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ABSTRACT

Title of Thesis : Coupler-Point Curve Synthesis Using

Homotopy Methods

Name of Candidate : Jeong-Jang Lu

Master of Science, 1988

Thesis Directed by : Dr. Lung-Wen Tsai
Associate Professor

Mechanical Engineering

A new numerical method called "Homotopy" method (Continuation
method) is applied to the problem of four-bar coupler-point-curve
synthesis. We have shown that, for five precision points, the
link lengths of a four-bar linkage can be found by the "General
Homotopy" method. For nine precision points, the "Cheater’s
Homotopy" can be applied to find some four-bar linkages that will
guide a coupler point through the nine prescribed positions. The
nine-coupler-points synthesis problem is highly non-linear and
highly singular. We have also shown that Newton-Raphson's method
and Powell’s method, in general, tend to converge to the singular
condition or do not converge at all, while the Cheater’s homotopy
always works. The powerfulness of Cheater’s homotopy opens a new

frontier for dimensional synthesis of mechanisms.
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CHAPTER 1. INTRODUCTION

§ 1-1. Introduction

It is often desired to have a mechanism to guide a point
along a specified path. The path traced by a point on the coupler
link of a four-bar linkage is known as the coupler curve and the
generating point is the coupler-point. The design of such a
mechanism to generate a prescribed coupler curve 1is called
coupler-point—-curve synthesis.

Various methods of coupler-point-curve synthesis have been
studied extensively. In the early development, graphical methods
using trial and error and 1intuition predominated. Several
graphical methods for the design of a four-bar linkage to guide a
coupler-point through two, three, and four specifled positions,
can be found in the literature [3,7,12,19,25]. Hrones and Nelson
[8] created a catalog of four~bar linkages that contain over 7000
coupler curves. The catalog can be used by a designer in
selecting a proper linkage with the desired coupler curve.

The graphical methods have their own merit and are used in
simple problems where high accuracy is not needed. The increasing
need for solving more difficult problems and for higher accuracy
has led to the development of analytical methods. However, the
mathematics of some synthesis problems becomes formidable even for
the case of four-bar linkage, and it becomes more so as the number
of links is increased. Recent development of numerical techniques

-1 -



has been a great help in this respect.

Several mathematical techniques for modeling the motion of

bar linkages have been developed. These include complex-number
method, Freudenstein’s method, and loop-closure-equations
technique. Closed~form solutions have been derived for the case

of five prescribed coupler points and four corresponding crank
angles [1,4,5,14,22,23,26]. However, for nine precision points,
the problem has not been previously solved in a satisfactory
manner. Alt [1] presented the problem without solving it. Roth
[20] and Sieker [24] presented some solution techniques which do
not work at all the times.

In this thesis, we used "General Homotopy" and "Cheater’s
Homotopy" to solve the problems of five and nine precision points,
respectively. In solving the five-points-problem, we used the
General Homotopy to solve the system of design equations instead
of reducing the problem to a single equation in one unknown.
Thus, we <can obtain all the solutions, real or complex,
systematically. For nine-positions, we applied the Cheater’s
Homotopy method to find some solutions, real or complex. The
Cheater’'s Homotopy always find some solutions, although sometimes

the solutions may be complex.

§ 1-2. The Design Equations

The design equations for the coupler-point-curve synthesis
may be derived by vectors method. Consider the four-bar linkage,
designated by the four pivots Oa, Os, A, B, and the coupler point

-2 -



Figure 1-1 Plane Vector Zi1 to Zé¢ Defining the jth Position
of a Four-Bar with Respect to the Reference Position
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M, as shown in Fig. 1-1. The first link, 0a0OB, is fixed to the
ground. At every position, we can write two independent
vector—-loop equations with respect tec a Cartesian coordinate

system. At position 1, we have :

(1-1)

We consider the plane vectors 21 to 26 as describing the
mechanism in its reference position and define the jth position in

terms of these vectors as follows :

Z6 + 21 e'?i 22 el = Rj
i6j

26 + 25 + 23 ei¢j+24e =Rj, j=2,3,... (1-2)

where, ¢j, 0j, and yYj are the angular displacements of link OaA,

AB and OB from their respective reference positions. By
subtracting the reference position, Egs. (1-1), from those
describing the jth position, Egs. (1-2), we can obtain the

path-increment equations :

21 (% - 1) +z2 (% - 1) =55
.w. ie. (1_3)
2z (e - 1)+ 2 (e - 1) =3j
where the path-increment vector Jj is given by &j = Rj - Ri.

Rearranging Egs. (1-3), we obtain :



z1e® =5j -2 (% -1) + 2

. ny (1-4)
zseWi=sj -z (e®-1)+2
The complex conjugates of Eqs. (1-4) are :
Z1 e_i¢j=§j—gz(e_iej—1)+g1

(1-5)
73 e Wio s -z (721 ) 423

where (7) denotes the complex conjugate of ( ). Multiplying each

equation of (1-4) by its corresponding complex conjugate shown in

(1-5), then multiplying the resulting equations by eiej, we
obtain:
Aoj XiZ + A1j Xj + A2j = O
Boj Xj% + B1j Xj + B2j = 0 (1-6)
where,
Xj=e® -1

Aoj = =22 Z2 - Z2 (8] + 21)

Alj = A2j + (8 22 - 8j 22) + (21 22 - 21 Z2)

A2j = 8j 8j + 8) 21 + 3 ZI

Boj = - 24 24 - 24 (8j + Z3)

B1j = B2j + (8j 24 - 8j 24) + (23 24 - 23 Z4)

-5 -



and

B2j = 3j 81 + 8j Z3 +3j Z3

Considering Xj as the variable,

dyalitic eliminant of Eq. (1-86)

Aoj  Alj
0 Aoj
Boj  Bij
0 Boj

A2j 0
M Az
B2j 0
Bij  Bzj

we form the Sylvester's

= 0 (1-7)

Equation (1-7) can be decomposed into Eq. (1-8)

Aoj  A1j
aoj | B Be

Boj B1j

Let :

Zj = Zjx + i Zjy,

Azj
0 + Boj

B2j

j=

Substituting Eq. (1-9) into Eq. (1-8)

follows :

2

[ Aojx B2jx - A2jx Bojx ] + [ Aojy B2jx — A2jx Bojy ]

+ 4 [ ( Aojy B2jx - A2jx Bojy )+ ( Aojx Bojy - Aojy Bojx) ] =
i

2

Alj A2 O
Aoj A1) A2j =0
Boj B1j Bz2j
(1-8)
1,...,4 (1-9)

, we obtain the real part as

0,
=2,3,...

