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Abstract dissipation. In addition, caches are sized for the worst.cas

This paper investigates the problem of finding the optimalThis means an average computation cannot effectivelyetili
sizes of private caches and a shared LLC in CMPs. Resiall of the cache capacity. Such cache over-provisioning can
ing private and shared caches in modern CMPs is one wayesult in significant waste that, if eliminated, can yieldga
to squeeze wasteful power consumption out of architecturgsower savings without sacrificing much performance.
to improve power efficiency. However, shrinking each pri- Several researchers have investigatadhe resizing tech-
vate/shared cache has different impact on the performancgiques[1, 3, 4, 23, 24, 28, 40, 41] that target this form of
loss and the power savings to the CMPs because each cachgste. Cache resizing is an architecture-level power man-
contributes differently to performance and power. Itisé@n agement technique to determine the minimum cache that a
cial for both performance and power to shrink the LRU wayprogram needs to run at near-peak performance, and then re-
of the private/shared cache which saves power most and ironfigure the cache by enabling/disabling cache ways or sets
creases data traffic least. to implement this efficient capacity. Resizing can reduee th

This paper presents Symbiotic Cache Resizing (SCR), amount of cache activated per access, and also enable-<circui
runtime technique that reduces the total power consumptiofevel techniquesd.g. gated-\Viq [29]) to shut down the un-
of the on-chip cache hierarchy in CMPs with a shared LLC.used portion of the cache. This can translate into significan
SCR turnoffs private/shared-cache ways in an inter-co an dynamic and static power savings.
inter-level manner so that each disabling achieves besepow  CMPs are prevalent because exploiting instruction level
saving while maintaining high performance. SCR finds suckyarallelism (ILP) incurs high power dissipation but yieldyp
optimal cache sizes by utilizing greedy algorithms that wemodest performance gains. CMP scaling, increasing
develop in this study. In particular, Prioritized Way Selec the number of cores, will continue in the foreseeable future
tion picks the most power-inefficient way. LLC-Partitiagiin  as transistor count increases. Modern CMPs are commonly
aware Prioritized Way Selection finds optimal cache sizegquipped with a shared last-level cache (LLC) to efficiently
from the multi-level perspective. Lastly, Weighted Tho&sh  ytilize cache capacity and share data between cores. ydeall
Throttling finds optimal threshold per cache level. We evalfinding optimal sizes of the private caches and the shared LLC
uate SCR in two-core, four-core and eight-core systems. R@ysuch CMPs leads to saving most of the wasteful power con-
sults show that SCR saves 13% power in the on-chip cachgumption in the on-chip cache hierarchy without any perfor-
hierarchy and 4.2% power in the system compared to an eveghance degradation or only with unnoticeable/acceptalile pe
LLC partitioning technique. SCR saves 2.7X more poweformance degradation. While extremely effective on unipro
in the cache hierarchy than the state-of-the-art LLC re®izi cessors, existing resizing techniques cannot be simpljeapp
technique while achieving better performance. to modern CMPs. This is because finding the optimal size of
each private cache on CMPs is alreadyNd#rhard problem.
As such, having a scalable algorithm is crucial to alleviage
The power wall is currently the main limiter to achievinghig power inefficiencyn the private caches in CMPs.
performance in modern CPUs, and has been one of the mostOn the other hand, a shared LLC can be considered as a
critical problems that computer architects face over th& pa single cache, so we can directly apply an existing cache re-
several years](]. Unfortunately, this problem will only get sizing techniques to the shared LLC. A recent stuglyj pp-
worse in the future as process technologies continue te scaplied the cache resizing technique to the shared LLC in CMPs
down feature sizes. As such, power efficiency will remainon top of the utility-based cache partitioning schemé].[
an extremely important design goal, and will require hardThe study explored the wasteful power consumption of the
ware designers to continue to make efforts to squeeze waste-C, mostly from the static power of the LLC, thus reducing
ful power consumption out of architectures. the power consumption of the LLC without noticeable per-

A key place to look for power savings is in the on-chip formance degradation by not allocating ways with lower-util
cache hierarchy. Caches occupy a large portion of the CPURy than pre-specified threshold. Unfortunately, the teghe
available die area—upwards of 50% in today's CPUs—so theglone can not squeeze most of the wasteful power consump-
take up a significant portion of a processor’s overall powettion out of the on-chip cache hierarchy because most of the

