecting the real system;

• Facilitates replication.

Traffic analysis is a problem well suited for the use of simulation. Tartaro,

Toress and Wainer [45] state that urban traffic analysis and control is a problem
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whose complexity makes difficult the analysis with traditional analytical methods.

Traffic simulation has been in use as early as the 1950s. In fact, Webster [47] stated

in 1958 that, “Since a theoretical calculation of delay is very complex and direct

observation of delay on the road is complicated by uncontrollable variations, it was

decided to use a method whereby the events on the road are reproduced in the

laboratory by means of some machine which simulates behavior of traffic...”. This

was one of the earliest suggestions that simulation could and should be used in traffic

control. With the recent development in computer technology and programming

tools, numerous traffic simulations have been created, and the concept is still gaining

popularity.

When it comes specifically to traffic signal control, Hewage and Ruwanpura

[26] state that computer simulation can be used effectively to analyze traffic flow

patterns and signal light timings. In the 1970s, the Federal Highway Administration

began using traffic simulation to evaluate traffic signal control systems. The Urban

Traffic Control System was the first traffic simulation software developed. The

resulting software was named Network Simulation (NETSIM) and was implemented

in Washington, D.C. When developing a traffic signal control plan, interaction with

a traffic simulation can be invaluable. Real traffic data is used to determine the

needed distributions that govern the simulation. Using the traffic simulation in

the developmental stages of a traffic signal control system provides a safe virtual

environment and significantly reduces the software development time [21]. The

safety comes from the fact that testing a signal control plan on a real system can have

quite undesirable effects. The reduction in development time is achieved through
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the simulation via quicker run times of the traffic scenarios and also examination of

rare cases. Also, the simulation can be used to gather crucial system data, whereas

in the real system such data would be difficult, timely and expensive to gather. The

system data collected from the simulation can be used in lieu of the data that would

otherwise need to be collected from the real system. For these reasons, Ghaman et

al. [21] state that traffic simulation plays a key role in the development of signal

control systems.

Some of the traffic simulation systems in use today include CORSIM, VISSIM,

AIMSUM, Paramics and SIMTRAFFIC. The SMARTEST project [40] reviews over

fifty traffic simulation software packages.

1.3.2 Modeling

When it comes to traffic modeling, the two main approaches are microscopic

and macroscopic. In microscopic models, each car’s individual path through the

system can be traced. Macroscopic models take a more aggregate approach. These

modeled are often driven by flow rates.

We employ two forms of modeling in this dissertation. Neither model is in-

tended to be an exact replica of the traffic system, but each model captures impor-

tant qualities of the real traffic system. The underlying system is modeled using

discrete-event simulation (DES). DES models are stochastic, because they contain

some state variables that are random. In this model, significant changes (events) to

the system occur at a finite or countable set of times. This model would fall under
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the microscopic approach. Lindgren and Tantiyanugulchai [30] state that there is

a growing recognition that stochastic microscopic simulation models can be very

useful in operational analysis.

We also model the traffic problem using stochastic fluid models (SFM). The

SFM paradigm adopts a fluid flow view, as opposed to the transaction-flow view

of traditional queueing models. The efficiency of a fluid model lies in its ability to

aggregate multiple events. This model falls under the macroscopic approach.

1.3.3 Gradient Estimation

This dissertation applies gradient estimation techniques for stochastic simula-

tion models. Indirect gradient estimation approaches estimate an approximation of

the true gradient value. These approaches offer the greatest generality and flexibil-

ity. The most basic and straightforward forms of (indirect) gradient estimation use

brute-force finite-differences (FD), which entails perturbing each component of the

gradient separately while holding the other fixed. FD estimators can be computa-

tionally impractical for higher-dimensional problems, because each parameter that

is perturbed requires two simulation runs. There are also difficulties in deciding the

correct size of the perturbation. In an attempt to get a more accurate gradient es-

timator, small perturbations are often attempted; however, small perturbations can

lead to other problems. One such problem is extremely noisy gradients due to the

stochastic nature of the output. Another problem is due to the numerical complica-

tions of dividing two small numbers. For these reason, indirect gradient estimation,
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namely FD, is not always ideal. In this dissertation we use the symmetric-difference

(SD) form of FD, where the system is evaluated under a positive and negative per-

turbation. The extra computation cost can be balanced out by the gain in accuracy.

Direct gradient estimation attempts to estimate the true gradient by analyz-

ing the underlying stochastic system, requiring further analysis of the model. Direct

gradient estimators usually provide an unbiased estimate and are more computa-

tionally efficient. Thus, for optimization, faster convergence can be achieved with

direct gradient estimators. One method of direct gradient estimation is perturbation

analysis (PA).

1.3.4 Perturbation Analysis

PA attempts to derive an unbiased gradient estimation from a single sample

path of the system [29, 25]. PA does not require actual perturbation of the parame-

ters; thus, it can be implemented online. In this dissertation we apply two different

forms of PA.

The first and most basic form is infinitesimal perturbation analysis (IPA),

which is simple to implement but often limited in applicability. A necessary as-

sumption for IPA to work is that small perturbations in the parameters will in turn

cause small perturbations in the performance measures of interest [15, 24]. When

IPA is not applicable, there are other forms of PA available.

One such alternative approach, introduced by Gong and Ho [22], is smoothed

perturbation analysis (SPA), which is a gradient estimation technique based on con-
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ditional Monte Carlo. The success of this approach relies on the smoothing property

of the conditional expectation. SPA is a rather general technique; however, imple-

mentation usually depends heavily on the problem. Fu and Hu [15] have developed

a formal generalized semi-Markov process (GSMP) implementation, which leads to

an estimator with an IPA component and a conditional component.

1.4 Research Contributions

In this dissertation we develop algorithms, using gradient estimation and

stochastic optimization, that determine the optimal traffic signal split settings for

signalized traffic systems. Although optimization of a network of signalized inter-

sections is the ultimate goal, we examine both a single intersection and a network of

two intersections, as single intersections serve as the building block of all signalized

intersection networks. We also note that the interaction between intersections is a

critical element in network optimization. This interaction can be captured in the

gradient estimation process.

Removing the one-way assumption of traffic flow should be relatively straight-

forward to handle. Allowing turns would require further analysis for the model;

however, the derivation of the gradients estimators should follow a similar analysis

the current model.

We apply both IPA and SPA as appropriate. The underlying DES traffic

model requires an SPA estimator. When we model the traffic system using SFM,

we are able to derive IPA estimators; however, both estimators are implemented on
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the underlying stochastic DES model for system analysis and optimization.

Our work contributes to the methodological foundations of metropolitan traffic

flow management by introducing new simulation-based optimization algorithms for

determining traffic light signal timings. We derive gradient estimators to carry

out this optimization. Each of the estimators has at least one version (left-hand

or right-hand) that requires no off-line simulation. The resulting estimators are

computationally efficient and can be implemented in fixed-time plans, as well as on

line with actuated plans, because they do not require altering the parameter values

and are computationally inexpensive.

We model the traffic systems using two different methods and implement mul-

tiple gradient estimation techniques in conjunction with these models. Specifically,

we provide the following research contributions:

• We develop unbiased and efficient gradient estimators in the single intersection

traffic setting.

• We develop simpler PA gradient estimators based on SFM in the single inter-

section traffic setting.

• We apply these gradient estimators, both DES and SFM, in stochastic approx-

imation (SA) for system optimization in the single intersection traffic setting.

• We extend these gradient estimation algorithms to a network of two signalized

intersections.

• We compare these algorithms with known methods in numerical experiments.
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The remainder of this dissertation is organized as follows. In Chapter 2, we

develop an optimization algorithm for a single intersection. We develop unbiased

SPA gradient estimators and employ them in SA for system optimization. We carry

out numerical experiments, including comparisons with other known methods. In

Chapter 3, we make the traffic system of interest a network of two signalized in-

tersections. Once again, unbiased gradient estimators derived via SPA are used

with SA for network control and optimization. We compare the performance of our

estimators with those of other well-known approaches via numerical experiments.

In Chapter 4, we look at both the single intersection and the network of two in-

tersections problems. We derive IPA gradient estimators derived from SFM, but

implemented on the underlying DES. We carry out numerical experiments to com-

pare these results with those from the Chapter 2 and 3. In Chapter 5, we give

conclusions and future work.
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Chapter 2

Single Intersection

2.1 Introduction

Our proposed approach to the single intersection optimization problem is gra-

dient based, and we derive simulation-based gradient estimators that are more ef-

ficient than brute-force finite differences; furthermore, they can be implemented

online, which also differentiates the algorithm from that of Spall and Chin [43]. Due

to the difficulty of the problem, we apply an approach called smoothed perturbation

analysis (SPA), introduced by Gong and Ho [22]. Another simpler technique called

infinitesimal perturbation analysis (IPA) is not applicable in the setting [23]. IPA

is not applicable, because the sample performance measure is discontinuous in the

parameter space. Because of this discontinuity, SPA, which uses conditional expec-

tation, is required. For the single intersection of two one-way streets, we use the

framework of Fu and Hu [14] to derive unbiased left-hand and right-hand gradient

estimators for the queue lengths at each of the streets. We then employ these gradi-

ent estimators in a stochastic approximation algorithm to optimize the signal light

timings. Numerical comparisons with optimization using finite difference estimators

illustrate the promise of the proposed approach.

The rest of the chapter is organized as follows. In Section 2, we lay out the

problem setting, including the queueing model and assumptions. In Section 3, we
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provide the detailed derivations of the various SPA estimators, including implemen-

tation details and proofs of unbiasedness. In Section 4, we report illustrative numer-

ical results on the efficiency of the estimators and their effectiveness in optimizing

traffic signal light timings. And finally in Section 5, we discuss some conclusions of

the work.

2.2 Problem Setting

The system of interest consists of two one-way streets – labeled 1 and 2 in

Figure 2.1 – intersecting at a traffic light that has two states:

A1 The light is green for street 1. This state allows both departures and arrivals at

street 1, but only arrivals at street 2.

A2 The light is green for street 2. This state allows both departures and arrivals at

street 2, but only arrivals at street 1.

In this model, we ignore yellow light lengths and assume the time to change from

one state to another is negligible. The length of a green cycle in states A1 and A2

are denoted by T1 and T2, respectively. When the light is green for one street, the

light is red for the other street. A complete signal cycle is defined by a green-red

sequence, and the time to complete such a cycle is denoted by T = T1 + T2. We

assume that the green-red cycle repeats identically and indefinitely, and without

loss of generality assume that the sequence begins with a green for street 1. In

state Aj, j = 1, 2, cars in street j’s queue are served one at a time, according to

i.i.d. “service times” with mean 1/µj, c.d.f. Fj and p.d.f. fj, whereas in the other
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Figure 2.1: Isolated intersection traffic system visual depiction.

queue no cars are “served.” All service time and interarrival time distributions are

continuous. If a car does not make it through the intersection during a cycle, it

must “start over” with a fresh service time during the subsequent green cycle, i.e.,

the departure process must start over from scratch once it is realized that the car

will not exit the queue during the current cycle. Arrivals to each street follow a

renewal process with interarrival c.d.f. Gj, assumed to have finite rate λj. Unlike

the departure process, the arrival processes to both intersection are “on” in both

states. The performance measure of interest is the average number of cars waiting at

the traffic light for a particular street. By Little’s Law, this is essentially equivalent
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to the average waiting time. We define:

Lj(t) = # cars waiting on street j at time t (j = 1, 2);

L̄j(t) = average queue length for street j up to time t =
1

t

∫ t

0

Lj(x)dx;

N = # red-green cycles simulated;

L̄ = L̄1(NT ) + L̄2(NT ).

In other words, the average total queue length performance measure L̄ is taken over

N green-red cycles. Note that “queue length” throughout includes all cars waiting

at the street, even the one currently “in service.”

The optimization problem is then given by

min
T1,T2

E[L̄] (2.1)

subject to T1 + T2 = T,

which we propose to solve by satisfying the first-order condition

∇θE[L̄] = 0, (2.2)

where θ is the vector of controllable variables (parameters), e.g., T1 and T2. T is

fixed; therefore, we can remove the dependence on T2 and the optimization problem

described by equation 2.1 can be rewritten as

min
T1

E[L̄] (2.3)

To find the value of θ satisfying equation (2.2), we use gradient-based simulation

optimization via a stochastic approximation recursion of the following form:

θn+1 = ΠΘ

(
θn − an∇̂E[L̄(θn)]

)
, (2.4)
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where an is a positive sequence of step sizes, ∇̂ represents a gradient estimate, and

ΠΘ is a projection onto the feasible region Θ.

The gradient estimate in (2.4) requires estimators for

dE[L̄j]

dθ
, j = 1, 2. (2.5)

We assume T is given, so the constraint essentially reduces (2.1) to a single-variable

optimization problem. With T fixed, a positive perturbation in T1 results in a nega-

tive perturbation in T2 and vice versa. Although we take T1 and T2 as deterministic,

a more general formulation could have T1 and T2 as random variables, with θ as a

parameter in the distribution of T1 or T2.

2.3 Derivation of Estimators

Now we examine the concept of SPA as given by Gong and Ho [22]. By defining

θ = controllable parameter,

ξ = random sequence of numbers defined on a probability space (Ω, F, P ),

we have that a stochastic DES can be represented by the pair (θ, ξ). Then the

performance measure of interest L(θ, ξ) is a random variable on (Ω, F, P ).

Next, let Ft be an increasing family of σ-algebras on (Ω, F, P ), that is gen-

erated by the simulation model up to time t. Now let N be the number of cycles

simulated and let T be the length of a cycle, then it follows that NT is the duration

of a simulation run. The characterization, Z, is a FNT measurable random vec-

tor. Z is a set of data obtainable from the data generated from a simulation such
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as queue content, services times, interarrival times, etc. The choice of which data

makes up the characterization is a problem dependent decision. The SPA estimator

then can stated as
(

dE[L̄j]

dθ

)

SPA

=
1

N

N∑

k=1

δ

δθ
L(θ,Zk) (2.6)

where

δ

δθ
L(θ,Z) = lim

∆θ→0

E[∆L(θ, ξ)|Z]

∆θ
. (2.7)

It is the case that the estimator represented in equation (2.6) can be implemented

provided that δ
δθ

L(θ,Zk) can be calculated from the simulation run generated by

(θ, ξk).

Now we consider the conditions that will ensure the consistency of the estima-

tor represented in equation (2.6). By the strong law of law numbers we have

lim
N→∞

1

N

N∑

k=1

δ

δθ
L(θ,Zk) = lim

N→∞
1

N

N∑

k=1

δ

δθ
L(θ,Z(θ, ξk))

= E
δ

δθ
L(θ,Z)

= E lim
∆θ→0

E[δL(θ, ξ)|Z]

∆θ
. (2.8)

So the question is under what conditions

δ

δθ
L(θ, ξ) = lim

∆θ→0
E

E[δL(θ, ξ)|Z]

∆θ

= E lim
∆θ→0

E[δL(θ, ξ)|Z]

∆θ
(2.9)

holds. So basically we are left with requiring an interchange of limit and expectation.

Conditions for such an interchange involve applying the dominated convergence

theorem.
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Following the framework of Fu and Hu [14], the general SPA estimator consists

of an infinitesimal perturbation analysis (IPA) term and a conditional term, the

latter due to possible critical event order changes, which intuitively are changes in

the order of events in a sample path that drastically alter the performance measure

of interest. For instance, in our traffic light setting, a perturbation might lead to one

less or one more departure in a given green cycle. How to estimate the probability

(rate) of such a change and the subsequent expected effect on the performance

measure is the key to deriving the SPA estimator.

The general form of the SPA estimator is

(
dE[L̄j]

dθ

)

SPA

=
dL̄j

dθ
+ lim

∆θ→0

PZ(β(∆θ))

∆θ
lim

∆θ→0
δEZ [L̄j(β(∆θ))], (2.10)

where β(∆θ) denotes a critical event change due to a perturbation of ∆θ, and

δEZ [L̄j(β(∆θ))] denotes the corresponding expected change in the performance mea-

sure EZ [L̄j]. The subscript Z denotes a conditioning on the characterization, which

is the set of conditioning quantities on the sample path on which the conditional

contribution is estimated, and it will differ for each of the four estimators we derive.

In addition to choosing Z, the chief difficulty in implementing an SPA estimator is

the estimation of the expected change, lim∆θ→0 δEZ [L̄j(β(∆θ))]. Ideally, this quan-

tity would be able to be estimated from the original sample path, which we call

the nominal path (NP), but its general form is given as lim∆θ→0 δEZ [L̄j(β(∆θ))] =

EZ
[
L̄PP

j − L̄DNP
j

]
, which is defined by three other sample paths:

• NP: nominal path, the original sample path;

• PP: perturbed path, limiting version of nominal path on which the critical
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event change occurs, that is a version of the NP on which the parameter that

causes the event change is just big enough to cause the event change;

• DNP: degenerate nominal path, limiting version of the nominal path on which

no critical event change occurs, that is a version of the NP on which the

parameter that causes the event change is just small enough to not cause the

event change;

where the superscripts denote the performance measures on the corresponding sam-

ple paths. Over N cycles, the estimator (2.10) becomes

(
dE[L̄j]

dθ

)

SPA

=
dL̄j

dθ
+

N∑
i=0

lim
∆θ→0

PZi
(βi(∆θ))

∆θ
lim

∆θ→0
EZi

[
L̄PPi

j − L̄DNPi
j

]
. (2.11)

Since the optimization is with respect to T1, we will take θ = T1 throughout.

We derive four estimators: left-hand (∆θ ↑ 0) and right-hand (∆θ ↓ 0) estimators

for each of the two streets, with l and r subscripts denoting left-hand and right-hand

estimators, respectively. The critical event changes, βi(∆θ), are quite intuitive: a

shortening of a green cycle could cause a departure to be lost during the cycle,

whereas a lengthening could allow an additional departure.

