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 The impact of lightning NOx production and convective transport on tropospheric 

chemistry was studied in four thunderstorms observed during field projects using a 3-

dimensional (3-D) cloud-scale chemical transport model (CSCTM).  The dynamical 

evolution of each storm was simulated using a cloud-resolving model, and the output 

used to drive the off-line CSCTM which includes a parameterized source of lightning 

NOx based on observed cloud-to-ground (CG) and intracloud (IC) flash rates.  Simulated 

mixing ratios of tracer species were compared to anvil aircraft observations to evaluate 

convective transport in the model.  The production of NO per CG flash (PCG) was 

estimated based on mean observed peak current, and production per IC flash (PIC) was 

scaled to PCG.  Different values of PIC/PCG were assumed and the results compared with 

in-cloud aircraft measurements to estimate the ratio most appropriate for each storm.  The 

impact of lightning NOx on ozone and other species was examined during the storm in 



the CSCTM and following each storm in the convective plume using a chemistry-only 

version of the model which includes diffusion but without advection, and assumes clear-

sky photolysis rates. 

 New lightning parameterizations were implemented in the CSCTM.  One 

parameterization uses flash length data, rather than flash rates, as input, and production 

per meter of flash channel length is estimated.  A second parameterization simulates 

indivdual lightning flashes rather than distributing lightning NOx uniformly among a 

large number of gridcells to better reproduce the variability of observations.   

 The results suggest that PIC is likely on the order of PCG and not significantly less 

as has been assumed in many global modeling studies.  Mean values of PCG=500 moles 

NO and PIC=425 moles NO have been estimated from these simulations of midlatitude 

and subtropical continental thunderstorms.  Based on the estimates of production per 

flash, and an assumed ratio of the number of IC to CG flashes and global flash rate, a 

global annual lightning NO source of 8.6 Tg N yr-1 is estimated.  Based on these 

simulations, vertical profiles of lightning NOx mass for subtropical and midlatitude 

continental regimes have been computed for use in global and regional chemical transport 

models. 
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Chapter 1.  Introduction 
 
 

1.1 Motivation 

 Tropospheric NOx (NO+NO2) is of interest largely due to its influence on 

tropospheric ozone concentrations.  NOx from anthropogenic sources which originates at 

the surface requires transport processes to reach the free troposphere.  Lightning is a 

particularly significant source of NOx to the free troposphere because it produces NOx 

directly in the middle and upper troposphere where it is longer lived and may have a 

greater impact on ozone mixing ratios in this region of the atmosphere as well as 

tropospheric column ozone.  However, many aspects of the physics of lightning and of 

lightning NOx production are still highly uncertain despite numerous attempts to 

investigate them.  In large part, this is due to the difficulty of directly observing these 

phenomena or replicating them in a laboratory.  This dissertation seeks to provide 

improved estimates of NO production by lightning through use of a cloud-resolving 

chemical model and airborne observations. 

 Results are presented from four case studies of thunderstorms observed during 

three field projects in different midlatitude and subtropical locations.  Each storm has 

been simulated by a cloud-resolving model and the output used to drive a cloud-scale 

chemical transport model which employs a parameterization of lightning NOx production.  

Estimates of lightning NOx production were made by specifying different production 

scenarios and comparing the model results with in-cloud chemical observations. 

 A number of previous studies have attempted to extrapolate results from a single 

thunderstorm to obtain estimates of the global lightning NOx source despite the large 

variability of lightning activity between storms.  By using a number of different storms 
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observed in three different regions, the goal is to produce a global source estimate which 

is more representative of global thunderstorm and lightning activity.  In addition to a 

global source estimate, these cloud-scale simulations provide valuable insight into the 

vertical distribution of lightning NOx for use in regional and global chemical transport 

models.  Better understanding the magnitude of the global source as well as ts vertical 

distribution will aid in improving the representation of NOx, O3, and other chemical 

species in global chemical transport models and future studies of pollution transport and 

climate. 

1.2 Tropospheric ozone 

 The importance of ozone in the atmosphere is well established.  Stratospheric 

ozone acts to prevent UV radiation from reaching the surface, and to a great extent, 

prevents detrimental effects on human health including skin cancer and cataracts. Though 

~90% ozone is found in the stratosphere, the presence of ozone in the troposphere is 

especially significant for a number of reasons.  Boundary layer ozone directly affects 

human health by impairing respiratory function which has resulted in the classification of 

ozone as a criteria pollutant for air quality by the U.S. Environmental Protection Agency.  

High concentrations of low level ozone result in lower crop yields, causing significant 

economic loss annually.  Besides these well known roles, ozone impacts the atmosphere 

in a number of other important ways.  Ozone is an effective greenhouse gas in the lower 

stratosphere and the upper troposphere, affecting the thermal structure of the atmosphere 

as well as climate.  In addition, ozone affects the abundance of the hydroxyl radical (OH), 

and as a result, the oxidizing capacity and chemistry of the atmosphere. 
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 Ozone in the troposphere is the result of downward transport from the 

stratosphere as well as in-situ photochemical production.  Much uncertainty still 

surrounds the relative contribution of each source.  In order for ozone to be produced 

photochemically, ozone precursors must be present in sufficient quantities.  Therefore, 

the importance of this source is likely to vary spatially and temporally. 

1.3 Photochemical ozone production 

 In the stratosphere, where the majority of ozone resides, molecular oxygen is 

photolyzed by ultraviolet radiation to form two oxygen atoms.  Ozone is then produced 

by the reaction of molecular and atomic oxygen.  However, since most of the UV 

radiation incident on the Earth is absorbed in the stratosphere, photochemical production 

of ozone in the troposphere results from different processes.  In the clean troposphere, 

ozone production and loss can be described by the following set of three reactions. 

NO2 + hv  NO + O(3P)     (1.1) 

O(3P) + O2 + M  O3 + M    (1.2) 

NO + O3  NO2 + O2     (1.3) 

 NO2 is photolyzed by UV and visible radiation forming NO and atomic oxygen.  

Molecular and atomic ozone combine to form one ozone molecule, which is then 

destroyed through reaction with NO.  This produces and destroys one ozone molecule, 

resulting in no net loss or gain of ozone.  Ozone also undergoes photolysis (1.4) and the 

OH radical is produced from (1.5).  The OH radical is important for the oxidation of CO 

and CH4 in the clean tropopshere, producing HO2 and CH3O2, respectively.  CH3O2 is 

known as a peroxy radical (referred to as RO2).  

    O3 + hv  O(1D) + O2    (1.4) 
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    O(1D) + H2O  2OH     (1.5) 

 In the polluted troposphere, greater quantities of HO2 result from reactions which 

produce H or HCO.  The oxidation of either biogenic or anthropogenic hydrocarbons 

produces more complex peroxy radicals.  HO2 and RO2 react with NO through the 

following reactions. 

HO2 + NO  OH + NO2    (1.6) 

RO2 + NO  RO + NO2    (1.7) 

 Both reactions convert NO to NO2 without the consumption of an ozone 

molecule.  These reactions, combined with (1.1) and (1.2), demonstrate how ozone can 

accumulate in the troposphere when NOx and hydrocarbons are present. 

 Ozone production efficiency, the net ozone production per NOx molecule 

consumed, depends nonlinearly on the abundance of both NOx and hydrocarbons.  The 

degree of nonlinearity depends on the ratio of hydrocarbons to NOx, as well as the types 

of hydrocarbon species present [Liu et al., 1987; Lin et al., 1988].  For large values of the 

hydrocarbon to NOx ratio, ozone production is limited by the availability of NOx.  For 

small values of the ratio, ozone production is limited by the availability and reactivity of 

the hydrocarbon mixture.  As a result, ozone production efficiency can vary greatly under 

different conditions. 

Convective processes play an important role in the production and distribution of 

chemical species involved in ozone photochemistry.  Dickerson et al. [1987] 

demonstrated that thunderstorms can transport boundary layer pollutants to the upper 

troposphere, increasing their lifetimes.  Convective transport of ozone precursors such as 

NOx and NMHC's has been shown to enhance ozone production efficiency [Pickering, et  
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Table 1.1.  Sources of Tropospheric NOx [Bradshaw et al., 2000] 

   Recommended Value (Tg N yr-1)  Range (Tg N yr-1) 
Fossil Fuel  23      16-30 
Biomass Burning 8.5      4-16 
Lightning  6.5      3.2-26 
Soil   5.5      3-8 
NH3 Oxidation 0.6      0.3-3 
Aircraft  0.51      0.5-0.6 
Oceans   0.5      0-1 
Stratosphere  0.12      0.08-1 
 

al., 1990].  In addition, NOx reservoir species such as HNO3, PAN, and other nitrate 

species are transported during convection to the upper troposphere increasing their 

atmospheric residence time and the distance they may be transported.   

1.4 Sources of tropospheric NOx 

In order to fully understand the budget and distribution of tropospheric ozone, it is 

necessary to understand the sources of NOx in the troposphere.  Bradshaw et al. [2000] 

reviewed the magnitudes of sources found in the literature and recommended the values 

found in Table 1.1.  Fossil fuel combustion, biomass burning, lightning and soil 

emissions are the four major sources of NOx in the troposphere. 

 While the two largest sources of tropospheric NOx are emitted at the surface, 

lightning NOx is produced largely in the middle to upper troposphere where its lifetime is 

longer and, consequently, its ability to produce ozone, greater.  Of the main sources of 

tropospheric NOx, lightning is also associated with the widest range of uncertainty, 

ranging almost an order of magnitude, though most recent estimates are confined to the 

lower half of this range.  Reducing the uncertainty associated with lightning NOx 

production is critical to improving the understanding of both tropospheric NOx and 

ozone. 
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1.5 Lightning NOx production 

 A typical lightning flash can heat the air in its immediate vicinity to temperatures 

of approximately 30,000 K, efficiently dissociating molecular oxygen and nitrogen.  

Chameides [1986] examined the relationship between equilibrium NO concentrations and 

temperature and found that equilibrium NO concentration peaked at nearly 10% at 4000 

K, then decreased at higher temperatures.  The formation of NO is governed by the 

Zeldovich mechanism which consists of the reactions 1.6-1.8 below.  The extended 

Zeldovich mechanism includes a 4th reaction which may also contribute to thermal NO 

formation. 

O2 ↔ O + O      (1.6) 

O + N2 ↔ NO + N     (1.7) 

N + O2 ↔ NO + O     (1.8) 

N + OH ↔ NO + H     (1.9) 

 While the chemical reactions which result in lightning NO production may be 

known, the physical processes governing production, as well as the magnitude of the 

production itself, remain a source of vigorous debate.  Uncertainties in the amount of 

NOx produced per Joule of energy and per flash, the amount of energy per flash, average 

flash length, and even the global flash rate make obtaining an accurate estimate of global 

lightning NOx production extremely difficult as discussed in Price et al. [1997].  This has 

contributed to the wide range of estimates of lightning NOx production found in the 

literature. 

 Complicating matters further is the uncertainty regarding the relative production 

of IC and CG flashes.  On the basis of previous studies which suggested that IC flashes 
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were less energetic than CG flashes [e.g. Holmes et al., 1971], many studies of lightning 

NOx production have assumed that IC flashes were less efficient than CG flashes at 

producing NO.  Price et al. [1997] assumed that production by an IC flash (PIC) was one 

tenth of production by a CG flash (PCG) in estimating the strength of the global lightning 

NOx source.  In estimating regional lightning NOx production, Biazar and McNider 

[1995] used data from the National Lightning Detection Network (NLDN) which detects 

only CG flashes, neglecting production by IC flashes entirely.  In contrast, Gallardo and 

Cooray [1996] suggested that IC flashes may dissipate nearly as much energy as CG 

flashes and therefore PIC may be on the order of PCG.  Supporting the Gallardo and 

Cooray [1996] hypothesis, a two-dimensional (2-D) cloud-scale modeling study by 

DeCaria et al. [2000] suggested that the PIC/PCG ratio is likely between 0.5 and 1.0, and a 

three-dimensional (3-D) simulation of the same storm narrowed this range to between 

0.75 and 1.0 [DeCaria et al., 2005].   

 A recent article by Zhang et al. [2003] used observational evidence and an 

analysis of the assumptions presented in Price et al. [1997] to conclude that, on average, 

an IC flash dissipates between 50-100% as much energy as a CG flash.  Price et al. 

[1997] estimated the energy dissipated per IC and CG flash by multiplying the charge 

transferred per flash and the potential difference over which the charge is transferred.  

For IC flashes, Price et al. [1997] assumed that NO was produced only during processes 

associated with negative recoil strokes referred to as K-changes.  The charge transferred 

per K-change was calculated based on data presented in Ogawa and Brook [1964] and 

multiplied by an estimate of potential difference to estimate the energy dissipated per IC 

flash.  Zhang et al. [2003] argued that because the Ogawa and Brook [1964] observations 

 7



show the most frequently occurring number of K-changes per IC flash was 6, the energy 

dissipated per IC flash should be calculated assuming that a typical IC flash has 6 K-

changes rather than 1 as in Price et al. [1997].  In addition, Zhang et al. [2003] challenge 

the assumptions of electric potential used in Price et al. [1997].  Using estimates of 

electric potential calculated from electric field soundings in 10 thunderstorms by 

Marshall and Stolzenburg [2001] and the method of Price et al. [1997] for estimating the 

energy dissipated per flash, Zhang et al. [2003] found that the energy dissipated by IC 

flashes is likely to be on the order of the energy dissipated by CG flashes. 

 A number of early theoretical and laboratory studies of lightning NOx production 

focused on estimating production per unit of energy dissipated [e.g. Chameides et al., 

1977; Levine et al., 1981; Borucki and Chameides, 1984].  In order to estimate 

production per flash or to extrapolate to an estimate of global lightning NOx production 

using this method, it is necessary to know the energy dissipated by a typical flash.  As 

discussed in the review paper by Lawrence et al. [1995], the energy per flash is a quantity 

with a large degree of variability and uncertainty which makes determining a typical 

value difficult. 

Estimates of NOx production by lightning using laboratory experiments, 

theoretical assumptions regarding the physics of lightning flashes, data from field 

experiments, and global models were summarized in Zhang et al. [2003] and range from 

8 to 5000 moles of NO per flash.  A number of estimates of NO production per flash and 

per meter flash length have been obtained through the use of data from several recent 

field projects including STERAO (Stratosphere Troposphere Experiment: Radiation, 

Aerosol, Ozone) over northeastern Colorado in 1996, LINOX (Lightning-produced NOx),  
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Table 1.2.  Estimates of NO Production per Flash 

Author(s) Field 
Project 

Method NO production 
(moles NO per flash) 

DeCaria et al. [2000] STERAO 2-D cloud model, 
aircraft 
observations 

230 – 460 

DeCaria et al. [2005] STERAO 3-D cloud model, 
aircraft 
observations 

345 – 460 

Fehr et al. [2004] EULINOX 3-D cloud model, 
aircraft 
observations 

330-462 

Huntrieser et al. [1998] LINOX Aircraft 
observations 

66 – 498 

Skamarock et al. [2003] STERAO 3-D cloud model, 
aircraft 
observations, 
lightning 
observations 

43 

Théry et al. [2000] EULINOX Lightning 
observations 

500 

 

in southern Germany in 1996, and EULINOX (The European Lightning Nitrogen Oxides 

Project) over central Europe in 1998.  Unlike estimates of NO production per unit energy, 

these estimates do not require assumptions to be made regarding the typical energy per 

flash in order to obtain a global source estimate.  Estimates of NO production per 

lightning flash are summarized in Table 1.2 while estimates of NO production per meter 

flash length are presented in Table 1.3.  For the July 12 STERAO storm over Colorado, 

DeCaria et al. [2000] used a 2-D cloud-resolving model, and DeCaria et al. [2005] used a 

3-D cloud-resolving model, anvil NO observations, and observed lightning flash rates 

calculated from interferometer and NLDN (National Lightning Detection Network) 

observations to estimate PCG and the likely PIC/PCG ratio.  Based on analysis of lightning 

interferometer and aircraft data, Skamarock et al. [2003] estimated NOx production per  
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Table 1.3.  Estimates of NO Production per meter Flash Channel Length 

Author(s) Field 
Project 

Method NO production 
(moles NO per m flash 

length) 
Höller et al. [1999] LINOX Lightning 

observations 
1.7 – 6.6 x 10-2 

Huntrieser et al. [2002] EULINOX Aircraft 
observations 

4.5 x 10-3 

Skamarock et al. [2003] STERAO 3-D cloud model, 
aircraft 
observations, 
lightning 
observations 

1.7 x 10-3 

Stith et al. [1999] STERAO Aicraft 
observations 

3.3 x 10-4 – 1.7 x 10-2 

 

interferometer flash and per meter flash length produced by lightning in the July 10 

STERAO storm.  The interferometer flash data included many short duration flashes that 

likely would not be detected by other lightning detection systems.  Whether or not these 

short duration flashes are productive of NO is an open question.  If not, then the NO 

production per meter in the July 10 STERAO storm would be larger than computed by 

Skamarock et al.  [2003].  Stith et al. [1999] estimated NO production per meter flash 

length based on an analysis of NO spikes measured by aircraft during the same storm, as 

well as other STERAO storms.  Using a similar approach, Huntrieser et al. [2002] 

estimated NO production per meter flash length for the July 21 EULINOX storm over 

Germany.   For the same storm, an average production of NO per flash was estimated by 

Théry et al. [2000] based on an average flash length of approximately 30 km calculated 

from interferometer data (mostly IC flashes). Through analysis of CG lightning peak 

current data for the July 21 EULINOX storm as recorded by BLIDS (Blitz 

Informationsdienst von Siemens), Fehr et al. [2004] estimated PCG and a PIC/PCG ratio of 
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1.4 which was confirmed by a cloud-resolving model simulation that included a lightning 

parameterization, followed by comparison with anvil NOx observations.  Based on 

aircraft chemical measurements from LINOX, Huntrieser et al. [1998] estimated NO 

production per flash while Höller et al. [1999] estimated the amount of NO produced per 

meter flash length for the same project using lightning observations from LPATS 

(Lightning Position And Tracking System).  All of the above estimates of NO production 

were based on aircraft NOx measurements in storm anvils.  In contrast, Langford et al. 

[2004] used remote sensing techniques to measure NO2 column abundances in the core 

region of a thunderstorm over Boulder, Colorado, and estimated a larger value of 963 

moles of NO produced per CG flash by assuming that all NOx was NO2 in the lower 

portion of the storm after dark.  The wide range of values found using data from various 

field projects suggests that lightning NOx production may vary greatly between storms 

and individual flashes, though all estimates of lightning NOx production contain 

significant uncertainty because of the number of assumptions required in translating 

aircraft observations into NO production values.  Further investigation is required to 

constrain the magnitude of NO production per flash in order to reduce uncertainty in the 

global source estimate.  The representation of lightning NOx in 3-D regional and global 

chemical transport models (CTMs) is critical to the model’s representation of ozone and 

other species such as OH [e.g. Stockwell et al., 1999, Labrador et al., 2004].  Labrador et 

al. [2005] found that both the magnitude of the global lightning NOx source and its 

vertical distribution can significantly affect tropospheric trace gas concentrations in a 

global CTM. 
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1.6 The Cloud-Scale Chemical Transport Model 

Output from several different cloud-resolving models has been used to drive a 3-

D Cloud-Scale Chemical Transport Model (CSCTM) developed at the University of 

Maryland and fully detailed in DeCaria [2000] and DeCaria et al. [2005].  Temperature, 

density, wind, hydrometeor (rain, snow, graupel, cloud water, and cloud ice), and 

diffusion coefficient fields from the cloud model simulation are read into the CSCTM 

every five or ten minutes in the simulation, and these fields are then interpolated to the 

model time step of 15 seconds.  The transport of chemical tracers is calculated using a 

van Leer advection scheme.  The CSCTM employs parameterizations of lightning NOx 

production which use observed flash rates, avoiding the difficulty of explicit modeling of 

thunderstorm electrification.  In the DeCaria et al. [2005] version of the lightning NOx 

parameterization, lightning NOx production is calculated using observed IC and CG flash 

rates and a specified scenario of PIC and PCG to calculate the mass of NO injected into the 

cloud at each time step.  The NO produced by CG flashes is distributed unimodally in the  

vertical centered around the -15°C isotherm, while the NO produced by IC flashes is 

distributed bimodally (with the lower mode centered on the -15°C isotherm and the upper 

mode isotherm located between -30 and -60°C) based on the vertical distributions of very  

high frequency (VHF) sources of IC and CG flashes presented in MacGorman and Rust 

[1998].  The upper mode isotherm is selected in each storm based on the height of the 

observed storm and the altitude of the peak observed NOx mixing ratios.  At each model 

level, the lightning NO is distributed uniformly to all grid cells within the 20 dBZ contour 

computed from simulated hydrometeor fields. 
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A passive version of the CSCTM includes only the transport of tracer species and 

production of lightning NOx without any chemical reactions.  In the passive version, the 

IC- and CG- produced NOx can be isolated from pre-existing NOx which allows a number 

of different production scenarios to be evaluated quickly.  To account for the effects of 

chemical reactions, a full version of the CSCTM combines tracer transport and lightning 

production with a chemical solver and photochemical mechanism, better simulating the 

chemical environment within the storm.  Soluble species are removed from the gas phase 

by cloud and rain water, but multiphase reactions are not included.  Photolysis rates are 

calculated as a function of time, and are perturbed by the cloud.  A chemistry-only 

version of the CSCTM is used to estimate 24-hour ozone production in the convective 

outflow that is assumed to be translated downwind.  In this version, chemical reactions 

and diffusion are included, while cloud-scale advection is turned off.  Clear sky 

photolysis rates are assumed and photolysis rates are calculated as a function of time. 

1.7 Methods and objectives 

 Figure 1.1 provides a brief synopsis of the methodology used in each case study 

presented.  The dynamical and microphysical evolution of storms from the Cirrus 

Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment 

(CRYSTAL-FACE; Ridley et al., 2004; Lopez et al., 2006), EULINOX [Huntrieser et al, 

2002], and STERAO [Dye et al., 2000] field projects have been simulated using several 

different cloud-scale models.  The simulation of each storm was compared with the 

observed storm development using radar and satellite observations to ensure that it 

adequately replicated observed storm features such as anvil size and cloud top height.   
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Figure 1.1.  Method of estimating lightning NOx production per IC and CG flash. 