1. Introduction



over provisioning, from the perspective of dynamic powef,0  that carheuristicallyfind good resizing solutions in an on-
curs at the private caches. Thus, it is important to find a way line fashion.
to resize private caches on top of the resizable shared LLC. e In particular, we explain and show thative PWS, LP-
In this paper, we prese@ymbiotic Cache Resizing (SGR) PWS and WTT can achieve significant power savings
a novel greedy algorithm to resize private caches and the while maintaining high performance relative to other tech-
shared LLC in CMPs that squeezes wasteful power consump- niques.
tion out of both resizing. In particular, SCR achieves highe ¢ We show that SCR can save up to 54.5% total cache-
performance and saves more power than the existing LLC re- hierarchy power and 16.9% total system power.
sizing technique. Figur@ summarizes our offline-study re- e To the best of our knowledge, this is the first study propos-
sults by showing weighted speedups and power consumption ing a run-time technique to find the optimal on-chip cache
of the on-chip cache hierarchy, as we compare the static SCR hierarchy in CMPs by resizing both private caches and the
to previous studies and our exhaustive searches (we will dis shared LLC.
cuss our offline study in Sectiods4 and 5.1in detail). As The remainder of this paper is organized as follows. Sec-
shown, the static SCR can achieve both higher performandéon 2 studies background and motivation of SCR. Then, Sec-
and higher power efficiency than the existing LLC resizingtion 3 presents analytical model for SCR and its architecture
technique by eliminating the wasteful power consumptionin details. Sectior explains experimental environment and
both from the private caches and the LLC. methodology and Sectiohevaluates power savings and per-
SCR orchestrates the private cache and shared LLC by ufPrmance of SCR. Finally, Sectiohdiscusses related work,
lizing Weighted Threshold Throttling (WTTWTT finds op- and Sectiory concludes the paper.
timal thresholds to control a private-cache resizing tépi
and a LLC resizing technique. Having an optimal threshol
per different cache level is the key symbiosis because re- Cache resizing has been known for several decades, but its
sizing each type of cache (private vs. shared) has a differempplication in CMPs is not fully investigated yet. Although
impact on the overall performance loss and power consumphere has been significant work on cache resizing, existing
tion. Moreover, the impact varies across applications. Fotechniques are limited to uniprocessors. In particularstmo
resizing the LLC, WTT employs the existing state-of-the-ar studies consider resizing a single level cache for a ungsoc
technique §6]. However, we propose a new technique, calledsor only [1, 23, 24, 28, 40, 41], (typically the L1 caches). A
LLC-Partitioning-aware Prioritized Way Selection (LP-B)V  recent study §¢] investigates cache resizing in a multi-core
to control private cache resizing in WTT. LP-PWS resizesplatform, but it only studies it for the shared LLC and does
private caches symbiotically by utilizinguse distanc@ro-  not cover private caches. Unfortunately, there’s no compre
files across cores. LP-PWS monitors power efficiency gairhensive study on cache resizing in a modern CMP cache hier-
(PEG) pelLRU way of each core and disables the ways in thearchy yet.
PEG order to achieve the best power savingyt perfor- Moreover, since both dynamic and static power are impor-
mance lossIn addition, LP-PWS adopts a multi-level cache tant, only controlling the size of a single level of cache po-
resizing technique to optimize the total power consumptiortentially misses significant opportunities for power sggn
of a cache hierarchy, thus achievisgmbiosisvhen running  The trend for modern CPUs is towards deeper cache hierar-
with a resizable shared LLC. Resizing private caches to savehies which distributes the power consumption acrossrdiffe
power, however, can increase private caches’ miss rates, fent caching levels. For dynamic power consumption, the pri-
sulting in greater power dissipation at the next level oheac vate cache is the greatest culprit, but for static power con-
(or the LLC) due to increased accesses. The access energymption, the LLC is by far the greatest concern due to
to a shared LLC is generally larger than the access enerdys large area. As such, investigating multi-level regizis
of a private cache. For this reason, shrinking down a primandatory to eliminate all wasteful power consumption & th
vate cache usually reduces the total power consumption afache hierarchy.
the cache hierarchy, but after some point, it will incredmse t . L
total power consumption due to the larger access energg at tif- 1+ Private Cache Resizing in CMPs

shared LLC. Accordingly, it is crucial to control privatect®  Private caches can account for a significant part of the over-
rESiZing with awareness of the total power COﬂSUmptionén th all power Consumption, and can also vary across programs.
cache hierarchy. Figure 1 shows the power consumption breakdowns for the
This paper makes the following contributions: SPEC 2006 benchmarks in a 2-way out-of-order core with
e We conduct a limit study that searches the solution spac82KB private cache and 1MB LLC (details will follow in Sec-
exhaustively to find the solution that outperforms éitete-  tion 4). In particular, the dynamic power of the private cache
of-the-artLLC resizing technique in both performance and alone can take up to 20% of the total system power consump-
power savings. tion or 50% of the total power consumption of the cache hi-
e We propose&Symbiotic Cache Resizing greedy algorithm  erarchy. In terms of the absolute power consumption, Table
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Figure 1: Breakdown of system power consumption for the SPEC CPU2006 benchmarks.

perlbench | bzip2 mcf gobmk hmmer | sjeng | libquantum | h264ref omnetpp astar xalan

TS (W) 2.627 2.397 1.696 2.724 2.766 2.513 1.468 3.066 1.751 2.606 1.579

L1D (W) 0.525 0.333 0.067 0.380 0.472 0.352 0.023 0.665 0.117 0.482 0.045
bwaves zeusmp | gromacs | cactusADM | leslie3d | namd povray calculix | GemsFDTD | Ibm sphinx3

TS (W) 2.015 1.752 2.033 1.730 1.724 1.976 2.232 1.811 1.587 1.908 2.029

L1D (W) 0.230 0.088 0.133 0.163 0.097 0.178 0.270 0.111 0.063 0.078 0.136

Table 1: Total system power (TS) and L1 dynamic power (L1D) fo  r SPEC CPU2006 benchmarks.

[ mcf astar |
[ Total accesses [ 856647 | Total misses [ 166736 | Total accesses [ 4071875 | Total misses [ 30415 |
Way 1 | Way 2 Way 3 Way 4 | Way5 | Way6 Way 7 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7
M+ 32534 | 6994 4755 4024 3406 2838 2442 M+ 122031 | 14174 4894 2989 2437 2125 1900

PEG 26.3 122.5 180.2 212.9 251.5 301.8 350.9 PEG 33.4 287.3 832.0 1362.4 | 1671.2 | 1916.4 | 2143.0

Table 2: Increased number of cache misses (M+) and power effic iency gain (PEG).

