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In this thesis, we study the critical regularity phenomena in Eulerian dynamics,

ut +u ·∇u = F (u,Du, · · · ), here F represents a general force acting on the flow and

by regularity we seek to obtain a large set of sub-critical initial data.

We analyze three prototype models, ranging from the one-dimensional Euler-

Poisson equations to two-dimensional system of Burgers equations to three-dimensional,

four-dimensional and even higher-dimensional restricted Euler systems.

We begin with the one-dimensional Euler-Poisson equations, where F is the

Poisson forcing term together with the usual γ-law pressure. We prove that global

regularity of the Euler-Poisson equations with γ ≥ 1 depends on whether or not the

initial configuration crosses an intrinsic critical threshold.

Next, we discuss multi-dimensional examples.

The first multi-dimensional example that we focus our attention on is the two

dimensional pressureless flow, where F = ε∆u. Our analysis shows that there is a



uniform BV bound of the solutions uε. Moreover, if the initial velocity gradient ∇u0

does not have negative eigenvalues, then its vanishing viscosity limit is the smooth

solution of the corresponding equations of the inviscid fluid flow.

The second multi-dimensional example we discuss here is the restricted Euler

dynamics, where ∇F =
1

n
tr(∇u)2In×n . Our analysis shows that for the three-

dimensional case, the finite-time breakdown of the restricted Euler system is generic,

and for the four-dimensional case, there is a surprising global existence for sub-

critical initial data. Further analysis extends the above result to the general n-

dimensional (n > 4) restricted Euler system.
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Chapter 1

Introduction

1.1 Euler dynamics – three prototype models

In a general class of Eulerian flows, the velocity field, u , is governed by the

Newtonian law,

ut + u · ∇u = F (u,Du, · · · ) , u : Rn → Rn , (1.1)

where F represents a general force acting on the flow. Different physical models are

dictated by different forcing.

We mainly focus our attention on the question of time regularity of equation

(1.1) , which is of fundamental importance from both mathematical and physical

points of view. There is a considerable effort that has been and is being devoted

to this issue for Euler equations of both compressible and incompressible fluids.

See [BKM84], [Si85],[CFM96],[Li96],[Gr98] and [T01] for a partial reference list. In

particular, the possible phenomena of finite-time breakdown for three-dimensional

incompressible flows signifies the onset of turbulence in higher Reynolds number

flows.

In this thesis, we study three prototype models. The first is the one-dimensional

Euler-Poisson equations. The second is the two-dimensional viscous dusty medium

model. And the third is the restricted model of Euler equations.
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1.1.1 Euler-Poisson systems

We consider the one-dimensional Euler-Poisson equations driven by both pres-

sure and Poisson forcing,





ρt + (ρu)x = 0 ,

(ρu)t + (ρu2)x = −p(ρ)x − kρϕx, k > 0 ,

(1.2)

where the pressure p = p(ρ) is given by the usual γ-law, p(ρ) = Aργ with γ ≥ 1 ,

and ϕ = ϕ(ρ) is the potential, which is dictated by the (one-dimensional) Poisson

equation, ϕxx = −ρ .

These equations govern different phenomena, ranging from the largest scale

of, e.g., the evolution gravitational collapse in stars, to applications in the smallest

scale of e.g., semi-conductors. There is a considerable amount of literature avail-

able on the local and global behavior of the Euler-Poisson and related problems.

Consult [Ma86] for local existence in the small Hs-neighborhood of a steady state

of self-gravitating stars, [CW96] for global existence of weak solutions with geomet-

rical symmetry, [Gu98] for global existence for three-dimensional irrotational flow,

[MN95] for isentropic case, and [JR00] [PRV95] for isothermal case. Consult [Pe90]

[MP90] [Si85] [En96] [WC98], [BW98] and in particular, [En96], for non-existence

results and singularity formation. The question of global smoothness vs. finite-time

breakdown was studied in a recent series of works of Engelberg, Liu and Tadmor, in

terms of a critical threshold phenomena for one-dimensional “pressure-less” Euler-

Poisson equations, [ELT01] and two-dimensional restricted Euler-Poisson equations,

[LT02, LT03].

2



There are two systems closely related to the Euler-Poisson system (1.2). The

first is the 2 × 2 system of isentropic gas dynamics, which corresponds to k = 0 in

(1.2). Following [La64], one can show that finite-time breakdown for this system is

generic. The other is the one-dimensional “pressure-less” Euler-Poisson equations,

which corresponding to A = 0 . It was shown in [ELT01] that for this pure Euler-

Poisson system, there is a “large set” of initial configurations which yield global

smooth solutions. Thus, it turns out that the pressure is a destabilizing term and

the Poisson forcing is a stabilizing term.

The natural question that arises in the present context of full Euler-Poisson

equations (1.2) is whether the pressure enforces a generic finite-time breakdown or,

whether the presence of Poisson forcing preserves global regularity for a “large set”

of initial configurations. We gave our answer in [TW06]. More precisely, we answer

this question of “competition” between pressure and Poisson forcing, proving that

the Euler-Poisson equations (1.2) with γ ≥ 1 admit global smooth solutions for a

“large set” of sub-critical initial data such that

u0x(x) > −K0

√
ρ0(x) +

√
Aγ

|ρ0x(x)|
ρ0(x)

3−γ
2

, γ ≥ 1. (1.3)

Here, K0 is a constant depending on k, γ and the initial data. In the particular

(and important) case of isothermal equations, γ = 1, we have K0 =
√

2k and (1.3)

amounts to a sharp critical threshold,

u0x(x) ≥ −
√

2kρ0(x) +
√

A
|ρ0x(x)|
ρ0(x)

, γ = 1. (1.4)

The inequalities (1.3), (1.4) quantify the competition between the destabilizing pres-

sure effects, as the range of sub-critical initial configurations shrinks with the growth

3



of the amplitude of the pressure, A, while the stabilizing effect of the Poisson forcing

increases the sub-critical range with a growing k. In particular, (1.4) with A = 0

recovers the pressure-free critical threshold, with k = A = 0 recovers the inviscid

Burgers.

Formation of singularities and global regularity of (1.2) were addressed ear-

lier by Engelberg in [En96]. His results show finite-time breakdown if u0x(x) −
√

Aγ|ρ0x(x)|ρ0(x)
γ−3

2 is “...sufficiently negative at some point”. Our contribution

here is to quantify the critical threshold behind this asymptotic statement. To fully

appreciate this quantified threshold, we turn to the converse statement in [En96,

Theorem 2]: it asserts the global regularity of (1.2) for a class of initial data such

that u0x(x) − √Aγ|ρ0x(x)|ρ0(x)
γ−3

2 > 0. It is a “non-generic” class in the sense of

requiring both Riemann invariants (for details of Riemann invariants, see section

2.2) at t = 0 to be globally increasing. In fact, by (1.3) one has a negative threshold,

−K0
√

ρ0, implying the existence of a “large” class of sub-critical initial data with

global regularity.

1.1.2 Viscous fluids

Next, we consider the viscosity forces, F := ε∆u , which lead to the so-called

viscous dusty medium model,

∂tu + u · ∇u = ε∆u , u : Rn → Rn , (1.5)

where ε > 0 is a viscosity amplitude. Other suggested names for this system are

Burgers system [ES00], Hopf system, Riemann equation (for n = 1).
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We also consider the equation of the corresponding inviscid fluid





ut + u · ∇u = 0 ,

u(x, 0) = u0(x) .

(1.6)

These systems were proposed by Zeldovitch [ZE70] as a model describing the

evolution of the rarefied gas of non-interacting particles.

It seems rather natural to expect that solutions of (1.6) can be obtained as lim-

its of solutions of (1.5). This question has been positively answered when the initial

data are irrotational (i.e., u0 = ∇φ), in the sense of viscosity solutions for Hamilton-

Jacobi equations. In [LT02], still considering the irrotational two-dimensional model,

Liu and Tadmor provided a novel approach at the level of the velocity field. The

essential tool they used is spectral dynamics.

There are other approaches to the solutions of the pressureless gas dynamics

system. For example, people consider the Euler equations of compressible fluids in

the whole space Rd ,





∂tρ + div(ρu) = 0 ,

∂t(ρu) + div(ρu⊗ u) + ε∇p(ρ) = 0 ,

(1.7)

where the pressure p has the following form

p(ρ) = ργ , 1 < γ ≤ 1 +
2

d
,

and the pressureless gas dynamics system in Rd , which corresponding to ε = 0 ,





∂tρ + div(ρu) = 0 ,

∂t(ρu) + div(ρu⊗ u) = 0 .

(1.8)
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Consult [Gr98], [Se97] for global smooth solutions to the multidimensional Euler

equations of compressible fluids. Consult [GS00], [Go04] and [Co06] for convergence

of smooth solutions of (1.7) towards smooth solutions of (1.8). Also consult [CL04]

for the phenomena of concentration and cavitation of the vanishing pressure limit

of solutions of the full Euler equations for nonisentropic compressible fluids with a

scaled pressure.

In this thesis, we consider equations of the two-dimensional pressureless gas

dynamics systems – (1.5) and (1.6), subject to general initial data. Based on an-

alyzing the spectra of ∇u , we obtain an uniform BV bound of solutions uε , see

[TW07] . In the particular case in which ∇u0 does not have negative eigenvalues,

the limiting flow is shown to be the smooth solution of the equations (1.6) – the

corresponding inviscid fluid flow, see [TW07] .

1.1.3 Restricted Euler/Navier-Stokes equations

For the forcing involving viscosity and pressure, we meet the well known

Navier-Stokes equations of incompressible fluid flow in n space dimensions, which

can be expressed as the system of n + 1 equations,

∂tu + u · ∇u = ν∆u−∇p , u : Rn → Rn , t > 0 , (1.9a)

∇ · u = 0 , (1.9b)

u(x, 0) = u0(x) . (1.9c)

Here ν > 0 is the kinematic viscosity. When the coefficient ν vanishes in (1.9a), we

have the Euler equations for incompressible fluid flow. We will only discuss fluid
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flows occupying the whole space so that the important effects of boundary layers are

ignored. In most applications, ν is an extremely small quantity, typically ranging

from 10−6 to 10−3 in turbulent flows. Thus one can anticipate that the behavior of

solutions of the Euler equations with ν = 0 (which corresponds to the inviscid fluid

flows) is rather important in describing solutions of the Navier-Stokes equations

when ν is small.

Differentiating of the Euler equation of incompressible fluid flow with respect

to x , we obtain the equation satisfied by the local velocity gradient tensor M := ∇u

∂tM + (u · ∇)M + M2 = −(∇⊗∇)p . (1.10)

Taking the trace of M and noting trM = ∇ · u = 0, we find

trM2 = −∆p . (1.11)

This gives p = −∆−1(trM2) . The right-hand side in (1.10) therefore amounts to

the n× n time-dependent matrix

(∇⊗∇)∆−1(trM2) = R[trM2] .

Here R[w] denotes the n×n matrix whose entries are given by (R[w])ij := RiRj(w)

where Rj denote the Riesz transforms, Rj = −(−∆)−1/2∂j , i.e.,

̂[Rj(w)](ξ) = −i
ξj

|ξ|ŵ(ξ) for 1 ≤ j ≤ n .

This yields the equivalent formulation of the Euler equations which reads

∂tM + (u · ∇)M + M2 = R[trM2] , (1.12)
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subject to the trace-free initial data

M(·, 0) = M0 , trM0 = 0 .

Note that the invariance of incompressibility is already taken account in (1.12) since

∂ttrM = 0 and hence trM = trM0 = 0 . It is the global term in the above equations,

R[trM2] , which makes the problem rather intricate to solve, both analytically and

numerically. Various simplifications to this pressure Hessian were sought, see, e.g.

[CA92],[C86],[CPB99] and [V82].

We now turn to discuss the restricted Euler dynamics proposed in [V82] as

a localized alternative of the full Euler equation (1.12). By the definition of the

operator R, one has

R[trM2] = ∇⊗∇∆−1[trM2] = ∇⊗∇
∫

Rn

K(x− y)trM2(y)dy ,

where the kernel K(·) is given by

K(x) =





1

2π
, n = 2 ,

1

(2− n)ωn|x|n−2
, n > 2 ,

with ωn denoting the surface area of the unit sphere in n-dimensions. A direct

computation yields

∂i∂jK ∗ trM2 =
trM2

n
δij +

∫

Rn

|x− y|2δij − n(xi − yi)(xj − yj)

ωn|x− y|n+2
trM2(y)dy .

This shows that the local part of the global term R[trM2] is
trM2

n
In×n . We thus use

this local term,
trM2

n
In×n , to approximate the pressure Hessian. The corresponding

local gradient field then evolves according to the following restricted Euler model

∂tM + (u · ∇)M + M2 =
trM2

n
In×n . (1.13)
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This is a matrix Ricatti equation which is responsible for the formation of singu-

larities at finite time, while the local source on the right provides certain balancing

effect. We observe that as in the global model, the incompressibility is still main-

tained in this localized model, since trM2 = tr

[
trM2

n
In×n

]
implies ∂ttrM = 0 . As

a local approximation of the pressure Hessian, the above model, the so-called re-

stricted Euler dynamics, has caught great attention since it was first introduced in

[V82], because it can be used to understand the local topology of the Euler dynamics

and to capture certain statistical features of the physical flow.

In this thesis, we identify and compare the critical thresholds in three-dimensional

and four-dimensional cases, respectively, see [LTW07]. To do so, we consider a

bounded, divergence-free, smooth vector field u : Rn× [0, T ] → Rn . Let x = x(α, t)

denote an orbit associated to the flow by

dx

dt
= u(x, t) , 0 < t < T , x(α, 0) = α ∈ Rn . (1.14)

Then along this orbit, the velocity gradient tensor of the restricted Euler equations

(1.13) satisfies

Ṁ + M2 =
trM2

n
In×n , {̇} :=

d

dt
= ∂t + u · ∇x . (1.15)

By the spectral dynamics lemma 3.1 in [LT02] , (we will go through the details of

this lemma in sec 1.2), the corresponding eigenvalues satisfy

λ̇i + λ2
i =

1

n

n∑
j=1

λ2
j , i = 1, . . . , n. (1.16)

This is a closed system, which serves as a simple approximation for the evolution of

the velocity gradient field.
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For arbitrary n ≥ 3 , one can use the spectral dynamics of M to show a finite-

time breakdown of (1.16), which generalizes the previous result of [V82]. More

precisely, in [LT02], the finite-time breakdown was established after a set of
[n

2

]
+1

global invariants in terms of the eigenvalues of M were identified, and moreover, the

precise topology of the flow at the breakdown time was also studied.

