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 Research described in this thesis examines the surface and bulk behavior of 

analytes in food contact polymers.  Irganox 1076 (IN1076) and Irganox 1010 

(IN1010), phenol containing species often used as antioxidant additives in food 

packaging polymers, have both hydrophilic and hydrophobic functional groups.  

Consequently these additives are likely to absorb to surfaces where their free energy 

is minimized.  Surface pressure isotherms show that repeated compression of films 

formed from IN1076 and IN10101 at the air/water interfaces leads to continued 

irreversible loss of molecules and that on a per molecule basis, this loss is more 

pronounced for IN1076 than for IN1010.  Differences in the surface properties of 

these two antioxidant additives are interpreted based on differences in molecular 

structure.  Surface specific vibrational measurements of these organic films show 

very little conformational order, implying that even when closely packed, both 

antioxidant species have little affinity for forming highly organized domains.   



  

 A second study examined the temperature dependent permeation of different 

dichloroethylene (DCE) isomers through commercially available low density 

polyethylene (LDPE).  Initial experiments measured migration rates of DCE isomers 

from neat liquids through the LDPE film into Miglyol.  The isomers consisted of 

1,1-dichloroethylene (1,1-DCE), cis-1,2-dichloroethylene (c1,2-DCE) and 

trans-1,2-dichloroethylene (t1,2-DCE).  Despite having equivalent masses, the three 

isomers migrated through LDPE with rates that varied by up to a factor of three.  

Migration data were used to calculate permeation coefficients.  Permeation 

coefficients did not correlate with calculated molecular sizes.  The temperature 

dependence of the permeation coefficients was used to calculate effective permeation 

activation energies.  Subsequent experiments examined DCE migration through 

LDPE from dilute solutions (1% v/v) of c1,2-DCE and t1,2-DCE isomers in Miglyol.  

The permeation rates slowed at lower concentrations with the permeation coefficient 

of c1,2-DCE decreasing by an order of magnitude.  The permeation activation energy 

increased, by factors of ~3, for both isomers.     
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Chapter 1 Introduction 

Nearly every American uses food contact polymers in one form or another 

during daily life.  They will drink from plastic bottles or a Nalgene thermos.  Lunch is 

packed in Tupperware or wrapped in plastic wrap.  A takeout meal is served in a 

plastic bowl with a plastic drinking cup.  Our exposure to plastics has increased 

dramatically over the years, and in turn, more than 30% of all plastic used in the U.S. 

now gets recycled.1  Some of these recycled products initially were food contact 

polymers that were recycled back into food contact polymers.  Other recycled plastics 

first served to package non-consumable products.  The widespread use of new and 

recycled plastics, especially plastic packaging, raises concerns regarding the 

migration of additives and contaminants from plastics into the materials they 

surround.  Increased use of plastics has led to high profile reports regarding safety of 

the nation’s food supply.2-5  This thesis will discuss two main concerns salient to the 

subject of secondary substances in food contact polymers.  The first section will 

examine the surface behavior of common antioxidant additives used to stabilize food 

contact polymers.  The surface behaviors of antioxidant additives are measured at the 

air/water interface through the use of surface tension measurements and vibrational 

sum frequency spectroscopy (VSFS, a surface specific non-linear optics technique).  

The second section will explore questions related to pollutant migration through food 

contact polymers.  These later studies probe the role played by molecular structure 

(rather than simply molecular mass) in controlling migration rates.  Migration rates 

are measured using both Raman spectroscopy as well as headspace gas 

chromatography with mass spectrometry detection (GC-MSD).  Migration through 
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polymer films appears to be governed primarily by analyte solubility in the polymer 

film and molecular size.   

All polymers used for food packaging contain a wide variety of additives.  

Some additives absorb UV light.  Other additives act as antimicrobial agents.  A third 

type of additive is intended to prevent polymer oxidation and degradation.6  

Antioxidant additives fall into different families based on shared structural motifs.  

The functional groups on the additives generally determine their purpose in the 

polymer, as well as the antioxidant mechanisms used by the additives to preserve the 

polymer.  Phenolic antioxidants can be identified based on their sterically hindered 

phenol groups.  Irganox 1010, and BHT (2,6-bis(1,1-dimethylethyl)-4-methylphenol) 

are some sterically hindered phenols, that hinder oxidation by acting as hydrogen 

donors.7  Phenols are the most commonly used antioxidant additives, as shown in 

Table 1.1.  Phosphites, such as Irgafos 168, are another type of antioxidant additive 

that act as hydroperoxide decomposers.8, 9  Phenols and phosphites are usually 

combined as processing stabilizers.10  Together, the phenols and phosphites increase 

the stability of polymers against oxidation during the high heats and pressures 

required for processing polymers from resins into sheets or molds.  Structures of the 

above mentioned antioxidant additives are shown in Figure 1.1. 
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Figure 1.1. Structures of some common antioxidant additives.  

Antioxidant additives are essential components for the plastics industry.  As 

shown in Table 1.1, The United States is one of the primary consumers of antioxidant 

additives.  Typically antioxidant additives are used in combination. As many as three 

antioxidant additives can be used collectively in a given polymer, with additive 

concentrations of 0.05-1% by mass.  This statistic means that the use of phenolic 

additives in 1997 stabilized ~100 million tons of polymer world wide, and ~30 

million tons of polymer just in the United States alone.  Once in polymers, 

antioxidant additives can do one of three things.  If the additives remain in the 

polymer, they can perform their designated function.  However, if additives are 

mobile, they can accumulate at the polymer interface or partition into the food.  

Additives that remain at the packaging food interface can be investigated through 

surface specific techniques at the air/water interface.  The air/water interface serves as 

a mimic for many interfaces of polar/nonpolar boundaries such as polymer/alcohol or 
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polymer/water interfaces.11-14  Due to the widespread use of additives in polymers, 

migration of additives from food contact materials into foodstuffs has become an 

active area of research over the past years.15-25   

antioxidant 

additive type 

North 

America 
Europe 

Asia/ 

Pacific 
Global total 

phenolic 31.4 30.0 36.0 116.4 

organo-

phosphites 
19.1 15.0 21.4 63.5 

thioesters 5.9 5.0 6.4 19.3 

others 1.1 4.0 0.2 7.3 

total 57.5 54.0 64.0 206.5 

Table 1.1. Global consumption of antioxidant additives (in 1000 tons) in 1997
6 

The majority of research into the behavior of antioxidant additives has 

focused on the loss of antioxidant additives from food contact polymers into food 

simulants, as determined by extraction methods, diffusion, and/or partitioning 

coefficients.16, 18, 26-28  Some groups have acknowledged the ability of the solvent in 

contact with the polymer to affect migration, with more polar molecules exhibiting 

higher migration in polar solvents like water.18, 27  Many large antioxidants exhibit 

little migration, due to their large masses and poor flexibility and low mobility.  

Although these migration and partitioning experiments determine the amount of 

antioxidant loss from a food contact polymer, they neglect analyte surface activity 

and adsorption to the interface as another pathway that can deplete antioxidant in the 
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bulk population.  High surface activity of antioxidant additives could lead to 

enhanced population at polymer/aqueous interfaces. Such surface excess, in turn, 

could drive aggregation and “surface blooming,” a term used to describe the 

precipitation of additives in the polymer bulk or at the polymer surface.28, 29  These 

gradients would lead to non uniform diffusion, resulting in unpredictable losses of 

additive from the polymer.   

Chapter three of this thesis focuses on the surface activity of two antioxidant 

additives, Irganox 1010 (IN1010), and Irganox 1076 (IN1076).  Since IN1010 and 

IN1076 have both hydrophilic and hydrophobic functional groups, these additives are 

likely to adsorb to surfaces where their free energy is minimized.  These interfaces 

can include a packaging/aqueous food interface.  Consequences of surface activity 

could lead to reduced antioxidant activity in the polymer itself.   

The two-dimensional phase behaviors of IN1076 and IN1010 films adsorbed 

to the air/water interface are studied using surface tensiometry and surface specific 

VSFS.  A noticeable feature of these two additives adsorbed to the air/water interface 

is the continued irreversible loss of molecules from the film when the film is 

repeatedly compressed and expanded.  Comparing the loss of molecules from IN1010 

films and IN1076 films on a per molecule basis shows a more pronounced loss for 

IN1076.  However, if this loss is scaled according to the number of hydroxyl groups 

on the molecules (four for IN1010, one for IN1076) then this functional group loss is 

equivalent within the limits of experimental uncertainty.  To get a clearer idea of the 

interactions and possible molecular orientation at the air/water interface of the 

IN1010 and IN1076 films, VSFS spectra were acquired.  Polarization dependent 
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spectra show very little conformational order, for both loose and closely packed 

monolayers, implying little affinity for the formation of highly organized domains. 

Additive migration is another area of concern in the food packaging industry.  

These same concerns also apply to the transport of external contaminants through 

food packaging into the food.  The study of external contaminant permeability has 

typically been limited to applications of protective clothing, or chemical waste 

containers.30-32  Saleem, et al. investigated the diffusion of xylene isomers through 

low-density polyethylene (LDPE), with diffusion coefficients of similar values for the 

isomers, with the largest difference in coefficients being ~20%.33  This difference in 

isomer migration is much lower than the results discussed in Chapter 4, which can be 

as large as 100% at some temperatures for molecules that have essentially the same 

size.  This thesis intends to expand the investigation of the effects of molecular 

structure on migration.  The migration barrier in our studies will not be chemical 

protective clothing or waste container. Rather, experiments discussed in this thesis 

examine the migration of different isomers through the commonly used food contact 

polymer LDPE.  Exposure estimates of toxins migrating out of food contact polymers 

are determined typically by using empirical models.10, 34-36  The only property of the 

migrant considered in these models is the molecular weight –structure is largely 

ignored.  The aim of the migration studies is to explore the differences molecular 

structure can have on migration and that models predicting migration solely based on 

molecular weights may need to be amended. 

Chapters 4 and 5 discuss the migration of dichloroethylene (DCE) isomers  

through commercially available (LDPE) into a common fatty food simulant, 
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Miglyol.37-43  It is noted here that both Chapters (4 and 5) are being submitted for 

publication so some repetition may exist.  Miglyol 812 is a fatty acid triglyceride that 

is composed of capric and caprilic acids.  The relative solubilities of the DCE isomers 

in LDPE are discussed in Chapter 2, with cis-1,2-dichloroethylene (c1,2-DCE) being 

the most soluble in LDPE.  Since these molecules are commonly used as refrigerants, 

exposure of food contact packaging to these solutions is possible in the event of 

chemical spills or leaks.  All three isomers have exposure estimates that are regulated 

by the EPA.  Possible side effects of exposure range from minor skin irritation and 

seizures to neurological damage and cancer.44, 45 

Migration of neat DCE liquids through LDPE into Miglyol is investigated in 

Chapter 4.  The migration of DCE through LDPE is quantified through permeation.  

Permeation is a function of both diffusion - how fast an analyte travels through a 

film - and solubility, how soluble an analyte is in a film.  At a single temperature, the 

permeation of the three isomers is markedly different.  Differences in DCE 

permeation rates do not scale with the molecular volume or molecular cross section 

for a given isomer.  Differences in permeation of DCE isomers persisted over a range 

of temperatures.  An Arrhenius analysis of the temperature dependent permeation 

data imply that differences in solubility are responsible for the different transport 

rates.  Collectively, results from these studies show that molecular structure plays a 

significant role in analyte transport through food contact polymers. The results from 

these permeation studies should be considered in the development of more accurate 

migration models to include considerations of migrant properties beyond molecular 

mass.10, 34-36  
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Dilute DCE (1% DCE in Miglyol by volume) investigates how transport 

properties change as a function of migrant concentration.  Chapter 5 discusses the 

dilute transport of c1,2-DCE and trans-1,2-dichloroethylene (t1,2-DCE) in 1% by 

volume solutions in Miglyol migrating through LDPE into clean Miglyol.  The goal 

of Chapter 5 is to determine if the migration properties of neat c1,2-DCE compared to 

neat t1,2-DCE persist at low concentrations when the solubility effects are no longer 

emphasized.  At a single temperature, t1,2-DCE permeates ~3 times faster than 

c1,2-DCE.  Compared to the neat migration results, migration rates decreased at 

lower concentration values.  Typically migration decreases with decreasing 

concentration.46  Temperature dependent permeation studies allowed for an Arrhenius 

treatment to determine a permeation activation energy for dilute migration.  These 

values were higher than those observed for the neat permeation studies discussed in 

Chapter 4. 
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Chapter 2 Experimental 

2.1 Surface Tension Experiments 

2.1.1 Materials 

IN1076 and IN1010 (98.0%, and 99.4% purity, respectively) were obtained 

from Ciba Specialty Chemicals Corp. and used as received. Antioxidant additives 

were dissolved in a hexane (HPLC grade) spreading solvent.  Typical spreading 

solvent concentrations were between 0.7 - 1.0 mg antioxidant additive/mL hexanes.  

IN1010 solutions were sonicated for 5 minutes to facilitate dissolution.  The water 

used in these experiments came from an ultra-pure Millipore, Milli-Q filtration 

system (18 MΩ.cm) and had a measured surface tension of 72.6 ± 0.6 mN/m.  The pH 

of the subphase was ~5.5, meaning that the films themselves should have consisted of 

neutral monomers (assuming a phenol pKa of ~10).1  All measurements were carried 

out at room temperature (23 ± 1oC). 