1.04

On-Chip Cache Hierarchy (Private Cache + LLC) compared to the potential power savings from private cache
5 @me we propose for SCR resizing. The dynamic power cqnsumption of tag accesses is
8 %0“’3 e dependent on the LLC partitioning, the allocated LLC ways
g g LLC Only ',' \& in UCP [29 and thus, private cache resizing increases the
SEm ’m’.\ \SeicSoR power consumption of the LLC. To alleviate this problem; pri
8 cz Previons sdie e . vate cache resizing should be performed with the awareness
£ 2101 LLC Resizing ha LT of the increased dynamic power at the LLC constrained by a
< threshold to avoid severe performance degradation.
&_’ Pareto-optimal Curve

! ' ' ' ' ' 2.3. Private Cache Resizing vs LLC Resizing

0.95 1 1.05 1.1 1.15 1.2
Power Efficiency Normalized to Even Partitioning As discussed earlier, multi-level cache hierarchies ibiste
Figure 2: Scope and goal of this work. power consumption across the different levels. Each lelvel o

) _ ) cache has its own power savings and performance degrada-
shows the dynamic power consumption of the private cachgon when the waste is squeezed out. Since the overall perfor

varies from 0.02 W to 0.5 W. Resizing each core’s privatemance impact and power savings are not trivial, when mul-
cache independently without considering the absolute powgjple cache-resizing techniques are combined, it is cticia

for a given amount of acceptable performance 10 (n- trol each technique for saving most of the power while main-
creased traffic to the shared LLC), it is crucial to applyzesi taining high performance.

ing on the private cache that will save the most power. Cooperative Partitioning3[], or LLC Resizingis a previ-

2.2. Intra-Core Multi-Level Optimization ous technique focused on resizing a CMP’s shared LLC. It
disables ways in the LLC when thaility of the way is not

Cache-partitioning techniques have been widely inveiija high enough. Combining the private cache resizing and the

for higher performance and better power efficienz$, [30,  LLC resizing can be eithesymbioticor destructive, depend-

]. Most of runtime state-of-the-art techniques dynami-ng on the workload. If the LLC resizing technique disables
cally change patrtitioning. As such, resizing private cache some number of ways on top of aggressive private cache resiz-
in CMPs will encounter a dynamically changing LLC parti- ing that causes significant additional traffic to the LLCrthe
tion size. Although LLCs commonly use the serialized accan be significant performance degradation which is unac-
cess technique, which saves the data-array access power wheeptable in high performance computing. On the other hand,
a cache miss occurs, its tag access power can be significaibtis possible to combine the two techniques in such a way
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Figure 3: Comparing private-cache resizing techniques.

that achieves most of the potential power savings with negithms after presenting the analytical model for SCR .
ligible performance degradation. This is possible when th .
two techniques forrsymbiosisuch that the private cache re-e3'2' Analytical Model for SCR

sizing saves power with near-peak performance and the LL®ower Optimization with Bounded Performance Degrada-
resizing employs more ways than it would in the absence ofion In high performance systems, achieving desired per-
private cache resizing, to compensate the performance.  formance levels and reducing power consumption are both
important considerations. As such, our objective funcifon
3. SCR > >
the lowest power consumption withbundedperformance
degradation, notnergy-Delay Productor Energy-Delay-
Squared Productvhich are more common in circuit/device-
level designs.
Core 0 Core 1 Coremt Assume that we solve the problem of finding optimal pri-
[iCat = vate cache sizes for a two-core system.>tandy be the size

L. of the private caches. Ldt(x,y) be the power consumption
D,Caché D-Cache - of the system consisting of a core with a private cache size of
LP-PWS
Resizing

3.1. Framework

D-Cache

x and another core with a private cache sizg.oket g(x,y)
be the performancég. weighted speedupf the system.

Shared LLC

Power= f(x,y), Performance=g(x,y)

Let i be the normalized value of the degraded performance
andxg andyg are the baseline sizes of the private caches (in
this study, we only focus on homogeneous systemsgso

Figure4 illustrates the framework of SCR. We develop the yg). Then, a simple form of this problem we want to solve is
design of SCR to achieve most of the potential power savings

Figure 4: SCR framework

and at the same time attain high performance based on the minimize f (x,y), subject toM > 1)
principal rule which enforces the configurations resuliimg 9(xe.ye)

best power savinger unit performance degradationvhich  golving theLagrangianfor this problem is very challeng-
can be captured #ower Efficiency GaifPEG). SCR con- jng. Moreover, its solutions are neither accurate nor prac-
sists of mainly two parts: the monitoring part and the cdntro ica| pecause performance and power characterizations are
part. The monitoring part includes way counters to approXighallenging and the derived solutions are not always config-
mate thereuse-distancerofile in the private /shared caches, | rgple. However, our empirical study shows that approxima-
and PEG/PEL (Power Estimation Logic). The control partijon, given below, discovers the solution effectively bhoa
consists of LP-PWS, LLC Resizing and WTT. the exhaustive search over the solution space.

LP-PWS monitors PEG to prioritize the cache way in pri-S R Approximation We approximate the solution by
vate caches, which the best power savings can be expecte archingser, Yscr such that
SCIy Yscr

by disabling of. The power estimation logic (PEL) in SCR
provides the approximation of dynamic and static power con- maximizef (xg,yg) — f (Xscr; Yscr),
sumption of a given level of the cache and provides the val-
ues to the logic which determines the size of the private
cache and the LLC. SCR works with the existing LLC resiz- whereT(a,b) is a function returning the normalized value
ing techniquesymbiotically In particular, LP-PWS leads to of increased traffic to the LLC. In Equati@ we change the

an optimal multi-level cache resizing. Second, PEL-baseaonstraints from being based on pure performance (normal-
WTT achieves further power saving without significant per4ized speedup) to being based on performance-related gvents
formance degradation. We detail the design of the two algawhich is easier to predict. We predict the increased traffic

2
subject to(T (X, Xscr) + T (YB, Yscr)) < threshold @



with reuse-distance profilingy utilizing way countersat run  while monitoring its own performance degradation though,
time. We take greedyapproach to solve this problem, basedwill result in the sum of the worst IPCs of each application.
on power efficiency gaito compare potential power savings This is because each downsizing causes more traffic to the
by disabling each LRU way in private caches. The effectivetLC, resulting in poorer IPC than would occur in a unipro-
ness of the approximation will be discussed in Sectidn cessor without a shared LLC.