The question we are interested in is: how generic is the finite-time breakdown

of the restricted Euler equations (1.16)? Is there a critical threshold such that

finite-time breakdown occurs only when the initial configuration crosses such critical

threshold, while sub-critical initial data yield global smooth solutions?

It turns out that the finite-time breakdown for the three-dimensional restricted

Euler dynamics is generic, while for the four-dimensional restricted Euler dynamics,

there is a surprising global existence for sub-critical initial data. More precisely, we

describe critical thresholds for both 3-dimensional and 4-dimensional Euler dynamics

in the following two theorems.

Theorem 1.1.1 Solutions to (1.16) with n = 3 remain bounded for all time if and

only if the initial data Λ0 := (λ1, λ2, λ3) lie in the following set

r{(−1,−1, 2), (−1, 2,−1), (2,−1,−1)}, ∀ r ≥ 0.

Theorem 1.1.2 Solutions to (1.16) with n = 4 remain bounded for all time if and

only if the initial data Λ0 := (λ1, λ2, λ3, λ4) lie in the following set

Λ0 ∈ Ω ∩ {
λ1 + λ2 + λ3 + λ4 = 0

}
,

where

Ω := Ω1 ∪ Ω2 ∪ Ω3 ,
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Ω1 :=
{(

λ1, λ2, λ3, λ4

) ∣∣∣ λ1,2,3,4 ∈ R and λi1 = λi2 ≤ λi3 ≤ λi4 ,

here (i1, i2, i3, i4) is a permutation of (1, 2, 3, 4)
}

,

Ω2 :=
{(

λ1, λ2, λ3, λ4

) ∣∣∣ λi1 = λi2 ∈ R and λi3,i4 ∈ C/ R ,

here (i1, i2, i3, i4) is a permutation of (1, 2, 3, 4)
}

,

and

Ω3 :=
{(

λ1, λ2, λ3, λ4

) ∣∣∣ λ1,2,3,4 ∈ C/ R
}

.

For arbitrary n > 4 , we extend the above results, obtaining sub-critical initial

configurations which yield global smooth solutions, see [W07].

1.2 Spectral dynamics of the velocity gradient field

In this section, we introduce the basic lemma of the spectral dynamics of the

velocity gradient field, [LT02]. This lemma is the main tool when dealing with

multi-dimensional Euler dynamics.

Let us recall the Euler dynamics

ut + u · ∇u = F (u,Du, · · · ) . (1.17)

Differentiation of the above equation with respect to x yields

∂tM + (u · ∇)M + M2 = ∇F , (1.18)

where M := ∇u . To quantify all the entries of the velocity gradient tensor M

is usually difficult. Instead, people analyze suitable linear combinations such as

divergence and vorticity. Here we focus on the special role played by the eigenvalues

of M , which depend on the entries of M in a strong nonlinear way.
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Lemma 1.2.1 (Spectral dynamics,[LT02]). Consider the general dynamical system

(1.18) associated with the arbitrary velocity field u and forcing F . Let λ(M) be a

(possibly complex) eigenvalue of M associated with the corresponding left and right

eigenvectors l and r, where l and r be normalized so that lr = 1. Then the dynamics

of λ(M) is governed by the corresponding Ricatti-like equation

∂tλ + u · ∇λ + λ2 = 〈l,∇Fr〉 .

Proof. Let the left and right eigenvectors of M associated with λ be l and r,

normalized so that lr = 1 . Then

Mr = λr , lM = λl .

Differentiation of the first relation with respect to t gives

∂tMr + M∂tr = ∂tλr + λ∂tr .

Multiply l on the left of this equation to obtain

l∂tMr + λl∂tr = ∂tλ + λl∂tr ,

whence

l∂tMr = ∂tλ .

Similarly differentiation of the relation Mr = λr with respect to xj leads to

∂jMr + M∂jr = ∂jλr + λ∂jr.

Multiply this equation on the left by luj with lr = 1 to get

luj∂jMr = ujl∂jλr = uj∂jλ .

12



Therefore

lu · ∇Mr = u · ∇λ

A combination of the above facts together with lM2r = λ2 gives

∂tλ + u · ∇λ + λ2 = 〈l,∇Fr〉 .

This completes the proof. 2

1.3 Outline of the thesis

In Chapter 2, we present the results of the one-dimensional Euler-Poisson

equations. First, we review the 2×2 system of isentropic gas dynamics, its Riemann

invariants and its generic finite-time breakdown. Next, we review the pure Euler-

Poisson equations, and its critical threshold. Then, we discuss the full Euler-Poisson

equations driven by both pressure and Poisson forcing term. We give the critical

threshold for the isothermal case and sub-critical initial data for γ > 1 . At last, we

show examples of finite-time breakdown of the full Euler-Poisson equations.

In Chapter 3, we present results of the two-dimensional system of Burgers

equations. We begin with the irrotational initial data, showing that the vanishing

viscosity limit is the solution of the equation of the corresponding inviscid fluid.

Then we move to general initial data, and we obtain an uniform BV -bound of the

viscous solutions. Finally, we prove that if ∇u0 does not have negative eigenvalues,

then the equation of the inviscid fluid admits a smooth solution, and this smooth

solution is the the vanishing viscosity limit of the viscous fluids.
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In the last Chapter, we deal with the restricted Euler dynamics. We com-

pare the critical thresholds for three-dimensional and four-dimensional cases, show-

ing that the finite-time breakdown is generic for three-dimensional restricted Euler

dynamics and there is a surprising global existence for sub-critical initial data of

four-dimensional restricted Euler dynamics. And finally, we extend our results to

the general n-dimensional case.
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Chapter 2

Critical thresholds of the one-dimensional Euler-Poisson system

2.1 Euler-Poisson system and related models

It is well known that the systems of Euler equations for compressible flows can

and will breakdown at a finite time even if the initial data are smooth. A prototype

example for such systems is provided by the 2×2 system of isentropic gas dynamics




ρt + (ρu)x = 0

(ρu)t + (ρu2)x = −px ,

(2.1)

where the pressure p = p(ρ) is given by the usual γ-law, p(ρ) = Aργ. By using

the method introduced in [La64] to deal with pairs of conservation laws, it can

be shown that (2.1) will lose the C1-smoothness due to the appearance of shock

discontinuities unless its two Riemann invariants are nondecreasing — we will go

through the details in section 2.2. Thus, the finite-time breakdown of (2.1) is generic

in the sense that it holds for all but a “small set” of initial data.

On the other hand, if we replace the pressure by Poisson forcing, then we

arrive at the system of Euler-Poisson equations




ρt + (ρu)x = 0 ,

(ρu)t + (ρu2)x = −kρϕx k > 0 ,

(2.2)

subject to initial data (u0 , ρ0) . Here ϕ = ϕ(ρ) is the potential, which is dictated

by the (one-dimensional) Poisson equation,ϕxx = −ρ . In this case, there is a “large
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set” of initial configurations which yield global smooth solutions. More precisely,

[ELT01] have shown that (2.2) admits a global smooth solution if and only if

u0x(x) > −
√

2kρ0(x) . (2.3)

Thus, following the terminology of [LT02], the curve u0x +
√

2kρ0 = 0 is a “criti-

cal threshold” in configuration space which separates between initial configurations

leading to finite-time breakdown and a “large set” of sub-critical initial configu-

rations which yield global smooth solutions. In particular, (2.3) allows negative

velocity gradients (depending on the local amplitude of the density), which other-

wise are excluded in the case of Burgers equations of inviscid fluids, corresponding

to k = 0.

In this Chapter we turn our attention to the full Euler-Poisson equations driven

by both pressure and Poisson forcing,





ρt + (ρu)x = 0 ,

(ρu)t + (ρu2)x = −p(ρ)x − kρϕx, k > 0,

−ϕxx = ρ .

(2.4)

The natural question that arises in the present context of full Euler-Poisson

equations (2.4) is whether the pressure enforces a generic finite-time breakdown

or, whether the presence of Poisson forcing preserves global regularity for a “large

set” of initial configurations. We answer this question of “competition” between

pressure and Poisson forcing, proving that the Euler-Poisson equations (2.4) with

γ ≥ 1 admit global smooth solutions for a “large set” of sub-critical initial data such

16



that

u0x(x) > −K0

√
ρ0(x) +

√
Aγ

|ρ0x(x)|
ρ0(x)

3−γ
2

, γ ≥ 1. (2.5)

Here, K0 is a constant depending on k, γ and the initial data. In the particular

(and important) case of isothermal equations, γ = 1, we have K0 =
√

2k and (2.5)

amounts to a sharp critical threshold,

u0x(x) ≥ −
√

2kρ0(x) +
√

A
|ρ0x(x)|
ρ0(x)

, γ = 1. (2.6)

The inequalities (2.5),(2.6) quantify the competition between the destabilizing pres-

sure effects, as the range of sub-critical initial configurations shrinks with the growth

of the amplitude of the pressure, A, while the stabilizing effect of the Poisson forcing

increases the sub-critical range with a growing k. In particular, (2.6) with A = 0

recovers the pressure-free critical threshold (2.3).

This chapter is organized as follows. In section 2.2, we review the 2 × 2

system of isentropic gas dynamics, its Riemann invariants and its generic finite-time

breakdown. In section 2.3, we review the pure Euler-Poisson system and its critical

threshold. In section 2.4, we derive the critical threshold of the full Euler-Poisson

system. We begin by reformulating the system (2.4) with its Riemann invariants

as a preparation for the analysis carried out in subsections 2.4.2 and 2.4.3. In

subsection 2.4.2, we prove our main results, providing sufficient conditions for “large

sets” of sub-critical initial configurations which yield global smooth solution. In

section 2.4.3, we give examples of finite-time breakdown for super-critical initial

data. Combining our results in sections 2.4.2 and 2.4.3, we confirm the existence of

a critical threshold phenomena for the full Euler-Poisson equations (2.4).
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2.2 Isentropic gas dynamics

In this section, we use Lax’s method ([La64]), to show that the finite-time

breakdown of isentropic gas dynamics




ρt + (ρu)x = 0

(ρu)t + (ρu2)x = −px , p(ρ) = Aργ ,

(2.7)

is generic.

Note that system (2.7) consists of two conservation laws. And the most sig-

nificant difference between systems of two conservation laws and systems consisting

of more than two is the existence of Riemann invariants for the first class.

To find the Riemann invariants of (2.7), we rewrite the system as



ρ

u




t

+ J




ρ

u




x

=




0

−kϕx


 , (2.8)

where the Jacobian J :=




u ρ

Aγργ−2 u


 has two different eigenvalues

λ := u−
√

Aγρ
γ−1

2 < µ := u +
√

Aγρ
γ−1

2 .

The corresponding left eigenvectors are

lλ =
(
−

√
Aγρ

γ−3
2 , 1

)
,

and

lµ =
(√

Aγρ
γ−3

2 , 1
)

.

Thus

(
−

√
Aγρ

γ−3
2 ρt + ut

)
+ λ

(
−

√
Aγρ

γ−3
2 ρx + ux

)
= 0 , (2.9a)

18



and

(√
Aγρ

γ−3
2 ρt + ut

)
+ µ

(√
Aγρ

γ−3
2 ρx + ux

)
= 0 . (2.9b)

Let R and S be functions of ρ and u which take the following forms

R := u− 2
√

Aγ

γ − 1
ρ

γ−1
2 , S := u +

2
√

Aγ

γ − 1
ρ

γ−1
2 , for γ > 1 ,

and

R := u−
√

A ln ρ , S := u +
√

A ln ρ , forγ = 1 .

Then

grad R =
(
−

√
Aγρ

γ−3
2 , 1

)T

,

and

grad S =
(√

Aγρ
γ−3

2 , 1
)T

.

It follows (2.9a) and (2.9b) that

Rt + λRx = 0 , (2.10a)

and

St + µSx = 0 . (2.10b)

In this chapter, here and below, {}8 := ∂t + λ∂x and {}′ := ∂t + µ∂x denote differ-

entiation along the λ and µ particle paths,

Γλ :=
{
(x, t)

∣∣ ẋ(t) = λ
(
ρ(x, t), u(x, t)

)}
,

Γµ :=
{
(x, t)

∣∣ ẋ(t) = µ
(
ρ(x, t), u(x, t)

)}
.

Then (2.10a) and (2.10b) can be rewritten as

R8 = 0 , (2.11a)
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and

S ′ = 0 . (2.11b)

Thus, as functions of x and t , R is constant along the λ particle path, and S is

constant along the µ particle path. This is the reason why R and S are called

Riemann invariants.

If we set r := Rx , s := Sx then upon differentiation of (2.32) we get

rt + λrx + λSrs + λRr2 = 0 , (2.12a)

st + µsx + µSs2 + µRrs = 0 . (2.12b)

I.e.,

r8 + λSrs + λRr2 = 0 , (2.13a)

s′ + µSs2 + µRrs = 0 . (2.13b)

Next, we observe that λ = R+S
2
− γ−1

4
(S − R) and µ = R+S

2
+ γ−1

4
(S − R). Hence,

expressed in terms of θ :=
γ − 1

2
, we have for γ ≥ 1,

λR = µS =
1 + θ

2
and λS = µR =

1− θ

2
, θ :=

γ − 1

2
≥ 0,

and the pair of equations (2.13) is recast into the form

r8 +
1 + θ

2
r2 +

1− θ

2
rs = 0, (2.14a)

s′ +
1 + θ

2
s2 +

1− θ

2
rs = 0 . (2.14b)

It follows from (2.10b) that

s = Sx =
S 8

λ− µ
= − S 8

θ(S −R)
. (2.15)
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Substituting (2.15) into (2.14a) we obtain

r8 +
1 + θ

2
r2 − r

1− θ

2θ

S 8

S −R
= 0 . (2.16)

Let h := −1− θ

2θ
ln(S −R) . Then h satisfies

hS = −1− θ

2θ

1

S −R
.

We know that along the λ particle path, R8 = 0 ; thus

h8 = hRR8 + hSS 8 = −1− θ

2θ

1

S −R
S 8 .