2.1.2 Isotherm Studies 

A standard Langmuir trough was used for the isotherm studies (300 cm2, 

Nima Technology, 302LL) as shown in Figure 2.1.    A paper Wilhelmy plate was left 

in contact with the water for 3 minutes (to allow the plate to be fully wetted) before 

the tension of the pure water was tested for cleanliness.  No discernable difference 

was observed between isotherms acquired with a paper plate and those acquired with 

a platinum plate.  The water surface was considered pure when the initial tension was 

72.6 ± 0.6 mN/m and the change in pressure (∆Π) was less than 0.5 mN/m for a 

complete surface compression (250 cm2 to 20 cm2 at a speed of 100 cm2/min).  In the 
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event that  ∆Π was greater than 0.5 mN/m th,e water surface was aspirated before 

another isotherm was acquired.  This procedure was repeated until the water surface 

was sufficiently clean.  Following preparation of the clean water surface, monolayers 

were formed by depositing ~15 µL of a spreading solvent onto the clean water 

surface.  After allowing the spreading solvent to evaporate (~10 min), monolayer 

compressions were carried out with constant barrier speeds reducing the trough area 

by 30 cm2/min.  The resolution of the isotherm varied with the speed of the 

compression, with resolution depending inversely on speed.  Compression speeds of 

20 cm2/min and 30 cm2/min showed no discernable differences in the resulting 

isotherms.     

 

Figure 2.1. Langmuir trough used for dynamic surface tension measurements. 

 

2.1.3 VSFS Measurements 

The molecular structure of IN1076 and IN1010 monolayers at their 

equilibrium spreading pressures were compared based on surface specific, vibrational 

spectra acquired using broadband VSFS.2,3  Experiments were carried out with 

assistance from Dr. Süleyman Can.  Briefly, this technique requires that visible and 

infrared optical fields with respective frequencies of ωvis and ωir be overlapped 
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temporally and spatially on the interface being studied. These two fields couple 

together through the second order susceptibility, )2(χ , to produce a new field (ωsf) 

equal in energy to the sum of ωvis and ωir. Because )2(χ  is a third rank tensor, its 

elements necessarily change sign upon inversion. Consequently, all elements of the 

)2(χ  tensor vanish in isotropic media. Only at surfaces where interfacial anisotropy 

breaks the center of symmetry found in bulk liquids can the )2(χ  tensor assume 

nonzero values.  

The intensity of the sum frequency signal is proportional to the square of the 

surface nonlinear polarization, )2(P  induced by the incident infrared and visible 

beams as shown in Equation 2.1.4  

 irvis

i

v

RNRsf IIePI v

v

2

)2()2(2)2( γχχ ∑+∝∝     (2.1) 

where NRχ  and Rχ  are the nonresonant and resonant terms of the second order 

susceptibility, vγ  is the relative phase of the νth vibrational mode, visI  and irI  are the 

intensities of the incoming visible and infrared light, respectively, as shown in 

Figure 2.2. For the systems studied in this work, the nonresonant component of the 

χ (2) tensor is quite small compared to the resonant contributions.  

 Details about the broad band sum frequency spectrometer used in these 

studies can be found in previous reports.2,6  Spectra presented in this work result from 

S polarized VSF signal created by S polarized visible and P polarized IR.  These 

SsfSvisPir conditions sample vibrational modes having a net out-of-plane component of 

IR allowed vibrational transitions.
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Figure 2.2. Illustration of incoming IR and visible frequencies, and the reflected 

sum frequency collected in an VSFG measurement.
5
 

 

2.2 Permeation Experiments 

2.2.1 Materials 

1,1-dichloroethylene (99.90 % stabilized with 4-methoxyphenol) and 

cis-1,2-dichloroethylene (97 % stabilized with 4-methoxyphenol) were obtained from 

Acros Organics.  1,1-DCE was stored in a refrigerator kept between 0 and 4 oC.  

Cis-1,2-dichloroethylene (97 %) was also obtained from Aldrich Chemical Company.  

Trans-1,2-dichloroethylene (98 % stabilized with 4-methoxyphenol) was obtained 

from Aldrich Chemical Company and Alfa Aesar.  The physical properties of the 

isomers are summarized in Table 2.1.  Miglyol 812 was obtained from Sasol 

Germany (distributed by Warner Graham Company).  Toluene (HPLC grade) was 

obtained from Fisher Scientific.  All chemicals were used as received. Headspace 

vials (22 mL), with Teflon-faced silicon septa, and aluminum crimp seals were 

purchased from Shamrock Glass Co. 
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  1,1-DCE t1,2-DCE c1,2-DCE 

bp (oC)7 31.6 48.7 60.1 

MW (g/mol)7 96.94 96.94 96.94 

density (g/mL)7 1.213 1.2565 1.2837 

m (D)8,9 1.34 0 1.85 

Viscosity10 (cP) 0.358 0.444 0.317 

Table 2.1. Properties of DCE isomers.  Viscosities for c1,2-DCE and t1,2-DCE at 

25 
o
C, for 1,1-DCE at 20 

o
C. 

 
 Diffusion cells (0.9 mm orifice diameter, 3.4 mL volume, Figure 2.3) were 

purchased from PermeGear, Inc (Hellertown, PA, USA).  Cells were thermally 

regulated to within 0.3 oC with a water bath and both sides of a cell were stirred with 

H-series stir bars.  The side-bi-side cells were cleaned for 25-60 minutes by 

sonication then placed in an acid bath (50 % Nitric Acid/ 50 % sulfuric acid) for >1 

hour before use in experiments.  Stirrers and Teflon caps were cleaned by sonicating 

for >20 minutes. 

2.2.2 Assembly Procedures 

The diffusion cells were prepared by assembling the cells with a piece of 

commercially available LDPE (76.2 mm thick, 0.83 g/cm3 density) between the cells 

with a Teflon gasket on each side of the LDPE, the cells were then connected to a 

temperature controlled water circulator and the appropriate amount of time passed 

until the cells came to temperature.  After allowing the cells to reach the required 

temperature the right side of the cell was filled with Miglyol 812 the left side was 

filled with a known concentration of DCE.  At specific times 0.1-0.05 mL aliquots of 

the Miglyol on the right side of the cells were withdrawn and replaced with pure 
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Miglyol — with the change in concentration accounted for in the data analysis.  The 

aliquot (0.1 mL) for the cells with pure DCE on the left side was typically tested 

using Raman spectroscopy with the parameters described below.  Aliquots (0.05 mL) 

for the cells with dilute (≤ 1% by volume) concentrations of DCE were tested using 

headspace GC-MSD, with the parameters described below. 

 

 

Figure 2.3.  Diffusion cell set up (reproduced with permission from PermeGear, 

Inc.).  In all experiments the receptor solution is Miglyol 812.  Saturated 

experiments have pure DCE as the donor compound, dilute experiments have 

DCE in Miglyol 812 as donor compound. 

 

2.2.3 Raman Spectroscopy 

Aliquots were analyzed using a Nicolet FT-Raman spectrometer. Samples 

were excited using 1.336 W of 1064 nm light produced by a continuous wave 

Nd:YAG laser.  Spectra resulted from 256 scans of the interferometer operating with 

a spectral resolution of 8 cm-1.  The absolute intensity of the Raman scattered signal 

depends on many experimental parameters, but with the same experimental 

conditions and an accurate calibration curve, concentrations can be measured to 
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within 1 % by volume, using the intensity of the DCE-CH symmetric stretch near 

3075 cm-1.  This band was chosen because of its clear signal free of interference from 

Miglyol. 

Concentrations of migrants were determined based on quantitative Raman 

vibrational spectra.  Prior to performing a migration measurement, calibration plots 

were measured to correlate the vibrational intensity of the DCE-CH symmetric stretch 

with DCE concentration.  These samples were created by serially diluting a stock 

solution of 50 % by volume DCE in Miglyol.  A representative Raman spectrum and 

the resulting calibration plot are shown in Figure 2.4.  As expected, vibrational 

intensity depended linearly on concentration.  Typical R2 agreement was ≥ 0.990.  

The reproducibility of individual experiments can be seen by comparing the data 

presented in Figure 2.5.  
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Figure 2.4.  (a) t1,2-DCE and Miglyol Raman spectrum with an insert showing 

the peak used for calibration.  (b) calibration of t1,2-DCE using the 3072 cm
-1
 

DCE-CH symmetric stretch peak.  

(a) 

(b) 
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Figure 2.5.  Graph of t1,2-DCE diffusion at the same temperature (25
 o
C) from 

two different days showing repeatability of measurements, line between points 

provided as guide to the eye. 

2.2.4 TGA 

 Thermogravimetric Analysis (TGA) Measurements were taken using a 

Thermal Advantage Q500 Thermal Gravimetric Analyzer to determine if the DCE 

isomers were significantly soluble in the LDPE films, a property that could lead to 

plasticization.  Plasticization occurs when films come into contact with a soluble 

solute and undergo structural change due to absorption of the solute.  Dissolution of 

the solute in the film can change a film’s structural properties and its permeability.  

The solubility of the DCE isomers were compared to isooctane, which is a known 

plasticizing agent.  The LDPE films were soaked in the solvent for ³ 48 hours before 

TGA analysis.  All TGA measurements were run with a temperature ramp of 

3 oC/min, experiments were then held at a constant temperature for a defined amount 

of time based on the molecules vaporization temperature (at 1 atm).  1,1-DCE was 

held at 80 oC for 2 hours, t1,2-DCE was held at 100 oC for 3 hours, c1,2-DCE was 
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held at 120 oC for 3 hours, and isooctane was held at 120 oC for 4 hours.  Figure 2.6 

shows a representative TGA analysis.  Notice that the LDPE films soaked in 

isooctane lost significantly more mass (~3%) than any soaked in the DCE isomers.  

The most significant mass loss observed for the DCE isomers was that of the film 

soaked in c1,2-DCE.  This film lost ~ 0.3% of its mass.  Films soaked in 1,1-DCE and 

t1,2-DCE did not show any mass loss outside the limits of detection around 0.1%. 

 

Figure 2.6. TGA analysis of DCE isomers and isooctane. 

 

2.2.5 Headspace GC-MSD 

 Aliquots removed (0.05mL) from the receptor side of the cell were 

immediately diluted with 10.00 mL of HPLC grade toluene, and sealed in headspace 

(HS) vials.  Aliquots were analyzed using a HS GC-MSD.  The system used an 

Agilent 7694 Headspace Autosampler  with a 2-mL sample loop, attached to an 

Agilent Technologies 6890 gas chromatograph with a 5973N mass selective detector. 

The column used was a HP-PLOT Q capillary column (30m × 0.32mm I.D., with a 20 

mm film thickness)  The HS operating conditions were, 100 oC needle, 150 oC transfer 
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line, 60 oC oven; 30 minutes thermal equilibration with shaker on; 0.50 min 

pressurization, 0.2min injection with vial pressurized to 20 psi; 0.2 min withdrawl; 

7.03 psi column head pressure.  The GC-MS operating conditions were 50 o to 250 oC 

at 10 oC/min and hold 30 min; injector temp 200 oC; split ratio 1:1; constant column 

flow 1.5 mL/min. MSD parameters were: auto tuned with perfluorotributylamine, 

70eV electron impact ionization in full scan mode from m/z 30 to m/z 150, 225 oC 

transfer line, 230 oC source and 150 oC quadrupole, scan rate of 4.1 scans/second.  

The GC of the DCE isomers had good baseline resolution with a difference of about a 

minute in retention time for each of the isomers.  As shown in Figure 2.7 1,1-DCE 

eluded at about 12.25min, t1,2-DCE 13.4 min and c1,2-DCE 14.3 min.  A mass 

spectrum analysis for 1,1-DCE is shown in Figure 2.8, mass spectrum for cis and 

trans DCE are similar.  Ion 96 was used for the calibration curves to determine DCE 

concentration. The reproducibility of individual experiments is demonstrated by the 

data presented in Figure 2.9.  

 

Figure 2.7.  Gas chromatograph of a mixture composed of 0.05% by volume in 

Miglyol of each of the DCE isomers. 
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Figure 2.8. Mass spectrum of 1,1-DCE 

 

 

Figure 2.9. Graph of 1% by volume t1,2-DCE in Miglyol migration through 

LDPE into Miglyol taken at 25 
o
C on different days under identical experimental 

conditions. 
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Chapter 3 Interfacial Behavior of Common Food Contact 
Polymer Additives 

3.1 Introduction 

Additives are commonly introduced during polymer processing and 

production to prevent loss of mechanical properties and discoloration caused by the 

oxidation of polymers.1, 2  One specific use of additives is in the production of food 

packaging material.  Typically food packaging polymers contain one to three different 

types of additives to suit specific applications.  For example, some additives serve as 

processing stabilizers, others as antioxidants, UV absorbers, antimicrobial agents, and 

pigments.2  After the food has been sealed in its packaging, additives in the packaging 

polymer can remain in the polymer, partition to the polymer/food or polymer/air 

interface, or migrate from the polymer into the food.  The latter pathways diminish 

the efficiency of antioxidants in polymers by reducing antioxidant additive 

concentration in the polymer itself.  A fourth possible fate for antioxidant additives is 

phase separation, a phenomenon known commonly as blooming.3, 4  Typically 

blooming results from poor mixing of the polymer resin and the antioxidant during 

production.   

Although antioxidants are known to stabilize polymers, surprisingly little is 

known about their mobility and behavior at interfaces, including polymer/food and 

polymer/air interfaces.  Often, migration rates and partitioning behaviors are 

predicted from models based on Fickian diffusion.5-8  However, corresponding 

experimental studies to verify model accuracy are often lacking.  Such quantitative 

information about chemical migration is important for developing accurate exposure 
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estimates for the general population.  For example, ammonium perfluorooctonate 

(PFOA) is a processing aid in the production of polytetrafluroethylene (PTFE), and 

has been determined to migrate from PTFE into other substances, including foods.  