(1-10)



where the subscript x represents the X component, and y represents

the Y component of the vector. For example, A0jx = X component

of Aoj, Aojy = Y component of Aoj, etc. In a design problenm,
we are interested in finding four-bar linkages that can guide
their coupler points through a set of prescribed positions. We

may consider Eq. (1-10) as the design equations. Then the

unknowns involved are 21, 22, 23, and Za. The relationship

between the number of precision points and the number of

solutions is listed in Table 1-1 :

Table 1-1 Relationship Between the Number of Precision

Points and the Number of the Solutions

Number of Number of Number of Number of Number of
Precision Scalar Scalar Solutions free
Points Equations Unknowns choices

3 2 8 oo: 6

4 3 8 o 5

5 4 8 © 5 4

6 S 8 © 5 3

7 B 8 ® 2

8 7 8 © 1

g 8 8 Finite 0

Equation (1-10) is a seventh-degree polynomial in which both
coefficients of the constant and first-degree terms are zero
identically. Hence, 21 = 22 = 23 = Z4 = 0 is a multiple root to
the system of equation defined by (1-10). It can be shown that
any solution satisfying the following equation is also a multiple

root.



Aojx AOjy A2jx
= = (1-11)
Bojx Bojy B2jx

It is obvious that Eq.(1-11) can be satisfied when 21 = 23
aqg Z2 = Z4. Furthermore, if Z2 = Z4 = O, then Eq.(1-10) is equal
to zero identically. These solutions are known as singular
solutions, since the Jacobian of the function is equal to zero at
these points. Iterative techniques such as Newton-Raphson’s
method tend to converge to these singular conditions. Since the
nine-position synthesis problem is highly non-linear and contains
many singular points, it would be difficult to find any solution
if a general iterative technique is used. In what follows, we

shall show that the Homotopy method can always find some

solutions.



CHAPTER 2 HOMOTOPY METHODS ( CONTINUATION METHODS )

The problem of sclving a system of N polynomial equations in
N unknowns is common in many fields of science and engineering.
The number of isolated solutions of a system is bounded by the
total degree of the system.1 Most systems of N polynomial
equations in N unknowns arising in applications are deficient{
in the sense that they have fewer solutions than that predicted by
the total degree of the system. A number of numerical methods for
solving all the solutions of an N-polynomial system can be found
in the literature (9,10,11,15,16,27]. The General Homotopy method
developed by Morgan [15,16,27] can be applied to solve all the
solutions of a system of polynomial equations. The limitation of
this method is that the system must be "small", i.e. its total
degree can not be too large. Li, et al. [9,10] developed more
efficient algorithms by following fewer '"Homotopy paths".
However, it is sometimes difficult to arrange the highest order
terms in product forms. Sometimes, the highest order terms may be
singular. Thus, a Cheater’s Homotopy [11] was developed to
overcome these difficulties. In what follows, both homotopy

methods will be reviewed.

1.The total degree is the product of the degree of the individual
equation, also called the Bezout Number, See [9,101].

2.1t means there are some zeros at infinity, see [9,10].



§ 2-1. General Homotopy Method

The General Homotopy [15,16,27} method is a numerical method
used to find all solutions to a system of N polynomial equations
with complex coefficients in N unknowns. The procedure is
described as follows.

Let the system of polynomial equations be

P1 (X1,...,Xn) =0
. (2-1)
Pn (X1,...,Xn) =0
where the degree of each equation is Di, i = 1,...,n. Bezout’s

theorem predicts the maximum number of isolated solutions to be D
= D1e¢e¢*Dn, the product of the degree of the polynomials. This
Bezout number 1is the total paths the General Homotopy has to

follow. Morgan defined the General Homotopy function as :

Hi(X1,...,Xn,t) = t Pj(X1,...,Xn)+ (1-t) Qj(X1,...,Xn)
=t Pj(X1,...,Xn)+ (1-t) (Kj-Xj%- bj),
i=1, ,n

(2-2)

where t is a real variable called the homotopy parameter and, Kj and
bj are random complex numbers. Note that when t = 0, Eq. (2-2)

reduces to :

Hj(X1,...,Xn,t) = Kj (x;9 - B9y, i=1,...,n
(2-3)

- 10 -



which can be easlly solved.

When t = 1, Eq.(2-2) reduces to

Hj (X1,...,Xn,t) = Pj (X1,...,%Xn), j=1,...,n (2-4)

which is the equation, Eq. (2-1), we want to solve. Thus, as t
changes from O to 1, the solution of H(X,t) = 0 change from

solutions of Q(X) = 0 to solutions of P(X) = 0.

We start at a solution to Hj(X1,...,%Xn,0) =0, j =1,2,...,n
and increment t by a small positive number At . We then solve
Hj(X1,...,Xn,At) = 0, jj = 1,2,...,n, using the solution to
Hj(X1,...,¥Xn,0) as the initial guess. Increment t by At again
and solve Hj(X1,...,Xn,2At} = 0, using the solution to
Hj(X1,...,Xn,At) as the initial guess. The process is continued
until t = 1. Such a sequence of solutions is called a "Homotopy
path". The idea is that each solution to Eq.(2-3) yields a

solution to Eq.(2-4) by tracing out such a Homotopy path.

Now, we need a method of extrapolating from the solutions of
Hj(X1,...,Xn,t) = O to that of Hj(X1,...,Xn,t+At) = 0. There are
several possible methods. In this paper, we apply the following
two methods used by Morgan :

1. Newton-Raphson’s method
2. Define a differential equation whose solutions are the
Homotopy paths. Solve differential equation using

numerical integration method.

- 11 -



Method 2 is faster than method 1 and less prone to failure.
Nevertheless, we can use Newton-Raphson’s method at the end of the

homotopy path to refine the final solution.

GENERAL. HOMOTOPY PROCEDURE :

Step 1). Choose complex number Kj, bj at random, and use the
solutions of Eq.(2-3) as the starting points.

Step 2). Follow all the paths, D = D1-++<Dn, defined by
Hj(X1,...,Xn,t) = 0 to reach all solutions of

Pj(X1,...,%Xn) = 0.

§ 2-2. Cheater’s Homotopy Method

The Cheater’s Homotopy was recently introduced by Li, et al.

[11]. Let a system of polynomial equations be :
P1 (C1,C2,...Cm,X1,%2,...,Xn) =0
ce (2-5)
Pn (C1,C2,...Cm,X1,X2,...,%Xn) =0

where Cj are the coefficients and Xj are the variables of the
*
system. Suppose we know the solutions, Xj = ( X1,...,%Xn ),

to the following polynomial system :

#»* »* »*
P1(C1,...,Cm ,X1,...,Xn) + B1

Q1(X1,...,Xn) = =0

. * * *
Qn(Xt,...,%Xn) = Pn(C1,...,Cm ,X1,...,¥Xn) + Bn =0
(2-6)

_12_



»* #* » »
where ( C1,...,Cmn ) are the coefficients and ( B1,...,Bn ) a
set of random complex numbers. Then, we can solve the solutions
of Eq. (2-5) by defining the Cheater’s Homotopy function as

follows :

Hj(X1,...Xn, t)

* »* *
= Pj[ (1-t)C1 + tC1,..., (1-t)Cm + tCm,X1,...,Xn] + (1-t) Bj
= (1-t) Qj(X1,...,Xn) + t Pj(X1,...,Xn),
i=14L2,...,n (2-7)
It follows that every solution of Pj(X1,...,Xn) = 0 is reached by
»*
a path beginning at a point of Xj . Following the same process

depicted in last section, we see that at t = 0, Eq.(2-7) reduces
to :
»* »* *
Hj(X1,...,Xn,t) = Pj(C1,...,Cm ,X1,...,%Xn) + Bj
= Qj(X1,...,Xn),
ji= 1v2)"':n (2_8)

for which the solutions are known. At t = 1, Eq.(2-7) reduces to

Hj(X1,...,Xn,t) = Pj(C1,...,Cm,X1,...,Xn),

i=12,...,n (2-9)
which is the system of equations we want to solve. If we increase
t from O to 1 incrementally, and solve Eq. (2-7) for every t. We
generate a homotopy path from the solution of equation
Qj(X1,...,Xn) = 0 to that of Pj(X1,...,Xn) = 0. VWhen t arrives

at 1, we get the solution we want. It 1is important to note that

- 13 -



* *
Ci and Bj in Eq. (2-7) must be random complex numbers.
Otherwise, it might not have the required property of smoothness

and accessibility [9,10,11].