 

The temperature, wind, and hydrometeor fields from each storm simulation were 

used to drive the offline passive version of the CSCTM.  Initial condition profiles of O3, 

NOx, and CO or CO2 were constructed from out-of-cloud aircraft observations.  

Simulated in-cloud mixing ratios of O3 and CO or CO2 at anvil levels were compared 

with in-cloud aircraft observations of these species to determine whether of not the 

simulated convective transport was reasonable.  If the transport of species such as O3, 

CO, and CO2 was reasonably simulated, the convective transport of NOx should also be 

reasonable.  Therefore, if this is the case, lightning NOx production can be simulated by 

adding lightning NOx to the convectively transported NOx in the storm and a reasonable 
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estimate of production per flash can be obtained.  Observed IC and CG flash rates were 

read into the model and various production per flash scenarios of PIC and PCG were 

simulated in separate model runs.  The results of these simulations were compared with 

in-cloud aircraft observations of NOx to determine which production scenario resulted in 

the best comparison. 

Once a best-fit production scenario was estimated using the passive transport 

version of the CSCTM, the full version of the CSCTM was run assuming this production 

scenario.  The results from the CSCTM simulation including chemical reactions were 

again compared with aircraft measurements to ensure that the model results still 

compared favorably with observations when chemistry is included.  The lightning NOx 

scheme in the model was also turned off to produce a “no-lightning” simulation.  The two 

simulations, one which included lightning NOx and one which did not, were used to 

estimate the affect of lightning NOx on ozone during the lifetime of the storm.  Chemical 

fields at the end of the CSCTM simulations with chemistry were used to initialize the 

chemistry-only version of the model.  By integrating both simulations forward for 24 

hours and comparing the results, a rough estimate of ozone production per day due to the 

presence of lightning NOx was obtained in the convective plume. 

Production per flash has been estimated for all four case studies.  An average 

production per IC and per CG flash was computed over all storms, and combined with 

assumptions of a global flash rate and global IC to CG ratio to estimate the global 

lightning NOx source.  In addition, at the end of each CSCTM simulation, the mass of N 

fixed by lightning was calculated at each model level, and the percentage of the total 

mass of lightning NOx calculated for 1-km thick layers.  These four simulated cases, 
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along with a simulated squall line observed during PRE-STORM (Preliminary Regional 

Experiment for STORM; Rutledge and MacGorman, 1988) and the July 12 STERAO 

storm simulated by DeCaria et al. [2005] were divided into two meteorological regimes 

(midlatitude continental and subtropical) and average vertical profiles of lightning NOx 

mass were calculated for each regime.  These profiles can be used to specify the vertical 

distribution of the lightning NOx source in global and regional CTMs. 

The objectives of the research presented in this dissertation are: 

a) To develop more realistic methods of representing lightning NOx in cloud-scale 

models in order to facilitate estimates of NO production per flash and per unit 

flash channel length 

b) To estimate production per IC and CG flash in a sample of storms representative 

of midlatitude and subtropical convection and to extrapolate these estimates of 

production per flash to obtain an estimate of the global lightning NOx source 

c) To examine the effect of lightning NOx on atmospheric chemistry during the 

storm and in the 24 hours following the storm 

d) To calculate the vertical distribution of lightning NOx mass following convection 

for use in global and regional chemical transport models. 

The work presented in this dissertation includes several important advancements 

in the study of lightning NOx production and its effect on atmospheric chemistry.  I 

developed a new lightning placement scheme which more realistically reproduces the 

variability of NOx observations in the active lightning region than the DeCaria et al. 

[2005] scheme.  In addition, I developed a second scheme which allows lightning NOx 

production to be estimated per meter of flash channel length.  The development of new 3-
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D lightning mapping systems will provide more information on the length of IC and CG 

flashes in the near future and this scheme will allow for further estimates of NO 

production per meter flash length to be made.  In addition to improvements in the 

representation of lightning NOx in the CSCTM, this dissertation also details the 

implementation of the DeCaria et al. [2005] lightning scheme in a version of the Weather 

Research and Forecasting model which simulates both gas and aqueous phase chemistry 

(WRF-Aqchem).  Chemistry in WRF-Aqchem is calculated online meaning that 

hydrometeor, temperature, and velocity fields do not need to be interpolated to a smaller 

time step as is necessary when using the offline CSCTM driven by cloud-resolving model 

fields saved every 5 or 10 minutes.  The inclusion of lightning NOx in WRF-Aqchem 

allows the effects of lightning NOx on soluble species to be investigated. 

Chapter 2 describes simulations of the July 21 EULINOX storm which will also 

be published in the Journal of Geophysical Research.  In Chapter 3, simulations of the 

July 10 storm observed during the STERAO field project are presented.  Chapter 4 details 

the simulations of the July 16 and July 29 storms observed over South Florida during the 

CRYSTAL-FACE campaign.  In Chapter 5, an average lightning NOx production 

scenario is calculated based on the simulations presented in Chapters 2-4 and the DeCaria 

et al. [2005] work.  A brief discussion of lightning NOx production using the average 

scenario in the June 10-11 PRE-STORM event is also included in Chapter 5, as is an 

estimate of the global lightning NOx source and average vertical profiles of lightning NOx 

following convection.  These results are also included in a manuscript which will soon be 

submitted for publication.  The final chapter presents a brief summary of the work 

presented in this dissertation. 
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Chapter 2.   Simulations of the July 21 EULINOX storm 

 

2.1 The EULINOX project 

The EULINOX [Huntrieser et al., 2002] field campaign was conducted in central 

Europe during June and July 1998 with the goal of better understanding lightning NOx 

production.  During the project, airborne measurements were collected by the Deutsches 

Zentrum für Luft- und Raumfahrt (DLR) Falcon and the Do228 research aircraft.  Both 

measured NOx, O3, CO and CO2, as well as meteorological parameters in and around 

thunderstorms in the region of the experiment.  The Do228 flew primarily in the 

boundary layer and lower troposphere below 4 km, while the Falcon investigated the 

upper troposphere and performed a number of anvil penetrations through  monitored 

thunderstorms.  CG lightning occurrences were recorded by an LPATS system known as 

BLIDS.  In addition, total 3-D lightning activity (IC+CG) within the 100 km area 

surrounding the EULINOX operation center was mapped by a VHF (very high 

frequency) interferometer from the French Office Nationale d’Etudes et de Recherches 

Aerospatiales (ONERA).  Both radar and satellite observations were used to monitor the 

development of thunderstorms in the region. 

2.2 Observed storm evolution  

On the evening of July 21, 1998 the evolution of a severe thunderstorm west of 

Munich, Germany was documented and is shown in figure 2.1.  After an initial period of 

intensification, the storm split into two distinct cells evident on the radar image at 1852 

LST (1652 UTC).  The northernmost cell became multicellular in structure and was 

observed to decay soon after the cell-splitting event, while the southern cell strengthened 
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Figure 2.1.  1° elevation scans from the POLDIRAD at 1640, 1652, 1733, and 1802 UTC 
on July 21, 1998 with BLIDS CG flashes recorded during the 2 minutes before and after 
each radar scan overlaid.  Horizontal arrows denote positive flashes and jagged arrows 
indicate negative flashes.  Distances are km from POLDIRAD [Höller et al., 2000]. 

  

and developed supercell characteristics including a distinct hook echo (see radar image 

observed at 1933 LT; Höller et al., 2000).  From 1400 to 2200 UTC total lightning 

activity within the entire storm was monitored by the ONERA interferometer, and cloud-

to-ground lightning activity was recorded by BLIDS.  Théry [2000] compared flashes 

recorded by BLIDS and the ONERA interferometer and found that many low amplitude 

positive flashes recorded by BLIDS were IC rather than CG.  This was also true for 

flashes with weak negative peak current, but to a lesser degree.  Flashes with peak current 

 19



between -5 and +15 kA were removed [Höller et al., 2000] and the remaining BLIDS 

flashes counted to obtain CG flashrates, which were subtracted from counts of 

interferometer flashes to yield IC flashrates.  By comparing plots of the locations of 

interferometer and BLIDS flashes with plots of radar reflectivity, flashes belonging to the 

northern and southern cells were identified.  Figure 2.2 shows that the southern cell 

contained the majority of lightning activity with IC flashes dominating the total lightning 

activity after 1710 UTC.  In the period shown, 360 CG flashes and 2565 IC flashes were 

recorded in the southern cell (mean IC/CG ratio = 7.1) while in the northern cell there 

were 289 CG flashes and 815 IC flashes (mean IC/CG ratio = 2.8).  The storm was 

penetrated seven times during the period from 1735 to 1842 UTC by the Falcon while 

flying between 6.3 and 9.2 km AGL near the active convective cells and in the lower 

anvil.  Figure 2.3 [Huntrieser et al., 2002] shows the Falcon flight track 

 
Figure 2.2.  Time series of IC and CG flash rates for the (a) northern and (b) southern 
cells in the July 21 EULINOX storm. 
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superimposed on a map of VHF signals recorded by the interferometer from 1740 to 1810 

UTC.  During this period, nearly 400 IC and CG flashes were recorded.  The Falcon flew 

between 8 and 9 km AGL in the vicinity of the maximum lightning activity where the 

majority of freshly produced NO would be observed.  NO mixing ratios up to 25 ppbv 

were observed during this period [Huntrieser et al., 2002]. 

Fehr et al. [2004] simulated the EULINOX storm of July 21, 1998 using a 

modified, cloud-resolving version of the PennState/NCAR Mesoscale Model 5 (MM5) 

with a 1 km horizontal resolution which included a parameterized lightning NOx source 

with emissions represented by a Lagrangian particle model.  Lightning NOx particles 

were distributed within a vertical flash channel with the vertical distance between 

particles depending on atmospheric pressure.  Flash rates were parameterized using the 

 
Figure 2.3.  Locations of VHF sources recorded by interferometer at stations ST1 and 
ST2 between 1740 and 1810 UTC on July 21, 1998 overlaid with the Falcon’s trajectory 
during the same time period.  Red letters indicate the location of electrified cells 
[Huntrieser et al., 2002]. 
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methods of Price and Rind [1992, 1993] and Pickering et al. [1998] and compared with 

observed flash rates.  The parameterization overestimated total lightning activity 

considerably, so observed flashrates were used to estimate lightning NOx production by 

comparing model results with NO measurements taken during three of the seven Falcon 

anvil penetrations.  A production scenario in which a CG flash produces approximately 

330 moles of NO per flash and an IC flash is 1.4 times more productive of NO than a CG 

flash compared favorably with the observations used.  An estimated 50-80% of the 

lightning produced NOx was transported to the anvil region, with 97% of anvil NOx 

resulting from IC flashes. 

2.3 Simulated storm evolution 

 The July 21 EULINOX storm was simulated by Dr. Georgiy Stenchikov 

from Rutgers University using the 3-D Goddard Cumulus Ensemble (GCE) model (Tao 

and Simpson, 1993; Tao et al., 2001).  The model was initialized with a single sounding 

provided by Dr. Thorsten Fehr, formerly of DLR, that included data from a German 

Weather Service radiosonde, the ascent of the DLR Falcon aircraft, and a dropsonde 

released during the Falcon’s flight, all of which were no more than 90 minutes ahead of 

the storm.  CAPE for this sounding was 1590 J/kg [Fehr et al., 2004].  The sounding also 

showed winds veering at low levels which is conducive to splitting.  Convection was 

initiated with a single warm thermal perturbation and a flat orography was assumed.  The 

horizontal resolution was 2 km and there were 50 vertical levels, with a resolution of 0.5 

km.  The model was run for 5 hours. 

The GCE simulation successfully reproduced a number of features of the 

observed storm.  A single cell first appeared 20 minutes into the simulation.  At 70 
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minutes, the cell splitting has begun.  Because the early stages of the cell splitting was 

observed on radar at ~ 1650 UTC (Figure 2.1), 70 minutes in the simulation was chosen 

to correspond to this time for the purposes of comparison with aircraft observations and 

the use of observed flash rates in the lightning NOx calculation.  Thus, the beginning of 

the simulation was assumed to correspond to 1540 UTC.  In Figure 2.4, a single cell is 

visible 30 minutes into the simulation.  The cell has completely split in two at 100 

minutes in the model simulation.  The southern cell has developed a supercell circulation 

and an apparent hook echo at this time.  At 150 minutes, a third cell has developed 

between the original two cells.  The southern cell has begun to decay at 180 minutes, and 

the northern cell becomes dominant.   

 

Figure 2.4.  Radar reflectivity at 1 km elevation computed from GCE hydrometeor fields 
at (a) 30, (b) 100,  (c) 150, and (d) 180 minutes in the simulation of the July 21 
EULINOX storm. 
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Some simulated storm features were similar to observations and some differed.  

The model correctly predicted the splitting of the initial cell.  However, in the observed 

system the northern cell weakened rapidly after the cell splitting event and the southern 

cell became the dominant feature, evolving into a supercell.  The simulated southern cell, 

while demonstrating supercell characteristics and dominating for a period of time, did not 

persist as long as observed.  Cloud top heights reached 14 km which compared favorably 

with observations [Höller et al., 2000] and the MM5 simulation presented by Fehr et al. 

[2004].  Discrepancies between the simulated storm and observations may be because the 

nonuniformity of terrain and initial conditions [Stenchikov et al., 2005] were not 

accounted for in the GCE simulation.  Boundary conditions may also have contributed to 

these differences. However, comparison with observations showed that the simulated 

storm evolution was fairly reasonable for the period of 180 minutes that was chosen for 

the chemistry-transport calculations in this study. 

At 1657 UTC, just after the cell splitting event, the southern cell was observed by 

dual-Doppler radar and the 3-D wind field reconstructed.  At this time, a maximum 

updraft speed of 24 m s-1 was observed while the strongest downdraft was 9 m s-1 [Höller 

et al., 2000].  At the corresponding time in the simulation (80 minutes), the maximum 

updraft velocity was 34 m s-1 while the maximum downdraft was 7 m s-1.  Due to the 

location of the storm with respect to the radar, dual-Doppler analysis was not possible at 

other times.  Maximum updraft velocities were approximately 36 m s-1 between 90 and 

130 minutes in the GCE simulation, and then decreased.  This is lower than the maximum 

updraft of 49 m s-1 reported in the Fehr et al. [2004] simulation.  Downdraft velocities 

were also less than those presented in Fehr et al. [2004] in which a maximum of 25 m s-1 
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was recorded.  Throughout the GCE simulation, downdraft velocities were typically less 

than 10 m s-1.  Low level inflow to the simulated storm occurred between 0.5 and 3 km 

while outflow from the anvil was greatest between 9 and 11 km. 

2.4 Tracer transport and lightning NOx production 

 The passive version of the CSCTM was used to calculate the transport of CO2, 

NOx, and O3.  CO, which in polluted regions has a stronger vertical gradient than CO2 

and would be preferable to CO2 as a tracer of upward transport, was not measured on this 

day.  An initial profile of CO2 was constructed using data from the Falcon ascent and a 

value of 355 ppbv above the tropopause taken from Strahan et al. [1998].  An initial 

profile of O3 was constructed using data from the Falcon ascent, the DO-228 boundary 

layer data for the day, and a climatological average ozone profile for the latitude of 

Munich above 9 km.  The NOx profile was composed of data taken from the Falcon 

ascent in the free troposphere and from a profile one standard deviation greater than the 

average NOx boundary layer profile during the EULINOX project [Huntrieser et al., 

2002].  A profile with values larger than the project mean in the boundary layer was 

assumed because no actual measurements were available and high measured boundary 

layer values of CO2 and O3 suggested polluted NOx conditions on this day.  Sensitivity 

calculations were also performed using the EULINOX boundary layer average and the 

boundary layer average plus two standard deviations in order to assess the effects of this 

uncertainty on the lightning NO production results.  The initial condition profiles for 

CO2, NOx, and O3 are shown in Figure 2.5.  IC and CG flash rates for the northern and 

southern cells (as shown in Figure 2.2) were read into the model at 3-minute intervals 

beginning 21 minutes into the simulation to correspond to the time when lightning was  
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Figure 2.5.  Initial condition profiles of (a) CO2, (b) NOx, and (c) O3  prior to the July 21 
EULINOX storm. 
 

first observed, and the amount of lightning NOx produced in each time interval was 

calculated. 

2.4.1. CO2 and O3 transport 

 Figure 2.6 shows a vertical cross section of CO2 through the southern cell at 150 

minutes when the cell was at maximum strength, oriented 65 degrees counterclockwise 

from due east.  Air containing the maximum CO2 mixing ratios exceeding 370 ppmv 

initially in the 1-2 km region has been transported to over 12 km in the core updraft 

region, and as high as 10 km in the anvil, indicating strong upward motion at this time.  

Both the core and the downwind anvil regions of the storm are largely comprised of air 

that resided in the boundary layer prior to convection, while there is little evidence of 
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entrainment of environmental air with lower CO2 mixing ratios.  The model also suggests 

downward transport of smaller mixing ratios of CO2 in the 8-11 km altitude region 

behind the storm and from 0.5 to 3.5 km. 

In order to compare simulated tracer transport with mixing ratios observed during 

the series of seven anvil penetrations, data collected by the Falcon aircraft were averaged 

over approximately 11-second intervals to yield a spatial resolution equivalent to the 

model, and then binned into 0.5 km thick layers.  Unfortunately, in-cloud observations 

were only available for three 0.5 km thick layers centered at 8, 8.5 and 9 km AGL.  

Therefore, the comparison with model results includes only a 1.5-km thick layer.  The 

 

Figure 2.6.  Cross section of CO2 mixing ratios in the southern cell from the CSCTM 
simulation of the July 21 EULINOX storm at 150 minutes at an angle of 65° 
counterclockwise from east along the axis of the southern cell. 
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analysis would have benefited from observations at a wide range of altitudes as were 

available for the July 12 STERAO-A storm simulated by DeCaria et al. [2005] in which 

the research aircraft executed a spiral ascent through the storm anvil, measuring NO from 

7 to 11 km MSL.  The area covered during each penetration was calculated from flight 

position data.  The average distance covered during 6 of the 7 anvil penetrations was 

determined to be approximately 24 km in the x-direction and 36 km in the y-direction.  A 

box of this size was placed around the core of the southern cell where radar observations 

and flight data show that the Falcon was primarily sampling.  The grid cells within this 

box were sampled at times in the simulation corresponding to the times of the aircraft 

sampling at each level, and cumulative probability distribution functions (pdfs) calculated 

for each level.  In addition, the mean, mode and standard deviation of observed and 

simulated NOx, O3 and CO2 mixing ratios at 9 km were calculated and are shown in 

Table 2.1.  The model does an excellent job in estimating the mean values at this altitude.  

However, it appears that the distribution of observed O3 mixing ratios at this level is 

substantially broader than that simulated. 

 
Table 2.1.  Statistics of Observed and Simulated Tracer Mixing Ratios at 9 km in the July 
21 EULINOX storm 
 
 Mean Mode Standard Deviation 
Obseved CO2 (ppmv) 367.0 366.4 1.5 
Simulated CO2 (ppmv) 367.8 371.8 3.4 
Observed O3 (ppbv) 90.0 84.8 15.8 
Simulated O3 (ppbv) 89.1 84.1 5.6 
Observed NOx (ppbv) 2.4 1.3 1.7 
Simulated NOx (ppbv) 2.6 0.3 2.1 
*  Statistics are computed over the sampling box shown in Figure 2.12a.
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Figure 2.7.  Pdfs of observed (solid) and simulated (dashed) CO2 mixing ratios at (a) 8, 
(b) 8.5, and (c)  9 km in the July 21 EULINOX storm. 

 

 Figure 2.7 shows that at 8, 8.5 and 9 km AGL, the distribution of simulated CO2 

matches the observed distribution well with a slight overestimation of the maximum 

values.  At 9 km, the model also underestimates the minimum values, suggesting that the 

downward transport at the rear of the storm may not have been as pronounced as seen in 

the model.  Figure 2.8 shows pdfs of observed and simulated O3 at 8 and 9 km, the only 

two levels for which a sufficient number of observations were available to calculate pdfs.  

At both levels, the simulations underestimate the maximum values and overestimate the 

minimum values.  The overestimation of minimum values is due in part to the initial 

condition profiles used.  Though ozone as low as 63 ppbv was observed in the storm, the 

lowest value in the initial condition profile was 67 ppbv at 3.5 km because there was no 
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observational evidence outside the storm to suggest that values lower than this would be 

appropriate.  When chemical reactions were included in the model (see Section 3.3.) a 

small loss of ozone occurred at 8 km, slightly improving the comparison between the 

simulated and observed minimum values though overestimation of the minimum values 

is still noticeable, particularly at 9 km. The underestimation of the maximum values 

suggests the model may be underrepresenting downward transport, although this is not 

supported by analysis of the CO2 distributions.  This contradiction may be the result of a 

lack of sufficient observations of CO2 and O3 near the tropopause to well define the 

vertical gradients in this region that were used in the initial condition profiles.   

 

 

Figure 2.8.  Pdfs of observed (solid) and simulated (without chemical reactions – dashed, 
with chemical reactions - dotted) O3 mixing ratios at (a) 8 and (b) 9 km in the July 21 
EULINOX storm. 
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Additionally, the observed discrepancy could have been caused by time interpolation of 

the driving field and approximation errors. If downward transport was slightly 

underrepresented by the model, it is unlikely to significantly affect the estimates of 

lightning NOx production because NOx mixing ratios immediately above the tropopause 

were similar to the enhanced mixing ratios of NOx between 7 and 9.5 km in the initial 

condition profile. 

2.4.2 Lightning NOx production  

Two different schemes were used in the model to estimate the production of 

lightning NOx.  These schemes differ from the lightning NOx parameterization used in 

DeCaria et al. [2005] in which lightning NOx was distributed bimodally in the vertical 

and uniformly to all grid cells within the 20 dBZ contour of the cloud at each level as if 

the NOx was instantly diffused throughout this region of the cloud.  The DeCaria et al. 

[2005] model results were compared to the general profile shape and integrated column 

mass of observed NOx.  This approach performed well for the July 12 STERAO storm in 

which the anvil observations were located relatively distant from the convective cores.  In 

that case, the aircraft measured the integrated effects of many flashes on NOx mixing 

ratios.  However, in the EULINOX storm, the aircraft flew in a much more electrically 

active part of the storm, necessitating a different approach.  These new schemes 

(developed as part of the dissertation research) attempt to replicate more realistically 

actual flashes and the range of NOx mixing ratios observed by putting lightning NOx from 

individual flashes into smaller subsets of grid cells within the simulated cloud. 

