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The District of Columbia Water and Sewer Authority (DCWASA) operates

the Blue Plains Wastewater Treatment Plant located in Washington, DC. It serves

more than two million Washington Metro Area customers, and treats more than 330

million gallons a day of raw sewage from area jurisdictions, including Montgomery

and Prince George’s Counties in Maryland, and Fairfax and Loudoun Counties in

Virginia. Each day, DCWASA produces approximately 1,200 tons of biosolids or

byproducts of wastewater that have been treated to reduce pathogens and can be

used as fertilizer for agricultural purposes. These generated biosolids require removal

from the treatment facility and distribution to reuse fields located in Maryland and

Virginia. In spite of the benefits of reuse, biosolids are generally considered by many

as potentially malodorous. Recently, DCWASA has received complaints from the

surrounding communities and needed to minimize biosolids odors. However, trying

to minimize biosolids odors could result in costly treatment processes. Therefore,

one needs to determine how to minimize the odors while at the same time minimizing



the treatment costs. This compromise of balancing the competing objectives of odors

and costs results in a two-objective or more generally, multiobjective optimization

problem.

In this dissertation, we develop multiobjective optimization models to simul-

taneously minimize biosolids odors as well as wastewater treatment process and

biosolids distribution costs. A weighting method and constraint method were em-

ployed to find tradeoff, so called Pareto optimal, points between costs and odors.

Schur ’s decomposition and special order set type two variables were used to ap-

proximate the product of two decision variables. A Dantzig-Wolfe decomposition

technique was successfully applied to break apart and solve a large optimization

model encountered in this dissertation. Using the Blue Plains advanced wastewater

treatment plant as a case study, we find several Pareto optimal points between costs

and odors where different treatments (e.g., lime addition) and biosolids distribution

(e.g., to what reuse fields biosolids should be applied) strategies should be employed.

In addition, to hedge the risk of equipment failures as well as for historical reasons,

an on-site dewatering contractor has also been incorporated into the model. The

optimal solutions indicate different uses of the contractor (e.g., percent flow as-

signed) when dewatering cost employed by DCWASA varies. This model can be

used proactively by any typical advanced wastewater treatment plants to produce

the least malodorous biosolids at minimal costs and to our knowledge, this is the

first instance of such a model.
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Chapter 1

Introduction, Literature Review, and Objectives

1.1 Introduction and Literature Review

A new era of municipal wastewater treatment began in 1972 when the Clean

Water Act imposed minimum treatment requirements for municipal wastewater [58].

The Act gave the U.S. Environmental Protection Agency (EPA) a broad authority

to handle water pollution [63]. Under this authority, EPA has developed several reg-

ulations and programs to reduce pollutants entering all surface waters (e.g., lakes,

rivers, estuaries, oceans, and wetlands). For example, a sewage treatment plant

must obtain a permit from the EPA or a state in order to discharge pollutants into

the waters [63]. Later in 1987, Congress amended section 405 of the Act requir-

ing the EPA to establish a comprehensive program to minimize environmental risk

and maximize the beneficial use of biosolids [63]. As a result, in 1993, the EPA

promulgated Title 40, Code of Federal Regulations, Part 503, “Standards for the

Use or Disposal of Sewage Sludge” (referred to later as Part 503) [56, 63]. Part 503

requires that use or disposal of biosolids may be allowed in three circumstance: land

application, disposal in landfills, and incineration. Land applications of biosolids

include spraying or spreading biosolids on the land surface, injecting them below

the surface, and incorporating them into the soil [63]. In addition, there are gen-

eral requirements, limits on the pollutant concentrations in biosolids, management
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practices, and operational requirements associated with each use or disposal method

[63].

Considering land applications, the quality of biosolids are major requirements

and are determined by their characteristics including level of pollutants (metals),

the presence of pathogens, and the degree of attractiveness to vectors (e.g., rodents

and flies). Part 503 distinguishes two classes of biosolids depending on their levels

of pathogen reduction:

Class A: Part 503 requires that pathogens in these biosolids are below the detectable

level. In addition, Class A biosolids with exceptional quality (EQ) must meet the

most rigorous metals limits. There are no restrictions on land applications of EQ

biosolids. While some restrictions may apply on Class A biosolids without the

exceptional quality.

Class B: Pathogens in Class B biosolids are significantly reduced, however, not below

detectable levels. Consequently, Part 503 requires farm management practices and

sets site restrictions when applying these biosolids.

Over the past 30 years, the quantity of biosolids production as well as their

quality substantially increased. Stringent wastewater treatment requirements and a

growing population have resulted in production increases [63]. Whereas, the greater

prevalence of pretreatment and pollutant prevention programs have contributed

greatly to the environmentally quality improvement [58]. In addition, new tech-

nologies such as an advanced mechanical dewatering equipment, automated process

control systems, aeration systems, and odor control systems also help reduce volume

of biosolids, lower odor, and produce biosolids that help improve soil fertility and
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tilth [58, 64]. These aforementioned reasons as well as the suggestions from federal

and state rules and guidance have increased the trend of biosolids beneficial uses

(e.g., land applied, composted, and landfill cover) rather than disposal (i.e., with no

beneficial use) [58]. Other factors contributing to increased biosolids beneficial use

include a landfill capacity limit, outreach and marketing attempts, prohibitions on

disposal of biosolids in landfills in some areas, and continuing research into the safe

beneficial use of biosolids [58]. In addition, an increase in tipping fees by landfill

operators also made biosolids disposal more difficult and expensive [20] and leads

to an increased trend in uses of biosolids as well.

EPA estimated the beneficial uses of biosolids to 60%, 63%, 66%, and 70% of

all biosolids production, respectively in 1998, 2000, 2005, and 2010 [58]. While the

estimations of all biosolids production during these years were 6.9, 7.1, 7.6, and 8.2

million dry tons1, respectively. This results in an approximation of 4.14, 4.47, 5.02,

and 5.74 million dry ton of biosolids being used beneficially. Figure 1.1 displays

the estimations of the beneficial uses as well as the total production of biosolids in

millions of dry tons.

Figure 1.2 displays at DCWASA alone, the amount in dry tons of biosolids that

were beneficially used (e.g., land applied) as well as the dollars’ worth of nutrients

provided to farmers, in 2005 and 2006. In particular, the dollars’ worth of nutrients

were calculated according to 20% lime and 4% nitrogen in one dry ton of biosolids

with dollars worth of $18.5 and $189.33 per ton of lime and nitrogen, respectively (C.

Peot, personal communication, January 7, 2002). In addition, Figures 1.3 and 1.4

1A dry ton is measured from solids only (i.e., not including liquid substances).
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Figure 1.1: Estimates of Biosolids Generation in 1972, 1998, 2000, 2005 and 2010

Figure 1.2: Biosolids Application for Biosolids Generated by DCWASA in 2005 and
2006: Tonnage Applied and Dollars Worth of Nutrient

4



display biosolids application by counties in Virginia and Maryland, whose farmers

received biosolids from DCWASA in 2005 and 2006.

Figure 1.3: Beneficial Use by Counties in Virginia and Maryland of Biosolids Gen-
erated by DCWASA in 2005: Tonnage Applied and Dollars Worth of Nutrient

Land applications of biosolids contribute greatly to the farmers in terms of

nutrients provided. However, in spite of these benefits and being carefully regulated

by EPA to protect human health and the environment [28, 55, 57], these biosolids

are considered by many as a potentially malodorous product to the local receiving
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Figure 1.4: Beneficial Use by Counties in Virginia and Maryland of Biosolids Gen-
erated by DCWASA in 2006: Tonnage Applied and Dollars’ Worth of Nutrients
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communities. EPA officials have quoted the following statement from one of the

land application companies when they made a status report on land application of

biosolids in 2002 [63].

“...better tracking of odor and any health complaints is essential for improv-

ing land application of biosolids and its public acceptance.... [O]ne resolution is

to initiate a regulatory requirement for a comprehensive cradle-to-grave tracking

system....”

To address odor problems, in Maryland for example, a database and an elec-

tronic form for recording and investigating biosolids odor complaints was developed

[63]. In particular, at DCWASA, they regularly collect odor complaint data com-

piled by Maryland Environmental Service (MES). Moreover, DCWASA along with

its research colleagues has studied the factors of odor generation [40, 41], devel-

oped both field and on-plant odor prediction statistical models [31, 32, 38], and

constructed an odor dispersion model for measuring the effect of biosolids odor in

reuse fields [37].

These studies were carried out to understand the factors contributing to odor

generation and finally be able to predict and/or minimize biosolids odors. In ad-

dition, to be more proactive, it is better to have these biosolids on farms with less

potential to generate odor complaints (e.g., remote farms further from residential

areas). However, trying to minimize the odor footprint and also apply biosolids

to remote sites could generate high processing and distribution costs. Therefore,

one needs a tool that finds a tradeoff between biosolids odor and their associated

processing and distribution costs.
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Like many other real-world applications, when there are two or more objectives

being considered, it is often that these objectives compete with each other. In

other words, one can only do better in one objective at the expense of at least

one of the other objectives. Fortunately, there is a tool that can help decision-

makers arrive at suitable alternatives among several management considerations, for

example, potential conflicts between cost and liability, cost and risk, time and cost,

economic development and environmental impact, to name a few. These conflicts as

well as a problem of finding a tradeoff between odors and costs discussed above are

regarded as common problems in real-world applications and can be handled with

multiobjective programming. In fact, there are far more studies in multiobjective

optimization than we are able to include in this literature review. Therefore, we

narrow our interest to only literature concerning environmental studies which a

major focus on wastewater treatment problems.

Early in 1983, Kansakar and Polprasert [39] applied multiobjective goal pro-

gramming to minimize linear cost functions including costs, water quality impacts,

and land use impact for the wastewater and sludge management systems. Chang et

al. [12] established, in 1993, a location/allocation model for solid waste management

planning in the USA and Taiwan that combined the efforts of the environmental ob-

jectives, such as air pollution, leachate, noise, and traffic congestion. During the

same year, Ciric and Huchette [16] has also analyzed the sensitivity of maximum

net profits of a chemical process to changes in the waste treatment cost using the

multiobjective programming approach. Later in 1994, Minor and Jacobs [44] devel-

oped a multiobjective optimization model to find optimal land allocation for solid
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and hazardous waste landfill siting. While, the competing objectives being consid-

ered are to minimize land purchase cost, compactness, and contiguity of the selected

subregion. In 1997, two other competing objectives: the conservation of reservoir

watershed and the benefits from various uses of land within the watershed were an-

alyzed in a land development optimization problem by Chang et al. [14] using fuzzy

multiobjective programming. In 1997, Chang and his colleagues also studied three

other multiobjective problems involving waste management systems: Chang and

Wang [13] applied fuzzy goal programming to quantify the imprecise objectives of

the decision maker in balancing between economic and environmental goals; a multi-

objective, mixed-integer programming model was developed to find optimal vehicle

routing and scheduling for solid waste management systems synthesized within a

GIS environment. The systems allow a decision maker to choose optimal waste

collection strategies among many other alternatives [11]; the optimal wastewater

treatment strategies for water pollution control in a river basin have been investi-

gated using interactive, fuzzy interval, multiobjective, mixed-integer programming

[10].

Later in 1998, Crohn and Thomas [20] applied mixed-integer programming to

minimize costs for land application of biosolids, where costs being analyzed include

biosolids storage, digestion, composting, transportation, and land application. In

2001, hauling costs and environmental impact were studied as two competing ob-

jectives in the transportation planning for some industrial wastes [51]. Nema and

Gupta [47] presented, in 2003, a multiobjective integer goal model to minimize total

risk (including risk associated with transportation, treatment, and disposal) and
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total cost (including treatment, disposal, and transportation costs) of planning and

design of hazardous waste management systems. Bhattacharya et al. [9] used neural

networks and reinforcement learning to control and replicate optimal control strate-

gies produced from a dynamic real-time control (RTC) of regional water systems.

While, the RTC was embedded with a multiobjective nonlinear and/or dynamic pro-

gramming based on simulation models to balance different interests, ranging from

flood control to recreation. In 2004, a multiobjective genetic algorithm approach

was used to model the optimization of the technical specifications of a nuclear safety

system [42]. More recently, in 2006, Gabriel et al. [30] applied a multiobjective pro-

gram to find optimal wastewater management strategies including processing and

transportation costs of biosolids as well as odor reduction.

We can see that there has been a considerable amount of research involving the

optimization of environmental or waste management problems. However, according

to our knowledge and literature we have reviewed, there is no research (except [30])

that takes into account the minimization of wastewater treatment processing and

biosolids distributing costs while simultaneously minimizing biosolids odor. The

detailed models presented in this dissertation also distinguish themselves from the

research studies reviewed above. In addition, the decomposition techniques em-

ployed in this dissertation are another improvement and allow the models to cover

a longer time horizon planning period compared to [30].
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1.2 Objectives

The objective of this dissertation is to develop multiobjective optimization

models to minimize biosolids odor as well as the processing and distributing costs.

These models can assist DCWASA as well as typical wastewater treatment plants

in finding optimal wastewater treatment management policies (e.g., treatment pro-

cesses and biosolids distribution patterns). In particular, this dissertation provides:

1. Tradeoff points between costs (including processing and distributing costs)

and biosolids’ odors

2. Optimal wastewater treatment processing strategies (e.g., lime additions, num-

ber of centrifuges in service);

3. Optimal biosolids distributions strategies (e.g., to what reuse fields biosolids

should be applied and for how many tons)

4. Optimal percentage flows from the blend tank to DCWASA and the on-site

contractor providing additional dewatering equipments

5. Fast algorithms to solve the specific wastewater multiobjective optimization

problem for wastewater treatment plants

The rest of this dissertation is organized as follows. Chapter 2 introduces the

multiobjective optimization programs and decomposition techniques. In particular

two methods used to find the trade-off points, so-called Pareto optimal, are pre-

sented: weighting method [17, 52] and constraint method [17, 52]. Later, we discuss
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the Dantzig-Wolfe decomposition technique [3, 19, 23, 21, 33, 48, 70] and present

the related solution algorithm. Finally, we briefly discuss the Benders decomposi-

tion technique [19, 34, 53]. The first technique, Dantzig-Wolfe decomposition, was

successfully applied to our optimization problem and significantly improved our run

times. The computational results are shown in Chapter 5. The latter technique,

Benders decomposition, was also tried. However, according to our experiments, it

was not as helpful from a computational point of view.

Chapter 3 discusses the wastewater treatment processes at the Blue Plains ad-

vance wastewater treatment plant as well as the characteristics of some wastewater

treatment processing variables relevant to our optimization models. Later, we

present odor prediction equations developed by Gabriel et al. [32] as well as data

and their sources. Finally, we develop an odor threshold index for each reuse field.

These indices are normalized among the reuse field candidates and indicate how

sensitive to odor each reuse field is, compared to others in the set of candidates.

Chapter 4 discusses the multiobjective optimization models when the percent-

age of flow from the blend tank to DCWASA2 was exogenously determined. In

other words, the percentage of flow handled by DCWASA (as opposed to an on-site

contractor) was given as a parameter. The resulting model is a multiobjective lin-

ear integer program, which can be solved by an existing optimization solver. Later,

the weighting method and constraint method were applied to the Base Case. The

Pareto optimal points that were generated were analyzed and we found for various

situations (e.g., how many index points of odor level need to be decreased), different

2See Section 3.1 for wastewater treatment processes.
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marginal activities were required. For example, at one point, the total number of

centrifuges in service was a key activity for reducing biosolids odor levels. Next,

we performed a sensitivity analysis on the percentage of flow from the blend tank,

odor threshold input, and DCWASA’s operating costs. The sensitivity analysis in-

dicates that when 20% of flows were assigned to DCWASA, the best Pareto optimal

curve was obtained. However, there was no obvious effect when different sets of odor

threshold input were used. Lastly, it is shown that changes in DCWASA’s operating

costs may affect the non-dominated sets of solutions.

Chapter 5 discusses a successor to the optimization model from Chapter 4.

Specifically, the percentage of flow from the blend tank is endogenously determined

and defined as a decision variable. The resulting model is a multiobjective, nonlinear,

integer program. In order to be able to solve the resulting problem with existing

solvers, we transformed the nonlinear, integer program into a linear integer one by

employing some approximation techniques involving the Schur’s decomposition and

Special Order Set of type 2 variables (SOS2) [5, 6, 27, 29, 36]. Finally, we present

several solution algorithms and discuss computational results.

Lastly, Chapter 6 summarizes major findings and limitations of optimization

models as well as provides a list of potential future work.
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Chapter 2

An introduction to Multiobjective Optimization, Dantzig-Wolfe

Decomposition, and the Benders Decomposition

In this chapter we introduce a multiobjective optimization program and present

two methods used to find tradeoff points between costs and odors. These methods

are weighting method and constraint method. Later, we discuss two decomposition

techniques: Dantzig-Wolfe decomposition and Benders decomposition.

2.1 Multiobjective Optimization

A single-objective constrained optimization problem can be represented as

min f(x)

subject to

x ∈ S ⊆ Rn

(2.1)

where f(x) is the objective function and S is the feasible region. The purpose of the

optimization problem is to find the point(s) in S, which yields the lowest objective

function value f(x). If f(x) is linear and S is defined by all linear functions, we

call (2.1) a single-objective linear optimization problem. If (2.1) is linear and one or

more of the constraints defining S requires that x be an integer, we then call (2.1)

a single-objective linear integer optimization problem. If f(x) is nonlinear or one or

more of the constraints defining S is also nonlinear, we call (2.1) a single-objective
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nonlinear optimization problem. Some examples of single objectives that can be

optimized are cost, risk, profit, and environmental influences.

Furthermore, methods for solving single-objective optimization problems have

been studied by many authors, such as Chvatal [15], Nash and Sofer [46], and Bert-

simas and Tsitsiklis [8] to name a few. However, in real world situations, decision-

makers have encounter problems where more than one objective is required to be

taken into account. Illustrations of some problems that may be more adequately

modeled with multiobjective programming are oil refining problems and portfolio

selection problems. To be more specific, for oil refining problems, we may want to

simultaneously minimize cost, imported crude oil, high sulfur crude oil, and flaring

of gases. Similarly, for portfolio selection problems, investors may want to minimize

risk as well as maximize their return on the investment. After having introduced a

few applied real world examples, we now present the general form of a multiobjective

mathematical program.

min f1(x)

...

min fk(x)

subject to

x ∈ S ⊆ Rn

(2.2)

where f1(x), . . . , fk(x) are different objectives to be minimized and S is the feasi-

ble region. To avoid the trivial case where all objectives are aligned, we assume

that there is no solution that will simultaneously minimize each objective. In other

words, we can only do better in one objective at the expense of at least one of
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the other objectives. Actually, this assumption is the concept for finding the so-

lutions to the multiobjective optimization problem, which will be discussed later.

Again, the linear, nonlinear, and integer nature of the problem can be applied to a

multiobjective optimization problem with the same criteria as discussed earlier.

For many years, multiobjective mathematical programs have played an in-

creasingly important role in aiding decision-makers to choose suitable alternatives

among several options. Several authors have proposed numerous methods for solv-

ing multiobjective mathematical programs. Some of these various methods include

the constraint method [52, 17], the weighting method [52, 17], genetic algorithms

[26], and the multiobjective simplex method [52], to name a few.

The set of the solutions to a multiobjective optimization problem is often

referred to by welfare economists as a Pareto optimal set, by other disciplines as

a noninferior set or efficient set [17, 52]. Nevertheless, all these terms have the

same meaning. For consistency, the term Pareto optimal set will be used to refer to

the solutions to the multiobjective optimization problem throughout this work. A

solution (call it A) to a multiobjective optimization problem is Pareto optimal if no

other feasible solution is at least as good as A with respect to every objective and

strictly better than A with respect to at least one objective [69]. Mathematically,

according to problem (2.2):

Definition 2.1.1 [17]

Given functions fi : Rn → R, i = 1, 2, . . . , k and the set S ⊆ Rn, a decision vector

x∗ ∈ S is Pareto optimal if there does not exist another vector x ∈ S such that
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fi(x) ≤ fi(x
∗) for all i = 1, 2, . . . , k and fj(x) < fj(x

∗) for at least one index j.

Figure 2.1 displays an example of a Pareto optimal set, where f1(x) and f2(x) are

two objectives being minimized in an multiobjective integer optimization problem.

From Figure 2.1, we can see that Point B is inferior to Point C because Point C has

Figure 2.1: Example of a Pareto optimal set

a lower value of the objective function #2, although it has the same value of the

objective function #1. However, Point D is obviously dominated by Points B and

C because Point D attains higher values of both objective functions. In all, Points

A, C, and E are in the Pareto optimal set.

Next, we examine two methods used to find the Pareto optimal set: constraint

method and weighting method.
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2.1.1 Constraint Method

Given a multiobjective optimization with k objectives as in (2.2), the related

constrained problem is

minfh(x)

subject to

x ∈ S

fp(x) ≤ Up, p = 1, 2, . . . , h− 1, h + 1, . . . , k

(2.3)

where the objective member h is arbitrarily chosen for minimization. Problem (2.3)

is a single-objective optimization problem, which can be solved by conventional

methods, such as using simplex method for linear programs [17]. The optimal so-

lution to (2.3) is a Pareto optimal solution to the original problem (2.2) if certain

conditions are satisfied as discussed below.

The optimal solution to (2.3) is a Pareto optimal solution to the original

problem (2.2) if all the constraints on the objectives are binding at the optimal

solution to (2.3) [17]. In other words, evaluating at the optimal solution x∗, fp(x
∗) =

Up for all p = 1, 2, . . . , h, h−1, h+1, . . . , k. However, if this is not the case (i.e., not all

constraints on the objectives are binding), the optimal solution to (2.3) is a Pareto

optimal solution to the original problem (2.2) if there is no alternative optimum to

(2.3). In the latter case, if there are alternative optima to (2.3), then some of these

alternative optimal solutions may not be Pareto optimal to the original problem

(2.2). If this is the case, we may proceed to search among the alternative optimal

for the Pareto optimal solution(s) by using the following procedures. First, without
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loss of generality, suppose that the constraints on fp(x) ≤ Up for p = 1, 2, . . . , h− 1

are binding and those for p = h+1, h+2, . . . , k are satisfied with strict inequalities.

Then we can set up a sub-problem to search for non-inferior solutions among those

alternative optima as follows:

minfh(x)

subject to

x ∈ S

fp(x) = Up, p = 1, 2, . . . , h− 1

fq(x) ≤ Uq, q = h + 1, h + 2, . . . , k

(2.4)

Solving (2.4) is equivalent to solving the multiobjective optimization program by

the constraint method as applied to a subset of the original feasible region. Again,

if the alternative optima are observed, we proceed to search for the Pareto optimal

solutions among the alternative optima as described before [17].

Next, we investigate another method used to find the Pareto optimal solutions

of the multiobjective optimization problem, which is the weighting method.

2.1.2 Weighting Method

The weighting method is another effective method to find Pareto optimal solu-

tions for the multiobjective optimization problem (2.2). The technique is to weight

the objectives to obtain Pareto optimal solutions. Given a multiobjective optimiza-
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tion with k objectives as in (2.2), the weighted problem is

min
k
∑

i=1

wifi(x)

subject to

x ∈ S

k
∑

i=1

wi = 1

wi ≥ 0; i = 1, 2, . . . , k,

(2.5)

It is noted here that any sets of nonnegative weights wi may be used in (2.5).

However, without loss of generality, we can normalize all weights such that
k
∑

i=1

wi = 1.

The optimization problem (2.5) is a single-objective optimization problem that can

be solved by existing methods. To illustrate the role of weights, Figure 2.2 displays

the feasible region F0, in objective space, of the two-objective minimization problem

(2.6) (see Cohon [17] for maximization problem).

min
2
∑

i=1

wifi(x)

subject to

x ∈ S

2
∑

i=1

wi = 1

wi ≥ 0; i ∈ {1, 2}

(2.6)

Referring to Figure 2.2, N0 indicated by the bold line represents the Pareto optimal

set. The contours of the objective function or the linear indifference curves, with a

slope of −w1

w2

, are defined by the equation

w1f1 (x) + w2f2 (x) = A (2.7)
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Figure 2.2: Feasible region of the two-objective minimization problem in objective
space: a weighted objective function appears as a linear indifference curve

where A is an arbitrarily chosen constant. The solution of the problem is obtained

by pushing the contour as far to the southwest as possible until it just touches the

boundary of F0. This happens at point C , where the constant in (2.7) is B. Other

Pareto optimal solutions in the Pareto optimal set N0 can be obtained by varying

the value of w1

w2

as indicated in Figure 2.3.

The optimal solutions to problem (2.5) are Pareto optimal to the original

multiobjective optimization problem (2.2) as long as all of the weights are positive

[17, 43]. However, if not all the weights are positive and if there are alternative

optima to the weighted problem (2.5), then some of these optimal solutions may

not be Pareto optimal to the original multiobjective problem (2.2). If this is the

case, we may use the following procedures developed by Cohon [17] to search among

these alternative optima for the Pareto optimal solutions.
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Figure 2.3: Pareto optimal solutions as w1

w2

varies

Suppose that the alternative optimal solutions to (2.5) gave fi(x
∗) for i =

1, 2, . . . , h and that wi > 0 for i = h + 1, h + 2, . . . , k. Then we can solve a new

problem to find the Pareto optimal solutions.

min
k
∑

i=h+1

wifi(x)

subject to

x ∈ S

fi(x) = fi(x
∗), i = 1, 2, . . . , h

(2.8)

In solving problem (2.8), we set wi > 0, for i = h + 1, h + 2, . . . , k. The values of

wi are chosen in various combinations to approximately ascertain Pareto optimal

solutions among those alternative optima. For some particular multiobjective opti-

mization problems, it is a computationally challenging task to search for all Pareto

optimal solutions. Theoretically, if one wants to guarantee that all Pareto optimal
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solutions can be obtained by the weighting method, some additional conditions on

the objective functions and the feasible region must be satisfied. These conditions

require that all objective functions are convex and the feasible region is a convex

set [43]. The definitions of a convex set and a convex function are given below.

Definition 2.1.2 (page 60 in [69])

A set of points S convex if the line segment joining any pair of points in S is wholly

contained in S. That is, ∀x, y ∈ S, C ∈ [0, 1], the point z = Cx + (1 − C)y ∈ S,

where Z is a convex combination of x and y

Let f (x1, x2, . . . , xn) be a function that is defined for all points (x1, x2, . . . , xn) in a

convex set S.

Definition 2.1.3 (page 652 in [69])

A function f : Rn → R is convex on a convex set S ⊆ Rn if for any x′ ∈ S and

x′′ ∈ S, f (cx′ + (1− c)x′′) ≤ cf (x′) + (1− c) f (x′′) holds for 0 ≤ c ≤ 1

The phenomenon where some of the Pareto optimal solutions cannot be obtained

because of the optimization problem being nonconvex is referred to as a duality

gap [17]. To illustrate this phenomenon, Figure 2.4 depicts the nonconvex Pareto

optimal set of an integer program (minimization) in objective space. It is indicated

that the Pareto optimal point C could never be obtained by the weighting method.

Suppose the slope of the objective function contour w1

w2

≤ −β, point A will be the

optimal solution to the weighted problem and if w1

w2

≥ −β, point B will be the

optimal solution. Therefore, there is no value for w1

w2

such that C is the optimal

solution of the weighted problem.
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Figure 2.4: Duality gap in weighting method
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The convexity requirements seem to be a disadvantage for the weighting method.

However, for practical purposes, we may not need all Pareto optimal solutions. In

which case, the analyst may just determine only the range of the Pareto optimal

solutions that interest the decision-makers. Moreover, the fact that the weighting

method only requires positive weights to guarantee Pareto optimal solutions per-

haps makes it more favorable over the constraint method unless all Pareto optimal

solutions are required. Another point to note is that for multiobjective integer pro-

grams as used in this dissertation, when there is a nonzero optimality gap, at best

only local Pareto optimal solution can be found.

In the next section, Dantzig-Wolfe Decomposition, a technique used to decom-

pose a big problem into several small problems and one master problem coordinating

those small problems, is discussed. In particular, the decomposition technique is em-

ployed in Chapter 5 to improve the problem’s lower bounds on the objective function

(see Section 5.3).
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2.2 Dantzig-Wolfe Decomposition

In this section, the optimization problem of the following form is discussed.

min
|D|
∑

d=1

cdxd

subject to

A1x1 +A2x2 + . . . +A|D|x|D| ≤ b

E1x1 ≤ f1

. . . ≤ .

. . . ≤ .

E|D|x|D| ≤ f|D|

x1 ∈ Rn1

+ , . . . . . . , x|D| ∈ R
n|D|

+

(2.9)

It is noted here that D = {1, 2, . . . , |D|}, where |D| represents the cardinality of the

set D. Also note that x1, x2, . . . , x|D| represent sub-vectors of the overall vector X.

It can be seen that when the joint constraints1
|D|
∑

d=1

Adxd ≤ b are removed, the

sets Xd = {xd ∈ Rnd

+ : Edxd ≤ fd} are independent for all d ∈ D. Before delving

more deeply into its solution process, we provide an example of application that may

be represented by the optimization problem structure presented above. Dantzig [21]

one of the inventors of this decomposition technique2 gave a very clear example of

a typical situation where the decomposition principle can be applied. Consider a

plant with two almost independent shops. Each shop has its own constraints unaf-

fected by the activities of the other shop. However, the two shops are tied together

with a few constraints and a common objective. Now considering the optimiza-

1Constraints that link the different sets of variables together [70].
2Another inventor is P. Wolfe
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tion problem we presented above, each shop’s constraints would correspond to the

constraint Edxd ≤ fd. The common objective and constraints that tie the shops

together would correspond to min
|D|
∑

d=1

cdxd and
|D|
∑

d=1

Adxd ≤ b, respectively. Another

example corresponds directly to the problem being studied in this thesis. Consid-

ering the operation of a wastewater treatment plant over a certain time period, on

each day the plant must process wastewater and deliver its end product, so-called

biosolids, to the field sites. Although the daily processes are almost independent

from each other, at the end of each month, the plant must achieve their objectives

of minimizing processing and distributing cost and also overall biosolids odor levels

generated throughout the month. In addition, the biosolids delivered to each field

must not exceed its capacity limit. According to this example, the common objec-

tives; minimizing cost and odor and the field capacity limits constraints tie the daily

plant processes together.

The decomposition technique was first developed by Dantzig and Wolfe [23] to

break apart linear programs with decomposable structure similar to the one shown

in Problem (2.9). Although originally invented for linear programs, with slight mod-

ification, the decomposition technique has proved to be useful for integer programs

as well. In particular, it has been proven that the optimal objective function value

provided by the Dantzig-Wolfe decomposition, although not always providing an

integer solution, can still be used as the lower bounds (minimization problem) or

the upper bound (maximization problem) for the original integer program [70, 66].

In addition, the solution obtained can then be utilized later in the branch and price
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algorithm3. In this dissertation, we do not further utilize the solution from the

Dantzig-Wolfe decomposition in a branch and price algorithm. Instead, the optimal

objective function values obtained are used as lower bounds for our original integer

program and help us numerically prove that the integer solutions obtained from the

original integer program are close to optimal (see Section 5.4). The proof on why

the solution from the Dantzig-Wolfe decomposition technique can provide the lower

or upper bounds for the original integer program can be found in [70, 66].

Next, we describe a solution idea of the Dantzig-Wolfe decomposition tech-

nique as it is applied to linear programs. However, with a very slight modification,

this solution algorithm can be applied to integer programs without much modifica-

tion. It is noted here that the technique is explained in general terms first and then

more detail is added as we proceed.

The Dantzig-Wolfe decomposition technique decomposes the original linear

program into two parts; a master problem and pricing subproblems. The joint con-

straints go in the master problem and each set of the independent constraints go

in the pricing subproblems. The algorithm starts with the master problem whose

solution is used to construct the objective function for the pricing subproblems.

Then the pricing subproblems are solved and their solutions, called proposals, are

introduced to the master problem. Subsequently, new variables, so-called weights,

associated with proposals are generated and added to the master problem. The mas-

ter problem is then solved again with new added variables, the prices are adjusted

3Branch and price also known as IP column generation [2, 67] is a solution technique of embed-

ding the column generation in a branch-and-bound framework.
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and again sent to the pricing problems. The process continues in this manner until

the optimality test is passed after a finite number of iterations [21]. To put it differ-

ently, the master problem acts like the plant manager that coordinates and adjusts

the prices for each shop or pricing subproblem. While each shop proposes the best

of what they can do. Figure 2.5 is adapted from [21] and illustrates the overview of

this decomposition technique. Next, we discuss the mathematical formulations for

Figure 2.5: Overview of Dantzig-Wolfe decomposition technique [21]

the master problem and the pricing subproblems.

2.2.1 Master Problem and Pricing Subproblems

First, consider the original problem (2.9), which may be rewritten as:

(LP)
min

|D|
∑

d=1

cdxd :
|D|
∑

d=1

Adxd = b, xd ∈ Xd; ∀d ∈ D

Xd = {xd ∈ Rnd

+ : Edxd <= fd}; ∀d ∈ D

(2.10)
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For the sake of discussion, let’s assume the feasible sets for Xd to be bounded4 convex

sets. Only slight modifications in the formulas are required for the unbounded case

[21] and will not be discussed since it is not relevant to this dissertation.

