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This thesis presents an end-to-end approach for taking a an image of a face

and seamlessly isolating and filling in any blemishes contained therein. This consists

of detecting the face within a larger image, building an accurate mask of the facial

features so as not to mistake them as blemishes, detecting the blemishes themselves

and painting over them with accurate skin tones.

We devote the first part of the thesis to detailing our algorithm for extracting

facial features. This is done by first improving the image through histogram equal-

ization and illumination compensation followed by finding the features themselves

from a computed edge map. Geometric knowledge of general feature positioning

and blemish shapes is used to determine which edge clusters belong to correspond-

ing facial features. Color and reflectance thresholding is then used to build a skin

map.

In the second part of the thesis we identify the blemishes themselves. A Lapla-

cian of Gaussian blob detector is used to identify potential candidates. Thresholding



and dilating operations are then performed to trim this candidate list down followed

by the use of various morphological properties to reject regions likely to not be blem-

ishes.

Finally, in the third part, we examine four possible techniques for inpainting

blemish regions once found. We settle on using a technique that fills in pixels based

on finding a patch in the nearby image region with the most similar surrounding

texture to the target pixel. Priority in the pixel fill-order is given to strong edges

and contours.
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Chapter 1

Introduction

1.1 Background

Since the dawn of photography, there have been those who desired to take

an existing photo and modify it or improve on it in some way. Even before the

advent of modern computers and photo-editing software, sophisticated photo ma-

nipulations could be achieved through the use of paint, ink, multiple exposures,

airbrushes or various darkroom techniques such as combining negatives from dif-

ferent photos [1]. One of the most common uses for such techniques was to take

model photos intended for use as magazine covers or in marketing campaigns and

remove all possible blemishes or imperfections in a process often referred to as ”air-

brushing”. Nowadays, where these manipulations are made easier through the use

of computers and advanced photo editing software such as Adobe’s Photoshop, it

has become almost expected that some amount of ”airbrushing” will be used on any

professionally taken photo and even many personal ones. Nonetheless, while it is

true that the use of computer software has made the process of photo manipulation

faster and not quite as skill-intensive, it remains the case that retouching a single

photo can take hours of human labor. This labor cost is especially amplified in

situations where entire batches of photos must be processed, such as with wedding

photo albums. With modern signal processing techniques it is possible to take this
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painstaking process and automate every stage of it. While there has been some

tangentially related work in the field of identifying facial blemishes for the purpose

of facial recognition such as that done by Park et al. [2], Ramesha et al. [3], and

Pierrard and Vetter [4], we have found no complete works focused on removing these

blemishes with an aesthetic goal in mind. In this thesis we present a start-to-finish

algorithm that takes an input photograph, locates a face within it, extracts the

smooth skin regions out from the facial features and image background, isolates all

imperfections in said skin and smoothly fills them in using skin textures taken from

similar regions in the face.

1.2 Thesis Outline

Chapter 2 presents a brief overview of the existing work done in the field of

facial detection before settling on using the simple but effective Viola Jones face de-

tector [5]. It then explains the workings of this algorithm and why it is sufficient for

our needs. Chapter 3 presents a review of existing literature on the task of extracting

accurate outlines of the important features in a face. It gives brief summaries of the

techniques used in [6], [6], [7], [8], [9], [10], [11], [12], [13], and [14]. It then goes on

to more detailed explanation Active Shape Modelling (ASM) [15], one of the best of

these existing techniques and one that we attempted to utilize for our purposes. It

describes why ASM is still insufficient due to its sometimes imperfect model align-

ment and frequently not covering all of the important edges from the facial features.

The steps of our feature extraction algorithm are then explained. We first adjust
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the entire image by equalizing and converting to grayscale then adjust for gradual

lighting changes by extracting the reflectance. Canny edge detection is applied to

the result. The Viola Jones [5] face detector is used to produce a bounding box for

the face and simple geometric calculations are then used to determine rough feature

regions. Within these regions we then calculate the center of mass of the edges to

find the features’ centers, discard outlying edges according to various geometric clas-

sifiers, circle all remaining edges proportional to the distance from the center and

close off remaining holes. The end result is a feature mask conforming to the precise

edges of the eyes, nose and mouth. Chapter 4 discusses the creation of a skin mask

to determine the outer boundaries of the face. It briefly discusses several attempted

techniques such as RGB averaging, graph cutting and texture segmentation before

describing the final process based on the previously determined reflectance. Chap-

ter 5 deals with finding the actual blemishes within the skin region. It begins by

again giving brief summaries of related research done in [2], [3], [4], [16], and [17].

It then start to describe our algorithm, beginning with performing a convolution

with a Laplacian of Gaussian operator across many scales, and then dilating the

resulting binary mask. We then analyze each resulting connected region, reject-

ing many based on criterion such as weighted areas, eccentricity and a custom Fill

Measure. Chapter 6 finishes off our algorithm by examining four different types of

inpainting techniques that could be used to fill in the blemishes. First we introduce

iterative blurring and interpolation, both using mathematical extensions of bound-

ary pixels to fill in the holes. We then examine the texture synthesis method of

Efros and Lueng [18] and its Exemplar-based inpainting from Criminisi, Perez and

3



Toyoma[19]. We conclude that the Exemplar-based method seems to produce the

overall best result but, given a lower resolution image or computational constraints,

the interpolation method might suffice in its place.
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Chapter 2

Face Detection

2.1 Overview

The detection of a human face from within a cluttered scene is a task that,

while simplistic for the youngest of infants, has been one of the most highly re-

searched topics in computing for the past half century. In the general case, one of

the main reasons why the task is so difficult is due to the large amounts of variations

possible in the faces’ location, orientation, scale, pose, occlusions, lighting, facial ex-

pressions and ethnicity. For our purposes we make the simplifying assumption that

the inputted image will be frontward facing and not occluded, thus leaving only the

last three difficulties to deal with.

There have been hundreds of different approaches to face detection that have

so far been published , most of which can be grouped into four general categories:

template matching methods, feature invariant approaches, knowledge–based meth-

ods and appearance-based methods [20]. Template matching methods compare a

test image with a predetermined face template or feature templates and look for

high similarity. Feature invariant approaches try and find structure features that

are invariant to lighting and pose variations. Knowledge-based methods use sets

of rules based on what we know of how faces are generally shaped (they all have

eyes, nose, mouth, etc). Appearance-based methods use large sets of training data

5



to build face models and classifiers to perform the detection. The appearance-based

methods take far more computing power and storage space to operate, but the

increased availability of such resources in recent years has led to their taking the

overall lead in performance amongst the different detectors.

2.2 Our Method

The face detector that we decided to use was the one used in the OpenCV

library[21], first developed by Viola and Jones [5] and later improved upon by Lien-

hard and Maydt [22]. While there have been some improvements made on this

method since its initial publication, such as the improved feature extraction tech-

niques of Brubaker et al. [23] and Froba [24] or the improved boosted learning

algorithms of Wu et al.[25], Pham and Cham [26] or Vasconcelos [27], those mostly

provide improved accuracy for the cases with difficult pose or illumination. For our

constrained requirements the basic Viola Jones detector works almost perfectly.

The first step is to extract features that will be used as input to train a

classifier. The reason for using features rather than just the raw pixel data is that

they encode knowledge about the domain such as the presence of edges or lines.