CHEATER’S HOMOTOPY PROCEDURE :

* #»* * *
Step 1). Choose complex numbers (B1 ,...,Bn ) and (C1,...,Cm )
at random, and use the method described in Sec. 2-1 to
solve Eq. (2-6). The number of solutions Do, is

bounded by the total degree D, 1i.e. Do = D.

Step 2). For each new choice of coefficients (C1,...,Cn}, follow
the Do paths defined by Hj(X1,...,Xn,t) = 0 in Eq. (2-7)

to reach all solutions of Pj(C1,...,Cn,X1,...,%Xn) = O.
In this procedure, the first step is to solve the system

with a set of random coefficients Bj* and Ci*, one time only,
following all D = Di1+++Dn paths. In subsequent runs, these Do
solutions are used as "seeds" to initialize paths for various
values of Ci. This is the "cheating" part. Instead of starting
over from scratch each tinme, we use the seeds determinated in
step 1 as starting points. If the system is deficient, this
method results in fewer paths , D9, to be followed in subsequent

runs.

- 14 -



CHAPTER 3 : ALLPICATION OF THE GENERAL HOMOTOPY METHOD

TO THE FIVE-POSITION SYNTHESIS PROBLEM

There are several methods [1,4,5,14,22,23,26] to solve five-
coupler-points synthesis problem. Traditional method is to reduce
the system of design equations to one equation in one unknown. In
this thesis, we use the General Homotopy to solve the system of

equations instead of making the reduction.

§ 3-1. Traditional Approach
For five prescribed coupler points, the first equation of

(1-3) can be used as the design equation :

21 (e - 1) v 22 (e - 1) = 5, i=23,4,5
(3-1)
where 8j = Rj - R1 are known from the prescribed positions and @j,
21, Z2, and ¢j are unknowns. We can choose 6j arbitrarily and

solve Eq.(3-1) for the remaining unknowns. Considering 21 and 22
as two unknowns, the augmented matrix M of Eq.(3-1) can be written

as !

i$2_, :H

e e -1 §;
ey 9y 53
M= iph 104 S (3-2)
e ' -1 e -1 §k
e‘¢5-1 e165_1 385

_15_



For the system of equations, (3-1), to have simultaneous
solutions for the dyad vectors 21 and 22, matrix M must be of rank
two. Thus there are two compatibility equations simultaneously

fitted to the problem of five precision points :

e1¢2—1 o162

-1 82
det e 19 53 =0 (3-3)
N S Y
and,
ei¢2—1 ei62_1 382
det e31 ¥y 3 =0 (3-4)
e1¢5_1 e165_1 85
Expanding Egs. (3-3) and (3-4), we obtain :
A2 e 4+ a3 ™ 4 ae™® - A = 0
- » . - ’ - - . - ) (3—5)
A2 e+ a3 e 4 A’ - A= 0
where:
T e a3 T
A2 = .
- i e194_1 _6_4 -
- ig2 1 52 1
A3 = - . -
— I 8194_1 §4 ]
r o092 55 7
A4 = . -
- I e193_1 §3 ]

_18_



’ [ e193_1 §3 1
A2 = .
- i e165_1 §5 |
, [ e s ]
A3 = - .
— | e195_1 §5 ]
Al = A2 + A3 + As

A1 = A2 + A3 + A4

To eliminate ¢4 and ¢5, Eq.(3-5) is rearranged as :

A2 e'®? 4 a3 &3 1 ag = - g 49
’ . » . N ’ - . (3_53.)
A2 % 4 a3’ e™ - = - a dP
The complex conjugates of Eq.(3-5a) also hold true :
B2 e % 4 B3T3 - R1 = - By eI
(3-8)
B2 e 2 4 BT LBy - e

Multipling each equation in (3-5a) by the corresponding
conjugate equations shown in (3-6), and after some
simplification, we obtain :

cre® s+ Cre® =0

(3-7)
OF] e D2 + CZ e ' -0

_17_



where :

C1 = A3 ( -A1 + A2 e 192

D1 = - A1a2 e ®? - p1B2 e %% — MR + A1R1 + A2R2 + A3E3
C2 = _A_3’(-§1’+ 52’«3_“#’2 )
D2 = - 1:312_sz’ei¢2 - é’@z’e-"‘pz - AWA4 + 1_3’11:&1’+ 9’21:32’+ 42@3’
Multipling Eq.(3-7) by ei¢3, we obtain :
c1 &2 4 p1 e 4 T = 0
2 e+ D e =0 o-8)

We can eliminate powers of ei®3 , from Egs.(3-7) and (3-8) by

using Sylvester’s dyalitic eliminant :

0O Ci1 D1 Ci
0 Ca D2 Ca

E = det ct D1 T1 0O =0 (3-9)
Ca2 D2 C2 O

After expanding and simplifying the determinant, a polynomial in

ei¢2 is obtained :

S Am ™2 = g (3-10)

where m = -3, -2, -1, O, 1, 2, 3, and all the coefficients
Am are deterministic function of the quantities §j and 6j ( j =

- 18 -



2,3,4,5 ). Note that A-i and Ai ( i = 1,2,3 ) are each other’s
complex conjugates, and Ao is a real number. Thus Eq. (3-10) is
real, i.e., its imaginary part vanishes identically. The real

part of Eq.(3-10) have the form :

> [ Pm cos(m¢2) + Qm sin(me¢2) ] = 0,
m

m=1,2,3 (3-11)
where Pm and Qm are known real numbers. Let t = tan (¢2/2).
Then, Eq.({(3-11) can be written as :

)
SAath=0 (3-12)
n=o0
There are two trivial solutions : ¢2 = 0 and ¢2 = 62 So,

dividing Eq.(3-12) by the factor t - [t - tan(@82/2)], it can be

reduced to a fourth-degree polynomial
thrastP el et +a0=0 (3-13)

Equation (3-13) can yield zero, two or four real roots. Each
real root gives a value of ¢2, which can be back substituted into
Eq. (3-7) to solve for ¢3, and then Eq. (3-5) to obtain ¢4 and
¢5. Any two equations of Eq. (3-1) can used to solve for Z1 and
Z2, which are known as the Burmester point pairs. By combining
two different Burmester point pairs, we can construct up to six

different four-bar linkages.