Definition 2.2.1 (page 60 in [69])

For any convex set S, a point P in S is an extreme point if each line segment

that lies completely in S and contains the point P has P as an endpoint of the line

segment. Alternatively, P is an extreme point of S, if it is not a convex combination

of other points in S.

Under this assumption, each set Xd contains a a large but finite set of extreme points

{xd,t}|Td|
t=1 and we may write Xd = {xd ∈ Rnd : xd =

|Td|
∑

t=1

λd,tx
d,t,

|Td|
∑

t=1

λd,t = 1, λd,t ≥

0; ∀t ∈ Td. Now substituting for xd leads to an equivalent extremal problem or the

full master problem [21]. It is also identical to the Linear Programming Master

Problem (LPM) discussed in the Dantzig-Wolfe reformulation of an integer program

by Wolsey [70].

(LPM)

min
|D|
∑

d=1

|Td|
∑

t=1

(cdxd,t)λd,t

|D|
∑

d=1

|Td|
∑

t=1

(Adxd,t)λd,t = b ; πi

|Td|
∑

t=1

λd,t = 1∀d ∈ D ; µd

λd,t ≥ 0; ∀t ∈ Td, d ∈ D

(2.11)

4A bounded set is a set of finite site. Also, see Definition 2.1.2 on page 23 for a definition of a

convex set.
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It is noted here that there is a column

















cdx

Adx

ed

















associated with each x ∈ Xd.

In addition, {πi}mi=1 and {µd}|D|
d=1 are the dual variables associated with the joint

constraints and the second set of constraints (also known as convexity constraints

[70]), respectively.

If the linear programming master problem (2.11) is solved, so is the origi-

nal problem (2.10). Unfortunately, for most problems, the extreme points {xd,t}|Td|
t=1

of each set Xd are far too numerous to be expressed explicitly. Therefore, prob-

lem (2.11) is solved iteratively each with a subset of the extreme points {xd,t}|Td|
t=1

or equivalently a subset of columns

















cdx

Adx

ed

















. The full master problem (a.k.a.

extremal problem, LPM) with only a subset of columns is called Restricted Master

Program [21]. Alternatively, it can also be called the Restricted Linear Programming

Master Problem (RLPM) [70].

(RLPM)

min
|D|
∑

d=1

˜|Td|
∑

t=1

(cdxd,t)λd,t

|D|
∑

d=1

˜|Td|
∑

t=1

(Adxd,t)λd,t = b ; πi

˜|Td|
∑

t=1

λd,t = 1; ∀d ∈ D ; µd

λd,t ≥ 0; ∀t ∈ T̃d, d ∈ D

1 ≤ ˜|Td| � |Td|

(2.12)

Subsequently, an efficient method to choose only good extreme points or columns

as to improve the LPM objective function value at each iteration is needed. This is
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the point where the pricing subproblems we mentioned above come in.

The pricing subproblem finds a column with the smallest reduced cost (or

largest reduced cost for maximizing problem). In other words, it finds the columns

or variables, when added into the master problem for which the master problem

objective function will reduce the most (and vice versa for a maximizing problem).

According to [3, 68, 22], the reduced cost associated with each column x ∈ Xd can

be determined as cdx− πAdx− µd. Since the number of columns are numerous and

we are only interested in the column yielding the smallest reduced cost, the following

pricing subproblem can be set up for each Xd.

(Pricing Subproblem) min
(

cd − πAd
)

x− µd : x ∈ Xd (2.13)

Therefore, there are |D| pricing subproblems altogether to be solved. As we men-

tioned earlier that the master problem and pricing subproblems will be solved it-

eratively, next we discuss the stopping criteria. The solution algorithm terminates

when there is no column (variable), when added into the master problem that can

reduce the master problem’s objective function value. In other words, the maxi-

mum reduced costs from all pricing subproblems are greater than or equal to zero.

Having discussed the mathematical formulations for both master problem and pric-

ing subproblems as well as the stopping criteria, next we introduce the algorithm

implementing the Dantzig-Wolfe decomposition technique presented above.
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2.2.2 Dantzig-Wolfe Decomposition: The Overall Algorithm

This algorithm is adapted from the Dantzig-Wolfe decomposition method for

linear programming presented in [19], as well as [70] when applied to an integer

program, and the MOSEL code developed for combining sequential and parallel

solving [18]. Our algorithm is presented in four phases; Phase 1: Initialization,

Phase 2: Master problem feasibility check, Phase 3: Optimization of the RLPM, and

Phase 4: Calculation of the solution to the original problem. Phase 1 is simple and

only requires optimizing each pricing subproblem only once to check for its feasibility

and obtain initial feasible solutions. Phases 2 and 3 involve the optimization of the

master problem and the pricing subproblems repeatedly until a stopping criteria is

met. Finally, Phase 4 determines the solutions to the original problem. What follow

are detailed explanation for each phase as well as the algorithm flowcharts.

2.2.2.1 Phase 1: Initialization

Phase 1 serves two purposes: check for feasibility of each pricing subproblem d

and obtain initial feasible solutions. During this phase, we do not have information

on dual variables from the master problem yet. Therefore, each pricing subproblem

d is solved with its original objective function (i.e., cdxd). The infeasibility of at least

one pricing subproblem indicates the infeasibility of the original problem and the

algorithm terminates. On the other hand, if all pricing subproblems are feasible,

at lease one feasible solution from each pricing subproblem d is needed. These

|D| solutions are input to the master problem at the start of Phase 2. Since any
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feasible solution will do and in order to save computing time, solving each pricing

subproblem to optimality at this phase is unnecessary unless the optimal solution

is available easily. With that in mind, we seek the best solutions obtained within

a given preset computing time limit depending on the application. If no integer

solution is found within the preset time limit, the optimizer continues until the first

integer solution is found. Figure 2.6 displays a flowchart for Phase 1 and a detailed

explanation of each step follows.

1. Start Phase 1. Initialize d = 1.

2. Set the proposal counter for pricing subproblem d: ˜|Td| = 1. Solve pricing

subproblem d, with its original objective function and constraints: min cdxd :

Edxd ≤ fd.

3. If pricing subproblem d is feasible, continue to next step. Otherwise, algorithm

terminates. Report original problem as infeasible.

4. Record solution for pricing subproblem d, denoted by x̃d. xd, ˜|Td| = x̃d.

5. Update d← d + 1.

6. Check if all pricing subproblems have been solved. In other words, Check if

d = |D|. If yes, Phase 1 finishes. Continue to Phase 2. If no, go to Step 2.

2.2.2.2 Phase 2: Master Problem Feasibility

The feasible solutions from each pricing subproblem d obtained during Phase

1 are used to generate and initialize the solutions for the master problem. However,
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Figure 2.6: Flowchart for Phase 1
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the solutions from these pricing subproblems may not always be feasible in the mas-

ter problem. In other words, these solutions can not satisfy the joint constraints.

Therefore, practically during this phase, slack variables are added to constraints

in the master problem in such a way that this modified master problem is always

feasible. Subsequently, the master problem objective function is also modified to

minimize the sum of all slack variables. As for each pricing subproblem, its objec-

tive function is modified such that the original objective function coefficients are

removed. In particular, the pricing subproblem objective function is reduced to

min
(

−πAd
)

x − µd. This modified objective function helps in identifying pricing

subproblem solutions so as to reduce the infeasibility of the master problem and/or

prove that feasibility cannot be achieved [54]. Figure 2.7 illustrates a flowchart for

Phase 2. The goal here is to iterate through the master problem and pricing sub-

problems until the modified master problem optimal objective function value goes

to zero, meaning that the slack variables are no longer needed to maintain problem

feasibility. In other words, the proposed solutions from pricing subproblems can

satisfy the constraints (joint constraints) in the master problem. In contrast, if all

proposals from pricing subproblems are exhausted and the master problem opti-

mal objective function is not zero, then the original problem is infeasible and the

algorithm terminates. Next, we explain Phase 2 algorithm step by step.

1. Start Phase 2. Add variable λd, ˜|Td|. Note that the algorithm continues to Phase

2 if and only if every pricing subproblem is feasible in Phase 1. Therefore,

˜|Td| = 1∀d ∈ D.
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Figure 2.7: Flowchart for Phase 2
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2. Solve the RLPM with the modified objective function. Assuming there are m

joint constraints, the slack variables: {s+
i , s−i }mi=1 are added to their m joint

constraints to make the RLPM always feasible. Consequently, the objective

function is min ∇ =
m
∑

i=1

(s+
i + s−i ). The dual variables associated with the

joint constraints and convexity constraint, denoted by π and µ respectively,

are recorded.

3. If the optimal objective function value of the RLPM (denoted∇) = 0, solutions

from the pricing subproblems satisfy master problem joint constraints. Go to

Step 10. Otherwise, continue to next step.

4. Initialize d = 1. Update the proposal counter for pricing subproblem d: ˜|Td| =

˜|Td| + 1. Solve pricing subproblem d, with modified objective function. In

particular, the objective function is reduced to min σd = −πAdx− µd.

5. Check if pricing subproblem objective function value, denoted σ̃d < 0. If yes,

go to Step 7. If no, continue to next step.

6. Count the number of pricing subproblem whose objective function value ≥ 0

(σ̃d ≥ 0). Set i ← i + 1. If i = |D|, RLPM is infeasible and so is the original

problem. Algorithm terminates. Otherwise, go to Step 8.

7. Record solution for pricing subproblem d: xd, ˜|Td| = x̃d. Go to next step.

8. Update d← d + 1.

9. Check if d = |D|. If yes, go to Step 1. If no, go to Step 4.

38



10. Phase 2 finishes. Continue to Phase 3.

2.2.2.3 Phase 3: Optimization of the RLPM

Phase 3 iterates through the RLPM and pricing subproblem until no proposal

from the pricing subproblem can improve the objective function value of RLPM.

At that point, the objective function values for all pricing subproblems are greater

than or equal to zero. In other words, all reduced costs or σ̃d ≥ 0. Figure 2.8 shows

a flowchart for Phase 3. The explanation of each step follows.

1. Start Phase 3, with all λd,T̃d
added from Phase 2.

2. Solve RLPM. Record dual variable values: π and µ.

3. Initialize d = 1. Update ˜|Td| ← ˜|Td|+1. Retrieve π and µ values from previous

step. Solve the pricing subproblem d.

4. Check pricing subproblem objective function value, σ̃d. If σ̃d < 0. Go to Step

7. Otherwise, go to next step.

5. Count the number of pricing subproblem whose solution will not improve the

RLPM objective function value (σ̃d ≥ 0 for minimization problem, σ̃d ≤ 0 for

maximization problem). Update i← i + 1.

6. Check if i = |D|. If yes, go to 12. Otherwise, go to 8.

7. Record solution for pricing subproblem d: xd, ˜|Td| = x̃d. Go to next step.

8. Update d← d + 1.
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Figure 2.8: Flowchart for Phase 3
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9. Check if d = |D|. If no, go to Step 3. Otherwise, continue to next step.

10. Reset the counter i = 0.

11. Add variable λd, ˜|Td|. Go to Step 2.

12. Phase 3 finishes. Continue to Phase 4

2.2.2.4 Phase 4: Calculate the solution to the original problem

The solution to the original problem is the convex combination of all proposals

from each pricing subproblem. Denoting xd∗ as the optimal solution for xd, λ∗
d, ˜|Td|

as the optimal solution for λd, ˜|Td|, the optimal solution to the original problem can

be calculated as follows. xd∗ =
˜|Td|
∑

t=1

xd, ˜|Td|λ∗
d, ˜|Td|

. Figure 2.9 depicts a flowchart for

Phase 4. The algorithm details follow.

1. Start Phase 4. Initialize d = 1.

2. Retrieve all proposals xd, ˜|Td| and λ∗
d, ˜|Td|

.

3. Calculate xd∗ =
˜|Td|
∑

t=1

xd, ˜|Td|λ∗
d, ˜|Td|

.

4. Update d← d + 1.

5. Check if d = |D|. If yes, go to Step 6. Otherwise, go to Step 3.

6. Phase 4 finishes. Algorithm terminates.

Next we discuss the Dantzig-Wolfe decomposition technique for integer pro-

grams (DWIP) presented by Wolsey [70].
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Figure 2.9: Flowchart for Phase 4
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2.2.3 Dantzig-Wolfe Decomposition of an Integer Program

Consider the integer program below similar to Problem (2.9), except that the

set Xd now also has integer restrictions on the variables xd: Xd = {xd ∈ Znd

+ :

Edxd ≤ fd}.

min
|D|
∑

d=1

cdxd

subject to

A1x1 +A2x2 + . . . +Adxd ≤ b

E1x1 ≤ f1

. . . ≤ .

. . . ≤ .

E|D|x|D| ≤ f|D|

x1 ∈ Zn1

+ , . . . . . . , x|D| ∈ Z
n|D|

+

(2.14)

It is shown that Problem (2.14) still has the same decomposable structure as Problem

(2.9) we presented earlier and may be rewritten as follows.

(IP)
min

|D|
∑

d=1

cdxd :
|D|
∑

d=1

Adxd = b : xd ∈ Xd; ∀d ∈ D

Xd = {xd ∈ Znd

+ : Edxd <= fd}; ∀d ∈ D

(2.15)

Now assuming that each set Xd contains a large but finite set of points {xd,t}|Td|
t=1, we

may write Xd = {xd ∈ Znd : xd =
|Td|
∑

t=1

λd,tx
d,t,

|Td|
∑

t=1

λd,t = 1, λd,t ∈ {0, 1}; ∀t ∈ Td. Now

substituting for xd leads to an equivalent Integer Programming Master Problem
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(IPM) [70].

(IPM)

min
|D|
∑

d=1

|Td|
∑

t=1

(cdxd,t)λd,t

|D|
∑

d=1

|Td|
∑

t=1

(Adxd,t)λd,t = b ; πi

|Td|
∑

t=1

λd,t = 1∀d ∈ D ; µd

λd,t ∈ {0, 1}; ∀t ∈ Td, d ∈ D

(2.16)

Next, the linear programming relaxation of the IPM is developed and has the same

form as the LPM when we discussed the Dantzig-Wolfe decomposition for linear

programs (will be called DWLP, for the sake of discussion). In fact, from this point

on the formulations of the master problem and pricing subproblems for DWIP are

very similar to those of DWLP. The only difference is the definition of the set Xd in

the pricing subproblems, where Xd ∈ Rnd

+ for DWLP and Xd ∈ Znd

+ for DWIP. To

this end, the Dantzig-Wolfe decomposition algorithm we have presented above can

be directly applied to the integer programming, however, with only slight changes

for the definition of the set Xd we discussed above.

2.3 Benders Decomposition

In this section, we discusses the problem where if some variables are fixed

to certain values, the resulting problem becomes either decomposable into several

smaller problems or simpler to solve. One example of practical problem is the long-

term multi-period investment planning problem [19], where the operation decisions

are continuous variables and often decomposable by time period when the integer

investment decisions are fixed to given values. Next, let’s consider the optimization
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of the following form:

min cX + dY : AX + BY ≥ 0; X, Y ≥ 0, (2.17)

where A ∈ Rm×n1 , B ∈ Rm×n2 , c, d are row vectors of dimension Rn1 and Rn2 ,

X, Y are column vectors of dimension Rn1 and Rn2 , respectively. The Benders

decomposition applies to (2.17) when [34]:

1. for fixed Y , (2.17) decomposes into several independent optimization problems,

each containing a different subvector of X;

2. for fixed Y , (2.17) takes a well-known special structure (e.g., transportation

problem), where efficient solution algorithms are are available, and

3. Problem (2.17) is not a convex program in X and Y jointly, but fixing Y yields

it so in X.

Benders decomposition is proved to be useful in the problem structures we men-

tioned above. Nevertheless, we have implemented the solution algorithm presented

in [19] to our optimization problem and found that the algorithm convergence is not

promising after considerable amount of run time. The non-convergence is presum-

ably due to the structure and/or size of our optimization problem. The detailed

solution algorithm can be found at [19, 34, 53].

In this chapter, we have discussed the multiobjective optimization program

theory and solution techniques. Later, we discuss the Dantzig-Wolfe decomposition

technique used to decompose a big problem into several smaller pricing subproblems

and one master problem. In addition, we also provided a solution algorithm in
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detail. The decomposition technique is shown to be useful in Chapter 5, where it

is employed to significantly improve the problem’s lower bounds on the objective

function. Consequently, we can numerically prove that several integer solutions

obtained are already close to optimality. Finally, we briefly discuss the Benders

decomposition and show that what type of problem can take advantages of this

decomposition method.

In the next chapter, we discuss the wastewater treatment processes at the Blue

Plains advance wastewater treatment facility located in Washington, DC, for which

served as our case study. Later, we discuss the odor statistical model developed

by Gabriel et al. [32] used to predict biosolids odors produced at the Blue Plains

facility. Finally, data and sources are discussed followed by odor threshold index

calculations.
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Chapter 3

Wastewater Treatment Processes, Odor Prediction Statistical

Models, Data and Sources, and Odor Threshold Calculations

In this chapter we will briefly discuss the wastewater treatment process at

DCWASA, which is the case study for this dissertation. Then, we will discuss odor

prediction statistical models developed by Gabriel et al. [32]. Lastly, we will examine

the data input for our optimization models described in Chapter 4 and their sources

followed by odor threshold calculations.

3.1 Wastewater Treatment Processes

DCWASA currently handles more than 330 million gallons a day of raw sewage

from area jurisdictions and this figure is anticipated to increase to 370 million gallons

a day by 2010 [25]. The initial treatment stage starts as a discarded refuse where

debris and grit are separated and transported to a landfill. The remaining sewage

then effuses into the primary sedimentation tanks where approximately half of the

floating solids are removed from the liquid. The liquid empties into the secondary

treatment tanks where oxygen is infused so bacteria can break down the organic

substance. During the next phase of treatment, the bacteria transforms ammonia

into innocuous nitrogen gas. Residual solids settle to the bottom and the water

is drained down through sand filters that purge the remaining floating solids and
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phosphorus. The water is sanitized and expelled into the Potomac River. Figure

3.1 shows the liquid flow diagram [25].

Figure 3.1: Liquid Process Flow Diagram [25]

The sludge or solid residue, which is a semisolid precipitated mass or deposit,

in the primary sedimentation tanks proceeds to large vessels where gravity causes

the concentrated sludge to settle to the bottom and thicken [25]. Sludge from the

secondary sedimentation tanks and nitrifications reactors are thickened separately in

dissolved air flotation (DAF) thickeners. The thickened sludge from the gravity and

DAF thickeners is then blended in the blend tanks. The blended sludge is partially

dewatered by an on-site contractor providing additional dewatering equipment (i.e.,
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belt filter presses and centrifuges) and the remaining by DCWASA. Pathogens are

eliminated by a lime-stabilization process. The on-site contractor adds lime both

prior to (pre-lime) and after (post-lime) dewatering while DCWASA only does post-

lime. The organic biosolids are then applied to farmland in Maryland and Virginia.

Figure 3.2 displays the solids-handling process diagram. In the next section, we

Figure 3.2: Solids-Handling Process [25]

discuss two odor statistical models developed by Gabriel et al. [32], where one of

them was used as a linear constraint in our optimization models.

3.2 Odor Prediction Statistical Models

Gabriel et al. [32] have demonstrated that biosolids odor may be predicted

from some variables in the treatment process as well as ambient conditions. Before

delving into the developed odor prediction models, we will briefly describe each

independent variable as well as its effects on biosolids odor levels.
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3.2.1 Polymer Addition

In wastewater treatment, polymer is used to condition biosolids in thickening

or dewatering processes and eases the breakup of solids by combining small particles

into larger ones or “flocs” [58]. Murthy et al. [45], Kim et al. [41], as well as

Gabriel et al. [31, 32] have reported that polymer addition may result in an increase

of biosolids odor level, especially the production of trimethyl amine (TMA). This

finding is confirmed in equations (3.1) and (3.2), where the more polymer added the

higher the biosolids odor level [32].

3.2.2 Number of Centrifuges or Belt Filter Presses in Service

Centrifuges and belt filter presses are used in a dewatering process. By cutting

down water content of biosolids and increasing the solids concentration, biosolids

volume is significantly decreased during this process [58]. Besides reducing volume

and therefore saving cost of biosolids storage and transportation, dewatering may

provide other benefits such as getting rid of liquids before landfill disposition and

cutting down fuel needs if residuals are to be incinerated or heat dried [60, 59].

In centrifugal dewatering, water is removed from wastewater solids by the

force generated from a rapid rotation of a cylindrical bowl [60]. Whereas, a belt

filter press squeezes out water by putting on pressure to the biosolids [59]. Figures

3.3, 3.4, and 3.5 display a typical centrifuge thickening and dewatering system, a

schematic of a belt filter press, and a dewatered solids cake dropping from belt filter

press, respectively. At DCWASA, at the time the odor prediction statistical models
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Figure 3.3: Typical centrifuge thickening and dewatering system [60]

Figure 3.4: Schematic of a belt filter press [59]
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Figure 3.5: Dewatered solids cake dropping from belt filter press [59]

that we refer to later were developed, there were seven centrifuges in operation. In

addition, there were two centrifuges as well as seven belt filter presses operated by a

contractor. An important point is that when there is an insufficient number of cen-

trifuges, there is more retention time of sludge in the line of wastewater treatment.

Recently, Gabriel et al. [31, 32] have suggested the higher number of centrifuges in

service the lower the biosolids odor level.

3.2.3 Temperature

Arispe [1] has reported that the higher ambient temperatures may result in a

more septic condition of the sewer lines entering the plant as well as create more

anaerobic conditions in the treatment process. Consequently, the amount of reduced

sulfur compounds, resulting in over all biosolids odor, in the wastewater and sludge

may increase [1]. Another study by Kim et al. [40] also indicated that high tempera-
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tures may promote higher microbial activity and result in lower oxidation-reduction

potential (ORP) conditions of sludge from DAF and gravity thickener. More reduced

sulfur compounds could then be observed due to this lower ORP [1, 40]. Recently,

Gabriel et al. [31, 32] have demonstrated in odor prediction statistical models that

the higher temperatures the lower biosolids odor level could be detected, given all

things being equal.

3.2.4 Sludge Blanket Depth

The sludge blanket depth was identified as the depth of suspended solids at

bottoms of settling tanks [31, 32]. Gabriel et al. [31, 32] proposed that the sludge

blanket depth should be positively correlated with biosolids odor level due to the

longer retention time for activated sludge in the settling tanks when the blanket

depth was high. Sludge blanket depths were collected at three different locations at

the DCWASA facility: secondary west even tanks, secondary west odd tanks, and

secondary east tanks.

3.2.5 Lime Addition

During the last stage of the solids process, biosolids are stabilized with lime

to raise the pH level as well as the temperature. Subsequently, some pathogens are

eliminated before biosolids are hauled to the fields for beneficial reuse. Murthy et al.

[45] suggested that an increase in a lime dose may decrease the biological activities

and thus less reduced sulfur compounds were observed. Also, Gabriel et al. [32] have
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demonstrated in their odor prediction statistical model (see equation (3.2), page 55)

that the more lime added the less biosolids odor detected.

Having introduced all relevant independent variables, we next show two odor

prediction statistical equations [32] used as linear constraints in our optimization

models.

3.2.6 First Odor Prediction Statistical Model

The first model [32] to predict biosolids odors is the following:

Yi = −1.03 + 0.14X1 − 0.32X2 + 0.07X3 + 0.47X4 + 0.58X5 − 0.96X6 (3.1)

where,

Yi = Inspector P’s biosolids odor score on day i in the winter period,

Xj = jth independent variable.

The independent variables in order were as follows.

1. The amount of dewatered polymer on day d (lbs/dry ton solids (DTS))

2. The number of DCWASA centrifuges in service on day d

3. The minimum temperature on day d− 1 (◦F)

4. The blanket depth for the secondary east tank on day d− 1 (feet)

5. A dummy variable for when the sum of blanket depth from all locations on

day d− 1 was greater than 10.3 feet (0 or 1)

6. A dummy variable for when the average temperature on day d − 1 was less

than 43 ◦F (0 or 1)

54



Besides the independent variables we have previously discussed, there were two

additional independent dummy variables, X5 and X6, as it can be seen in Equation

(3.1). The value of each dummy variable equals one when its associated condition is

met. The value of 10.3 feet appearing in the associated condition to X5, represents

the 80% fractile determined from the observed data [32]. Whereas, the value of 43

◦F in X6 represents the 20% fractile. Gabriel et al. [32] indicated an adjusted R2 of

approximately 0.60 was achieved for this odor prediction model. In other words, this

model explained about 60% of the variation in the biosolids odor levels accounted

for by the explanatory variables. In addition, with the exception of the intercept,

most coefficient values were statistically distinct from zero at the 10% level [32].

Next, we present the second model, which had a higher adjusted R2.

3.2.7 Second Odor Prediction Statistical Model

The second model from [32] is:

Yi = 3.89 + 0.03X1 + 0.98X2 − 0.47X3 − 1.91X4 − 0.01X5 + 0.56X6 + 1.13X7 (3.2)

where,

Yi = Inspector C’s biosolids odor score on day i in the winter period,

Xj = jth independent variable.

The independent variables in order were as follows.

1. The minimum temperature on day d− 1 (◦F)

2. Blanket depth, secondary east tank on day d− 1 (feet)
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3. The number of contractor belt filter presses in service on day d− 1

4. The number of contractor centrifuges in service on day d − 1

5. The amount of lime used on day d − 1 (lbs/DTS)

6. A dummy variable for when the sum of polymer amount at Dissolved Air

Floatation (DAF) and dewatered polymer on day d − 1 was greater than

200.05 lbs/DTS (0 or 1)

7. A dummy variable for when the lime amount on day d − 1 was less than 308

lbs/DTS (0 or 1)

Analogous to the first model, there were two additional independent dummy vari-

ables: X6 and X7. Moreover, the values of 200.05 lbs/DTS and 308 lbs/DTS rep-

resent the 80% and 20% fractiles, respectively. The adjusted R2 for this model was

80.28% and most of the coefficient values were statistically distinct from zero at the

10% level except the intercept [32].

3.3 Data and Sources

In this section, we examine all data used in our optimization model and their

sources. Since the statistical equations were developed during 2002 and some treat-

ment processes have been changed since then, in order for validity of these equations,

wastewater treatment process data as well as others were taken from the year 2002.

It is crucial to note that some data could not be used in its original form but needed
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to be modified first. The necessary computational modifications are also described

in what follows.

3.3.1 Centrifuge and Belt Filter Press’ Operation and Maintenance

Cost Data

The costs of operating and maintaining one centrifuge was approximated to

be between $65/DTS to $209/DTS [60]. Generally less efficient, operation and

maintenance costs of one belt filter press were approximately between $80/DTS to

$200/DTS [59]. At DCWASA, the operation and maintenance costs of one centrifuge

were estimated at $196/DTS (C. Peot, personal communication, December 2, 2004).

Without access to the on-site contractor’s belt filter press data, we assumed that

the operation and maintenance costs of one belt filter press were $200/DTS.

3.3.2 On-Site Contractor’s Dewatering and Lime Stabilization Costs

The following costs were obtained from C. Peot (personal communication,

December 16, 2004). The dewatering costs were $71.75 per DTS for the first 150

DTS and then $50.25 per DTS thereafter. Not only did the on-site contractor

provide lime-stabilized biosolids after dewatering (post-lime) but they also applied

lime before dewatering (pre-lime). The costs for pre-lime and post-lime were $10.10

per DTS and $7.40 per DTS, respectively. It is also important to note that the

pre-lime process only applied to 67% of the flow to the contractor.
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3.3.3 DCWASA’s dewatering Cost

Despite great efforts to obtain DCWASA’s dewatering costs, we were not able

to obtain these data, due no doubt to the large and decentralized nature of the

facility. This cost had an important role in our optimization model notwithstanding

and was generally higher than the on-site contractor’s dewatering cost (C. Peot,

personal communication, December 16, 2004). Thus, the compromise solution was

to vary DCWASA’s dewatering cost between $70 and $90 per DTS as part of a

sensitivity analysis.

3.3.4 Chemical Costs

Our optimization models included two types of chemicals: polymer and lime.

Their costs were $1.26 per pound and $0.06 per pound for polymer and lime, re-

spectively (C. Peot, personal communication, December 16, 2004).

3.3.5 Biosolids’ Hauling Cost

DCWASA arranged with three contractors to haul biosolids to reuse fields.

Hauling costs were charged per wet ton of biosolids. In other words, no distances

were taken into account. For proprietary purposes, we named these three contractors

contractor 1, contractor 2, and contractor 3. The hauling costs for contractors 1, 2,

and 3 were $42.50, $46.00, and $25.14 per wet ton, respectively (C. Peot, personal

communication, December 16, 2004).
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3.3.6 Temperature Data

Temperature data were collected from the National Climate Data Center

(NCDC) website (http://www.ncdc.noaa.gov/oa/ncdc.html.). To represent the tem-

perature at DCWASA, temperatures at the National Airport Station in Washington,

DC, the closest station to DCWASA, were collected. Three types of daily temper-

atures were used: minimum, maximum, and average. A sample of the temperature

data from January 1, 2002 to January 8, 2002 is shown in Table 3.1.

Table 3.1: Temperature in degrees Fahrenheit on selected days

Date Day Maximum Minimum Average
Temperature Temperature Temperature

1/1/2002 Tuesday 34 20 27
1/2/2002 Wednesday 37 21 29
1/3/2002 Thursday 36 30 33
1/4/2002 Friday 41 27 34
1/5/2002 Saturday 51 26 38.5
1/6/2002 Sunday 39 29 34
1/7/2002 Monday 39 30 34.5
1/8/2002 Tuesday 40 28 34

3.3.7 Wastewater Treatment Processing Data

Wastewater treatment processing data were obtained from DCWASA’s process

control historical (PCH) database. The data required in our optimization model

included sludge blanket depths at three different locations, DAF polymer, dewatered

polymer, and lime additions, numbers of DCWASA and contractor’s centrifuges in

service, and lastly the number of belt filter presses in service. Sample data from

January 1, 2002 to January 8, 2002 are given in Tables 3.2, 3.3, and 3.4.
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Table 3.2: Blanket depth in feet on selected days

Date Blanket depth Blanket depth Blanket depth
secondary east secondary west odd secondary west even

1/1/2002 2.3 2.6 3
1/2/2002 2.6 2.6 3
1/3/2002 3.3 3.3 3.4
1/4/2002 3.1 3.1 3.5
1/5/2002 3.1 3.1 2.9
1/6/2002 3.3 3.3 3.5
1/7/2002 3.7 3.9 4.7
1/8/2002 4.1 3.3 3.4

Table 3.3: Polymer and lime additions in lbs/DTS on selected days

Date DAF Dewatering Lime
polymer polymer addition
addition addition

1/1/2002 190.55 0.78 269.91
1/2/2002 229.85 3.13 275.73
1/3/2002 146.95 3.31 277.03
1/4/2002 182.11 7.3 273.49
1/5/2002 131.41 3.64 259.92
1/6/2002 87.94 18.28 262.82
1/7/2002 208.86 14.84 265.77
1/8/2002 144.23 19.14 264.88

Table 3.4: Numbers of centrifuges and belt filter presses in service on selected days

Date #of DCWASA’s # of contractor’s # of contractor’s
centrifuges centrifuges belt filter press
in service in service in service

1/1/2002 4 1 4
1/2/2002 2 1 4
1/3/2002 3 1 4
1/4/2002 4 1 4
1/5/2002 4 1 4
1/6/2002 4 1 4
1/7/2002 4 1 4
1/8/2002 3 2 4
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3.3.8 Wind Direction

Wind direction for each reuse field was recorded by a contractor when biosolids

were applied at that particular field and was used along with other variables to calcu-

late an odor threshold for each reuse field. In particular, the numbers of people and

key institutions affected by biosolids odors in the downwind areas were determined

according to a wind direction for each reuse field. Then, these numbers would then

be used to calculate an odor threshold for each reuse field as discussed in Section

3.4. It was very difficult to actually assign prevailing wind direction to each field

as wind direction may vary for each time of visit. In addition, there were only one

or two visits for most of the fields during the time period in question. Therefore,

the wind direction for each reuse field used in the optimization model was obtained

by arbitrarily picking one of the wind directions that were recorded. Samples wind

direction assigned to reuse fields are shown in Table 3.5. It is noted here that if more

historical wind directions for each reuse field were available, statistical analysis on

wind directions could be performed to determine either a dominant wind direction

or several, with appropriate weights.

3.3.9 Reuse Field Data

Starting from October 2001 to the end of October 2006, there were approxi-

mately 5900 reuse fields receiving biosolids from DCWASA. This number was ob-

tained from the Maryland Environmental Service (MES) database. In choosing

candidates or feasible reuse fields for our optimization model runs, we queried vis-
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ited reuse fields during a time period in question. For example, when running the

optimization model that covered the time period during January of 2002, we can

query all visited reuse fields during a year 2002. These fields would then be candi-

dates or feasible fields for the run. The choice of the number of fields to use is a

complicated one. Using all 5900 fields as input for a multiobjective optimization was

computationally prohibitive in terms of obtaining Pareto optimal solutions. Further-

more, there were also some constraints not allowing all fields to be candidates for

a biosolids application at the same time. One example of these constraints was the

nutrient depository limit of each field not allowing the application of biosolids at

the same farm in a certain time period. In particular, we used one year worth of

visited fields.