PTFE has been so widely used that the elderly American population has an average 

concentration of almost 40 nM PFOA in their blood.9  Until recently PFOA was 

categorized as a “suggested” carcinogen but was recently reclassified as a “likely” 

carcinogen by the EPA, meaning that federal regulation of PFOA processing is now 

necessary.10  Fortunately, antioxidants generally react to form harmless substances 

such as phenoxyl radicals and phosphates.2, 11-13  Nevertheless migration of 

antioxidant additives out of a polymer and into food is an area of concern especially 

for the small population with known toxic susceptibility.  Furthermore, the long term 

effects of persistent exposure are still not well determined.  Therefore, the subject of 

antioxidant additive migration remains an active area of research.5, 14-24   

Polymer additive aggregation at the packaging/food interface is also of 

concern.  In general, antioxidants are present in polymers at concentrations of 

0.05 - 1% by mass.2  The antioxidants are added to the polymer with the assumption 

that molecules act independently and do not aggregate in the polymer matrix.  

However, an affinity for the package/food interface can lead to higher surface 

concentrations of antioxidants compared to concentrations in the bulk polymer or the 

bulk food.  Such activity can promote formation of dimers, trimers or higher 

aggregates resulting in the reduction of antioxidant additive activity in the packaging 

material.  In general, the affinity of additives for different surfaces and the tendency 

of adsorbed additives to aggregate will depend sensitively on a balance between 
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hydrophobic and hydrophilic functional groups as well as the overall structure of the 

additive monomers themselves.   

 Antioxidant additives fall into different families based on shared structural 

motifs.  Antioxidants in the Irganox family have a 

2,6-bis(1,1-dimethylethyl)-4-methylphenol group in one or more locations on the 

molecule.  Two particular antioxidants from the Irganox family are the subjects of 

studies described below.  Irganox 1010 (IN1010) and Irganox 1076 (IN1076) are both 

phenolic antioxidants (Figure 3.1) and are used to stabilize polymers during long 

term, high temperature exposure.  Initially, the phenol groups react with molecular 

oxygen to form phenoxyl radicals that subsequently undergo additional oxidation to 

further protect the polymer.25, 26  IN1076 shares many of the features associated with 

simple alkyl surfactants (i.e. 1-octanol) including polar head groups and large 

hydrophobic extensions.  IN1010 looks less like a traditional surfactant although it 

does have multiple phenol groups coupled with bulky hydrophobic substituents.  The 

combination of phenol and alkyl groups make IN1010 and IN1076 candidates to 

adsorb preferentially to boundaries between hydrophobic and hydrophilic media such 

as those found between a polymer packaging material and aqueous foods.  

Pronounced surface activities can lead to higher concentrations of antioxidant 

additives at an interface and eventually to aggregate formation. 
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 Figure 3.1. IN1010 and IN1076 structures. 

Surface tension studies can provide insight into the surface properties of these 

antioxidants. Experiments described in this chapter examine the two-dimensional 

phase behavior of IN1076 and IN1010 at the air/water interface by measuring surface 

pressure isotherms of molecular films.  Surface tension data show that sequential 

compressions of the antioxidant films lead to irreversible loss of monomers from the 

surface, suggesting a tendency for these amphiphiles to form aggregates.  On a 

molecule for molecule basis more IN1076 is lost with each compression relative to 

IN1010.  However when one considers that IN1010 has four phenolic groups per 

monomer, the number of these subunits lost per compression appears to be equivalent 

to within experimental uncertainty.   

These films are also examined using Vibrational Sum Frequency 

Spectroscopy (VSFS), a surface specific vibrational spectroscopy capable of probing 

structure and organization within the monolayers adsorbed to the air/water interface.  
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Results show that differences in structure between high and low coverage of IN1010 

films on water, but not for IN1076.  In the case of IN1076, spectral band intensities 

suggest that monomer headgroups adopt a more horizontal geometry with the 

aromatic rings aligned approximately normal to the surface.  This proposed structure 

correlates well with the initial collapse area of IN1076 monolayers.  The phenolic 

groups of IN1010 monomers also appear to assume a horizontal structure at the 

surface with ~2-3 segments in contact with the aqueous phase, but the structural 

complexity of the monomer itself makes conclusions more tentative.   

 3.2 Results and Discussion 

3.2.1 Surface Activity 

Sequential Π-A isotherms for both IN1076 an IN1010 are shown in Figures 

3.2 and 3.3.  The IN1076 monolayer starts at a pressure of 0 mN/m at the beginning 

of the first compression.  Eventually the isotherm shows a lift-off where the pressure 

begins to rise.  For the initial compression, lift-off occurs at an area of 101 

Å2/molecule.  The pressure rises linearly with a slope of -0.19 mN*molecule/Å2*m, 

before collapsing at a surface pressure of 7.2 mN/m.  Following re-expansion, the 

surface pressure measures slightly less than zero and does not change even after 

allowing the film to sit for a half hour undisturbed.  The 96 Å2/moleculear area at lift-

off for the second compression is 5% smaller than for the first compression and the 

collapse pressure of 6.9mN/m is also slightly lower than for the first compression.   

Subsequent compressions result in similar functional forms of each isotherm 

with the initial surface pressure and the lift-off areas continuing to decrease. 

Figure 3.2b shows representative hysteresis loops that track the surface pressure 
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during expansion as well as during compression.  One readily sees that the expansion 

isotherms following collapse track closely the isotherm for the subsequent 

compressions.  This behavior proves quite general regardless of how much the 

collapsed monolayer is further compressed as well as how much time elapses between 

the cessation of a compression and the start of the subsequent expansion.  The origin 

of the increasingly negative surface pressure at the start of each new compression in a 

sequence remains a mystery.  A negative surface pressure means that the balance is 

measuring a greater forcer than it does when the plate is in contact with pure water.  

One possible explanation of this effect would involve increasing the amounts of 

surfactant sticking to the plate with each successive compression.  However, 

registering a change in force equivalent to the eventual ~ -0.7 mN/m drop in surface 

pressure (between first and final compression of a sequence) would require 

accumulating more than one thousand times more surfactant than is deposited on the 

surface in the first place.  We note that after successive compressions and expansions 

(~4-5) the expanded film showed evidence of irreversible aggregate formation as 

indicated by irregularly shaped patches of the aqueous surface having a different 

refractive index.  Furthermore, these “oily” patches did not disperse uniformly over 

the entire area of the trough, but rather remained localized near the plate at the 

trough’s center.  How – or even if – this phenomenon leads to the increasingly 

negative surface pressures observed in compression sequence is unclear, but the 

observations have proven remarkably durable despite wide variation in compression 

and expansion conditions.   
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Figure 3.2. (a)  IN1076 ΠΠΠΠ-A isotherms resulting from successive compressions, 

with an asterisk marking the conditions under which VSFS measurements were 

taken. (b) Hysteresis loop of IN1076 
 

 

(a) 

(b) 
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Figure 3.3.  IN1010 ΠΠΠΠ-A isotherm resulting from successive compressions, with 

an asterisk marking the conditions under which VSFS measurements were 

taken. 

 
 Π-A isotherms for IN1010 (Figure 3.3) show behavior similar to those of 

IN1076.  The first compression has a lift-off area of 215 Å2/molecule or more than 

twice the lift-off area for IN1076.  Considering the molecular size of IN1010 

compared to IN1076, this result can be anticipated since the lift off area is directly 

proportional to the size of the antioxidant additive monomers.  The isotherm rises 

with a slope of approximately -0.14 mN*molecule/Å2*m until 7.3mN/m when the 

film collapses.  After the first compression, the film is re-expanded.  Similar to what 

was observed with IN1076, the lift-off area of IN1010 decreases to 208 Å2/molecule, 

a small but statistically significant 3% change.  The collapse pressure remains the 

same to within experimental uncertainty.  Subsequent compressions of the IN1010 

monolayer show hysteresis effects similar to those observed for IN1076 monolayer.   

At first glance, the isotherms for IN1076 and IN1010 share qualitative 

similarities and quantitative differences.  Both show linear Õ-A behavior following 
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lift off and repeated film collapse leads to systematic changes in both the initial 

surface pressure and subsequent lift off areas.  However, the slope of the IN1076 

isotherms is generally 25% greater than that observed for IN1010.  In addition, the 

IN1010 isotherms lift off at areas approximately 2-3 times as great as the IN1076 lift 

off areas (depending on the specific compression of a sequence).  To compare the 

isotherms from these two additives in a more direct way, one can compare the 

IN1010 and IN1076 films in terms of their respective surface compressional 

moduli:27 

 Ks = -A(∂Õ/∂A)T       (3.1) 

where Ks is the inverse of the isothermal compressibility (Cs) and is an intensive 

property of monolayer films.  The average Ks values for IN1076 vary between 

13 mN/m at the beginning and 18 mN/m at the end of the linear range of the first 

isothermal compression.  IN1010 had average values ranging from 20 mN/m to 

29 mN/m.  Considering that the slope for IN1010 is 25% smaller than that of IN1076, 

but lifts off at areas a factor of two greater than IN1076, one would expect that 

IN1010 would have Ks values that were approximately two-fold larger than those of 

IN1076.   

 The low pressure data from IN1076 and IN1010 isotherms can be analyzed 

using a two-dimensional ideal gas:  

 N = (AΠ)/(kBT)       (3.2) 

where N is the number of molecules on the surface, A is the molecular area, kB is 

Boltzmann’s constant, Π is the surface pressure (the difference between the surface 

tension of the neat water/vapor interface and the surface tension of the water/vapor 
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interface in the presence of the monolayer), and T is the temperature in degrees 

Kelvin.  Implicit in our use of the 2-dimensional ideal gas equation of state the 

molecules do not interact with each other at low surface pressures.  A consequence of 

this assumption is that if the gas is not behaving ideally, the number of molecules 

may be underestimated. Despite the assumption associated with this simple 

expression, our analysis leads to two observations worth noting.  First, the lift-off area 

for subsequent compressions of the monolayers is smaller than the first compression.  

Second, the surface pressure at the start of each compression continues to decrease 

(from 0) meaning that the surface tension of the fully expanded monolayer continues 

to increase following successive compressions.  Since kB and T are constant, a 

decreasing surface pressure (Π) at the same area (A) likely means that the number of 

“molecules” at the water/vapor interface is changing.  This observation could result 

from solubilization of monomers in the bulk – an unlikely result given the insoluble 

nature of the monomer itself − or the irreversible formation of aggregates following 

film collapse.  The smaller lift-off areas could be caused by the irreversible loss of 

molecules to form stable aggregates, a hypothesis that can be tested using Brewster 

angle microscopy28-31 or similar techniques to test the surface tension data.  Such 

experiments however are beyond the scope of the experiments described in this work.  

Using the known antioxidant concentration in spreading solutions along with 

the deposition volume, one calculates the number of antioxidant molecules initially 

spread upon the water surface.  Similarly, the number of molecules for any given 

isotherm is calculated using specific A and Π values.  Through these calculations one 

readily determines that an initial loss of molecules is required to account for the lift-
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off area of the first compression.  The initial losses of molecules, (4.15±0.06)×1015 

for IN1010 and (14.7±0.11)×1015 for IN1076, are remarkably consistent for eight or 

more, independent experiments.  This initial loss of molecules is attributed to the 

adsorption of a finite number of molecules to the syringe, plate and trough walls 

before a series of compressions is begun.      

 Determining the number of surface species with Equation 3.2, one can look at 

the loss of molecules as a function of compression sequence.  Using the change in 

area at constant pressure (Figure 3.4) one can calculate dN from the following: 

 dN = (Π/kBT)*dA       (3.3) 

Figure 3.5 shows ∆N as a function of the change in the number of compressions 

(∆comp) for both IN1076 and IN1010.  ∆N is the total number of molecules lost 

between each compression, starting with the number of molecules present initially 

during the first compression.    (∆comp) is found by taking the difference in the 

compression number, again starting with the first compression. For example, the ∆N 

value resulting from comparison of the first compression to the third compression 

describes the difference in the number of “molecules” present at the start of the first 

compression and the start of the third compression.  For this comparison ∆comp has a 

value of 2 (or 3-1).  If each compression (after the first) led to a constant number of 

molecules “lost” the data in Figure 3.5 would show linear behavior.  Figure 3.5 

supports this picture for both the IN1076 and the IN1010 films within the limits of 

experimental uncertainty.  In addition, the loss observed in the IN1076 monolayer is 

approximately four times as great as that for each IN1010 compression when 

compared on a molecule by molecule basis as shown in Figure 3.5.  If one compares 
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the data based on the number of phenolic groups lost per cycle, one sees that for 

every phenolic group lost from the IN1076 film the IN1010 loses four.  This scaling 

of ∆N based on the number of phenolic groups per monomer shows the functional 

group losses from the IN1010 system to be similar to the values observed for the 

IN1076 monolayer film. 

 
Figure 3.4. IN1076 isotherm illustrating how DDDDA values were determined. 

 

The smaller ∆N values for subsequent compressions of IN1010 compared to 

IN1076 is reasonable given their respective structures.  Considering the tendencies of 

IN1076 and IN1010 to self assemble spontaneously, one can envision that at close 

range, the long octadecyl tails of IN1076 can interact cohesively through extensive 

Van der Waals interactions.   The t-butyl groups should prevent the formation of well 

ordered alkyl domains, but these interactions still could very well prevent the 

molecules from separating upon expansion.  Aggregates are known to form in 

monolayers after collapse, and are a possible explanation for the hysteresis observed 

in the isotherms.28-32  The short aromatic arms that comprise IN1010 molecule will 

pack together less efficiently than the alkyl chains of IN1076.   
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Figure 3.5.  Comparison of average number of molecules lost from IN1076 and 

IN1010 after subsequent compressions.  IN1010 scaled represents the molecules 

of IN1010 lost scaled to the amount of phenolic groups on IN1010. 
 