2.3.1 Right-Hand Estimator for Queue 1

We first consider queue 1 with ∆θ > 0, corresponding to the right-hand esti-

mator for dE[L̄1]/dθ. In this case (∆θ = ∆T1 > 0), there is a positive perturbation

in the green signal length of street 1 while keeping the total signal cycle length, T ,

unchanged. Since small perturbations at the end of T1 do not affect the departure
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Figure 2.2: Example of L1(t) sample path for a single intersection traffic system

with positive perturbation of (4θ > 0) T1 cycle.

times of cars from street 1, the IPA contribution is zero. A small enough increase

in the green signal length would not cause any change in the queue length for street

1; however, a large enough increase would lead to an additional departure; in other

words, the performance measure is piecewise constant. The critical change in this

case is this additional departure. An additional departure is possible if and only if

the queue is nonempty at the light change. When nonempty, the last car to enter

service is the only candidate for a critical change because the probability of more

than one critical change is of higher order and thus can be ignored. Thus, we only

consider the last car as a possible extra departure. To calculate the probability rate

25



and expected effect of this critical change, we condition on all arrivals and service

times except for the last entry to service during the current A1 state. Since the only

critical event change in a cycle is a function of the last entry to service, we can index

by cycles, and we define:

αi = time until light change from last entry of service during ith cycle,

S = set of all service times,

S∗i = last service time of ith cycle,

Λ = set of all arrival times,

Zi = S\{S∗i } ∪ Λ,

where the service time for the last car to enter service (and not depart) in cycle

i is greater than αi. NOTE: If the service time was less than αi, then that car

would have exited the system. DNP and PP are then defined by the critical change

occurring precisely at the green/red light change, with the service times of the last

car to enter service being α+
i and α−i , respectively, where

α+
i = α + ε,

α−i = α− ε,

for ε > 0 infinitesimally small. If X denotes a random variable with service time

distribution F1, then the probability of a critical change is given by

P (βi(∆θ)) = P (X ≤ αi + ∆θ | X ≥ αi), (2.12)

and hence

lim
∆θ→0

P (βi(∆θ))

∆θ
=

f1(αi)

1− F1(αi)
. (2.13)
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Thus, the estimator given by (2.11) becomes

(
dE[L̄1]

dθ

)

SPA,r

=
1

NT

N∑
i=1

f1(αi)

1− F1(αi)
EZi

[L̄PPi
1 − L̄DNPi

1 ]. (2.14)

We note that NT is the length of each simulation run. To calculate the resulting

expected effect, EZ
[
L̄PPi

1 − L̄DNPi
1

]
, we observe that starting at the critical change,

LDNPi
1 (t) will be identical to L1(t), whereas LPPi

1 (t) will be one lower than L1(t)

until L1(t) empties. Thus, we have that LDNPi
1 (t) = LPPi

1 (t) + 1 for all t from the

epoch of the first light change after the critical change to the time when the system

first empties after the critical change (see Figure 2.2 for an example). Figure 2.2

shows one possible sample path, we note that the last entrant to service that does

not exit the system could have also been an arrival to an empty queue. Thus,

EZi
[L̄PPi

1 − L̄DNPi
1 ] = −E[min(NT, inf{t > τ | L1(t) = 0})]− τ, (2.15)

where τ = iT − T2 corresponds to the epoch of the ith light change from green to

red (for street 1). We subtract τ because the critical change only effects the sample

path after its occurrence. Estimation of (2.15) can be done offline as follows. We

define

γi = residual interarrival time at the epoch of the ith light change,

R
(1)
N (γi) = expected time to empty queue 1, given N cars in the queue

and an initial interarrival time of γi,

Qi = number in queue at the epoch of the ith light change from

green to red.
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Thus, (2.15) can be rewritten as R
(1)
Qi

(γi) and subsequently the estimator given by

(2.14) becomes

(
dE[L̄1]

dθ

)

SPA,r

=
1

NT

N∑
i=1

f1(αi)

1− F1(αi)

[
−R

(1)
Qi

(γi)
]
. (2.16)

Note that the sign of the estimator will be negative, which makes intuitive sense,

because an increase in the green signal length should decrease the average queue

length.

2.3.2 Right-Hand Estimator for Queue 2

We now consider the case of queue 2 with ∆θ > 0 to derive the right-hand

estimator for dE[L̄2]/dθ. An increase in T1 affects the entrance to service of cars in

queue 2 and hence the departure times of cars in queue 2, because it results in a

decrease in T2, delaying the transition from state A1 to A2 and leading to an IPA

perturbation in the departure times of every car in the initiating busy period (IBP)

of the cycle. If the queue was empty at the beginning of the green period, we say

that the particular cycle has no initiating busy period and hence there will be no IPA

contribution for that cycle. Also any car that arrives after an idle period will not

be affected by a perturbation in T1, i.e., once the system empties, the perturbation

is lost. The critical change for this case is a loss of a departure. A departure by a

car that is in the initiating busy period may be eliminated by the perturbation and

hence represents a potential critical change. To calculate the probability rate and

expected effect of each of these possible critical changes, we condition on all arrival

times and all service times except that of the kth initiating busy period departure
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of the ith period. We define:

αk
i = time until light change from the entry to service of the

kth IBP departure,

S∗ki = set of all service times of ith cycle prior to kth IBP departure,

Zk
i = S\{S∗ki } ∪ Λ,

Hi = number of IBP departures during ith cycle,

βk
i = critical change cause by kth IBP departure during ith cycle,

PP k
i = perturbed path caused by kth IBP departure during ith cycle,

DNP k
i = degenerate nominal path caused by kth IBP departure

during ith cycle.

If X denotes a random variable with service time distribution F2, then the proba-

bility rate of a critical change is given by

lim
∆θ→0

P (βk
i (∆θ))

∆θ
= lim

∆θ→0

P (X ≥ αk
i −∆θ | X ≤ αk

i )

∆θ
=

f2(α
k
i )

F2(αk
i )

. (2.17)

Thus, the estimator given by (2.10) becomes

(
dE[L̄2]

dθ

)

SPA,r

=
1

NT

(
N∑

i=1

Hi +
N∑

i=1

Hi∑

k=1

f2(α
k
i )

F2(αk
i )

EZk
i
[L̄

PP k
i

2 − L̄
DNP k

i
2 ]

)
. (2.18)

Estimation of the expected difference between L̄
PP k

i
2 and L̄

DNP k
i

2 is similar to the pre-

vious estimator. The difference in these two performance measures is the difference

in the time it takes for the two paths to empty, which can be estimated by simulating

the expected time to empty the system, given that the initial queue length is equal

to the queue length of the PP path at the time if the light change. Because arrivals
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are not affected by the perturbation of T1, we must consider additional arrivals in

the expected difference calculation. Defining

R
(2)
N (γi) = expected time to empty queue 2, given N cars in the queue

and an initial interarrival time of γi,

Y k
i = number in queue immediately after the epoch of the

kth IBP departure during the ith cycle,

Ak
i = number of arrivals between kth entry to service and

next light change during ith cycle,

the final estimator becomes

(
dE[L̄2]

dθ

)

SPA,r

=
1

NT

N∑
i=1

Hi +
1

NT

N∑
i=1

Hi∑

k=1

f2(α
k
i )

F2(αk
i )

R
(2)

Y k
i +Ak

i
(γi). (2.19)

The sign of the estimator will be positive, which makes intuitive sense, because a

decrease in the green signal length should increase the average queue length.

2.3.3 Left-Hand Estimator for Queue 1

We now consider the case of queue 1 with ∆θ < 0 to derive the left-hand

estimator for dE[L̄1]/dθ. Decreasing T1 affects the departures of cars in queue 1

by advancing the transition from state A1 to state A2. Because the perturbation

occurs at the end of the cycle, a small enough perturbation will have no effect on the

departure times of cars. Therefore, there is no IPA contribution for the estimator.

The critical change for this case is again a loss of a departure. Every car that

successfully completes service represents a potential critical change. To calculate the

30



probability rate and expected effect of these possible critical changes, we condition

on all arrival times and all service times except that of the kth departure. If X

denotes a random variable with service time distribution F1, then the probability

rate of a critical change is given by

lim
∆θ→0

P (βk
i (∆θ))

∆θ
= lim

∆θ→0

P (X ≥ αk
i −∆θ | X ≤ αk

i )

∆θ
=

f1(α
k
i )

F1(αk
i )

. (2.20)

Defining

Di = number of departures during the ith cycle,

we get that the estimator given by (2.10) becomes

(
dE[L̄1]

dθ

)

SPA,l

= − 1

NT

N∑
i=1

Di∑

k=1

f1(α
k
i )

F1(αk
i )

EZk
i
[L̄

PP k
i

1 − L̄
DNP k

i
1 ]. (2.21)

Estimation of the difference between L̄
PP k

i
1 and L̄

DNP k
i

1 is identical to that in the

previous estimator, so the final estimator is given by

(
dE[L̄1]

dθ

)

SPA,l

= − 1

NT

N∑
i=1

Di∑

k=1

f1(α
k
i )

F1(αk
i )

R
(1)

Y k
i +Ak

i
(γi). (2.22)

The sign of the estimator will be negative, which makes intuitive sense, because an

increase in the green signal length should decrease the average queue length.

2.3.4 Left-Hand Estimator for Queue 2

The case of queue 2 with ∆θ < 0 for the left-hand estimator for dE[L̄2]/dθ

is similar to the right-hand estimator for queue 1, except that there is an IPA

component. A decrease in T1 affects the entrance to service of cars in queue 2 and

hence the departure times of cars in queue 2, because it results in an increase in T2,
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Figure 2.3: Example of L2(t) sample path for a single intersection traffic system

with negative perturbation of (4θ < 0) T1 cycle.

advancing the transition from state A1 to A2 and leading to a perturbation in the

departure times of every car in the initiating busy period of the cycle (see Figure 2.3

for an example). If the queue was empty at the beginning of the green period, there

will be no IPA contribution for that cycle, and any car that arrives after an idle

period will not be affected by a perturbation in T1, i.e., once the system empties,

the perturbation is lost. Except for a sign change and a process for checking if a car

is a member of the IBP, the rest of the analysis proceeds analogously to that used
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to derive (2.16). Defining

1(α) =





0 if α corresponds to a IBP car

1 otherwise,

(2.23)

the estimator given by (2.10) becomes

(
dE[L̄2]

dθ

)

SPA,l

= − 1

NT

N∑
i=1

Hi+
1

NT

N∑
i=1

f2(αi)

1− F2(αi)
EZi

[L̄PPi
2 −L̄DNPi

2 ]1(α), (2.24)

and the final estimator is given by

(
dE[L̄2]

dθ

)

SPA,l

=
1

NT

N∑
i=1

Hi +
1

NT

N∑
i=1

f2(αi)

1− F2(αi)

[
R

(2)
Qi

(γi)
]
1(α). (2.25)

Note that the sign of the estimator will be positive, which makes intuitive sense,

because a decrease in the green signal length should increase the average queue

length.

2.3.5 Special Cases

For the special case of exponential interarrival and service times, (2.16), (2.19),

(2.22), and (2.25) respectively simplify to

(
dE[L̄1]

dθ

)

SPA,r

= − µ1

NT

N∑
i=1

R
(1)
Qi

, (2.26)

(
dE[L̄2]

dθ

)

SPA,r

=
1

NT

N∑
i=1

Hi +
µ2

NT

N∑
i=1

Vi∑

k=1

R
(2)

Y k
i +Ak

i

eµ2αk
i

, (2.27)

(
dE[L̄1]

dθ

)

SPA,l

= − µ1

NT

N∑
i=1

Vi∑

k=1

R
(1)

Y k
i +Ak

i

eµ1αk
i

, (2.28)

(
dE[L̄2]

dθ

)

SPA,l

=
1

NT

N∑
i=1

Hi +
µ2

NT

N∑
i=1

R
(2)
Qi

, (2.29)

where the dependence of R
(j)
N on the residual interarrival time has been removed

due to the memoryless property of exponential distribution.
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2.3.6 Unbiasedness of the Estimators

The estimators derived in the previous sections are unbiased if

E

[(
dE[L̄j]

dθ

)

SPA

]
=

dE[L̄j]

dθ
, j = 1, 2. (2.30)

To establish equation (2.30), some additional conditions are required:

(A1) F1(·) is Lipschitz continuous with Lipschitz constant K1.

(A2) F2(·) is Lipschitz continuous with Lipschitz constant K2.

where for I ⊆ <, a function f : I → < is said to Lipschitz continuous if there exist

a constant K such that |f(x) − f(y) < K|x − y| for all x, y ∈ I and the smallest

such K for which this holds is called the Lipschitz constant.

We then have the following result.

Proposition 1.

(i) Under condition (A1), (2.14) is an unbiased estimator for dE[L̄1]
dθ

,

(ii) Under condition (A1), (2.21) is an unbiased estimator for dE[L̄1]
dθ

,

(iii) Under condition (A2), (2.18) is an unbiased estimator for dE[L̄2]
dθ

,

(iv) Under condition (A2), (2.24) is an unbiased estimator for dE[L̄2]
dθ

.

We establish (iv) of Proposition 1. The proofs of (i), (ii), and (iii) proceed

similarly; thus, their details are omitted here. To proceed, we introduce the following
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additional notation:

Γ(NT ) = {i ≤ NT : L2(iT ; θ) > 0};

Ak = {L2(t; θ) = L2(t; θ + ∆θ), t = T, 2T, . . . , kT};

Bk = {L2(t; θ) = L2(t; θ + ∆θ), t = T, 2T, . . . , (k − 1)T}

∪ {L2(KT ; θ) = L2(KT ; θ + ∆θ)},

k = 1, 2 . . . , N , where ∆θ = ∆T1 > 0. The set Zk is the characterization for our

estimator; it contains everything except the service time of the last entrant to service

in period k. Ak and Bk are both functions of ∆θ, though we omit the explicit display

of the argument. The event Bk indicates that a perturbation in the value of θ to

θ+∆θ first causes a change in the queue length in period k. The event AN represents

the case where the perturbation does not cause a change in the queue length over

the entire sample path. Thus, B1, . . . ,BN ,AN partition our sample space and we

can write

dE[L̄2]

dθ
= lim

∆θ→0

{
E[(L̄2(θ + ∆θ)− L̄2(θ))1(An)]

∆θ

+
N∑

k=1

E[(L̄2(θ + ∆θ)− L̄2(θ))1(Bk)]

∆θ

}
. (2.31)

We first prove the following lemma.

Lemma 1. Under condition (A2),

(a) E[L̄2(θ + ∆θ)− L̄2(θ))1(An)] = ∆θ × E
[

1
NT

∑N
i=1 Hi

]
.

(b) lim∆θ↑0
E[L̄2(θ+∆θ)−L̄2(θ))1(Bk)]

∆θ
= E

[
1

NT
f2(αk)

1−F2(αk)
R

(2)
Qk

(γk)
]

.
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(c) lim∆θ↓0
E[L̄2(θ+∆θ)−L̄2(θ))1(Bk)]

∆θ
= E

[
1

NT

∑Vk

i=1
f2(αi

k)

F2(αi
k)

R
(2)

Y i
k+Ai

k
(γk)

]
.

Proof. For part (a), recall that in Section 2.3.4 we showed

(L2(θ + ∆θ)− L2(θ))1(AN) = −
N∑

i=1

Hi∆θ, (2.32)

which establishes (a).

For part (b), we consider E[(L2(θ + ∆θ) − L2(θ))1(Bk)], k = T, 2T, . . . , NT . First

we rewrite it as

E[E[(L2(θ + ∆θ)− L2(θ))1(Bk)|Zk]]. (2.33)

We have

|E[L2(θ + ∆θ)1(Bk)|Zk]|

= |E[L2(θ + ∆θ)|Zk, αk(θ) < S∗k < αk(θ + ∆θ)]1(Ak−1)

× P (αk(θ) < S∗k < αk(θ + ∆θ))|

= |E[L2(θ + ∆θ)|Zk, αk(θ) < S∗k < αk(θ + ∆θ)]1(Ak−1)

× (F2(αk(θ + ∆θ))− F2(αk(θ)))|

≤ K2∆θE[L2(θ + ∆θ)|Zk, αk(θ) < S∗k < αk(θ + ∆θ)],

where αk(θ+∆θ) = αk(θ)+∆θ and the last inequality follows from assumption (A2).

To bound the expectation, we introduce notation for a renewal counting process

based on the arrivals (without service). Let {Xn, n = 1, 2, . . .} be a sequence of i.i.d.

interarrival times with common distribution G2, and denote the associated counting

process {P (t), t ≥ 0}. G2 generates nonnegative interarrival times with a finite rate
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(λj); thus, G2(0) < 1. Noting that arrivals are independent of θ, from basic renewal

theory, we have

E

[
sup
∆θ

L2(θ + ∆θ)|Zk, αk(θ) < S∗k < αk(θ + ∆θ)

]
≤ E[P (NT )] < ∞,

so by invoking the dominated convergence theorem (DCT), we have

lim
∆θ→0

E[L̄2(θ + ∆θ)1(Bk)]

∆θ
= E

[
lim

∆θ→0

E[L̄2(θ + ∆θ)1(Bk)|Zk]

∆θ

]

= E

[
lim

∆θ→0

(F2(αk(θ + ∆θ))− F2(αk(θ)))

∆θ

× lim
∆θ→0

E[L̄2(θ + ∆θ)|Zk, αk(θ) < S∗k < αk(θ + ∆θ)]

× 1(Ak−1)]

= E[f2(αk)E[L̄PPk
2 (t)]]

= E

[
f2(αk)

1− f2(αk)
1{S∗k > αk(θ)}E[L̄PPk

2 (t)]

]
.

We can similarly show

lim
∆θ→0

E[L̄2(θ)1(Bk)]

∆θ
= E

[
f2(αk)

1− f2(αk)
1{S∗k > αk(θ)}E[L̄DNPk

2 (t)]

]
.

By establishing a bound for each part of our estimator, we are able to use the DCT

to make the necessary expectation and limit switch. Thus, combining Lemma 1

with (2.31) establishes (iv) of Proposition 1. The following lemma and parts (c) and

(d) of Lemma 1, needed to establish (i), (ii), and (iii), can be proven analogously,

where again θ = T1.

Lemma 2. Under condition (A1),

(a) E[L̄1(θ + ∆θ)− L̄1(θ))1(An)] = 0.
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(b) lim∆θ↓0
E[L̄1(θ+∆θ)−L̄1(θ))1(Bk)]

∆θ
= E

[
1

NT
f1(αi)

1−F1(αk)
R

(1)
Qk

(γk)
]
.

(c) lim∆θ↑0
E[L̄1(θ+∆θ)−L̄1(θ))1(Bk)]

∆θ
= E

[
1

NT

∑Vk

i=1

f1(αi
k)

F1(αi
k)

R
(1)

Y i
k+Ai

k
(γk)

]
.

For the special case of Fj (j = 1, 2) exponentially distributed, (A1) and (A2)

are automatically satisfied, so we have the following corollary.

Corollary 1. If Gj and Fj (i = 1, 2) are exponential distributions, then (2.28)

and (2.26) are unbiased estimators for dE[L̄1]
dθ

, and (2.29) and (2.27) are unbiased

estimators for dE[L̄2]
dθ

.

2.4 Numerical Results

We implemented all four SPA estimators and compared them with various

symmetric finite difference (FD) estimates for two sets of parameters. We then

tested their use in optimization. In all cases, we took the interarrival times and

service times to be exponentially distributed, so estimators (2.26),(2.27),(2.28), and

(2.29) were used. The same estimators could be used as an approximation for non-

exponential times.

