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Abstract

This report presents a general analysis for the performarid®¥LAN location determination systems. In partic-
ular, we present an analytical method for calculating ther@ge distance error and probability of error of WLAN
location determination systems. These expressions aagnelot with no assumptions regarding the distribution of
signal strength or the probability of the user being at a sfieéocation, which is usually taken to be a uniform
distribution over all the possible locations in current WilAocation determination systems. We use these expres-
sions to find the optimal strategy to estimate the user looaind to prove formally that probabilistic techniques
give more accuracy than deterministic techniques, whichldegen taken for granted without proof for a long time.
The analytical results are validated through simulatiopesiments. We also study the effect of the assumption
that the user position follows a uniform distribution ovhetset of possible locations on the accuracy of WLAN
location determination systems. The results show that kigpthe probability distribution of the user position
can reduce the number of access points required to obtairvengaccuracy. However, with a high density of
access points, the performance of a WLAN location deteriomaystem is consistent under different probability
distributions for the user position.

1. Introduction

WLAN location determination systems use the popular 80PL@Lnetwork infrastructure to determine the user
location without using any extra hardware. This makes thgseems attractive in indoor environments where tra-
ditional techniques, such as the Global Positioning Sy$@R8B) [5], fail to work or require specialized hardware.
Many applications have been built on top of location detaation systems to support pervasive computing. This
includes|4] location-sensitive content delivery, difentfinding, asset tracking, and emergency notification.

In order to estimate the user location, a system needs toumeasquantity that is a function of distance.
Moreover, the system needs one or more reference points agurethe distance from. In case of the GPS
system, the reference points are the satellites and theunegbguantity is the time of arrival of the satellite signal
to the GPS receiver, which is directly proportional to thstaince between the satellite and the GPS receiver.
In case of WLAN location determination systems, the refeeepoints are the access points and the measured
guantity is the signal strength, which decays logarithifiyaaith distance in free space. Unfortunately, in indoor
environments, the wireless channel is very noisy and thie fagiquency (RF) signal can suffer from reflection,
diffraction, and multipath effecl [9, 11], which makes thgmal strength a complex function of distance. To



overcome this problem, WLAN location determination systdabulate this function by sampling it at selected
locations in the area of interest. This tabulation has bewmkin literature as the radio map, which captures the
signature of each access point at certain points in the diatecest.

WLAN location determination systems usually work in two pés: offline phase and location determination
phase. During the offline phase, the system constructs thie-naap. In the location determination phase, the
vector of samples received from each access point (each ierdr sample from one access point) is compared
to the radio-map and the “nearest” match is returned as ttasd user location. Different WLAN location
determination techniques differ in the way they constrhetradio map and in the algorithm they use to compare
a received signal strength vector to the stored radio mdpeitocation determination phase.

In this report, we present generalanalysis of the performance of WLAN location determinatgystems.

In particular, we present a general analytical expressiorife average distance error and probability of error
of WLAN location determination systems. These expressi@nadtained withno assumptions regarding the
distribution of signal strength or user movement profifée use these expressions to find tptimal strategy to
use during the location determination phase to estimateigbe location. These expressions also help to prove
formally that probabilistic techniques give more accuracy thanrdetéstic techniques, which has been taken
for granted without proof for a long time. We validate our lgses through simulation experiments. We also
present an analysis of the effect of the assumption thatgbelacation is uniformally distributed over the set of
all possible locations on the performance of the locatidemgination systems. For the rest of the report we will
refer to the probability distribution of the user locatiantheuser profile

To the best of our knowledge, our work is the first to analyze gkrformance of WLAN location systems
analytically, provide the optimal strategy to select therdscation, and study the effect of the user profile on the
performance of WLAN location determination systems.