This serves to reduce in-class variability while increasing intra-class variability as

compared to the raw data and thus improve the accuracy of the classifier. The

features used are similar to Haar features, consisting of the summing the values of

pixels within rectangles in the image and then taking the difference between various

configurations and orientations of adjacent rectangles (features shown in Figure 2.2).
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1. Edge features

1. Line features

3. Center-surround features

(a)      (b)        (c)          (d)

(a)         (b)       (c)     (d)

(a)         (b)

(e)       (f)        (g)     (h)

Figure 2.1: Haar-like and center-surround features. White areas have
positive weights, black areas negative weights [22]

To minimize computation time, a cascade of classifiers is used instead of a

single-stage one. Classification is performed using a sliding window with a range

of resolutions, first using a coarse classifier to reject the obviously bad regions and

passing on the positively identified regions to the next stage. Given the extremely

large number of features generated for each image, the Discrete Adaboost algorithm

[28] is used to train each of the thirteen stages of the classifier. It is able to train a

strong classifier based on a large number of weak ones by re-weighting the training

samples (with the weak classifiers in this case consisting of a single feature that best

differentiates the positive and negative training examples along with a simple binary

threshold). In each stage the threshold is adjusted to minimize false negatives (and

therefore increase the rate of false positives, hoping to eliminate them during later

stages).
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(a) Test image 1 (b) Test image 2 (c) Test image 3

Figure 2.2: Viola Jones detector outputs on three test images

Given that the output of this procedure is a rectangular face region that often

cuts off small outer portions of the face (as seen in Figure 2.2, we cannot focus our

attention from here on out on just this region. Instead, we use it as a rough guide

for our more accurate feature and skin isolation procedures.
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Chapter 3

Feature Extraction

3.1 Overview

3.2 Prior Research and Attempted Techniques

Given that feature extraction and facial detection are both just specific in-

stances of object-detection applications applied at two different levels, they have

the same overall grouping of types of methods that have been applied to them:

template matching methods, feature-invariant approaches, knowledgebased meth-

ods and appearance-based methods. One of the main differences stems from the

fact that the majority of feature extraction methods rely on the face having already

been located. This allows them to use fare more detailed knowledge of the position

and shape of the various features without worrying about the cost of an exhaustive

search in a large image being computationally prohibitive or turning up too many

false positives.

The most work overall seems to have been done on eye-detection methods

due to their high applicability to many machine-interaction applications as well as

the ability to determine the rough pose of the face based on the relative size and

positioning of the eyes.

Rajpathaka et al. [6] used skin detection followed by morphological operations
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to detect the sharp points of reflection found in any suitably illuminated eye [6].

They achieved fairly high accuracy but only located the center of the eyes, not the

boundaries, and the technique would fail on blurry or poorly illuminated images.

Yuille et al. [7] proposed a method for describing facial features via a de-

formable parameterized template. The template is linked to an energy function

that corresponds to edges, peaks and valleys in the image intensity and interacts

dynamically to modify the parameters to minimize the energy function. The algo-

rithm works decently well for tracking the contours of the eyes and mouth but is

still prone to occasional failure due to imperfect initialization or edge cases. This

difficulty was partially dealt with by Lam and Yan [8] who developed a technique for

using corner detection to more accurately initialize the position of the deformable

templates but is still imperfect.

Pentland et al. [9] used an eigenspace-based method for feature detection as

part of their larger facial recognition framework. It works fairly well as long as the

training database has enough variability in appearance, pose and illumination but

has difficulty picking up any strong deviations from the training set. It also is only

capable of identifying the feature centers rather than the full contours.

Han et al. [10] used morphological-based methods followed by dilation opera-

tions and labeling to detect eye-analogue segments. Feng and Yuen [11] proposed a

multi-cues method for detecting eyes based on face intensity values, the estimated

direction of the line joining the eye centers, the response of convolving an eye vari-

ance filter with the face, and then a cross validation using a variance projection

function.
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Phimoltares et al. [12] used a neural visual model that involves a combination

of utilizing the geometric properties of the facial features in polar coordinates and

training a separate multilayer perceptron network for each feature. They follow it

up with a dilation operation on the binary output to improve the overall results.

Their technique works fairly well for neutral faces but fails to properly handle any

large variation in pose or expression.

Sohail and Bhattacharya [29] developed a technique for detecting the 18 most

important facial feature points based on a statistical anthropometric model. They

first perform eye-center detection based on a generative object detection framework

proposed by Fasel et al. [13]. The relation between these two points is then used

to determine the rotation angle of the face as well as to predict the rough locations

of the other feature regions based on knowledge of average distances between facial

features. A combination of different image processing techniques is then used in

each of these regions to better determine the precise feature point locations. Their

algorithm is one of the best reviewed so far for determining feature contours but

their average accuracy of only ≈ 90% makes it insufficient for our needs.

While many of these methods are accurate enough to add feature data to a

facial recognition database, all that requires is the rough size, shape and positioning

of the features. This works very well with model-based methods because all that

matters is that the same model produce similar enough outputs for the same face.

And, if the technique fails for a particular feature, as long as it is not incorrectly

added to the database it does not negatively affect the recognition process. For our

purposes, however, given that we need to ensure that we do not overwrite any of
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the important facial features, rough matching with less than 100% accuracy is not

good enough.

Of all the existing methods that we found, the most promising for isolating

the proper facial contours tended to be the model-based techniques. Indeed, the

feature detection techniques used most often by attempting to use soft biometrics

such as moles or scars for facial recognition are those of Active Appearance Models

(AAM) [14] or Active Shape Models (ASM) [2]. We therefore decided to examine

these techniques in closer detail.

3.2.1 Active Shape Modeling (ASM)

First developed by Cootes [15], ASM works by training a statistical model

of an object using a set of images whose important points and curves have been

carefully annotated by a human expert. A diverse training set with variations in

shape and appearance allows for the creation of a model which can mimic this

variation. Analyzing a new image then reduces to a process of determining a set

of parameters which best match the model instance to the image. Unlike methods

such as the Viola Jones detector which are only able to output rectangular regions

containing the desired feature, ASM is capable of producing an output that fairly

closely models the contours of the image.
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3.2.1.1 Building The Model

Building up a good model requires a set of images each with carefully labeled

important points, called landmark points. The most important of these landmark

points are those that lie on the corners between edges or points of maximum cur-

vature within the image. However, given that using these types of points would

produce a very sparse output we also label points spaced out along the boundaries

in between the key ones. Additionally, to properly keep track of contours we record

the connectivity between points [30].

For a given image, the n landmark points (xi, yi) can be represented by the

2n× 1 vector x, where

x = (x1, · · · , xn, y1, · · · , yn)T (3.1)

For a database of s training samples, we get s vectors xj where each point

(xi, yi) in one image corresponds to the same geometric point in the others. When

dealing with faces, for example, the point (xi, yi) could represent the left corner of

the mouth for all images in the training set.

Given that the shapes themselves are invariant to position, orientation and

scale, the next step before we can properly build the model is to transform all of the

vectors xj so that they are lined up in a common coordinate system. This is done

by scaling, translating and rotating the points in each shape so as to minimize the

sum of the distances between each shape and the mean ( D =
∑
|xi − x̄|2).

Once we have this set of points on a 2n-D space the next step is to use Principal
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Component Analysis (PCA) to reduce the dimensionality and make the data more

manageable. The training set x can then be approximated by

x ≈ x̄ + Pb (3.2)

where P = (P)1|P)2| · · · |P)t) are the t eigenvectors of the covariance matrix and b

is the t-dimensional vector defined as

b = PT (x− x̄) (3.3)

The vector b consists of a set of parameters of a deformable model. The λi’s

give the variance of the ith parameter bi across the training set. It is then possible to

generate new images that are variations on the model by choosing values in b and

plugging back in to Equation 3.2. The lower the value of i the more pronounced the

variation from the mean model will be. Figure 3.1 shows the models produced by

varying the first the elements of b by ±3
√
λi. Each of these parameters corresponds

to a different mode of the model.