. PWS addresses this problem by selecting the way that pro-
3.3. SCR Designs vides the biggest power efficiency gain first. This will re-
Power Efficiency Gain Comparing the impact, from the sultin either saving more power by selecting ways that pro-
power and the performance perspective, of disabling a sindde higher power efficiency gain, or achieving higher perfo
gle way of a given core’s private cache in the CMP is crucialmance by disabling fewer number of ways for the same power
when searching for the global optimal. If the LRU way of the savings compared to FiguBe(a). Figure3-(b) shows an ex-
private cache in a given cord {s disabled, then the expected ample ofsymbiotic cache resizingith the PWS technique.

power efficiency gain peaunit performance degradatias: In Figure3-(b), only 3ways in total are disabled, compared to
8 ways in Figures3-(a), resulting in lower power dissipation
PEG =total_accessesvay countsl], (3)  compared to the power dissipation in Figi€a). PWS se-

lects the ways to be disabled based on their PEG values. PWS
wherel = current LRU_way. Table2 shows PEGs per way prioritizes the ways in PEG order until the expected perfor-

of the example workload consisting ofcf andastar. M+ mance degradation reaches a pre-defined threshold, as shown
numbers are measured when the number of the ways of thg Algorithm 1.

cache is reduced by one,g. "way 5" columns denote the

increased number of misses when the cache has been Chang%‘qgorithm 2: LLC-Partitioning-aware PWS (LP-PWS)
from 6 ways to 5 ways.

LP_PWg( threshold :
begin
Algorithm 1: NaivePrioritized Way Selection increasedTraffic =0
- allowedTraffic = trafficToLLC * threshold
EWS(. threshold : prevPower[i] = power_estimation(private_max way,
egin

' . licPartition[i])
increasedTraffic =0 while increasedTraffic < allowedTraffido
allowedTraffic = trafficToLLC * threshold

N ) ) foreach coredo
while increasedTraffic < allowedTraffido | PEGIi] = get_peg())

foreach coredo end

| PEGIi] = get_peg(i) selectedCore gore with maximum PEG

end ) ) increasedTraffic += disable_way(selectedCore)
selectedCore sore with maximum PEG st hrottling ek

increasedTraffic += disable_way(selectedCore)

if power_estimation(selectedCore) >

end prevPower[selectedCoreghen
return ways per core | break
end end
prevPower[selectedCore] = power_estimation(selectezg)Co
get _peg(i): end
begin return ways per core
| return total_accesses[i]/way_counts[current_way - 1] end
end
power _estimation(i):
di sabl e_way (i): begin
begin privPower = dynamic_power(priv) + static_power(ipriv)
current_way -=1 licPower = dynamic_power(L.LC) + static_power(iLLC)
return way_counts[current_way] return privPower + llcPower
end

end

PEG-based Prioritized Way Selection Each private cache Intra-Core LLC Partitioning-aware PWS  Although
consumes dynamic power that is proportional to the numbenaive PWS determines a solution to achieve high power ef-
of accesses which can vary significantly across cores. A#gciency, each per-core solution still may not achieve one of
such, disabling a single way in private caches may haverdiffethe Pareto-optimal solutions in the power-performance solu-
ent power impact opower efficiency gainDecisions made tion space because it does not take the dynamic access en-
by monitoring only each core’s performance are prone to bergy of the the LLC into consideration. The increased traf-
destructive because each core’s increased data traffieto tiic to the LLC results in additional power consumption. The
LLC aggravates resource conflicts in the LLC. Fig@réa)  additional power can be significant as we shrink the private
shows an example. Downsizing each core’s private cacheache aggressively, resulting in a total power increase. In



addition, tag-access energy keeps changing because a LLCGroup [ Benchmark | MPKI [[ Group [ Benchmark | MPKI |

resizing technique partitions the LLC and shrink the numbe _ Mef 51
of active ways dynamically. For this reason, the optimal de} Libquantum | - 29 Astar 0.82
. . . ) ! . . High Lbm 22 Perlbench 0.69
gree of disabling private cache can not be determined inde- Omnetpp 15 Hmmer 0.66
pendently. LP-PWS uses the power estimation logic (PEL), GemsFDTD | 14 H264ref | 0.54
shown in Figuret to improve upomaivePWS by throttling Leslie3d 9.5 Low Sieng 0.27
the amount of private cache resizing. The technique is speai Sphinx3 8.2 Gobmk 0.2
L . P g a p Xalan 6.8 Calculix 0.2
fied in Algorithm2. Medium Bwaves 4.8 Gromacs | 0.13
Zeusmp 4.1 Namd 0.07
- - - CactusADM 2.3 Povra 0.03
Algorithm 3: Weighted Threshold Throttling Bzip2 19 Y
WIT( Teriv, TLie) : // default thresholds for LP-PWS and LLC Resizi L
beg(in Prv: Tiie) eladtt thresholds for an esteing Table 3: Benchmarks classification.

privWaysli] = LP_PWS(#iv)
licWays]i] = LLC_Resizing(.c)

foreach coredo We reduced the time complexity down @(N,M) for naive

/* private cache resizing power */ PWS and LP-PWS as shown in Algorithrhsand2. Previ-
powerPrivResizing += power_estimation(i) ous studies]9, 36] showed that LLC partitioning techniques
fnd - cored do not take longer tha®(M?). SCR has a time complex-
oreach coredo H H H
/LLC.Resizing power * ity of O(M(Np+ M)) because WTT shown_ in Algorith®,
powerLIcResizing += power_estimation(i) integrates the_ private-cache-resizing algorithm and the-L
end resizing algorithm.
powerSavingPriv = powerBaseline - powerPrivResizng
powerSavingLlc = powerBaseline - powerLIcResizing 3.5. Hardware Overhead

powerSaving = powerSavingPriv + powerSaving Llc
throtPriv = powerSavingPriv / powerSaving

a : . Way Counters The major additional hardware circuit to im-
throttle = powerSavingLlc / powerSaving

LP_PWS(throtPriv *Tery) plement SCR is way counters. We assume the same circuits
LLC_Resizing(throtLlc *T, ) used in the shared LLC in?P] and employ similar circuits
§ return private and LLC ways in the private caches. Way counter overheads in term of area
en

and power consumption are minimal, though we take them
into consideration when we measure the system power.