2.4.1 Gradient Estimation

The first case (“C1”) corresponds to symmetric street flows and signal timings:

µ1 = µ2 = 2.0; λ1 = λ2 = 4.5; T = 60, T1 = T2 = 30. The second case (“C2”) is an

asymmetric system: µ1 = 1.5, µ2 = 0.75; λ1 = λ2 = 5.0; T = 110, T1 = 35, T2 = 75.

The simulations were carried out for N = 10, 000 cycles over 10,000 replications.
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Estimator dE[L̄1]/dθ (std. err.) dE[L̄2]/dθ (std. err.)

SPA (RH) -2.465 (0.001) 2.463 (0.001)

SPA (LH) -2.465 (0.001) 2.464 (0.001)

FD (.05) -2.475 (0.024) 2.455 (0.021)

Table 2.1: SPA gradient estimate simulation results for the isolated intersection

traffic setting for “C1” (standard errors in parentheses).

Estimator dE[L̄1]/dθ (std. err.) dE[L̄2]/dθ (std. err.)

SPA (RH) -8.303 (0.006) 0.0687 (0.000003)

SPA (LH) -8.295 (0.007) 0.0687 (0.000003)

FD (.05) -8.169 (0.115) 0.0687 (0.000035)

Table 2.2: SPA gradient estimate simulation results for the isolated intersection

traffic setting for “C2” (standard errors in parentheses).

The results are shown in Tables 2.1 and 2.2. The FD estimates are quite sensitive to

the difference value chosen; the best results are reported here, where the number in

parentheses following the heading “FD” in the tables indicates the specific difference

value. Even so, the SPA estimator is more precise, with a standard error always at

least an order of magnitude better, and it is also more stable and computationally

efficient. In fact, when L̄ is also desired, the FD estimators require (on average)

nearly three times as much computation time. The confidence intervals for all

estimators overlap for both cases.
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Figure 2.4: Plot and zoomed in plot of E[L̄] and dE[L̄]
dθ

simulation results for “C1”.

2.4.2 Optimization

In the implementation of the SA algorithm (2.4), we take

Θ = T

(
λ1

µ1

)
< T1 < T

(
1− λ2

µ2

)
,

which represents the region of stability. We consider cases using the same values

for µi, λi, and T as in section 2.4.1, where now T1 will be optimized. Figures 2.4

and 2.5 depict the mean and gradient of the average queue length for both the SPA

and FD estimators. The mean queue length was obtained via the discrete-event

simulation model, in which 10,000 cycles were simulated over 10,000 replications.

Because SA is an iterative algorithm, not only are we concerned with reaching the

optimum, but we need subsequent updates to not cause deviation from optimum.

To this end, we run simulations and count the number of times the average number

in system was within p% (for p = 10,5,1) of the minimum average number in system

based on the current T1 from the SA algorithm. We label the three ranges as
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Figure 2.5: Plot and zoomed in plot of E[L̄] and dE[L̄]
dθ

simulation results for “C2”.

• 10%-range : within 10% of the optimal L̄;

• 5%-range : within 5% of the optimal L̄;

• 1%-range : within 1% of the optimal L̄.

All three gradient estimators were implemented, in conjunction with a SA al-

gorithm, for cases “C1” and “C2”. Tables 2.3 and 2.4 show the number of times each

iteration fell within the aforementioned optimum ranges. We also tested the SPA

estimators with the SA algorithm to see if the optimal value was eventually reached.

The SA algorithm was allowed to run for 100 iterations to see if the minimum L̄

value was reached. This simulation was run for 10 different replications, and these

results are shown in Figures 2.6 and 2.7. We can see that in each replication, the

minimum L̄ value was reached relatively quickly, and the estimator never caused a

deviation from the minimum for subsequent iterations of the algorithm. These two

tests show that the SPA estimators work just as well as FD estimators in iterative
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Method 10%-Range (std. err.) 5% (std. err.) 1% (std. err.)

SPA (RH) 77.0 (0.004) 46.4 (0.005) 10.9 (0.003)

SPA (LH) 77.8 (0.004) 45.6 (0.005) 10.9 (0.003)

FD (.05) 76.5 (0.004) 45.0 (0.005) 10.1 (0.003)

Table 2.3: Mean number of times that the SA algorithm was in the optimal range

for the isolated intersection traffic setting for “C1”.

Method 10%-Range (std. err.) 5% (std. err.) 1% (std. err.)

SPA (RH) 92.9 (0.003) 89.9 (0.003) 57.0 (0.005)

SPA (LH) 92.7 (0.003) 90.2 (0.003) 61.0 (0.005)

FD (.05) 94.0 (0.002) 91.8 (0.003) 60.1 (0.005)

Table 2.4: Mean number of times that the SA algorithm was in the optimal range

for the isolated intersection traffic setting for “C2”.
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Figure 2.6: Convergence to minimum for 10 replications of the SA algorithm for

“C1” for two different gradient estimation methods: SPA LH SA and SPA RH SA.
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Figure 2.7: Convergence to minimum for 10 replications of the SA algorithm for

“C2” for two different gradient estimation methods: SPA LH SA and SPA RH SA.
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gradient descent algorithms such as SA; however, we again mention that FD requires

more computational effort.

2.5 Conclusions

As far as we are aware, this is the first successful attempt to apply direct

stochastic gradient estimation techniques to a traffic flow optimization setting. The

resulting estimators demonstrated superior computational performance over FD es-

timators, and in addition can be used on line with real-time traffic updating systems,

because unlike FD estimators, they do not require altering the parameter values.

Thus, although we have considered only a single intersection, this work constitutes

an important stepping stone in the foundation of simulation-based metropolitan

traffic flow management. The next logical step is the analysis of two networked

intersections. This step is addressed in the following chapter.
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Chapter 3

Network of Two Signalized Intersections

3.1 Introduction

In this chapter, we again take a gradient-based approach. We derive simula-

tion based gradient estimators for a network of two signalized intersections. SPA,

which uses conditional expectation, is again required. We use the framework of Fu

and Hu [14] to derive unbiased left-hand and right-hand gradient estimators for the

queue lengths at each street of each light. We then incorporate these gradient esti-

mators in a stochastic approximation algorithm to optimize the signal light timings.

Numerical comparisons of gradient estimation and optimization are carried out with

FD, FDSA and simultaneous perturbation stochastic approximation (SPSA). The

results illustrate the promise of the proposed approach.

The rest of the chapter is organized as follows. In Section 2, we lay out the

problem setting, including the queueing models and assumptions. In Section 3 we

provide the detailed derivations of the various SPA estimators, including implemen-

tation details. In Section 4, we report illustrative numerical results on the efficiency

of the estimators and their effectiveness in optimizing traffic signal timings. And

finally, in Section 5, we discuss some conclusions of the work.
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Figure 3.1: Network of two signalized intersections traffic system visual depiction.

3.2 Problem Setting

The system of interest consists of two signalized intersections, Light-1 and

Light-2. Each of the two intersections is of the type analyzed in Chapter 2. In

between the two intersections is a queue we call the transient queue. The transient

queue represents the time it takes a vehicle to travel from Light-1 to Light-2. A

visual representation of the system can be seen in Figure 3.1. Each parameter

has subscripts that are used to identify which queue it references. Each of the

two intersections, Light-1 and Light-2, has traffic flowing in from two directions,

horizontal (h) and vertical (v). So we use subscripts of the form i, j, where i ∈ {1, 2}

and j ∈ {h, v} representing the light number and direction respectively. The two

lights are not required to mimic each other; thus, in this setting, we have four (not

two as in the isolated intersection) light states:

Ah,h Light-1 is green for the horizontal street. This state allows both departures

and arrivals at the horizontal street of Light-1, but only arrivals at the vertical
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street of Light-1. Also, Light-2 is green for the horizontal street. Thus, both

departures and arrivals are allowed at the horizontal street of Light-2, but only

arrivals at the vertical street of Light-2.

Ah,v The light is green for the horizontal street of light 1. This state allows both

departures and arrivals at the horizontal street of light 1, but only arrivals at

the vertical street of light 1. Also, the light is green for the vertical street of

light 2. Thus, both departures and arrivals are allowed at the vertical street

of light 2, but only arrivals at the horizontal street of light 2.

Av,h Light-1 is green for the vertical street. This state allows both departures and

arrivals at the vertical street of Light-1, but only arrivals at the horizontal

street of Light-1. Also, Light-2 is green for the horizontal street. Thus, both

departures and arrivals are allowed at the horizontal street of Light-2, but only

arrivals at the vertical street of Light-2.

Av,v Light-1 is green for the vertical street. This state allows both departures and

arrivals at the vertical street of Light-1, but only arrivals at the horizontal

street of Light-1. Also, Light-2 is green for the vertical street of Light-2. Thus,

both departures and arrivals are allowed at the vertical street of Light-2, but

only arrivals at the horizontal street of Light-2.

Each of the five queues is described below.

• L1,h, represents the cars waiting at the horizontal street of Light-1.

• L1,v, represents the cars waiting at the vertical street of Light-1.
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• L2,h, represents the cars waiting at the horizontal street of Light-2.

• L2,v, represents the cars waiting at the vertical street of Light-2.

• Ltran, represents the cars traveling from Light-1 to Light-2.

Some of these queues have exogenous arrivals and some have endogenous arrivals.

The arrival process for each queue is outlined below.

• L1,h : exogenous arrivals with rate λ1,h;

• L1,v : exogenous arrivals with rate λ1,v;

• L2,h : endogenous arrivals originating from Ltran;

• L2,v : exogenous arrivals with rate λ2,v;

• Ltran : endogenous arrivals originating from L1,h;

If queue Li,j has exogenous arrivals, then it has associated c.d.f. Gi,j and p.d.f. gi,j

for the i.i.d. interarrival times.

When street (i, j), for i ∈ {1, 2} j ∈ {h, v}, has a green light, cars at that

street are served one at a time, according to i.i.d. “service times” with mean 1/µi,j,

c.d.f. Fi,j and p.d.f. fi,j. During a red light phase no cars are “served.” If a car does

not make it through the intersection during a cycle, it must “start over” with a fresh

service time during the subsequent green cycle. This is true for all queues except

the transient queue. The transient queue behaves differently. This queue contains

constantly moving vehicles so we model it as an infinite-server queue. Progression

through the queue can not be interrupted, because there is no light governing flow
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through this queue; therefore servers are never turned off, and departures are always

possible whenever the queue is nonempty.

The time to complete a red-green cycle for each intersection is denoted by Ti,

where Ti = Ti,h + Ti,v. We assume that the green-red cycle repeats identically and

indefinitely, and without loss of generality assume that the sequence begins with a

green light for streets (1, h) and (2, v). Once Light-1 turns green for street (1, h),

Light-2 turns green for street (1, h) after Toffset time has elapsed. As a simplifying

assumption, we set T1 = T2.

The performance measure of interest is the average number of cars waiting in

a queue. We define:

Li,j(t) = # cars waiting on street (i, j) at time t (i ∈ {1, 2} and j ∈ {h, v});

L̄i,j(t) = average queue length for street (i, j) up to time t

=
1

t

∫ t

0

Li,j(x)dx;

Ltran(t) = # cars in the transient queue at time t;

L̄tran(t) = average queue length for transient queue up to time t

=
1

t

∫ t

0

Ltran(x)dx;

N = # red-green cycles simulated;

L̄ = L̄1,h(NT ) + L̄1,v(NT ) + L̄tran(NT ) + L̄2,h(NT ) + L̄2,v(NT ).

= total average number of cars in the network
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Due to the fixed nature of Ti, setting Ti,h in turn determines the value for Ti,v; thus,

the optimization problem is given by

min
T1,h,Toffset,T2,h

E[L̄] (3.1)

subject to T1,h + T1,v = T1 , T2,h + T2,v = T2 and T1 = T2,

which we propose to solve by satisfying the first-order condition

∇θE[L̄] = 0, (3.2)

where θ is the vector of controllable variables (parameters). To find the value of

θ satisfying (3.2), we use gradient-based simulation optimization via a stochastic

approximation recursion of the form (2.4).

The gradient estimate in (2.4) requires estimators for

dE[L̄i,j]

dθ
, i = 1, 2 and j = h, v and

dE[L̄tran]

dθ
. (3.3)

3.3 Derivation of Estimators

Following the framework of Fu and Hu [14], the general SPA estimator consists

of an IPA term and a conditional term. The general form of the SPA estimator for

this setting is given in following equation:

(
dE[L̄i,j]

dθ

)

SPA

=
dL̄i,j

dθ
+ lim

∆θ→0

PZ(β(∆θ))

∆θ
lim

∆θ→0
δEZ [L̄i,j(β(∆θ))]. (3.4)

The subscript Z denotes a conditioning on the characterization, which is the set of

conditioning quantities on the sample path on which the conditional contribution is

estimated, and it will differ for each estimator.
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In this setting the optimization is with respect to T1,h, T2,h and Toffset; thus,

we take

θ =




T1,h

T2,h

Toffset




throughout.

There are 5 queues and 3 controllable parameters, yielding a total of 15 possible

estimators. When we take into account direction (e.g., left-hand and right-hand),

we are faced with the task of deriving 30 estimators for a network of two signalized

intersections.

3.3.1 Estimators for Light-1

For Light-1, we are concerned with queues L1,h and L1,v.

Light-1 has all exogenous arrivals. Its queues L1,h and L1,v are not affected by

any other queues in the network. For this reason, the corresponding estimators can

be extrapolated from the gradient derivation process in Chapter 2 to obtain:

(
dE[L̄1,h]

dθ1

)

SPA,r

=
1

NT

N∑
i=1

f1,h(αi)

1− F1,h(αi)

[
−R

(1,h)
Qi

(γi)
]
, (3.5)

(
dE[L̄1,v]

dθ

)

SPA,r

=
1

NT

N∑
i=1

Hi +
1

NT

N∑
i=1

Hi∑

k=1

f1,v(α
k
i )

F1,v(αk
i )

R
(1,v)

Y k
i +Ak

i
(γi), (3.6)

(
dE[L̄1,h]

dθ

)

SPA,l

= − 1

NT

N∑
i=1

Di∑

k=1

f1,h(α
k
i )

F1,h(αk
i )

R
(1,h)

Y k
i +Ak

i
(γi), (3.7)

(
dE[L̄1,v]

dθ

)

SPA,l

=
1

NT

N∑
i=1

Hi +
1

NT

N∑
i=1

f1,v(αi)

1− F1,v(αi)

[
R

(1,v)
Qi

(γi)
]
, (3.8)

which correspond to equations (2.16), (2.19), (2.22) and (2.25), respectively.
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Light-2 is downstream of Light-1; therefore, changes to Light-2 will not affect

the queues of Light-1. Hence, we can conclude that

(
dE[L̄1,h]

dθ2

)

SPA,r

=

(
dE[L̄1,h]

dθ2

)

SPA,l

= 0 (3.9)

and
(

dE[L̄1,v]

dθ2

)

SPA,r

=

(
dE[L̄1,v]

dθ2

)

SPA,l

= 0. (3.10)

Similarly, we observe that any changes to Toffset will affect Light-2 but not Light-1

so we have
(

dE[L̄1,h]

dθ3

)

SPA,r

=

(
dE[L̄1,h]

dθ3

)

SPA,l

= 0 (3.11)

and
(

dE[L̄1,v]

dθ3

)

SPA,r

=

(
dE[L̄1,v]

dθ3

)

SPA,l

= 0. (3.12)

3.3.2 Estimators for Light-2

A change in T1,h will affect Light-2 through the arrival process for queue L2,h.

While the arrivals to queue L2,h will be changed, there is no effect on queue L2,v, so

we have
(

dE[L̄2,v]

dθ3

)

SPA,r

=

(
dE[L̄2,v]

dθ3

)

SPA,l

= 0. (3.13)

Next we consider the two estimators for queue L2,h w.r.t. T1,h. We have

observed that perturbing T1,h, will affect the departures of queue L1,h. It is also

the case that the arrivals to queue L2,h are the departures from queue L1,h; thus,

we have that a perturbation of T1,h will affect the arrivals of queue L2,h. This is a

new type of critical change, significantly different from the critical changes in any
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of the other estimators we have seen thus far, because previously, only departures

were affected by a perturbation.

We now consider street (2, h) with ∆θ1 > 0, corresponding to the right-hand

estimator for dE[L̄2,h]/dθ1. In this case (∆θ1 = ∆T1,h > 0), there is a positive

perturbation in the green signal length of street (1, h) while keeping the total sig-

nal cycle length, T1, unchanged. From the Chapter 2 analysis, we have that this

perturbation can lead to a possible extra departure. Because the departures from

street (1, h) are the arrivals to street (2, h), we have an extra arrival as the critical

change. Not only do we gain an extra arrival at the point of perturbation, we also

will lose an arrival sometime in the future. The lost arrival is due to the fact that

the upstream queue providing arrivals to queue L2,h has been depleted; thus, the

upstream queue cannot provide all future arrivals. Another way of looking at it is to

notice that one of the arrivals to queue L2,h is occurring early. An example sample

path for this perturbation can be seen in Figure 3.2.

To calculate the probability rate and expected effect of this critical change, we

condition on all arrivals and service times (for queue L1,h) except for the last entry

to service during the current Ah,j state. Since the critical event change in a cycle is

a function of the last entry to service, we can index by cycles. The service time for

the last car to enter service in queue L1,h during cycle i is greater than αi. DNP

and PP are then defined by the critical change occurring precisely at the green/red

light change, with the service times of the last car to enter service being α+
i and

α−i , respectively. If X denotes a random variable with service time distribution F1,h,

54



then the probability of a critical change is given by

P (βi(∆θ)) = P (X ≤ αi + ∆θ | X ≥ αi), (3.14)

and hence

lim
∆θ→0

P (βi(∆θ))

∆θ
=

f1,h(αi)

1− F1,h(αi)
. (3.15)

Thus, the estimator becomes

(
dE[L̄2,h]

dθ1

)

SPA,r

=
1

NT

N∑
i=1

f1,h(αi)

1− F1,h(αi)
EZi

[L̄PPi
2,h − L̄DNPi

2,h ]. (3.16)

To calculate the resulting expected effect, EZ
[
L̄PPi

2,h − L̄DNPi
2,h

]
, we note that there

are three possible sample path outcomes. The three case can be distinguished as

follows:

• Case 1: the early arrival departs in the same (green) phase in which it arrives;

• Case 2: the early arrival does not depart during same phase and queue L1,h

empties before queue L2,h;

• Case 3: the early arrival does not depart during same phase and queue L2,h

empties before queue L1,h.