Besides the geographic coordinates of each field, the MES database also pro-

vided tonnage capacity and wind direction at the time the field was inspected. After

we plotted each field location in Virginia and Maryland, and by running an Avenue

script in ArcView 3.2a (see the script in Appendix A), we then obtained more in-

formation for each field such as the total number of people, number of schools and

hospitals, and total length of streets within a three-mile radius of the reuse field.

The procedures used to obtain this information will be discussed in the following

subsections. This information was then used to determine the odor threshold for

each reuse field (see Section 3.4). Figure 3.6 shows a map of five selected reuse fields

and surrounding schools, hospitals, streets and block group population density in

St. Mary’s County, Maryland. All map layers were originally in North American

1983 geographic coordinated system (GCS). Later, they were projected onto the
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Figure 3.6: Reuse fields, schools, hospitals, streets and block group population den-
sities, St. Mary’s County, Maryland
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Maryland State Plane Coordinate System, North American Datum (NAD) 1983, in

horizontal units of feet. All calculations for obtaining GIS data were done within the

specified projected coordinate system. Locations of all schools, hospitals and streets

and block group population densities were obtained from Environmental Systems

Research Institute, Inc. (ESRI)’s Data & Maps 2003 DVD ROM. Table 3.5 displays

Table 3.5: Five selected reuse fields with their latitudes, longitudes, biosolids ton-
nage capacities, wind directions at the time of visit, population densities, total
number of people, schools, hospitals, length of streets within a three-mile radius
from each reuse field

Field ID Latitude Longitude Capacity Wind Population
of field of field (tons) Direction density
centroid centroid (people/sq.mi.)

535 38.34928 −76.69468 89.82 SSW 118.30
536 38.34384 −76.70407 87.45 SW 118.30
537 38.34888 −76.69426 39.19 SSW 118.30
538 38.33125 −76.70180 38.93 N 118.30
539 38.33169 −76.70005 75.12 N 118.30

# of people # of people # of People # School # School # School
(0–1 mile) (1–2 miles) (2–3 miles) (0–1 mile) (1–2 miles) (2–3 miles)

367.45 1021.82 2053.36 1 4 2
360.57 1031.35 1857.14 0 3 4
367.68 1018.76 2046.00 1 4 2
375.86 1074.05 1613.28 0 3 1
375.12 1077.68 1623.02 0 3 2

# Hospital # Hospital # Hospital Length of Length of Length of
(0–1 mile) (1–2 miles) (2–3 miles) Street Street Street

(miles) (miles) (miles)
(0–1 mile) (1–2 miles) (2–3 miles)

0 0 1 13.14 44.19 57.83
0 0 1 13.63 39.71 60.03
0 0 1 13.37 43.86 57.49
0 1 0 13.06 37.03 56.20
0 1 0 11.62 38.47 56.78

five selected reuse fields with their latitudes, longitudes, biosolids tonnage capacities,

wind directions at the time of visit, population densities, total numbers of people,
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schools, and hospitals and total lengths of streets within each mile radius up to a

distance of three miles. Similar to this table, Table 3.6 displays those numbers that

were in downwind areas for the same reuse fields.

Table 3.6: Total number of people, schools, and hospitals and total length of streets
in downwind areas within a three-mile radius of each reuse field

# of # of # of # of # of # of
people people people school school school

(downwind, (downwind, (downwind, (downwind, (downwind, (downwind,
0–1 mile) 1–2 miles) 2–3 miles) 0–1) mile 1–2 miles) 2–3 miles)

38.03 125.82 330.68 0 1 0
38.06 105.9 214.35 0 0 0
37.97 122.87 329.9 0 1 0
40.56 127.8 172.99 0 0 0
40.29 127.79 184.7 0 0 0

# Hospital # Hospital # Hospital Length of Length of Length of
(downwind, (downwind, (downwind, Street Street Street

(miles) (miles) (miles)
0–1 mile) 1–2 miles) 2–3 miles) (downwind, (downwind, (downwind

0–1 mile) 1–2 miles) 2–3 miles)
0 0 0 1.23 6.9 7.5
0 0 0 0.55 6.89 7.94
0 0 0 1.43 6.8 7.26
0 0 0 1.48 3.59 5.16
0 0 0 1.53 4.03 5.27

Next, the procedures used to obtain data in Tables 3.5 and 3.6 are discussed.

3.3.10 Field Tonnage Capacity

Field tonnage capacity was obtained by multiplying available acreage (acres)

by application rate (tons/acre). The available acreage and application rate for each

reuse field were obtained from MES’s database CD ROM.

65



3.3.11 Population Density

Population densities (people/square mile) were also obtained from ESRI’s

Data & Maps 2003 DVD ROM. The DVD ROM provides population densities

at three levels, i.e., county, tract, and block group. Tracts are small, relatively

permanent statistical subdivisions of a county or statistically equivalent entity in

accordance with Census Bureau guidelines. A block group contains several blocks,

where each block is bounded on all sides by visible features such as streets, streams,

and railroad tracks, and by invisible boundaries such as city, town, and county

limits. The block group population densities are considered as the lowest level of

population densities available and provide most detailed data. Therefore, we used

the block group population densities to calculate the total number of people in a

specified area. The calculation can be found in the next section.

3.3.12 Total Number of People

The total number of people was determined by the inner product of a block

group population density and its area in question. The areas in question for each

reuse field may be composed of several block groups (whole or part of each block

group). Figure 3.7 shows a particular field (# 536) with the circles in one, two, and

a three-mile radius. To demonstrate how we calculated a total population within

the area in question, we next discuss the calculation of total population within a

one-mile radius of Field 356. It can be seen that areas within the 0–1-mile radius

from Field 536 were composed of two pieces, each from different block groups. Note

66



Figure 3.7: Block group layer within a three-mile radius of Field 536

that each block group is distinguished by different colors. In particular, the smaller

piece with an area of 0.57339 sq.mi. has a block group population density of 99

people/sq.mi. and the larger piece with the area of 2.56805 sq.mi. has a block group

population density of 118.3 people/sq.mi. Therefore, total population within a 0–1-

mile radius of Field 536 is calculated as:

0.57339 sq.mi.× 99
people

sq.mi
+ 2.56805 sq.mi× 118.3

people

sq.mi
= 360.57 people

Using similar calculations, we determined the total number of people within two and

three-mile radii. Then the total number of people within the 1–2-mile and 2–3-mile

radii were obtained by subtraction of appropriate population totals.

In addition to calculating the total number of people in a specified radius,

it is interesting to see how the optimization results would change, when the wind
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direction was taken into account for the affected areas. Hence, we calculated the

total number of people located in the downwind directions. This total population

figure would then be used in calculations of the second set of odor threshold in

Section 3.4.2. Figure 3.8 demonstrates how we took wind direction into account.

First, we assumed that the odor would gradually disperse laterally on each side of

Figure 3.8: Block group in downwind areas within a three-mile radius of Field 536

the wind direction up to one mile at the end of the three-mile radius. For the sake

of discussion, let’s consider the right triangle D with sides a, h, and o displayed in

Figure 3.9. An adjacent side of angle b, denoted a, represents a three-mile radius

in a downwind direction. An opposite side of angle b , denoted o, represents the

dispersion distance of one mile at the end of the three-mile radius and forms a right

angle with a. Point E represents the center of a reuse field. Now, we have that

tan b = o
a

= 1
3
. Subsequently, we also have that b = arctan 1

3
∼= 32◦. Therefore, this

assumption yields an angle of arctan 1
3

on each side of the wind direction. Next,

we drew a line with an angle of arctan 1
3

on each side of a line representing the
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Figure 3.9: A right triangle with a hypotenuse side = 1 mile and an adjacent side
= 3 miles

downwind direction. These two lines formed an infinite cone running outward from

the center of the reuse field. We then found the intersections of this cone with

the circle area in 1, 2, and a 3-mile radius, respectively. The hatched shaded area

shown in Figure 3.8 exhibits the intersection of the cone with the area in a 0–1-mile

radius. It represented the affected area according to a wind direction in a 0–1-mile

radius. Using a similar method to calculate a total population discussed earlier in

this subsection, the total affected population according to the wind direction within

a 0–1-mile radius could be calculated as:

0.32173 sq.mi.× 118.3
people

sq.mi
= 38.06 people

The total affected population according to the wind direction within a 1–2-mile ra-

dius and a 2–3-mile radius was calculated in a similar manner when we calculated
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total affected population within 1–2-mile radius and 2–3-mile radius, without wind

direction. We will discuss how we use different versions of a total population calcu-

lations to derive several sets of odor thresholds in Section 3.4. Next, we discuss a

total length of streets calculations as it relates to odor threshold calculations.

3.3.13 Total Length of Streets

Analogous to a total population calculation, we also calculated the total length

of streets within 0–1, 1–2, and a 2–3 mile radii as well as those in downwind areas.

The circles and cone for each reuse field were identical to those used in a total

population calculation of a same reuse field. Figure 3.10 displays the streets within

a three-mile radius of a particular field (# 536).

Figure 3.10: Streets within a three-mile radius of Field 536
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3.3.14 Total Number of Schools

The calculations of a total number of schools within each mile radius and each

downwind area were more straightforward than the calculations of a total number

of people and a total length of streets for each reuse field. We simply drew one, two,

and a three-mile-radius circle and a line with an angle of arctan 1
3

on each side of a

line representing the downwind direction. Then, the number of schools within each

area in question was counted. Figure 3.11 displays the schools within a three-mile

radius of a particular field (# 536).

Figure 3.11: Schools within a three-mile radius of Field 536

3.3.15 Total Number of Hospitals

The calculations of a total number of hospitals within each mile radius and

each downwind area were analogous to the calculations of the number of schools.
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Figure 3.12 displays the hospitals within a three-mile radius of Field 536.

Figure 3.12: Hospitals within a three-mile radius of Field 536

Next, we discuss how we derived the odor threshold for each reuse field from

the total number of population, number of schools, number of hospitals, and length

of streets.

3.4 Odor Thresholds for Each Reuse Field

To aid in the decision of where to deliver biosolids as previously described,

data were collected on the local population, length of streets, and number of key

local institutions (i.e., schools, hospitals). All things being equal, odor thresholds

should be lower for more densely populated areas, and locations with close proximity

to schools, hospitals, and streets reflecting the sensitivity to the affected areas.

The biosolids odor scores were determined subjectively by field inspectors with
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the range of scores from 0 (least malodorous) to 9 (most malodorous). The odor

thresholds for each reuse field f were not available from the inspectors and were thus

computed from scratch. In particular, many choices for these values are possible.

However, since the malodorous aspects usually affect people, factors that involved

the local population should be used. Also, all things being equal, the more people

potentially affected by the odors (within a given radius), the lower the threshold

should be. Using these guiding principles, we established the following criteria in

order to determine an odor threshold index for each reuse field. When possible, it

is preferable to always apply biosolids to a field that would affect less people, less

schools, less hospitals, and less total length of streets in a three-mile radius. In

particular, these key parameters would be more affected by biosolids’ odor when

they were located near a reuse field. Therefore, besides quantities of these key

parameters, distances to a reuse field would be taken into account when the odor

thresholds were calculated. In addition, the three-mile radius figure representing

the traveling distance of odor through air was obtained from A. Razik (personal

communication, November 5, 2004), a specialist in biosolids land application.

We developed two sets of odor thresholds to vary inputs to the optimization

models. The difference between the two sets was that the first one did not take

wind direction into account for the calculation, while the second one did. It is also

important to note that these two sets of odor thresholds were different than the odor

thresholds developed in an earlier work by Gabriel et al. [30]. In this dissertation, we

added more data (e.g., total number of hospitals, total length of streets in proximity

area) into the calculations as an attempt to produce odor thresholds that more

73



closely represented the relative odor thresholds of all reuse fields in question. Also,

we captured as many factors as possible. Another major difference was how the

population index was computed. In [30], the population index calculation simply

used the reciprocal of the block group population density assigned to each reuse

field based on its location. While, in this dissertation, the population index for each

reuse field was calculated from the total population in proximity areas, which in

some cases the total population calculations were involved more than just one block

group density as can be seen in Section 3.3.12. Therefore, the population index

calculated by the current approach better represents the number of people affected

by biosolids odor. Consequently, the resulting odor indices from all reuse fields will

be more accurately represented. Next, we discuss how we computed each set of odor

threshold for each reuse field.

3.4.1 First Set of Odor Thresholds

The data used to calculate the first set of odor threshold values were total

population, total number of schools, total number of hospitals, and total length of

streets within a 0–1, 1–2, and a 2–3 mile radius. The calculations resulting a school

index, population index, hospital index, street index, and an odor threshold index.

1. School index calculation

The school index of each reuse field was calculated as follows:

SIj =















9 if s0–3 = 0

8× sj−min{sj}
max{sj}−min{sj} if s0–3 6= 0

(3.3)
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where

SIj =school index of field j

sj =
1

2.5s0–1
j + 1.5s1–2

j + 0.5s2–3
j

s0–3
j =total number of schools within 0–3 mile radius of field j

s0–1
j =total number of schools within 0–1 mile radius of field j

s1–2
j =total number of schools within 1–2 mile radius of field j

s2–3
j =total number of schools within 2–3 mile radius of field j

The calculation of a school index where there is no school within a three-

mile radius was treated differently to prevent the reciprocal of zero. More

specifically, a school index of 9, corresponded to a highest odor score examined

by a field inspector, would be assigned to a reuse field with no school within

a three-mile radius. Otherwise, a school index would be varied between 0 and

8. The min {sj} and max {sj} were used to normalize indices to be between

these values. In addition, more weight should be given to parameters within

a shorter mile radius. Thus, the coefficients 2.5, 1.5, and 0.5 were used as

multipliers to represent the relative importance of the associated number of

school within a 0–1, 1–2, and a 2–3 mile radius, respectively. The reciprocal

shown in the calculation of sj indicates that a higher number of schools in the

proximity area would produce a lower school index score. Next, we discuss

the population index calculation.
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2. Population index calculation

Defining PIj as the population index of field j, we calculate the population

index of each reuse field as follows.

PIj = 9× pj −min{pj}
max{pj} −min{pj}

(3.4)

where

pj =
1

2.5p0–1
j + 1.5p1–2

j + 0.5p2–3
j

p0–1
j =total population within 0–1 mile radius of field j

p1–2
j =total population within 1–2 mile radius of field j

p2–3
j =total population within 2–3 mile radius of field j

Next, we discuss the hospital index calculation.

3. Hospital index calculation

The same terminology used to calculated a school index was used to calculate

a hospital index. Defining HIj as the hospital index of field j, we calculate

the hospital index for each reuse field as follows.

HIj =















9 if h0–3 = 0

8× hj−min{hj}
max{hj}−min{hj} if h0–3 6= 0

(3.5)

where

hj =
1

2.5h0–1
j + 1.5h1–2

j + 0.5h2–3
j

h0–3
j =total number of hospitals within 0–3 mile radius of field j

h0–1
j =total number of hospitals within 0–1 mile radius of field j
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h1–2
j =total number of hospitals within 1–2 mile radius of field j

h2–3
j =total number of hospitals within 2–3 mile radius of field j

Next, we discuss the street index calculation.

4. Street index calculation

Again, with the similar line of reasoning in mind, a street index calculation is

similar to a population index calculation. Denoting RIj as the street index of

field j, we calculate the street index for each reuse field as follows.

RIj = 9× rj −min{rj}
max{rj} −min{rj}

(3.6)

where

rj =
1

2.5r0–1
j + 1.5r1–2

j + 0.5r2–3
j

r0–1
j =total length of streets within 0–1 mile radius of field j

r1–2
j =total length of streets within 1–2 mile radius of field j

r2–3
j =total length of streets within 2–3 mile radius of field j

Next, we combine population, school, hospital, and street indices to obtain

odor thresholds.

5. Odor threshold calculation

Denoting Oup
j as the odor threshold of reuse field j, we calculate an odor

threshold for each reuse field as follows.

Oup
j =

PIj + SIj + HIj + RIj

4
(3.7)
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We note here that taking an average of PI, SI, HI, and RI is just one way to

arrive at an odor threshold. Other possible approaches would include taking

the minimum or maximum of these four indices.

Table 3.7 displays the five selected fields1 and their corresponding odor thresholds

calculated by the five steps above.

Table 3.7: Five selected fields with associated odor thresholds set 1

Field ID Odor Threshold
535 2.27964
536 2.36103
537 2.28051
538 0.45708
539 0.44523

3.4.2 Second Set of Odor Thresholds

The second set of odor thresholds were derived to take into account wind

directions. These odor thresholds were computed similarly to the previous odor

thresholds, the differences being that we assumed that people and/or key institu-

tions located in the downwind directions would be more affected by the biosolids

odor than others not located in the downwind directions. Consequently, greater

multipliers were applied to people or key institutions located in the downwind direc-

tions, comparing to multipliers applied to people or key institutions located within

1For this data set of reuse fields: min{pj} = 3.45 × 10−5 people−1, max{pj} =

3.92 × 10−3 people−1, min{sj} = 0.11 people−1, max{sj} = 2.00 people−1, min{hj} =

0.67 people−1,max{hj} = 2.00 people−1, min{rj} = 6.34 × 10−4 people−1,max{rj} = 3.12 ×

10−2 people−1.
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the same mile radius, but not in the downwind directions. In particular, multipliers

applied to people or key institutions within each mile radius would be increased by

one if they were applied to numbers of people or key institutions in the downwind

directions.

There were five steps used to compute this last set of odor thresholds. They

were similar to the five steps we used to compute the first set of odor thresholds

except that we took the wind directions into account as mentioned above. The data

used to calculate this set of odor thresholds were total population, total number of

schools, total number of hospitals, and total length of streets within a 0–1, 1–2, and

a 2–3 mile radius, that were not in areas affected by downwind, and those that were

in areas affected by downwind. Next, we present the five steps used to calculate the

odor thresholds.

1. Population index calculation

Denoting PIj as the population index of field j, we calculate the population

index of each reuse field as follows.

PIj = 9× pj −min{pj}
max{pj} −min{pj}

(3.8)

where

pj =
1

2.5p0–1
j + 1.5p1–2

j + 0.5p2–3
j + 3.5pw0–1

j + 2.5pw1–2
j + 1.5pw2–3

j

p0–1
j =total population within a 0–1 mile radius of field j

less those in downwind areas

p1–2
j =total population within a 1–2 mile radius of field j
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less those in downwind areas

p2–3
j =total population within a 2–3 mile radius of field j

less those in downwind areas

pw0–1
j =total population in downwind areas within a 0–1 mile radius of field j

pw1–2
j =total population in downwind areas within a 1–2 mile radius of field j

pw2–3
j =total population in downwind areas within a 2–3 mile radius of field j

2. School index calculation

Denoting SIj as the school index of field j, we calculate the school index of

each reuse field as follows.

SIj =















9 if s0–3 = 0

8× sj−min{sj}
max{sj}−min{sj} if s0–3 6= 0

(3.9)

where

sj =
1

2.5s0–1
j + 1.5s1–2

j + 0.5s2–3
j + 3.5sw0–1

j + 2.5sw1–2
j + 1.5sw2–3

j

s0–3
j =total number of schools within a 0–3 mile radius of field j

s0–1
j =total number of schools within a 0–1 mile radius of field j

less those in downwind areas

s1–2
j =total number of schools within a 1–2 mile radius of field j

less those in downwind areas

s2–3
j =total number of schools within a 2–3 mile radius of field j

less those in downwind areas
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sw0–1
j =total number of schools in downwind areas

within a 0–1 mile radius of field j

sw1–2
j =total number of schools in downwind areas

within a 1–2 mile radius of field j

sw2–3
j =total number of schools in downwind areas

within a 2–3 mile radius of field j

3. Hospital index calculation

Denoting HIj as the hospital index of field j, we calculate the hospital index

for each reuse field as follows.

HIj =















9 if h0–3 = 0

8× hj−min{hj}
max{hj}−min{hj} if h0–3 6= 0

(3.10)

where

hj =
1

2.5h0–1
j + 1.5h1–2

j + 0.5h2–3
j + 3.5hw0–1

j + 2.5hw1–2
j + 1.5hw2–3

j

h0–3
j =total number of hospitals within a 0–3 mile radius of field j

h0–1
j =total number of hospitals within a 0–1 mile radius of field j

less those in downwind areas

h1–2
j =total number of hospitals within a 1–2 mile radius of field j

less those in downwind areas

h2–3
j =total number of hospitals within a 2–3 mile radius of field j

less those in downwind areas
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hw0–1
j =total number of hospitals in downwind areas

within a 0–1 mile radius of field j

hw1–2
j =total number of hospitals in downwind areas

within a 1–2 mile radius of field j

hw2–3
j =total number of hospitals in downwind areas

within a 2–3 mile radius of field j

4. Street index calculation

Denoting RIj as the street index of field j, we calculate the street index for

each reuse field as follows.

RIj = 9× rj −min{rj}
max{rj} −min{rj}

(3.11)

where

rj =
1

2.5r0–1
j + 1.5r1–2

j + 0.5r2–3
j + 3.5rw0–1

j + 2.5rw1–2
j + 1.5rw2–3

j

r0–1
j =total length of streets within a 0–1 mile radius of field j

less those in downwind areas

r1–2
j =total length of streets within a 1–2 mile radius of field j

less those in downwind areas

r2–3
j =total length of streets within a 2–3 mile radius of field j

less those in downwind areas

rw0–1
j =total length of streets in downwind areas

within a 0–1 mile radius of field j
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rw1–2
j =total length of streets in downwind areas

within a 1–2 mile radius of field j

rw2–3
j =total length of streets in downwind areas

within a 2–3 mile radius of field j

Next, we combined all indices above and derived an odor threshold for each

reuse field.

5. Odor threshold calculation

Denoting Oup
j as the odor threshold of reuse field j, we calculate an odor

threshold for each reuse field as follows.

Oup
j =

PIj + SIj + HIj + RIj

4
(3.12)

It is noted here that if several wind directions were assigned to a particular field

with associated weights as discussed in Section 3.3.8, the above calculations for

pj , sj, hj, and rj could be modified. In particular, the total numbers of people,

schools, hospitals, and length of streets associated with each wind direction would

be included in the calculations with their corresponding weights. One choice of the

modified calculations might include:

pj =
1

2.5p0–1
j + 1.5p1–2

j + 0.5p2–3
j + 3.5

|I|
∑

i=1

µipw0–1
ji + 2.5

|I|
∑

i=1

µipw1–2
ji + 1.5

|I|
∑

i=1

µipw2–3
ji

where µi is the appropriate weight associated with wind direction i and pwl–m
ji is the

number of people within a l–m-mile radius of reuse field j in downwind direction i.
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Table 3.8 displays the five selected fields2 and their corresponding odor thresh-

olds set 2 calculated by the five steps above. As indicated, odor thresholds in

Table 3.8: Five selected fields with associated odor thresholds set 2

Field ID Odor Threshold
535 2.22964
536 2.32265
537 2.23113
538 0.77382
539 0.75717

the second set and in the first set are not much different. This is due to the fact

that the reuse fields are located in rural areas where there are not many schools,

hospitals, and streets. In addition, the population densities in the areas surrounding

reuse fields are not much different. Therefore, additional number of people, schools,

hospitals, and length of streets in the downwind direction are very small compared

to the those not in downwind area. Consequently, the calculated odor thresholds

when wind directions were taken into account are not much different than ones that

did not take wind directions into account.

In this chapter, we have discussed the wastewater treatment process at DCWASA.

In addition, we have discussed all the input for our optimization models, and their

sources and/or methods used to acquire the input were also provided. Now, that we

have everything ready for the model construction, in the next chapter, we discuss

2For this data set of reuse fields: min{pj} = 3.41 × 10−5 people−1, max{pj} =

3.90 × 10−3 people−1,min{sj} = 9.52 × 10−2 people−1, max{sj} = 2.00 people−1,min{hj} =

0.40 people−1, max{hj} = 2.00 people−1,min{rj} = 5.88 × 10−3 people−1, max{rj} = 2.95 ×

10−2 people−1.
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the optimization models, formulations, and results.
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Chapter 4

Optimization Models, Formulations, and Results

In this chapter, we construct several optimization models for the problem

at hand and report and analyze the resulting optimal solutions. Methods (e.g.,

algorithms), data input, assumptions, and constraints differentiate each model from

another. Sensitivity analysis on some parameters and data input (e.g., % flows from

the blend tank to DCWASA and the on-site contractor, odor thresholds) are also

performed. Such analyses provide valuable information for wastewater treatment

managers. For example, given that the flow from the blend tank to the on-site

contractor changed from 90% to 80%, how would the tradeoff curve between cost

and odor change?

The remaining parts of this chapter are organized as follows. Section 4.1

provides the problem statement and assumptions. In Section 4.2, notation and

constraints are discussed. The notation and constraints were applied in several

optimization models we developed and to avoid repetition, they are presented before

we discuss the optimization models. On the other hand, notation and constraints

that appear in just a particular model are discussed in the section for that model.

Finally, from Section 4.3 on, we discuss each optimization model and its results. In

addition, Pareto optimal solutions and insights are also discussed.
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4.1 Problem Statement

DC Water and Sewer Authority generates approximately 1200 wet-tons of

biosolids daily (personal communication, C. Peot, December 16, 2004). Biosolids,

which are a nutrient-rich organic material, can be used as fertilizer for some crops

(e.g., corn, hay). During each day, generated biosolids require removal from the

wastewater treatment plant located at DCWASA and distribution to reuse fields

located in Maryland and Virginia. Despite their beneficial reuse characteristics,

biosolids derived from the end-product of the wastewater treatment process gener-

ally are considered as malodorous and DCWASA has received complaints from the

communities surrounding some reuse fields. Since the problem has arisen, DCWASA

has needed to design a treatment process that minimized the biosolids’ odor. How-

ever, trying to minimize biosolids’ odor could require costly treatment processes.

Therefore, if biosolids were distributed to a less restricted reuse field, for example

further away from populated areas, some treatment costs could be saved in the sense

that they might require less treatment. These cost savings may come in part from

chemical doses and/or number of centrifuges in service, to name a few areas. This

situation is adequately modeled by a multiobjective optimization program to find

Pareto optimal solutions which balance both cost and biosolids odor minimization.

It is also important to note that under certain circumstances (e.g., inaccessi-

bility of reuse fields and frozen soil) when biosolids are unable to be land applied

immediately, contingency planning usually involves storage along with alternate

options of landfill disposal, incineration or alternative treatment and use, such as
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composting, heat drying, and advanced alkaline stabilization [62]. However, for this

dissertation, we excluded these options to facilitate model construction. In other

words, we assumed no storage of biosolids was allowed either at the treatment facility

or at the fields. Along with this assumption, other assumptions we used throughout

our models are the following:

1. Biosolids produced by the on-site contractor and DCWASA had the same

biosolids’ odor levels. This assumption was due to the fact that the statistical

models for odor prediction were developed using observed biosolids’ odor levels

from combined biosolids from both the on-site contractor as well as DCWASA.

2. The dewatering capacities of one centrifuge and one belt filter press were

approximately 50 DTS per day and 25 DTS per day, respectively (D. Tolbert,

personal communication, November 18, 2003).

In summary, the optimal solutions that our optimization models provide are as

follows for a given time horizon:

1. Optimal lime addition’s dose on each day

2. Optimal numbers of on-site contractor centrifuges and belt filter presses in

service

3. Optimal or preferred fraction of the flow handled by the on-site contractor and

by DCWASA

4. Optimal biosolids shipment patterns including which hauling contractors to

use and to which reuse fields biosolids should applied on each particular day
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5. Trade off curve between cost and odor

Next, we discuss notations and constraints.

4.2 Notation and Constraints

4.2.1 Notation

The multiobjective optimization model corresponds to a given time horizon

in which each day is denoted by d ∈ D. For example, if one week is chosen,

D = 1, 2, 3, 4, 5, 6, 7. During this time frame, the biosolids are distributed to a set of

reuse fields F with each field denoted as f ∈ F . The set of distribution contractors

hauling the biosolids to these fields is given by C with each contractor denoted as

c ∈ C . Next, the main notation used in the models is listed in alphabetical order.

Bd =Dry ton of biosolids on day d (tons)

Bdaf
d =Dry ton of biosolids at DAF on day d (tons)

Be
d =The blanket depth for secondary east tank on day d (feet)

Cdc
d =Number of DCWASA’s centrifuges in service on day d

Ck
d =Number of on-site contractor centrifuges in service on day d

Fdcf =Amount of biosolids applied to field f by contractor c on day d (tons)

F dc
d =Percent flow from blend tank to DCWASA on day d

F k
d =Percent flow from blend tank to the on-site contractor on day d

F up
f =Biosolids capacity of reuse field f (tons)
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Gk
d =Number of on-site contractor belt filter presses in service on day d

Hcf =Hauling cost to field f by contractor c ($/wet ton)

Ldc
d =The amount of lime DCWASA added on day d (lbs/DTS)

LDd =A binary dummy variable for when the lime amount on day d

was less than 308 lbs/DTS (0 or 1)

Od =Biosolids’ odor level on day d

(real-valued and varies with data set)

Oup
f =Odor threshold for reuse field f

(real-valued and varies with data set)

P daf
d =Amount of polymer DCWASA added at the DAF on day d (lbs/DTS)

P de
d =Amount of polymer DCWASA added at the dewatering

process on day d (lbs/DTS)

PDd =A binary dummy variable for when the sum of polymer amount

at DAF and dewatered polymer on day d was greater than

200.05 lbs/DTS

T min
d =Minimum temperature on day d (◦F)

90



4.2.2 Constraints

First, there is a conservation of flow from the blend tank (%) between DCWASA

and the on-site contractor.

∀d ∈ D; F dc
d + F k

d = 1 (4.1)

Since no storage of biosolids at the plant is modeled, conservation of biosolids means

that

∀d ∈ D;
BdF

dc
d

0.3107
+

BdF
k
d

0.2580
−

|C|
∑

c=1

|F |
∑

f=1

Fdcf = 0 (4.2)

The first and second left-most terms in (4.2) represent the daily wet tons of biosolids

produced by DCWASA and the on-site contractor, respectively. The number 0.3107

and 0.2580 (personal communication, C. Peot, December 16, 2004) represent the

percent solids of biosolids and were used to determine the final wet tons of biosolids

produced by DCWASA and the on-site contractor, respectively. For example, if the

flow from the blend tank is 10 dry-tons of solids and was handled by DCWASA,

the final wet tons of biosolids produced by DCWASA would be 10
0.3107

= 32.19 tons.

Moreover, the final wet tons of biosolids is the actual tonnage considered for the

hauling weight. The next constraint states that the amount of biosolids distributed

over the time horizon to each field cannot exceed the field’s given capacity (in tons).

∀f ∈ F ;

|D|
∑

d=1

|C|
∑

c=1

Fdcf ≤ F up
f (4.3)
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The daily amount of biosolids hauled to reuse fields by each contractor c on each

day d is limited by the following constraint based on actual considerations.

∀d ∈ D, c ∈ C ;

|F |
∑

f=1

Fdcf ≤































1200 if c = 1

1200 if c = 2

600 if c = 3

(4.4)

It is important to note that the right hand sides of constraint (4.4) represent the

maximum tonnage of biosolids that can be assigned to each hauling-contractor.

These maximum tonnages were 1200 wet tons for Contractors 1 and 2, and 600

wet tons for Contractor 3. The number 1200 was roughly the maximum tonnage

of biosolids production on each day. The number 600 was roughly half of biosolids

production and intended to prevent all biosolids being assigned to Contractor 3

due to its considerably cheaper contract’s price (personal communication, C. Peot,

December 16, 2004). Additional logic is needed to show that for each reuse field f , if

any distribution is made, i.e., Fdcf > 0, then the odor threshold for that field should

not be exceeded. In addition, for hauling efficiency, the minimum tonnage of each

distribution should be at least 23 tons (personal communication, C. Peot, December

16, 2004). These restrictions are achieved by the following four constraints.

∀d ∈ D, c ∈ C, f ∈ F ;

Fdcf ≥ 23δdcf (4.5)

Fdcf ≤ F up
f δdcf (4.6)

Od ≤ Oup
f + Mf (1− δdcf ) (4.7)

δdcf ∈ {0, 1} (4.8)
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Constraint (4.5) clearly represents the restriction on minimum tonnage of each ac-

tual distribution, which is 23 tons. The tonnage capacity of each field, F up
f , in

constraint (4.6) implicitly bounds the maximum tonnage of each distribution Fdcf .

More specifically, constraints (4.5), (4.6), and (4.8) work together as follows. When

δdcf equals zero, Fdcf must equal zero and vice versa. On the other hand, when δdcf

equals one, Fdcf must be greater than or equal to 23 but less than or equal to F up
f

and vice versa. In addition, when the tonnage capacity of any particular field f is

less than 23 tons, constraints (4.5), (4.6) and (4.8) together imply Fdcf = 0. Con-

straints (4.7) and (4.8) represent the restriction on the odor threshold limit when

there is a shipment (Fdcf ≥ 23) or, identically, δdcf = 1. When there is no shipment

(Fdcf = 0) and subsequently δdcf = 0, the odor score is bounded by the sum of Oup
f

and Mf . The value of the parameter “Mf” should be picked such that the sum of

itself and Oup
f equals the possible maximum odor level according to the data set

and odor prediction statistical model used in each optimization model run. Having

mentioned that, it is important to note that Od will be substituted by the corre-

sponding equation and variables according to the odor prediction statistical model

(see Sections 3.2.6 and 3.2.7) chosen to be implemented in each optimization model.