The last step in building the model is to come up with a feature vector for each

landmark that can be compared against those of candidate images in order to form

the initial guess at where the landmarks should be located. This is done by sampling

the brightness intensity levels in the region around each landmark and storing them

in a vector. Some methods sample only along a line running in the direction of the

normal to the shape’s surface at that point, others sample a two-dimensional region
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Mode 1

Mode 2

Mode 3

Figure 3.1: Models produced by varying the first three bi’s by three
standard deviations in either direction (image from [30])

around the landmark [31]. The value of each element in the vector is then replaced

by the intensity gradient at that location and then the entire vector is divided by

the mean of the absolute value of its elements. This serves to make the measure

mostly invariant to illumination or coloration changes and thus depend primarily

on the structure of the object.

Carrying out this procedure for each each image in the training set and taking

the mean produces the mean profile vector ḡ. The covariance matrix of all these

vectors is then denoted by SG. Generating the mean profile vectors and covariance

matrices for each landmark in the image across the full training set completes our

model.
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3.2.1.2 Matching Model to Image

The set of points produced by Equation 3.2 correspond to a model in normal-

ized coordinate space. To match the model up with an individual image we must

perform a renormalization to find the position (Xt, Yt), orientation θ, and scale s

of the model within the image. The model points within the image coordinates are

then defined as X, given by

X = TXt,Yt,s,θ(x̄ + Pb) (3.4)

where the Euclidian transformation function TXt,Yt,s,θ is defined as

TXt,Yt,s,θ

x
y

 =

Xt

Yt

+

s cos θ −s sin θ

s sin θ s cos θ


x
y

 (3.5)

To find the best pose parameters of T to match a model instance X to a new set

of image points Y we minimize the sum of square distances between corresponding

image and model points. This task is carried out by minimizing the expression

|Y − TXt,Yt,s,θ(x̂ + Pb)|2 (3.6)

To generate the estimates for the landmark points in the candidate image,

the cost function used by most ASM implementations is the minimum Mahalanobis
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distance f1(g) given by

f1(g) = (g − ḡ)TSG
−1(g − ḡ) (3.7)

where g is the candidate’s profile and ḡ is the mean profile.[31]

There have been some more recent improvements made to the original tech-

nique that involve more complex comparison metrics or weighting functions that

take into account edge data, but the overall process remains essentially the same.

3.2.1.3 Why ASM is Insufficient

Upon implementing and testing the ASM algorithm using the IMM Image

Database for training [32], several problems arose.

1. Even using the Viola-Jones face detector to narrow down the search region, the

initial guess at lining up the model with the input image was often far enough

off that it was never able to properly converge. Sometimes this happened only

for specific features, as with the eyebrows in Figure 3.2(a), and other times

the entire model was mis-aligned.

2. Even with an accurate initial guess, there were often times where parts of

the model would start to conform to the image in the wrong direction and

then continue along that path. Given that the cost function in Equation 3.7

only searches a fairly localized area it is possible for it to produce false matches

from a different part of the face that have a similar feature vector to the actual
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correct location. Figure 3.2(b) shows one such example of a result that was

completely distorted.

One of our best results using ASM was that in Figure 3.2(a), and that with

using an image from the same IMM database used for training (and therefore had

brightness variations very similar to the trained model, as well as similar size). And

yet even there the match was not perfect. If those shapes were used as the feature

mask in our algorithm it is very possible that the edge regions at the corners of the

mouth or eyes could accidentally be mistaken as blemishes (how this works will be

explained later on). Or, had the subject any blemishe in the region directly above

the eyebrows they would not have been detected.

Looking at the comparison of the results from the original and improved ASM

algorithm given in [31] (Figure 3.3), it is evident that even in the best case scenario

where the model lines up accurately the edges still do not fit the contours perfectly.

Indeed, we can expect similar difficulties with any model-based method of

feature extraction. Any time a technique tries to fit a model to the image rather

than make use of all the edge data from the ground-up, there is a risk that not all of

the important edges will be included. Our algorithm attempts to address this issue.

3.3 Our Algorithm

The feature extraction needed for our purposes is at the same time both simpler

and more difficult than most of the applications described at the beginning of the

chapter. We do not care about storing where the actual features are in relation
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(a) ASM Best result (b) ASM Failure

Figure 3.2: Examples of the ASM algorithm applied to a test image from
the IMM database (a) and one of our test images (b)
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(a) Original ASM

(b) Improved ASM

Figure 3.3: Comparison of ASM output models using the original ASM
algorithm and the improved algorithm of Seshadri and Savvides (image
taken from [31])

to the rest of the face, or where the different parts of the features are (such as

irises, eyelids, eyebrows, or lips) in relation to each other for some purpose such as

expression recognition or eye-tracking. What we do care about is that every last edge

or textured area that can be associated with a facial feature be labeled as such so as

not to accidentally classify it as a blemish. We also need this classification to be as

robust as possible across all face configurations, lighting changes, facial expressions

and skin colorations for the same reason. No matter how well developed, all existing

model or matching-based methods of feature extraction tend to fail at some point

and therefore would prove insufficient.

It was therefore decided to base our algorithm after the most simplistic ”model”

possible for a face: all faces have two eyes, a nose and a mouth in roughly the same
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relation to each other, and these regions are by definition not smooth. Our algo-

rithm identifies these rough feature regions based on the already detected face, finds

the primary edge clusters within these regions and removes any outlying stragglers.

The only way it is capable of failing is therefore in misclassifying any edges at the

outskirts of these regions rather than missing entirely.

3.3.1 Step 1- Equalize and Convert to Grayscale

Given that our algorithm is primarily based on edge and blob-detection tech-

niques run on a grayscale image, our first step is to perform some image manipula-

tions so as to best emphasize the edges of any blemishes present. This is done by

first equalizing the image so as to increase the contrast between the skin and the

blemish regions. This increased contrast can be seen in Figure 3.4.

After equalizing, we then convert the image to grayscale. The standard method

for doing this would be to just take the image intensity values from the YCbCr

representation as seen in Figure 3.5(a). However, given our desire to maximize

the contrast between blemishes and the surrounding skin region we can actually

do better than this. The rest of Figure 3.5 shows a comparison between the Red,

Green and Blue color channels present in the full color image. As expected, the

Red channel contains the highest values and actually seems to make the picture

look better, hiding some of the blemishes from the start. In contrast, the Blue

channel seems darkest and causes the blemishes to pop out the most. This result

proved to be true across a wide variety of test images with vastly different base skin
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(a) Original Image (b) Equalized Image

Figure 3.4: Comparison of original and equalized image

colorations. We therefore select the Blue channel of the image to continue working

with.

3.3.2 Step 2 - Illumination Compensation

One difficulty with processing photos of faces is that the same face can appear

vastly different based on varying pose an lighting conditions. While pose can be

difficult due to occluding and changing the relative positioning of facial features,

lighting is an easier problem to compensate for. Pierrard et al. [4] and Raja et al.

[3] discuss a method for illumination compensation based on homomorphic filtering,

a variation of which we used in this paper.

In general, images are represented by scalar intensity values I(x, y) that vary

as a function of the image spatial coordinates. We make use of an underlying

reflectance model wherein each pixel location (x, y) can be represented by a product
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(a) Image Intensity (b) Red Channel

(c) Green Channel (d) Blue Channel

Figure 3.5: Comparison RGB image channels
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of the amount of source illumination incident on the scene being imaged and the

amount of light reflected back by objects in the scene.

I(x, y) = R(x, y) ∗ L(x, y) (3.8)

where L(x, y) is the incident source illumination and R(x, y) is the amount reflected.