Substituting this into (2.16) we obtain

r8 +
1 + θ

2
r2 + h8r = 0 . (2.17)

Multiplying (2.17) by eh , and using the abbreviations

q := ehr, w =
1 + θ

2
e−h , (2.18)

we rewrite the resulting equation as

q8 + wq2 = 0 . (2.19)

An explicit formula for q can be found:

q(t) =
q0

1 + q0W (t)
, (2.20)

where q0 = q(0) and

K(t) =

∫ t

0

wdt ,

with the integration along the λ particle path.
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Suppose the initial values of R and S are bounded. Then R and S stay between

the same bounds for all time, since R and S are constant along characteristics. The

quantity
1 + θ

2
e−h has then a positive lower bound w0 . Thus W (t) satisfies

W (t) ≥ w0t for all t ≥ 0 . (2.21)

Substituting (2.21) into (2.20), we conclude that if q0 ≥ 0 , then q(t) stays bounded,

and if q0 < 0 , then q(t) becomes unbounded after a finite time. A similar result

holds for the other variable S . To summarize, we have the following result.

Theorem 2.2.1 Let (ρ, u) be a solution of (2.7) whose initial values are bounded.

Then the solution remains in C1 if and only if R0x ≥ 0 and S0x ≥ 0 .

2.3 Pure Euler-Poisson systems

In this section, we reiterate the results in [ELT01], illustrating that there is a

“large set” of initial configurations which yield global smooth, C1-solutions for the

pure Euler-Poisson system

ρt + (ρu)x = 0 , (2.22a)

(ρu)t + (ρu2)x = −kρϕx k > 0 , (2.22b)

ϕxx = −ρ . (2.22c)

Set d := ux(x, t) , then differentiation of (2.22a) and (2.22b) yields

ρ̇ + ρd = 0 , (2.23a)

ḋ + d2 = kρ , {̇} := ∂t + u∂x . (2.23b)
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Multiply (2.23b) by
1

ρ
, (2.23a) by

d

ρ2
, and take the difference. This gives

˙(d

ρ

)
=

ρḋ− dρ̇

ρ2
= k , (2.24)

and upon integration one gets

d

ρ
= β(t) := kt +

d0

ρ0

. (2.25)

Substituting (2.25) into (2.23) we obtain

ρ̇ + β(t)ρ2 = 0 , (2.26a)

ḋ + d2 =
k

β(t)
d . (2.26b)

We then find explicit formulas for ρ and d :

ρ(t) =
ρ0

1 + ρ0

∫ t

0
β(τ)dτ

, (2.27a)

d(t) =
d0e

R t
0 k/β(τ)dτ

1 + d0

∫ t

0
e
R τ
0 k/β(s)dsdτ

. (2.27b)

Direct calculation shows that

1 + ρ0

∫ t

0

β(τ)dτ = 1 + d0

∫ t

0

e
R τ
0 k/β(s)dsdτ = 1 + d0t +

k

2
ρ0t

2 .

Thus, the boundedness or not of ρ and d depends on whether 1 + d0t +
k

2
ρ0t

2 ever

takes on the value 0 . It follows that if d0 > −√2kρ0 then global regularity for ρ and

d is ensured. To summarize, we obtain the following result, (Theorem 2.2, [ELT01]):

Theorem 2.3.1 The system of Euler-Poisson equations (2.22a)-(2.22c) admits a

global smooth solution if and only if

u0x(α) > −
√

2kρ0(α) , ∀α ∈ R . (2.28)
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In this case the solution of (2.22a)-(2.22c) is given by

ρ(x(α, t), t) =
ρ0

Γ(α, t)
, ux(x(α, t), t) =

u0x + kρ0t

Γ(α, t)
,

Γ(α, t) := 1 + u0xt +
kρ0t

2

2
,

so that ρ ∼ t−2 and ux ∼ t−1 as long as ρ0 6= 0 . If condition (2.28) fails, then the

solution breaks down at the finite time, tc , where Γ(α, tc) = 0 .

Thus, following the terminology of [LT02], the curve u0x+
√

2kρ0 = 0 is a “crit-

ical threshold” in configuration space which separates between initial configurations

leading to finite-time breakdown and a “large set” of sub-critical initial configu-

rations which yield global smooth solutions. In particular, (2.28) allows negative

velocity gradients (depending on the local amplitude of the density), which other-

wise are excluded in the case of Burgers equations of inviscid fluids, corresponding

to k = 0.

2.4 Euler-Poisson equations with γ-law pressure

In this section, we use a variant of Lax’s method to find subcritical initial data

of the full Euler-Poisson equation





ρt + (ρu)x = 0 ,

(ρu)t + (ρu2)x = −p(ρ)x − kρϕx, k > 0,

−ϕxx = ρ ,

(2.29)

where the pressure p = p(ρ) is given by the usual γ-law, p(ρ) = Aργ with γ ≥ 1.
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2.4.1 Riemann invariants

In this subsection, we reformulate system (2.29) with its Riemann invariants

as a preparation for the analysis carried out in following subsections.

2.4.1.1 The Euler-Poisson equations with γ-law pressure: γ > 1

We begin by rewriting the Euler-Poisson equations (2.4) as a first order quasi-

linear system 


ρ

u




t

+ J




ρ

u




x

=




0

−kϕx


 . (2.30)

As showed in section 2.2, the Jacobian J :=




u ρ

Aγργ−2 u


 has two different

eigenvalues

λ := u−
√

Aγρ
γ−1

2 < µ := u +
√

Aγρ
γ−1

2 .

And let R and S denote the Riemann invariants of the corresponding Euler system

(2.1)

R := u− 2
√

Aγ

γ − 1
ρ

γ−1
2 and S := u +

2
√

Aγ

γ − 1
ρ

γ−1
2 . (2.31)

They satisfy the coupled system of equations,

Rt + λRx = −kϕx , (2.32a)

St + µSx = −kϕx , (2.32b)

coupled through the Poisson equation −φxx = ρ . Here we redo the process we did

in section 2.2. Let us set r := Rx , s := Sx then upon differentiation of (2.32) we
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get

rt + λrx + λSrs + λRr2 = kρ , (2.33a)

st + µsx + µSs2 + µRrs = kρ . (2.33b)

Next, we observe that λ = R+S
2
− γ−1

4
(S − R) and µ = R+S

2
+ γ−1

4
(S − R). Hence,

expressed in terms of θ :=
γ − 1

2
, we have for γ ≥ 1,

λR = µS =
1 + θ

2
and λS = µR =

1− θ

2
, θ :=

γ − 1

2
≥ 0,

and the pair of equations (2.33) is recast into the form

r8 +
1 + θ

2
r2 +

1− θ

2
rs = kρ, (2.34a)

s′ +
1 + θ

2
s2 +

1− θ

2
rs = kρ . (2.34b)

Here {}8 := ∂t + λ∂x and {}′ := ∂t + µ∂x denote differentiation along the λ and µ

particle paths,

Γλ :=
{
(x, t)

∣∣ ẋ(t) = λ
(
ρ(x, t), u(x, t)

)}
, Γµ :=

{
(x, t)

∣∣ ẋ(t) = µ
(
ρ(x, t), u(x, t)

)}
.

To continue, we rewrite the equation for ρ as

(ρt + λρx) +
µ− λ

2
ρx + ρ

s + r

2
= 0 . (2.35)

Since s − r = Sx − Rx = 2
√

Aγρ
γ−3

2 ρx , we can express
µ− λ

2
ρx =

√
Aγρ

γ−1
2 ρx =

ρ
s− r

2
, so that the ρ equation (2.35) can be written along the λ particle path as

ρ8 + ρs = 0. Similarly, it can be written along the µ particle path as ρ′ + ρr = 0.

Assembling the above equations, we arrive at the following system governing r, s
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and ρ, 



r8 +
1 + θ

2
r2 +

1− θ

2
rs = kρ ,

ρ8 + ρs = 0 ,

(2.36a)

and 



s′ +
1 + θ

2
s2 +

1− θ

2
rs = kρ ,

ρ′ + ρr = 0.

(2.36b)

Finally, we use the integration factors 1/
√

ρ and r/2ρ
√

ρ in the first and second

equations of each pair in (2.36), to conclude that

(
r√
ρ

)8
+

1 + θ

2

r2

√
ρ
− θ

2

rs√
ρ

= k
√

ρ, (2.37a)

(
s√
ρ

)′
+

1 + θ

2

s2

√
ρ
− θ

2

rs√
ρ

= k
√

ρ. (2.37b)

2.4.1.2 The isothermal case γ = 1

In this case, the two eigenvalues are λ = u − √A < µ = u +
√

A with the

corresponding Riemann invariants R = u − √A ln ρ and S = u +
√

A ln ρ. Their

derivatives, r and s, satisfy the pair of equations, corresponding to (2.37a), (2.37b)

with θ = (γ − 1)/2 = 0,

(
r√
ρ

)8
+

1

2

r2

√
ρ

= k
√

ρ, (2.38a)

(
s√
ρ

)′
+

1

2

s2

√
ρ

= k
√

ρ. (2.38b)
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2.4.2 Global smooth solutions for sub-critical initial data

For the pressureless Euler-Poisson equations (2.2), the evolution of ux and

ρ could be traced backwards along the same particle path to their initial data at

t = 0. The scenario becomes more complicated with the additional pressure term,

due to the coupling of r and s along different particle paths which are traced back

to different neighborhoods of the initial line t = 0. This is the main obstacle in

finding the sharp critical threshold of the full Euler-Poisson system (2.4). To this

end, we will seek invariant regions for the coupled system, governing the Riemann

invariants. We begin this section with the following lemma.

Lemma 2.4.1 Let the total charge E0 :=
∫∞
−∞ ρ0(x)dx < ∞. Then ρ(x, t) and

u(x, t) remain uniformly bounded for all t > 0.

Proof. Under the given condition, we can set (e.g., [ELT01, p. 116])

ϕx(x, t) =
1

2

( ∫ x

−∞
ρ(ξ, t)dξ −

∫ ∞

x

ρ(ξ, t)dξ

)
,

which satisfies −E0 ≤ ϕx(x, t) ≤ E0 , for all t ≥ 0 and x ∈ R . Recall the transport

equations (2.32a), (2.32b) which govern the Riemann invariants along different char-

acteristics R8 +kϕx = S ′+kϕx = 0. Since ϕx is bounded, these transport equations

tell us that R and S remain uniformly bounded with at most a linear growth in

time. Indeed, for all M À 1 we have

sup
|x|≤M

{|R(x, t)|, |S(x, t)|} ≤ C0 + kE0t, C0 := sup
|x|≤M+u∞t

{|R0(x)|, |S0(x)|} . (2.39)

Take the sum and difference of S and R to find that u(x, t) and ρ(x, t) in (2.31)

remain bounded,
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u∞ := sup
|x|≤M

|u(x, t)| ≤ C0 + kE0t, (2.40a)

sup
|x|≤M

ρ(x, t) ≤ Const.





(C0 + kE0t)
2

γ−1 , γ > 1,

exp (kE0t), γ = 1.

(2.40b)

2

We note in passing that the time growth asserted in (2.40) is probably not sharp; the

estimate can be improved after taking into account the uniform bounds of Rx/
√

ρ

and Sx/
√

ρ discussed in theorems 2.4.1 and 2.4.2 below.

2.4.2.1 Critical Threshold for isothermal case: γ = 1

We begin with the isothermal case, γ = 1, which plays an important role in

various applications. Compared with the general case (2.37), the isothermal case

becomes simpler due to the fact that θ = 0 decouples the dependence on r and s

through the mixed term θrs, which disappears from left-hand side of (2.38). Here

we prove the following sharp characterization of the critical threshold phenomena.

Theorem 2.4.1 Consider the isothermal Euler-Poisson system (2.4) with pressure

forcing p(ρ) = Aρ , and subject to initial data (u0, ρ0 > 0) with finite total charge,

E0 =
∫∞
−∞ ρ0(x)dx < ∞. The system admits a global smooth, C1-solution if and

only if

u0x(x) ≥ −
√

2kρ0(x) +
√

A
|ρ0x(x)|
ρ0(x)

, ∀x ∈ R . (2.41)

Remark 2.4.1 Expressed in terms of the Riemann invariants specified in §2.4.1.2,

ux±
√

Aρx/ρ, theorem 2.4.1 states that the isothermal Euler-Poisson equations admit
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global smooth solutions for sub-critical initial conditions,

s0 ≥ −
√

2kρ0 and r0 ≥ −
√

2kρ0. (2.42)

Proof. We define X :=
r√
ρ

and Y :=
s√
ρ
. Equations (2.38a), (2.38b) then read

X 8 =

√
ρ

2
(2k −X2), (2.43a)

Y ′ =
√

ρ

2
(2k − Y 2). (2.43b)

It follows that

X 8





> 0 , X ∈ (−
√

2k,
√

2k ) ,

= 0 , |X| =
√

2k ,

< 0 , |X| >
√

2k,

and similarly,

Y ′





> 0 , Y ∈ (−
√

2k,
√

2k ) ,

= 0 , |Y | =
√

2k ,

< 0 , |Y | >
√

2k .

Thus, starting with (2.42), X0, Y0 ≥ −
√

2k, we find that X and Y remain bounded

within the invariant region [−
√

2k,
√

2k], and they are decreasing outside this inter-

val. We conclude that

X(·, t), Y (·, t) ≤ max
{√

2k, X0(·), Y0(·)
}

.