For example, if the odor prediction model from Section 3.2.7 (Equation (3.2)) is

chosen, constraint (4.7) would be:

∀d ∈ D; 3.89 + .03T min
d + .98Be

d − .47Gk
d − 1.91Ck

d−

.01Ldc
d + .56PDd + 1.13LDd ≤ Oup

f + M(1− δdcf ).
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It is important to note that we apply index d to the variables in the odor prediction

equation instead of imposing “d − 1” index as already seen in (3.2). This is to

simplify our model construction by assuming that Fdcf , to which δdcf corresponds,

represents biosolids shipment on the following day although it has the index d. Our

next three constraints, corresponding to the definition of LDd, force LDd to equal

one whenever lime addition or Ldc
d is less than 308 lbs/DTS and zero, otherwise.

∀d ∈ D;

−Ldc
d − 93LDd ≤ −308 + ε; ε > 0 and small (4.9)

Ldc
d − 93(1− LDd) ≤ 308− ε (4.10)

LDd ∈ {0, 1} (4.11)

It is important to note that the applicability of the above three constraints is based

on the assumption that the amount of lime addition was limited by 400 lbs/DTS.

Our next constraint states that, on each particular day, there should be enough

on-site contractor belt filter presses and centrifuges in service to process the flow

assigned to them.

∀d ∈ D; 50Ck
d + 25Gk

d ≥ F k
d Bd (4.12)

The figures 50 and 25 in (4.12) are the operational capacities in DTS of one cen-

trifuge and one belt filter press, respectively (see assumptions in Section 4.3 Problem

Statement). Thus, the left hand side of (4.12) represents the maximum flow in DTS

that the on-site contractor can handle given the numbers of centrifuges and belt

filter presses in service and it must be greater than or equal to the assigned flow

from the blend tank on the right-hand side of this equation.
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Bounds on variables are given below.

∀d ∈ D;

250 ≤ Ldc
d ≤ 400 (4.13)

0 ≤ Ck
d ≤ 2 (4.14)

0 ≤ Gk
d ≤ 7 (4.15)

Lastly, non-negativity and integer constraints are applied.

∀d ∈ D;

F dc
d , F k

d ≥ 0 (4.16)

Ck
d , Gk

d ∈ Z+ (4.17)

4.3 “Base Case” Optimization Model

The Base Case was performed to analyze the operations at DCWASA. For the

Base Case study, the time horizon was set to 31 days using January 1, 2002–January

31, 2002 as a typical time period. Additionally, the model considered three hauling

contractors consistent with actual operations. In considering the number of reuse

fields to be included, we queried all visited reused fields during the year 2002 and

removed the fields with incomplete data (e.g., no recorded geographic coordinates).

Subsequently, there were 782 reuse fields with complete data to be included in the

model. As for the daily DTS, it is not an easy task to measure for each day. In fact,

DCWASA approximates the DTS on each day at 320 by multiplying the average

daily wet ton solids with the approximated percent of solids. Thus, we assumed
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320 DTS were processed on each day. Also, we assumed 90% of the flow from the

blend tank handled by DCWASA and the remaining 10% was handled by the on-site

contractor as Base Case values. Nevertheless, other percentages of flow were also

tried in other models as part of a sensitivity analysis. In addition, the second odor

prediction statistical model (see Section 3.2.7) and the second set of odor thresholds

(see Section 3.4.2) were used in the Base Case. Next, we discuss the Base Case’s

optimization objectives and present the full optimization model.

The two objectives to be minimized simultaneously are the total odor, where

total odor =

|D|
∑

d=1

Od (4.18)

and the total costs, where

total costs =DCWASA’s lime cost + DCWASA’s polymer cost +

DCWASA’s dewatering cost + DCWASA’s centrifuge cost +

on-site contractor’s lime cost +

on-site contractor’s belt filter press cost +

on-site contractor’s centrifuge cost +

on-site contractor’s dewatering cost + hauling cost (4.19)

and

DCWASA’s lime cost =0.06

|D|
∑

d=1

Ldc
d F dc

d Bd (4.20)

DCWASA’s polymer cost =1.26

|D|
∑

d=1

(Bdaf
d P daf

d + BdP
de
d F dc

d ) (4.21)

DCWASA’s dewatering cost =90

|D|
∑

d=1

BdF
dc
d (4.22)
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DCWASA’s centrifuge cost∗ =196

|D|
∑

d=1

dBdF
dc
d

50
e∗∗ (4.23)

on-site contractor’s lime cost∗∗∗ =

|D|
∑

d=1

(

(0.67)(10.10)BdF
k
d + 7.40BdF

k
d

)

(4.24)

on-site contractor’s belt filter press cost =200

|D|
∑

d=1

Gk
d (4.25)

on-site contractor’s centrifuge cost =196

|D|
∑

d=1

Ck
d (4.26)

on-site contractor’s dewatering cost =

|D|
∑

d=1















71.75F k
d Bd if F k

d Bd ≤ 150

3225 + 50.25F k
d Bd if F k

d Bd > 150
∗∗∗∗

(4.27)

hauling cost =

|D|
∑

d=1

|C|
∑

c=1

|F |
∑

f=1

HcfFdcf (4.28)

*Since there is no variable for the number of DCWASA centrifuge in service in the

odor prediction equation (3.2), we implicitly determine the number of DCWASA

centrifuge needed from its capacity of 50 DTS per centrifuge and the amount of

biosolids assigned to DCWASA. We note here that the number of DCWASA cen-

trifuges determined here does not effect the odor calculation and is intended only

to fairly determine costs incurred from the on-site contractor and DCWASA.

**d e yields next closest integer rounded up (e.g., d4.3e = 5)

***See on-site contractor’s lime costs detail from Section 3.3.2.

****As shown in Section 3.3.2, the on-site contractor dewatering cost was $71.75

per DTS for the first 150 DTS and then $50.25 per DTS thereafter. Therefore,

when more than 150 DTS were assigned, the dewatering cost could be determined
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from the dewatering cost for the first 150 DTS plus the dewatering cost thereafter

or 71.75× 150 + 50.25(F k
d Bd − 150) = 3225 + 50.25F k

d Bd.

Now, the full model of the Base Case is as follows.

minimize Total odor (4.29)

minimize Total cost

subject to (4.1)–(4.28)

and

Od = 3.89 + .03T min
d + .98Be

d − .47Gk
d − 1.91Ck

d − .01Ldc
d + .56PDd + 1.13LDd

(4.30)

It is important to note that (4.30) corresponds to (3.2), however, with modified

notation as discussed above.

4.3.1 Base Case Computational Results

The optimization model was solved using the XPRESS-MP optimization solver

(version 17.01.02) with the modeling interface XPRESS-IVE (version 1.17.04) and

the MOSEL language (version 1.6.2) (www.dashoptimization.com). The computer

used was a Dell OPTIPLEX GX270, Pentium 4 with a CPU of 3.00 GHz and 2 GB

of RAM memory. The model contained 219,394 constraints and 145,576 variables.

In particular, there were 72,757 continuous variables, another 72,757 binary ones,

and 62 non-binary discrete variables (relating to number of centrifuges and belt filter

presses). These numbers were determined as follows:
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1. Constraints (4.1), (4.2), (4.9), (4.10), and (4.12) were applied for each day.

Therefore, there were 5× 31 = 155 constraints.

2. Constraints (4.13), (4.14), and (4.15) were applied for each day and there were

two constraints per day for each constraint. Therefore, there were 3×2×31 =

186 constraints.

3. Constraint (4.3) was applied for each reuse field. Therefore, there were 782

constraints.

4. Constraint (4.4) was applied for each combination of day and contractor.

Therefore, there were 31× 3 = 93 constraints.

5. Constraints (4.5), (4.6), and (4.7) were applied for each combination of day,

contractor, and reuse field. Therefore, there were 3× 31× 3× 782 = 218, 178

constraints.

Accounting for all of the above constraints, we obtained 155 + 186 + 782 + 93 +

218, 178 = 219, 394 constraints (not including the binary integer constraints (4.8)

and (4.11), the nonnegativity constraint (4.16), and the general integer constraint

(4.17)). Next, the number of variables were determined as follows.

1. Variables Fdcf and δdcf involved combinations of days, contractors, and reuse

fields. Therefore, there were 2× 31× 3× 782 = 145, 452 variables.

2. Variable Ldc
d , LDd, Ck

d , and Gk
d were for each day. Therefore, there were

4× 31 = 124 variables.
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Accounting for all of the above variables, we obtained 145, 452 + 124 = 145, 576

variables.

In finding Pareto optimal solutions, both weighting and constraint methods

[17] were tried. Corresponding to the discussion in Section 2.1.2, the weighting

problem for the Base Case was set up as follows.

minimize (w1 × Total odor) + (w2 × Total cost) (4.31)

subject to (4.1)–(4.28), (4.30)

and

w1 + w2 = 1 (4.32)

w1, w2 > 0 (4.33)

We begin our first subproblem by setting w2 = 0.01 and w1 = 1 − w2. Then, the

next subproblems were set up by increasing w2 by 0.01 until w2 = 0.99. Using

this setup, 99 subproblems were tried. Although the weighting method is simple to

implement, only one Pareto optimal point was obtained out of these 99 subproblems.

In particular, the only Pareto optimal solution was obtain from the subproblem

where w2 = 0.01 and yielded the total cost of $4,091,467.66978 and a total odor score

of 135.864001 . The solution time was 942 seconds. For the other 98 subproblems,

the solver could not finish within the preset maximum run time of 1,800 seconds.

This was undoubtedly due to the non-convex nature of the models and, hence the

existence of ”duality gap” points [17], discussed in Section 2.1.2. The solver might

have been able to solve some subproblems to optimality if a larger preset maximum

1The unit for total odor is index point(s) summed over 31 days.
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run time had been set, however, this was not desirable in practice, where several

subproblems must be solved in order to generate the Pareto optimal set. It is also

important to mention that, in fact, all solutions for the 98 subproblems were between

0.02% and 0.66% to the distance of their associated best (lower) bounds. These gaps

are very acceptable for integer programming in practice. However, since we are to

find the Pareto optimal set, the optimal solutions must be obtained otherwise the

solutions can not be guaranteed to be non-inferior. Figure 4.1 displays the solutions

for the 98 subproblems. Although the southwest envelope of Figure 4.1 does look

like Pareto optimal points, however, they were actually not optimal solutions and

should not be considered as Pareto optimal points.

The constraint method faired better in finding Pareto optimal solutions pre-

sumably due to its superior ability to find duality gap points, however with a large

computational burden [49]. First, the total cost was minimized without constraining

the total odor and the resulting total odor was recorded. Using this value as the

maximum value τ , we set up the constraint problem corresponding to Section 2.1.1

as follows.

minimize Total cost (4.34)

subject to (4.1)–(4.28), (4.30)

and

|D|
∑

d=1

Od ≤ τ (4.35)

Then, the next subproblems were solved by decreasing the total odor constraint

right-hand side τ by five until the problem was infeasible. The maximum run time
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Figure 4.1: Solutions of 98 subproblems from Base Case solving by weighting method
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for each subproblem was arbitrarily chosen to 1,800 seconds (for computational

reasons). More specifically, if the solver could not solve a given problem to optimality

within 1800 seconds, the solver stopped and reported the optimization status as

unfinished. Then, the next subproblem was loaded and the solver continued. It is

important to note that a longer preset maximum run time could have been used and

some unfinished subproblems might have been solved to optimality. However, we

experimented with several subproblems and found that most subproblems could be

solved to optimality within 1,800 seconds. In addition, for subproblems that could

not be solved to optimality within 1,800 seconds, most of them could not be solved

within a number of hours and the large optimality gaps were observed for these

subproblems.

Using the aforementioned setup, 51 optimization problems were tried. There

were five subproblems which the solver could not solve to optimality. In particular,

four subproblems were reported as unfinished and one subproblem (the last one)

was reported as infeasible relevant to the set up. For 46 subproblems that the solver

could solve to optimality, we verified the Pareto solutions by checking if the total

odor constraints were binding (see Section 2.1.1 for verification of Pareto optimal

solution in constraint method). After verifying, we found only 10 subproblems

yielding Pareto optimal solutions (total odor constraints were binding). As for the

other 36 subproblems, the total odor constraints were not binding and therefore

these subproblems did not necessarily yield Pareto optimal solutions. Next, we

proceed to discuss how additional Pareto optimal solutions were found.
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Regardless of their optimization status (e.g. optimal, unfinished), we recorded

41 total cost values reported by the 41 subproblems that did not yield Pareto so-

lutions. Each total cost value was used as the right hand side of the total cost

constraint for each of the next 41 subproblems where total odor was the objective

function to be minimized. In other words, we still used the constraint method to

find Pareto optimal solutions. However, we used total cost as the objective con-

straint and total odor as the objective function in contrast to our previous setup.

Using this setup, we were able to find 17 more Pareto optimal points. It is presum-

ably that those new subproblems yielding Pareto optimal solutions could overcome

the optimality gap due to the changes in its feasible region and objective function.

Therefore, including the 10 points from before and the one point obtained from

weighting method, there were 28 Pareto optimal points found in total. The run

time as well as detailed solutions of these 28 Pareto optimal points can be found

in Table 4.1. In particular, the run times varied from 40 to 1,545 seconds. It is

important to note that the wide range of solution times is presumably caused by

the optimality gap due to the non-convex nature of the problem. Next, we analyze

these 28 Pareto points in detail.

4.3.2 Analysis of the Base Case

In this section, we analyze the optimal solutions obtained from the Base Case.

Our analysis indicates that for various situations at hand (e.g., how many index

points of odor level need to be decreased), each variable plays different roles in
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reducing biosolids odor levels. For example, for some situations, increasing the

number of centrifuges in service was only a marginal activity for reducing biosolids

odor levels. Our calculation shows that by increasing lime addition instead of the

number of centrifuges could have caused additional expenses that were 1.2 times

as much. Combinations of activities that are optimal are also important and not

immediately obvious. For example, increasing lime additions and decreasing the

number of belt filter presses may be the optimal combination for one position on

the Pareto optimal curve, while the activities in opposite directions may be optimal

for another. Next, we begin the analysis of the Base Case.

Figure 4.2 depicts the Pareto optimal points generated for the Base Case.

First, note that certain odor scores were negative. This was due to the fact that the

data in the time horizon selected went beyond the range of data used to generate

the statistical model for odor prediction where the odor scores were in the range

[0, 9]. It is noted here that the negative odor scores don’t represent hedonic tone

of the odor. Instead, these odor scores were only relative values and therefore, are

still useful for management decisions. As indicated, the Pareto optimal points may

be divided into three portions, (going left to right): first portion (Pareto optimal

point number 1 to number 6), second portion (Pareto optimal point number 7 to

number 22), and third portion (Pareto optimal point number 23 to number 28).

More details on these Pareto optimal points can be found in Table 4.1.

Next, we estimated the number of dollars needed to reduce the odor by one

index point for each portion of the Pareto optimal solutions as follows. To obtain

these numbers, statistical regressions on the three portions of Pareto optimal points
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Figure 4.2: Base Case Pareto Optimal Solutions
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Table 4.1: Base Case Pareto optimal points

Pareto Total Total Total Total Total Run
point # cost odor number number amount time

of of belt of lime (sec)
centrifuges filter addition

presses
1 4,091,075.66978 139.68400 40 0 7,750.00000 1,545
2 4,091,467.66978 135.86400 42 0 7,750.00000 941
3 4,092,447.66978 126.31400 47 0 7,750.00000 1,285
4 4,093,035.66978 120.58400 50 0 7,750.00000 1,412
5 4,094,015.66978 111.03400 55 0 7,750.00000 842
6 4,094,995.66978 101.48400 60 0 7,750.00000 1,243
7 4,097,987.66978 91.55400 62 13 7,750.00000 819
8 4,104,789.90960 75.57270 62 47 7,750.12962 826
9 4,106,789.90960 70.87270 62 57 7,750.12962 688
10 4,108,989.90960 65.70270 62 68 7,750.12962 155
11 4,110,787.66978 61.47400 62 77 7,750.00000 489
12 4,113,189.90960 55.83270 62 89 7,750.12962 844
13 4,115,389.90960 50.66270 62 100 7,750.12962 1,014
14 4,117,389.90960 45.96270 62 110 7,750.12962 589
15 4,119,589.90960 40.79270 62 121 7,750.12962 136
16 4,136,435.86242 1.64037 62 204 7,764.36300 68
17 4,138,387.66978 −3.38600 62 215 7,750.00000 45
18 4,147,416.66242 −18.35963 62 217 8,249.36300 72
19 4,150,288.08313 −23.35963 62 217 8,410.36300 65
20 4,153,070.16313 −28.35963 62 217 8,571.36300 66
21 4,155,825.74684 −33.39600 62 217 8,735.99983 43
22 4,167,741.96548 −53.49770 62 216 9,437.16989 888
23 4,171,625.94242 −58.35963 62 217 9,650.36300 46
24 4,180,265.94242 −63.35963 62 217 10,150.36300 46
25 4,188,905.94242 −68.35963 62 217 10,650.36300 47
26 4,197,545.94242 −73.35963 62 217 11,150.36300 46
27 4,206,185.94242 −78.35963 62 217 11,650.36300 40
28 4,214,830.83794 −83.35963 62 217 12,150.36300 41
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were done. More specifically, these regression results were as follows.

First portion: Total Odor = −0.0097(Total Cost) + 40007

Second portion: Total Odor = −0.0021(Total Cost) + 8794.8

Third portion: Total Odor = −0.0006(Total Cost) + 2355.6

Each of these regressions had R2 and adjusted R2 values > 0.99 with statistically

significant coefficients (i.e., t-statistics greater than 85 in absolute value). From

these equations, to reduce the odor by one index point, one needed to pay on average

1
0.0097

= $103, 1
0.0021

= $476, and 1
0.0006

= $1667, respectively for the first, second,

and third portions of Pareto optimal points.

It is interesting to further analyze these Pareto optimal solutions. We begin

our analysis by finding the ratios of the decrease in odor due to spending one dollar

on lime, belt filter presses, and centrifuges. In addition, the dollars needed to spend

on lime, belt filter presses, and centrifuges in order to reduce odor level by one index

point are also determined. Table 4.2 shows the results from these calculations and

the computational details follow. The ratio for the decrease in odor for one ton of

Table 4.2: The decrease in odor level due to $1 spending and dollars needed to
reduce one odor index point

Variable Decrease in odor level $ needed to reduce
due to $1 spending 1 odor index point

Lime 0.17 points
$/DTS

$6
point×DTS

Belt filter presses 2.35× 10−3 point
$

$425.53
point

Centrifuges 9.75× 10−3 point
$

$102.62
point

biosolids due to dollars spent on lime was 0.01 points/(lb/DTS)
$0.06/lb

= 0.17 points
$/DTS

, obtained
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by taking the coefficient for lime in the statistical model (0.01) and dividing it by

the dollars per pound of lime (0.06). However, it is important to note that at the

point where lime increases from less than 308 lbs/DTS to greater than or equal to

this amount, another 1.13 points of odor decrease should be added. The reason

was that the dummy variable would take on a value of zero in such a situation and

hence the odor level would drop down for another 1.13 points (see Equation 3.2).

It should be emphasized here that this is only a one time additional decrease (i.e.

when lime addition changes from less than 308 lbs/DTS to greater than or equal to

308 lbs/DTS). Subsequently, when analyzing lime addition, one needs to go beyond

just the total amount of lime addition in a time horizon. In other words, the daily

detailed solutions for lime addition on each day may be needed. This analysis goes

beyond the work done by Gabriel et al. [30], where this lime addition changing point

was not discussed. Similar ratios for belt filter presses and centrifuges dollars were

0.47 points/belt filter press
$200/belt filter press

= 2.35× 10−3 points
$

and 1.91 points/centrifuge
$196/centrifuge

= 9.75× 10−3 points
$

,

respectively. It is important to note that the latter two ratios did not depend on

the amount of biosolids being processed. This difference between these two ratios

for belt filter presses and centrifuges versus lime corresponds directly to the units

of variables themselves (e.g., lime: lbs/DTS).

Next, we find the dollars needed to spend on lime, belt filter presses, and

centrifuges in order to reduce odor level by one index point. As for lime, one

needed to spend $0.06/lb
0.01 points/(lb/DTS)

= $6.00
points×DTS

in an attempt to reduce odor level

of one ton of biosolids by one index point. But, again, one should take another

1.13 points decrease in odor level into account in the case where lime increases from
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less than 308 lbs/DTS to greater than or equal to 308 lbs/DTS. As for belt filter

presses and centrifuges, the dollars spent to reduce odor level were not pertinent

to the amount of biosolids being processed. In particular, the dollars needed to

be spent on belt filter press and centrifuge were $200/belt filter press
0.47 point/belt filter press

= $425.53
point

, and

$196/centrifuge
1.91 point/centrifuge

= $102.62
point

, respectively in order to reduce odor level by one index

point. To this end, we may summarize that centrifuges were preferable to belt filter

presses in reducing biosolids odor level. However, whether or not to prefer lime

over belt filter presses or centrifuges or vice versa still depended on the amount of

biosolids being processed and how far we needed to reduce odor level. The answers

to this question will become clear and be revealed when we investigate a bit more

deeply into the three portions of Pareto optimal points.

Before analyzing the three portions of these Pareto optimal points, we sum-

marize the important findings for each portion. For the first portion, the marginal

activity in reducing the biosolids odor level was the number of centrifuges in ser-

vice. While the number of belt filter presses in service and lime addition were the

marginal activity for the second portion. Lastly, lime additions were the marginal

activity for the third portion. In addition, we also give some calculations on how

much it would have cost if, in reducing odor levels, one were to employ activities

(e.g., increase lime addition) different from those provided by the optimal solutions.

Our calculation shows that a failure to understand key activities can cause up to an

additional $6,200 difference in total cost over a 30-day time horizon compared to the

optimal solution. Next we scrutinize the first portion of Pareto optimal solutions.

For the first portion of Pareto optimal points, centrifuges were key to reduce
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biosolids odor level. We begin our analysis by comparing the solutions between the

first two Pareto optimal points. We found that the only difference in optimal solu-

tions between these two Pareto optimal points was the total number of centrifuges

in service (confer Table 4.1). Then, we validate the optimal solutions by demon-

strating how much it would have cost assuming that other variables (i.e., lime and

belt filter presses) were key to reduce biosolids odor level.

The first Pareto optimal point had total cost = $4091075.66978 and total

odor = 139.68400 and the second point had total cost = $4091467.66978 and total

odor = 135.86400. By looking at the difference in cost between these two Pareto

optimal points which was $4091467.66978 − $4091075.66978 = $392.00000, we see

that this number was exactly the cost of operating and maintaining two centrifuges

(2×$196 = $392). Moreover, from (3.2), page 55, one centrifuge can reduce odor by

1.91 points and therefore two centrifuges can reduce odor level by 2 × 1.91 = 3.82

points, all else being equal. This number was exactly the decrease in odor level of

139.684− 135.864 = 3.820 point from the first to the second Pareto optimal points.

In fact, the number two was the difference in the optimal solutions for the total

numbers of centrifuges in service between the two Pareto optimal points which were

40 and 42, respectively for the first and second Pareto optimal points (see Table 4.1,

page 107). In addition, this was the only difference in optimal solutions between

these two Pareto optimal points.

Another interesting way of analyzing this solution was to see how much it

would have cost, should one choose to employ either lime or belt filter press to

achieve the decrease in odor level from the first to the second Pareto optimal point.
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For the sake of discussion, Table 4.3 summarizes the calculations for the increases

in total cost according to the non-optimal activities as well as the actual optimal

solution. In particular, the first row represents optimal activity and the last three

rows represent alternatives. As discussed earlier, in analyzing lime addition one

Table 4.3: Increases in total cost’s calculations for moving from Pareto optimal
points #1 to #2

Activity Calculation Total cost
increases

Increasing 2 centrifuges 2 centrifuges× $196
centrifuge

$392

Increasing 58 lbs
DTS

58 lbs
DTS
× 320 DTS × 90%× $0.06

lb
$1002.24

of lime additions

Increasing 382 lbs
DTS

382 lbs
DTS
× 320 DTS × 90%× $0.06

lb
$6, 600.96

of lime additions

Increasing 9 belt filter presses 9 belt filter presses× $200
belt filter press

$1800

needed to see whether or not lime increases from less than 308 lbs/DTS to greater

than or equal to 308 lbs/DTS. First, we look at the case where lime increases from

less than 308 lbs/DTS to greater than or equal to 308 lbs/DTS. According to Table

4.4 displaying details for Pareto optimal solutions 1 and 2, values for optimal lime

additions were 250 lbs/DTS for both points. Suppose for the time being that the

marginal activity was lime and in moving from the first to the second Pareto optimal

point, the lime additions were to increase from 250 to 308 lbs/DTS for one day. The

increase of 308 − 250 = 58 lbs/DTS in lime additions for one day would have cost

58 lbs
DTS
× 320 DTS

Day
× 90% × $0.06

lb
= $1002.24 and, subsequently, were to reduce

58 lbs
DTS
× 0.01 points

lbs/DTS
+ 1.13 = 1.71 points of total odor level. Although it would

only have reduced 1.71 points in odor level (3.82 points were needed), this cost figure
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Table 4.4: Pareto optimal points 1 and 2’s detailed solutions

Day Pareto optimal point number 1 Pareto optimal point number 2
Ck

d Ldc
d Ck

d Ldc
d

1 1 250.00 1 250.00
2 1 250.00 2 250.00
3 1 250.00 1 250.00
4 1 250.00 1 250.00
5 1 250.00 1 250.00
6 1 250.00 1 250.00
7 2 250.00 2 250.00
8 2 250.00 1 250.00
9 1 250.00 1 250.00
10 1 250.00 1 250.00
11 1 250.00 1 250.00
12 1 250.00 1 250.00
13 1 250.00 1 250.00
14 1 250.00 1 250.00
15 1 250.00 1 250.00
16 1 250.00 1 250.00
17 1 250.00 1 250.00
18 1 250.00 1 250.00
19 1 250.00 1 250.00
20 2 250.00 2 250.00
21 1 250.00 1 250.00
22 2 250.00 2 250.00
23 1 250.00 2 250.00
24 1 250.00 2 250.00
25 2 250.00 2 250.00
26 2 250.00 1 250.00
27 2 250.00 1 250.00
28 2 250.00 2 250.00
29 1 250.00 2 250.00
30 2 250.00 2 250.00
31 1 250.00 2 250.00

Total 40 7750.00 42 7750.00
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would already have surpassed the optimal increase of the total cost ($392).

Next, we analyze the case if the lime were to increase to a value less than

308 lbs/DTS. All things being equal, the decrease of 3.82 points in total odor

level required 3.82 points
0.01 point/(lb/DTS)

= 382.00 lbs/DTS of total lime addition, which

cost 382.00 lbs
DTS
× 320 DTS × 90% × $0.06

lb
= $6, 600.96. On the other hand, one

would have needed to spend $425.53
point

× 3.82 points = $1, 625.52 if belt filter presses

were the only key parameter in question. Put differently, we would have needed

3.82 points
0.47 point/belt filter press

= 8.13 belt filter presses and it would have cost 8.13 belt

filter presses×$200/belt filter press = $1, 625.53 consistent with earlier calcula-

tions. However, practically, 8.13 belt filter presses are not applicable and there-

fore at least 9 belt filter presses would have needed and cost 9 belt filter presses ×

$200/belt filter press = $1800. This was further evidence validating the optimal

solutions. Moreover, by moving down to the last Pareto optimal point of the first

portion of Pareto optimal points, similar observations can be obtained when com-

paring successive Pareto optimal points. Next, we examine the second portion of

Pareto optimal points.

First, we studied the decrease in odor from the last Pareto optimal point

(Pareto optimal point six) of the first portion (total cost = $4,094,995.66978 and

total odor = 101.484) to the first Pareto optimal point (Pareto optimal point seven)

of the second portion (total cost = $4,097,987.66978 and total odor = 91.554). We

can see that, in moving from point six to point seven, there were two more centrifuges

in service yielding 62 centrifuges in total which was the highest possible total number

of centrifuges in service within the 31 days time horizon. In addition, compared to
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no belt filter presses for point six, there were 13 belt filter presses in service for

point seven. As for lime, there were no changes in the amount of lime addition.

The aforementioned solutions can be explained as follows. If one were to choose

lime for reducing the odor level, 9.93 points
0.01 point/(lb/DTS)

= 993.00 lbs/DTS would have

been needed. Therefore, it would have cost 993.00 lbs
DTS
× 320 DTS× 90%× $0.06

lb
=

$17, 159.04, which would have been way beyond the optimal increase in total cost.

Next, centrifuges and belt filter presses should be considered. As discussed earlier,

centrifuges dominated belt filter presses in reducing biosolids odor level, therefore

centrifuges were utilized to their upper limits (2 centrifuges
day

×31 days = 62 centrifuges

in 31 days) before 13 belt filter presses were used. In fact, we can see that the

decrease of 101.484 − 91.554 = 9.930 points in odor level was from two centrifuges

at 1.91 points per one centrifuge and 13 belt filter presses at 0.47 points per one

belt filter press, that is 2× 1.91 + 13× 0.47 = 9.93. Next, we analyze the decreases

in odor level from one Pareto optimal point to another within the second portion of

the Pareto optimal points.

All Pareto optimal solutions in the second portion have the same total number

of centrifuges. In fact, for every Pareto optimal point, starting from the first Pareto

optimal point of the second portion to the last Pareto optimal point of the third

portion, centrifuges were utilized to their upper limit of 62. Therefore, what made

the decreases in odor level from one Pareto optimal point to another were either

additional use of belt filter presses or lime or both. In other words, belt filter presses

and lime started to play roles in bringing down the odor level. Now, let us analyze

the decrease in odor level from the first (Pareto optimal point #7) to the second
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(Pareto optimal point #8) Pareto optimal point of this second portion. According

to Table 4.1, there was a decrease of 91.55400− 75.57270 = 15.98130 points in total

odor level and an increase of $4, 097, 987.66978− $4, 104, 789.90960 = $6, 802.23982

in total cost. The total number of belt filter presses increased by 47−13 = 34 units.

In addition, the total amount of lime addition changed from 7,750.00000 lbs/DTS

to 7,750.12962 lbs/DTS or an increase of 0.12962 lbs/DTS. Table 4.5 displays the

calculations for the increases in total odor according to the optimal activities and

comparative non-optimal activities. More specifically, row 1 shows the calculation

for optimal activities which were adding 34 belt filter presses and 0.12962 lbs/DTS

of lime additions and row 2 has 35 belt filter presses

Table 4.5: Increases in total cost’s calculations for moving from Pareto optimal
points #7 to #8

Activity Calculation Total cost
increase

Increasing 34 $0.06
lb
× 0.12962 lbs

DTS
× 320 DTS × 90% $6802.23983

belt filter presses + 34 belt filter presses × $200
belt filter presses

& 0.12962 lbs/DTS
of lime additions

Increasing 35 $200
belt filter presses

× 35 belt filter presses $7000

belt filter presses

First, let us analyze the decrease in odor level effected by belt filter presses only.

The increase of 34 belt filter presses reduced odor by 0.47 points
belt filter press

×34 belt filter press

= 15.98 points. Subsequently, 15.98130 − 15.98 = 0.00130 points decrease in odor

level was still needed. The remaining reduction could come from either an ad-

ditional belt filter press or more lime. Bringing one more belt filter press would
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have cost $200 and resulted in 0.47 points decrease in odor level. On the other

hand, 0.12962 lbs/DTS increases in total lime addition could reduce odor level by

0.12962 lbs
DTS
× 0.01 points

lbs/DTS
= 0.00130 points and cost only $0.06

lb
× 0.12962 lbs

DTS
×

320 DTS × 90% flow to DCWASA = $2.23983. It is important to note here that,

according to Table 4.6 displaying detailed solutions of Pareto optimal points 7 and

8, there was not any single day where lime increased from less than 308 lbs/DTS to

greater than or equal to 308 lbs/DTS and, hence, the additional 1.13 point-decrease

in odor level was not applicable. Next, adding the lime cost of $2.23983 to the cost of

34 belt filter presses resulted in $2.23983 + 34× $200 = $6802.23983 ≈ $6802.23982

increase, coinciding with the increase in total cost calculated earlier. So far, we have

shown the situation where lime was preferable to belt filter presses in bringing down

the odor level for the last small decrement. Next, we investigate another revealing

situation where, when moving from one Pareto optimal point to the next, the to-

tal number of belt filter presses increased while the total amount of lime addition

decreased.