Weighted Threshold Throttling The goal of SCR is to 4. Experimental Methodolo
eliminate wasteful power consumption both from private ™ P ay
caches and the shared LLC. To achieve this goal, we neezg1 Benchmarks

to utilize both resizing techniques symbiotically so asteot

degrade performance_severely. In particula_r, we try ‘F’G’E‘“ We use 22 SPEC CPU2006 benchmarks (11 integer and 11
the sum of power savings from both techniques while allowﬂoating point), as shown in Table We compile the bench-
ing only the performance degradation of one of the techniqu arks on an Alpha CPU emulato][ We run theLinux
A.IthOUQh we a_ssume givgn thresholds for bOth resizing teck(Debian Etch system on the emulator, and then install SPEC
hiques, we adjust t.heffectlvethresholds dyn_am|cally. .. CPU 2006 on it. We use the native Alpha compiler, gcc-4.1.1
We propose Weighted Thresh_old Throttling (WTT) Wh_'Ch rovided along withDebiar). We compile the benchmarks
adjusts each threshold_dynamlcally baseq on the ratio q(gith the -O2 option and link glibc-2.5 statically. One inte-
the expect_ed pOWEr savings of ea_ch techr_nque to the overader benchmark (403.gcc) and six floating point benchmarks
power savings, as shown in Algorith@ This means WTT (416.gamess, 433.milc, 447.dealll, 450.soplex, 465ot@rtd

gives more We.ight to the cache resizing techniqu_e thgt SaVe4s<31.wrf) could not be compiled, so they have been omitted
more power with the given default threshold, while dlsc:our—from our study. Using the reference inputs, all of the bench-

aging the resizing in the other caching level to preventiseve marks were run to completion on SimPoint]. We take

performance degradatign. We use 'ghe algorithm d_e;cribeﬁl]e most representativ@mpoint consisting of 1B instruc-
in [36] fo-r the LLC_Resizing(Jn Algorithm 3, and omitits s per benchmark. Each simulation point contains 1.1B
explanation here. instructions, 100M instructions for cache warmup and 1B in-
3.4. Scalability of SCR structions for the representative simulations.

As we mentioned earlier, finding an optimal private cacheWorkloads We generate multi-program workloads ran-
size in CMPs is already aNP-hard problem. This is be- domly to mix all three categories in Table We created 20
cause it has a time complexity 6f (Np)™), where the CMPs  workloads for 2-, 4- and 8-core CMPs, resulting in a total of
have M cores and each core hasNg-way private cache. 60 workloads.



2.0 GHz Z-way out-of-order the access delay for the cachi], We utilize stack effect
Cores 64-entry ROB, 32-entry LSQ . . . . . -
Gshare branch predictor, 1024-entry BTB in conjunction with ABB to model way selection3], _ ]
L1 1-Cache 32 KB, 2-way, 64-byte blocks We use the Model for Assessment of cmoS Technologies And
L1 D-Cache 32 KB, 2-ports, 8-Way, 64-byte blocks, 4 cycles Roadmaps (MASTAR 2011) from ITRS i] to derive param_
L2 Unified Noninclusive t ired for CACTI ding t fi
L2 n:ﬁ: ) 16/32/64-way 2MB/AMB/SMB for 2/4/8 cores eters required for according to our assumptions.
ared Lache 64-byte blocks, 13/15/17 cycles

4.4. Implementation
Table 4: Architectural configuration.

Static Study We conduct an off-line exhaustive evaluation
4.2. Architectural Simulation of static SCR to examine its potential power savings and per-
formance improvement compared to other schemes including
UCP andLLC Resizingbased on UCP as well as exhaustive
searches for optimal power, calleghaustive-Poweand for
optimal performance, calleBxhaustive-PerformanceThe
gtatic study has two goals: first, identify potential perfor

We use modified Simplescalar tools for the Alpha ISAtp
conduct our study. Tabléshows our baseline processor con-
figuration. As mentioned in Sectidh) we model state-of-the-
art power-efficient cores. As such, we use a relatively marro
2-way issue core to achieve high power efficiency. The core . _
are attached to a 2-level cache hierarchy. In particular, thMmance gains and power savings co_mpared to the pther tech-
on-chip cache hierarchy has a split 8-way 32KB L1 privaten'ques’ and second, determlne the limit on the maximum per-
cache and a unified and shared LLC. The LLC is 2MB for 2formance and the power savings. The .Iatter will allow us to
cores, 4MB for 4 cores, and 8MB for 8 cores. Its associativ3SS€SS hgw well our on-line SCR techmgue perfo.rms..

ity increases by 8 ways for additional core counts. The cache 10 facilitate the study, we run all possible combinations of
block size is 64 bytes for all caches. The baseline cache hHt@ys of private cache and shared LLC. The extensive sim-
erarchy maintains the noninclusive inclusion propertyther ulations e_nable the exhal_JstNe s_earch over the ent|re|(_$|mlut
LLC. We will study differentinclusion propertiesin Seatie  SPace to find the best static solution. In the cadexdiaustive-

and compare their performance and power consumption. gEower, we_search_ fo.r the solut|on_wh|ch consumes the least
fore resizing caches, we apply existing techniques to ensuPOWer while achieving better weighted speedup thac

the baseline cache hierarchy is reasonably efficient. In paR€Sizing Likewise, in the case dExhaustive-Performance
ticular, we assume the LLC cache serializes tag and data a¢¢ Search for the solution which has the highest weighted
cesses such that only a single data way is ever accessed $8€€dup while consuming less power thaC Resizing

gardless of the number of configured cache ways. Fidure pynamic SCR We implemented our dynamic SCR tech-
shows the cache-hierarchy energy breakdown of the baselingques in the simulator from Sectigh3. In particular, we
multi-level caches for each SPEC CPU2006 benchmark.  modified our simulator to emit an interrupt every 1M cycles