Frequently, one would like to draw comparisons between behavior of 

molecules having similar functional-group composition.  In this respect, the Irganox 

species studied in this work bear some resemblance to a family of calixarenes studied 

extensively by Esker, et al.33, 34  The structures of this macrocycle is shown in 

Figure 3.6.  Both the Irganox and calixarenes have multiple phenol groups and 

attached hydrophobic, alkyl segments.  Furthermore, monolayers of both species 

exhibit a linear dependence of surface pressure on area and similar collapse pressures.  

However, the structure of the Irganox monomers – especially IN1010 – and the 
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calixarene monomers studied in references 33 and 34 are markedly different.  

Calixarenes in contact with water will orient themselves so that all the hydroxyl 

groups on the phenols are in contact with the subphase leading to strong 

intramolecular interactions.  In fact, Esker, et al. note that these strong interactions are 

likely responsible for shifting the pKa of individual hydroxyl groups by more than 

9-10 units from values typical of p-alkylphenols.33  Such intramolecular interactions 

are not possible with the Irganox species studied in this work.  For the IN1076 

monolayers, t-butyl groups will prevent the –OH groups on individual monomers 

from interacting strongly with each other.  Similar considerations apply to the (four) 

hydroxyl groups on IN1010 monomers.   

 

Figure 3.6. Structure of p-dioctadecanoylcalix[4]arene. 

 
Another clear example that surface behavior depends on molecular structure 

and not simply functional group composition comes from comparing the collapse 

pressures of the species in question.  During the first compression, IN1076 collapses 

at a molecular area of 57 Å2/molecule, IN1010 at an area of 153 Å2/molecule and the 

calixarenes in references 33 and 34 at an area of 78 Å2/molecule.  Based on 

similarities in collapse areas (and pressures), one might be tempted to draw 
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comparisons between IN1076 and the p-dioctadecanoylcalix[4]arene monolayers, but 

doing so would overlook the fact that IN1076 monolayers have only a single 

hydroxyl group interacting with the aqueous subphase while the calixarene monomers 

have four hydroxyl groups capable of hydrogen bonding to the water (although the 

authors of references 33 and 34 note that some of the hydroxyl groups of the 

calixarenes are likely hydrogen bonded to each other).  The presence of the two 

t-butyl groups adjacent to the hydroxyl group in IN1076 will inhibit hydrogen 

bonding between the surfactant and the subphase meaning that the phenol group is 

unlikely to adopt an orientation perpendicular to the interface.  Were the phenol group 

to assume a horizontal orientation relative to the interface, each IN1076 monomer 

would be able to enjoy hydrogen bonding between the phenolic hydroxyl group and 

the water as well as favorable interactions between water dipoles and the pi-electron 

system of the aromatic ring.  Such a horizontal geometry is supported by the 

vibrational studies of the IN1076 and IN1010 films presented below. 

A final point worth noting is that the collapse area of the initial IN1010 

compression (of 153 Å2/molecule) corresponds to ~2.5 times the area occupied by a 

single IN1076 monomer at its monolayer collapse pressure (3D structure of IN1010 

shown in Figure 3.7.a).  These results coincide with simple molecular area 

considerations based on forcing IN1010 hydroxyl groups to lie in the same plane 

(nominally that of the aqueous subphase) and then calculating the resulting projected 

area.  An IN1010 monomer with two of its arms hydrogen bonded to the water is the 

other two arms directed away from the interface occupies an area of 

~135 Å2/molecule (shown in Figure 3.7.b).  Monomers with one and three arms 
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hydrogen bonded to the water/vapor interface occupy an equivalent area of 275 Å2 

(shown in Figure 3.7.c).  Forcing all four arms to interact with the water requires that 

the IN1010 monomer adopt a conformation that is energetically unreasonable (at kT) 

and would require molecular areas in excess of 300 Å2/molecule.  Given that the 

observed collapse areas lies in between the two and (one or three) phenol limit and is 

equal to approximately 2.5 times the collapse area of the IN1076 monolayer, we 

conclude that the phenolic groups of IN1010 adopt similar orientations at the 

air/water interface as those of IN1076 and that each IN1010 monomer interacts with 

the aqueous subphase with either two or three of its arms. 

 

Figure 3.7. (a) IN1076 schematic showing tetrahedral geometry from central 

carbon, (b) IN1076 schematic with two arms oriented towards the subphase 

(blue box), (c) IN1076 schematic with three arms oriented towards the subphase 

(blue box). 

3.2.2 Vibrational Structure 

The behavior of IN1076 and IN1010 films at the air/water interface raises 

questions about the degree of molecular organization within the films themselves.  To 

probe film structure, several samples were examined using VSFS.  Films were 

prepared by depositing a well defined quantity of surfactant (in a spreading solvent) 

on a water surface, measuring the surface pressure and then probing the surface with 

  
(a) (b)  (c) 
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a combination of visible and infrared optical fields.  As described in the Experimental 

Section, VSFS measures vibrational spectra of molecules at surfaces.  In our studies 

of IN1076 and IN1010 films, we employed a combination of polarizations that 

sampled those vibrational transitions that had their IR transition moments aligned 

along the surface normal, perpendicular to the interface.  The first samples of IN1076 

and IN1010 had measured surface pressures of 6.1 mN/m corresponding to molecular 

areas of 68 Å2/molecule and 165 Å2/molecule, respectively.  These conditions are 

marked with asterisks on the isotherms shown in Figures 3.2 and 3.3.  Subsequent 

samples were prepared to examine the effect of excess surfactant on film structure. 

Figure 3.8 shows the VSF spectra of IN1076 adsorbed to the air/water 

interface in both the full monolayer and excess limits.  The spectra themselves are 

quite similar in appearance and in absolute intensity, meaning that the ~8 fold excess 

surfactant added to the full monolayer has very little effect on overall organization 

within the film.  The monolayer spectrum, although noisy, shows several distinct 

features that can be assigned to stretching motion of various -CH functional groups.35  

Chief among these are the -CH2 symmetric stretch (d+) at 2845 cm-1, the -CH3 

symmetric stretch (r+) at 2870 cm-1, and a broad, partially resolved feature centered at 

2930 cm-1 that contains contributions from the –CH2 asymmetric stretch (d-), a Fermi 

resonance coupling between the –CH2 symmetric stretch and an overtone of –CH 

bending motion, and the –CH3 asymmetric stretch (near 2953 cm-1, r-).  Given the 

weak intensity observed in the –CH3 symmetric stretch, we do not anticipate 

significant intensity arising from a –CH3 Fermi resonance (near 2940 cm-1).  The 
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spectrum begins to acquire broad, featureless intensity above 3100 cm-1 that is 

assigned to the coupled –OH stretching motion of the underlying water subphase.36   

 

 
 

Figure 3.8.  SFG spectra of IN1076 films.  Spectra were acquired detecting S 

polarized signal resulting from S polarized visible and P polarized IR light. 

 
A common measure of orientational order in alkyl monolayers is the r+/d+ 

ratio.  For alkyl chains possessing a high degree of conformational order spectra 

acquired under SSP polarization conditions show a strong r+ response (due to the out-

of-plane alignment of the –CH3 C3 axis) and a weak d+ response.  For well-ordered, 

linear alkyl surfactants (such as n-hexadecanol), the r+/d+ ratio can exceed 20.37  In 

the case of the IN1076 monolayer, r+/d+ is quite low – approximately ~0.25.  In 

principle, one might expect a much stronger r+ response given the relatively high 

surface coverage of –CH3 groups.  (Each IN1076 monomer includes a total of seven 

methyl groups – six from the pair of t-butyl groups and a terminal methyl group on 

the alkyl chain.)  However, should the hydrophilic end of the surfactant adopt a 
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“horizontal” geometry due to competition of the attractive hydrogen bonding 

interactions of the phenol hydroxyl group counterbalanced by the hydrophobic effects 

of the adjacent t-butyl groups, then the t-butyl methyl groups will keep their 

symmetric stretch transition moments aligned parallel to the surface and not appear in 

the spectra acquired with SsumSvisPIR polarization conditions.  Furthermore given that 

the IN1076 surface concentration at full monolayer coverage 

(1.6´1014 molecules/cm2) is approximately 1/3 that of tightly packed, linear alkyl 

chains (~5´1014 molecules/cm2) the observed disorder from the alkyl chain (as 

significant intensity in d+ and d-) should not be surprising.  A horizontal orientation of 

the aromatic ring and t-butyl groups  approximately parallel to the interfacial plane is 

also consistent with simple geometric calculations carried out using energetically 

optimized structures created in molecular mechanics software using space filling 

models and MM2 energy minimization.38  Using the distances between the t-butyl 

groups on either side of the IN1076  phenol head group the cross-sectional area was 

estimated.  In the case of IN1010, distances between phenolic head groups of the four 

“arms” were used to calculate the areas assuming different numbers of contacts with 

the aqueous subphase.  Based on the measured molecular areas, we estimate ~2-3 

sterically hindered phenols to be in contact with the subphase.  

The spectra of IN1010 (Figure 3.9) are dominated by a moderately strong 

band centered at 2920 cm-1 assigned nominally to the –CH2 asymmetric stretch (d-).  

IN1010 does not contain extended alkyl chains, but the surfactant does contain 24 

separate methyl groups.  The absence of strong intensity assigned to either r+ or r- 

indicates that the different “arms” of the IN1010 are either randomly directed in the 
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IN1010 monolayer or oriented parallel to the water surface, even when the monolayer 

is tightly packed and close to collapse.  (Both spectra – monolayer and excess – do 

show weak shoulders at ~2950 cm-1 on the high frequency side of the d- band, and 

these are assigned to the -CH3 asymmetric stretch, r-.)  The fact that the IN1010 

spectrum (pre-collapse) shares many similarities with that of the IN1076 spectrum 

suggests that the phenolic sub-units with the accompanying t-butyl groups share 

similar orientations in the two separate monolayers.  The largest difference between 

the two spectra can be attributed to the long alkyl chain in the IN1076 contributing 

intensity to d+, a feature that is unlikely to appear in an IN1010 spectrum given the 

absence of long alkyl segments.  Again, structure in the alkyl stretching region does 

not change significantly with the addition of excess surfactant to the monolayer 

sample, but the water intensity (above 3100 cm-1) vanishes, indicating that the 

additional IN1010 significantly influences the water structure underlying the organic 

film.  As with the IN1076 film, the absence of strong vibrational features in the 

IN1010 spectra and the apparent lack of sensitivity of molecular structure to the 

amount of surfactant present imply that these surfactants are also unable to form 

domains having well-defined order. 
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Figure 3.9.  SFG spectra of IN1010 films.  Spectra were acquired detecting S 

polarized signal resulting from S polarized visible and P polarized IR light. 
 

3.3 Conclusions 

 Successive isothermal compressions of IN1076 and IN1010 monolayers 

adsorbed to the air/water interface exhibit hysteresis that implies a loss of monomers 

when the surfactants become too tightly packed.  Quantitative analysis shows that 

IN1076 monolayers lose more molecules per compression than do IN1010 

monolayers.  This difference can be attributed to differences in the molecular 

structure between the two species.  The long hydrophilic tails of IN1076 have more 

opportunity to interact during full compression.  If this phenomenon is irreversible 

then it will lead to a decrease in the number of molecules in the monolayer when the 

film is re-expanded.  IN1010 has much less conformational freedom behaving more 

like a sphere, thus fewer monomers are lost between each compression.  IN1010 also 
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has a higher isothermal compressibility, which is exhibited by the higher slope in the 

Õ-A isotherm. 

 VSFS shows IN1076 to be disordered at the air/water interface, in monolayer 

and excess coverage, supporting the idea that the hydrocarbon tails of IN1076 are not 

well organized.  This disorder may be caused by the presence of the bulky t-butyl 

groups surrounding the phenol.  Another worthwhile experiment would then be to 

investigate the surface activity of long chain alkylphenols such as 4-dodecylphenol.  

Surface tension measurements of these long chain alkylphenols would simulate the 

surface activity of IN1076 without the bulky t-butyl groups attached.  IN1010 VSFS 

spectra show a lack of molecular order in the monolayer films as well; however, 

when excess IN1010 is added, there is a significant change in the subphase as 

illustrated by the disappearance of intensity above 3100 cm-1. 
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Chapter 4 Migration of Dichloroethylene Isomers through 
LDPE: Effects of Migrant Structure 

4.1 Introduction 

 In a continuing effort to protect the purity and safety of the food supplies, 

regulatory authorities monitor and evaluate the mass transfer of food packaging 

components into foods so that exposure estimates can be accessed and minimized.1-7  

The safety of migrating food packaging components is generally accessed and 

migration is minimized.  Most models used to predict exposure estimates consider 

only a migrant’s mass when calculating migration properties.  However efforts to 

quantify mass transfer are focusing on molecular structure as a potential metric for 

predicting the amount of migration from food packaging into food.8  Correlations 

between molecular structure and other related properties (such as dipole moments) 

and mass transfer processes may improve substantially the accuracy of predicted 

exposure estimates to food packaging components.8, 9  

 Evaluating the risks posed by migrating analytes requires accurate, 

quantitative exposure estimates that often result from measured or calculated 

diffusion coefficients.  Diffusion coefficients are often determined experimentally 

through one of two tests.  The Moisan test is typically used for open systems with low 

vapor pressure analytes.  In these experiments a concentration gradient is measured 

after a fixed amount of time in a stack of three film layers in direct contact with one 

another, with only the middle film initially containing the migrating analyte.10, 11  The 

three-layer test is similar to the Moisan type test in that it measures a concentration 

gradient in a stack of 3 film layers, but the three-layer test can be done in a closed 

system with either the outer or inner films containing the migrating analyte.10  
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Because both methods rely on analyte migration between solid materials, experiments 

can take weeks to months to yield definitive results, limiting the ability of these 

approaches to provide data from large numbers of systems.  To save time and 

resources in the lab, empirical migration models have been developed to predict 

diffusion coefficients of migrants typically encountered in industrial applications.12-15   

 Related to diffusion is permeability.  Permeability is a function of both 

migrant diffusion as well as migrant solubility in a polymer matrix.  Diffusion 

determines how fast a migrant will move in a film, while solubility determines how 

much migrant can be accommodated in the film.  As the product of these two 

functions, permeation determines the amount of migrant that filters through the film.  