Lemma 2.4.1 tells us that ρ is bounded. The boundedness of X , Y and ρ imply that

r = X
√

ρ and s = Y
√

ρ remain bounded for all t < ∞, and hence the Euler-Poisson

system (2.4) admits a global smooth C1-solution.
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Conversely, suppose that there exists X0 = X(x0) < −
√

2k. We will show

that this value will evolve along Γλ(x0, 0) such that X(·, t) will tend to −∞ at a

finite time. To this end, assume that Y is well behaved, i.e., Y0(·) ≥ −
√

2k so that

Y (·, t) ≤ Y1 := max
{

Y0(·),
√

2k
}

for all t’s (otherwise, the finite-time blow up of Y

can be argued along the same lines). It follows that s = Y
√

ρ ≤ Y1
√

ρ and inserting

this into ρ8 = −ρs, we find ρ8 ≥ −Y1ρ
3/2. This yields the lower-bound

ρ ≥
(

2

Y1t + 2/
√

ρ0

)2

,

which together with (2.43a), implies that X(·, t) satisfies the following Ricatti equa-

tion along the Γλ-path,

X 8 ≤ − X1

Y1t + 2/
√

ρ0

X2, X1 := (X2
0 − 2k)/X2

0 > 0. (2.44)

Integration of (2.44) yields

X(·, t) ≤ Y1

X1 ln
(
1 +

√
ρ0Y1t/2

)
+ Y1X0

(2.45)

Thus, starting with X0 < −
√

2k < 0 we find that there exists a finite critical time

tc > 0 such that X(t ↑ tc) tends to −∞. 2

The critical threshold condition (2.41) reflects the competition between the

Poisson forcing and the pressure. It yields global smooth solutions for a “large set”

of initial configurations allowing negative velocity gradients. In the particular case

that there is no pressure, A = 0 , (2.41) is reduced to the critical threshold condition

of the “pressureless” Euler-Poisson equations u0x > −
√

2kρ0(x) of [ELT01].
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2.4.2.2 Critical threshold for γ > 1

The equations for the Riemann invariants (2.37a), (2.37b) are coupled through

the mixed term, θrs/2. We note in passing that it is possible to get rid of this

mixed term when integrating (2.36a), (2.36b) with the integration factors ρ(γ−3)/4 ,

and rρ(γ−7)/4(3− γ)/4 in the first and second equations in each pair, yielding

(
rρ

θ−1
2

)8
+

1 + θ

2
r2ρ

θ−1
2 = kρ

1+θ
2 ,

(
sρ

θ−1
2

)′
+

1 + θ

2
s2ρ

θ−1
2 = kρ

1+θ
2 .

Nevertheless, it will prove useful to use the same integration factors, 1/
√

ρ and

r/2ρ
√

ρ which led to (2.37). The main task is to identify the invariant region as-

sociated with (2.37), corresponding to the isothermal invariant region [−
√

2k,
√

2k]

discussed in theorem 2.4.1.

Theorem 2.4.2 Consider the Euler-Poisson system (2.4) with γ-law pressure p(ρ) =

Aργ, γ > 1, subject to initial data (u0, ρ0 > 0) with finite total charge, E0 =

∫∞
−∞ ρ0(x)dx < ∞. Then, there exists a constant K0 > 0 depending on k, γ and the

initial conditions (specified in (2.47b) below), such that the Euler-Poisson equations

(2.4) admit a global smooth, C1-solution if,

u0x(x) ≥ −K0

√
ρ0(x) +

√
Aγ

|ρ0x(x)|
ρ0(x)

3−γ
2

. (2.46)

Before we turn to the proof of this theorem, several remarks are in order.

Remark 2.4.2 Expressed in terms of the Riemann invariants, r = ux−
√

Aγρ0x/ρ
(3−γ)/2
0
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and s = ux +
√

Aγρ0x/ρ
(3−γ)/2
0 , the critical threshold (2.46) reads

r0(x)√
ρ0(x)

,
s0(x)√
ρ0(x)

≥ −K0. (2.47a)

The constant K0 is given by

K0 =
−θM0 +

√
θ2M2

0 + 8k(1 + θ)

2(1 + θ)
, M0 = max

x

{√
2k,

r0(x)√
ρ0(x)

,
s0(x)√
ρ0(x)

}
.

(2.47b)

We mention two simplifications which are summarized in the following two

corollaries. We first observe that if the initial configurations satisfy the upper-bound

r0(x), s0(x) ≤
√

2kρ0(x), then (2.47b) yields M0 =
√

2k, hence K0 =

√
2k

1 + θ
, and

theorem 2.4.2 implies the following.

Corollary 2.4.1 Consider the Euler-Poisson system (2.4) with γ-law pressure p(ρ) =

Aργ, γ > 1, subject to initial data (u0, ρ0 > 0) with finite total charge, E0 =

∫∞
−∞ ρ0(x)dx < ∞. Then, the Euler-Poisson equations (2.4) admit a global smooth,

C1-solution if for all x ∈ R,

|u0x(x)| ≤
√

2kρ0(x)−
√

Aγ
|ρ0x(x)|
ρ0(x)

3−γ
2

. (2.48)

The next result follows from the trivial inequality

−K0 ≤
θM0 −

(
θM0 +

√
8k(1 + θ)

)
/
√

2

2(1 + θ)
.

Corollary 2.4.2 Consider the Euler-Poisson system (2.4) with a γ-law pressure

p(ρ) = Aργ, γ > 1, subject to initial data (u0, ρ0 > 0) with finite total charge,

E0 =
∫∞
−∞ ρ0(x)dx < ∞. Then, the Euler-Poisson equations (2.4) admit a global

smooth, C1-solution, if for all x ∈ R,
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u0x(x) ≥−
√

2kρ0(x)

γ + 1
+

√
Aγ

|ρ0x(x)|
ρ0(x)

3−γ
2

+

(
1− 1√

2

) γ − 1

2(γ + 1)
max

x

{√
2kρ0(x), u0x(x) +

√
Aγ

|ρ0x(x)|
ρ0(x)

3−γ
2

}
. (2.49)

Remark 2.4.3 We observe that as in the isothermal case, the critical threshold in

its various versions (2.46), (2.47), (2.48) and (2.49), allow a “large set” of initial

configurations with negative velocity gradient, due to the competition between the

stabilizing Poisson forcing kρφ(ρ)x and the destabilizing pressure A(ργ)x. In the

extreme case that Poisson forcing is missing, (where k = 0), the breakdown of

the system is generic unless u0x is positive enough (so that r0, s0 > 0). In the

other extreme of a “pressureless” Euler-Poisson system, A = 0, γ = 1 , the critical

thresholds (2.46), (2.48) are reduced to u0x(x) > −
√

2kρ0(x) , which coincides with

the “pressureless” critical threshold (2.3) found in [ELT01].

Proof. Expressed in terms of X :=
r√
ρ

and Y :=
s√
ρ
, equations (2.37) read

X 8 =
√

ρ

(
k − 1 + θ

2
X2 +

θ

2
XY

)
, (2.50a)

Y ′ =
√

ρ

(
k − 1 + θ

2
Y 2 +

θ

2
XY

)
. (2.50b)

We seek an invariant region of the form [−K0,M0], with K0,M0 > 0 yet to be

determined. We begin by noticing that if X,Y ≤ M then1 X+Y ≤ M2, and

1We let Z+ = max{X, 0} and Z− = min{Z, 0} denote the positive and negative part of Z.
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recalling that θ ≥ 0, (2.50) then yield

X 8 ≤ √
ρ

(
k − 1 + θ

2
X2 +

θ

2
M2

)
, X > 0,

Y ′ ≤ √
ρ

(
k − 1 + θ

2
Y 2 +

θ

2
M2

)
, Y > 0.

This in turn implies that

X and Y are decreasing if X,Y > C+, C+ = C+(M) :=

√
2k + θM2

1 + θ
. (2.51)

The solution of C+(M) = M yields M =
√

2k. Thus, X and Y are decreasing

whenever X,Y > M =
√

2k, and we end up with the upper-bound

X(·, t), Y (·, t) ≤ M0, M0 := max
x

{√
2k, X0(x), Y0(x)

}
. (2.52)

In a similar manner, we study the lower bound of the invariant region. By (2.52)

and (2.50) yield

X 8 ≥ √
ρ

(
k − 1 + θ

2
X2 +

θ

2
M0X

)
, X < 0, (2.53a)

Y ′ ≥ √
ρ

(
k − 1 + θ

2
Y 2 +

θ

2
M0Y

)
, Y < 0, (2.53b)

which in turn, imply that

X and Y are increasing if 0 ≥ X,Y > −K0, (2.54a)

where K0 is the smallest root of the quadratics on the right of (2.53),

K0 :=
−θM0 +

√
θ2M2

0 + 8k(1 + θ)

2(1 + θ)
. (2.54b)

The critical threshold condition (2.46) tells us that at t = 0, X0, Y0 ≥ −K0 and

(2.54a) implies that X(·, t) and Y (·, t) remain above the same lower-bound, (2.46).
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As before, the bounds of X,Y and ρ imply that r = X
√

ρ and s = Y
√

ρ remain

bounded, and hence the Euler-Poisson system (2.4) a global smooth, C1-solution.

2

2.4.3 Finite-time breakdown for super-critical initial date

Consider the Euler-Poisson system (2.4) with a γ-law pressure, γ ≥ 1, and

subject to initial data such that r0(x), s0(x) ≤
√

2k. Then, according to corollary

2.4.1, the following critical threshold is sufficient for the existence of global smooth

solutions,

u0x(x) ≥ −
√

2kρ0(x) +
√

Aγ
|ρ0x(x)|
ρ0(x)

3−γ
2

.

In this section we show that this critical threshold is also necessary for global regu-

larity.

Theorem 2.4.3 Consider the Euler-Poisson system (2.4) with a γ-law pressure

p(ρ) = Aργ , γ ≥ 1, subject to initial data (u0, ρ0 > 0) . The system loses the

C1-smoothness if there exists an x ∈ R such that

u0x(x) < −
√

2kρ0(x) +
√

Aγ
|ρ0x(x)|
ρ0(x)

3−γ
2

. (2.55)

Remark 2.4.4 Expressed in terms of the Riemann invariants, r = ux−
√

Aγρ0x/ρ
(3−γ)/2
0

and s = ux +
√

Aγρ0x/ρ
(3−γ)/2
0 , the condition (2.55) reads

∃x ∈ R s.t. r0(x) < −
√

2kρ0(x) , or s0(x) < −
√

2kρ0(x) . (2.56)

The lack of smoothness in this case was shown in theorem 2.4.1 for γ = 1 and is

extended for γ > 1 below.
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Proof. Recall equations (2.50) for X :=
r√
ρ

and Y :=
s√
ρ

X 8 =
√

ρ

(
k − 1 + θ

2
X2 +

θ

2
XY

)
, (2.57a)

Y ′ =
√

ρ

(
k − 1 + θ

2
Y 2 +

θ

2
XY

)
. (2.57b)

In the proof of theorem 2.4.2, we have shown that X and Y have an upper bound

X(·, t), Y (·, t) ≤ M0, M0 := max
x

{√
2k, X0(x), Y0(x)

}
. (2.58)

Suppose that there exists X0 = X(x0) < −
√

2k. We will show that this value will

evolve along Γλ(x0, 0) such that X(·, t) will tend to −∞ at a finite time. To this

end, assume that Y is well behaved, i.e., Y0(·) ≥ −
√

2k so that Y (·, t) ≤ M0 for all

t’s (otherwise, the finite time blow up of Y can be argued along the same lines). It

follows that along Γλ(x0, 0)

X 8 =
√

ρ

(
k − 1 + θ

2
X2 +

θ

2
XY

)
<
√

ρ

(
k − 1

2
X2

)
. (2.59)

Following exactly what we have done in the proof of theorem 2.4.1, we obtain the

inequality

X(·, t) ≤ M0

X1 ln
(
1 +

√
ρ0M0t/2

)
+ M0X0

, (2.60)

where X1 := (X2
0 − 2k)/X2

0 > 0 . Thus, starting with X0 < −
√

2k < 0 it follows

that there exists a finite critical time tc > 0 such that X(t ↑ tc) tends to −∞. 2

We conclude with an example for a finite-time breakdown.

Example: Suppose at t = 0 , u0(x) = 0 and

ρ0(x) =





1 , x < 0 ,

1− x

2ε
, 0 ≤ x ≤ ε ,

1
2
, x > ε .
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Thus

s0(x) =





−√Aγ
(
1− x

2ε

)
/2ε , 0 < x < ε ,

0 , elsewhere .

If we choose ε small enough, then s0(x) < −
√

2kρ0(x) for 0 < x < ε . According

to theorem 2.4.3, the system (2.4) will break down at a finite time. This example

shows that even if the fluid is near rest at t = 0, the pressure itself could still lead

to a finite-time breakdown.
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Chapter 3

Vanishing viscosity limit of the system of Burgers equations

In this chapter, we move to the multi-dimensional cases. We consider the

viscous dusty medium flow, u := uε , governed by:

∂tu + u · ∇u = ε∆u , u : Rn → Rn , (3.1)

where ε > 0 is a viscosity amplitude.

We also consider the corresponding equation of the inviscid fluid



ut + u · ∇u = 0 ,

u(x, 0) = u0(x) .

(3.2)

Our ultimate goal is to establish the convergence of solutions of (3.1) towards

solutions of (3.2).

In order to simplify the analysis, we shall consider the same initial data for

(3.1) and (3.2), which is compactly supported.

3.1 Irrotational viscous fluids

In this section, we mimic the method used in [LT02] to study the n-dimensional

irrotational dusty medium model, and identify its vanishing viscosity limit.

Differentiating of equation (3.1) with respect to x, we obtain that the velocity

gradient tensor M := ∇u satisfies

∂tM + u · ∇M + M2 = ε∆M . (3.3)
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It follows that if the initial velocity is irrotational, ∇ × u0 = 0 , i.e. if M0 := ∇u0

is symmetric, then the flow remains irrotational, ∇ × u = 0 , i.e. M := ∇u is

symmetric.

Apply the spectral dynamics Lemma, one can obtain the following result

(Lemma 5.1, [LT02], p444-445).

Lemma 3.1.1 Assume that the flow is irrotational ∇ × u0 = 0 . Then the real

eigenvalues λ = λ(∇u) satisfy

∂tλ + u · ∇λ + λ2 = ε∆λ + Qλ.

Here Qλ satisfies the constraint

a(λmin − λ) ≤ Qλ ≤ a(λmax − λ) , λmax := max λ(∇u) , λmin := min λ(∇u) ,

where a is given by

a := 2ε
∑

k

∂kr
⊥∂kr > 0

and r is the right eigenvector of ∇u associated with λ .

Proof. Let l and r be the normalized left and right eigenvectors of M associated

with the eigenvalue λ . Then

∂tλ + u · ∇λ + λ2 = εl∆Mr .

Observe that M is symmetric because ∇ × u = 0 , and consequently λ are all real

quantities. Differentiation of lM = λl with respect to x twice gives

∆lM + 2∇l∇M + l∆M = ∆λl + 2∇λ∇l + λ∆l ,
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which upon multiplication against r on the right leads to

l∆Mr = ∆λ + 2[(∇λ∇l)r − (∇l∇M)r] .