Cache Reconfiguration To enable cache reconfiguration, and execute an interrupt handler. The interrupt handlér est
we modified Simplescalar's cache module to maugéctive  mates performance and power to determine the best private
cache wayg1]. We assume all caches in the hierarchy arecache sizes across cores. Every 5M cycles, the interrupt han
reconfigurable and can change their capacity in increménts @ller also runs an LLC partitioning algorithm. We also modi-
a cache way from 1 to the associativity number of ways in thdied the simulator to allow software to reconfigure the caches
cache. (Our work does not consider I-cache resizing, and agithin the interrupt handler.

sumes the I-cache is always fixed). While each cache’s accessPerformance and power estimations are provided by PEG
delay also changes across different configurations, weressu and PEL in the simulator. PEG logic and PEL reads the way
a constant number of CPU cycles to access each cache clomunters in the simulator. In particular, at each iteration

sen to handle that cache’s worst-case access diedayvith ing the Prioritized Way Selection, PEG values from each core
all ways enabled). are read to pick the maximum value and LLC-Partitioning-
Aware Throttling can veto the decision and pick the core with
second biggest PEG value. PEL requires per-access energies
We use McPAT P1] and CACTI 6.5 P for power mod- and leakage energies from CACTI to predict power consump-
eling. Our baseline model uses then&2technology node tion per epoch, so we implemented configurable registers to
and ITRShigh performance devicesWe adopt a state-of- Store these values. To facilitate our SCR algorithm, our sim
art circuit-level static power reduction technique to midde ~ ulator implements PEG and PEL on top of implementing pri-
static power of the shared LLC more realistically. Specifivate cache way counters per core.

cally, we assume high{\evices throughouti[j], but apply Our simulator accounts for the overheads associated with
reverse body bias (RBB) in standby mode to further reduceesizing each cache. When up-sizing the private cach&ghar
standby leakaged[/]. When an access occurs, we apply a for-LLC, we assume 100/1000, private/shared-LLC, cycles to
ward body bias (FBB) to restore the threshold voltage for lowpower up each way, and 10 cycles per way to flash invalidate
access delay. We assume that applying FBB does not impatite newly powered-on cache blocks. When down-sizing, we

4.3. Power Modeling



walk the down-sized way(s) to flush its contents. Clean cachseults show that the average number of activated ways in the
blocks are discarded after checking upstream caches te majrivate caches is 6.5 compared to 8 in the baseline. And sec-
tain inclusion. Dirty cache blocks check upstream cachds anond, SCR compensates for the performance loss from the pri-
are also written back to the next-lower level. We assumevate cache resizing by utilizing more ways in the shared LLC
these operations are pipelined such that flushing takes 1 cgempared to the LLC-only resizing. The average number of
cle per walked cache block. Down-sized ways are selectedctivated LLC ways per core of SCR and LLC-only resizing
in reverse way ID order. Because we do not physically moveare 7.38 and 5.88, respectively, compared to 8 in even parti-
cache blocks once they are filled, the flushed cache blockisoning, and thus results in SCR’s higher performance. Powe
have an equal probability of being at any position in the LRUconsumption in the shared LLC of SCR is higher than LLC-
stack. Moreover, we do not attempt to reconstruct the pewnly resizing, but overall, the cache-hiearchy power sgin
set LRU stacks after flushing. Resizing is performed on theén SCR is greater than in LLC-only resizing due to the power

private cache and the shared LLC. savings in the private caches.
5. Results and Analysis 5.2. Dynamic SCR
5.1. Static SCR Symbiotic Cache Resizing Figure 6 summaries our dy-

Fi 5 ¢ . wud its. The fi h namic SCR results by showing power consumption of the on-
Igure> presents our ofi-lin€ study resufts. The Tigure s OWSchip cache hierarchy and the system, and weighted speedups,

weighted speeqlups and cache-hierarchy power consumpti%r% we compare the SCR technique to the LLC resizing tech-
of two-application workloads. SCR consumes less powehique. Figure6-(a) shows the power consumption in the

than LLC Resizing while improving performance. On aver- . i .
age, SCR improves performance by 0.7% and consumes 2.5 toche hierarchy for LLC-resizing and SCR techniques. The

. . acked bars break down cache-hierarchy power dissipation
less power c_ompared to LLC Resizing. Exhaustl\_/e-Powelgor SCR and the line reports total cache-hierarchy power
a_md Exhaustlve_-Performance show two Pgreto-opnmal SOILé’onsumption for the LLC resizing technique. These results
tions on theweighted speedupower cartesian space. The demonstrate our SCR technique can provide significant power

weighted speedup and the cache-hierarchy power COnsumgfivings compared to the LLC resizing technique. SCR can

tion of SCR are within the enveloped defined by two Paretosave power in the cache hierarchy by as much as 5562in

frontiers. 19while the LLC resizing technique provides 25% power sav-
BUCP " LLC Resizing ®Static SCR  Exhautive-Pwr ™ Exhaustive-Perf ings. On average, SCR saves private dynamic power by 20%,
1 private static power by 25% and LLC static power by 4%
L0s — 11 across the workloads. LLC dynamic power changes h9%
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according to workload groups. As the "AVG" bars show, SCR

I provides 13% power savings from the on-chip cache hier-

| archy across workloads, representing a 2.7x increase in the
power saved by the LLC resizing technique.