Thus to obtain a representation of the image that is theoretically independent of

lighting conditions all we must do is find R(x, y). However, given that all we know

from the start is I(x, y) we cannot simply divide by L(x, y) to obtain our solution

given that it is an unknown. First we must try and separate the reflectance and

illumination from the intensity. To do this, the model suggests that we make use

of the fact that illumination tends to change gradually across the face whereas

reflectance tends to manifest itself primarily in high-frequency components. We

therefore can approximate L(x, y) by a low-pass filtered version of the image denoted

by Flp(I). This is done by a convolution with a Gaussian kernel of size proportional

to the size of the face. Given that frequencies of function products are not directly

separable, we carry out this operation in the log-domain, giving us:

log(R(x, y)) = log(I(x, y))− log(L(x, y))

≈ log(I(x, y))− [Flp(log(I))](x, y)

(3.9)

The reflectance approximation can then be achieved by simply exponentiating

the result. As seen in Figure 3.6, the edge map generated from the reflectance shows

far greater detail around the facial features and edges which will be very useful in
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(a) Reflectance Map (b) Initial Edge Map (c) Reflectance Edge Map

Figure 3.6: Comparison of edge maps produced by the image and image
reflectance

the next stage of our algorithm.

3.3.3 Step 3 - Edge Detection

Once the best grayscale image has been extracted and adjusted for lighting

variation, the next step is to calculate all of the edges contained therein. For this

we use the edge detector developed by Canny in [33]. A brief overview of the steps

in this method is given as follows:

1. The image is filtered with a 2-D Gaussian filter with σ =
√

2 to suppress noise

2. A basic edge detection operator is used to calculate the derivatives in the

horizontal and vertical direction at each point. These are then combined to

find the overall gradient direction.

3. Find the maximum gradient magnitude in the direction perpendicular to the
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gradient direction found in the previous step.

4. Use a large threshold to determine all definite edges, then trace continuous

along these edges with a smaller threshold value to build the final edge map.

The result of this procedure can be seen in the edge maps in Figure 3.6.

3.3.4 Step 4 - Face Detection

The Viola Jones [5] face detector is used to find a bounding box for the face,

as explained in the previous chapter.

3.3.5 Step 5- Feature Region Segmentation

While the same form of Viola Jones classifier used in the previous step to

locate faces could technically also be used for identifying facial feature locations, we

found that such a method was not quite reliable enough for our purposes. When

testing, there were often times when the classifier would simply fail to find one of

the eyes or other features. This was doubly likely when any of the eyes were closed

or the mouth was in a strange expression, and even when it succeeded it only gave

a bounding box that often did not fully encompass the feature in question. Given

that our method requires 100% accuracy for this step in the process lest we risk

falsely identifying a facial feature as a blemish we had to develop a better method.

Earlier in the chapter we stated that our approach was made more robust by

being non model-based. While this is certainly true in that we never compare an

image to an existing model of a face or facial feature, we do still make use of prior
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Figure 3.7: The caption

positioning knowledge in order to properly isolate the various features. This is made

possible by the fact that we can safely assume that all potential images contain two

eyes, a nose and a mouth and that while head size may vary, the relative positioning

of these features stays roughly the same.

Using the relative feature positioning as a function of the faces height and

width as shown in Figure 3.7 we define bounding regions for the eyes, nose and

mouth.

3.3.6 Step 6 - Calculate Center of Masses

Given that the regions calculated in the previous step are only rough estimates

our next step is to figure out exactly where the actual features lie within these

regions. We do this by making use of the fact that the facial features tend to be
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collections of sharp edges surrounded by smoother skin regions. This means that

within the regions found in Step 5, each feature will be centered at the center of the

largest cluster of edges found within that region.

We perform these calculations by defining regions Ri(x, y) as found in Step 5

taking binary values determined by the edge map found in Step 3. The center of

masses can then be found by taking

C
(x)
i =

∑
y∈Ri

∑
x∈Ri

x ∗Ri(x, y)∑
y∈Ri

∑
x∈Ri

Ri(x, y)
(3.10)

C
(y)
i =

∑
y∈Ri

∑
x∈Ri

y ∗Ri(x, y)∑
y∈Ri

∑
x∈Ri

Ri(x, y)
(3.11)

where C
(x)
i and C

(y)
i are the x and y components of the center of mass Ci of

region Ri.

3.3.7 Step 7 - Remove Outliers

The edges in each feature region will eventually be turned into a feature mask.

Before we can do this we eliminate all outlying edge clusters that are more likely to

be blemishes than part of the features. The same process is used for the eyes, nose

and mouth regions but for the mouth we are able to use one additional classification

parameter. Whereas in the eye and nose regions there are often circular edge clusters

due to the iris or nostrils that can resemble those of circular blemishes, we can expect

the edges that define the mouth to be composed primarily of continuous lines (see

Figure 3.8). We can therefore assume that any edge cluster coming too close in
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form to a circle will with high probability be a blemish region. To determine this

measure of similarity we use the region’s eccentricity, the measure of how much any

conic section deviates from being circular defined as follows:

ε =

√
1− b2

a2
(3.12)

where a is the length of the semi-major axis and b that of the semi-minor axis of

the ellipse that has the same second-moments as the edge region. The value ranges

between 0 and 1, with 0 representing a perfect circle and 1 a line segment.

The full process is carried out as follows:

1. Build a list of all connected regions in the edge map and calculate their areas

aj and centroid locations cj of each of them.

2. Calculate the weighted areas ãj by dividing by the distance between each cen-

troid and the center of mass Ci of the region Ri that contains the component.

ãj = aj ∗
1√

(C
(x)
i − c

(x)
j )2 + (C

(y)
i − c

(y)
j )2

(3.13)

This gives greater weight to edge regions closer to the region’s center of mass.

3. Remove from the list all regions with ãj <
s(h+w)

2
where h and w are the face’s

height and width and s is a customizable sensitivity parameter.

4. For the mouth region, we instead remove from the list all regions smaller than

the larger value of ãj < s ∗ (h+w) ∗ 2 but enact an additional constraint that
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(a) Initial Feature Edges (b) Removed Outliers

Figure 3.8: Comparison of feature edge maps before and after removing outliers

the region must also have an eccentricity of ε < .9

3.3.8 Step 8 - Build Feature Mask

Once the final feature edges have been found we use them to build a full feature

mask of the entire feature regions that we want to preserve against alteration by

the future blemish removal process. We do this by building a binary mask from the

edge map seen in Figure 3.8 and circling each pixel contained therein with a circle

with initial radius proportional to the size of the inputted face and dropping off

proportional to distance from the feature’s center of mass. For each pixel:

ri = round( w
80

)− 1

rf = round(ri(1− d
w

))

(3.14)

where w is the width of the face, d the Euclidian distance between the pixel and

the center of mass, ri is the initial radius size and rf is the radius with the drop-off

due to distance. The point of this drop-off is so that we fill as much of the interior

30



(a) Initial Circled Edges (b) Final Mask

Figure 3.9: Comparison of Feature Mask before and after filling holes
and circling edges

of the feature region as possible while at the same time minimizing the amount of

skin beyond the actual outermost feature-edge that we count as part of the feature.

To ensure no gaps remain within the eye and mouth regions where edges may

have been more sparse, we fill any holes left in the resulting binary mask. Finally,

to eliminate any blemish regions apart from the features themselves that may have

made it through the initial Remove Outliers step we again build a list of connected

components and this time eliminate any with an area of less than h∗w
400

. The results

of this step are shown in Figure 3.9
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Chapter 4

Creating the Skin Mask

While the feature mask is sufficient for showing us where not to search for

blemishes, we still must build a skin mask to isolate the region where we should

search.

We could just use the inverse feature mask combined with the face region

from the original face detection, but that only gives us a rectangular region not

fitted to facial contours and often clipping out portions of the skin. This is therefore

insufficient for creating an accurate skin mask. It is, however, still useful.

The first method that we tried for extracting the skin map was to compare

the RGB value for each pixel to the average value over the non-features region. To

make sure that we did not get the background skewing our averages we made use

of the recognized face region, in this case not caring that it clipped out part of the

face because it still gives enough skin samples to get an accurate average.