Here the differentiation operators apply component wise, e.g.,∇l∇M =
∑n

k=1 ∂kl∂kM .

On the other hand it follows from Mr = λr that

∇Mr = ∇λr + λ∇r −M∇r .

This gives

(∇l∇M)r = ∇l∇λr + λ∇l∇r −∇lM∇r .

A combination of the above facts yields

Qλ = 2ε

[
− λ

n∑

k=1

∂kl∂kr +
n∑

k=1

∂klM∂kr

]
.

Since the flow is irrotational we have M> = M and l = r> , with superscript >

denoting the transpose. The second term in Qλ is then bounded by

λmin

n∑

k=1

∂kr
>∂kr ≤

n∑

k=1

∂kr
>M∂kr ≤ λmax

n∑

k=1

∂kr
>∂kr ,

which completes the proof. 2

It follows that the largest eigenvalue λmax satisfies

∂tλmax + u · ∇λmax + λ2
max ≤ ε∆λmax ,

and by the comparison principle we obtain

λmax ≤ 1

λmax(0)−1 + t
≤ 1

t
.

This bound enable us to establish the following.
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Lemma 3.1.2 Let λ1 ≥ λ2 ≥ · · · ≥ λn, be real eigenvalues of the velocity gradient

field ∇uε in (3.1). If d(0) :=
n∑

i=1

λi(0) ∈ L1(R2) , then

||d(t)||L1(R2) ≤ Const.

Proof. The one-sided upper bound for λmax implies that the positive part of the

divergence, (
∑n

i=1 uixi
)+ = (

∑n
i=1 λi)+ is bounded. We observe that λi are essen-

tially supported on a finite domain in the sense of their exponential decay outside

a finite region of propagation, and hence
∫
R2(

∑n
i=1 uixi

)+ ≤ Const. This, combined

with
∫
R2

∑n
i=1 uixi

= 0 , yields that
∑n

i=1 uixi
=

∑n
i=1 λi ∈ L1(R2) . This completes

the proof. 2

Lemma 3.1.3 Let λ1 ≥ λ2 ≥ · · · ≥ λn , be real eigenvalues of the velocity gradient

field ∇uε in (3.1). If η(0) := (λ1 − λn)(0) ∈ L1(R2) , then

||η(t)||L1(R2) ≤ Const.

Proof. It follows from Lemma 3.1.1 that η satisfies

η′ + (λ1 + λn)η ≤ ν∆η .

We rewrite this equation as

η′ + ηd ≤ ν∆η + (λ2 + · · ·+ λn−1)η .

Since η ≥ 0 and λ1 < C , spatial integration gives

d

dt
||η(t)||L1 ≤ C||η(t)||L1 .

Applying the Gronwall inequality, we find that ||η(t)||L1 is bounded. 2
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Equipped with these two lemmas, and following the exactly same strategy of

[LT02], we can identify the vanishing viscosity limit of (3.1).

We reiterate the procedure here briefly.

Lemma 3.1.4 (BV bound). Consider the dusty medium equation (3.1) with com-

pactly supported irrotational initial data uε
0 = uε(x, 0) such that ||uε

0||BV (R2) is bounded.

Then the corresponding velocity, uε , satisfies

||uε(·, t) ||BV (R2) ≤ Const.

Moreover, for t1, t2 ≥ 0 , we also have

||uε(x, t2)− uε(x, t1) ||L1(R2) ≤ Const.|t2 − t1|1/3 . (3.4)

Proof. Since (λ1 − λn)(t) ∈ L1(R2) , and

0 ≤ (λi − λj) ≤ (λ1 − λn) , ∀ 1 ≤ i < j ≤ n ,

one has

(λi − λj)(t) ∈ L1(R2) , for all 1 ≤ i < j ≤ n .

This combined with d(t) ∈ L1(R2) yields

λi ∈ L1(R2) , i = 1, · · · , n . (3.5)

Since ∇u is symmetric, (3.5) gives

∫

R2

||∇uε||dx =

∫

R2

||diag(λ1, · · · , λn)||dx < ∞ ,

with the usual matrix norm, || · || , defined as ||M || =: sup||ξ||=1 |Mξ| . Thus the BV

bound follows.
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To estimate the modulus of continuity in time, we multiply (3.1) by a smooth

test function ψ ∈ C∞
0 and use the spatial BV bound to obtain

∣∣∣∣ψ(x)(u(x, t2)− u(x, t1))dx

∣∣∣∣ ≤ Const.(t2 − t1)(|ψ|∞ + |∆ψ|) .

This inequality and the BV estimate combined with Kruz̆kov’s interpolation theorem

([K70], p.233) yield (3.4). 2

For irrotational flow, ∇×u = 0 , one has u ·∇u = ∇(|u|2/2) , and the reduced

equation of the inviscid fluid (3.2) can be recast into the conservative form

∂tu +∇
( |u|2

2

)
= 0 . (3.6)

The irrotational property of both viscous and inviscid fluids suggests that there

exists a potential φ such that u = ∇φ , where φ solves the Hamilton-Jacobi equation

φt +
1

2
|∇φ|2 = 0 , φ(x, 0) = φ0 . (3.7)

There is an unique continuous solution to (3.7), which is expressed via the Hopf-Lax

formulation, ([Ev98], p.560). Then [LT02] make

Definition 3.1.1 ([LT02], p.447) A measurable function u is called a weak solution

of the equation (3.2) if u = ∇φ with the potential φ being the unique weak solution

of the Eikonal equation (3.7).

With this definition of a weak solution, we summarize our results by stating

the following theorem (see [LT02], p.447 for detailed proof.)

Theorem 3.1.1 (Vanishing viscosity limit). Consider the dusty medium equation

(3.1) with compactly supported irrotational initial data u(·, 0) ∈ L∞(R2) , then the
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local velocity uε converges to the unique weak solution of (3.2), i.e., we have

uε(x, t) → u(x, t) in L∞([0, T ]; L1(R2)) , (3.8)

where u = ∇φ is the viscosity solution of the Eikonal equation (3.7).

3.2 Two-dimensional general viscous flow

In this section, we discuss the two-dimensional system of Burgers equations

(3.1) and (3.2) subject to general initial data.

3.2.1 Spectral dynamics and BV bound

For general initial data, we decompose M as M = S + A , where S is the

symmetric part of M , and A is the skew-symmetric part of M , i.e.,

A =




0
u1x2 − u2x1

2
u2x1 − u1x2

2
0


 ,

S =




u1x1

u1x2 + u2x1

2
u1x2 + u2x1

2
u2x2


 .

Then A and S satisfy the coupled system of equations

∂tA + u · ∇A + AS + SA = ε∆A , (3.9a)

∂tS + u · ∇S + S2 + A2 = ε∆S . (3.9b)

Let us denote a =
u1x2 + u2x1

2
. Noting that

AS + SA =




0 a(u1x1 + u2x2)

−a(u1x1 + u2x2) 0


 =:




0 ad

−ad 0


 ,
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we find

∂ta + u · ∇a + ad = ε∆a . (3.10)

Since S is symmetric, it has two real eigenvalues, λ ≤ µ . Regarding the evolution

of λ and µ , we state the following lemma:

Lemma 3.2.1 The two real eigenvalues λ ≤ µ of S satisfy

∂tλ + u · ∇λ + λ2 = ε∆λ + εQλ + a2, (3.11a)

∂tµ + u · ∇µ + µ2 = ε∆µ + εQµ + a2. (3.11b)

Here Qλ and Qµ satisfy the constraint

Qλ = −Qµ ≥ 0 .

Proof. First, we apply the spectral dynamics lemma ([LT02], p.442) to (3.9b). And

note that rT A2r = qT A2q = −a2 , we obtain

∂tλ + u · ∇λ + λ2 − a2 = rT ∆Sr , (3.12a)

∂tµ + u · ∇µ + µ2 − a2 = qT ∆Sq , (3.12b)

here r and q are the right eigenvectors of S associated with λ and µ respectively,

normalized so that rT r = 1 and qT q = 1.

Next, we differentiate rT S = λrT with respect to x twice, and it yields

∆rT S + 2∇rT∇S + rT ∆S = ∆λrT + 2∇λ∇rT + λ∆rT ,

which upon multiplication against r on the right leads to

rT ∆Sr = ∆λ + 2[(∇λ∇rT )r − (∇rT∇S)r] .
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Here the differentiation operators apply component wise, e.g.,∇rT∇S =
∑2

k=1 ∂kr
T ∂kS .

On the other hand, it follows from Sr = λr that

∇Sr = ∇λr + λ∇r − S∇r .

This gives

(∇rT∇S)r = ∇rT∇λr + λ∇rT∇r −∇rT S∇r .

A combination of the above facts yields

Qλ = 2

[
− λ

2∑

k=1

∂kr
T ∂kr +

2∑

k=1

∂kr
T S∂kr

]
.

Similarly, we obtain

Qµ = 2

[
− µ

2∑

k=1

∂kq
T ∂kq +

2∑

k=1

∂kq
T S∂kq

]
.

Since S is symmetric, then q = r⊥ . Decompose ∂kr as ∂kr := αkr + βkq , then

∂kq = αkq − βkr . Thus

Qλ = 2(µ− λ)
2∑

k=1

β2
k ≥ 0 ,

and

Qµ = 2(λ− µ)
2∑

k=1

β2
k = −Qλ .

This completes the proof. 2

Setting η := µ− λ , following Lemma 3.2.1, one has

∂tη + u · ∇η + ηd ≤ ε∆η . (3.13)

Equations (3.10) and (3.13) yield
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Lemma 3.2.2 If a(0), η(0) ∈ L1(R2) , then

||a(t)||L1(R2) ≤ ||a(0)||L1(R2) ,

and

||η(t)||L1(R2) ≤ ||η(0)||L1(R2) .

Proof. Noting that ∇ · u = λ + µ , thus

∂ta +∇ · (au) = ε∆a ,

∂tη +∇ · (ηu) ≤ ε∆η .

Spatial integration gives the L1 estimate for a and η as asserted. 2

Taking the sum of (3.11a) and (3.11b), we obtain

∂td + u · ∇d +
d2 + η2

2
= ε∆d + 2a2 . (3.14)

This yields

Lemma 3.2.3 If sup
x

a(x, 0) < ∞ and sup
x

d(x, 0) < ∞ , then sup
x

d(x, t) < ∞ for

all t ≥ 0 .

Proof. For d > 0, 2a ∗ (3.10) + d ∗ (3.14) yields

∂t(a
2 +

d2

2
) + u · ∇(a2 +

d2

2
) = ε(2a∆a + d∆d)− d

d2 + η2

2

= ε∆(a2 +
d2

2
)− ε(2|∇a|2 + |∇d|2)− d

d2 + η2

2
(3.15)

By the maximum principle, we obtain a2 +
d2

2
≤ max

d0>0
(a2

0 +
d2

0

2
) . 2

Equipped with all of the above Lemmas, we can establish the BV bound of uε.
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Theorem 3.2.1 Consider the dusty medium equation (3.1) with compactly sup-

ported initial data uε
0 = uε(x, 0) such that ||uε

0||BV (R2) is bounded. Then the cor-

responding velocity, uε, satisfies

||uε(·, t) ||BV (R2) ≤ Const.

Proof. Since d = u1x1 + u2x2 is essentially supported on a finite domain in the sense

of its exponential decay outside a finite region of propagation, and d has an upper

bound, we find that
∫

R2

(u1x1 + u2x2)+ ≤ Const.

This, combined with
∫
R2(u1x1 + u2x2) = 0 , yields that

u1x1 + u2x2 ∈ L1(R2) . (3.16)

Direct calculation shows that

λ =
u1x1 + u2x2 −

√
(u1x1 − u2x2)

2 + (u1x2 + u2x1)
2

2
,

and

µ =
u1x1 + u2x2 +

√
(u1x1 − u2x2)

2 + (u1x2 + u2x1)
2

2
.

Since η = µ− λ ∈ L1(R2) , we obtain

u1x1 − u2x2 , u1x2 + u2x1 ∈ L1(R2) . (3.17)

Combine (3.16), (3.17) with

a =
u1x2 − u2x1

2
∈ L1(R2) , (3.18)
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we conclude

∇u ∈ L1(R2) . (3.19)

Then the BV bound of uε follows. 2

3.2.2 Vanishing viscosity limit of smooth solutions

First, we show in the following lemma that if the initial velocity gradient tensor

does not have negative eigenvalues, then equation (3.2) admits a global smooth

solution.

Lemma 3.2.4 Consider equation (3.2) with compactly supported initial data u0 =

u(x, 0) subject to the constraint that ∇u0 has no negative eigenvalues. Then ∀T > 0 ,

there exists C > 0 , such that ||∇u(x, t ≤ T )|| < C , with the usual matrix norm,

|| · || , defined as ||M || =: sup||ξ||=1|Mξ| .

Proof. In this chapter, here and below, we denote { }′ := ∂t + u · ∇ . Let χ and ω

be the two eigenvalues of ∇u. Then χ and ω satisfy

χ′ + χ2 = 0 , (3.20a)

ω′ + ω2 = 0 . (3.20b)

Solving (3.20a), we obtain

χ(t) =
1

t + χ(0)−1
. (3.21)
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If χ(0) is a positive number, then χ(t) decreases to 0. If χ(0) := c + pi is a complex

number, (c, p ∈ R, and without loss of generality, we can assume p > 0), then

χ(t) =
1

t + (c + pi)−1

=
c2 + p2

(c2 + p2)t + c− pi

=
(c2 + p2)[(c2 + p2)t + c]

[(c2 + p2)t + c]2 + p2
+

(c2 + p2)p

[(c2 + p2)t + c]2 + p2
i .

Set h(t) = (c2 + p2)t + c , then the real and imagine parts of χ(t) are

Rχ(h) =
(c2 + p2)h

h2 + p2
, and Iχ(h) =

(c2 + p2)p

h2 + p2
.

Differentiation of Rχ(h) with respect to h yields

dRχ

dh
=

c2 + p2

h2 + p2
− (c2 + p2)2h2

(h2 + p2)2

=
(c2 + p2)(p2 − h2)

h2 + p2
.

It follows that Rχ(h) is decreasing on (−∞,−p), increasing on (−p, p), and decreas-

ing to 0 on (p,∞) .