The rest of this report is structured as follows. Sedion@marizes the previous work in the area of WLAN
location determination systems. Sectldn 3 presents thiytarz analysis for the performance of the WLAN
location determination systems. In Sectidn 4, we validateamalytical analysis through simulation and provide
experiments to test the effect of the user profile on the peidace of location determination systems. Sedfion 5
concludes the report and presents some ideas for future work

2. Related Work

Radio map-based techniques can be categorized into twd bedagories: deterministic techniques and prob-
abilistic techniquesDeterministic techniquesuch as [[2, 18]) represent the signal strength of an accassgia
location by a scalar value, for example, the mean value, aadchan-probabilistic approaches to estimate the user
location. For example, in thRadarsystem|[2] the authors use nearest neighborhood techniguiefer the user
location. On the other handprobabilistic technique¢such as [[3, 17,16, 12]) store information about the signal
strength distributions from the access points in the radap and use probabilistic techniques to estimate the user
location. For example, thédorus system from the University of Maryland [12,113] uses theedtioradio map to
find the location that has the maximum probability given theeived signal strength vector.

All these systems base their performance evaluation orriexeetal testbeds which may not give a good idea
on the performance of the algorithm in different environisenThe authors in[7, 12, 13] showed that their
probabilistic technique outperformed the deterministichnique of theRadar system[[2] in aspecifictestbed
and conjectured that probabilistic techniques shouldexfdpm deterministic techniques. This report presents a
generalanalytical method for analyzing the performance of different techagjuVe use this analysis method to
provide a formal proof that probabilistic techniques ouftpen deterministic techniques. Moreover, we show the
optimal strategy for selecting locations in the locatioted&ination phase.

All the current WLAN location determination systems assuh@ the user has an equal probability for being
at any location in the set of radio map locations (uniformrysefile). We study the effect of this uniform user



profile assumption on the performance of the location detextion systems.
3. Analytical Analysis

In this section, we give an analytical method to analyze thdopmance of WLAN location determination
techniques. We start by describing the notations used dgivaut the report. We provide two expressions: one for
calculating the average distance error of a given technéekthe other for calculating the probability of error
(i.e. the probability that the location technique will gi&e incorrect estimate).

3.1. Notations

We consider an area of interest whose radio map confditacations. We denote the set of locationglasit
each location, we can get the signal strength fioactcess points. We denote thalimensional signal strength
space as$. Each element in this space iskadimensional vector whose entries represent the signahgtin
reading from different access poirﬂs Since the signal strength returned from the wireless careldypically
integer values, the signal strength sp&de a discrete space. For a vectoe S, f7(s) represents the estimated
location returned by the WLAN location determination teicjue .4 when supplied with the input For example,
in the Horus system[[12] 13],f|’j|0rus(s) will return the location, € L that maximizesP(l/s). Finally, we use
Euclidearfl,, I5) to denote the Euclidean distance between two locafipaad!s.

3.2. Average Distance Error

We want to find the average distance error (denote@pErr)). Using conditional probability, this can be
written as:

E(DErr) = Z{E(DErr/l is the correct user locatigrP (! is the correct user locatioh (1)
leL

whereP(l is the correct user locatigmlepends on the user profile.
We now proceed to calculafé(DErr/[ is the correct user locatignUsing conditional probability again:

E(DErr/l is the correct user location
= Y {E(DErr/s,lis the correct user locatigrP(s/! is the correct user locatioh )
seS
= > {Euclidearif7(s),1).P(s/l is the correct user locatioh
seS
where Euclideafy’ (s),[) represents the Euclidean distance between the estimaiiiblo and the correct loca-
tion.

Equatior2 says that to get the expected distance error gieegre at locatio, we need to get the weighted
sum, over all the possible signal strength valdes S, of the Euclidean distance between the estimated user
location (f7 (s)) and the actual locatioh

Substituting equatiol 2 in equatibh 1 we get:

E(DErmr) = Z Z{Euclideamfj(s), 1).P(s/lis the correct user locatiorP(l is the correct user locatioh
seS lel

®3)

Note that the effect of the location determination techaigusummarized in the functioff;. We seek to find the
function that minimizes the probability of error. We diffiae optimality analysis till we present tipeobability of
error analysis.

lif an access point cannot be heard at a given location, thépiesented by a special signal strength value.
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3.3. Probability of Error

In this section, we want to find an expression for the prolitgbdf error which is the probability that the
location determination technique will return an incorrestimate. This can be obtained from equafion 3 by noting
that every non-zero distance error (represented by theéiumEuclideartf’ (s), 1)) is considered an error. More
formally, we define the function:

g(x) = { 0 : =0
1

x>0
The probability of error can be calculated from equakibn:3 as

P(Error) = Z Z{g(EucIideat(nfj(s), 1)).P(s/lis the correct user locatiorP(l is the correct user locatigh
seS lell

(4)

In the next section, we will present a property of the termug{tear{ /% (s),l)) and use this property to get the
optimal strategy for selecting the location.