If diffusion is fast and solubility low, permeation of the migrant through the film will 

be low.  Also if solubility is high, but diffusion slow, migrant permeation will again 

be limited.  Only when the migrant exhibits a high solubility in the polymer, as well 

as fast diffusion, will permeation be high.  When considering the total amount of 

material that migrates through a film, permeation studies are ideally suited to 

conditions when experimental techniques can determine migration rates under steady 

state conditions. 

A feature common to most migration models is the dependence of migration 

rates on a migrant’s mass.  To first order, such treatment is reasonable given that a 

migrant’s size will generally scale with mass and heavier migrants will move more 

slowly in polymer films.  However these models necessarily overlook the effects that 

a migrant’s structure can have on transport.  These effects will be more pronounced 

for small molecules having well defined conformers and more clearly distinguishable 

isomeric structures.  Experiments described in this work examine migration of 
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dichloroethylene (DCE) isomers (Figure 4.1) through single, thin sheets (76.2 mm) of 

low density polyethylene (LDPE) into solutions of Miglyol, a liquid food simulant 

comprised of caprylic/capric triglycerides (shown in figure 4.2).  Because these 

experiments measure the total amount of migration to the low concentration side of 

the cell, the relevant quantity to consider is permeation not diffusion.   LDPE is 

considered a “worst case scenario” food contact material in terms of analyte 

migration because the polymer has a loose chain structure with low tensile strength.  

This combination of properties allows for faster migration than what would occur 

through high tensile strength, rigid polymers such as polypropylene or high density 

polyethylene. Despite being so permeable to migrants, LDPE still enjoys widespread 

use in food wraps, food storage containers, and sandwich bags.  1,1-dichloroethylene 

(1,1-DCE), cis-1,2-dichloroethylene (c1,2-DCE) and trans-1,2-dichloroethylene 

(t1,2-DCE) were chosen as migrants because they have very different molecular and 

fluid properties despite having the same molecular weight.  1,1-DCE has a relatively 

low boiling point compared to t1,2-DCE and c1,2-DCE, and both 1,1-DCE and 

c1,2-DCE have dipole moments where as t1,2-DCE does not.  These properties are 

summarized in Table 2.1.  Miglyol 812 was chosen due to it’s popularity as a food 

mimic material.16-22   
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Figure 4.1. Structures of dichloroethylene isomers. 

 

 
Figure 4.2. Miglyol structure, a caprylic/capric triglyceride x, y, and z have 

values of 8 or 10. 

 
 In addition to serving as model analytes to test the role of molecular structure 

in migration rates, these isomers are also recognized environmental pollutants.  

1,1-DCE is used in refrigerants, food packaging materials and the production of 

adhesives.  Health effects associated with exposure to 1,1-DCE are liver damage and  

cancer.23  c1,2-DCE and t1,2-DCE are also used as refrigerants, in the manufacture of 

artificial pearls, and as solvents for resins.  Adverse health effects  resulting from 

exposure include central nervous system depression, as well as long term effects of 

damage to the liver, circulatory and central nervous systems, with t1,2-DCE being 

twice as harmful to the central nervous system as c1,2-DCE.24  Given the differences 

in toxicity between c1,2-DCE and t1,2-DCE, understanding their transport properties 

through a food contact polymer is essential for developing successful computational-

based methods for estimating migration and, therefore,  accurate exposure estimates. 
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Based on commonly used diffusion models, migration rates of the DCE isomers 

should be equivalent.  Our goal in this work is to test what role, if any, molecular 

structure plays in analyte transport through food contact polymers.   

4.2 Results and Discussion 

 Data for the saturated permeation experiments were taken over a period of 

7-10 hours (depending on temperature). In every experiment migrant appearance on 

the low concentration side begins to build gradually before eventually assuming a 

linear dependence on time (Figure 4.3).  Linear behavior signifies the onset of steady 

state migration.25  Prior to the onset of steady state migration, experiments all show a 

delay that depended on film composition and thickness.  This “lag-time” typically 

extended over the first ~90 minutes of an experiment.  The origin of this delay 

suggests establishment of a steady state concentration of intermediates somewhere 

along the migration pathway.  We note here that experiments using films already 

saturated with the appropriate DCE isomer still showed a lag before the onset of 

steady state migration.  (Analysis comparing data from saturated and virgin films are 

shown in Appendix 1.)  This result implies that the lag time’s origin may be related to 

processes occurring outside the film or at the film/liquid interface.  Despite the 

variability in the lag times, the linear dependence of concentration on time after the 

onset of steady state conditions proved highly reproducible. 
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Figure 4.3. Permeation of DCE isomers at 20
 o
C. 

 The simplest way to measure solute migration in polymers is by determining 

the diffusion of a gas through a polymer sheet.  Steady state diffusion is reached when 

there is a constant transfer rate across the sheet for all exposed sections and when the 

concentration change from one side of the film to the other is linear.26  In the case of 

gas diffusion, when steady state diffusion is reached, the flux (F) can be described by 

the diffusion coefficient (D) through the following expression:25-29 

 
l

CCD

dx

dC
DF

)( 21 −=−=        (4.1) 

where C1 and C2 are the surface concentrations (just inside the film surface) on either 

side of the polymer film, and l is the thickness of the film.  In an experiment with gas 

diffusion where surface concentrations are not known, one can determine the 

permeability coefficient (P):25-30 

 
l

ppP
F

)( 21 −=         (4.2) 
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where p1 and p2 are the external vapor pressures on either side of the polymer film.  

From this expression one can determine the permeability coefficients of volatile 

compounds based on the partial pressures on either side of a diffusion cell.  If Henry’s 

law is obeyed, then the surface concentration just within the surface of the film can be 

related to the external vapor pressure through the solubility constant (S):25-28, 30 

 ii SpC =  (i = 1 or 2)      (4.3)  

This same solubility constant can be used to relate permeation to diffusion25-28, 30 

 DSP =         (4.4) 

The diffusion coefficient is known to correlate with molecular mass and size of the 

migrant.8, 9, 11, 31-33  The solubility coefficient depends on the strength of the interactions 

between the polymer and the penetrating migrant.  The stronger the interactions, the 

more soluble the molecule should be in the polymer, and the higher the solubility 

coefficient.  Similarly, weaker interactions lead to lower solubility within the polymer 

matrix.  Bulk migrant properties such as polarity, density and viscosity will all affect 

migrant solubility in a given polymer.  Thus, based on Equation 4.4, permeation will 

be affected by interactions between the analyte and the polymer (solubility) in 

addition to how easily the analyte can move through the polymer (diffusion).  

Temperature will affect permeation, through changes in both the diffusion and 

solubility constants. 

 We now consider the relationships between diffusion, permeation, and 

solubility of liquids through polymer films.  Assuming Fickian behavior and a 

constant diffusion coefficient, diffusion through a polymer film can be calculated 

through the time lag method.  Under the conditions that the polymer film is free of 

migrant at the onset of the experiment, and migrant is removed from the low 
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concentration side of the film –conditions that match exactly those of our experiments 

– then the amount that passes though the sheet (Qt) with thickness (l)  in time (t) can 

be described by26-28, 34 

∑
∞

= 
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where n is the number of sheets in the polymer film (1). As the steady state conditions 

are approached, and t � ∞, the exponential terms go to zero, so that a graph of Qt 

versus time will have a linear dependence on (t):27, 28 
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The x-intercept on the time axis, represents the lag time (L).  The lag time is related 

to the diffusion coefficient based on the lag time equation.26-28, 34, 35  

D

l
L

6

2
=          (4.7) 

In a plot of concentration versus time, L is found by extrapolating to zero 

concentration.  This diffusion-based analysis yielded inconsistent results when 

applied to our data (Appendix 1).    Inconsistencies observed in the lag time data 

could be due to a combination of interfacial resistance inhibiting DCE transfer across 

the liquid/polymer interface and a lack of sensitivity of our analytical technique to 

detect low (<0.8% by volume) concentrations.  As mentioned earlier experiments 

carried out with a film pre-saturated with DCE isomer also exhibited a delay before 

the onset of steady state migration, similar to experiments carried out with clean 

LDPE films.  When thicker LDPE films (0.102 cm) were used for the migration 

experiments the observed lag times were consistent.  The presence of the delay in 
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steady state behavior with saturated thin films, and consistent lag times observed with 

thicker LDPE films supports the idea that interfacial resistance, perhaps related to the 

processing of the thin LDPE films, is primarily responsible for the initially slow 

migration rates.  What remains consistent for all experiments, however, is the isomer 

and temperature dependent migration rates following the establishment of steady state 

migration conditions. 

 Permeation depends on both diffusion and solubility.  Different experimental 

quantities can be used to describe the permeation based on experiments using liquids 

as the migrating analyte.  Using Equations 4.1-4.4 permeation can be written for 

liquids where p1 and p2 are now described in terms of the bulk concentrations on 

either side of the film (C1

bulk, C2

bulk):25, 27, 28  

 
l

CC
PF

bulkbulk
21 −

=        (4.8) 

The permeation can be described by the slope of the change in concentration versus 

change in time when the steady state diffusion rate is reached.  The permeation 

coefficient can be calculated using easily measured experimental parameters25 

 
))((
))((

CA

lslope
P

∆
=        (4.9) 

where the slope of the line is found in the steady state portion of a plot of change in 

concentration versus time, A is the cross sectional area of the film exposed to the 

analyte, and DC is the difference in the bulk concentrations on either side of the film 

at the onset of the experiment.  For experiments described in this work, C2

bulk is zero.  

Note that permeation coefficients have the same units as diffusion coefficients, cm2/s. 

 The permeation coefficients for the DCE isomers are reported in Table 4.1.    

Permeation coefficients were generally on the order of 10-8 cm2/s.  These values 
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compare well with previously reported data describing permeation of various organic 

liquids in different types of polyethylene.36  Figure 4.3 shows that 1,1-DCE has the 

largest permeation coefficient (7.3*10-8 cm2/s at 293K), and c1,2-DCE has the lowest 

(2.3*10-8 cm2/s at 293K).  These results come from using the linear part of the 

migration profile.  The permeation coefficient of t1,2-DCE is approximately twice as 

large as that of c1,2-DCE.  These results show clearly that migration of solvents 

through polymer films depends sensitively on molecular structure as well as molar 

mass.  

Temp (K) P1,1-DCE (*10
8
) Pt1,2-DCE (*10

8
) Pc1,2-DCE (*10

8
) 

293.1 7.3 ± 1.3 5.1 ± 0.3 2.3 ± 0.2 

298.1 13 ± 4 7.2 ± 0.2 3.7 ± 0.4 

303.1 N/A 8 ± 2 4.7 ± 0.9 

308.1 N/A 14 ± 2 4.8 ± 1 

EP (kJ/mol) 80  47 ± 8 36 ± 10 

Table 4.1. Average experimental permeation coefficients of dichloroethylene 

isomers at different temperatures.  No high temperature results are presented 

for 1,1-DCE due to the low boiling point of the molecule.  The final row presents 

the activation energy of permeation from analyzing the temperature dependent 

behavior with an Arrhenius model (note that the error for Ep 1,1-DCE is 

infinite). 
 
 Permeation of analytes through a polymer should be sensitive to a number of 

variables including analyte size and analyte interactions with surroundings.  

Differences in permeation constants for the DCE isomers reported in Table 4.1, we 

sought to determine if the observed trends scaled with geometric size.  Isomer sizes 

were calculated using the van der Waals radii of the outer atoms, as well as reported 

bond lengths and bond angles to determine the molecular radii and are shown in 

Figure 4.4.37  Use of van der Waals parameters will introduce some errors to the 

calculations, but the errors should be systematic and consistent for all three isomers.  
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Based on these calculations t1,2-DCE has the largest molecular radius of 4.02 Å.   

1,1-DCE and c1,2-DCE have similar sizes of 3.49 and 3.47 Å respectively.  The 

calculated size of these molecules suggest that c1,2-DCE and 1,1-DCE should 

migrate faster through LDPE and t1,2-DCE slower.  The observed permeation values, 

however, show t1,2-DCE permeating about twice as fast as c1,2-DCE. 

 

 

Figure 4.4. Calculated molecular radii from van der Waals radii, bond lengths, 

and bond angles. 

 
 Given that migrant size does not appear to correlate with migration rates (and 

permeation coefficients) we need to consider what other factors may influence 

experimental results.  One property that differentiates t1,2-DCE from c1,2-DCE is the 

former’s lack of a permanent dipole.  The presence of a dipole can affect results in 

several ways.  Dipole pairing between analytes can lead to correlated motion of 

monomers in solution and a larger effective radius.  Dipole-induced dipole 
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interactions with the LDPE may also slow the migration of c1,2-DCE relative to 

t1,2-DCE.   

 Dipole moments and steric factors will also affect other properties for the 

isomers used in these studies, we note that permeation tracks analyte boiling points.  

Such correlation may be reasonable given that to a first approximation, a substances 

boiling point depends on intermolecular forces.  Solvating DCE in LDPE will require 

overcoming these interactions between the monomers within the neat liquid.  To 

further explore the role of intermolecular forces on permeation, we varied 

temperature to determine if the isomer dependent behavior observed at 20 oC 

persisted at higher temperatures. 