- 19 -



§ 3-2. General Homotopy Approach

In this section, we describe the application of General
Homotopy to solve the five coupler-points problem. First, we
present the design equations for the General Homotopy. The first

equation of (1-6) can be simplified as :

2+( Aojx cos8@j - A0jy sinBj ) + A1jx = 0

i=2,...,5 (3-14)

where

Aojx = ( ~Z2x°- 22y2- Z2x 8jx — Z2y 8jy — 2ix Z2x - 21y 22y )

Aojy = ( 21y 22x - Z1x Z2y + Z2x Sjy — Z2y dijx )

L e..2 .2 . . 2 2
Aljx = 8jx- + Sjy + 2 Z1x 8jx + 2 21y 8jy + 2 Z2x + 2 Z2y
+ 2 Z2x 3jx + 2 Z2y Sjy + 2 Zix Z2x + 2 Z1y 22y

where 38j = Rj - R1 are known from the five given precision

coupler-points, and the angular displacement of the coupler, 8j,
with j = 2,...,5 can be chosen arbitrarily. The four scaler
unknowns are : Z2ix, 21y, 22x, and Z2y. To facilitate further
discussion, we will define the X and Y components of Z1 as X1 and
X2, whereas the components of Z2 will be defined as X3 and X4
(i.e., X1 = 21x, X2 = Z1y, X3 = Z2x, and X4 = Z2y). The degree of
Eq. (3-14) is two. Therefore, the total degree number is 2% =
16. Since it is a small number, we can apply the General Homotopy
method to solve the problem. There are sixteen paths to be
followed from the starting points to the final solutions. If we
consider Eq. (3-14) as the design equation, Pj(X1,X2, X3,X4) = 0,
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the General Homotopy function can be defined as follows :

Hj(X1,...,X,t) =t Pj(X1,...,%X4) + (1-t)Kj*(Xi’>- Bj?),
j=2,...,8 (3-15)
where Kj and Bj are randomly chosen complex numbers. When t =

0, Eq.(3-15) reduces to

Hj(X1,...,%X,t) = Kj (X% - Bjd,

i = 2,...,8 (3-18)

Solving Eq. (3-16) for Xj, we obtain :
Xj = = Bj, jJ=2,...,8 (3-17)

There are sixteen solutions. These solutions are used as
the starting points for the homotopy paths. As t is incremented
from O to 1, we get all the solutions we want. However, some of
the solutions may diverge to infinity [15].

Since the degree of Eq. (3-13) is four, there are at most

four solutions. Consequently, twelve of the sixteen homotopy
paths will diverge to infinity. If some of them are complex
solutions, they must exist 1in conjugate pairs. Thus,
corresponding to each choice of 0j, J = 2,...,5, the number of
real solutions can be zero, two, or four. Each real solution

corresponds to a dyad. Any combination of two different dyads can

1

constitutes a four-bar linkage' that will guide its coupler point

through the five prescribed precision points.

1.Because the two dyad have same O]j.
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Once 21,...,24 are found, we can find the remaining unknowns
in Egs.(1-1) and (1-2) by back substitution. First, we solve
Egs. (1-5) for ¢j and yj. Then we solve Eq.(1-1) for Z5 and Zs.
From these data, we can calculate the coordinates of points Oa,
O, A, B, and M in every precision point and the length of every

link.

§ 3-3. Application of Roberts-Chebyshev Theorem

When we consider a curve traced by the coupler-point of a
planar four-bar linkage, some other planar four-bar linkages
tracing the identical coupler-point curve may be found by applying
the Roberts-Chebyshev theorem. This theorem states that three

different planar four-bar linkages will trace identical coupler

curves. These linkages do not look alike. Their only shared
property is that they can trace identical coupler curves. This
kind of linkages are known as cognate linkages [13,22]. The

velocity and acceleration characteristics of the cognate linkages
are not necessarily identical. This means that cognate linkages
are not always equivalent linkages.1
Consider the given four-bar designated by the four pivots Oa,
08, A, B, and the coupler point M shown in Fig. 3-1, We can draw
two parallelograms, OAAMA1 and OsBMB2, and two triangles A AIMCi
and A MB2C2 similar to the triangle A ABM. Finally, a third

parallelogram OcCiIMC2 can be depicted by taking into account C10c

1.The equivalent linkage have same instantaneous velocities and

acceleration. They can be also called instantaneous linkage.
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Figure 3-1 Cognate Four-Bar Linkages Obtained by
Roberts-Chebyshev Theorem
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and C20c. As a result, we can obtain the three cognate four-bar
linkages :
1). Given linkage : OaABOs, with ground link Oa0OB and
coupler point M.
2). Cognate linkage 1 : OAA1C10c, with ground link 0OAOc and
coupler point M.
3). Cognate linkage 2 : 0OsB2C20c, with ground link 08Oc and

coupler point M.

Therefore, we can construct two four-bar linkages from each

of the four-bar obtained in the previous section.

§ 3-4. Numerical Examples

In this section, we use two examples to illustrate the
theory. The computations were performed on VAX 750 VMS computer,
in accordance with programs written in the Fortran programming
language. The numerical accuracy are up to 107"¢ using double

precision.

‘ Example 1.

Table 3-1 lists the five desired precision points. Choosing
62 = 10.00, B3 = 15.00, 64 = 20.00 and 65 = 25.00, and then
applying the General Homotopy method, we found four sets of real
solutions as listed in Table 3-2. By combining any two of these
solutions, we can form six different four-bar linkages. Then, we
apply Roberts-Chebyshev Theorem to find two cognate linkages for
each of these six four-bar linkages. Hence, a total of eighteen
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four-bar linkages have been identified. Table 3-3 shows three
cognate four-bar linkages obtained from the combination of Sol. 1
and Sol. 4 listed in Table 3-2. The cognate four-bar linkages
formed from the combination of Sol. 2 and Sol. 4 listed in Table
3-2 are shown in Table 3-4. Note that many more four-bar linkages

can be found by choosing different 8j’'s.
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Table 3-1 Five Precision Points Used for Example 1

Coupler Point Mi X - Coordinate Y - Coordinate
M1 0.896186660 -0.088029166
Mz 1.515143000 -0. 8544386080
M3 1.713869000 -0. 300992320
M4 1.664202800 0.332410880
Ms 1.301183400 0.921538060

Table 3-2 Solutions of Example 1

Solution 1

Solution 2

X1 —-1.573127954 + 0.000000000 i 3.238956530 + 0.000000000
X2 0.536864225 + 0.000000000 i 0.313100808 + 0.000000000
X3 7.930062456 + 0.000000000 i -3.704433040 + 0.000000000
X4 1.676584252 + 0.000000000 i -3. 173755471 + 0.000000000
Solution 3 Solution 4
X1 47.654623041 + 0.000000000 i -0.188274472 + 0.000000000
X2 -14.122356345 + (0.000000000 i 0.862781720 + 0.000000000
X3 21.610554685 + 0.000000000 i 2.540201974 + 0.000000000
X4 | -15.065604572 + 0.000000000 i -0.225088167 + 0.000000000
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Table 3-3 Cognate Four-Bar Linkages Obtained from