Such a situation was found when moving from Pareto optimal points number

10 (total cost = $4, 108, 989.90960, total odor = 65.70270) to number 11 (total cost

= $4,110,787.66978, total odor = 61.47400). Therefore, the increase in total cost was

$4, 110, 787.66978−$4, 108, 989.90960 = $1, 797.76018 and the decrease in total odor

was 65.70270 − 61.47400 = 4.22870. In addition, the changes in the total number

of belt filter presses and total amount of lime addition were 68 to 77 belt filter

presses and 7750.12962 to 7750.00000 lbs/DTS, respectively. Table 4.7 shows the

optimal activities (first row) and non-optimal activities (second row) along with their
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Table 4.6: Pareto optimal point numbers 7 and 8’s detailed solutions

Day Pareto optimal point number 7 Pareto optimal point number 8
Gk

d Ldc
d Gk

d Ldc
d

1 0 250.00 0 250.00
2 0 250.00 0 250.00
3 0 250.00 0 250.00
4 0 250.00 0 250.00
5 0 250.00 0 250.00
6 0 250.00 0 250.00
7 0 250.00 0 250.00
8 0 250.00 0 250.00
9 0 250.00 0 250.00
10 1 250.00 6 250.00
11 0 250.00 5 250.00
12 0 250.00 3 250.00
13 1 250.00 2 250.00
14 0 250.00 0 250.00
15 0 250.00 0 250.00
16 0 250.00 5 250.00
17 0 250.00 5 250.12962
18 0 250.00 5 250.00
19 0 250.00 0 250.00
20 0 250.00 2 250.00
21 0 250.00 0 250.00
22 0 250.00 1 250.00
23 2 250.00 0 250.00
24 0 250.00 0 250.00
25 7 250.00 7 250.00
26 0 250.00 0 250.00
27 0 250.00 2 250.00
28 0 250.00 0 250.00
29 0 250.00 2 250.00
30 0 250.00 0 250.00
31 2 250.00 2 250.00

Total 13 7,750.00 47 7,750.12962
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corresponding calculations for increases in total costs. First, we analyze what would

Table 4.7: Increases in total cost’s calculations for moving from Pareto optimal
points #10 to #11

Activity Calculation Total cost
increases

Increasing 9 9 belt filter presses× $200
belt filter presses

$1797.76017

belt filter presses −0.12962 lbs
DTS
× 320 DTS × 90%× $0.06

lb

& decreasing 0.12962 lbs
DTS

of lime additions

Increasing 8 8 belt filter presses× $200
belt filter presses

$2,400.91

belt filter presses +46.87 lbs
DTS
× 320 DTS × 90%× $0.06

lb

& 46.87 lbs
DTS

of lime addition

have happened if, in moving from Pareto optimal points number 10 to number 11,

the total number of belt filter presses were to increase by one less than the optimal

increase and the total amount of lime addition were to increase instead. Hence, we

assumed that there were eight more belt filter presses as oppose to the nine more

indicated by the optimal solution. Under this assumption, the total odor would

have decreased by 0.47 point
belt filter press

× 8 belt filter presses = 3.76 points. In other

words, the total odor level could be brought down to 65.70270−3.76 = 61.94270 and

therefore 61.94270−61.47400 = 0.46870 points decrease in odor level would still have

been needed to achieve the total odor in question. The decrease of 0.46870 points in

total odor level required 0.46870 point
0.01 point/(lb/DTS)

= 46.87000 lbs/DTS of total lime addition,

which cost 46.87000 lbs
DTS
×320 DTS×90%× $0.06

lb
= $800.91360. On the other hand,

according to the optimal solution, when one belt filter press was brought in, it cost

only $200 more yet reduced the total odor by 0.47 points. However, the decrease
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of 0.47 points was more than the 0.4687 points needed by 0.47 − 0.4687 = 0.0013

points. Hence, we could reduce the amount of lime addition and subsequently

cut down the total cost. The amount of lime addition that can be reduced can

be calculated as 0.0013
0.01

= 0.13000 lbs/DTS. This number was approximately the

reduction of total lime addition of 7750.12962−7750 = 0.12962 lbs/DTS reported by

the optimal solution. To this end, the increase in the total cost of $4, 110, 787.66978−

$4, 108, 989.90960 = $1, 797.76018 can be calculated from the cost of nine belt filter

presses less the cost of 0.12962 lbs/DTS of total lime addition. More specifically,

9× 200 − 0.12962 × 320× 0.9× 0.06 = $1797.76017 ≈ $1797.76018.

Next, we investigated another behavior of Pareto optimal solutions where, in

moving from one Pareto optimal point to another, the total number of belt filter

presses decreased and total lime addition increased. It is important to emphasize

that, in explaining the transition between the next two Pareto optimal points in

question, the detailed daily solutions play a key role.

The next pair of Pareto optimal points to be analyzed were Pareto optimal

points number 21 (total cost = $4,155,825.74684, total odor = −33.39600) and

number 22 (total cost = $4,167,741.96548, total odor = −53.49770). The total

numbers of belt filter presses were 217 and 216 while the the total amounts of lime

addition were 8,735.99983 and 9,437.16989 lbs/DTS, respectively for Pareto optimal

point numbers 21 and 22. From Table 4.1, we can see that there were a decrease

of 217 − 216 = 1 belt filter press and an increase of 9, 437.16989 − 8, 735.99983 =

701.17006 lbs/DTS of the total amount of lime additions. An interesting question

is why was there a reduction of one belt filter press? Since, at Pareto optimal point

120



number 21, belt filter presses were utilized to their upper limit of 217 (7 × 31)

in 31 days, why couldn’t the next Pareto optimal point achieve the desired total

odor level by just continuously increasing the amount of lime addition until the

desired total odor level was met? Table 4.8 displays a detailed account of the daily

solutions of the two Pareto optimal points in question. It is important to note that

only the solutions for the number of belt filter presses in service and the amount

of lime additions are shown, as they were the only variables under consideration.

According to Table 4.8, there were 13 days where the amount of lime additions

for Pareto optimal point number 22 were greater than those of Pareto optimal

point number 21. As for belt filter presses in service, there was only one difference

on day 20, where the total numbers of belt filter presses in service were 7 and 6,

respectively for Pareto optimal point numbers 21 and 22. As we have raised the

question earlier that why was there a reduction of one belt filter press? Or why

couldn’t we continuously increase the amount of lime addition until the desired

odor level could be achieved? Now we propose alternative combination of days and

lime additions to achieve the same result without a reduction of one belt filter press.

Then, we will compare the total cost incurred from the conjectured combination with

the total cost incurred from the model’s optimal solution. Table 4.9 displays the

optimal activities (first row) and non-optimal activities (second row). The increases

in total costs are also provided. Suppose for the time being, we assume that there

was no change in the total number of belt filter presses and therefore only lime were

to be a key role. First, we examine the decrease in the odor level and the increase in

the total cost, further assuming that there was no change in lime additions on day
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Table 4.8: Pareto optimal point numbers 21 and 22’s detailed solutions

Day Pareto optimal point number 21 Pareto optimal point number 22
Gk

d Ldc
d Gk

d Ldc
d

1 7 250.00 7 308.00
2 7 250.00 7 308.00
3 7 250.00 7 308.00
4 7 308.00 7 308.00
5 7 308.00 7 308.00
6 7 308.00 7 308.00
7 7 250.00 7 308.00
8 7 250.00 7 308.00
9 7 250.00 7 308.00
10 7 250.00 7 308.00
11 7 250.00 7 308.00
12 7 308.00 7 308.00
13 7 250.00 7 250.00
14 7 308.00 7 308.00
15 7 250.00 7 308.00
16 7 308.00 7 308.00
17 7 308.00 7 308.00
18 7 250.00 7 250.00
19 7 308.00 7 308.00
20 7 250.00 6 308.00
21 7 308.00 7 308.00
22 7 308.00 7 308.00
23 7 308.00 7 308.00
24 7 250.00 7 308.00
25 7 308.00 7 308.00
26 7 308.00 7 308.00
27 7 250.00 7 308.00
28 7 308.00 7 308.00
29 7 308.00 7 308.00
30 7 308.00 7 308.00
31 7 308.00 7 313.17

Total 217 8,736.00 216 9,437.17
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Table 4.9: Increases in total cost’s calculations for moving from Pareto optimal
points #21 to #22

Activity Calculation Total cost
increases

Increasing lime additions
from 250 to 308 lbs

DTS
12× 58 lbs

DTS
× 320 DTS× 90% × $0.06

lbs

for 12 days

& from 308 to 313.17 lbs
DTS

+1× 5.17 lbs
DTS
× 320 DTS × 90%× $0.06

lbs

for 1 days

& decreasing one −1 belt filter press × $200
belt filter presses

$11,916.22

belt filter presses
Increasing lime additions

from 250 to 308 lbs
DTS

11× 58 lbs
DTS
× 320 DTS× 90% × $0.06

lbs

for 11 days

& from 308 to 313.17 lbs
DTS

1× 5.17 lbs
DTS
× 320 DTS × 90%× $0.06

lbs

for 1 days
& from 250 to 300 lbs

DTS
2× 50 lbs

DTS
× 320 DTS × 90%× $0.06

lbs

for 2 days
& from 250 to 274 lbs

DTS
1× 24 lbs

DTS
× 320 DTS × 90%× $0.06

lbs
$13,256.70

for 1 days
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20. Accordingly, there would have been 11 days where lime additions increased from

250 to 308 lbs/DTS and one day from 308 to 313.17 lbs/DTS. Thus, there would

have been a decrease in odor levels of 11 × (0.01 points
lbs/DTS

× (308 − 250) lbs/DTS +

1.13 points) + 0.01 points
lbs/DTS

× (313.17 − 308) lbs/DTS = 18.8617 points. Since the

decrease in the odor level of 53.4977− 33.396 = 20.1017 points was needed, another

20.1017 − 17.1517 = 1.24 points in odor reduction would still have been needed.

There were several combinations of days and lime additions to achieve an additional

1.24-point reduction and one way to achieve this were to increase lime additions on

days 13, 18, and 20 to 300, 300, and 274 lbs/DTS, respectively. Then, the decrease

in odor level would have been 0.01 points
lbs/DTS

× (300− 250) lbs
DTS

+0.01 points
lbs/DTS

× (300−

250) lbs
DTS

+ 0.01 points
lbs/DTS

× (274 − 250) lbs
DTS

= 1.24 points. Moreover, the increase

in total cost would have been 90% × 320 DTS × (300 − 250) lbs
DTS
× $0.06

lbs
+ 90% ×

320 DTS × (300 − 250) lbs
DTS
× $0.06

lbs
+ 90% × 320 DTS × (274 − 250) lbs

DTS
× $0.06

lbs
=

$2, 142.72. It is important to emphasize that this cost figure would have been

incurred from the increase in lime addition only and there would have been no

change in the total number of belt filter presses in service. Next, we compare

this cost figure with the cost incurred from the model’s optimal solution. The

model achieved the reduction of 1.24 points in odor level by first increasing the

lime addition on day 20 from 250 to 308 lbs/DTS. This resulted in a decrease in

odor level of 0.01 points
lbs/DTS

× (308− 250) lbs
DTS

+ 1.13 points = 1.71 points. Obviously,

this was more than the required decrease in odor level of 1.24 points. Second,

the model offset the excess decrease by reducing one belt filter press in service,

which in tern incurred another 0.47 points of odor level. Hence, altogether there
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was a decrease of 1.71 − 0.47 = 1.24 points in odor level and the associated cost

was 90% × 320 DTS × (308 − 250) lbs
DTS
× $0.06

lbs
− 1× $200 = $802.24, significantly

less than the $2142.72 figure determined earlier. Thus, the previous calculations

were consistent with the Pareto optimal solutions. To this end, we determined the

overall increases in cost and the overall decreases in odor incurred by the optimal

solutions. The increases in total cost comprised the increments of lime additions of

308− 250 = 58 lbs/DTS for 12 days and of 313.17 − 308 = 5.17 lbs/DTS for 1 day

and the decrement of one belt filter press for 1 day. In particular, the increases in

total cost were 12× 58 lbs
DTS
× 320 DTS× 90% × $0.06

lbs
+ 1× 5.17 lbs

DTS
× 320 DTS×

90%× $0.06
lbs
− $200 = $11, 916.22, coinciding with the optimal decreases in the total

cost when moving from Pareto optimal point numbers 21 to 22. Next, we analyze

the third portion of the Pareto optimal solutions.

All Pareto optimal points in the third portion had centrifuges and belt filter

presses utilized at their full capacities. In particular, there were the total of 62

centrifuges and 217 belt filter presses in services for each of the Pareto optimal points

in the third portion. The only differences in solutions among these Pareto optimal

points were the amounts of lime added. In other words, lime was the marginal

odor reduction activity. This observation is borne out in comparing points number

27 and number 28. For these points, the reduction in odor levels was five points

(−78.35963− (−83.35963)) with a corresponding increase in total lime additions of

5
0.01

= 500 lbs/DTS as shown in Table 4.1.

So far, we have analyzed the effects and roles of all management decision

variables in the wastewater treatment process according to optimal solutions. It
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can be seen that at various stages and/or situations at hand, one variable may be

a critical factor in effectively reducing total odor level while the others may not.

Failure to understand these situations may result in a significantly higher increase

in total cost. For example, in reducing the total odor from Pareto optimal point

numbers 1 to 2, one could have paid $6,600.96 by using lime to reduce odor level,

while it cost only $392 for having two more centrifuges in service in order to achieve

the same amount of odor reduction. Having analyzed the wastewater treatment

process’s variables, we next analyze the biosolids shipment variables, Fdcf .

For the Base Case, biosolids’ hauling costs were charged on a tonnage basis

regardless of to which reuse field they hauled biosolids (see hauling cost details

in Section 3.3.5). It is also important to note that the shipment pattern was also

constrained by (4.4), where biosolids assigned to each contractor were limited at pre-

specified values. An analysis of the optimal solutions revealed that first, biosolids

were assigned to the contractor whose hauling cost was cheapest. After the daily

limit for that contractor was met, biosolids were next assigned to the second cheapest

one and then to the third one after the second contractor’s capacity was reached.

In fact, it is shown that contractor 2 was never chosen because it had the most

expensive hauling costs. In addition, the daily hauling capacities for contractors 1

and 3 altogether already covered the daily biosolids production.

In choosing the reuse fields for each Pareto optimal point, since there was

no penalty of going to fields that were further away, the model picked those fields

that satisfied the odor threshold limit constraint (see constraint 4.7), regardless of

distances from Blue Plains. In other words, there were multiple solutions for Fdcf .
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We checked this by fixing values of some Fdcf whose solutions were not zero to zeros

and reran the model with the same set of constraints. It turned out that the model

selected other fields with the same objective function value (total cost). Hence,

there were solutions other than the originally reported ones.

Nevertheless, comparing among Pareto optimal points, we found an interesting

relationship between the total odors (as well as total costs) and their associated se-

lected reuse fields’ average odor thresholds. As indicated in Figures 4.3 and 4.4, when

Pareto optimal total odors decrease from 139.68 to 75.57 (or equivalently, Pareto

optimal total costs increase from $4,091,075.67 to $4,104,789.91), the selected reuse

fields’ average odor thresholds decrease from 5.36 to 4.63. For the remaining Pareto

optimal points, the average odor thresholds remains at about the same level with a

mean value of 4.65. There was one exception when total odor equals −78.36 (total

cost equals $4,206,185.94) where average odor threshold equals 4.95. The above

relationships can be explained as follows. When total odors (summed over 31 days)

were high, the daily average odor was also high. Consequently, on average, biosolids

must be hauled to reuse fields with higher odor thresholds. Therefore, the selected

reuse fields’ average odor thresholds were also high. On the other hand, when to-

tal odors (as well as daily average odors) were low, biosolids could be hauled to

reuse fields with lower corresponding odor thresholds. Nevertheless, these biosolids

with lower odors could also be hauled to reuse fields with higher corresponding

odor thresholds as we see when total odor equals −78.36, as the one exception, we

mentioned above. Figure 4.5 shows selected reused fields taken from two Pareto

optimal points when total odors equal 75.5727 and 139.684. In particular, to show
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Figure 4.3: Pareto optimal total odors versus selected reuse fields’ average odor
thresholds

Figure 4.4: Pareto optimal total costs versus selected reuse fields’ average odor
thresholds
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the differences in odor thresholds associated with selected reuse fields corresponding

to each Pareto optimal point, only reuse fields selected exclusively by either one of

the Pareto optimal points are displayed. In other words, reuse fields selected by

both Pareto optimal points are not shown in the figure. It is indicated that odor

thresholds associated with reuse fields selected by the Pareto optimal point when

total odor equals 57.5727 were generally lower than odor thresholds associated with

reuse fields selected by the Pareto optimal point when total odor equals 139.684.

To conclude the analysis of the Base Case, we compare the Pareto optimal

total costs and total odors with their counterparts obtained by fixing values of all

decision variables to the values implemented by DCWASA or the on-site contractor

during the time period in question, however, with some exceptions. Although we

were able to fix values of lime additions and the numbers of the on-site contractor

belt filter presses and centrifuges to actual ones implemented by DCWASA or the

on-site contractor, we were not able to fix the amount of wet ton solids hauled

to each reuse field due to the following reasons. Also, some of those visited reuse

fields without latitude and longitude data were not included in our optimization

model as previously discussed. Therefore, biosolids applied to those excluded reuse

fields were not taken into account. Subsequently, the total wet tonnage determined

from actual application (excluding from those visited reuse fields with incomplete

data) was significantly less than the total wet ton obtained from the optimization

model. Thus, we were able only to fix what reuse fields to which biosolids should

be hauled but not the amount of biosolids to be applied. Finally, we reran the Base

Case (problem 4.29) with the following additional constraints and for the sake of
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Figure 4.5: Optimal reuse fields when total odor scores equal 75.5727 and 139.684
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discussion, we call this modified Base Case “DCWASA Case”.

∀d ∈ D;

Ck
d =Cka

d (4.36)

Gk
d =Gka

d (4.37)

Ldc
d =Ldca

d (4.38)

∀f ∈ F a;

|D|
∑

d=1

|C|
∑

c=1

δdcf >=1 (4.39)

where

Cka
d = Recorded number of the on-site

contractor centrifuges in service on day d

Gka
d = Recorded number of the on-site contractor

belt filter presses in service on day d

Ldca
d = Recorded DCWASA lime additions on day d

F a = Set of visited reuse fields during the time period D

Equations (4.36), (4.37), and (4.38) enforce variables Ck
d , Gk

d, and Ldc
d to take their

corresponding recorded values Cka
d , Gka

d , and Ldca
d , respectively. While, (4.39) en-

forces at least one of δdcf (note that δdcf ∈ {0, 1}; see equation (4.8)) must be one if

f ∈ F a. Consequently, according to (4.5), Fdcf must be greater than or equal to 23

and this satisfies our restriction that biosolids must be hauled to reuse field f ∈ F a.

The optimal solution from the DCWASA Case indicates a total cost of

$4, 131, 458.98617 and a total odor score of 76.13069. Figure 4.6 depicts the Pareto
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optimal points from the Base Case and the DCWASA Case. According to this

Figure 4.6: Pareto optimal points from Base Case and DCWASA Case

figure, there are eight Pareto optimal points from the Base Case dominating the

optimal solution from the DCWASA Case. From Table 4.1, these dominating

Pareto optimal points are points number eight through 15 with the total costs range

from $4,104,789.90960 to $4,119,589.90960 and total odors range from 75.57270 to

40.79270. It can be seen that total odors and total costs from these eight Pareto opti-

mal points are lower than optimal total odor and total cost obtained from DCWASA

Case. Hence, one should prefer employing the solutions from these eight Pareto op-

timal points to employing the solution from the DCWASA Case and this validates

the use of our optimization model. Table 4.10 shows the details for the optimal
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solution from the Pareto optimal point number eight (total cost = $4,104,789.9096,

total odor score = 75.5727) and the optimal solution when fixing all variables ac-

cording to DCWASA or the on-site contractor actual implementation during the

time period in question. Figures 4.7, 4.8, and 4.9 show the optimal solution for

Pareto optimal point eight and the actual implemented values for lime additions

and the numbers of the on-site contractor centrifuges and belt filter presses, respec-

tively. According to Table 4.10 and Figure 4.7, the actual daily lime additions

Figure 4.7: Daily solutions for lime additions

fluctuated between 251.17 lbs/DTS and 294.90 lbs/DTS with an average of 270.82

lbs/DTS. While the optimal solution corresponding to Pareto optimal point num-

ber eight indicates most daily lime additions of 250 lbs/DTS with an exception of

250.13 lbs/DTS on day 17. It can be seen that the optimal solution for lime addi-

tions significantly differs from the actual implemented values. Similar observations

can also be found for the total numbers of centrifuges and belt filter presses. To
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Table 4.10: Solutions for Pareto optimal point number eight and DCWASA actual
application

Day Actual Point #8
implementation solution
Ldc

d Ck
d Gk

d Ldc
d Ck

d Gk
d

1 269.91 1 4 250.00 2 0
2 275.73 1 4 250.00 2 0
3 277.03 1 4 250.00 2 0
4 273.49 1 4 250.00 2 0
5 259.92 1 4 250.00 2 0
6 262.82 1 4 250.00 2 0
7 265.77 1 4 250.00 2 0
8 264.88 2 4 250.00 2 0
9 251.17 1 5 250.00 2 0

10 275.06 1 5 250.00 2 6
11 266.68 1 5 250.00 2 5
12 276.74 1 5 250.00 2 3
13 267.72 1 5 250.00 2 2
14 272.74 1 5 250.00 2 0
15 264.31 1 5 250.00 2 0
16 261.28 1 6 250.00 2 5
17 257.9 1 5 250.13 2 5
18 270.72 1 5 250.00 2 5
19 254 1 5 250.00 2 0
20 261.18 1 5 250.00 2 2
21 272.4 1 5 250.00 2 0
22 285.71 1 5 250.00 2 1
23 290.12 1 5 250.00 2 0
24 294.9 1 5 250.00 2 0
25 271.4 1 5 250.00 2 7
26 291.32 1 6 250.00 2 0
27 270.02 1 6 250.00 2 2
28 275.24 1 6 250.00 2 0
29 278.04 1 6 250.00 2 2
30 258.13 1 6 250.00 2 0
31 279.01 1 6 250.00 2 2

Total 8395.34 32 154 7750.13 62 47
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Figure 4.8: Daily solutions for the number of the on-site contractor centrifuges in
service

Figure 4.9: Daily solutions for the number of the on-site contractor belt filter presses
in service
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this end, it is important to point out that the actual implementation could be domi-

nated by the optimal solution by at least $4, 131, 459− $4, 119, 590 = $11, 869 up to

$4, 131, 459 − $4, 104, 790 = $26, 669 over a 31-day time horizon, where $4,131,459

is the actual total cost implemented and $4,119,590 and $4,104,790 is the highest

and lowest total cost values in the set of eight Pareto optimal points dominating

the actual implementation (see Figure 4.6 on Page 132). Using similar calculations,

the optimal total odor score could dominate the implemented total odor by at least

0.56 (i.e., 76.13− 75.57) odor index points up to 35.34 (i.e., 76.13− 40.79) odor

index points. Hence, the analysis as previously discussed is necessary and useful to

maintain the cost-effective wastewater treatment process.

Next, we perform a sensitivity analysis on the Base Case. First, we vary the

percent flow from the blend tank to DCWASA and the on-site contractor. Then,

we change the odor thresholds for each reuse field. More specifically, we use odor

threshold set one where no wind directions were taken into account in the odor

threshold calculations. Lastly, we vary DCWASA’s dewatering cost.

4.4 Sensitivity Analysis on the Base Case

4.4.1 Sensitivity Analysis on the Percent Flow from Blend Tank

According to our previous analysis in this chapter, the percentage flow from

blend tank to DCWASA was exogenously fixed to 90%. However, practically, there

are many choices of flow we can choose ranging from 0% up to 100%. Therefore,

it is interesting to see how the optimal solution would change when we vary the
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percentage flow. However, enumerating all values of percentage flows could be com-

putationally prohibitive. Thus, we arbitrarily tried 10%, 20%, . . . , 80% of percentage

flows as a reasonable compromise.

Next, in order to see how the Pareto optimal points would change relative to

existing ones from the Base Case, for each F dc
d ∈ {10%, 20%, . . . , 80%}, we reran

problem (4.34) (see page 101 for problem (4.34)) and varied the maximum values τ in

(4.35) with 28 total odor values from the 28 Pareto optimal points of the Base Case.

Using the specified setup and given that we arbitrarily tried 10%, 20%, . . . , 80%

of percentage flows (F dc
d ), there were 8 × 28 = 224 more subproblems in total.

However, all 28 subproblems when F dc
d = 10% were infeasible for the following

reasons. There were at most two on-site contractor centrifuges with a maximum

capacity of 50 DTS/centrifuge and seven belt filter presses with at most 25 DTS/belt

filter press. Hence, the maximum daily DTS that the on-site contractor could handle

was 2×50+7×25 = 275 DTS. However, when 10% of flow was assigned to DCWASA,

the remaining 90% of the flow or 0.9 × 320 = 288 DTS exceeded the maximum

amount of solids that the on-site contractor could handle. Therefore, the problem

became infeasible. It should be noted that this maximum processing constraint is

(4.12) (see page 94).

For the remaining 196 subproblems where F dc
d ∈ {20%, 30%, . . . , 80%}, all of

them could be solved to optimality. However, not all subproblems returned Pareto

optimal solutions. In particular, the optimal total odors from those subproblems did

not equal their corresponding maximum value τ (see Section 2.1.1 for the verification

of the Pareto optimal solution). Next, we discuss the solutions to these subproblems
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and compare the Pareto optimal points to Base Case.

Figure 4.10 depicts the Pareto optimal points found when F dc
d ∈ {20%, 30%, . . . , 90%}.

It can be seen that the Pareto optimal points move to the left when the percent flow

Figure 4.10: Pareto optimal points when F dc
d ∈ {20%, 30%, . . . , 90%}

from the blend tank to DCWASA decreases. Otherwise stated, less total costs and

less total odors were expected when less flow was handled by DCWASA. It is impor-

tant to point out here first that this observation does not necessarily imply that the

on-site contractor would be more cost efficient than DCWASA. This cost behavior

corresponds to how the model was set up and the odor prediction equation used

rather than the efficiencies of either DCWASA or the on-site contractor themselves.

For example, the on-site contractor did not apply polymer during the dewatering
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process and therefore less polymer cost was expected when more flow was assigned

to them. This resulted in part in the overall total costs. Another reason is that this

optimization model was constructed from the odor prediction equation (see equa-

tion (3.2), page 55) containing mostly odor-reducing variables relevant to the on-site

contractor. Thus, when more flows were assigned to the on-site contractor, less total

odors could be achieved. Next, we discuss this cost behavior in more detail.

From Figure 4.10, it can be seen that the set of Pareto optimal points when

F dc
d = 0.2 dominates the set of Pareto optimal points when F dc

d = 0.3. Also, the

set of Pareto optimal points when F dc
d = 0.3 dominates the set of Pareto optimal

points when F dc
d = 0.4, and so on. In addition, the gaps between the Pareto optimal

curves when F dc
d ∈ {0.2, 0.3, . . . , 0.5} (gaps #5, #6, and #7) are significantly wider

than those when F dc
d ∈ {0.5, 0.6, . . . , 0.9} (gaps #1 to #4). This last observation

corresponds directly to the on-site contractor’s dewatering cost being a step function

and will be discussed later.

To see things more clearly, we can categorize all costs constituting the total

cost in (4.19) into five categories regardless of whether they are from an on-site

contractor or DCWASA. The five categories of costs are:

1. Lime cost

2. Polymer cost

3. Dewatering cost

4. Centrifuge and belt filter press cost
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5. Hauling cost

To further analyze these costs behaviors and be able to compare the total costs, we

arbitrarily picked one Pareto optimal point sharing a common total odor score from

each of the Pareto optimal sets when F dc
d ∈ {20%, 30%, . . . , 90%}; this point has an

odor score of 33.396. Table 4.11 shows five important cost values to analyze these

Pareto optimal points. From Table 4.11, it can be seen that cost categories two

Table 4.11: Five categories of costs from the Pareto optimal points when total odors
= −33.396

Cost category Total
F dc

d 1 2 3 4 5 cost
(lime (polymer (Dewatering (Centrifuge (Hauling
cost) cost) cost) & belt cost)

filter press
cost)

0.9 $165,012 $1,962,353 $874,696 $92,008 $1,061,757 $4,155,826
0.8 $162,292 $1,944,431 $856,592 $92,008 $1,089,474 $4,144,798
0.7 $159,573 $1,926,510 $838,488 $85,932 $1,117,192 $4,127,694
0.6 $166,242 $1,908,588 $820,384 $69,656 $1,144,909 $4,109,779
0.5 $161,958 $1,890,666 $795,615 $69,656 $1,172,626 $4,090,521
0.4 $157,674 $1,872,745 $756,183 $63,580 $1,200,343 $4,050,525
0.3 $153,389 $1,854,823 $716,751 $57,504 $1,228,422 $4,010,889
0.2 $145,976 $1,836,901 $677,319 $67,704 $1,256,173 $3,984,073

(polymer cost) and three (dewatering cost) always decreased when F dc
d decreased.

Meanwhile, cost category five (hauling cost) always increased. As for the other cost

categories, the cost figures were not monotonic. Next, we discuss the reasons for

these costs behaving as they did.

First, since there was no polymer cost charged by the on-site contractor in the

dewatering process, total polymer cost always decreased when more flow was handled
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by the on-site contractor. It is important to note that polymer added at DAF was

added to a portion of flow before the flow was directed to either DCWASA or the on-

site contractor. Therefore, the polymer cost at DAF was calculated independently

from the percent flows to DCWASA or the on-site contractor.

Second, DCWASA’s dewatering cost was $90/DTS. Meanwhile, the on-site

contractor’s dewatering cost was either $71.75/DTS or $50.25/DTS2 . Obviously,

the more flow assigned to the on-site contractor, the less dewatering cost expected.

Third, biosolids produced by the on-site contractor contained less percent

solids. In other words, given the same amount of flow, biosolids produced by the

on-site contractor weighted more than those produced by DCWASA. Consequently,

the more flow handled by the on-site contractor, the greater the hauling cost, all

things being equal.

Lastly, DCWASA’s lime additions and the on-site contractor’s centrifuges and

belt filter presses are decision variables in the optimization problem. Since they are

interchangeable in reducing biosolids odor levels, a particular solution may favor one

variable over another at various stages (e.g., amount of solids being processed and

desired odor level). Thus, cost categories one and four were not monotonic. So far,

we have shown that for two of the five cost categories, less cost was expected when

less flow was handled by DCWASA. The only cost that always increased when less

flow was handled by DCWASA was the hauling cost. This observation corresponds

directly to (4.2), where the amount of wet tons of biosolids produced, on each day,

by DCWASA is
BdFdc

d

0.3107
and by the on-site contractor it is

BdFk
d

0.2580
. It can be seen that

2See Section 3.3.2 for the on-site contractor’s dewatering cost details.
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when less flow goes to DCWASA (or, equivalently, more flow goes to the on-site

contractor), more wet tons of biosolids would be generated and therefore hauling

costs would increase. Tables 4.12 displays the changes in five categories of costs

when F dc
d decreased, where positive values indicate an increase in cost and negative

values a decrease.

Table 4.12: Changes in five categories of costs from the Pareto optimal point with
total odor = −33.396

Cost category Total
F dc

d 1 2 3 4 5 changes
(lime (polymer (dewat- (centri- (hauling
cost) cost) ering) fuge cost)

cost & belt
filter
press
cost)

0.9–0.8 −$2, 719 −$17, 922 −$18, 104 $0 $27,717 −$11, 028
(gap #1)
0.8–0.7 −$2, 719 −$17, 922 −$18, 104 −$6, 076 $27,717 −$17, 104

(gap #2)
0.7–0.6 $6, 670 −$17, 922 −$18, 104 −$16, 276 $27,717 −$17, 915

(gap #3)
0.6–0.5 −$4, 284 −$17, 922 −$24, 769 $0 $27,717 −$19, 258

(gap #4)
0.5–0.4 −$4, 284 −$17, 922 −$39, 432 −$6, 076 $27,717 −$39, 997

(gap #5)
0.4–0.3 −$4, 284 −$17, 922 −$39, 432 −$6, 076 $28,078 −$39, 636

(gap #6)
0.3–0.2 −$7, 414 −$17, 922 −$39, 432 $10,200 $27,751 −$26, 816

(gap #7)

The last column in Table 4.12 clearly shows why Pareto optimal points moved

to the left when F dc
d decreased. Another observation we have previously mentioned

is that gaps #5, #6, and #7 are significantly wider than gaps #1, #2, #3, and

#4 according to Figure 4.10 and as evidenced in the last three rows of Table 4.12.
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Comparing these three rows with the rest, out of all cost categories, the decreases in

cost category three made gaps #5, #6, and #7 significantly wider than other gaps.

This can be explained as follows.

The on-site contractor’s dewatering cost was a step function where the de-

watering cost became cheaper for a certain level of flow from the blend tank. In

particular, the on-site contractor’s dewatering cost was $71.75/DTS for the first

150 tons and then $50.25/DTS thereafter3. Consequently, when more than 150

DTS were handled by the on-site contractor the dewatering cost per DTS became

cheaper. Now, given that there were 320 DTS per day, when F dc
d = 0.5 there were

(1 − 0.5) × 320 = 160 DTS handled by the on-site contractor. Using similar cal-

culations, there were 192, 224, and 256 DTS handled by the on-site contractor,

respectively, when F dc
d = 0.4, 0.3, and 0.2. This is the reason why gaps #5, #6, and

#7 are significantly wider than the others.

Another interesting observation, as can be seen from Figure 4.10, is that there

are few Pareto optimal points where total odor > 0 when F dc
d ∈ {0.2, 0.3, . . . , 0.6}.