We show that χ and ω will remain bounded. For every fixed T > 0 , we

decompose R2 as

R2 :=
6⋃

j=1

Ωj ,

where

Ω1 := {x|χ(x, 0) ≥ 0} ,

Ω2 := {x|Rχ(x, 0) ≥ Iχ(x, 0) > 0} ,

Ω3 := {x|Iχ(x, 0) > Rχ(x, 0) ≥ 0} ,

Ω4 := {x|Rχ(x, 0) ≤ − 1

3T
} ,
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Ω5 := {x| − 1

3T
< Rχ(x, 0) < 0 , and Iχ(x, 0) ≥ −Rχ} ,

Ω6 := {x| − 1

3T
< Rχ(x, 0) < 0 , and Iχ(x, 0) < −Rχ} .

Tracing χ(x, t) along the characteristic line, we obtain the following bounds subject

to different sets:

(I) x ∈ Ω1 : 0 ≤ χ(t) ≤ χ(0) .

(II) x ∈ Ω2 : 0 < Rχ(t) < Rχ(0) and 0 < Iχ(t) < Iχ(0) .

(III) x ∈ Ω3 : 0 < Rχ(t) <
Rχ(0)2 + Iχ(0)2

2Iχ(0)2
Iχ(0) < Iχ(0) and 0 < Iχ(t) < Iχ(0) .

(IV) x ∈ Ω4 : Since χ(·, 0) /∈ R− , then there must exists δ > 0 such that Iχ(x, 0) > δ

for all x ∈ Ω4 , otherwise χ will be negative somewhere. Then

Rχ(t) ≥ −Rχ(0)2 + Iχ(0)2

2Iχ(0)
≥ −maxx |χ(x, 0)|

2δ
,

and

0 ≤ Iχ(t) ≤ Rχ(0)2 + Iχ(0)2

Iχ(0)
≤ maxx |χ(x, 0)|

δ
.

(V) x ∈ Ω5 : Rχ(t) > Rχ(0) , and 0 < Iχ(t) ≤ Rχ(0)2 + Iχ(0)2

Iχ(0)
< 2Iχ(0) .

(VI) x ∈ Ω6 : Rχ(t) =
(Rχ(0)2 + Iχ(0)2)h(t)

h(t)2 + Iχ(0)2
, here h(t) = (Rχ(0)2+Iχ(0)2)t+Rχ(0) .

Combine this with the facts that Rχ(0) > − 1

3T
and Iχ(0) < −Rχ(0) , we obtain

h(t) < 1
3
Rχ(0) for all 0 < t ≤ T . Thus Rχ(t) >

(Rχ(0)2 + Iχ(0)2)Rχ(0)
1
9
Rχ(0)2 + Iχ(0)2

> 18Rχ(0) .

Similarly, we can obtain that Iχ(t) < 18Iχ(0) .

Combine all of the above results, we obtain an uniform bound of χ which depends

on the initial data and T . Same result hold for ω. Therefore d = χ+ω = u1x1 +u2x2

is uniformly bounded.

The boundedness of d and the structure of equation (1.6) enable us to control

every single term of M . We state the details below.
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Differentiating equation (3.2), we obtain the equations of ukxi
(k, i = 1, 2):

u′1x1
+ u2

1x1
+ u1x2u2x1 = 0 , (3.22a)

u′1x2
+ u1x1u1x2 + u1x2u2x2 = u′1x2

+ u1x2d = 0 , (3.22b)

u′2x1
+ u1x1u2x1 + u2x1u2x2 = u′2x1

+ u2x1d = 0 , (3.22c)

u′2x2
+ u2

2x2
+ u1x2u2x1 = 0 . (3.22d)

It follows from equation (3.22b) that along the characteristic line,

u1x2(t) = u1x2(0)e−
R t
0 d. (3.23)

Thus u1x2 is bounded. Similarly, (3.22c) implies that u2x1 is bounded . Take the

difference of (3.22a) and (3.22d) , we obtain

(u1x1−u2x2)
′+(u1x1−u2x2)(u1x1 +u2x2) = (u1x1−u2x2)

′+(u1x1−u2x2)d = 0 , (3.24)

which implies the boundedness of u1x1 − u2x2 . Combine this with the boundedness

of d = u1x1 +u2x2 , we have the control of u1x1 and u2x2 . This complete the proof. 2

We now turn to the main theorem of this section.

Theorem 3.2.2 We consider the dusty medium equation (3.1) with compactly sup-

ported initial data u0 ∈ C2(R2) subject to the constraint that ∇u0 has no negative

eigenvalues. Then, the local velocity uε converges to the smooth solution ū of (3.2),

i.e., we have

uε(x, t) → ū(x, t) in L∞
(
[0, T ]; L1(R2)

)
. (3.25)
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Proof. For every fixed T > 0 , we have shown that ∇u(x, t) is uniformly bounded

for all x and 0 ≤ t ≤ T . Set

L := inf
x,0≤t≤T

{
the smaller eigenvalue of S(∇u(x, t)) =: λ

(
S(∇u(x, t))

)}
− 1 ,

here S(∇u) is the symmetric part of ∇u . According to (3.11a)

∂tλ + u · ∇λ + λ2 = ε∆λ + εQλ + a2 ≥ ε∆λ , (3.26)

and by the comparison principle we obtain

λ(x, t) ≥ 1

t + L−1
.

Let T1 := − 1

2L
, then

λ ≥ 2L , ∀ε > 0 , t ≤ T1 , x .

Thus d = λ + µ ≥ 4L , for all x and 0 ≤ t ≤ T1 . Recall the equations of a , η and µ

a′ + ad = ε∆a , (3.27a)

η′ + ηd ≤ ε∆η , (3.27b)

µ′ + µ2 = ε∆µ + εQµ + a2 ≤ ε∆µ + a2 . (3.27c)

By the comparison principle, we obtain

|a(x, t)| ≤ max
x
|a(x, 0)|e−LT1 =: Ua , ∀x , ∀ 0 ≤ t ≤ T1 ,

η(x, t) ≤ max
x

η(x, 0)e−LT1 =: Uη , ∀x , ∀ 0 ≤ t ≤ T1 ,

and

µ(x, t) ≤ max
x

µ(x, 0) + U2
aT1 =: Uµ , ∀x , ∀ 0 ≤ t ≤ T1 .
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The upper bound of µ yields d ≤ 2Uµ , for all x and 0 ≤ t ≤ T1 . The boundedness

of λ and µ implies every element of S is bounded, i.e., u1x1 , u2x2 and
u1x2 + u2x1

2

are uniformly bounded for all x and 0 ≤ t ≤ T1 . The above facts combined with

the boundedness of a =
u1x2 − u2x1

2
yield that u1x2 and u2x1 are uniformly bounded

for all x and 0 ≤ t ≤ T1 .

Since all the first order derivatives of u are uniformly bounded, we have the

control of all the second order derivatives of u . The detailed explanation is given

below. We differentiate

∂tM + u · ∇M + M2 = ε∆M ,

with respect to x , obtaining the equations of all the second order derivatives of u .

For example, the equation of u1x1x1 is

u′1x1x1
= ε∆u1x1x1 − (3u1x1u1x1x1 + 2u2x1u1x1x2 + u1x2u2x1x1) . (3.28)

Set z(t) := sup
x
{|ukxixj

(x, t)| , k, i, j = 1, 2} . Then

dz

dt
≤ 6CT1z , (3.29)

which yields

z(t) ≤ z(0)e6T1CT1 . (3.30)

Thus, u , Du and D2u are all uniformly bounded. We observe that they are

essentially supported on a finite domain in the sense of their exponential decay

outside a finite region of propagation, and hence u ∈ W 2,p(R2) , here 1 ≤ p ≤ ∞ .

By Rellich’s compactness theorem, uε is precompact in W 1,q(R2) , 1 ≤ q ≤ ∞ . We
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multiply (1.5) by a smooth test function ψ ∈ C∞
0 to obtain

∣∣∣∣
∫

R2

ψ(x)(uε(x, t2)− uε(x, t1))dx

∣∣∣∣ ≤ Const.(t2 − t1)(|ψ|∞ + |∆ψ|) . (3.31)

This inequality and Duε ∈ L1 combined with Kružkov’s interpolation theorem

(p.233,[K70]) yield

||uε(x, t2)− uε(x, t1)||L1(R2) ≤ Const.|t2 − t1|1/3 . (3.32)

Then, by the Cantor diagonalization process of passing to further subsequence if

necessary, we obtain

uε(x, t) → ū(x, t) in L∞([0, T1]; L
1(R2)) . (3.33)

This combined with D2uε are uniformly bounded yield ū ∈ C1 . Multiply (1.5) by

ϕ(x, t) ∈ C∞
0 , integrate by parts, and pass to the limit, we find ū is the smooth

solution of (1.6). Furthermore, due to the boundedness of uε , ū , D2uε and D2ū ,

there exists θ1 > 0 , such that when ε < θ1 , then

||uε(x, T1)− ū(x, T1)||C1(R2) < θ2 ,

here θ2 > 0 is small enough to ensure that

λ

(
S
(
∇uε(x, t ≤ T1)

))
> L +

1

2
.

Thus, for uε with ε < θ1 , we can repeat the above proof to obtain a further subse-

quence which converges to ū on [0, 2T1] . By doing this
[T + T1

T1

]
times, we obtain

a subsequence uε → ū on [0, T ] . By a general contradiction proof, we know that

uε → ū is true for every subsequence uε . 2
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3.2.3 Open questions

For general initial data, we have obtained an uniform BV bound of uε . Due

to this BV bound, there exists a subsequence of uε converges to a function u . The

open problems are: What is the dynamic satisfied by this limit u? Is u a weak

solution of the inviscid equation (3.2)? And how do we define the weak solution of

(3.2)?
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Chapter 4

Critical thresholds for restricted Euler dynamics

4.1 Restricted Euler equations and spectral dynamics

In this chapter, we discuss the restricted Eulerian dynamics

∂tM + u · ∇M + M2 =
trM2

n
In×n , M = ∇u , (4.1)

By the spectral dynamics lemma, the corresponding eigenvalues of M satisfy

λ̇i + λ2 =
1

n

n∑
j=1

λ2
j , i = 1, · · · , n , {̇} :=

d

dt
= ∂t + u · ∇x . (4.2)

We say that Λ0 ∈ Rn is sub-critical if there exists a global smooth solution in

time of (4.2), Λ(t) = (λ1(t), λ2(t), · · · , λn(t)) subject to initial conditions, Λ(0) =

(λ1(0), λ2(0), · · · , λn(0)) . A first observation rests on the obvious symmetries of

(4.2).

Lemma 4.1.1 If Λ is sub-critical then so is rΛ , ∀ r > 0 . Moreover, every permu-

tation of Λ is sub-critical.

It follows that the set of sub-critical initial data consist of rays, and therefore,

it is enough to consider the projection of this set on the unit sphere.
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4.2 Trace dynamics

This section is devoted to an alternative formulation of the spectral dynamics

in terms of real quantities mk :=
∑n

j=1 λk
j , k = 1, · · · , n . This is motivated by the

trace dynamics originally studied in [V82] for n = 3 .

Here we seek an extension for the general n-dimensional setting, which is

summarized in the following.

Lemma 4.2.1 [LT02] Consider the n-dimensional restricted Euler system (4.2)

subject to the incompressibility condition m1 :=
∑n

j=1 λj = 0 . Then the traces mk

for k = 2, · · · , n satisfy a closed dynamical system, which governs the local topology

of the restricted flow.

Proof. Based on the spectral dynamics, the evolution equation for each eigenvalue

λi can be written as

d

dt
λi + λ2

i =
1

n
m2 , i = 1, · · · , n .

By multiplying kλk−1
i and summation over i we obtain

d

dt
mk + kmk+1 =

1

n
m2mk−1 , i = 2, · · · , n .

Note that m1 = 0 , we obtain

d

dt
m2 + 2m3 = 0 , (4.3a)

d

dt
m3 + 3m4 =

3

n
m2

2 , (4.3b)

· · ·
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d

dt
mn + nmn+1 = m2mn−1 . (4.3c)

To close the system, it remains to express mn+1 in terms of (m1, · · · ,mn) . To this

end we utilize the characteristic polynomial

λn
j + q1λ

n−1
j + · · ·+ qn−1λj + qn = 0 , (4.4)

expressed in terms of the characteristic coefficients

q1 = −m1 = 0 , q2 = −1

2
m2 , q3 = −1

3
m3 , q4 = −1

4
m4 +

1

8
m2

2 , · · ·

Note that q’s can be expressed in terms of (m1, · · · ,mn) . Using (4.4) one may

reduce mn+1 in (4.3c) to lower-order products. In facts,
∑n

j=1(λj × (4.3c)j) gives

mn+1 + q2mn−1 + · · ·+ qn−1m2 = 0 . (4.5)

Substituting this into (4.3c) yields the closed system we sought for. 2

In order to demonstrate the above procedure we now turn to consider two

examples, whose critical thresholds will be studied in subsequent sections.

Example 1. (3-dimensional case n = 3, see [V82],[CA92])

In the three-dimensional case one has

q1 = 0 , q2 = −1

2
m2 , q3 =

n∏
j=1

λj = −1

3
m3 ,

hence

λ3
i −

1

2
m2λi − 1

3
m3 = 0 , i = 1, 2, 3.

Multiplying by λi and taking the summation over i we find

m4 =
1

2
m2

2 .
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Thus a closed system is obtained,

d

dt
m2 + 2m3 = 0 , (4.6a)

d

dt
m3 +

1

2
m2

2 = 0 . (4.6b)

Example 2. (4-dimensional case n = 4)

In the four-dimensional case one has

q1 = 0 , q2 = −1

2
m2 , q3 = −1

3
m3 , q4 = −1

4
m4 +

1

8
m2

2 .

Hence

λ4
i −

1

2
m2λ

2
i −

1

3
m3λi − 1

4
m4 +

1

8
m2

2 = 0 , i = 1, 2, 3, 4.

Multiplying by λi and taking the summation over i we obtain

m5 =
1

2
m2m3 +

1

3
m3m2 =

5

6
m2m3 .