Sol.1 and Sol.4 in Table 3-2

Original Four-Bar

Chebyshev 1

Chebyshev 2

X1 -1.573127954 7.930062456 2.540201974
X2 0.536864225 1.676584252 -0. 225088167
X3 7.930062456 -1.573127954 -0. 188274472
X4 1.676584252 0.536864225 0.662781720
Xs -0. 188274472 -0. 142093287 0.539387260
Xe 0.662781720 0.966714693 -0. 509025037
X7 2.540201874 0.539387260 -0. 142093297
X8 -0. 225088167 -0. 508025037 0.966714693
Table 3-4 Cognate Four-Bar Linkages Obtained from
Sol.2 and Sol.4 in Table 3-2

Original Four-Bar Chebyshev 1 Chebyshev 2
X1 3.238956530 -3.704433040 2.540201974
X2 0.313100808 -3.173755471 -0. 225088167
X3 -3.704433040 3. 238956530 ~0. 188274472
X4 -3.173755471 0.313100908 0.662781720
X5 -0. 188274472 -0. 251902070 1. 090665209
X6 0.662781720 0.416432467 -0.504388179
X7 2.540201974 1.090665209 ~-0.251802070
X8 -0. 225088167 ~0.504388179 0.416432467




Example 2.

Table 3-5 lists another set of five precision points. Again,
we choose 682 = 10.00, 63 = 15.00, 84 = 20.00, and 85 = 25.00. We
found four real solutions as listed in Table 3-6. Table 3-7 shows
the cognate four-bar linkages obtained from the combination of

Sol. 2 and Sol. 3 listed in Table 3-B.

Table 3-5 Five Precision Points Used for Example 2

Coupler Point Mi X - Coordinate Y - Coordinate
M1 1. 000000000 0. 000000000
M2 1.514419000 -0.856816990
M3 1.709746300 -0.323059980
M4 1.711962400 0.311115300
Ms 1.394774300 0.973082000

- 28 -



Table 3-

6 Solutions of Example 2

Solution 1 Solution 2
X1 ~1.738452443 + 0.000000000 i 1.808703160 + 0.000000000
X2 0.715947433 + 0.000000000 i 0.627956529 + 0, 000000000
X3 8.607234884 + 0.000000000 i -0.339727801 + 0.000000000
X4 0.8295397213 + 0.000000000 i -2.386883834 + 0.000000000
Solution 3 Solution 4
X1 6. 460652740 + 0.000000000 i 0.065461578 + 0.000000000
X2 -0.804343772 + 0.000000000 i 0. 756770007 + 0.000000000
x3 11.121121872 + 0.000000000 i 2.550095826 + 0.000000000
X4 | -10.499644835 + 0.000000000 i -0.553093852 + 0.000000000
Table 3-7 Cognate Four-Bar Linkages Obtained from
Sol.2 and Sol.3 in Table 3-6
Original Four-Bar Chebyshev 1 Chebyshev 2
X1 1.808703160 -0.339727801 11.121121872
X2 0.B627956529 -2.386883834 -10. 499644935
X3 -0.339727801 1.808703160 6. 460652470
X4 -2.386883834 0.627956529 -0.804343772
X5 6.460652470 ~-0. 384089825 2.046524463
X6 -0.804343772 1.049794768 0.401000302
X7 11.121121872 2.046524463 -0. 384089825
Xs -10.499644935 0.401000302 1.049794766




CHAPTER 4. APPLICATION OF THE CHEATER’S HOMOTOPY METHOD

TO THE NINE-POSITION SYNTHESIS PROBLEM

In this chapter, we present a new method to solve the
nine-coupler-points synthesis problen. To date, there are at
least three published formulations of this problem [1,20,24].
Roth’s work [20] 1is concerned with the synthesis of geared
five-bar mechanisms1, while Alt [1] and Sieker [(24] treated the
problem associated with four-bar linkages. Roth suggested a
numerical method which is similar to homotopy method [20].
However, he did not use complex algorithm and the random constant
technique. In order to avoid singular conditions he proposed the
so-called "Bootstrap" method which includes "position interchange"
and "quality index". However, he did not suggest how to find the
starting mechanisms and the method does not necessarily results in
a solution. Alt [1] made no attempt to solve the problem.
Finally, Seiker’'s [24] suggestion of the selection method seems
incomplete. The Cheater’s homotopy, we use in this thesis is a

proven method that always works.

1.When the gear ratio is plus one, the geared five-bar mechanism

is equivalent to a four-bar linkage.
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§ 4-1. Cheater’s Homotopy Approach

According to Sec. 2-2, once we have found all the solutions
to a polynomial system, then we can obtain all the solutions of a
similar polynomial system with different coefficients by the
Cheater’s Homotopy . For the nine-points synthesis problem, we

can use Eq. (1-10) as the design equation :

Pj(C1,...,Cm X1, ..., X8)

2 2
= [ Aojx B2jx — A2jx Bojx ] + [ Ajoy B2jx - A2jx Bojy ]

+ 4. [(Aij B2jx — A2jx Bojy) < (Aojx Bojy — Aojy Bij)],

J=2,..,9 (2-1)
where :

Aojx = - X3° - X% - X3 8jx - X1 X3 - X4 Sjy - X2 Xé
Aojy = - X4 Sjx — X1 X6 + X3 Sjy + X2 X3
A2jx = 8jx° + 8jy> + 2 8jx X1 + 2 Sjy X2

- X7° - X8% - X7 8jx - X5 X7 - X8 djy - X6 X8

Bojx
Bojy = - X8 3jx — X5 X8 + X7 Sjy + X6 X7

B2jx = Sjx° + Sjy° + 2 Sjx X5 + 2 Sjy X6

Where, X1 = Zix, X2 = 21y, X3 = Z2x, X4 = 22y, X5 = 2Z3x, X6 = Z3y,
X7 = Z4x, and X8 = Ziy.

Each of the equations 1in (4-1) 1is a seventh-degree
polynomial. Thus the total degree of the polynomial system is 78=
5,764,801. Obviously, this number is too large to apply the
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General Homotopy to find all the solutions. Hence, we chose to
apply the Cheater’s Homotopy to find some solutions. If we have
already had some solutions to a polynomial system, then we can use
it as the starting points to find some solutioﬁs to an similar
polynomial system with different coefficients by the Cheater’s
Homotopy. For the nine-coupler-points synthesis problem, first,
we find some four-bars which satisfy five of the nine precision
points, using General Homotopy method discussed in the previous
chapter. Then, these four-bar linkages are used as the starting
mechanisms. The coupler point of such a starting mechanism will
pass through five of the nine desired precision points. However,
it will not pass through the remaining four precision points. For
the reason of preserving the characteristics of the polynomial
system and reducing computer time, we choose four additional
coupler points from the starting mechanism to be as close to the
remaining four precision points as possible. The starting
mechanism along with 1its nine coupler points constitute the
starting functions, Qj(X1,...,X8), in the Cheater’s Homotopy. Let
Qj function be :

Qj(c1’,...,Cm’,X1,...,Xs8)

Pj(C*1 ,...,C*m ,X1,...,X8) + B*j

2 2
[ Aojx B2jx - A2jx Bij] + [ Ajoy B2jx = A2jx Bojy ]