For the sake of discussion and to address the subject more clearly, Table 4.13 shows

the optimal objective function values from all 28 runs when F dc
d = 0.2. As discussed

in Section 4.2.2, in verifying the Pareto optimal solutions, one needs to verify if all

the constraints on the objectives are binding at the optimal solution. For our model,

we have only one constraint on the objective which was the total odor. Therefore,

we only need to verify, for each run, if the reported total odor (4th column) equaled

its corresponding τ value (2nd column). From Table 4.13, it can be seen that, for

3See Section 3.3.2.
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Table 4.13: Optimal objective function values when F dc
d = 0.2

Run # τ Total cost ($) Total odor Pareto optimal
(index points) (yes/no)

1 139.68400 3,980,286.80598 −4.32600 No
2 135.86400 3,980,286.80598 −4.32600 No
3 126.31400 3,980,286.80598 −4.32600 No
4 120.58400 3,980,286.80598 −4.32600 No
5 111.03400 3,980,286.80598 −4.32600 No
6 101.48400 3,980,286.80598 −4.32600 No
7 91.55400 3,980,286.80598 −4.32600 No
8 75.57270 3,980,286.80598 −4.32600 No
9 70.87270 3,980,286.80598 −4.32600 No

10 65.70270 3,980,286.80598 −4.32600 No
11 61.47400 3,980,286.80598 −4.32600 No
12 55.83270 3,980,286.80598 −4.32600 No
13 50.66270 3,980,286.80598 −4.32600 No
14 45.96270 3,980,286.80598 −4.32600 No
15 40.79270 3,980,286.80598 −4.32600 No
16 1.64037 3,980,286.80598 −4.32600 No
17 −3.38600 3,980,286.80598 −4.32600 No
18 −18.35963 3,981,892.47958 −18.35963 Yes
19 −23.35963 3,982,510.71958 −23.35963 Yes
20 −28.35963 3,983,128.95958 −28.35963 Yes
21 −33.39600 3,984,073.04555 −33.39600 Yes
22 −53.49770 3,986,491.23143 −53.91600 No
23 −58.35963 3,987,430.49158 −58.35963 Yes
24 −63.35963 3,989,350.49158 −63.35963 Yes
25 −68.35963 3,991,270.49158 −68.35963 Yes
26 −73.35963 3,992,948.99158 −73.35963 Yes
27 −78.35963 3,994,868.99158 −78.35963 Yes
28 −83.35963 3,996,788.99158 −83.35963 Yes
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the first 17 runs, none of the the reported total odors equaled their corresponding

τ values and hence no Pareto optimal solutions were obtained. In addition, the

reported total odor values were a lot lower than their corresponding τ values. The

first Pareto optimal point found (point #18) was when τ = −18.35963.

In the next section, we perform another sensitivity analysis where the input

for odor thresholds changes.

4.4.2 Sensitivity Analysis on Odor Threshold Input

In this case, the field-specific odor thresholds (Oup
f ) were adjusted (labeled

“No Wind”). In particular, we used the odor threshold set 1 (see Section 3.4.1

for odor threshold set 1 calculations) as input to odor threshold for each field f

(Oup
f ). As the odor threshold for each reuse field was changed, some reuse fields

would be more restricted meaning Oup
f decreased while other reuse fields would be

less restricted (corresponding to when Oup
f increased) due to (4.7) (see page 92). In

fact, there were 559 reuse fields that became more restricted, while the remaining

223 reuse reuse fields became less restricted. Consequently, higher total costs were

expected for Pareto optimal points with the same total odors from the Base Case.

However, the results are counter-intuitive. Next, we discuss the solution procedures

and computational results.

Since we were interested in investigating how the Pareto optimal points would

change relative to the existing ones from the Base Case, we used the total odor values

from the Pareto optimal points of the Base Case as the maximum values τ in (4.35)
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and reran problem (4.34) with odor threshold from set 1 as input to Oup
f . Given

there were 28 Pareto optimal points from the Base Case, we also had 28 total odor

values to be used as the τ values. Subsequently, 28 subproblems were constructed.

We were able to solve all 28 subproblems to optimality. However, after verification,

only 12 distinct Pareto optimal solutions resulted. In particular, there were only

12 subproblems for which total odors equaled their corresponding τ values. Figure

4.11 shows how total costs associated with these 12 Pareto optimal points obtained

from the No Wind Case are related to the total costs associated with the Pareto

optimal points4 obtained from Base Case. In particular, the rectangle represents the

Figure 4.11: Pareto optimal points from Base Case and No Wind Case

4Only Pareto optimal points from Base Case with common total odors to the 12 Pareto optimal

points obtained from the No Wind Case.
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set of all 28 subproblems being solved and the area outside the circle represents the

16 subproblems not yielding Pareto optimal solutions. In addition, the whole circle

represents the 12 Pareto optimal points obtained. In particular, when comparing

these Pareto optimal points to those from Base Case with common total odors,

eight of them had similar total costs to those from Base Case. In other words, these

eight Pareto optimal points were common to both the Base and No Wind cases.

For the other four Pareto optimal points, two of them had total costs greater than

those of the Base Case, while the remaining two Pareto optimal points had total

costs less than those of the Base Case. Figure 4.12 depicts those 12 Pareto optimal

points from both the Base and No Wind cases while Table 4.14 shows the details

for total cost and total odor values of those from the No Wind Case. In addition,

the fourth column of the table displays the sign telling if the total cost was less or

greater than or equal to the total cost for the corresponding point from the Base

Case. These signs corresponding to their Pareto optimal points are also displayed

in Figure 4.12. Thus, we may conclude that the changes in odor thresholds may or

may not always effect the optimal objective function value of total cost, given the

Pareto optimal total odor in question. This is due presumably to the following three

reasons. First, the distribution costs to each reuse fields were the same. Second,

the set of candidate reuse fields are large. Finally, the modified odor thresholds

were not restrictive enough (i.e., modified odor thresholds were not low enough).

Thus, although the odor thresholds were modified, the solver could still find other

combinations of reuse fields from the large set available to arrive at total costs the

same as before or not much different.
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Figure 4.12: Pareto optimal points from Base Case and No Wind Case

Table 4.14: “No Wind” Case Pareto optimal points

Point Total cost ($) Total odor Compared to the total cost
from the Base Case

1 4,094,015.66978 111.03400 =
2 4,094,995.66978 101.48400 =
3 4,147,416.66242 −18.35963 =
4 4,150,198.74242 −23.35963 <
5 4,152,980.82242 −28.35963 <
6 4,155,825.74783 −33.39600 >
7 4,171,625.94242 −58.35963 =
8 4,180,265.94242 −63.35963 =
9 4,188,905.94242 −68.35963 =
10 4,197,545.94242 −73.35963 =
11 4,206,185.94242 −78.35963 =
12 4,215,204.39042 −83.35963 >
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To summarize this section, the modified odor thresholds may not always affect

the Pareto optimal points. Nevertheless, the optimal solutions for decision variables

may change (e.g., Fdcf , L
dc
d ) and need to be taken into account in implementing the

solutions.

Next, we discuss a sensitivity analysis on DCWASA’s operating costs.

4.4.3 Sensitivity Analysis on DCWASA’s Operating Costs

In this section, we reran problem (4.34) with two different values for DCWASA’s

dewatering cost: $80/DTS and $70/DTS. The maximum τ values were set up the

same way we solved the Base Case. Figures 4.13 and 4.14 display the Pareto op-

timal points when DCWASA’s dewatering cost = $80/DTS and $70/DTS, respec-

tively. We see that when DCWASA’s dewatering cost = $80/DTS, the Pareto

optimal set when F dc
d = 0.2 still dominates the Pareto optimal sets when F dc

d ∈

{0.3, . . . , 0.9}. This phenomenon is similar to the case when DCWASA’s dewatering

cost = $90/DTS. However, when DCWASA’s dewatering cost = $70/DTS, the high-

lighted Pareto optimal points in Figure 4.14 corresponding to F dc
d ∈ {0.2, 0.3, 0.9}

are to the southwest of the other groups of Pareto optimal points and are non-

dominated with respect to each other. Table 4.15 also shows their corresponding

detailed total costs and total odors.
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Figure 4.13: Pareto optimal points when DCWASA’s operating cost = $80/DTS
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Figure 4.14: Pareto optimal points when DCWASA’s operating cost = $70/DTS
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Table 4.15: Pareto optimal points obtained when
DCWASA’s dewatering cost = $70/DTS

Pareto optimal F dc
d Total cost Total odor

point # ($)
1 0.9 3,912,907.67 135.86
2 0.9 3,913,495.67 130.13
3 0.9 3,914,083.67 124.40
4 0.9 3,914,896.98 116.75
5 0.9 3,916,435.67 101.48
6 0.9 3,926,029.91 76.68
7 0.9 3,928,229.91 71.51
8 0.9 3,930,027.67 66.64
9 0.9 3,932,429.91 61.64
10 0.9 3,934,629.91 56.47
11 0.9 3,936,427.67 51.60
12 0.3 3,938,795.47 24.81
13 0.3 3,939,730.8 19.68
14 0.2 3,940,506.72 −4.33
15 0.2 3,940,963.09 −9.46
16 0.2 3,941,036.05 −8.52
17 0.2 3,941,631.25 −14.59
18 0.2 3,942,299.41 −19.72
19 0.2 3,943,121.17 −25.25
20 0.2 3,943,201.81 −24.33
21 0.2 3,943,413.01 −28.27
22 0.2 3,943,820.05 −29.33
23 0.2 3,944,081.17 −33.40
24 0.2 3,944,154.13 −32.46
25 0.2 3,944,357.65 −35.25
26 0.2 3,944,438.29 −34.33
27 0.2 3,944,538.13 −35.72
28 0.2 3,944,718.61 −36.19
29 0.2 3,944,749.33 −38.53
30 0.2 3,944,822.29 −37.59
31 0.2 3,945,056.53 −39.33
32 0.2 3,945,474.91 −43.66
33 0.2 3,945,732.19 −44.33
34 0.2 3,945,962.59 −46.06
35 0.2 3,946,216.03 −47.85
36 0.2 3,946,350.43 −49.33
37 0.2 3,946,465.63 −50.76
38 0.2 3,946,646.11 −51.23

Continued on next page
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Table 4.15 – continued from previous page
Pareto optimal F dc

d Total Cost Total Odor
point# ($)

39 0.2 3,946,884.19 −52.98
40 0.2 3,946,968.67 −54.33
41 0.2 3,948,004.86 −59.33
42 0.2 3,950,133.39 −64.33
43 0.2 3,952,015.2 −69.33
44 0.2 3,953,723.41 −74.33
45 0.2 3,955,560.08 −79.33
46 0.2 3,957,875.29 −84.33

Given that we only obtained subsets of the Pareto frontiers, we should make

sure that the Pareto optimal points corresponding to F dc
d ∈ {0.2, 0.3, 0.9} are not

dominated by Pareto optimal points from other values of F dc
d but not yet gener-

ated. That is we need to make sure that no other Pareto optimal points not yet

generated will lie to the southwest of existing ones. In fact, we are able to show

this by obtaining the minimum possible total odor when F dc
d ∈ {0.2, 0.3, . . . , 0.8}

and plotting these values as indicated by the vertical lines in Figure 4.15. We can

see that if more Pareto optimal points were generated, they would be to the right

of these vertical lines with higher total odors and, therefore, would not lie to the

southwest of the Pareto optimal points. Thus, our existing Pareto optimal points

cannot be dominated by Pareto optimal points not yet generated.

Next, we discuss why the Pareto optimal points5 did not always correspond to

when F dc
d = 0.2, when we set DCWASA’s dewatering cost = $70/DTS as opposed to

5Note that all points on Figure 4.14 are Pareto optimal associated with each F dc
d value. However,

when we consider all of them together, the actual Pareto optimal points are only points on the

southwest envelop.
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Figure 4.15: Possible minimum total costs when F dc
d ∈ {0.2, 0.3, . . . , 0.8}
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$90/DTS. This cost behavior is due to the following two connected reasons. First,

when F dc
d = 0.2, or 80% of the flow was handled by the on-site contractor, all of

the on-site contractor’s centrifuges and belt filter presses needed to be in service in

order to satisfy (4.12) (see page 94 for equation (4.12)). In other words, on each

day, two on-site contractor’s centrifuges and seven on-site contractor’s belt filter

presses needed to be in service in order to handle 320× 0.8 = 256 DTS assigned to

them. Hence, when F dc
d = 0.2, the total costs could only decrease a certain amount

taking into account that the centrifuges and belt filter presses were used to their

limit. Second, although the first observation is also true regardless of the value of

DCWASA’s dewatering cost, it is only when this cost = $70/DTS that the total

cost from F dc
d = 0.9 is as low as the one from F dc

d = 0.2 (for some points).

4.5 Conclusion

In this chapter we began our analysis with the Base Case optimization model

and discussed the three portions of the Pareto optimal frontier. The roles of decision

variables (e.g., lime addition, # of centrifuges) for each of these three portions

were analyzed. Failure to understand the key roles of decision variables at various

stages may cause as much as $6,600 in cost discrepancy over a 31-day time horizon.

Then, we provided a sensitivity analysis on the Base Case beginning the analysis

by varying the percentage flow from the blend tank to DCWASA in the range

{0.10, 0.20, . . . , 0.90}. We found that the set of Pareto optimal points for F dc
d = 0.2

dominated the other values for F dc
d . In addition, we explained why when F dc

d = 0.10,
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the problem became infeasible. Next sensitivity analysis was described for odor

threshold. It was shown that the input for odor thresholds had no strong effects on

determining the Pareto optimal points; that is most of the Pareto optimal points

remained unchanged. We also suggested if there would have been less reuse fields,

changes in odor thresholds might have had more of an effect on the solutions. Lastly,

we did a sensitivity analysis on DCWASA’s operating costs. We showed that when

DCWASA’s operating cost equaled $70/DTS, the Pareto optimal points may not

always correspond to F dc
d = 0.2.

Thus, in the next chapter, the percentage of the flow to DCWASA F dc
d , is taken

to be a decision variable as oppose to being exogenously determined. Not only does

this allow us to solve for optimal F dc
d endogenously, but this also allows F dc

d to

vary across all days. Nevertheless, having F dc
d as a decision variable transforms the

problem from a mixed integer linear program to a mixed integer non-linear one due

to the presence of bilinear terms (e.g., product of decision variables). In the next

chapter, we discuss this modified problem and its approximation by a mixed integer

linear program. The method used to approximate the bilinear term as well as the

optimal solutions to this modified model are also discussed.
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Chapter 5

Optimization Models with Decomposition Methods

One of the common setups we had for all previous optimization models was

that the percent flows from the blend tank to DCWASA were fixed for each opti-

mization model run. The setup is practical in the sense that DCWASA may want

to know the optimal solutions for processing and distributing of biosolids, given the

percentage flow handled by the on-site contractor. However, it is still interesting to

find the optimal percent flow from the blend tank to DCWASA along with other

optimal processing and distribution variables. Eventually, we could enumerate all

problems by varying the percent flow for each day. However, doing so requires

millions of models to be solved and becomes a large computational burden. For

example, if we would like to try F dc
d = 0.1–0.9 with a 0.1 increment over a 31-day

period, it would require us to solve 931 problems for one value of maximum value τ

(if we were to try the constraint method). Then we need to compare 931 optimal ob-

jective function values and pick the best one. Moreover, solving these 931 problems

does not even guarantee that a Pareto optimal point would be obtained.

Thus, we now present a modified model where the percentage flows F dc
d are

defined as decision variables as opposed to being exogenously determined. This will

necessarily lead to computational difficulty but with a gain in model insights. Not

only does the bilinear term that arises from the product of F dc
d and Ldc

d make the
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objective function nonlinear, it also makes it nonconvex. Due to the existence of

several suboptimal local optima in a bilinear program, even the most uncomplicated

problem is hard to solve [50]. In this thesis, we take advantage of the decomposition

technique presented by Gabriel et al [29] to decompose the bilinear term. The

resulting approximation problem is then a linear integer program with can be solved

by existing solvers, where no specialized procedures are required.

The rest of this chapter is organized as follows. In Section 5.1, we discuss the

approximation of bilinear term involving two steps; the separation of bilinear term

using Schur’s decomposition [36, 29] and the approximation of quadratic terms, that

arise from Schur’s decomposition, using special ordered set type 2 (SOS2) variables

[6, 5, 27]. In addition, extra constraints from the approximation of the bilinear terms

are also discussed. Section 5.2 presents the full modified model where some necessary

constraints pertinent to having defined F dc
d as a decision variable are also discussed.

Next, an analysis on the number of breakpoints used for the approximation process

is made. Finally, we present the algorithm used to solve the modified model as well

as computational results. Being able to obtain only one solution with zero percent

optimality gap, in Section 5.3 we apply the Dantzig-Wolfe decomposition method

to the modified model in order to obtain better lower bounds. With these modified

lower bounds, in Section 5.4, we numerically prove that most of the integer solutions

discussed in Section 5.3 were already close to optimal. We also present five more

Pareto optimal points. Although we are able to obtain more Pareto optimal points

by utilizing better bounds obtained from Dantzig-Wolfe decomposition technique,

the overall run time was still extensive. Therefore, in Section 5.5, we modify the
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algorithm presented in Section 5.2 such that the modified bounds are included in

the algorithm. The computational results follow and indicate that the run times

were reduced substantially (e.g. as much as 1
5

of the times from before). In addition,

several more Pareto optimal points are obtained and presented. Section 5.6 compares

the Pareto optimal points obtained in this chapter with the ones obtained in Chapter

4. The analysis shows that the set of Pareto optimal points obtained in this chapter

dominates those obtained in Chapter 4. Finally, Section 5.7 concludes this chapter

and suggests possible future work.

5.1 Approximation of the Bilinear Cost Function

The two major steps involved in the approximation of the bilinear term are

the separation via Schur’s decomposition [36, 29] and the piecewise linearization of

the quadratic terms resulting from this decomposition using special ordered set of

type 2 (SOS2) variables [6, 5, 27].

First, consider (4.20), DCWASA’s lime cost = 0.06
|D|
∑

d=1

Ldc
d F dc

d Bd. Given F dc
d is

decision variable, the bilinear term arises from the product of F dc
d and Ldc

d . According

to [29], the term F dc
d Ldc

d can be transformed to two quadratic terms using Schur’s

decomposition and some extra linear constraints. It can be shown that F dc
d Ldc

d =

1
2
(ud

2 − vd
2) where ud =

Ldc
d√
2

+
Fdc

d√
2

and vd = −Ldc
d√
2

+
Fdc

d√
2
. Next, the terms ud

2 and

vd
2 can be piecewise linearized by SOS type 2 variables, zu

id and zv
jd, as follows.

Consider the breakpoints bu
id and bv

jd for the terms ud and vd, respectively. Then ud

can be written as
|I|
∑

i=1

zu
idb

u
id and vd as

|J|
∑

j=1

zv
jdb

v
jd and, ud

2, vd
2 are replaced respectively,
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by
|I|
∑

i=1

zu
id(b

u
id)

2 and
|J|
∑

j=1

zv
jd(b

v
jd)

2 where
|I|
∑

i=1

zu
id = 1,

|J|
∑

j=1

zv
jd = 1, 0 ≤ zu

id ≤ 1, 0 ≤ zv
jd ≤

1, ∀i = 1, . . . , |I |, j = 1, . . . , |J |. Thus, the bilinear term F dc
d Ldc

d can be approximated

by 1
2

(

|I|
∑

i=1

zu
id(b

u
id)

2 −
|J|
∑

j=1

zv
jd(b

v
jd)

2

)

, with the additional constraints:

∀d ∈ D;

|I|
∑

i=1

zu
idb

u
id =

Ldc
d√
2

+
F dc

d√
2

(5.1)

|J|
∑

j=1

zv
jdb

v
jd = −Ldc

d√
2

+
F dc

d√
2

(5.2)

|I|
∑

i=1

zu
id = 1 (5.3)

|J|
∑

j=1

zv
jd = 1 (5.4)

|I|−1
∑

i=1

yu
id = 1 (5.5)

|J|−1
∑

j=1

yv
jd = 1 (5.6)

zu
1d ≤ yu

1d, z
u
2d ≤ yu

1d + yu
2d, ..., z

u
|I|−1,d ≤ yu

|I|−2,d + yu
|I|−1,d, z

u
|I|,d ≤ yu

|I|−1,d (5.7)

zv
1d ≤ yv

1d, z
v
2d ≤ yv

1d + yv
2d, ..., z

v
|J|−1,d ≤ yv

|J|−2,d + yv
|J|−1,d, z

v
|J|,d ≤ yv

|J|−1,d (5.8)

∀d ∈ D, i ∈ I ;

0 ≤ zu
id ≤ 1 (5.9)

yu
id ∈ {0, 1} (5.10)

∀d ∈ D, j ∈ J ;

0 ≤ zv
jd ≤ 1 (5.11)

yv
jd ∈ {0, 1} (5.12)
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Lastly, (4.20) can be replaced by

DCWASA’s lime cost =
0.06

2

|D|
∑

d=1

Bd





|I|
∑

i=1

zu
id(b

u
id)

2 −
|J|
∑

j=1

zv
jd(b

v
jd)

2



 (5.13)

It is important to note here that, the minimum and maximum values for the

breakpoint bu
id are consistent with the minimum and maximum value for the term

Ldc
d√
2
+

Fdc
d√
2
, determined by accordingly substituting the lower bound and upper bound

for variables Ldc
d and F dc

d . Similarly,−Ldc
d√
2
+

Fdc
d√
2

can be used to find the minimum and

maximum values for the breakpoint bv
jd. In particular, the minimum and maximum

values for breakpoints bu
id and bv

jd can be calculated as follows.

bu
id

min =
Ldc

d
min

√
2

+
F dc

d
min

√
2

=
250√

2
+

0√
2

≈176.78

bu
id

max =
Ldc

d
max

√
2

+
F dc

d
max

√
2

=
400√

2
+

1√
2

≈283.55

bv
jd

min =− Ldc
d

max

√
2

+
F dc

d
min

√
2

=− 400√
2

+
0√
2

≈− 282.84

bv
jd

max =− Ldc
d

min

√
2

+
F dc

d
max

√
2

=− 250√
2

+
1√
2

≈− 176.07
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Next, we demonstrate the use of SOS2 variables through the approximation

of the quadratic term u2
d above. However, for the sake of discussion, we modified

the minimum and maximum values of bu
id to 0 and 30, respectively. In addition, we

drop an index d and suppose that there is only one u2 function to be approximated.

Finally, we use four breakpoints; bu
1 = 0, bu

2 = 10, bu
3 = 20 and bu

4 = 30 to approximate

u2, denoted by ũ2. Figure 5.1 depict the graph of function u2 being approximated

by three linear lines corresponding to the four breakpoints. Now, following the

Figure 5.1: Demonstration for the use of SOS2 variables
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formulation we have above, u may by written as
4
∑

i=1

zu
i bu

i and u2 may be approximated

by
4
∑

i=1

zu
i (bu

i )
2 with the following constraints.

zu
1 ≤yu

1

zu
2 ≤yu

1 + yu
2

zu
3 ≤yu

2 + yu
3

zu
4 ≤yu

3

zu
1 + zu

2 + zu
3 + zu

4 =1

yu
1 + yu

2 + yu
3 =1

zu
1 , zu

2 , zu
3 , z4 ≥0

yu
1 , yu

2 , yu
3 ∈{0, 1}

To illustrate the solution idea, take u = 15 as shown in Figure 5.1. Then the solution

to the approximating problem is yu
2 = 1, zu

2 = 0.5 and zu
3 = 0.5. All other variables

are equal to zero. Finally, we may write

u =zu
2 bu

2 + zu
3 bu

3

=
1

2
(10) +

1

2
(20) = 15

and u2 may be approximated by

ũ2 =zu
2 (bu

2)
2 + zu

3 (bu
3)

2

=
1

2
(100) +

1

2
(400) = 250

To conclude this section, we would like to note that the separation technique

used here relies mostly on the work developed by Gabriel et al. [29] and is general
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in the sense that it does not limit the number of variables in the product term.

However, it is important to note that the earlier work by Beale [4] has also proposed

a technique to express the bilinear term as a difference between two quadratic func-

tions. According to Beale [4], it can be shown that xy =
(

x+y
2

)2 −
(

x−y
2

)2
. In fact,

after some some arithmetic, it is easy to show that the resulting separation terms

from Beale’s and the technique we used are similar. In the next section, we discuss

some additional constraints and present the newly modified optimization model.

5.2 Optimization Model with Schur’s Decomposition and SOS2 Vari-

ables

Besides the constraints relevant to the approximation of the bilinear terms,

there are other constraints arisen from having defined F dc
d , and subsequently also

F k
d , as decision variables. In addition, some constraints need to be modified. First,

consider constraint (4.12),

∀d ∈ D; 50Ck
d + 25Gk

d ≥ F k
d Bd.

This constraint works well when F k
d is exogenously determined and given that F k

d >

0, which were the case in Chapter 4. Now, that F k
d is a decision variable and could

take a zero value, we need additional constraints to force Ck
d and Gk

d to take zero

values, whenever F k
d equals zero. Moreover, from a cost-efficiency perspective, the

flow should be assigned to the on-site contractor at least to have either one centrifuge

or one belt filter press operating at their full capacities. According to our problem

statement in Section 4.1, the dewatering capacities of one centrifuge and one belt
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filter press were approximately 50 DTS per day and 25 DTS per day, respectively

(D. Tolbert, personal communication, November 18, 2003). Hence, given there are

320 DTS per day, the flow to the on-site contractor should be the minimum of

{ 25
320

, 50
320
} or 25

320
= 0.078 ≈ 0.08. In other words, F k

d should be at least 0.08 or zero

otherwise. Constraints (5.14) – (5.19) together with Constraint (4.12) enforce the

above requirements.

∀d ∈ D;

Ck
d ≤ 2× yc

d (5.14)

−F k
d + 0.08 ≤ 2× (1− yc

d) (5.15)

yc
d ∈ {0, 1} (5.16)

Gk
d ≤ 7× yg

d (5.17)

−F k
d + 0.08 ≤ 7× (1− yg

d) (5.18)

yg
d ∈ {0, 1} (5.19)

More specifically, when F k
d < 0.08, yc

d and yg
d must be zero (Constraints (5.15) and

(5.18)) and consequently, Ck
d and Gk

d must be zero (Constraints (5.14) and (5.17)).

In addition, when Ck
d and Gk

d equal zero, Constraint (4.12) forces F k
d to be zero.

On the other hand, when F k
d ≥ 0.08, yc

d and yg
d can be either zero or one as long as

Constraint (4.12) is satisfied. In addition, Ck
d is bounded by its availability of two

when yc
d equals one. Similarly, when yg

d equals one, Gk
d is bounded by seven.

Next, we consider the term (4.23), DCWASA’s centrifuge cost = 196
|D|
∑

d=1

dBdFdc
d

50
e

in the total cost objective function (4.19). In Chapter 4, we use the term dBdFdc
d

50
e to

represent the number of DCWASA centrifuges needed to dewater assigned biosolids.
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Now, that F dc
d is determined endogenously, the ceiling operator d e is no longer appli-

cable and we need a new variable to represent the number of DCWASA centrifuges

in service. Defining Cdc
d as the number of DCWASA centrifuge in service on day d,

the following constraints determine Cdc
d .

∀d ∈ D;

Cdc
d ≥ BdF

dc
d

50
(5.20)

Cdc
d ≤ 7 (5.21)

Cdc
d ∈ Z+ (5.22)

The number 50 in the denominator of (5.20) represents the capacity in DTS of one

centrifuge and, given that Cdc
d is an integer, (5.20)–(5.22) find the minimum number

of centrifuges needed. In addition, since we are minimizing the total cost, Cdc
d will

always be the smallest number that satisfies (5.20). Subsequently, 4.23 needs to be

modified as follows:

DCWASA’s centrifuge cost = 196

|D|
∑

d=1

Cdc
d (5.23)

Next, let’s consider (4.27),

on-site contractor’s dewatering cost =
|D|
∑

d=1















71.75F k
d Bd if F k

d Bd ≤ 150

3225 + 50.25F k
d Bd if F k

d Bd > 150

.

Similarly to the previous case, F k
d Bd or the amount of biosolids assigned to the on-

site contractor cannot be determined exogenously. Nevertheless, it can be seen that

the on-site contractor’s dewatering cost is a piecewise-linear function, which conse-

quently can be determined endogenously by employing SOS2 variables. Considering
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Figure 5.2 displaying the piecewise linear cost function, there are three breakpoints

to be considered for the amount of biosolids assigned to the on-site contractor: 0,

150, and 320 DTS. Consequently, the three breakpoints for the dewatering cost are

Figure 5.2: The on-site contractor piecewise linear dewatering cost function

$0, $10,762.5, and $19,305 determined from the corresponding linear cost functions.

Next, considering SOS2 variables z1
d, z

2
d, and z3

d, the on-site contractor’s dewatering

cost can be determined as:

on-site contractor’s dewatering cost =

|D|
∑

d=1

0z1
d + 10762.5z2

d + 19305z3
d (5.24)

with the following constraints.

∀d ∈ D;

BdF
k
d = 0z1

d + 150z2
d + 320z3

d (5.25)

z1
d ≤ y1

d (5.26)
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z2
d ≤ y1

d + y2
d (5.27)

z3
d ≤ y2

d (5.28)

z1
d + z2

d + z3
d = 1 (5.29)

y1
d + y2

d = 1 (5.30)

y1
d, y

2
d ∈ {0, 1} (5.31)

Now, the full optimization model with Schur’s decomposition and SOS2 variables is

as follows.

minimize (total odor)

minimize (total cost)

(5.32)

subject to (4.1)–(4.19), (4.21), (4.24)–(4.26), (4.28), (4.30),

(5.1)–(5.31)

and

DCWASA’s dewatering cost = 70

|D|
∑

d=1

BdF
dc
d (5.33)

According to (5.33), it is shown that the DCWASA dewatering cost was set to

$70/DTS. This value corresponds to our discussion at the end of Chapter 4. In

particular, we were interested in solving for optimal F dc
d endogenously when the

DCWASA dewatering cost equals $70/DTS. Next, we applied the constraint method

(see Section 2.1.1) to Problem (5.32) in order to find Pareto optimal points. The

resulting optimization problem is:

minimize (total cost) (5.34)

subject to (4.1)–(4.19), (4.21), (4.24)–(4.26), (4.28), (4.30),
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(5.1)–(5.31), (5.33)

and

|D|
∑

d=1

Od ≤ τ (5.35)

It is noted here that the total cost objective function could also be used as an

objective constraint and total odor could be the objective function to be minimized.

However, based on our experience, when we minimized total cost and constrained

total odor, the computational time was minimized.

Before solving Problem (5.34), we need to decide how many breakpoints |I |

and |J | to use in order to approximate the bilinear term F dc
d Ldc

d (see (5.1)–(5.13)).

Next, we analyze the number of breakpoints to use.

5.2.1 Analysis on Number of Breakpoints

Beale [4] has suggested using four to six points for each curve. However, more

accuracy can also be achieved by reducing the spacing of the points with a significant

increase in computing time [4, 33]. Moreover, after the first solution has been found,

a more refined solution can also be achieved by redefining the breakpoints about

the solution point and resolving [33]. Nevertheless, the number of breakpoints to

use depends on the acceptable error and the function to be approximated [33].

As computing memory and solution algorithms have significantly improved

since the work by Beale [4], more breakpoints could be employed than was initially

suggested. Therefore, in order to find the right number of breakpoints, we solved a

test problem. Unfortunately, the test could not be performed for our intended 31-day
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planning horizon as the compute time was extensive and will be described later in

Section 5.2.2 (see Table 5.2) when we review the computational results. Thus, we ran

the test problem for 1-day time horizon. In addition, we arbitrarily assigned τ = −3.

Table 5.1 presents the number of breakpoints tried, optimal solutions for Ldc
d and

F dc
d , approximated DCWASA’s lime cost reported by the model, and DCWASA’s

lime cost calculated from the optimal Ldc
d . In particular, the approximated lime

cost reported by the model was determined from (5.13); DCWASA’s lime cost =

0.06
|D|
∑

d=1

Bd

(

|I|
∑

i=1

zu
id(b

u
id)

2 −
|J|
∑

j=1

zv
jd(b

v
jd)

2

)

. On the other hand, given optimal solu-

tions for Ldc
d and F dc

d , denoted L̃dc
d and F̃ dc

d respectively, the lime cost can be deter-

mined as DCWASA’s lime cost = L̃dc
d × F̃ dc

d × Bd × 0.06.