The first scheme allows an estimate to be made of NO production per flash and 

the second allows an estimate of production per meter flash length.  In the first scheme, 
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observed flash rates for the northern and southern cells are input along with a scenario of 

IC and CG production specified in terms of moles of NO produced per flash.  The 

average horizontal extent of a flash was calculated from interferometer data and is input 

for each 3-minute lightning time step, as is the total number of IC and CG flashes in each 

cell of the storm.  The areas in which lightning occurred in the northern and southern 

cells were estimated from plots of observed IC and CG flashes.  Areas of approximately 

this size were centered 10 km downwind of the maximum updraft of the northern and 

southern cells in the model because Höller et al. [2000] noted that in this storm, based on 

an analysis of interferometer and radar observations, flashes tended to occur downwind 

of the updraft.   The distance of 10 km was chosen based on visual inspection of plots of 

radar reflectivity overlaid with flash locations presented in Höller et al. [2000].   

The vertical distribution of IC flash channel segments is derived from two 

Gaussian distributions, one centered at -30° C and the other at -15° C, which are 

summed, while the vertical distribution of CG flash channel segments consists of a single 

Gaussian distribution centered at -15° C [DeCaria et al., 2005].  These distributions, f(z), 

determine the number of grid cells in the horizontal to be included in an IC or CG flash at 

each model level as shown in Figure 2.9a.  The vertical distribution of the number of grid 

cells included in a CG flash results in no grid cells in the lowest two layers of the model 

receiving direct placement of lightning NO.  To a first approximation, this configuration 

is supported by data from 3-D lightning mapping systems which record a nearly 

negligible amount of flash channels near the surface compared with that which occurs 

aloft.  At the top of the cloud, as determined by the uppermost nonzero value of f(z), an 

initiation point is selected at random within the designated area downwind of the the 
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updraft.  After this point is selected, the flash is constrained to an area equaling the 

average horizontal flash extent.  At each level, the locations of a number of grid cells 

given by f(z) are selected at random, such that tortuosity of the flash is simulated.  NO is 

distributed to all grid cells along each flash with a dependence on pressure as described in 

DeCaria et al. [2000] because of laboratory experiments showing a linear relationship 

between pressure and NO production [Wang et al., 1998].  Figure 2.9b shows a schematic 

diagram of lightning NO placement in the southern cell.  The dashed line represents the 

 

Figure 2.9.  (a) Vertical distribution of the number of grid cells in the horizontal included 
at each model level in a CG flash (solid line) and in an IC flash (dotted line). (b) 
Schematic diagram of lightning NOx placement in the July 21 EULINOX storm.  Dashed 
line represents computed 20 dBZ radar reflectivity contour at 9 km 150 minutes into the 
simulation.  Triangle shows the location of the maximum updraft and the larger box is the 
area from which an initiation point for the lightning is selected. The circle marks the 
initiation point, and the smaller box shows the area in which the flash is constrained. 
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20 dBZ contour at 9 km 150 minutes into the simulation.  The maximum updraft velocity 

location is identified by the triangle.  The larger box centered downstream of the updraft 

velocity maximum designates the area from which an initiation point for the flash, 

marked with an open circle, is selected.  The smaller box centered about the initiation 

point is the area determined by the average horizontal flash extent.   Various NOx 

production scenarios were simulated to determine which most closely matched observed 

NOx mixing ratios in the electrically active region of the storm. 

The second scheme is similar to the first, except that the specified production is 

per meter of flash channel length and production per flash is calculated by the model 

using the average hourly length per flash as given in Théry et al. [2000].  Lightning 

flashes are constructed in the same manner as in the first parameterization, and the most 

appropriate production per meter flash length is estimated by comparing results from 

various production scenarios with aircraft observations.   

To calculate lightning NOx production, PCG was estimated to be approximately 

360 moles of NO per flash based on observed peak current and a relationship between 

peak current and energy dissipated from Price et al. [1997].  The upper mode of the 

vertical distribution of IC NOx was assumed to be at the height of the -30° C isotherm, 

while the lower mode was assumed to be at the height of the -15° C isotherm.  Several 

different values of the PIC/PCG ratio were simulated and the results compared with 

observations.  The common assumption that PIC is one tenth PCG from Price et al. [1997] 

was simulated and the pdf of observed and simulated NOx at 9 km is shown in Figure 

2.10a.  The assumption that IC flashes are significantly less productive of NO than CG 

flashes clearly underestimates NOx at all levels.  Fehr et al. [2004] found a PIC/PCG ratio 
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of 1.4 most appropriate for a simulation of the same storm.  Figure 2.10b shows the 9 km 

pdf with NOx production based on this assumption.  At this level, where the majority of 

NOx observations were taken, assuming a PIC/PCG ratio of 1.4 results in an overestimation 

of the lightning NOx source.   At 8 and 8.5 km, fewer observations were available, but the 

maximum observed mixing ratios exceeding 15 and 20 ppbv were reasonably simulated 

at these levels using the ratio of 1.4.  Therefore the comparison of the PIC/PCG = 1.4 

scenario with observations at these two levels was better than at 9 km.   

A scenario in which PIC is equal to PCG was also simulated and the pdfs for 8, 8.5, 

and 9 km are shown in Figure 2.11.  At 9 km, the comparison between the observed and 

 

 

Figure 2.10.  Pdfs of observed (solid) and simulated (dashed) NOx mixing ratios at 9 km 
in the July 21 EULINOX storm assuming (a) PIC/PCG = 0.1, and (b) PIC/PCG = 1.4. 
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simulated distributions is much better than in the PIC/PCG of 0.1 and 1.4 scenarios shown 

in Figure 2.10.  At 8 and 8.5 km, the model is able to reproduce the distribution below 6 

ppbv fairly well, but fails to produce the large NOx mixing ratios observed.  Figure 2.12a 

shows a plot of NOx at 9 km 180 minutes into the PIC=PCG simulation with the box used 

for sampling model output.  NOx mixing ratios exceeding 9 ppbv are evident in the core 

of the southern cell and mixing ratios over 2 ppbv extend outward in the anvil a distance 

of over 70 km.   

To determine which production scenario was the most appropriate, the mass of N 

in NOx in the column between 7.75 and 9.25 km AGL was also calculated by averaging 

 

Figure 2.11.  Pdfs of observed (solid) and simulated (assuming PIC=PCG=360 moles NO –
dashed, assuming P=1.25x10-2 moles NO per meter flash channel length - dotted ) NOx 
mixing ratios at (a) 8, (b) 8.5, and (c) 9 km in the July 21 EULINOX storm assuming 
PIC/PCG = 1.0. 
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observations and model results in each of the three 0.5 km layers.  The observations yield 

a column mass of 1.1 x 10-3 g N m-2.   The accuracy of the NO and NO2 instruments are 5 

and 10% respectively [Huntrieser et al., 2002].  Therefore, in terms of measurement error 

in the column mass estimate, 10% would be an upper limit.  However, there is additional 

uncertainty because it is impossible to know how well the aircraft observations represent 

a particular area within the storm.   Assuming a production scenario in which an IC flash 

produces only one tenth as much NO as a CG flash greatly underestimated column mass, 

producing 3.4 x 10-4 g N m-2.  The assumption from Fehr et al. [2004] that an IC flash 

produces 1.4 times as much NO as a CG flash led to a column mass of 1.4 x 10-3 g N m-2, 

an overestimation of approximately 27%.  Of the three scenarios presented, assuming an 

IC flash produces as much NO as a CG flash provided the best comparison with 

observations with a column mass of 1.1 x 10-3 g N m-2.  The inclusion of chemical 

reactions in the model tends to decrease NOx which caused an underestimation of the 

observed column mass of approximately 10% (see Section 2.5).  Based on the 

comparison of the pdfs and column mass of the observed and simulated storms, this 

scenario was selected as the most appropriate of the three for this storm.  An increase or 

decrease of one standard deviation in the boundary layer NOx resulted in a change of only 

3% in the calculated column mass of N in NOx.  The assumption that boundary layer NOx 

mixing ratio has little impact on our ability to deduce the appropriate lightning NOx 

production scenario is thus supported. 

The second scheme was used to estimate NO production per meter flash channel 

length.  In this scheme, various values of production per meter were specified, and  

 37



 

Figure 2.12.  (a) NOx mixing ratios at 9 km elevation assuming PIC=PCG=360 moles 
NO/flash at 180 minutes in the passive CSCTM simulation of the July 21 EULINOX 
storm.  The red box indicates the grid cells sampled for calculation of column mass and 
pdfs and the black line indicates the 20 dBZ contour of computed radar reflectivity. (b) 
O3 mixing ratios at 9 km at 180 minutes in the CSCTM simulation of the July 21 
EULINOX storm including chemical reactions.  The black line indicates the 20 dBZ 
contour of computed radar reflectivity. The red box indicates the area for computing 
average O3 profiles. 
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production per IC and CG flash was calculated using hourly average interferometer-

observed flash lengths of 21.5, 27.9, and 31.4 km from Théry et al. [2000] for the hours 

beginning at 16, 17 and 18 UTC, respectively.  By calculating pdfs (Figure 2.11) and 

column mass, a production of 1.25 x 10-2 moles NO per meter of flash channel length was 

found to yield results comparable to the PIC=PCG=360 moles NO per flash scenario.  Note 

that the pdfs are nearly identical to those from the first scheme.   

The average hourly flash lengths of Théry et al. [2000] did not differentiate 

between IC and CG flashes.  Dotzek et al. [2000] attempted to estimate typical flash 

lengths for IC and CG flashes separately based on the heights of the main charge layers in 

the storm and the diameter of the storm with radar reflectivity greater than 30 dBZ.  

Using this method, they found typical lengths of 43 km for an IC flash, 26.5 km for a 

negative CG flash, and 29.5 km for a positive CG flash.  It should be noted that because 

these estimates are based not on calculated lengths of IC and CG flashes, but on other 

parameters, there is a high degree of uncertainty.  If these numbers are used in the model 

instead of the average hourly flash lengths from Théry et al. [2000], then a production 

scenario in which an IC flash produces 8.34 x10-3 moles NO per meter of flash channel 

length and a CG flash produces 1.35 x 10-2 moles of NO per meter of flash channel length 

would be needed to produce a favorable comparison with observations. 

2.5.  Simulation of the chemical environment of the storm 

 To investigate the impact of chemistry on the concentrations of species of interest 

such as NOx and ozone, a CSCTM run including chemical reactions was performed.  The 

same chemistry reaction scheme as used by DeCaria et al. [2005] was employed here, 

except that reaction schemes for isoprene and propene were added (see Appendix A).  
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Profiles of C2H6, C2H4, C3H6, C3H8, CH3OOH, CO, H2O2, HCHO, HNO3, isoprene, and 

PAN were taken from a July mean profile for the appropriate latitude and longitude of the 

EULINOX storm provided by Dr. Rokjin Park of Harvard University from the University 

of Maryland 3-D global Chemical Transport Model (UMD-CTM) [Park et al., 2004].  

The NO to NO2 ratio at each CSCTM model level was based on the ratios from the 

UMD-CTM, but the initial NOx was equivalent to the values used in the passive version 

of the model. Profiles of hydrocarbons were scaled with the aid of airborne hydrocarbon 

measurements collected during the 1999 Konvektiver Transport von Spurengasen 

(KONVEX) campaign to ensure they represented values typical of the relatively polluted 

German atmosphere.  Boundary layer concentrations of isoprene were held constant (e.g. 

at 1 ppbv in the bottommost layer of the model) during daylight hours to reflect a balance 

between the emissions and reactive losses of these compounds.  At the conclusion of the 

180-minute simulation, isoprene mixing ratios were approximately 6 pptv in the core 

updraft region of the storm, and were typically less than 1 pptv in the anvil region.  A 15-

minute “spin-up” simulation was performed using a column model which included the 

same chemical reactions as the full version of the 3-D CSCTM in order to allow the 

species to come into equilibrium.  The CSCTM was run with the flash rate 

parameterization using the lightning NOx production scenario PIC=PCG=360 moles 

NO/flash.  Column mass and pdfs were computed from the model output using the same 

methods as for the passive version of the model.  The use of global model output along 

with observed NOx resulted in a small decrease in NOx in the initial conditions during 

spin-up, such that the column mass for the flash rate and flash length scenarios simulated 

was 1.0 x 10-3 g N m-2, a difference of 10% from the observations.  In order to match the 
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observed column mass of 1.1 x 10-3 g N m-2, the PIC/PCG must be increased to 1.15 and 

the production per meter flash channel length increased to 1.42 x 10-2 moles NO.  A case 

in which no lightning NOx was included was also simulated to determine the lightning 

NOx effects on in-cloud chemistry.   

 Figure 2.12b shows ozone concentrations 180 minutes into the simulation 

assuming a PIC/PCG ratio of 1.15 at the 9 km level.  Lower ozone air has been transported 

upwards in the convective cores and is present in the outflow of the storms.  There is 

significant downward transport of ozone surrounding the cores of the cells, increasing 

ozone mixing ratios above those of the environmental air (outside the cloud) in the anvil 

region.  At the end of the 180 minute simulation, lightning NOx resulted in additional O3 

production of less than 0.1 ppbv in regions outside of the cloud at 9 km.  At 8 and 9 km, 

the inclusion of chemical reactions in the model continued to result in the 

underestimation of maximum ozone mixing ratios (see Figure 2.9), suggesting that 

downward transport may be underrepresented in the model.    

 In order to identify the effect of lightning NOx on O3 production during the storm, 

O3 concentrations were averaged at 180 minutes in the simulation within the 40 km by 40 

km sampling box shown in Figure 2.12b at each model level for both the lightning and 

no-lightning cases.  The values from the simulation without lightning NOx were 

subtracted from the values from the simulation which included a lightning NOx source.  

Figure 2.13 shows that during the lifetime of the storm, the injection of lightning NOx 

results in a net loss of ozone averaging less than 3 ppbv at all levels.  The maximum net 

loss during this 3 hour period exceeds 9 ppbv at 5.5 km.  This is due to the large 

quantities of NOx (up to 9 ppbv) being introduced into the model.  Large NO mixing 
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ratios from lightning rapidly destroy ozone through the NO + O3 reaction as described by 

Wang and Prinn [2000].  The ozone destruction resulting from including lightning NOx in 

the model is likely short-lived.  After the cloud dissipates, much of the NO2 produced by 

the NO + O3 reaction will be photolyzed to produce NO and O(3P), resulting in O3 

production (see following section).   

2.6.  Simulation of chemistry in the convective plume 

The chemistry-only version of the CSCTM was used to estimate downstream 

ozone production in the 24 hours following the storm.  Three-dimensional chemical fields 

at 180 minutes in the CSCTM simulation were used to initialize the chemistry-only 

 

Figure 2.13.  Change in O3 mixing ratios due to lightning NOx during the July 21 
EULINOX storm.  Solid line is the average (over the sampling box) and brackets indicate 
minimum and maximum change. 
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version.  For these calculations, the storm is assumed to have dissipated and clear-sky 

photolysis rates are used.  The same 40 x 40 km sampling box shown in Figure 2.12b was 

used to analyze the results at the end of the 24 hour simulations.  Table 2.2 gives the 

average mixing ratios within the sampling box at 10 km AGL for a number of species at 

the beginning and end of the chemistry-only simulation that included lightning NOx.  

Ozone production averaged 10.3 ppbv day-1 in the storm core at this altitude, while 

substantial NOx conversion to HNO3 took place.  Decreases in HCHO and CH3OOH 

were caused by photolysis.   

The impact of lightning NOx on ozone was examined by averaging the change in 

ozone mixing ratios within the box for the lightning and no-lightning cases.  Figure 2.14 

shows that, on average with lightning, there is additional net O3 production maximizing 

at approximately 5 ppbv day-1 at 5.5 km in the 24 hours following the storm.  The 

injection of lightning NOx causes a small decrease in net ozone production averaging less 

than 1 ppbv day-1 between 8 and 10 km.  There is a maximum decrease in net O3 

production exceeding 6 ppbv day-1 at 9 km, and maximum additional net production of 

nearly 16 ppbv day-1 at 5 km due to lightning .  Figure 2.15 shows a scatter plot of 

lightning NOx versus the 24-hour change in net O3 production resulting from the 

inclusion of lightning NO in the model for the grid cells contained in the sampling box 

shown in Figure 12.2b at 10 km.  The general shape of the plot shows the change in net 

ozone production maximizing with lightning NOx mixing ratios less than 1 ppbv, then 

becoming less positive as lightning NOx increases.  After lightning NOx mixing ratios 

exceed approximately 3 ppbv, lightning NOx causes decreased net ozone production in 

the model. 
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Table 2.2.  Average Species Concentrations at 10 km at the Beginning and End of the 
Chemistry-Only Simulation of the July 21 EULINOX storm 
 
Species Average Mixing Ratio Immediately 

Following Convection (ppbv) 
Average Mixing Ratio 24 hours 

after Convection (ppbv) 
NOx 3.51 1.42 
O3 95.6 105.9 
HNO3 0.184 1.92 
HCHO 0.744 7.57 x 10-2 

H2O2 0.769 0.411 
CH3OOH 0.251 6.50 x 10-2 

CH3CO3NO2 0.605 0.644 
OH 2.82 x 10-5 1.88 x 10-5 

HO2 1.51 x 10-4 3.62 x 10-4 

RO2 3.12 x 10-5 1.13 x 10-5 

*  Averages are computed over the anvil averaging box shown in Figure 2.12b. 

 

 
Figure 2.14.  Change in net O3 production due to lightning NOx in the 24 hours following 
the July 21 EULINOX storm.  Solid line is the average (over the sampling box) and 
brackets indicate minimum and maximum change. 
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Figure 2.15.  Change in net O3 production due to lightning NOx in the 24 hours following 
the July 21 EULINOX storm versus lightning NOx at 10 km for grid cells contained in 
the sampling box. 
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Chapter 3.   Simulations of the July 10 STERAO storm 

 

3.1 The STERAO Project 

 The STERAO-A (Stratospheric-Tropospheric Experiment: Radiation, Aerosols, 

and Ozone – Deep Convection and the Composition of the Upper Troposphere and 

Lower Stratosphere; Dye et al. [2000]) field campaign was conducted in June and July of 

1996.  One of the chief objectives of the project was to investigate the impact of 

thunderstorms on the distribution of chemical species in the upper troposphere/lower 

stratosphere (UT/LS) region including the production of NOx by lightning.  The field 

project included two research aircraft.  The NOAA WP-3D flew below 8 km in order to 

characterize the chemical environment in which thunderstorms developed while the 

University of North Dakota Citation sampled the meteorological and chemical properties 

of thunderstorm anvils.  Throughout the project, the dynamical evolution of 

thunderstorms in the project area was observed by the Colorado State University CHILL 

Doppler radar.  The location, peak current, and time of occurrence of CG lightning 

flashes were recorded by the NLDN.  In addition, total lightning activity (IC + CG) in 

thunderstorms observed during the field project was mapped by the ONERA 

interferometer.  Because of the availability of detailed lightning observations and anvil 

measurements of chemical species, the STERAO project provides a rich dataset for 

investigating lightning NOx production and convective transport. 

3.2 Observed storm evolution  

 At approximately 2100 UTC on July 10, 1996, a multicellular thunderstorm 

organized in a NW-SE line developed near the Wyoming-Nebraska border and was 
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observed as part of the STERAO field project.  The storm anvil was investigated by the 

Citation aircraft from 2237 to 0105 UTC including a spiraling ascent from 0024 to 0050 

UTC.  Figure 3.1 shows images from the CHILL Doppler radar at 7.5 km MSL from 

0006 and 0024 UTC with segments of the Citation's flight track overlaid.  After 0115 

UTC, the storm became unicellular with supercell characteristics [Dye et al., 2000].   

 CG flashrates were calculated by counting the number of flashes recorded by the 

NLDN per 1 minute period.  IC flashrates were obtained by counting the number of 

interferometer flashes with duration greater than 100 ms per 1 minute period and 

subtracting the number of CG flashes.  The first lightning flash occurred at 2152 UTC.  

Figure 3.2 shows that for the duration of the storm, IC lightning activity was dominant.  

From 2200 to 0200, only 80 CG flashes were recorded by the NLDN, while 3265 IC 

flashes were recorded by the interferometer.  The interferometer maps lightning flashes in 

three dimensions allowing flash lengths to be calculated for each flash.  Dr. Eric Defer of 

ONERA provided estimates of the length of each IC and CG flash from 2152 to 0231 

UTC (personal communication).  Table 3.1 shows the number of IC and CG flashes per 

hour from 2200 – 0200 UTC as well as average IC and CG flash lengths.  During each of 

the four hour-long periods, the average length of a CG flash was greater than the average 

length of an IC flash.  In addition, during the first two hours shown, IC flashes had much 

shorter lengths (9.39 and 12.39 km) than in the last two hours (28.84 and 32.67 km).  The 

strongest lightning activity occurred after the storm transitioned from a multicellular to 

unicellular structure at approximately 0115 UTC. 
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Figure 3.1. Radar reflectivity from the CHILL Doppler radar at 7.5 km MSL from 0006 
UTC and 0024 UTC on July 10, 1996.  The black line indicates the relevant portion of 
the Citation flight track. 
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Figure 3.2. Observed CG flash rates (solid) calculated from NLDN data and observed IC 
flash rates (dashed) calculated from interferometer and NLDN data for the July 10 
STERAO storm. 
 
Table 3.1.  Number of IC and CG flashes per hour and average flash lengths in the July 
10 STERAO storm 
 
Hour 
(UTC) 

Number IC 
flashes 

Number CG 
flashes 

Average IC 
length (km) 

Average CG 
length (km) 

2200 275 24 9.39 57.72 
2300 620 12 12.39 50.09 
0000 838 38 28.84 65.63 
0100 1532 6 32.67 45.39 
All 3265 80 25.88 59.41 
 

3.3 Simulated storm evolution 

The July 10 STERAO storm was simulated by Dr. Georgiy Stenchikov from 

Rutgers University using the 3-D GCE model with a horizontal resolution of 2 km and a 

vertical resolution of 0.5 km.  The simulation was initialized with a single composite  
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Figure 3.3. Radar reflectivity computed from GCE hydrometeor fields at 7.5 km MSL 
150 minutes into the simulation of the July 10 STERAO storm. 
 
sounding which was comprised of the 2050 UTC Fort Morgan Airport sounding and 

meteorological data from the Citation and WP3D aircraft [Skamarock et al., 2000].   