+

»*
4.[ (Aojy B2jx — A2jx Bojy)+(Aojx Bojy — Aojy Bojx) ]+ Bij,

jJ=2,..,9 (4-2)
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where B*j are random complex numbers and C*i are the coefficients
of the ©polynomial Pj(C*1 ,...,C*m ,X1,...,X8) = 0. The
coefficients C*i are function of 3j, where 8j = Rj - R1. Thus,
C*i are function of the nine coupler points of the starting
mechanism. This indicates that once the coupler points of the
starting mechanism are determined, the coefficients Ci’ of the
starting function Qj are uniquely defined. Let the Cheater’s

Homotopy function be :

Hj( X1,...,X8,t )
= tePj(Ct,...,CmX1,...,X8) + (1-t) Qj(Ct,...,Cm',X1,...,X8)
»* * *
= tePj(C1,...,CmX1,...,X8) + (1—t)[Pj(C1 ,...,Cm ,X1,...,X8) + Bj ],

i=2,...,9 (4-3)

At t = 0, the solution to the above equation is the starting
mechanism. At t = 1, Eq.(4-3) reduces to the system of design
equations we want to solve. Following the Homotopy path by
incrementing t from 0O to 1, we can find the solution. We

summarize the procedure as follows :

CHEATER'S HOMOTOPY PROCEDURE :

Step 1). Choose five alternate points from the given nine
precision points.

Step 2). Use the General Homotopy to solve the five-precision-
points problem, and use the four-bar linkages found as
the startihg mechanisms. The coupler-point of the
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starting mechanism passes through five of the nine given
points.

Step 3). Choose four additional coupler points to be as close to
the remaining four precision points as possible.

Step 4). Determine the complex random number B*j .(See section
4-2).

Step 5). Use Cheater’s Homotopy to solve the problen.

§ 4-2. Generation of the Random Numbers

In the Cheater’s Homotopy method, we need to determine some
random complex numbers B*j . The other important criterion is that
the coefficient C*i must be complex. They are used to ensure the
smoothness and accessibility properties of Homotopy. After we
have constructed a four-bar linkage, we use a small trick to
generate these random complex numbers B*j and C*i. The
coefficients C*i defined by the starting mechanism and its nine
coupler points are real. If we add a small random complex number
to the coefficient C*i, the functional value of
Pj(C1*,...,Cm*,X1,...,X8) will no longer be zero. We take this
" small residual value as —B*j so that QjUf,...,C’m ,X1,...,X8) =
0. The value of these complex numbers relative to C*i should be
in some range. If it is too small ( e.g., < 10°7), the effect of
these numbers is insignificant. Then it defeats the purpose of
adding these numbers. In this case, it is easy to converge to the
singular solution as t arrives at 1 or to cause the Homotopy path
to fail (i.e., the Homotopy path does not meet the Smoothness and
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Accessibility criteria). On the other hand, if the values are
too large, the characteristics of the polynomlials will deviate
greatly from the original system. Thus, it might cause the
Homotopy paths S to converge to complex solutions which is not
desirable. There is no theory to predict the size of these
complex numbers. According to our experience, the range of these

complex numbers can be chosen in the order of 10_2 to 107%.

§ 4-3. Numerical Examples

) Given nine precision points, we can choose positions 1, 3, 5,
7, and 89 and apply the General Homotopy to find some starting
four-bar linkages. Then, we apply the Cheater’s Homotopy to

synthesize four-bar linkages for the nine precision points.

Example 3.

Table 4-1 lists the desired nine precision points. Note that
the odd number points have been taken from the five positions
listed in Table 3-1, to avoid repeating the same process again.
Hence, the four-bar linkages found in Chapter 3 can be used
directly as the starting mechanisms. There are eighteen starting
mechanisms obtained from example 1. Applying the Cheater’s
Homotopy, we found two of these starting mechanisms converge to
real solutions while the other sixteen converges to complex
solutions.

Table 4-2(a) lists the 1link lengths of the Chebyshev 1
linkage obtained from example 1, Table 3-3 and used as the
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starting mechanisn. The coupler-point-curve of this starting
four-bar linkage is shown in Figure 4-1. Table 4-2(b) shows the

perturbed coupler points, and Table 4-2(c) shows the complex
number B*j calculated from the residual value of the function Pj
as a result of the perturbation. This starting mechanism converge

to a real solution as listed in Table 4-3. Figure 4-2 shows the

coupler-point curve of the resulting four-bar. Note that the

four-bar found is very different from the starting four-bar. The
coupler-link rotation angles, 6j, j = 2,3,...,8 are also totally
different from the 1initial 6j’s. Also note that the

nine-precision-coupler-points have been chosen such that point 1

doesn’t fall on the smooth curve formed by the remaining points.

This makes the synthesis problem a very difficult one.

By using the original four-bar listed in Table 3-4 as the
starting mechanism, we found another four-bar linkage satisfying
this nine-position problem. Table 4-4(a) to 4-4(c) list the
starting four-bar, perturbed coupler points and the random numbers
B*j . Table 4-5 shows the four-bar found. Figures 4-3 and 4-4
show the coupler curves of the starting and resultant four-bar,
respectively. We note that the two four-bar linkages found are
cognate four-bar linkages.

Table 4-6(a) to 4-6(c) lists the starting mechanism, perturbed
coupler points and the random numbers Bj* that were generated by
the Chebyshev 2 linkage listed in Table 3-3. This starting

mechanism converge to a complex solution as listed in Table 4-7.
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Table 4-1 Nine Precision Points Used for Example 3

Coupler-Point Mi X - Coordinate Y - Coordinate
M1 0.896186660 -0.098028166
M2 1. 215653500 -1.187491000
M3 1.515143000 -0.854496080
M4 1.675477500 -0. 487680580
Ms 1.713868000 -0. 300892320
Ms 1.721523600 0. 032699525
M7 1.664202900 0.332410880
Ms 1.498417100 0.744355760
Mo 1.301183400 0.921538060
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Table 4-2(a) Starting Four-Bar - Example 3

Starting Four-bar linkage Xi
X1 7.830062456 + 0.000000000
X2 1.676584252 + 0.000000000 i
X3 -1.573127954 + 0.000000000 i
X4 0.536864225 + 0.000000000 i
X5 -0.142093287 + 0.000000000 i
X6 0.966714693 + (.000000000 i
X7 0.539387260 + 0.000000000 i
X8 -0.508025037 + 0.000000000 ;j

Table 4-2(b) Perturbed Coupler points - Example 3

Coupler X - Coordinate Y - Coordinate

Point
M1 0.896188558 + 0.000189768 -0.088029374 - 0.000020758
M2 1.235854846 + 0.000052709 -1.187241812 - 0.0000510862
M3 1.515145770 + 0.000277044 ~0.854497642 - 0.000156245
M4 1.671085400 + 0.000062916 -0.502154668 - 0.000018906
Ms 1.713872375 + 0.000337461 -0.3009882913 - 0.000059265
Mé 1.724348150 + 0.000081131 0.004104246 + 0.000000193
M7 1.664206842 + 0.000394250 0.332411667 + 0.000078748
Ms 1.301183699 + 0.000029862 0.921538271 + 0.000021149
Mo 1.301185738 + 0.000233823 0.921539718 + 0.000165600
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E ]
Table 4-2(c) Random Number B j