Table 5.1: Number of breakpoints analysis

# Breakpoints Ldc
d F dc

d L̃dc
d × F̃ dc

d × Bd × 0.06 Approximated Error
DCWASA’s (%)
lime cost

5 310.4 0.92 5482.9056 5448.4320 0.63
10 310.4 0.92 5482.9056 5465.3440 0.32
15 310.4 0.92 5482.9056 5470.1760 0.23
20 310.4 0.92 5482.9056 5472.4648 0.19
25 310.4 0.92 5482.9056 5473.8000 0.17
30 310.4 0.92 5482.9056 5474.6748 0.15
40 310.4 0.92 5482.9056 5475.7514 0.13
50 310.4 0.92 5482.9056 5476.3886 0.12
60 310.4 0.92 5482.9056 5476.8098 0.11
70 310.4 0.92 5482.9056 5478.0467 0.09
80 310.4 0.92 5482.9056 5480.1845 0.05
90 310.4 0.92 5482.9056 5481.4364 0.03
100 310.4 0.92 5482.9056 5482.1813 0.01

Figure 5.3 depicts the percentage error as a function of the number of break-

points used. It can be seen that the greater the number of breakpoints the more
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accurate the approximation of DCWASA’s lime cost. Moreover, when the number

Figure 5.3: Percentage errors and number of breakpoints used

of breakpoints changed from five to ten the percentage error dropped by half and

they gradually dropped for succeeding breakpoints. However, interestingly, all num-

bers of breakpoints yielded the same optimal solutions for Ldc
d and F dc

d as indicated

by Table 5.1. To this end, although the higher number of breakpoints may yield

a better approximation of the term Ldc
d F dc

d , the lower number of breakpoints may

still yield the correct optimal solutions for Ldc
d and F dc

d . Therefore, given the limited

solution times and the reasons stated above, we chose 10 number of breakpoints to

implement. In the next section, we present an algorithm to solve a series of the

optimization problems and discuss the computational results.
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5.2.2 Algorithm and Computational Results

In order to produce several Pareto optimal points, we need to solve a series

of problems (5.34) by varying the τ value in (5.35) and use the criteria discussed in

Section 2.1.1 to verify if the solution is Pareto optimal. There are many choices for

τ values. The method by which we chose our τ values follows. Given the data for

the 31 day-time horizon in question and the lower and upper bounds of variables,

we substituted these data and corresponding bound in the odor prediction equation

(3.2) as to obtain possible maximum and minimum odor value on each day. We

then summe these maximum or minimum values to get the corresponding possible

maximum and minimum total odor over the 31-day time horizon. Subsequently,

the possible minimum and maximum total odor score was −85.856 and 216.084,

respectively. The first problem similar to (5.34) was then set up with τ = −85.856.

The next problem was set up by increasing τ value by five each time until τ ≥

216.084.

When we increase the τ value each time, the new problem contains a larger

feasible region. Hence, the optimal total cost objective function value is expected

to be smaller for the successor. Subsequently, when solving the next problem, we

can inform the optimizer that the optimal objective function value should be at

least as good as or smaller than the objective function value of the predecessor.

This permits the optimizer to ignore solving any nodes that can only provide worse

objective function values and therefore the run time is minimized [24]. XPRESS-

MP provides a control parameter called ”MIPABSCUTOFF” to communicate such
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the information to the optimizer. Figure 5.4 displays a flowchart of the procedure

used to solve the multiobjective optimization model for wastewater treatment plant

(MOPWTP).

Using the above algorithm, we started our first problem with τ = −85.856.

However, we only continued for the next 12 values of τ since the optimal solutions

were not promising after extensive run times. The first optimization problem with

τ = −85.856 yielded an integer solution with 0% optimality gap within 36 seconds.

However, for the next 12 problems, no integer solutions with 0% optimality gap could

be obtained within several time limits we tried. Table 5.2 displays the computational

results.

Table 5.2: Computational results from Problem 5.34

τ #solutions Best Cost Best Cost Run Time Optimality
found Bound ($) Solution ($) (sec) Gap%

−85.856 2 3,939,520 3,939,592 36 0
−80.856 4 3,799,486 3,932,085 12,992 3.49
−75.856 5 3,577,028 3,927,536 43,233 9.80
−70.856 3 3,642,585 3,926,077 43,233 7.78
−65.856 3 3,506,823 3,925,113 43,228 11.93
−60.856 7 3,602,905 3,921,547 43,236 8.84
−55.856 0 3,557,231 N/A 43,200 N/A
−50.856 9 3,459,374 3,919,705 43,233 13.31
−45.856 6 3,489,627 3,917,437 43,228 12.26
−40.856 0 3,486,870 N/A 43,200 N/A
−35.856 6 3,504,889 3,913,754 43,154 11.67
−30.856 0 3,489,558 N/A 43,200 N/A
−25.856 6 3,466,085 3,909,966 7,232 12.81

Although extensive compute times (≥ 12 hours for most problems) were al-

lowed, Table 5.2 shows that only the first problem where τ = −85.856 yielded a

zero percent optimality gap. The other problems, with at least one integer solution
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Figure 5.4: Algorithm to solve multiobjective program for wastewater treatment
plant (MOPWTP)
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found, yielded optimality gaps between 3.49% and 13.31%. Moreover, when τ =

−55.856, −40.856, and −30.856, the solver could not find any integer feasible solu-

tions within the given time limits. As our illustrative example, figure 5.5 displays

the progress of the branch and bound search when solving Problem (5.34) with

τ = −60.856. In addition, Figure 5.6 depicts the number of integer solutions found

Figure 5.5: Best bound, best solution, and optimality gap for Problem (5.34) with
τ = −60.856

and optimality gaps for the 13 runs we have tried.

How large an optimality gap that is acceptable is subjective and depends on

many factors (e.g., level of accuracy needed, type of application, and time permit-

ted). One of the criteria we can use to decide what level of accuracy we need is the

type and/or order of magnitude of the objective function value. For example, if the

objective is to minimize the chance of failures of a space shuttle, then the optimality

gap should be zero or near zero. On the other hand, if we want to minimize the cost
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Figure 5.6: Number of solutions found and optimality gap for Problem (5.34) with
τ = −85.856–25.856

of a $3,000,000 construction project, being able to obtain optimal solutions within

0.1% optimality gap means that the solutions can be off only $3,000 and is probably

acceptable. Now, let’s consider the 13 problems we have tried. Table 5.3 indicates

the possible amount of dollars off from the optimal solutions given the obtained

optimality gaps and 0.1% assumed optimality gaps. Excluding the problem with

τ = −85.856, we see that the optimality gap in dollars was between $132,600 and

$460,332. While, given the assumed 0.1% optimality gap, the possible amount of

dollars off could have been between $3,459 and $3799, significantly less than the pre-

vious values. Nevertheless, these numbers are determined according to a worst-case

scenario. In other words, it is also possible that the integer solutions obtained were

already within less than the reported optimality gap, given that the better bounds
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Table 5.3: Possible amount of dollars off from optimal solutions given optimality
gaps

τ Best Obtained Dollars off Dollar off
bound optimality ($) (if 0.1%

($) gap optimality
gap, $)

−85.856 3,939,520 0 0 N/A
−80.856 3,799,486 3.49 132,600 3,799
−75.856 3,577,028 9.8 350,508 3,577
−70.856 3,642,585 7.78 283,492 3,643
−65.856 3,506,823 11.93 418,290 3,507
−60.856 3,602,905 8.84 318,642 3,603
−55.856 3,557,231 N/A N/A 3,557
−50.856 3,459,374 13.31 460,332 3,459
−45.856 3,489,627 12.26 427,811 3,490
−40.856 3,486,870 N/A N/A 3,487
−35.856 3,504,889 11.67 408,866 3,505
−30.856 3,489,558 N/A N/A 3,490
−25.856 3,466,085 12.81 443,881 3,466

could be obtained.

Given the previous discussions, there are two choices to make at this point.

First, we permit more computing time in order to get better integer solutions and

better bounds and consequently optimality gaps are reduced. Second, we algo-

rithmically find better bounds using the Dantzig-Wolfe decomposition algorithm

discussed in Section 2.2 and numerically prove that the obtained integer solutions

already yielded lower optimality gaps than the reported ones. Figure 5.7 displays

the improvements in optimality gaps versus run times for selected problems. It can

be seen that after allowing more time, the improvements in optimality gaps for all

problems were very gradual. Moreover, all optimality gaps were more than 7.7% in

spite of extensive computing times of 43,200 seconds. Therefore, the second choice
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Figure 5.7: Optimality gap progressions for selected problems
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of algorithmically finding better bounds for each problem is preferable to the first

one. To this end, within this section, the only optimal solution obtained was when

τ = −85.856 and the corresponding total cost and total odor scores were $3,939,520

and −85.856, respectively. It can be seen that the total odor = τ = −85.856 and,

according to Section 2.1.1 discussing the verification of Pareto optimal solution, this

solution is also Pareto optimal.

In the next section, we apply the Dantzig-Wolfe decomposition technique dis-

cussed in Section 2.2 and are able to verify that several obtained integer solutions

are already within 0.1% optimality gap.

5.3 Dantzig-Wolfe Decomposition Algorithm as Applying to Multi-

objective Optimization Model for Distributing Biosolids to Reuse

Fields

First, we present here the structure of our optimization problem and how it

can be decomposed into several small problems. Figure 5.8 indicates if constraints

(4.3) and (5.35) are dropped then problem 5.34 can be solved separately by day.

In particular, constraints (4.3)1 and (5.35)2 are the joint constraints and will be

included in the master problem. Other constraints shown in the daily block will be

included in the pricing subproblems. Next, we give notation to some variables that

1The amount of biosolids distributed over the time horizon to each field cannot exceed the

field’s given capacity (in tons)
2Summation of biosolids odor score over the time horizon cannot exceed the given specified

value

179



Figure 5.8: Structure of MOPWTP problem presented by day
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have not yet been defined and the mathematical formulations for master problem

and pricing subproblems follow.

Notations

Fdcfi = Amount of biosolids applied to field f by contractor c

proposed by pricing subproblem d, proposal i

Odi = Biosolids odor proposed by pricing subproblem d, proposal i

total costdi = Optimal objective function value proposed by

pricing subproblem d, proposal i

udi = Weight variable corresponding to pricing subproblem d, proposal i

λf = Dual variable value corresponding to (5.37)

σ = Dual variable values corresponding to (5.38)

γd = Dual variable value corresponding to (5.39)

Master Problem:

minimize

|D|
∑

d=1

|Id|
∑

i=1

(total cost)diudi (5.36)

subject to

∀f ∈ F ;

|D|
∑

d=1

|C|
∑

c=1

|Id|
∑

i=1

Fdcfiudi ≤ F up
f (5.37)

|D|
∑

d=1

|Id|
∑

i=1

Odiudi ≤ τ (5.38)

∀d ∈ D;

|Id|
∑

i=1

udi = 1 (5.39)
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Pricing Subproblem

minimize (total cost) −
|C|
∑

c=1

|F |
∑

f=1

λfFdcf − σOd − γd (5.40)

subject to (4.1)–(4.2), (4.4)–(4.19), (4.21), (4.24)–(4.26), (4.28), (4.30),

(5.1)–(5.31), (5.33)

It is noted here that the subscript d in objective function or constraints of problem

(5.40) represents only a single day in question. In other words, if the pricing sub-

problem being solved is for day 1, then data and variables correspond to day 1 only;

for example, Od = O1, γd = γ1, Fdcf = F1cf .

Having shown the master problem and pricing subproblem, next we apply the

DWIP algorithm as discussed in Section 2.2 and present the results.

5.3.1 Dantzig-Wolfe Decomposition Run Results

In this section, we set up 62 problems each by varying the maximum τ values

for Problem (5.34). We then applied the Dantzig-Wolfe algorithm to these problems.

In general, if the optimal solution vector λ̃ = (λ̃1, . . . , λ̃K) of any LPM is not integer,

then the original Problem (5.34) corresponding to that LPM is not yet solved [70].

Nevertheless, the optimal objective function values obtained from the Dantzig-Wolfe

algorithm can be utilized as the lower bounds to their original problems.

The 62 τ values were picked as follows. We took the possible maximum and

minimum total odor values found earlier in Section 5.2.2. The first problem similar

to (5.34) was then set up with τ = −85.856. The next problem was set up by
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increasing τ value by five each time until τ ≥ 216.084. Following this process, 62

problems were set up and the DWIP algorithm was applied to these problems. It

turned out that none of these problems was able to be solved. That is, for every

problem, the optimal solution vector λ̃ = (λ̃1, . . . , λ̃K) was not integer when the

DWIP algorithm terminated. Hence, the objective function values obtained from

the DWIP algorithm were recorded and later used as lower bounds for the optimal

objective function values of the original problems (see Table 5.4). We see that the

maximum run time out of 62 problems was 11,673 seconds or approximately 3.24

hours and this was the case when τ = −75.856. In addition, this problem also

required the maximum number of iterations (32 iterations in total starting from

Phase 1 until Phase 4 of DWIP algorithm). The second and third longest run times

needed occurred when τ = −80.856 and −85.856, where the run times were 7008

(≈ 1.95 hours) and 3226 seconds (≈ 53.77 minutes), respectively and the number

of iterations needed were 26 and 30 iterations. The remaining problems required

roughly the same amount of time with the average run time of 14 minutes. In

addition, all of them required three iterations until the algorithm terminated.

As we mentioned earlier that the objective function values obtained from this

section serve as lower bounds for Problem 5.34, in the next section, we numerically

prove that the solutions obtained from Section 5.2.2, where shown to have large

optimality gaps, are already within less than 0.1% optimality gap or lower.
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Table 5.4: Objective function values obtained from DWIP algorithm

τ Total Cost ($) Run Time (Sec) #iterations
−85.856 3,939,592.21698 3,226 30
−80.856 3,931,409.81972 7,008 26
−75.856 3,927,053.31700 11,673 32
−70.856 3,924,209.43764 851 3
−65.856 3,921,616.4313 841 3
−60.856 3,919,299.94231 849 3
−55.856 3,917,172.28273 848 3
−50.856 3,915,050.96558 837 3
−45.856 3,912,994.79164 855 3
−40.856 3,911,644.78919 863 3
−35.856 3,910,402.66125 848 3
−30.856 3,909,057.21065 872 3
−25.856 3,908,024.85254 848 3
−20.856 3,906,790.21157 856 3
−15.856 3,905,709.05505 858 3
−10.856 3,904,682.21824 857 3
−5.856 3,903,695.62302 853 3
−0.856 3,903,336.61651 853 3
4.144 3,902,564.07543 856 3
9.144 3,901,999.36590 863 3
14.144 3,901,423.17583 854 3
19.144 3,900,920.05560 858 3
24.144 3,900,416.77554 856 3
29.144 3,899,920.39914 864 3
34.144 3,899,420.05093 861 3
39.144 3,898,922.71977 883 3
44.144 3,898,433.83673 865 3
49.144 3,897,930.51021 877 3
54.144 3,897,484.99628 862 3
59.144 3,897,277.23006 865 3
64.144 3,896,990.69094 858 3
69.144 3,896,606.04516 864 3
74.144 3,896,409.92344 863 3

79.144, 84.144–114.144 3,896,339.11127 860–876 3
119.144 3,896,328.49690 859 3
124.144 3,896,326.29318 862 3

129.144, 134.144–214.144 3,896,326.26337 863–886 3
219.144 N/A (Problem is infeasible)
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5.4 Modified Optimality Gaps with Updated Lower Bounds

In this section, we revisit the results from Section 5.2.2. In particular, the

objective function values obtained from Dantzig-Wolfe decomposition algorithm in

the previous section will be used as the updated lower bounds to the solutions ob-

tained from Section 5.2.2. Table 5.5 indicates the optimality gap when the new

lower bounds are utilized. In addition, for the sake of comparison, we also in-

clude the original lower bounds and optimality gaps. Table 5.5 indicates that

Table 5.5: Modified bounds and optimality gaps

τ MOPWTP algorithm DWIP algorithm Pareto
Total Best Best Optim- Modified Optim- optimal
odor bound solution ality bound ality

($) ($) gap (%) ($) gap (%)
−80.856 −80.856 3,799,486 3,932,085 3.49 3,931,410 0.02 yes
−75.856 −75.856 3,577,028 3,927,536 9.8 3,927,053 0.01 yes
−70.856 −70.856 3,642,585 3,926,077 7.78 3,924,209 0.05 yes
−65.856 −65.856 3,506,823 3,925,113 11.93 3,921,616 0.09 yes
−60.856 −60.998 3,602,905 3,921,547 8.84 3,919,300 0.06 no
−50.856 −50.856 3,459,374 3,919,705 13.31 3,915,051 0.12 no
−45.856 −45.864 3,489,627 3,917,437 12.26 3,912,995 0.11 no
−35.856 −36.778 3,504,889 3,913,754 11.67 3,910,403 0.09 no
−25.856 −25.856 3,466,085 3,909,966 12.81 3,908,025 0.05 yes

all modified optimality gaps are significantly lower than the original optimality

gaps. In addition, most of the objective function values have less than a 0.1%

optimality gap with the exception when τ = −50.856 and −45.856. For all ob-

jective function values with optimality gaps less than or equal to 0.1%, we then

compare their corresponding total odor and τ value in order to verify if they are

Pareto optimal. More specifically, for each problem, if total odor = τ then the
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solution is Pareto optimal. To this end, Table 5.5 indicates five more Pareto op-

timal points; (−80.856, $3,932,085.22101), (−75.856, $3,927,535.95305), (−70.856,

$3,926,077.47746), (−65.856, $3,925,113.48639), and (−25.856, $3,909,966.37768)

corresponding to the problem where τ = −80.856, −75.856, −70.856, −65.856, and

−25.856, respectively. Including the one Pareto optimal point obtained in Section

5.2.2, Figure 5.9 displays six Pareto optimal points we have obtained so far.

Figure 5.9: Pareto optimal points

Our current approach require three steps. First, in Section 5.2.2 we solved the

original problems without the Dantzig-Wolfe decomposition. Although we allowed

more than 12 hours of computing time for most problems, only one problem con-

verged with 0.1% optimality gap. Second, in Section 5.3.1 we applied the Dantzig-
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Wolfe decomposition to the original problem and obtained better lower bounds.

Third, in this section, we numerically proved that the solutions obtained from Sec-

tion 5.2.2 were in fact already within 0% optimality gap. Finally, we were able to

verify five more Pareto optimal points. Although most of the problems required

only 14 minutes in solution times for the second step, the first step required sub-

stantially large solution times of 12 hours for most problems. Consequently, with

our current approach, extensive computing times are still required. Therefore, in

the next section, the lower bounds obtained from DWIP algorithm are incorporated

into the MOPWTP algorithm in order to reduce the overall solution times.

5.5 Modified Multiobjective Optimization Model for Wastewater Treat-

ment Plant (MMOPWTP) Algorithm and Computational Re-

sults

In this section, we incorporate the total cost objective function values obtained

from DWIP algorithm into the MOPWTP algorithm as shown in Figure 5.10. In

particular, we solve a series of our multiobjective optimization problems as follows:

1. Initialize the τ value and the lower bound3 associated to the τ value, denoted

ρτ , obtained from Section 5.3.1.

2. Solve Problem 5.34 with the following setup. Set total odor ≤ τ and MAXTIME=

T max. MAXTIME is a parameter in XPRESS-MP used to set maximum al-

3Or the optimal objective function value obtain from DWIP algorithm
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Figure 5.10: Modified multiobjective optimization model for wastewater treatment
plant algorithm
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lowable run time. The optimizer will terminate if it does not converge within

this preset maximum run time and then the program continues to the next

applicable command.

3. If an integer solution is found, calculate its objective function value, denoted

z̃. If ρτ−z̃
ρτ ≤ 0.0005, go to 6. Otherwise, continue to 4.

4. If run time ≥ T max, go to 5 . Otherwise, go to 2.

5. If at least one integer solution has been found, go to 6. Otherwise, go to 7.

6. Record optimal solution.

7. If τ + 5 > τmax, terminate model run. Otherwise, set τ ← τ + 5, update ρτ

and go to 2.

This modified algorithm can reduce the overall solution time by allowing for better

lower bounds resulting in faster convergence.

5.5.1 Computational Results

In this section, we utilize the objective function values obtained from Sec-

tion 5.3.1. In particular, each of them was assigned to its associated ρτ value in

MMOPWTP algorithm presented above. However, we do not need to resolve the

problem where τ = −85.856 – −25.856, since they were already solved in Section

5.2.2. In addition, their optimality gaps were already recalculated in Section 5.4,

where the lower bounds obtained from Dantzig-Wolfe algorithm were already uti-

lized. Thus, in this section, we only need to perform the MMOPWTP algorithm for
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the problems where τ = −20.856 – 214.144. In addition, we also include three more

reported total odor values: −60.998, −45.864, and −36.778 from Table 5.5. Each of

these reported total odor values corresponds to an integer solution and, according

to our computational experience, there is a chance that they are Pareto optimal.

Therefore, we used these reported total odor values as the τ values and needed to

find their corresponding lower bounds. As a result, we applied the DWIP algorithm

to Problem 5.34 with τ = −60.998, −45.864, and −36.778. Table 5.6 displays the

corresponding results. Next, the MMOPWTP algorithm was implemented with τ

Table 5.6: Additional objective function values obtained from DWIP algorithm

τ Total Cost ($) Run Time (Sec) #iterations
−60.998 $3,919,360.35933 123,393 31
−45.864 $3,913,311.52200 7,643 3
−36.778 $3,910,998.02508 7,792 3

= −60.998, −45.864, −36.778, and −20.856 – 214.144. In particular, for the τ

values form −20.856 – 214.144, there was an increment of five as indicated by the

algorithm. On the other hand, when we ran the algorithm for the τ values equal

−60.998, −45.864, −36.778, and −20.856, Step 7 was omitted and each of the τ

values was individually assigned. Table 5.7 and Table 5.8 displays the results for all

τ values.

Table 5.7: Best bounds, modified bounds, best solutions,
and run time from MMOPWTP algorithm

τ Best Modified Best Run
bound ($) bound ($) solution ($) time (sec)

−60.998 3,5809,968 3,9193,360 3,9213,317 29,692
Continued on next page
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Table 5.7 – continued from previous page
τ Best Modified Best Run

bound ($) bound ($) solution ($) time (sec)
−45.864 3,4843,323 3,9133,312 3,9169,977 36,033
−36.778 3,5046,662 3,9109,998 3,9130,039 36,033
−20.856 3,4626,689 3,9067,790 3,9089,940 7,234
−15.856 3,4358,883 3,9057,709 3,9083,352 7,228
−10.856 3,4804,484 3,9046,682 3,9082,203 7,229
−5.856 3,4267,761 3,9036,696 3,9075,588 7,234
−0.856 3,4466,650 3,9033,337 3,9082,212 7,229
4.144 3,4325,541 3,9025,564 3,9069,987 7,229
9.144 3,4223,331 3,9019,999 3,9074,421 7,235
14.144 3,4382,281 3,9014,423 3,9068,863 7,234
19.144 3,4392,261 3,9009,920 3,9087,732 7,228
24.144 3,4353,342 3,9004,417 3,9069,909 7,230
29.144 3,4619,938 3,8999,920 3,9077,709 7,228
34.144 3,4431,112 3,8994,420 3,9079,935 7,229
39.144 3,4420,043 3,8989,923 3,9070,012 7,229
44.144 3,4426,677 3,8984,434 3,9080,039 7,230
49.144 3,4313,387 3,8979,931 3,9081,158 7,228
54.144 3,4449,965 3,8974,485 3,9085,566 7,228
59.144 3,4202,281 3,8972,277 3,9095,550 7,233
64.144 3,4346,659 3,8969,991 3,9165,590 7,229
69.144 3,4316,621 3,8966,606 3,9086,614 7,231
74.144 3,4377,746 3,8964,410 3,9070,048 7,232
79.144 3,4452,258 3,8963,339 3,9074,490 7,228
84.144 3,4636,678 3,8963,339 3,9089,906 7,233
89.144 3,4613,313 3,8963,339 3,9088,854 7,232
94.144 3,4730,014 3,8963,339 3,9082,261 7,228
99.144 3,4409,957 3,8963,339 3,9102,238 7,229
104.144 3,4510,056 3,8963,339 3,9091,178 7,228
109.144 3,4379,962 3,8963,339 3,9078,879 7,228
114.144 3,4411,151 3,8963,339 3,9079,903 7,231
119.144 3,4294,427 3,8963,328 3,9082,284 7,230
124.144 3,4536,647 3,8963,326 3,9098,838 7,229
129.144 3,4325,548 3,8963,326 3,9092,217 7,229
134.144 3,4508,802 3,8963,326 3,9085,503 7,228
139.144 3,4505,592 3,8963,326 3,9082,264 7,229
144.144 3,4344,492 3,8963,326 3,9113,366 7,236
149.144 3,4730,013 3,8963,326 3,9075,534 7,232
154.144 3,4489,938 3,8963,326 3,9088,818 7,228
159.144 3,4722,261 3,8963,326 3,9084,403 7,237
164.144 3,4548,830 3,8963,326 3,9105,554 7,236
169.144 3,4322,260 3,8963,326 3,9054,462 7,231

Continued on next page
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Table 5.7 – continued from previous page
τ Best Modified Best Run

bound ($) bound ($) solution ($) time (sec)
174.144 3,4826,628 3,8963,326 3,9069,927 7,233
179.144 3,4407,784 3,8963,326 3,9134,459 7,236
184.144 3,4588,861 3,8963,326 3,9079,920 7,230
189.144 3,4729,981 3,8963,326 3,9088,845 7,230
194.144 3,4383,322 3,8963,326 3,9137,772 7,229
199.144 3,4725,501 3,8963,326 3,9078,819 7,228
204.144 3,4879,989 3,8963,326 3,9094,451 7,234
209.144 3,4503,377 3,8963,326 3,9079,994 7,229
214.144 3,4989,932 3,8963,326 3,9078,833 7,230

Table 5.8: Solver and modified optimality gaps from
MMOPWTP algorithm

τ Total Solver Modified Pareto
odor optimality gap optimality gap optimal

(%) (%)
−60.998 −60.998 9.5 0.05 yes
−45.864 −46.183 12.42 0.09 no
−36.778 −36.778 11.65 0.05 yes
−20.856 −21.232 12.89 0.06 no
−15.856 −16.415 13.75 0.07 no
−10.856 −11.063 12.29 0.09 no
−5.856 −6.942 14.03 0.1 no
−0.856 −1.583 13.39 0.12 no
4.144 4.041 13.82 0.11 no
9.144 8.495 14.17 0.14 no
14.144 13.567 13.63 0.14 no
19.144 17.7 13.65 0.2 no
24.144 23.183 13.73 0.17 no
29.144 28.687 12.88 0.2 no
34.144 33.774 13.5 0.22 no
39.144 38.387 13.51 0.21 no
44.144 38.556 13.52 0.25 no
49.144 46.461 13.89 0.26 no
54.144 1.098 13.46 0.28 no
59.144 46.763 14.3 0.31 no
64.144 15.65 14.03 0.5 no
69.144 44.983 13.9 0.31 no
74.144 47.245 13.65 0.27 no

Continued on next page
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Table 5.8 – continued from previous page
τ Total Solver Modified Pareto

odor optimality gap optimality gap optimal
(%) (%)

79.144 56.987 13.42 0.29 no
84.144 43.503 12.85 0.32 no
89.144 44.318 12.93 0.32 no
94.144 43.665 12.53 0.31 no
99.144 42.832 13.64 0.36 no
104.144 38.054 13.27 0.33 no
109.144 45.158 13.67 0.3 no
114.144 42.869 13.56 0.3 no
119.144 43.98 13.96 0.31 no
124.144 41.099 13.21 0.35 no
129.144 41.691 13.89 0.33 no
134.144 31.929 13.26 0.31 no
139.144 38.891 13.26 0.31 no
144.144 45.53 13.88 0.39 no
149.144 32.508 12.51 0.29 no
154.144 12.233 13.33 0.32 no
159.144 39.398 12.56 0.31 no
164.144 21.37 13.19 0.37 no
169.144 39.027 13.79 0.23 no
174.144 39.487 12.18 0.27 no
179.144 35.22 13.74 0.44 no
184.144 11.232 12.98 0.3 no
189.144 35.8 12.55 0.32 no
194.144 10.424 13.83 0.45 no
199.144 33.377 12.54 0.29 no
204.144 31.155 12.08 0.34 no
209.144 45.937 13.26 0.3 no
214.144 34.552 11.69 0.3 no

It is shown that the modified optimality gaps were significantly less than the

optimality gap obtained internally by the solver. In addition, Table 5.8 indicates

that two more Pareto optimal points were obtained. Therefore, including one Pareto

optimal point obtained in Section 5.2.2, five Pareto optimal points obtained in Sec-

tion 5.4 and finally two Pareto optimal points obtained in this section, we have
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obtained eight Pareto optimal points in total. Table 5.9 displays the eight Pareto

optimal points we have obtained and Figure 5.11 depicts the Pareto optimal curve.

Next, we compare the Pareto optimal curve obtained in this section with the ones

Table 5.9: Eight Pareto optimal points

Total Odor Total cost
−85.856 $3,939,520
−80.856 $3,932,085
−75.856 $3,927,536
−70.856 $3,926,077
−60.998 $3,921,317
−65.856 $3,925,113
−36.778 $3,913,039
−25.856 $3,909,966

obtained in Chapter 4, where F dc
d was exogenously determined.

5.6 Compare Results with Base Case

In Section 4.4.3: Sensitivity Analysis on DCWASA’s Operating Costs, we

found that when DCWASA’s operating cost equaled $70/DTS, the non-dominated

Pareto optimal points correspond to the Pareto optimal points when F dc
d ∈ {0.2, 0.3, 0.9}

as indicated in Figure 4.14. Nevertheless, for the F dc
d we tried; 0.1, 0.2,. . .,0.9 were

only a subset of all possible 0 ≤ F dc
d ≤ 1. In addition, the setup we had in Chapter

4 did not allow F dc
d to vary across all days. In this chapter, F dc

d was defined as a

decision variable and was determined endogenously, however, with some additional

constraints and computational difficulties we have previously discussed. Next, we

compare the Pareto optimal points obtained in this chapter with the ones obtained
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Figure 5.11: Eight Pareto optimal points

from Section 4.4.3.

Figure 5.12 indicates that the set of Pareto optimal points obtained when F dc
d

is determined endogenously dominates other sets of Pareto optimal points obtained

exogenously in Chapter 4. Although, this is intuitive, the computational results

are necessary to be carried out. As one of our major objectives in this chapter

is to determine F dc
d endogenously, our analysis on optimal solutions focuses on the

optimal F dc
d in comparison to ones exogenously determined in Chapter 4. Table 5.10

indicates that the optimal solutions for F dc
d vary across all days for the time period

in question. In addition, Figure 5.13 displays a bar chart summarizing the number

of days for each value of F dc
d .
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Figure 5.12: Comparison of Pareto optimal points when F dc
d was determined en-

dogenously and exogenously
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Table 5.10: Daily optimal F dc
d values for the eight Pareto

optimal points

Day F dc
d

τ = τ = τ = τ = τ = τ = τ = τ =
−85.856 −80.856 −75.856 −70.856 −65.856 −60.998 −36.778 −25.856

1 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1
2 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
3 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
4 0.14 0.92 0.14 0.92 0.14 0.92 0.92 0.92
5 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1
6 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
7 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
8 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
9 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
10 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
11 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
12 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
13 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
16 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
17 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
18 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
19 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
20 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
21 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
22 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
23 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
24 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
25 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
26 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
27 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
28 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
29 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
30 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
31 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

It is shown that the optimal solutions to F dc
d for all Pareto optimal points

are in the set {1, 0.92, 0.14}. The choice of optimal F dc
d relates directly to F k

d as
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Figure 5.13: Optimal F dc
d for eight Pareto optimal points

shown earlier in (4.1) where, on each day, the summation of flows to DCWASA and

the on-site contractor must equal one (∀d ∈ D; F dc
d + F k

d = 1). Moreover, F k
d is

constrained by (5.14) – (5.19) and (4.12), where F k
d must be at least 0.08 or zero

otherwise, as discussed earlier in Section (5.2). Thus, the choice of optimal F dc
d is

connected to (5.14) – (5.19) and (4.12) via (4.1). Consequently, in analyzing the

optimal F dc
d value, we examine optimal solutions to F k

d , Gk and Ck, where Gk and

Ck are two other decision variables appearing in (5.14) – (5.19) and (4.12). Table

5.11 displays optimal solutions to F dc
d , F k

d , Gk and Ck for the Pareto optimal point:

(total odor = −25.856, total cost = $3,909,966).

Table 5.11: Daily optimal solutions to F dc
d , F k

d , Gk
d, and

Ck
d for Pareto optimal point: (total odor =−25.856, total

cost = $3,909,966)

Day F dc
d F k

d Gk
d Ck

d

1 1 0 0 0
2 0.92 0.08 0 2

Continued on next page

198



Table 5.11 – continued from previous page
Day F dc

d F k
d Gk

d Ck
d

3 0.92 0.08 0 1
4 0.92 0.08 0 2
5 1 0 0 0
6 0.14 0.86 7 2
7 0.14 0.86 7 2
8 0.14 0.86 7 2
9 0.14 0.86 7 2
10 0.14 0.86 7 2
11 0.14 0.86 7 2
12 0.14 0.86 7 2
13 0.14 0.86 7 2
14 0.14 0.86 7 2
15 0.14 0.86 7 2
16 0.14 0.86 7 2
17 0.14 0.86 7 2
18 0.14 0.86 7 2
19 0.14 0.86 7 2
20 0.14 0.86 7 2
21 0.14 0.86 7 2
22 0.14 0.86 7 2
23 0.14 0.86 7 2
24 0.14 0.86 7 2
25 0.14 0.86 7 2
26 0.14 0.86 7 2
27 0.14 0.86 7 2
28 0.14 0.86 7 2
29 0.14 0.86 7 2
30 0.92 0.08 0 2
31 0.14 0.86 7 2

We proceed by analyzing the optimal solutions to F dc
d in three cases: F dc

d = 1,

F dc
d = 0.92, and F dc

d = 0.14.

First, we analyze the case when F dc
d = 1. According to Table 5.11, it is shown

that when both Gk
d and Ck

d equal zero, F k
d equals zero and therefore F dc

d equal one

(see for example Day 1 and Day 5). In other words, when the on-site contractor
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belt filter presses and centrifuges were not needed in odor reduction, there would be

no flow to the on-site contractor or F k
d = 0 (cf. (4.12) and therefore F dc

d must equal

1 (cf. (4.1)).