Convection was initialized with three warm thermal perturbations organized in a NW-SE 

line.  Three distinct cells were visible 30 minutes into the simulation.  Figure 3.3 shows 

radar reflectivity computed using hydrometeor fields from the GCE at 7.5 km MSL 150  

minutes into the simulation.  The spacing of the cells compares favorably with 

observations, but the simulation creates a larger anvil than observed by radar.  The 

simulated speed of the storm also matched the observed storm speed well.  In the mature 

phase of the simulated storm, precipitation top heights were typically 16 km MSL.  

Vertical cross sections of radar reflectivity from Dye et al. [2000] showed the 

precipitation top height slightly exceeding 16.5 km MSL at 2312 UTC.  At 2209, 0005, 
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and 0128 UTC, precipitation top heights exceeded 14 km MSL but did not reach the 16 

km level typical of the simulated storm.  While the 3-hour GCE simulation reproduced a 

number of observed storm features, it did not capture the transition of the storm from 

multicellular to unicellular which occurred after 0100 UTC. 

Maximum vertical velocities of 37 m s-1 occurred near the end of the 180 minute 

GCE simulation.  This is greater than the maximum vertical velocity of 30 m s-1 reported 

by Skamarock et al. [2000] in their 180-minute simulation of the July 10 STERAO storm 

using the COMMAS (Collaborative Model for Multiscale Atmospheric Simulation).  

Vertical velocity in the July 10 storm was also estimated by Dye et al. [2000] by 

vertically integrating the mass continuity equation with horizontal velocities derived from 

Doppler radar observations.  At 2310, approximately 130 minutes after the beginning of 

convection, maximum vertical velocities of 18 m s-1 were calculated by Dye et al. [2000].  

Maximum downdraft velocities at this time were estimated to be 8 m s-1 at anvil levels, 

and 15 m s-1 near the base of the cloud [Dye et al., 2000].  Because vertical velocities at 

other times were not presented, it is difficult to judge how representative velocities at this 

time are.  In the GCE simulation 130 minutes after the beginning of convection, 

maximum vertical velocities exceeded 35 m s-1 while the greatest downdraft speed was 

only 6 m s-1.  At the end of the 180-minute simulation, the updrafts in the two 

northernmost cells have begun to weaken, while the updraft in the southern cell has 

strengthened.  Though the observed transition from multi- to unicellular structure was not 

reproduced by the 3 hour GCE simulation of the storm, the weakening of the northern 

cells and the strengthening of the southern cell suggests that a longer simulation may 

succeed in capturing this feature. 
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Figure 3.4. Initial condition profiles of (a) CO, (b) NOx, and (c) O3 prior to the July 10 
STERAO storm. 
 

3.4 Tracer transport and lightning NOx production  

The passive version of the CSCTM was used to analyze the transport of NOx, O3,  

and CO in the storm and to estimate lightning NOx production.  Initial condition profiles 

were constructed using WP3D and Citation observations outside of the cloud and taken 

from Skamarock et al. [2000] (see Figure 3.4).  

 In order to compare observations with model results, data collected from the 

Citation during anvil penetrations from 2237 to 0105 UTC were averaged over 10 second  

intervals and binned into 0.5 km thick layers from 7.75 to 12.75 km.  Model output was 

sampled from 60 to 180 minutes in the simulation and included all gridcells with  

computed radar reflectivity between 0 and 30 dBZ because in-cloud portions of the flight, 

 52



(shown in Figure 3.1) occurred in the anvil where reflectivity was typically less than 30 

dBZ. 

3.4.1 CO and O3 transport   

 Figure 3.5 shows the pdfs of CO at 8, 10, and 12 km MSL.  Below 11 km, the 

model consistently underestimates CO, suggesting, that at these levels, upward transport 

and detrainment into the anvil in the simulation are too weak.  At 11 and 11.5 km, the 

simulation predicts the observed distribution of CO mixing ratios fairly well.  At 12 and 

12.5 km, the model slightly overestimates the distribution of CO, suggesting that upward 

transport and detrainment may be slightly overrepresented at these levels.  Figure 3.6 

shows the pdfs of simulated and observed O3 at 8, 10, and 12 km MSL.  At all levels 

 

Figure 3.5. Pdfs of simulated (dashed) and observed (solid) CO at (a) 8, (b) 10, and (c) 12 
km MSL in the July 10 STERAO storm. 
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except 10 km, the model tends to underestimate the distribution of O3 observed by the 

Citation, suggesting that at most anvil levels, downward transport from the upper 

troposphere may be too small or upward transport of lower O3 air may be overestimated..  

 Figure 3.7 shows horizontal cross sections of simulated CO and O3 mixing ratios 

at 10 km MSL as well as vertical cross sections of CO and O3 through the core and anvil 

of the southernmost cell.  At 10 km MSL, CO mixing ratios exceeding 130 ppbv are 

found in the storm cores.  The vertical cross section of CO shows that the highest CO 

mixing ratios are found in the core updraft region.  Entrainment of environmental air with 

lower CO concentrations results in more dilute mixing ratios in the anvil outflow region.  

 

Figure 3.6. Pdfs of simulated (dashed) and observed (solid) O3 at (a) 8, (b) 10 and (c) 12 
km MSL in the July 10 STERAO storm. 
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Figure 3.7.  Horizontal distributions at 10 km MSL of simulated (a) CO and (b) O3, and 
vertical cross sections of (c) CO and (d) O3 through the core of the southernmost cell of 
the July 10 STERAO storm. 
 
O3 minima are found in the storm cores and anvil at 10 km MSL as lower O3 air from the 

lower troposphere has been transported upward.  A maximum in O3 is found to the rear of 

the cell cores where higher O3 air has been transported downward.   

3.4.2 Lightning NOx production  

 The presence of an interferometer during the STERAO campaign allowed for the 

observation of IC flash rates and information on the locations of both IC and CG flashes.  

For these reasons, and due to concerns that the simulated anvil was larger than observed, 

the modified version of the lightning scheme used in the simulation of the July 21 

EULINOX storm was used in the simulation of lightning NOx production in the July 10 
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STERAO storm.  Because lightning NOx is placed into a smaller area of the cloud as 

opposed to being distributed throughout the interior of the 20 dBZ contour, the size 

difference between the simulated and observed anvils will not result in excessive dilution 

of lightning NOx. 

Plots of radar reflectivity overlaid with VHF sources recorded by the 

interferometer from Dye et al. [2000] showed the majority of lightning occurred slightly 

downwind of the maximum reflectivity cores of the cells.  The locations of IC and CG 

flashes were plotted and the average size of the area containing lightning was estimated at 

times throughout the storm.  Three boxes of approximately this size were placed 10 km 

downwind of the maximum updraft location in each of the three storm cores.  The 

observed storm of July 10 was organized into a NW-SE line of cells that grew and 

decayed.  The simulated storm of three cells was a simplification of the more complicated 

evolution of the observed storm.  Therefore it was not possible to identify individual 

flashes as being associated with any one of the three simulated cells as was done in the 

July 21 EULINOX simulation.  Instead, when a flash was to be simulated, a random 

number was selected to determine which of three simulated cells the flash should be 

associated with, and then the lightning NOx from the flash was placed into the 

corresponding box.  The average horizontal flash extent was not calculated for this storm 

as in the EULINOX storm because the raw interferometer files were not available.  

Instead, an average value of horizontal flash extent from the EULINOX data of 12 km in 

the x direction by 12 km in the y direction was assumed throughout the simulation.  A 

schematic of this version of the lightning NOx placement scheme is shown in Figure 3.8.  

The location of the maximum updraft in each cell is marked with an x, and a box for 
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selecting the flash initiation point is centered 10 km downwind.  The flash initiation point 

is selected at random from this area and the flash is then confined to the smaller area of 

the horizontal flash extent.  The vertical and horizontal distribution of lightning NOx 

followed the same scheme as in the July 21 EULINOX simulation. 

Lightning NOx production was estimated by calculating the mean peak current of 

CG flashes observed by the NLDN.  Using the relationship between peak current and 

energy dissipated from Price et al. [1997], PCG was estimated to be approximately 390 

moles NO.  The upper mode of the vertical distribution of IC NOx was assumed to be at 

the height of the -50° C isotherm, while the lower mode was assumed to be at the height 

 

Figure 3.8. Schematic diagram of the lightning placement in the July 10 STERAO storm.  
Dashed line represents computed 20 dBZ radar reflectivity contour at 10 km 150 minutes 
into the simulation.  X shows the location of the maximum updrafts and the larger boxes 
are the area from which an initiation point is selected.  The circle marks the initiation 
point, and the smaller box shows the are in which the flash is constrained. 
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of the -15° C isotherm.  Various values of the PIC/PCG ratio were simulated and the results 

compared with observations.  Due to uncertainty in the accuracy of the NO2 instrument 

aboard the Citation, NO2 was estimated using observed NO and O3 and the 

photostationary state assumption.  Clear sky photolysis rates were assumed, and these 

rates were also multiplied by a factor of 2 based on the work of Madronich [1987] which 

showed that actinic flux can be increased within clouds, in order to bracket the NO2 

estimate.  The observed column mass of N in NOx was calculated for the 5 km thick layer 

extending from 7.75 to 12.75 km MSL by binning observations into 0.5 km thick layers 

and computing layer mean mixing ratios of NO and NO2.  Assuming that photolysis rates 

were enhanced by the anvil cloud by a factor of 2 produces a column mass of 2.4 x 10-4 g 

N m-2, while assuming photolysis rates were unaffected by the cloud yields a column 

mass of 2.8 x 10-4 g N m-2.  Table 3.2 shows estimates of column mass computed by 

assuming different production scenarios.  The scenario in which a PIC/PCG ratio of 0.5 

was assumed overestimated column mass but compared more favorably with 

observations at some levels in terms of pdfs and mean vertical profiles than the scenario 

in which a PIC/PCG ratio of 0.3 was assumed.  Figure 3.9 shows the pdfs of observed and 

simulated NOx assuming both a PIC/PCG ratio of 0.3 and a PIC/PCG ratio of 0.5.  At 8 and 

10 km MSL, the model matched the observed NOx mixing ratios fairly well when a 

PIC/PCG ratio of 0.5 was assumed, though at 10 km MSL, the model tended to slightly 

underestimate NOx.  At these levels, the assumption of a PIC/PCG ratio of 0.3 resulted in 

an underestimation of the observations.  At 12 km, the model overestimated NOx 

compared to observations when the PIC/PCG ratio of 0.5 was assumed, but compared well 

with the observations when a PIC/PCG ratio of 0.3 was assumed.  The pdfs of NOx and CO 
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suggest that the below 11 km, upward transport and detrainment in the model may have 

been slightly weaker than observed which resulted in too little lightning and boundary 

layer NOx reaching these altitudes.  At 12 and 12.5 km, the pdfs of simulated and 

observed CO suggested that upward transport and detrainment may have been slightly  

 
Table 3.2.  Calculated column mass of N in NOx in the July 10 STERAO storm 

 

PCG (moles NO per flash) PIC/PCG Column Mass (g N m-2) 
390 0.1 1.7 x 10-4 
390 0.3 2.5 x 10-4 
390 0.5 3.3 x 10-4 
390 0.75 4.3 x 10-4 
390 1.0 5.3 x 10-4 

 

 
Figure 3.9.  Pdfs of observed (NO2 estimated assuming cloud-enhanced photolysis rates – 
dotted, NO2 estimated assuming clear sky photolysis rates – solid) and simulated 
(assuming PIC=195, PCG=390 moles NO – dashed, assuming PIC=117, PCG=390 moles NO 
– dash dot) NOx at (a) 8, (b) 10, and (c) 12 km in the July 10 STERAO storm. 
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Figure 3.10.  Observed in-cloud NOx averaged over 10-second intervals (asterisks, with 
observed layer means indicated by triangles), overlaid with mean simulated in-cloud NOx 
(without chemistry) assuming PCG=390 moles NO and PIC/PCG=0.5 (solid black) and PIC 
/PCG=0.3 (dashed) for the July 10 STERAO storm.  The red line shows the mean in-cloud 
NOx from a simulation in which chemical reactions are included and PIC/PCG=0.6  Red 
bars indicate the standard deviation of in-cloud model output. 
 

overestimated in the model.  This would result in too much lightning NOx reaching these 

levels which is consistent with the pdfs of NOx when a PIC/PCG ratio of 0.5 was assumed. 

 Figure 3.10 shows observed NOx averaged over 10-seconds intervals assuming 

that photolysis rates are not enhanced by the presence of the cloud as well as mean 

simulated in-cloud NOx assuming PIC/PCG ratios of 0.3 and 0.5.  The assumption of a 

PIC/PCG ratio of 0.3 matches the bulk of observations fairly well from 10 to 13 km MSL 

though the peak observed values are underestimated.  Assuming a PIC/PCG ratio of 0.5 
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leads to an overestimation of the majority of observations between 10 and 13 km MSL 

but results in a more favorable comparison with observations between 8 and 10 km then 

assuming a PIC/PCG ratio of 0.3. 

 The July 10 STERAO storm was also simulated using a modified version of the 

lightning scheme described above which allowed NO production per meter flash channel 

length to be estimated.  In addition to the observed IC and CG flashrates, the average 

flash length per 3 minute period was read into the model and the production per flash was 

calculated by multiplying the average flash length by an estimate of production.  Various 

values of production were assumed and the results compared with observations to 

determine which was the most appropriate.  Table 3.3 gives the estimated column mass of 

N in NOx for a number of estimates of NO production per meter flash channel length.  

Assuming a production of 1.25 x 10-2 mol NO per meter flash channel length yields a 

more favorable comparison with observed column mass than other production estimates 

found in the literature or in simulations of the July 21 EULINOX storm (see Chapter 2). 

 
Table 3.3.  Calculated column mass of N in NOx in the July 10 STERAO storm 

 

Lightning NOx Production Scenario Column Mass (g N m-2) 
P=1.7-6.6 x 10-2 mol NO per m flash channel  length 
    [Höller et al., 1999] 

3.2 – 8.7 x 10-4 

P=4.5 x 10-3 mol NO per m flash channel length 
[Huntrieser et al., 2002] 

1.8 x 10-4 

P=1.7 x 10-3 mol NO per m flash channel length 
[Skamarock et al., 2003] 

1.5 x 10-4 

P=3.3 x 10-4 – 1.7 x 10-2  mol NO per m flash channel  
length [Stith et al.,1999]  

1.4 – 3.2 x 10-4 

P=1.42 x 10-2 mol NO per m flash channel (July 21 
EULINOX storm) 

2.9 x 10-4 

P=1.25 x 10-2 mol NO per m flash channel 2.7 x 10-4 
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3.5 Simulation of the chemical environment of the storm 

 The CSCTM was also run including chemical reactions.  The reaction scheme 

was the same as described in DeCaria et al. [2005] with 35 active chemical species, 76 

gas phase chemical reactions, and 18 photolytic reactions included.  Initial condition 

profiles of CH3OOH, HCHO, HNO3, and H2O2 were provided by Dr. Mary Barth of 

NCAR.  In addition, initial condition profiles of PAN, C2H4, C2H6, C3H8, and C4H10 were 

taken from profiles calculated using observations from the July 12 STERAO storm by 

DeCaria et al. [2005].  The single column “spin-up” version of the CSCTM was run for 

15 minutes to allow the chemical concentrations to come into equilibrium before starting 

the simulation of the storm. 

 The CSCTM with chemistry was run assuming a production scenario in which 

PCG was 390 moles NO and PIC was 195 moles NO.  In the passive version of the model, 

this scenario resulted in an overestimation of the column mass of N in NOx.  However, 

when chemical reactions were included, NOx mixing ratios were reduced and the column 

mass was only 2.3 x 10-4 g N m-2, an underestimation of the column mass of 2.4-2.8 x 10-

4 g N m-2 calculated from observations.  In order to match the observed column mass, the 

PIC/PCG ratio was increased to 0.6.  In addition, the estimate of production per meter flash 

length was increased from 1.25 x 10-2 to 2.1 x 10-2 mol NO per m flash length.  Assuming 

either of these production scenarios produces a column mass of 2.6 x 10-4 g N m-2.  The 

decrease in NOx when chemical reactions were simulated occurred mainly through 

conversion to HNO3.  The initial condition profile of O3 from Skamarock et al. [2000], 

shown in Figure 3.4, was considerably larger in the region between 9 and 16 km AGL 

than the pre-convection profile of O3 used in the simulation of the July 12 storm by 
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DeCaria et al. [2005] as well as the climatological O3 profile for Boulder, Colorado from 

Logan et al. [1999].  Elevated O3 mixing ratios increased HOx in the cloud, resulting in a 

greater degree of conversion of NOx to HNO3 than noted in the DeCaria et al. [2005] 

simulation of the July 12 STERAO storm.   

It is also interesting to note that the final estimate of the PIC/PCG ratio for this 

storm was 0.6, while the ratio of average IC to CG flash lengths (see Table 3.1) was 0.44.  

This result suggests that production per meter flash channel length may be greater for IC 

flashes than for CG flashes in the July 10 STERAO storm, though the lightning scheme 

which estimates production per meter length was not configured to test this hypothesis.  

Figure 3.11 shows the NOx mixing ratios at 10 km MSL at the end of the 180-minute 

simulation assuming a PIC/PCG ratio of 0.6.  The greatest NOx mixing ratios of over 2.2 

ppbv reside in the core region of the southernmost cell.  The area of NOx enhancement 

resulting from lightning NOx production and convective transport extends over 150 km. 

 The CSCTM with chemical reactions included was also run without lightning 

NOx production in order to isolate the influence of lightning NOx on O3 mixing ratios 

during the lifetime of the storm.  This was done by averaging O3 mixing ratios in the 

lightning and “no-lightning” simulations over the 40 km by 40 km area positioned in the 

storm core shown in Figure 3.11 and subtracting the average from the “no-lightning” case 

from the lightning case average.  Figure 3.12 shows the mean change in O3 mixing ratios 

over the course of the 3-hour simulation which results from including lightning NOx in 

the model.  The largest average increase in O3 of only 0.1 ppbv occurs at 9.5 km.  At 

most altitudes, the introduction of lightning NOx results in a small loss of ozone 

averaging less than 0.5 ppbv.  Over all grid cells sampled, the maximum O3 loss is less  
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Figure 3.11. Simulated NOx assuming PIC=234 moles NO and PCG=390 moles NO 180 
minutes into the simulation at 10 km MSL in the July 10 STERAO storm.  The box 
indicates the grid cells sampled for calculation of average O3 mixing ratios. 
 

than 2 ppbv during the lifetime of the storm. 

3.6 Simulation of chemistry in the convective plume 

 Chemical fields at the end of the lightning and “no-lightning” simulations were 

used to initialize the chemistry-only version of the CSCTM.  These simulations were 

integrated forward for 24 hours to estimate the change in net O3 production following the 

storm as a result of lightning NOx.  Figure 3.13 shows the mean change in net ozone 

production resulting from lightning calculated by averaging the 24-hour change in O3 

over the averaging box shown in Figure 3.11 for the lightning and “no-lightning” cases  
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Figure 3.12. Change in O3 mixing ratios due to lightning NOx during the July 10 
STERAO storm.  Solid line is the average and brackets indicate minimum and maximum 
change (over the sampling box). 

 

Figure 3.13. Change in net O3 production due to lightning NOx in the 24 hours following 
the July 10 STERAO storm.  Solid line is the average and brackets indicate minimum and 
maximum change (over the sampling box). 
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Table 3.4.  Average Species Concentrations at 10 km AGL at the Beginning and End of 
the Chemistry-Only Simulation of the July 10 STERAO storm. 
 
Species Average Mixing Ratio Immediately 

Following Convection (ppbv) 
Average Mixing Ratio 24 hours 
after Convection (ppbv) 

NOx 1.01 0.475 
O3 70.0 78.5 
HNO3 5.21 x 10-2 0.481 
HCHO 0.553 5.20 x 10-2 

H2O2 1.42 0.683 
CH3OOH 0.286 6.80 x 10-2 

CH3CO3NO2 0.300 0.300 
OH 1.11 x 10-3 1.08 x 10-4 

HO2 4.95 x 10-3 9.18 x 10-4 

RO2 1.61 x 10-4 3.16 x 10-5 

*  Averages are computed over the sampling box shown in Figure 3.11. 
 
 
subtracting the “no-lightning” average from the lightning case average.  The mean 

increase in net ozone production maximizes at approximately 3 ppbv day-1.  Table 3.4 

gives the average mixing ratios (over the sampling box shown in Figure 3.11) at 10 km 

AGL (11.5 MSL) of a number of species from the beginning and end of the 24-hour 

simulation (over the sampling box).  In the 24 hours following the storm, ozone has 

increased by 8.5 ppbv.  Figure 3.13 shows that only 2.8 ppbv of this increase resulted 

from lightning NOx, while the other 5.7 ppbv was the result of convective redistribution 

of O3 prescursors including NOx and NMHCs.  The CSCTM is not suitable for studying 

ozone production more than 24 hours after convection because the effects of the larger 

scale flow can not be simulated and the rate at which the convective plume is diluted, not 

known.  If the plume was not diluted by environmental winds, the chemistry-only version 

of the model suggests that ozone production would decrease to a negligibly small rate 

after ~10 days when maximum the ratio of NO to O3 mixing ratios is approximately 1.6 x 

10-3 at 10 km AGL.  Because environmental winds will increase the rate of dilution in the 
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convective plume, ozone production should cease sooner than 10 days, though the 

persistence of the convective plume depends on weather patterns. 