3.4. Optimality

We will base our optimality analysis on the probability ofcer

Lemma 1 For a given signal strength vectat, g(Euclidearif’(s),[)) will be zero for only one locatioh € L
and one for the remainingy — 1 locations.

Proof For a given signal strength vecterthe location determination technique will return a singleation. If
this location matches the correct locatibrihe distance error will be zero and hence the functionf not, the
distance error will be greater than zero and the funciorill equals one. The estimated locatigi(s) can only
match one of the possibl¥ locations.[]

The lemma states that only one location will give a value obZer the function g(Euclidedif’ (s),1)) in the
inner sum. This means that the optimal strategy should tsilisdocation in order to minimize the probability of
error. This leads us to the following theorem.

Theorem 1 (Optimal Strategy) Selecting the locatio that maximizes the probability?(s/1).P(l) is both a
necessary and sufficient condition to minimize the proligiwf error.

Proof [Sufficient part] Selecting the location that maximizes the probabiftys /). P(1) will lead to making the
functiong in the inner sum equals zero for this probability. Since tbéhnique removes the maximum probability
for all s € S, this minimizes the overall probability of error.

[Necessary part]By contradiction: Assume not, then there exist an optimatsgy.4, that for at least one
signal strength vector, selects a locatioti that does not maximize the produets/!’).P(I’). Let the probability
of error using this strategy b&1. Consider another strategds that take the same decisions.4s except for the
signal strength vectox, where it returns the locatidrthat maximizes the produét(s/1).P(l). Let the probability
of error using this strategy bg2. Clearly, £2 is less tharE’1 which contradicts our assumption thét is optimal.

[l

TheorenTl suggests that the optimal location determina&ohnique should store in the radio map the signal
strength distributions to be able to calculdtés/l). Moreover, the optimal technique needs to know the user
profile in order to calculaté(l).
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Figure 1. Expected error for the special case of two locations

Corollary 1 Deterministic techniques are not optimal.

Proof Since deterministic techniques do not store any informadioout the signal strength distribution at each
location, it follows from Theorerfl 1 that they are not optinial

Note that we did not make any assumption about the indeperdainaccess points, user profile, or signal
strength distribution in order to get the optimal strategy.

A major assumption bwll the current WLAN location determination systems is thatuskr locations are
equi-probable. In this cas&,(l) = + and Theorerfil1 can be rewritten as:

Theorem 2 If the user is equally probable to be at any location of theisachap locationsL, then selecting
the location/ that maximizes the probabiliti?(s/l) is both a necessary and sufficient condition to minimize the
probability of error.

Proof The proof is a special case of the proof of Theoléril.

This means that, for this special case, it is sufficient ferdptimal technique to store the histogram of signal
strength at each location. This is exactly the techniqud ustheHorussystem[[12, 13].

Figurdl shows a simplified example illustrating the inaritbehind the analytical expressions and the theorems.
In the example, we assume that there are only two locatiotfseimadio map and that at each location only one
access point can be heard whose signal strength, for sitgpicillustration, follows a continuous distribution.
The user can be at any one of the two locations with equal pitityaFor theHorussystem (Figurgll.a), consider
the line that passes by the point of intersection of the twees1 Since for a given signal strength the technique
selects the location that has the maximum probability, ther é& the user is at location 1 is the area of curve 1 to
the right of this line. If the user is at location 2, the ermothe area of curve 2 to the left of this line. The expected
error probability is half the sum of these two areas as thedwations are equi-probable. This is the same as half
the area under the minimum of the two curves (shaded in figure)
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Figure 2. Plan of the floor where the experiment was conducted. Re adings were collected in the
corridors (shown in gray).