Once we found the mean RGB value, we calculated the Euclidian distance

between this value and each pixel in the image. We then classified each pixel as

either skin or non-skin based on an empirically determined threshold distance value.

This method worked fairly well but sometimes misclassified shadowed regions

of the face as non-skin pixels due to the darker values deviating too much from the

average brighter ones.
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(a) Skin Map (b) Final Skin Map

Figure 4.1: Plot of the raw skin map and the result of combining it with
the feature mask from Chapter 3

To address this issue we again turned to the reflectance map used in the

previous chapter which already subtracted out the gradual changes in illumination.

Using the reflectance values for calculating the average and distances gives us a more

accurate result.

As seen in Figure 4.1 however using this method alone would not be suitable

for feature extraction.

Combining this result with our feature mask produces the skin map which we

then search for blemishes.

Rather than just using a simple thresholding value to determine skin regions,

it would be possible to use a graph segmentation algorithm such as Grab-Cut (as

used by [3]. However, in addition to greatly increasing the computational complex-

ity, it was determined by Pierrard and Veter [4] that while such a method would
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generate slightly less scattered regions with smoother boundaries, it would also cut

off large numbers of pixels in shaded regions. For our purposes, smoothness is an

irrelevant issue whereas gaps in the skin-map could be highly detrimental. One final

method that we attempted to use was that of texture segmentation, again based on

the work Pierrard and Vetter [4] (and also Efros and Leung [18]). This worked by

taking swatches of skin from easily identifiable cheek regions and using a texture

segmentation algorithm to identify all other areas in the image with the same tex-

ture, which would generally find the rest of the skin regions. In our test images,

however, given that they tend to start with extremely bad skin in the first pace

it turned out that that affected the texture enough to render the method mostly

ineffectual.
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Chapter 5

Blemish Detection

5.1 Overview and Prior Research

Once we have a working mask that leaves us with just the skin region, the

next step is to then figure out which areas have a smooth, clear skin tone and which

could use some improvement. While there has been a fair amount of research done

into the field of identifying prominent facial blemishes such as large moles or scars,

this has primarily been carried out solely for the purpose of improving existing facial

recognition techniques. As such, the existing methods only look for very large, clear

marks that would appear across a variety of photos and lighting conditions and be

less prone to changing with time. They also need to be able to distinguish between

different marks and be able to classify and store the location and appearance of

each one. Additionally, when in doubt these techniques tend towards discarding a

potential blemish due to the potential small reduction in recognition accuracy being

less costly than a false positive.

Park et al. [2] used ASM combined with a commercial SDK to extract facial

features followed by a Laplacian of Gaussian blob detector with a fairly high thresh-

old to identify blemishes. They then classified and stored each mark according to

six different categories based on morphology and coloration which they then used

in a face matching database.
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Ramesha et al. [3] used a Grab-Cut image segmentation technique to isolate

the skin from features and background and a normalized cross-correlation (NCC)

matching with a complement of Gaussian filter mask to get mole candidates. Mole

candidates were accepted or rejected according to a threshold value based on mole

size, darkness and uniqueness with respect to its surrounding region.

Pierrard and Vetter [4] used a combination of building a 3D Morphable Model

of the face and grayscale texture recognition to extract facial features and skin

regions. They then used NCC matching with a Laplacian of Gaussian filter mask to

determine blemish candidates. These candidates were then kept or discarded based

on a saliency measure calculated by determining how unique that type of mark was

to the surrounding region.

Cho and Freeman [16] detected moles from within a hair-covered skin region

on a human arm by using color thresholding to isolate skin regions, a Difference

of Gaussian filter to determine mole candidates and then a trained Support Vector

Machine classifier to identify the actual moles.

Barnes et al. [17] were able to detect blemishes on the skins of potatoes with

90% accuracy by using statistical information based on color and texture of hand

labeled blemish regions to build a classifier based on an adaptive boosting algorithm

(AdaBoost).
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5.2 Our Algorithm

Unlike mole-extraction algorithms used for facial recognition where the goal is

to extract only prominent features unlikely to change or be corrupted by noise, our

aim is to improve skin tones by eliminating any blemishes or markings on a image-

by-image basis. Our goal is to develop a technique that does not just eliminate

prominent blemishes surrounded by patches of clear skin. Instead, we aimed to

isolate any aberrations or abnormalities that caused a deviation from the ideal,

perfectly smooth skin tone and to eliminate them as seamlessly as possible.

We started off using a Circular Hough Transform [34] to identify all circles

within the skin region, and thus the majority of the blemishes, but it turned out

to be very sensitive to varying input parameters as well as miss certain blemishes

that were atypical in appearance. Similarly, training a SVM classifier proved to be

inaccurate based on the extreme variation in size, shape and coloration of potential

blemishes as well as large potential variance in subjects’ skin-tone.

5.2.1 Step 1 - Blob Detection

Similar to Cho and Freeman [16] and Park et al. [2], we used a Laplacian

of Gaussian (LoG) blob detector as the first step to identify any potential points

of interest. When convolving an m × n input image I(x, y) image with a LoG

filter with standard deviation σ, it produces an m×n output image B(x, y, σ) with

maximum values corresponding to the size of σ. Rather than just choosing specific

σ values based on our input face size and the expected size of individual blemishes,
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we instead choose to detect blobs over an entire scale space, building a m × n × p

matrix B(x, y, σk) shown as follows:

B(x, y, σk) = σ2
k 52 G(x, y, σk) ∗ I(x, y), k = 1, 2, · · · , p, (5.1)

with σ2
k 52 G(x, y, σk) being the scale-normalized Laplacian of Gaussian operator

and σk = kσ0 taking p values based on an initial value of σ0 =
√

2.

Unlike Park et al. [2], we do not care about storing the precise size and location

of each individual blemish, instead only needing to build a map of which pixels to

paint over. We therefore immediately simplify this result by taking the maximum

value of B over every scale at each pixel location, giving

Bmax(x, y) = max
σ

B(x, y, σk) (5.2)

This produces a matrix whose magnitude at each pixel location (x, y) corre-

sponds to the strength of the blob centered at that point.

5.2.2 Step 2 - Thresholding and Dilating

As seen in figure 5.1(a), the raw plot of Bmax includes the entire image, not

just the skin regions found earlier, and even in those areas it is far too sensitive

in identifying the blobs. To address the first issue we apply the skin mask found

in Chapter 3, producing 5.1(b). To address the second, we introduce a threshold-

ing value ρ proportional to a percentage of the maximum blob intensity found in
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Bmax(x, y)

B̌max(x, y) =


1 : ∀(x, y)s.t.Bmax(x, y) > ρ

0 : ∀(x, y)s.t.Bmax(x, y) < ρ

(5.3)

where the value ρ = 1
5
max
x,y

Bmax(x, y) was experimentally determined to elimi-

nate most of the noise while leaving behind the important blemishes.

The result of this thresholding process is a binary mask taking values in the

centers of most of the blemishes, where the blob detector output was strongest, but

with the outer edges of the blemishes having been set as zero due to their values

being below the threshold, as seen in 5.1(c). To adjust for this and make sure that

the entire blemish area is covered we perform a dilation operation on the thresholded

image.

The grayscale dilation is defined as:

(B
⊕

A)(x, y) = max [B(x− x′, y − y′) + A(x′, y′)]|(x′, y′) ∈ DA, (5.4)

whereA is a structuring element (in this case a sphere with radius = (faceheight+

facewidth)/200) and B is the Bmax as defined in Equation 5.3, DA is the domain

of A.

As seen in 5.1(d), this dilation operation increased the areas of the larger

blobs more than the smaller ones which is perfect for covering the outlying areas of

blemishes.
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After dilating, we again perform an ANDing operation with the compliment

feature mask found earlier to ensure that we did not accidentally cover any of the

important features in the expansion.