For Case 1, we observe that starting at the critical change, LDNPi
2,h (t) will be identical

to L2,h(t), whereas LPPi
2,h (t) will be one higher than L2,h(t) until L2,h(t) empties, where
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we have that L2,h(t) empties during the current green phase. We define

Tei
2,h = epoch of L2,h(t) emptying during ith cycle,

Y i
2,h = system time of early arrival vehicle during the ith cycle,

αi
2,h = duration of time until light change from last entry of service

to queue L2,h during ith cycle,

Ai
2,h = epoch of early arrival to queue L2,h during the ith cycle,

Di
2,h = epoch at which the early arrival vehicle from the ith cycle

departs from queue L2,h,

ei
1,h = epoch of first L1,h(t) emptying after ith cycle,

ei
2,h = epoch of first L2,h(t) emptying after ith cycle,

e∗i2,h = epoch of first L2,h(t) emptying after ei
1,h.

Thus, we have that LDNPi
2,h (t) + 1 = LPPi

2,h (t) for all t such that EAi
2,h < t < EDi

2,h,

which is Y i
2,h amount of time. This critical change also results in LDNPi

2,h (t) =

LPPi
2,h (t) + 1 for all t such that ei

1,h < t < e∗i1,h. We can now state the expected

difference in the two paths as

EZi
[L̄PPi

2,h − L̄DNPi
2,h ] = E[Y i

2,h]− E[e∗i2,h − ei
1,h]. (3.17)

Calculation of (3.17) can be done online as follows. By letting S be a generic random

variable generated from the service time distribution for queue L2,h, we have that

E[Y i
2,h] = Tei

2,h − Ai
2,h + E[S|S < αi

2,h],

where e∗i2,h and Ai
2,h are both observable from the sample path. Now we have that

Ai
2,h, e

i
1,h, e

∗i
2,h and ei

2,h are all observable from the sample.
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For Case 2, we observe that starting at the critical change, LDNPi
2,h (t) will be

identical to L2,h(t), whereas LPPi
2,h (t) will be one higher than L2,h(t) until L1,h(t)

empties. Thus for Case 2, the expected difference is

EZi
[L̄PPi

2,h − L̄DNPi
2,h ] = E[min(NT, inf{t > τ | L1,h(t) = 0})]− τ. (3.18)

For Case 3, we observe that starting at the critical change, LDNPi
2,h (t) will be

identical to L2,h(t), whereas LPPi
2,h (t) will be one higher than L2,h(t) until L2,h(t)

empties. Then after that, there is an m amount of time that LPPi
2,h (t) could remain

one higher than L2,h(t). In order to determine how much of this mi the two path

remain separated, we determine the likelihood of a departure from LPPi
2,h (t) before

the time mi expires. Again, for S a generic service time,we have

E[time that LPPi
2,h (t) remains above Li

2,h(t) during mi] = E[min(S, mi)]

= σi. (3.19)

Thus for Case 3, the expected difference is

EZi
[L̄PPi

2,h − L̄DNPi
2,h ] = E[min(NT, inf{t > τ | L2,h(t) = 0})]− τ + σi. (3.20)

The final estimator incorporating all three cases becomes
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(
dE[L̄2,h]

dθ1

)

SPA,r

=
1

NT

N∑
i=1

f1,h(αi)

1− F1,h(αi)

×





(
[ei

2,h − EAi
2,h + E[S|S < αi

2,h]]− [E[e∗i2,h − ei
1,h]]

)

if (ei
2,h < i ∗ T + Toffset + T2,h) and (S < αi

2,h)

(E[min(NT, inf{t > τ | L1,h(t) = 0})]− τ)

if ei
1,h < ei

2,h

(E[min(NT, inf{t > τ | L2,h(t) = 0})]− τ + σi)

otherwise.

(3.21)

Note that again the sign of the estimator is unknown, which makes intuitive sense,

because it cannot be determined a priori if the change from the original arrival time

to the early arrival will be beneficial or detrimental to the system.

For the last estimator for Light-2, we consider queue L2,h with ∆θ1 < 0,

corresponding to the left-hand estimator for dE[L̄2,h]/dθ1. In this case (∆θ1 =

∆T1,h < 0), there is a negative perturbation in the green signal length of street

(1, h) while keeping the total signal cycle length, T1, unchanged. From the Chapter

2 analysis that perturbation can lead to a possible loss of departure. And because

the departures from street (1, h) are the arrivals to street (2, h), we have a lost

arrival as the critical change. Because all other factors remain unchanged, not only

do we gain an arrival at the point of perturbation, we also will gain an arrival

sometime in the future. The gained arrival is due to the fact that the upstream

queue providing arrivals to queue L2,h still has the car in it and thus must provide

that arrival sometime in the future. Another way of looking at it is by noticing that

58



one of the arrivals to queue L2,h is delayed.

To calculate the probability rate and expected effect of these possible critical

changes, we condition on all arrival times and all service times except that of the

kth departure (for queue L1,h). If X denotes a random variable with service time

distribution F1,h, then the probability rate of a critical change is given by

lim
∆θ→0

P (βk
i (∆θ))

∆θ
= lim

∆θ→0

P (X ≥ αk
i −∆θ | X ≤ αk

i )

∆θ
=

f1,h(α
k
i )

F1,h(αk
i )

. (3.22)

Then the estimator becomes

(
dE[L̄2,h]

dθ1

)

SPA,l

= − 1

NT

N∑
i=1

Di∑

k=1

f1,h(α
k
i )

F1,h(αk
i )

EZk
i
[L̄

PP k
i

2,h − L̄
DNP k

i
2,h ]. (3.23)

To calculate the resulting expected effect, EZ
[
L̄PPi

2,h − L̄DNPi
2,h

]
, we observe that

starting at the critical change, LDNPi
2,h (t) will be one above LPPi

2,h (t) until either

the time of the delayed arrival occurs or LDNPi
2,h (t) empties. Thus, we have that

LDNPi
2,h (t) = LPPi

2,h (t) + 1 for all t such that pi
1 < t < pi

2, where we define

pi
1 = epoch of lost arrival during ith cycle

= i ∗ T1,h,

pi
2 = first occurrence of time when delayed arrival occurs or queue L2,h empties

= min{t1, t2|L1,h(t1) = 0 and L2,h(t2) = 0}.

After time pi
2, we observe that, LDNPi

2,h (t) will be one below LPPi
2,h (t) until LPPi

2,h (t)

empties. Thus, we have that LDNPi
2,h (t) = LPPi

2,h (t) − 1 for all pi
2 < t < pi

3, where we

define

pi
3 = min{NT, t|L2,h(t) = 0 and t > T1,h}.
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Thus,

(
dE[L̄2,h]

dθ1

)

SPA,l

=
1

NT

N∑
i=1

Di∑

k=1

f1,h(α
k
i )

F1,h(αk
i )

(
[pi

2 − pi
1]− [pi

3 − pi
2]

)
. (3.24)

The times pi
2 and pi

3 are not observable from the sample path; however, they can

be estimated offline. Namely, [pi
2 − pi

1] is the time it takes for queue L1,h to empty,

given the system condition at time i ∗ T1,h. Similarly, [pi
3 − pi

2] is the time it takes

for queue L2,h to empty, given the system condition at time pi
2. By defining

ζ(t) = system conditions at time t,

κ(i,j)(c) = time to empty queue Li,j given system conditions, c

our final estimator becomes

(
dE[L̄2,h]

dθ1

)

SPA,l

=
1

NT

N∑
i=1

Di∑

k=1

f1,h(α
k
i )

F1,h(αk
i )

[
κ(1,h)(ζ(i ∗ T1,h))− κ(2,h)(ζ(pi

2))
]
. (3.25)

Note that again the sign of the estimator is unknown, which makes intuitive sense,

because it cannot be determined ahead of time if the change from the original arrival

time to the delayed arrival will be beneficial or detrimental to the system. For Light

2, we can derive the gradient estimators w.r.t θ2 = T2,h by following the gradient

derivation process described in Chapter 2. Therefore, corresponding to equations

2.16, 2.19, 2.22 and 2.25, we have

(
dE[L̄2,h]

dθ2

)

SPA,r

=
1

NT

N∑
i=1

f2,h(αi)

1− F2,h(αi)

[
−R

(2,h)
Qi

(γi)
]
, (3.26)

(
dE[L̄2,v]

dθ2

)

SPA,r

=
1

NT

N∑
i=1

Hi +
1

NT

N∑
i=1

Hi∑

k=1

f2,v(α
k
i )

F2,v(αk
i )

R
(2,v)

Y k
i +Ak

i
(γi), (3.27)

(
dE[L̄2,h]

dθ2

)

SPA,l

= − 1

NT

N∑
i=1

Di∑

k=1

f2,h(α
k
i )

F2,h(αk
i )

R
(2,h)

Y k
i +Ak

i
(γi), (3.28)

(
dE[L̄2,v]

dθ2

)

SPA,l

=
1

NT

N∑
i=1

Hi +
1

NT

N∑
i=1

f2,v(αi)

1− F2,v(αi)

[
R

(2,v)
Qi

(γi)
]
. (3.29)
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When considering street 2, it is important to note that the green phase is actually

split into two periods during a T2 long cycle. For example, Light-2 starts red for the

horizontal street; then after Toffset time, it changes green and remains that way for

T2,h seconds before it changes again to red, at which point it will remain that way

for the remainder of the cycle (T2,v−Toffset more seconds). We now consider queue

(2, h) with ∆θ3 > 0, corresponding to the right-hand estimator for dE[L̄2,h]/dθ3. In

this case, there is a forward shift of the green signal phase for street (2, h), while

keeping the total signal cycle length, T2, unchanged. In essence, the epoch of the

light change from red to green for street (2, h) is delayed as well as the epoch of

the light change from green to red. This perturbation will cause a delay from state

Ai,v to Ai,h, where the value of i is inconsequential to this derivation. This delay

will cause each car in the IBP to enter service later, and subsequently depart later.

That is, there will be a positive IPA contribution from each car in the IBP. This

perturbation also causes a delay from state Ai,h to Ai,v. Small perturbations at the

end of T2,h do not affect the departure times of cars from street (2, h); thus, the

IPA contribution from this aspect of the perturbation is zero. Because the light

turns red late, some cars will have an opportunity to exit when they did not in

the NP. It follows that the critical change in this case is this additional departure.

The perturbation does not propagate through an idle period; thus, an additional

departure is possible if and only if the queue is nonempty at the light change and the

car in service is not a member of the IBP. When these two criteria hold, the last car

to enter service is the only candidate for a critical change because the probability of

more than one critical change is of higher order; therefore, it can be ignored. Thus,
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we only consider the last car to enter service as a possible extra departure, and then

only when that car is not a member of the IBP. An example of this perturbation

can be seen in Figure 3.3. We define the event:

φi = Event that the last car to enter service during the ith cycle is an IBP car

(3.30)

and with an analysis similar to those presented in the Chapter 2, we get that the

final estimator becomes

(
dE[L̄2,h]

dθ3

)

SPA,r

=
1

NT

N∑
i=1

Hi +
1

NT

N∑
i=1

f2,h(αi)

1− F2,h(αi)

[
−R

(2,h)
Qi

(γi)
]
1(φi). (3.31)

Note that we cannot tell the sign of the estimator. This makes intuitive sense,

because a shift of the green signal phase could have positive or negative effects.

We now consider queue (2, h) with ∆θ3 < 0, corresponding to the left-hand

estimator for dE[L̄2,h]/dθ3. In this case there is a backward shift of the green signal

phase for street (2, h) while keeping the total signal cycle length, T2, unchanged. In

essence, the epoch of the light change from red to green street (2, h) is expedited as

well as the epoch of the light change from green to red. This perturbation will cause

hastened transition from state Ai,v to Ai,h. This early transition will cause each car

in the IBP to enter service early and thus depart early. That is, there will be a

negative IPA contribution from each car in the IBP. This perturbation also causes

an early transition from state Ai,h to Ai,v. Small perturbations at the end of T2,h do

not affect the departure times of cars from street (2, h); thus, the IPA contribution

from that aspect of the perturbation is zero. Because the light turns red early, some

cars that were able to exit the queue in the NP will lose that opportunity. Thus,
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the critical change in this case is this lost departure. Every car that successfully

completes service represents a potential critical change, provided that car was not

a member of the IBP. This distinction is needed because a car in the IBP does not

lose any green light time; thus, there is no chance of losing that departure. Defining

H̄i = number of non-IBP departures during ith cycle,

and using an analysis similar to that in Chapter 2, the final estimator becomes

(
dE[L̄2,h]

dθ3

)

SPA,l

= − 1

NT

N∑
i=1

Hi +
1

NT

N∑
i=1

H̄i∑

k=1

f2,h(α
k
i )

F2,h(αk
i )

R
(2,h)

Y k
i +Ak

i
(γi). (3.32)

The sign of the estimator is not necessarily positive or negative, which makes in-

tuitive sense, because a shift of the green signal phase could have a net positive or

negative effect.

We now consider queue (2, v) with ∆θ3 < 0, corresponding to the left-hand

estimator for dE[L̄2,v]/dθ3. In this case, there is a backward shift of the red signal

phase for street (2, v), while keeping the total signal cycle length, T2, unchanged. In

essence, the epoch of the light change from green to red for street (2, v) is expedited,

as is the epoch of the light change from red to green. This perturbation will cause

a hastened transition from state Ai,v to Ai,h. Each car that departs during the

first portion of the green phase for street (2, v) of the current cycle has a chance

of no longer departing because the first portion of the green light phase has been

shortened. Thus, the critical change from this aspect of the perturbation is the

loss of a departure. This perturbation also causes an early transition from state

Ai,h to Ai,v. In the second portion of the green phase for street (2, v), the early

transition will cause all cars in the IBP to enter service early and thus depart the
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queue early. That is, each departing car that is a member of the IBP will have

a negative IPA contribution. Because these IBP cars are departing early, there

is chance for an extra departure. Thus, another critical change is possible in the

form of an additional departure if the last car to enter service is a member of the

IBP. Because the green phase for street (2, v) is split in each cycle, the gradient

estimator contains for the first time, three contributing factors, two of which are

SPA contributions due to critical changes. We must differentiate between the two

green phases, so we define

H1st
i = number of IBP departures during the first portion of the

green phase of ith cycle,

H2nd
i = number of IBP departures during the second portion of the

green phase of ith cycle,

and the final estimator becomes

(
dE[L̄2,v]

dθ3

)

SPA,l

= − 1

NT

N∑
i=1

H2nd
i − 1

NT

N∑
i=1

f2,v(αi)

1− F2,v(αi)

[
R

(2,v)
Qi

(γi)
]
1(αi)

+
1

NT

N∑
i=1

Di∑

k=1

f1(α
k
i )

F1(αk
i )

R
(2,v)

Y k
i +Ak

i
(γi). (3.33)

The sign of the estimator is not necessarily positive or negative, which makes in-

tuitive sense, because a shift of the green signal phase could have a net positive or

negative effect.

We now consider queue (2, v) with ∆θ3 > 0, corresponding to the right-hand

estimator for dE[L̄2,v]/dθ3. In this case, there is a forward shift of the red signal

phase for street (2, v), while keeping the total signal cycle length, T2, unchanged. In
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essence, the epoch of the light change from the first portion of the green to red for

street (2, v) is delayed, as is the epoch of the light change from red to the second

portion of the green. This perturbation will cause a delayed transition from state

Ai,v to Ai,h. Each car that departs during the first portion of the green phase for

street (2, v) of the current cycle has more time to depart, because the first portion

of the green light phase has been lengthened. Thus, the critical change from this

aspect of the perturbation is an additional departure. This perturbation also causes

a delayed transition from state Ai,h to Ai,v. In the second portion of the green phase

for street (2, v), the late transition will cause all cars in the IBP to enter service late

and thus depart the queue late. That is, each departing car that is a member of the

IBP will have a positive IPA contribution. Because these IBP cars are departing

late, there is chance that each departure could be lost. Thus, another critical change

is possible for each departing car that is a member of the IBP, in the form of a lost

departure. Because the green phase for street (2, v) is split into two parts for each

cycle, we again have three contributing factors to the gradient estimator. Thus, the

final estimator becomes

(
dE[L̄2,v]

dθ3

)

SPA,r

=
1

NT

N∑
i=1

H2nd
i +

1

NT

N∑
i=1

H2nd
i∑

k=1

f2,v(α
k
i )

F2,v(αk
i )

R
(2,v)

Y k
i +Ak

i
(γi)

+
1

NT

N∑
i=1

f2,v(αi)

1− F2,v(αi)

[
−R

(2,v)
Qi

(γi)
]
. (3.34)

The sign of the estimator is not necessarily positive or negative, which makes in-

tuitive sense, because a shift of the green signal phase could have a net positive or

negative effect.
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3.3.3 Estimators for Transient Queue

For T1,h, we can see that it will affect queue Ltran. This is evident because

the arrivals to queue Ltran are the departures from queue L1,h, and by perturbing

T1,h, the departures of queue L1,h are affected. We now consider queue Ltran with

∆θ1 > 0, corresponding to the right-hand estimator for dE[L̄tran]/dθ1. In this case

(∆θ1 = ∆T1,h > 0), there is a positive perturbation in the green signal length of

street (1, h), while keeping the total signal cycle length, T1, unchanged. In Chapter

2, we determined that this type of perturbation will cause a possible extra departure

from queue L1,h, and as with queue L2,h, we have that an extra departure from queue

L1,h results in an extra arrival to queue Ltran. Because queue L1,h is now depleted,

there will be a lost arrival later. That is, this perturbation results in a early arrival.

For cycle i, the extra (early) arrival occurs at time i ∗ T1,h, and the future lost

arrival occurs when queue L1,h empties. The probability of this critical change, the

early arrival, is the same as the probability of the extra departure from queue L1,h,

which we have calculated before. Thus, for completion of the estimator, we need

to calculate the expected difference between L̄
PP k

i
tran and L̄

DNP k
i

tran . We first observe

that the L̄
DNP k

i
tran will be identical to the L̄tran throughput. Next we observe that the

L̄
PP k

i
tran will differ from the L̄tran in two places. The first difference occurs at the early

arrival point. This early arrival will cause the L̄
DNP k

i
tran to be one above the L̄tran

for as long as the arrival is in the system. The transient queue is an infinite-server

queue, so the time in system of the arrival is exactly equal to its service time. The

second difference between the two paths occurs at the original arrival time, that is,
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the arrival time in the NP. This difference will cause L̄
PP k

i
tran to be one below the L̄tran

until the original departure time, that is, the departure time in the NP. By using

the property of an infinite-server queue, we have that this time, which is the time

in system, is exactly equal to the service time. An example sample path for this

perturbation can be seen in Figure 3.4.