For theRadar system (Figur&ll.b), consider the line that bisects theasigimnength space between the two
distribution averages. Since for a given signal strengéhtédthnique selects the location whose average signal
strength is closer to the signal strength value, the errbreifuser is at location 1 is the area under curve 1 to the
right of this line. If the user is at location 2, the error ig #rea under curve 2 to the left of this line. The expected
error probability is half the sum of these two areas as theldwations are equi-probable (half the shaded area in
the figure).

From Figurdll, we can see that tHerussystem outperforms tHeadarsystem since the expected error for the
former is less than the later (by the hashed area in FIguje The two systems would have the same expected
error if the line bisecting the signal strength space of e dverages passes by the intersection point of the two
curves. This is not true in general. This has been proveddliyrm the above theorems.

We provide simulation and experimental results to validateresults in Section 4.

3.5. Averaging Signal Strength Vectors

Different WLAN location determination systems [13, 7] segted that averaging multiple signal strength vec-
tors and using the averaged vector as an input to the systeamees the system performance. In this section, we
extend our analysis to cover the case of averaging of melgjgnal strength vectors.

We start by obtaining the distribution of the average vedtet X be the random variable (R.V.) representing
the average of signal strength vectors(s) at a given location, all coming from the same distribat{denoted

n
by P(s/l)). Consider the random variable = > s;, the distribution of the R.\Y" is then times convolution of
i=1
the original distribution P(s/1)). SinceX = Y/n, this implies thatP(X = x) = P(Y = n.x). This relates the
distribution of the R.V.X to the original signal strength distributid(s/1).

To obtain the average distance error and probability ofreme can use equatiofi$ 3 ald 4 and substitutes

the distribution of the R.V.X instead of the original signal strength distributions. Eugiation for the average



distance error (Equatidd 3) becomes:

E(DErr) = Z Z{Euclideamfjl(s’), 1).P(X = s'/lis the correct user locationP (! is the correct user locatioh
s'eS’ lel

(5)

WhereS' is the new signal strength space for the RX\representing the averagemkignal strength vectors.
The equation for the probability of error (Equatidn 4) beesm

P(Error) = Z Z{g(EucIideat@fj(s’),l)).P(X = s/l is the correct user locatiorP (1 is the correct user locatigh
s'eS’ leL

(6)

The effect of averaging multiple signal strength vectote ieduce the variance of the resulting distribution and
hence reduce the overlap between distributions. The Iesswérlap, the better the error. Note that TheorEms 1
and2 still hold for averaging multiple signal strength st

4. Simulation Experiments

In this section, we validate our analytical results throsghulation experiments. For this purpose, we chose
to implement theRadar system[[2] from Microsoft as a deterministic technique dmelHorus system [12] 113]
from the University of Maryland as a probabilistic techregthat satisfy the optimality criteria as described in
TheorenTR. We start by describing the experimental testhatvte use to validate our analytical results and
evaluate the systems.

4.1. Testbed

We performed our experiment in a floor covering an 20,000 &e&. The layout of the floor is shown in
Figure2. Both techniques were tested in the Computer SeiBepartment wireless network. The entire wing is
covered by 12 access points installed in the third and fdiotrs of the building.

For building the radio map, we took the radio map locationshencorridors on a grid with cells placed 5 feet
apart (the corridor’'s width is 5 feet). We have a total of 1d€ations along the corridors. On the average, each
location is covered by 4 access points.

We used thenwvlandriver and theVIAPI API [1] to collect the samples from the access points.

4.2. Simulator

We built a simulator that takes as an input the following pseters:
e the radio map locations coordinates.
¢ the signal strength distributions at each location fromhesaress point.

¢ the distribution over the radio map locations that represtre steady state probability of the user being at
each locationyser profilg.

e n: the number of signal strength vectors to average.



The simulator then choses a location based on the userdaddistribution and generates a signal strength
vector according to the signal strength distributions & thcation. The simulator feeds the generated signal
strength vector to the location determination techniquée €stimated location is compared to the generated
location to determine the distance error.

The next section analyze the effect of the user profile on énfwpmance of the location determination systems.
We validate our analytical results in all the experiments.