5.2.3 Step 3 - Reject Bad Candidate Blemish Regions

The B̌max(x, y) found in the previous step gives us all of the potential blemish

regions. Based on the imperfect nature of the skin and feature extractions, this will

occasionally include edges of the face, portions of the background or small parts of

facial features. The next step in our algorithm attempts to use the size and shape of

the candidate regions to eliminate all of the suspect blobs. This is done in a manner

somewhat similar to the Remove Outliers step in section 3.3.7.

Examining our test images to see what type of false candidates can occur

showed certain similarities between most of the bad outputs. First, because they

tend to be on the edges of the face or clothing they tend to be long and thin regions

as opposed to the circular shape of most blemishes. Second, these edges are usually

far larger than individual pimples would be. Finally, third, because they are on the

edges of the face or even further out they are usually located relatively far from the

image center. We use these three properties to build a classifier for determining if

the blob detector output is a blemish or just some other edge region.

As before, we can use the eccentricity ε to get a measure of how circular a

region is. In this stage, however, there are often long arcs or L-shaped regions

that represent the borders of the face or clothing as seen towards the bottom of
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Figure 5.1(d). Given that the eccentricity is calculated based on the ellipse that

encompasses the region it often will be fooled into thinking that these areas are

actually circular. To deal with these cases we define a new metric that we call the

Fill Measure M as the product of the region’s minor and major axis lengths divided

by the region area.

If we model the typical blemish as a perfectly circular region then this would

give a value of M = (2r) ∗ (2r)/(π ∗ r2) = 4/π. In practice, we have found that

most of the long L-shaped or curved edge regions tend to have a Fill Measure value

of > 3

The classifier now works as follows:

1. Get a listing of all the connected regions in B̌max(x, y) along with their centroid

locations ci, areas ai, eccentricities εi, and major and minor axis lengths ki

and li respectively.

2. Define weighted areas ãi for region i as the product of the unweighted area ai

and the ratio of distance from image center Cface to region centroid cj and

the total height of the face h.

ãi = ai ∗

√
(C

(x)
face − c

(x)
i )2 + (C

(y)
face − c

(y)
i )2

h
(5.5)

3. Define B as the set of all connected regions with weighted areas ãi > (h+w)/5

where h and w are the face height and width. These will be removed as long as

they are not too circular, which would indicate a clumping of pimples rather
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than a long edge.

4. Calculate the fill measure Mi for each connected region. If Mi < 2.5 and

εi < .94 then remove region i from B.

5. Remove all remaining regions in B from B̌max(x, y)

i c
(x)
i c

(y)
i ε Mi

1 12.240 314.736 0.985 1.370

2 24.725 297.024 0.983 1.337

3 26.156 164.928 0.963 1.311

4 33.330 315.176 0.990 1.531

5 46.000 356.842 0.911 3.494

6 121.580 324.162 0.980 1.681

7 126.144 281.694 0.806 1.656

8 144.214 232.643 0.677 1.740

9 186.669 357.629 0.931 2.653

10 198.634 323.435 0.972 1.412

11 207.647 305.912 0.990 1.386

Table 5.1: Region properties for all the large regions in the image, with the bolded
numbers being above or below their respective thresholds

As seen in Figure 5.2 and Table 5.1, there were a total of 11 big regions found

initially as part of B. Of those, only regions 5, 7, 8 and 9 all had an eccentricity of

lower than .94 with the rest being long lines of the ear, the jaw and the shirt. As

described earlier, however, there were two regions (5 and 9) that seemed to have a

circular eccentricity but upon closer examination are still just edge regions with an

L-shape. These are easily accounted for by examining the fill measure which shows

a drastic jump by each. We therefore only remove regions 7 and 8 from B. This

is as desired because upon visual inspection we see that those two regions look like

they easily could just be clumped blemishes.
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(a) Raw LoG (b) LoG Skin Mask

(c) LoG Thresholded (d) LoG Dilated

Figure 5.1: Depiction of initial blob detection, masking, thresholding and dilating

43



Figure 5.2: Binary blemish map with the lighter colors representing the
large regions and the medium grey those that are circular enough to not
be eliminated
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(a) Skin Map (b) Final Skin Map

Figure 5.3: Comparison of our original example image and the same
image with overlaid identified blemish regions.
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We can see from Figure 5.3 the advantage of our blob-based approach over a

machine learning or pattern recognition based classifier approach such as that used

by Barnes [17]. Rather than just looking for prominent blemishes, we expand our

search to include any aberrations in smooth skin tone that would detract from the

aesthetic appeal. Even compared against the others like Peirrard [4], Raja [3] or

Park et al [2]. who also used a LoG detector, because we don’t care about any

individual classification of the blemishes we are able to use far finer detail in our

search.
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Chapter 6

Inpainting

6.1 Introduction

6.1.1 Inpainting Overview

The term ”inpainting” originally referred to times when painting would get

cracked or damaged and an artist was hired to go through and physically paint over

the defects. This would sometimes even extend to modifying the painting in small

ways such as adding or removing objects.

In modern times inpainting essentially refers to the same thing, just instead

of happening in the physical realm it usually applies to digital images or video.

Oftentimes when an image or video is transmitted there will be some blocks of data

that are lost. Rather than just displaying them with the missing portions, techniques

have been developed to automatically fill in the holes based on information taken

from the rest of the image. Or, instead of image blocks being lost, a user will

sometimes want to eliminate an object from a photo and have the background be

automatically and seamlessly filled in (see Figure 6.1).

Given that we want our algorithm to be able to run smoothly and quickly on

batches of photos of all sizes, in this section we will compare examine four separate

inpainting techniques ranging from computationally simple to complex and deter-
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mine their relative advantages and disadvantages. The first two, Iterative Blurring

and Interpolation, utilize mathematical combinations of existing pixels to come up

with best-guess values for the missing data. These techniques usually reproduce the

overall colors fairly well but by their very nature tend to produce results without

any high frequency information.

The second two, Texture Synthesis and Exemplar-Based Inpainting, replace

the missing pixels by directly sampling from the most likely portions of the uncor-

rupted image using various different filling orders. Because of this direct sampling

these methods are capable of propagating all of the texture and edge information

and therefore tend to produce better results. They do however tend to be far more

computationally intensive than the first two techniques.

It should be noted that given that the end goal of inpainting is to produce a

final result that looks best to human perceptions, it is very difficult to formulate a

mathematical representation for the quality of the inpainted outputs. Attempting to

use MAD (Mean Absolute Difference) between the inpainted images and either the

original or a manually fixed-up version did not produce results in line with human

evaluations.

Finally, unlike the general case where an inpainting technique would have to

be robust enough to fill in any number of pixels based on any type of background,

our requirements are somewhat more narrow. Ideally, we will always be filling in

small holes with a smooth skin texture. In practice, because of the imperfect nature

of our blemish detection it can sometimes still turn up some false positives and

therefore we want our inpainting to be robust enough to seamlessly cover up any

48



Figure 6.1: Inpainting Example

such mistakes. Nonetheless we will still be taking some advantage of this limited

scope in several of the techniques that we cover.

6.2 Inpainting Techniques

6.2.1 Iterative Blurring

The simplest technique that we analyzed is that of iterative blurring. Useful

more for repairing images corrupted by noise than for filling in full objects, the

technique nonetheless produces surprisingly good results for its simplicity.

To start, we take an image and corrupt it with 70% noise (Figure 6.2). We

then perform the following steps to try and repair it:

1. Construct a mask Ω made up of noise locations in the image Ψ
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2. Fill the hole locations with a medium-intensity value (this just helps to speed

up convergence)

3. Define a blurring filter b =

(
1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

)
4. Convolve b with Ψ

5. Use Ω to restore the undamaged pixels in Ψ to their original, unblurred values

6. Repeat until the MAD (Mean Absolute Difference) between the original and

damaged image converges

6.2.1.1 Blurring Results

As seen in Figure 6.3, the MAD seems to converge in between ten and twenty

iterations to produce what looks to be just a blurred version of the original uncor-

rupted image.