Figure 6-(b) shows weighted speedups and system power

Normalized to EP

——

(a) Cache-Hierarchy Power Consumption for the different techniques. The two bars per workload re-

. o port weighted speedups for the two techniques, and the lines
210 | show system power consumption. These results show SCR
S 100 achieves slightly better performance than the LLC resizing
E 0on | 1":':':':"[ "H H H | ::::I F:”I: technique. In addition, the power savings that SCR provides

0.98 translates into 4.2% power savings from the system power

FF IS S G S G e e e & perspective.
(b)Weighted Speedup

Effectiveness of Prioritized Way Selection We compare
the weighted speedup and the system power consumption of
PWS to thelndependenscheme. The disadvantage of the
These results demonstrate our SCR techniques can providiedependenscheme compared to PWS is proportionally ag-
significant power savings, even when using a static (fixedyregated performance loss and sub-optimal power savings.
configuration throughout the entire workload run, compared-igure8 shows the cache-hierarchy power consumption and
to the baseline cache hierarchy and to the LLC-only resizingveighted speedups of PWS ahitlependent PWS outper-
The bigger power savings and higher performance of SCRorms Independent by as much as 2.2% in performance and
over LLC-only resizing can be explained as follows. First; p 2.6% in power savings i62-7. There are a few workloads
vate cache resizing can save dynamic power and static powethere the performance of PWS is lower than thatrafe-
consumption with some performance degradation. The rgendent but the power savings of PWS is much more sig-

Figure 5: Offline study for static SCR.
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(b) Weighted Speedup and System Power Consumption
Figure 6: Power consumption and performance of dynamic SCR a nd LLC resizing.
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Figure 7: PWS effectiveness (breakdown of cache-hierarchy power consumption for two-application workloads).
® Independent “PWS power by 1.7% and improves performance by 0.5% over the
Independenscheme.
(=¥
5 111110 The power savings of PWS compareditmlependents
S I I I I I I I I I I I I I I I I I much more significant when we compare just the dynamic
=1 . .
z I I I I I I I I I I I I I I I I I I I I power of the private caches. Figufeshows the cache-
hierarchy power consumption for PWS atagdependent
FFF TS PSS G S S S S S G e When we compare the private-cache dynamic power con-
() System Power Consumption sumption for the two techniques in Figure PWS saves as
. much as 73% of the private-cache dynamic power compared
= I I I rl I I I I I . I to Independentn G2-18 On average, PWS saves the dy-
R namic power in the private caches by 12% and the overall
£ I I I I I I I I I I rl I cache-hierarchy power by 5.9%.
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(b) Weighted Speedup

Figure 8: PWS effectiveness.
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Effectiveness of LLC-Partitioning-aware PWS Private
cache resizing should t®ymbioticin that aggressive resiz-
ing of the private caches may increase total power consump-
tion of the cache hierarchy by increasing LLC access energy
more than the power savings from the private cache resizing.

nificant in those cases. For example, the power savings dfle compare the weighted speedup and the system power con-
PWS overindependenin G2-18is 7.2% while its perfor- sumption of LP-PWS to PWS, which does not consider the
mance loss is only 0.3%. On average, PWS saves systepower consumption of the LLC. Figufi shows the system
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Figure 9: LP-PWS effectiveness (breakdown of cache-hierar  chy power consumption for two-application workloads).
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inclusive or exclusive LLCs is non-trivial because exachesi
LLCs are more efficient in cache-capacity utilization while
Figure 10: LP-PWS effectiveness ( Tpriv = 3). non-inclusive LLCs are more efficient in the on-chip band-
width utilization and dynamic power. Moreover, which inclu

power consumption and weighted speedup of PWS and L|§_i(_)n property is more bgneficial dgpends onthglwo.rkload. For
PWS. The weighted speedup of PWS degrades significantIR/h_'S reason, the exclusive LLC with even_partltpmng shows
by allowing additional cache misses withresholdof 3 to slllghtly lower performa_nce tha_n the noninclusive LLC. As

save power aggressively. Nevertheless, PWS still does n(_Eﬂgurell shows, there is marginal performance degradation

save as much power as LP-PWS, which manages less perf{ﬂ-the excl_usive _LLC, unlike the perf_ormance improve_ment

mance degradation. in the noninclusive LLC. The exclusive LLC shows higher
i ) DRAM-access increase, after applying SCR, 3.5% compared
Aggressive PWS can harm the weighted speedup as muGf g 179 decrease of the noninclusive LLC, explaining the

as 15% inG2-4, while achieving 6.4% total system power gjight performance degradation in the exclusive LLC and the
savings. FoG2-4LP-PWS shows weighted speedup degraperformance improvementin the noninclusive LLC.
dation of only 11% with power saving of 9%, which can

the higher system power. Although the noninclusive LLC
ows lower system power consumption, the ratios compared
to even partitioning are almost identical —0.96 1—implytimaf
%CR saves around 4% of system power consumption in both
Mases. We note that SCR incurs bigger dynamic power in-
%rease in the exclusive LLC by 11.5% compared to 10.7% in
the noninclusive LLC, but its overall impact on system power
is almost negligible. The average numbers of activated ways
ter applying SCR, are virtually the same too.

tem power by 1.4% and improves performance by 1.8% oveL,
the PWS scheme. Figurf®shows the power consumption
of the cache hierarchy of PWS and LP-PWS. PWS saves d
namic power in the private caches by as much as 67% co
pared to LP-PWS, but it consumes 250% of the LLC dynami
power compared to LP-PWS 1@2-14 resulting in 7.5% ad-
ditional power consumption in the cache hierarchy. On a
erage, LP-PWS saves the cache hierarchy power consu
tion by 5.7% consuming more dynamic power in the private
caches by 99%, but less dynamic power in the LLC by 53%Epoch Size We ran experiments with 0.5M, 1M and 2.5M—
compared to PWS. cycle epoch size for private cache resizing to measure sen-
sitivities of results to the epochs size while the epoch size
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for the shared LLC is fixed at 5M cycles like other studiesin SCR. Moreover, the technique is only limited to unipro-
[29, 36]. We found that 1M—cycle epoch size is a reasonablecessors. Wangt al [39] propose private cache resizing in
choice for generating good power savings compared to theonjunction with LLC partitioning. This technique requdre
cache reconfiguration overhead. off-line profiling. Besides, it adopts LLC partitioning gl
losing the opportunity to save static power in the LLC.