 Migration of 1,1-DCE was studied at 20 and 25 oC.  t1,2-DCE and c1,2-DCE 

were studied at 20, 25, 30 and 35 oC.  Figure 4.5 shows that permeation of t1,2-DCE 

increases with increasing temperature.  Similar results are observed for all isomers 

(Figure 4.6) although our studies of 1,1-DCE are limited to only two points due to 

this migrant’s low boiling point.  Interestingly, the observed linear dependence of the 

permeation coefficient on T is different for different isomers.  Focusing only on 

c1,2-DCE and t1,2-DCE, the slope of the temperature behavior of P on T is 1.6×10-9 

for c1,2-DCE and 5.5×10-8 cm2/(s*K) for t1,2-DCE.  In other words, migration of 

t1,2-DCE, the more biologically active of the two structural isomers, depends more 

sensitively on temperature.  
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Figure 4.5. Permeation of t1,2-DCE at 20, 30, and 35 
o
C. 

 

 

Figure 4.6. Permeation coefficients of DCE isomers with respect to temperature.  

Large uncertainties of 1,1-DCE at 298K are likely due to the experiment being 

run close to the boiling point of 1,1-DCE. 
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 Migration of analytes through polymers increases with increasing 

temperature.36, 38-42  The isomers investigated each have a different dependence of 

permeation on temperature.  Specifically for the case of c1,2-DCE and t1,2-DCE we 

can use the permeation coefficients at different temperatures to determine an 

activation energy for permeation given the following Arrhenius-type equation:36, 38-40, 43 

 






 −
=

RT

E
PP Pexp0         (10) 

where P0 is the preexponential factor, EP is the activation energy for permeation, R is 

the universal gas constant, and T is the temperature.  Similar to permeation, the 

activation energy for permeation will depend on the migrating molecule’s interactions 

with the polymer matrix (solubility), as well as the motion of the molecule through 

the polymer (diffusion).  Figure 4.7 shows a plot of ln P versus 1/T for the DCE 

isomers.  c1,2-DCE, t1,2-DCE, and 1,1-DCE have EP values of 36, 47, and 80 kJ/mol 

respectively.  These values are comparable to those reported for organic liquids 

permeating through LLDPE and VLDPE.36  At the same time, these results show quite 

clearly that molecular structure plays a significant role in controlling mass transport 

through LDPE.  
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Figure 4.7. Arrhenius plot of ln P vs 1/T for DCE isomers.  E
P
 values reported in 

Table 4.1. 

 
 Interpreting the Ep results presents a challenge given that a number of 

processes have to occur for DCE to migrate from one side of the polymer film to the 

other.  First, DCE migrants must pass across the DCE(l)/LDPE interface, where DCE 

then becomes solvated and sets up a concentration gradient across the film.  This step 

of the migration process will depend upon the energetics of interphase mass transfer.  

Next, the migrant must move from one side of the polymer to the other, a step 

assumed to be governed by diffusion.  Finally the migrating analyte must cross a 

second interface, passing from the LDPE to the Miglyol, which is dependent upon the 

partitioning of the DCE between the LDPE and Miglyol.  Eventually this process 

reaches a steady state condition defined by a constant concentration gradient across 

the polymer film and a constant rate of migration.  These steps are illustrated 

schematically in Figure 4.8.  In general, activation energies associated with diffusion 

of small molecules through LDPE are ~30 kJ/mol36, meaning that the sum of energies 

associated with both barrier crossings are positive and on the order of ~10 kJ/mol. 
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Figure 4.8.  Schematic of the steps involved in DCE migration through an LDPE 

film. t=0 is the onset of the experiment where the DCE has to cross the LDPE 

barrier.  t
1
 occurs when the DCE travels across the LDPE film, t

2
 is just before 

the DCE leaves the LDPE film, t
ss 

describes a time after the steady state 

concentration gradient is established and a constant migration rate is observed. 

 
 Taken together the EP results raise an interesting dilemma.  Despite having the 

slowest migration rates, c1,2-DCE appears to have the smallest permeation activation 

energy of the three isomers (although similar to t1,2-DCE within experimental error), 

a result that is not uncommon in temperature dependent diffusion studies.44  Both 

permeation and diffusion activation energies have been known to increase with 

increasing migrant size.43  This correlation might explain the differences in 

permeation activation energy between c1,2-DCE and t1,2-DCE since t1,2-DCE has a 

larger molecular volume.  However, this correlation fails to account for the observed 

differences between the similarly sized isomers 1,1-DCE and c1,2-DCE.  To 

reconcile these results, we recall that permeation is a function of both solubility and 

diffusion. Thus differences in permeation activation energies depend on the 

temperature dependence of both the diffusion coefficient and solubility constant for 
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each isomer.  Thermogravametric analysis data (Shown in Figure 2.6) revealed that 

although all DCE isomers were mostly insoluble in LDPE (• 0.3% by mass),  0.3% by mass), 

t1,2-DCE and 1,1-DCE were markedly less soluble than c1,2-DCE.  LDPE films 

soaked overnight in c1,2-DCE showed a 0.3% mass loss at a temperature of 120 oC 

for three hours, while films soaked in either 1,1-DCE or t1,2-DCE showed no 

measurable (< 0.1%) mass loss.  In contrast, LDPE films soaked in isooctane — a 

known plasticizing agent — showed mass loss of 3% (Figure 4.9).  These differences 

in DCE solubility are similar when one compares the Henry’s Law solubility 

constants for the isomers in water which are 0.27, 0.11, and 0.039  for c1,2-DCE, 

t1,2-DCE and 1,1-DCE respectively.45  The solubility of the DCE isomers in water 

can be related to the solubility in any condensed phase such as LDPE, in the absence 

of significant entropic disorder, which is unlikely given the similar sizes of the 

isomers.  The differences in solubility could account for the increased energy barrier 

that t1,2-DCE and 1,1-DCE must overcome to permeate through the polymer matrix.  

Since solubility studies show less t1,2-DCE, and 1,1-DCE in the polymer compared 

to c1,2-DCE, we propose that the isomers face a larger barrier to migration into the 

polymer compared to c1,2-DCE.  
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Figure 4.9.  TGA analysis of DCE isomers and isooctane. 

4.3 Conclusions 

 The studies described above sought to determine the effects of molecular 

structure on migration through food contact polymers.  Our findings show that 

structural isomers can migrate at different rates that vary by more than a factor of 

three, and these differences do not correlate to calculated molecular radii of the 

isomers but do correlate to the isomer DHvap values.  These results might be 

anticipated if one assumes that stronger intermolecular forces will slow migration 

from one side of the LDPE film to the other.  Our findings are specific to the 

permeation rate of DCE isomers migrating through LDPE into Miglyol but imply a 

more general phenomenon.  Such structural differences in permeability become 

increasingly important from a public health standpoint when one realizes that 

different isomers have different biological activity.  The use of LDPE in permeation 

studies represents a worse case scenario since this polymer is a loose chain polymer 

that can allow facile analyte migration.  However, this polymer is still widely used as 

a food contact polymer, so the concern about the migration behavior is warranted.   
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 Future work with these isomers will focus on the effects of migrant 

concentrations on permeation rates.  Using initial concentrations of ≤1% by volume 

the migration of t1,2-DCE and c1,2-DCE can be investigated at a single temperature 

as a function of initial concentration.  Through these experiments we will further 

explore what role molecular properties of c1,2-DCE and t1,2-DCE play in migration 

and if isolated migrants behave similarly to bulk materials. 
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Chapter 5 Migration of Dilute Dichloroethylene Isomer 
Solutions through LDPE: Effects of Migrant Concentration 

 

5.1 Introduction 

 In recent years, reports of chemical migration out of and through food contact 

polymers have raised concerns about the long term health risks from the national food 

supply.1-5  One recent example is the migration of Bisphenol-A (BPA), a disruptor of 

endocrine activity, out of polycarbonate drinking bottles into water or from epoxy can 

coatings into foods where it is used as a stabilizer.3, 4  The general population’s 

exposure comes from these polycarbonate bottles and can linings, despite the fact that 

migration levels of BPA under normal use conditions are below the specific migration 

limits set by regulators.3-5  Another example of additive migration is 

perfluorooctanoic acid (PFOA), a processing aid in the production of 

polytetrafluroethylene (PTFE) and a contaminant in some fluorochemicals.  PFOA 

has been classified as weakly carcinogenic.6  The population’s exposure to PFOA can 

come from such substances as non-stick cookware, fast food paper, microwaveable 

popcorn bags, or carpets and clothing.7  Given its low reactivity, PFOA accumulates 

in the body over time. Due to the widespread use of PTFE, elderly Americans have 

on average a 40 nM concentration of PFOA in their bloodstream.8  A third, low 

molecular weight additive to polymers, caprolactam, has also been shown to migrate 

relatively rapidly from plastics into contact materials.9  This migrant’s long-term 

biological activity remains poorly characterized, but short term effects of exposure to 

caprolactam include topical irritation and seizures.  With the rising use of new and 

recycled food contact polymers in food applications, issues related to food safety and 
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contamination will remain high priorities for consumer groups, manufacturers and 

public policy makers.  These same issues associated with analyte migration out of 

polymers are also relevant to exigent toxins and contaminants brought into contact 

externally with these same polymers. 

 Traditionally, concern for neat liquid migration through polymers has been 

focused in the area of chemical protective clothing and waste containers.10-17  The 

standard ASTM permeation cell used in many experiments is similar to our own 

migration cells shown in Chapter 2 of this thesis.12  Aminabhavi et al. investigated the 

migration parameters of many organic solvents through different polymers such as 

polypropylene, high density polyethylene, and neoprene.18-20  In the case of long 

chain alkanes, migration depends on both the penetrant molecule and the membrane 

material.18  A survey of organic liquid migration through various polyethylene 

membranes revealed that esters had lower migration rates than other organic 

compounds.19  Migration studies of short chain chloroalkanes led to the conclusion 

that diffusion and permeation through copolymer membranes donot correlate with 

migrant size, a conclusion that is similar to observations in Chapter 4.20 

 Saleem et al. investigated the size and shape effect of molecules migrating 

through LDPE.21  One system of particular interest in this study is the migration of 

xylene isomers through LDPE.  The diffusion coefficients of the xylene isomers 

ranged from 1.567 - 0.940 × 10-12 cm2/s for p-xylene and o-xylene respectively.21  

This difference in migration is markedly smaller than that observed for the neat 

migration of dichloroethylene isomers discussed in Chapter 4 of this thesis.  

Importantly, Saleem et al. noted that of the xylene isomers studied, o-xylene has the 



 

 82 
 

smallest diffusion coefficient of the isomers despite having the smallest molar volume 

of the three isomers.  This result is similar to the migration behavior we observe with 

neat c1,2-DCE migration through LDPE in Chapter 4 where the smaller c1,2-DCE 

has a smaller permeation coefficient compared to the larger t1,2-DCE.   

 The differences in permeation coefficients of neat DCE migration through 

LDPE for c1,2-DCE and t1,2-DCE raises several interesting questions.  Permeation 

depends on both solubility of the analyte in the polymer, as well as the diffusion of 

the analyte through the polymer.  Activation energies of permeation resulting from an 

Arrhenius treatment of the permeation data showed c1,2-DCE to have a slightly lower 

barrier to migration compared to t1,2-DCE.  Because permeation depends on two 

properties - diffusion and solubility – interpreting these results requires analysis of 

how both diffusion and solubility depend on temperature.  One plausible explanation 

of permeation activation energy results observation could be due to the differences in 

the solubility of c1,2-DCE in LDPE compared to t1,2-DCE.  Solubility becomes less 

of a factor at low concentrations, when there is much less migrant present to be 

solvated in the polymer matrix.  Experiments described in this chapter examine 

separately the permeation of c1,2-DCE and t1,2-DCE in Miglyol (1% by volume) 

through LDPE into pure Miglyol.  These low concentrations are similar to the 

concentrations in which additives are added to food contact polymers.  Results again 

show that t1,2-DCE again migrates through the polymer faster than c1,2-DCE.  

Temperature dependent studies show that the permeation activation energies of both 

migrants to increase significantly relative to migration from the neat DCE liquid.  

These permeation activation energies appear to be similar for both low concentration 
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isomers to within experimental uncertainty.  These results suggest strongly that when 

solubility is not limiting, migration is controlled by an interfacial resistance 

associated with the migrant passing across the solution/polymer interface. 

5.2 Results and Discussion 

 The migration rates of c1,2-DCE and t1,2-DCE solutions in Miglyol migrating 

through LDPE into pure Miglyol will be discussed in terms of permeation.  

Permeation (P) is a function of both diffusion (D) and solubility (S).22-26 

 DSP =         (5.1) 

 Diffusion is a measure of how fast an analyte moves through a polymer.  Solubility 

defines a migrant’s solubility is in a polymer matrix and is usually expressed in terms 

of mole or weight percent.  Permeability measures how much analyte has gone 

through a polymer, the quantity measured in our experiments.  Therefore, if diffusion 

is slow but solubility is high, permeation will be slow; if diffusion is fast – but 

solubility low, permeation will still be slow.  Fast permeation is a function of higher 

solubility of the analyte in the polymer and fast diffusion of the analyte through the 

polymer. 