By defining

Si
early = service time for car when it arrives early

service time for car during PP,

Si
original = service time for car when it arrives at it’s original time

service time for car during NP,

the estimator is given by

(
dE[L̄tran]

dθ1

)

SPA,r

= − 1

NT

N∑
i=1

Di∑

k=1

f1,h(α
k
i )

F1,h(αk
i )

E[Si
early − Si

original]. (3.35)

The service times are all independent, so we have

E[Si
early − Si

original] = E[Si
early]− E[Si

original]

=
1

µ2,h

− 1

µ2,h

= 0,

and it follows that our final estimator becomes

(
dE[L̄tran]

dθ1

)

SPA,r

= 0. (3.36)

Our final estimator is 0, which makes intuitive sense, because for an infinite server

queue, a mere shifting of arrival times will have no effect on the average number in

system.
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We now consider queue Ltran with ∆θ1 < 0, corresponding to the left-hand

estimator for dE[L̄tran]/dθ1. With no further analysis, we have that

(
dE[L̄tran]

dθ1

)

SPA,l

= 0. (3.37)

Because the transient queue is upstream of Light-2, it is not affected by pa-

rameter T2,h; thus, the corresponding estimators are 0, that is

(
dE[L̄tran]

dθ2

)

SPA,r

= 0, (3.38)

(
dE[L̄tran]

dθ2

)

SPA,l

= 0, (3.39)

Toffset is a parameter that only affects Light-2; thus, its effect on the transient

queue is nonexistent. We have

(
dE[L̄tran]

dθ3

)

SPA,r

= 0, (3.40)

(
dE[L̄tran]

dθ3

)

SPA,l

= 0. (3.41)

3.4 Numerical Results

Table 3.1 provides a recap of the gradient estimator situation for a network

of two signalized intersections. In Table 3.1, the parameters are across the top and

the queues are down the side. Each contains one of the following marks signifying

the type of estimator needed:

? : Complete gradient estimator required and derived.

X : No gradient estimator required because no variable dependence.

0 : Gradient estimator exists but is equal to 0.
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Queue w.r.t. T1,h w.r.t. T2,h w.r.t. Toffset

L1,h ? X X

L1,v ? X X

L2,h ? ? ?

L2,v X ? ?

Ltran 0 X X

Table 3.1: Table of gradient estimator requirements for each queue and parameter

combination.

We can see that 8 estimators are required for a network of two signalized intersection

traffic system. Including both left-hand and right-hand estimators brings the total

to 16 estimators.

We chose to implement the most efficient estimators for the network of two

signalized intersection setting, those that do not require any offline simulation. Thus,

we have the following list of implemented gradient estimators:

(
dE[L̄1,h]

dθ1

)

SPA,r

,

(
dE[L̄1,v]

dθ1

)

SPA,l

,

(
dE[L̄tran]

dθ1

)

SPA,r

,

(
dE[L̄2,h]

dθ1

)

SPA,r

,

(
dE[L̄2,h]

dθ2

)

SPA,r

,

(
dE[L̄2,v]

dθ2

)

SPA,r

,

(
dE[L̄2,h]

dθ3

)

SPA,r

,

(
dE[L̄2,v]

dθ3

)

SPA,r

.

Table 3.2 shows the settings for each case we used in this setting. For each

case, T1 = T2 = T = 60.
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Name λ1,h λ1,v λ2,v µ1,h µ1,v µ2,h µ2,v

Symmetric case (SC) 1
4.5

1
4.5

1
4.5

1
2

1
2

1
2

1
2

Near symmetric case (NC) 1
4.5

1
4.5

1
4.5

1
2

1
8.4

1
2

1
8.4

Asymmetric case (AC) 1
4.5

1
4.5

1
4.5

1
2

1
18

1
2

1
18

Table 3.2: System parameter specification for simulation cases.

Estimator dE[L̄tran]/dθ1 dE[L̄2,h]/dθ2 dE[L̄2,v]/dθ3

SPA 0.0000 (0.00001) -2.279 (0.0226) 0.0008 (0.0006)

FD (.05) 0.0002 (0.00009) -2.297 (0.0938) -0.01804 (0.0742)

Table 3.3: Select gradient estimator simulation results for the network of two sig-

nalized intersections traffic setting for “SC” (standard error of estimators in paren-

theses).

Gradient

In Tables 3.3 and 3.4, we show some of the results for the network of two

signalized intersections traffic setting. The difference size used for the FD estimators

is noted in parentheses on the data tables. We simulated 1000 cycles and performed

1000 replications.

The SPA estimators and FD estimators all have overlapping confidence in-

tervals, but the SPA estimators have a smaller standard error, suggesting they are

more accurate.
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Estimator dE[L̄2,v]/dθ2 dE[L̄2,h]/dθ3 dE[L̄2,v]/dθ3

SPA 0.034 (0.00003) 0.0135 (0.0007) -0.00008 (0.00001)

FD (.05) 0.034 (0.00015) 0.0541 (0.0471) -0.0039 (0.0016)

Table 3.4: Select gradient estimator simulation results for the network of two sig-

nalized intersections traffic setting for “AC” (standard error of estimators in paren-

theses).

3.5 Optimization

For the network of two signalized intersection traffic problem, we again set

appropriate regions of stability in which the SA algorithm is used. We used the esti-

mators derived in this chapter to optimize the system, and the results are compared

to those using FDSA and simultaneous perturbation stochastic approximation. The

results of the SA algorithms for the SC, NC and AC cases can be seen in Figures

3.5, 3.7 and 3.6, respectively. We observe that all the estimators reach the desired

minimum. Of note is the fact that the SPA driven optimization reaches the optimal

parameter setting as quickly as the FDSA but is more computationally efficient.

And while the SPSA method is comparable to the SPA driven optimization as far

as computational efficiency is concerned, the SPA driven optimization reaches the

optimal setting in fewer SA iterations.
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3.6 Conclusions

Again we see that these derived estimators fair favorably when compared to

FD estimates. The SPA-driven optimization had the best overall performance of

all the methods. The estimators for the network of two signalized intersections are

more complicated than those for the isolated intersection; however, we also note

that we were able to use some of the analysis from the isolated intersection case for

the network. We conjecture that this would be similar for larger networks.
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Figure 3.2: Example of L2,h(t) sample path for a network of two-signalized intersec-

tions traffic system with positive perturbation of T1,h (4θ1 > 0).
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Figure 3.3: Example of L2,h(t) sample path for a network of two signalized intersec-

tions traffic system with positive perturbation of Toffset (4θ3 > 0).
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Figure 3.4: Example of Ltran(t) sample path for a network of two signalized in-

tersections traffic system with positive perturbation of T1,h (4θ1 > 0), where “+”

represents positive contribution and “-” represents negative contribution.
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Figure 3.5: Convergence to minimum for 10 replications of the SA algorithm for

“SC” for three different gradient estimation methods: FDSA, SPSA and SPA SA.
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Figure 3.6: Convergence to minimum for 10 replications of the SA algorithm for

“AC” for three different gradient estimation methods: FDSA, SPSA and SPA SA.
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Figure 3.7: Convergence to minimum for 10 replications of the SA algorithm for

“NC” for three different gradient estimation methods: FDSA, SPSA and SPA SA.
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Chapter 4

Stochastic Fluid Models

An alternative modeling paradigm to a discrete-event queueing formulation is

the use of fluid models. One justification for a fluid model is the differing roles that

random phenomena may play on different time scales. When the variations on the

faster time scale have less impact than those on the slower time scale, the use of

fluid models is justified [5]. Though stochastic fluid models (SFMs) might not be

very accurate for performance evaluation, they have proven to be very robust with

respect to optimization, because they seem to capture the salient features of the

problem. Several authors have reported that use of SFM efficiently lead to optimal

or near-optimal solutions [5, 49, 50]. In this approach, we derive a gradient estimator

for the performance measure of interest with respect to the control parameters of

interest using the SFM, but implement them in the discrete-event simulation using

standard stochastic approximation algorithms to determine the optimal parameter

setting. This approach has some very important advantages.

• The gradient estimation is done on-line; thus, the approach can be imple-

mented on the traffic light controller, and as operating conditions change, it

will aim at continuously seeking to optimize a generally time-varying perfor-

mance metric (this holds for both SPA and SFM-based estimators).

• Unlike the SPA estimators, SFM-based estimators do not require any knowl-
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edge of the system’s underlying stochastic processes.

• SFM-based IPA estimators are generally simpler to implement than SPA.

• SPA estimators are generally more accurate than the SFM-based IPA esti-

mators, but simulation results indicated that in optimization problems, they

sometimes perform equally well.

4.1 Isolated Intersection

In this chapter, we let xq(t; θ), q = {(1, h), (1, v), (2, h), (2, v)} denote the fluid

buffer content of each queue in the interval t ∈ [0, S], and we define the sample

functions

Qq(θ) =
1

S

∫ S

0

xq(t; θ)dt. (4.1)

We then derive sample derivatives of Qq(θ) with respect to θ using two different

SFMs. L̄q and Qq correspond to the queue levels at street q of the stochastic discrete-

event and stochastic fluid models, respectively. We take Qq as an approximation of

L̄q. Using infinitesimal perturbation analysis, dQq

dθ
is derived. These IPA estimators

of dQq

dθ
are used to approximate dE[L̄q(t)]

dθ
.

4.1.1 Continuous Model

Figure 4.1 shows the equivalent queueing model, where the processing capacity

of the server (β1(t)) is divided between the two queues with proportions θ1 and

(1− θ1). Figure 4.2 shows a typical sample path of the system. Clearly, this model
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1,v(t)

(1- 1) 1(t)

1,h(t) 1 1(t)

Figure 4.1: Isolated intersection: SFM Continuous model visual depiction.

is not truly representative of the traffic flow at an intersection. Using this modeling

framework, we don’t consider the specific scheduling policy used by the traffic light

server (this will be done in the next section). Here we assume a fluid model where

fluid is processed from both queues simultaneously at proportions θ1 and (1 − θ1).

However, we decided to evaluate it just to see whether it also captures the salient

features of the problem and is effective in optimization (as we will see in Section

4.1.3, this is not the case).

Sample Path Partition

For this model we partition the sample path into empty and non-empty pe-

riods. Empty periods are maximal intervals where xq(t; θ1) = 0, while non-empty

intervals indicate the intervals such that xq(t; θ1) > 0, q = {(1, h), (1, v)}. Let
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Figure 4.2: Example of sample path for SFM isolated intersection continuous model.

Ēq
i = (bq

i , e
q
i ) indicate the ith non-empty period, where bq

i indicates the beginning

and eq
i the end of the ith non-empty period at queue q = {(1, h), (1, v)}. That is,

we define

bq
i = epoch of the beginning of the ith non-empty period,

eq
i = epoch of the ending of the ith non-empty period.

Using this notation, the sample functions (4.1) can be written as

Qq(θ1) =
1

S

Nq∑
j=1

∫ eq
j

bq
j

xq(t; θ1)dt, (4.2)

where Nq denotes the random number of non-empty periods in the interval [0, S].

Differentiating with respect to θ1, we get

dQq(θ1)

dθ1

=
1

S

Nq∑
j=1

∫ eq
j

bq
j

dxq(t; θ1)

dθ1

dt. (4.3)
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Because xq(b
q
j , θ1) = xq(e

q
j , θ1) = 0 for q = {(1, h), (1, v)} and j = 1, 2, ..., in any

interval Ē1,h
j = (b1,h

j , e1,h
j ), the buffer content x1,h(t; θ1) is given by

x1,h(t; θ1) =

∫ t

b1,h
j

[α1,h(τ)− θ1β1(τ)]dτ. (4.4)

Lemma 3. The derivative of x1,h(t; θ) with respect to θ1 is given by

dx1,h(t; θ1)

dθ1

= −
∫ t

b1,h
j

β1(τ)dτ. (4.5)

Proof. The result of the differentiation is

dx1(t; θ1)

dθ1

= −
(
α1(b

1,h
j )− θβ1(b

1,h
j )

) db1,h
j

dθ1

−
∫ t

b1,h
j

β1(τ)dτ,

because dt
dθ1

= 0. However, we point out that the first term vanishes. This is

shown as follows. Any point b1,h
j is such that α1,h(b

1,h−
j ) − θ1β1(b

1,h−
j ) ≤ 0 and

α1,h(b
1,h+
j ) − θ1β1(b

1,h+
j ) ≥ 0. The sign switch can occur in one of two ways, either

continuously or discontinuously. If it occurs in a continuous fashion, then the above

relations imply that α1,h(b
1,h
j )− θ1β1(b

1,h
j ) = 0. On the other hand, if it occurs in a

discontinuous fashion, then it implies that the sign switch is due to a discontinuity

either in α1,h(b
1,h
j ) or β1(b

1,h
j ), which are independent of θ1. Thus,

db1,h
j

dθ1
= 0, so the

term again vanishes.

Similarly, for q = (1, v), we have

x1,v(t; θ1) =

∫ t

b1,v
j

[α1,v(τ)− (1− θ)β1(τ)]dτ, (4.6)

and by differentiation we obtain the following result.

Lemma 4. The derivative of x1,v(t; θ1) with respect to θ1 is given by

dx1,v(t; θ1)

dθ1

= +

∫ t

b1,v
j

β1(τ)dτ. (4.7)
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The proof is analogous to that of Lemma 3 and is therefore omitted.

Next, substituting (4.5) and (4.7) back into (4.3), we get the following result.

Theorem 4.1.1. The sample derivatives for the workload are given by

dQ1,h(θ)

dθ
= − 1

S

N1,h∑
j=1

∫ e1,h
j

b1,h
j

∫ t

b1,h
j

β1(τ)dτdt, (4.8)

dQ1,v(θ)

dθ
=

1

S

N1,v∑
j=1

∫ e1,v
j

b1,v
j

∫ t

b1,v
j

β1(τ)dτdt. (4.9)

Example: Next, let us consider a simple example where β1(t) = β1 (constant). In

this case,

dQ1,h(θ1)

dθ1

= − 1

S

N1,h∑
j=1

∫ e1,h
j

b1,h
j

∫ t

b1,h
j

β1dτdt

= − 1

S

N1,h∑
j=1

∫ e1,h
j

b1,h
j

β1(t− b1,h
j )dt

= −β1

S

N1∑
j=1

(e1,h
j )2

2
− b1,h

j e1,h
j −

(
(b1,h

j )2

2
− (b1,h

j )2

)

= − β1

2S

N1,h∑
j=1

(e1,h
j )2 − 2b1,h

j e1,h
j + (b1,h

j )2

= − β1

2S

N1,h∑
j=1

(
e1,h

j − b1,h
j

)2

. (4.10)

Similarly,

dQ1,v(θ1)

dθ1

=
β1

2S

N1,v∑
j=1

(
e1,v

j − b1,v
j

)2
. (4.11)

Note that in order to implement these estimators, (4.10) and (4.11), we just accu-

mulate the squares of the duration of each non-empty period.
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1,v(t)

1,h(t) 1,h(t; 1)

1,v(t; 1)

Figure 4.3: Isolated intersection: SFM Periodic model visual depiction.

4.1.2 Periodic Model

We now consider a periodic model. In this model, the server’s behavior more

closely resembles that of a traffic signal. Figure 4.3 shows this periodic fluid model.

Behaving similar to a traffic signal, the entire server capacity is allocated to

the horizontal queue for a period 0 < θ1 < T and to the vertical queue for a period

0 < T −θ1 < T . In this model, T indicates the length of one cycle. Figure 4.4 shows

an example sample path from this model.
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X1,v(t; 1)

X1,h(t; 1)

t

t
kT kT+ 1 (k+1)T

Figure 4.4: Example of sample path for SFM isolated intersection periodic model.

Sample Path Partition

In this modeling approach, the sample path is divided into intervals of length

T , and the dynamics of the two queues are described as follows:

dx1,h(t; θ1)

dt
=





α1,h(t)− β1,h(t; θ1) if kT ≤ t < (kT + θ1)

α1,h(t) if (kT + θ1) ≤ t < (k + 1)T,

(4.12)

dx1,v(t; θ1)

dt
=





α1,v(t) if kT ≤ t < (kT + θ1)

α1,v(t)− β1,v(t; θ) if (kT + θ1) ≤ t < (k + 1)T,

(4.13)

where k = 1, 2, · · · . In addition, the service rates are defined as

β1,h(t; θ1) =





ρ1,h(t) if kT ≤ t < kT + θ1 and x1,h(t; θ1) > 0

α1,h(t) if kT ≤ t < kT + θ1 and x1,h(t; θ1) = 0

0 otherwise

(4.14)

β1,v(t; θ1) =





ρ1,v(t) if kT + θ1 ≤ t < (k + 1)T and x1,v(t; θ1) > 0

α1,v(t) if kT + θ1 ≤ t < (k + 1)T and x1,v(t; θ1) = 0

0 otherwise

(4.15)
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where ρ1,h(t) and ρ1,v(t) are the maximum possible outflows from queues Q1,h and

Q1,v, respectively. The sample functions of (4.1) can be written as

Qq(θ1) =
1

S

K−1∑

k=0

∫ (k+1)T

kT

xq(t; θ1)dt, (4.16)

where K = S
T

is the number of periods included in the interval [0, S] and the index

q ∈ {(1, h), (1, v)}. Differentiating with respect to θ1 we get

dQq(θ1)

dθ
=

1

S

K∑

k=1

∫ (k+1)T

kT

dxq(t; θ1)

dθ1

dt. (4.17)

We first evaluate a single term from the summation for q = (1, h), i.e., we begin by

examining
∫ (k+1)T

kT

dx1,h(t; θ1)

dθ1

dt.

Given the queue dynamics stated in equation (4.12), we determine the queue content

based upon which interval that t falls in:

Case A: (kT ≤ t < kT + θ) This interval is further divided into two subcases

depending on the observation of an empty period. Here we also make an

assumption that during a period of ‘green’ light, if the queue becomes empty,

then it will not become non-empty before the next ‘red’ light.

A1: When the queue does not become empty during this period, we have

x1,h(t; θ1) = x1,h(kT ; θ) +

∫ t

kT

[α1,h(τ)− ρ1,h(τ)]dτ. (4.18)
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A2: When the queue does become empty during the period, we have

x1,h(t; θ1) =





x1,h(kT ; θ1)

+
∫ t

kT
[α1,h(τ)− ρ1,h(τ)]dτ if kT ≤ t < e1,h

k

0 if e1,h
k ≤ t < kT + θ1.

(4.19)

Case B: (kT + θ1 ≤ t < (k + 1)T ) When t falls in this interval, we have

x1,h(t; θ1) = x1,h(kT + θ1; θ1) +

∫ t

kT+θ1

α1,h(τ)dτ. (4.20)

Summarizing, we get

x1,h(t; θ1) =





x1,h(kT ; θ1) +
∫ t

kT
[α1,h(τ)− ρ1,h(τ)]dτ if kT ≤ t < e1,h

k

0 if e1,h
k ≤ t < kT + θ1

x1,h(kT + θ1; θ1) +
∫ t

kT+θ1
α1,h(τ)dτ if kT + θ ≤ t < (k + 1)T

(4.21)

where e1,h
k indicates the time when the buffer empties during the kth period. If no

such event occurs, then we set e1,h
k = (kT +θ1); thus, the second case does not occur.