E3
Random Number B j

B 1 -0.000175388 - 0.017620614 i
B 2 0.000089363 + 0.008476548 i
B 3 0.000368945 + 0.034488178 i
B 4 ~0.000737278 - 0.077496516 i
B s 0.000959904 + 0.093519389 |
B & -0.002624841 - 0.278921348 i
B 7 0.001169117 + 0.112837206 i
B 8 ~0.002471391 - 0.257027083 i

Table 4-3 Four-Bar Linkage Found Using

the Starting Mechanism

Listed in Table 4-2

Four-Bar Linkage Vector Xi 0j b vi
X1 5.053231840 + 0.000000000 i 173.05 5.862 342.49
X2 0.911854117 + 0.000000000 i 200.36 7.56 354.64
X3 | -0.264524071 + 0.000000000 i 222.54 9.02 6.32
X4 0.776972270 + 0.000000000 i 232.62 9.867 12.08
Xs 0.973133191 + 0.000000000 i 249.72 10.78 22.52
X6 | -0.429958241 + 0.000000000 i 264.42 11.87 32.57
X7 | -0.271767001 + 0.000000000 i 276.55 14.89 51.31
X8 0.383275674 + 0.000000000 i 252. 40 21.38 76.22
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Figure 4-1 Starting Four-Bar Given in Table 4-2(a) and it's

Coupler Curve - Example 3

5o

a

Figure 4-2 Four-Bar Found in Table 4-3 and it’'s
Coupler Curve - Example 3
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Table 4-4(a) Starting Four-Bar - Example 3

Starting Four-Bar Linkage Xi
X1 3.2383956530 + 0.000000000 i
X2 0.313100808 + 0.000000000
X3 -3.704433040 + 0.000000000 i
X4 -3.173755471 + 0.000000000 i
X5 -0.188274472 + 0.000000000
Xé 0.662781720 + 0.000000000 i
X7 2.540201974 + 0.000000000 i
X8 -0.225088167 + 0.000000000 i

Table 4-4(b) Perturbed Coupler Points - Example 3

Coupler X - Coordinate Y - Coordinate

Point
M1 .896187609 + 0.000094884 -0.088029270 - 0.000010379
M2 .515143323 + 0.000032310 -0.854496262 - 0.000018222
M3 .515144385 + 0.000138522 -0.854496861 - 0.000078122
Ms .678315083 + 0.000031594 -0.476592260 - 0.000008972
Ms .713870687 + 0.000168730 -0.300992616 - 0.000029632
Mé¢ .722618400 + 0.000040525 0.027344926 + 0.000000643
M7 .664204871 + 0.000187125 0.332411274 + 0.000039374
Ms .476371953 + 0.000016941 0.735537770 + 0.000008440
M9 .301184569 + 0.000116911 0.921538888 + 0.000082800
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Table 4-4(c)

*
Random Number B j - Example 3

Random Number B*j
8*1 0.004910767 + 0.488387086 i
B*Z -0.007116488 - 0.723861148 i
Bis 0.004775361 + 0.472042473 i
B*a -0.004797831 - 0.488148437 i
B*s 0.002218529 + 0.218577888 i
Bié -0.002338933 - 0.240090693 i
8*7 0.000180692 + 0.016537634 i
B*a 0.000145380 + 0.013994693 i

Table 4-5 Four-Bar Linkage Found Using the Starting Mechanism

Listed in Table 4-4

Four-Bar Linkage Vector Xi 0] bi Yvi
X1 2.269940196 + 0.000000000 i 5.62 342.49 173.05
X2 | -0.156914237 + 0.000000000 i 7.56 354.64 200. 36
X3 | -4.4468743976 + 0.000000000 i 9.02 6.32 222.54
X4 | -4.597693014 + 0.000000000 i 9.67 12.08 232.82
X5 | -0.264524071 + 0.000000000 i 10.78 22.52 249.72
X6 0.776972270 + 0.000000000 i 11.87 32.57 264.43
X7 5.053231840 + 0.000000000 i 14.89 51.31 276.55
Xs 0.911854117 + 0.000000000 i 21.38 76.22 252.40
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Figure 4-3 Starting Four-Bar Given in Table 4-4(a) and it’'s

Coupler Curve - Example 3 Os A

Figure 4-4 Four-Bar Found in Table 4-5 and it’'s

Coupler Curve - Example 3
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Table 4-6(a) Starting Four-Bar - Example 3

Starting Four-Bar Linkage Xi
X1 2.540201974 + 0.000000000 i
X2 -0.225088167 + 0.000000000 i
X3 -0.188274472 + 0.000000000 i
X4 0.662781720 + 0.000000000 i
X5 0.539387260 + 0.000000000 i
X6 -0.509025037 + 0.000000000 i
X7 -0. 142093297 + 0.000000000 i
X8 0.966714693 + 0.000000000 i

Table 4-6(b) Perturbed Coupler Points - Example 3

Coupler X - Coordinate Y - Coordinate

Point
M1 .896188558 + 0.000189768 -0.098029374 - 0.000020758
M2 . 235854846 + 0.000052709 -1.197241812 - 0.000051062
M3 .515145770 + 0.000277044 -0.854497642 - 0.000156245
M4 .671085400 + 0.000062916 ~0.502154668 - 0.000018906
Ms . 713872375 + 0.000337461 -0.300992913 - 0.000059265
Mé . 724348150 + 0.000081131 0.004104246 + 0.000000193
M7 .664206842 + 0.000394250 0.332411667 + 0.000078748
Ms .301183699 + 0.000029862 0.921538271 + 0.000021149
Mo .301185738 + 0.000233823 0.921539716 + 0.0001658600
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»*
Table 4-86(c) Random Number B j - Example 3

Random Number Bij
B 1 ~0.000002983 - 0.000299695 i
B 2 0.000001520 + 0.000144171
B 3 0.000006275 + 0.000586582
B 4 -0.000012540 - 0.001318078
B s 0.000016326 + 0.001590598
B 6 ~0.000044644 - 0.004743955
B 7 0.000019885 + 0.001913160
B 8 ~0.000042034 - 0.004371573

Table 4-7 Complex Solution of Example 3 by Using Table 4-6

as Starting Points

Solution Xi
X1 -0.130274805 + 0.122718869
X2 -0.131199982 - 0.016539861
X3 0.080214750 - 0.260901692
X4 -0.545170718 + 0.008173337
X5 -0. 437602670 + 0.350193498
X6 0.207290033 + 0.235174620
X7 0.619843501 - 0.051105023
Xs -0.340171305 - 0.581427794
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Example 4.