 When considering the diffusion of a gas through a polymer film after steady 

state diffusion is reached, the flux (F) can be described by the diffusion coefficient 

(D) through the following expression:23-27  

 
l

CCD

dx

dC
DF

)( 21 −=−=       (5.2) 

where C1 and C2 are the surface concentrations (just inside the film surface) on either 

side of the polymer film, and l is the thickness of the film.  Since C1 and C2 are not 
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easily determined, a direct measurement of diffusion through a film is often hard to 

determine experimentally.  An more accessible quantity to measure is the permeation 

which can be determined with the vapor pressures on either side of the polymer 

film.22-27 

 
l

ppP
F

)( 21 −=        (5.3) 

where p1 and p2  are the external vapor pressures on either side of the film.  If Henry’s 

law is obeyed, Ci is related through pi through the solubility constant mentioned in 

Equation 5.1.22-26 

 ii SpC =  (i = 1 or 2)      (5.4) 

Similar considerations apply for liquids migrating through a polymer film.  In the 

case of liquid migration, p1 and p2 are now described in terms of the bulk 

concentrations on either side of the film, C1
bulk and C2

bulk:23-25 

 
l

CC
PF

bulkbulk
21 −

=        (5.5) 

By monitoring the change in concentration on the low concentration side of the film, 

P can be found experimentally.  Using the slope of the change in concentration versus 

change in time once steady state diffusion is reached P can be found by:25 

 
))((
))((

CA

lslope
P

cs ∆
=        (5.6) 

where Acs is the cross sectional area of the film exposed to the analyte, and DC is the 

difference in the bulk concentrations on either side of the film at the onset of the 

experiment (for the experiments described in this work C2
bulk is zero).   
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 Dilute permeation experiments used solutions of 1% (by volume) DCE in 

Miglyol as the donor compound.  Measurements were taken over a period of 3-4 

hours depending on temperature. The permeation rates for c1,2-DCE and t1,2-DCE at 

25 oC are shown in Figure 5.1.  Since the migration rate is used to determine the 

permeation coefficient (Equation 5.6) t1,2-DCE has a larger permeation coefficient 

than c1,2-DCE at 1% by volume concentrations.   

 

Figure 5.1.  Permeation of 1% (by volume DCE in Miglyol) c1,2-DCE and t1,2-

DCE at 25 
o
C.   

 

 Permeation of migrants through polymers should be sensitive to many 

variables including analyte size and interactions with surroundings.  Given 

differences in permeation constants for t1,2-DCE versus c1,2-DCE one might 

imagine that the different migration rates might be a function of the sizes of the 

analytes.  Isomer sizes were calculated using the van der Waals radii of the outer 

atoms, as well as reported bond lengths and bond angles to determine the molecular 

radii.28  Use of the van der Waals parameters will introduce some errors, but the 

errors should be systematic and consistent for both isomers.  As reported in Chapter 4 
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these calculations show t1,2-DCE to have a larger molecular radius of 4.02 Å that is 

~15% larger than that of  c1,2-DCE (3.47 Å).  Based on these molecular radii 

calculations, any size based model used to describe permeation would predict 

t1,2-DCE to permeate more slowly, contrary to experimental results. 

 Since single temperature, dilute migration results demonstrate that migrant 

size does not correlate with the permeation coefficients, we need to consider what 

other factors may influence the experimental results.  One property that differentiates 

the two isomers is the presence of a dipole for c1,2-DCE (1.85D) and lack of one for 

t1,2-DCE.  This dipole of c1,2-DCE can affect permeation in several ways.  Dipole 

pairing between analytes, or pairing between the analyte and the Miglyol solvent can 

lead to correlated motion of monomers in solution and a larger effective radius.  

Dipole-induced dipole interactions with the LDPE may also slow the migration of 

c1,2-DCE relative to t1,2-DCE.  To help develop a clearer understanding of the 

migrant properties that affect diffusion, we investigated permeation of 1%v/v DCE in 

Miglyol at different temperatures, to see if the same behavior persisted. 

 Migration studies using solutions of 1% by volume c1,2-DCE and t1,2-DCE 

in Miglyol migration cells were carried out at 20, 25, and 30 oC.  Results are shown in 

Figure 5.2.  Permeation coefficients for c1,2-DCE and t1,2-DCE are shown in 

Table 5.1.  Typically, permeation increases with increasing temperature.  Similar to 

observations at 25 oC, t1,2-DCE permeates ~ 4 times faster than c1,2-DCE at all 

temperatures. Figure 5.2a and b illustrate the rates of migration at 20 and 30 oC.  

Comparing the slopes of the lines in Figure 5.2c, one observes that t1,2-DCE 

permeation depends more sensitively on temperature than c1,2-DCE (2.4×10-9 and 
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5.2×10-10 cm2/s*K respectively) as expected considering the rates of migration shown 

at different temperatures.  An important point to note is that isomer dependent 

differences in permeation coefficients for dilute migration are larger than the 

differences reported in Table 4.1 for neat permeation.  c1,2-DCE  dilute permeation 

decreases by a full order of magnitude.  t1,2-DCE permeation decreases by a factor 

of ~2. The temperature dependence of the permeation rates motivates the need to 

determine permeation activation energies.   

 

Temp (K) Pc-1,2-DCE (*10
9
) Pt-1,2-DCE (*10

9
) 

293.1 1.0 ± 0.2 4 ± 1 

298.1 3.8 ± 1.0 17 ± 4 

303.1 6.2 ± 0.6 28 ± 6 

EP (kJ/mol) 136 ± 35 147 ± 38 

Table 5.1. Permeation coefficients of 1% by volume solutions of t1,2-DCE and 

c1,2-DCE in Miglyol.  The last column shows the calculated permeation 

activation energies. 
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Figure 5.2. 1% by volume DCE permeation at different temperatures. 

(a) Permeation rate for DCE at 20 
o
C (b) permeation rate at 30 

o
C (c) 

permeation coefficient as a function of temperature.   

 

 

(c) 

(a) 

(b) 
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 An Arrhenius treatment of the data would determine a permeation activation 

energy by using the following Arrhenius-type equation:18, 19, 29-31 

 






 −
=

RT

E
PP Pexp0        (5.7) 

where P0 is the preexponential factor, EP is the activation energy for permeation, R is 

the universal gas constant, and T is the temperature.  Similar to permeation, the 

activation energy for permeation will depend on the migrating molecule’s interactions 

with the polymer matrix (solubility), as well as the motion of the molecule through 

the polymer (diffusion).  In addition to these quantities that directly impact 

permeation, other interactions can have secondary effects on permeation.  These 

interactions include (but are not limited to), DCE/Miglyol interactions in solution, 

dipole-dipole, and the formation of a barrier layer by the Miglyol at the 

LDPE/solution interface.  Such a barrier may not impede passage of DCE across the 

interface, but could slow the rate at which the DCE can approach the polymer surface.  

Figure 5.3 shows a plot of ln P versus 1/T for the 1% v/v DCE isomers in Miglyol 

solutions.  The EP values for c1,2-DCE and t1,2-DCE are 136 ± 24 and 

147 ± 38 kJ/mol respectively, and are reported in Table 5.1.  Again, the results for 

t1,2-DCE is slightly larger than that of c1,2-DCE but these values should be viewed 

as indistinguishable given experimental uncertainties.  These numbers represent a 

significant increase compared to the EP values for the neat permeation experiments of 

c1,2-DCE and t1,2-DCE (36 and 47 kJ/mol respectively).  The increase in activation 

energies could be a product of the lower concentrations in bulk solutions.  Fewer 

DCE molecules will necessarily lead to diminished permeation rates.  Furthermore, 

the solubility contribution to permeation will reflect the partitioning of DCE between 
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LDPE and Miglyol, rather than the total amount of DCE accommodated by LDPE in 

contact with a neat DCE solvent.  

 

 
Figure 5.3. Arrhenius plot of ln P vs 1/T for 1% v/v t1,2-DCE and c1,2-DCE in 

Miglyol. 

 

 Experiments comparing the effects of migrant concentration on permeation 

(Chapters 4 and 5) illustrate clearly that conditions outside the polymer film will 

affect significantly not only the absolute permeation rates, but also the temperature 

dependence of analyte migration.  From the reported data one concludes that 

permeation coefficients for DCE from the dilute solutions are smaller (compared to 

neat), and that permeation activation energies are larger.  For a given composition 

(neat or 1%), t1,2-DCE always permeates through LDPE faster than c1,2-DCE.   

These high and low concentration experiments are identical except for the 

composition of the donor side of the cell (Figure 5.4).  Slower permeation coefficients 

are likely a function of the lower concentrations used. Equation 5.6 used to calculate 

the permeation coefficient from steady state migration rates predict that smaller 
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differences in concentration should lead to slower permeation.  The DC value in the 

case of the dilute solutions of DCE in Miglyol will be 1% not 100%. This 

contribution to the permeation would predict that permeation coefficients should 

decrease by a factor of 100, were the concentration gradients the sole driving force 

responsible for permeation.  However the observed decrease in the steady-state slopes 

used to calculate permeation coefficients is ~ 400 times smaller for the dilute 

migration than neat.  The temperature dependence of these rates is responsible for EP 

values that are significantly larger than those calculated for migration across LDPE 

from neat DCE solutions.   

Figure 5.4. Comparison of the donor side of the migration cells in (a) neat and 

(b) dilute DCE migration experiments 
 
Permeation depends on diffusion and solubility.  Permeation and diffusion are 

both activated processes.  If we consider the solubility to be the partitioning constant 

of the DCE between Miglyol and LDPE one can derive the following relationship 

from Equation 5.7: 
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where ED is the diffusion activation energy, and ∆Gpart is the free energy of 

partitioning of DCE between LDPE and Miglyol.  Assuming that P0 and D0 do not 

exhibit a temperature dependence, and are dependent on properties of the polymer 

and migrant molecule, we can simplify the expression to 

 partDP GEE ∆+=        (5.9) 

 EP values have already been determined experimentally for neat and dilute 

migration through LDPE.  Using standard models for migration, we can estimate 

diffusion coefficients at the temperature range used in experiments to estimate a 

ED.7, 22, 32, 33  Thus, with quantities for both the activation energies, we can determine 

∆Gpart, which allows us to calculate a partitioning constant of the DCE between 

Miglyol and LDPE. In the absence of other competing factors, this analysis predicts 

differences in partitioning constants of ~600 for c1,2-DCE versus t1,2-DCE (with the 

c1,2-DCE being more soluble in LDPE than t1,2-DCE).  This last result agrees 

qualitatively with the results from TGA experiments described in Chapter 2.              

5.3 Conclusions 

 The studies described above sought to determine the effects of dilute 

concentrations on migration of isomers through food contact polymers.  The 

permeation coefficients of c1,2-DCE and t1,2-DCE were still different, with t1,2-

DCE having larger permeation coefficient, similar to observations with migration of 

neat DCE.  Given that the neat and dilute DCE experiments are equivalent in every 

way except for the composition of the initial migrant solution, these results suggest 

that the limiting quantity controlling permeation is migrant solubility in the polymer 

film.  When little migrant is available to pass through the LDPE, permeation slows 



 

 93 
 

but the non polar migrant, t1,2-DCE, still passes through the film ~ 4 times faster than 

the more polar c1,2-DCE.  This is most likely due to the lack of intermolecular 

attractive forces for t1,2-DCE (dipole moment and polarizabillity).  The large 

differences in permeation of c1,2-DCE and t1,2-DCE illustrate how differently two 

molecules with equivalent masses can migrate.  Migration models that only consider 

molecular weight of migrating analytes are ignoring important “chemical details” that 

impact migration.  As shown in the work of Chapters 4 and 5 of this thesis, “chemical 

details” significantly impact migration rates. 
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Chapter 6 Summary and Future Directions 

6.1 Summary 

Research performed for this project characterized interactions that could lead 

to analyte migration from or through food contact polymers.  Through the use of a 

variety of experimental techniques, we were able to simulate conditions where 

migration from food contact polymers would be possible.  Measurements at the 

air/water interface were able to simulate conditions in which surface concentrations 

of additives would be increased due to migration and adsorption at the 

polymer/aqueous interface. Consequences for additive adsorption to the interface 

include decreased antioxidant activity in the polymer itself and changed packaging 

surface properties.  Direct migration of neat and dilute DCE solutions through 

commonly available LDPE polymers into a fatty food simulant (Miglyol) was also 

investigated to determine the role played by chemical structure in mass transport 

through polymers.   

6.1.1 Surface Activity 

Isothermal compressions of IN1010 and IN1076 are irreversible after film 

collapse.  Successive compressions of these molecules at the air/water interface 

exhibit an unusual hysteresis, where the lift off area decreases by a uniform amount.  

The decreasing lift off area indicates a loss of molecules at the air/water interface 

possibly through aggregation.  Quantitative analysis of these isotherms show a larger 

loss of molecules to the IN1076 monolayers compared to IN1010, on a per molecule 

basis.  The irreversible loss of molecules is a function of molecular structure.  IN1076 

is composed of a sterically hindered phenol attached to a C18 chain; IN1010 has 4 
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sterically hindered phenols extending from a central carbon.  The long chain on 

IN1076 provides the opportunity for more interaction during a full compression, and 

the opportunity for chain entanglement and subsequently fewer free monomers when 

the film is re-expanded.  The branched structure of IN1010 imparts to this additive 

much less intramolecular structural freedom. The sphere-like structure of IN1010 

suggests weaker intermolecular interactions and the loss of fewer molecules between 

each compression.  Complementary studies using vibrational sum frequency 

spectroscopy – a surface specific technique capable of recording vibrational spectra – 

show IN1076 to be disordered both at full monolayer coverage as well as with excess 

coverage, implying that the IN1076 hydrocarbon tails are not well organized.  Spectra 

of IN1010 also show disorder in the monolayer films. Spectra also show a significant 

change in the subphase, as illustrated in a disappearance of intensity above 3100 cm-1.  

This observation implies that full monolayers of IN1010 create disorder in the 

adjacent water layers whereas IN1076 leaves interfacial water structure largely 

unperturbed.   These findings imply that IN1076 and IN1010 can both form 

aggregates spontaneously at high surface coverage and that these aggregates are 

highly disorganized.  Consequences of increased interfacial aggregation are additive 

blooming, decreased antioxidant activity, and non uniform diffusion. 