Applying the same technique to another example of our blemish detection

algorithm, shown in Figure 6.4, it can be seen that while it does seem to converge at

least somewhat, it takes far longer to do so. This is as expected given that the holes

in the image due to removed pimples are far larger than those corrupted portions of

the cameraman image. It therefore takes longer for the blurring to fully fill up the

gaps.

Analyzing the resulting image we find that it seems to have worked fairly well

to cover up the small blemish regions but the larger regions remain fairly blotchy

as well as a bit smoother than the actual skin tone in the surrounding areas.
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Figure 6.2: Original Cameraman Image (left) Image Corrupted with 70% noise
(right)

Figure 6.3: Iterative Blurring Result After 50 Iterations

Additionally, while it works decently well with this image where all the blem-

ishes are in the middle of skin regions, were we to have one where the blemish was

at the edge then the blurring would blur in part of the background. Even if we

restricted the blurring to pixels included in the skin map this might still make it

take an extremely long time for some of the regions to get filled in.
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(a) Original Image (b) 10 Blur Iterations

(c) 50 Iterations (d) 150 Iterations

Figure 6.4: Comparison of varying levels of iterative blurring
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6.2.2 Interpolation

Similar to blurring, with interpolation we attempt to mathematically calculate

pixel values to use to fill the holes based on the values at the edges of the hole region.

We do this by formulating a partial differential equation (PDE) that is assumed to

apply in the region to be inpainted, with boundary values taken from the perimeter.

To simplify the calculation the PDE is then approximated using finite difference

methods and a large linear system of equations is solved for the missing elements in

the array.

To give a simple example of this technique [35] consider the following 3x4

matrix of values:

A =


0 0 0 0

1 NaN NaN 4

2 3 5 8

 (6.1)

For an equally spaced grid, we can approximate the Lagrange’s equation using finite

differences to partial derivatives, implying that any element in the grid can be

replaced by an average of its four neighbors. This gives us:

A(2, 2) = (0 + 3 + 1 + A(2, 3))/4 (6.2)

A(2, 3) = (0 + 5 + A(2, 2) + 4)/4 (6.3)

Solving this simple system of equations gives us the following values (plotted

in Figure 6.5):

A(2, 2) = 1.667 (6.4)
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A simply inpainted surface

Figure 6.5: 3D Interpolation Example

A(2, 3) = 2.667 (6.5)

This same technique can be expanded to fill much larger gaps.

6.2.2.1 Interpolation Results

Figure 6.6 shows what happens when we use interpolation to fill in the holes in

our face image. This result seems to be fairly similar to that obtained through the

previous blurring method but the colors are slightly more accurate and the results

blend in better. It is also far less computationally intensive than the repeated

blurring operation.

To illustrate how this technique would work at filling in larger regions we show

Figure 6.7. Here it becomes obvious that while the overall coloration is maintained

fairly well, all high frequency information such as edges and textures fail to propagate

inwards leaving a very blurred looking result.

Overall, interpolation still suffers from most of the same problems of the blur-

ring. It bleeds color along the edges, does not maintain contours and loses all high
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(a) Original Image (b) Interpolated Image

Figure 6.6: Comparison of the original face image with an interpolated result

frequency texture data. However, in cases where the inputed image is of a relatively

low resolution such that the pores of the skin are not individually distinguishable

(i.e. the smooth areas of the skin are actually just smooth color transitions) then

this method could be a viable option should computation time be an important

concern. This is due to the fact that almost all the regions that we will need to

inpaint can be assumed to be comparatively small.

6.2.3 Texture Synthesis

The fundamental problem with the previous two techniques is that they at-

tempt to recreate pixel values based on a mathematical combination of surrounding
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(a) Original Bungee Image (b) Interpolated Bungee image

Figure 6.7: Comparison of the original face image with an interpolated result

intensities, thus introducing a blurring effect and essentially low-pass filtering the

fill regions. To get around this, Efros and Leung developed a completely different

approach based on replacing hole values with values directly sampled from elsewhere

in the image [18]. Although initially designed for texture synthesis, this technique

provides a very elegant solution to the inpainting problem.

We begin by modeling the texture as a Markov Random Field (MRF). This

is equivalent to making the assumption that the probability distribution of the

brightness values for a given pixel is dependent solely on the values of the pixels

in a close window around the pixel and independent of the rest of the image. This

window is generally a square region of a size selected by the user to represent the

largest regular feature of the texture. The algorithm then works as follows.
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If P is a pixel at the image hole boundary and Q is a pixel filled with valid

information, we select the value of pixel Q such that Ψ(Q), or the pixels in the

window around Q, is most similar to the window Ψ(P ). This can be expresses as

an optimization problem:

Output(P ) = V alue(Q), P ∈ Ω, Q /∈ Ω, Q = argmin(d(Ψ(P ),Ψ(Q))), (6.6)

Where d(Ψ(P ),Ψ(Q)) is the Sum of Squared Distances (SSD) between the windows

Ψ(Q) and Ψ(P ) (comparing only valid pixels):

d(Ψ1,Ψ2) =
∑
i

∑
j

|Ψ1(i, j)−Ψ2(i, j)|2, (6.7)

where the indices i, j span across the selection windows. In practice, we generally

find multiple patches that are fairly similar in SSD and will therefore choose our Q

randomly from amongst them (see Figure 6.8). The algorithm fills in pixels at the

hole boundary in an onion-peel fashion, starting at the outermost layer all around

and working inwards from there.

6.2.3.1 Texture Synthesis Results

Applying this algorithm to our test images produces Figures 6.9-6.10. The

result in the first image is far better than that achieved through interpolation, with

the result looking like it may have actually come from a real photograph. There

are some small artifacts (some trees over the shed and black spot in the water) but
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Figure 6.8: Overview of Efros and Leungs algorithm (figure taken from [18]). Given
a sample texture image (left), a new image is being synthesized one pixel at a time
(right). To synthesize a pixel, the algorithm first finds all neighborhoods in the
sample image (boxes on the left) that are similar to the pixels neighborhood (box
on the right) and then randomly chooses one neighborhood and takes its center to
be the newly synthesized pixel.

overall the textures have been repeated to form a fairly seamless inpainted image.

Similarly, for the face images most of the hole regions have been painted in

perfectly. The only problems are around the upper hair regions where some of the

edges of the hair have been misclassified as blemish regions and inpainted. Overall

the gaps are not very noticeable but upon close examination it can be seen that

some of the tips of the hair have been painted in with skin textures instead of hair

While this technique is a vast improvement upon the first two discussed, it

still suffers from the following three problems:

1. The high computational cost of an exhaustive search.

-We are able to mitigate this difficulty through modifying Efros and Le-

ung’s original algorithm. Whereas they have no prior knowledge as to the form

of the the image being inpainted and therefore must search through the entire

thing to find a matching texture patch, we know that we want the blemish

region to look like the surrounding skin. We can therefore restrict our search
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(a) Original Image With Mask (b) Texture Synthesized Image

Figure 6.9: Texture synthesis in a large block

window to a fairly small area surrounding the blemish.

2. It requires manual selection of a window size corresponding to the largest

expected texture element.