 The column mass of ozone in the troposphere was calculated by averaging O3 

mixing ratios from the lightning and “no-lightning” cases over the box shown in Figure 

3.11.  The mass of ozone was then integrated from the surface to the tropopause height of 

14.5 km AGL.  Table 3.5 gives the calculated O3 tropospheric column masses at the 

beginning and end of both simulations.  The initial condition profile shown in Figure 3.4 

corresponds to a column mass of 1.288 g O3 per m-2.  Immediately following the 3-hour 

simulation of the storm, the tropospheric column mass of ozone has decreased by 

approximately 6% for both the lightning and “no-lightning” cases due to convective 

mixing which brings lower ozone air to the mid- and upper troposphere and higher ozone 

air to lower levels where ozone is more rapidly destroyed.  At the conclusion of the 24-

hour chemistry-only simulations, O3 column masses in the troposphere have rebounded in 

both cases.  Lightning NOx results in a 2% increase in the tropospheric column mass of 

O3 in the day following the convective event.  In the 24-hour simulation with lightning, 

the tropospheric column mass of O3 has nearly returned to its preconvective level. 

Table 3.5. Column Mass of Tropospheric Ozone from Chemistry and Chemistry-Only 
Simulations of the July 10 STERAO storm 
 
 O3 column mass after 

3-hr. chemistry 
simulation (g O3 m-2) 

O3 column mass after 24-
hr. chemistry-only 
simulation (g O3 m-2) 

Without 
lightning NOx 

1.211 1.253 

With lightning 
NOx 

1.209 1.281 
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3.7 WRF simulations of the July 10 STERAO storm 

 The July 10 STERAO storm has also been simulated by scientists at NCAR using 

the WRF model.  A version of WRF which calculates gas and aqueous phase chemistry 

online (WRF-Aqchem) has been developed by Dr. Mary Barth of NCAR and used to 

simulate the chemical environment of the storm and to investigate the fate of soluble 

species.  The version of WRF used in these studies is a 3-D non-hydrostatic compressible 

model containing the Advanced Research WRF (ARW) dynamical core and includes a 

Runga Kutta scheme for tracer transport [Barth et al., 2006].  The July 10 STERAO 

storm was simulated using a horizontal grid of 161 by 161 with a resolution of 1 km and 

50 vertical layers with resolution decreasing with altitude to the model top of 19.5 km.  

WRF-Aqchem includes 16 chemical species, 28 gas phase reactions, and 15 aqueous 

phase reactions.   

3.7.1 The WRF simulation of the July 10 STERAO storm 

The WRF simulation of the dynamical evolution of the July 10 STERAO storm 

was initialized in the same manner as the GCE simulation with a single sounding used to 

initialize the domain and three warm thermal perturbations used to initiate convection.  

Convection first developed 20 minutes into the simulation as three small cells.  The 

northernmost two cells began to decay an hour into the simulation.  Figure 3.14 shows 

the radar reflectivity computed from WRF hydrometeors at 7.5 km MSL, 80 minutes into 

the simulation.  At this time, the two northern cells are still visible, though noticeably 

weaker and smaller in size than the southern cell.  After this time, the simulated storm 

transitioned to a single cell structure which persisted until the end of the 180-minute  
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Figure 3.14. Radar reflectivity computed from WRF simulated hydrometeors at 7.5 km 
MSL 80 minutes into the simulation of the July 10 STERAO storm.  
  
simulation.  The WRF simulation succeeded in capturing the transition of the observed 

storm from multicellular to unicellular, although the multicell phase did not persist as 

long as observed.  Radar observations showed this transition occurring at approximately 

0115 UTC, nearly 210 minutes after the first lightning flash, while the simulation 

produced a multicell storm for only an hour.  Precipitation top heights were typically 15.5 

to 16.5 km MSL, with a maximum of 17 km MSL 110 minutes into the simulation which 

agreed well with the GCE simulation but slightly exceeded observations. 

3.7.2. Lightning NOx production in the WRF model  

WRF-Aqchem did not originally include a lightning NOx source.  I collaborated 

with Mary Barth to incorporate the parameterization of lightning NOx production from 

DeCaria et al. [2005] into the WRF model so that the impact of lightning NOx on aqueous 
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phase chemistry could be investigated.  Translating the lightning scheme from the 

CSCTM to the WRF model framework presented a number of challenges.  Radar 

reflectivity is used in the DeCaria et al. [2005] scheme to determine lightning NOx 

placement.  This was not calculated online in the original version of WRF-Aqchem.  

Instead a post-processing program was used to calculate radar reflectivity from the 

simulated hydrometeor fields.  I incorporated code to calculate radar reflectivity into the 

model so that it could be calculated every time step in which lightning occurs and 

lightning NOx production is calculated. Both the lightning and radar modules are called 

from WRF’s “mediation layer”.  In terms of WRF’s architecture, the “mediation layer” is 

the middle layer of code, in between the “driver layer” at the top, and the “model layer” 

at the bottom.  The lightning and radar schemes belong to the “model layer” of WRF. 

Because the dynamical and chemical calculations are extremely costly, it is highly 

desirable to run the WRF-Aqchem model on multiple processors.  On a single processor, 

a 3-hour simulation takes nearly a week to complete while on two processors, the same 

simulation could be completed in only 3 days.  In order to run on multiple processors, the 

model domain is divided into patches and the calculations for all the grid cells contained 

in each patch are computed by a single processor.  The model is typically divided into 

patches horizontally rather than vertically.  For example, the 161 by 161 grid might be 

divided into two patches such that the calculations for cells with an x coordinate less than 

80 would be performed by one processor and the calculations for cells with an x 

coordinate greater than 80 would be performed by a second processor.  The splitting of 

the domain did pose a problem for the lightning parameterization because the scheme 

requires that the number of grid cells with radar reflectivity greater than 20 dBZ be 
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calculated.  The amount of lightning NOx distributed to each grid cell is then found by 

dividing the total amount of lightning NOx at each level by the total number of cells 

within the 20 dBZ contour at that level.  When run on multiple processors, the different 

processors must communicate with each other in order to calculate the total number of 

grid cells at each level which receive lightning NOx.  This can be done with intrinsic 

functions built into WRF, but only from the “mediation layer” of the code. 

It is also imperative that the domain uses the same vertical distributions for IC and 

CG NOx placement.  If vertical distributions are calculated separately for each patch, the 

fraction of the domain on one processor may have a cloud top height which is higher than 

the fraction of the domain on the other processor depending on how the domain is 

divided into patches.  Similarly, the height of the lower and upper mode isotherms could 

differ if calculated on separate patches.  In order to allow the lightning NOx code to run 

properly on multiple processors, it was necessary to modify the structure of the original 

code.  The radar reflectivity module is called and it supplies the “mediation layer” with 

the 3-D array of computed reflectivity, as well as the number of grid cells within the 20 

dBZ contour at each level, cloud top and base heights, and the levels of the upper and 

lower mode isotherms.  The “mediation layer” then sums the number of grid cells with 

radar reflectivity greater than 20 dBZ over all patches, takes the minimum of the cloud 

base levels and maximum of the cloud top heights over all patches, as well as the 

maximum of upper and lower mode isotherm levels over all patches.  These variables are 

then passed to the lightning NOx module which is called from the mediation layer.  

Vertical distributions of lightning NOx and the change in NOx mixing ratios due to 
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lightning were calculated in both the CSCTM and WRF-Aqchem simulations to ensure 

that the code in the WRF-Aqchem was working properly. 

The main objective of including lightning NOx in the WRF-Aqchem model was to 

investigate the impact of lightning NOx on soluble species and to provide a platform for 

future studies of tracer transport and lightning NOx production.  Therefore, an extensive 

testing of a number of lightning NOx production scenarios was not performed because 

this had already been done using the CSCTM driven by GCE output.  A production 

scenario in which PIC equals 195 moles NO and PCG equals 390 moles NO was assumed 

for the WRF simulation and the results compared with observations in order to ensure 

that this production scenario compared reasonably with observations when used in the 

WRF model.  Aircraft observations were sampled as described in section 3.4 to obtain 

layer mean averages and model output was sampled by averaging all grid cells from 60 to 

180 minutes with computed radar reflectivity between 0 and 30 dBZ.  Figure 3.15 shows 

the mean in-cloud observed and simulated NOx.  The simulation slightly underestimates 

the peak in mean NOx observations found at 11.5 km MSL.  However, the simulation 

reproduces the mean profile from 9 to 11 km MSL fairly well.  Above 11.5 km and below 

minute simulation.  The majority of NOx remains at levels near the upper and lower 

modes of the vertical distribution of IC NOx where it originated, although it has been 

advected downwind as far as 80 km.  The maximum NOx mixing ratios of over 3 ppbv 

are found in the 5.5 km MSL region.  Dr. Mary Barth has used the version of WRF- 

Aqchem which included the DeCaria et al. [2005] lightning NOx scheme to examine the 

effects of lightning NOx on CH3OOH, HCOOH, H2O2, and HCHO.  The results, 
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Figure 3.15. Mean in-cloud NOx mixing ratios calculated from observations (NO2 
estimated assuming cloud-enhanced photolysis rates – dotted, NO2 estimated assuming 
clear sky photolysis rates – solid) and WRF-Aqchem model output (assuming PIC=195 
moles NO, PCG=390 moles NO – dashed). 
 

presented in Barth et al. [2006], show that lightning NOx has very little impact on these 

species during the lifetime of the storm, though the impact of lightning NOx in the 

convective plume was not examined. 

3.8 Cloud model intercomparison 

 The WRF-Aqchem and the GCE and CSCTM were used in an intercomparison 

study of cloud–scale chemical transport models organized by Mary Barth of NCAR.  A 

total of seven models simulated the July 10 STERAO storm using the same 

meteorological and chemical initial conditions.  The goal of the study was to better 
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Figure 3.16. Vertical cross section of simulated NOx mixing ratios (assuming PIC=195 
moles NO, PCG=390 moles NO) from the WRF-Aqchem model at the end of the 180 
minute simulation of the July 10 STERAO storm.  
 
understand the variability found between different models.  The WRF-Aqchem 

simulation did not include lightning NOx production while the CSCTM simulation 

included the DeCaria et al. [2005] lightning NOx scheme. 

 A comparison of the magnitude and level of maximum updrafts between output 

from the seven models and observations showed that all the models were able to 

reproduce these features well.  WRF-Aqchem was the only model which captured the 

transition from multicellular to unicellular structure 150 minutes into the storm 

simulation, though most of the other models did show a weakening of some of the three 

cells.  The GCE did not produce a weakening of the northern two cells until the end of 

the 3-hour simulation.  It should also be noted that the GCE used a 2 km horizontal 

resolution, while the other cloud-models all used a 1 km resolution which may have 
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caused some of the difference between the storm structure produced by the GCE and 

other models. 

 In addition to the observed storm features, in-cloud observations of CO, NOx and 

O3 were also compared to output from the seven models.  Observations included were 

from two transects of the storm anvil and the models were sampled at an equivalent time 

and distance from the storm cores.  All of the models, including the CSCTM and WRF-

Aqchem, showed a good agreement in their representation of CO and O3 and compared 

reasonably with observations.  The CSCTM simulation was one of only three models 

which included schemes to represent lightning NOx.  To compare with observations 

during the first anvil transect, the models were sampled at 60 minutes.  All models 

significantly underestimated observed NOx mixing ratios with the models including a 

lightning NOx source performing only slightly better than the models which did not 

include lightning.  Model output was also sampled at 90 minutes to compare with data 

from a second transect.  In this comparison, the 3 models including lightning NOx 

compared much more favorably with observations than the other models.  Only models 

including lightning NOx were able to adequately reproduce the large NOx mixing ratios 

observed in the storm anvil, underscoring the importance of representing lightning NOx 

in models of all spatial scales. 
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Chapter 4.  Simulations of the July 16 
and July 29 CRYSTAL-FACE storms 

 
 

4.1 The CRYSTAL-FACE Project 

The NASA CRYSTAL-FACE project was designed to study the chemical and 

radiative properties of cirrus anvils.  The CRYSTAL-FACE (Ridley et al., 2004; Lopez et 

al., 2006) field campaign was conducted in July, 2002 over South Florida.  Six research 

aircraft were involved in the project, including the NASA WB-57 which measured 

microphysical, chemical (including CO, CO2, O3, and NO), and meteorological properties 

of tropical cirrus anvils in the vicinity of the tropopause.  A variety of observations, 

including radar, lidar, and rawinsonde, were provided by land-based stations.  

Information on CG lightning during the campaign was collected by the NLDN.   

I provided gridded maps of CG flash density (calculated from NLDN data) daily 

to the field during the campaign which could be used in flight evaluation and data 

interpretation.  I also collaborated on the Ridley et al. [2004] paper on lightning NOx 

during CRYSTAL-FACE by computing hourly flash rates for all storms observed during 

CRYSTAL-FACE and providing detailed information on lightning in the July 16 and 

July 29 storms.  I also provided the aggregated (gridded) lightning data used in the 

analysis of the MOZART lightning scheme over south Florida during CRYSTAL-FACE 

presented in Ridley et al. [2004].  The comparison with observed flash rates led to the 

discovery of an error in the use of the Price and Rind [2002] flash rate scheme in the 

MOZART model.  Once corrected, the total number of flashes predicted by the flash rate 

parameterization agreed well with NLDN observations.   
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Because the CRYSTAL-FACE project was not specifically designed to study 

processes related to lightning, observations of total (IC + CG) lightning activity, which 

were an integral part of both the STERAO and EULINOX projects, were not available 

during the CRYSTAL-FACE campaign.  Though observed IC flash rates are an 

important component in estimating lightning NOx production, aircraft observations from 

CRYSTAL-FACE provide a rare opportunity to investigate lightning NOx production in 

the subtropics where a large percentage of the world's lightning occurs.  For this reason, 

two storms from the CRYSTAL-FACE campaign were simulated and IC flash rates 

estimated for both. 

4.2 The July 16 CRYSTAL-FACE storm 

4.2.1 Observed storm evolution 

 On July 16, an isolated convective system developed northwest of Miami at 

approximately 1845 UTC.  Figure 4.1 shows the CAPPI (Constant Altitude Plan Position 

Indicator) radar reflectivity at 1 km from the NPOL radar at 2011 UTC during the mature 

phase of the thunderstorm.  Images from the EDOP cloud radar aboard the ER-2 aircraft 

show precipitation top heights were typically 14 km AGL.  The cirrus anvil moved west 

across the Florida peninsula and was extensively sampled by the WB57 aircraft from 

1936 to 2306 UTC.  Figure 4.2 shows the visible image from the GOES-8 satellite taken 

at 2045 UTC with the flight track of the WB57 overlaid. 

 Figure 4.3 shows the number of CG flashes per minute recorded by the NLDN 

from 1900 to 2300 UTC.  The storm was a relatively weak lightning producer with only 

301 CG flashes recorded during this period and a maximum CG flash rate of 9 flashes per 

minute.  Since the NLDN only recorded the occurrence of CG flashes during CRYSTAL-  
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Figure 4.1. CAPPI reflectivty image from 2011 UTC on July 16, 2002 at 1 km elevation 
 
 

 
 
Figure 4.2. GOES-8 visible image at 2045 UTC on July 16, 2002 overlaid with the WB57 
flight track. 
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Figure 4.3. Observed CG flash rates in the July 16 CRYSTAL-FACE storm. 
 

FACE, IC flash rates were estimated from the observed CG flash rates assuming the 

climatological IC to CG ratio of 2 for south Florida from Boccippio et al. [2001].  CG 

flash rates were estimated by removing weak positive flashes and adjusting for the 

network's detection efficiency as shown in Cummins et al. [1998]. 

4.2.2 Simulated storm evolution  

 The storm was simulated by Dr. Donghai Wang from NASA Langley Research 

Center using the Advanced Regional Prediction System (ARPS) described in Xue et al. 

[2000] and Xue et al. [2001] with a horizontal resolution of 2 km and vertical resolution 

varying from 25 m near the surface to 0.5 km near the top of the model domain at 

approximately 25 km.  A number of observation types were assimilated into the model 
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every hour.  The convective system of interest which was sampled by the WB57 

developed approximately an hour later in the model (2000 UTC) than observed.  Figure 

4.4 shows computed radar reflectivity at 2110 UTC in the simulation, about 70 minutes 

after the start of convection, at 1 km AGL. By comparing to Figure 4.1, which is also 

approximately 70 minutes after the beginning of convection, the simulated system covers 

a larger area than the observed at this time.  

 Differences between the observed and simulated storm features are in part due to 

the data assimilation which occurs every hour.  Horizontal distributions of radar 

reflectivity like the one given in Figure 4.4 show that the storm increased in size and 

intensity immediately following the assimilation of observations, and then slowly 

decreased in size until the next assimilation of observations when the process was 

repeated.  This effect of the assimilation also impacted the height of the cloud top and the 

top of the 20 dBZ contour in the simulation.  Figure 4.5 shows the altitude of the top of  

 

Figure 4.4. Radar reflectivity at 1 km calculated from ARPS simulated hydrometeor 
fields at 2110 UTC during the July 16 CRYSTAL-FACE storm. 
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the 20 dBZ contour versus time in the simulation.  Observed precipitation top heights 

were typically ~ 14 km AGL but as a result of the assimilation, the height of the 20 dBZ 

contour repeatedly increases to over 15 km then decreases, dropping below the 14 km 

height observed until the next assimilation. 

4.2.3 Tracer transport  

 I used the passive version of the CSCTM to analyze the transport of tracer species 

in the storm.  Initial condition profiles of CO, NOx, and O3 were constructed using data 

from portions of the WB57's ascent and descent which were outside of cloud (see Figure 

4.6).  In order to verify the model results, observations were averaged over 14 second 

intervals to reproduce the 2-km spatial resolution of the model.  Observations from the 

Cloud, Aerosol, Precipitation Spectrometer (CAPS) aboard the WB57 were used in 

conjunction with satellite images overlaid with portions of the WB57 flight track to 

determine which portions of the flight were in-cloud.   In-cloud aircraft observations were  

 

Figure 4.5. Maximum height of the 20 dBZ contour of radar reflectivity computed from 
ARPS hydrometeor fields in the July 16 CRYSTAL-FACE storm. 
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Figure 4.6. Initial condition profiles of (a) CO, (b) NOx, (c) O3, and (d) tropospheric O3 
for the July 16 CRYSTAL-FACE storm. 
 

then binned into 0.5 km thick layers from 11.5 to 14 km and mean values and pdfs were 

calculated in each layer for each tracer species.  The model output was sampled from 

2040 to 2340 UTC, though an analysis of aircraft flight data was used to determine more 

specifically which times to include in the computed means and pdfs for each layer.   

Only grid cells with calculated radar reflectivity between 0 and 30 dBZ were used 

because the WB57 was flying primarily in the lower reflectivity anvil rather than the core 

of the storm. 

 Figure 4.7 shows the computed pdfs of simulated and observed CO at 11.5, 12.5, 

and 13.5 km AGL.  At 11.5 km, the model overestimates the distribution of CO for nearly  
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Figure 4.7. Pdfs of simulated (dashed) and observed (solid) CO at (a) 11.5, (b) 12.5, and 
(c) 13.5 km in the July 16 CRYSTAL-FACE storm. 
 

all CO mixing ratios, though the greatest degree of overestimation occurs at high values 

of CO.  The comparison at 12.5 km is more favorable, with the simulation reproducing 

the observed distribution well for approximately 80% of values and only overestimating 

the maximum CO mixing ratios.  The simulation uniformly underestimates the 

distribution of CO observations at 13.5 km.  Figure 4.8 shows a similar plot of computed 

pdfs of O3 at the same levels.  In general, the comparison of simulated O3 with 

observations is better than CO.  The simulation does overestimate the maximum O3 

mixing ratios at 11.5 and 12.5 km while reproducing well the distribution below 80 ppbv.  

The overestimation of the maximum CO and O3 mixing ratios at 11.5 and 12.5 km 

suggests that both upward and downward transport in the model may be in excess of  
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Figure 4.8. Pdfs of simulated (dashed) and observed (solid) O3 at (a) 11.5, (b) 12.5, and 
(c) 13.5 km in the July 16 CRYSTAL-FACE storm. 
 

transport in the observed storm.  At 13.5 km, the simulation's underestimation of CO 

indicates that too little CO is being transported upward to this level.  This is likely due in 

part to the changes in cloud top height discussed in section 4.2.2.  When cloud top height 

decreases below 13.5 km, less CO would be transported to this level than if the cloud top 

height remained at approximately 14 km as was observed. 

4.2.4 Lightning NOx production 

 In addition to affecting the transport of tracer species, changes in cloud top height 

throughout the simulation profoundly affect the way the original lightning 

parameterization distributed lightning NOx.  In distributing NOx produced by IC flashes, 

the model determines whether the top of the cloud is higher than the height of the upper 
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mode isotherm.  If so, NOx produced by IC flashes is distributed bimodally in the 

vertical.  However, if the cloud top is below the height of the upper mode isotherm, NOx 

produced by IC flashes is distributed according to a unimodal distribution.  Unaltered, the 

lightning parameterization distributed a large portion of the NOx produced by IC flashes 

unimodally which caused most of the IC NOx to be placed near the altitude of the lower 

mode isotherm.  However, observations showed a mean NOx mixing ratio in-cloud of 2 

ppbv at 14 km.  It was therefore necessary to modify the DeCaria et al. [2005] lightning 

scheme to place some NOx above the top of the simulated cloud during the oscillations 

shown in Figure 4.5 when cloud height dropped below the upper mode isotherm.  In the 

modified scheme, when the computed top of the 20 dBZ reflectivity contour is less than 

the height of the upper mode isotherm by less than 1.5 km, the top of the cloud is 

effectively raised by 1.5 km for the purpose of distributing IC NOx.  At the levels above 

the top of the simulated cloud, lightning NOx is placed into grid cells with radar 

reflectivity greater than 20 dBZ at the uppermost cloud level. 

 Lightning NOx production was first estimated by calculating the mean peak 

current of CG flashes observed by the NLDN.  Using a relationship between peak current 

and energy dissipated from Price et al. [1997], PCG was estimated to be 700 moles NO per 

flash.  The upper mode of the vertical distribution of IC NOx was assumed to be at the 

height of the -60° C isotherm, while the lower mode was assumed to be at the height of 

the -15° C isotherm.  Various values of the PIC/PCG ratio were simulated and the results 

compared with aircraft observations.  Because NO2 was not measured during CRYSTAL, 

NO2 was estimated using NO and O3 observations and the photostationary state 

assumption.  The observed column mass of N in NOx was calculated for the 3 km thick  
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Table 4.1.  Calculated column mass of N in NOx in the July 16 CRYSTAL-FACE storm 

 

PCG ( moles NO per flash) PIC/PCG Column Mass (g N m-2) 
700  0.1 1.8 x 10-4 
700  0.5 3.6 x 10-4 
700  0.75 5.1 x 10-4 
700 1.0 6.4 x 10-4 

layer extending from 11.25 to 14.25 km by binning observations into 0.5 km thick layers 

and computing layer mean NOx mixing ratios.  Assuming that photolysis rates were 

enhanced by the cloud by a factor of 2 yielded a column mass of 5.0 x 10-4 g N m-2, while 

assuming photolysis rates were not enhanced by the cloud yielded a column mass of  5.3 

x 10-4 g N m-2.  Table 4.1 gives estimates of the column mass of N in NOx computed 

using model results sampled in the same way described above for the pdfs and computing 

layer means.  The assumption of Price et al. [1997] that an IC flash produces only 10% as 

much NO as a CG flash results in a large underestimation of the observed column mass.  