Next, differentiating equation (4.21) we get

dx1,h(t; θ1)

dθ1

=





dx1,h(kT ;θ1)

dθ1
if kT ≤ t < e1

jk

0 if e1,h
k ≤ t < kT + θ1

dx1,h(kT+θ1;θ1)

dθ1
− α1,h(kT + θ1) if kT + θ1 ≤ t < (k + 1)T

In other words, the derivative
dx1,h(t;θ1)

dθ1
is a piecewise constant function. This func-

tion can be implemented iteratively using a single accumulator. That is, the value

of the derivative at any given time point is a function of the previous values. As
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a result, the derivative
dQ1,h(θ1)

dθ1
can also be evaluated via accumulators. We can

rewrite it as a product of the derivative and the corresponding intervals.

dQ1,h(θ1)

dθ1

=
1

S

K−1∑

k=0

[
(e1,h

k − kT )
dx1,h(kT ; θ1)

dθ1

+(T − θ1)

(
dx1,h(kT + θ1; θ1)

dθ1

− α1,h(kT + θ1)

)]
(4.22)

where as mentioned earlier, e1,h
k is the time that buffer x1,h empties during the

interval [kT, kT + θ1), and if no such event occurs, then e1,h
k = kT + θ1.

Using a similar analysis for dQ1,v(θ1)

dθ1
, we get

dQ1,v(θ1)

dθ1

=
1

S

K−1∑

k=0

[
(e1,v

k − kT )
dx1,v(kT ; θ1)

dθ1

+(T − θ1)

(
dx1,v(kT + θ1; θ1)

dθ1

− α1,v(kT + θ1)

)]
. (4.23)

4.1.3 Numerical Results

In this section, we simulate the SFM estimators derived in this chapter. These

estimators, along with the SPA estimators, from Chapter 2, are compared to FD

estimates.

The Continuous Model was implemented on the underlying stochastic model.

The lengths of the busy periods were recorded as the simulation progressed. The

lengths of the busy periods of the stochastic model were larger on average than

those of the SFM, because if a busy period started during a green light cycle and

did not end before the light changed red, then that busy period had no chance of

ending until after the following red-light cycle. The perpetuation of busy periods

by red-light cycles causes problems for the Continuous Model.
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The Periodic model was also implemented on the underlying stochastic model.

The assumption that the models stays empty once it empties causes the estimator

to be low, because in general the queue can become non-empty again during the

same green-light cycle. We made a slight modification to the estimator to allow for

arrivals to the queue during a green light phase while the system is empty. Instead

of resetting dx(kT ;θ)
dθ1

whenever the system empties, we only reset when the system

is empty at the epoch of the light change. This make intuitive sense, because the

perturbation only can propagate through the cycle if the system is nonempty. We

refer to this as the modified periodic model (periodic mod).

We implemented estimators for the horizontal queue using four different sets

of parameters. In all cases, the interarrival and service time distributions were

exponentially distributed, the number of cycles (K) was 10,000, and the number of

replications was also 10,000.

The first case (C1) had parameter values:

• respective mean interarrival and service times of 4.5 and 2.0;

• mean green length of 30.0 and mean total cycle length of 60.0.

The second case (C2) had parameter values:

• respective mean interarrival and service times of 5.0 and 1.5;

• mean green length of 35.0 and mean total cycle length of 110.0.

The third case (C3) had parameter values:

• respective mean interarrival and service times of 3.5 and 0.5;
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estimator dE[L̄1,h]/dθ (std. error)

SPA (RH) -2.465 (0.001)

SPA (LH) -2.465 (0.001)

FD (.05) -2.475 (0.024)

SFM (Simple) -147.82 (0.154)

SFM (Periodic) -1.713 (0.002)

SFM (Periodic mod) -2.188 (0.006)

Table 4.1: Gradient estimate simulation results for all estimators for “C1” (standard

errors in parentheses).

estimator dE[L̄1]/dθ (std. error)

SPA (RH) -8.3904 (0.0061)

SPA (LH) -8.3835 (0.0066)

FD (.05) -8.2115 (0.0356)

SFM (Simple) -915.4631 (1.4496)

SFM (Periodic) -0.1683 (0.0000)

SFM (Periodic mod) -0.2412 (0.0000)

Table 4.2: Gradient estimate simulation results for all estimators for “C2” (standard

errors in parentheses).
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estimator dE[L̄1]/dθ (std. error)

SPA (RH) -0.1717 (0.0000)

SPA (LH) -0.1716 (0.0001)

FD (.05) -0.1716 (0.0003)

SFM (Simple) -11.1422 (0.0004)

SFM (Periodic) -0.1674 (0.0000)

SFM (Periodic mod) -0.1960 (0.0000)

Table 4.3: Gradient estimate simulation results for all estimators for “C3” (standard

errors in parentheses).

• mean green length of 20.0 and mean total cycle length of 40.0.

The fourth case (C4) had parameter values:

• respective mean interarrival and service times of 10.5 and 5.0;

• mean green length of 20.0 and mean total cycle length of 40.0.

Estimators were simulated for all 4 cases; however, the optimization was car-

ried out only for C1, C2 and C3.

The performance measure of interest, average number in system, has a mean

settle down point of 2750 cycles. That is, steady-state is reached for each of the

cases on average after 2750 cycles are simulated. This value was determined by

observing multiple simulation runs. The average number in system was checked at

the start of each cycle, when the average number in system was within and stayed
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estimator dE[L̄1]/dθ (std. error)

SPA (RH) -20.8959 (0.0424)

SPA (LH) -20.8848 (0.0417)

FD (.05) -20.2334 (0.1146)

SFM (Simple) -775.8161 (4.0491)

SFM (Periodic) -19.0584 (0.0979)

SFM (Periodic mod) -19.7437 (0.0989)

Table 4.4: Gradient estimate simulation results for all estimators for “C4” (standard

errors in parentheses).

within 10% of the steady-state average number in system, that cycle was recorded

as the settle down point.

Gradient Estimation

The simulation results for C1, C2, C3 and C4 are shown in Tables 4.1, 4.2,

4.3 and 4.4, respectively. A comparison of the results shows that the Continuous

model estimator is large in magnitude compared to the other estimates. We take the

FD estimate as the true value in Table 4.1.3 to compare the percent error of each

estimator. The left and right hand SPA estimates are extremely accurate. Both the

Periodic and the modified Periodic models provide fair estimates of the gradient.

The standard error for the four aforementioned estimators is always less than that

for the FD estimates. Even though the estimates do not match the FD estimates
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exactly, they still look rather promising for use in system optimization.

We also note that because the standard error is smaller for the SPA and SFM

gradient estimators; therefore, their success in SA is enhanced. That is, when a

certain level of accuracy is desired, fewer simulations are needed for the SPA and

SFM gradient estimators, making them more computationally efficient.

Optimization

Case 1
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Figure 4.5: Five gradient estimation methods (SPA LH, SPA RH, SFM-IPA contin-

uous, SFM-IPA periodic, SFM-IPA modified periodic) plotted vs L̄1,h.

We noticed that the SFM gradient estimated were not very accurate; however,

from Figure 4.5, we can see that the estimates have a very important quality: they

are close to 0 at the minimum of the function. This is a good indicator that the
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SFM estimates can be used for optimization via a gradient descent algorithm such

as SA. All six gradient estimation techniques cross 0 at the minimum of L̄1,h. Figure

4.5 shows this for C1; the same property of the estimators was exhibited for C2 and

C3 as well.

Because SA is an iterative algorithm, not only are we concerned with reaching

the optimum, but we would like to stay near the optimum for subsequent updates.

Therefore, we ran simulations and counted the number of times the average number

in system was within p% (for p = 10,5,1) of the minimum average number in system

based on the current T1,h from the SA algorithm. We label the three ranges as

• 10%-range : within 10% of the optimal L̄1,h

• 5%-range : within 5% of the optimal L̄1,h

• 1%-range : within 1% of the optimal L̄1,h.

All six gradient estimation techniques were implemented in the SA algorithm

for cases C1, C2 and C3. Tables 4.6, 4.7 and 4.8 show the percentage of time each

estimation fell within the optimum range. We note that SFM1 performs very well

for C3, relatively well for C1, and poorly for C2. We see that SFM2, SFM2mod,

SPA RH, SPA LH and FD all have similar values. These five methods do a good

job in the optimization of the isolated intersection traffic system. Also we have

that these five methods do an equivalent job in the optimization process, which is

noteworthy, because the fluid models gradient estimates were not accurate.
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estimator case 1 case 2 case 3 case 4 avg. abs. err.

SPA (RH) -0.72% 2.18% 0.09% 3.27% 1.57%

SPA (LH) -0.70% 2.10% 0.03% 3.22% 1.51%

FD (.05) 0.00% 0.00% 0.00% 0.00% 0.00%

SFM (Simp) 6170.05% 11048.61% 6393.84% 3734.33% 6836.71%

SFM (Per) -30.86% -97.95% -2.45% -5.81% 34.27%

SFM (Per mod) -11.87% -97.06% 14.21% -2.42% 31.39%

Table 4.5: Percent error in gradient estimators when FD is used as the true gradient

value.

estimator 10%-range 5%-range 1%-range

SPA (RH) 77.0 46.4 10.9

SPA (LH) 77.8 45.6 10.9

FD (.05) 76.5 45.0 10.1

SFM (Simple) 48.9 30.2 5.7

SFM (Periodic) 79.3 47.9 10.9

SFM (Periodic mod) 73.6 45.0 10.0

Table 4.6: Percentage of iterations that the SA algorithm is with p% of the optimum

value for “C1”.

96



estimator 10%-range 5%-range 1%-range

SPA (RH) 92.9 89.9 60.1

SPA (LH) 92.7 90.2 61.0

FD (.05) 94.0 91.8 57.0

SFM (Simple) 3.0 2.6 1.2

SFM (Periodic) 95.9 94.3 66.3

SFM (Periodic mod) 95.1 91.3 10.9

Table 4.7: Percentage of iterations that the SA algorithm is with p% of the optimum

value for “C2”.

estimator 10%-range 5%-range 1%-range

SPA (RH) 43.0 21.8 4.6

SPA (LH) 43.1 22.4 4.2

FD (.05) 41.2 19.9 3.9

SFM (Simple) 43.0 21.7 4.7

SFM (Periodic) 48.3 26.4 4.7

SFM (Periodic mod) 42.9 21.7 4.6

Table 4.8: Percentage of iterations that the SA algorithm is with p% of the optimum

value for “C3”.
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4.1.4 Conclusions

SFMs are promising for the purpose of control and optimization, rather than

performance analysis. In this chapter we have shown that even if the exact gra-

dient cannot be obtained by such “lower-resolution” models, one can still obtain

near-optimal points that exhibit robustness with respect to certain aspects of the

model on which they are based. For this reason, we believe that these SFM IPA

gradient estimates can used to optimize the traffic model. Next we will consider

the application of the SFM IPA estimator method to a network of two signalized

intersections.

4.2 Network of Two Signalized Intersections

In this section, we analyze a network of two signalized intersections, identical

to the system described in chapter 2.

4.2.1 Continuous Model

2,v(t)
1,v(t)

Tdelay
2,h(t;  1)

(1- 1) 1(t)

 2 2(t;  1)
1,h(t)  1 1(t)

(1-  2) 2(t)

Figure 4.6: Network of two signalized intersections: Continuous model visual depic-

tion.
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The queueing model representing the SFM continuous model of a network of

two signalized intersections is shown in Figure 4.6. Each server is always on for

each street. The processing capacity for each Light-i (server) is split between the

horizontal and vertical streets with proportions θi and 1−θi, respectively. The main

addition in this model from the isolated intersection model is that the inflow to the

horizontal queue of Light-2 comes from the outflow of the horizontal queue at Light-

1. We also note there is no transient queue nor an offset between the intersections.

In lieu of a transient queue, we enforce a delay on the fluid traveling from Light-1

to Light-2. No offset is applicable, because both lights are always green for each

street.

Sample Path Partition

We start by determining which gradient estimators are required in this setting.

In this setting, there are four queues (x1,h, x1,v, x2,h, x2,v) and two parameters (θ1, θ2).

Queues x1,h and x1,v are affected by θ1, but are independent of θ2 because θ2 only

has an effect on the operation of Light-2. Queue x2,h has an exogenous inflow; thus,

nothing in the system can affect that process. On the other hand, the outflow is

dictated by the allowed processing capacity, i.e., the outflow is a function of θ2.

Queue x2,h is unique in this setting, because it has an endogenous inflow. This

endogenous inflow comes from the outflow of queue x1,h, and queue x1,h’s outflow is

a function of θ1. Therefore, we have that the inflow of queue x2,h is a function of

θ1. And of course, queue x2,h’s outflow is a function of θ2. Hence, queue x2,h is a
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function of θ1 and θ2, that is x2,h(t) = F (t, θ1, θ2). It follows that for the network

of two signalized intersections problem modeled using the continuous model SFM

process, we need estimators for

dQ1,h(θ1)

dθ1

,
dQ1,v(θ1)

dθ1

,
dQ2,h(θ1, θ2)

dθ1

,
dQ2,h(θ1, θ2)

dθ2

, and
dQ2,v(θ2)

dθ2

.

All estimators can be derived using the same analysis outlined in Section 4.1.1 except

for
dQ2,h(θ1,θ2)

dθ1
, which requires new analysis.

We start by again partitioning the sample path into empty and non-empty

periods. For queue x2,h, we have

Q2,h(θ1, θ2) =
1

S

N2,h∑
j=1

∫ e2,h
j

b2,h
j

x2,h(t; θ1; θ2)dt, (4.24)

where N2,h denotes the random number of non-empty periods in the interval [0, S].

Differentiating with respect to θ1, we get

dQ2,h(θ1, θ2)

dθ1

=
1

S

N2,h∑
j=1

∫ e2,h
j

b2,h
j

dx2,h(t; θ1, θ2)

dθ1

dt, (4.25)

since x2,h(b
2,h
j , θ1) = x2,h(e

2,h
j , θ1) = 0 for j = 1, 2, .... In any interval Ē2,h

j =

(b2,h
j , e2,h

j ), the buffer content x2,h(t; θ1, θ2) is given by

x2,h(t; θ1, θ2) =

∫ t

b2,h
j

[α2,h(τ)− θ2β2(τ)]dτ

=

∫ t

b2,h
j

[θ1β1,h(τ − Tdelay)− θ2β2,h(τ)]dτ

= θ1

∫ t

b2,h
j

β1,h(τ − Tdelay)dτ − θ2

∫ t

b2,h
j

β2,h(τ)dτ, (4.26)

where Tdelay represents the amount of time the fluid is delayed when traveling from

Light-1 down to Light-2. In order to get the desired estimator, we differentiate, and
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the derivative of x2,h(t; θ1; θ2) with respect to θ1 is given by

dx2,h(t; θ1; θ2)

dθ1

= −
∫ t

b2,h
j

β1,h(τ − Tdelay)dτ

+ θ1[−β1,h(b
2,h
j − Tdelay)

db2,h
j

dθ1

+ θ2[β2,h(b
2,h
j )]

db2,h
j

dθ1

= −
∫ t

b2,h
j

β1,h(τ − Tdelay)dτ +
db2,h

j

dθ1

[θ2β2,h(b
2,h
j )− θ1β1,h(b

2,h
j )]

= −
∫ t

b2,h
j

β1,h(τ − Tdelay)dτ +
db2,h

j

dθ1

[θ2β2,h(b
2,h
j )− α2,h(b

2,h
j )]

= −
∫ t

b2,h
j

β1,h(τ − Tdelay)dτ. (4.27)

Now we define

E1,h =
K⋃

i=1

Ē1,h
i ,

Ec
1,h = {t|t /∈ E1,h},

and

E1,h(t) = Event that queue x1,h(t) = 0,

E1,h(t1, t2) = Event that queue x1,h = 0 at sometime t1 < t < t2,

and then the service rate for the horizontal queue of Light-1 can be expressed as

β1,h(t; θ1) =





ρ1,h(t) if t ∈ E1,h

α1,h(t) if t ∈ E1,h
c .

(4.28)

Next, substituting (4.28) back in (4.27) we get the following result

dx2,h(t; θ1, θ2)

dθ1

=

∫ t

b2,h
j

α1,h(τ)1{E1,h(τ)}dτ +

∫ t

b2,h
j

ρ1,h(τ)(1− 1{E1,h(τ)})dτ.

(4.29)
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Theorem 4.2.1. The sample derivative for the workload is given by

dQ2,h(θ1, θ2)

dθ1

=
1

S

N2,h∑
j=1

∫ e2,h
j

b2,h
j

∫ t

b2,h
j

[α1,h(τ)1{E1,h(τ)}

+ ρ1,h(τ)(1− 1{E1,h(τ)})] dτ. (4.30)

Example: Next, let us consider a simple example where α1,h(t) = α1,h and ρ1,h(t) =

ρ1,h (constant). In this case,

dQ2,h(θ1, θ2)

dθ1

=
1

S

N2,h∑
j=1

∫ e2,h
j

b2,h
j

{∫ t

b2,h
j

α1,h1{E1,h(τ)}dτ +

∫ t

b2,h
j

ρ1,h1{E1,h(τ)}dτ

}

=
1

S

N2,h∑
j=1

∫ e2,h
j

b2,h
j

{
(t− b2,h

j )α1,hP [E1,h(b
2,h
j , t)]

+ ρ1,h(1− P [E1,h(b
2,h
j , t)])dt

}

=
1

S

N2,h∑
j=1

{
α1,hP [E1,h(b

2,h
j , e2,h

j )]

+ρ1,hP [E1,h(b
2,h
j , e2,h

j )]((e2,h
j )2 − 2b2,h

j e2,h
j + (b2,h

j ))2
}

=
(α1,hP [E1,h(0, S)] + ρ1,hP [E1,h(0, S)]

S

N2,h∑
j=1

(e2,h
j − b2,h

j )2. (4.31)

We can see that this estimator is similar to those derived earlier, the main difference

is that now we have a weighted flow rate. Not only do we need the duration of the

non-empty period, but we also need the proportion of time that both x1,h(t) and

x2,h(t) are empty at the same time.

4.2.2 Periodic Model

Figure 4.7 shows a fluid model where server i’s capacity is allocated to the

horizontal queue for a period 0 < θi < Ti and to the vertical queue for a period

0 < T − θi < Ti, for i = 1, 2. In this model, Ti indicates the period of one cycle
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2,v(t)
1,v(t)

Tdelay
2,h(t;  1) 2,h(t;  1;  2)

1,h(t) 1,h(t; 1)

2,v(t;  2)
1,v(t; 1)

Figure 4.7: Network of two signalized intersections: Periodic model visual depiction.

from ‘green’ to ‘red’ for intersection i. Figure 4.8 shows a typical sample path due

to this model.