Therefore the resulting closed system becomes

d

dt
m2 + 2m3 = 0 , (4.7a)

d

dt
m3 + 3m4 =

3

4
m2

2 , (4.7b)

d

dt
m4 = −7

3
m3m2 . (4.7c)

4.3 Three-dimensional critical thresholds

This section is devoted to the study of three-dimensional restricted models in

terms of the critical thresholds.
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It follows from (4.6) that

d

dt
(6m2

3 −m3
2) = 12m3ṁ3 − 3m2

2ṁ2 = −6m3m
2
2 + 6m2

2m3 = 0 ,

which yields a global invariant

6m2
3 −m3

2 = Const. (4.8)

We consider the phase plane (m2,m3) , except for the separatrix 6m2
3 = m3

2 , all

other solutions would not approach the origin. The phase plane is divided into two

parts by this separatrix. The nonlinearity ensures that trajectories which do not

pass the origin must lead to infinity at a finite time. In fact for initial data from

the region {(m2,m3) , m2 > 3
√

6m
2/3
3 } , the corresponding trajectories will remain

in this region since system (4.6) is autonomous. Therefore (4.6b) leads to

ṁ3 < −1

2
3
√

36 m
4/3
3 . (4.9)

Since ṁ3 = −1
2
m2

2 , m3(t) is always decreasing in time. Even for positive m3(0) ,

there exists a finite time T ∗ such that m3(T
∗) < 0 . The integration of (4.9) gives

m3(t) <

[
1

6
3
√

36(t− T ∗) + m3(T
∗)−1/3

]−3

. (4.10)

This shows that m3(t) → −∞ when t approaches a time before

T ∗ +
3
√

6(−m3(T
∗))−1/3 .

Finite-time breakdown can be similarly justified for initial data lying in the region

{(m2,m3) , m2 < 3
√

6m
2/3
3 } . These facts enable us to conclude the following:
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Theorem 4.3.1 Consider the system (4.6) with initial data
(
m2(0),m3(0)

)
. The

global bounded solution exists if and only if the initial data lie on the curve

{
(m2,m3)

∣∣ m3 =
1√
6
m

3/2
2

}
.

We now turn to interpret this condition in terms of the eigenvalues. Set

Λ = (λ1, λ2, λ3) , the above critical stable set can be written as

Ω = {Λ
∣∣

3∑

k=1

λ3
k =

1√
6

( 3∑

k=1

λ2
k

)3/2

}

The homogeneity of the above constraint in terms of eigenvalues implies that if

Λ ∈ Ω , then εΛ ∈ Ω , ∀ ε > 0 .

Without loss of generality, we consider the restriction of Ω onto a ball
∑3

k=1 λ2
k =

r2 , denoted by Ω(r) . There are two cases to be considered:

The initial eigenvalues contain complex component, say Λ0 = (a− bi, a+ bi, c)

for real a, b, c ∈ R . The restricted set Ω(
√

6) is determined by

c + 2a = 0, 2a2 − 2b2 + c2 = 6, 2a(a2 − 3b2) + c3 =
r3

√
6

= 6 .

Eliminating c we have

6a2 − 2b2 = 6 , −6a(a2 + b2) = 6 ⇒ 4a3 − 3a + 1 = 0 ,

which has real roots a ∈ {−1, 0.5, 0.5} , from which no real b 6= 0 can be found.

The only possible scenario is the real eigenvalues Λ = (a, b, c) ∈ R3 . Restricted

again on Ω(
√

6) we have

a + b + c = 0, a2 + b2 + c2 = 6, a3 + b3 + c3 =
r3

√
6

= 6 .
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Eliminating a, b we have c3 − 3c − 2 = 0 with real roots c ∈ {2,−1,−1} . The

symmetric property implies that a, b also lie in the set {2,−1,−1} . In short, one

has

Ω(
√

6) =
{
Λ

∣∣ (−1,−1, 2), (−1, 2,−1), (2,−1,−1)
}

.

This leads to:

Theorem 4.3.2 Solutions to (4.2) with n = 3 remain bounded for all time if and

only if the initial data Λ0 := (λ1, λ2, λ3) lie in the following set

r
{
(−1,−1, 2), (−1, 2,−1), (2,−1,−1)

}
, ∀ r ≥ 0 .

Thus, restricted to one orthant of the unit sphere we find that the three-dimensional

restricted Euler equations admit only one sub-critical point. In this sense, the finite-

time breakdown of three-dimensional restricted Euler equations is generic. This

result was already obtained in [LT02] by spectral dynamics analysis. What we have

presented is an alternative, equivalent argument which paves the way for the analysis

carried out in next section.

4.4 Four-dimensional critical thresholds

In four-dimensional setting, the trace dynamics is governed by m1 = 0 and

d

dt
m2 + 2m3 = 0 , (4.11a)

d

dt
m3 + 3m4 =

3

4
m2

2 , (4.11b)

d

dt
m4 = −7

3
m3m2 . (4.11c)
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Combine (4.11a) and (4.11c) we obtain

d

dt

(
m4 − 7

12
m2

2

)
= 0 ,

which gives a global invariant

m4 =
7

12
m2

2 + C1, C1 := m4(0)− 7

12
m2

2(0) . (4.12)

Substituting this into (4.11b) we find

d

dt
m3 = −m2

2 − 3C1 .

We then have a closed system for (m2,m3)

d

dt
m2 = −2m3 , (4.13a)

d

dt
m3 = −m2

2 − 3C1 . (4.13b)

In order to ensure global bounded solution it is necessary to assume C1 < 0 , i.e.,

m4(0) <
7

12
m2

2(0) . (4.14)

Set −3C1 = l2 with l > 0 , thus system (4.15) is written as

d

dt
m2 = −2m3, (4.15a)

d

dt
m3 = −m2

2 + l2, (4.15b)

with moving parameter l determined by the initial data through

m4(0) =
7

12
m2

2(0)− l2

3
. (4.16)

This system has two critical points (−l, 0) and (l, 0) ; it is easy to verify that as

equilibrium points, (−l, 0) is a spiral point and (l, 0) is a saddle point for the corre-

sponding linearized system.
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This structure suggests that part of separatrixes of this system may serve as

the critical threshold. Note that

d

dt

(
3m2

3 −m3
2 + 3l2m2

)
= 6m3

d

dt
m3 − 3m2

2

d

dt
m2 + 3l2

d

dt
m2 = 0 .

Thus the second global invariant is

3m2
3 −m3

2 + 3l2m2 = C2 . (4.17)

The two separatrixes passing (l, 0) are obtained by taking C2 = 2l3 , i.e.,

3m2
3 = m3

2 − 3l2m2 + 2l3 = (m2 + 2l)(m2 − l)2 . (4.18)

In the phase plane (m2,m3) , this consists of a closed curve for −2l ≤ m2 ≤ l and

two open branches for m2 > l . The phase plane analysis suggests that the global

bounded solution exists if and only if the initial data satisfy

m4(0) <
7

12
m2

2(0) , (4.19)

and

(m2,m3)(0) ∈ Γ , (4.20)

where

Γ :=

{
(m2,m3)

∣∣∣ |m3| ≤ l −m2√
3

√
m2 + 2l , −2l ≤ m2 ≤ l

}

⋃ {
(m2,m3)

∣∣∣ m3 =
m2 − l√

3

√
m2 + 2l , m2 > l

}

To interpret this condition in terms of the eigenvalues, we state the following theo-

rem.
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Theorem 4.4.1 The solutions to (4.2) with n = 4 remain bounded for all time if

and only if the initial data Λ0 := (λ1, λ2, λ3, λ4) lie in the following set

Λ0 ∈ Ω ∩ {
λ1 + λ2 + λ3 + λ4 = 0

}
,

where

Ω := Ω1 ∪ Ω2 ∪ Ω3 ,

Ω1 :=
{(

λ1, λ2, λ3, λ4

) ∣∣∣ λ1,2,3,4 ∈ R and λi1 = λi2 ≤ λi3 ≤ λi4 ,

here (i1, i2, i3, i4) is a permutation of (1, 2, 3, 4)
}

,

Ω2 :=
{(

λ1, λ2, λ3, λ4

) ∣∣∣ λi1 = λi2 ∈ R and λi3,i4 ∈ C/ R ,

here (i1, i2, i3, i4) is a permutation of (1, 2, 3, 4)
}

,

and

Ω3 :=
{(

λ1, λ2, λ3, λ4

) ∣∣∣ λ1,2,3,4 ∈ C/ R
}

.

Proof. In terms of traces mk , we have showed that solutions to (4.2) with n = 4

remain bounded for all time if and only if the initial data (m2,m3,m4) lie in the

following set

S ∩ Γ , (4.21)

where

S :=
{

Λ
∣∣ C1 := m4 − 7

12
m2

2 ≤ 0
}

,

and

Γ :=

{
(m2,m3)

∣∣∣ |m3| ≤ l −m2√
3

√
m2 + 2l , −2l ≤ m2 ≤ l

}

⋃ {
(m2,m3)

∣∣∣ m3 =
m2 − l√

3

√
m2 + 2l , m2 > l

}
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We decompose Γ as

Γ := Γ1 ∪ Γ2 ∪ Γ3 ,

where

Γ1 :=
{

(m2,m3)
∣∣ |m3| < l −m2√

3

√
m2 + 2l, −2l ≤ m2 < l

}
,

Γ2 :=
{

(m2,m3)
∣∣ |m3| = l −m2√

3

√
m2 + 2l, −2l ≤ m2 < l

}
,

Γ3 :=
{

(m2,m3)
∣∣ m3 =

m2 − l√
3

√
m2 + 2l, m2 ≥ l

}
,

and

l2 = −3C1, with l > 0 .

The meaning of this decomposition will be clear later.

We now turn to interpret condition (4.21) in terms of the eigenvalues (λ1, λ2, λ3, λ4) .

we consider three cases.

Case I: all the eigenvalues are real.

Suppose the four eigenvalues are

λ1 = a , λ2 = b , λ3 = c , and λ4 = −(a + b + c) , (4.22)

where a, b, c ∈ R. Suppose C1 < 0 , then

m2
2 − l2 = m2

2 + 3C1 = 3m4 − 3

4
m2

2 = 3
(
m4 − 1

4
m2

2

)
.

By applying the general inequality (λ2 + λ2
2 + λ2

3 + λ2
4)

2 ≤ 4(λ4
1 + λ4

2 + λ4
3 + λ2

4), we

obtain that m4 − 1

4
m2

2 ≥ 0 , for all t > 0 . Thus m2
2 − l2 ≥ 0 is always true. This

implies that under the constraint that all the eigenvalues are real, S ∩ Γ = S ∩ Γ3.
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Because of the homogeneity, we can assume the four real eigenvalues are −1+

s,−1 + w,−1 and 3− s− w . We then perform the following computation. Since

m3 =
m2 − l√

3

√
m2 + 2l , i.e., 3m2

3 = (m2 − l)2(m2 + 2l)

then

3m2
3 = m3

2 − 3m2l
2 + 2l3 . (4.23)

Rewrite this equation as

3m2
3 −m3

2 + 3m2(−3C1) = 2l3 ,

i.e.,

3m2
3 −m3

2 − 9m2(m4 − 7

12
m2

2) = 2l3 . (4.24)

Square both sides of (4.24), we obtain

(
3m2

3 −m3
2 − 9m2(m4 − 7

12
m2

2)
)2

= 4l6 .

Replace l6 by (−3C1)
3 = 27(m4 − 7

12
m2

2)
3 , we obtain

0 =
(
3m2

3 −m3
2 − 9m2(m4 − 7

12
m2

2)
)2

+ 108
(
m4 − 7

12
m2

2

)3

=: p .

Direct calculation shows that

p = −27s2w2(s− w)2(2s + w − 4)2(s + 2w − 4)2(s + w − 4)2.

Thus p = 0 if and only if either s = 0 , or w = 0 , or s− w = 0 , or 2s + w − 4 = 0 ,

or s + 2w− 4 = 0 , or s + w− 4 = 0 . They are all the same subject to homogeneity

and permutation. Actually, it turns out that the four eigenvalues must be in the

form r(−1 + s,−1,−1, 3− s) , ∀ r ≥ 0 , with arbitrary permutation. We claim that
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the range for s is [0, 4]. When 0 ≤ s ≤ 4, it’s easy to check that Λ ∈ S ∩ Γ3 . When

s > 4 or s < 0 , we rewrite (−1 + s,−1,−1, 3 − s) as (1 + s̃,−1,−1, 1 − s̃), where

s̃ := s− 2 , with s̃ < −2 or s̃ > 2 . Then we find

l = s̃2 − 4, m2 = 4 + 2s̃2, m3 = 6s̃2 .

Let

p1 :=
m2 − l√

3

√
m2 + 2l =

s̃2 + 8√
3

√
4s̃2 − 4 =

2(s̃2 + 8)√
3

√
s̃2 − 1 .

Thus

p2
1 −m2

3 =
3

4
(s̃2 − 4)3 > 0 ,

which means

r(−1 + s,−1,−1, 3− s) /∈ S ∩ Γ3 , for s /∈ [0, 4] .

So here we conclude: if all the eigenvalues are real, then Λ0 ∈ S∩Γ , if and only if Λ0

takes the form r(−1+s,−1,−1, 3−s) with arbitrary permutation, where 0 ≤ s ≤ 4

and r ≥ 0. And more precisely, in this case, Λ0 ∈ S ∩ Γ3 .

Case II: a pair of complex eigenvalues and two real eigenvalues.

Let us suppose the four eigenvalues are

λ1 = a + bi , λ2 = a− bi , λ3 = −a + c , and λ4 = −a− c , (4.25)

where a, b, c ∈ R and b 6= 0 . Direct calculation yields

m2 = 4a2 − 2b2 + 2c2 ,

m3 = −6a(b2 + c2) ,
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m4 = 4a4 + 2b4 + 2c4 − 12a2(b2 − c2) ,

l2 =
(
4a2 + b2 − c2

)2 − 12b2c2 ,

and

m2
2 − l2 = 3

(
m4 − 1

4
m2

2

)
= 3

(
b2 + c2

)2

− 24a2(b2 − c2) .

We show that

Λ0 ∈ S ∩ (Γ2 ∪ Γ3) .

We need to consider the situation that C1 < 0 , and−2l ≤ m2 ≤ l. If 4a2+b2−c2 ≥ 0,

then l ≤ 4a2 + b2 − c2 . It follows that

l −m2√
3

√
m2 + 2l ≤ 3(b2 − c2)√

3

√
12a2 = 6|a(b2 − c2)| ≤ |m3|.

It becomes an equality if and only if c = 0 . If 4a2+b2−c2 < 0, then l < c2−4a2−b2,

and l −m2 = b2 − c2 − 8a2 < 0 . It’s a contradiction to m2 < l .