Assuming that on average, an IC flash produces 75% as much NO as a CG flash produces 

yields the best comparison with column mass estimated from observations.  Figure 4.9 

compares simulated pdfs and observed NOx for 11.5, 12.5 and 13.5 km AGL.  At 11.5 

and 12.5 km, the simulation assuming that PIC is 75% of PCG reproduces the distribution 

of lower values but overestimates the maximum values.  At 13.5 km, the model 

reproduces the distribution of observed values well below 0.5 ppbv, underestimates the 

distribution for NOx mixing ratios between 0.5 and 2.75 ppbv, and then produces higher 

NOx mixing ratios than observed at the upper end of the distribution.  Figure 4.10 shows 

that the maximum in the observed mean profile of 2 ppbv is found at 14 km, while the 

simulated maximum of 1.9 ppbv is found at 13 km.  The production scenario in which an 

IC flash produces on average 525 moles NO and a CG flash produces on average 700  
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Figure 4.9. Pdfs of simulated (dashed) and observed (assuming cloud enhanced 
photolysis rates – dotted, assuming clear sky photolysis rates –solid) NOx at (a) 11.5, (b) 
12.5, and (c) 13.5 km in the July 16 CRYSTAL-FACE storm. 
 

moles NO was selected as the best fit because it compared most favorably with column 

mass.  The model could not reproduce the spiky shape of the observed mean profile 

shown in Figure 4.10.  Due to the changes in cloud top height in the ARPS simulation of 

the storm, the CSCTM was also unable to reproduce the height of the maximum at 14 

km, though with the modified lightning scheme was able to produce a peak only 1 km 

below.  The overestimation of maximum NOx values seen in the pdfs in Figure 4.9 may 

be due in part to the weakening of the storm between assimilation cycles.  At each level, 

lightning NOx is placed throughout the 20 dBZ contour.  As the storm weakens, the size  
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Figure 4.10. Mean in-cloud simulated (solid) and observed (dashed - assuming clear sky 
photolysis rates-solid) NOx.  Asterisks represent observed NOx (calculated assuming 
clear sky photolysis rates) averaged over 14-second intervals. Solid bars show the 
standard deviation of simulated in-cloud NOx at each level. 
 

of this area shrinks.  If this area is smaller than the size of the observed cell, lightning 

NOx may be placed into too few cells, creating values that are higher than observations.  

Excessive upward transport in the simulation as suggested by the CO pdfs may also 

contribute to the overestimation of the maximum NOx values at each level.  

4.2.5 Simulation of the chemical environment of the storm 

 The CSCTM with chemical reactions included was run for the July 16 

CRYSTAL-FACE storm.  The reaction scheme was the same as described in DeCaria et 
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al. [2005] with the addition of isoprene, its products, and propene.  Dr. Rokjin Park from 

Harvard University provided a mean July profile for the latitude and longitude of south 

Florida calculated from a global 3-D UMD-CTM [Park et al., 2004] simulation which 

included C2H4, C3H6, C2H6, C3H8, isoprene, PAN, CH3CO3, CH3OOH, H2O2, HCHO, 

and HNO3.  The single column “spin-up” version of the CSCTM was run for 15 minutes 

to allow the NO, NO2, O3, and CO profiles constructed from observations to come into 

chemical equilibrium with the profiles from the global model prior to the simulation of 

the storm. 

 The CSCTM with chemistry was run assuming that a CG flash produces 700 

moles NO and an IC flash is on average 75% as productive of NO as a CG flash.  As in 

the simulations of the July 21 EULINOX and July 10 STERAO storms, the inclusion of 

chemical reactions resulted in a decrease in NOx as it was converted to reservoir species.  

The column mass of N in NOx was estimated to be 4.5 x 10-4 g N m-2 when chemical 

reactions were accounted for which is less than the range of column mass calculated from 

observations of 5.0 to 5.3 x 10-4 g N m-2.  In order to match the observed column mass, 

the PIC/PCG ratio was increased from 0.75 to 0.9.  When a PIC/PCG ratio of 0.9 was 

assumed, the calculated column mass was 5.2 x 10-4 g N m-2.  Figure 4.11 shows the 

simulated NOx mixing ratios at 10 km at the end of the 240-minute simulation assuming a 

PIC/PCG ratio of 0.9.  At this time, the convective plume of enhanced NOx is visible 

approximately 180 km off the coast of Florida.  Maximum NOx mixing ratios exceed 3.6 

ppbv. 
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Figure 4.11. Simulated NOx mixing ratios (assuming PCG=700 and PIC=630 mol NO) in 
ppbv at 10 km, 240 minutes into the simulation of the July 16 CRYSTAL-FACE storm. 
The box indicates the area over which ozone averages were computed. 
 

 The version of the CSCTM including chemical reactions was also run without 

lightning.  The change in ozone mixing ratios was averaged over the 40 km by 40 km box 

shown in Figure 4.11 and the change in ozone during the storm due to lightning NOx 

production calculated by subtracting the average from the simulation which did not 

include lightning from the lightning simulation average.  The results are shown in Figure 

4.12. The largest mean increase in ozone mixing ratios due to lightning NOx of ~ 1 ppbv 

occurs at 10.5 km.  The maximum increase of any grid cell within the sampling area is 

3.5 ppbv at 5.5 km.  At levels below 4 km, lightning NOx has very little impact on O3  

 90



 
Figure 4.12. Solid line is average change in ozone mixing ratios due to lightning during 
the 240-minute simulation of the July 16 CRYSTAL-FACE storm.  Bars indicate the 
maximum and minimum ozone change within the averaging box at each level. 
 
 
mixing ratios which was not the case in the July 21 EULINOX and July 10 STERAO 

simulations.  This results from the strengthening and weakening of the simulated storm 

which occurs with the cycle of data assimilation.  When the storm is weakening, the 

cloud base is higher than in the other simulated cases and less lightning NOx is reaching 

the altitudes below 4 km to affect O3 mixing ratios. 

4.2.6 Simulation of chemistry in the convective plume 

 Chemical fields from the end of the 240-minute simulations which did and did not 

include lightning NOx production were used to initialize the chemistry-only version of the 
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CSCTM which estimates chemistry in the downstream convective plume.  The mean 

change in net ozone production was calculated by averaging the change in ozone in both 

cases over the averaging area shown in Figure 4.11 and subtracting the mean 24-hour 

change in ozone in the “no lightning” case from the 24-hour change in ozone in the 

lightning simulation.  The mean change in net ozone production is shown in Figure 4.13.  

On average, the inclusion of lightning NOx results in a small increase in net ozone 

production, maximizing at 3 ppbv day-1 at 9.5 km.  A maximum increase in net ozone 

 

Figure 4.13. Solid line is the average change in net ozone production due to lightning in 
the 24 hours following the July 16 CRYSTAL-FACE storm.  Bars show the maximum 
and minimum change within the averaging box at each level. 
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Table 4.2.  Average Species Concentrations at 10 km AGL at the Beginning and End of 
the Chemistry-Only Simulation of the July 16 CRYSTAL-FACE storm 
 
Species Average Mixing Ratio Immediately 

Following Convection (ppbv) 
Average Mixing Ratio 24 hours 
after Convection (ppbv) 

NOx 1.72 0.980 
O3 92.4 94.5 
HNO3 0.881 1.35 
HCHO 0.181 7.69 x 10-2 

H2O2 0.961 0.586 
CH3OOH 0.335 0.151 

CH3CO3NO2 0.462 0.465 
OH 1.93 x 10-4 3.08 x 10-4 

HO2 1.84 x 10-3 3.09 x 10-3 

RO2 3.82 x 10-4 5.37 x 10-4 

*  Averages are computed over the sampling box shown in Figure 4.11. 

 

production of ~10 ppbv day-1 is seen at 6.5 and 7 km.   As was the case during the 240-

minute simulation of the storm, lightning NOx had very little impact on O3 mixing ratios 

below 4 km. 

 Table 4.2 gives the average mixing ratios over the sampling area shown in Figure 

4.11 of a number of species at the beginning and end of the chemistry-only simulation.  

O3 has increased by 2.1 ppbv entirely due to lightning NOx.  If lightning NOx were not 

considered, a small loss of O3 would occur at the 10 km level in the 24 hours following 

convection due to convective transport alone. 

4.3 The July 29 CRYSTAL-FACE storm 

4.3.1 Observed storm evolution 

At 1700 UTC on July 29, 2002, a powerful thunderstorm developed along the 

west coast of Florida near Fort Myers and was observed as part of CRYSTAL-FACE.  

The storm intensified and moved north along the coast (see Figure 4.14).  The coastal 

convection later merged with convection originating near Lake Okeechobee.  The area in 
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and above the coastal storm was sampled by the WB-57 from 1845 to 2013 UTC at 

altitudes ranging from 12.5 to 13.8 km.  Figure 4.15 shows a visible image from the 

GOES-8 satellite taken at 1815 UTC with the WB57 flight track overlaid.   

Figure 4.16 shows the time series of CG flashes recorded by the NLDN from 

1700 to 2300 UTC.  In contrast to the July 16 CRYSTAL-FACE storm, the July 29 storm 

was an exceptionally strong lightning producer with 4168 CG flashes associated with the 

coastal storm recorded by the NLDN during this period.  Maximum CG flash rates 

exceeded 30 flashes per minute during the most electrically active period from 1900 to 

2000 UTC.  Because the NLDN only records the occurrence of CG flashes, it was 

necessary to estimate IC flashrates.  NLDN flashes with positive peak current less than 

10 kA are thought to be IC flashes [Cummins et al., 1998].  The percentage of weak 

positive flashes was calculated during the July 29 storm and during the month of July as a 

whole and was larger by a factor of 2.5 for the July 29 storm.  The south Florida 

climatological value for the IC/CG ratio of 2 from Boccippio et al. [2001] was multiplied 

by 2.5 to estimate an IC/CG ratio of 5 for the July 29 coastal storm.  CG flash rates were 

estimated by removing weak positive flashes and adjusting for the network's detection 

efficiency as shown in Cummins et al. [1998]. 

4.3.2 Simulated storm evolution 

The July 29 CRYSTAL-FACE storm was simulated by Dr. Ruei-Fong Lin from 

NASA Goddard Space Flight Center using the NASA Goddard version of the non-

hydrostatic PSU/NCAR (MM5) mesoscale model [Tao et al., 2003] with a horizontal 

resolution of 2 km and vertical resolution of 0.5 km.  The MM5 model was initialized  
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Figure 4.14. CAPPI reflectivty image from 1733 UTC on July 29, 2002  at 1km 
elevation. 
 

 

Figure 4.15. GOES-8 visible image at 1815 UTC on July 29, 2002 overlaid with the 
WB57 flight track. 

 95



 

Figure 4.16. Observed CG flashrates in the July 29 CRYSTAL-FACE storm. 
 

with fields from the NCEP Eta model and run for 8 hours from 1400 to 2200 UTC.  

Simulated convection began along the coast approximately 3 hours earlier than observed.  

Figure 4.17 shows the 1 km plot of radar reflectivity computed using hydrometeor fields 

from the MM5 simulation at 1430 UTC.  The location of the simulated convection 

matches the location of the observed convection well, though at this time (30 minutes 

after convection has begun), the simulated convection covers a larger area than the 

observed.  Precipitation top heights, typically from 13 to 13.5 km, compared favorably 

with precipitation top heights observed by the EDOP cloud radar aboard the ER-2 

aircraft.  The duration of the coastal convection, as well as the direction of the system's 

movement were effectively reproduced by the MM5 simulation, though the movement of 

the system was slightly slower than observed.   
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Figure 4.17. Radar reflectivity at 1 km calculated from MM5 hydrometeor fields at 1430 
UTC on July 29, 2002.  The box indicates the areas of the domain used in calculating 
lightning NOx production. 
 

4.3.3 Tracer transport 

The passive version of the CSCTM was run to study the transport of CO and O3 

and to obtain a first estimate of lightning NOx production.  Initial condition profiles of 

CO, NOx and O3, shown in Figure 4.18, were constructed using data from the ascent and 

descent of the WB57, portions of the flight which were not affected by convection, and 

fields from the global University of Maryland Chemical Transport Model (UMD-CTM) 

where necessary.  CO data from the Twin Otter aircraft were available in the vicinity of 

the coastal storm and CO mixing ratios greater than 150 ppbv were observed in the 

boundary layer.  Given these measurements and the intensity of the convection, CO 

mixing ratios in the 120-150 ppbv range were expected in the anvil observations of the 
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WB57.  However, the greatest value observed in the anvil was approximately 100 ppbv.  

This is likely the result of cleaner air from the marine boundary layer entering the storm.  

Westerly surface winds from the Gulf of Mexico observed at Fort Myers support this 

conclusion. 

For comparison with model results, observations from 1845 to 2013 UTC were 

averaged over 14 second intervals in order to match the 2 km spatial resolution of the 

model.  CAPS observations were used to determine in-cloud flight segments.   In-cloud 

aircraft observations were then binned into 0.5 km thick layers centered on 12.5 and 13 

km and mean values and pdfs were calculated in each layer for each tracer species.  The 

CSCTM output was sampled from 1550 to 1710 UTC because convection along the coast  

 

 

Figure 4.18.  Initial condition profiles of (a) CO, (b) NOx, and (c) O3  in the July 29 
CRYSTAL-FACE storm. 
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began 3 hours earlier in the simulation than the actual start of convection.  Grid cells with 

computed radar reflectivity between 0 and 30 dBZ were included because the aircraft did 

not fly in the higher reflectivity storm core. 

Figure 4.19 compares pdfs of simulated and observed CO mixing ratios at 12.5 

and 13 km.  At both levels, the model overestimates CO mixing ratios suggesting that 

upward transport in the model may be too large.  Figure 4.20 shows a similar plot of 

simulated and observed O3 mixing ratios at 12.5 and 13 km.  The model also 

overestimates O3 at these levels, suggesting that too much ozone rich air is being 

transported downward in the model.  However, the intense lightning activity in the storm 

and extremely elevated NO mixing ratios observed in the anvil (up to 10 ppbv) indicate 

that the lightning NOx source in this particular storm was extraordinarily strong.  Errors  

 

Figure 4.19. Pdfs of simulated (dashed) and observed (solid) CO at (a) 12.5 and (b) 13 
km in the July 29 CRYSTAL-FACE storm. 
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Figure 4.20. Pdfs of simulated (dashed) and observed (solid) O3 at (a) 12.5 and (b) 13 km 
in the July 29 CRYSTAL-FACE storm. 
 

in the amount of boundary layer NOx transported to the anvil are unlikely to significantly 

affect the quality of the lightning NOx production estimate. 

4.3.4 Lightning NOx production 

Lightning NOx production was calculated in the model beginning at 1400 UTC 

but using flashrates for the coastal storm from 1700 UTC because simulated convection 

began earlier than the observed storm.  In order to avoid placing lightning NOx into too 

large an area and diluting it, a smaller region of the domain was designated to receive 

lightning NOx and is shown in Figure 4.17.  On average, the area covered by convection 

within this region was approximately equal to the area of the coastal storm as estimated 

by visual inspection of radar and satellite plots.  Mean peak current was calculated from 
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CG flashes recorded by the NLDN and using the relationship between peak current and 

energy dissipated from Price et al. [1997], PCG was estimated to be approximately 590 

moles NO per flash.  The upper mode of the vertical distribution of IC NOx was assumed 

to be at the height of the -45° C isotherm, while the lower mode was assumed to be at the 

height of the -15° C isotherm.  Various values of the PIC/PCG ratio were simulated and the 

results compared with aircraft NO observations.  NO2 was estimated using NO and O3 

observations and the photostationary state assumption.  The observed column mass of N 

in NOx was calculated for the 1 km thick layer extending from 12.25 to 13.25 km by 

computing layer mean NOx mixing ratios.  Assuming that photolysis rates were enhanced 

by the cloud by a factor of 2 yielded a column mass of 6.6 x 10-4 g N m-2 while assuming 

that photolysis rates were unaltered by the cloud yielded a column mass of 7.0 x 10-4 g N 

m-2.  Table 4.3 gives estimates of column mass calculated from the CSCTM simulation.  

In this storm, assuming that an IC flash is on average 60% as productive of NO as a CG 

flash yields the most favorable comparison with column mass.  

Figure 4.21 shows the pdfs of observed and simulated NOx assuming that PIC 

equals 50 and 60% of PCG.  When compared with observed pdfs at both 12.5 and 13 km, 

the production scenario which assumes a PIC/PCG ratio of 0.5 compares more favorably  

 

Table 4.3.  Calculated column mass of N in NOx in the July 29 CRYSTAL-FACE storm, 
assuming an IC/CG ratio of 5 

  

PCG (moles NO per flash) PIC/PCG Column Mass (g N m-2) 
590  0.1 2.3 x 10-4 
590 0.5 6.0 x 10-4 
590 0.6 6.9 x 10-4 
590 0.75 8.3 x 10-4 
590 1.0 1.0 x 10-3 
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Figure 4.21. Pdfs of simulated (assuming PIC/PCG=0.5 – dashed, assuming PIC/PCG=0.6 – 
dot dashed) and observed (assuming cloud enhanced photolysis rates – dotted, assuming 
clear sky photolysis rates – solid) NOx at (a) 12.5 and (b) 13 (km) in the July 29 
CRYSTAL-FACE storm. 
 

than assuming a PIC/PCG ratio of 0.6.  The underestimation of the simulated column mass 

when the production scenario assuming a PIC/PCG ratio of 0.5 results from the inclusion of 

gridcells with background NOx concentrations as well as the underestimation of the 

distribution at 13 km between 2 and 6 ppbv.  Based on the comparison of simulated and 

observed pdfs and computed column mass, it was estimated that in the 7/29 CRYSTAL-

FACE storm, an IC flash on average produced 50-60% as much NO as a CG flash while, 

on average, a CG flash produced 590 moles NO.   It should be noted that this production 

scenario was deduced assuming that the IC/CG ratio in this particular storm was greater 

than the climatological IC/CG ratio for south Florida by a factor of 2.5.  Because many 
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more weak positive flashes (which are believed to be IC flashes) were recorded in this 

storm than was typical for the South Florida area during the month of July, it is likely that 

the IC/CG ratio was elevated above the climatological value.  However, because of the 

uncertainty surrounding this assumption, the storm was also simulated assuming the 

climatological IC/CG ratio of 2.  Estimates of column mass for a number of different 

production scenarios are shown in Table 4.4 assuming an IC/CG ratio of 2.  If there are 

twice as many IC flashes as CG flashes, than an IC flash on average must produce 25-

50% more NO than a CG flash to match observed NOx mixing ratios.  

4.3.5 Simulation of the chemical environment of the storm 

 The July 29 CRYSTAL-FACE storm was also simulated using the version of the 

CSCTM which includes chemical reactions as well as convective transport and lightning 

NOx production.  Initial conditions of a number of species were taken from the same 

mean July profile for south Florida used to provide initial conditions for the July 16 storm 

simulation.  The “spin-up” version of the model was run for 15 minutes prior to the 

simulation of the chemical environment of the storm. 

 

Table 4.4.  Calculated column mass of N in NOx in the July 29 CRYSTAL-FACE storm, 
assuming an IC/CG ratio of 2 

  

PCG (moles NO per flash) PIC/PCG Column Mass (g N m-2) 
590  0.1 1.8 x 10-4 
590 0.5 3.2 x 10-4 
590 0.6 3.6 x 10-4 
590 0.75 4.2 x 10-4 
590 1.0 5.1 x 10-4 
590 1.25 6.0 x 10-4 
590 1.5 6.9 x 10-41 
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 A production scenario in which a CG flash produces on average 590 moles NO 

and an IC flash produces 50% as much NO as a CG flash was assumed (with an IC/CG 

ratio of 5) for the CSCTM simulation that included chemistry.  The inclusion of chemical 

reactions resulted in a decrease in NOx when compared to the passive simulation because 

some NOx is converted to reservoir species.  With chemical reactions simulated, the 

column mass of N in NOx was 5.7 x 10-4 g N m-2 for the 1-km thick layer extending from 

12.25 to 13.25 km.  Assuming instead a PIC/PCG ratio of 0.6 produced a column mass of 

6.6 x 10-4 g N m-2 which was within the estimated range of observations (6.6-7.0 x 10-4  

 

Figure 4.22. (a) Simulated NOx mixing ratios in ppbv at 10 km, 240 minutes into the 
simulation of the July 29 CRYSTAL-FACE storm. The box indicates the area over which 
ozone averages were computed.  Vertical cross sections at 26.7º latitude of (b) NOx, (c) 
NO, and (d) NO2 are also shown.  
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g N m-2).  As a result, the production scenario in which an IC flash produces on average 

60% as much NO as a CG flash was selected as the most likely for this storm.  Figure 

4.22a shows the NOx mixing ratios calculated by the CSCTM with chemical reactions 

assuming a PIC/PCG ratio of 0.6 at 10 km at the end of the 240 minute simulation.  

Maximum NOx mixing ratios exceed 12 ppbv in areas of the anvil outflow due to the 

intense lightning activity associated with the coastal convection.  Figures 4.22b-d show 

vertical cross sections of NOx, NO and NO2 at 26.7° latitude at the end of the simulation.  

The highest NO2 mixing ratios reside below 7 km.  The highest NO mixing ratios (greater 

than 12 ppbv) are found between 9 and 12 km where NO2 mixing ratios are less than 3.5 

ppbv. 