4 .3. Effect of User Profile on Performance

We made three experiments that differ in how heterogenedtineiuser profile:
e Profile I The user has equal probability of being at any locationféumi user profile).

¢ Profile 2 The user can be in one of two groups of locations. The prdibabf being in one group is twice
the probability of being in the second group. The user haalgmobability of being at any location within
a group.

e Profile 3 The user has an exponentially damping distribution fondeit different radio map locations.
More specifically, the probability of being at locatiors given by:

l1<i<N-1

1yi
P(Location = i) = { (g)Nl i=N

(3)
The heterogeneity of the user profile increases as we mowedrofile one to profile three. The purpose of these
simulation experiments is to study the effect of the assignghat the user location follows a uniform distribution

over all possible locations on the performance of the locatietermination systems. The next subsections show
the results of these experiments.

4.3.1. Uniform user location distribution

This is similar to the assumption taken by tHerus system. Therefore, thidorus system should give optimal
results. Figurels]3 arld 4 show the probability of error andamedistance error (analytical and simulation results)
respectively for theRadar and theHorus systems. The error bars represent the 95% confidence ihferva
the simulation experimer&.The figure shows that the analytical expressions obtainec¢@msistent with the
simulation results. Moreover, thdorus system performance is better than Radar system as predicted by
Theoren 2. Thédorussystem performance is optimal under the uniform distrdoutf user location.

The figure also shows that as the location determinatioreByaizerage more signal strength samples the error
decreases. The more samples we average, the narrower titttngedistribution (lower variance), the less the
overlap between the distribution at different locationd hance the less the error.

4.3.2. Heterogeneous user profile distributions

This experiment study the case where a location deterromatystem assumes that the user location follows a
uniform distribution over all possible locations while thetual distribution is not.

Figuredd and6 show the probability of error and averagewist error for profile 2. Figuré$ 7 ahdl 8 show the
probability of error and average distance error for profil&l3e figures compares tfiadarsystemHorussystem,
and the optimal strategy which takes the user profile intoaiet The figures show that as the heterogeneity of the

The analytical results are shown by lines to distinguisintti®mm the simulation results (denoted by the subscSipt figures) which
are shown as points with error bars.
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user profile increases (from profile 2 to profile 3), the perfance of the location determination systems deviates
from the optimal strategy. Figuié 8 shows that the knowleafgbe user profile is critical for environments where
the number of access points deployed is limited and thedgeeity of user profile is high. The figure shows that,
for one access point, the optimal strategy gives an aveiliatgnde error of about 2.25 feet while the strategies that
does not take the user profile into account gives an averatgnde error of about 27 feet. However, as the number
of access points increases, the difference between therpenfice of the location determination systems and the
optimal strategy decreases. As the number of access poarases, the information the location determination
system gets about the user location increases and domihatésformation from the user profile. Théorus
system maintains its superior performance oveiRhdarsystem.

5. Conclusions and Future Work

We have provided two novel contributions to the area of WLANdtion determination systems. First, we
presented an analysis method for studying the performant&.AN location determination systems. The method
can be applied to any of the WLAN location determination teghes and does not make any assumptions about
the signal strength distributions at each location, indepace of access points, nor the user profile. Second, we
studied the effect of the user profile on the performance®iMLAN location determination systems.

We used the analytical method to obtain the optimal strafegselecting the user location, which is not imple-
mented by any of the current WLAN location determinationtegss. The optimal strategy must take into account
the signal strength distributions at each location and e profile. We also used analytical analysis to study
the effect of averaging multiple signal strength vectorperformance. The results show that averaging multiple
signal strength vectors reduces the variance of the regutlistribution and hence reduce the overlap between
distributions. The less the overlap,the less the error.

We used simulation experiments to validate the analytieallts and to study the effect of user profile on
the performance of the location determination systems. r€halts show that incorporating the user profile in
the location determination system can enhance the accaigitijficantly when the available hardware is limited.
However, with a reasonable number of access points thatedredrd at each location, the performance of the
location determination system is consistent under diffeuser profiles.

For future work, the method can be extended to include othetofs that affects the location determination
process such as the user history profile (usually taken asieaverage of the latest location estimates), and the
correlation between samples from the same access points.
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