X2,v(t)

X2,h(t)

X1,v(t)

X1,h(t)

t

t

t

t

kT (k+1)TkT+ 1kT+Toffset kT+Toffset+ 2

Figure 4.8: Example of sample path for a network of two signalized intersections

periodic model.
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Sample Path Partition

In this modeling approach the sample path is divided into intervals of length

T1 = T2 = T . The dynamics and estimators for queues Q1,h, Q1,v and Q2,v are

identical to those described in the previous section. Note that here, the cycle of

length T , is further divided into four subintervals. These subintervals are defined as

Sk
1 = [kT, kT + Toffset),

Sk
2 = [kT + Toffset, kT + θ1),

Sk
3 = [kT + θ1, kT + Toffset + θ2),

Sk
4 = [kT + Toffset + θ2, (k + 1)T ).

The dynamics of the horizontal queue related to intersection 2 are as follows

dx2,h(t; θ1; θ2)

dt
=





α2,h(t; θ1) if T ∈ Sk
1

α2,h(t; θ1)− β2,h(t; θ1; θ2) if T ∈ {Sk
2

⋃
Sk

3}

α2,h(t; θ1) if T ∈ Sk
4 ,

(4.32)

k = 1, 2, · · · . In addition, the service rates are defined as

β2,h(t; θ1; θ2) =





0 if t ∈ Sk
1

α2,h(t, θ1) if t ∈ {Sk
2

⋃
Sk

3} and x2,h(t) = 0

ρ2,h(t, θ1) if t ∈ {Sk
2

⋃
Sk

3} and x2,h(t) > 0

0 if t ∈ Sk
4 .

(4.33)

In this setting we also have variations in the inflow rate for queue Q2,h. Namely,

α2,h(t; θ1) = β1,h(t− Tdelay; θ1), (4.34)
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where Tdelay is the time it takes for the fluid to move from intersection 1 to intersec-

tion 2. This is analogous to the transient queue from the DES model. The sample

functions of (4.1) can be written as

Q2,h(θ) =
1

S

K−1∑

k=0

∫ (k+1)T

kT

x2,h(t; θ1; θ2)dt, (4.35)

where K is the number of periods included in the interval [0, S]. We first start by

differentiating with respect to θ1 and get

dQ2,h(θ1; θ2)

dθ1

=
1

S

K−1∑

k=0

∫ (k+1)T

kT

dx2,h(t; θ1; θ2)

dθ1

dt. (4.36)

For simplicity, let us first evaluate a single term from the summation, i.e., we start

by analyzing
∫ (k+1)T

kT

dx2,h(t; θ1; θ2)

dθ1

dt.

Given the queue dynamics of (4.32), we determine the queue content based upon

which interval t belongs to:

Case A: (t ∈ Sk
1 ) During this interval, Light-2 is ‘red‘ for the horizontal queue of

intersection 2; thus, we get

x2,h(t; θ1; θ2) = x2,h(kT ; θ1; θ2) +

∫ t

kT

α2,h(τ ; θ1)dτ. (4.37)

Case B: (t ∈ {Sk
2

⋃
Sk

3}) During this interval, the light is ‘green‘ for the horizontal

queue of intersection 2. This interval is further divided into two more subcases

depending on the observation of an empty period. Here we also make an

assumption that during a period of ‘green’ light, if the queue becomes empty,

then it will not become non-empty before the next ‘red’ light.
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B1: During this interval, the queue does not become empty, so we get

x2,h(t; θ1; θ2) = x2,h(kT ; θ1; θ2)+

∫ t

kT

α2,h(τ ; θ1)−β2,h(τ ; θ1; θ2)dτ. (4.38)

B2: During this interval, the queue does becomes empty, so we get

x2,h(t; θ1; θ2) =





x2,h(kT ; θ1; θ2)

+
∫ t

kT
[α2,h(τ ; θ1)

−ρ2,h(τ ; θ1; θ2)]dτ if kT + Toffset ≤ t < e2,h
k

0 if e2,h
k ≤ t

< kT + Toffset + θ2.

(4.39)

Case C: (t ∈ Sk
4 ) During this interval, Light-2 is ‘red‘ for the horizontal queue of

intersection 2.

x2,h(τ ; θ1; θ2) = x2,h(kT + Toffset + θ2; θ1; θ2) +

∫ t

kT+Toffset+θ2

α2,h(τ ; θ1)dτ

(4.40)

By summarizing, using equation (4.34) and the following set of intervals,

Ik
1 = [kT, kT + Toffset),

Ik
2 = [kT + Toffset, e

2,h
k ),

Ik
3 = [e2,h

k , kT + Toffset + θ2),

Ik
4 = [kT + Toffset + θ2, (k + 1)T ),
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we get

x2,h(t; θ1; θ2) =





x2,h(kT ; θ1; θ2) +
∫ t

kT
β1,h(τ − Tdelay)dτ if t ∈ Ik

1

x2,h(kT + Toffset; θ1; θ2)

+
∫ t

kT+Toffset
[β1,h(τ − Tdelay)− β2,h(τ ; θ1; θ2)]dτ if t ∈ Ik

2

0 if t ∈ Ik
3

x2,h(kT + Toffset + θ2; θ1; θ2)

+
∫ t

kT+Toffset+θ2
β1,h(τ − Tdelay)dτ if t ∈ Ik

4 ,

(4.41)

where e2,h
k indicates the epoch of the buffer emptying during the kth period. If no

such event occurs, then we set e1
k = (kT + Toffset + θ2); thus, the second case does

not occur. Next, differentiating (4.41) w.r.t. θ2 we get

dx2,h(t; θ1; θ2)

dθ2

=





dx2,h(kT ;θ1;θ2)

dθ2
if t ∈ Ik

1

dx2,h(kT+Toffset;θ1;θ2)

dθ2
if t ∈ Ik

2

0 if t ∈ Ik
3

dx2,h(kT+Toffset+θ2;θ1;θ2)

dθ2
− β1,h(kT + Toffset + θ2 − Tdelay) if t ∈ Ik

4 .

(4.42)

In other words, the derivative
dx2,h(t;θ1;θ2)

dθ2
is a piecewise constant function. This

function can be implemented iteratively using a single accumulator. The derivative

dQ2,h(θ1;θ2)

dθ2
is just the derivative times the corresponding intervals. Therefore we get

dQ2,h(θ1; θ2)

dθ2

=
1

S

K−1∑

k=0

{
|Ik

1 |
dx2,h(kT ; θ1; θ2)

dθ2

+ |Ik
2 |

dx2,h(kT + Toffset; θ1; θ2)

dθ2

+ |Ik
4 |

[
dx2,h(kT ; θ1; θ2)

dθ2

−β1,h(kT + Toffset + θ2 − Tdelay)]} . (4.43)
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Next, differentiating (4.41) w.r.t. θ1 we get

dx2,h(t; θ1; θ2)

dθ1

=





dx2,h(kT ;θ1;θ2)

dθ1
if t ∈ Ik

1

dx2,h(kT+Toffset;θ1;θ2)

dθ1
+ 2α1,h(kT + Toffset) if t ∈ Ik

2

0 if t ∈ Ik
3

dx2,h(kT+Toffset+θ2;θ1;θ2)

dθ1
+ α1,h(kT + Toffset) if t ∈ Ik

4 .

(4.44)

In other words, the derivative
dx2,h(t;θ1;θ2)

dθ1
is a piecewise constant function. This

function can be implemented iteratively using a single accumulator. The derivative

dQ2,h(θ1;θ2)

dθ1
is just the derivative times the corresponding intervals. Therefore we get

dQ2,h(θ1; θ2)

dθ1

=
1

S

K−1∑

k=0

{
|Ik

1 |
dx2,h(kT ; θ1; θ2)

dθ1

+ |Ik
2 |

dx2,h(kT + Toffset; θ1; θ2)

dθ1

+|Ik
4 |

dx2,h(kT ; θ1; θ2)

dθ1

}
. (4.45)

Now we derive the gradient estimators w.r.t. Toffset. As before, both queue Q2,h

and Q2,v will have a non-zero gradient w.r.t. Toffset. For clarity, in the remaining

equations, we will suppress all queues and flow rate dependence of θi, for i = 1, 2, 3.

So, by differentiating (4.41) w.r.t. θ3 = Toffset we get

dQ2,h

dθ3

=
1

S

K−1∑

k=0

{
|Ik

1 |
dx2,h(kT )

dθ3

+|Ik
2 |

(
dx2,h(kT + Toffset)

dθ3

− [β1,h(τ − Tdelay)− β2,h(τ)]

)

+|Ik
4 |

(
dx2,h(kT )

dθ3

− β1,h(kT + Toffset + θ2 − Tdelay)

)}
. (4.46)

108



and by reassigning the intervals as such

Ik
1 = [kT, e

(2,v)−1st
k ),

Ik
2 = [kT + Toffset, kT + Toffset + θ2),

Ik
3 = [kT + Toffset + θ2, e

(2,v)−2nd
k ),

dQ2,v

dθ3

=
1

S

K−1∑

k=0

{
|Ik

1 |
dx2,v(kT )

dθ3

+|Ik
2 |

(
dx2,h(kT + Toffset)

dθ3

− [α2,v(τ − Tdelay)]

)

+|Ik
3 |

(
dx2,h(kT )

dθ3

− [α2,v(kT + Toffset + θ2 − Tdelay)

− ρ2,v(kT + Toffset + θ2 − Tdelay)])} . (4.47)

4.2.3 Optimization

The results of the SFM-IPA (and the other methods from Chapter 3) driven

SA for cases SC, NC, and AC can be seen in Figures 4.9, 4.10, and 4.11, respec-

tively. (Note that the case descriptions can be seen in Table 3.2) We observe that

optimization was achieved with the use the SFM-IPA estimator for all three cases.

The SFM-IPA periodic model gradient estimators reached optimal settings.

In fact, the SFM-IPA estimators appear to reach the optimal parameter set-

tings quicker than any of the other gradient estimation methods. However, it is of

importance to note that the SFM-IPA does not completely settle down. The high

variance in the SFM-IPA estimators results in changes in the parameter (represented

by lots of bumps in the plots), even after the all other methods have converged.
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Figure 4.9: Convergence to minimum for 10 replications of the SA algorithm for

case “SC” for four different gradient estimation methods: FDSA, SPSA, SPA SA

and SFM-IPA SA.
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Figure 4.10: Convergence to minimum for 10 replications of the SA algorithm for

case “NC” for four different gradient estimation methods: FDSA, SPSA, SPA SA

and SFM-IPA SA.
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Figure 4.11: Convergence to minimum for 10 replications of the SA algorithm for

case “AC” for four different gradient estimation methods: FDSA, SPSA, SPA SA

and SFM-IPA SA.
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4.2.4 Conclusions

The SFM-IPA estimators for the network of two signalized intersection are

similar to those for the isolated intersection. The intervals on which the estimators

are constant are more complex in this setting, because there are now more points

at which the system dynamics change; however, their final form still allows them to

be calculated via simulation using a single accumulator. Again we have shown that

the SFM-IPA gradient estimators can be used for system optimization.
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Chapter 5

Conclusions and Future Work

We have considered an important issue: the evaluation and optimization of

traffic systems. In Chapter 2, we consider an isolated intersection traffic system

modeled using DES. We successfully optimized this traffic system. This was the

first successful attempt to apply direct stochastic gradient estimation techniques to

a traffic flow optimization setting. The resulting estimators demonstrated superior

computational performance over FD estimators, and in addition can be used on

line with real-time traffic updating systems, because unlike FD estimators, they do

not require altering the parameter values. In Chapter 3, we expanded the problem

to a network of two signalized intersections. Again, the derived SPA estimators

performed well when compared to FD estimates. In Chapter 4, we re-examined the

isolated intersection and network of two signalized intersection problems. There

we modeled the traffic systems using SFM and derived IPA estimators. These

estimators were motivated with the goal of system optimization in mind. We showed

that SFMs are promising for the purpose of control and optimization rather than

for performance analysis. In Chapter 3 we showed that even if the exact gradient

cannot be obtained by such “lower-resolution” models, one can still obtain near-

optimal points that exhibit robustness with respect to certain aspects of the model

they are based on.
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We suggest several avenues for future research. Throughout this dissertation,

we used traffic models that only included one-way streets and did not allow turning.

So, one avenue to explore is to determine how the estimators change and perform

when used with traffic models in which two-way traffic and turning vehicles are

present. There are additional changes to the model that would create interesting

problems. For example, how do the estimators perform when the arrival rates,

λq(t) are non-stationary, which is more representative of real-world traffic systems.

Application of these estimators to more detailed traffic models is a good area of

future research.

Further work for estimators derived in this dissertation include the derivation

of estimators when the traffic system contains more than two intersections. We

were able to see that new analysis was necessary when we expanded from one to two

lights; therefore, we would expect even more analysis when additional intersections

are added to the traffic system.

The use of SA could also be studied more. Future work could include conver-

gence proofs for SA algorithm. Also a more in depth analysis of SA as it applies to

traffic optimization would be useful to avoid local minimums and facilitate global

optimization.

Additional work could be done to make the simulation optimization algorithms

more practical. The model could be altered to include such thing as pedestrians and

additional classes of vehicles.

The SFM-IPA approach could benefit from further exploration. Issues such as
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• When will it work well?

• How detailed of a model is needed?

could be addressed.
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Appendix A
Portion of C Program for Isolated Intersection Gradient Estimator

Here we provide an excerpt from one of the many programs developed for this
dissertation. This program is the header file which returns all gradient estimators,
both SPA and SFM-IPA, for the isolated intersection traffic setting.

void N_main(double ms1, double ms2, double mi1,double mi2, double

mg1, double mg2, int num_cycles, int nr, unsigned long

a1[6],unsigned long a2[6],unsigned long a3[6],unsigned long a4[6],

int N_bar_flag, double N_bar[3], int SPA_N1_LH_flag, double

SPA_N1_LH[2], int SPA_N2_LH_flag, double SPA_N2_LH[4], int

SPA_N1_RH_flag, double SPA_N1_RH[3],int SPA_N2_RH_flag, double

SPA_N2_RH[3], int SFMe1_flag, double SFMe1[3], int SFMe2_flag,

double SFMe2[3], int SFMe2mod_flag, double SFMe2mod[3], int

need_empty_times_flag, double tte_sys_1[Q_LIMIT+1], double

tte_sys_2[Q_LIMIT+1])

{

int lcv;

/* Set up seeds for random numbers */

A1 = RngStream_CreateStream ("A1");

A2 = RngStream_CreateStream ("A2");

S1 = RngStream_CreateStream ("S1");

S2 = RngStream_CreateStream ("S2");

/*Initialze seeds*/

RngStream_SetSeed(A1,a1);

RngStream_SetSeed(A2,a2);

RngStream_SetSeed(S1,a3);

RngStream_SetSeed(S2,a4);

/* Set up system parameters */

mean_service_green_1 = ms1;

mean_service_green_2 = ms2;

mean_interarrival_1 = mi1;

mean_interarrival_2 = mi2;

mi1_init = mi1;

mi2_init = mi2;

mean_green_length_1 = mg1;

mean_green_length_2 = mg2;
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N = num_cycles;

num_reps = nr;

/* Define a stopping condition */

G1 = mean_green_length_1;

G2 = mean_green_length_2;

T = G1 + G2;

stop_sim_time = N*T;

/*Specify the number of events for the timing function*/

num_events = 6;

// Only need maxes for SPA

// if we got maxes just assign then, otherwise we

need to get them

if (need_empty_times_flag == 1)

{

make_max();

// Need to put arrival means back on for both

mean_interarrival_1 = mi1;

mean_interarrival_2 = mi2;

for (lcv = 1; lcv <= Q_LIMIT; lcv++)

{

tte_sys_1[lcv] = time_to_empty_sys_1[lcv];

tte_sys_2[lcv] = time_to_empty_sys_2[lcv];

}

//put seeds back to original

/*Initialze seeds*/

RngStream_SetSeed(A1,a1);

RngStream_SetSeed(A2,a2);

RngStream_SetSeed(S1,a3);

RngStream_SetSeed(S2,a4);

}

else

{

for (lcv = 1; lcv <= Q_LIMIT; lcv++)

{

time_to_empty_sys_1[lcv] = tte_sys_1[lcv];

time_to_empty_sys_2[lcv] = tte_sys_2[lcv];

}

}

main_body();

if (N_bar_flag == 1)

{
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/* Sets and returns value for N_bar, N1_bar and N2_bar */

N_out(N_bar);

}

if (SPA_N1_LH_flag == 1)

{

/* Sets and returns value for SPA N1 LH */

SPA_N1_LH_out(SPA_N1_LH);

}

if (SPA_N2_LH_flag == 1)

{

/* Sets and returns value for SPA N2 LH */

SPA_N2_LH_out(SPA_N2_LH);

}

if (SPA_N1_RH_flag == 1)

{

/* Sets and returns value for SPA N1 RH */

SPA_N1_RH_out(SPA_N1_RH);

}

if (SPA_N2_RH_flag == 1)

{

/* Sets and returns value for SPA N2 RH */

SPA_N2_RH_out(SPA_N2_RH);

}

if (SFMe1_flag == 1)

{

/* Sets and returns value for SFM1e */

SFMe1_out(SFMe1);

}

if (SFMe2_flag == 1)

{

/* Sets and returns value for SFM2e */

SFMe2_out(SFMe2);

}

if (SFMe2mod_flag == 1)

{

/* Sets and returns value for SFMe2mod */

SFMe2mod_out(SFMe2mod);

}

//Free memory from streams

RngStream_DeleteStream(&A1); RngStream_DeleteStream(&A2);

RngStream_DeleteStream(&S1); RngStream_DeleteStream(&S2);

}

//***********************************************************

void main_body() /* Main function. */ {

/* Initialize the simulation. */
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initialize();

/*Run the simulation while more delays are still needed*/

while (sim_time < stop_sim_time)

{

/* Determine the next event. */

timing();

/* Update time-average statistical accumulators. */

if (sim_time > stop_sim_time)

{

sim_time = stop_sim_time;

time_complete = 1;

}

update_time_avg_stats();

if (time_complete == 0)

{

/* Invoke the appropriate event function. */

switch (next_event_type)

{

case 1:

arrive_1();

break;

case 2:

arrive_2();

break;

case 3:

depart_1();

break;

case 4:

depart_2();

break;

case 5:

light_1_turn_green();

break;

case 6:

light_2_turn_green();

break;

}

}

}

}

//**********************************************************

/* Initialization function. */ void initialize(void) {

int lcv;

int lcvr,lcvc;

numserv2 = 0;
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/* Initialize the simulation clock. */

sim_time = 0.0;