 The CSCTM with chemical reactions was also run without lightning NOx 

production.  The average change in ozone due to lightning was calculated by computing 

the mean change in ozone over the averaging area shown in Figure 4.22a in the lightning  

and “no-lightning”simulations and subtracting the “no-lightning” average from the 

lightning average.  The results are shown in Figure 4.23, along with the maximum and 

minimum change within the averaging box at each level.   Lightning NOx causes a small  

loss of ozone during the lifetime of the storm averaging less than 2 ppbv at all levels.  

The maximum loss of ozone due to lightning during the storm is 7 ppbv at 8.5 km. 

4.3.6 Simulation of chemistry in the convective plume 

 Chemical fields from the end of 240-minute simulations which did and did not 

include lightning were used to initialize the chemistry-only version of the CSCTM.  The 

mean change in net ozone production due to the introduction of lightning NOx in the day 
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following the storm was computed by averaging the change in ozone in the day following 

convection in both the lightning and “no-lightning” cases over the averaging box shown  

in Figure 4.22 and subtracting the “no-lightning average” from the lightning average.  On 

average, the increase in net ozone production due to lightning NOx was very small, 

maximizing at only 3 ppbv day-1 though individual grid cells showed much a greater 

increase in production or destruction.   

 Table 4.5 gives the mixing ratios of a number of species at the beginning of the 

chemistry-only run (immediately following convection) and 24 hours later at 10 km  

 
Figure 4.23. Solid line is the average change in ozone mixing ratios due to lightning 
during the 240-minute storm simulation of the July 29 CRYSTAL-FACE storm.  Bars 
indicate the maximum and minimum ozone change within the averaging box at each 
level. 
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averaged over the averaging area shown in Figure 4.22.  In the 24 hours following 

convection, average ozone mixing ratios have increased 11 ppbv mainly due to 

convective transport of ozone precursors.  NOx mixing ratios have decreased by 3 ppbv, 

but still remain extremely elevated over background concentrations.    

 
Table 4.5.  Average Species Concentrations at 10 km AGL at the Beginning and End of 
the Chemistry-Only Simulation of the July 29 CRYSTAL-FACE storm 
 
Species Average Mixing Ratio Immediately 

Following Convection (ppbv) 
Average Mixing Ratio 24 hours 
after Convection (ppbv) 

NOx 7.95 4.93 
O3 111.0 122.0 
HNO3 0.818 2.32 
HCHO 0.416 8.46 x 10-2 

H2O2 1.34 0.821 
CH3OOH 0.857 0.418 

CH3CO3NO2 0.480 0.488 
OH 5.71 x 10-4 1.62 x 10-4 

HO2 4.44 x 10-4 1.78 x 10-4 

RO2 6.88 x 10-5 2.64 x 10-5 

*  Averages are computed over the sampling box shown in Figure 4.22a. 
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Chapter 5.  Discussion and implications 
 for global modeling 

 
 
 
 In order to adequately represent the lightning NOx source in global 3-D CTMs, 

the geographic distribution of flashes, average production of NO per flash, and vertical 

distribution of lightning NOx after convection must be specified.  Each of these aspects is 

discussed in this chapter. 

5.1 Vertical distributions of lightning NOx mass 

 Pickering et al. [1998] presented vertical profiles of lightning NOx for use in 3-D 

CTMs based on the results of 2-D cloud-resolving model simulations of seven convective 

events.  These simulations assumed the production scheme of Price et al. [1997] in which 

a CG flash produces 1100 moles NO and an IC flash is 10% as productive of NO as a CG 

flash.  NOx produced by CG flashes was distributed in the simulated storms from the 

surface to the -15°C isotherm while NOx produced by IC flashes was distributed above -

15°C.   

Average profiles of lightning NOx mass computed for the midlatitude continental, 

tropical continental, and tropical marine regimes in the Pickering et al. [1998] analysis 

showed peaks in mass near the surface and in the upper troposphere, leading many global 

CTMs to adopt a C-shaped vertical distribution of lightning NOx mass.  The passive 

version of the 3-D CSCTM allows IC and CG lightning NOx to be isolated from pre-

existing transported NOx.  I calculated vertical profiles of lightning NOx mass based on 

the four case studies presented in Chapters 2-4, the 3-D simulation of the July 12 

STERAO storm from DeCaria et al. [2005], and the simulation of a squall line observed 
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during PRE-STORM. These profiles are intended to update the profiles presented in 

Pickering et al. [1998] for use in regional and global CTMs. 

5.1.1 Subtropical events 

 The July 16 and July 29 storms were the only two subtropical storms simulated.  

Figure 5.1 shows the percentage of the mass of N in lightning NOx at each model level 

for both the July 16 and 29 CRYSTAL-FACE storms.  Following the July 29 storm, the 

maximum in the vertical mass distribution is found at anvil levels (~10 – 10.5 km).  In 

the case of the July 16 storm, the maximum is found in the 6-7 km layer, coincident with 

the lower mode of the vertical distributions of the lightning NOx source in the CSCTM.   

 

Figure 5.1. Vertical distributions of percentage of lightning NOx mass following 
convection for two simulated subtropical storms. 
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Figure 5.2. Vertical distributions of the percentage of lightning NOx mass following 
convection for (a) the July 16 and (b) the July 29 CRYSTAL-FACE simulations 
assuming IC to CG ratios of 1 and 10. 
 
A smaller peak is found in the 9-10 km layer, the height of the upper mode of the 

distribution, and another peak at 12-13 km, near the top of the cloud.  These vertical 

lightning NOx mass distributions were based on the assumed IC to CG ratios of 2 and 5 

for the July 16 and 29 storms respectively.  Since the IC to CG ratio may be highly 

variable and was estimated (not known with certainty) for these simulations, the results of 

a sensitivity test of the assumption of IC to CG ratios of 1 and 10 are shown for the July 

16 storm in Figure 5.2a and for the July 29 storm in Figure 5.2b.  For both storms, 

assuming an IC to CG ratio of 1 results in a greater percentage of lightning NOx mass 

lower in the cloud, while assuming the higher IC to CG ratio of 10 causes more lightning 
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NOx to reside in the uppermost portions of the cloud.  However, these differences are 

substantial only in the 12-14 km altitude range in the July 16 case and in the 10-12 km 

range for the July 29 storm. 

 Vertical profiles of NO2 following convection are also of interest because of the 

development of satellite instruments (including GOME, SCIAMACHY, OMI) capable of 

measuring column NO2 amounts in the troposphere.  Mean vertical profiles of NO2 after 

convection are shown in Figure 5.3 for the July 16 and 29 CRYSTAL-FACE storms.   

The profiles were calculated over the 40 by 40 km area positioned in the convective 

region of the model domain (shown in Figure 4.11 for the July 16 storm and Figure 4.22a 

for the July 29 storm).   The July 29 profile shows extremely elevated NO2 mixing ratios  

 

Figure 5.3. Average vertical profile of NO2 mixing ratio in the convective region 
following two simulated subtropical storms. 
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exceeding 2 ppbv from 5 to 7.5 km, while the July 16 profile maximizes at only 0.7 ppbv 

at 9.5 km.  The disparity in profiles is due to the large difference in flash rates in the two 

storms with over 4000 CG flashes recorded by the NLDN in the July 29 storm, and only 

300 CG flashes recorded in the July 16 storm.  Very little NO2 resides above 12 km in 

these cases, whereas NO enhancements extend to 13.5 km in the July 29 storm and over 

14 km in the July 16 storm.  Typical NO2 profiles from the model may prove useful in 

improving NO2 retrievals from satellite instruments. 

5.1.2 Simulation of the June 10-11 PRE-STORM squall line 

 The PRE-STORM field campaign was conducted from May to June, 1985 in 

order to observe the evolution and structure of mesoscale convective systems in the 

Oklahoma-Kansas region [Rutledge and MacGorman, 1988].  During the project, the 

occurrence of CG lightning flashes was recorded by the National Severe Storms 

Laboratory's Lightning Location Network.  Storms were observed by satellite and several 

radar systems.  Chemical measurements in the anvils of some storms were made (e.g. 

Dickerson et al., 1987; Luke et al., 1992; Pickering et al., 1988), although not in the case 

of the June 10-11 squall line.  The lack of chemical observations prevented the same 

method of estimating lightning NOx production used in the other four case studies to be 

applied to this system.  However, it was of interest to study the vertical distribution of 

lightning NOx in this squall line because its structure was unlike the other storms 

simulated and also because the vertical distribution of lightning NOx in this storm was 

estimated using a 2-D model with a simpler lightning scheme in Pickering et al. [1998].    

At approximately 2300 UTC on June 10, a squall line developed in western 

Kansas as a group of convective cells organized in a roughly northeast to southwest line  
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Figure 5.4. Radar reflectivity computed from GCE hydrometeors at 1 km elevation, 180 
minutes into the simulation of the June 10-11 PRESTORM squall line. 
 

[Rutledge and MacGorman, 1988].  The June 10-11 squall line has been documented 

extensively in the literature (e.g. Johnson and Hamilton, 1988) and has previously been 

simulated using the 2-D version of the GCE [Tao et al., 1993] and with MM5 (Zhang et 

al., 1989; Wang et al., 1996).  A segment of the squall line was simulated more recently 

by Steve Lang of NASA Goddard Space Flight Center using the 3-D GCE model with a 

horizontal resolution of 1.5 km and vertical resolution varying from approximately 0.25 

km near the surface to slightly more than 1 km near the top of the domain at 21.4 km.  

The width of the storm compared favorably with radar observations presented in 

Rutledge and MacGorman [1988].  Figure 5.4 shows a plot of radar reflectivity computed 

 113



from the GCE simulated hydrometeor fields at 1 km elevation, 180 minutes into the 

simulation.   

Because no chemical observations were available in the storm anvil, the transport 

of CO, pre-existing NOx, and O3 were not calculated.  The passive version of the CSCTM 

was used to simulate lightning NOx production and the transport of lightning NOx only.  

Based on time series of positive and negative CG flash rates from Nielsen et al. [1994], 

approximately 6500 CG flashes occurred during the storm's lifetime.  Observations of 

total lightning activity were unavailable, so the climatological IC to CG ratio of 3 for the 

region [Boccippio et al, 2001] was assumed to estimate IC flash rates.  The simulated 

storm was a squall line with a large trailing stratiform precipitation area.  Plots of 

observed radar reflectivity overlaid with the locations of CG flashes typically show 

flashes occurring over the length of the squall line and extending no more than 100 km in 

the x-direction.  In order to avoid placing lightning NOx throughout the entire stratiform 

region and diluting it excessively, the lightning parameterization was modified to restrict 

lightning NOx placement to an area of approximately this size.  It was not possible to 

estimate a production scenario for IC and CG flashes as in the other storms presented.  

Instead, the average value of PIC and PCG was calculated over the five other storms.  PCG 

was estimated to be approximately 500 moles of NO and PIC was estimated to be 85% of 

PCG, or 425 moles of NO.  Figure 5.5 shows the vertical profiles of lightning NOx mass 

calculated from the 3-D CSCTM simulation and in the 2-D simulation of the same squall 

line presented in Pickering et al. [1998].  The 2-D simulation places most lightning NOx 

below 1 km and between 9 and 15 km.  In contrast, the 3-D simulation distributes 

lightning NOx mass fairly evenly between 1 and 10 km, and then drops off in the upper  
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Figure 5.5.  Vertical distributions of the percentage of lightning NOx mass following 
convection for the 3-D simulation of the June 10-11 PRESTORM squall line and the 2-D 
Pickering et al. [1998] simulation of the same storm. 
 

troposphere where the secondary maxima in the 2-D profile is found. 

5.1.3 Midlatitude continental events 

Midlatitude continental events simulated using the 3-D CSCTM include the July 

10 STERAO storm, the July 21 EULINOX storm, the June 10-11 PRESTORM squall 

line, and the July 12 STERAO storm simulated by DeCaria et al. [2005].  Figure 5.6 

shows the vertical distribution of the mass of N in lightning NOx for the four midlatitude 

continental storms.  The distributions for the four storms all reflect the double peaked 

distribution of lightning NOx produced by IC flashes in the model.  There is variation 

between the simulations in which mode of the lightning distributions is dominant.  In the 
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EULINOX and PRESTORM storms whose IC to CG ratios were on average 5 and 3, 

respectively, a higher percentage of lightning NOx mass is found near the height of the 

lower mode of the IC distribution which is also the mode of the CG distribution.  In the 

simulations of the July 10 and July 12 STERAO storms, which had average IC to CG 

ratios of 33 and 8, a greater percentage of lightning NOx mass resides near the height of 

the upper mode of the IC vertical distribution following convection.  In addition to the IC 

to CG ratio, the dominance of the modes is likely affected by storm dynamics and the 

timing of IC and CG flashes in relation to the evolution of the storm.   

 

 

Figure 5.6. Vertical distributions of percentage of lightning NOx mass following 
convection for four simulated midlatitude continental storms. 
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Figure 5.7. Average vertical profile of NO2 mixing ratio in the convective region 
following three simulated midlatitude continental storms. 
 

The version of the CSCTM including chemical reactions was used to simulate the 

two STERAO storms and the July 21 EULINOX storm.  The PRESTORM case was not 

simulated with chemical reactions due to a lack of in-cloud data to estimate a lightning 

NOx production scenario.  Figure 5.7 shows average vertical profiles of NO2 calculated 

over a 40 by 40 km area in the convective region of the model domain following 

convection (shown in Figure 2.12b for the July 21 EULINOX storm and Figure 3.11 for 

the July 10 STERAO case).  The values in the vertical profile of NO2 from the 

EULINOX storm are much larger than in either of the STERAO storms with a maximum 

of nearly 2.5 ppbv at 5.5 km. 
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5.1.4 Average vertical profiles of lightning NOx mass  

Figure 5.8a shows the average vertical distribution of the mass of N in lightning 

NOx calculated by averaging the case studies in the subtropical regime and Figure 5.8b 

shows the average vertical distribution for storms in the midlatitude continental regime.  

Both plots are overlaid with smooth curves fit to the regime average.  Table 5.1 lists the 

percentages of lightning NOx mass in each 1-km layer taken from the smoothed curves in 

Figure 5.8.  In both regimes on average, only a small percentage of lightning NOx resides 

in the boundary layer following the convective event.  A greater percentage of lightning 

NOx remains in the middle and upper troposphere where the lightning NOx was originally  

 

Figure 5.8. Average vertical distribution of percentage of lightning NOx mass following 
convection (solid) for the (a) subtropical and (b) midlatitude continental regimes fit with 
smooth curves (dashed).  The Pickering et al. [1998] profile for the midlatitude 
continental regime (dash-dot) is also shown in (b). 
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Table 5.1. Average Profiles of Lightning NOx Mass in Percent 
 

Altitude      
Range,   

km Subtropical Midlatitude
0-1 1.0 2.4
1-2 2.1 5
2-3 3.9 7.4
3-4 5.8 9.3
4-5 7.7 10.6
5-6 9.3 11.4
6-7 10.5 11.5
7-8 11.0 11
8-9 11.0 9.9
9-10 10.4 8.3
10-11 9.2 6.3
11-12 7.5 4.2
12-13 5.5 2.2
13-14 3.4 0.5
14-15 1.5 0
15-16 0.2 0

 

produced.  These average vertical distributions are in marked contrast to the C-shaped 

profiles presented in Pickering et al. [1998] based on 2-D cloud-resolving model 

simulations in which a significant percentage of lightning NOx mass was transported to 

the boundary layer and relatively little lightning NOx mass was found between 1.5 and 

6.5 km after convection concluded. 

 Assuming the density profile of the standard atmosphere, the total mass of 

lightning NOx averaged over the EULINOX and STERAO storms, and that NOx is 

distributed uniformly over a 400 km2 region (typical of a global model grid cell), the 

average midlatitude profile shown in Table 5.1 corresponds to a maximum increase in 

NOx mixing ratios of ~ 185 pptv between 7 and 9 km immediately following convection 

(~2 km higher than the maximum of the lightning NOx mass distribution).  Because the 

lifetime of NOx increases with altitude, lightning NOx will be converted to reservoir 

species such as PAN and HNO3 more rapidly in the 7-9 km layer than at higher altitudes.  
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As the time after convection increases, the maximum increase in NOx mixing ratios due 

to lightning would be seen at higher altitudes which is consistent with the C-shaped 

profile of NOx typically observed in the troposphere.  Downward transport from the 

stratosphere also contributes to the upper tropospheric maximum in observed NOx mixing 

ratios, while the maximum near the surface results from emissions from surface sources 

such as fossil fuel combustion and soil. 

5.2 Global lightning NOx production  

 Chapters 2 through 4 presented results of the simulations of four thunderstorms 

using the 3-D CSCTM.  Best-fit production scenarios of PIC and PCG were estimated by 

comparing in-cloud aircraft observations with model output for these storms.  This 

method was also used by DeCaria et al. [2005] to estimate production per IC flash and 

per CG flash in the July 12 STERAO storm.  Figure 5.9 shows the production scenarios 

estimated for these five storms, the production scenario from Price et al. [1997] which 

was used in calculating the vertical profiles of lightning NOx mass presented in Pickering 

et al. [1998], and the production scenario estimated for the July 21 EULINOX storm by 

Fehr et al. [2004].  In all storms simulated, PCG was estimated to be less than the 1100 

moles per CG flash given in Price et al. [1997].  In addition, the ratio of PIC to PCG was 

greater than the commonly assumed value of 0.1 presented by Price et al. [1997].  Over 

the five storms simulated by the CSCTM, the average estimated PCG was 500 moles NO 

and the average PIC/PCG was 0.85 (assuming a PIC/PCG ratio of 1 for the July 12 STERAO 

storm and 0.6 for the July 29 CRYSTAL-FACE storm).   

Production of approximately 500 moles NO per flash has been verified by the 

recent modeling studies of Cooper et al. [2006] and Hudman et al. [2006].  Cooper et al.  
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Figure 5.9. Estimated lightning NOx production scenarios for the July 16 CRYSTAL-
FACE  (CF-7/16), July 29 CRYSTAL-FACE (CF-7/29), July 10 STERAO (ST-7/10), 
July 12 STERAO (ST-7/12), and July 21 EULINOX (EU-7/21) storms.  The Price et al., 
[1997] and Fehr et al. [2004] (FEHR-7/21) production scenarios are also shown, as is the 
estimated value of PCG calculated assuming the NALDN median peak current from 
Orville et al. [2002]. 

 

[2006] assumed the DeCaria et al. [2005] lightning NOx production scenario 

(PIC=PCG=460 moles NO) in their simulation of the global transport and dispersion of 

North American NOx emissions using the FLEXPART Lagrangian particle dispersion 

model.  Simulated NOx values were compared with NOx observed by aircraft over the 

continental U.S. during the ICARTT (International Consortium for Atmospheric Research on 

Transport and Transformation) study conducted in July and August of 2004.  The 
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assumption of the DeCaria et al. [2005] lightning production scenario yielded good 

agreement with aircraft observations [Cooper et al., 2006].  Hudman et al. [2006] 

compared ICARTT observations with output from the 3-D global GEOS-Chem CTM to 

constrain NOy sources from North America.  Simulated flash rates calculated using the 

Price and Rind [1992] parameterization compared favorably with NLDN observations, 

yet upper tropospheric NOx observations were underestimated by the model.  Adjusting 

the production per flash from the initial value of 125 to 500 moles NO per flash was 

necessary to obtain a good agreement with aircraft observations during ICARTT. 

The median peak current (16.5 kA for negative flashes and 19.8 kA for positive 

flashes which account for 10.9% of the total) of the North American Lightning Detection 

Network (NALDN) presented in Orville et al. [2002] corresponds to a PCG value of 508 

moles NO when using the Price et al. [1997] relationship between peak current and 

energy dissipated which agrees well with the estimate of 500 moles NO per CG flash 

calculated over the five storms simulated using the CSCTM.  Therefore, the cases 

simulated appear to be representative of midlatitude and subtropical storms.  Assuming 

the average production scenario over these five storms (500 moles NO per CG flash and 

PIC/PCG=0.85), an average global IC to CG ratio of 3 (extrapolating the Boccippio et al. 

[2001] result for the U.S. to the globe) and a global flash rate of 44 flashes s-1 [Christian 

et al., 2003] yields a global lightning NO source of 8.6 Tg N yr-1.   

 Estimates of the global lightning NO source range from 2-20 Tg N yr-1 [IPCC, 

2001], though most recent studies are confined to the lower half of this range.  Levy et al.  

[1996] estimated global lightning NOx production between 2 and 6 Tg N yr-1 with a most 

likely range of 3 to 5 Tg N yr-1 by comparing global CTM simulations and NOx and NOy 
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observations.  Lee et al. [1997] estimated a global lightning NOx source of 5 Tg N yr-1 

which is assumed in many global CTMs [Zhang et al. 2003].  A number of other studies 

have attempted to estimate global lightning NOx production based on NOx observations.  

Huntrieser et al. [1998] used aircraft NO measurements taken in thunderstorm anvils over 

Europe during the LINOX (lightning-produced NOx) project to estimate average 

lightning NOx production per thunderstorm, and extrapolated to the global scale to yield 

an estimate of 4 Tg N yr-1.  A similar approach using measurements obtained during 

EULINOX led to an estimate of 3 Tg N yr-1 [Huntreiser et al., 2002].  Beirle et al. [2005] 

used tropospheric column NO2 measurements from the GOME instrument and NLDN 

data for a storm observed in the Gulf of Mexico to estimate production per flash and 

extrapolated to a global lightning NOx source of 1.7 Tg N yr-1.  All of these estimates are 

less than the estimate presented in this work of 8.6 Tg N yr-1.  This may be due to the fact 

that each of these observational studies relied upon thunderstorms observed in a relatively 

small region occurring close together in time which may be less representative of a 

typical thunderstorm than the sample of storms I have used in this analysis.  Estimating 

global lightning NOx production based on storms observed in a number of different 

locations is likely better suited to extrapolating to a global source.  Because of satellite 

observations of total lightning activity from instruments such as the Optical Transient 

Detector (OTD; Christian et al., 2003), uncertainty in the global flashrate (44 ± 5) has 

been greatly reduced while the number of thunderstorms occurring globally remains 

uncertain.   