Second, the case when F dc
d = 0.92 or, equivalently, F k

d = 0.08 is analyzed.

This case happened when only the on-site contractor centrifuges were needed for

odor reduction. However, in order to have at least one centrifuge in service, at

least eight percent of the flow must be assigned to the on-site contractor. These

restrictions come from (5.14) – (5.19).

Lastly, the case where F dc
d = 0.14 is analyzed. This case is equivalent to having

F k
d = 0.86 and can happen when all of the available on-site contractor belt filter

presses and centrifuges were needed for odor reduction. Hence, the flow was assigned

to the on-site contractor at their full capacity. In particular, seven belt filter presses

at a capacity of 25 DTS/belt filter press and two centrifuges at a capacity of 50

DTS/centrifuge4 can process 25× 7 + 50× 2 = 275 DTS or 275
320

= 86% of biosolids

per day.

5.7 Conclusion

In this chapter, we defined the percentage flow from the blend tank to DCWASA

(F dc
d ) as decision variables. Therefore, F dc

d were endogenously determined as opposed

to being exogenously determined as explained in Chapter 4. However, the computa-

tional challenge was imposed by bilinear terms arising from the product of F dc
d and

4See our assumption in Section 4.1: Problem Statement.
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lime addition (Ldc
d ). Later, we used Schur’s decomposition and SOS2 variables to

approximate the bilinear term. The resulting approximation problem became a lin-

ear integer program and was able to be solved with an existing optimization solver.

However, with an extensive number of integer variables and constraints resulting

from the approximation procedures, the approximation problem could not be solved

to optimality within a reasonable computational time. This called for decomposition

techniques. We have tried both Benders and Dantzig-Wolfe decomposition meth-

ods. However, only Dantzig-Wolfe decomposition technique proved to be useful. In

particular, we successfully employed the Dantzig-Wolfe decomposition technique to

significantly improve the lower bounds of the optimization problem. Finally, we

significantly reduced the computing time by incorporating Dantzig-Wolfe bounds

into our optimization model.

As F dc
d were endogenously determined, a larger feasible region was available.

As one could expect when the feasible region became larger, the Pareto optimal

curve obtained in this chapter dominated the Pareto optimal curves obtained in

Chapter 4. In addition, we found that the optimal percentage flows from blend tank

to DCWASA were in the set {100%, 92%, 14%}, where 14% selected the majority of

the time. Nevertheless, it is very important to note that although most of biosolids

were assigned to the on-site contractor, it did not necessarily imply that the on-site

contractor would be more cost-efficient than DCWASA. In fact, it should be taken

into account that the model was constructed from the odor prediction equation

Od = 3.89 + .03T min
d + .98Be

d − .47Gk
d − 1.91Ck

d − .01Ldc
d + .56PDd + 1.13LDd (see

equation (4.30)). It can be seen that besides DCWASA lime addition (Ldc
d ), the on-
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site contractor belt filter presses and centrifuges (Gk
d and Ck

d ) play very important

roles in odor reduction. In addition, according to our analysis in Section 4.3.2, belt

filter presses and centrifuges were preferable to lime additions most of the time. As

(4.30) does not contain DCWASA centrifuge or belt filter press variables 5, when

the model preferred belt filter presses or centrifuges over lime addition, more flows

were thus assigned to the on-site contractor. To support our discussion, Figures

5.14 and 5.15 display the number of the on-site contractor centrifuges and belt filter

presses needed, respectively, for each of the Pareto optimal points. It can be seen

that when lower total odors were desired, a greater number of the on-site contractor

centrifuges and belt filter presses were needed and thus more flows were assigned to

the on-site contractor accordingly.

Figure 5.14: Total number of the on-site contractor centrifuges and total odor for
the eight Pareto optimal points

5In fact, DCWASA does not operate belt filter presses.
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Figure 5.15: Total number of the on-site contractor belt filter presses and total odor
for the eight Pareto optimal points
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we developed several novel multiobjective optimization

models to simultaneously minimize biosolids odors as well as wastewater treatment

process and biosolids distribution costs. With an increasing trend in biosolids land

application in industry, we anticipate that typical wastewater treatment facilities

could benefit from these models. In particular, the models can be used proactively

to find optimal wastewater treatment process and biosolids distribution strategies in

such a way that lessen odor impact to surrounding communities and is cost-effective

at the same time. Some of our major findings and novel work are summarized below.

In Chapter 3, we developed novel odor threshold calculations to rank the odor

sensitivities for reuse fields. (see Section 3.4). Later, we develop several optimization

models, which may be divided into two major categories: one when the percentage

flow from the blend tank to DCWASA (F dc
d ) was defined as a parameter or, in

other words, exogenously determined; the other when F dc
d was defined as a decision

variable or endogenously determined. The former category was analyzed in Chapter

4, while, the latter was analyzed in Chapter 5.

In Chapter 4, we found that marginal activities (e.g., lime addition) needed

to be considered in order to remain cost-effective when trying to reduce biosolids
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odor. Our analysis indicated that DCWASA’s actual costs could be improved by

using a Pareto optimal strategy by $26,669 as well as reducing odors as shown

in Figure 4.6. We found that when lower total odors were desired (consequently,

higher total costs), biosolids would be hauled to reuse fields with generally lower

associated odor thresholds. A sensitivity analysis on the percentage flows has shown

that, given DCWASA operating costs = $90 and $80 per DTS, the Pareto optimal

curve obtained when F dc
d ∈ 0.2 dominated other Pareto optimal curve obtained

when F dc
d ∈ {0.3, . . . , 0.9}. However, when DCWASA operating cost = $70/DTS,

the Pareto optimal points were obtained when F dc
d ∈ {0.2, 0.3, 0.9}. This led to the

work in Chapter 5 where F dc
d was endogenously determined.

In Chapter 5, we encountered computational challenges imposed by the bilin-

ear terms arising from the product of F dc
d and Ldc

d . Using Schur’s decomposition

[36, 29] and SOS2 variables [6, 5, 27], we approximated the bilinear terms. The

resulting approximation problem became a linear integer program and was solvable

with an existing optimization solver. However, with an extensive number of integer

variables and constraints resulting from the approximation procedures, we were not

able to solve the approximation problem to optimality within a reasonable com-

puting time for a 31-day time horizon. Both Benders [34] and Dantzig-Wolfe [21]

decomposition techniques were tried to decompose the computationally large opti-

mization model. However, only Dantzig-Wolfe decomposition technique was proved

to be useful for our optimization problem. In particular, we successfully employed

Dantzig-Wolfe decomposition technique and significantly improved the lower bounds

of the optimization problem. Finally, we considerably reduced the computing time
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by incorporating these bounds into our optimization model. Later, we found that

the Pareto optimal points were obtained when F dc
d ∈ {1.0, 0.92, 0.14}. In addition,

the optimal solutions indicated that F dc
d = 0.14 were optimal most of the time. Nev-

ertheless, we concluded that the solution did not imply that the on-site contractor

was more cost-effective than DCWASA. In fact, it’d rather be the case that the

optimal solutions were influenced by the odor statistical equation used to predict

biosolids odors in our optimization model.

Having mentioned that, one of limitations of our optimization models is that

the applications of the models are specific to the odor prediction equations being

used. Therefore, when more valid odor prediction equations are available, the opti-

mization models need to be modified. Other limitations of the models include:

1. Since most of the odor reducing variables corresponded to the on-site contrac-

tor, the marginal activities were mostly associated to the on-site contractor.

In particular, only one marginal activity (lime addition) was associated to

DCWASA. While, two marginal activities (number of contractor centrifuges

and belt filter presses) were corresponding to the on-site contractor.

2. We assumed that no storage of biosolids at the wastewater treatment facility

was allowed. Therefore, when distribution of all biosolids from the plant is

not possible, the developed optimization models are not valid

3. Our optimization models were constructed on the assumption that things are

deterministic.

The limitations of our optimization models as well as other possible improve-
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ments lead to future work discussed in the next section.

6.2 Future Work

We summarize the list of potential future work as follows.

1. As mentioned above, other odor prediction equations containing a more com-

pleted set of wastewater treatment processing variables from both the on-site

contractor and DCWASA should be tried as the input to the optimization

model.

2. In Section 5.3, the Dantzig-Wolfe decomposition technique is applied to our

problem and yields the solutions that are not integer. According to [70],

this situation can be handled by the branch and price algorithm. Therefore,

one should consider incorporating the branch and price algorithm into the

MMOPWTP algorithm presented in Section 5.5.

3. Our optimization models should be modified such that they allowed storages of

biosolids at the wastewater treatment facility. However, it is anticipated that

the model will become much more complicated in the sense that biosolids odor

would be changed over time. In addition, the mixture of biosolids produced

from each day would require complicated odor prediction equations.

4. In most real-world problems, there are always some uncertainties correspond-

ing to some parameters. The mathematical programming that takes into ac-

count these parameter uncertainties, where probability distributions of these
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parameters are known, is called stochastic or probabilistic programming. As

an extension to the deterministic models that we have done, the uncertainties

of some parameters could be incorporated into the model (e.g., temperatures).

Two well-known stochastic programming methods are two-stage programs and

chance constraints [65].

5. In order to facilitate the prospective end-user (e.g., wastewater treatment facil-

ity) or the decision-maker, a friendly user interface to depict the optimization

output could be designed. The interface can involve but not limited to the

optimization package (e.g., XPRESS-MP), the database software (e.g., MS

ACCESS), and the GIS software (ARCVIEW-GIS).
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Appendix A

Avenue Script

Avenue script is an object-oriented programming language and development

environment that is part of ArcView. There are many benefits for employing Avenue

script in ArcView. It can be used to customize functions and tools in ArcView. A

specific task performed by ArcView can also be guided by Avenue script. Moreover,

Avenue script can be used to develop an application that is embedded ArcView’s

graphical user interface. In this thesis dissertation, we programmed Avenue script

to determine numbers of people, schools, and hospitals and length of streets in

specified areas. The script was embedded and run in ArcView GIS version 3.2a.

Although a brief description of the purpose of each section of the codes was given,

more specific meanings and uses of command lines are beyond the scope of this

thesis dissertation. Readers with more interest in Avenue script should consult the

help section: “Customizing and programming ArcView with Avenue” embedded in

the ArcView application. The Avenue script used in this thesis dissertation is as

follows:

’create a new VTab to record total population from each field

myFileName = “c:\Prawat\ArcView3\OdorThresholdCalculation.dbf”.AsFileName

popVTab = VTab.MakeNew(myFileName,dBase)

fld1 = Field.Make(“FieldID”,# FIELD LONG, 15, 0)
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fld2 = Field.Make(“TotalPop1”,#FIELD DOUBLE, 15, 2)

fld3 = Field.Make(“TotalPop2”,#FIELD DOUBLE, 15, 2)

fld4 = Field.Make(“TotalPop3”,#FIELD DOUBLE, 15, 2)

fld5 = Field.Make(“PopCone1”,#FIELD DOUBLE, 15, 2)

fld6 = Field.Make(“PopCone2”,#FIELD DOUBLE, 15, 2)

fld7 = Field.Make(“PopCone3”,#FIELD DOUBLE, 15, 2)

fld8 = Field.Make(“TotalSch1”,#FIELD DOUBLE, 15, 2)

fld9 = Field.Make(“TotalSch2”,#FIELD DOUBLE, 15, 2)

fld10 = Field.Make(“TotalSch3”,#FIELD DOUBLE, 15, 2)

fld11 = Field.Make(“SchCone1”,#FIELD DOUBLE, 15, 2)

fld12 = Field.Make(“SchCone2”,#FIELD DOUBLE, 15, 2)

fld13 = Field.Make(“SchCone3”,#FIELD DOUBLE, 15, 2)

fld14 = Field.Make(“TotalHos1”,#FIELD DOUBLE, 15, 2)

fld15 = Field.Make(“TotalHos2”,#FIELD DOUBLE, 15, 2)

fld16 = Field.Make(“TotalHos3”,#FIELD DOUBLE, 15, 2)

fld17 = Field.Make(“HosCone1”,#FIELD DOUBLE, 15, 2)

fld18 = Field.Make(“HosCone2”,#FIELD DOUBLE, 15, 2)

fld19 = Field.Make(“HosCone3”,#FIELD DOUBLE, 15, 2)

fld20 = Field.Make(“TotalLen1”,#FIELD DOUBLE, 15, 2)

fld21 = Field.Make(“TotalLen2”,#FIELD DOUBLE, 15, 2)

fld22 = Field.Make(“TotalLen3”,#FIELD DOUBLE, 15, 2)

fld23 = Field.Make(“LenCone1”,#FIELD DOUBLE, 15, 2)

fld24 = Field.Make(“LenCone2”,#FIELD DOUBLE, 15, 2)
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fld25 = Field.Make(“LenCone3”,#FIELD DOUBLE, 15, 2)

popVTab.AddFields({fld1, fld2, fld3, fld4, fld5, fld6, fld7, fld8, fld9, fld10, fld11,

fld12, fld13, fld14, fld15, fld16, fld17, fld18, fld19, fld20, fld21, fld22, fld23, fld24,

fld25})

popVTab.SetEditable(True) ’get a document on which we will be working

projectedView = av.finddoc(“Projected”)

PopDen = projectedView.findtheme (“dc va md blkgrp

3milesbuffer MD NAD83 feet.shp”)

SchoolTheme = projectedView.findtheme (“School 3milesbuffer

md nad83 feet nohistorical.shp”)

HosTheme = projectedView.findtheme (“DC VA MD Hospital

3milesBuffer MD NAD83 Feet.shp”)

StreetTheme = projectedView.findtheme (“dc va md street

3milesBuffer MD NAD83 Feet.shp”)

’get reuse field table and use getX and getY method to retrieve its x,y coordi-

nate in xy plane

ptTheme = projectedView.findtheme(“ReusefieldsJan05Oct06 MD NAD83 Feet.shp”)

myPointFtab = ptTheme.getFtab

myFieldIDField = myPointFtab.FindField(“Fieldid”)

myShapeField = myPointFtab.FindField(“Shape”)

myWindField = myPointFtab.FindField(“Wind Direc”)

pi = number.getpi

’loop through each record in reuse field table. For each loop, the following
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tasks will be done

’1. Get x coordinate and y coordiate from each reuse field

’2. Create a plume from the obtained coordinate

’3. Select population density features that fall within a plume

’4. Export selected features to a new FTab

’5. Create a new FTheme from the new FTab

’6. Select all features of the new Ftheme

’7. Use “ClipSelected” method to clip the Ftheme with the plume polygon

’8. Save the new edited FTheme

’9. Loop through each feature of the edited FTheme

’9.1 Multiply population density with the area

’9.2 Total sum to get total population

’10. record each the total effected population for each reuse field to a VTab “popT-

able.dbf”

for each i in 1..myPointFtab.getnumrecords

’for each i in 536..536 generate new record for each reuse field

myNewRec = popVTab.AddRecord

’get each record of point feature in Reusefieldsinlandonlyprojectednad1983.shp

point theme

myPointName = myPointFtab.returnvalue(myFieldIDField,i-1)

myPoint = myPointFtab.returnvalue(myShapeField,i-1)

myWind = myPointFtab.returnvalue(myWindField,i-1).AsString

’get the origin of each point (reuse field)
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xpt = myPoint.getX

ypt = myPoint.getY

’get location of the plume polygon

mya = 5280*3

myb = 5280

if (myWind = “W”) then

WindDir = 0

elseif (myWind = “WSW”) then

WindDir = pi/8

elseif (myWind = “SW”) then

WindDir = 2*pi/8

elseif (myWind = “SSW”) then

WindDir = 3*pi/8

elseif (myWind = “S”) then

WindDir = 4*pi/8

elseif (myWind = “SSE”) then

WindDir = 5*pi/8

elseif (myWind = “SE”) then

WindDir = 6*pi/8

elseif (myWind = “ESE”) then

WindDir = 7*pi/8

elseif (myWind = “E”) then

WindDir = 8*pi/8
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elseif (myWind = “ENE”) then

WindDir = 9*pi/8

elseif (myWind = “NE”) then

WindDir = 10*pi/8

elseif (myWind = “NNE”) then

WindDir = 11*pi/8

elseif (myWind = “N”) then

WindDir = 12*pi/8

elseif (myWind = “NNW”) then

WindDir = 13*pi/8

elseif (myWind = “NW”) then

WindDir = 14*pi/8

elseif (myWind = “WNW”) then

WindDir = 15*pi/8

else

MsgBox.info(“Wind Direction at field ” + i.AsString + “ is not valid”,“”)

return nil

end

if ((WindDir ≥ 0) and (WindDir ≤ (pi/2))) then

theta = WindDir

alpha = (myb/mya).Atan

gamma = theta-alpha

myc = mya/alpha.cos
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myd = myc*gamma.cos

mye = myc*gamma.sin

myf = myc*(theta+alpha).cos

myg = myc*(theta+alpha).sin

myh = mya*theta.cos

myi = mya*theta.sin

p1 = (xpt+myd)@(ypt+mye)

p2 = (xpt+myf)@(ypt+myg)

p3 = (xpt+myh)@(ypt+myi)

elseif ((WindDir > (pi/2)) and (WindDir ≤ pi)) then

theta = WindDir - (pi/2)

alpha = (myb/mya).Atan

gamma = theta-alpha

myc = mya/alpha.cos

myd = myc*gamma.sin

mye = myc*gamma.cos

myf = myc*(theta+alpha).sin

myg = myc*(theta+alpha).cos

myh = mya*theta.sin

myi = mya*theta.cos

p1 = (xpt-myd)@(ypt+mye)

p2 = (xpt-myf)@(ypt+myg)

p3 = (xpt-myh)@(ypt+myi)
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elseif ((WindDir > pi) and (WindDir ≤ (3*pi/2))) then

theta = WindDir - pi

alpha = (myb/mya).Atan

gamma = theta-alpha

myc = mya/alpha.cos

myd = myc*gamma.cos

mye = myc*gamma.sin

myf = myc*(theta+alpha).cos

myg = myc*(theta+alpha).sin

myh = mya*theta.cos

myi = mya*theta.sin

p1 = (xpt-myd)@(ypt-mye)

p2 = (xpt-myf)@(ypt-myg)

p3 = (xpt-myh)@(ypt-myi)

elseif ((WindDir > (3*pi/2)) and (WindDir < (2*pi))) then

theta = WindDir - (3*pi/2)

alpha = (myb/mya).Atan

gamma = theta-alpha

myc = mya/alpha.cos

myd = myc*gamma.sin

mye = myc*gamma.cos

myf = myc*(theta+alpha).sin

myg = myc*(theta+alpha).cos
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myh = mya*theta.sin

myi = mya*theta.cos

p1 = (xpt+myd)@(ypt-mye)

p2 = (xpt+myf)@(ypt-myg)

p3 = (xpt+myh)@(ypt-myi)

else

msgbox.info(“Wind Direction at field ” + i.AsString + “ is not valid”,“”,“”)

return nil

end

’make new polygon out of three points

pointlist1 = xpt@ypt,p1,p2

’make a circle polygon from each field location

conepoly = polygon.make(pointlist1)

’make center point of the circle

circlecenter = point.make(xpt,ypt)

r = 0

’what follows we loop three times, one for each radius

for each m in 1..3

r = r + 5280

myCirclePoly = circle.make(circlecenter, r).AsPolygon

’now we select Dc va md nad1983 av32.shp Ftheme based on a circle polygon

’select features that intersect with the circle

PopDen.SelectByPolygon(myCirclePoly,#VTAB SELTYPE NEW)
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PopDenTab = PopDen.GetFTab

’make a new shape file out of selected popden features and then make it a

theme

thePopDenCircle = “c:\Prawat\ArcView3\working\popDenCircle”+

myPointName.AsString+“ ”+m.AsString+“.shp” ’export selected features to a new

FTab

mySelectPopDen = PopDenTab.Export(thePopDenCircle.asFileName, Shape, TRUE)

myTheme = FTheme.Make(mySelectPopDen)

projectedView.AddTheme(myTheme)

projectedView.SetEditableTheme(myTheme)

’select all features of mySelectPopDen theme

myTheme.SelectByPolygon(myCirclePoly,#VTAB SELTYPE NEW)

’clip mySelectPopDen with myCirclePoly and save edit

myTheme.ClipSelected(myCirclePoly)

myTheme.StopEditing(True)

myTheme.ClearSelection

’clear selection of PopDen

PopDen.ClearSelection

’***********************************************

’next we calculate number of people within r mile-radius

’loop through each feature in new edited mySelectPopden to calculate population

myThemeFTab = myTheme.GetFTab

myPopDenBlock = myThemeFTab.FindField(“Shape”)
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myDenField = myThemeFTab.FindField(“Pop00 sqmi”)

myTotalPop=0

for each k in 1..myThemeFTab.GetNumRecords

myPolygon = myThemeFTab.ReturnValue(myPopDenBlock,k-1)

myArea = myPolygon.ReturnArea ’area in sq.ft.

myDen = myThemeFTab.ReturnValue(myDenField,k-1) ’population density in peo-

ple/sq.mi.

myPop = myArea*myDen/27878400 ’27878400 is to convert the area in sq.ft. to

sq.mi.

myTotalPop = myTotalPop + myPop

end

’next we add record total population into popVTab.dbf

if (popVTab.IsEditable) then

popVTab.SetValue(popVTab.FindField(“FieldID”),myNewRec,myPointName)

popVTab.SetValue(popVTab.FindField(“TotalPop”+

m.AsString),myNewRec,myTotalPop)

else

MsgBox.info(“popVTab is not editable”,“Warning!”)

end

’***************************************

’Next we count only people within r mile-radius and intersect with conepoly

’Next we select myTheme (edited thePopDenCircle) based on conepoly

thePopDenCone = “c:\Prawat\ArcView3\working\popDenCone”+
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myPointName.AsString+“ ”+m.AsString+“.shp”

myTheme.SelectByPolygon(conepoly,#VTAB SELTYPE NEW)

mySelectPopDenCone = myTheme.GetFTab.Export(

thePopDenCone.asFileName,shape,true)

myPopDenConeTheme = FTheme.Make(mySelectPopDenCone)

projectedView.AddTheme(myPopDenConeTheme)

projectedView.SetEditableTheme(myPopDenConeTheme)

myTheme.ClearSelection

’Select all features of myPopDenConeTheme

myPopDenConeTheme.SelectByPolygon(conepoly,#VTAB SELTYPE NEW)

’Clip myPopDenConeTheme with conepoly and save edit

myPopDenConeTheme.ClipSelected(conepoly)

myPopDenConeTheme.StopEditing(True)

myPopDenConeTheme.ClearSelection

’next we loop through each feature in a new cliped myPopDenConeTheme and

do a sum product of area and population density fields

myThemeFTab = myPopDenConeTheme.GetFTab

myPopDenBlock = myThemeFTab.FindField(“Shape”)

myDenField = myThemeFTab.FindField(“Pop00 sqmi”)

myTotalPopCone=0

for each j in 1..myThemeFTab.GetNumRecords

myPolygon = myThemeFTab.ReturnValue(myPopDenBlock,j-1)

myArea = myPolygon.ReturnArea ’area in sq.ft.
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myDen = myThemeFTab.ReturnValue(myDenField,j-1) ’population density in peo-

ple/sq.mi.

myPop = myArea*myDen/27878400 ’27878400 is to convert the area in sq.ft. to

sq.mi.

myTotalPopCone = myTotalPopCone + myPop

end

projectedView.DeleteTheme(myTheme)

projectedView.DeleteTheme(myPopDenConeTheme)

’next we add record total population into popVTab.dbf

if (popVTab.IsEditable) then

popVTab.SetValue(popVTab.FindField(“PopCone”+

m.AsString),myNewRec,myTotalPopCone)

else

MsgBox.info(“popVTab is not editable”,“Warning!”)

end

end

’stopworking with population density theme here

’************************************************************

’************************************************************

’Next we work with school theme

’make a circle polygon from the each field location

r = 0

’what follows we loop three times, one for each radius
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for each m in 1..3

r = r + 5280

myCirclePoly = circle.make(circlecenter, r).AsPolygon ’make a circle

’calculate total number of school within r feet radius

’now we select school theme based on a circle polygon

’select features that intersect with the plume

SchoolTheme.SelectByPolygon(myCirclePoly,#VTAB SELTYPE NEW)

SchoolFTab = SchoolTheme.GetFTab

’make a new shape file out of selected school theme features and then make it

a theme

theSchoolCircle = “c:\Prawat\ArcView3\working\SchoolCircle”+

myPointName.AsString+“ ”+m.AsString+“.shp” ’export selected features to a new

FTab

mySelectSchool = SchoolFTab.Export(theSchoolCircle.asFileName, Shape, TRUE)

myTheme = FTheme.Make(mySelectSchool)

projectedView.AddTheme(myTheme)

’clear selection of SchoolTheme

SchoolTheme.ClearSelection

’*********************************************************************

’next we calculate total school within r radius

myThemeFTab = myTheme.GetFTab

TotalSchool = myThemeFTab.GetNumRecords

’next we record total school into popVTab.dbf

222



if (popVTab.IsEditable) then

popVTab.SetValue(popVTab.FindField(“TotalSch”+m.AsString),myNewRec,TotalSchool)

else

MsgBox.info(“popVTab is not editable”,“Warning!”)

end

’********************************************************************

’Next we determine total school within r radius and intersect with conepoly

’Next we select myTheme (edited theSchoolCircle) based on conepoly

theSchoolCone = “c:\Prawat\ArcView3\working\SchoolCone”+

myPointName.AsString+“ ”+m.AsString+“.shp”

myTheme.SelectByPolygon(conepoly,#VTAB SELTYPE NEW)

mySelectSchoolCone = myTheme.GetFTab.Export(theSchoolCone.asFileName,shape,true)

mySchoolConeTheme = FTheme.Make(mySelectSchoolCone)

projectedView.AddTheme(mySchoolConeTheme)

’next we calculate total school

myThemeFTab = mySchoolConeTheme.GetFTab

TotalSchool = myThemeFTab.GetNumRecords

projectedView.DeleteTheme(myTheme)

projectedView.DeleteTheme(mySchoolConeTheme)

’next we record total school into popVTab.dbf

if (popVTab.IsEditable) then

popVTab.SetValue(popVTab.FindField(“SchCone”+m.AsString),myNewRec,TotalSchool)

else
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MsgBox.info(“popVTab is not editable”,“Warning!”)

end

end

’Stop working with school theme here

’************************************************

’************************************************

’next we work with hospital theme

’make a circle polygon from each field location

r = 0

’what follows we loop three times, one for each radius

for each m in 1..3

r = r + 5280

myCirclePoly = circle.make(circlecenter, r).AsPolygon ’make a circle

’calculate total number of hospital within r feet radius

’now we select hospital theme based on a circle polygon

HosTheme.SelectByPolygon(myCirclePoly,#VTAB SELTYPE NEW)

’select features that intersect with the plume

HosFTab = HosTheme.GetFTab

’make a new shape file out of selected hospital theme features and then make

it a theme

theHosCircle = “c:\Prawat\ArcView3\working\HosCircle”+

myPointName.AsString+“ ”+m.AsString+“.shp” ’export selected features to a new

FTab
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mySelectHos = HosFTab.Export(theHosCircle.asFileName, Shape, TRUE)

myTheme = FTheme.Make(mySelectHos)

projectedView.AddTheme(myTheme)

’clear selection of HosTheme

HosTheme.ClearSelection

’*********************************************************************

’next we calculate total hospital within r radius

myThemeFTab = myTheme.GetFTab

TotalHos = myThemeFTab.GetNumRecords

’next we record total hospital into popVTab.dbf

if (popVTab.IsEditable) then

popVTab.SetValue(popVTab.FindField(“TotalHos”+m.AsString),myNewRec,TotalHos)

else

MsgBox.info(“popVTab is not editable”,“Warning!”)

end

’********************************************************************

’Next we determine total hospital within r radius and intersect with conepoly

’Next we select myTheme (edited theHosCircle) based on conepoly

theHosCone = “c:\Prawat\ArcView3\working\HosCone”

+myPointName.AsString+“ ”+m.AsString+“.shp”

myTheme.SelectByPolygon(conepoly,#VTAB SELTYPE NEW)

mySelectHosCone = myTheme.GetFTab.Export(theHosCone.asFileName,shape,true)

myHosConeTheme = FTheme.Make(mySelectHosCone)
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projectedView.AddTheme(myHosConeTheme)

’next we calculate total hospital

myThemeFTab = myHosConeTheme.GetFTab

TotalHos = myThemeFTab.GetNumRecords

projectedView.DeleteTheme(myTheme)

projectedView.DeleteTheme(myHosConeTheme)

’next we record total hospital into popVTab.dbf

if (popVTab.IsEditable) then

popVTab.SetValue(popVTab.FindField(“HosCone”+m.AsString),myNewRec,TotalHos)

else

MsgBox.info(“popVTab is not editable”,“Warning!”)

end

end

’Stop working with hospital theme here

’*************************************************************************

’*************************************************************************

’next we work with street theme to get effected lenght of street in a 1,2,3 mile

radius from each reuse field

’In addition we also calculate effected length of street in a 1,2,3 mile radius but

within conepoly

’for each loop we calculate total length of street in a specify radius.

’make a circle polygon from the each field location

r = 0
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’what follows we loop three times, one for each radius

for each m in 1..3

r = r + 5280

myCirclePoly = circle.make(circlecenter, r).AsPolygon ’make a circle

’calculate total length of street within r feet radius

’now we select street theme based on a circle polygon

’select features that intersect with the plume

StreetTheme.SelectByPolygon(myCirclePoly,#VTAB SELTYPE NEW)

StreetFTab = StreetTheme.GetFTab

’make a new shape file out of selected street theme features and then make it

a theme

theStreetCircle = “c:\Prawat\ArcView3\working\StreetCircle”+

myPointName.AsString+“ ”+m.AsString+“.shp” ’export selected features to a new

FTab

mySelectStreet = StreetFTab.Export(theStreetCircle.asFileName, Shape, TRUE)

myTheme = FTheme.Make(mySelectStreet)

projectedView.AddTheme(myTheme)

projectedView.SetEditableTheme(myTheme)

’select all features of mySelectStreet theme

myTheme.SelectByPolygon(myCirclePoly,#VTAB SELTYPE NEW)

’clip mySelectStreet with myCirclePoly and save edit

myTheme.ClipSelected(myCirclePoly)

myTheme.StopEditing(True)
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myTheme.ClearSelection

’clear selection of StreetTheme

StreetTheme.ClearSelection

’*********************************************************************

’next we calculate total lenght of street within r radius

’loop through each feature in new edited mySelectStreet to get street lenght

myThemeFTab = myTheme.GetFTab

myShape = myThemeFTab.FindField(“Shape”)

myTotalLength = 0

if (myThemeFTab.GetNumRecords = 0) then

myTotalLength = 0

else

for each k in 1..myThemeFTab.GetNumRecords

myPolyline = myThemeFTab.ReturnValue(myShape,k-1)

myLength = myPolyline.ReturnLength/5280 ’lenght in mile.

myTotalLength = myTotalLength + myLength

end

end

’next we record total lenght into popVTab.dbf

if (popVTab.IsEditable) then

popVTab.SetValue(popVTab.FindField(“TotalLen”+m.AsString),

myNewRec,myTotalLength)

else
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MsgBox.info(“popVTab is not editable”,“Warning!”)

end

’********************************************************************

’Next we determine street lenght within r radius and intersect with conepoly

’Next we select myTheme (edited thePopDenCircle) based on conepoly

theStreetCone = “c:\Prawat\ArcView3\working\StreetCone”+

myPointName.AsString+“ ”+m.AsString+“.shp”

myTheme.SelectByPolygon(conepoly,#VTAB SELTYPE NEW)

mySelectStreetCone = myTheme.GetFTab.Export (theStreetCone.asFileName,shape,true)

myStreetConeTheme = FTheme.Make(mySelectStreetCone)

projectedView.AddTheme(myStreetConeTheme)

projectedView.SetEditableTheme(myStreetConeTheme)

myTheme.ClearSelection

’Select all features of myStreetConeTheme

myStreetConeTheme.SelectByPolygon(conepoly,#VTAB SELTYPE NEW)

’Clip myStreetConeTheme with conepoly and save edit

myStreetConeTheme.ClipSelected(conepoly)

myStreetConeTheme.StopEditing(True)

myStreetConeTheme.ClearSelection

’next we loop through each feature in a new cliped myStreetConeTheme

myThemeFTab = myStreetConeTheme.GetFTab

myShape = myThemeFTab.FindField(“Shape”)

myTotalLength = 0
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if (myThemeFTab.GetNumRecords = 0) then

myTotalLength = 0

else

for each k in 1..myThemeFTab.GetNumRecords

myPolyline = myThemeFTab.ReturnValue(myShape,k-1)

myLength = myPolyline.ReturnLength/5280 ’lenght in mile.

myTotalLength = myTotalLength + myLength

end

end

projectedView.DeleteTheme(myTheme)

projectedView.DeleteTheme(myStreetConeTheme)

’next we record total lenght into popVTab.dbf

if (popVTab.IsEditable) then

popVTab.SetValue(popVTab.FindField(“LenCone”+

m.AsString),myNewRec,myTotalLength)

else

MsgBox.info(“popVTab is not editable”,“Warning!”)

end

end

’Stop working with street theme here

’****************************************************************

’****************************************************************

end popVTab.SetEditable(False)
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