/***************************************************/

// SPA N1 LH part

valid_SPA_entry_to_service = 0;

for (lcv = 1 ; lcv <= N ; lcv++)

{

NETS_1[lcv] = 0;

num_departures[lcv] = 0;

}

for (lcvr = 1 ; lcvr <= N ; lcvr++)

for (lcvc = 1; lcvc < max_per_cycle ; lcvc++)

{

NA_1[lcvr][lcvc] = 0;

NIS_1[lcvr][lcvc] = 0;

ETS_1[lcvr][lcvc] = 0.0;

}

car_ID_1 = 0;

/***************************************************/

// SPA N2 LH part

num_valid_IPA_departures_1 = 0;

for (lcv = 0; lcv<= N; lcv++)

{

E_1[lcv] = 0.0;

S_1[lcv] = 0.0;

G_1[lcv] = 0.0;

}

index_SPA_N2_LH = 0;

/***************************************************/

//SPA N1 RH

last_departure = FLT_MAX;

last_entry_to_service = FLT_MAX;

for (lcv = 0; lcv<= N; lcv++)

E_2[lcv] = 0.0;

index_SPA_RH = 0;

/***************************************************/

// SPA N2 RH

num_valid_IPA_departures_2 = 0;

valid_SPA_entry_to_service = 0;

for (lcv = 1 ; lcv <= N ; lcv++)

{

NETS_2[lcv] = 0;

NETS_first_busy_period[lcv]=0;

}

for (lcvr = 1 ; lcvr <= N ; lcvr++)
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for (lcvc = 1; lcvc < max_per_cycle ; lcvc++)

NA_2[lcvr][lcvc] = 0;

car_ID_2 = 0;

/***************************************************/

// SFMe2 and SFMe2mod

if (num_in_q_1 == 0)

current_period_empty_flag_1 = 1;

else

current_period_empty_flag_1 = 0;

if (num_in_q_2 == 0)

current_period_empty_flag_2 = 1;

else

current_period_empty_flag_2 = 0;

for(lcv=0;lcv<=N;lcv++)

{

e_k_1[lcv] = -1;

e_k_2[lcv] = -1;

dx_kT_1[lcv] = 0;

dx_kT_2[lcv] = 0;

dx_kTtheta_1[lcv] = 0;

dx_kTtheta_2[lcv] = 0;

dx_kTtheta_1mod[lcv] = 0;

dx_kT_2mod[lcv] = 0;

}

/***************************************************/

// for finding the max

max_in_sys_1 = max_in_sys_2 = 0;

done = 0;

for (lcv = 1 ; lcv <= Q_LIMIT; lcv++)

{

emptied[lcv] = 0;

times[lcv] = 0.0;

}

/***************************************************/

// SFMe1

current_sys_empty_flag_1 = 1;

busy_period_1 = 0;

current_sys_empty_flag_2 = 1;

busy_period_2 = 0;

/***************************************************/

/* Initialize the state variables. */

/* Starting condition is both lights red, but light one

will turn green at time 0 */

server_status_1 = IDLE;

server_status_2 = IDLE;
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light_1 = RED;

light_2 = RED;

num_in_q_1 = start_Q_1;

num_in_q_2 = start_Q_2;

time_last_event = 0.0;

time_complete = 0;

index = 0;

/* Initialize the statistical counters. */

num_custs_delayed_1 = 0;

num_custs_delayed_2 = 0;

num_custs_completed_1 = 0;

num_custs_completed_2 = 0;

total_of_delays_1 = 0.0;

total_of_delays_2 = 0.0;

area_num_in_sys_1 = 0.0;

area_num_in_sys_2 = 0.0;

area_server_status_1 = 0.0;

area_server_status_2 = 0.0;

/* Initialize event list */

time_next_event[1] = get_dist_arrival_1();

time_next_event[2] = get_dist_arrival_2();

time_next_event[3] = FLT_MAX;

/* Red light means no departures allowed */

time_next_event[4] = FLT_MAX;

/* Red light means no departures allowed */

time_next_event[5] = 0.0;

/* Light 1 turns green at the beginning of simulation */

time_next_event[6] = FLT_MAX;

}

//************************************************************

/* Timing function. */ void timing(void) {

int i;

double min_time_next_event = FLT_MAX - 1;

next_event_type = 0;

/* Determine the event type of the next event to occur. */

for (i = 1; i <= num_events; ++i)

if (time_next_event[i] < min_time_next_event)

{

min_time_next_event = time_next_event[i];

next_event_type = i;

}

/* Check to see whether the event list is empty. */

if (next_event_type == 0)

{

/* The event list is empty, so stop the simulation. */
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printf("\nEvent list empty at time %f", sim_time);

exit(1);

}

/* The event list is not empty,

so advance the simulation clock. */

sim_time = min_time_next_event;

}

//************************************************************

/* Arrival event function at queue 1. */ void arrive_1(void) {

int lcv;

//********************************************************

// SPA N1 LH

if ( (light_1 == GREEN) )

for (lcv = 1; lcv <= NETS_1[index] ; lcv++)

NA_1[index][lcv] += 1;

if ( (light_1 == GREEN) && (server_status_1 == IDLE))

{

car_ID_1 += 1;

NETS_1[index] += 1;

ETS_1[index][car_ID_1] = sim_time;

NIS_1[index][car_ID_1]= num_in_q_1 + server_status_1 + 1;

}

//***********************************************************

// SPA N1 RH

if ( (light_1 == GREEN) && (server_status_1 == IDLE))

last_entry_to_service = sim_time;

//***********************************************************

// SFM_1 N1

if (current_sys_empty_flag_1 == 1) //if sys is empty

{

current_sys_empty_flag_1 = 0;

busy_period_1 += 1;

busy_period_start_time_1[busy_period_1] = sim_time;

}

//***********************************************************

/* Schedule next arrival. */

time_next_event[1] = sim_time + get_dist_arrival_1();

/* check for time stopping condition */

if (sim_time >= stop_sim_time)

time_complete = 1;

/* Check to see whether stopping condition is met */

if (time_complete == 0)

{

if ((server_status_1 == BUSY )||(light_1 == RED))

{
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/* There is still room in the queue,

so store the time of arrival of the

arriving customer at the (new) end of time_arrival_1. */

num_in_q_1++;

/* Check to see whether an overflow condition exists. */

if (num_in_q_1 > Q_LIMIT)

{

/* The queue has overflowed, so stop the simulation. */

printf( "\nOverflow of the array time_arrival_1 at");

printf( " time %f", sim_time);

exit(2);

}

}

else

/* server is idle, there is no delay in the queue */

{

/* Increment the number of customers delayed,

and make server BUSY. */

++num_custs_delayed_1;

/* Schedule departure of this arrival */

time_next_event[3] = sim_time+get_dist_service_time_1();

server_status_1 = BUSY;

}

}

}

//***************************************************************

void arrive_2(void) /* Arrival event function at queue 2. */ {

int lcv;

//***********************************************************

// SPA N2 RH

if ( (light_2 == GREEN) )

for (lcv = 1; lcv <= NETS_2[index_SPA_RH] ; lcv++)

NA_2[index_SPA_RH][lcv] += 1;

if ( (light_2 == GREEN) && (server_status_2 == IDLE))

{

car_ID_2 += 1;

NETS_2[index_SPA_RH] += 1;

ETS_2[index_SPA_RH][car_ID_2] = sim_time;

NIS_2[index_SPA_RH][car_ID_2]=num_in_q_2+server_status_2+1;

}

//**************************************************************

// SFM_1 N2

if (current_sys_empty_flag_2 == 1) //if sys is empty

{

current_sys_empty_flag_2 = 0;
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busy_period_2 += 1;

busy_period_start_time_2[busy_period_2] = sim_time;

}

//**************************************************************

/* Schedule next arrival */

time_next_event[2] = sim_time + get_dist_arrival_2();

/* check for time stopping condition */

if (sim_time >= stop_sim_time)

time_complete = 1;

/* Check to see whether stopping condition is met */

if (time_complete == 0)

{

if ((server_status_2 == BUSY )||(light_2 == RED))

{

/* There is still room in the queue,

so store the time of arrival of the

arriving customer at the (new) end of time_arrival_2. */

num_in_q_2++;

/* Check to see whether an overflow condition exists. */

if (num_in_q_2 > Q_LIMIT)

{

/*The queue has overflowed, so stop the simulation*/

printf( "\nOverflow of the array time_arrival_2 at");

printf( " time %f", sim_time);

exit(2);

}

}

else

/* server is idle, there is no delay in the queue */

{

/* Increment the number of customers delayed,

and make server BUSY. */

++num_custs_delayed_2;

/* Schedule departure of this customer */

time_next_event[4]=sim_time+get_dist_service_time_2();

server_status_2 = BUSY;

}

}

}

126



BIBLIOGRAPHY

[1] R. B. Allsop, “SIGSET: A Computer Program for Calculating Traffic Capcity

of Signal-controlled Road Junctions,” Traffic Engineering & Control, vol.12,

pp.58-60, 1971.

[2] R. B. Allsop, “SIGCAP: A Computer Program for Assessing the Traffic Capcity

of Signal-controlled Road Junctions,” Traffic Engineering & Control, vol.17,

pp.338-341, 1976.

[3] J. Banks and J.S. Carson, Discete-Event System Simulation, Prentice-Hall, Inc.,

Englewood, NJ; 1984.

[4] F. Boillot, J.M. Blosseville, J.B.Lesort, V. Motyka, M. Papageorgiou, and S.

Sellam, “Optimal Signal Control of Urban Traffic Networks”, 6th IEE Intern.

Conference on Road Traffic Monitoring and Control, pp.75-79, 1992.

[5] C. G. Cassandra, Y. Wardi, B. Melamed, G. Sun, and C.G. Panayiotou, “Per-

turbation Analysis for On-line Control and Optimization of Stochastic Fluid

Models,” IEEE Transactions on Automatic Control, vol.AC-47, No.8, pp.1234-

1248, 2002.

[6] X.-R. Cao, “Perturbation Analysis of Discrete Event Systems: Concepts, Algo-

rithms, and Applications,” European Journal of Operational Research, vol.91,

pp.1-13, 1996.

127



[7] N.A. Chaudhary, A. Pinnoi and C. Messer, “Proposed Enhancements to

MAXBAND-86 Program,” U.S. Dept. Transp., Washington D.C., Transp. Res.

Record 1324, 1991.

[8] L. De la Bretegue and R. Jezeguel, “Adaptive Control at an Isolated

Intersection–a Comparitive Study of Some Algorithms,” Traffic Engineering

& Control, vol.20, pp.361-363, 1979.

[9] B. De Schutter and B. Be Moor, “Optimal Traffic Light Control for a Single

Intersection,” European Journal on Control, vol.4, pp.260-276, 1998.

[10] J.-L. Farges, J-J. Henry and J. Tufal, “The PRODYN Real-time Traffic Algo-

rithm,” 4th IFAC Symposium on Transportation Systems, pp.301-312, 1983.

[11] Federal Highway Administration Office of Operations,“Signal Timings Process

Final Report,” 2005.

[12] M.E. Fouladvand, Z. Sadjjadi, and M.R. Shaebani, “Optimized Traffic Flow at

a Single Intersection: Traffic Responsive Signalization,” Journal of Physics A:

Mathematical and General, vol.37, pp.561-576, 2004.

[13] M.C. Fu, “Optimization via Simulation: A Review,” Annals of Operations Re-

search, vol.53, pp.199-248, 1994.

[14] M.C. Fu and J.Q. Hu, Conditional Monte Carlo: Gradient Estimation and

Optimization Applications, Kluwer Academic Publishers, Boston, MA; 1997.

128



[15] M.C. Fu and J.Q. Hu, “Efficient Design and Sensitivity of Control Charts Using

Monte Carlo Simulation,” Management Science, Vol.45, No.3, pp.395-413, 1999.

[16] M.C. Fu and S.D. Hill, “Optimization of Discrete Event Systems via Simul-

taneous Perturbation Stochastic Approximation,” IEEE Transactions, Vol.29,

1997, pp.233-243.

[17] N. Garber and L.A. Hoel, Highway and Traffic Engineering (THIRD EDITION)

PWS Pub. Co., Boston, MA; 1997.

[18] N.H. Gartner, “OPAC: A Demand-responsive Strategy for Traffic Signal Con-

trol,” Traffic Engineering & Control, No.906, pp.75-84, 1983.

[19] N.H. Gartner, “Road Traffic Control: Progression Methods,” In Concise Ency-

clopedia of Traffic & Transportation Systems, M. Papageorgiou, Editor, Perga-

mon Press, Oxford, UK, 391-396, 1991.

[20] N.H. Gartner, S.F. Assmann, F. Lasaga, and D.L. Hom, “A Multiband Ap-

proach to Arterial Traffic Signal Optimization,” Transportation Research B,

vol.25, pp.55-74, 1991.

[21] R.S. Ghaman, L. Zhang, G. McHale, and C. Stallard, “The Role of Traffic

Simulation in Traffic Sinal Control System Development,” Proceedings of The

IEEE Intelligent Transportation Systems Conference, pp.872-877, 2003.

[22] W.B. Gong and Y.-C. Ho, “Smoothed Perturbation Analysis of Discrete-Event

Dynamical Systems,” IEEE Transactions on Automatic Control, vol.32, pp.858-

867, 1987.

129



[23] L. Head, F.W. Ciarallo, D. Lucas, and V. Kaduwela, “A Perturbation Anal-

ysis Approach to Traffic Signal Optimization,” INFORMS National Meeting,

Washington, D.C., May 5-8, 1996.

[24] Y.-C. Ho and X.-R. Cao, “Perturbation Analysis and Optimization of Queueing

Networks,” J. Optim. Theory Appl., Vol.40, pp.700-714, 1983.

[25] Y.-C. Ho, “Perturbation Analysis: Concepts and Algorithms,” Proceedings of

the Winter Simulation Conference, pp.231-240, 1992.

[26] K.N. Hewage and J.Y. Ruwanpura, “Optimization of Traffic Signal Light

Timing Using Simulation,” Proceedings of the Winter Simulation Conference,

pp.1428-1433, 2004.

[27] G. Improta and G.E. Cantarella, “Control Systems Design for an Individual

Signalised Junction,” Transportation Research B, Vol.18, pp.147-167, 1984.

[28] A.M. Law and W.D. Kelton, Simulation Modeling and Analysis (3rd Edition),

McGraw-Hill, Boston, MA; 2000.

[29] D.C. Lee, “Applying Perturbation Analysis to Traffic Shapping,” Computer

Communications, Vol.24, pp.798-810, 2002.

[30] R.V. Lindgren and S. Tantiyanugulchai, “Microscopic Simulation of Traffic at

a Surburban Interchange,” Institute of Transprtation Engineers 2003 Annual

Meeting, 2003.

130



[31] J.D.C. Little, “The Synchronisation of Traffic Signals by Mixed -integer-linear-

programming,” Operations Research, Vol.14, pp.568-594, 1966.

[32] J.D.C. Little, M.D. Kelson, and N.H. Gartner, “MAXBAND: A Program for

Setting Signals on Arteries and Triangular Networks,” Transportation Research

Record, No.795, pp.40-46, 1981.

[33] F.L. Mannering, W.P. Kilareski, and S.S. Washburn, Principles of Highway

Engineering and Traffic Analysis, John Wiley, Hoboken, NJ; 2005.

[34] A. J. Miller, “A Computer Control System for Traffic Networks,” Proc. 2nd

Int. Symp. Traffic Theory, pp.200-220, 1963.

[35] M. Papageorgiou, C. Diakaki, V. Dinopolou, A. Kotsialos, and Y. Wang,

“Review of Road Traffic Control Strategies,” Proceeding of the IEEE, Vol.91,

pp.2043-2067, 2003.

[36] D.I.Robertson,“TRANSYT Method for Area Traffic Control”, Traffic Engineer-

ing & Control, Vol.10, pp.276-281, 1969.

[37] P.B. Hunt, D.L. Robertson, and R.D. Bretherton, “The SCOOT On-line Traffic

Signal Optimization Technique,” Traffic Engineering & Control, Vol.23, pp.190-

192, 1982.

[38] R.P. Roess, E.S. Prassas, and W.R. McShane, Traffic Engineering, Prentice

Hall, Upper Saddle River, NJ; 2004.

131



[39] S. Sen and L. Head, “Controlled Optimization of Phases at an Intersection,”

Transportation Science, Vol.31, pp.5-17, 1997.

[40] S. Algers et. al. ,“SMARTEST: Review of Micro-Simulation Models,” 1997.

[41] G. Sun, C.G. Cassandras, Y. Wardi and C.G. Panayiotou, “Perturbation Anal-

ysis of Stochastic Flow Networks,” Proceedings of the 42nd Conference Decision

and Control, 2003.

[42] J.C. Spall, “Multivariate Stochastic Approximation Using Simultaneous Per-

turbation Gradient Approximation,” IEEE Transactions on Automatic Control,

Vol.37, pp.332-341, 1992.

[43] J.C. Spall and D.C. Chin, “Traffic-Responsive Signal Timing for System-Wide

Traffic Control,” Transportation Research - C, Vol.5, pp.153-163, 1997.

[44] C. Stamatiadisand and N.H. Gartner, “MULTIBAND96 : A Program for Vari-

able Bandwidth Progression Optimization of Multiarterial Traffic Networks,”

Transportation Research Record, No.1554, pp.917, 1996.

[45] M.L. Tartaro, C. Toress, and G. Wainer, “Defining Models of Urban Traf-

fic Using the TSC Tool,” Proceedings of the Winter Simulation Conference,

pp.1056-1063, 2001.

[46] Y.Wardi, B. Melaned, C. Cassandras, and C. Panayiotou, “IPA Gradient Esti-

mators in Single-node Stochastic Fluid Models,” Journal of Optimization The-

ory and Applications, Vol.115, No.2, pp.369-406, 2002.

132



[47] F.V. Webster, “Traffic Signal Settings,” Road Research Technical Paper No.

39, Research Laboratory, London, UK, 1958.

[48] A. Vogel, C. Goerick and, W. Von Seelen, “Evolutionary Algorithms for Opti-

mizing Traffic Signal Operation,” Proceedings of the European Symposium on

Intelligent Techniques (ESIT 2000), Aachen, Germany, pp.83-91, Sept 14-15,

2000.

[49] S. Meyn, “Sequencing and Routing in Multiclass Networks. Part I: Feedback

Regulation,” Proceedings of the IEEE International Symposium on Information

Theory, pp.4440-4445, 2000.

[50] G. Sun C.G. Cassandras, Y. Wardi, C.G. Panayiotou, and G. Riley, “Pertur-

bation Analysis and Optimization of Stochastic Flow Networks,” IEEE Trans-

action on Automatic Control, AC-49, 12, pp.2113-2128, 2004.

133