g::jpsa_f_t -Ofarlztl?smtlgscorig)llqﬂzghe;w(;? St;\(zndzfg\lljletrizfsg'r Besides resizing, researchers have studied other adaptive
' Priv LLC P 9 PET" ~ache techniques as well. Dropséical [ 7] proposeaccount-

formance loss for the private-cache resizing and the shareﬁ1g cachesvhich divide a cache’s ways into primary and sec-

tLtC reS'Z'On?’ rgip;a(;lvlely. V(;/eoetxploo;-esdfra?ges tc))f ttr:] r_edi;ol ondary groups. Each cache access searches the two groups
etween © 1o 9. Toflpry and U 10 ©.15 10MLLc—both i sequentially, accessing the secondary only on a primary. mis

steps. Setting the threshold 10 0 results in the best perforr-his saves power if secondary accesses are infrequentgZhan

mance without any power savings for both techniques (the¥}t al [47] proposeway concatenatiowhich permits flexible

degenerate into the UCP technique as both thresholds are Soertganization of cache banks to form direct-mapped, 2-way, 0

to 0). On the other hand, we can save large amounts of pow r-Way set-associative caches. Neither accounting caares n

%Sotl?ehthr:f)rl]azléjrilnezctjr?r?tz?:siitrlth(targgzt ggfggg;;?::cﬁxesiﬁlay concatenation address capacity allocation acrossrdiff
9 9 P nt levels of cache, as done in SCR.

ings and performance by changing the thresholds, we fixeg Silva-Filho et al [37] and Gordon-Rosst al [11] study

the thresholds tdp;, = 0.02 andT  c = 0.12 for our dy- desi . . A g
namic SCR experiments in 2, 4 and 8-core CMPs. e_S|gn-t|me techniques fo_r opt|m|2|ng 2-level cache_ hiera
' chies. This body of work tries to find the best block size and
6. Related Work associativity—as well as cache capacity—for two caching le
els. They consider a more complex design space than we do,
A large body of work exists on cache resizing. Selectiveand employ more costly search techniques that are suitable
cache ways ] uses off-line profiling to drive disabling of for design analysis only. In contrast, SCR is an architeetur
cache ways for dynamic power savings. DRI cachiés41, level power management technique. It solves a more con-
] use cache-miss counts to detect over-provisioning, and rétrained problem, but provides algorithms suitable for-run
size across either cache sets or ways. In addition, DRI sachéme use. Similarly, Zhang and VahidZ] search for the best
also gate the power supply to unused portions of cache, cofache architecture using a reconfigurable hardware phatfor
serving both dynamic and static power. Maikal[24] study ~ But they only consider optimizing a single level of cache.
selective ways in the MCore CPU. All of these prior studies Finally, significant research has explored circuit-leeeh-
consider resizing a single level of cache only in uniproceshiques for reducing a cache’s static power consumption.
sors, whereas SCR addresses the problem of resizing mullulti-V; techniques, 17] employ low\4 devices along crit-
ple levels of caches in CMPs. In particular, we develop noveical paths and high devices along non-critical paths to save
algorithms for solving arNP-hard problem inO(N?) time ~ power while still maintaining performance. Similarly, rp
complexity with agreedyapproach. high-V; devices have been explored in]. Gated-\bp [29]
Cache partitioning explicitly allocates shared cacheswro Uses high devices to gate the power supply to unused por-
multiprogrammed workloads, providing cache to those protions of cache. Adaptive body bias, 7] and Forward body
grams that can best utilize it. The majority of techniquesPias [7] control the back-gate voltage to place devices in a
focus on performances| 29, 19, 33, 34, 39). More re- Standby low-leakage mode when not in use, but then restores
cently, techniques have also tried to reduce power consumfe devices to an active high-performance mode when the
tion [14, 35, 36] by withholding allocation and shutting down Cache is accessed. Lastly, dynamic voltage scaling 1¢]
portions of the shared cache, similar to cache resizing.aviad ¢an similarly transition between standby and active moges b
et al[27] propose resizing L2 caches by dynamically extendScaling the supply voltage. Similar to other cache resizing
ing their capacity into stacked DRAM. Like SCR, cache parfechniques{Z, 4], SCR relies on Gated- to essentially
titioning also employs reuse distance profiles to drivecalio €liminate leakage for unused portions of the cache.
tion decisions. BL_Jt LLC cache partitioning saves m_ostlycs@a 7 Conclusion
power consumption compared to SCR which resizes private
caches where dynamic power dominates. This paper presents SCR, an architecture-level power man-
Balasubramoniaat al[3, 4] propose resizing two levels of agement technique that resizes all caches in a modern CMP
cache, either the L1/L2 or the L2/L3, by partitioning a com-cache hierarchy. Our work shows a static-optimal version
mon pool of SRAM arrays to different caching levels. Be-of SCR can reduce total power dissipation in the on-chip
cause partitionings always utilize all of the available 3RA cache hierarchy by 2.5% while boosting performance by 0.7%
only one cache’s size is controlled independently. Hencegcross two-application workloads compared to the LLC resiz
in this technique, it is impossible to optimize the balanceing technique. We find that significant power savings comes
point of different caching levels simultaneously as is dongrom symbiosi®f performing the private cache and the shared
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LLC resizing simultaneously. Our work also develops the [19]
SCR algorithms which employ greedyapproach to find

pseude(Paretd optimal solutions at runtime in a scalable
fashion. We show dynamic SCR can achieve between 2.620]

54.5% power savings in the cache hierarchy while achieving

performance boost up t015.8%.
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