-This is circumvented by using a heuristic such as selecting a window equal

to half the size of the largest blemish

3. The onion-peel filling order sometimes has problems with properly propagating

contours in the image

-This issue will be addressed with the next technique, Exemplar Based

Inpainting
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(a) Inpainted Image (b)Original Image

(c) Blemish Mask (d) Inpainted Image

Figure 6.10: Two examples of images inpainted using texture synthesis
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6.2.4 Exemplar-Based Inpainting

The work of Efros and Leung was later improved upon by Criminisi et al. [19]

in two major fashions. First, they replaced the onion-peel fill method by introducing

a priority-based filling order that fills in pixels along image contours before flat

regions. This allows them to correctly inpaint boundaries that otherwise would have

become corrupted with the original formulation. Second, they greatly improved the

speed of the algorithm by copying whole patches of pixels rather than just one pixel

at a time. The algorithm works as follows.

Define a source region φ and target fill region Ω with boundary δΩ (see Figure

6.11). Choose a pixel p along the boundary with surrounding window Ψp (with

window size still chosen by the user). We then compute the fill priority for that

pixel with the following equations:

P (p) = C(p)D(p) (6.8)

C(p) =

∑
q∈Ψp

⋂
Ω̄ C(q)

|Ψp|
(6.9)

D(p) =
|∇I⊥p · np|

α
, (6.10)

where P (p) is the fill priority, C(p) is the confidence term, D(p) is the data term, np

is the normal vector to the fill region boundary, α is a normalization factor (usually

255 for standard images) and ∇I⊥p is a vector in the direction of the image contour.

The confidence term C(p) can be viewed as a measure of the quantity of reliable

information surrounding the pixel p. The goal is to try and first fill in patches that
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Figure 6.11: Criminisi Notation Diagram (figure taken from [19]) Notation diagram.
Given the patch Ψp, np is the normal to the contour δΩ of the target region Ω and
5I⊥p is the isophote (direction and intensity) at point p. The entire image is denoted
with I.

have the greatest number of pixels in their window either from the original image or

at least already filled in. This automatically targets corner or thin tendril regions.

This is balanced out with a data term D(p). The data term represents the

strength of the isohpote (region of uniform intensity) flowing into the fill region.

Thus, when there is a strong contour flowing perpendicularly into the fill region this

term will have a large effect on the priority and cause those pixels to be filled in

first.

The steps of the algorithm are as follows (taken from [19]):

• Extract the manually selected initial from δΩ0

• Repeat until done:

1. Identify the fill front δΩt. If Ωt = ∅, exit.

2. Compute priorities P (p) ∀p ∈ δΩt

3. Find the patch Ψp̂ with the maximum priority, i.e. Ψp̂|p̂ = argmaxp∈δΩtP (p)
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4. Find the exemplar (best fit patch) Ψq̂ ∈ Φ that minimizes d(Ψp̂,Ψq̂)

5. Copy image data from Ψq̂ to Ψp̂.

6. Update C(p) ∀p |p ∈ Ψp̂

⋂
Ω

6.2.4.1 Exemplar-Based Inpainting Results

Looking at Figure 6.12, we see that the Exemplar-Based Inpainting result

for the bungee photo is even better than that achieved by the texture synthesis

algorithm. The linear structure in the middle is propagated very smoothly with

only a small amount of tree textures overlaid. The two plots at the bottom of the

figure represent the confidence and data terms used for determining fill priorities. It

is apparent how the confidence is generally highest by the outer edges and that the

bottom portion of the data term is very weak. This makes sense given that there

are few contours in the water region and the most centered at the building in the

middle.

In Figure 6.13 we see a the side-by-side comparison of the previous texture-

based inpainting result and the exemplar-based one. In the majority of the image

where the blemishes fall in the middle of smooth-toned skin regions with no edges

to propagate the two algorithms perform almost identically. Towards the top hair

regions, however, it is possible to start to see some divergence.

Looking at Figure 6.13(d) we see some subtly brighter colored regions indi-

cating the strong contours of the hair tendrils flowing perpendicularly into the fill

region. This causes those areas to be filled in first, keeping the edges sharp. Indeed,
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a close examination of Figures 6.13 (a)-(b) shows that where in (a) the hair strands

seem a bit blurred and rounded off at the edge, in (b) they are propagated onwards

and sharply terminated in a manner more closely resembling the original image.
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Figure 6.12: Exemplar Inpainting Bungee Results
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(a) Efros Texture Inpainted Image (b)Exemplar-Based Inpainted Image

(c) Confidence Term Plot (d) Data Term Plot

Figure 6.13: Comparison of the purely texture-based result and the
exemplar-based result along with data and confidence plots

66



Chapter 7

Conclusion and Future Work

In this thesis, we presented a start-to-finish approach for isolating the blem-

ishes in the face region of an inputted photograph and smoothly filling them in.

We began by exploring various face detection methods, settling on using the Viola

Jones detector [5].

We then explored various existing methods for isolating facial features, de-

voting particular attention to that of Active Shape Modeling (ASM) [15], only to

determine that even ASM did not give accurate enough contour-tracking to suit our

purposes. We then presented our own algorithm for extracting the features. We

started off by maximizing the contrast between the skin, blemishes and features by

equalizing the image and adjusting for illumination by computing the reflectance.

We then used a Canny edge-detector [33] combined with geometric knowledge of rel-

ative feature positioning to identify edge-clusters belonging to each feature. These

clusters were then trimmed down to exclude any edges with a low probability of be-

longing to a main feature based on positioning and various morphological properties.

Circling each edge and closing off holes then left the final feature mask.

After using thresholding with the reflectance values of known skin regions to

isolate the remaining skin from the background we then turned our attention to

detecting the blemishes themselves. We used a Laplacian of Gaussian blob detector
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across a full scale-space of potential blemish sizes to identify all potential blem-

ishes. Thresholding and dilation operations were then carried out to remove the less

prominent results. Finally, morphological and position properties were again used

to reject any blobs found that were unlikely to be blemishes.

In the last portion of the thesis we discussed four different methods for in-

painting blemish regions once they were found. We determined that interpolation

could be useful for minimizing computation time in specific instances but that the

overall highest quality result was produced by a modified version of Criminisi et

al.’s exemplar-based inpainting technique [19] that uses texture samples from the

surrounding image regions to fill in missing pixels, prioritizing contours in the pixel

fill-order.

7.1 Future work

Right now the entire algorithm is designed to operate almost as well on

grayscale images as it does on color. This is beneficial when dealing with grayscale

inputs, but most of the time the input will be a color image. Taking into account

the added color information should be able to increase the overall performance by a

reasonable margin. One way to do this would be to combine edge and LoG data for

all three channels, weighting the blue channel for the blemish detection stage and

the red channel for the feature extraction.

As seen in Figure A.2(d), one issue that sometimes surfaced in our testing

was the blemish detection improperly counting parts of the ears as blemishes. This
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could be dealt with by adding the ears to the feature map using either more geo-

metric properties (albeit with some difficult due to frequent occlusion and variance

in shape), an object detector, or some combination thereof. A simple solution could

be to just discard any smaller connected regions in roughly the correct positions

from the skin map, as it seems from our testing that the ears tend to show up as

separate regions.

Right now the algorithm works very well across varying test subject ethnicities

and lighting conditions and even seems to work on people with glasses, but as of

right now it is not configured to deal with anything but a frontal pose. Pose could

be accounted for by calculating relative eye size and positioning similar to that used

by Sohail and Bhattacharya [29]. Once the pose is known the rough locations of

the other facial features can then be calculated and the rest of the algorithm would

work without a problem.

Other improvements that could be experimented with are downsampling at

the beginning to detect prominent edges such as for the features or face border or

using a LoG with a very high starting radius to detect initial feature locations.

Overall, we have developed a start-to-finish facial blemish removal algorithm

that, as is, could be used to save thousands of man-hours of work in image editing

programs.
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Appendix A

Experimental Results
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(a)

(b)

(c)

(d)

Figure A.1: Algorithm outputs for a variety of input images
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(a)

(b)

(c)

(d)

Figure A.2: More algorithm outputs for a variety of input images
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