6.1.2 Neat Migration Studies 

Migration experiments investigated the permeation of neat DCE isomers 

passing  through LDPE into Miglyol at various temperatures. 1,1-DCE migrates with 

the fastest rate, while c1,2-DCE migrates slowest.  Permeation coefficients were 

calculated from the migration data.  Permeation comparisons at a single temperature 



 

 101 
 

illustrate that molecular structure has a large effect on migration rates.  Permeation 

coefficients did not correlate with molecular size, since 1,1-DCE (the fastest migrant) 

and c1,2-DCE (the slowest migrant) are approximately equivalent in size, and 

t1,2-DCE is ~15% larger (with an intermediate migration rate). Trends in the 

migration data for the isomers were consistent over a range of temperatures.  The 

temperature dependences indicated that migration is an  activated process.  

Permeation activation energies were calculated using an Arrhenius treatment of the 

temperature dependent migration data.  1,1-DCE had the largest EP of 80 kJ/mol, 

t1,2-DCE and c1,2-DCE had energies of 47 ± 8 kJ/mol and 36 ± 10 kJ/mol 

respectively.  Differences in the permeation activation energy are attributed to 

differences in solubility of the isomers in LDPE, with c1,2-DCE having the highest 

solubility.  Solubility effects on permeation warrant an investigation of permeation 

from solutions containing low concentrations of DCE through LDPE into Miglyol.  

Typical empirical models used to estimate migration from food contact polymers only 

consider the molar mass of the migrant.  Results from experiments investigating 

migration of different DCE isomers show considerable differences in migration rates 

due to molecular structure. 

6.1.3 Dilute Migration Studies 

Migration experiments with 1% by volume solutions of c1,2-DCE and 

t1,2-DCE in Miglyol through LDPE were performed at various temperatures.  

Permeation coefficients for dilute solutions decreased compared to those of neat DCE 

permeating through LDPE.  t1,2-DCE permeated at a faster rate than c1,2-DCE.  

Permeation increased as a function of temperature.  An Arrhenius treatment of 
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temperature dependent permeation coefficients yielded activation energies of 

136 ± 35 and 147 ± 38 kJ/mol for c1,2-DCE and t1,2-DCE respectively.  The 

increased activation energies (relative to those calculated from the bulk DCE data) 

could likely be caused by the decrease in concentration, which would decrease the 

number of molecules in direct contact with the polymer film, thus decreasing the 

amount of permeation that is able to occur. 

6.2 Future Directions 

6.2.1 Surface Activity 

 The surface activity of IN1010 and IN1076 can be continued with a new 

addition to our Langmuir trough.  Recently, a dipper was purchased which has the 

ability to make Langmuir-Blodgett films.  One particular study of interest is to 

observe films deposed on glass slides using Polarization Modulation Infrared 

Reflection-Absorption Spectroscopy (PM-IRRAS).  The goal of these experiments 

would be to determine if there is a systematic increase in IR intensity as a function of 

monolayer compression.  Preliminary studies of films made manually suggest that 

such studies are feasible (Appendix 2), but will require careful control of monolayer 

preparation. 

 Using three new molecules, 2,2-bis(4-hydroxyphenyl)propane (bisphenol A, 

BPA), bis(2-hydroxyphenyl)methane (bisphenol F, BPF), and polychlorinated 

biphenols (PCBs), surface tension measurements at the air/water interface can reveal 

whether or not these molecules show a tendency to aggregate at interfaces.  BPA and 

BPF are common additives to food contact materials including polycarbonate 

drinking bottles as well as epoxy can coatings.1, 2  PCB is a chemical regulated by the 
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EPA that was used in many applications including coolant for transistors, caulking 

and fluorescent lights.3  Structures and molar masses of these compounds are shown 

in Figure 6.1.  These molecules are good candidates for surface tension measurements 

at the air/water interface since they have low water solubilities, and amphiphilic 

character.  Since BPA and BPF are of lower molecular weights than IN1076 

(531 g/mol) they may be less constrained in the polymer matrix meaning that they 

will likely be much more mobile.  The surface activity of PCB would be of interest 

due to concerns of contamination of food contact polymers exposed to PCB. 

 

 

BPA 

 

BPF 

 

PCB 

Figure 6.1. BPA, BPF, PCB structures 

6.2.2 Permeation Experiments 

 Continuation of dilute migration experiments is of paramount interest.  This 

work has shown large differences between the permeation of neat DCE through 

LDPE, and the permeation of DCE from dilute (1% by volume) solutions through 

LDPE.  One quantity of interest is the large differences in the permeation activation 

energies.  A study that determined Ep for solutions having systematically varied DCE 

concentrations might provide insight into different steps in the permeation process. 

Migration data from solutions containing amounts of c1,2-DCE point to an initial 

spike in migration rate before the establishment of slower permeation. 



 

 104 
 

 Other experiments of interest include replacing the membrane material with 

polypropylene, nylon, PET, and other thin polymer films and revisiting neat DCE 

permeation.  LDPE is known as a worst case scenario for migration, so it is possible 

that the differences in the DCE isomer permeation are magnified.  Such studies would 

test the generality of the findings presented in this work, namely that permeation 

depends on chemical structure as well as molar mass.   

 Finally, changing the migrant used for permeation would further improve 

understanding of the molecular factors responsible for permeation.  The three 

molecules discussed above, BPA, BPF, and PCB, could form the basis of an 

interesting comparison given their similar sizes and chemical composition.  These 

experiments would also be relevant in terms of comparing experimental migration 

rates with those predicted through the use of empirical models.4-7  Research carried 

out for this thesis made important advances highlighting the role played by molecular 

structure in determining permeation through thin polymer films.  Discoveries 

regarding solute polarity and solubility suggest a number of other projects that could 

clarify fundamental underpinnings to mass transport through polymer films and assist 

policy makers in formulating well-informed regulations. 
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Appendix 1 Migration though a Saturated LDPE Film 

 One question that arose during the experiments described in Chapter 4 – 

migration of DCE isomers from the neat liquid through LDPE and into Miglyol – was 

whether or not the time lag before observed migration was due to the polymer film 

first needing to saturate or a barrier associated with DCE passing across the 

DCE/polymer and/or polymer/Miglyol interface.  To address this issue, we carried 

out migration experiments using films that had already been saturated with DCE.  

Figure A.1.1 compares migration of 1,1-DCE through a normal film and a film pre-

saturated with 1,1-DCE.  The saturated film had soaked in pure 1,1-DCE overnight in 

a closed vial.  Migration with each film exhibits a delay in the onset of the steady-

state as shown by the linear fits at later points in the experiment.  The initial 

measurements for the pre-saturated films exhibit a migration rate slightly faster than 

the steady state and more overall migration occurs through the pre-saturated film, but 

the original delay in the onset of detectable migration is present for both films.  
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Figure A.1.1. Migration profile of neat 1,1-DCE migrating through LDPE at 

20
 o

C. 

 
  A second issue that arose from the migration studies is the influence of film 

thickness on both the permeability.  Experiments using thick films were set up 

similarly to the neat migration experiments described in Chapter 2, only with the thin 

(76.2 µm) LDPE film replaced by a thicker (1.02 mm) LDPE film.  Thick LDPE 

permeation experiments were run at 20, 25, and 30oC with neat t1,2-DCE as the 

donor compound.  Migration profiles are shown in Figure A.1.2.  Diffusion and 

Permeation coefficients are summarized in Table A.1.1.  Using thick LDPE films, 

consistent lag times are able to be determined from the migration profile.  When 

using thin LDPE films, lag time analysis yielded inconsistent results as shown in 

Figure A.1.3.  Inconsistencies in the lag time calculation could be a combination of 
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lack of sensitivity in analytical technique or an interfacial resistance.  Notice the 

diffusion of c1,2-DCE decreases as temperature increases. 

 

Figure A.1.2. Migration profile of neat t1,2-DCE through thick LDPE (1.02mm) 

at 20, 25, and 30
 o

C. 

 

Analyte Temp (K) P (cm
2
/s *10

8
) D (cm

2
/s *10

9
) 

t1,2-DCE 293.1 7.30 4.87 

t1,2-DCE 298.1 17.2 5.89 

t1,2-DCE 303.1 32.8 8.16 

 
Table A.1.1.  Permeation and diffusion coefficients of t1,2-DCE migration 

through thick LDPE (1.02mm) at different temperatures. 
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Figure A.1.3. Lag time analysis results for t1,2-DCE and c1,2-DCE migration 

through thin LDPE (72.6 µµµµm). 
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Appendix 2 PM-IRRAS of IN1076 Langmuir-Blodgett Film 

 An enduring question from the studies of antioxidant additive behavior at 

aqueous vapor interfaces was whether or not the aggregates assumed to form during 

repeated compressions of the films grew monotonically.  To investigate further the 

properties of IN1076 films formed by repeated compressions, we attempted to deposit 

these films onto clean silica surfaces and then probe these films spectroscopically.  

Figure A.2.1 shows PM-IRRAS spectra of IN1076 monolayers after varying numbers 

of compressions.  Films were prepared by making the required number of 

compressions on the IN1076 monolayer using the trough, then depositing the films at 

the compressed state onto a glass slide.  As illustrated above, the intensity increases 

as compressions increase.  The new addition of a dipper to the trough would provide 

consistent deposition of the monolayers on the glass slde, and hopefully 

reproducibility in PM-IRRAS measurements.  

 

 
Figure A.2.1. PM-IRRAS spectra of films formed by repeated compressions of 

IN1076. 



 

 111 
 

Appendix 3 Preliminary Migration Studies  

 Preliminary migration studies were executed using certified reference 

polymers (CRMs) obtained from Europe.1  Studies focused on two materials, CRM1 

and CRM5, their properties are summarized in Table A.3.1.  Both films contained 

IN1076 and Irgafos 168 (IF168).  Extraction experiments were set up by cutting 

pieces of the CRMs into 1 cm × 2 cm pieces of the polymers and weighing samples 

before they were left to soak in a known volume of extraction liquid for a specified 

period of time at room temperature (~23 oC).  Typically isooctane was used as an 

extraction liquid.     

 Polymer IN1076 (mg/kg) IF168 (mg/kg) 

CRM1 LDPE 601 536 

CRM5 PP 1392 1538 

Table A.3.1.  Summary of CRMs. 

Initially, the concentration of additives that had migrated out of the polymer 

was monitored periodically using UV/Vis spectroscopy to quantify the concentration 

of additive in solution.  Since IN1076 and IF168 have similar λmax values (~ 280 nm), 

UV/Vis data only quantified the total amount of migration of additives from the 

polymer. The absorbance peak was integrated and normalized according to the 

surface area of the samples, since migration from the polymer will depend on the area 

exposed to the extracting liquid.  Figure A.3.1 shows an extraction experiment that 

extended over two weeks.  Comparing total amount of migration at late times, CRM5 

lost more additive than CRM1, which is expected according to the concentration of 

the additives in the polymer.  The behavior at earlier times however, suggested that 

CRM1 lost additives to solution more quickly than CRM5.      
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Figure A.3.1. CRM additive loss over two weeks. 

 Additional short time extractions were carried out to determine if CRM1 was 

losing more additives than CRM5 at early times.  The results are shown in 

Figure A.3.2.  At early times, CRM1 is losing more antioxidant additive than CRM5.  

However, detection is limited to total amount of migration using UV/Vis.  Thus, we 

decided to take a closer look at the time dependent migration through a “freeze 

frame” extraction experiment with high performance liquid chromatography to 

separate IN1076 from IF168 and mass spectrometry detection (HPLC-MSD).  A 

schematic of the freeze frame extraction experiment is shown in Figure A.3.3. 
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Figure A.3.2. CRM extraction over 24 hours. 

 

 

Figure A.3.3. Schematic for freeze frame extraction experiments. 

 Samples used for the “freeze frame” were weighed and measured, and 

dropped into a known volume of isooctane.  After a specific amount of time, the 

sample was removed and the extraction liquid saved for later testing via HPLC-MSD.  

Quantities of IN1076 and IF168 were determined through a Beer’s law analysis.  

Migrant amounts at specific times were normalized based on the surface area of the 

film used in that sample.  Figure A.3.4 shows migration of IN1076 and IF168 from 

CRM1 and CRM5. 

1hr 2hr 

…etc 

LC-MS 
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Figure A.3.4 Migration of IN1076 and IF168 from CRM1 and CRM5. 

 Based on Figure A.3.4 it seemed that in both CRMs, IN1076 was migrating 

out faster than IF168.  Since migration can be correlated to molecular mass this may 

seem obvious since IN1076 is 531g/mol and IF168 is 646.9 g/mol.  To gain a clearer 

understanding of the migration rates as a function of migrant mass, we compared the 

ratio of migration (IN1076/IF168) to an absolute ratio (dotted lines) of IN1076/IF168 

from a complete extraction of the polymers, shown in Figure A.3.5. 
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Figure A.3.5. Ratio of migration (IN1076/IF168) from CRM1 and CRM5 

compared to an absolute ratio determined from a full extraction of additives 

from CRMs. 

 
 Through the use of a popular migration model we can predict the diffusion of 

both IN1010 and IF168 from LDPE and PP.2, 3  The migration of IN1076 from PP was 

predicted, and compared to the measured values, shown in Figure A.3.5.  More 

IN1076 migration was predicted based on the model compared to the observed 

experimental IN1076 migration, which is expected since these models are used to set 

specific migration limits for exposure.3  We note here the only migrant dependent 

property used in the empirical models is the molar mass.  Time was later spent on the 

effects of molecular properties on migration.     
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Figure A.3.6. IN1076 estimated migration compared to the experimental 

migration from CRM5 (PP). 
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