 In this analysis, the average production scenario was calculated using data from 

midlatitude continental and subtropical storms observed in large field campaigns.  No 
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tropical storms were simulated because of a lack of data from any comparable field 

project in the tropics.  Because 78% of lightning flashes occur in the tropics between 

30°S and 30°N [Christian et al., 2003], further investigation of the properties of tropical 

lightning flashes and their production of NO is needed.  If lightning flashes occurring in 

the tropics on average have weaker peak current than flashes occurring in the subtropics 

and midlatitudes, the estimate of the global source strength of lightning NOx production 

would likely decrease.  Data are just now becoming available from tropical field projects 

such as TROCCINOX (Tropical Convection, Cirrus and Nitrogen Oxides Experiment) in 

Brazil and SCOUT-O3/ACTIVE (Stratospheric-Climate Links with Emphasis on the 

Upper Troposphere and Lower Stratosphere/Aerosol and chemical transport in tropical 

convection) in Australia. 

5.3 Lightning NOx production per unit flash length 

 In addition to estimating NOx production per lightning flash, I modified the 

lightning NOx scheme to allow production per meter flash channel length to be estimated 

in the July 21 EULINOX and the July 10 STERAO storms.  The estimated production for 

the July 21 EULINOX storm was 1.42 x 10-2 moles NO per meter flash channel length 

while the estimate for the July 10 STERAO storm was 2.1 x 10-2 moles NO per meter 

flash length, both of which compare favorably with other estimates of NO production per 

meter available in the literature.  The July 21 EULINOX storm estimate is within the 

range of 3.3 x 10-4 and 1.7 x 10-2 moles NO per meter flash channel length from Stith et 

al. [1999] based on the July 10 STERAO storm.  Estimates for both storms are 

significantly larger than the value of 1.7 x 10-3 moles NO per meter flash channel length 

estimated by Skamarock et al. [2003] which included a number of short duration 
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interferometer flashes not included in the simulation of the July 10 STERAO case 

presented in Chapter 3 and other studies of STERAO storms (e.g. DeCaria et al, 2005).  

These estimates are also larger than the estimate of 4.5 x 10-3 moles NO per meter flash 

length obtained by Huntrieser et al. [2002] for the EULINOX field project. 

5.4 Global flash rate parameterizations 

In addition to the average production per flash and the vertical profile of lightning 

NOx following convection, the locations of lightning flashes must also be specified in 

global models.  Satellite-based instruments which monitor total lightning activity, 

including the OTD and Lightning Imaging Sensor (LIS), provide information on the 

global distribution of lightning and have allowed global lightning climatology to be 

studied (e.g. Christian et al., 2003).  However, gridded average flash frequencies are not 

suitable for use in global CTMs which must parameterize convective transport because 

satellite-observed lightning is not necessarily collocated in space and time with the 

representation of convection in the model.  Ozone production is highly variable and 

depends on the presence of ozone precursors such as NOx and NMHCs.  In order for a 

global CTM to produce an accurate representation of ozone mixing ratios following 

convection, lightning produced NOx must be placed in the same locations in the model 

domain as convectively transported ozone precursors [Allen and Pickering, 2002]. 

A number of methods have been developed in order to parameterize lightning 

flash rates in global CTMs.  Price and Rind [1992] developed separate parameterizations 

for marine and continental locations which scaled flash rates to the fifth power of 

convective cloud top heights.  Allen and Pickering [2002] evaluated the cloud top height 

parameterization of Price and Rind [1992], as well as parameterizations based on 
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convective precipitation and upward convective mass flux by comparing simulated and 

observed distributions of flash rates.  Their results showed that of the three 

parameterizations, the parameterization based on convective mass flux compared best at 

most locations, though it resulted in an overestimation of flash rates in the equatorial 

western Pacific and an underestimation of flash rates in parts of Africa.  The cloud top 

height method of Price and Rind [1992] was unable to adequately reproduce the 

variability of observed flash rates which would likely result in the overestimation of the 

amount of ozone produced by lightning NOx [Allen and Pickering, 2002].   

Ridley et al. [2004] evaluated the relationship between cloud top height and flash 

rates in the July 16 and 29 CRYSTAL-FACE storms.  The results indicated that flash 

rates in these storms did not scale to the fifth power of cloud top height as previous 

studies had indicated for continental thunderstorms [e.g. Ushio et al., 2001] and as the 

Price and Rind [1992] method of parameterizing flash rates assumes.  In fact, the 

maximum cloud top height of 15.2 km was greater in the July 16 storm, which was a 

relatively weak lightning producer, than in the July 29 storm which produced over 4000 

CG flashes but reached only 13.8 km.  In addition, Ridley et al. [2004] noted that the 

cloud top heights observed during CRYSTAL-FACE were within the narrow range of 

~14-15 km, yet CG flashes observed per storm ranged from a few hundred to thousands.  

The cloud top height method of Price and Rind [1992] is unable to reproduce this 

observed variability as was previously noted by Allen and Pickering [2002].   

A relationship between lightning flash rates and various ice parameters is thought 

to exist because of the mechanism believed to be responsible for producing charge 

separation in thunderstorms [e.g. Baker et al., 1999; Blyth et al., 2001; Petersen and 
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Rutledge, 2001].  When precipitation sized ice particles collide with smaller ice crystals 

in the mixed phase region of a cloud, positive charge is transferred to the smaller ice 

crystals.  The smaller, lighter, ice crystals are carried upwards, creating a positive charge 

region in the upper part of the cloud, while the heavier, precipitation sized particles travel 

downwards, establishing a negative charge region near the cloud base.  These processes 

eventually result in electric fields sufficient in strength to initiate lightning.  A recent 

study by Petersen et al. [2005] noted a relationship between precipitation ice mass and 

lightning flash density based on an analysis of Tropical Rainfall Measurement Mission 

(TRMM) lightning and radar observations.  Their results indicate that this relationship is 

invariant between land, ocean, and coastal regimes on a global scale.  These findings 

suggest that the possibility of parameterizing flash rates in global CTMs using ice mass 

be examined.  The Petersen et al. [2005] study focused on the relationship between 

precipitation ice mass and lightning.  However, cloud microphysics in most general 

circulation models (GCMs) is rather primitive.  Several GCMs have recently developed 

more advanced microphysics but precipitation ice mass may still not be a common 

product of the convective parameterizations in these GCMs.  Total ice mass, which 

includes both precipitation ice and cloud ice, may be a more common output field.  The 

relationships between precipitation ice mass and lightning, and total and precipitation ice 

mass have been examined in the July 10 and 12 STERAO, July 16 and 29 CRYSTAL-

FACE, and July 21 EULINOX storms. 

In each storm, the total mass of precipitation-sized ice hydrometeors (hail/graupel 

and snow) was calculated throughout the model domain at each output time step, as was 

the total ice mass.  The average flash density per storm was estimated by calculating the 
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total number of IC and CG flashes associated with each storm and dividing by the size of 

the model domain.  Figure 5.10 shows the relationship between the precipitation ice 

mass, averaged over the lifetime of the storm, and flash density in each of the five storms.  

The results suggest a near linear relationship in four of the five storms.  The July 21 

EULINOX storm appears to have a higher ratio of precipitation ice mass to flash density 

than the CRYSTAL-FACE and STERAO storms.  The relationship is uncertain, however, 

due to the lack of storms with moderate flash rates and precipitation ice content.  Figure 

5.11 shows the relationship between precipitation and total ice mass, both averaged over 

the lifetime of the storm. Over all five storms, the relationship between total and 

precipitation sized ice mass appears to be linear.  These results suggest the possibility that  

 

Figure 5.10.  Total lightning (IC+CG) flash density vs. average preciptable ice mass for 
five simulated storms.  Best-fit line through the CRYSTAL and STERAO storms is also 
shown.  
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Figure 5.11.  Average preciptable ice mass vs. average total ice mass for five simulated 
storms.  Best-fit line is also shown. 
 
 
parameterizations may be developed for global CTMs which use total ice mass to predict 

lightning flash density and flash rates.  However, much more research is needed to 

determine the robustness of the potential relationship between total and precipitation ice 

mass, especially in tropical thunderstorms. 

5.5 Ozone production due to lightning NOx 

 The effect of lightning NOx on ozone during and following convection was also 

investigated.   Table 5.2 gives the mean NOx at the end of convection, the change in O3 

due to lightning during the lifetime of the storm, the 24-hour change in O3, and the 24-  
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Table 5.2.  Mean NOx and Ozone Production at 10 km AGL 

Storm Average NOx 
immediately 
following 
convection 
(ppbv) 

Average  
change in O3 
during the 
storm due to 
lightning 
(ppbv) 

Average O3 
production in the 
24-hours 
following 
convection (ppbv 
day-1) 

Change in O3 
production due to 
lightning in the 
24-hours 
following 
convection (ppbv 
day-1) 

July 21 
EULINOX 

3.51 -1.6 10.3 0.6 

July 10 
STERAO 

1.01 2.5 x 10-2 8.5 2.8 

July 16 
CRYSTAL-
FACE 

1.72 0.8 2.1 2.8 

July 29 
CRYSTAL-
FACE 

7.95 -1.8 11.0 -2.3 

* Averages calculated over the boxes shown in Figures 2.12b, 3.11, 4.11, and 4.22a. 

 

hour change in O3 due to lightning NOx for the four case studies presented in Chapters 2- 

4 at 10 km AGL.  During the July 21 EULINOX and July 29 CRYSTAL-FACE storms 

which contained the greatest NOx mixing ratios, a decrease in ozone of less than 2 ppbv 

occurred during the lifetime of the storm due to lightning NOx injection.  During the July 

16 CRYSTAL-FACE storm, lightning NOx increased ozone mixing ratios by 0.8 ppbv, 

while during the July 10 STERAO storm, lightning NOx caused a negligible change in 

ozone mixing ratios.  

In all cases, net ozone production occurred in the convective plume at 10 km in 

the 24 hours following convection due to the redistribution of ozone precursors.  In the 

July 10 STERAO and July 16 CRYSTAL-FACE cases, lightning NOx increased net 

ozone production in the day following the storm by nearly 3ppbv day-1.  In contrast, 

lightning NOx caused a decrease in ozone production in the day following convection at 
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10 km in the July 29 CRYSTAL-FACE storm and only a small increase in production in 

the July 21 EULINOX storms.  These results suggest that highly electrified storms which 

produce extremely elevated NOx mixing ratios may reduce O3 production in the 

convective plume.  Dilution of these convective plumes as they are advected farther 

downwind will result in a transition to increased O3 production.  It appears that net O3 

production over the first 24 hours in outflow from storms with large flash rates may be 

less than in the outflow from moderate flash rate storms.  If a period longer than 24 hours 

were studied using a larger scale model, large flash rate storms may produce more ozone 

than moderate flash rate storms. 

5.6 Simulated transport characteristics 

 Output from three different cloud resolving models has been used to drive offline 

CSCTM simulations of four thunderstorms.  GCE model output was used to drive 

simulations of convective transport in both the July 21 EULINOX and July 10 STERAO 

storms.  In the EULINOX storm, model output was compared with in-cloud aircraft 

observations taken in the core region of the storm from 8 to 9 km.  Simulated 

distributions of in-cloud CO2 mixing ratios compared well with observations, though the 

maximum values of CO2 were overestimated by the model, indicating that upward 

motion in the GCE simulation may have been slightly larger than in the observed storm.  

A comparison of the distributions of simulated and observed O3 showed that the 

maximum observed values of O3 at 8 and 9 km were not reproduced by the model, 

suggesting that downward motion in the GCE simulation may have been weaker than 

observed.  The underestimation of downward transport suggested by an analysis of the O3 
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pdfs was inconsistent with the analysis of the CO2 pdfs which may have been due to a 

lack of observations in the tropopause region to define initial condition profiles. 

 In the July 10 STERAO storm, anvil aircraft observations were available between 

8 and 12.5 km.  The CSCTM simulation, driven by GCE model output was able to 

reproduce the distribution of observed CO mixing ratios in the anvil fairly well from 11 

to 11.5 km.  Below 11 km, the model underestimated the distribution of observed CO 

mixing ratios, while above 11.5 km, the model overestimated CO.  These results suggest 

that the GCE simulation may contain excessive upward motion which resulted in too 

much CO being transported above 11.5 km, while either too little CO remained at levels 

below 11 km, or too little CO was detrained into the storm’s anvil region.  An analysis of 

simulated and observed O3 distributions showed an underestimation of O3 mixing ratios, 

indicating inadequate downward motion in the simulation of the storm. 

 The ARPS model was used to simulate the July 16 CRYSTAL-FACE storm and 

the output used to drive the CSCTM.  Data were assimilated into the model hourly which 

caused periodic changes in the horizontal and vertical extent of the storm.  Aircraft 

observations taken in the storm anvil from 11.5 to 14 km were compared with simulated 

CO and O3 mixing ratios at the same altitudes.  Below 13.5 km, the simulation 

overestimated CO mixing ratios, indicating excessively strong upward motion.  At 13.5 

km and above, observed CO mixing ratios were underestimated by the model.  Observed 

O3 mixing ratios were reproduced fairly well by the simulation at all levels, though the 

maximum O3 mixing ratios were overestimated below 13.5 km.  The comparison of 

simulated and observed CO and O3 mixing ratios suggests that the ARPS simulated storm 

may contain upward and downward motion greater than observed.  The periodic decrease 
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in simulated cloud top height (below the observed height of 14 km) results in too little 

CO being transported to 13.5 km and above.   

 The MM5 was used to simulated the July 29 CRYSTAL-FACE storm.  Aircraft 

observations were made in the storm anvil from 12.5 to 13 km.  At these levels, a 

comparison of the distributions of observed and simulated CO and O3 mixing ratios 

showed that the model significantly overestimated observations of both species.  These 

results indicate that both upward and downward motion in the MM5 simulation of the 

storm may have been larger than in the observed storm. 

 Generally, the two storms simulated by the GCE model evidenced the most 

reasonable transport of tracer species.  In both cases, downward motion was most likely 

slightly underestimated, while upward motion was slightly overestimated.  The ARPS 

simulated cloud top height in the July 16 CRYSTAL-FACE storm varied periodically, 

increasing above the observed height of 14 km immediately following the assimilation of 

data, and then decreasing below 14 km.  This resulted in inadequate upward transport 

above 13.5 km, while below this level, both upward and downward transport were too 

strong.  The MM5 simulation overestimated both upward and downward motion which 

caused simulated CO and O3 mixing ratios in the upper levels of the storm in excess of 

observations. 
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Chapter 6. Summary 
 
 

 
 Four storms observed during three different field projects in the midlatitudes and 

subtropics have been simulated using the 3-D CSCTM which includes a source of 

lightning NOx.  An analysis of the mean peak current in these storms indicated that the 

average over all storms was nearly equivalent to the median peak current of flashes 

observed over North America, indicating that these storms comprise a sample 

representative of midlatitude and subtropical convection which may be used to examine 

characteristics of lightning NO production.  Lightning NOx production per flash was 

estimated in each storm by specifying different values of PIC and PCG and comparing the 

results with in-cloud aircraft observations of NOx.  In all four cases, IC flashes were 

estimated to produce, on average, 60-115% as much NO as CG flashes.  This finding 

contradicts the assumption of Price et al. [1997] that IC flashes are only 10% as efficient 

as CG flashes at producing NO because IC flashes are less energetic than CG flashes.  A 

recent study by Zhang et al. [2003] suggested that an IC flash typically is 50-100% as 

energetic as a CG flash which agrees favorably with the estimates of PIC presented in 

these cases.  IC flashes may produce less NO per meter flash channel length than CG 

flashes because IC flashes typically occur in lower pressure levels of the atmosphere.  If 

average IC flash lengths are longer than CG flash lengths, then production per flash may 

be roughly equivalent.   

 Average values of PCG and PIC (500 and 425 moles NO per flash, respectively) 

have been computed over the four storms presented here, and the July 12 STERAO storm 

simulated by DeCaria et al. [2005].  Along with an assumed global flash rate and IC/CG 
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ratio, this scenario has been used to estimate a global annual lightning NOx source of 8.6 

Tg N yr-1.  In addition, the results from six simulations have been used to calculate the 

average vertical profiles of lightning NOx following convection for the subtropical and 

midlatitude continental regimes.  In contrast to profiles of lightning NOx mass computed 

using 2-D cloud-scale simulations and presented in Pickering et al. [1998], vertical 

profiles based on these 3-D simulations show the majority of lightning NOx remains in 

the mid to upper troposphere near the altitudes where it originated.  The Pickering et al. 

[1998] profiles place most NOx in the upper troposphere and near the surface.  Global and 

regional CTMs which have adopted C-shaped vertical profiles of lightning NOx mass 

may be underestimating the amount of lightning NOx in the mid- troposphere and 

overestimating the amount near the surface.  Changes in the vertical placement of 

lightning NOx in CTMs may significantly alter distributions of species such as O3 and 

OH, although future modeling studies are needed to determine the magnitude of these 

changes.  

 Output from three different cloud-resolving models was used to drive the offline 

CSCTM.  The 3-D GCE model output provided the most realistic transport of tracer 

species in the July 21 EULINOX and July 10 STERAO storms.  The use of data 

assimilation in the ARPS model resulted in a varying cloud top height which negatively 

impacted both the transport of species to the upper levels of the storm and the distribution 

of lightning NOx in the CSCTM.  Using MM5 output to drive the CSCTM resulted in 

significant overrepresentation of both upward and downward transport in the model. 

 The CSCTM simulations of these four storms were also used to investigate the 

impact of lightning NOx on O3.  In storms with the highest flash rates, lightning NOx 
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results in decreased ozone production in the 24 hours following convection, while in 

storms with more moderate flash rates, lightning NOx increases ozone production in the 

24 hours following convection in the convective plume.  Once the convective plume is 

diluted, lightning NOx will likely result in increased ozone production in the outflow 

from storms with large flash rates.  It is possible that storms with large flash rates may 

produce more ozone than storms with moderate flash rates when production over multiple 

days is considered.   

  The estimate of the annual global lightning NOx source strength and the average 

vertical profiles of lightning NOx mass in midlatitude continental and subtropical regimes 

following convection can be used to improve the parameterizations of lightning NOx 

production currently employed in global CTMs.  In addition, the parameterization of 

flash rates based on total ice mass calculated by convective parameterizations in GCMs 

may be possible in the future, though a much more thorough analysis is required.  More 

studies of the relationship between ice content and flash rate are needed, particularly in 

tropical thunderstorms, to determine if a robust relationship between these parameters 

exists.  In addition, observational and modeling studies of the dynamical evolution, 

convective transport, and lightning NOx production in tropical storms are needed.  

Estimates of NO production per flash in tropical storms will reduce uncertainty in the 

global lightning NOx source and, in turn, improve the representation of lightning NOx in 

global models.  Because the majority of lightning flashes occur in the tropics, it is 

imperative to determine if these flashes are significantly different than midlatitude and 

subtropical flashes in terms of the energy dissipated and NO production.  If so, 

adjustments to the estimate of global source strength will be required. 
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Appendix A.  Additional Chemical Reactions included in the CSCTM 
(original reaction scheme listed in DeCaria, 2000) 

 

R1 H2COO + NO  HCHO + NO2 

R2 H2COO + H2O  HCOOH + H2O 

R3 C3H6 + OH  HOC3H6O2 

R4 HOC3H6O2 + NO  NO2 + CH3CHO + HCHO + HO2 

R5 C3H6 + O3  0.5HCHO + 0.075CH3HCOO + 0.425CH3HCOOX 

R6 ISOP + OH  ISOH 

R7 ISOP + O3  0.67MACR + 0.26MVK + 0.3OH + 0.07PAR + 0.07OLE  

0.07H2COO + 0.8HCHO + 0.06HO2 + 0.15CO2 + 0.05CO 

R8 ISOP + O(3P)  0.22MACR + 0.63MVK + 0.08ISOH 

R9 ISOP + NO3  ISNT 

R10 ISOH + NO  0.364MACR + 0.477MVK + 0.84HCHO + 0.08ISNI1 +  

 0.08ISNI2 + 0.886HO2 +0.84NO2 

R11 ISNT + NO  1.1NO2 + 0.8HO2 + 0.8ISNI1 + 0.1MACR + 0.15HCHO + 

    0.05MVK + 0.05DISN 

R12 ISNI1 + OH  ISNIR 

R13 ISNIR + NO  0.05DISN + 0.05HO2 + 1.9HO2 + 0.95CH3CHO +  

  0.95*CH3COCH3 

R14 ISNI1 + O3  0.2O(3P) + 0.08OH + 0.5HCHO + 0.5IALD1 + 0.5ISNI2 + 

0.5NO2 

R15 ISOH + ISOH  0.6MACR + 0.6MVK + 1.2HCHO + 1.2HO2 

R16 ISOH + HO2  IPRX 
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R17 IPRX + OH  ISOH 

R18 IPRX + O3  0.7 HCHO 

R19 MACR + O3  0.8CH3COCHO + 0.7HCHO + 0.2O(3P) + 0.09H2COO +  

0.2CO + 0.275HO2 + 0.215OH + 0.16CO2 +    

0.15CH2=CHCCH3OO 

R20 MVK + O3  0.82CH3COCHO + 0.8HCHO + 0.2O(3P) + 0.11H2COO +  

0.05CO + 0.06HO2 + 0.08OH + 0.04CH3CHO + 

0.07OOCHCCH3CH2 

R21 MVK + OH  0.28MV1 + 0.72MV2 

R22 CH2CCH3CO3 + NO2  MPAN 

R23 MPAN  CH2CCH3CO3 + NO2 

R24 CH2CCH3CO3 + NO2  C2H4 + CH3O2 + NO2 + CO2 

Photolysis Reactions 

P1 MVK + hv  CH3CO3 + C2H4 + HO2 

P2 MACR + hv  C2H4 + HO2 + CO + CH3O2 

P3 CH3COCHO + hv  CH3CO3 + CO +HO2 

Abbreviations 

DISN – Dinitrate of isoprene 

IALD1 – Hydroxy carbonyl alkene from isoprene 

IPRX – Organic peroxide from isoprene 

ISNI1 – Organic nitrate from isoprene 

ISNI2 – Organic nitrate from isoprene 

ISNIR – Alkyl peroxy radical from ISNI1 or ISNI2 
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ISNT – Isoprene-NO3 adduct 

ISOH - Alkyl radicals from OH + ISOP 

ISOP – isoprene 

MACR – Methacrolein 

MPAN – Methylperoxyacetyl nitrate 

MVK – Methyl vinyl ketone 

MV1 – MVK OH adduct 

MV2 – MVK OH adduct 

OLE – Olefinic carbon bond 

PAR – Paraffin carbon bond 
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