Thus if the four eigenvalues consist of two real and two non-real eigenvalues,

then (m2,m3) must satisfies

m3 =
m2 − l√

3

√
m2 + 2l .

In an equivalent form, it is

3m2
3 −m3

2 − 9m2

(
m4 − 7

12
m2

2

)
= 2l3 .

Square both sides of this equation and replace l6 by (−3C1)
3 = 27(m4 − 7

12
m2

2)
3 ,

we obtain

p2 :=
(
3m2

3 −m3
2 − 9m2(m4 − 7

12
m2

2)
)2

+ 108
(
m4 − 7

12
m2

2

)3

= 0 .
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Direct calculation shows that

p2 = 432b2c2
(
b2 + (2a− c)2

)2(
b2 + (2a + c)2

)2

.

Thus p = 0 if and only if c = 0 . We can verify that when c = 0 , we do have C1 < 0

and −2l ≤ m2 ≤ l . So here we conclude: if the eigenvalues consist of two real and

non-real eigenvalues (4.25), then Λ0 ∈ S ∩ Γ if and only if (a, b, c) takes the form

r(q, 1, 0) , ∀ r ∈ R , and ∀ q ∈ R . More precisely, in the above form, Λ0 ∈ S ∩ Γ2 .

Case III: two pairs of complex eigenvalues.

Let us suppose the four eigenvalues are

λ1 = a + bi, λ2 = a− bi, λ3 = −a + ci, λ4 = −a− ci , (4.26)

where a, b, c ∈ R , and bc 6= 0 . We can calculate that

m2 = 4a2 − 2b2 − 2c2 ,

m3 = 6a(c2 − b2) ,

m4 = 4a4 + 2b4 + 2c4 − 12a2(b2 + c2) ,

m2
2 − l2 = 3

(
m4 − 1

4
m2

2

)
= 3

(
b2 − c2

)2

− 24a2
(
b2 + c2

)
,

and

l2 =
(
4a2 + b2 + c2

)2

+ 12b2c2 .

It follows that −2l < m2 < l , l > 4a2 + b2 + c2 , and

l −m2√
3

√
m2 + 2l >

3(b2 + c2)√
3

√
12a2 = 6|a|(b2 + c2) > |m3| .

Thus ∀(a, b, c) ∈ R3 with bc 6= 0, Λ0 ∈ S∩Γ , and solutions to (4.2) remain bounded

for all time. More precisely, Λ0 ∈ S ∩ Γ1 .
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Γ
3
 

(l,0) 

Γ
1
 

Γ
2
 

At last, we give the graph of Γ on the phase plane (m2,m3) .

The meaning of each part of Γ were explained in Case I,II and III. This com-

pletes the proof. 2

Compared with the three-dimensional restricted Euler equations, for four-

dimensional restricted Euler equations, here we found a surprising global existence

for subcritical initial data.

4.5 n-dimensional critical thresholds

In this section, we partially extend our results to the general n-dimensional

(n > 4) restricted Euler equations.

For n > 4, we do not apply the trace dynamics. Instead, we deal with the
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eigenvalue system directly

d

dt
λi + λ2

i =
1

n

n∑
j=1

λ2
j , i = 1, · · · , n ,

n∑
i=1

λi(0) = 0 .

(4.27)

First, we prove that if all the initial λ’s are real, then the finite-time breakdown

of (4.27) is generic.

Theorem 4.5.1 Reorder the initial data of (4.27) such that

λ1(0) = λ2(0) = · · · = λk(0) < λk+1 ≤ · · · ≤ λn(0) ,

then λ’s remain bounded if and only if k ≥ n

2
.

Proof. First we show that if

λ1(0) < λ2(0) · · · ≤ λn(0) ,

then λ1 will become unbounded in a finite time. We prove this by the contradiction

method. Here we list some facts which are useful in our proof. Suppose all λ’s

remain bounded, then

Fact 1. λi(t) < λj(t) , ∀ t ≥ 0 and i < j .

Take the difference of the λi and λj equations, we obtain

d

dt
(λi − λj) = −(λ2

i − λ2
j) .

Divide the above equation by (λi − λj) , we find that

d

dt

(
ln(λi − λj)

)
= −(λi + λj) ,
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which yields

λi(t)− λj(t) =
(
λi(0)− λj(0)

)
e
−

∫ t

0

(λi + λj)sds
< 0 .

Fact 2. If λi(t0) ≥ 0 , then λi(t) ≥ 0 , ∀t > t0 .

Fact 3. If λi(0) < λj(0) < 0 , then (λi − λj)(t) is decreasing as long as λj(t) ≤ 0 .

Fact 4. If λi(t0) > λj(t0) ≥ 0 , then (λi − λj)(t) is decreasing for t > t0 .

Let us suppose that

λ1 < λ2 < · · · < λp < 0 ≤ λp+1 < λp+2 < · · · < λn , ∀ t > 0 .

The equations for λ1 and λ2 are

d

dt
λ1 + λ2

1 =
1

n

n∑
j=1

λ2
j , (4.28a)

d

dt
λ2 + λ2

2 =
1

n

n∑
j=1

λ2
j , (4.28b)

Multiply (4.28a) by 1/λ2 , (4.28b) by λ1/λ
2
2 , and take the difference , we obtain

d

dt

(λ1

λ2

)
=

1

n

(λ2 − λ1

λ2
2

) n∑
j=1

λ2
j +

(λ1λ2 − λ2
1

λ2

)
> 0 , (4.29)

which means
λ1

λ2

is increasing. Applying Fact 3, we know there is an upper bound

Cλ1 < 0 for λ1(t) . Thus

λ1

λ2

(t) ≥ λ1

λ2

(0) + Ct .

On the other hand,

λn(t) >
λp(0)− λ1(0)

n− p
, ∀ t > 0 .
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By applying Fact 3, we find that λn − λp+1 goes to 0. Combine the above results,

we obtain that when t is large enough,

d

dt
λ2 ≥ 1

2

(
1

n
λ2

1 +
1

n

n∑
j=p+1

( λ1

n− p

)2
)

.

Thus λ2 will be increasing, and eventually λ2 will be greater than 0, which means

p = 1 . Then, we obtain that for a fixed 0 < α < 1 , when t is large enough, λ1

satisfies

d

dt
λ1 ≤ α

(
1

n
λ2

1 +
1

n

n∑
j=2

( λ1

n− 1

)2

− λ2
1

)
= α

2− n

n− 1
λ2

1 ,

which implies λ1 goes to −∞ at a finite time.

Next, we consider the case

λ1(0) = λ2(0) = · · · = λk(0) < λk+1(0) ≤ · · · ≤ λn(0) .

Following the same strategy, we can prove that when t is large enough, λk+1(t) will

be positive. So without loss of generality, we can consider

λ1(0) = λ2(0) = · · · = λk(0) < 0 < λk+1(0) ≤ · · · ≤ λn(0) .

If k <
n

2
, then since

∑n
j=1 λj = 0 , we obtain λk+1 < −λ1 . Thus λk+1 is increasing.

If λn ≥ −λ1 , then
d

dt
λn < 0 . Combine that λk+1 is increasing and λn is decreasing,

we know λn will be less than −λ1 eventually. By applying Fact 3, we obtain that

for a fixed 0 < α < 1 , when t large enough, λ1 satisfies

d

dt
λ1 ≤ α

(
k

n
λ2

1 +
1

n

n∑

j=k+1

( kλ1

n− k

)2

− λ2
1

)
= α

2k − n

n− k
λ2

1 ,

which implies λ1 goes to −∞ at a finite time. On the other hand, if k ≥ n

2
, then

λn > −λ1 . Thus λn is decreasing all the time, which implies λ’s approach 0 as t

increases. This complete the proof. 2
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According to Theorem 4.5.1, if the initial velocity is irrotational, i.e., if M =

∇u is symmetric, then finite-time breakdown of system (4.1) is generic. More pre-

cisely, it breaks down in such a way: the smallest eigenvalues go to −∞ when t

approaches the critical time, while all the other eigenvalues go to ∞ when t ap-

proaches the critical time.

Next, we prove that if all the eigenvalues are non-real, then solutions to (4.2)

remain bounded for all time.

Theorem 4.5.2 Suppose that initial data of (4.2) are non-real, i.e., =(λi(0)) 6=

0 ,∀ i , then solutions to system (4.2) remain bounded for all time.

Proof. We perform singularity analysis to prove this theorem. For reader’s conve-

nience, we sketch the main steps briefly, and refer to [GH00] and references therein

for more details of this method.

We assume a flow governed by the nonlinear ODE w′ = f(w) diverges at a

finite t∗ , then one can seek local solutions of the so-called Psi-series form

w = ωτ p

[
1 +

∞∑
j=1

ajτ
j/q

]
,

where τ = (t∗ − t) , p ∈ Rn with at least one negative component , q ∈ N , and aj

is a polynomial in log(t∗ − t) of degree Nj ≤ j . There are three steps to determine

the above series:

Step 1: find the so-called balance pair, (ω, p) , such that the dominant behavior,

ωτ p , is an exact solution of some truncated system w′ = f̃(w) ;

Step 2: computation of the resonances, which are given by the eigenvalues of the

matrix −∂f̃(w)

∂w
− diag(p) ;
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Step 3: the last step of the singularity analysis consists of finding the explicit form

for the different coefficients aj by inserting the full series in the original system,

w′ = f(w) .

The singularity analysis asserts, if the system breaks down for some initial

data, then there must exist a general solution in the Psi-series form with ω ∈ Rn .

We use a corollary (Corollary 1, p443, [GH00]) to prove our theorem. More precisely,

we show that there is no real balance pair (ω, p) such that ωτ p solves our system,

thus the system does not have finite-time singularities.

Since all the eigenvalues are complex, the dimension number must be even.

Suppose the dimension number is 2n, and the eigenvalues are ak ± ibk , where 1 ≤

k ≤ n , ak, bk ∈ R and bk > 0 . Plug these into (4.2) we obtain

d

dt
ak + (a2

k − b2
k) =

n∑
j=1

(a2
j − b2

j)/n , k = 1, · · · , n (4.30a)

d

dt
bk + 2akbk = 0 , k = 1, · · · , n (4.30b)

Let us suppose the dominant behaviors of ak and bk have the form

ak ∼ αkτ
pk , bk ∼ βkτ

qk .

Substituting this into (4.30), we find

−pkαkτ
pk−1+(α2

kτ
2pk−β2

kτ
2qk) =

1

n

n∑
j=1

(α2
kτ

2pk−β2
kτ

2qk) , k = 1, · · · , n (4.31a)

−qkβkτ
qk−1 + 2αkβkτ

pk+qk = 0 , k = 1, · · · , n (4.31b)

It follows from (4.31b) that

pk = −1 , and αk =
qk

2
, ∀ k .
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For qk , there are three cases to be considered.

(1) If min
k

qk < −1 , then it follows from (4.31b) that qj = min
k

qk , ∀j . Thus αk =
qk

2

are all negative. This implies system (4.2) may diverge in such a way: all the real

parts of the eigenvalues go to −∞ , and all the imagine parts go to ∞ . This is a

contradiction to the incompressibility condition,
∑n

j=1 aj = 0 .

(2) If qk ≥ −1 for all k , and there exists qj = −1 . We choose a m such that

<(β2
m) = max

qj=−1
<(β2

j ) .

Then according to (4.31a)m , the coefficients of the τ−2 terms satisfy

−1

4
= αm + α2

m =
n∑

j=1

α2
j + (β2

m −
∑

qs=−1

β2
s/n) > 0 ,

which is a contradiction.

(3) If qk > −1 for all k . Then after dropping the lower order terms , we obtain that

αk =
qk

2
satisfies

qk

2
+

q2
k

4
=

n∑
j=1

q2
j

4n
.

According to the incompressibility condition, we have
∑n

j=1 qj = 0 . So there exists

qr < 0 . Since

qr

2
+

q2
r

4
> 0 ,

it yields that qr < −2 . It’s a contradiction to qr > −1 .

Combine (1),(2) and (3), we complete the proof. 2

At last, we prove that if (4.2) have both real and complex eigenvalues, the

system will breakdown for initial data in an open set.
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Theorem 4.5.3 Suppose the initial eigenvalues of (4.2) have both real and complex

numbers, then the system will break down at a finite time if the initial data are in

an open set.

Proof. Suppose the eigenvalues are ak ± ibk and cl , where 1 ≤ k ≤ n , 1 ≤ l ≤ m,

ak , bk , cl ∈ R . Suppose (4.2) breaks down at a critical time t∗ , and the dominant

behaviors of ak , bk and cl have the form

ak ∼ αkτ
pk , bk ∼ βkτ

qk , cl ∼ γlτ
rk , τ = t∗ − t .

Following the proof of Theorem 4.5.2, we obtain that pk = 1 and αk =
qk

2
for all k .

We then find a balance pair




(p1, p2, · · · , pn) = (−1,−1, · · · ,−1)

(q1, q2, · · · , qn) = (
2

2n + m− 2
,

2

2n + m− 2
, · · · ,

2

2n + m− 2
)

(r1, r2, · · · , rm) = (−1,−1, · · · ,−1)

(α1, α2, · · · , αn) = (
1

2n + m− 2
,

1

2n + m− 2
, · · · ,

1

2n + m− 2
)

∀ βk

(γ1, γ2, · · · , γm) = (
1

2n + m− 2
,

1

2n + m− 2
, · · · ,

1− 2n−m

2n + m− 2
,

1

2n + m− 2
,

1

2n + m− 2
)

According to (Theorem 1, p428, [GH00]), we know that for the initial data in an

open set, (4.2) will break down in such a way: the smallest real eigenvalue goes to

−∞, all other real eigenvalues and real part of the complex eigenvalues go to ∞ ,

and all the imagine parts of the complex eigenvalues go to 0 . This completes the

proof. 2

Remark 4.5.1 Numerical experiments strongly suggest that if there is any real

eigenvalue at the beginning, then (4.2) will break down at a finite time, unless there
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are at least
[n + 1

2

]
real eigenvalues which equals each other, and they are less than

all the other real eigenvalues. If this is true, then the sharp critical threshold for the

n-dimensional restricted Euler is: solutions to (4.2) remain bounded for all time if

and only if either λ’s are all non-real, or among the real eigenvalues there are at

least
[n + 1

2

]
minimums.
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