As another example, Table 4-8 1lists another set of nine
precision points. Again, the odd number points ( i.e., M1, Ms,
M5, M7, and M9 ) are taken from that of example 2. Thus, we can
solve this problem by using the solutions found in example 2 as
starting points. Table 4-8(a) to 4-3(c) 1list the starting
mechanism, perturbed coupler points, and the random numbers
generated from the Chebyshev 1 listed in Table 3-7. Table 4-10
lists the solutions found by the Cheater’s Homotopy method. Figs.
4-5 and 4-6 show the coupler curves of the starting and resulting
four-bar linkages, respectively. Again, the resultant four-bar is
very different from the starting four-bar. The coupler-point
curves of the two mechanisms are totally different, although both
curves pass through the five specified positions. This
demonstrates the power of Cheater’s homotopy as a tool for solving

a set of highly non-linear, singular polynomial system.
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Table 4-8 Nine Precision Points Used for Example 4

Coupler Point Mi

X - Coordinate

Y - Coordinate

M1

1. 000000000

0. 000000000

M2

1.210153700

-1.193562100

M3

1.514419000

-0.856816990

M4

1.8672618000

-0. 480052250

Ms

1.709746300

-0. 323059980

M¢

1.735739500

.017302200

M7

1.711962400

Ms

1.8565230700

. 760035300

Mo

1.394774300

0
0.311115900
0
0]

. 973082000
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Table 4-9(a) Starting Four-Bar - Example 4

Starting Four-Bar Linkage Xi
X1 -0.339727801 + 0.000000000 i
X2 -2.386883834 + 0.000000000 i
X3 1.808703160 + 0.000000000 ;i
X4 0.827856528 + 0.000000000 j
X5 -0.384089825 + 0.000000000 ;j
X6 1.049794766 + 0.000000000 i
X7 2.046524463 + (.000000000 j
X8 0.401000302 + 0.000000000 i

Table 4-3(b) Perturbed Coupler Points - Example 4

COUPleP X - Coordinate Y - Coordinate

Point
M1 .000001058 + 0.000105875 0. 000000000 + 0.000000887
M2 .251135552 + 0.000026680 -0.851158265 + 0.000000178
M3 .514420385 + 0.000138456 -0.856817773 + 0.000000768
M4 .6673801141 + 0.000031398 -0. 495741050 + 0.000000158
Ms . 708747983 + 0.000168325 -0.323060298 + 0.000000825
Ms . 740915738 + 0.000040855 0.016628245 + 0.000000391
M7 .711864428 + 0.000202782 0.311116268 + 0.000036852
Ms .554278088 + 0.000017835 0. 746558530 + 0.000008567
M9 . 394775553 + 0.000125320 0.973082874 + 0.000087431
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Table 4-9(c)

»*
Random Number B j - Example 4

Random Number B*j
B 1 ~0.000142850 - 0.014148129 i
B 2 -0.000160540 - 0.006719557 i
B 3 0.000298245 + 0.030265201 i
B 4 ~0.000328937 - 0.030386400 i
B 5 0.000397444 + 0.039260288 i
B & -0.000669947 - 0.068153203 i
B 7 0.000517895 + 0.051401249 i
B 8 -0.000490246 - 0.049235418 i

Table 4-10 Four-Bar Linkage Found Using the Starting Mechanism

Listed in Table 4-9

Four-Bar Linkage Vector Xi 6j bi Vi
X1 6.608200130 + 0.000000000 i 40.29 355.79 334.22
X2 7.117464581 + 0.000000000 i 170.00 7.08 77.62
X3 | -0.792482794 + 0.000000000 i 180.85 7.88 77.586
X4 0.745932329 + 0.000000000 i 198.25 8.16 76.80
Xs 0.826204995 + 0.000000000 i 215.72 8.58 74.09
X6 0.779116826 + 0.000000000 i 318.98 359.78 344.90
X7 | -1.008253769 + 0.000000000 i 256.72 8.58 60.87
X8 0.441683619 + 0.000000000 i 278.23 7.77 50.73
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Figure 4-5 Starting Four-Bar Given in Table 4-9(a) and it’'s

Coupler Curve - Example 4

or
ol

Figure 4-2 Four-Bar Found in Table 4-10 and it’s

Coupler Curve - Example 4
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§ 4-4. Comparison with Newton-Raphson’s Method and Powell’s Method

There are other numerical methods that can be used to solve a

system of non-linear equations, For this nine precisicon-points
problem, we also tried both Newton-Raphson's and Powell’s
methods. Our experience is that both methods are difficult to

yield any solutions ( real or complex ) at all, because of the
high non-linearity of the polynomial system and because of the
existence of singular solutions as discussed in Chapter 1. In
general, Newton-Raphson’s method will converge to the singular

solutions 21 = Z3 and Z2 = Z4, and Powell’s method will converge

to either 22 = Z4 = 0, or Z1 = Z3 and 22 = Zs.

For examples 3 and 4, we tried Newton-Raphson’s Method and
Powell’s Method using the same starting points used in the
Cheater’s Homotopy. Table 4-11 and Table 4-12 list the numbers of
solutions obtained by various different methods. For example 3,
Cheater’s Homotopy method found all the eighteen solutions (two
reals and sixteen complex); Newton-Raphson’s method found one real
solution and seventeen singular; and Powell’s method found one
real solution, six singular and others did not converge. For
example 4, Cheater’s Homotopy found all eighteen solutions (one
real and seventeen complex); Newton-Raphson’s method found four
complex and fourteen singular solutions; And Powell’s method found
seventeen singular solutions and one did not converge. The
powerfulness of Cheater’s homotopy in avoiding the singular
condition and non-convergence has been demonstrated by this highly
non-linear and highly singular polynomial system.
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Table 4-11 Comparison of Homotopy Method, Newton-Raphson’s

Method, and Powell’s Method - Example 3

unbers of | fometopy [ Newtor sapnaon's [ Fovel1 s
Real Solution 2 1 1
Complex Solution 16 o 0
Singular Solution 0] 17 6

Table 4-12 Comparison of Homotopy Method, Newton-Raphson's

Method, and Powell’s method - Example 4

unbers of | FGISLopy | Newto-Raphson’s | Fouell's
Real Solution 1 0 0]
Complex Solution 17 4 0
Singular Solution 0] 14 17
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CHAPTER 5. DISCUSSION AND CONCLUSION

Roth [20] presented a  "Bootstrap" method for the
nine-coupler-points synthesis problem. The method has some flavor
of continuation. However, the author did not mention how to
choose the starting mechanisms. In addition, he did not use the
complex algorithm and the starting points did not include small
random complex constants. For this reason, according to Homotopy
criteria stated in [9,10,11}, the Homotopy path is easy to fail
due to the lack of smoothness and accessibility properties.
Although Roth introduced the ‘"position interchange" and
"quality-index control" techniques to overcome the difficulty,
there is still no guarantee for convergence.

Newton-Raphson’s method tends to converge to the singular
solutions. Powell’s method either converges to singular solutions
or does not converge at all.

The homotopy methods presented in this work always finds some
solutions, although sometimes the solutions may be complex. The
number of solutions found is always equal to the number of
starting mechanisms. The General Homotopy method can be used to
solve the five-coupler-points problem, while the Cheater’s
Homotopy method can be used to find some solutions to the
nine-coupler-points synthesis problem. The powerfulness of the
homotopy methods opens a new frontier for dimensional synthesis of
mechanisms, and other problems involving a system of polynomial
equations.
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